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Preface

“Advances in Renewable Energy and Energy Storage” constitutes a thorough examination of the

crucial transition towards a global energy matrix based on renewable sources. This reprint focuses

on cutting-edge technologies, highlighting enhanced efficiency, superior energy integration, and

cost-effectiveness to foster the widespread adoption of renewable energies. The objectives encompass

guiding collective efforts towards sustainable development, mitigating environmental pollution, and

addressing the challenges of climate change.

Motivated by the urgent need for sustainable energy solutions, this reprint aims to inform and

inspire diverse stakeholders, including academics, industry professionals, and policymakers. The

authors, distinguished experts in the field, have collaborated to distill innovative research, providing

a comprehensive resource for decision makers in both the public and private sectors. We extend

our sincere gratitude to those who contributed to this effort, recognizing the collective commitment

needed to steer our world towards a resilient and environmentally conscious energy future.

Luis Hernández-Callejo, Jesús Armando Aguilar Jiménez, and Carlos Meza Benavides

Editors
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Article

Assessing the Potential of Qatari House Roofs for Solar Panel
Installations: A Feasibility Survey

Ayed Banibaqash, Ziad Hunaiti and Maysam Abbod *

Department of Electronic and Electrical Engineering, College of Engineering, Design and Physical Sciences,
Brunel University London, Uxbridge, London UB8 3PH, UK
* Correspondence: maysam.abbod@brunel.ac.uk

Abstract: Qatar’s ambitious Vision 2030 includes a major shift towards clean energy, and residential
solar PV installation can be an obvious option, given its abundant sunlight and high power for
residential cooling. Despite significant solar panel farm investment, there has been limited progress
in deploying solar panels on home roofs, and further research is needed to identify the potential
for such an initiative and its impact on the country’s move towards clean energy. This field survey
assesses the potential for residential rooftop solar panel installation across Qatar, considering space
availability, currently utilized space, remaining space, shading, and roof type. It also provided
indications of potential obstacles and shading that might affect panel sunlight exposure. The results
showed that there is significant potential for installing solar panels on Qatari homes, which could
contribute to a considerable portion of the energy consumed by households during peak usage
periods, particularly in the summer months. Moreover, excess energy generated could be exported
to other countries with high demand during periods of low demand in Qatar. The study’s findings
complement previous research efforts and provide insights for policymakers and stakeholders to
develop strategies that endorse the vision for 2030 and promote the transition towards clean energy
in Qatar.

Keywords: renewable energy; solar panels; Qatar; roof solar panels; roof survey; installation feasibil-
ity; solar panel installation drivers

1. Introduction

Qatar is committed to achieving its Vision 2030, which aims to create a sustainable
and diversified economy as well as a healthy and secure society. One of the key strategies
to achieve this vision is through a major shift towards clean energy [1]. Given the country’s
geographic location, Qatar is well-suited to harnessing the power of the sun to achieve
its sustainable electricity goals. The country has abundant sunlight throughout the year,
making it an ideal location for the installation of solar PV arrays [2]. Qatar has already taken
significant steps towards achieving its vision of clean energy and has invested heavily in
solar panel farms, such as the 800 MW Al-Kharsaah Solar Power Plant, which is expected to
power around 10% of the country’s energy needs [3]. These farms are a critical component
of Qatar’s clean energy strategy, but more can be undertaken. The majority of Qatar’s
energy load is domestic use, especially for cooling during the summer months, as noted
by the Annual Statistics Report 2021 of Qatar General Electricity & Water Corporation
(KAHRAMAA), accounting for 38,284,270 MWh out of the total amount of electricity
generated nationally per year (Figure 1) [4]. It is clear from the figure that domestic users
account for nearly four times the number of industrial consumers. This fact supports the
objective of this study, indicating that residential buildings have the potential to play a
significant role in the transition toward clean energy and achieve milestones toward the
national net-zero target. At the time of this study, there is still limited progress in deploying
solar panels on home roofs, despite the country’s high levels of sunshine and the potential
benefits that such installations can bring [2].

Solar 2023, 3, 650–662. https://doi.org/10.3390/solar3040035 https://www.mdpi.com/journal/solar
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Figure 1. Domestic energy consumption [4].

Deploying solar panels on home roofs can contribute to the country’s clean energy
goals by creating a distributed network of clean energy production. This can help reduce
the country’s dependence on fossil fuels (as well as the cannibalization of its primary
national exports), lower carbon emissions, and create a more resilient energy system. Given
that the country is one of the main energy exporters and experiences a high number of
sunny days, it can enable significant clean energy generation that can be exported [2].
However, further research is needed to identify the potential for this initiative and its
impact on the country’s move towards clean energy. This includes examining factors such
as the availability of suitable roof space, the orientation of the roofs, and the presence
of any shading or obstructions that might limit the effectiveness of the solar panels. By
conducting such research, stakeholders can better understand the potential of solar panels
on residential roofs and develop strategies to accelerate and optimize their deployment.

2. Drivers for Roof Solar Panels in Qatar

Qatar has made progress in large-scale solar farm investments, but residential solar
panel deployment is still needed to achieve the nation’s clean energy vision by 2030 [1].
Previous research has identified key challenges, as summarized in Figure 2, that must be
addressed before scaling up solar panel deployment in Qatar [5]. These challenges include a
lack of interest in renewable energy, competition from other energy sources, uncompetitive
pricing due to subsidized conventional electricity, limited awareness of renewable energy,
insufficient government initiatives, and a lack of environmental concern. Similar challenges
exist in other Gulf Cooperation Council (GCC) countries. Thus, addressing these issues is
necessary before considering residential and commercial solar panel deployment in Qatar.
A national roadmap for sustainable energy is crucial for achieving this long-term goal.

2
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Figure 2. Five key challenges to residential solar PV adoption [5].

By considering the six drivers for promoting solar panel adoption, namely potential,
awareness, the net-zero pathway, energy efficiency, lowering subsidies, and sustainability,
stakeholders can develop effective strategies to encourage the installation of solar panels
and achieve the vision of a sustainable future (Figure 3).

 

Figure 3. Six PANELS drivers [authors].

2.1. Potential

Qatar has vast potential for solar energy investment, positioning itself as a leader in
clean energy exports. Factors such as high sun hours, market experience, and financial
capacity make Qatar an ideal location for solar energy ventures [6]. Qatar is well-suited for
solar energy investments, with an average of 3600 h of direct solar radiation annually [7].

3
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The country is committed to reducing its carbon footprint and aims to generate 20% of its
energy from renewables by 2030, with solar energy playing a significant role [8].

A recent feasibility study explored various scenarios of solar panel deployment in
Qatar’s residential and commercial buildings, considering panel sizes, efficiency, and daily
sun exposure. Results indicated substantial potential for rooftop solar panels, generating
significant energy during peak usage, particularly in hot summer months. Surplus energy
could be exported to countries with high energy demands, positioning Qatar as a major
contributor to solving global energy crises [2].

Qatar’s extensive experience in the energy market, particularly in the oil and gas
industry, can be leveraged to develop the solar energy sector and gain a competitive
advantage in the global clean energy market [9]. The country’s financial capacity and
resources enable large-scale solar energy investments [10]. Notably, Qatar has already
invested in significant solar energy projects, including the Al-Kharsaah Solar Power Plant,
one of the world’s largest [11]. With its potential for solar energy investment and clean
energy exports, Qatar can contribute to its own energy needs, reduce carbon emissions, and
address global energy demands [12]. Its high sun hours, market experience, and financial
capacity make it an ideal destination for solar energy investment [2].

2.2. Awareness

Awareness plays a vital role in promoting the adoption of renewable energy resources.
In Qatar, a lack of awareness has been identified as a significant challenge hindering
the deployment of renewable energy [13]. To address this challenge, the government
should implement projects that allow households to actively participate and experience
the benefits of installing solar panels. This can effectively raise awareness throughout
the nation [14]. Given Qatar’s socially connected society, visible solar panels on homes
would initiate conversations and spark interest in renewable energy, leading to a snowball
effect of adoption [15]. The installation of solar panels serves as a strategic tool to raise
awareness and drive the transition toward clean energy use [16]. Not only does it offer
tangible benefits like reduced energy bills, but it also visually demonstrates individuals’,
businesses’, and nations’ commitment to reducing carbon emissions and contributing to
global climate change mitigation efforts [17]. This visual representation can generate public
interest and awareness of renewable energy, inspiring more individuals and businesses to
embrace clean energy sources [18].

Moreover, increasing public awareness about renewable energy can garner support
for policies and initiatives promoting clean energy adoption [17]. This creates a favorable
environment for renewable energy investment and deployment in Qatar, encouraging busi-
nesses to invest in renewable energy projects. Therefore, enhancing public understanding
of the nature and significance of clean and renewable energy sources is a crucial step in
establishing them as a normative and primary component of the national energy mix. In
Qatar, the installation of solar panels on homes acts as a catalyst for raising awareness
and driving the transition to clean energy. By generating public interest and support for
renewable energy, Qatar can contribute to global climate change mitigation efforts and
foster a more sustainable future for all.

2.3. Net-Zero Building Pathway

To achieve more sustainable and energy-efficient buildings, implementing a net-zero
strategy is crucial. Net-zero buildings have the capability to generate as much energy as
they consume, resulting in a neutral or net-zero energy balance [19]. Currently, homes
in Qatar heavily rely on external energy sources, but the installation of solar panels on
rooftops can pave the way towards net-zero buildings [20]. By incorporating solar panels,
homes in Qatar can reduce their dependence on conventional energy sources and promote
the use of renewable energy. The region’s abundant sunshine makes solar energy an ideal
solution for meeting residential energy needs [13]. Local energy production allows homes

4
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to decrease their reliance on grid-supplied electricity, which is often costly and contributes
to carbon emissions [2].

Apart from the environmental advantages, transitioning to net-zero buildings can
lead to significant cost savings for homeowners. By generating their own energy, home-
owners can reduce their electricity bills and even potentially sell surplus energy back to
the grid [19]. This introduces a new revenue stream and helps offset the upfront costs of
solar panel installation [2]. Additionally, adopting a net-zero strategy improves overall
energy efficiency in buildings, resulting in reduced energy consumption and lower carbon
emissions. These efforts align with global initiatives to combat climate change [21]. There-
fore, installing solar panels on homes in Qatar serves as a strategic step towards achieving
net-zero buildings. Through localized energy production, homeowners can decrease their
reliance on conventional energy sources, lower energy expenses, and contribute to global
climate change mitigation [20]. Thus, implementing a net-zero strategy is essential for
creating a more sustainable and energy-efficient built environment in Qatar.

2.4. Energy Efficiency

Energy efficiency is crucial for a sustainable energy strategy in Qatar, where all homes
currently rely on fossil fuel-generated energy. Promoting energy efficiency is vital to reduce
consumption, lower carbon emissions, and create a sustainable built environment [22]. By
installing solar panels and implementing a net-zero strategy, homeowners are expected
to shift towards using energy-efficient appliances and monitoring their energy usage [23].
Solar panel installation on Qatar’s homes can transform the way homeowners consume en-
ergy. Producing their own energy raises awareness about consumption and environmental
impact, fostering a greater appreciation for energy efficiency and a willingness to invest in
low-energy appliances [23].

Furthermore, a net-zero strategy incentivizes energy efficiency through a feedback
loop between production and consumption [23]. As homeowners become adept at generat-
ing their own energy, they become conscious of consumption patterns and take steps to
reduce energy usage. This includes adopting energy-efficient habits, investing in efficient
appliances, and monitoring consumption for potential savings. Therefore, promoting
energy efficiency is vital for a sustainable energy strategy, especially in Qatar, where homes
solely rely on fossil fuel-generated energy. Through solar panel installation and a net-zero
approach, homeowners can enhance awareness, invest in efficient technologies, and con-
tribute to a sustainable built environment [24]. Energy efficiency is essential for achieving a
sustainable and energy-efficient future in Qatar.

2.5. Lowering Electricity Subsidies

Qatar can transition to a sustainable energy future by deploying solar panels on homes.
Energy subsidies pose a challenge as the government provides free energy to citizens,
hindering solar panel installation. However, the government can support panel installation
to reduce non-clean energy use and subsidies [10,13]. This empowers homeowners to
generate their own energy, reducing their reliance on non-clean sources [25]. It shifts the
energy production burden from the government to individuals, lowering subsidies [10].
Homeowners can contribute to the grid and export excess energy, generating revenue [2].
Government support for solar panels demonstrates a commitment to sustainability and
emission reduction, fosters environmental consciousness, and encourages investment in
sustainable energy [25,26].

2.6. Suitability

The deployment of solar panels in Qatar can contribute significantly to achieving
sustainability across the three main pillars: the economy, society, and the environment.
Solar energy is a clean and renewable source of energy that can support the economy by
providing a new source of energy and sustaining the other available sources for future gen-
erations [10]. By investing in solar energy, the country can reduce its reliance on non-clean
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sources of energy, which can reduce the costs associated with importing and transporting
non-renewable fuels. This can, in turn, support economic growth and development [27].
Moreover, solar energy can benefit society by minimizing pollution, particularly carbon
emissions. The use of solar panels can help reduce the amount of carbon particles in the
air, which can lead to a healthier and more sustainable society. This can contribute to
the overall well-being of the population, as reducing pollution can lead to a reduction in
respiratory illnesses and other health issues [28]. By reducing the generation of CO2 from
clean sources of energy, solar panels can contribute to a more sustainable environment that
can be kept for future generations. This can also help reduce the negative impact of climate
change on the environment and support the preservation of natural resources [29].

In order to effectively facilitate the implementation of the six drivers for solar panel
deployment in Qatar, it is essential to carry out a field survey aimed at evaluating the
viability of installing solar panels on different types of residential buildings. This survey
will provide valuable insights to homeowners and decision-makers, enabling them to
develop suitable scenarios for the installation and effective utilization of solar panels on
domestic roofs in Qatar [30].

3. Materials and Methods

To evaluate the feasibility of installing solar panels on homes in Qatar, a survey was
conducted using a manual approach with a structured interview sheet with closed-ended
questions as the data collection method, based on the previous literature (as explained in
Table 1). The reason for opting for manual surveying instead of remote sensing methods,
such as the use of satellite images [31], is primarily due to cost, accessibility, and issues
related to legal and ethical approvals. Additionally, the use of drones has been considered;
however, as of now, drone surveying is not yet allowed in Qatar [32].

The survey aimed to gather data on the availability of space for solar panel installation,
currently utilized space, remaining space, shading, and roof type. The use of a structured
interview sheet with closed-ended questions provided a standardized approach to data
collection and made the process more efficient. Closed-ended questions were used to
collect quantitative data, which could be easily analyzed statistically to identify patterns
and relationships in the data [33]. As shown in Figure 4, the research design consisted of
four stages to complete the research project. The first stage was designing and testing the
data collection instrument, which was the most important part of the research design. It
involved identifying the main aspects to be included within the data collection instruments,
and an interview sheet was established. Each item included had a justification, as shown in
Table 1.

Figure 4. Research design [authors].
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Table 1. Collected data and justification.

Interview Question Rationale

House location The location of a house in the field survey is essential to obtaining accurate geographical
representation [3,34].

Number of similar houses in
the street or compound

Knowing the number of similar houses in the same area is essential for a wider and more
representative study. It helps with solar panel installation planning, as a community solar setup
can be considered [34].

Number of bedrooms in the
house

The number of bedrooms in a house is crucial for solar panel installation. It helps estimate energy
consumption and the correct number of panels needed. Also, analyzing energy usage patterns
identifies areas for conservation measures, reducing consumption, and enhancing solar panel
effectiveness [35].

Items on the roof

Before installing solar panels, it is essential to identify existing objects that may hinder the process
or limit available space. These can include AC units, chimneys, skylights, and other structures.
Assessing their current use and placement on the roof helps determine the best solar panel
installation approach [3].

Approximate total roof size in
square meters

Determining the approximate size of a roof (in square meters) is essential when considering the
installation of solar panels. This information can be used to calculate the amount of viable free
space available for solar panel installation [3].

Average remaining empty
space on the roof

To install solar panels on a roof effectively, assess the available space for optimal energy
generation. Utilize the average remaining empty space, avoiding obstructions like vents or
chimneys, to maximize panels and energy output. Plan and design carefully for an aesthetically
pleasing integration with the roof’s architecture [3].

Recreational use of the roof

Before installing solar panels on a recreational roof, assess their potential impact on leisure
activities. The size and orientation of the panels might obstruct or limit recreational use [3].
However, with careful planning, solar panels can serve a dual purpose by providing shade and
protection for leisure activities while generating renewable energy for the home [34].

Roof type
To install solar panels on a house, assess the roof type, condition, orientation, and angle for
sufficient sunlight. Evaluating the roof’s suitability ensures the maximum benefits of renewable
energy for the home [3].

House height

When assessing the feasibility of solar panels for a house, consider the building height compared
to surrounding structures. If taller neighboring buildings block direct sunlight from the east or
west, optimal sun exposure may be challenging [3]. Also, evaluate the roof angle and orientation.
Proper assessment ensures efficient solar panel installation, maximizing the benefits of solar
energy for the home [34].

Solar shading

Solar shading is the process of identifying potential obstructions, like nearby buildings or tall
trees, that may block sunlight from reaching a rooftop or solar panel installation. By
understanding shading risks, effective measures can be taken to optimize sunlight exposure,
maximize energy generation, and reduce the need for additional energy sources [3].

The second stage of the research design was the survey strategy. Since the majority of
the country’s population is based in Doha, the study selected areas to be included in the
survey. Moreover, due to the fact that homes in similar neighborhoods typically have many
similarities, the interview included asking the homeowners if nearby homes are similar
to their own. This enabled achieving geographical representation as well as statistical
representation to represent the whole number of homes in Qatar, which is expected to be
around 365,000 domestic customers, according to KAHRAMAA’s Annual Statistics Report
2021 [4].

The third stage of the research design involved data collection. To facilitate this process,
the interview questions were digitized into an electronic form that allowed for convenient
and efficient data collection on the spot [36]. This eliminated the need for further processing
and streamlined the data collection process. Additionally, using an electronic form allowed
for anonymous data storage, thereby ensuring the confidentiality of the participants [37].
Electronic data collection methods have become increasingly popular in recent years as
they offer a range of advantages over traditional paper-based methods. For example,
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electronic forms can reduce the risk of errors and inconsistencies as well as improve the
speed and efficiency of data collection. Furthermore, electronic forms can be easily stored
and accessed, making it easier to analyze and interpret the data.

The final stage of the research design involved data analysis and the presentation of
the findings. To achieve this task, Excel was used to plot graphs and perform the necessary
statistical analyses to convert the collected data into meaningful information. Excel is
a widely used spreadsheet software that can be used for data analysis and has many
built-in statistical functions that can aid in the analysis process [38]. The use of Excel in
data analysis has several advantages, such as the ability to handle large amounts of data,
perform calculations efficiently, and present data in an easily understood way using graphs
and charts [39]. Furthermore, the use of objective data in presenting research findings helps
draw meaningful conclusions.

4. Results

Given the homogeneity of homes in Qatar [40], the use of a cluster sampling plan [41]
enabled the surveying of 10 different areas in Doha, with a total of 50 homes physically
surveyed from these areas, resulting in a total sample of 1068 similar homes in the same
street or compound, as shown in Table 2. This sample size is considered larger than the
typically required sample of 384 from the total population of 365,000, ensuring a statistically
representative sample [42].

Table 2. Areas and number of houses surveyed.

Surveyed House Area Number Similar Houses in the Street or Compound

Al-Kheesa 20 700
Al Waab 10 240

The Pearl-Qatar 4 25
Al Waab 3 20

Musheireb 3 20
Al Sadd 3 20

Abu Hamour 2 13
Ain Khaled 2 12

Lusail 1 8
Al-Hilal 2 10

Total 50 1068

Table 3 summarizes the survey results.

Table 3. Survey results.

Survey Item Outcome

Average number of bedrooms per house 4
Average total roof area [m2] 244
Average remaining total roof area [m2] 144
Average house height [m] 9

Use of roof for recreational purposes Yes No
10% 90%

Possibility for shading Yes No
30% 70%

Type of house roof Flat roof Gable roof Bonnet roof
100% 0% 0%

Items on the roof
External AC
units Satellite dishes Water tank Storage shed

(box)
Solar panel for
water heating

80% 80% 100% 10% 20%

The survey findings indicate that the majority of homes in the area are relatively
spacious, with 40% being five-bedroom homes and 20% being four-bedroom homes. The
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remaining 40% comprise three- and two-bedroom homes. The average total size of the
homes is 244 square meters, which is quite substantial.

Regarding the features on the roofs of these homes, all houses have water tanks, and a
significant majority (80%) have external AC units and satellite dishes installed. However,
storage sheds are less common, present on only 10% of houses, and solar panels for water
heating are found on 20% of homes.

Approximately 59% of the roof space remains empty after accounting for the men-
tioned items, suggesting that over 50% of houses have enough available space to potentially
accommodate solar panel installations.

Furthermore, it appears that roofs are rarely used for recreational purposes, with 90%
of respondents confirming that their roofs are not utilized for any other activities, likely
due to the hot climate and modern indoor lifestyles. This means that if solar panels were
installed on the roofs, they would not interfere with daily activities in the homes.

An important consideration for solar panel installation is the roof orientation. Fortu-
nately, all the roofs in the area are flat, making them suitable for solar panel placement to
maximize energy generation.

Moreover, the majority of houses have a height ranging from 7 to 10 m, with an
average height of 9 m. This height distribution indicates that there is a low likelihood of
shading or obstruction of sunlight, which is favorable for solar energy generation.

Finally, the survey revealed that 70% of surveyed houses do not have nearby buildings,
trees, or other objects that may cause shading, while 30% reported potential shading issues.
Overall, these results demonstrate a high potential for solar PV installation in the area to
generate an optimal amount of clean energy.

5. Discussion

The presented results indicate that Qatari homes are highly germane to the installation
of solar panels due to their relatively large area and spaciousness. The study found that
50% or more of the roof space is available for solar panel installation without interfering
with the daily activities of the homeowners. This is in line with a previous study, which
reported that most Qatari homes have spacious rooftops with significant potential for solar
panel installation [43]. Moreover, the study found that there are limited problems caused
by shading from trees or tall neighboring structures. This is because most Qatari homes are
of similar height in wholly residential neighborhoods; thus, they are not typically in prox-
imity to obstructions that could otherwise block sunlight, as reported by the homeowners.
However, if there is latent shading, solar panels can be installed in locations that provide a
minimum degree of shading and the best sun view. This is consistent with the findings of a
study [43], which indicated that shading can be minimized by choosing the best location for
solar panel installation. Additionally, solar PV arrays can themselves be used as shading
devices, thus reducing direct solar heat gain by homes (while having unimpeded exposure
to sunlight for power generation) and thus reducing the latent energy demand required for
cooling [44].

The study also discovered that the prevalence of flat roofs on Qatari homes offers
several benefits for solar panel installation, as depicted in Figure 5. These flat roofs offer easy
access for technicians during installation and allow for the adjustment of panel orientation
to maximize energy generation, a crucial factor impacting performance. Moreover, flat
roofs support the use of automatic platforms for sun tracking, significantly enhancing
energy generation—unlike angled roofs, which have limitations in this regard. Tracking
systems can boost energy production by up to 25%, a valuable advantage, particularly in
regions with high solar irradiance like Qatar [45,46].

Furthermore, the high similarities between homes in Qatar [40], as shown in Figure 6,
enable the establishment of an easy strategy for technical teams to replicate the instal-
lation design in similar homes, which can reduce time costs and achieve the intended
deployments within a realistic timescale. The similarities between homes can make it easier
for homeowners to make the decision to install solar panels, as they can see examples
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of installations on homes similar to theirs, and installers will become highly proficient
in installing required arrays and equipment in similar types of structures. This is in line
with previous research on the benefits of standardization in building design for renewable
energy adoption. For example, a study [47] found that standardizing building design can
facilitate the integration of renewable energy systems, particularly in residential build-
ings. Another study [47] found that standardizing building design can reduce the cost of
renewable energy systems by streamlining the installation process.

 

Figure 5. Example of a surveyed home roof.

 

Figure 6. Example of structural homogeneity of Qatari homes.
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The outcomes from this study complement previous research conducted by the au-
thors, aimed at establishing the analytical feasibility of deploying solar panels on Qatar’s
houses [2]. The primary objective was to calculate various solar panel deployment scenar-
ios using analytical methods, considering different panel sizes, efficiency, and daily sun
exposure. These scenarios were then compared to estimate the generated energy and its
comparison with actual consumption over a twelve month period. The findings revealed
the most viable scenarios that enable homes in Qatar to sufficiently generate solar energy
to cover their consumption. Moreover, there is a high possibility that surplus energy gener-
ated during the low season can be exported to areas experiencing high energy demands,
such as the Western world. This potential not only benefits Qatar but also supports global
efforts towards transitioning to clean energy, providing a valuable solution for energy
crises [48].

Hence, the findings of this study support the potential for solar panel installation
on Qatari homes. With their spaciousness, limited shading, and flat roofs, Qatari homes
are ideally suited for solar panel installation. This aligns with the Qatari government’s
ambitious goal of generating 200 MW of solar energy by 2022 [49]. By encouraging and
facilitating the installation of solar panels on homes, Qatar can move towards a more
sustainable future. This should begin with pilot projects involving the installation of
solar panels on real homes to gather actual information on their performance, taking into
account factors such as solar radiation, temperature, and dust that might reduce generation
potential. This is essential to ensure optimal and sustainable performance [50].

6. Conclusions

The study has successfully achieved its primary objective of assessing the suitability
of Qatari homes for solar panel installation. The obtained results are highly promising
and offer significant value to various stakeholders involved in decision-making regarding
the deployment of solar panels in residential areas. Furthermore, these findings hold
invaluable importance for the parties responsible for the deployment, as they can utilize
them to develop a comprehensive national strategy for replicating the deployment plan
in different regions, considering the high similarities observed among homes in Qatar.
These findings also complement and align with past research efforts conducted using
analytical means.

However, to draw a definitive conclusion, it is recommended to conduct real pilot
projects involving the installation of solar panels on actual homes and gather additional
information on their performance in situ. This should include aspects like solar radiation,
temperature, air quality (as dust can reduce generation potential), connectivity with the
main grid, storage, and all relevant variables. Such an approach will yield crucial insights
into potential challenges that may arise during installation and usage, thereby enabling the
formulation of practical solutions based on user experiences and operational evidence.

Despite the potential difficulties that may arise, the positive outcomes of this study
indicate a promising future for solar panel installation on Qatari homes. By implementing
such initiatives, Qatari households can effectively reduce their carbon footprint and con-
tribute to the creation of a greener and more sustainable environment for future generations.
This will undoubtedly play a significant role in Qatar’s commitment to clean energy and
global efforts towards combating climate change.

Author Contributions: Conceptualization, A.B. and Z.H.; methodology, A.B. and Z.H.; investigation,
A.B.; writing—original draft preparation, A.B.; writing—review and editing, Z.H.; supervision, M.A.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data can be shared upon request.

11



Solar 2023, 3

Acknowledgments: The authors would like to thank all homeowners who participated in this study.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Al-Hababi, R. The evolvement of Qatar’s environmental sustainability policy: The strategies, regulations, and institutions. In
Sustainable Qatar: Social, Political and Environmental Perspectives; Cochrane, L., Al-Hababi, R., Eds.; Springer Nature: Singapore,
2023; pp. 17–35. [CrossRef]

2. Banibaqash, A.; Hunaiti, Z.; Abbod, M. An analytical feasibility study for solar panel installation in Qatar based on generated to
consumed electrical energy indicator. Energies 2022, 15, 9270. [CrossRef]

3. Torcellini, P.A.; Crawley, D.B. Understanding zero-energy buildings. ASHRAE J. 2006, 48, 62–69.
4. Qatar General Electricity & Water Corporation “KAHRAMAA”. Annual Statistics Report 2021; KAHRAMAA: Doha, Qatar, 2022;

pp. 26–46.
5. Scharfenort, N. Urban development and social change in Qatar: The Qatar National Vision 2030 and the 2022 FIFA World Cup. J.

Arab. Stud. 2012, 2, 209–230. [CrossRef]
6. Omer, A.M. Energy, environment and sustainable development. Renew. Sustain. Energy Rev. 2008, 12, 2265–2300. [CrossRef]
7. Darwish, S.; Abdo, H.; Alshuwaiee, W.M. Opportunities, challenges and risks of transition into renewable energy: The case of the

Arab Gulf Cooperation Council. Int. Energy J. 2018, 18, 391–400.
8. World Data: Sunrise and Sunset in Qatar. Available online: https://www.worlddata.info/asia/qatar/sunset.php (accessed on 13

March 2023).
9. Bayram, I.S.; Saffouri, F.; Koc, M. Generation, analysis, and applications of high resolution electricity load profiles in Qatar. J.

Clean. Prod. 2018, 183, 527–543. [CrossRef]
10. Bohra, M.; Shah, N. Optimising Qatar’s energy transition through model-based analysis. Energy Transit 2020, 4, 11–29. [CrossRef]
11. Oxford Analytica. Qatar’s Green Strategy Will Focus on Greening of LNG. Emerald Expert Briefings, 26 October 2022. [CrossRef]
12. Global Investors Move into Renewable Infrastructure: Reviewing the World’s Top Renewable Energy Financiers. Available

online: https://ieefa.org/sites/default/files/resources/Global-Investors-Move-Into-Renewable-Infrastructure_July-2021.pdf
(accessed on 13 March 2023).

13. Obaideen, K.; AlMallahi, M.N.; Alami, A.H.; Ramadan, M.; Abdelkareem, M.A.; Shehata, N.; Olabi, A.G. On the contribution
of solar energy to sustainable developments goals: Case study on Mohammed bin Rashid Al Maktoum Solar Park. Int. J.
Thermofluids 2021, 12, 100123. [CrossRef]

14. Bergman, N.; Eyre, N. What role for microgeneration in a shift to a low carbon domestic energy sector in the UK? Energy Effic.
2011, 4, 335–353. [CrossRef]

15. Al-Ammari, B.; Romanowski, M.H. The impact of globalisation on society and culture in Qatar. Pertanika J. Soc. Sci. Humanit.
2016, 24, 1535–1556.

16. International Renewable Energy Agency. Community Renewable Energy Deployment: The Role of Community Energy in Accelerating
Renewable Energy Deployment, IRENA: Masdar City, United Arab Emirates, in press.

17. Seyfang, G.; Haxeltine, A. Growing grassroots innovations: Exploring the role of community-based initiatives in governing
sustainable energy transitions. Environ. Plan. C Gov. Policy 2012, 30, 381–400. [CrossRef]

18. Almulhim, A.I. Understanding public awareness and attitudes toward renewable energy resources in Saudi Arabia. Renew.
Energy 2022, 192, 572–582. [CrossRef]

19. Voss, K.; Musall, E. Net Zero Energy Buildings: International Projects of Carbon Neutrality in Buildings; Walter de Gruyter: Berlin,
Germany, 2012.

20. Tsalikis, G.; Martinopoulos, G. Solar energy systems potential for nearly net zero energy residential buildings. Sol. Energy 2015,
115, 743–756. [CrossRef]

21. Cao, X.; Dai, X.; Liu, J. Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy
buildings during the past decade. Energy Build. 2016, 128, 198–213. [CrossRef]

22. Jaber, S.; Saidur, R. The role of energy efficiency in the sustainable development of Qatar: A review. Renew. Sustain. Energy Rev.
2020, 120, 109675.

23. Torres, A.R.; Herold, M. Energy consumption behavior in households with photovoltaic panels. Energy Build. 2019, 195, 68–79.
24. Saidur, R.; Jaber, S.; Mohamed, E.A. Opportunities and challenges for renewable energy in the State of Qatar. Renew. Energy 2021,

177, 583–599.
25. Residential Solar Panels and Their Impact on the Reduction of Carbon Emissions. Available online: https://nature.berkeley.edu/

classes/es196/projects/2013final/ArifM_2013.pdf (accessed on 13 March 2023).
26. Karakaya, E.; Hidalgo, A.; Nuur, C. Motivators for adoption of photovoltaic systems at grid parity: A case study from Southern

Germany. Renew. Sustain. Energy Rev. 2015, 43, 1090–1098. [CrossRef]
27. Bryan, H.; Rallapalli, H.; Ho, J.J. Designing a solar ready roof: Establishing the conditions for a high-performing solar installation.

In Proceedings of the 39th ASES National Solar Conference, Phoenix, AZ, USA, 17–22 May 2010; Volume 5, pp. 4081–4110.
28. Shahsavari, A.; Akbari, M. Potential of solar energy in developing countries for reducing energy-related emissions. Renew. Sustain.

Energy Rev. 2018, 90, 275–291. [CrossRef]

12



Solar 2023, 3

29. Monna, S.; Abdallah, R.; Juaidi, A.; Albatayneh, A.; Zapata-Sierra, A.J.; Manzano-Agugliaro, F. Potential Electricity Production by
Installing Photovoltaic Systems on the Rooftops of Residential Buildings in Jordan: An Approach to Climate Change Mitigation.
Energies 2022, 15, 496. [CrossRef]

30. Hussain, H.M.; Rahi, K.; Al Tarawneh, M.; Preece, C. Developing applicable scenarios to install and utilize solar panels in the
houses of Abu Dhabi city. Sustainability 2022, 14, 15361. [CrossRef]

31. Starková, L. Toward a High-Definition Remote Sensing Approach to the Study of Deserted Medieval Cities in the Near East.
Geosciences 2020, 10, 369. [CrossRef]

32. AL-Dosari, K.; Hunaiti, Z.; Balachandran, W. Civilian UAV Deployment Framework in Qatar. Drones 2023, 7, 46. [CrossRef]
33. Fink, A. How to Conduct Surveys: A Step-by-Step Guide; Sage Publications Ltd.: London, UK, 2019.
34. Khan, M.M.A.; Asif, M.; Stach, E. Rooftop PV Potential in the Residential Sector of the Kingdom of Saudi Arabia. Buildings 2017,

7, 46. [CrossRef]
35. Bekele, M.T.; Atakara, C. Residential Building Energy Conservation in Mediterranean Climate Zone by Integrating Passive Solar

and Energy Efficiency Design Strategies. Buildings 2023, 13, 1073. [CrossRef]
36. Salgado, C.D.; Segura, O.R.; León, I.G. Electronic data collection methods in research. Rev. Med. Inst. Mex. Seguro Soc. 2017, 55,

236–242.
37. Creswell, J.W.; Creswell, J.D. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches; Sage Publications Ltd.:

London, UK, 2018.
38. Khan, J. Data analysis using Excel. J. Appl. Res. High. Educ. 2017, 9, 307–315.
39. Hulland, J. Use of partial least squares (PLS) in strategic management research: A review of four recent studies. Strateg. Manag. J.

1999, 20, 195–204. [CrossRef]
40. Scheller, F.; Doser, I.; Schulte, E.; Johanning, S.; McKenna, R.; Bruckner, T. Stakeholder dynamics in residential solar energy

adoption: Findings from focus group discussions in Germany. Energy Res. Soc. Sci. 2021, 76, 102065. [CrossRef]
41. Thompson, S.K. Adaptive Cluster Sampling: Designs with Primary and Secondary Units. Biometrics 1991, 47, 1103–1115.

[CrossRef]
42. Bujang, M.A. An Elaboration on Sample Size Planning for Performing a One-Sample Sensitivity and Specificity Analysis by

Basing on Calculations on a Specified 95% Confidence Interval Width. Diagnostics 2023, 13, 1390. [CrossRef] [PubMed]
43. Morphology of Urban Qatari Homes. Available online: https://sites.northwestern.edu/buildingdoha/morphology-of-urba

(accessed on 25 October 2023).
44. Mohammed, A.; Tariq, M.A.U.R.; Ng, A.W.M.; Zaheer, Z.; Sadeq, S.; Mohammed, M.; Mehdizadeh-Rad, H. Reducing the Cooling

Loads of Buildings Using Shading Devices: A Case Study in Darwin. Sustainability 2022, 14, 3775. [CrossRef]
45. Ayoub, J.; Al-Jibouri, S. Analysis of the impact of solar panel orientation on the electricity generation using solar energy. Int. J.

Energy Environ. Eng. 2021, 12, 63–73.
46. Gupta, R.; Nayak, J.K. Solar tracking systems: Technologies and trackers. In Handbook of Research on Energy Systems and Sustainable

Energy; Sharma, D.K., Reddy, K.S., Eds.; IGI Global: Hershey, PA, USA, 2019; pp. 379–411. [CrossRef]
47. Murshed, S.; Shafie, S.; Saidur, R. Review on solar energy storage and thermal energy storage for sustainable energy houses.

Renew. Sustain. Energy Rev. 2018, 82, 1518–1542.
48. Environmental Sustainability Initiatives in Qatar. Available online: https://www.qf.org.qa/research/environmental-

sustainability (accessed on 25 October 2023).
49. Al-Sulaiman, F.A.; Zubair, S.M. Solar energy potential and policies in Qatar: Opportunities and challenges. Renew. Sustain. Energy

Rev. 2019, 103, 325–333. [CrossRef]
50. Olorunfemi, B.O.; Ogbolumani, O.A.; Nwulu, N. Solar Panels Dirt Monitoring and Cleaning for Performance Improvement: A

Systematic Review on Smart Systems. Sustainability 2022, 14, 10920. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

13





Citation: Garner, R.; Dehouche, Z.

Optimal Design and Analysis of a

Hybrid Hydrogen Energy Storage

System for an Island-Based

Renewable Energy Community.

Energies 2023, 16, 7363. https://

doi.org/10.3390/en16217363

Academic Editors: Luis

Hernández-Callejo, Jesús Armando

Aguilar Jiménez and Carlos Meza

Benavides

Received: 2 August 2023

Revised: 26 October 2023

Accepted: 27 October 2023

Published: 31 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Optimal Design and Analysis of a Hybrid Hydrogen
Energy Storage System for an Island-Based Renewable
Energy Community

Robert Garner and Zahir Dehouche *

College of Engineering, Design and Physical Sciences, Brunel University London, London UB8 3PH, UK;
robert.garner2@brunel.ac.uk
* Correspondence: zahir.dehouche@brunel.ac.uk

Abstract: Installations of decentralised renewable energy systems (RES) are becoming increasing
popular as governments introduce ambitious energy policies to curb emissions and slow surging
energy costs. This work presents a novel model for optimal sizing for a decentralised renewable
generation and hybrid storage system to create a renewable energy community (REC), developed in
Python. The model implements photovoltaic (PV) solar and wind turbines combined with a hybrid
battery and regenerative hydrogen fuel cell (RHFC). The electrical service demand was derived using
real usage data from a rural island case study location. Cost remuneration was managed with an
REC virtual trading layer, ensuring fair distribution among actors in accordance with the European
RED(III) policy. A multi-objective genetic algorithm (GA) stochastically determines the system
capacities such that the inherent trade-off relationship between project cost and decarbonisation can
be observed. The optimal design resulted in a levelized cost of electricity (LCOE) of 0.15 EUR/kWh,
reducing costs by over 50% compared with typical EU grid power, with a project internal rate of
return (IRR) of 10.8%, simple return of 9.6%/year, and return on investment (ROI) of 9 years. The
emissions output from grid-only use was reduced by 72% to 69 gCO2e/kWh. Further research of
lifetime economics and additional revenue streams in combination with this work could provide a
useful tool for users to quickly design and prototype future decentralised REC systems.

Keywords: decentralised energy systems; renewable energy community; hydrogen energy storage
system; decarbonisation; techno-economic assessment; multi-objective optimisation

1. Introduction

The current state of the energy generation landscape is undergoing a significant change
as concerns are raised over climate change, energy cost, and energy security. The aim as
stipulated in the Paris Agreement [1] of keeping the average surface temperature increase
below 2 ◦C by 2050 is unlikely given global trends [2], and will be impossible without an
ambitious sustainable energy development and technological innovation [3]. Recent events
on the global stage have also caused nations in Europe and around the world to reconsider
their energy security strategies [4,5]. The adoption of renewable energy at scale should
include measures to increase the effectiveness whilst providing cost reductions [6].

The introduction of renewable energy systems (RES), including photovoltaic (PV) solar
panels and wind turbines, have been the key driving force in removing global dependence
on fossil fuels from the energy sector [7]. These types of generation assets are known
as non-dispatchable as they are completely dependent on weather conditions [8] and so
cannot be precisely controlled. This is a problem for transmission service operators (TSOs)
as ensuring the voltage and frequency are balanced at a grid level becomes challenging [9].
The increasing volume of decentralised RES installed at the demand side is also problem
for grid operators [10], as they can induce bidirectional grid flows and put additional strain
on the network.
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One solution to this problem is the use of energy storage systems (ESS) to store
excess energy and increase the share of the total RES production directly through self-
consumption [11,12]. Electro-chemical storage such as batteries have been deployed in
many cases for use as grid-level storage [13–15], as they have the advantage of fast response
to demand and can be installed in most global climates. A number of battery technologies
including high-performance solid state chemistries are a promising solution due to their
long-term stability and high capacity retention [16,17]. Most grid storage applications
deploy LiFePO4 variants as they are widely available and have a relatively low cost [18].
Crucially for the research methods used in this work, the retrieval of reliable cost and envi-
ronmental data is vital for an accurate result, which for LiFePO4 is widely available within
the literature. Hydrogen has often been considered for long-term seasonal storage [19],
due in part to the mentioned capacity retention challenges of battery storage. Hydrogen
is also a flexible energy vector for many other uses, such as heating and industrial pro-
cesses [20]. A hybrid battery and hydrogen ESS has a great potential to increase the share
of renewables within the energy mix [21], thus decreasing the reliance on traditional power
stations. The advent of widely available ESS has meant that it is now possible to emphasise
the self-consumption of energy at a local level to reduce the problems of grid stress and
planning. A ‘prosumer’ (an end user that is able to both consume and produce energy [22])
or group of prosumers could install decentralised RES coupled with storage technology,
and self-consume the power generated at a local level.

To address these challenges, this work presents and evaluates the application of decen-
tralised renewable energy communities (RECs). RECs in practice have many advantages
and solve the most common issues associated with increased decentralised generation,
while also promoting the further self-consumption of electricity. In a REC configuration,
consumers and prosumers are no longer restricted to buying and selling energy from their
utility company and can virtually ’share’ the excess energy between actors within the
energy community itself. This is mutually beneficial for both the network operator, as they
no longer need to manage unpredictable grid flows, and for the REC participants as they
receive direct renumeration and a reduction in carbon emissions.

The REC considered in this work was based on the policy recommendations recently
implemented by a number of EU countries outlined in the Renewable Energy Directive
(RED-II) (EU) 2018/2001 [23]. The directive defines a REC as “a legal entity that is based
on open and voluntary participation, it is autonomous and controlled by shareholders or
members located in the proximity of renewable energy plants belonging to the community
itself. The members may be physical persons, companies or local authorities. . . ”. While
the directive has been transposed into several other national laws and decrees, including
Austria [24], France [25], Germany [26], and the Netherlands [27], the REC modelled
in this work most closely resembles the framework practiced in Italy as discussed by
Trevisan et al. [28]. Although the study was in Spanish territory, it was chosen to follow the
Italian implementation as there are more example cases available and, as of 2021, further
improvements to the 2019 Spanish REC policy are currently in progress [29].

As laid out in decree-law 199/2021 [30], a group of self-consuming members within
the REC must be located within the same low-voltage (LV) network downstream of the
same LV/MV substation. Energy is shared in the existing physical network using a virtual
network model. The difference between the energy consumed and energy produced by
the REC is resolved over each one-hour period to determine the capacity available to be
shared [31]. The model created in this work uses the principles of the relevant regulation to
design the virtual REC.

A number of studies including operational renewable energy communities have in-
vestigated the use of ESS within a REC to further improve the economic performance of
centralised renewables. Trevisan et al. presented an optimised energy model considering
PV solar and ESS to provide renewable power to a port REC, showing a decrease in energy
bills of 28% compared with the business-as-usual case [32]. Bartolini et al. investigated
how to size a mixed RES to fully self-consume all generation at a community level, as
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well as meeting the heat energy needs, and showed that using hydrogen generation and
storage is an economically viable alternative to battery systems [33]. Although less ex-
plored in the literature, there have also been studies focused on the environmental and
emissions reductions possible with such a community-based system. Wang et al. proposed
a community-based virtual power plant solution in Japan with PV and battery ESS with
the ability to reduce carbon emissions by 16.26% [34].

Several different modelling and optimisation software tools have also emerged to
assist in model-based design and assessment. An in-depth review by Cuesta et al. pre-
sented popular renewable energy modelling tools, including the ability to model different
renewable assets and output different technical, economic, environmental, and social key
performance indicators [35]. Software such as HOMER (version 3.16), TRNSYS (version 18),
and MATLAB/Simulink (2022b) are most often used due to their ease of use and available
documentation. However, they can be restrictive for some REC cases due to their propri-
etary nature. Creating the model in Python will provide the flexibility of an open-source
platform and a scalable product suitable for deployment as a lightweight software or web
applications.

A number of optimisation procedures have been addressed and utilised in the litera-
ture to determine the optimal design of hybrid RES and ESS. Most cases vary the design
capacities to achieve one or more competing criteria such as economics, grid independence,
and environmental impact. Niveditha and Rajan Singaravel consider a multi-objective
design criteria for achieving near zero energy buildings (NZEB), using the functions of cost,
loss of load probability (LLP), and total energy transfer (TET) to determine the best sizing
arrangement for the PV-wind-battery storage system [36]. Zhang et al. presents a capacity
configuration for both an on-grid and off-grid mixed renewable system with hydrogen and
batteries [37]. The NSGA-II algorithm was used to determine the trade-off relationship
between system cost, renewable curtailment, and loss of load probability (LLP), which can
be considered analogous to grid independence for grid-connected configurations. Xu et al.
considers the design of an off-grid PV-wind-hydrogen storage system using the multi-
objective criteria of LCOE, LLP, and power abandonment rate (PAR). The pareto optimal
solution produces an LCOE of 0.226 USD/kWh at acceptable LLP and PAR values [38].
Studying the emissions associated with the grid independence would more accurately
determine the positive environmental impact, which was of particular focus in this work.
Results from the literature also do not consider the implementation of such an optimization
procedure for RECs, and the impact of trading arrangements between members. Other
algorithms including multi-objective particle swarm optimisation (MOPSO) [39] and multi-
objective evolutionary algorithm with decision-making (MOEA-DM) [40] have also been
applied to ESS design; however, NSGA-II remains very popular and has proven robustness
in energy flow optimisation problems [41].

2. Contribution

In this study, a techno-economic and carbon emissions assessment was conducted for
a decentralised REC. The case study location was chosen as Formentera; a largely rural
Balearic Island located in the Mediterranean Sea as illustrated in Figure 1. Emphasis is
put on the isolated nature of the energy grid, which naturally increases the energy cost
and embedded carbon of electricity usage, making it an ideal location for the study. A
comparison of the base case scenario was used to compare the improvements made with
the implementation of the REC.

The community has shared usage of PV solar and wind power to produce energy, and
a hybrid battery and regenerative hydrogen fuel cell to store excess production. The com-
bination of battery and hydrogen minimises the potential shortcomings of decentralised
storage. A virtual trading scheme based on the EU decree-law 199/2021 for REC imple-
mentation was used to evaluate the energy shared between community members, without
considering incentives or feed in tariffs. Through the implementation of key economic and
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environmental parameters, the multi-objective optimisation determines the best design
topology within the defined REC boundary conditions.

 
Figure 1. Formentera Island, highlighted in red, is located east of the Spanish mainland in the
Mediterranean [42].

The multi-objective results reveal an inherent trade-off relationship between low-cost
energy and the ability to decarbonise supply, and that this approaches a critical limit at
both extremes of the pareto front. This work shows that across the pareto optimal sets, the
hybridisation of energy storage provides a better overall performance than a battery-only
or hydrogen-only case. Additional constraints can be applied to the objective domain to
assist in design decision-making.

The implementation of the model in Python allows for the creation of a scalable prod-
uct, which following digitisation trends in model-based design could provide a vital tool for
communities and policymakers to determine the best method for assisting communities to
reach net-zero emissions. To summarise, the novelty of this work is summarised as follows:

• The modelling of a hybridised battery and RHFC system for a remote renewable
energy community application using real-world power consumption data from a rural
island location;

• the use of multi-objective optimisation to evaluate the system pareto front based on
economic and environmental performance;

• the inclusion of a virtual trading layer based on the latest RED(III) REC policies;
• the formulation of a scalable and modular renewable energy community modelling

and simulation platform.

3. Materials and Methods

For the purposes of simplification, the simulation model was discretised into one hour
time steps using kWh as the function unit for all energy flows within the system. The
case study input assumptions including building load and meteorological datasets are
defined first. The meteorological data at the chosen coordinate location were obtained
from the National Aeronautics and Space Administration (NASA) Langley Research Center
(LaRC) Prediction of Worldwide Energy Resource Project funded through the NASA Earth
Science/Applied Science Program [43]. A combination of hourly and monthly energy
consumption collected from the case study location was used to recreate typical annual load
profiles for each of the seven buildings within the virtual REC. A selection of 24 industrial,
commercial, and residential load profiles produced by Farhad et al. (2020) were used to
augment the profiles where required [44].
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3.1. Renewable Energy Community Implementation

It was assumed that the community members will have a shared capital investment
in the generation and storage assets. PV solar and wind assets can either be installed in
the low-voltage energy grid within the same secondary substation of the REC, or spread
out between the members, installing in open areas such as rooftops. The stationary ESS
consisting of both a lithium-ion battery and a RHFC was installed with the REC boundary
conditions in accordance with the EU decree-law 199/2021, with the capacity to accept but
also release energy to the physical energy grid. A simple diagram of the system architecture
is shown in Figure 2.

 

Figure 2. Renewable energy community system architecture. The community buildings grouped on
the left are connected virtually to the distributed generation and storage assets, which are also able to
export to the local power grid.

The control strategy consists of a load-following authority, but with additional consid-
erations for the hybrid ESS. Since batteries have an improved performance as short-term
storage, these are allowed to discharge first to cover the load of the REC. Once the bat-
tery depth-of-discharge (DOD) limit is reached, the hydrogen system is then activated to
cover the remaining demand. During the charging phase, this control scheme occurs in
reverse. By evaluating the excess energy available between the total REC consumption and
production over each one-hour increment in line with decree-law 162/19 for community
implementation in Italy, the total virtual energy flows between community members were
derived. This case does not consider incentives to reduce financial strain and instead
evaluates through a techno-economic assessment over a 20-year project period whether the
hybrid system was able to provide net-positive economic and environmental performance
over the business-as-usual case.

The electrical load profiles form the foundation of the assessment of economic and
environmental improvements to the REC. The community consists of seven member build-
ings; a community centre, a small school, a large school, local government offices, and three
typical residential units. For the community centre, two schools, and offices, sample daily
load profiles, as well as the monthly average energy consumption, were collected directly
from the test site. For the residential units, a combination of the annual heating, cooling,
and appliances usage of 80.7 kWh/m2 was used to evaluation the typical characteristics
of a residence in Spain [45], where the buildings were assumed to be 50 m2 in area. The
monthly and yearly consumption was used to create a spline, over which the daily load
profile was interpolated and repeated to create the one-year load profiles for each building.
The total yearly consumption for each member is included in Table 1, with the monthly
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and daily load profiles shown in Figure 3. The three mixed homes have been combined to
represent a mixed family building and to improve visibility within the analysis.

 

(a) Monthly electricity demand (b) Normalised daily electricity demand 

Figure 3. Building electrical energy service demand model based on the requirements of the renew-
able energy community. Figure 3b displays the average daily power demand curves of the different
building types within the model.

Table 1. Total annual electrical consumption for each member of the renewable energy community.

Annual Consumption

Community centre 66,500
Elementary school 19,200

High school 46,200
Government offices 28,900
3× Residential units 12,000

3.2. Weather and Environment Data

The weather data were collected for the year 2022 at the coordinate location of the
chosen REC case study site. The model requires accurate measurements of ambient tem-
perature, wind speed, and global horizontal irradiance (GHI) solar conditions to evaluate
the hour-by-hour power output of the renewable generation technologies. Figure 4 shows
the hourly mean temperature and GHI for each month over one year. A higher GHI is
observed in the summer period as expected in the northern hemisphere.

  

(a) Ambient temperature (°C) (b) Global horizontal irradiance (W/m2) 

Figure 4. Temperature and solar conditions over a one-year period at the island location. The weather
conditions are assumed to remain constant year-on-year through the lifetime of the system.
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3.3. System Design and Characteristics
3.3.1. PV Solar Array Model

The Mediterranean region’s warm and dry climate promotes the use of PV solar
systems to generate clean energy. For the purposes of the study, the solar array was
assumed to be installed at 180◦ directly to the south, and at an optimal tilt angle of
38.7◦. The power output of the solar panels PPV was modelled using the following
governing equation [46]:

PPV = CPVd f (
G(t)module

GSTC
)[1 + αP(Tc − Tc,STC)] (1)

where CPV is the generation capacity (kW) of the solar installation under standard condi-
tions, df is the derate factor, G(t)module is the direct solar irradiance in W/m2, GSTC is the
direct solar irradiance under standard test conditions (1000 W/m2), αP is the thermal power
coefficient (%/◦C), and Tc,STC is the PV cell temperature under standard test conditions
(25 ◦C). Tc is the PV cell temperature and is calculated by considering the measured nominal
operating cell temperature (NOCT). NOCT is the cell measured temperature at a solar
irradiance GNOCT of 800 W/m2, an ambient temperature Ta,NOCT of 20 ◦C, and a wind
speed of 1 m/s [44]. This known thermal characteristic can then be used to adjust the cell
temperature and find the corrected power output using the following equation [47]:

Tc = T(t)a + (Tc,NOCT − Ta,NOCT)(
G(t)module

GNOCT
)(

1 − ηmp

τα
) (2)

where T(t)a is the ambient temperature at timestep t and ηmp is the cell efficiency. The
constants τα can be assumed to be 0.9 for most cases. Since ηmp is not known, the efficiency
under standard conditions ηmp,STC is substituted into the cell temperature equation above
and the result yields the following:

Tc =
T(t)a + (Tc,NOCT − Ta,NOCT)(G(t)module/GNOCT)[1 − (ηmp,STC(1 − αPTc,STC))/τα])

(1 + (Tc,NOCT − Ta,NOCT)(G(t)module/GNOCT)[(αPηmp,STC)/τα]
(3)

The GHI input data need to be adjusted based on the local latitude ϕ and module tilt
β to find the module irradiance G(t, module) for the time of day and year. This is found with
the following equations [48]:

G(t)module =
G(t)horizontal sin(α + β)

sin α
(4)

α = 90◦ − ϕ + δ (5)

δ = 23.45◦ · sin[360/365(284 + d)] (6)

where G(t)module is the module irradiance, G(t)horizontal is the GHI data, α is the elevation
angle, and δ is the declination angle which deviates from the earth’s tilt of 23.45◦ depending
on the day of the year d.

3.3.2. Wind Turbine Model

A generic dynamic wind turbine model was used to calculate the expected power
output in the selected location using the following [49]:

P(t) =
1
2

Cpρ(t)AV3(t)(ηm · ηe) (7)

where Cp is the power coefficient, ρ(t) is the air density at the hub height, A is the selected
swept area in m2, V(t) is the wind speed in m/s at the time step t, and ηm and ηe are the
mechanical and electrical efficiencies. The wind speed is usually measured at a different
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height compared to the hub height, Zhub. Therefore, the model uses the logarithmic law to
derive the hourly wind speed at the hub height as follows [49]:

Vhub = Vanem(
In(Zhub/Z0)

In(Zanem/Z0)
) (8)

where Z0 is the surface roughness length (m), Zanem is the anemometer height (m), Vhub
is the wind speed at the required hub height (m/s), and the Vanem is the measured wind
speed at the anemometer height (10 m for the dataset used). For simplicity, Cp is evaluated
by way of a 2D-look up table based on the four classes of wind turbines described in
IEC 61400 standard [50]. The average wind speed and distribution was evaluated and the
most appropriate characteristic was chosen from the four available classes ranked from
low to high wind speeds [51]. The normalised power range for each class of “Offshore”,
“IEC-1”, “IEC-2”, and “IEC-3” are shown in Figure 5a. The energy output over the course of
one year can also be determined analytically by assessing the wind speed distribution. The
Rayleigh distribution, shown in Figure 5b, has been overlaid to show that the wind speed
distribution data follow this statistical law, which indicates that the normalised power
curves will operate effectively for the model.

  
(a) Turbine normalised power output curve (b) Wind speed distribution at Formentera 

Figure 5. Wind model input assumptions are primarily a combination of standardised wind turbine
power coefficients and the load wind speed data measured at 10 m above sea level.

3.3.3. Lithium Ion Battery Model

The battery model utilises a simplified version of the Shepard battery model [52],
replacing internal and other resistive losses with a total charge ηcharge discharge ηdischarge
efficiency for the hourly discharge case. The simplification allows for less information to be
known about the chemistry and dynamics of the specific battery to perform calculations
for the current capacity and state of charge (SOC). The battery system contains two parts: a
charge model and a discharge model. The models take the power requirement from the
battery and output the resulting SOC for the end of the timestep. These parts are defined
as follows:

{
SOC(t + 1)batt =

Q(t)batt +
∫

P(t)battηcharge, dt)
Q(t0)batt

· 100 charging

SOC(t + 1)batt =
Q(t)batt −

∫
P(t)battηdischarge, dt)

Q(t0)batt
· 100 discharging

(9)

where SOCt+1,batt is the next timestep battery SOC, Qt,batt is the battery state of charge
at timestep t, Qt0,batt is the initial SOC, Pt,charge is the average charge power draw, and
Pt,discharge is the discharge power draw. These outputs are subject to the minimum and
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maximum SOC limits SOCmin and SOCmax. The model includes degradation in the battery
capacity linearly as a function of charge cycles, as shown below:

Q(l, t)batt = Q(t0)batt − αl (10)

where Q(l, t)batt is the dynamic capacity in kWh as a function of cycles the cycles l, and α is
the ageing factor (kWh/cycle).

3.3.4. Regenerative Hydrogen Fuel Cell

The RHFC model provides an alternative energy storage facility to the electrochemical
battery. The model consists of a PEM fuel cell and PEM electrolyser capable of consuming
and producing hydrogen, respectively. The system also considers a hydrogen storage
module with its own rated capacity and efficiency. The overall equations are like that of
the simplified battery model in that the electrolyser and fuel cell analogously represent the
charge and discharge elements. The system can therefore be shown as the following:

{ Q(t + 1)H2 = Q(t)H2 −
∫

P(t) f cη f c, dt Fuel cell

Q(t + 1)H2 = Q(t)H2 +
∫

P(t)elηel , dt Electrolyser
(11)

where Q(t + 1)H2 is the next timestep hydrogen energy stored (kWh), Q(t)H2 is the current
timestep hydrogen energy stored (kWh) P(t)fc is the average fuel cell power production [kW]
in the current one-hour timestep t, and P(t)el is the average electrolyser power consumption
[kW]. ηfc and ηel are the average lifetime fuel cell and electrolyser efficiencies [%], respec-
tively. Like the battery, these energy values are also subject to QH2,min and QH2,max limits.

3.3.5. Model Input Assumptions

Table 2 contains the necessary input assumptions for the energy models, including
efficiencies and other system dynamics that determine the output power generated or
stored. The PV panel characteristics are based on the Sunpower Maxeon panel series, while
the wind turbine is an approximation of common small-scale turbine systems on the market.
The roughness length assumption of 0.05 is defined as rural, farmland area with low crops
and without many trees [53]. The hydrogen system efficiency values are based on industry
knowledge gathered from leading European fuel cell and electrolyser manufacturers.

Table 2. Hybrid renewable energy system design input assumptions across the different included
technologies.

PV Solar

Panel Power (W) 400
Panel Area (m2) 2

Thermal Coefficient (%/◦C) −0.3
NOCT (◦C) 42

Lifetime (years) 20

Wind turbine

Hub Height (m) 20
Roughness Height (m) 0.05

Lifetime (years) 20

Lithium battery

Total Efficiency (%) 95
Maximum Cycles 8000

Maximum Age (years) 10

Regenerative hydrogen fuel cell

Fuel Cell Efficiency (%) 46
Electrolyser Efficiency (%) 68

Lifetime (years) 20
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3.4. Energy Management Strategy

The energy management strategy for the hybrid storage system is shown in Figure 6.
When generation supply is available in excess of demand, the battery charges first, followed
by the larger capacity hydrogen storage via the electrolyser. When the demand outgrows
the supply, the battery discharges first, followed by the activation of the fuel cell. In
practical terms, the battery is actually being charged by the fuel cell while active, as the
fuel cell cannot module its output without incurring performance losses. The charge and
discharge states are is shown in Figure 6.

Figure 6. Energy management strategy of the hybrid storage system.

Virtual trading was used to fairly satisfy the community members based on the shared
energy available. The excess energy available is shared equally, satisfying each load in
ascending order of magnitude. This means that it is more likely that a member’s electricity
demand will be fully satisfied if smaller. It should be noted that this algorithm can be
modified to suit any location-specific REC policy.

3.5. Economic and Environmental Indicators

A selection of three different system configurations: the best economic outcome, best
environmental outcome, and a midpoint configuration between the two would be assessed
in the model. It is important from a financial perspective to understand the investment
requirements and expected returns for prospective REC members. The net present value
(NPV) is commonly employed to determine economic feasibility, as well as the internal rate
of return (IRR), simple return [%], payback period [years], and levelized cost of electricity
(LCOE) for energy specific cases. Generally, if the NPV is positive compared to the base
scenario, the investment is worthwhile [54].

NPV =
N

∑
n=1

CO&M,n + Cf ,n

(1 + R)n − C0 (12)

where CO&M,t is the operation and maintenance cashflow for year t, Cf ,t is the fuel input
cashflow, R is the discount rate, and C0 is the initial capital investment. It was assumed that
any grid consumption is included in Cf ,t in units of EUR/year. The capital requirement
and operating cashflows are summed for each generation and storage asset to solve for the
system NPV. The IRR evaluates the rate of return if the NPV is set to zero, at which point
the project breaks even.

NPV =
N

∑
n=1

Cn

(1 + IRRR)n (13)

Calculating the LCOE is beneficial when assessing the economic feasibility of different
technologies. The LCOE was evaluated against the grid cost to assess the cost savings per
unit of electricity which could be expected by the community members. LCOE is defined
as the total cost or lifetime cost of the asset divided by the total electricity delivered to
the consumer [55].

LCOE(/kWh) =
∑N

n=1 C0,n + CO&M,n + Cf ,n

∑N
n=1 En

(14)
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where C0,n is the capital cost of the asset, and En is the lifetime energy delivered. A range of
different assessments exist for the economics of renewable assets, as it is highly dependent
on the capital requirement, location, delivery and installation cost, and available labour
among other factors. The resulting CAPEX, OPEX, and lifetime parameters are shown in
Table 2. The costs include the balance of plant (BOP), such as DC-AC inverters and IoT
control equipment. The project has an assumed discount rate R of 5% and an estimated
inflation rate of 2% per year, as well as a year-one electricity grid unit cost of 0.30 EUR/kWh
for each building. Where the asset lifetime is less than 20 years, the asset is retired and
the cost of a new equivalent system was included in the NPV assessment in that given
replacement year. This method assumes the BOP cost is relatively low.

The environmental impact was estimated through the global warming potential (GWP)
of the assets, which when summed together and divided by the total energy delivered
over the system lifetime derives the emissions intensity, measured in extgCO2eext/kWh.
The values are then compared with the grid emissions intensity for the island, for which
the total decarbonisation potential was evaluated. The grid emissions were found using
generation data gathered from the national TSO (Red Electrica de Espana) for the year
2021 and found to have an average of 325 gCO2e/kWh.

EItotal =
∑m

j=1 (EIj·Ej)

∑m
j=1 (Ej)

(15)

EIj is the emissions intensity and Ej is the energy output for m number of generators
and energy storage systems. This calculation was performed for each timestep of the
simulation to find the dynamic emissions value depending on the instantaneous energy
mix of the REC. The emissions intensity found within the literature can vary due to the
range of manufacturing techniques and factors considered when performing the life cycle
assessment (LCA). For this reason, some values such as those used for the hydrogen system
are taken as an educated estimation of the emissions impact based on a variety of sources.
The GWP embedded during manufacturing and installation for the assets and technology
costs are shown in Table 3.

Table 3. Hybrid renewable energy system economic and climate impact assumptions for the different
modelled technologies.

Technology CAPEX OPEX Lifetime
Emissions

Embedded

PV Solar Array
[55–57] 2500 EUR/kW 30

EUR/kW/year 20 years 1826
kgCO2e/kW

Wind Turbine
[58,59] 2850 EUR/kW 32

EUR/kW/year 20 years 520 kgCO2e/kW

Lithium-Ion LFP
[18,60] 328 EUR/kWh 5

EUR/kWh/year
10 years or 8000

cycles
254

kgCO2e/kWh
PEM Fuel Cell

[18,61] 1200 EUR/kW 13
EUR/kW/year 20 years 73.3

kgCO2e/kWh
AEM

Electrolyser
[18,62,63]

1500 EUR/kW 14
EUR/kW/year 20 years or 35,000 h 239

kgCO2e/kWh

Hydrogen Storage
Vessel [64–66] 30 EUR/kWh - 20+ years 5.1

kgCO2e/kWh

3.6. Multi-Objective Optimisation Procedure

Designing and configuring the optimal system sizing for a hybrid decentralized energy
system is a complex process. There are a number of non-linear phenomena being simulated,
as well as many potential design objectives and constraints. The chosen objective functions
considering both cost and carbon reduction are the NPV and the equivalent GWP. The
objective functions rely on varying the capacities of the PV solar, wind, battery, and RHFC
installations at the site.
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The NSGA-II uses a heuristic evolutionary learning algorithm with a population of
potential design solutions within the defined constraints. It then ranks the population based
on a non-dominated sorting, producing a pareto front of optimal solutions by minimizing
both objective functions [36]. Each individual in the population was determined based
on the simulation of the model of a one-year period and evaluating the two objectives.
The best-performing individuals are passed to the next generation, whereas a combina-
tion of mutations and created offspring (crossover) determines the remaining individuals.
NSGA-II provides several advantages including the use of elitism and reduced compu-
tational complexity [67]. The solving process for NSGA-II implementation is shown in
Figure 7. The algorithm also requires inputs, including the population size, number of
offspring, stopping conditions, and variable constraints, as shown in Table 4. The lower
limit for all system assets was set to zero, while the upper limit was set to 200 kW in line
with the adopted REC regulation for this study. The pymoo module created and maintained
by Blank et al. [68] was used to implement the NSGA-II algorithm in Python.

Figure 7. Hybrid energy system model approach with multi-objective optimisation algorithm
NSGA-II solving process.
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Table 4. Initialisation parameters and constraints of the NSGA-II optimisation algorithm.

Parameter Value

Population Size 72
No. of Offspring 24

Max No. of Generations 400
Lower Bounds (all assets) 0 kW/kWh
Upper Bounds (all assets) 200 kW/kWh

The input parameters were set into the simulation model with the selected objective
functions and run within the NSGA-II algorithm. The optimisation ran to the maximum
allowed generations before terminating. Due to the bound nature of the problem, the com-
ponent capacity variables start as a random distribution, from which the non-dominated
solutions on the pareto front are derived. Well-performing individuals are moved forward
to the next generation, as well as a selection of offspring and individuals that have experi-
enced random mutation. As the generations progress, the population steadily converges
on a large set of non-dominated solutions that align with the pareto front between the best
system economics and decarbonisation performance, denoted by the objective functions of
cost savings and emissions intensity. The graph in Figure 8 shows the convergence of the
objective function products during the progression through the first 200 generations of the
hybrid system optimisation, which will converge towards a single value.

 

Figure 8. Convergence of the optimisation pareto front as shown by an aggregated scalar objective
function minimising towards a single value.

4. Results and Discussion

4.1. Optimisation Results of the Hybrid Energy Generation and Storage Renewable Energy Community

The primary case studied was the hybrid architecture consisting of both a lithium
battery and an RHFC. Within the resulting pareto front in Figure 9a, each point on the graph
represents a different combination of design capacities ranging from the configuration able
to achieve the highest economic returns to the system able to deliver the lowest net carbon
output. The lifetime cost savings potential ranges from approximately EUR 130k to EUR
186k, while the emission intensity ranges from 82 to 140 gCO2e/kWh. It is interesting
to note that the savings do not start at zero, implying that below EUR 130k returns, the
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configuration was able to increase in economic performance as well as decarbonisation
before reaching an inflection point. At this point, it is clear that the net savings were able
to continue increasing, while the net emissions reached its minimum and began to climb
again. At the other end of the front, the gradient began to increase as both the returns
increase but also the emissions intensity. This continued up to the point where the system
can no longer provide additional savings without an exponential increase in embedded
emissions and therefore environmental impact.

 
(a) Pareto front in objective space (b) Optimal variables sorted by objective 

Figure 9. Key outputs from the multi-objective optimisation process, indicating relationship between
cost reduction and climate impact of the system design.

The resulting pareto front presents several crucial outcomes and challenges for pro-
viding a low cost and net-zero energy system. Firstly, an inherent trade-off relationship
was observed between the ability to decarbonise and ensure net profitability. Secondly,
the REC architecture, within the context and constraints of the study, can reduce carbon
emissions by over 75% compared to local grid usage. However, this is a hard limit due to
the capacity factors of the components and the embedded carbon within the system during
manufacturing. Additionally, trying to decrease the carbon emissions further only incurs a
financial penalty, which would be hard to incentivise to the REC members.

The graph in Figure 9b displays the capacities of PV solar, wind power, battery, fuel
cell, and electrolyser systems with the final population arranged by the two objective
functions. The best economic outcome is on the left, while the best environmental outcome
is on the right. It can be observed that all systems generally tend towards an increase
in capacity as the emissions improve. This is most likely because a larger total off-grid
capacity has a higher self-consumption rate, and therefore is relying less on the grid which
has a high emissions intensity of 325 gCO2e/kWh. The REC was consequently able to
reduce emissions to a greater extent. This, of course, negatively impacts the economics
of the REC as more capital has to be invested into a more substantial design. It appears
from the graph that the wind power, as well as the fuel cell and electrolyser which make up
the RHFC are most sensitive to changes in the objective functions. The following section
explores the chosen optimal design, and details why the capacities affect the objective
functions in this way.

4.2. Best Hybrid System Design for the Renewable Energy Community

The pareto front provides a range of potential non-dominated solutions in which
neither objective function is favoured over the other. There are several methods that can be
used to choose a nominally ‘best’ system from the population to perform further analysis.
Based on the research conducted by Wang and Rangaiah [69], it was chosen to use simple
additive weighting (SAW). SAW normalises both objective function values, where zero is
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the worst possible result and one is the most improved. The values are then summed for
each member of the population to find the best overall solution.

{
Fij =

fij

f+j
for a maximisation criterion, where fi+ = max

i∈m
fij

Fij =
fij

f−j
for a maximisation criterion, where fi− = min

i∈m
fij

(16)

Ai =
n

∑
j=1

Fij (17)

Fij is the normalised set of objective functions j for the pareto population i and fij is the
initial set. fi+ and fi− are the maximum and minimum criteria of the set, respectively. Ai
then provides the best set of design variables to use in the hybrid REC, given in Table 5.
The system was then simulated to perform analysis of all performance indicators.

Table 5. Optimal installed capacities of the energy system assets.

REC Asset Optimal Values

PV Solar 71 kW

Wind Turbine(s) 32 kW

Lithium Battery 14 kWh

PEM Fuel Cell 20 kW

AEM Electrolyser 18 kW

Figure 10 contains two one-week sample periods obtained from the simulation, dis-
playing the balance of each asset and their contribution to balancing the total REC load.
Typical summer and winter periods are used to observe the seasonal variation in the system
response. The REC load was higher on average during the summer period, leading to
increased reliance and leading the energy grid to fill gaps in the consumption requirement
when the ESS was unavailable. The winter period, by contrast, was able to satisfy the
load requirement with the exception of some short periods. This shows that although the
REC can operate largely off-grid, it is still beneficial from both an economic and emissions
perspective to remain grid-connected from the short period when the REC generation and
hybrid storage cannot fully balance the consumption. The hydrogen system requires a max-
imum storage of 1835k, which was evaluated from the simulation as the storage required to
avoid any state-of-charge limits. The value therefore is a worst-case scenario for the system,
as it is likely that a smaller storage would be chosen in accordance with the installation
space available within the REC. Given the lower heating value (LHV) of hydrogen and
the average fuel cell efficiency of 46%, the system would require approximately 14 Nm2 of
hydrogen stored at 35bar to supply the required quantity of a one-year period.

Table 6 below shows a full breakdown of the economic and environmental performance
of each grouped asset. The solar array was able to deliver the most energy to the REC
due to the high capacity of 71 kW, but also the higher solar potential on the island of
Formentera of 4.7 kWh/m2, compared to London, UK, of 2.9 kWh/m2. Energy generated
from wind provides the next greatest portion of over 24%, the benefit of which is that
energy is generated during the night period as well as the day to charge the battery and
a steady quantity of hydrogen. The battery itself was relatively small compared to the
other components at 14 kWh and responds only when the energy generated is no longer
available in excess of supply. The fuel cell and electrolyser were sized at 20 kW and 18 kW,
respectively. It is interesting to note that the electrolyser was smaller in power input
capacity than the fuel cell, even though the efficiencies would dictate the fuel cell would
need approximately half the rated power of the electrolyser to achieve the same capacity
factor. The increased generation from wind power over more of the simulation may allow
the electrolyser to run for longer periods and make up the fuel cell’s lower efficiency.
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Figure 10. Energy generation hour-by-hour breakdown by source. Example shown includes typical
summer and winter weeks.

Table 6. The economic and environmental performance of the different REC assets in the optimal
design configuration.

Technology Asset
Energy-Delivered

(kWh)
Capacity-Factor (%) CAPEX (EUR)

OPEX
(EUR/year)

LCOE
(EUR/kWh)

Emissions
(gCO2e/kWh)

PV Solar
[71 kW] 141,184 19 177,500 2130 0.07 40.7

Wind
Turbine(s)
[32 kW]

60,517 22 91,200 1024 0.09 15.9

Lithium
Battery [14 kWh] 4910 8 5446 308 0.08 72.4

Hydrogen
System [1836 kWh] 26,360 15 106,000 570 0.17 18.6

4.2.1. Techno-Economic Assessment

It is important to analyse each component on an individual basis to fully understand
their contribution to the economic and emissions performance within the system. This
would not only help to confirm the results seen in the pareto optimality, but also from
a practical perspective assist a potential system designer to identify the most important
assets, any particularly sensitive parameters, and assess the risks associated with each.

The solar array has the largest capital and operational costs compared with the wind
power alternative due to the higher unit costs per kW. Despite this, the PV solar was able
to achieve a greater capacity factor, which is the measure of energy output as a ratio of
the total potential output of the same period. PV solar is naturally limited by the hours of
solar available, while wind power is limited by the average wind speed and distribution.
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The higher capacity is the main mechanism which produced a lower LCOE for the PV
solar of 0.07 compared with wind power’s 0.09 EUR/kWh, despite the higher CAPEX
and OPEX costs. This result also implies that although wind power is possible on with
the REC, it may be beneficial from a to study a PV solar generation only option due to
the potential impracticalities of local wind turbines. The inverse was then observed for
the environmental impact, in that the PV solar has considerably higher embedded emis-
sions of 40.7 gCO2e/kWh compared with the 15.9 gCO2e/kWh expected from equivalent
wind energy. These results show a good agreement with the reported embedded emis-
sions from the IPCC AR5 report [70] of 45 gCO2e/kWh and 13 gCO2e/kWh for solar and
wind, respectively.

At EUR 106k, the RHFC CAPEX was a factor of twenty higher than the battery.
This trend carries over into the LCOE results, where an approximate doubling of the
levelized cost was observed for the hydrogen system compared with lithium batteries.
These outcomes are in line with similar hydrogen system results found in the literature [55,71].
It is widely known that hydrogen technology is a less financially viable alternative for
many applications, so this result was somewhat expected. This could change in the near
future as the costs of hydrogen technology reduce.

The emissions output from the battery per kWh delivery was far higher than the
hydrogen solution at 72.4 and 18.6 gCO2e/kWh, respectively. The trend is also supported
by the population variables in Figure 9b, in which it is noted that as the hydrogen assets
increased in capacity, the emissions result improved, while the net savings deteriorated.

Figure 11 contains the present value curve of the grid-only case, that is when electricity
cost is paid to the utility company over the project period. The curve starts at zero as
there is no capital cost associated with grid usage, but the operational cost per year is high.
By contrast, the modelled REC requires an initial investment of EUR 380k. However, the
lower year-on-year cost means that the system can pay off the investment cost, described
as the payback term, in 9 years. The project ends with a final total savings of EUR 178k
when the inflation and discounts rates of 2% and 5%, respectively, are considered. The
result produces an IRR of 10.9%, year’s returns of 9.6%, and an average system LCOE of
0.16 EUR/kWh. This assessment was based on the cost of equipment and installation
since 2020.

 

Figure 11. The present value over the project period. The system was primarily compared with a
’business-as-usage’ grid-only scenario.

Considering the historical and currently observed trends in renewable generation and
storage equipment cost, it is projected that by 2030 and beyond there will continue to be a
substantial decrease in the financial requirements for this type of system. The results shown
here are therefore towards the upper bounds in terms of uncertainty about the future cost
of an REC implementation.
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4.2.2. REC Members’ Net Savings and Environmental Impacts

The model not only provides a global view of the potential impact of an REC configu-
ration but is also able to analyse the reduction in cost and emissions on a per load basis.
There were seven discretised loads within the model, with each being able to mutually
accept and trade energy with the decentralised assets. Table 7 below shows the average
LCOE and emissions intensity for each building and the percentage decrease in emissions.
The REC provided a considerable degree of self-consumption, ranging from 91.1% for the
largest load to over 98% for the smallest. In terms of the impact on the energy cost, the new
LCOE ranged between 0.16 and 0.17 EUR/kWh compared to 0.30 EUR/kWh for grid-only.
The decarbonisation of energy usage was also seen to be in the range of 75–77% in the first
year of installation.

Table 7. Quantity of energy delivered to the REC compared with the quantity of energy delivered
from the grid.

REC Member REC Delivered (kWh) Grid Delivered (kWh)

Community centre 61,078 5461

Elementary school 18,807 348

High school 44,743 1437

Council offices 28,244 683

Residential units 11,975 514

4.3. Best Case and Extremes Comparison

During the study, it was vital to understand not only the characteristics of the system
at the ‘best’ pareto result, but also the performance at the extremes of the multi-objective
optimisation. The result gives an indication as to how sensitive the result was to changing
parameters. Table 8 contains the results of the three chosen REC configurations in terms of
hybrid generation and storage capacities.

Table 8. Comparison REC configurations for extreme cases for net savings and decarbonisation
potential compared with the chosen nominal case.

Best Net Savings Nominal Best Emissions Savings

REC Delivered (kWh) 151,493 156,536 158,823
Self-Consumption (%) 91.0 94.5 96.2

LCOE (EUR/kWh) 0.15 0.16 0.19
Net Savings (EUR) 187,080 178,229 139,647

Savings (%) 51 47 36
IRR (%) 12.6 10.9 7.1

Simple Payback (%) 10.1 9.6 8.0
Payback Term (years) 8.3 9.0 11.5

Emissions 79 69 61
(gCO2e/kwh)

Decarbonisation (%) 75.6 78.8 81.2

4.4. Pareto Front Comparison of Energy Storage System Technologies

The hybrid ESS comprised of a lithium battery and RHFC system produces differing
performance outcomes based on the relative capacities of the technologies. Therefore, a
comparison of the multi-objective optimisation for the same REC set-up with an additional
battery-only ESS and RHFC-only ESS are required to ensure that the hybrid design was able
to provide the best performance in terms of environmental impact and cost savings for the
REC members. Figure 12 compares these pareto fronts, from which the combination of the
technologies was able to produce a significant improvement over the technologies working
independently. This was likely due to the fact that the battery is better at providing a short-
term response but suffers from increased degradation if used frequently for charge and
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discharge, and similarly the hydrogen system requires a high capital cost and is best suited
to the long-term storage of grid energy. The battery alone also has increased embedded
carbon, which limited its ability to decarbonise. The hydrogen-only system suffered from
the limitation that the electrolyser only runs at rated power, limiting flexibility.

 
Figure 12. The present value over project period compared with the ’business-as-usual’ grid-only scenario.

Table 9 below summarises a range of LCOE results from the literature with similar
smart grid and renewable energy architectures, incorporating hydrogen storage where
available. It should be noted that specific parameters such as renewable resource availabil-
ity, local technology costs, and system sizing may induce uncertainty in the resulting total
system LCOE. For example, locations with a higher solar potential are naturally able to
achieve a lower PV solar LCOE, and conversely, remote areas with high delivery and instal-
lation costs would experience higher project costs. The resulting average is 0.13 EUR/kWh,
which is in good agreement with the central economic and environmental trade-off case
produced in this work.

Table 9. Comparison of the levelized cost of electricity results of similar hybrid hydrogen smart grid
systems within the literature.

Reference
Smart Grid

Architecture
Assets Location Scale

LCOE
(EUR/kWh)

This work Energy
community

Solar, wind,
battery/RHFC

Formentera,
Spain <100 kW 0.15

[55] DC microgrid Solar,
battery/RHFC Sub-Saharan <100 kW 0.16

[72] AC microgrid Solar/wind,
genset/RHFC Morocco <1 MW 0.07

[73] AC microgrid Solar/wind,
hydrogen India <1 MW 0.08

[74] Energy
community

Solar/wind,
battery/RHFC Ghana <100 kW 0.26

[75] Energy
community

Solar/wind,
hydrogen Canada >1 MW 0.08

5. Conclusions

This work presents a novel decentralised hybrid generation and ESS implementing
both battery and hydrogen technology for use in a geographically isolated rural renewable
energy community. A review of the existing state of the art was presented and highlighted
the gaps in knowledge for such a system, particularly when considering both economic
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feasibility and a dynamic calculation of the environmental impact. This discussion comes
at an interesting time for Europe and around the world as policymakers work to facilitate
the potential benefits of aggregating decentralised renewables, one such method being the
REC. The steady cost reduction in PV solar and wind power as seen over the past years
has also accelerated growth in the decentralised energy sector. The rise of cost-effective
hydrogen technology is set to make a considerable impact on how energy is stored and
transported as a vector.

The results from this study show that there is an inherent trade-off relationship be-
tween cost reduction and the ability to decarbonise the energy system. By using a model
built in Python, several different economic and environmental scenarios can be assessed.
The implementation of a multi-objective algorithm gives potential system designers and
policymakers a range of possible solutions. In this case, the optimal design results in an
LCOE of 0.15W EUR/kWh, a project IRR of 10.8%, and an ROI of 9 years. Greenhouse gas
emissions were reduced by 72% in the first year of installation to 69 gCO2e/kWh.

In further studies, emphasis should be placed on performing a sensitivity analysis and
understanding where uncertainty may arise in the energy model. In particular, varying
the component input assumptions such as capital cost and embedded emissions in line
with reported ranges from the literature would further account for future uncertainty
in performance. Additionally, further improvements to the system sizing optimisation
method, including additional objective functions such as the loss of load probability from
the literature, quantifying social impacts, and applying local space constraints would
capture other potential strengths and weaknesses of the hybrid storage technology. Finally,
research into the implementation of REC architectures in other locations around the world
beyond the case study in this work would not only provide additional validation but also
give a global perspective of how effective an REC could be in keeping energy costs stable
and curbing the impacts of climate change.
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Abbreviations

The following abbreviations are used in this manuscript:

CAPEX Capital Expenditure
DOD Depth of Discharge
ESS Energy Storage System
GA Genetic Algorithm
GHI Global Horizontal Irradiance
GWP Global Warming Potential
IEC International Electrotechnical Commission
IRR Internal Rate of Return
LCOE Levelised Cost of Electricity
NPV Net Present Value
NSGA Non-dominated Sorting Genetic Algorithm
OPEX Operational Expenditure
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PEM Proton Exchange Membrane
PV Photovoltaic
REC Renewable Energy Community
RED Renewable Energy Directive
RES Renewable Energy System
RHFC Regenerative Hydrogen Fuel Cell
ROI Return on Investment
SOC State of Charge
TSO Transmissions System Operator
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Abstract: Participation in the electricity market requires making commitments without knowing
the real generation or electricity prices. This is problematic for renewable generators due to their
fluctuating output. Battery energy storage systems (BESSs) integrated with renewable sources in a
hybrid farm (HF) can alleviate imbalances and increase power system flexibility. However, the impact
of battery degradation on long-term profitability must be taken into account when choosing the
correct market participation strategy. This study evaluates the state-of-the-art on energy management
systems (EMS) for HFs participating in day-ahead and intraday markets, incorporating both BESSs’
calendar and cycling degradation. Results suggest that efforts to attain additional profits in intraday
markets can be detrimental, especially when the degradation effect is considered in the analysis.
A new market participation strategy is proposed that aims to address the limitations of market
overlapping and forecasting errors. The results demonstrate that the proposed method can enhance
long-term benefits while also reducing battery degradation.

Keywords: BESS; optimization; degradation; markets

1. Introduction

Renewable energy systems face uncertainty in resource availability, which can create
challenges in participating in electricity markets that require prior commitments. Energy
storage systems (ESS) can mitigate this uncertainty by storing energy for later use [1].

The energy commitment for the day-ahead market is made by submitting offers to
the market operator the day before delivery. Forecasting techniques are applied to predict
electricity prices and resource availability [2], using techniques such as the SARIMA model,
which can capture seasonal correlations in historical data. The authors in [3] demonstrate
how a SARIMA model can outperform deep-learning techniques. In this work, SARIMA
models are used to forecast both electricity prices and wind speeds, and have been shown
to outperform deep-learning techniques in previous studies.

An offering strategy for energy commitment is typically formulated as a constrained
optimization problem [4]. The decision vector includes offers for each hour of the mar-
ket, and the objective is to maximize revenue during the session. Constraints include
physical parameters of the plant and market rules, which heavily influence the feasible
solution space.

Multi-market participation, which includes day-ahead and intraday market sessions,
cannot be formulated as a single optimization problem due to the different timeframes of
each market. A progressive optimization approach, as proposed by the authors in [5], is
used in this work.

Intraday markets can be utilized to increase profits through revenue stacking, which
typically involves combining energy and power services. Studies such as [6] demonstrate
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that combining frequency response and arbitrage can increase revenue by up to 25%. Similar
results are found in studies such as [7], which consider multiple spot market participation.
This is also proposed by the authors in [7]. These approaches are compared in this work.

The aforementioned studies do not model the forecast generation and market offering
processes. Generated forecasts at different times of the day can contradict each other and
lead to issues when various markets overlap. This work addresses this issue.

Balancing mechanisms in electricity markets, such as penalties for deviations, can be
used to address deviations caused by forecasting errors. Intraday markets can be used to
correct errors [8], but require prior commitments. An alternative solution is to use energy
storage systems for real-time corrections through a service called capacity firming (CF) [9].

Capacity firming has received increasing attention in recent literature as a service
provided in real-time as opposed to arbitrage. Studies such as [10] propose energy conser-
vation methods for control schemes of BESSs integrated with a PV system. Other works,
such as [11], show how a simple control algorithm can achieve capacity firming in a BESS
combined with a wind farm, although the storage system is only used for this service.

The Iberian electricity markets are used as an example in this work since, like many
other systems, they have day-ahead and intraday spot markets. Market operator rules are
incorporated into the optimization algorithm and the calculation of net benefits. Partici-
pation in intraday markets and the use of the CF service are compared, and the revenue
stacking of different services is evaluated. This work also considers the effect of degradation
on long-term profits, an approach that has not been considered in the previous literature.

A HF model consisting of a Gamesa G128 Wind Turbine Generator (WTG) and a
BESS is presented. Unlike a virtual power plant (VPP), the system components are not
distributed; thus, they share a point of common coupling (PCC). The SARIMA forecasting
model uses wind historical data from the Sotavento experimental wind farm [12] and
electricity prices from the Iberian market as inputs for the EMS.

The results show that participating in all markets may be counter-productive due
to market overlap. The best results in terms of profits per degradation are obtained by
allowing the BESS to participate only in the day-ahead market and performing capacity
firming in real time.

The work proposes a new service called SOC Emptying (SE), which involves dividing
the BESS into two virtual energy storage systems (VESS). One VESS provides regular
services, while the other is used to empty the BESS whenever the combined state of charge
(SOC) exceeds a specific threshold. This service aims to reduce upward deviations and give
the BESS more maneuverability. The inclusion of this service further improves the results,
resulting in increased profits per percentage of capacity loss and higher net present values
when extrapolating the results for the entire project.

The contributions of this work are outlined as follows:

• A formulation for a progressive optimization algorithm for hybrid farm multi-market
participation that takes into account degradation effects caused by operation.

• The implementation of a real-time BESS degradation model that assesses capacity and
power losses in a simulation framework to evaluate different market participation strategies.

• Evidence shows that using the BESS in all markets does not necessarily result in a
better income after comparing different simulation scenarios.

• A proposed service that enhances the BESS utilization efficiency and increases the
project’s net present value (NPV).

The paper is structured as follows: Section 2 provides an overview of the Iberian
electricity market rules. Section 3 describes the HF model used in the study. The day-ahead
and intraday market offering optimization models are analyzed in Section 4. Section 5
presents the simulation use cases and results. Conclusions and future research directions
are discussed in Section 6.
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2. Iberian Market’s Rules

Before each market session opening time, the EMS must have forecasted data of prices
and wind power generation. It is therefore necessary to know when each market session
takes place and which hourly delivery periods are negotiated, both for forecasting and
optimization problem definition. To obtain real benefits, this study follows the regulations
of the Iberian markets, which take into account deviation costs.

This section introduces the rules of the Iberian markets, starting with the day-ahead
market, followed by the intraday markets, and finally, the deviation rules are described,
which consider four different deviation costs.

2.1. Day-Ahead Market

The majority of energy traded in the Iberian wholesale markets is conducted through
the day-ahead market. In 2020, it accounted for 74% of the total energy traded [13].
Therefore, it is the most important market for arbitrage operations. The Iberian day-ahead
market session takes place every day of the year at 12:00 CET.

The price and volume of energy is determined for each hour of the following day
by the intersection of demand and supply. Market agents submit their offers through
the market operator OMIE [14]. As a result, the EMS has to submit 24-hourly offers for
the following day, using price and generation forecasts generated 12 to 36 hours prior to
delivery time.

2.2. Intraday Markets

After the day-ahead market, intraday markets accounted for 14% of the energy traded
in 2020 [13]. Since intraday spot markets had six times more energy than continuous
intraday markets, this work only considers the former. In Table 1, the closing times and
delivery hours of the market sessions are shown.

Table 1. Intraday market sessions in 2018.

Session 1 2 3 4 5 6

Closing time 18:50 21:50 1:50 4:50 8:50 12:50
Delivery hours 22(D-1)–23 0–23 4–23 7–23 11–23 15–23

The closing times in Table 1 are the deadlines for submitting offers to the market
operator. Decisions must be made before this time. The delivery hours in the table are the
hours during which the energy negotiated in each intraday market session will be delivered
on day D.

Since Sessions 1 and 2 cover the same hours, Session 1 is neglected as Session 2 has a
closer opening time to the delivery. Intraday markets allow agents to correct their schedules
in the day-ahead market. This can be performed by purchasing energy during hours when
a deviation from the day-ahead program is expected. Arbitrage can also be performed to
gain additional liquidity. Both options are considered in the simulation cases.

2.3. Adjustment Mechanism

Four different deviation costs need to be considered in the Iberian market:

• Positive deviation costs for upward deviations that have a negative impact on the system;
• Positive deviation costs for upward deviations that have a positive impact on the system;
• Negative deviation costs for downward deviations that have a negative impact on

the system;
• Negative deviation costs for downward deviations that have a positive impact on

the system.

A deviation during an hourly period h is calculated as follows:

λ(h) = |Ed(h)− Ec(h)|, (1)
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where the following apply:

• λ(h): Deviation during hour h (MWh).
• Ed(h): Delivery during hour h (MWh).
• Ec(h): Commitment during hour h (MWh).

If the deviation is upwards and in favor of the system, the additional energy is
remunerated at the day-ahead price during hour h; therefore, the bonus is calculated as:

β(h) = λ(h) ∗ ΠdM(h), (2)

where the following apply:

• β(h): Bonus obtained during hour h (EUR).
• ΠdM(h): Day-ahead price during hour h (EUR/MWh).

If the deviation is upwards and against the system, the energy excess is remunerated
at less than the day-ahead price during hour h. This bonus is calculated as:

β(h) = λ(h) ∗ ΠdM(h) ∗ (1 − λcoe f (h)), (3)

where the following applies:

• λcoe f (h): Coefficient for deviations against the system during hour h.

If the deviation is downwards and in favor of the system, the energy deficit is
charged at the same price as the day-ahead price during hour h; therefore, the penalty is
calculated as:

ρ(h) = λ(h) ∗ ΠdM(h), (4)

where the following applies:

• ρ(h): Penalty during hour h (EUR).

If the deviation is downwards and against the system, the energy deficit is charged at
a rate surpassing the day-ahead price during hour h; therefore, the penalty is calculated as:

ρ(h) = λ(h) ∗ ΠdM(h) ∗ (1 + λcoe f (h)). (5)

The total deviation cost is formulated as follows. As can be seen, it can be negative
when more energy is available than committed:

λcost(h) = ρ(h)− β(h) (6)

where the following applies:

• λcost(h) : Deviation costs during hour h (EUR).

The coefficient λcoe f (h) represents the system’s vulnerability to deviations against it. A
higher coefficient means that a higher penalty will be paid. As seen in (3), if the coefficient
is greater than 1, the bonus for upward deviations can be negative, which implies a penalty.
During the same hourly period, if downward deviations are against the system, upward
deviations are in favor of the system, and vice versa. The deviation coefficient is determined
by the system operator and is the same for both types of deviations.

3. Hybrid Plant Model Overview

The model consists of the physical systems and their control architecture. In this
section, the model inputs’ generation is described for both wind speed and market prices.
Afterwards, the plant model and its control architecture are introduced. Lastly, the daily
earning calculation is formulated.

3.1. Model Inputs
3.1.1. Wind Power

Wind power is obtained through a two-stage approach, as in [15]. First, hourly
wind speed is forecasted using a SARIMA; then, forecasted data are fed into a function
that expresses a Gamesa G128 wind turbine power curve. The optimization and energy
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management system (EMS) models directly receive the forecasted and real wind power
hourly values.

Wind speed historical data are obtained from Sotavento experimental park in Galicia,
Spain [12]. This source was chosen due to its publicly available data and its location within
the Iberian market region. The data have a resolution of one hour, and the measured wind
speed for the year 2018 is presented in Figure 1.

Figure 1. Hourly wind speed historical data for the year 2018.

Hourly wind speed forecasts are required during the opening hours of market sessions.
The first forecast is at 12:00 h, when the day-ahead market commences, and subsequent
forecasts are generated during the opening hours of intraday market sessions. For real-time
operations, actual measured wind speed data are utilized. The SARIMA model utilized in
this work has an order of (2, 0, 3)(2, 1, 3)12, obtained from [16]. The configuration process
for the model is not covered in this work. Figure 2 illustrates the 2018 average mean
absolute percentage error (MAPE) of the wind speed forecasts generated during different
market sessions. It is observed that the prediction error tends to decrease.

Figure 2. Average MAPE of each wind speed forecast for 2018.
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3.1.2. Electricity Price Forecasts

The 24-hourly prices for the next day are predicted at 12:00 h on the previous day. A
SARIMA model of order (2, 1, 3)(1, 0, 1)24 was obtained from [16]. In Figure 3, the predicted
and real day-ahead prices for April the 16th are shown. Intraday prices are considered as
known beforehand for simplicity.

Figure 3. Day-ahead market price forecast for April the 16th.

3.1.3. Deviation Prices

The hourly deviation coefficients derived from 2018 historical data are used to calculate
the final deviation costs. However, a deviation coefficient is required for the optimization
model of intraday market offerings. Since deviation coefficients are only known after the
delivery period has ended, a forecasting technique for predicting the direction (favorable
or unfavorable) of deviation is required, but it is outside the scope of this paper. Therefore,
a deviation coefficient of 21%, the average of 2017, is considered when participating in the
intraday market.

3.2. Plant Model Components

The HF model consists of a wind turbine generator and a BESS.

3.2.1. Wind Turbine Generator

The generation system is a single Gamesa G128 WTG with a nominal power of 4.5 MW.
The power curve is taken from [17]. Only a WTG is considered for convenience. Generator
converter efficiency is considered part of the power curve characteristic.

3.2.2. Battery Energy Storage System

The storage system is composed of a 10 MWh/2.5 MW lithium iron phosphate (LFP)
battery, whose round-trip efficiency is assumed to be constant at 90%, as in [18]. A cycling
degradation model, based on depth of discharge (DOD) is implemented, sourced from a
finalization of the degradation curve presented in [19]. The model calculates degradation
by using rainflow counting of the cycles performed during the day and determines the
State of Health (SOH) lost based on the DOD of these cycles, in accordance with the curve
shown in Figure 4.
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Figure 4. Cycling degradation model.

A calendar degradation model, sourced from [20], is incorporated into the plant model.
This model is based on tests conducted on different LFP batteries over 899 days, where
they were maintained at various SOCs and temperatures. The test results for 25 ◦C were
selected and are presented in Table 2.

Table 2. Calendar degradation results at 25 ◦C [20].

SOC (%) Capacity Lost (%)

0 0.002
50 0.0055

100 0.012

As depicted in Table 2, daily calendar degradation can be represented as a linear
function of SOC. Since it is also considered linear with respect to time, the following
expression has been obtained from the table:

Degcal(h) = SOC(h)× 1.2 × 10−4

24
(7)

where the following apply:

• Degcal(h): Calendar degradation during hour h (%).
• SOC(h): SOC at the end of hour h (%)

3.3. Control Architecture

The EMS operates on three levels. The tertiary level operates in advance, and is
responsible for formulating strategies for offerings in various energy markets. It receives
as inputs the predicted prices, generation, and the real-time SOC for the intraday market
and SE optimization models, which are executed at this control level. It then sends market
commitments to the secondary level.

The secondary control level operates in real-time and generates the setpoints for the
BESS based on the difference between generation and commitments generated on the third
level. The BESS setpoints are calculated as follows:

PESS(h) = PCom(h)− PGen(h), (8)

where the following apply:

• PESS(h): BESS setpoint during hour h (MW).
• PGen(h): Generation during hour h (MW).
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• PCom(h): Commitment during hour h (MW).

As shown, when an upward deviation is anticipated, the BESS will receive a setpoint
to charge the excess. Conversely, when a downward deviation is expected, a discharging
setpoint is generated.

The primary control level manages the energy storage system; it receives charge–
discharge setpoints from the secondary level and adjusts them based on the real-time
SOC. If the BESS does not have enough energy to cover the missing energy, a downward
deviation will occur during that hour. If the BESS is unable to store the excess energy, then
an upward deviation will occur.

A sketch of the EMS control architecture is illustrated in Figure 5.

Figure 5. EMS control levels.

3.4. Daily Profits Calculation

The daily profits are calculated as the sum of the hourly profits. In Equation (9), the
calculation of daily earnings is depicted. The daily losses are formulated as in Equation (10).

Earnings =
24

∑
h=1

(
EDM,C(h) · ΠDM(h) + EID,C(h) · ΠID(h)

)
. (9)

Losses =
24

∑
h=1

(
Pϕ(h) · ΠID(h) + λcost(h)

)
. (10)

where the following apply:

• Earnings: Daily earnings (EUR).
• EDM,C(h): Energy commitment in day-ahead market during hour h (MWh).
• ΠDM(h): Day ahead market real price during hour h (EUR/MWh).
• EID,C(h): Energy commitment in intraday markets during hour h (MWh).
• ΠID(h): Intraday market real price during hour h (EUR/MWh).
• Losses: Daily losses (EUR).
• Pϕ(h): Power purchased in intraday market during hour h (MW).

Downward deviations can be corrected in intraday markets in two ways:

• By purchasing the expected energy deficit in the intraday market (Pϕ(h)).
• By using stored energy to cover the imbalance.

The optimization algorithm chooses how to correct expected deviations depending on
the intraday market prices and deviation costs at each hour.
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4. Optimization Problems for Market Participation

In this work, market scheduling strategies are formulated as mathematical optimiza-
tion problems. The progressive optimization approach, similar to the one described in [5], is
employed. The day-ahead market scheduling problem is first solved to generate an hourly
power schedule vector PSch. This vector is updated and sent to the secondary control level
in real-time throughout the day. The process is illustrated in Figure 6.

Figure 6. Daily optimization process.

This section presents the formulation of the optimization problems. The day-ahead
market offering is explained first, followed by the intraday market offering, and finally the
proposed SE service optimization is described as a separate problem.

4.1. Day-Ahead Market Offering

The inputs for the day-ahead market offering include the price and power generation
forecasts for the next day generated at 12:00 PM and the plant assets’ parameters. The
optimization problem is subject to the following constraints:

1. The charge power cannot be higher than the nominal value:

Pch(h) ≤ Pnom,BESS · φd(h), (11)

where the following apply:

• Pch(h): Charging power during hour h (MW).
• Pnom: Nominal power (MW).
• φd(h): A binary variable that equals 1 when the battery is not discharging during

hour h.
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2. The discharge power cannot be higher than the nominal value:

Pdis(h) ≤ Pnom,ESS · φc(h), (12)

where the following apply:

• Pdis(h): Discharging power during hour h (MW).
• Pnom: Nominal power (MW)
• φc(h): A binary variable that equals 1 when the battery is not charging during

hour h.

3. The charging power is always positive:

Pch(h) ≥ 0. (13)

4. For optimization algorithm simplicity, the discharge power is also always positive:

Pdis(h) ≥ 0. (14)

5. The simultaneous charge and discharge is not possible:

φc(h) + φd(h) ≤ 1. (15)

6. The energy stored at the end of each period is calculated as follows:

E(h) = E(h − 1) +
(

Pch(h) · ξ − Pdis(h)
ξ

)
, (16)

where the following apply:

• E(h): Energy stored in the battery at the end of hour h (MWh).
• ξ: Efficiency (%)
• E(h − 1): Energy stored on the battery at the beginning of hour h, which is

considered to be 0 at the first hour.

7. The stored energy cannot have a negative value:

E(h) ≥ 0. (17)

8. The BESS cannot discharge if its participation in the day-ahead market is disabled;
this constraint is activated depending on the case of study:

Pdis(h) = 0. (18)

9. The power flow of the plant is defined as follows:

Pgen(h) = Ps(h) + Pch(h), (19)

where the following apply:

• Pgen(h): Total generation power during hour h (MW).
• Ps(h): Generation power sent directly to the grid during hour h (MW).
• Pch(h): Generation power sent to the storage system during hour h (MW).

The following objective function seeks to maximize the income:

Max

{
24

∑
h=1

ΠDM(h) ·
(

Ps(h) + Pdis(h)
)}

. (20)

The objective of this function is to maximize profits through the generation of the
optimal schedule based on forecasted energy and prices. Deviations are not accounted for
in this optimization problem and are addressed in the intraday market optimization. The
output of this offering strategy is the hourly schedules for the following day, which serve
as input for the next optimization problems.
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As it can be seen, the BESS does not purchase energy from the market. As per the
regulations of the Renewable Energy Economic Regime [21], a BESS is not allowed to
purchase energy from electricity markets when operating in hybrid plants.

4.2. Intraday Market Participation

The intraday market participation aims to adjust the hourly schedule in the case of
expected deviations. It does so through two means: selling expected excess energy if
enabled and purchasing energy in case of expected downward deviation. The optimiza-
tion function takes the following inputs: committed hourly schedules, generated power
prediction, deviation costs, intraday market prices, and the expected state of charge at the
beginning of delivery.

Each intraday market session occurs three hours before delivery, as shown in Table 1.
The expected SOC at the start of delivery is communicated by the tertiary control level. The
constraints for this optimization are the same as those for the day-ahead market scheduling
problem, with the addition of the following constraints:

1. The upward deviations are

λ↑(h) = PPCC(h)− Psch(h), (21)

where the following apply:

• λ↑(h) : Upward deviation during hour h (MW).
• PPCC(h) : PCC power during hour h (MW).
• Psch(h) : Scheduled power during hour h (MW).

2. The downward deviations are

λ↓(h) = Psch(h)− PPCC(h), (22)

where the following applies:

• λ↓(h) : Downward deviation during hour h (MW).

3. The downward deviations are considered always positive, for simplicity purposes:

λ↓(h) ≥ 0. (23)

4. The same happens with upward deviations:

λ↑(h) ≥ 0. (24)

As can be seen, when one type of deviation takes place, the other is equal to zero.
5. The hourly deviation costs are

λcost(h) = λ↓(h) · ρ(h)− λ↑(h) · β(h), (25)

The deviation penalty and bonuses are calculated from expressions (3) to (5). The
intraday optimization uses real day-ahead market prices, available at the time of
the intraday market. The deviation coefficient is set at 21% and the average is from
2017, and it is used only as an assumption at this stage, while historical deviation
coefficients are used later to calculate real benefits.

6. The internal power flow constraint depicted in (19) is modified:

Pgen(h) = Ps(h) + Pch(h) + Pdel(h) + Pcurt(h), (26)

where the following apply:

• Pdel(h): Generated power used to cover deviations during hour h (MW).
• Pcur(h): Generation power curtailed during hour h (MW).

The generated power is allocated to either cover expected deviations or to maximize
profits in the intraday market.
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7. The constraint regulating stored energy is a modification of (16) as follows:

E(h) = E(t − 1) +
(

Pch(h) · ξ − Pdis(h) + Pdis,s(h)
ξ

)
, (27)

where the following applies:

• Pdis,s(h): BESS power sold during hour h (MW).

This division of discharged power into two parts—one used to cover deviations and
one used for arbitrage—is similar to the division of generated power.

8. If arbitrage in the intraday market is disabled, the following constraints are applied:

Pdis,s(h) = 0. (28)

Ps(h) = 0. (29)

9. The PCC output power is computed as follows:

PPCC(h) = Pdel(h) + Pdis(h) + Pϕ(h), (30)

The intraday market purchased power is not physically received by the plant and
serves to fulfill commitments in the day-ahead market in case of deviations. It is
therefore not included in the PCC output power constraint, which measures expected
deviations. The exchanged power is part of the scheduled power vector input for the
subsequent intraday market optimization, as shown in the constraints represented by
expressions (21) and (22).

The objective function is defined in (31) with two goals: minimizing expected devia-
tions and maximizing profits through energy trading.

Max

{
IDlen

∑
h=1

ΠID(h) ·
(

Ps(h) + Pdis,s(h)− Pϕ(h)
)
− λcost(h)

}
, (31)

where the following applies:

• IDlen: Intraday market length.

The hourly commitment vector is updated using the outputs of the intraday market
optimization problem:

PSch,new(h) = PSch,prev(h)− Pϕ(h) + (Ps(h) + Pdis,s(h)) (32)

where the following apply:

• PSch,new(h): New hourly schedule (MW).
• PSch,prev(h): Previous hourly schedule (MW).

4.3. State of Charge Emptying

As previously discussed, the secondary control level sends generated energy to the
grid when the BESS is full and hourly commitments are fulfilled, leading to an upward
deviation. The market operator only pays for excess energy at the day-ahead market price
when the deviation is in favor of the system, as described in Equations (2) and (3). This can
result in a missed opportunity to sell energy at higher prices when the deviation is against
the system.

Moreover, the highest calendar degradation occurs when the BESS is full, as shown in
Table 2. A new operating mode is proposed that involves selling part of the stored energy
on the nearest intraday market when the BESS SOC exceeds a set threshold. This service
differs from intraday market arbitrage in the following ways:

• It operates simultaneously with the intraday market optimization process.
• It only manages energy above a certain threshold, not the entire BESS.
• It is limited to offering energy only in the first hours of each intraday market, to

prevent overlap with the next one.
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In Figure 7, the operating hours of the proposed service are shown, marked in blue,
over the delivery hours of the intraday market, which are represented as white bars.

Figure 7. SE service operating hours.

This service splits the BESS into two virtual energy storage systems (VESS), one for
profit generation and the other for deviation reduction. The stored energy is divided with
a threshold of 75% set for the SE service. This value was determined through testing
various values in the study and was found to be the optimal balance between profits and
deviation reduction.

SOCi = SOCSE − SOCthr, (33)

where the following apply:

• SOCSE: SOC used for SE service (%).
• SOCthr: SOC threshold (%).

The SE service is managed as an optimization problem identical to the one for intraday
market participation but limited to the first hours of the next intraday market. The variables
used for deviation coverage are disabled as the objective of this service is solely profit
generation. The objective function is as follows:

Max

{
SElen

∑
h=1

ΠID · PSE(h)
)}

, (34)

where the following apply:

• SElen: SE length for the next intraday market .
• PSE(h): Power sold during hour h (MW).

The goal is to sell available energy at the most expensive hours. The scheduled power
vector is updated as in (32).

PSch,new(h) = PSch,prev(h) + PSE(h) (35)

5. Simulations and Results

In this section, the simulation scenarios are presented, each showcasing a different
approach to using the BESS on the HF. Each scenario involves simulating the HF with the
respective approach operating during 2018 in the Iberian electricity markets. The aim is to
compare and assess whether revenue-stacking is more efficient than focusing on individual
services, and the performance of the proposed service.

At the end of each day, the accumulated degradation and SOC serve as initial val-
ues for the following day’s operation. The average daily profits and degradation under
each scenario are used in a full project extrapolation for a comprehensive view of the
different cases.

5.1. Simulation Cases

The simulation cases used are the following:

• Ideal: Perfect foresight of prices and power generation, which operates only in the
day-ahead market.

• DM: Energy sales in the day-ahead and intraday markets to cover deviations.
• DM + SE: Same as DM, but with additional SOC emptying service.
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• DM + ID: Energy sales in day-ahead market and intraday markets to sell excess and
cover deviations.

• ID: Only participates in intraday markets for energy sales and covering deviations.
• SE: Only participates in intraday markets to cover deviations and performs SE service.
• CF: No market participation; covers deviations through capacity firming services

(already provided in previous cases).

5.2. Simulation Results

The simulation was conducted using the same input data in each case. Expected
profits were calculated by summing the earnings from day-ahead and intraday market
commitments and real prices. Real profits were calculated as the difference between daily
earnings (Equation (9)) and daily losses (Equation (10)) using historical data of electricity
prices and deviation coefficients. Figure 8 displays the accumulated profits and costs for
each scenario, and Table 3 shows the numerical results.

Figure 8. Simulations results.

Table 3. Numerical results.

Case

Expected
Profits

(EUR M)

Deviation
Costs

(EUR M)

Purchases
Costs

(EUR M)

Real
Profits

(EUR M)

Ideal 0.614 0 0 0.614
DM + ID 1.677 0.031 1.309 0.336

ID 1.671 0.029 1.305 0.338
DM 0.488 −0.277 0.256 0.509

DM + SE 0.581 −0.201 0.276 0.507
SE 0.568 −0.195 0.255 0.508
CF 0.482 −0.27 0.244 0.509

The results indicate that expected profits increase with intraday market arbitrage, as
anticipated. These profits are calculated based on the delivery of all committed energy to
the market, resulting in higher profits in scenarios with intraday market participation as
all expected energy excess can be sold. The worst expected outcomes occur in scenarios
without intraday market participation, and similar results are observed when the BESS
performs capacity firming.

The deviation costs are negative in almost all scenarios, indicating when upward
deviations are more frequent. Purchasing energy in the intraday market effectively avoids
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downward deviations. The fewer services the BESS provides, the greater the negative
deviation costs, suggesting that the BESS tends to be fully charged most of the time, leading
to upward deviations.

Purchases in the intraday market are the primary cause of profitability losses. These
costs are significantly higher with intraday market participation. The fact that intraday
market purchases occur when the BESS cannot cover expected deviations highlights that
increased BESS involvement in markets can have negative effects.

Committing more energy to various markets increases the risk of having to make
corrections by purchasing energy in the intraday market. The best results seem to be
achieved by letting the BESS operate solely in the day-ahead market or providing capacity
firming services. As shown in Figure 9, intraday market participation has resulted in the
need to cover up to 40% of committed energy through intraday market purchases.

Figure 9. Committed energy covered with purchases in intraday markets.

Figure 10 displays the accumulated degradation. In scenarios where the BESS provides
the most services, it tends to be emptier, which reduces calendar degradation and results in
lower overall aging of the BESS.

Figure 10. Degradation in each case.
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Figure 11 shows the comparison between real profits and degradation. It reveals that
reserving the BESS for SOC emptying and capacity firming yields the best outcome when
profits are compared to capacity loss, which indicates a more efficient usage of the BESS.

Figure 11. Real profits per 1% of capacity lost.

5.3. Full Project Extrapolation Results

The trade-off between maximizing short-term profits and stretching the life of the en-
ergy storage system is a crucial factor to consider. The NPV is a useful metric that takes into
account future cash flows and discount rates to determine a project’s overall profitability.

In the table, the NPV of each case is calculated, discounting the daily cash flow and
the purchase cost of the BESS. The results show that the best NPV is achieved when the
BESS is reserved for SE and capacity firming. When only participating in the day-ahead
market, the NPV is not very different, but participating in the intraday market significantly
lowers the NPV, indicating lower project profitability.

The results of each simulation scenario are extrapolated for the entire project life. The
average daily cash flow is determined from the average daily results of 2018, and daily
degradation is similarly calculated to estimate project completion. The project ends when
the accumulated degradation of the BESS reaches 20%, a commonly used value in the
relevant literature (e.g., [22,23]). The average values and estimated project lifetimes for
each case are presented in Table 4.

Table 4. Project extrapolation under each case.

Case

Average Daily
Capacity Loss

(%)

Average Daily
Profits
(EUR)

Lifetime
(Years)

Ideal 2.08 × 10−3 1682.28 26.31
DM + ID 7.48 × 10−3 921.44 7.32

ID 7.56 × 10−3 925.11 7.25
DM 1.06 × 10−2 1394.37 5.12

DM + SE 1.02 × 10−2 1389.89 5.36
SE 1 × 10−2 1392.7 5.48
CF 1.05 × 10−2 1394.74 5.18
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It is worth noting that the BESS is not operated in the ideal scenario. In this case, the
BESS is only utilized for allocating generated energy when prices are the highest. However,
due to the degradation costs and the BESS efficiency, this operation is not profitable.

The SE has lower daily profits but a higher NPV compared to the case with CF. The
NPV of each project is calculated using a 7.5% discount rate and is presented in Table 5.
The results show that using the BESS for the SE service and capacity firming provides the
highest NPV.

Table 5. NPV under each case.

Case NPV (EUR M)

Ideal 7.226
DM + intraday market 1.912

Intraday market 1.905
DM 2.179

DM + SE 2.253
SE 2.299
CF 2.2

6. Conclusions

A three-level EMS for a HF to participate in the Iberian electricity market has been
presented. The day-ahead and intraday market offering strategies are formulated as linear
programming problems, with generation and price forecasts at the start of each market
session as inputs. The model has incorporated adjustments based on Iberian market
regulations to account for committed power correction impacts. It also includes a real-time
degradation model of the BESS to assess capacity and power losses.

A simulation framework has been proposed to assess various BESS market partici-
pation strategies. The results indicate that participating in both day-ahead and intraday
wholesale markets generates the highest expected profits, but actual profits are lower com-
pared to other strategies. The proposed optimization algorithm and results of the study can
be applied to any electrical system that operates with concurrent day-ahead and intraday
spot markets, which is a common practice in many countries. This can be used as a guide
for agents trying to optimize their plants.

The results show that using the BESS in all markets does not necessarily result in a
higher income, challenging the common belief that utilizing the BESS in all markets leads
to the best outcome. The proposed SE service enables participation in intraday markets
without the drawback of market overlap, enhancing the BESS utilization efficiency and
increasing the NPV of the project. Moreover, it highlights the crucial role of adjustment
mechanisms on actual income and the importance of modeling them thoroughly. Lastly, it
is worth remarking that the plant proposed in this work is considered a price-taker; the
effect of a plant or a number of plants large enough to impact electricity market prices is
proposed as a future work.
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Abbreviations

The following abbreviations are used in this manuscript:

BESS Battery energy storage system
HyF Hybrid farm
EMS Energy management system
DOD Depth of discharge
SOC State of charge
SOH State of Health
NPV Net present value
EOL End of life
MILP Mixed-integer linear program
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Abstract: The state-of-charge (SOC) estimation accuracy is closely associated with the estimation
method and the battery parameter identification performance. The battery parameter identification
method based on forgetting factor recursive least squares (FFRLS) has the advantages of high
parameter identification accuracy and fast dynamic response speed. On this basis, the performance of
two SOC estimation methods, the extended Kalman filter (EKF) and adaptive extended Kalman filter
(AEKF) are compared and studied. The results show that AEKF has better steady-state and dynamic
SOC estimation performance, but the estimation accuracy and dynamic response performance are still
not objective. To further improve the performance of SOC estimation, a joint SOC estimation method
based on FFRLS-AEKF is proposed, and the SOC estimation experimental results with FFRLS-AEKF
and AEKF are conducted. The experimental results show that the proposed joint SOC estimation
method based on FFRLS-AEKF has a better steady-state and dynamic performance of SOC estimation.
The maximum absolute error of the proposed algorithm is 4.97%. As the battery working time
increases, the SOC estimation accuracy continues to converge to the true value, and the average
absolute error is reduced to 2.5%. The proposed method and theoretical analysis are proven to be
correct and feasible.

Keywords: LiFePO4 battery; high precision; FFRLS; AEKF; SOC estimation

1. Introduction

The LiFePO4 battery has advantages such as good safety, long service life, and high
power density, and so on [1,2], which is widely used in electric vehicles and energy storage
systems. To prevent battery failures such as overcharging and over-discharging, it is
necessary to monitor the battery operating status in real time, especially its state of charge
(SOC).

The methods of accurate SOC estimation can generally be categorized into the fol-
lowing types: open-circuit voltage, ampere-hour integral-based estimation method, data-
driven-based estimation method, and filtering algorithms based on equivalent circuit
models [3–5]. There is a monotonic one-to-one correspondence between the open-circuit
voltage and the SOC value of the battery. The corresponding table of open-circuit voltage
and SOC can be established, and the SOC value can be determined by looking up the
table [6]. However, this method requires a long time after the battery is charged and
discharged before measuring the open-circuit voltage. Reference [7] proposed a fast open-
circuit voltage prediction method. The battery only needs to be placed within 15 min to
accurately predict the open-circuit voltage. However, the calculation process is complex,
and the requirements for the processor are high. The ampere-hour integral method tracks
the SOC by the change in the current integral value. The measurement error will accumu-
late in the integral, resulting in a large error of SOC. Reference [8] analyzed the error sources
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of the ampere-hour analysis method and proposed a method to reduce the cumulative
error of time and the proportional error of the SOC. However, it is more dependent on the
current accuracy, and the accuracy of the current sensor is higher.

If the data-driven algorithm is trained properly, it can predict the SOC of any type of
battery without knowing its inherent characteristics in advance. Reference [9] proposed a
method of predicting SOC via artificial neural network machine learning. The root-mean-
squared error (RMSE) of the LiFePO4 battery used in this paper is 0.33% during the test
cycle. The author of Reference [10] proposed a recurrent neural network (RNN) with long
short-term memory (LSTM) to accurately estimate the SOC of lithium-ion batteries, and
it can achieve high accuracy at temperatures from 10 ◦C to 25 ◦C. Reference [11] used
the support vector machine (SVM) method to estimate the SOC of the battery from the
experimental data set, which has high accuracy. In the method of machine learning or deep
learning, a data-driven algorithm collects terminal voltage, working current, temperature,
and other data in the work of the battery, and it uses neural network and machine learning
to train a large amount of data to obtain the current SOC value. This method needs to collect
a large amount of data for calculation, which requires a powerful processor and is sensitive
to the type of battery. If the internal parameters of the battery change, the data-driven
model cannot follow the internal changes well, resulting in a larger SOC estimation error.

The filtering algorithms based on equivalent circuit models mainly use derivative algo-
rithms of Kalman filtering (KF) and particle filtering algorithms for SOC estimation [12–17].
As the most popular model-based method, the KF-based algorithm has enhanced robust-
ness to measurement and process noise and has a high estimation accuracy [18]. Based on
the extended Kalman filter (EKF) algorithm, an adaptive dual EKF algorithm is proposed
in Ref. [12]; the EKF algorithm is used to improve the nonlinear battery model for SOC
estimation in Refs. [17,19] for the LiFePO4 battery. A strong tracking volume EKF algorithm
(STEKF) is proposed in Ref. [20] to provide accurate SOC prediction and a faster computing
time. A multi-rate strong tracking EKF algorithm (MRSTEKF) is proposed by introducing
multi-rate control strategy and enhancement technology in Ref. [21], and the SOC tracking
stability and estimation accuracy is improved from 55.34% and 49.51% with STEKF to
52.66% and 33.88% with MRSTEKF, respectively. An online adaptive EKF algorithm based
on the Davidson model is used to estimate SOC [22], and the SOC estimation error can be
reduced to 2%. The sigma points Kalman filter (SPKF) is another nonlinear system filtering
algorithm that can be used to estimate SOC, which uses numerical approximations instead
of analytical approximations of EKF. A joint battery model and SOC estimation algorithm
based on SPKF is proposed in Ref. [23], which has the same computational complexity as
EKF but has higher accuracy. In Ref. [24], a combination of the volumetric Kalman filtering
algorithm and the forgetting factor recursive least squares (FFRLS) algorithm is used to
estimate SOC, and the maximum estimation error of SOC under high-rate pulses is reduced
to be less than 1%. On the other hand, the method of approximating a probability density
function based on a particle filter is used to estimate the SOC. In Ref. [25], a volumetric
particle filter for accurate SOC estimation is proposed. In Ref. [26], dual-scale, dual-particle,
and dual-scale adaptive particle filters for SOC estimation are proposed. However, com-
pared with SOC estimation algorithms based on the Kalman filter, the SOC estimation
algorithms based on the particle filter have a larger computational burden [27]. In Ref. [28],
an analytical mathematical formulation of storage and its SOC is presented. In Ref. [29], a
power allocation strategy based on cluster switching to relieve the stated problem in two
levels is proposed, which is used to eliminate the imbalanced SOC and decrease battery
energy loss. To address the power allocation challenges, a novel optimized state-of-charge
(SOC) feedback-based energy management strategy in Ref. [30] is proposed for HESS in
IPS to restrain the DC bus voltage fluctuation in this paper.

In this paper, a FFRLS-AEKF joint estimation algorithm based on time-varying param-
eter model is proposed, which considers the characteristics that the FFRLS algorithm can
update the battery parameters in real time and the AEKF algorithm can correct the initial
value error of SOC and follows the parameters of the battery. Firstly, the working principle
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of FFRLS for battery parameter identification is analyzed. Secondly, the second-order
equivalent circuit state discretization equation based on the AEKF algorithm is established,
and the steps of the battery SOC estimation method based on AEKF are discussed. Thirdly,
a joint SOC estimation method based on FFRLS-AEKF is proposed. Fourthly, the SOC
estimation performance of three methods as EKF, AEKF, and FFRLS-AEKF is compared
by experiments. The experimental results show that the FFRLS-AEKF algorithm can have
a higher SOC estimation and faster accuracy convergence speed. Finally, the thesis is
summarized.

2. The Basic Principle of Parameter Identification Based on the FFRLS

2.1. Mathematical Modeling of a Second-Order RC Circuit

The second-order RC equivalent circuit model of the LiFePO4 battery is shown in
Figure 1. The two RC circuits, respectively, describe the electrochemical polarization pro-
cess with a small time constant and the concentration polarization process with a large
time constant. Among them, UOC is the open-circuit voltage of the battery, R0 is the in-
ternal resistance, and Rp1 and Cp1 are the electrochemical polarization internal resistance
and electrochemical polarization capacitance, respectively. Rp2 and Cp2 are the concentra-
tion difference polarization internal resistance and concentration difference polarization
capacitance, respectively. UL and IL are load voltage and load current, respectively.

UOC

R0

RP1

CP1

RP2

CP2

+

UL

IL

Figure 1. Second-order RC model.

According to Figure 1, the state space equation expression of the second-order RC
model circuit can be listed as follows:( dUp1

dt
dUp2

dt

)
=

(
− 1

Rp1Cp1

0

0
− 1

Rp2Cp2

)(
Up1
Up2

)
+

( 1
Cp1

1
Cp2

)
IL

UOC = Up1 + Up2 + R0 IL + UL

(1)

where
dUp1

dt and
dUp2

dt represent the electrochemical polarization voltage and the concentra-
tion difference polarization voltage, respectively.

2.2. The Basic Principle of the FFRLS

The traditional recursive least squares (RLS) method is widely used in the field of
system identification. For linear systems, its mathematical description can be expressed as
follows:

Y(k) = ϕ(k)θ(k)T + e(k)
ϕ(k) = [−Y(k − 1) · · · − Y(k − n) u(k) · · · u(k − n)]

(2)

where Y(k) is the output signal of the system at k time, u(k) is the input signal of the system
at k time, θ(k) represents the parameter vector to be estimated, ϕ(k) is the input matrix of
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the system at time k, n is the parameter to be estimated, and e(k) is the noise of the system.
The recursive formula of the FFRLS method is as follows:

θ̂(k + 1) = θ̂(k) + K(k + 1)[Y(k + 1)− ϕT(k + 1)θ(k)]
K(k + 1) = P(k + 1)ϕ(k + 1)

P(k + 1) = P(k)− P(k)ϕ(k+1)ϕT(k+1)
1+ϕT(k+1)P(k)ϕ(k+1)

(3)

In Equation (3), P(k) is the covariance matrix, and K(k) is the gain matrix. During the
recursive process, RLS uses the difference between the estimated value and the measured
value of the system output, as well as the gain matrix K(k), to make adjustments to the
parameter vector θ̂(k). During initialization, the initial value of θ̂(k) and K(k) can be any
value, P(0) = αI, α is as large as possible a constant, and I is the identity matrix.

To reduce the influence of past data and give greater weight to new data, a forgetting
factor is introduced by setting it to λ(0 < λ < 1), leading to the development of FFRLS [31,32].
Equation (3) is modified as follows:

θ̂(k + 1) = θ̂(k) + K(k + 1)[y(k + 1)− ϕT(k + 1)θ̂(k)]
K(k + 1) = P(k)ϕ(k+1)

λ+ϕT(k+1)P(k)ϕ(k+1)
P(k + 1) = 1

λ [1 − K(k + 1)ϕT(k + 1)]P(k)
(4)

Equation (4) is a recursive formula based on the forgetting factor recursive least
squares method, where the forgetting factor λ is generally taken between 0.95 and 1. The
larger the value of λ, the smaller the weight of new data. When λ = 1, it degenerates into
the ordinary RLS method.

2.3. Online Identification of Parameters for a Second-Order RC Circuit

From Figure 1, the KVL (Kirchhoff’s voltage law) equation of the circuit can be ob-
tained:

UOC = Up1 + Up2 + R0 IL + UL (5)

According to Equation (1), taking the Laplace transform on both sides:

UOC(s) = (
Rp1

Rp1Cp1s + 1
+

Rp2

Rp2Cp2s + 1
+ R0)I(s) + UL(s) (6)

Let the time constants be τp1 = Rp1Cp1 and τp2 = Rp2Cp2, and let a = τp1τp2, b =
τp1 + τp2, c = Rp1 + Rp2 + R0; then, Equation (6) can be simplified as:

aUOCs2 + bUOCs + UOC = aR0 I2
s + dIs + cI + aU2

s + UL (7)

Equation (8) can be obtained via discretion using Equation (7) as follows:

U(k) =
−bT − 2a

T2 + bT + a
U(k− 1) +

a
T2 + bT + a

U(k− 2) +
cT2 + dT + aR0

T2 + bT + a
I(k) +

−dT − 2aR0

T2 + bT + a
I(k− 1) +

aR0

T2 + bT + a
I (8)

After simplification, the expression (8) becomes:

U(k) = k1U(k − 1) + k2U(k − 2) + k3 I(k) + k4 I(k − 1) + k5 I(k − 2) (9)

Substituting Equation (9) into FFRLS, the value of parameter θ(k) = (k1, k2, k3, k4, k5)
can be calculated, and then the circuit model parameter R0, Rp1, Rp2, Cp1, Cp2 from the
identification results can be deduced as follows:

τp1 = T
2(k1+k2+1) [

√
k2

1 − 4k2 − k1 − 2k2]

τp2 = − T
2(k1+k2+1) [

√
k2

1 − 4k2 + k1 + 2k2]
(10)
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Combining Equations (4), (8) and (10), Equation (11) can be obtained as follows:

R0 = k5
k2

Rp1 =
τp1

k3+k4+k5
k1+k2+1 +τp2R0+

T(k4+2k5)
k1+k2+1

τp1−τp2

Rp2 = k3+k4+k5
k1+k2+1 − Rp1 − R0

Cp1 =
τp1
Rp1

Cp2 =
τp2
Rp2

(11)

3. SOC Estimation Method Based on AEKF

3.1. Adaptive Extended Kalman Filter State Equation

The Kalman filter algorithm applies to linear systems. If it is used in a nonlinear
system, the Taylor expansion formula needs to be used to locally approximate the nonlinear
state equation as a linear equation. The method used for nonlinear systems is called the
extended Kalman filter algorithm. Nonlinear systems can be represented by Formula (12):{

xk+1 = f (xk, uk) + wk
yk = g(xk, uk) + vk

(12)

where xk is the state variable, yk is the observation variable, f (xk, uk) is the nonlinear state
function, g(xk, uk) is the nonlinear observation function, and wk and vk are gaussian white
noise with zero means and covariances of Qk and Rk, respectively. The EKF algorithm takes
advantage of the local linearity property of nonlinear functions by locally linearizing both
nonlinear functions. As described in the previous section, x̂k/k this is the optimal estimated
value of the state variable at k time. By performing a first-order Taylor expansion of the
nonlinear state function f (xk, uk) around x̂k/k, Equation (13) can be obtained as follows:

f (xk, uk) = f (x̂k/k, uk) +
∂ f
∂xk

∣∣∣xk=x̂k/k (xk − x̂k/k) + o(xk − x̂k/k) (13)

In Equation (13), ignoring the high-order term o(xk − x̂k/k) and letting ∂ f
∂xk

∣∣∣xk=x̂k/k = Fk,
Equation (2) can be simplified as follows:

xk+1 = f (x̂k/k, uk) + Fk(xk − x̂k/k) + wk (14)

Expanding the nonlinear observation function g(xk, uk) around the prior state estimate
x̂k/k−1 at k time by a first-order Taylor series, Equation (15) can be obtained as follows:

g(xk, uk) = g(x̂k/k−1, uk) +
∂g
∂xk

∣∣∣xk=x̂k/k−1 (xk − x̂k/k−1) + o(xk − x̂k/k−1) (15)

Ignoring higher-order terms in o(xk − x̂k/k−1) and setting ∂g
∂xk

∣∣∣xk=x̂k/k−1 = Gk, Equa-
tion (14) can be simplified as follows:

yk = g(x̂k/k−1, uk) + Gk(xk − x̂k/k−1) + vk (16)

If both the nonlinear state equation and the observation equation are linear, then
Equation (11) can be rewritten as follows:{

xk+1 = Fkxk + f (x̂k/k, uk)− Fkx̂k/k + wk
yk = Gkxk + g(x̂k/k−1, uk)− Gkx̂k/k−1 + vk

(17)
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Here, matrices Fk and Gk can be obtained by calculating the Jacobian matrices of f and
g. If the state variable x is n-dimensional, i.e., x = [x1, x2, . . ., xn]T, then the solution for
matrices Fk and Gk is as follows.

Fk =
∂ f
∂x

=

⎡⎢⎢⎢⎢⎢⎣
∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

· · · ∂ f2
∂xn

...
... · · · ...

∂ fn
∂x1

∂ fn
∂x2

· · · ∂ fn
∂xn

⎤⎥⎥⎥⎥⎥⎦ (18)

Gk =
∂g
∂x

=

⎡⎢⎢⎢⎢⎢⎣
∂g1
∂x1

∂g1
∂x2

· · · ∂g1
∂xn

∂g2
∂x1

∂g2
∂x2

· · · ∂g2
∂xn

...
... · · · ...

∂gn
∂x1

∂gn
∂x2

· · · ∂gn
∂xn

⎤⎥⎥⎥⎥⎥⎦ (19)

The EKF algorithm requires advanced calibration of the covariance matrices for obser-
vation noise and process noise, which is often calculated by experience, and the covariance
matrices Qk and Rk are fixed values. However, in high-rate conditions of lithium iron
phosphate batteries, the noise often changes due to the internal chemical reaction and
resulting temperature variation and is no longer a fixed value. To improve the accuracy
of SOC estimation, the AEKF algorithm is introduced. Based on the EKF algorithm, the
AEKF adds the Sage–Husa adaptive filtering algorithm, enabling the observation noise
covariance matrix and the process noise covariance matrix in the EKF algorithm to be
adaptively updated, thus improving the accuracy of the SOC estimation. The steps of the
AEKF algorithm are listed as follows:

Step 1. Initialization
Set x̂0 = x0, y0, P0, Q0, R0 when k = 0, where x̂0 is the initial estimate of the state

variables, y0 is the initial observation value, P0 is the initial value of the error covariance
matrix, and Q0 and R0 are the initial values of the process covariance matrix and observation
noise covariance matrix, respectively.

Step 2. State prediction

x̂k/k−1 = f
(
x̂k−1/k−1, uk−1

)
(20)

Step 3. Prediction of error covariance

Pk/k−1 = Fk−1Pk−1/k−1Fk−1
T + Qk−1 (21)

Step 4. Calculate the Kalman gain

Kk = Pk/k−1GT
k

[
GkPk/k−1GT

k + Rk−1

]−1
(22)

Step 5. State estimation

x̂k/k = x̂k/k−1 + Kk[yk − g(x̂k/k−1, uk)] (23)

Step 6. Update the noise covariance matrix

ek = yk − g(x̂k/k−1, uk) (24)

{
Ek = E

(
ekeT

k
)

d = eT
k E−1

k ek
(25)
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In Equations (24) and (25), ek is called the innovation matrix, and d is the estimated
residual value expressed using the adaptive window factor in the windowing function,
which is used to calculate the observation dimension M. According to the principle of the
windowing function, if M is small, the computational burden of the adaptive algorithm is
reduced, but the accuracy of the algorithm is lower. Conversely, if M is large, the accuracy
of the algorithm is significantly improved, but the computational burden is too high, which
is not suitable for recursive estimation algorithms. Therefore, M needs to be adjusted
according to the convergence time, as shown in Equation (26).⎧⎨⎩

M = 1, d = 1
M = k, d = 0
M = k × ηd, 0 < d < 1

(26)

In Equation (26), η is the window convergence rate, which has a range of 0 < η < 1.
After calculating M, the noise covariance matrix can be updated as shown in Equations (27)
and (28):

Hk =
1
M

i=k

∑
i=k−M+1

ekeT
k (27)

{
Rk = Hk − GkPk/k−1GT

k
Qk = Kk HkKT

k
(28)

Step 7. Estimation of error covariance.

Pk/k = (I − KkGk)Pk/k−1 (29)

Subsequently, repeat step 2~step 7 for recursive estimation to obtain the optimal
estimate of the state variables.

3.2. Discretization of State Space Equation

Taking the operating current IL as the input variable, battery SOC, battery electrochem-
ical polarization voltage Up1, and concentration difference polarization voltage Up2 as state
variables, and UOC as the observation variable, Equation (30) can be obtained by combining
Equations (8) and (9):

⎛⎜⎝SOC(t)
dUp1(t)

dt
dUp2(t)

dt

⎞⎟⎠ =

⎛⎜⎝1 0 0
0 − 1

Rp1(t)Cp1(t)
0

0 0 − 1
Rp2(t)Cp2(t)

⎞⎟⎠
⎛⎝SOCt0

Up1(t)
Up2(t)

⎞⎠+

⎛⎜⎜⎜⎝
−
∫ t

t0
ηdt

Q0
1

Cp1(t)
1

Cp2(t)

⎞⎟⎟⎟⎠I(t) (30)

UL(t) = UOC[SOC(t)]− I(t)R0(t)− Up1(t)− Up2(t) (31)

Equations (30) and (31) are the continuous state equation and continuous observation
equation, respectively. Here, UOC[SOC(t)] is the open-circuit voltage at time t obtained
using the OCV-SOC relation function.

Setting the Coulomb efficiency η to be 1 and defining the sampling period as T,
Equations (30) and (31) are discretized as follows:

⎛⎝SOC(k + 1)
Up1(k + 1)
Up2(k + 1)

⎞⎠ =

⎛⎜⎜⎝
1 0 0

0 e
−T

τp1(k) 0

0 0 e
−T

τp2(k)

⎞⎟⎟⎠
⎛⎝SOC(k)

Up1(k)
Up2(k)

⎞⎠+

⎛⎜⎜⎝
− T

Q0

Rp1(k)(1 − e
−T

τp1(k) )

Rp2(k)(1 − e
−T

τp2(k) )

⎞⎟⎟⎠I(k) (32)

UL(k) = UOC[SOC(k)]− Up1(k)− Up2(k)− I(k)R0(k) (33)
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The vector composed of SOC(k), Up1(k), and Up2(k) in the above equation is the state
vector xk of the system at k time in Equation (11), while UL(k) is the observation vector yk of
the system at k time. Equation (32) is a linear equation, while the nonlinearity of the battery
system state space equation is reflected in the UOC[SOC(k)] part of Equation (33). Therefore,
the Kalman filtering algorithm for SOC estimation is carried out using both EKF and AEKF,
and the results are compared with the coulomb counting method for SOC estimation.

3.3. SOC Estimation Process for LiFePO4 Battery

Step 1. Data input. Input the test data of the LiFePO4 battery, including the working
current sampling data IL(k), terminal voltage UL(k), battery capacity of 13 Ah, parameter
model identification results, and sampling period T = 0.1 s.

Step 2. Algorithm initialization. Initialize the battery state vector x0 = [SOC(0), 0, 0],

estimation error covariance matrix P0 =

⎡⎣10−6 0 0
0 10−6 0
0 0 10−6

⎤⎦, process noise covariance

matrix Q0 =

⎡⎣10−6 0 0
0 10−6 0
0 0 10−6

⎤⎦, and observation noise covariance matrix R0 = 0.05.

Step 3. Calculate the prior estimate of the state variable and the predicted covari-
ance matrix. Firstly, according to Equation (10), calculate the state transition matrix Ak =

diag[1, e
−T

τp1(k) , e
−T

τp2(k) ] and thesysteminputmatrix Bk = [− T
Q0

, Rp1(1 − e
−T

τp1(k) ), Rp2(1 − e
−T

τp2(k) )]
T

using the model parameters at time k. Secondly, substitute the state vector xk = [SOC(k),
Up1(k), Up2(k)] and the operating current I(k) at k time into Equation (20) to calculate the
prior estimate value x̂k+1/k of the state variable. Finally, calculate the predicted error
covariance matrix Pk+1/k according to Equation (21).

Step 4. Calculating the Kalman gain matrix. Firstly, the nonlinear observation equation
is linearized based on Equation (8), and the Jacobian matrix Gk of the observation equation
is calculated, as given in equation (33). Secondly, the Jacobian matrix Gk, the predicted
error covariance matrix Pk+1/k, and the observation noise matrix Rk are substituted into
Equation (22) to calculate the Kalman gain matrix Kk.

Gk = [
∂UOC[SOC]− IR0

∂SOC
|k ,

∂ − Up1

Up1
|k ,

∂ − Up2

Up2
|k ] = [

∂UOC[SOC]
∂SOC

|k ,−1,−1] (34)

Step 5. Calculating the optimal estimated value of the state vector and updating the
error covariance matrix. Based on Equation (34), the observation value, i.e., the estimated
value UL(k) of the battery terminal voltage at k time, is calculated. Then, Equation (23) is used
to calculate the optimal estimated value x̂k+1/k+1 = [SOC(k + 1), Up1(k + 1), Up2(k + 1)]T

of the state vector, where SOC(k + 1) is the SOC value estimated by AEKF at (k + 1) time.
Finally, Equation (13) is used to update the error covariance matrix Pk+1/k.

Step 6. Updating the noise covariance matrix. The process noise covariance matrix Qk
and the observation noise covariance matrix R(k) are calculated based on Equations (24)
and (25). Steps 2 to 6 are repeated recursively to estimate the SOC value at each moment.

3.4. Comparison and Analysis of SOC Estimation Results between EKF and AEKF Algorithms

To compare and analyze the performance of EKF and AEKF algorithms for SOC
estimation of lithium iron phosphate batteries, a comparative study is conducted on SOC
estimation based on the second-order equivalent circuit parameter model. Through battery
charge–discharge testing, the corresponding relationship between battery OCV and SOC
can be obtained through fitting. A 13 Ah-rated capacity and 3.2 V-rated voltage LiFePO4
battery is selected for HPPC testing to obtain its SOC and OCV data. The testing procedure
involved discharging at 1 C for 10 s, resting for 40 s, and then charging at 0.75 C for 10 s.
After resting for 45 min for every 10% drop in SOC, the OCV is measured, followed by
another cycle of testing until the SOC of the battery reached 0.06, which is considered as
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the end of the discharge. Under the global discharge, the battery terminal voltage UL, the
output current IL, and the real values of SOC are shown in Figures 2 and 3, respectively.

Figure 2. The waveform of terminal voltage UL and the output current IL.

Figure 3. The waveform of real values of SOC.

Figures 4 and 5, respectively, show the SOC estimation results and estimation errors
under the EKF and AEKF algorithms. From Figures 4 and 5, it can be seen that compared
with the EKF algorithm, the AEKF algorithm can converge to the vicinity of the true value
more quickly. The convergence time of the EKF algorithm and the AEKF algorithm is
532.8 s and 124.5 s, respectively. The SOC estimation accuracy of the AEKF algorithm is
higher than that of the EKF algorithm. Experimental results show that the AEKF algorithm
has a better SOC estimation convergence speed and accuracy.

Time/s

SO
C

/%

EKF estimate value
AEKF estimate value
True value

Figure 4. The SOC estimating results with EKF and AEKF.
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Time

EKF error

AEKF error
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C

Figure 5. The SOC estimating errors with EKF and AEKF.

The specific statistical characteristics of SOC estimation errors under EKF and AEKF
algorithms are shown in Table 1 (absolute error, AE; relative error, RE; mean absolute error,
MAE; mean relative error, MRE), and the relevant features are calculated based on the
converged results. From Table 1, it can be seen that the SOC estimation accuracy of the
AEKF algorithm is better than that of the EKF algorithm, with a maximum absolute error
(MaxAE) of 11.9% and a maximum relative error (MaxRE) of 152.6%, which occurs at the
end of discharge. And the MAE of the SOC estimation is 8.8%, and the MRE of the SOC
estimation is 25.4% with the AEKF algorithm, which is lower than that with the EKF. It
can also be seen from Table 1 that the errors of both EKF and AEKF algorithms gradually
increase. Therefore, the adaptive noise covariance matrix updating method of the AEKF
algorithm can reduce SOC estimation errors. However, the SOC estimation precision is still
large, which cannot meet the actual use needs of the battery energy management system.
And, further optimization of the SOC estimation algorithm is needed.

Table 1. SOC estimation error under the EKF algorithm and AEKF algorithm.

Estimation Algorithm MaxAE MaxRE MAE MRE

EKF 14.1% 180.3% 10.9% 31.2%
AEKF 11.9% 152.6% 8.8% 25.4%

4. SOC Estimation Method Based on FFRLS-AFKF

The FFRLS-AEKF joint estimation algorithm uses the SOC value estimated using the
AEKF algorithm to replace the estimated value of the ampere-hour integration method in
the FFRLS algorithm to improve the battery equivalent circuit parameters identification
accuracy. The identified model parameters are substituted into the AEKF algorithm to
recursively estimate the SOC and improve the accuracy of the AEKF algorithm. Then,
the estimated SOC value is fed back to FFRLS, and through positive feedback, the SOC
estimation accuracy is finally improved. The specific calculation process is shown in
Figure 6.

Step 1. Initialize the FFRLS algorithm and the AEKF algorithm, where SOC(0) is
obtained by the open-circuit voltage method.

Step 2. Obtain the model parameters at k time through the FFRLS algorithm, substitute
them into the AEKF algorithm, construct the corresponding transfer matrix and input
matrix, and obtain the SOC at (k + 1) time.

Step 3. Substitute the SOC at (k + 1) time into the OCV-SOC relationship formula, and
then use the FFRLS algorithm to obtain the model parameters at (k + 1) time.

Step 4. Update the transfer matrix and input matrix in the AEKF algorithm to obtain
the SOC of the next time step; repeat steps 2 to step 4 and recursively obtain the SOC at
each time step. The specific calculation process is shown in the diagram.
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Figure 6. FFRLS + AEKF processes.

5. Experimental Results

The experimental parameters setting is the same as in Section 3.2. The structure of
the battery pack used in the experiment is first parallel and then series. The batteries
used are all new, and the working temperature is 25 ◦C. According to the method in
Section 2.3, the battery parameters R0, Rp1, Cp1, Rp2, and Cp2 can be identified at 25 ◦C, and
the identification results are in Table 2. Four single cells form a parallel unit, and ten parallel
units, a total of forty battery cells form a series battery pack. The parallel unit is composed
of ten parallel units, and a total of forty battery cells are composed of series battery packs.
The model of the battery is IFP9380, the rated capacity is 15 Ah, the nominal voltage is 3.2 V,
the operating voltage range is 2.0–3.65 V, and the maximum discharge current is 2.00 A.
The main control chip of the switching circuit selects STM32F103VB8T6 battery voltage
measurement using the battery management chip LTC6811. The measurement error is less
than 1 mV, and the sampling frequency is greater than 3 kHz. The sampling of the circuit
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current uses a shunt, and the sampling error is less than 0.1%. The experimental platform
is shown in Figure 7.

Table 2. The identification results.

R0/Ω Rp1/Ω Cp1/F Rp2/Ω Cp2/F

0.0005206917 0.0001007158 1256.806552 0.0024315296 26355.45136

 
(a) 

 
(b) 

 
(c) 

Figure 7. Experimental platform of battery charge and discharge. (a) Control board physical diagram.
(b) DC power supply charging. (c) Battery pack interface diagram.

Figures 8 and 9 show the SOC estimation results and errors using the AEKF and FFRLS-
AEKF algorithms, respectively. From Figures 6 and 7, it can be seen that the estimation
results with the FFRLS-AEKF algorithm are closer to the true values, and the SOC estimation

70



Electronics 2023, 12, 3670

errors with the FFRLS-AEKF algorithm are smaller than with the AEKF algorithm. The
estimation errors of the AEKF and FFRLS-AEKF algorithms are shown in Table 3. It can
be seen from Table 3 that the maximum absolute error of the joint estimation algorithm
is 4.97%, and the error is controlled within 5%. As the battery operating time increases,
the SOC estimation accuracy continuously converges to the vicinity of the true value, with
the average absolute error decreasing to 2.5%. The experimental results show that the
FFRLS-AEKF joint estimation algorithm has good convergence performance and high
estimation accuracy, verifying that the proposed method is correct and feasible. Therefore,
the SOC estimation performances with EKF, AEKF, and FFRLS-AEKF are shown in Table 4.

Time/s

SO
C

/%

FFRLS-AEKF 
estimate value
AEKF estimation 
value of variable 
parameter model
True value

Figure 8. The SOC estimating results of the FFRLS-AEKF and AEKF.

Figure 9. The SOC estimating errors of the FFRLS-AEKF and AEKF.

Table 3. Compared FFRLS-AEKF and AEKF algorithm of SOC errors.

Estimation Algorithm MaxAE MaxRE MAE MRE

AEKF 6.6% 15.7% 4.0% 8.1%
FFRLS-AEKF 4.97% 6.8% 2.5% 4.3%

Table 4. The SOC estimation performances with EKF, AEKF, and FFRLS-AEKF.

Estimation Algorithm EKF AEKF FFRLS-AEKF

Steady-precision low lower lowest
Convergence speed fast faster fastest

6. Conclusions

The working principle of FFRLS for battery parameter identification is analyzed. The
second-order equivalent circuit state discretization equation based on the AEKF algorithm
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is established, and the steps of the battery SOC estimation method based on AEKF are
discussed and simulated. The simulation results show that it has the disadvantages of low
steady-state accuracy and slow convergence rate. To improve SOC estimation precision,
combining the advantages of high precision and adaptability of FFRLS and AEKF, a joint
SOC estimation method based on FFRLS-AEKF is proposed and experimented with. The
experimental results show that the FFRLS-AEKF algorithm can have higher SOC estimation
and faster accuracy convergence speed, verifying that the proposed method is correct and
feasible.

In the actual use of the battery pack, it is often necessary to combine the battery cells
in series and parallel to provide sufficient capacity and voltage level. However, in the
process of series and parallel grouping of the battery pack, there will be problems such
as more complex model parameters and difficult data sampling. Therefore, the next step
in this research field needs to consider the influence of physical parameters such as the
small number of sampling points, incomplete sampling data, and contact resistance on
the accuracy of the battery model. The establishment of a perfect equivalent model of the
battery pack is the focus of the next step in this research.
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Abstract: Because the new energy is intermittent and uncertain, it has an influence on the system’s
output power stability. A hydrogen energy storage system is added to the system to create a wind,
light, and hydrogen integrated energy system, which increases the utilization rate of renewable
energy while encouraging the consumption of renewable energy and lowering the rate of abandoning
wind and light. Considering the system’s comprehensive operation cost economy, power fluctuation,
and power shortage as the goal, considering the relationship between power generation and load,
assigning charging and discharging commands to storage batteries and hydrogen energy storage,
and constructing a model for optimal capacity allocation of wind–hydrogen microgrid system.
The optimal configuration model of the wind, solar, and hydrogen microgrid system capacity is
constructed. A particle swarm optimization with dynamic adjustment of inertial weight (IDW-PSO)
is proposed to solve the optimal allocation scheme of the model in order to achieve the optimal
allocation of energy storage capacity in a wind–hydrogen storage microgrid. Finally, a microgrid
system in Beijing is taken as an example for simulation and solution, and the results demonstrate that
the proposed approach has the characteristics to optimize the economy and improve the capacity of
renewable energy consumption, realize the inhibition of the fluctuations of power, reduce system
power shortage, and accelerate the convergence speed.

Keywords: independent microgrid system; wind and solar complementary power generation;
hydrogen energy storage; IDW-PSO; capacity configuration

1. Introduction

In recent years, wind and photovoltaic power generation have been essential for
new power systems mainly based on new energy sources. With the promotion of carbon
neutrality and the increasingly prominent problem of energy shortage, the large-scale
application of new energy generation has become the trend of power system development.
Because wind and sunlight are the primary energy sources of new energy generation, they
are randomly influenced by the environment, temperature, geographical location, and
other aspects, quickly leading to the imbalance of power conversion and the instability
of power generation time, affecting the system’s stability. Given the intermittent and
uncertain influence of new energy, with the popularization of new energy, the proportion
is increasing, which will significantly impact the stability, safety, and system operating rate
for new energy sources [1]. The application of energy storage technology in new energy
systems helps to improve the utilization rate of power generation in new energy power
systems, keep the system stable in power supply during peak power generation and low
power generation due to external influence, and improve the utilization efficiency of power
generation systems [2]. Aiming at the intermittency and instability nature of new energy
power generation, the energy storage is utilized in order to store and release the electric
energy, and power supplementation is carried out so as to improve the energy utilization
rate and the stability of the power supply of the power system.

Batteries 2023, 9, 410. https://doi.org/10.3390/batteries9080410 https://www.mdpi.com/journal/batteries
75



Batteries 2023, 9, 410

Because of the uncertainty and fluctuation of scenery, large-scale access to clean
energy will also contain more uncertain factors, which will cause the phenomenon of
abandoning wind and light and affect power stability [3]. The incorporation of hydrogen
energy storage in the system has the advantages of being pollution-free, sustainable, and
energy-saving, and is a green and clean energy storage system. The use of a hydrogen
energy storage system allows for the storage of excess electricity from wind and solar
energy abandonment, realizing the use of clean energy in the form of integrated energy of
electricity–hydrogen–electricity, and improving the efficiency of the available renewable
energy sources. Hydrogen energy storage has high energy density, a low cost of running
and sustaining compared with other energy storage, long-term storage and non-pollution,
applicable to both instantaneous power supply and long time power supply, applicable
to different situations. Compared with the traditional battery, the fuel cell in hydrogen
energy storage can be between the hydrogen chemical energy converted to electrical energy
without the mutual conversion of other energy forms, which significantly reduces the
loss and increases the power generation efficiency, and has the advantage of high energy
conversion, environmental protection and the like.

With the gradual increase in the occupation of new energy sources, the percentage
of wind and solar farms has been increasing, and consequently the research on power
fluctuation problems has been gradually deepened. There have been many studies at home
and abroad on the problem of optimal allocation of integrated energy system capacity.
Literature [4] uses variational mode decomposition (VMD) to analyze the unbalanced
power in a wind–solar hybrid microgrid. It establishes a model for the optimal allocation
of hybrid energy capacity for the storage of batteries and supercapacitors. Literature [5] es-
tablished a capacity optimization allocation method to reduce grid-connected photovoltaic
power for photovoltaic power plants as well as hybrid energy storage systems. According
to [6], the megawatt isolated microgrid consisting of photovoltaic/wind turbines, energy
storage, diesel, and gas turbines is optimized in capacity allocation to solve electricity
supply problems for powerless remote locations. Literature [7] proposes a quantitative
optimal configuration method for a wind and solar complementary power supply system.
Literature [8] puts forward an optimization strategy of double-layer hybrid energy stor-
age capacity for a distribution grid by accounting for the distribution network loss and
the total cost of the stored capacity system. In literature [9], a configuration model of a
multi-source microgrid is constructed considering three aspects: installation location, unit
arrangement and combination, extraordinary load of electric vehicles, and the dynamic
matching problem between power generation and power consumption is analyzed. In
reference [10], a multi-objective optimal allocation method of energy storage systems is
proposed to deal with the issue of energy storage allocation under one-party investment
and multiple benefits. These studies all show that the adoption with hybrid energy stor-
age is crucial in rational distribution of microgrids, both consider the issues of reducing
power loss and system investment cost or maximum economy, but do not consider the
utilization of clean energy. In literature [11], the coupling of renewable energy power gen-
eration and hydrogen energy storage is shown to be a powerful means of achieving clean
and carbon-neutral energy consumption, which has excellent potential for development.
Literature [12] explains the application value system of hydrogen energy storage in the
“source-network load” of the new power system. Hydrogen energy storage has the advan-
tages of cross-season, cross-regional and large-scale storage. It has a specific rapid response
ability, which has substantial application value in all aspects of the “source-network load”
of new power systems. Literature [13] mainly considers how to construct a multi-energy
combined storage and supply model in the integrated energy system with hydrogen storage
as the conversion hub of multiple energy forms in low carbon parks, so as to achieve the
optimized allocation method with low carbon emission and low cost; literature [14] uses
the hydrogen produced by the hydrogen storage system to work together with a heat
storage system and air source heat pump to reduce the use cost of electricity, heat and cold
energy in the park, and establishes a capacity optimal allocation model taking integrated
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energy cost minimization as the optimization target. The research on hydrogen energy
storage systems mainly focuses on using hydrogen without considering the conversion of
hydrogen energy storage as electric energy. Literature [15] builds a typical wind and solar
hydrogen storage capacity configuration model based on wind energy, solar photovoltaic,
electric energy storage, and hydrogen production equipment, Then establishes a demand
response model of day-ahead segmented electricity price load to reduce the total cost of
running the system. The application of hydrogen energy storage focuses on the recycling
of hydrogen. Increasing hydrogen energy conversion into electric energy is conducive
to improving the rate of abandoning wind and light and transforming into a green and
low-carbon environment [16].

Based on the issues described above, a wind–solar hydrogen storage microgrid system
with a wind turbine, photovoltaic generator, hydrogen storage system, and battery system
as subsystems is constructed in the paper, and the particle swarm algorithm for improving
the dynamic adjustment of inertia weights is applied to the system’s capacity configuration,
and the optimal configuration proposal on system capacity is obtained, which makes the
highest system economy, achieves power stabilization, reduces the rate of abandoning
wind and solar power, as well as the reduction of the system’s shortage of power.

2. Wind–Solar Hydrogen Microgrid System

The distributed new energy system has wind power, photovoltaic, geothermal, tidal,
and other subsystems with random output. The integrated development of a compre-
hensive energy system enhances the combined application of energy [17]. This paper’s
wind, light, and hydrogen microgrid system consists of wind turbines, photovoltaic gener-
ators, hydrogen production units, hydrogen storage units, fuel cells, and other auxiliary
equipment. Hydrogen energy storage is used to realize the interconnection of electricity–
hydrogen–electricity, to suppress the power fluctuation of distributed new power sources,
which can contribute to the sustainability of energy [18]. The electricity–hydrogen system
architecture of the park is schematically displayed in Figure 1. By matching and coupling
various forms of energy storage, the energy utilization rate can be improved, achieving peak
shaving and valley filling, stabilizing power fluctuation, and leading to certain economic
benefits.

Figure 1. Schematic diagram of electric–hydrogen integrated energy structure.

Figure 1 is a schematic structural diagram of an electric–hydrogen system, mainly
consisting of a generation unit, a capacity storage unit and load. The electricity generation
unit comprises of wind power generation and photovoltaic power generation, which takes
renewable energy as the main energy source of the system, while the energy storage unit
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comprises a storage battery and hydrogen storage system, which has a role of balancing
the load of the system, and absorbs excess energy through the energy storage system when
there is sufficient wind and light energy; and supplements it through the energy storage
system when there is insufficient wind and light energy.

2.1. Modeling of Generator Set
2.1.1. Photovoltaic Generation System

Physical photovoltaic (PV) power generation is the direct transformation of solar
energy through PV panels into electrical energy. Photovoltaic power generation is affected
by solar radiation, the radiation angle, sunshine hours, and environmental temperature.
The specific photovoltaic power generation output model is shown in Formula (1) [19]:

Ppv(t) = PpvN fpv
G(t)
Gref

[1 + α(Tc(t)− Tref)] (1)

where: Ppv(t) represents the actual electricity generation power of the photovoltaic panel;
PpvN is the nominal capacity of the photovoltaic panel to generate electricity; f pv is the
operation efficiency of photovoltaic system; G(t) is the actual light intensity at time t; Gref is
the reference standard light intensity; α is the temperature coefficient; Tc(t) is the operating
temperature of the photovoltaic panel at time t; Tref is the reference standard ambient
temperature.

Photovoltaic panel operation temperature transformation is caused by the ambient
temperature, and solar light intensity is caused by many aspects of the influence of the
relationship shown in Formula (2):

TC(t) = T(t) +
Trated
800

G(t) (2)

where: T(t) is the actual ambient temperature; and Trated is the standard reference tempera-
ture of a photovoltaic panel.

2.1.2. Wind Power Generation Model

Wind turbine power output is affected by various aspects such as the speed of wind,
blades, ambient temperature, air pressure, etc. [20]. Wind power generation means to con-
vert the kinetic energy to mechanical energy and utilize a turbine to convert the mechanical
energy into electrical power. The wind speed changes randomly due to external factors,
leading to intermittent and fluctuating wind power generation. The power delivery by
wind turbine is most affected by the wind speed, and approximated relationship with the
wind speed is shown in Formula (3):

Pwt(t) =

⎧⎪⎨⎪⎩
0, v(t) < vin v(t) > vo

Pr
v(t)−vin
vr−vin

, vin ≤ v(t) ≤ vr

Pr, vr < v(t) ≤ vo

(3)

where: Pwt(t) is the active output power of the wind farm in time t, Pr is the rated output
power of the wind turbine, v(t) is the actual wind speed of the wind turbine in time t, vr is
the rated wind speed, vin is the cut-in wind speed, and vo is the cut-out wind speed.

2.2. Modeling of Hydrogen Energy Storage System

The hydrogen energy storage system is an integral part for the energy storage system in
an independent microgrid system. The hydrogen energy storage system mainly comprises
electrolytic cells, fuel cells, and hydrogen storage equipment. Its structural schematic
diagram is shown in Figure 2.
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Figure 2. Structure diagram of hydrogen energy storage system.

2.2.1. Mathematical Modeling of Electrolytic Cell

Electrolyzed water is a widely used primary hydrogen production method in indus-
trial hydrogen production [21]. The electrolyzer electrolyzes water into hydrogen and
oxygen. There are alkaline electrolyzers, proton exchange membrane electrolyzers, and
solid oxide electrolyzers. Compared with other electrolyzers, alkaline electrolyzers have
higher efficiency and the best hydrogen production capacity. The system life is twice as
long as that of proton exchange membrane electrolyzers, and the cold start-up time is
shorter than that of solid oxide electrolyzers. An alkaline electrolyzer is the safest, most
mature, and most widely used. The hydrogen production rate of an alkaline electrolyzer
is [22] ⎧⎨⎩ VH2 = ηF

NC
2F I

ηF = 96.5e(
0.09

I − 75.5
I2 )

(4)

where: VH2 is the hydrogen production rate; ηF is Faraday efficiency; NC is the number of
electrolyzers; F is Faraday constant (C/mol); I is the current in the electrolytic cell.

In practice, the electrolytic cell cannot be electrolyzed entirely, and its conversion
efficiency is represented by

PH2(t) = ηELPe(t) (5)

where: PH2(t) is the power generated by hydrogen production in the electrolytic cell; Pe(t)
is the electricity consumption of the electrolytic cell; and ηEL is the conversion efficiency of
electricity and hydrogen in the electrolyzer.

2.2.2. Mathematical Modeling of Fuel Cell

A mathematical example is provided for the fuel cell:

QH2fc =
NSPfc

Ufc(2F)
(6)

where: QH2fc is the hydrogen consumption of the fuel cell; NS is the number of batteries
connected in series; Pfc is the output power of the fuel cell; Ufc is the battery voltage; and F
is the Faraday constant (C/mol).

2.2.3. Mathematical Modeling of Hydrogen Storage Device

Most hydrogen storage devices use hydrogen storage tanks, which can store the
hydrogen produced by electrolytic cells and provide hydrogen for fuel cells. The hydrogen
storage tank device has the characteristics of low cost, high safety, and fast charging and
discharging speed. A hydrogen storage tank is characterized by a mathematical model:

PaH2 =
RTa

V

∫ t2

t1

(
VH2 − QH2fc

)
dt (7)

where: PaH2 is the pressure of the hydrogen storage tank; R is a gas constant; Ta is the
thermodynamic temperature of the gas; V is the total capacity of the hydrogen storage tank;
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t1 and t2 are the start time for starting hydrogen production and the end time for stopping
hydrogen production, respectively.

2.3. Battery Modeling

A storage battery is a kind of galvanic energy storage, while chemical energy storage
is a relatively stable and high-grade energy storage method. This article selected a lithium
battery as a storage battery, and the running state of the storage system is marked by the
state of charge (SOC) of the lithium battery. When SOC = 1, the battery capacity reaches a
maximum value [23]. The battery output model is

Charging status:

SOC(t) = SOC(t − 1)(1 − σ) + Pc(t)ηc
Δt

Emax
(8)

Discharge state:

SOC(t) = SOC(t − 1)(1 − σ)− Pf (t)
Δt

η f Emax
(9)

where: σ is the charge and discharge rate of the storage battery; Pc and Pf are the charging
and discharging power of the battery in t time; ηc and ηf are charge and discharge efficiency;
and Emax is the maximum capacity of the battery.

3. Capacity Optimal Allocation Model

Based on the microgrid system of wind–solar hydrogen storage, this paper not only
considers the economy of the independent microgrid of wind–solar hydrogen storage;
but also to consider the power fluctuations on the wind generated by the wind and light
abandonment, so as to make the wind utilization rate to reach the highest, and put forward
the corresponding optimization scheme.

3.1. Objective Function

In this paper, the most economical price is used as the objective function in the
independent wind, solar, and hydrogen storage microgrid.

Objective function 1 includes: In the hydrogen-containing composite energy storage
system, investment and recovery costs are considered to achieve the best economic benefits.
In this paper, the objective function of minimizing the integrated operating cost of the
system can be expressed as:

CT is the system’s total operation cost, composed of each piece of equipment’s in-
vestment and operation cost. Each piece of equipment is comprised of wind turbines,
photovoltaics, batteries, and hydrogen storage, and their installation cost, replacement cost,
in addition to operation and maintenance cost together constitute the operating cost of the
investment [24].

CT = min{CIN + CRE + COM} (10)

where: CT is the total operating cost of the system; CIN is the installed cost of the equipment;
CRE is the replacement cost of the equipment; and COM is the operation and maintenance
cost of the equipment.

CIN represents the installed cost for the equipment, which can be expressed as

CIN = QPIN
r(1 + r)m

(1 + r)m − 1
(11)

where: CIN is the installed cost of the equipment; Q is the rated capacity of the equipment;
PIN is the unit installed cost of the equipment; r is the discount rate of equipment; and m is
the service life of the equipment.
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CRE as replacement cost for devices, which can be expressed as

CRE = QPRE
r(1 + r)m

(1 + r)m − 1
(12)

where: CRE is the replacement cost of the equipment; Q is the rated capacity of the equip-
ment; PRE is the unit replacement cost of equipment; r is the discount rate of equipment;
and m is the service life of the equipment.

COM is the operation and maintenance cost for equipment, which can be expressed as

COM = λQP (13)

where: COM is the operation and maintenance cost of the equipment; Q is the rated capacity
of the equipment; P is the unit cost of equipment; and λ is the ratio of the operation and
maintenance cost of each equipment to the total cost of each equipment.

Objective function 2 can restrain the power fluctuation and build an optimal configu-
ration model of a microgrid, including the wind–hydrogen storage as well as the energy
storage system formed by the battery, which can be expressed as follows:

EA = EPV + EW + ELi (14)

where: EA is the sum capacity for energy storage of wind and solar batteries. Because the
battery has the function of charging and discharging, EA has a maximum and minimum
value.

minEA ≤ EA ≤ maxEA (15)

Hydrogen storage system discharge:

EA + EH2 = EL (16)

Charging (hydrogen storage) of hydrogen energy storage system:

EA = EH2 + EL (17)

where: EH2 is the energy storage capacity of the hydrogen energy storage system; and EL is
the total capacity of the load.

Objective function 3 for the wind–solar hydrogen storage-independent microgrid, due
to many external influences, after increasing the energy storage system, cannot completely
guarantee the reliability of the system power supply [25]. The critical index of load shortage
can refer to the power fluctuation problem. When the load is short of electricity, the system
is more stable and reliable, and vice versa. Figure 3 shows the load power shortage
operation flow in the wind–solar hydrogen storage microgrid system. Elps shows a power
shortage of the load, which can be expressed as

fL =
n

∑
k=1

Elps(k)/
n

∑
k=1

EL(k) (18)

When power generation from wind and solar meets the load requirements, when
ΔE > 0, power shortage Elps = 0, and the ΔE is judged, and different charging combination
devices are selected. When ΔE is greater than or equal to the max range between the
battery and hydrogen storage capacity, the maximum value of the battery and hydrogen
storage is used for charging; When ΔE is greater than the maximum range of the battery
capacity, the maximum value of the battery is used to charge, and the remaining electricity
is used to charge the hydrogen storage. When ΔE exceeds the upper range of the hydrogen
storage capacity, the maximum amount in hydrogen storage is used for charging. When ΔE
becomes less than the maximum range of capacity of hydrogen storage, hydrogen storage
is used for charging.
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Figure 3. Operation flow chart of load power shortage.

When the amount of wind–solar power generation satisfies the load requirement, that
is, ΔE < 0, the wind–solar power generation is insufficient, so it is necessary to discharge
the stored power to supplement the shortage of the system, judge ΔE, and choose different
discharge combination distribution methods. When −ΔE is greater than or equal to the
maximum range of the storage battery and hydrogen storage capacity, the maximum value
of storage battery and hydrogen storage capacity is used for discharge. When −ΔE is
greater than the maximum range of the battery capacity, the maximum value of the battery
is employed for discharge, and the balance of the power is used to discharge on hydrogen
energy storage. When −ΔE is greater than the maximum range of the hydrogen storage
capacity, the maximum value of hydrogen storage is used for discharge. When −ΔE is
less than the maximum range of hydrogen storage capacity, hydrogen storage is used for
discharge.

3.2. Constraints

(1) Capacity constraints of hydrogen storage equipment:

Vmin ≤ V ≤ Vmax (19)

where: Vmin and Vmax are the minimum and maximum capacities of the hydrogen storage
tank.

(2) Capacity constraints of hydrogen storage equipment:

SOC ∈ [0, 1] (20)

where: SOC is the operating state of charge in the energy storage system.
(3) Power load constraint:

PL = PW + PPV + PH2 + PLi (21)

where: PL is the power load of the system, kW.
(4) Energy waste rate constraint:
Excess power is generated in the system when the power generated in the system is

greater than the load demand in the system and the maximum energy stored in the system,
resulting in wasted energy. This is because the capacity allocation is unreasonable, and
the power generation unit is configured with excessive output. When the system energy
waste rate is less, the system capacity allocation is more reasonable, which can significantly
reduce the waste of resources.

fL < fset (22)
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where: fset is the control range of the energy waste efficiency of the system for a setting of 0.5.
To solve the multi-objective function problem, fuzzy mathematics is used in this paper.

In most cases, the objective functions may affect each other, so it is not easy to achieve
simultaneous optimization. The sub-objective optimization and multi-objective are solved
by fuzzy mathematics. Under the condition of satisfying all constraints, each objective
function is fuzzified, and the objective function is solved based on fuzzy statistics by
taking the maximum value according to the affiliation function, and the optimal solution is
obtained.

In this paper, the membership function of the distributed function of half Γ decline is

uk(t) =

{
1, Fk(t) ≤ Fkmin(t)

exp( Fkmin(t)−Fk(t)
Fkmin(t)

), Fk(t) > Fkmin(t)
(23)

where: Fkmin(t) is the minimum value of the single objective function Fk(t) under the
constraint conditions.

Under the principle of maximum affiliation, the fuzzy multi-objective optimization
problem is converted into a nonlinear but targeted optimization issue, and the multi-
objective function solving model becomes

maxu(t) =

⎧⎨⎩
u(t) ≤ u1(t)
u(t) ≤ u2(t)
u(t) ≤ u3(t)

(24)

where: u(t), u1(t), u2(t), and u3(t) are, respectively, the satisfaction of fuzzy optimization,
the satisfaction of system total operation cost, the satisfaction of power fluctuation, and the
satisfaction of load power shortage.

4. Improved Particle Swarm Optimization Algorithm

4.1. Particle Swarm Optimization

The particle swarm optimization (PSO) algorithm was inspired by the study of artificial
life and was proposed as a global stochastic search algorithm in the simulation of bird flock
foraging [26]. The particle swarm optimization algorithm has strong anti-interference ability,
good results, fast speed, and memory function, and is also a multi-agent optimization
system. Each particle can dynamically adjust according to the surrounding state to find its
optimal and overall solution [27].

In the optimization process, after initializing the target population in N-dimensional
space, the particles constantly update their positions and velocities, generating a new
position each time and solving the next time to attain the optimal result. The iterative
expression for the update rate as well as the position in the process of particle solution is{

vk+1
i = ωvk

i + c1r1(PM − xk
i ) + c2r2(GM − xk

i )

xk+1
i = vk+1

i + xk
i

(25)

where: k is the number of iterations; ω is the inertia weight coefficient; vi
k and xi

k are the
velocity and position of particles; c1 and c2 are acceleration factors; r1 and r2 are random
numbers between [0,1]; PM is the particle individual extreme value; and GM is the extreme
value of the population.

4.2. Improved Particle Swarm Optimization

For the particle swarm optimization algorithm, it is susceptible to problems such as
falling into the local extremum and poor local search ability. To solve these problems, the
particle swarm optimization algorithm is improved. A particle swarm optimization with
dynamic adjustment of intrinsic weight is used, and exponential function and random
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function of beta distribution [28] are used to improve it, achieve the algorithm’s global
search ability, and reduce the possibility of falling into local extremum.

The inertia weight ω is an essential variable among the particle swarm, determining
influence degree of particle velocity on the velocity in the next iteration. The capability
of global search is strong when ω is large, the capability of local search is weak, and it
can easily fall into the local optimization state. With the increase in iteration times, the

exponential function e
−k

kmax is adopted to increase the global search ability and the later
search accuracy.

The improved expression for the inertia weights is

ω = ωmin + (ωmax − ωmin)e
−k

kmax + σ × betarnd(p, q) (26)

where: kmax is the maximum number of iterations; σ is the inertia adjustment factor; ωmax
is the initial inertia weight; ωmin is the inertia weight of the maximum number of iterations.

In particle swarm optimization, the acceleration factor determines the influence of
individual particle experience information and other particle experience information on the
optimization trajectory. For the acceleration factor, c1 is the global acceleration factor and c2
is the local acceleration factor [29]. To converge faster, the acceleration factor is improved so
that c1 gradually increases and c2 gradually decreases, thus strengthening the convergence
ability of particles to the global optimum.

c1 = c0 sin2
[
π
2

(
1 − k

kmax

)]
c2 = c0 sin2

(
π
2

k
kmax

) (27)

where: c0 is the initial value.

4.3. Solution Steps

In solving the problem of optimal system capacity configuration, the paper applies the
improved IDW-PSO problem solving and the flow is shown in Figure 4.

 
Figure 4. Solution flow.
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5. Model Solving

This paper uses the improved particle swarm optimization algorithm with dynamically
adjusted inertia weight to optimize the configuration of each device’s hydrogen-containing
hybrid energy storage microgrid capacity. Firstly, the fundamental parameter models of
each device unit, including illumination intensity and load parameters, are determined—
secondly, input parameters, including capacity range, conversion rate, etc. Then, the
system’s capacity is optimized according to the system’s total operating cost. The core
of the system optimal analysis method based on IDW-PSO is to determine the optimal
capacity allocation under the condition of minimum total system cost, to reduce the loss
of power supply probability, reduce the fluctuation of power, preventing instability of the
microgrid. A flow diagram of the operation strategy is illustrated in Figure 5:

 
Figure 5. Operation strategy flow chart.

Step (1): Modeling each unit of the microgrid, inputting data such as wind speed and load,
and inputting relevant parameters;

Step (2): Initialize the calculated output of photovoltaic and wind power generation;
Step (3): Input system constraints and objective functions;
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Step (4): Calculate whether the wind and solar power generation meet the load demand
ΔE, execute an objective function, and select different operation processes;

Step (5): After executing the objective function, check whether the microgrid is within the
constraint range and update the relevant parameters of the system;

Step (6): Whether the maximum number of iterations has been reached. Without satisfying
the condition, the program will continue to run;

Step (7): Obtain optimal economic operating cost and related data.

6. Example Analysis

Taking a wind, solar, and hydrogen microgrid system in Beijing as an example, the
capacity of centralized photovoltaic units is 200 KW, and that of centralized wind turbines is
350 KW. Figure 6 shows the data on wind power, photovoltaic power generation, and load
consumption on a specific day in this area. Relevant parameters of battery and hydrogen
storage of the system are presented in Table 1. The optimization model of the capacity
optimization of wind and hydrogen storage system constructed in this paper is solved by
MATLAB.

 

Figure 6. Wind–solar load curve.

Table 1. Example parameters.

Parameter Value

The daily investment cost of storage battery is RMB/set 397
Battery charging efficiency/% 0.75
Battery discharge efficiency/% 0.85

The daily investment cost of hydrogen energy storage is RMB/set 534
Hydrogen storage charging efficiency/% 0.75

Hydrogen energy storage discharge efficiency/% 0.6
Efficiency of inverter/% 0.95

Type Service life/year

Wind generator [30] 20
PV 25

Storage battery 15
Electrolytic bath 15

Hydrogen storage tank 25
Fuel battery 10

Inverter 20

In the whole microgrid system, the equipment at the power generation end includes
a wind turbine, photovoltaic equipment, storage battery, and hydrogen energy storage
system. According to a defined objective value function and various parameters, wind

86



Batteries 2023, 9, 410

turbine, photovoltaic unit, and hydrogen energy storage jointly bear the load consumption
of the system and keep the power balance in real time. At 5~18 h, due to the sun’s rising,
the light amplitude appeared and reached the maximum peak at 12 h at noon, when the
light incident angle reached the maximum. Because wind turbines are built in places with
abundant wind resources, they can generate electricity 24 h a day.

Simulation Results Analysis

To comprehensively analyze the economic advantages of the energy storage operation
of the system according to the improved IDW-PSO algorithm, the effects of system load
shortage and power balance on the configuration results are considered, this paper sets the
following four schemes for comparative analysis. Scheme 1: Choose the energy storage
configuration scheme that is currently widely used. Scheme 2: The battery and hydro-
gen energy storage is selected as the energy storage schemes of the system for optimal
configuration, and the compression factor particle swarm optimization algorithm is used.
Scheme 3: Select battery and hydrogen energy storage as the system energy storage scheme
for optimal configuration, and use the IDW-PSO algorithm. Scheme 4: Select battery and
hydrogen energy storage as the system energy storage scheme to optimize the structure
and use the improved IDW-PSO algorithm. The simulation establishes the population scale
of 200, and iteration number of 200, acceleration factor initial value is set to 1.65, the battery
SOC lower limit is 0.1, the SOC upper limit is 0.9, while a battery SOC initial value is set to
0.5, and a simulation results are as follows:

Upon calculation, the results of the optimized configuration under each scenario are
obtained as shown in Figure 7 and Table 2. Scheme 2, Scheme 3, and Scheme 4, respectively,
show the differences in iteration times, average time, and total cost caused by different
operation results. The above three schemes can all be applied to the capacity optimization
arrangement of hydrogen-containing composite power storage system. From a comparative
analysis of Figure 7, the improved IDW-PSO algorithm can reduce the number of iterations,
speed up the calculation time, and calculate the optimal system operating cost more
effectively. The convergence speed and accuracy of the improved IDW-PSO are different
from those of IDW-PSO and compressed factor particle swarm optimization, which reduces
the local optimal solution, slow divergence speed and efficiency. The algorithms in the
present paper have fewer iteration times and operation times. Compared with other
algorithms, this algorithm is superior to different algorithms with the capacity optimization
configuration scheme, which improves the system economy.

Figure 7. Comparison of convergence curves of various algorithms.
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Table 2. Comparison of economic results of each algorithm.

Algorithm Name
Minimum Operating Cost/Ten

Thousand Yuan
Average Number of

Iterations
Average Time/s

Compressive factor particle
swarm optimization [31] 8.359 150 16.12

IDW-PSO 8.328 144 15.15
Improved IDW-PSO 8.326 124 15.05

At this time, see Table 3 for the system capacity optimization configuration scheme
through Scheme 1, Scheme 3, and Scheme 4.

Table 3. Optimization result.

Application Scheme
Storage

Battery/Unit
Supercapacitor/Unit

Hydrogen Energy
Storage/Unit

LPSP
Minimum Cost/Ten

Thousand Yuan

Scheme 1 2034 28,956 — 0.0321 8.321
Scheme 3 (Before

improvement) 1975 — 127 0.0297 8.359

Scheme 4 (After
improvement) 1989 — 106 0.014 8.323

Table 3 shows that the optimal configuration for the microgrid system in the hybrid
energy storage of supercapacitors and storage batteries in Scheme 1 is 2034 storage batteries
and 28,956 supercapacitors. In this case, the system loss of power supply probability is
0.0321, and the system’s total operating cost is 83,210 yuan. The optimal configuration of the
Scheme 3 microgrid system before improvement is 1975 batteries and 127 hydrogen storage
batteries; now the system loss of power supply probability is 0.0297, and the comprehensive
operating of the system costs 83,590 yuan. The optimal configuration of the improved
Scheme 4 microgrid system is 1989 batteries and 106 hydrogen storage batteries. Currently,
the system loss of power supply probability is 0.014, and the system’s total operating cost
is 83,230 yuan. From the comparative analysis of Table 3, in the hybrid energy storage of
battery and supercapacitor, the minimum price for Scheme 3 is higher than that of Scheme 1
because the cost of hydrogen energy storage is much higher than that of the supercapacitor,
and the operating cost of Scheme 4 is unchanged. The scheme proposed in this paper
(Scheme 4) reduces the power shortage by 56.4% in Scheme 1 and 52.9% in Scheme 3 while
maintaining the running cost unchanged. Therefore, the scheme used in this paper is
superior to other projects, which improves the power shortage problem caused by the
system’s unbalanced configuration.

From the perspective of solving the problem of the power shortage rate, the scheme in
this paper has increased by 1.81% and 1.57%, respectively, compared with Scheme 1 and 3.
In this paper, Beijing’s average daily electricity consumption in 2022 is 210 degrees. Accord-
ing to this ratio, the scheme in this paper can solve the power shortage of about 3.5 degrees
by storing energy. Thermal power plants need about 320 g standard coal for the first gener-
ation of electricity, saving 1 kg of typical coal = reducing emissions by 2.493 kg “carbon
dioxide” = reducing emission by 0.68 kg “carbon.” Then, this scheme can reduce carbon
dioxide and carbon emissions by about 1019.13 kg a year in this area. Therefore, the scheme
proposed in this paper has great practical significance for promoting carbon neutrality.

For wind–solar hybrid electricity generation, both wind turbines and photovoltaic
units have limited capacities, and the adjustment range is relatively small. Hydrogen
storage has excellent advantages for power generation because hydrogen storage can
perform charging and discharging functions and has a wide range of power adjustments.
As can be seen from Figure 8, from 0:00 to 6:00, since the load output is higher than the
wind and light energy export power, batteries and hydrogen energy storage are discharged;
At 6:00–16:00, because the load output is less than the wind and light output power, the
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battery and hydrogen energy storage are charged. From 16:00 to 22:00, the battery and
hydrogen energy storage discharge because the load output is greater than the wind and
light output power. From 22:00 to 24:00, the battery and hydrogen energy storage charge
because the load output is less than the wind and light output power.

Based on the economic and system loss of power supply probability, the system
optimizes the capacity allocation scheme for wind, light, and hydrogen storage systems,
thus achieving the purpose of shaving peaks and filling valleys and restraining power
fluctuation. When the generating power of wind and light is greater than the load output,
the hydrogen storage is optimized by the algorithm to realize “peak clipping”. When the
generating power of wind and light is less than the load output, the hydrogen storage
system is discharged through algorithm optimization to realize “valley filling” of the system
power.

Figure 8 is a power comparison chart before and after system optimization, which is,
respectively, the power comparison in the whole system before and after the optimization
of the hydrogen energy storage system. Before the optimal configuration of the hydro-
gen energy storage system, a variance of the output power of the whole system was
9171.78 kW2. After the optimal configuration, the variance of the whole system’s output
power is 6582.22 kW2, with an obvious decrease in the fluctuation of the output power. The
0-A region represents the supplementary power region where the fuel cell of the hydrogen
energy storage system discharges to supplement wind power and photovoltaic power,
thus achieving the function of “valley filling” for the system power. The area A-B region
represents the electrolyze in the hydrogen storage system for hydrogen storage, to absorb
the force of wind power and photovoltaic, and thus achieve the “peak clipping” effect on
the system power. The B—C region is the same as the 0—A region, and the C—D region is
the same as the A—B region. Meanwhile, the waste power of the hydrogen energy storage
system before configuration is 3.7435 kW, while after configuration, it is 1.8263 kW, which
significantly reduces the waste air volume.

 
Figure 8. Power comparison diagram before and after optimization.

7. Conclusions

In this paper, the influence of wind turbines, photovoltaic systems, hydrogen storage
systems, and battery output ratios on the operation of independent microgrid systems is
considered, which is experimentally verified to improve the degree of renewable energy
consumption.

In this paper, a particle swarm algorithm is proposed to improve the particle swarm
algorithm for dynamically adjusting the inertia weights, establish a capacity optimization
model, and obtain a capacity optimization scheme with the optimal system operating cost,
system loss of power supply probability and system power. The integrated operation
cost of the wind–solar hydrogen storage microgrid system is reduced by 0.431%, and
the variance of the whole system after hydrogen storage configuration is 28.23% of that
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before configuration. The power fluctuation and the rate of abandoning wind and light are
reduced.

The improved IDW-PSO algorithm will improve the optimization accuracy, reduce the
risk of falling into the optimal local solution, and accelerate the iteration speed so that the
system can get the optimal solution faster and better. The improved algorithm is improved
from 142 to 124 iterations, and the accuracy of the results is improved by 0.024%.

This scheme can reduce carbon dioxide and carbon emissions by about 1019.13 km an-
nually in this area. When building the optimal configuration of wind and solar hydrogen
storage systems, considering the economic indicators and power shortage load, the com-
plementary relationship between hydrogen energy storage and storage battery is used to
combine them and realize the suppression of power fluctuations, to achieve the purpose
of peak shaving peaks and filling in valleys, to eliminate the wind and light rejection rate
better, increase system economic efficiency, to reduce the amount of power shortage in the
system, and strive to make the system more environmentally friendly by realizing carbon
neutrality.

This paper in the microgrid capacity optimization configuration model allows for a
wind-optical-hydrogen-storage microgrid system to provide some support. Starting from
the energy demand side, this model can not only configure the capacity of wind, light,
storage battery, and hydrogen storage, but also add more forms of energy—for example,
flywheel energy storage, biological energy storage, pumped storage, and so on. The
system is more environmentally friendly for the application of hydrogen energy storage,
and the interconnection of electricity and hydrogen is used to realize carbon emission
reduction. With the development of time and the application of hydrogen energy, the cost
of hydrogen production is reduced, the difficulty of hydrogen production is reduced, and
the efficiency of hydrogen production is improved. Hydrogen energy storage can optimize
power and energy simultaneously in electricity storage and power generation and will
be further studied. High-density, pollution-free, and sustainable utilization of hydrogen
is a significant trend and the significance of efficient production. In future research, the
load-side model or the model of demand-side response and load-side interaction will be
further considered when optimizing the system to be closer to the actual demand.
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Abstract: After the fault disturbance (DC bi-polar blocking) in the AC/DC hybrid system, when the
battery energy storage system (BESS) near the fault location is used to eliminate the power transfer,
some sensitive and vulnerable transmission lines still have the problem of power flow exceeding the
limit value. Therefore, an optimal configuration of BESS for AC/DC hybrid systems based on power
flow exceeding risk index is proposed, which is used to eliminate the impact of power transfer on
transmission lines. Firstly, considering the line outage distribution factor, the power flow exceeding
risk index is established, which is used to judge the sensitive and vulnerable transmission lines on
the shortest path power flow after the fault in the AC/DC hybrid system. The shortest path power
flow is found by using the Dijkstra algorithm; the transmission lines nodes of the shortest path power
flow are selected as candidate nodes for BESS configuration. Secondly, considering the safe and
stable operation capability of the transmission lines, a multi-objective optimal mathematical model
of BESS configuration for the AC/DC hybrid system is established, which minimizes the annual
investment cost of BESS and maximizes the sum of the power flow exceeding risk index. Finally,
the CEPRI36V7 power grid model in Power System Analysis Software Package (PSASP) is used for
simulation analysis to verify the effectiveness of the proposed method.

Keywords: AC/DC hybrid system; battery energy storage system (BESS); improved power flow
exceeding risk index; fault disturbance; optimal configuration; line outage distribution factor

1. Introduction

With the emergence of new phenomena, such as the widespread interconnection of
power grids and the high penetration of renewable energy, in the past decades, cascading
failures of power systems have caused several large-scale power outages worldwide, such
as the power outages in California [1], and the disconnection accident in the power grid of
Europe [2], which have caused huge economic losses and threatened the stable operation
of power grids.

Due to its good technical and economic benefits in large capacity, long-distance, and
flexible transmission, DC transmission technology has been widely used in long-distance
power transmission, power grid interconnection, and other aspects. DC transmission tech-
nology has improved the ability of friendly large-scale renewable energy and effectively
solved the imbalance between regional supply and demand of electricity [3]. With the con-
tinuous development of HVDC transmission technology and the application of many DC
projects, China has built a large-scale complex AC/DC hybrid power grid [4,5]. However,
the DC blocking fault in the DC transmission converter station will inevitably transfer the
power from the DC transmission line to the AC transmission line, which will cause the
power flow of the AC transmission line to exceed the thermal stability limit power and the
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cascading failure. And then blackout accidents of power systems will happen, which seri-
ously influence the local society and economy [6,7]. Therefore, to ensure the safe and stable
operation of the AC/DC hybrid system, it is of great practical significance to eliminate the
out-of-limit power flow caused by DC power transfer in AC transmission lines.

The energy storage has good dynamic active and reactive power regulation capabilities,
and it can adapt to operational control requirements of different time scales. To reduce
the load shedding after the system failure, improve the system operation flexibility and
stability, and ensures the safe, reliable, and efficient operation of the AC/DC hybrid system,
the DC power transfer of the AC/DC hybrid system is eliminated by using the energy
storage [8]. However, due to the different impact of DC power transfer on other lines,
the energy storage near the fault location is used to eliminate the power transfer after the
fault disturbance (DC bi-polar blocking) in the AC/DC hybrid system, some sensitive and
vulnerable transmission lines still have the problem of power flow exceeding the limit
value. It is necessary to quickly identify the sensitive line set that has a great impact on the
transmission power, and configure the energy storage in this node line, which can quickly
eliminate the power limit, improve the system stability, and prevent the occurrence of
major accidents.

At this stage, the method of identifying the vulnerability of the power system based
on the dynamic characteristics of the power grid has been widely used [9]. In [10], the
risk theory assessment method is used to identify key lines by simulating the hidden fault
model in the chain fault, but it requires many simulation results to determine the probability
of line disconnection through tests, which increases the workload and is difficult to achieve
online application and reduces the practicality of the project. In [11], a vulnerability
assessment method of power grid cascading fault propagation elements based on power
flow entropy is proposed, which can distinguish the vulnerability of branches from impact
and consequence. This method accurately models the physical characteristics of the power
grid and can improve the simulation speed by reducing the fault search space. However,
there is still a contradiction between sampling times and simulation accuracy, which is
difficult to achieve online application. In [12], a comprehensive index is proposed to
identify the vulnerable lines, which applies the impact vulnerability to represent its impact-
resistance ability and the transfer vulnerability to represent the damage caused by its
removal from the system. However, this method does not consider the margin of power
flow out-of-limit capacity of other lines after the disconnected transmission line. The
method of identifying the sensitive and vulnerable transmission lines based on power
flow exceeding risk index is proposed in [13]. The method would not have to repeatedly
calculate the impedance matrix of the line disconnection and connection. But it is difficult
to apply to AC/DC hybrid systems, weak power grids, and other power systems. The
scope of the application is limited. The improved power flow exceeding risk index is used
for AC/DC hybrid systems and other various power systems. And this method preserved
the advantages of traditional methods.

The optimal configuration of BESS is mainly to determine its optimal access location
and capacity, to better play its performance, and to improve the absorption rate of renewable
energy. In [14,15], the proposed coordinated operational planning for wind farms with
BESS is that it can reduce the impacts of wind power forecast errors. Considering the
uncertainty and curtailment rate constraint of wind power, reference [16] focuses on the
BESS configuration method in wind farms. In [17], the capacity allocation of BESS is used to
smooth wind power fluctuations, and the BESS capacity size at different confidence levels
is studied. In [18], this paper proposes a bi-level optimal energy storage system (ESS) siting
and sizing algorithm to mitigate the voltage deviation in distribution networks. A capacity
allocation method of BESS in secondary frequency regulation with the goal of maximum net
benefit is proposed in [19]. The literature [14–19] focuses on a single application scenario,
such as reducing prediction error, improving new energy consumption, and ensuring
power grid stability to achieve BESS configuration, which has significant limitations. They
do not fully explore their advantages in coordinated operation or multiple application
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scenarios. Large BESS capacity needs to be configured, and the utilization rate of BESS
is low.

References [20–22] propose an optimized configuration method for the coordinated
operation of BESS and renewable energy. Collaborative configuration of distributed gen-
eration and BESS in microgrids considering the state of health is studied in [23]. In [24],
considering the uncertainty of the net load, this study provides an approach to analyzing
the BESS demand capacity for peak shaving and frequency regulation. In reference [25], the
feasibility and compatibility of using such idle capacity and power of BESS to participate
in the electricity energy market and reserve ancillary service market are explored, and a
coordinated operation strategy for the three application scenarios of BESS is proposed to
improve its utilization. When the power system is in a steady state, to achieve economic
efficiency, ensure grid stability, and improve the utilization rate of BESS, the optimization
configuration of BESS for the collaborative operation of BESS and renewable energy and
multiple application scenarios of BESS services is studied by domestic and foreign scholars.
But the frequent occurrence of extreme weather would seriously affect the safe and stable
operation ability of the power grid. It is necessary to study the optimal configuration of
BESS considering the influence of extreme weather on the power grid. This can enhance
the safe and stable operation capacity of the power grid.

To cope with the impact of extreme weather, such as typhoons and freezing rain,
on the power grid, BESS has been configured to improve the reliability and flexibility
of the power grid in recent years. Literature [26] takes the load-shedding cost of the
system under extreme events as the toughness index and studies the optimal allocation of
BESS considering the toughness of the distribution network. In [27], a distributed energy
storage planning model for the distribution network considering the influence of typhoon
weather is established, and a decomposition collaborative solution method based on the
Benders decomposition is proposed. In [28], a new quantitative index of toughness and
formulates of a method of BESS planning were proposed to enhance the seismic capacity of
the distribution network. Literature [29] proposed a distribution network BESS planning
method considering toughness and established a two-stage robust optimization model,
which can effectively ensure the uninterrupted power supply of important loads. The above
literature configures BESS to improve the flexibility or toughness of the power grid by
ensuring a continuous power supply of important loads in extreme weather. However, with
the increase in the penetration rate of new energy, the probability of power grid failures has
increased, such as exceeding the power limit of transmission lines and cascading faults in
the power grid. It is very necessary to allocate BESS reasonably after a power grid failure,
such as to quickly eliminate the over-limit of AC line power and improve the stability of the
system; how to reasonably configure BESS after the DC locking fault occurs in the AC/DC
hybrid system.

And then, a large amount of research has been conducted domestically and interna-
tionally on solution methods for BESS optimization configuration. Intelligent optimization
algorithms, such as genetic algorithm [30] and particle swarm optimization (PSO) [31],
have been widely applied. The optimization configuration method proposed provides a
good reference for the solution in this article.

Aiming at the advantages and disadvantages of the existing research, considering the
millisecond level active dynamic response capability of the BESS system, an optimized
configuration of BESS in the AC/DC hybrid system based on the improved power flow
exceeding risk index is proposed. Firstly, the improved power flow exceeding risk index
is established to evaluate the sensitivity and vulnerability of other lines to the transferred
power flow after the branch is disconnected. Secondly, the Dijkstra algorithm is used to find
out the shortest path of the closed loop formed by the breaking line, and the key nodes are
selected as the candidate sites for BESS by calculating the improved power flow exceeding
risk index of the shortest path. Finally, a multi-objective function with the maximum sum
of improved power flow exceeding risk index and the minimum annual investment cost of
BESS is established, and particle swarm optimization (PSO) is used to obtain the optimal
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configuration scheme of BESS in the AC/DC hybrid system. Meanwhile, the BESS system
adopted the active power control strategy, including plant-level control and local control,
which quickly eliminates the power exceeding the limit of the AC line and suppresses the
power fluctuation of the power grid.

This paper is organized as follows: The identification of sensitive and vulnerable lines
is talked about in Section 2. The mathematical model for the optimal allocation of BESS
is proposed in Section 3. The Model-solving method is given in Section 4. In Section 5,
the effectiveness and feasibility performance of the proposed method are examined on the
CEPRI36V7 grid model. Section 6 is the conclusion.

2. Identification of Sensitive and Vulnerable Lines

2.1. Line Outage Distribution Factor

If line A of the AC/DC hybrid system is faulty, and it causes the line disconnection
(DC line causes blocking fault, etc.), which causes the transfer of active power flow in the
system, that is, the active power flow of other lines is changed. The relationship between
the change of normal line power flow and the original power flow of the disconnected line
can be expressed by the Line Outage Distribution Factor (LODF) [32]:

DR−A =
ΔPR−A

PA (1)

where ΔPR−A is the change of line R’s active power flow after line A is disconnected; DR−A
is the LODF that causes the change of line R’s active power flow after line A is disconnected;
PA is the steady-state initial active power of line A.

Assuming that the nodes at both ends of line A are i and j, and the injected active
power remains unchanged before and after disconnection, the change of node active power
flow caused by line A disconnection is

ΔP = [0 · · · 1 · · · − 1 · · · 0]T PA = MAPA (2)

where MA is the node-branch associated n × 1 order column vector of branch A, and the
row corresponds to the node number.

The n × 1 order change Δθ of node voltage phase angle caused by line A disconnection.
Δθ can be expressed as

Δθ = (B − MAx−1
A MT

A)
−1

MAPA (3)

where B is the n × n order admittance matrix; the admittance matrix is sparse type; xA is
the reactance of line A.

Then, the change of active power flow of branch R (R 	= A) caused by line A discon-
nection is

ΔPR−A =
MT

RΔθ

xR
= DR−APA =

MT
R(B − MAx−1

A MT
A)

−1
MAPA

xR
(4)

where MR is the node-branch associated n × 1 order column vector of branch R; xR is the 1
order reactance of line R.

Let B−1 = X, after simplification, the expression of DR−A is:

DR−A =
XR−A/xR

1 − XA−A/xR
(5)

Among them,
XR−A = MT

RXMA (6)

XA−A = MT
AXMA (7)

96



Electronics 2023, 12, 3169

where X is the n × n order impedance matrix; XA−A, XR−A is the 1 order self-impedance
and mutual impedance between nodes of port R and port A, respectively.

After the DC blocking fault occurs in the AC/DC hybrid system, the influence of DC
power transfer on the AC line can be measured by calculating the LODF of the AC line.

2.2. The Improved Power Flow Exceeding Risk Index

The improved power flow exceeding risk index takes into account the impact of power
transfer on other lines and the margin of the out-of-limit capacity of line power flow. After
considering the margin of the out-of-limit capacity of line power flow, it is not necessary to
consider the problem of reverse power flow of other lines caused by power flow transfer
separately, which reduces unnecessary calculations, and can better reflect the sensitivity
and vulnerability of other lines, and identify the sensitive and vulnerable lines in the system.
Under the change of power flow of line R caused by the disconnection of line A, the margin
of the out-of-limit capacity of the power flow of line R can be expressed as follows:

When DR−A < 0, this is true, the expression of line power flow out-of-limit capacity
margin is as follows:

ΔP′ =
{ |PR,max + PR| PR ≥ 0
|−PR,max − PR| PR < 0

(8)

When DR−A > 0, this is true, the expression of line power flow out-of-limit capacity
margin is as follows:

ΔP′ =
{|−PR,max + PR| PR ≥ 0

|PR,max − PR| PR < 0
(9)

Combined with the LODF, the improved power flow exceeding risk index is given to
evaluate the sensitivity and vulnerability of other lines to the transferred power flow after
the branch break, as follows:

ΦR−A =
ΔP′

DR−A · PA,max
(10)

where PA,max is the thermal stability limit value of the breaking line.
After a DC blocking fault occurs in the AC/DC hybrid system, the sensitivity and

vulnerability of each AC line can be effectively evaluated by calculating the improved
power flow exceeding risk index of each AC line. The smallest the improved power flow
exceeding risk index of each AC line, the lower its ability to receive the transferred power
flow, and the higher the improved power flow exceeding risk index. This paper selects the
sensitive vulnerability line when the absolute value of the improved power flow exceeding
risk index is less than 0.5. Secondly, after the DC blocking fault occurs in the AC/DC hybrid
system, the DC power flow is mainly transferred to the shortest path that forms a closed
loop with the DC line, so the shortest path set of DC power transfer needs to be searched.

2.3. The Shortest Path Search Based on the Dijkstra Algorithm

Using the knowledge of graph theory, the AC/DC hybrid system is simplified and
abstracted into a graph G (V, E), where V represents the bus set in the grid, E represents
the line set between buses, and the line side weight value is the line reactance. Then, the
shortest path algorithm related to graph theory is adopted.

The shortest path search algorithms in graph theory include the Dijkstra algorithm,
Floyd algorithm, etc. The Dijkstra algorithm has small time complexity and is easy to ex-
pand; the Floyd algorithm has high time complexity and space complexity, which increases
the calculation amount. Its advantage is that it can be used to search the shortest path
of the line with negative weight. Because of the scalability of the Dijkstra algorithm and
the fact that there are no branches with negative weights in the graph, and to meet the
requirements of fast calculation, the shortest path search based on the Dijkstra algorithm
is adopted.
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After the DC blocking fault occurs in the AC/DC hybrid system, the shortest path
forming a closed loop with the DC line can be searched by using the Dijkstra algorithm,
and then the sensitive AC line can be identified by combining the improved power flow
exceeding risk index, and the power input node of the sensitive, vulnerable line is used as
the candidate location for configuring BESS.

3. The Mathematical Model for Optimal Allocation of BESS

3.1. Objective Function

After the DC locking fault occurs in the AC/DC hybrid system, when the system
optimizes the configuration of BESS, it should also have a certain economy while elim-
inating the power flow over-limit on the sensitive and vulnerable lines. Therefore, the
multi-objective function of the optimal configuration of BESS in the AC/DC hybrid system
is as follows:

maxΓ =
K

∑
k=1

∣∣∣∣ ΔP′

Dk−A · Pdc−max

∣∣∣∣ (11)

minGinv =
r(1 + r)y

(1 + r)y − 1
· (c1 · Pe + c2 · Ee) (12)

where Γ is the sum of the improved power flow exceeding risk index of sensitive vulnerable
lines after DC blocking fault; Dk−A is the LODF; Pdc−max is the thermal stability limit
value of DC line; Ginv is the annual investment cost of BESS; c1, c2 are the unit power
cost and capacity cost of BESS; Pe, Ee are the rated power and rated capacity of the BESS,
respectively; r is the annual interest rate of the fund; Y is the life cycle of BESS; K is the
sensitive vulnerability line.

3.2. Constraint

(1) Power balance constraints

M

∑
m=1

PG,m +
N

∑
n=1

PL,n +
S

∑
s=1

PB,s = 0 (13)

where PG,m, PL,n, PB,s are, respectively, the output of generator m, the required power
of load n, and the charging and discharging power of BESS s; S is the quantity of
configured BESS in the system; M and N are the number of generators and the number
of loads in the system.

(2) Line loss constraint

P′
RU2

R ≥ RR · (P′
R

2
+ Q′

R
2
) (14)

where P′
R, Q′

R are the active power and reactive power transmitted by the receiving
end of the R line, respectively; RR is the resistance of the R line; UR is the voltage
amplitude of the receiving terminal node of the Rth line.

(3) Generator power constraint

PG,m ≤ PG,m ≤ PG,m (15)

where PG,m, PG,m are the upper and lower limits of generator output, respectively.
(4) Line power constraint

PL,m ≤ PL,m ≤ PL,m (16)

where PL,m, PL,m are the upper and lower limits of the active power of the transmis-
sion line.

(5) Capacity constraints of BESS

Smin ≤ Sr ≤ Smax (17)
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where Smin, Smax are the minimum and maximum capacities of BESS, respectively.
(6) Power constraint of BESS charge and discharge

−Pr,max ≤ Pc
r ≤ 0

0 ≤ Pd
r ≤ Pr,max

(18)

where Pr,max is the maximum value of BESS discharge power; Pc
r , Pd

r are the charge
power and discharge power of the BESS system, respectively.

4. Model-Solving Method

The sharing of information among the entire population is beneficial for the population
towards a better position in genetic algorithms. Only the best individual’s information is
shared in PSO, and the entire search process is tracking the optimal solution. So, the PSO
algorithm has faster convergence than the genetic algorithm. And due to its advantages of
high accuracy and fast convergence, the PSO algorithm is widely used in BESS capacity
configuration [33,34]. Therefore, this article chooses the PSO algorithm for solving BESS
capacity configuration.

To reasonably obtain the location of BESS, the PSO algorithm is used to solve for the
optimal capacity of BESS, and the optimal location of BESS is selected from candidate
nodes. Meanwhile, BESS adopts the active power control strategy, including plant-level
control and local control, which quickly eliminates the power exceeding the limit of the AC
line, suppresses the power fluctuation of the power grid, and ensures the safe and stable
operation ability of the power grid.

The specific process is shown in Figure 1, and the solution steps are as follows:

(1) The graph obtained by abstracting the power grid is G0, and the reactance value of
each line in the power system is taken as the weight value of each side;

(2) After DC blocking occurs in the converter station at the sending end, the Dijkstra
algorithm is used to find the shortest path between the converter station and the
designated node;

(3) The branch set contained in the target source point and destination point are combined
to obtain the branch set of power flow transfer;

(4) Calculate the improved power flow exceeding risk index of all branches in the power
flow transfer branch set, and select the branches whose absolute value of the improved
power flow exceeding risk index is less than 0.5 to form the main branch set;

(5) For the lines in the main branch set, if there is a reverse flow and the branch flow
meets |P′

R|≤|PR|, it will be removed from the main branch set (P′
R is the branch flow

after the line is disconnected);
(6) Input parameters. Input PSO controlling variables of the original parameters. Set PSO

algorithm parameters: the maximum iteration number is 300, and the population size
is 200;

(7) Initialize the population. According to Equation (19), the N solutions are generated,
such as the energy storage power and capacity, and they also are guaranteed to satisfy
the condition. The objective function value is calculated for all the scenes using
Equations (11) and (12).

xij = xmin
j + rand() · (xmax

j − xmin
j ) (19)

where i = 1, 2, . . . , N is a D-dimension vector; j = 1, 2, . . . , d; rand() represents
random numbers between 1 and 0; xmax

j , xmin
j are the maximum and minimum values

of particles, respectively;
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(8) Calculate the fitness value for particles by using (20). It is updated local optimal
position and global optimal position by using Equations (21) and (22).

pi =
Fi

N
∑

k=1
Fk

(20)

vij(t + 1) = w × vij(t) + c1 × rand()× (pij(t)− xij(t)
)
+ c2 × rand()× (pgj(t)− xij(t)

)
(21)

xij(t + 1) = xij(t) + vij(t + 1) (22)

where Fi is the corresponding fitness value for particles I; vij(t + 1), vij(t) are the
velocity of the ith particle at t + 1, t times, respectively; w is the inertia factor; w = 0.8,
c1 and c2 are the learning rate; c1 = 0.9, c2 = 0.9. pij(t), pgj(t) respectively represent
the individual optimal value and the global optimal value of particles;

(9) Output optimal solution. If the iteration number is greater than the set value, then
output the Parote optimal. Otherwise, return to step (7).

 

Figure 1. Solution flow of BESS optimization configuration.

5. Simulation Analysis

5.1. Parameter Design

The CEPRI36V7 power grid model in the power system analysis comprehensive program
(PSASP) was used for simulation analysis to verify the effectiveness of the proposed BESS con-
figuration strategy. The parameters of the CEPRI36V7 model are referred to in reference [35].
The topology of the CEPRI36V7 model is shown in Figure 2. The parameters of the CEPRI36V7
model are referred to in reference [35]. The node parameters, generator parameters, and branch
parameters of the CEPRI36V7 model are shown in Tables 1–3, respectively.
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Figure 2. The power grid structure of CEPRI36V7.

Table 1. The node parameters of the CEPRI36V7 model.

Bus_i Type Pd/MW Qd/Mvar Base/kV Bus_i Type Pd/MW Qd/Mvar Base/kV

1 3 0 0 10.5 19 1 86.4 66.2 220

2 1 0 0 20 20 1 71.9 47.4 220

3 2 0 0 10.5 21 1 70 50 220

4 1 0 0 15.7 22 1 226.5 169 220

5 1 0 0 10.5 23 1 287 144 220

6 2 0 0 10.5 24 1 0 0 220

7 2 0 0 10.5 25 1 0 0 500

8 2 0 0 10.5 26 1 0 0 500

9 1 376 221 220 27 1 0 0 500

10 1 0 0 20 28 1 0 0 500

11 1 0 0 500 29 1 520 10 220

12 1 0 0 500 30 1 0 0 220

13 1 0 0 500 31 1 0 0 220

14 1 0 0 220 32 1 0 0 220

15 1 0 0 20 33 1 0 0 220

16 1 500 230 220 34 1 0 0 220

17 1 0 0 20 35 1 0 0 0

18 1 430 220 220 36 1 0 0 0
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Table 2. The generator parameters of the CEPRI36V7 model.

Bus Pg/MW Qg/Mvar Vg/p.u.

1 0 0 1

2 600 360 1

3 310 0 1

4 160 70 1

5 430 334 1

6 −1 0 1

7 225 0 1

8 306 0 1

Table 3. The branch parameters of the CEPRI36V7 model.

Fbus Tbus r x b Ratio Fbus Tbus r x b

11 25 0 0.0001 0 0 31 32 0 0.0001 0
12 26 0 0.0001 0 0 9 22 0.0559 0.218 0.3908
12 27 0 0.0001 0 0 9 23 0.0034 0.0131 0
13 28 0 0.0001 0 0 9 24 0.0147 0.104 0
14 19 0.0034 0.02 0 0 24 1 0 0.015 0
16 18 0.0033 0.0333 0 0 9 2 0 0.0217 0
16 19 0.0578 0.218 0.3774 0 22 3 0 0.0124 0
16 20 0.0165 0.0662 0.4706 0 19 4 0 0.064 0
16 21 0.0374 0.178 0.328 0 18 5 0 0.0375 0
16 29 0 0.0001 0 0 30 7 0 0.0438 0
18 34 0 0.001 0 0 31 8 0 0.0328 0
19 21 0.0114 0.037 0 0 12 15 0 0.018 0
19 30 0.0196 0.0854 0.162 0 6 17 0 0.0337 0
20 22 0.0214 0.0859 0.6016 0 9 10 0 −0.002 0
21 22 0.015 0.0607 0.4396 0 14 15 0 −0.002 0
22 23 0.0537 0.19 0.3306 0 13 17 0 0.01 0
23 24 0.0106 0.074 0 0 11 10 0 0.018 0
25 26 0.0033 0.0343 3.7594 0 36 15 0 0.0001 0
27 28 0.00245 0.0255 2.79 0 16 17 0 0.001 0
29 33 0 0.0001 0 0 35 10 0 0.001 0
30 31 0 0.0001 0 0

The capacity of the CEPRI36V7 power grid is 2600 MW, and nodes 33 to 34 are DC
transmission lines, with a DC transmission capacity of 2 × 200 MW; DC power flows
from 33 nodes to 34 nodes, and nodes 10, 15, and 17 in the system are the central nodes of
three-winding transformers T1, T2, and T3.

This article uses lithium BESS. The maximum rated power and capacity of the total
installed BESS are 800 MW and 1600 MW. h respectively, and the cost coefficients are
1500 yuan/kW and 2000 yuan/kWh. The charge and discharge rate of BESS is 0.5 C.

5.2. Sensitive Line Identification

The simplified structure of the power grid is shown in Figure 3. The red line represents
the DC bipolar locking fault line. The blue line and black line represent the non-shortest
path AC line. The green line represents the shortest path AC line. The converter station
of node 33 has a DC bipolar locking fault, and the Dijkstra algorithm is used to obtain the
shortest path composed of node 33 and node 34, namely: 33, 31, 30, 19, 14, 15, 12, 27, 28, 13,
17, 16, 29, and 34, a total of 13 AC lines. The power change curve of the AC line is shown in
Figures 4 and 5 after the converter station of node 33 has a dual-machine locking fault at
5 s.
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Figure 3. The simplified grid structure of CEPRI36V7.

 
Figure 4. Change curve of AC line after DC blocking.

 
Figure 5. Power change curve of the shortest path line after DC blocking.
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It can be seen from Figure 4 that the power variation of lines L19-14 and L14-15 is the
largest, with a power variation greater than 2 p.u., and the power variation of other lines is
less than 1.3 p.u. It can be seen from Figure 5 that the power variation of the AC line on the
shortest path is greater than 1.5 p.u. It can be seen that after the DC bipolar locking fault,
the power flow is mainly in the shortest path composed of node 33 and node 34.

The improved power flow exceeding risk index of each line on the shortest path is
shown in Table 4 after the bipolar locking fault occurs at the converter station of node 33
at 5 s. From Table 4, it can be seen that the absolute value of the improved power flow
exceeding risk index of lines L30-31, L19-30, L14-19, L15-14, L15-12, L17-13, L17-16, and
L16-29 is less than 0.5, so the above AC lines are sensitive and vulnerable. Since node 15
and node 17 are the central nodes of the three-winding transformer, and BESS is configured
at the sending end of the AC line, the candidate nodes for BESS are 31, 19, 14, and 16.

Table 4. The improved power flow exceeding risk index of the shortest path.

AC Line Initial Power/p.u. Power after Fault/p.u. LODF
The Improved Power Flow

Exceeding Risk Index

L31-33 4.00 0.00 −1.00 1.67

L30-31 1.02 −2.98 −1.00 0.41

L19-L30 −1.20 −5.17 −1.00 0.70

L14-19 −0.34 −2.94 −0.82 0.42

L15-14 −0.34 −2.94 −0.65 0.32

L15-12 0.34 2.94 0.65 0.14

L12-27 4.86 7.18 0.58 1.29

L27-28 4.86 7.18 0.58 1.29

L13-28 −4.61 −7.04 −0.61 3.70

L17-13 −4.80 −7.04 −0.56 3.22

L17-16 4.79 7.01 0.56 0.36

L16-29 2.38 6.20 1.02 0.32

L29-L34 −3.82 0.00 −0.96 2.15

5.3. Optimization Configuration Results of Single BESS

To verify that the BESS is configured in the sensitive and vulnerable line, the BESS
to improve the improved power flow exceeding risk index is the best. Firstly, the PSO
algorithm is used to obtain a set of Pareto solutions of the BESS configuration capacity and
location, as shown in Table 5.

Table 5. The single BESS configuration capacity and location.

ESS Power/MW ESS Capacity/MW·h ESS Location
Annual Investment
Cost/Million Yuan

the Sum of the Improved Power
Flow Exceeding Risk Index

541.15 541.15 × 2 31 443.47 24.18

276.31 276.31 × 2 16 226.44 18.29

391.88 391.88 × 2 16 321.15 19.47

From Table 5, there are two sets for the BESS configuration at node 16. There are
two sets for the BESS configuration at node 16. The annual investment cost of BESS is
226.44 million yuan and 321.15 million yuan. Similarly, the BESS configuration also obtains
the optimal solution at 31 nodes; the annual investment cost of BESS is 226.44 million yuan
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and 443.47 million yuan. Therefore, we obtained the lowest annual investment costs in
Pareto solutions in Table 2.

To verify that the PSO algorithm has obtained the optimal solution, the iterative
convergence curve comparison between PSO and GA (Genetic algorithm) is shown in
Figure 6. According to the iterative convergence curve of Figure 6, it can conclude that the
PSO has fewer convergence times, more effectively avoid local convergence, and has better
stability than the GA. We know that the PSO algorithm can obtain the optimal solution.

 
(a) 

(b) 

Figure 6. The iterative convergence curve. (a) Iterative convergence curve of energy storage annual
investment cost. (b) Iterative convergence curve of the sum of improved power flow exceeding the
risk index.

Then, the following three scenarios are compared and analyzed: (1) the BESS is
configured in a node in the sensitive and vulnerable line, and 31 nodes are selected in this
paper; (2) the BESS is configured in the nodes in the shortest path except for the sensitive
and vulnerable lines. This paper selects 27 nodes; (3) 21 nodes are selected for other nodes
with BESS configured outside the shortest path. Under the three conditions, each node is
connected to 541.15 MW of BESS, and the improved power flow exceeding risk index of
sensitive and vulnerable AC lines is shown in Tables 6–8.
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Table 6. The improved power flow exceeding risk index of the AC line with vulnerability after node
31 is connected to BESS.

AC Line
Initial

Power/p.u.
Power after
Fault/p.u.

LODF
The Improved Power Flow

Exceeding Risk Index

L30-31 1.02 −1.68 −0.68 −0.71

L14-19 −0.34 −1.3 −0.41 −0.83

L15-14 −0.34 −1.3 −0.24 −0.87

L15-12 0.34 1.3 0.24 0.39

L17-16 4.79 6.37 0.39 0.51

L16-29 2.38 6.79 1.1 0.29

Table 7. The improved power flow exceeding risk index of the AC line with vulnerability after node
27 is connected to BESS.

AC Line
Initial

Power/p.u.
Power after
Fault/p.u.

LODF
The Improved Power Flow

Exceeding Risk Index

L30-31 1.02 −2.98 −1 −0.48

L14-19 −0.34 −4.17 −1.13 −0.3

L15-14 −0.34 −4.17 −0.96 −0.22

L15-12 0.34 4.17 0.96 0.1

L17-16 4.79 6.36 0.39 0.51

L16-29 2.38 6.69 1.08 0.3

Table 8. The improved power flow exceeding risk index of the AC line with vulnerability after node
21 is connected to BESS.

AC Line
Initial

Power/p.u.
Power after
Fault/p.u.

LODF
The Improved Power Flow

Exceeding Risk Index

L30-31 1.02 −2.98 −1 −0.48

L14-19 −0.34 −1.69 −0.51 −0.67

L15-14 −0.34 −1.69 −0.34 −0.61

L15-12 0.34 1.69 0.34 0.27

L17-16 4.79 6.9 0.53 0.38

L16-29 2.38 7.03 1.16 0.28

It can be seen from Tables 6–8 that after the BESS is arranged at the 31 nodes of the
sensitive and vulnerable line, the risk index of tidal current out-of-limit of lines L31-30,
19-14, L14-15 and L17-16 exceeds 0.5, and only the risk index of tidal current out-of-limit of
lines L15-12 and L16-29 is lower than 0.5; After the BESS is arranged at 27 nodes, only the
improve power flow exceeding risk index of line L17-16 exceeds 0.5, and the improve power
flow exceeding risk index of other lines does not exceed 0.5; After the BESS is configured at
node 21, the improve power flow exceeding risk index of lines 19-14 and L14-15 exceeds
0.5, and the improve power flow exceeding risk index of other lines does not exceed 0.5; It
can be seen that the BESS configuration on the sensitive and vulnerable lines has greatly
improved the safe operation ability of AC lines.

It can be seen from Figures 7–9 that after the BESS is incorporated into 31 nodes, it
is helpful to suppress the oscillation of line power, and the change of line power is lower
than 1.5 p.u; after the BESS is incorporated into 27 nodes, the oscillation of line power is
increased, and the power variation of some lines is greater than 1.5 p.u; after the BESS is
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connected to 21 nodes, the power of AC lines on the shortest path changes irregularly, and
the power of some lines increases gradually after 17 s, greatly reducing the system stability.
It can be seen that only when the BESS is connected to the sensitive and vulnerable lines
that the safe and stable operation capacity of the AC lines can be effectively improved.

 

Figure 7. The shortest path power change curve after BESS is connected to node 31.

 
Figure 8. Shortest path power change curve after BESS access node 27.

 

Figure 9. The shortest path power change curve after BESS is connected to node 21.
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5.4. Optimization Configuration Results of Multi-BESS

When the system configures two and three BESS, a set of Pareto solutions is shown in
Table 9. The improved power flow exceeding risk index of sensitive and vulnerable AC
lines after configurations two and three BESS is shown in Tables 10 and 11. The shortest
path power change curve after BESS is shown in Figures 10 and 11.

Table 9. The multi-BESS configuration capacity and location.

Nodes BESS Power/MW
ESS

Capacity/MW·h BESS Location
Investment and

Construction
Costs/Million Yuan

the Sum of the Improved
Power

Flow Exceeding Risk Index

2 nodes
88.09 88.09 × 2 29

248.89 17.78
299.25 299.25 × 2 31

3 nodes
88.09 88.09 × 2 29

248.89 17.7811.87 11.87 × 2 19

287.38 287.38 × 2 31

Table 10. The improved power flow exceeding risk index of sensitive and vulnerable AC lines after
the configuration of two BESS.

AC Line
Initial

Power/p.u.
Power after
Fault/p.u.

LODF
The Improved Power Flow

Exceeding Risk Index

L30-31 1.02 −2.98 −1 −1.38

L14-19 −0.34 −4.17 −1.13 −1.48

L15-14 −0.34 −4.17 −0.96 −0.5

L15-12 0.34 4.17 0.96 0.5

L17-16 4.79 6.36 0.39 0.58

L16-29 2.38 6.69 1.08 0.5

Table 11. The improved power flow exceeding risk index of sensitive and vulnerable AC lines after
configuration three BESS.

AC Line
Initial

Power/p.u.
Power after
Fault/p.u.

LODF
The Improved Power Flow

Exceeding Risk Index

L30-31 1.02 −2.98 −1 −1.24

L14-19 −0.34 −1.69 −0.51 −1.48

L15-14 −0.34 −1.69 −0.34 −0.5

L15-12 0.34 1.69 0.34 0.5

L17-16 4.79 6.9 0.53 0.58

L16-29 2.38 7.03 1.16 0.5

It can be seen from Table 6 that when two and three BESS are configured on sensitive
lines, the total power of the BESS is the same, and the annual investment cost and the sum
of improved power flow exceeding risk index are also the same. Moreover, the sum of
the power of 19 nodes and 31 nodes, when three BESS are configured on sensitive lines, is
equal to the sum power of configured two BESS. It can be seen from Tables 7 and 8 that the
improved power flow exceeding risk index for sensitive and vulnerable AC lines is greater
than 0.5, and when three BESS are configured, the impact on the improved power flow
exceeding risk index is relatively small. It can be seen from Figures 9 and 10 that when two
and three BESS are configured for sensitive lines, the power variation of the line is much
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lower than configuring one BESS for sensitive lines. And suppressing power oscillation
is greatly improved. We know that configuring BESS for multiple nodes eliminating the
impact of DC power transfer on AC lines is better than the BESS configured for a single
node. Configuring BESS for multiple nodes to improve the safe and stable operation ability
of AC lines is better than the BESS configured for a single node. Secondly, when the
configured BESS quantity is greater than 2, it has a small impact on the sum of improved
power flow exceeding risk index and annual investment cost.

 
Figure 10. Shortest path power change curve after configuring 2 BESS.

 
Figure 11. Shortest path power change curve after configuring 3 BESS.

6. Conclusions

The method of identifying the sensitive and vulnerable transmission lines based
on improved power flow exceeding risk index is proposed, and it can apply to AC/DC
hybrid systems, weak power grids, and other power systems. And the proposed method
can quickly identify the sensitive and vulnerable transmission lines in the shortest path
and simplify the method of calculating the branch disconnection coefficient. The method
would not have to repeatedly calculate the impedance matrix of the line disconnection
and connection.
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The optimal energy storage configuration can be obtained by the multi-objective
optimal mathematical model, including minimizing the annual investment cost of BESS
and maximizing the sum of the improved power flow exceeding the risk index of the
sensitive and vulnerable transmission lines. The BESS for sensitive and fragile lines can
quickly eliminate the impact of DC power transfer on AC lines, and the BESS can also
suppress power fluctuations and greatly improve the transient stability operation ability of
the power grid.

The proposed energy storage configuration method does not only improve the tran-
sient stability of the power grid. Simultaneously, during the stability power grid, the
configured energy storage can actively supports voltage, frequency, etc. The configuration
method proposed in this article enriches the application scenarios of energy storage. The
safe and stable operation ability of the system is greatly improved.

In the future, we will study the HIL implementation of the proposed system along with
the proposed optimal allocation method. After this, the fault disturbance, power system
planning BESS resources will be explored through the robust optimization-based model.
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Abstract: The accelerated urbanization process has been considered to be the root cause of increasingly
severe energy consumption growth in China. However, energy is still an essential factor for the
urbanization process, so arbitrarily mitigating energy use currently will unquestionably slow down
the urbanization process. The principal contribution of this paper is to comprehensively analyze
the dynamic interaction mechanism between the new-type urbanization and energy consumption,
and further put forward a new idea of comparing the benefit of an increase in the level of new-type
urbanization resulting from energy consumption and the negative externality of environmental
damage related with energy consumption. This paper conducts an empirical study on the causal
relationship between new-type urbanization and energy consumption using Chinese provincial
administrative units from 1999 to 2020. And we find that new-type urbanization leads to energy
consumption negatively and energy consumption leads to new-type urbanization positively for
provinces in the eastern region. There is only a one-way effect of energy consumption on new-type
urbanization for provinces in the central and northeastern regions, and there is negative feedback
causality for provinces in the western region. Additionally, the benefit of an increase in the level of
new-type urbanization resulting from energy consumption is larger than the negative externality
of environmental damage related to energy consumption for provinces in the eastern, central, and
northeastern regions, yet it is totally opposite for provinces in the western region. Finally, we propose
some fruitful policy recommendations to construct new-type urbanization under the background of
clear reduction targets for energy consumption in China.

Keywords: new-type urbanization; energy consumption; environmental Kuznets curve;
PVAR approach

1. Introduction

When the “Reform and Opening-up” policy was put into practice in the year of 1978,
China’s urbanization experienced a steady upward trend [1,2]. According to the statistics
from the National Bureau of Statistics (NBS), China’s urbanization rate increased from
17.9% in 1978 to 65.2% in 2022. Nevertheless, much of China remains to be urbanized,
especially the inland regions. As China has a larger population, millions of rural residents
will move into urban areas every year during to-be urbanization process. Although China’s
urbanization greatly raises people’s living standards, it has also been deemed to be the
root cause of increasingly severe energy consumption growth; for example, the heavy use
of fossil energy, which undoubtedly brings about a series of environmental pollution [3].
The total energy consumption in China even made up 23.6% of the global total in the year
2018 [4]. Specifically, urban areas solely account for 75.15% of total energy consumption in
China [5]. As a responsible country, China has been determined to set clear reduction targets
for energy consumption. Because the urbanization process in China is still accelerating at
present, energy is still an essential factor for the urbanization process. Arbitrarily mitigating
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energy use currently will unquestionably slow down the urbanization process. Therefore,
there are two kinds of opposite effects simultaneously, which are the benefit of an increase in
the level of urbanization resulting from energy consumption and the negative externality of
environmental damage related to energy consumption respectively. Could the advantages
sufficiently offset the disadvantages? Investigating these two kinds of opposite effects has
vital theoretical and practical significance for promoting the urbanization process under the
background of clear reduction targets for energy consumption in China. If the advantages
of energy consumption outweigh its disadvantages, it pays to promote the urbanization
process by increasing energy consumption. However, if energy consumption does not
promote or even adversely affect the urbanization process, an energy conservation policy
should be adopted to offset the negative externality of environmental damage related to
energy consumption.

Previous studies have extensively investigated this subject, yet the majority empha-
sized the one-way effect of urbanization on energy consumption in the beginning. Many
scholars found that the urbanization process leads to energy consumption growth [6–9].
In contrast, some scholars argued that urbanization may lead to energy consumption
negatively [10–16]. Based on Northam [17], the third strand of research further examined
the nonlinear relationship between the two due to the mixed findings. Most scholars
confirmed that the nexus of the two is indeed nonlinear [2,18–20]. Another branch of the
literature used city size as a proxy variable for urbanization rate, which indicated that
there also was a nonlinear relationship between city size and energy consumption [21,22].
There are two kinds of explanations for the nonlinear relationship between the two. On
the one hand, the essence of urbanization can be ascribed to the agglomeration effect, scale
effect, and spatial spillover effect, which are conducive to reducing the energy consumption
of residents or increasing energy efficiency [5,14,23–25]. On the other hand, the urban-
ization process reduces energy consumption through industrial structure upgrading and
technical innovation [19,26–28].

The level of urbanization is mainly measured by the single index method in the above
studies. These simple indicators can only mirror the level of population-oriented urbaniza-
tion rather than the improvement of production and lifestyle. Especially after China issued
the “National New-type Urbanization Plan” in 2014, human-centered urbanization has
been put into practice. Therefore, investigating the relationship between new-type urban-
ization and energy consumption has much more practical significance currently. Recently, a
few scholars used the comprehensive index method to measure its connotation and further
examine its effect on energy consumption. Liu et al. [14] used a spatial econometric model
for China’s regions on this subject and found that new-type urbanization leads energy
consumption negatively, yet its effect on adjacent areas or the spatial spillover effect is
positive. Lin and Zhu [4] examined the effect of new-type urbanization on energy saving
and its transmission channels based on Chinese cities and found that it can bring about an
energy-saving effect. Yu [29] examined the ecological effect of new-type urbanization and
found that China’s new-type urbanization can improve energy efficiency. Feng et al. [30]
examined the effect of new-type urbanization on energy efficiency based on Chinese cities
and found that it has a double-threshold effect. Shao and Wang [31] examined the effect
of new-type urbanization on green total factor energy efficiency and found that it has a
heterogeneous effect for different cities. Not surprisingly, the relationship between the
two is much more complicated compared to traditional urbanization.

Apart from that, as an essential factor of economic development, energy consump-
tion is also conducive to promoting the level of urbanization. Ghosh and Kanjilal [32]
investigated the cointegration relationship between the two for India and found that there
is causality running from energy consumption to urbanization. Wu et al. [2] estimated
the direct effects of various energy consumption patterns in China and found that energy
consumption leads to urbanization positively, and the positive effect is dependent on en-
ergy consumption intensity, energy consumption scale, and energy consumption structure.
Xu and Wang [33] examined the threshold effect of energy consumption on new-type

114



Sustainability 2023, 15, 11117

urbanization in China and found that there was a significant threshold effect. Some schol-
ars further explored how energy consumption affected the urbanization process. These
studies found that the carbon emission reduction effect [34], agglomeration economy effect
and economies of scale [32,35,36], and the industrial structure effect [36–38] are primary
transmission channels through which energy consumption affects urbanization.

The above studies in this field indicate that there should be a bi-directional causality
between the two. So far, a wealth of studies primarily investigated uni-directional causality
on this subject, yet the bi-directional causality between the two is still scarce. Comparatively,
a large body of studies proved that economic growth and energy consumption present a
bi-directional causal relationship [39–44]. As urbanization is widely considered a symbol
of economic development [37–39], an abundance of support can be indirectly found for the
bi-directional causality relationship on our subject. To the best of our knowledge, only Tang
et al. [45] explored the two-way correlation mechanism between new-type urbanization
and clean energy consumption based on Chinese provincial data and found that there is a
significant two-way promoting effect between the two. To sum up, the extant literature in
this field actually denotes that energy consumption probably affects urbanization by means
of its effects on economic development.

Despite the existing studies in this field having explored extensively the relationship
between the two, there are still a few drawbacks on this subject. Firstly, the bulk of empirical
studies simply examined how urbanization affects energy consumption, or whether energy
consumption promoted the level of urbanization, and these empirical results did not
compare the benefit of an increase in the level of urbanization resulting from energy
consumption and the negative externality of environmental damage related to energy
consumption, so they cannot provide corresponding policy implications for promoting the
urbanization process. Secondly, there should be a bi-directional causality between the two,
and the existing studies mainly examined the one-way effect of urbanization on energy
consumption. Thirdly, the empirical studies on this subject are generally conducted based
on the linear relationship hypothesis, and the estimated results are always inconsistent.
The nonlinear relationship hypothesis may be more realistic, especially for the effect of new-
type urbanization, which remains to be further examined empirically. In this regard, our
study makes the following contributions. Firstly, this paper comprehensively analyzes the
dynamic interaction mechanism between new-type urbanization and energy consumption,
aiming to reveal the bi-directional causality between the two and extend the depth and
breadth of this subject. Secondly, this paper put forward a new idea of comparing the benefit
of an increase in the level of new-type urbanization resulting from energy consumption and
the negative externality of environmental damage related to energy consumption, which
can provide targeted policy recommendations. Thirdly, this paper creatively explains
the estimated results with the concept of the well-known Environmental Kuznets Curve
(EKC) hypothesis based on some energy-related data, which not only adds new empirical
evidence for the EKC relation but also provides a robustness test for our regression results
given that new-type urbanization and energy consumption factually present the two-way
causal relationship.

The remainder of this article is arranged as follows. The following section introduces
the measurement methods and analysis of the measurement results; Section 3 outlines the
econometric specification and presents empirical results; and Section 4 concludes.

2. Measurement Methods and Analysis of Measurement Results

2.1. Measurement Methods

The most critical things are methods for calculating the level of new-type urbanization
and energy consumption in this paper. According to Ma et al. [46], the amount of energy
consumption per capital is applied to measure the level of energy consumption. Similar to
the existing studies [4,47], the composite index method is used to fully measure the level
of new-type urbanization. The index system is made up of two levels, which include a
total of 19 computable indices, as is shown in Table 1. To overcome some shortcomings
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of the subjective weighting method, the entropy method is employed to calculate the
constructed comprehensive urbanization index. The “+” and “−” of Index Attributes in
Table 1 signify the influence of 19 computable indices on the comprehensive index, and
“+” indicates an increase in the metric of indices would promote the comprehensive index, and
“−” indicates an increase in the metric of indices would decrease the comprehensive index.

Table 1. China’s comprehensive urbanization index system. Reprinted from [48]. Copyright
5584080645167 (2023) with permission from Elsevier.

Index I Index II Index Attribute

Population

Urban population density +
Full-time equivalent of R&D personnel +

Urban population ratio +
Number of college degrees or above per

ten thousand people +

Proportion of employed persons in the
tertiary industry +

Economy

Gross domestic products per capita +
Consumption proportion of urban to rural residents −

Disposable income of urban household per capita +
Tertiary industry as a percentage of regional GDP +

Living environment

Urban wastewater treatment ability per day −
Green covered area as a percentage of completed area +

Greenery area of per capital park +
Area under a cleaning program per square kilometer

of built-up area +

Living conditions

Urban gas access rate +
Urban water access rate +

Number of public toilets per ten thousand people +
Number of public transportation vehicles per ten

thousand people +

Urban per capita area of paved roads +
Number of patent grants per ten thousand people +

The sample data of our empirical research spans 22 years, from 1999 to 2020, and
includes all provincial administrative units in China. The original data for energy con-
sumption are obtained from the China Energy Statistical Yearbook and the China Statistical
Yearbook. All relevant data for calculating the comprehensive urbanization index are
obtained from the China Statistical Yearbook, China Energy Statistical Yearbook, China City
Statistical Yearbook, China Statistical Yearbook on Science and Technology, each provincial
statistical yearbook, and so on. Considering the data unavailability, Tibet, Hong Kong,
Macao, and Taiwan are deleted from the sample in our empirical study. Consequently,
the research sample finally consists of 30 provincial administrative units. And these
30 provincial administrative units can be classified into four categories according to the
National Bureau of Statistics: east, northeast, central, and west. So as to cancel the impact
of the price level in different years, all data related to nominal GDP are revised to a constant
price based on the 1999 price index in the process of computation.

2.2. Analysis of Measurement Results

According to the specific calculation method introduced above, the provincial level of
energy consumption in China from 1999 to 2020 is calculated firstly. To visually describe the
characteristics of the temporal–spatial evolution in the provincial level of energy consump-
tion, the measurement results are reported in the form of topographic maps. Figure 1 shows
the concrete results. Due to space constraints, the results from 1999, 2007, 2013, and 2020
are only displayed. It can be clearly seen in Figure 1 that the dark blue areas represent the
highest level of energy consumption in 30 provincial administrative units. Obviously, the
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number of dark blue regions increased from zero in 1999 to ten in 2020. For the convenience
of discussions, all provincial administrative units are called “province”. Therefore, we can
conclude from these results that the provincial level of energy consumption in China is on
the rise over the study period [43,49]. And in 2020, the provincial level of energy consump-
tion demonstrated visible spatial differentiation. Among the provinces with the highest
level of energy consumption, four provinces lie in the western region: Xinjiang, Qinghai,
Gansu, and Inner Mongolia. Four provinces, Beijing, Shanghai, Hebei, and Jiangsu, are
in the eastern region. Only one province, Shaanxi, lies in the central region, and only
one province, Liaoning, lies in the northeastern region. Generally, the western region has
the highest level of energy consumption among the four types of regions, followed by
the eastern region. And the rest of the two regions have comparatively lower levels of
energy consumption. The provincial level of energy consumption from the eastern to the
central, northeastern, and western regions is similar to the U-shaped curve [49]. The spatial
characteristics of the provincial level of energy consumption imply preliminarily that it is
necessary to give thought to regional heterogeneity on this subject.

Figure 1. Chinese provincial level of energy consumption for some years (million tons).

Then, the comprehensive urbanization index is calculated by the widely used entropy
method. To visually describe the characteristics of the temporal–spatial evolution of
this index, the measurement results are reported similarly in the same way. Figure 2
shows the concrete results. Due to space constraints, the results from 1999, 2007, 2013,
and 2020 are only displayed. It can be clearly seen in Figure 2 that the dark blue areas
represent the highest level of new-type urbanization in 30 provincial administrative units.
Obviously, the number of dark blue regions is zero in 1999, yet nearly all provinces in
the eastern and central regions belonged to the highest group in 2020. Therefore, we can
conclude from these results that the provincial level of new-type urbanization has also
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increased greatly over the study period, especially after the year 2013 [2,4,49]. On the
one hand, the main reason for these time series characteristics can be probably ascribed
to the “National New-type Urbanization Plan”, which makes the economy, society, and
ecology balanced in the process of urbanization. On the other hand, the increase in the level
of energy consumption may also be conducive to speeding up the process of urbanization.
And in 2020, the provincial level of new-type urbanization has also displayed significant
spatial differentiation. Specifically, the majority of provinces have achieved the highest
status in 2020. And only a few provinces have not reached the highest level, these are
Xinjiang, Jilin, Shanxi, Gansu, Guizhou, Qinghai, Yunnan, and Guangxi. Additionally,
these provinces mainly lie in the western and central regions. The average comprehensive
urbanization index of the provinces in the eastern, central, northeastern, and western
regions is calculated to be 0.299, 0.169, 0.188, and 0.159, respectively, which verifies that the
provincial level of new-type urbanization looks like the inverted S-shaped curve, which is
slightly different with the provincial level of energy consumption [46,47]. Therefore, the
spatial characteristics of the provincial level of new-type urbanization further imply that it
is necessary to give thought to regional heterogeneity on this subject.

Figure 2. Chinese provincial level of new-type urbanization for some years.

To display the tendency intuitively, the growth rate of the above measured variables is
depicted with a scatter diagram in Figure 3 for the four groups, eastern (Figure 3a), central
(Figure 3b), northeastern (Figure 3c), and western regions (Figure 3d), respectively. In
Figure 3, the relationship between comprehensive urbanization index growth and energy
consumption growth is significantly different in the four groups. Specifically, there seems to
be a strong relationship between the northeast and western regions, yet no such relationship
emerges in the eastern and central regions. These results further prove that we cannot
neglect the “one size for all” homogeneity issue among provinces when investigating
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the causal relationship between the two, and it is reasonable to classify the data into
four groups: east, northeast, central, and west. Secondly, the weak relationship between
the two in the eastern and central regions denotes there may be a nonlinear relationship
between comprehensive urbanization index growth and energy consumption growth, and
the traditional linear model is not suitable for this subject. Nevertheless, it should be
noted that these kinds of scatter charts roughly reflect the possible correlation relationship
between the two, and the exact relationship between the two remains to be confirmed
rigorously by employing reasonable econometric models.

Figure 3. Comprehensive urbanization index growth vs. energy consumption growth.

3. PVAR Model Regression Results and Analysis

3.1. Model Specification

So as to fully reveal the causal on this subject, the panel vector autoregression (PVAR)
model is employed to conduct empirical research. Compared with the widely used vector
autoregression (VAR) model, the PVAR model has the advantage of dealing with long-
term panel data and endogenous causality in the traditional linear regression model. The
corresponding PVAR model is constructed as follows:

Yit = Γ0 +
n

∑
p=1

ΓpYit-p + δi + ft + εit

where the subscripts i and t denote province and year, respectively; Yit is a multi-dimensional
variable, which is NU and EC, representing the level of new-type urbanization and energy
consumption, respectively, measured by the methods introduced hereinabove; Yit-p is a
p-period lag term of Yit; and δi and ft indicate individual province fixed effects and year
fixed effects, respectively. εit is termed the random disturbance.

As the PVAR model includes the lag term of dependent variables and individual
province fixed effects, it can be considered a typical dynamic panel data model. Thus, the
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OLS estimation will be biased and inconsistent. Therefore, the system GMM proposed by
Blundell and Bond [49] is used to estimate the PVAR model. The PVAR model is commonly
conducted by the following steps [50,51]. Firstly, the stationarity of the panel data and the
causal relationship between NU and EC have to be tested. Secondly, the optimal lag order
needs to be selected, and the PVAR model can be estimated logically. Thirdly, the impulse
response graph will be displayed based on the PVAR model regression. The last step is the
variance decomposition.

3.2. PVAR Model Regression Analysis
3.2.1. Stationarity Tests

First of all, it is necessary to inspect the stationarity of time series variables. The IPS,
Fisher-ADF, and Fisher-PP are comprehensively used to implement unit root tests, and the
results are reported in Table 2. In Table 2, the p-values of all tests for the first-difference
series of NU and EC are all 0.000, which rejects the null hypothesis at the 1% significance
level. Hence, we can conclude that the first-difference series of NU and EC are stationary.
In other words, these original data are integrated processes of order one.

Table 2. Unit root test results.

Variables
IPS Fisher-ADF Fisher-PP

Statistics p-Value Statistics p-Value Statistics p-Value

NU −3.272 0.001 107.964 0.000 39.533 0.988
NU−1 −13.091 0.000 290.177 0.000 615.121 0.000

EC −1.569 0.363 141.268 0.000 45.468 0.943
EC−1 −10.008 0.000 219.605 0.000 290.094 0.000

Notes: The null hypothesis is that the time series variables have a unit root process.

3.2.2. Benchmark Regression Results

Before estimating the PVAR model, an optimal lag p-period of time series variables
remains to be explored. Based on the standard procedure in empirical studies, the AIC,
BIC, and HQIC are used to select the optimal lag order. The selection of two lag periods is
reasonable. Therefore, 2 is the optimal lag order in this paper. The estimation results of the
PVAR model are reported in Table 3. The EC equation reflects the effects of EC and UN on
EC, and the UN equation reflects the effects of UN and EC on UN. The estimated results
for all provinces as a whole are reported in the top line of Table 3. As shown in Table 3,
in the EC equation, the first-period lag of EC has a significant positive effect on EC, and
the second-period lag of EC has a significant negative effect on EC, which indicates that
energy consumption presents the characteristics of path-dependent inertia in the short run,
yet it tends to converge in the long run [4,47]. The first-period lag of NU has a significant
negative effect on EC and the second-period lag of NU has a significant positive effect on EC,
which indicates that new-type urbanization leads to energy consumption negatively in the
short run [10–16], yet the new-type urbanization leads to energy consumption positively
in the long run [6–9]. In the NU equation, the first-period lag of NU has a significant
positive effect on NU, and the second-period lag of NU does not have any significant effect
on NU, which indicates that new-type urbanization also presents the characteristics of
path-dependent inertia in the short run. The first-period lag of EC has a significant positive
effect on NU [33], and the second-period lag of EC has a significant negative effect on
NU [45], which indicates that an increase in energy consumption brings about a further
increase in the level of new-type urbanization in the short run, yet it is detrimental to
new-type urbanization in the long run.
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Table 3. Estimation results of the PVAR model.

Sample Type Variable Coefficient Variable Coefficient

Countrywide

EC equation
EC−1

1.553 ***
(14.04) NU−1

−1.279 **
(2.00)

EC−2
−0.513 ***

(−8.32) NU−2
1.138 *
(1.81)

NU equation
NU−1

1.342 ***
(4.84) EC−1

0.021 **
(2.37)

NU−2
−0.257
(−0.84) EC−2

−0.022 ***
(−2.58)

Eastern

EC equation
EC−1

1.492 ***
(15.46) NU−1

−0.879 *
(−1.80)

EC−2
−0.465 ***

(−5.45) NU−2
0.638
(1.18)

NU equation
NU−1

1.083 ***
(5.09) EC−1

0.042 ***
(4.42)

NU−2
0.008
(0.04) EC−2

−0.035 ***
(−4.80)

Central

EC equation
EC−1

1.451 ***
(11.31) NU−1

−1.188
(−1.40)

EC−2
−0.495 ***

(−4.21) NU−2
1.321 *
(1.69)

NU equation
NU−1

1.507 ***
(7.37) EC−1

0.031 **
(2.35)

NU−2
−0.448 **
(−2.02) EC−2

−0.027 **
(−2.02)

Northeastern

EC equation
EC−1

1.689 ***
(10.52) NU−1

−10.142
(−1.35)

EC−2
−0.408 ***

(−3.43) NU−2
5.158 *
(1.87)

NU equation
NU−1

0.891 ***
(3.59) EC−1

0.029 ***
(2.81)

NU−2
0.189
(0.94) EC−2

−0.026 ***
(−2.93)

Western

EC equation
EC−1

1.508 ***
(18.47) NU−1

−3.508 ***
(−3.05)

EC−2
−0.415 ***

(−5.21) NU−2
1.462 *
(1.95)

NU equation
NU−1

1.339 ***
(4.57) EC−1

0.010
(2.37)

NU−2
−0.284
(−0.97) EC−2

−0.008 *
(−1.66)

Notes: ***, **, and * show significant levels at 1%, 5%, and 10%, respectively. The value given in parentheses is
t statistics. The subscripts −1 and −2 represent the first-period lag and the second-period lag, respectively.

The estimated results for all provinces as a whole neglect regional heterogeneity. To
explore this issue, groups of provinces are classified into four types of regions according
to NBS. The estimated results for provinces in the eastern region are reported in the top
second line of Table 3. As shown in Table 3, in the EC equation, the first-period lag of EC
and the second-period lag of EC have a similar effect on EC compared to the whole country.
The first-period lag of NU has a significant negative effect on EC, and the second-period lag
of NU does not have any effect on EC, which indicates that new-type urbanization leads to
energy consumption negatively in the short run [4,30], yet this inhibitory effect gradually
disappears over time. In the NU equation, both NU and EC have a similar effect on UN
compared to the whole country.

The estimated results for provinces in the central region are reported in the top third
line of Table 3. As shown in Table 3, in the EC equation, the first-period lag of EC and the
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second-period lag of EC have a similar effect on EC compared to the whole country. Both
the first-period lag of NU and the second-period lag of NU do not have any significant
effect on EC, which indicates that an increase in the level of new-type urbanization does
not bring about energy consumption [52]. In the NU equation, the first-period lag of NU
has a significant positive effect on NU, and the second-period lag of NU has a significant
negative effect on NU. The first-period lag of EC and the second-period lag of EC have a
similar effect on UN compared to the whole country.

The estimated results for provinces in the northeastern region are reported in the
fourth line of Table 3. As shown in Table 3, in the EC equation, the first-period lag of EC
and the second-period lag of EC have a similar effect on EC compared to the whole country.
Both the first-period lag of NU and the second-period lag of NU do not have any significant
effect on EC, which also indicates that an increase in the level of new-type urbanization
does not bring about energy consumption [52]. In the NU equation, both NU and EC have
a similar effect on UN compared to the whole country.

The estimated results for provinces in the western region are reported in the fifth line
of Table 3. As shown in Table 3, in the EC equation, the first-period lag of EC and the
second-period lag of EC have a similar effect on EC compared to the whole country. The
first-period lag of NU and the second-period lag of NU have a similar effect on EC as the
eastern region, which indicates that new-type urbanization leads to energy consumption
negatively in the short run [4,30], yet this inhibitory effect gradually disappears over time.
In the NU equation, the first-period lag of NU and the second-period lag of NU have
a similar effect on NU compared to the whole country. The first-period lag of EC does
not have any effect on UN, and the second-period lag of EC has a significantly negative
effect on UN, which indicates that an increase in energy consumption is detrimental to
new-type urbanization.

3.2.3. Discussions with Concept of EKC

According to existing studies, energy consumption may lead to economic development
and environmental pollution simultaneously [53–55]. Since new-type urbanization is
widely considered a symbol of economic development [38], the critical issue is whether
energy consumption can bring about larger benefits with respect to its cost. This basic
benefit–cost tradeoff can be inferred from the causal relationship between the two. When
energy consumption is conducive to promoting the level of new-type urbanization, it may
indicate that the benefit of an increase in the level of new-type urbanization resulting from
energy consumption is larger than the negative externality of environmental damage related
to energy consumption. On the contrary, if the new-type urbanization leads to energy
consumption positively, it may indicate that the advantage of energy consumption exceeds
its disadvantage. From the estimated results for all provinces as a whole, we can conclude
that the advantage of energy consumption is larger than its disadvantage in the short run,
yet the relationship is opposite over time. From the estimated results for provinces in the
eastern region, we can conclude that the advantage of energy consumption is always larger
than its disadvantage over time. This again proves that those provinces in the eastern
region may have started to cope with the possible environmental damage related to energy
consumption. From the estimated results for provinces in the central, northeastern, and
western regions, the advantages of energy consumption and its disadvantages are similar
to the whole country, where the negative externality of environmental damage exceeds its
benefit over time.

The PVAR model regression results can also be interpreted with the concept of the
EKC, which assumes that economic growth and environmental pollution present an
“inverted U” relationship [56]. Initially, as the level of new-type urbanization is rela-
tively low, there are not too many industrial activities that lead to environmental pollution.
Therefore, an increase in the level of new-type urbanization is conducive to reducing energy
consumption for all samples in the short run. As the pace of new-type urbanization acceler-
ates, there will be more and more high-pollution industries, and environmental pollution
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may gradually increase. As the estimation results indicated, an increase in the level of
new-type urbanization may enhance energy consumption in the long run for the central,
northeast, and western regions. Even so, for provinces in the eastern region, new-type
urbanization is not conducive to increasing energy consumption over time. As the economy
improves, these provinces may start to focus on the possible environmental damage related
to energy consumption and attempt to take some remedial actions [57]. Generally speaking,
as long as new-type urbanization reaches a high level as the eastern region, more resources
may be dedicated to environmental protection. Consequently, an increase in the level of
new-type urbanization will be conducive to reducing environmental pollution. Our main
target is not to explore the EKC, yet the implications of the estimated results are compatible
with the EKC prediction. To sum up, as the pace of new-type urbanization accelerates,
a negative externality, such as environmental pollution related to energy consumption,
gradually increases. Once a province reaches a high level of new-type urbanization, it may
conversely reduce the negative externality related to energy consumption, as indicated by
the EKC assumption.

3.3. Impulse Response Analysis

So as to further investigate the dynamic relationship between the variables in the
PVAR model, the impulse response function is computed. Specifically, we set up Monte
Carlo simulations for four types of subsamples and finally obtained a 4 × 4 impulse
response graph, and the corresponding results are displayed in Figure 4 for the different
groups: eastern (Figure 4a), central (Figure 4b), northeastern (Figure 4c), and western
regions (Figure 4d), respectively.

Figure 4. Variable impulse responses.

For provinces in the eastern regions, only NU shows a positive response to a standard
deviation in its own unit. These results further verify that provinces in the eastern region
may have been committed to environmental protection, hence there is no dynamic rela-
tionship. For provinces in the central region, the impulse response of EC to NU is positive,
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which is consistent with the PVAR model regression analysis. The implication is that these
provinces should pay much attention to the high-pollution industries while the pace of
new-type urbanization accelerates. The impulse response of NU to EC is positive in the cur-
rent period, and then it decreases in the first period and tends to be weak after the second
period, which is also consistent with the PVAR model regression analysis. The implication
is that the negative externality of environmental damage related to energy consumption
may offset the benefit of an increase in the level of new-type urbanization from energy
consumption over time. While energy consumption is not conducive to promoting the
level of new-type urbanization, these provinces should adopt some conservation policies.
For provinces in the northeastern region, the impulse response of EC to NU is negative,
which quickly reaches the highest value and then converges to zero. The implication is
that the negative externality of environmental damage related to energy consumption
may gradually increase over time. The impulse response of NU to EC is positive in the
current period, and then it decreases in the first period and tends to be weak after the
fourth period, which is the same as the provinces in the central region. For the provinces in
the western region, the impulse response of EC to NU and the impulse response of NU to
EC are virtually the same as the provinces in the central region, hence it is not necessary
to interpret these results. In contrast to other regions, it is noteworthy that the impulse
response of EC to NU does not diminish over time. This further denotes that the urbaniza-
tion process in the western region relies predominantly on high energy consumption and
highly pollutant-intensive inputs, and the legacy of conventional economic development
approaches remains an arduous obstacle to overcome.

3.4. Variance Decomposition

In order to compare the relative contribution degree of unit standard deviation in
EC and NU, we further adopt the variance decomposition. The variance decomposition
results of period 5, period 10, and period 20 are displayed in Table 3 for different groups:
(a) eastern, (b) central, (c) northeastern, and (d) western regions. As shown in Table 4, for
provinces in the eastern, central, and western regions, the variance decomposition of EC
is dominated by its own shock, and NU has a small effect. However, for provinces in the
northeastern region, the variance decomposition of EC is dominated by the effect of NU,
and its own shock has a small effect. For provinces in the eastern region, the variance
decomposition of NU to its own shock is almost equal to the effect of EC. However, for
provinces in central, northeastern, and western regions, the variance decomposition of NU
is dominated by its own shock, and EC has a small effect. Combined with the variance
decomposition of both variables, the effect of EC on NU is much larger than the effect
of NU on EC for provinces in the eastern region, yet it is the opposite for provinces in
central, northeastern, and western regions. These variance decomposition results also
further confirm that energy consumption may bring about greater advantages relative to
its disadvantage for provinces in the eastern region, yet it is imperative to cope with the
possible cost of environmental pollution related to energy consumption for the provinces
in central, northeastern, and western regions.

Table 4. Variance decomposition.

Response Variable s
Eastern Central Northeastern Western

EC NU EC NU EC NU EC NU

EC 5 0.979 0.021 0.916 0.084 0.443 0.557 0.986 0.014
NU 5 0.057 0.943 0.177 0.823 0.233 0.767 0.036 0.964
EC 10 0.950 0.050 0.818 0.182 0.255 0.745 0.913 0.087
NU 10 0.194 0.806 0.124 0.876 0.118 0.882 0.032 0.968
EC 15 0.924 0.076 0.756 0.244 0.160 0.840 0.820 0.180
NU 15 0.360 0.640 0.106 0.894 0.069 0.931 0.040 0.960
EC 20 0.903 0.097 0.724 0.276 0.103 0.897 0.744 0.256
NU 20 0.507 0.493 0.099 0.901 0.043 0.957 0.047 0.953
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So as to visually display the relative contribution degree of unit standard deviation in
EC and NU, we further draw the variance decomposition results of EC and NU in the form
of a coordinate axis. Figure 5 shows the variance decomposition of EC to NU for different
groups: variance decomposition of EC to NU (Figure 5a) and variance decomposition of
NU to EC (Figure 5b), respectively. As shown in Figure 5a, NU has a remarkable influence
on EC for the provinces in the northeastern region, and the contribution rate is the largest
among the four groups. Additionally, NU has an increasing contribution rate to unit
standard deviation in EC for all groups. As explained above, these results imply that it
is imperative to cope with the possible cost of environmental pollution related to energy
consumption. As shown in Figure 5b, EC has decreasing contribution rate to unit standard
deviation in NU for provinces in the central, northeastern, and western regions, yet EC
has an increasing contribution rate to unit standard deviation in NU for provinces in the
eastern region, which became the largest after the tenth forecast period. These results also
imply that environmental pollution related to energy consumption may gradually increase
as the pace of new-type urbanization accelerates for provinces in the central, northeastern,
and western regions, which are consistent with the estimation results of the PVAR model.

 

Figure 5. Variance decomposition of EC and NU.

4. In-Depth Analysis of Energy-Related Data

Finally, the pollution-related calculations are included for an in-depth analysis. We
collect supplementary data, such as carbon emissions per real CNY 10,000, energy used
per real CNY 10,000 (energy consumption intensity), the ratio of output value in the
tertiary industry to real GDP, and the average per capita real GDP. All the relevant data
are from each year’s China Statistical Yearbooks, China Energy Statistical Yearbooks, each
provincial statistical yearbook, and so on. As original data for the carbon emissions
can be obtained from 2003 to 2019, the sample data span from 2003 to 2019. Figure 6
shows these calculations for different groups: carbon emissions (Figure 6a), energy
consumption intensity (Figure 6b), industrial structure (Figure 6c), and per capita real GDP
(Figure 6d), respectively.
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Figure 6. Some energy-related data.

As shown in Figure 6a, the largest carbon emitter appears in the western region,
followed by the northeastern and central regions, and the least carbon emitter happens to
be in the eastern region. As the pace of the new-type urbanization accelerates, provinces
in the eastern region may make great strides to reduce the pollution of carbon emissions
related to energy consumption. These results undoubtedly denote that there is an EKC
relation. As shown in Figure 6b, the western region has the highest energy consumption
intensity, followed by the northeastern and central regions, and finally the eastern region.
As energy consumption intensity represents the efficiency of energy use, the characteristics
of this variable in the four different groups denote that the energy is the most efficiently
used in the eastern regions, followed by central and northeastern regions, and finally the
western region. As the pace of new-type urbanization accelerates, provinces in the eastern
region may successfully change their energy mix, and a decrease in carbon emissions is
also can be anticipated. For example, pollution-free electrical energy can be massively put
to use. To sum up, these two variables both confirm the causal relationship that new-type
urbanization leads to energy consumption negatively for provinces in the eastern region,
and new-type urbanization leads to energy consumption positively for provinces in the
central, northeastern, and western regions over time, which seems to be in agreement with
the estimation results of the PVAR model.

Figure 6c,d further provides the economic reality for the EKC relation and the causal
relationship between the two. As shown in Figure 6c, the ratio of output value in the
tertiary industry to real GDP in the eastern region is the highest among the four groups,
followed by the northeastern region, the western region, and the central region. As shown
in Figure 6d, per capita real GDP in the four groups is the same as Figure 6c. As the economy
develops in the eastern region, there may be a trend toward the tertiary industry, which
produces low-pollution products. Therefore, new-type urbanization leads to negative
energy consumption. Provinces in the central, northeastern, and western regions are
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generally eager to raise the per capita real GDP level, so standards are lax concerning
relevant environmental regulations. Even some high-pollution industries are encouraged
in these regions, and spontaneously their ratio of output value in the tertiary industry to
real GDP is behind the eastern region. Hence, the economic reality is consistent with the
EKC relation and the causal relationship between the two.

5. Concluding Remarks

The panel data of Chinese provincial administrative units are classified into four
categories according to the widely adopted standard in this paper. In order to explore
the causal relationship between new-type urbanization and energy consumption, we
employ the PVAR model to investigate this issue and obtain the following conclusions.
(1) For provinces in the eastern region, new-type urbanization leads to energy consumption
negatively, and energy consumption leads to new-type urbanization positively, which
becomes negative over time. For the provinces in the central and northeastern regions, an
increase in the level of new-type urbanization does not bring about energy consumption,
while the uni-directional causal relationship running from energy consumption to new-type
urbanization is similar to provinces in the eastern region. For provinces in the western
region, there is negative feedback causality between the two. (2) For provinces in the
eastern region, the advantage of energy consumption is larger than its disadvantage in the
short run, yet the relationship is the opposite in the long run. For provinces in the central
and northeastern regions, the advantages of energy consumption and its disadvantages are
similar to provinces in the eastern region. However, for provinces in the western region,
the disadvantage of energy consumption may exceed its advantage. These findings are
also consistent with the EKC relation. Once a province reaches a high level of new-type
urbanization, it may conversely reduce the negative externality of environmental damage
related to energy consumption. (3) The impulse response analysis further presents the
dynamic relationship between the two. The variance decomposition demonstrates that
the effect of energy consumption on new-type is much larger than the effect of new-type
urbanization on energy consumption for the provinces in the eastern region, while it
is totally the opposite for provinces in the central, northeastern, and western regions.
(4) The largest carbon emitter appears in the western region, followed by the northeastern
and central regions, and the smallest carbon emitter happens to be in the eastern region. The
western region has the highest energy consumption intensity, followed by the northeastern
and central regions, and finally the eastern region. The ratio of output value in tertiary
industry to real GDP in the eastern region is the highest among the four groups, followed
by the northeastern region, the western region, and the central region, and the per capita
real GDP in the four groups is the same as the ratio of output value in the tertiary industry
to real GDP.

On the basis of our conclusions above, several straightforward policy implications can
be put forward. As the causal relationship presents regional heterogeneity, a one-size-for-all
energy policy will not work effectively. Our government should take into consideration
the different levels of new-type urbanization while implementing an energy consumption
policy. Specifically, for provinces in the eastern region, they should spare no effort to
promote the level of new-type urbanization and mitigate energy use in the construction
of new-type urbanization. For provinces in the central region, energy consumption is
not conducive to promoting the level of new-type urbanization, hence they should adopt
some conservation policies to avoid the negative externality of environmental damage
related to energy consumption. For provinces in the northeastern and western regions,
the negative externality of environmental damage related to energy consumption may
gradually increase, and they should especially pay attention to cope with the possible
environmental damage and take remedial actions. Finally, according to the in-depth
analysis of energy-related data, for the provinces in the northeastern and western regions,
they should try to raise the efficiency of energy use, so as to reduce carbon emissions.
For example, our Chinese government can encourage enterprises to carry out energy-
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saving technologies in the production of goods and services. Additionally, for provinces
in the northeastern and western regions, some high-pollution industries may have been
encouraged, hence standards have to be strict concerning environmental protection and
relevant environmental regulations.

The used methodology in this paper has some shortcomings, which calls for further
research. Firstly, the constructed comprehensive urbanization index does not take into
consideration the aspect of income inequality due to data availability. A comprehensive
urbanization index should be constructed to reflect more about social welfare. Secondly, the
empirical study in this paper does not consider the spatial spillover effect when exploring
the causal relationship between energy consumption and urbanization. As we all know,
both the level of energy consumption and urbanization probably present a spatial autocor-
relation relationship, so future studies should employ spatial econometric techniques in
this topic to deal with the possible estimation bias of the non-spatial econometric models.
Thirdly, the empirical study in this paper is still based on Chinese provincial-level data. As
the urban areas are the primary body to promote the urbanization process currently, it is of
great value to conduct in-depth investigations at the city level.
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Abstract: With the increasing global demand for renewable energy (RE), the growing share of new
energy sources has become an inevitable trend. However, due to the uncertainty and fluctuation of
renewable energy generation, this poses challenges to the stability of the power system. To mitigate
the volatility of wind power output, ensure reliable power supply, and improve energy storage
utilization, shared energy storage (SES) can be deployed in renewable energy bases (REBs) to alleviate
the pressure on the power supply. However, electrochemical energy storage (EES) faces issues such
as lifespan degradation and maintenance cost allocation. In this regard, this paper establishes an
EES characterization model considering the dynamic degradation characteristics of batteries and
analyzes the coupled relationship between lifespan degradation laws and key parameters in SES
operation. Additionally, to assess the impact of electrochemical energy storage’s dynamic degradation
characteristics on energy capacity allocation and operational strategies, an optimization model for
SES in REBs is developed. Building upon this, a cost allocation mechanism is designed based on
the marginal contribution in both the day-ahead and the real-time markets to address the differing
demands for SES among different units within the REBs. Case studies are conducted to validate
the rationality of the proposed optimization model for SES in REBs and the adaptability of the cost
allocation mechanism. The results provide valuable insights for practical applications.

Keywords: shared energy storage; renewable energy base; dynamic degradation characteristics;
two-stage market optimization; cost allocation mechanism

1. Introduction

With the implementation of the dual-carbon target, it has become clear that large-scale
renewable energy generation, specifically through wind and photovoltaic power, is the
direction and necessary choice for new power systems in the future [1–3]. To achieve the
strategic goals of building a new power system, China has proposed to further build REBs
to facilitate the high-quality and rapid development of RE. The “14th Five-Year Plan for
China’s Economic and Social Development and the Long-Range Objectives through the
Year 2035” released in March 2021 proposes to focus on developing nine clean energy bases
and four offshore wind power bases during the duration of the 14th Five-Year Plan. In
June 2022, the National Development and Reform Commission and nine other departments
issued the “14th Five-Year Plan for the Development of RE”, which explicitly proposes
active steps to promote the development of wind and solar power generation facilities, and
expedite the construction of large-scale REB projects, with a particular emphasis on desert,
Gobi, and other barren regions [4–6]. However, the “anti-peak” characteristic of wind
power and the weather impact on photovoltaic power generation have increased volatility
of the net load curve, which imposes higher requirements on flexible resources for the new
power system. Several provinces have implemented policies mandating that RE plants
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install a specific percentage of ES to reduce the influence of RE integration on the safety
and stability of the power grid. The integration of energy storage systems with renewable
energy sources addresses the mismatch between renewable energy generation and load
demand and reduces the uncertainty of renewable energy output, thereby enhancing the
overall operational efficiency of the grid, lowering power supply costs, improving system
stability, and enhancing power quality [7–9].

Due to the instability of RE, ES is needed to improve the total efficiency and stability
of the power grid, reduce electricity supply costs, and enhance the utilization rate of RE.
Currently, EES is the main ES technology, and its application has become increasingly
widespread as its technology continues to develop and costs continue to decline [10]. Nev-
ertheless, when ES is solely coupled with REBs, its usage rate is comparably low, making it
challenging to recoup the expenses of ES, particularly in the present scenario where raw
material costs are surging while RE project prices continue to fall [11,12]. The utilization
rate of ES will further decrease when coupled solely with REBs, thereby hindering the pro-
motion of the development of RE. To address the low utilization rate and poor economics
of ES paired only with REBs, SES can provide an effective solution. By using SES, ES
expenses can be reduced and utilization rates can be increased, thereby better supporting
the development of RE [13–15].

A large-scale REB is composed of multiple wind and photovoltaic units, as well as
their collection and transmission networks. Essentially, configuring SES for REBs means
meeting the ES needs of various RE units within the base. Therefore, we need to consider
the differences in ES needs of different RE units within the base to achieve fair distribution
of ES costs. The core of the SES mechanism for REBs is how to quantify the contribution
of SES to the ES capacity requirements of various RE units and then share the cost of SES
accordingly [7]. Several studies have been conducted on the modes of operation for SES
and cost allocation among RE units. Some researchers have investigated the impact of
performance quality and prediction errors of renewable energy units on the demand for
energy storage capacity and the allocation of energy storage costs [16]. Ref. [17] proposed
a wind power cluster and SES coordination optimization mechanism, and allocated the
benefits of each member of the alliance to demonstrate that the coordination optimization
mechanism is conducive to reducing operating costs of each member and ensuring fairness
of benefit distribution. In [18], a novel non-cooperative game mechanism is proposed,
which optimally regulates the operation of distributed generation and flexibility resources
by considering economic factors and electric power quality. Ref. [19] introduced a new two-
stage credit-based model for SES which, considering time accumulation effects, developed
an SES pricing strategy and a capacity planning scheme, and demonstrated the advantages
of the proposed novel shared model in the field of economic efficiency and the utilization
rate of ES. The research results indicate that SES has enormous potential value, not only
for configuring SES in REBs but also for applying SES to various links in the power
supply chain. Ref. [20] aimed to examine the real advantages of implementing SES in
residential neighborhoods, established optimization operation models for independent
and SES, compared and analyzed the optimal energy operations of the two, and developed
an efficient control strategy suitable for the use of SES to demonstrate the advantages of
SES in saving electricity costs and improving the ES utilization rate. Some studies have
also proposed transactional operation mechanisms for energy storage systems based on
non-cooperative game theory [21,22]. In [22], an interactive energy management scheme is
defined for multiple SES systems and users to achieve information sharing. These studies
have provided certain theoretical support and a decision-making basis for the formulation
of SES modes among a considerable quantity of RE units within a large REB. Existing
research has primarily focused on optimal capacity allocation and economic benefits of SES
among renewable energy units while neglecting the impact of cost allocation mechanisms
on the sustainable operation of SES. Therefore, this paper formulates a fair cost allocation
mechanism considering the differential ES demands of each renewable energy unit within
the base, aiming to achieve equitable distribution of ES costs.
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EES, mainly consisting of energy storage batteries, is one of the most economically
advantageous ES technologies among existing RE storage technologies. However, it should
be noted that EES has the characteristic of dynamic degradation of its lifespan. Although
SES operation modes can improve ES utilization rate, they can accelerate the degradation
of the lifespan of EES. However, in the research on SES for renewable energy integration
currently, the influence of shared operation on energy storage battery lifespan degradation is
often overlooked or simplified. For instance, some studies consider the working efficiency
of energy storage batteries as a constant value, disregarding the dynamic changes in
charging and discharging efficiencies [23,24]. However, in actual operation, energy storage
batteries experience dynamic changes in charging and discharging efficiencies due to power
losses generated during operation to meet load demand [25,26]. Additionally, to simplify
the complex degradation variations in practical operation, certain studies assume the same
degree of lifespan degradation under different operating conditions, without accounting
for the nuanced degradation of ES capacity under different operational scenarios [27].
However, it is clear that the lifespan of EES will gradually shorten with changes in the state
of charge (SOC) and the number of charging-and-discharging cycles. To more accurately
estimate the degradation of the lifespan of energy storage batteries, equivalent circuit
models, empirical models, and aging mechanism models are currently mainly used [28].
Ref. [29] proposed a method to detect the decay of the available capacity of energy storage
batteries using the discharge curve and capacity data based on a first-order Thevenin
equivalent circuit model. Ref. [30] established a calendar aging model of energy storage
batteries based on experimental data and quantified the impact of SOC, temperature, and
battery operating time on the degree of battery life decay. Ref. [31] studied the dynamic
performance changes of energy storage batteries under different environmental conditions
in a residential photovoltaic energy storage battery system, and analyzed the impact of
charging-and-discharging curves on battery aging. Moreover, existing research tends to
focus on the lifespan degradation characteristics of distributed independent energy storage
systems, lacking investigations on the impact of dynamic degradation characteristics of
SES on system operation. This paper, however, conducts a refined analysis of the dynamic
degradation characteristics in the actual operation of EES.

Moreover, due to the diverse output characteristics of different renewable energy units,
there are variations in the capacity requirements for SES. Existing research has primarily
focused on optimal capacity allocation and economic benefits of SES among renewable
energy units while neglecting the impact of cost allocation mechanisms on the sustainable
operation of SES. To analyze the influence of dynamic degradation characteristics on the
operational strategies and capacity allocation of electrochemical shared energy storage in
REBs, and to address the issue of uneven cost allocation resulting from differences in ES
capacity requirements, this paper presents a refined modeling of SES lifespan degradation.
Building upon the health status of EES, known as the state of health (SoH), this research
investigates the optimization of operational strategies and cost allocation mechanisms for
SES in REBs by considering dynamic degradation characteristics. The main innovations
can be summarized in the following three aspects:

• This paper refines the coupling relationship between the degradation laws and key
parameters in the operation process of shared energy storage, and establishes a refined
degradation model for the operation of electrochemical energy storage sharing. This
model can better reflect the changes in performance parameters such as shared energy
storage charging and discharging efficiencies and state of health (SoH), thus quantify-
ing the degree of degradation in the lifespan of shared energy storage. It also provides
important theoretical support for the practical application of shared energy storage.

• A renewable energy base–shared energy storage operation framework that considers
dynamic lifespan degradation is designed. This framework fully utilizes the advan-
tages of shared energy storage and enhances the profitability of various units within
high renewable energy bases in the day-ahead market through “peak shaving and
valley filling”. At the same time, it mitigates the uncertainty of wind power output
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and reduces the assessment cost of real-time balancing markets. The design of this
framework can better promote the sustainable development of renewable energy
generation.

• A shared energy storage cost allocation mechanism is proposed for renewable energy
bases based on the marginal contribution in both the day-ahead and the real-time
market. This mechanism can meet the energy storage demands of different renewable
energy generators and incentivize compatibility. The numerical results demonstrate
a positive correlation between the shared energy storage costs allocated to different
renewable energy generators and their corresponding energy storage demands. The
implementation of this mechanism can better promote the coordinated optimization
of renewable energy and shared energy storage operations, achieving a win-win
situation.

The rest of this paper is structured in the following manner. The SES operation
framework for a REB is proposed in Section 2. The refined model of dynamic life decay of
EES is introduced in Section 3. In Section 4, an optimized operational approach for SES in a
REB is presented, taking into account the dynamic degradation characteristics of EES. The
SES cost allocation mechanism based on the marginal contribution in both the day-ahead
and real-time markets is introduced in Section 5. Section 6 contains the conclusions and
future prospects of this study.

2. Framework of Energy Storage Sharing

A two-stage optimal collaborative operation strategy for a REB and SES is proposed
by combining day-ahead optimization and real-time optimization. This strategy includes
two stages: during the first stage, the optimization of day-ahead scheduling is carried
out, and each unit in the REB optimizes its day-ahead operation strategy based on the
day-ahead output prediction data. In the second stage, the charging and discharging
operation statuses of SES vary according to real-time electricity prices and the uncertainty
of wind power output, then embedded it into the day-ahead optimization model of the first
stage. Meanwhile, the dynamic degradation characteristics of the SES’s lifespan are taken
into account, and the influence of battery health status changes on ES capacity allocation is
considered. Considering the differential SES capacity demands of different units within
the REB, this paper measures the contribution of each member to the overall alliance and
allocates the investment and operational costs of SES among various renewable energy units
within the base. This allocation is performed in a manner that reflects the varying needs
of different units and ensures a fair distribution of the investment and operational costs
associated with SES. This strategy aims to optimize the overall operation of the system, fully
consider the uncertainty and fluctuations of wind power output in actual operation, and
improve the efficiency and economic viability of RE generation. The Operation framework
for energy storage sharing in a renewable energy base is shown in Figure 1.
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Figure 1. Operation framework for energy storage sharing in a renewable energy base.

3. Dynamic Degradation Model in Battery Energy Storage Sharing

To alleviate the impact of large-scale RE, such as wind and solar power, it may be
necessary to frequently adjust the charge and discharge states of RE batteries and the power
flow in and out of the grid. Therefore, the capacity degradation caused by the changes in
charge and discharge behavior of RE batteries in a brief span of time cannot be ignored.
It is necessary to consider the influence of changes in charge and discharge power on the
performance and lifespan of ES devices. Therefore, the fine-grained dynamic degradation
characteristics of EES are of great significance. In this section, the dynamic degradation
characteristics of EES will be finely modeled to provide more theoretical support for the
subsequent research on operation and cost allocation mechanisms of SES in REB.

3.1. Health-Aware Perception Model

The previous literature has used the SoH of an electrochemical battery to characterize
its degree of life degradation. Within this segment, a health-aware perception model
utilizing the battery’s equivalent circuit is established. Since the dual-polarization (DP)
equivalent circuit model is superior to the Thevenin model in the field of balance estimation
precision and calculative speed, the DP model has been chosen to characterize the SOH
of the battery. The DP model is essentially a series circuit, consisting of a power source,
internal resistance, and a second-order RC parallel circuit, shown in Figure 2 [32].

Figure 2. DP equivalent circuit.
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The spatial state equations for the DP equivalent circuit can be derived as follows:{
ut = Uoc − uc1,t − uc2,t − itR0

it =
uc1,t
R1

+ C1
duc1,t

dt =
uc2,t
R2

+ C2
duc2,t

dt
(1)

where Uoc is the open circuit voltage, R0 is the internal resistance of the battery, i(t) is
the internal current of the battery, and uc1,t and uc2,t represent voltage across the two RC
circuits. By measuring the open circuit voltage and voltage across each RC circuit, the
circuit current can be calculated using the spatial state equations. Battery capacity can then
be calculated using Equation (2).

ESES ,t = ESES ,t0 − ηSES

∫ t

t0

itdt (2)

where ηSES is the Coulombic efficiency of the battery, ESES,t0 represents the rated capacity
of the battery at initial state, ESES,t represents the capacity of the battery at time t, and t0
represents the initial operating time of the battery. Based on the stored energy capacity, the
SoH of the ES battery can be calculated.

The SoH of the ES battery at time t SOHt is expressed as the present available capacity
divided by the rated capacity at initial state, as follows:

SOHt =
ESES ,t

ESES ,t0

× 100% (3)

As energy storage batteries undergo continuous charging-and-discharging cycles,
internal aging occurs, resulting in increased internal resistance and decayed capacity. For a
brand-new RE storage battery, its initial SoH is 1. When SoHt is lower than a certain value
δ or the internal resistance of the battery increases to more than twice the initial resistance,
the energy storage battery should be dismantled and recycled. Therefore, the final state
of health for the battery is δ, which is set to 0.8 in this paper [33–35]. Thus, the SoHt and
internal resistance of energy storage batteries are subject to the following constraints:{

SOHt ≥ δ
Zt ≥ 2Zstart

(4)

where Zt is the internal resistance of the battery at time t. The relationship between SoH
and battery internal resistance can be further established using DP equivalent circuits,
which facilitates the determination of whether the battery is still suitable for ES based on
its internal resistance, as shown below:

Zt = Zstart +
SOHt0 − SOHt

SOHt0 − SOHtN

(Zend − Zstart) (5)

where SOHt0 and SOHtN , respectively, represent the initial and final health status of the
battery during its lifespan, Zstart and Zend are the battery’s resistance at the beginning and
end of the entire lifespan, respectively, and tN is the end time of the battery’s lifespan.

In addition, the relationship between the maximum power output Pt of a battery at
a certain moment and its SoH can be derived from DP equivalent circuits, as shown in
Equation (6):

Pt =
Zstart

Zt
P0 (6)

where P0 refers to the maximum power output that the battery can produce at the initial
state.
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3.2. Energy Storage Battery Life Degradation Model

The life degradation of ES batteries is influenced by various external stress factors,
such as temperature and operating time, and is also affected by the battery’s life status.
Therefore, its degradation can be considered as a nonlinear process that is the result of the
combined effect of external stress and time by establishing a nonlinear life degradation
model that can be decomposed into multiple stress factor models.

The life degradation caused by calendar aging Lcal , can be considered as a function of
the average state of charge Soc(κ), battery average temperature Tc, and time t.

Lcal= gt(κ, t, TC) (7)

Each charge and discharge cycle of the battery results in life degradation. The cumula-
tive life degradation is obtained by adding up life degradation of each cycle.

Lcyc =
N

∑
t=1

ωtgc(κt, ϑt, Tc) (8)

where Lcyc,loss refers to the life degradation caused by cycle aging; ϑt represents the depth
of discharge of the battery in the t-th cycle; and ωt is a 0–1 variable that characterizes the
operating state of the battery in the cycle t, with a value of 1 indicating that the battery is in
a cyclic charging-and-discharging state and 0 indicating that the battery is not undergoing
charging and discharging, during which the life degradation of the battery only includes
the life degradation caused by calendar aging. The life degradation of the entire lifetime of
the battery can be represented as the function gd of κ, t, Tc, ϑ:

gd(κ, t, TC, ϑ) = gt(κ, t, TC) +
N

∑
t=1

ωtgc(κt, ϑt, Tc) (9)

If cycles are identical, in a single cycle, the average temperature and SOC equals the
overall averages of the battery lifetime, thus Tc = Tc, κ = κ. Equation (8) can be simplified
as shown below:

gd(κ, t, TC, ϑ, N) = Ngd(κ, t, TC, ϑ, 1) = Ngd,1 (10)

where gd(κ, t, Tc, ϑ, 1) is denoted as gd,1, which represents the life degradation during a
single cycle, and N is the number of charge and discharge cycles.

The life degradation caused by calendar aging and cycle aging can be expressed in a
product form of multiple linear stress factor models as follows:

gd,1 = [G(t) + G(ϑ)]G(κ)G(TC) (11)

(1) The temperature stress model:

G(TC) = ea0(TC−Tre f )
Tre f
TC (12)

(2) The state-of-charge stress model:

G(κ) = ea1(κ−κre f ) (13)

(3) The time stress model:
G(t) = a2t (14)

(4) The depth-of-discharge stress model:

G(ϑ) = 1
a3ϑa4+a5

ϑt =
Pch

t +Pdis
t

2Ec,t

(15)
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where a0 represents the temperature stress coefficient; Tre f refers the reference temperature
in Kelvin (K); a1 is the SOC stress coefficient; κre f is the reference SOC, which can be gener-
ally taken as 0.4–0.5; a2 is the time stress coefficient, indicating that after excluding factors
such as temperature and life dependence, the degradation rate has a linear relationship
with time; Pch(t) and Pdis(t) represent the charging and discharging powers of the battery
during the t-th cycle, respectively; and a3, a4, and a5 are stress coefficients about DOD.

According to the empirical formula [30], the life degradation of an energy storage
battery can be calculated as follows:

Lloss = 1 − γcell e−υcell gd − (1 − γcell)e−gd (16)

where Lloss represents the life degradation of the battery over its entire life cycle (pu), and
γcell and νcell are parameters related to the formation process of SEI film.

3.3. Dynamic Efficiency Model for Energy Storage Batteries
3.3.1. Segmented Linearization of Power for EES Batteries

At any given time, the operating power of the battery P(t) satisfies the following
equation:

Pc ,t = Pch
t + Pdis

t (17)

However, it is impossible for one battery to charge and discharge simultaneously at
any given time, and one of Pch

t or Pdis
t must be zero. The dynamic behavior of the battery

is simulated using the aforementioned DP equivalent circuit model, and the relationship
between the battery SoH and internal resistance is calculated. The charge–discharge cycles
of the battery will cause dynamic changes in its SoH and internal resistance, resulting in
dynamic changes in the operational efficiency during different periods. To simplify the
model, the charging and discharging power of the battery are segmented and linearized
separately. If the charging power is divided into M1 segments, it satisfies:

Pch
t =

M1

∑
m=1

Pcm ,t (18)

Pmin
cm ωc,m ,t ≤ Pcm ,t ≤ Pmax

cm ωc,m ,t, m = 1, 2, . . . , M1 (19)

where Pmax
cm and Pmin

cm are the maximum and minimum of the charging power for the
segment, respectively, and ωc,m,t is a 0–1 state variable that characterizes the charging state
at time t, where a value of 1 indicates that the charging power is within the mth segment.

M1

∑
m=1

ωc,m ,t = 1 (20)

The above equation indicates that the battery charging power can only be within one
power segment at any given moment. Similarly, for the discharging power, it is divided
into M2 segments, which satisfies:

Pdis
t =

M2

∑
j=1

P′
cj,t (21)

Pmin′
cj,t πc,j,t ≤ P′

cj,t ≤ Pmax′
cj,t πc,j,t, j = 1, 2, . . . , M2 (22)

M2

∑
j=1

πc,j,t = 1 (23)
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where Pmax′
cj,t and Pmin′

cj,t are the maximum and minimum of the discharging power for the
j-th segment of the battery, respectively, and πc,j,t is a 0–1 state variable that characterizes
the discharging power at t, where a value of 1 indicates that the discharging power is
within the j-th segment.

3.3.2. Storage Capacity of EES Batteries

After the time Δt, the incremental capacity of the battery is as follows:

ΔEc,t = [
M1

∑
m=1

Pcm,tη
ch
cm +

1
ηdis

cj

M2

∑
j=1

P′
cj,t]Δt (24)

ΔEc ,t = Ec ,t−1 − Ec ,t (25)

Emin
c ≤ Ec ,t ≤ Emax

c (26)

where ηch
cj and ηdis

cj refer to the charging and discharging efficiencies of the m-th segment,

respectively, and Emin
c and Emax

c are the minimal and maximal battery capacity, respectively.

4. Shared Energy Storage Operation Model

In this section, we investigate the optimal strategy for the joint operation of RE
units containing multiple wind turbines and SES, considering the dynamic degradation
characteristics.

4.1. Objective Function

The objective function is to maximize profit, which comprises the revenue of the
day-ahead electricity market and real-time electricity market, and the total cost of SES.

max ∑
t∈φT

(RDA
t + RBA

t − Csum
t ) (27)

where RDA
t denotes the day-ahead market revenue at time t, RBA

t denotes the real-time
market revenue at time t, and Csum

t denotes the total cost of SES at time t.
The day-ahead energy market (DEM) revenue RDA

t and real-time energy market (REM)
revenue RBA

t can be expressed as follows:

RDA
t = λDA

t PDA
t (28)

RBA
t = λdown

t Pdown
t − λ

up
t Pup

t (29)

λdown
t = φdownλDA

t , λ
up
t = φupλDA

t (30)

where λDA
t is the DEM price at time t; PDA

t is the total power in the DEM at time t; Pdown
t

and Pup
t represent the positive and negative power imbalance at time t respectively; λdown

t
and λ

up
t are the settlement prices for the positive and negative imbalances of electricity

quantities in the balancing market, respectively; and φdown and φup are the penalty factors
corresponding to positive and negative imbalances of electricity quantities, respectively.

The total cost of SES Csum
t is expressed as Equation (33), and Csum

t includes the invest-
ment cost of SES and its degradation cost, as follows:

Cat
t =

Cinv
t Lloss,t

24 × (1 − 40%)
(31)

139



Energies 2023, 16, 5356

Cinv
t =

γ(1 + γ)y

(1 + γ)y − 1
× cSES

P PSES
max + cSES

E ESES
T × 365

(32)

Csum
t = Cinv

t + Cat
t (33)

where T is all the dispatch cycle number of SES within one day, and Lloss,t is the lifespan
degradation rate of EES batteries during period t. Typically, when the health status of
a lithium-ion battery drops below 80%, the battery’s utilization rate cannot meet the ES
requirements and it should be recycled. Cinv

t is the SES investment cost, γ refers to the
annual percentage rate of funds, y is the lifespan of the SES device, cSES

P and cSES
E are the

unit cost prices of shared energy per unit power and unit capacity, respectively, PSES
max is the

maximum power of the SES, and ESES is the capacity of SES.
The above utilizes the concept of unitized cost, which converts ES replacement cost

into cost per unit charge–discharge capacity, in order to obtain the ES degradation cost at
each moment.

4.2. Constraints

In this paper, the wind turbine units and the collaborative entity of the SES are selected
to participate in the day-ahead energy DEM. Therefore, the total power in the DEM is equal
to the sum of the day-ahead power outputs from the wind turbines and the energy storage
unit. Similarly, when they participate in the REM, the total power in the REM is equal to
the sum of the real-time power outputs from the wind turbines and the energy storage unit,
as follows:

PDA
t = PDA

wind,t + PDA
SES,t (34)

PBA
δ = PBA

wind,δ + PBA
SES,δ (35)

where PDA
wind,t is the wind power of the DEM at time t, PDA

SES,t is the ES power of the DEM at
time t, PBA

δ is the total power in the REM at time t, PBA
wind,δ is the wind power of the REM

at time δ, and PBA
SES,δ is the ES power of the REM at time δ. The participation of the energy

storage unit in the DEM is determined by both its charging power and discharging power.
It is the difference between the discharging power and the charging power. Since the energy
storage unit can only be in either a charging or discharging state at a given time t, when it is
in the discharging state, it generates positive revenue from participating in the DEM. On the
other hand, when it is in the charging state, it incurs negative revenue from participating in
the DEM. Therefore, the day-ahead power of the energy storage unit participating in the
market is the difference between the discharging power and the charging power. The same
principle applies to the power of the energy storage unit participating in REM.

PDA
SES,t = PDA

dis,t − PDA
ch,t (36)

PBA
SES,δ = PBA

dis,δ − PBA
ch,δ (37)

where PDA
ch,t is charging power of the DEM at time t, PDA

dis,t is the ES discharging power of
the DEM at time t, PBA

ch,t is the ES charging power of the REM at time t, and PBA
dis,t is the

ES discharging power of the REM at time t. All four of these variables take non-negative
values.

Constraints on the system are as follows:
(1) the constraints of wind power output are

0 ≤ PDA
wind,t ≤ PDA

sum,t (38)
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0 ≤ PBA
wind,δ ≤ PBA

sum,t (39)

where PDA
sum,t represents the day-ahead forecasted total power for multiple wind turbines at

time t, and PBA
sum,t represents the real-time forecasted total power for multiple wind turbines

at time t.
(2) Energy storage capacity and power constraints: Equation (40) represents the

constraint on the ES capacity. Equation (41) represents the minimal and maximal of the
charging and discharging powers. Equation (42) restricts the device from charging and
discharging energy simultaneously. Equation (43) denotes the energy balance constraint
of the ES; it means that the charging-and-discharging capacity during the 24 h regulation
process must maintain balance with the initial energy level.

0 ≤ EDA
SES,t ≤ ESES, 0 ≤ EBA

SES,δ ≤ ESES (40)

{
0 ≤ PDA

ch,t ≤ μch
t PSES

max
0 ≤ PDA

dis,t ≤ μdis
t PSES

max
,

{
0 ≤ PBA

ch,δ ≤ μch
t PSES

max
0 ≤ PBA

dis,δ ≤ μdis
t PSES

max
(41)

μchar
t + μdis

t ≤ 1 (42)

EDA
SES,0 = EDA

SES,T , EBA
SES,0 = EBA

SES,T (43)

where EDA
SES,t and EBA

SES,t represent the day-ahead and REM storage capacities at differ-
ent times, PSES

max represents the maximum operational power of the SES, μch
t and μdis

t are
0–1 variables that represent the operation status of the ES at time t, and EDA

SES,T and EBA
SES,T

represent the DEM and REM storage capacities at the last time t of the day.
Additionally, the energy iteration relationship of the ES unit in the DEM and REM is

shown in Equations (44) and (45):

EDA
SES,t+1 = EDA

SES,t + PDA
ch,t · ηSES

t − PDA
dis,t/ηSES

t , EDA
SES,0= 60%ESES (44)

EBA
SES,δ+1 = EBA

SES,δ + (PBA
ch,δ · ηSES

t − PBA
dis,δ/ηSES

t )Δt , δ ∈ [t, t + 1] , EBA
SES,0= 60%ESES (45)

where ηSES
t represents the working efficiency of the ES at time t.

Taking into account the dynamic degradation characteristics of EES devices and using
SoH as a medium, the changes in the performance parameters of ES are incorporated into
the above constraints to reflect the influence of the degradation of ES life on the operation
and benefits. The analysis in Section 3 reveals a nonlinear dependence between ES device
parameters and SoH. To facilitate the optimization calculation, this nonlinear relationship
is first linearized.

By using the idea of piecewise model linearization, the linear relationship between
battery internal resistance Zt and SoH can be fitted as follows:

Zt = αSOHt + β (46)

Substituting Equation (46) into the expression for ES charging and discharging powers
yields.

PSES
t,max =

Zstart

αSOHt + β
· PSES

0,max (47)

Similarly, the expression for different segments of ES capacity can be uniformly lin-
earized.

ESES,t = aSOHt + b (48)
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We can substitute the ES parameter expressions obtained from Equations (47) and (48)
into the constraints for ES power and capacity and update them on an hourly basis to
account for the dynamic degradation characteristics of the ES device.

(3) Power balance constraints:

PBA
wind,δ + gSES,t − dSES,t − PDA

wind,t = Pdown
t − Pup

t (49)

0 ≤ Pup
t ≤ M3(1 − zt) (50)

0 ≤ Pdown
t ≤ M4zt (51)

where gSES,t and dSES,t represent the charging and discharging quantities respectively, of
the ES system, zt is a binary variable indicating the power imbalance status, and M3 and
M4 are sufficiently large positive numbers.

Equations (27)–(51) are used to establish the coupling relationship between the DEM
and REM of the alliance which is composed of REBs and SES.

5. Cost Allocation Mechanism of Shared Energy Storage

To ensure equitable distribution of investment costs for SES, this paper introduces the
concept of a “revenue increase rate” as a measure to quantify the demand level of a REB
for SES. This metric evaluates the number of occupied ES resources by the REB and the
potential revenue that can be obtained. The analysis in this paper considers the market
revenue of a REB, including electricity value and system flexibility, in both day-ahead and
real-time balancing markets, and compares them with the benefits obtained when the REB
participates individually in the market. Finally, the costs of the SES are allocated to each
REB based on comprehensive revenue-increase-rate metrics for REB.

5.1. Electricity Value in the Day-Ahead Market

Before allocating the SES costs, it is essential to calculate the revenue obtained by
each alliance member from selling electricity in the day-ahead market. The calculation
method of this revenue is obtained by multiplying the declared power with the day-ahead
market clearance price. To better solve the cost allocation problem, this paper uses the
Vickrey–Clarke–Groves (VCG) mechanism, which is a widely used incentive-compatible
mechanism for allocating social welfare [36]. In addition, this mechanism can help define
the substitute value of SES for other electricity users. As multiple renewable energy base–
energy storage systems jointly quoting can only obtain the alliance’s overall quotation
curve, this paper analyzes the demand for SES by different REBs through the substitute
value method to obtain individual quotation curves for each entity. This method indirectly
obtains the individual quotation curves of each entity by comparing the changes in the
alliance’s overall quotation curve, thereby better solving the cost allocation problem, as in
Equation (52).

RWPP
DA,i,t = ∑

t∈Γ
λDA

t · (PC∗
DA,t − PC∗

DA,−i,t), ∀i, j, t (52)

where RWPP
DA,i,t represents the revenue obtained by a certain REB in the DEM, PC∗

DA,t represents
the optimal day-ahead declared power obtained by the optimization model, and PC∗

DA,−i,t
represents the optimal declared power corresponding to removing a specific REB.

5.2. Flexibility Value in the Real-Time Balancing Market

The revenue earned by the alliance members’ flexibility during real-time operations is
known as the flexibility value in the REM, which is obtained by multiplying the respective
imbalanced electricity quantity with the corresponding settlement price. When comparing
the individual deviation direction with the system’s overall deviation direction, if they
are opposite, this indicates that the member has alleviated the extent of system deviation,
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reduced the system’s demand for flexibility, and increased overall revenue. Then, the
member’s revenue is positive. If the directions are the same, it indicates that the member
has intensified the degree of system deviation, further increased the system’s demand for
flexibility, and decreased overall revenue, and the member’s revenue is negative. Similar
to measuring the energy value of each member in the DEM, we can extract the flexibility
value of a member in the real-time market and represent the revenue of REB members
in the real-time balancing market through the deviation that appears in the alliance as a
whole, as shown in Equation (53):

RWPP
BA,i,t = ∑

t∈Γ
∑

s∈Ω
δs(λ

+
s,t(PC+∗

s,t − PC+∗
s,−i,t) + λ−

s,t(PC−∗
s,t − PC−∗

s,−i,t)), ∀s, i, t (53)

where δs is the possibility of the scenario, RWPP
BA,i,t refers to the revenue obtained by the REB

in the real-time balancing market, PC+∗
s,t and PC−∗

s,t represent the most effective methods
for making bids of positive and negative imbalance power of the alliance, respectively,
obtained by solving the above optimization model, and PC+∗

s,−i,t and PC−∗
s,−i,t represent the

positive and negative imbalance power of the alliance, respectively, corresponding to
removing a specific wind power merchant.

Similarly, by measuring the revenue obtained by a REB’s individual participation in
the market from both the day-ahead and real-time dimensions and comparing them with
the revenue obtained after forming the alliance, the revenue increment of each REB in the
alliance can be obtained, as shown in Equation (54).

ΔRWPP
i,t = RWPP

DA,i,t + RWPP
BA,i,t − RWPP

i,t,D , ∀i, t (54)

where ΔRWPP
i,t represents the revenue increase in a certain REB in the alliance, and RWPP

i,t,D
represents the revenue obtained by this REB’s individual participation in the market.

Therefore, the revenue increase rate of each REB in the alliance’s joint bidding is the
ratio of the total revenue increase in this member in the DEM and REM and the total
revenue increase in all members in the alliance, as shown in Equation (55).

τWPP
i =

∑
t∈Γ

TWPP
i,t

∑
i∈M

∑
t∈Γ

TWPP
i,t

, ∀i, t (55)

The main revenue improvement rate characterizes the proportion of the revenue that
alliance members can obtain in the DEM and REM from two dimensions: the value of
electricity energy and the value of flexibility. The coupling connection between the DEM
and REM is established by the concept of imbalance power. Through the determination
of penalty prices, a REB can be guided to overproduce or underproduce a certain amount
of power in the DEM. SES can exert a controlling function over smoothing the power
imbalance that arises as a result, thus achieving the goal of maximizing overall revenue.
On this basis, the investment and depreciation costs of SES can be allocated according to
the aforementioned revenue improvement rate, as shown in Equation (56).

CWPP
i = CSES · τWPP

i , CSES = Cinv + Cat (56)

where CWPP
i represents the SES cost that must be allocated to a certain REB, and CSES

represents the overall cost of SES.

6. Case Study

6.1. Data Description

In this case study, the alliance consists of 10 wind turbines and 1 shared energy storage,
and the operational parameters of the SES are shown in Table 1. To model the wind power
output uncertainty, this paper adjusted the real electricity generated by a wind power
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plant in a certain northwest region proportionally as the wind power forecast value, and
used Monte Carlo sampling to generate multiple wind power output scenarios for each
sub-wind-power plant based on the statistical error of the forecast value. Then, this paper
used the scenario reduction method to limit the number of scenarios to 10. The market
prices were obtained from publicly available data of the PJM electricity market, and the
price penalty factors ϕdown and ϕup in REM were taken as 0.8 and 1.2, respectively.

Table 1. Model parameters.

Parameter Value Parameter Value

Tref 20 ◦C μre f 0.5

a0 0.0693 a1 1.04

a2 4.14 × 10−10/s a3 1.40 × 105

a4 −0.501 a5 −1.23 × 105

γcell 0.0575 νcell 121

ESES 100 MW·h PSES
max 30 MW

SOH0 100% cSES
P 300 USD/kW

cSES
E 1200 USD/kWh γ 8%

6.2. Results and Discussion

Based on the existing REB, the reasonable allocation of EES battery capacity and power
is critical to SES system planning. If the ES capacity allocated to wind turbines in the REB
is too small, it will be difficult to effectively absorb wind power. If the ES capacity is too
large, the investment and operation costs will be too high, which could significantly affect
the financial advantages of SES. This paper studies the effect of SES capacity allocation on
alliance revenue. Figure 3 demonstrates that alliance members experience an increase in
market revenue as the energy storage capacity rises, reaching a peak at a certain point when
the capacity is relatively low. However, surpassing the optimal energy storage capacity
linked to maximum profit leads to a subsequent decline in the members’ profitability. This
decline can be attributed to excessive energy storage capacity, which introduces redundancy
in energy storage resources. The resulting high investment and operational costs associated
with this surplus capacity contribute to diminished profits for alliance members. In this
case study, for most wind turbines, the ES capacity ratio corresponding to the maximum
revenue is mostly between 14% and 21%.

Additionally, Figure 4 shows a significant increase in revenue for wind turbines 7–10,
indicating that these four wind turbines need to bear a high SES investment cost. To balance
the economic profits of the alliance and ES investment costs, the most suitable SES capacity
ratio is within the 17–20% interval, which means that the SES capacity allocation for the
REB is most suitable within the range of 90–110 MW. This paper chooses 100 MW as the
optimal SES capacity configuration for the REB, and studies the optimized operation and
cost allocation of the 100 MW.

The scheduling and operation status of SES with or without considering the cost of
dynamic degradation of ES are presented in Figure 5.
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Figure 3. Revenue of alliance members.

 

Figure 4. The revenue increase rate of alliance members.

 

Figure 5. The SOC of energy storage.
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In Figure 5, M1 represents the SoC of SES when dynamic attenuation characteristics are
not taken into consideration, and M2 represents the SoC of SES when dynamic attenuation
characteristics are taken into consideration. And dark blue represents the initial SoC
of the ES, green represents an increase in the value of the SoC, and red represents a
decrease in SoC. By comparing the SOC of SES with and without considering the dynamic
attenuation, it can be observed that when there is a significant difference between the
real-time output of the wind turbine and the previously declared power, the SOC of SES
changes extensively. This indicates that the REM power of the ES is also substantial, and
the storage device can adjust the overall clear power through its charging-and-discharging
behavior to maintain the power balance. Consequently, the storage device can minimize
the effects of unpredictability in wind power output on system operation, improving the
overall alliance revenue. Moreover, compared to the scenario without considering dynamic
attenuation, when dynamic attenuation is considered, the SOC change frequency and
amplitude of SES are more conservative. This results in a reduced number of charging-
and-discharging cycles and a reduced frequency of deep charging or discharging, leading
to a smoother change in energy capacity. This prolongs the service life of SES. When
dynamic attenuation is not considered, the ES device tends to increase the revenue of
various entities in the energy market through frequent charging-and-discharging behavior
to maximize overall revenue. However, when dynamic attenuation is considered, the
utilization rate of the storage device is significantly reduced to achieve higher total alliance
revenue, leading to a lower clear power in the real-time balance market and a lowered
frequency of charging-and-discharging behavior.

By analyzing the cross-sections of different stages of SES, it is shown in Figure 6 that
when the ES capacity drops below 20%, the optimal scheduling requirement under the
initial state has deviated. This will reduce its ability to improve the anti-peak properties of
wind power and reduce the imbalance settlement cost of wind power. This further indicates
the necessity of considering the dynamic degradation of ES to avoid excessive use of SES.

 
Figure 6. Operation of energy storage before and after degradation.

If fixed decay cost for payment of SES is applied without considering its dynamic
characteristic changes, and if ES state parameters are not updated during its usage, and if
the charging and discharging costs remain constant and do not change with the changes in
charging and discharging capacities, then the health status of the ES cannot be adequately
represented, and the overuse of ES cannot be avoided in the sharing mode. This paper
proposes that updating the characteristic parameters of ES in a timely manner according
to its operating conditions and accounting for the decay cost of ES during different usage
stages based on charging and discharging quantities can more reasonably improve the
system benefits on the basis of reducing the loss of ES life.
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Based on the revenue obtained by wind turbines and SES forming alliances and wind
turbines participating in the market individually, the revenue increase brought by forming
alliances can be derived. The results are shown in Table 2. Comparing the final revenue
situation, it can be seen that after multiple wind turbines share ES, their revenue has
increased, but the increase proportion is different, mainly due to the different prediction
accuracies of each wind turbine. Wind turbine 9 achieved a 28.61% increase in revenue
compared to participating in the market individually, while wind turbine 3, which has the
least revenue increase, has also achieved 1.01 times the revenue when participating in the
market individually after constructing SES. It is evident that the model proposed in this
paper, which involves multiple wind turbines jointly sharing ES to participate in market
operation, can take into account the interests of all parties and improve the overall revenue.

Table 2. Revenue increase rate of each wind turbine.

Wind Turbine Number 1 2 3 4 5

Revenue increase rate 2.24% 3.47% 1.00% 2.99% 3.81%

Wind turbine number 6 7 8 9 10

Revenue increase rate 1.51% 24.44% 26.22% 28.61% 5.72%

Comparing the different profits of wind power with the same installed capacity
in Figure 7, it can be observed that the distinct profitability of wind power producers
with the same capacity are due to different prediction errors. The larger the deviation
between the real and reported power data of a wind turbine, the higher the corresponding
imbalance costs it incurs, which results in lower actual profits of the RE station than
expected. Meanwhile, the profit of a single wind turbine, when forming alliances with
other wind turbines and ES, may not increase significantly even if its profitability is high,
mainly because the wind turbine itself is already highly matched with the load, and the
complementary effects between multiple wind turbines and the regulating function of ES
do not significantly reduce their output deviation.

Figure 7. Revenue increase rate of each wind farm.

According to the proportion of revenue improvement from each wind turbine to the
total revenue increase, the investment and degradation costs of SES are allocated, and
the higher the revenue increase rate of a wind turbine, the more SES cost it needs to bear.
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This can ensure enthusiasm for cooperation of all alliance members and the stability of the
alliance.

As shown in Figure 8, by comparing the day-ahead and real-time revenues of ten wind
farms, it can be seen that the capacity and prediction error of wind turbines both affect
their share of investment in SES. In an RE field, wind turbines with larger errors between
actual capacity and output and reported values need to bear higher initial investment costs
of SES.

Figure 8. Revenue increase rate of different market members.

The day-ahead revenues of wind farm 3 and wind farm 4 are basically the same, but
the investment expense of ES required varies greatly. This is mainly because wind farm 3
has better matching with the load, which can better meet the load demand in each period
with its own output characteristics, and therefore has less demand for peak-shaving and
filling of ES and flexibility value, resulting in a smaller proportion of corresponding shared
investment. The real-time revenue of wind farm 4 and wind farm 7 is basically the same,
but the cost of SES is different, indicating that wind turbines with different capacities still
need to bear a larger proportion of initial investment costs of ES even if their prediction
accuracy is similar.

The impact of wind turbine output prediction accuracy on the cost allocation of an
SES alliance is analyzed below, and the results are presented in Figure 9.

As seen in Figures 8 and 9, it can be observed that wind turbines 7, 8, 9, and 10
have higher improvement rates in revenue and higher SES costs. As prediction accuracy
improves, the SES cost of each wind turbine unit, especially those with higher revenue
increase rates, decreases to varying degrees. This is because the improvement in prediction
accuracy reduces the deviation between the pre-bid power and real-time output of each
unit, leading to decreased demand for ES capacity and subsequently lowering the SES
investment cost. Moreover, the improvement in prediction accuracy reduces the frequency
and power of charging and discharging, resulting in a lower degradation cost due to
the ES cycle. Therefore, each member of the alliance will also see a reduction in their
corresponding SES costs. Additionally, due to the different prediction accuracy of each
unit, their demand for ES when participating in the spot market is also different, leading to
varying changes in the cost sharing. For turbine 9, which has the highest improvement rate
in revenue, when its prediction accuracy improves by 5%, the shared cost can be reduced
by about 6%, which is conducive to incentivizing alliance members to actively participate
in the spot market and enhancing their market competitiveness.
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Figure 9. The allocation of ES costs for alliance members under different prediction accuracies.

As shown in Figure 10, the capacity demand of SES in each wind turbine unit in the
REB also changes when the electricity price penalty coefficient in the REM of the alliance
changes. Specifically, when the overgeneration price penalty coefficient φdown decreases
or the undergeneration price penalty coefficient φup increases, the optimal SES allocation
capacity in the REB will gradually increase. This is because the change in the electricity
price penalty coefficient will increase the capacity demand of SES of each wind turbine
unit, which will increase the investment expense of SES, and the charging and discharging
powers will also increase, resulting in more frequent charging-and-discharging behaviors,
and the decay cost will also increase, leading to a continuous increase in the SES cost borne
by each unit. However, since the capacity demand for ES of each turbine is different when
the electricity price penalty coefficient changes, the increment of their ES allocation cost is
also different.

Figure 10. The allocation of ES costs for alliance members under different penalty coefficients.
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The output prediction accuracy of each unit is set as shown in Table 3. Combined with
Table 3 and Figure 10, for unit 7, 8, and 9, when the electricity price penalty coefficient
changes, their increment of ES allocation cost is relatively large. This is mainly because
their output prediction accuracy is low, and the day-ahead forecast error is large, which will
face higher imbalance penalty fees in the REM. To improve their economic benefits, they
will increase the demand for SES to compensate for the fluctuation between their awarded
electricity volume and real-time power output, thus reducing the imbalance settlement
cost.

Table 3. Prediction accuracy of wind turbine.

Wind Turbine 1 2 3 4 5

Prediction accuracy 15% 10.5% 6% 20% 13%

Wind turbine 6 7 8 9 10

Prediction accuracy 15% 5% 8% 8.3% 17%

For units with higher prediction accuracy, when the electricity price penalty coefficient
changes, their increment of ES allocation cost increases more conservatively. When φdown

decreases from 0.9 to 0.8, the ES allocation cost for unit 9 increases by USD 1095, which
is about 10 times the increment of the ES allocation cost for unit 4. In addition, for wind
turbine units with similar installed capacity, such as units 3, 5, and 10, their increments
of ES allocation cost are different due to different prediction accuracies. Obviously, for
unit 10 with higher prediction accuracy, the increment in ES demand is smaller, and the ES
allocation cost increases more conservatively. For unit 3 with lower prediction accuracy, its
increment of ES allocation cost is 1.11 times higher than that of unit 10. In fact, according to
the cost allocation mechanism proposed in this article, wind power producers must make a
trade-off between implementing higher-cost yet more effective prediction technologies and
bearing increased shared energy storage investment costs to maximize their own utility.

7. Conclusions

This paper provides a detailed modeling of the degradation of shared energy storage
lifespan, and analyzes the impact of dynamic degradation characteristics on the operational
strategies and capacity allocation schemes of shared energy storage in renewable energy
bases. It establishes an optimization model for the optimal operation of shared energy stor-
age in renewable energy bases, taking into account the dynamic degradation characteristics.
Furthermore, a cost allocation mechanism is designed to address the diversity in shared
energy storage demands. The following results have been confirmed:

(1) The most suitable capacity ratio for SES in a REB is in the range of 17% to 20%, which
can balance the economic benefits of alliances and ES investment costs well. When
wind turbines form an alliance with SES, their profits increase compared to when they
participate in the market alone. Considering the dynamic decay of ES, the utilization
rate of ES is considerably reduced to increase the overall profits of the alliance, and
the charging-and-discharging frequency and quantity in the REM are also reduced.

(2) The capacity and prediction errors of wind turbines will affect their share of SES costs.
When the prediction accuracy is similar, wind turbines with larger installed capacities
need to bear a higher proportion of ES costs, and as the prediction accuracy improves,
the SES costs borne by each wind turbine decrease to varying degrees.

(3) The penalty factor of the REM price in the alliance also affects the optimal SES capacity
configuration and the SES costs of each wind turbine in the REB. When the penalty
factor changes, the capacity demand for SES in each wind turbine in the REB increases,
and the SES costs increase. Moreover, wind turbines with lower output prediction
accuracy and similar installed capacity have larger increases in SES costs.

In conclusion, the SES optimization model for RE stations, taking into account dynamic
decay of EES, is more objective and reasonable. The calculation of profits for different
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units in the REB has guidance significance for designing SES cost allocation mechanisms.
The proposed model is also applicable to photovoltaic power stations. However, there are
still some limitations in this paper that can be improved in the future. On the one hand,
this paper does not consider network constraints and power flow constraints. In-depth
research can be conducted on the capacity configuration of energy storage in renewable
energy bases, taking into account power supply security, reliability, and power quality. On
the other hand, this study primarily focuses on multiple renewable energy bases and a
single shared energy storage system. Future research can investigate the capacity allocation
problem for multiple shared energy storage stations.
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Abstract: Photovoltaics and batteries can be connected to a traction power supply system through a
railway power conditioner (RPC) to switch between different control strategies. This can address
power quality issues or provide emergency traction for locomotives that unexpectedly lose power
and even break through traditional energy barriers in the railway field, achieving a low-carbon power
supply for railway energy, and a mutual backup with substations. However, methods to coordinate
the control strategies of PV and the battery locomotive traction have not been clearly revealed, nor
has the actual stability of the system. In this study, to address the above issues, an emergency power
supply scheme is proposed for the first time that utilizes a dual-mode RPC inverter combined with a
coordinated control strategy for the PV and battery, achieving the traction of locomotives. In addition,
a one-dimensional impedance model was established for the PV system, battery system, locomotive
(CRH3), and RPC projected onto the dq coordinate system, and the critical amplitude margin (CAM)
was defined to quantitatively analyze the sensitivity and laws of different parameters concerning the
low-frequency stability of the system. At the same time, impedance ratios and passive criteria were
used to reveal the stability mechanism, and parameter adjustment criteria and design suggestions
were put forward. Finally, the feasibility of the emergency power supply scheme of the “PV–battery
locomotive network” coupling system and the correctness of the low-frequency stability study were
verified using the Starsim semi-physical experiment platform.

Keywords: emergency power supply; PV–battery locomotive network; railway power conditioner;
low-frequency stability; critical amplitude margin; verification and testing

1. Introduction

The “2022 Climate Services Status” report released by the World Meteorological
Organization (WMO), a specialized agency of the United Nations, states that the clean
energy power supply must be doubled by 2030 to limit the global temperature rise. Railway
transportation is a significant contributor to energy consumption and carbon emissions
in the transportation sector due to its massive electricity usage. With the depletion of
fossil fuels and the consequences of global warming, there is mounting pressure on the
railway industry to take action and reduce its carbon emissions. To achieve the green
transformation of railways, progress has been made internationally in the adoption of new
energy sources for railways: JR-East has installed 453 kW solar panels at Tokyo Station,
serving locomotives on the Tokaido line 3 [1]; the subway operator in Santiago, Chile, built
two solar photovoltaic power stations in 2017, supplying 60% of the subway’s electricity
and achieving a renewable energy utilization rate of 76% [2]; 100% of the primary energy
used by the Dutch railway is provided by wind [3]; a 2.2 MW rooftop photovoltaic system
has been built at Wuhan Railway Station in China; a 10 MW solar power generation device
has been installed on the roof of Hangzhou East Station [4]; the total installed capacity of
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the photovoltaic system of the Xiong’an high-speed railway in China is 6 MW [5]. The
photovoltaic (PV) resources along China’s AC-electrified railways are abundant, and their
high proportion of utilization can promote China’s achievement of the “dual carbon” goal
and increase the national independent contribution under the global energy conservation
and emission reduction goal [6].

Currently, access methods of PV and battery devices are roughly divided into two
categories: one is to access the battery device from the side of the locomotive to recover
braking energy and control the voltage fluctuation of the traction network [7], and the
other is to access the traction network side. For example, China’s electrified railway mainly
considers access to PV and battery devices from the high-voltage side (110 kV) and the
traction side (27.5 kV). There are two types of PV and battery inverters: one is a three-
phase inverter combined with a three-phase/two-phase transformer, and the other is a
back-to-back single-phase inverter [8]. The high-voltage side access method is suitable
for small-capacity PV and battery devices, and the large capacity required for three-phase
inverters leads to higher costs. At present, the railway power conditioners (RPCs) that
utilize single-phase inverters to connect multiple source devices from the traction side
have received frequent attention due to their excellent comprehensive performance [9].
The authors of [10–14] studied the unbalanced power compensation and harmonic control
of the traction power supply systems with different RPC topologies. In [15], the train
braking energy was recycled and reused through a RPC in conjunction with battery devices.
In [16], a coordinated control scheme based on a RPC for PV and battery access to a
traction power supply system was proposed, utilizing new energy to provide additional
active power. Most of the above studies considered using PV or battery compensation
power to reduce the consumption of fossil fuels but electricity is still mainly provided
by thermal power generation. In [17], an overview of an emergency traction scheme for
locomotive and substation coordination based on battery devices was presented and this
paper aims to solve the problem of sudden accidents such as substation failures leading to
locomotive power loss. In this state, the locomotive is completely powered by the battery.
However, the research on the combined application of PV and battery for emergency
traction in locomotives is not yet widely explored, and more research is needed to explore
its potential and feasibility, if the PV power is connected to the battery for charging and
collaborates with the battery to traction the locomotive, almost all of the electrical energy
comes from renewable energy. However, to design the emergency power supply scheme
for PV and battery systems and identify whether the collaborative integration of PV and
battery systems can further change the railway energy supply system to achieve the long-
term stable full-power traction of locomotives, the above-mentioned problems are worth
deep research and solving. Due to the wide coverage of Chinese railways and superior
energy storage conditions, as well as the long routes and abundant solar resources along
such lines, solar power for AC-electrified railways has broad application prospects and
extensive benefits. Therefore, this article takes the AC power supply system of Chinese
railways with a rated voltage of 27.5 kV as an example and proposes the use of RPC access
to PV and battery devices to achieve the emergency or long-term traction of locomotives,
thus, expanding the function of RPCs and promoting the consumption of PV resources.
In addition, due to differences in operational modes and design parameters between DC
railways and AC railways, this article does not explore issues related to DC railways.

However, it is also important to determine whether the system remains stable when
using the PV and battery locomotive traction and to reveal the main factors and laws that
affect the stable operation of the system; all of these issues need to be addressed prior to
the implementation of PV and battery traction locomotives in practice. At present, there are
multiple frequency-scale instability issues in the traction power supply system of railways,
such as low-frequency oscillation (LFO), harmonic resonance, and harmonic instability.
Among them, LFO has been commonly reported in the electric railway domain around the
world, thus, attracting widespread research attention [18,19]. The first reported occurrence
of the LFO phenomenon dates back to 1996 in Norway when a rotating converter was
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adopted in a traction substation [20]. Since then, in Germany, Sweden, and Norway, rotating
converters have been used to interface the traction network, transforming three-phase utility
power into a single phase for the catenary network [21]. The main cause of LFO has been
attributed to the electromechanical characteristics of rotating converters [22]. However, for
other electric railway systems [23,24], the mechanism of LFO remains unclear. Recently,
from 2008 to 2016, there has been an increasing frequency of LFOs observed in Chinese
railways [25,26]. Many studies have revealed that the occurrence of LFO in China is caused
by the introduction of more converters and impedance mismatch [27–29]. Concurrently,
locomotives have a LC resonant onboard filter that may oscillate, in addition, such a filter
combined with the line can be triggered in oscillation by electric arcs, which is quite a
commonplace phenomenon caused by the sliding contact mechanism [30]. In PV and
battery locomotive traction, more converters may be introduced, which may further induce
LFO. Research on the low-frequency stability of multi-source connected traction power
supply systems is not yet complete. In [31], the integration of PV power into the traction
network through a RPC was considered and an impedance model of a “PV-locomotive-
traction network” was established. It was found that unreasonable parameter settings
during the integration of the PV systems did indeed induce LFO; at the same time, the
parallel connection of the PV modules led to multiple increases in the converters, which
can also lead to LFO in the system. However, the instability mechanism of the system
and methods to improve the system stability were not specifically revealed. The variation
in the source impedance caused by the parallel connection of the subsystem modules
and the parameter adjustment of the converter controller may lead to artificial active
enhancement or the weakening of the low-frequency stability of the system. Therefore, to
further improve the system stability, it is necessary to specifically reveal the sensitivity and
law of the influence of controller parameters on the system’s stability.

Regarding the above issues, this article proposes an emergency power supply scheme
based on RPC access to PV and battery devices in Section 2.1. Through coordinated control
strategies, PV and batteries can be used independently for the day and night emergency
traction of locomotives. They may achieve “low-carbon” locomotive operation and also
serve as a backup power source for the long-term traction of locomotives. On this basis,
an impedance model of the “PV–battery locomotive network” coupling system under this
scheme is established on the RPC DC bus side in Section 2.2. Then, the critical amplitude
margin is defined for the first time based on the impedance ratio criterion; the influence of
parameters on the low-frequency stability of the system is quantitatively evaluated and
passive evidence is introduced to reveal the mechanism of the influence of the parallel
number of PV and battery modules on the stability. Furthermore, parameter adjustment
criteria and main circuit impedance reshaping governance are proposed to prevent LFO
in Section 2.3. Finally, the feasibility of the emergency power supply scheme and the
correctness of the stability study are verified through testing on the Starsim platform in
Section 3.

2. Materials and Methods

2.1. Proposal of Emergency Power Supply Scheme
2.1.1. System Topology

The topology of the “PV–battery locomotive network” system is shown in Figure 1,
which includes a traction network, a high-speed locomotive, a railway power conditioner,
and a new energy power supply system composed of PV and a battery.
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Figure 1. System topology and control block diagram.

The three-phase electricity from the grid is converted from the traction substation to
a 27.5 kV single-phase AC current, which is sent to the α and β power supply arms. The
PV and battery are integrated into a 2 kV DC bus via their respective DC/DC converters,
and the RPC-side single-phase inverter and LC-type filtering circuit are used to convert the
power into 1.5 kV single-phase AC power through step-up transformers Tα and Tβ, which
is then sent to the α and β power supply arms. The Udc is the DC voltage on the input
side of the RPC; U0 is the single-phase AC voltage on the output side of the filtering circuit;
Ui is the unfiltered voltage of the RPC; Cbus is the capacitor on the DC side of the RPC;
VSCα and VSCβ are single-phase inverters in RPC; iα, uα, and uβ are the corresponding
voltage and current of the supply arm; RMS means root-mean-square extraction; PPV and
PBat, respectively, represent the output power of the PV and battery; PLL stands for phase-
locked loop; U0RMS is the root-mean-square value of U0; iL is the output current of the RPC
inverter; i0 is the output current after filtering; and sinωt is the reference sine wave and
Zload is the equivalent load in Section 2.2.2. DC converters in PV systems mainly include
voltage regulation control and maximum power point tracking control (MPPT), while in
battery systems they mainly include charging and voltage regulation control. Under the
emergency power supply scheme, the PV and battery systems provide the locomotive’s
traction but it is still necessary to consider the overall plan for the connection of the PV and
battery systems to the traction power supply system to formulate the control strategy.

The RPC converter is a dual-mode single-phase inverter. Its control strategy is shown
in Figure 1. When it is applied to power compensation, the voltage U0 is controlled to
track the phase frequency of the traction network voltages uα and uβ, and the output
signal is compared with the harmonic and negative sequence reference signal, followed
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by the PWM input signal from the PI controller. At this time, the PV and battery are used
as auxiliary power supplies, and the traction net is used as the main power source to
control the single-phase inverter to support the voltage amplitude and frequency of both
the DC and AC sides of the RPC. In the emergency power supply scheme, the PV and
battery provide the DC-side voltage, the Udc amplitude, and the AC-side U0 frequency
support through a DC converter, and the inverter independently outputs the sinusoidal
AC power. At this time, the PV and battery serve as the main power supply. The DC
converter coordinates with the RPC inverter according to the actual working conditions
to achieve traction network voltage management and locomotive traction under different
power supply schemes.

2.1.2. Division of Multiple Working Modes

The sum of the power inputs and outputs of the PV, battery, and RPC ports will affect
the DC bus voltage Udc, as shown in Figure 1. It is necessary to balance the power of each
port through the division of the working modes. The flowchart for the system’s power
control is shown in Figure 2.

 

Figure 2. Flowchart for the traction power supply system’s power control.

In the above figure, PPV is the output power of the PV system, PBat is the output power
of the battery system, PLoad is the maximum operating power of locomotives, and P is the
power of the power supply arm calculated by measuring the voltage and current of the
power supply arm. Based on the positive, negative, and zero values of P, the locomotive’s
operating conditions can be distinguished, which are namely, traction, braking, and no-load.
In cases where P ≤ 0, if there is remaining capacity in the battery, it can be used to absorb
the energy generated by the braking of the locomotive, as well as the energy provided
by the PV system; In cases where P > 0 but the total power generated from the PV and
battery systems is still lower than Pload, the RPC system will operate under the power
compensation scheme. However, if the traction substation experiences a fault or the output
power generated from the PV and battery systems goes beyond Pload, the RPC system will
automatically switch to the emergency power supply scheme in order to utilize the PV
and battery systems for the locomotive traction. Furthermore, the state-of-charge (SOC)
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threshold value is considered to prevent over-charging and over-discharging from affecting
the battery life.

This article focuses on the study of using PV and battery systems for emergency loco-
motive traction. For different working conditions, such as different levels of irradiance and
state-of-charge (SOC), the proposed emergency power supply scheme includes different
working modes as follows:

Mode One: When the PV power generation is much greater than the sum of the
maximum operating power of the load and the lithium battery charging power, i.e.,
PPV � PLoad + PBat, and the SOC is less than 90%, the PV system can be used to provide the
locomotive’s traction and simultaneously charge the battery. When PPV � PLoad + PBat but
the SOC is above 95%, in order to prevent the battery from over-charging, the PV system
will be responsible for the locomotive’s traction while the battery will be on standby.

Mode Two: When the PV power generation is slightly greater than the maximum
operating power of the load but there is no additional power to charge the battery, that is,
PLoad < PPV ≤ PLoad + PBat, and the SOC is less than 90%, the PV system will only supply
power to the locomotive, and the battery will be on standby.

Mode Three: When the PV power generation is less than the maximum operating
power of the load, that is, PPV < PLoad < PPV + PBat, and the battery’s SOC is higher
than 5%, the PV and battery will work in voltage control mode to jointly provide the
locomotive’s traction.

Mode Four: When the PV power generation approaches zero, that is, PPV < PLoad <
PPV + PBat, and the battery’s SOC is higher than 5%, the PV system will be on standby, and
the battery will provide the locomotive’s traction.

The system topologies under the above four modes are different, meaning that it will
be time-consuming and complex to analyze the system stability from the RPC AC side by
using the impedance method. However, the operating conditions of the PV and battery
combined locomotive traction under mode three are relatively common. Meanwhile, when
carrying out RPC DC bus segmentation modeling, since the control method of each mode’s
DC converter is similar to mode three, the parallel connection or split of the DC converter
output impedance is equivalent to the switching of modes, and the impedance resolution
of the other modes becomes a high-proportion intersection or a subset of mode three,
which is convenient to quickly reveal the factors and regularity affecting the stability under
multiple working modes. The next section builds a mathematical model for the “PV–battery
locomotive network” coupling system using the specific control method of mode three.

2.2. Impedance Modeling of Proposed Emergency Power Supply Scheme
2.2.1. PV and Battery Power Generation Systems

Due to how the topology and control of PV and battery systems are similar, this
section will describe and establish the impedance model of the power generation system
simultaneously. As shown in Figure 3, in the Boost circuit, uPV is the output voltage of the
PV side; iPV is the output current of the PV side; iLPV is the inductor current of the PV side;
uBus and iBus are the DC bus voltage and current; LPV is the energy storage inductor of the
PV side; CPV is the support capacitor of the PV side; CBus1 is the DC-side capacitor of the
RPC; dPV is the duty cycle of the Boost converter’s switching tube, d*PV = 1 − dPV; and u*Bus
and i*LPV are the reference signals for their corresponding variables. In the DC/DC circuit,
uBat is the output voltage of the lithium battery side, iBat is the output current of the lithium
battery, LBat is the energy storage inductor, CBus2 is the DC-side capacitor of the RPC, dBat
is the duty cycle of the T1 switching tube, and the T2 switching tube is complementary
to the T1 switching tube. In addition, u*Bus and i*Bat are the reference signals for their
corresponding variables.

158



Energies 2023, 16, 4814

iR
L

i

C du u

i

GG
i

u

d

C

 

R L d

u C

i

u

d i*

u*

i

G G

Figure 3. Topology and control of DC converters under mode three. (a) PV boost converter; (b) battery
DC/DC converter.

The state equations for the PV and battery systems are given by Equations (1) and (2),
respectively. ⎧⎪⎪⎨⎪⎪⎩

LPV
diLPV

dt + RPV·iLPV = uPV − d∗PV·uBus

CBus1
duBus

dt = d∗PV·iLPV − iBus

iPV = iLPV + CPV
duPV

dt

(1)

{
LBat

diBat
dt + RBat·iBat = uBat − dBatuBus

CBus2
duBus

dt = dBatiBat − iBus
(2)

With small signal linearizing Equations (1) and (2), we obtain Equations (3) and (4):⎧⎪⎨⎪⎩
(sLPV + RPV)·ΔiLPV = −D∗

PV·ΔuBus + UBus·ΔdPV + Δupv

sCBus1·ΔuBus = D∗
PV·ΔiLPV − ILPV·ΔdPV − ΔiBus

ΔiPV = ΔiLPV + sCPV·ΔuPV

(3)
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{
(sLBat + RBat)ΔiBat = −DBat·ΔuBus − UBus·ΔdBat + ΔuBat

sCBus2ΔuBus = DBat·ΔiBat + IBat·ΔdBat − ΔiBus
(4)

According to the superposition theorem, the transfer functions between each variable
of the PV and battery systems can be obtained from Equations (3) and (4), and the specific
expressions are shown in Appendix A, where Equation (A1) includes the transfer function
expansion of the PV system, and Equation (A2) includes the transfer function expansion of
the battery system. Then, based on the control strategies of the PV and battery systems,
draw the closed-loop block diagrams of the small signal transfer functions as shown in
Figure 4.
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Figure 4. Small-signal closed-loop control block diagram. (a) PV transfer function; (b) battery
transfer function.

Using the Mason’s formula, the output impedances of the PV and battery systems are,
respectively:

ZPV(s) =
ΔuBus

ΔiBus
=

GPVBB + GPVBBGPViGPVLP − GPVLBGPViGPVBP

1 + GPViGPVLP + GPVuGPViGPVBP
(5)

ZBat(s) =
ΔuBus

ΔiBus
=

GBiB + GBiBGBiGiBd − GiBiGBdBGBi

1 + GBiGiBd + GBuGBiGBdB
(6)

2.2.2. Locomotive Network and Railway Power Conditioner

In the study of the low-frequency stability of locomotive network coupling systems,
two-level locomotives are often considered. The China railway high-speed 3 (CRH3)
locomotive with four power units is the research object of this paper. In [32], the impedance
expression of a single power unit is presented. After converting the impedance of the China
Railway High-speed 3 (CRH3) locomotive to the RPC AC side, the expression is:

ZCRH3(s) =
ka

2kb
2Us2

4Is2
=

ka
2kb

2[1 + GKGPWMGLn(GCRH3upGCRH3uiGswitchGcircuit + GCRH3ui)
]

4GLn(1 − GdelayGPWM)
(7)

where the transformation ratio of the onboard transformer is ka and the transformation
ratio of the RPC-side step-up transformer is kb.

At present, the equivalent circuit model is commonly used in low-frequency stability
analysis of traction networks [31] and its expression corresponds to the RPC AC side:

Zs(s) = k2
b

[
Rs + sLs

ω0Ls

−ω0Ls
Rs + sLs

]
(8)

The equivalent impedance of the locomotive network converted to the RPC AC side is
recorded as Zload (s), where Zload (s) = Zs (s) + ZCRH3 (s).
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RPC impedance modeling is conducted on the DC port of the inverter, that is, the
input impedance of the RPC is studied. Considering that the back-to-back inverter in the
RPC has a symmetrical structure and the impedance calculation and modeling method
are similar, the β power supply arm is selected as the research object. For the emergency
power supply scheme, the specific control method and topology of the inverter are shown
in Figure 5.
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Figure 5. RPC inverter main circuit topology and control.

In the above figure, Zload is the equivalent impedance of the locomotive network
converted to the RPC AC side; Um is the amplitude of the modulated wave signal; and
sinωt is the sine wave frequency reference signal. Linearization is performed on the DC
side and the variables are decomposed into a closed-loop impedance model in the dq
coordinate system. According to the main circuit, the state equation under dq decoupling
can be derived by: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Linv
diLd
dt = Uid − U0d + ωLinv ILq

Linv
diLq
dt = Uiq − U0q − ωLinv ILd

Cinv
du0d

dt = ILd − I0d + ωCinvU0q

Cinv
du0q

dt = ILq − I0q − ωCinvU0d

U0d = Zload·I0d

U0q = Zload·I0q

(9)

Based on the basic derivation process of SPWM, the relationship between the output
voltage Ui before filtering and the modulation wave Um can be obtained using the switch
average period method: {

Uid = 0.5UdcUmd/Utri

Uiq = 0.5UdcUmq/Utri
(10)

In Equation (10), Utri is the amplitude of the triangular carrier wave, and the remaining
symbols are the system variables under dq decoupling. In the dual-loop control strategy,
the response speed of the inner loop is much faster than that of the outer loop. This article
assumes that the response of the current inner loop is approximately the same within the
average time of a single switching cycle. Due to the PI controller used in the voltage outer
loop, the input–output relationship of the controller is:{

(kinvp + kinvi/s)·(U∗
vd − U0d) = Umd

(kinvp + kinvi/s)·(U∗
vq − U0q) = Umq

(11)
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where U*vd and U*vq are the product of the effective value of the voltage outer-loop output
and the reference sine signal; kinvp and kinvi are proportional integral parameters of the
voltage outer-loop PI controller.

According to the input power and output power of the RPC that are equal:

Udc Idc = 1.5(U0d I0d + U0q I0q) (12)

After processing the small signal in Equation (12), the following is obtained:[
Idc

Udc

]T[ Δudc
Δidc

]
= 1.5(

[
U0d
U0q

]T[ Δi0d
Δi0q

]
+

[
I0d
I0q

]T[ Δu0d
Δu0q

]
) (13)

Equations (9) to (11) can be substituted into Equation (13) to obtain the input admit-
tance on the DC side of the β arm inverter:

Yinv =
Δidc
Δudc

=
3

2Udc
(

[
U0d
U0q

]T

(GZload + GT
Zload)

[ Δu0d
Δudc
Δu0q
Δudc

]
)− Idc

Udc
(14)

As output impedance is the reciprocal of admittance, it can be inferred that Zinv = 1/Yinv
and the variables in Equation (14) are as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎣ Δu0d
Δudc
Δu0q
Δudc

⎤⎦ = 0.5[GLinv(GCinv + GZload) + E − 0.5UdcGPI]
−1
[

Umd
Umq

]

GPI =

[
s

ω

−ω

s

]−1[ −(sKinvp + Kinvi)

−ωKinvp

ωKinvp

−(sKinvp + Kinvi)

]

GLinv =

[
sLinv

ωLinv

−ωLinv

sLinv

]

GCinv =

[
sCinv

ωCinv

−ωCinv

sCinv

]

GZload =

[
Zload

0

0

Zload

]−1

(15)

2.2.3. Verification of Established Impedance Model

To verify the established one-dimensional impedance model, the disturbance injection
method was used for the simulation measurements [33]. By injecting disturbance signals
with specific frequencies during the steady-state state of the system and using the Fourier
transform to process these signals, the impedances of the three ports of the “PV–battery
locomotive network” can be simultaneously measured at specific frequencies, and it should
be noted that the impedances of the three ports of the “PV-battery locomotive network”
refer to the output impedances ZPV towards the PV boost circuit port, ZBat towards the
battery DC/DC circuit port, and Zinv towards the inverter DC port. We will validate
whether the theoretical deduced values of these impedances in the frequency domain
match the simulation results.

Validation results are shown in Figure 6, the first row shows the corresponding
impedance function’s Bode plot, and the second row is the corresponding phase plot,
with the blue curves representing the theoretical values of the model and the red circles
representing the actual measured values. It can be seen that the modeling of the PV and
battery system’s output impedance and RPC’s input impedance is consistent with the
simulation test results.
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Figure 6. Three-port impedance verification.

2.3. Low-Frequency Stability Analysis of Proposed Emergency Power Supply System
2.3.1. Stability Judgment Based on Generalized Nyquist Criterion

According to the mathematical model established earlier, the impedance equivalent
circuit of the PV and battery locomotive traction is shown in Figure 7a, where Z0 is equal to
the parallel value of ZPV and ZBat, and Zg is the impedance of the traditional locomotive
network system source side. Due to the PI controller parameters of the converters in PV
and battery systems that affect the output impedance of the system, Z0, ZPV, and ZBat are
different from Zg because the value of Zg depends on factors such as the material of the
transmission line, its length, and the capacity of transformers, which are difficult to adjust
in practical operation. In comparison, the values of Z0, ZPV, and ZBat are related to the
parameters of the PI controller, and adjusting the control parameters of the PI controller is
less costly as well as more simple and fast. The introduction of a controllable equivalent
impedance may exacerbate the LFO of the system or prevent system instability caused
by impedance mismatch; this characteristic makes it particularly important to explore the
impact of the control parameters and number of PV and battery parallel connections on the
system’s low-frequency stability. This section uses stability judgment methods based on
impedance ratio criteria to conduct the research [27,28].

Firstly, it must be ensured that there are no RHP poles for Z0, ZPV, ZBat, and Yinv and
that each subsystem can operate independently and stably in the simulation. Under differ-
ent traction modes, applying the one-dimensional impedance model established earlier, the
Nyquisit curve based on the impedance ratio of Z0/Zinv, ZPV/Zinv, and ZBat/Zinv can be
obtained. Taking Z0/Zinv as an example, the expression for the system’s impedance ratio
can be represented by a transfer function of G(s) = Z0/Zinv. The stability of the system can
be measured by plotting the Nyquist curve of G(s) and determining whether it encircles
(−1, j0). Additionally, the variations in parameter values based on the impedance model
discussed earlier can affect Z0, thus, modifying the Nyquist curve of G(s). Therefore, the
parameters of each variable may have some effect on the stability of the system. Meanwhile,
due to the lack of a clear concept of the stability margin in the impedance ratio criterion for
MIMO equivalent systems, and to showcase the analysis process concisely and clearly, the
critical amplitude margin (CAM) is defined to quantitatively analyze the system stability
in order to reveal sensitive parameters and their influence laws. If CAM ≥ 0, the system is
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stable; if CAM < 0, the system is unstable. The Nyquist plot of the impedance ratio transfer
function for this system may change due to the effect of different parameters, leading to
two different scenarios, as shown in Figure 7b.
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Figure 7. (a) System impedance equivalent circuit; (b) CAM value scenario diagram.

Scenario 1: When the curve surrounds (−1, j0), the distance from the intersection point
of the real axis of the curve to (−1, j0) is expressed as η1, CAM = −η1;

Scenario 2: When the curve does not surround (−1, j0), the corresponding distance is
expressed as η2, CAM = η2.

In summary, changes in system variables can affect the Nyquist curve of G(s), thus,
impacting the stability of the system. Such an impact can be translated into changes in
CAM values to quantify the effect of a particular variable on the stability of the system. To
further reveal the main controller parameters that affect the system stability, this article
defines the sensitivity of the parameters as:

ε =
CAMn

(ks − ky)/ky
× 100% (16)

where ky is a certain original parameter in Table 1, ks is the value of the critical instability
parameter with the smallest change from ky, (ks − ky)/ky is the multiple of the minimum
change in the original parameters when the system is in critical instability, and CAMn is
the critical amplitude margin corresponding to the original parameter ky under different
operating conditions. The introduction of CAMn is aimed at correcting the sensitivity under
different traction conditions (PV traction, battery traction, PV, and battery co-traction). This
expression can be simply understood as the sensitivity to the electrical instability of the
nearest value of the original parameter.

164



Energies 2023, 16, 4814

Table 1. Original simulation system parameters.

Subsystem Parameter Description Value

Traction net

Rs Grid-side equivalent resistance 0.2 Ω

Ls Grid-side equivalent inductance 6 mH

es Traction net voltage RMS 27.5 kV

ω0 Net-side angle frequency 314 rad·s−1

Railway power
conditioner

Linv Filter inductance 0.04 mH

Cinv Filter capacitors 6 mF

Cbus DC-side capacitance 300 mF

u*bus DC-side voltage reference value 2000 V

ω Reference angle frequency 314 rad·s−1

kinvp Voltage-loop proportional gain 40

kinvi Voltage-loop integral gain 20

kb Step-up transformer ratio 1500/27,500

PV
subsystem

RPV PV-side resistance 1 mΩ

LPV PV-side energy storage inductance 0.3 mH

CPV PV-side support capacitor 2.2 mF

kPVup Voltage-loop scaling factor 4

kPVui Voltage-loop integration factor 20

kPVip Current-loop scaling factor 0.4

kPVii Current-loop integration factor 5

Battery subsystem

RBat Energy-storage-side resistance 1 mΩ

LBat Energy storage inductance 1 mH

kBup Voltage-loop scaling factor 15

kBui Voltage-loop integration factor 2

kBip Current-loop scaling factor 0.02

kBii Current-loop integration factor 1

CRH3

ka On-board transformer ratio 27,500/1500

Ln leakage inductance of transformer 2 mH

LCRH3 DC-side filter inductance 0.84 mH

CCRH3 DC-side filter capacitors 3 mF

Cd DC side supports the capacitor 6 mF

kPWM PWM equivalent gain 1

kCRH3up Voltage-loop scaling factor 0.1

kCRH3ui Voltage-loop integration factor 10

kCRH3ip Current-loop scaling factor 1

2.3.2. Influence of DC Converter and RPC Parameters on the Low-Frequency Stability of
the Proposed System

Based on the method proposed in Section 2.3.1, Figure 8a shows the electrical sen-
sitivity bar chart of the control parameters of the DC converter and RPC inverter under
three different traction modes when the ratio between the PV module, battery module, and
CRH3 locomotive is 1:1:1. Due to the sensitivity of the inner-loop control parameters of
the system under this scheme being less than 1%, the Nyquist curve hardly changes with
the changes in the parameters, and the corresponding test shows that the system remains
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stable even after a large number of changes in the inner-loop control parameters; therefore,
it is not included in the research object. The bar chart shows that the proportional gain of
the outer ring is more sensitive to the system stability and the combined traction of the PV
and battery will reduce the parameter sensitivity.
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Figure 8. (a) Parameter sensitivity of the RPC and DC converters; (b) CAM change law of the
control parameters.

The corresponding parameter influence law is shown in Figure 8b. Within the range
of −0.9 to 2 times the original parameter value, the proportional gain of the outer ring of
each converter exhibits monotonic, identical laws under different operating conditions,
and the sensitivity (i.e., slope) is relatively high. However, the sensitivity of the integral
gain of the outer ring is low, and the impact of the integral gain on the stability of the
system exhibits diversification and non-monotonic characteristics under different traction
conditions. Therefore, the outer-loop proportional gain of the system can be more easily
used to control or prevent system impedance mismatch instability. The specific parameter
adjustment criterion and case verification are expounded in Section 2.3.3.
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In addition, LFO in locomotive network systems always occurs when the Nyquist
curve of the impedance ratio (Zg/ZCRH3) passes through (−1, j0). To investigate whether
the occurrence of LFO under the topology and control scheme proposed in this paper is
consistent with the theoretical analysis of locomotive network systems when the locomotive
is separately tractioned by the PV or battery, the impedance ratio expression for the PV
traction locomotive is ZPV/Zinv, and the expression for battery traction locomotive is
ZBat/Zinv, where ZPV, ZBat, and Zinv come from Equations (5), (6), and (14), and these
impedance ratio expressions are used to plot Nyquist curves under different traction
conditions. Then adjust the high sensitivity parameters kPVup and kBup so that the Nyquist
curve just surrounds (−1, j0), thereby obtaining the Nyquist curve shown in Figure 9 and
the test waveform shown in Figure 10. The results show that when the Nyquist curve of the
impedance ratio for the system described in this paper precisely intersects the (−1, j0) point,
LFO at around 9.6 Hz also occurs. The principle and testing results are consistent under
other parameters in Figure 8 but due to the large number of parameters, they are not listed
in detail.

Figure 9. Nyquist curve before and after changes in high-sensitivity parameters: (a) working condi-
tions of PV locomotive traction; (b) working conditions of battery locomotive traction.

167



Energies 2023, 16, 4814

u

u

t

k = k =

u

u

t
k = k =

 

Figure 10. (a) Experimental waveform of the critical instability of photovoltaic locomotive traction;
(b) experimental waveform of the critical instability of battery pack locomotive traction.

2.3.3. Parameter Adjustment Criterion and Case

Usually, an increase in the transformer capacity and the addition of other types of
equipment such as static synchronous reactive power compensators on the source side
are considered in locomotive network systems to address LFO caused by impedance
mismatch. Such problems also exist in systems under emergency power supply schemes.
However, when using PV and battery locomotive traction, based on the stability law of
the control parameters revealed in Section 2.3.2, the goal can be achieved by adjusting the
converter parameters accordingly. The specific parameter adjustment criteria are as follows:
Firstly, if the system experiences instability, consider lowering the PV boost converter
kPVup, battery DC/DC converter kBup, and RPC single-phase inverter kinvp. Secondly,
consider slightly lowering the kinvi during PV and battery co-traction or battery traction,
and slightly increasing the kinvi during PV traction. It is worth noting that the RPC outer-
loop proportional gain seriously affects the control accuracy (i.e., voltage amplitude);
therefore, prioritize adjusting the proportional gain of the PV and battery DC converters
unless faced with a situation that has special requirements. Taking the ratio of PV modules
to battery modules as 1:1 as an example, the following explains the methods of parameter
adjustment and governance in three cases. The Nyquist curve of Case 1 is shown in
Figure 11a. When using the PV and battery locomotive co-traction, the battery system’s
energy storage inductance deteriorates from 1 mH to 1.23 mH, and the curve surrounds
(−1, j0); at this time, the adjustment kBup is reduced from 15 to 5, and the Nyquist criterion
shows that the system will return to stability. The theoretical curve of Case 2 is shown in
Figure 11b. When the kPVup of the PV locomotive traction deteriorates, it causes a critical
oscillation in the system. The kBup is adjusted and connected to the battery system; at
this time, the PV and battery combined locomotive traction are stable. The test validation
waveforms of the parameter adjustment criteria and related conclusions described in this
section will be presented in Section 3.2.1.
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Figure 11. (a) Nyquist curve for Case 1; (b) Nyquist curve for Case 2.

2.3.4. The Influence of Mixed Proportional Parallel Numbers of PV and Battery Modules
on System Stability

The number of PV and battery hybrid proportional parallel connections will also
change the source-side impedance model to weaken or improve the stability of the system.
Therefore, the original parameters were substituted into the hybrid parallel connection
system. Based on the generalized Nyquist criterion, the bar chart shown in Figure 12a was
obtained. The results show that the system operated stably under different PV and battery
module proportions. To reveal its stability mechanism, the number of PV and battery
modules were introduced as system variables, and because all the modules are connected
in parallel, thus, expanding the impedance ratio expression Z0/Zinv in Section 2.3.1, we
achieve the following formula:

Lhui =

⎛⎝ ZpvZBat
npvnbat

Zpv
npv

+ Zbat
nbat

⎞⎠/Zinv (17)

where npv represents the number of PV modules, and nbat represents the number of
battery modules.
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Figure 12. (a) The proportion of stable system operation when the PV and battery modules were
connected in parallel; (b) analysis results of the passive criterion when the ratio of modules was 1:1.

If npv = nbat = n, the expression is rewritten as Lhui = (Z0/Zinv)/n, which is equivalent
to proportionally reducing the Nyquist function curve (Lhui) by n times. Systems that do
not originally include (−1, j0) will be more stable. In the previous work, it was proven
and verified that the system was stable when the PV traction module ratio was 1:0, the
battery traction module ratio was 0:1, and the PV and battery co-traction module ratio was
1:1 under the original parameters; therefore, the stability of the system with the PV and
battery module ratios of 4:0, 0:4, and 3:3 in Figure 12a is explained. However, it is complex
and difficult to give an answer for the stability mechanism of non 1:1, 1:0 systems using
the impedance ratio criterion, since it changes a variable to directly judge the stability of
the overall system. Therefore, this paper introduces a passive criterion applicable to the
stability analysis of variables, subsystems, and overall systems. The judgment criterion is
as follows: if the sum of the real parts of the total admittance of all parallel systems in the
bus is guaranteed to be constantly greater than 0, all subsystems can operate stably at the
same time. This passive criterion was proposed and verified by Riccobono A. in 2012 [34]
but compared to the impedance ratio criterion, it is less used. Based on the “PV–battery
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locomotive network” coupling system, this article additionally provides the proof process
of the passive criterion from the perspective of dissipative system stability, as shown in
Appendix B. The criterion combines Equations (5), (6), and (14) and Figure 7a, resulting in
the following expression:

Re[Ytot(s)] = Re
[
npvYPV(s) + nbatYBat(s) + Yinv(s)

] ≥ 0

= Re
[

npv
ZPV(s)

+ nbat
ZBat(s)

+ 1
Zinv(s)

]
≥ 0

(18)

Applying Equation (18), the function curve is plotted under the original parameters
when the locomotive traction has a PV and battery module ratio of 1:1, as shown in
Figure 12b. At this time, the real parts of the admittance of the PV and battery modules
are both greater than 0 in the entire frequency band. If the subsystem is paralleled in any
proportion, it will increase the distance between Re[Ytot(s)] and the horizontal axis, and
the system will obtain an additional stability margin to maintain stability. This reveals
the reason why the system always maintains stability after the PV and battery module
mixing ratio is paralleled. Based on the above analysis, the problem of LFO in PV and
battery locomotive co-traction under specific working conditions can also be solved by
using the law of the influence of the number of module parallel connections on stability to
reshape the system impedance from the main circuit structure through the passive criterion.
In Section 3.2.2 Case 1, we designed experiments and demonstrated the validity of the
theoretical analysis.

Increasing the number of PV battery parallel connections in a targeted manner can
address instability caused by multiple locomotives running together or unreasonable RPC
parameter settings but it is difficult to use this method to solve instability caused by the
deterioration of the system. The instability process of this phenomenon can be revealed
using passive criteria, as shown in Figure 13, which shows the criterion curve after the
1:1 parameters of the PV and battery modules deteriorate. Increasing npv and nbat will
cause Re[YPV(s)], Re[Ybat(s)], and Re[Ytot(s)] to extend towards negative infinity, thereby
exacerbating the system instability, and this was validated in Section 3.2.2 Case 2.

Figure 13. Passive criterion analysis results after deterioration of the system parameters.

Based on the research in this section, it is recommended to ensure that the real part of
the admittance of the PV and battery subsystem is always greater than 0 during the design.
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2.3.5. Passive Criterion Is Used to Reveal the Influence Law of Parameters on Stability

As shown in Section 2.3.4, the passive criterion based on the DC bus has clear boundary
conditions and judgment criteria, which makes it easier to explore the law of the influence of
parameters on the stability of the system, in comparison with the Nyquist criterion. This is
reflected in the bivariate function curve, which directly shows the influence of a parameter
of the system on its stability. This means that the law of stability near the original parameter
will no longer be experimentally searched as before, and the three-dimensional plotting of
the function can immediately reveal the influence of arbitrary values of a parameter on the
stability of the original system. In order to verify the above analysis, passive criteria are
used to reveal the stability influence laws of kPVup and kBup, which have been verified before.
By taking kPVup and kBup as variables, we can obtain functions similar to Equation (19) but
because the expressions are verbose, they are presented in the form of graphs, as shown in
Figures 14 and 15, where the z axis is Re[Ytot(s)].

Re[Ytot(s)] = F(k, ω) (19)

(a) 

 
(b) 

Figure 14. The influence of kPVup on the system stability: (a) global diagram; (b) local diagram of the
system instability.
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(a) 

 
(b) 

Figure 15. The influence of kBup on the system stability: (a) global diagram; (b) local diagram of the
system instability.

Figures 14a and 15a show that with the increase in kPVup and kBup, the surface gradu-
ally extends to the negative plane; in other words, the system gradually becomes unstable,
which is consistent with the results obtained using Nyquist’s criterion and in the semi-
physical simulation, however, we are more concerned about the LFO phenomenon that
often occurs in actual railway systems, that is, the critical instability of the system. Ac-
cordingly, the local amplification when the corresponding parameter is unstable is shown
in Figures 14b and 15b, and the values of the LFO parameters given by the criterion are
kPVup = 5.679 or kBup = 31.8, which are obviously lower than the values given by the gener-
alized Nyquist criterion, as shown in Figure 10b. The system ran stably in the simulation
experiment under these parameters. It is also necessary to continue to increase the parame-
ter values to cause LFO. This is caused by the large conservatism of the passive criterion.
Assuming that the law revealed by the criterion is used to control the LFO, if the stability
of a parameter affecting the law is not monotonic and there are lots of extreme points, this
situation may lead to a counterproductive parameter adjustment. Here, the law revealed
by the criterion is more suitable when parametric influences are monotonic over a large
scale. However, in the system design, the conservativeness of the criterion is favorable, and
it will leave a certain stability margin.
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In addition, by applying passive criteria to the AC bus, the designed virtual impedance
compensator successfully suppresses LFO [17] but the specific proof process in the AC
system and its conservative improvement are the next research foci concerning this criterion.

3. Results and Discussion

3.1. Emergency Power Supply Scheme Testing

To verify the feasibility of the proposed emergency power supply scheme and the ac-
curacy of the stability analysis, a simulation model of the PV and battery power generation
systems, RPC, and CRH3 locomotive, as shown in Figure 1, was built based on Starsim. Fig-
ure 16 shows Shanghai Yuankuan Energy’s Starsim HIL real-time simulation software 5.0
and HIL real-time simulator (Modeling Tech, Shanghai, China). This system can perform
small-step real-time testing on power electronic models based on state equations, switch
averaging, and modeling of large and small resistors. In this paper, the model was verified
using a real-time test system (MT 6020) with a 5 μs step size and 20 kHz sampling frequency.

 
Figure 16. Hardware-in-the-loop real-time testing platform.

Here are the model parameters in the above-mentioned testing system, as shown in
Table 1. In this paper, the parameters in Table 1 are referred to as the original parameters.
Unless otherwise specified, analysis or testing will default to using the original parameters.

3.1.1. Emergency Traction Test based on Locomotive Power Failure

The upper computer calculation display is shown in Figure 17a, where PRPC is the
output power of the PV and battery, Pnet is the output power of the substation, and PCRH3
is the absorbed power of one locomotive. At 1 s, the traction network unexpectedly lost
power to the locomotive; after a short response time, the RPC identified the operation
status of the PV and battery devices and switched to the corresponding mode to achieve the
emergency power supply for the locomotive. At 2 s, the power supply to the substation was
restored; to ensure passenger safety, the RPC delayed the power outage. Finally, at 2.5 s,
the RPC exited the power supply or returned to the power compensation scheme. During
this power outage process, the locomotive remained running, as shown in Figure 17b. If
emergency-response-type locomotive traction is started in actual engineering, it can provide
on-site measured data support and technical guidance for future new energy self-sufficient
traction. For example, the working conditions of delayed power outages are equivalent to
the actual test of changing to the substation supply when the new energy self-sufficient
traction encounters an accident.
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Figure 17. Emergency response traction power supply: (a) system energy flow; (b) locomotive voltage
and current.

3.1.2. Coordinated Traction Test

The test setup of the operating power Pload of the high-speed locomotive is set to
3.6 MW, and the light intensity will continue to rise, as shown in Figure 18 obtained from the
upper computer. Among the modes, mode four to mode one correspond to battery traction,
PV and battery co-traction, PV traction, and PV locomotive traction and battery charging.
By switching operation modes under different working conditions, the locomotive traction
power can be stabilized while charging the battery. Under this scheme, the renewable
energy continuous closed-loop power supply allows the locomotive to remain “low-carbon”
for a long time, and a substation can be used for backup power in case of accidents.
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Figure 18. Energy self-sufficient traction power supply: (a) multi-mode power flow conditions;
(b) voltage waveform on both sides of the RPC.

3.2. Verification of Low-Frequency Stability Analysis

The main purpose of this section is to verify the results of the low-frequency stability
analysis in Section 2.3 to ensure the correctness of the analysis. The following subsections
will present corresponding test results in the order of the analysis in Section 2.3.

3.2.1. Verification of Parameter Adjustment Criterion

1. Case 1: Adjusting control parameters to address instability caused by deteriorating
circuit parameters. Under the original parameters, the PV and battery stably provided
co-traction for the locomotive, which is verified in Figure 18. However, at this time,
the parameters of the energy storage inductor Lbat deteriorated. The waveform of
the traction-network-side voltage Uac and current Iac is shown in Figure 19b. The
system experienced a low-frequency constant-amplitude oscillation of 5.7 Hz after 2 s,
and after kBup decreased after 2 s, the system was stabilized and restored. This case
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demonstrates that numerically adjustable control parameters can govern LFO caused
by the deterioration of topology circuit parameters.

U I

Figure 19. Waveform for parameter adjustment after the deterioration of the main circuit parameters:
(a) global diagram; (b) local diagram.

2. Case 2: Connecting a parameter-adjusted other-source subsystem to address single-
source traction instability. Due to the unreasonable setting of kPVup during the PV
locomotive traction, the system became unstable. Finally, a parameter-adjusted battery
system was connected to control the constant-amplitude oscillation. The experimental
waveform is shown in Figure 20, where udc and u0 are the output voltages of the
RPC DC and AC sides, respectively. By comparing and observing the oscilloscope,
it was found that a lower value of kBup made the bus voltage fluctuation smaller
and smoother when the battery system was connected. The reason for the successful
governance of the parameter adjustment, in this case, is reflected in the addition of
the circuit topology of the battery subsystem and the parameter setting under the
parameter adjustment criteria, which improved the impedance matching relationship.
At the same time, the relatively lower electrical sensitivity under the combined traction
of the PV and battery provided the control parameters with a wider range of choices
in the stable domain.
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Figure 20. When the PV locomotive traction is unstable, it can be corrected by connecting a parameter-
adjusted battery subsystem: (a) experimental waveform after the battery was connected when
kBup = 5; (b) experimental waveform after the battery was connected when kBup = 15.

3. Case 3: Adjusting the control parameters to govern LFO caused by multi-locomotive
operation (heavy load). The impedance ratio criterion mechanism shows that the
smaller the load-side impedance, the more unstable the system will be. Therefore,
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many studies on locomotive network systems have found that multi-locomotive
operation or mixed operation is an important factor inducing LFO. The problem
of heavy loads reducing the stability of traction power supply systems also exists
in the study of PV and battery locomotive traction but the parameter-adjustable
“artificially controllable traction network impedance” has a certain adaptability. The
CRH3 high-speed locomotive was used as the research object, and the simulation
waveform is shown in Figure 21, which includes the locomotive DC-side voltage
UCRH3dc, locomotive-network-side voltage UCRH3ac, and locomotive-network-side
current ICRH3ac. After 2.5 s, the addition of three high-speed locomotives caused a
4Hz low-frequency constant-amplitude oscillation among the high-speed locomotives.
According to the parameter adjustment criteria, kPVup and kBup were decreased after
2.5 s, and then the locomotives were stabilized.

k
k

U U I

 

Figure 21. Adjustment of the parameters to control system instability caused by multi-locomotive
parallel connection: (a) global diagram; (b) local diagram.

3.2.2. The Impact of Parallel Connections of PV and Battery Modules

1. Case 1: Worsening RPC parameters and overloading lead to LFO and then an increase
in the number of parallel connections of the PV and battery modules. According
to the passive criterion, overloading and deteriorating RPC parameters will cause
Re[Yinv(s)] to extend towards the negative plane until the system experiences critical
instability. According to the impedance ratio criterion, overloading is equivalent to
proportionally amplifying the Nyquist curve until it envelops (−1, j0). Under this
operating condition, it will cause low-frequency divergent oscillations, as shown in
Figure 22a, where Udc and U0 are the voltages on both the RPC DC and AC sides,
respectively. Increasing the number of parallel PV battery modules and reshaping
the impedance to provide an additional stability margin can compensate for this, as
shown in Figure 22b. In this case, the system can regain stability after 1.6 s.

2. Case 2: Increasing the number of parallel modules after the module parameters
deteriorate. As shown in Figure 23, multiple increases in the number of module
parallel connections after the PV and energy storage inductance parameters and
control parameters deteriorate will actually exacerbate the system instability.
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Figure 22. (a) Overloading and worsening RPC parameters lead to system instability: (b) the
ratio of PV and battery module parallel connections can multiply and increase to reshape the sys-
tem impedance.

Figure 23. Deterioration of the system parameters leads to instability and multiple increases in the
ratio of modules will aggravate the voltage oscillation.

4. Discussion

This paper mainly proposes an emergency power supply scheme to solve the problem
of interruption in train power supply caused by unexpected faults in traction substations.
The solution coordinates with the PV and battery systems to achieve emergency traction
of locomotives, thereby expanding the functions of the railway power conditioner (RPC).
Meanwhile, this paper proves through theoretical modeling and verification tests that the
PV and battery traction locomotive additionally have the problem of low-frequency oscilla-
tion. To curb low-frequency oscillation occurring during the emergency power supply, this
paper quantitatively analyzes the influence law of PI control parameters and topological
structures on the low-frequency stability of the system, proposes a design method for the
impedance real part greater than 0 of the PV and battery systems module, and provides
parameter adjustment criteria to suppress or even prevent low-frequency oscillations.
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Most studies on the integration of PV and battery into electrified railways focus
on RPC grid compensation of traction power and harmonic governance. However, it is
necessary to make RPC multifunctional, and few of the literature studies the coordinated
control scheme of PV and battery for emergency train traction. If the majority of current
RPC research’s control strategies, such as the ones described in references [16,31], are
used to independently traction the locomotive, the lack of phase information obtained
by the phase-locked loop will cause the frequency and current of the traction network to
be incorrect, forcing the locomotive to stop running. Therefore, this paper proposes the
use of a dual-mode RPC with an independent power supply function, which can not only
compensate for the power of the traction power supply system but also provide emergency
traction for the locomotive.

Meanwhile, current research of the literature applies various criteria to analyze the
low-frequency stability of a system. However, many research methods and processes in
the literature are rather similar, in that they require graph redrawing every time a variable
is modified to display the corresponding result [18,27,28]. This process is not intuitive
enough and does not facilitate a thorough investigation of the impact of parameters on
the stability and sensitivity of the system, simultaneously considering that there is little
research on the low-frequency stability of the PV–battery locomotive network coupling
system. Therefore, this paper defines CAM to quantify system stability and provides a
method to calculate the sensitivity ε of parameters, which can weigh the importance of
different parameters under different working conditions and explore the main influencing
parameters and their influence laws. This paper also proposes the use of a passive criterion
to reveal the influence mechanism of the number of PV and battery modules in parallel
on system stability. Moreover, it finds that it has great potential for exploring parameter
influence laws, it can intuitively give the law that a variable affects system stability within
any value range through functions or three-dimensional drawings, however, the passive
criterion still needs some improvement to achieve analysis accuracy similar to that of the
Nyquist criterion.

Furthermore, PV and battery co-traction locomotives are environmentally friendly,
because almost all of the electricity comes from renewable energy sources. Based on the
research results of this article, further optimization and improvements in the power supply
scheme of emergency traction locomotives, and exploring the impact of more variables on
the low-frequency stability of the system, such as different types of locomotives running
together under different working conditions, and conducting comprehensive research
on the simultaneous impact of multiple parameters on the system, all have a profound
significance and great value. Meanwhile, issues such as whether the emergency power
supply scheme proposed in this article be used for long-term traction locomotives persist.
How to configure the capacity of the PV and battery, whether the PV resources can be
recycled by the power grid while the supply arm is idle and the locomotive is running, etc.,
are also the focus of future research. Compared to the traditional AC-electrified railway, the
fact that the output of both PV and energy storage is DC suggests that there may be broader
application prospects for PV and battery traction locomotives in DC railways and urban
rail transit systems, and how to further explore its specific scheme and system stability are
yet to be discussed.

5. Conclusions

This work demonstrates that it is feasible to independently drive locomotives using PV
and battery equipment under different working conditions during the day and night, and
it established a one-dimensional impedance model for a PV–battery locomotive network
system from the DC side. At the same time, this study suggests that low-frequency stability
analysis of the system of the PV–battery locomotive network may be very important. On
this basis, the stability of the system was studied using the generalized Nyquist criterion
and a passive criterion. The critical amplitude margin (CAM) and the sensitivity of the
controller parameters were proposed to quantitatively evaluate the influence law of the

180



Energies 2023, 16, 4814

source-side DC converter control parameters and RPC control parameters on this system
stability under different emergency traction modes, and corresponding parameter tuning
criteria and design suggestions were provided to improve the stability of the system. Finally,
the findings were verified through time-domain simulation models and semi-physical
testing. The main research conclusions are as follows:

(1) Proposal of a coordinated control strategy, achieving locomotives emergency traction
by using PV and battery, thus, increasing the function of the RPC.

(2) When the locomotive is co-tractioned by the PV and battery, the sensitivity of the
control parameters is reduced compared to when the locomotive is powered by a
single source. Moreover, the parameter selection in the stable region is more extensive,
and the control accuracy is higher. In addition, the influence of the proportional
gain parameters of the outer loop of the PV and battery DC converters on the system
stability is consistent under different traction conditions. Compared to the RPC control
parameters and the integral gain sensitivity of the outer loop of the PV and battery DC
converter controller, it is more reasonable to improve the system stability by adjusting
the proportional gain of the PV and battery DC converters. Priority should be given
to reducing the proportional coefficient kPVup and kBup to improve the stability of
the system.

(3) The numerical value of the connection ratio between the PV modules and battery
modules has a significant impact on the low-frequency stability of the system. If the
output admittance of the PV and battery modules is less than 0, increasing the number
of parallel connections will weaken the system stability; if it is greater than 0, the
stability margin will be increased to a certain extent. By utilizing this feature, the
impedance can be reshaped during system design and operation.
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Appendix A⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

GPVBB = ΔuBus
ΔiBus

= s2LPVCPV+sRPVCPV+1
s3LPVCPVCBus1+s2RPVCPVCBus1+s(CBus1+CPVD∗2

PV)

GPVBP = ΔuBus
ΔdPV

=
−s2RPVCPVCBus1+s(CPVD∗

PVUBus1−RPVLPVCPV)−ILPV

s3LPVCPVCBus1+s2RPVCPVCBus1+s(CBus1+CPVD∗2
PV)

GPVLB = ΔiLPV
ΔiBus

=
sCPVD∗

PV
s3LPVCPVCBus1+s2RPVCPVCBus1+s(CBus1+CPVD∗2

PV)

GPVLP = ΔiLPV
ΔdPV

=
s2CPVCBus1UBus+sLPVCPVD∗

PV
s3LPVCPVCBus1+s2RPVCPVCBus1+s(CBus1+CPVD∗2

PV)

GPVu = kPVup + kPVui
s

GPVi = kPVip + kPVii
s

(A1)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

GBiB = ΔuBus
ΔiBus

= sLBat+RBat
s2LBatCBus2+sRBatCBus2+D2

Bat

GBdB = ΔuBus
ΔdBat

= (sLBat+RBat)IBat−DBatUBus
s2LBatCBus2+sRBatCBus2+D2

Bat

GiBi =
ΔiBat
ΔiBus

= DBat
s2LBatCBus2+sRBatCBus2+D2

Bat

GiBd = ΔiBat
ΔdBat

= sUBusCBus2+DBatLBat
s2LBatCBus2+sRBatCBus2+D2

Bat

GBu = kBup + kBui
s

GBi = kBip + kBii
s

(A2)

Appendix B

The passive criterion is additionally proven from the perspective of the dissipative system:
Based on the DC bus, the equivalent impedance circuit of “PV-Battery-locomotive

network” is obtained by using Thevenin’s and Norton theorems, as shown in Figure A1,
where u(t) = Udc.

Ud Ud

Z nZ n
ZU

i t

Z nZ n Zu t
U

Figure A1. “PV-Battery-locomotive network” equivalent impedance circuit.

The energy function is listed using the output current and voltage, as shown in the
following equation.

ρ(t) =
∫ +∞

−∞
u(t)i(t)dt (A3)

When the above equation is always greater than zero, the system is a dissipative
system and remains stable at all times. According to Passerval’s theorem, the conversion to
the frequency domain yields:∫ +∞

−∞ u(t)i(t)dt = 1
2π

∫ +∞
0 (u∗(ω)i(ω) + u(ω)i∗(ω))dω

= 1
2π

∫ +∞
0 (u(ω))2(Ytot(ω) + Ytot

∗(ω))dω
(A4)

Among them, * represents conjugation, Ytot represents the sum of the admittance
realities of the optical storage network, and ensuring that the above equation is greater
than 0 is ensuring that the admittance Ytot real part is greater than 0.
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Abstract: Electric vehicles and the charging stations and their operation require a thorough exam-
ination to evaluate the effects on the electrical network. This becomes particularly challenging in
the case of high photovoltaic penetration, due to the variability of the solar resource and vehicle
connection patterns, which cater to individual user preferences. The current study investigates the
impact of harmonics generated by charging stations and electric vehicles on different photovoltaic
penetration scenarios within an electrical distribution system. DC and AC charging stations are
analyzed. The findings reveal a third harmonic magnitude increase exceeding 300% compared to
other cases. Furthermore, this study demonstrates the effects of current and voltage variations on
end-users and substation transformers. The impact of harmonics on the hosting capacity of the
network is also analyzed, resulting in a 37.5% reduction in the number of vehicles.

Keywords: electric vehicle; charging stations; photovoltaic generation; distribution system; harmonics

1. Introduction

Over the past 5 years, there has been significant growth in the adoption of electric
vehicles (EVs). However, integrating EVs into electrical distribution systems involves a
thorough examination of their impact on the electrical network. The connection of EVs to
the power grid may cause an elevation in voltage and current harmonic distortion, as well
as a decrease in the lifespan of distribution transformers due to elevated temperatures [1].
In addition, harmonic distortion can also arise from the inverters of grid-connected photo-
voltaic (PV) systems, with some harmonics reaching high levels [2]. The integration of EVs
with a high penetration of PV systems can create challenges for electrical distribution grids.
Additionally, a large quantity of electric vehicles may result in power quality issues, such
as service interruptions, fluctuations in voltage and current, and harmonic distortion [3].
Hence, it is crucial to carefully plan the integration of electric vehicles into PV-dependent
systems to prevent any undesirable disruptions to the distribution system.

Several studies have investigated the influence of EVs on electrical distribution sys-
tems, analyzing both EV penetration and PV systems [3–7]. However, there are only a few
case studies that investigate the integration of these technologies in electrical grids with
a high concentration of PV systems. It has been demonstrated that the presence of EVs
in the electrical grid has an impact on total harmonic distortion (THD). In [8], the effect
of level two fast chargers on the grid was investigated. As the penetration of EVs on a
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feeder rises, the degree of harmonic distortion also rises, as observed. Furthermore, the
study investigated the impact of the electric vehicle supply equipment (EVSE)’s location
on the feeder. The outcomes indicated that the highest THD value was at the end of the
feeder, and the voltage at the user’s terminals decreased when the EVSE was located further
from the feeder’s origin. These findings have significant implications for the deployment
of EV charging infrastructure in the power grid, as careful EVSE placement can mitigate
the negative effects of EVs on harmonic distortion. Moreover, these findings emphasize
the necessity for additional research on the influence of EVs on the electrical grid and the
development of strategies to guarantee the dependable and effective integration of electric
vehicles into the grid.

It has also been observed that the individual harmonic distortion caused by EVs
limits the capacity of the electrical grid. In a study conducted by the authors in [9], a
sensitivity analysis of models with uncertainty in medium voltage networks was assessed.
The results showed that individual harmonics cause a decrease in the hosting capacity
due to the probability of exceeding technical limits by approximately 67%. These findings
underscore the need for careful consideration of the impact of EVs on the electrical grid and
the potential limitations that may arise. It is essential to ensure the reliability and efficiency
of the electrical grid as EV adoption continues to increase. Further research on the impact of
EVs on the electrical grid’s hosting capacity and the development of strategies to mitigate
the negative effects of harmonic distortion will be crucial in facilitating the integration of
EVs into the electrical grid.

This study focuses on investigating the harmonic effects of EV charging stations in
an electrical distribution grid with high PV penetration, considering both peak and valley
demand. To determine the actual harmonic values, the power quality of fast-charging
stations employing direct current (DC) and slow-charging stations using alternating current
(AC) for KIA- and BYD-brand vehicles was measured. Subsequently, the system was
simulated utilizing OpenDSS, and validation was carried out using the IEEE European
low-voltage test feeder case.

The current study is an extension of the article titled “Harmonic Impact of Electric
Vehicles in Electrical Distribution Systems with High Photovoltaic Penetration”, presented
at the V Ibero-American Congress of Smart Cities.

This article’s key contributions include (a) a comprehensive analysis and assessment
of the impact and distinct levels of harmonics on the behavior of distribution systems
with high PV penetration and EV loads, proposing that a high penetration of photovoltaic
generators and EVs has a direct relationship with amplified harmonics and (b) indicating
that THD effects on voltage values at loads are significant and must be considered.

2. Methodology

The electrical parameters for this study were acquired by measuring two EV brands
and charging stations under real charging conditions. Furthermore, the charging stations
and electric vehicles were modeled as both storage components and sources of harmonic
generation. The specific modeling of EVs as storage components was deemed necessary due
to the standard model available in OpenDSS, which permits the configuration of various
efficiency parameters, including state of charge or discharge and power control. However,
as there is no specific model designed for EVs, MATLAB must be employed to control their
operations. In contrast, the standard OpenDSS model was deemed sufficient for modeling
PV systems, enabling the incorporation of a wide range of parameters, including irradiance,
efficiency, and temperature effects. Lastly, a standard electrical IEEE standard case study
was utilized to conduct the simulations.

2.1. Charging Stations and Electric Vehicles

Tests were carried out at the University of Cuenca’s laboratory [10], using a Fluke
435 II power quality analyzer, to gather real data on current harmonics. The measurements
were conducted on a BYD T3 and Kia Soul EVs, as well as on a 7.2 kW AeroVironment
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RS 25 AC electric vehicle supply equipment (EVSE) (sourced from California, USA) and a
50 kW Circontrol Raption 50 model (sourced from Barcelona, Spain) fast DC EVSE (refer to
Figure 1).

 
 

(a) (b) 

Figure 1. Measurement equipment: (a) connection diagram; (b) EV and EVSE.

The laboratory measurements of voltage harmonics, encompassing both magnitude
and angle, yielded the results that are shown in Table 1. Additionally, the values obtained
from prior studies available in the literature involving other models of EVs have also been
included. Table 1 shows the results of the laboratory measurements up to the eleventh
harmonic for the parameters (param) in magnitude and phase angle of voltage. It presents
the harmonics generated by an electric vehicle charger (EV charger), a Nissan Leaf vehicle,
a BYD-brand vehicle with an alternating current charging station (BYD AC) and direct
current (BYD DC), as well as a Kia-brand vehicle, likewise with an alternating current
charging station (Kia AC) and a direct current one (Kia DC).

Table 1. Harmonics magnitude and angles obtained from measurements and other studies.

No. Param EV Charger [6] Nissan Leaf [5] BYD AC Kia AC BYD DC Kia DC

1
Mag. 100 100 100 100 100 100

Angle −55 −26 136 143 8.6 28.6

3
Mag. 9.20 25.00 9.91 6.31 2.40 6.22

Angle 120.00 −94.00 98.00 102.00 6.50 32.00

5
Mag. 62.20 17.00 8.47 1.15 1.73 14.55

Angle 255.00 −96.00 120.00 131.00 7.20 36.00

7
Mag. 41.80 14.20 8.11 0.83 2.14 5.61

Angle −28.00 −72.00 146.00 153.00 6.80 31.00

9
Mag. 1.48 9.69 7.30 0.49 1.13 4.34

Angle −3.00 −68.00 152.00 161.00 5.70 34.00

11
Mag. 7.08 5.04 6.92 0.64 2.45 5.06

Angle −2.00 −49.00 168.00 182.00 5.60 35.00

Charge Efficiency - - 92.90% 89.80% 94.60% 91.70%

Additionally, measurements were carried out to evaluate the efficiency of both the
charging station and the internal converter of the vehicle. The performance of an EVSE was
assessed using instrumentation to ensure accurate measurements. An AC power quality
analyzer Fluke 435 II was utilized at the input of the station to monitor critical electrical
parameters, such as the current, voltage, and harmonics in both magnitude and angle.
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Furthermore, a Hioki PW3337 DC (sourced from Nagano, Japan) power quality analyzer
was connected to the internal charger circuit and the EV battery to obtain the charging
efficiency. The charging processes of EVs were tested from a state of charge (SOC) of 10%
to 95% to ensure a comprehensive analysis of charging performance. The experiment was
conducted in the University of Cuenca’s laboratory. The efficiency of EVSEs was examined
in both AC and DC charging modes, with the highest efficiency observed during DC
charging at 94.6%, while the lowest efficiency was recorded during AC charging at 89.8%.

2.2. Simulation Characteristics

OpenDSS was utilized for simulation purposes, wherein EVs were represented as
storage elements and were dispersed across different phases of the system, while also
acting as a source of harmonics. The simulation process involved the use of two distinct
models, one for the EV and another for the PV. The EV was accurately modeled as a battery
with a charge controller, customizable efficiency settings, and a current source to generate
harmonic waves. The model employed consists of a battery storage element connected
to each load bus of the system. It utilizes a two-phase model, with each phase operating
at 230 VAC and a power factor of 1. The specific spectrum and load curve for the model
can be found in the study’s repository, specifically in the Input_data/circuit/autos folder.
Similarly, the PV system was designed to operate with a DC-to-AC converter, which served
as the control signal for a harmonic current source. Standard values were employed for
efficiency, temperature, and irradiation to ensure consistency throughout the simulation
process (see Figure 2). The PV system in OpenDSS is defined as a PVSystem element,
connected to the system buses according to each scenario. It is configured as a single-phase
system operating at 230 VAC and an operating temperature of 25 ◦C. Additionally, the
irradiation, efficiency, harmonic spectrum, and power–temperature adjustment curve are
defined in the repository files, specifically in the Input_data/circuit/fotovoltaico folder.

  
(a) (b) 

Figure 2. Simulation models. (a) Electric Vehicle. (b) PV generator.

The models employed for the EV and PV generator incorporate series and parallel
impedances, specifically series RL and parallel RL. To accurately align with the power
profile, OpenDSS computes the values of conductance (G), susceptance (jB), and impedance
(R+jX) for both the vehicle’s power consumption and the generator’s power generation
requirements according to its power delivery requirements. Regarding the harmonic
spectrum, the harmonic values obtained from Table 1 are applied to EVs, whereas default
values from OpenDSS are utilized for PV generators. Furthermore, the efficiencies (%
efficiency) indicated in Table 1 are incorporated into the EV model, and ideal idling losses
are assumed.

This approach enables the accurate modeling and analysis of harmonics impact of EVs
and PV systems. A critical consideration during the simulation process was the connection
time of EVs, which could significantly impact the results of the analysis. To precisely
reflect the behavior of EV connections, a multimodal probability distribution function
(PDF) was employed. Such a PDF accounts for multiple modes or peaks that demonstrate
the connection of electric vehicles at various times of the day. For residential EVSEs, it is
worth noting that, while the connection can be established at any point during the day,
the maximum modes transpire at 08:00 and 18:00. These timeframes coincide with when
users typically return home with their EVs and proceed to connect them for charging
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purposes [11]. The function used was designed with modes at 02:00, 08:00, and 19:00, and
standard deviations of 2 h, to generate a realistic representation of EV connection behaviors
(see Figure 3). In the simulation, EVs maintain a charging regimen lasting between 6 and
8 h, reaching a SOC ranging from 80% to 100%. This encompasses up to 55 distinct charging
behaviors, depending on the specific scenario being analyzed. The OpenDSS file utilized
to describe the charging duration, as well as the connection and disconnection times, can
be downloaded from the repository associated with this study. It is located within the
Input_data/circuit/autos folder.

Figure 3. Electric vehicle connection probability distribution function used in simulation.

To automate the simulation process in OpenDSS, MATLAB was employed as a tool for
controlling the timing of both customer load profiles and EV connections. The integration
of MATLAB with OpenDSS allowed for a streamlined and efficient simulation process,
which ultimately facilitated the accurate analysis of the performance of EVSEs.

2.3. Application Scenarios

To evaluate the impact of harmonics, a simulation was conducted utilizing the IEEE
European low-voltage test feeder model. Three scenarios were analyzed based on the
PV generation location: (1) 14 distributed PV systems with a capacity of 5 kW each and
14 EVSEs with a capacity of 7.2 kW each; (2) a central PV system with a capacity of 70 kW
and 14 EVSEs with a capacity of 7.2 kW each, as illustrated in Figure 4; and (3) PV and EV
distributed across all loads. The harmonic spectrum from Table 1 was assigned randomly to
each scenario, while for the PV generators, the harmonic spectrum from [12] was employed.
A clear sky irradiance profile was applied to the PV systems. The study examined the
following scenarios:

• The initial test case solely examines residential loads within the system, devoid of EVs
or PVs (Case 1).

• EVs connected without PV generation and without harmonic effects (Case 2).
• EVs connected with distributed PV generation and without harmonic effects (Case 3).
• EVs connected with single PV generation and without harmonic effects (Case 4).
• EVs and PV generation distributed across the loads without harmonic effects (Case 5).
• EVs connected without distributed PV generation and with harmonic effects (Case 6).
• EVs connected with distributed PV generation and with harmonic effects (Case 7).
• EVs connected with single PV generation and with harmonic effects (Case 8).
• EVs and PV generation distributed across the loads with harmonic effects (Case 9).
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(a) (b) 

Figure 4. Test cases analyzed: (a) distributed EV and distributed PV systems; (b) distributed EV and
single PV system.

The analysis focused on observing the impact on the substation response, the maxi-
mum total harmonic distortion (THD), and the voltage and current at the client terminals.

3. Results

During the simulation, the power rating of the transformer in the substation, as well
as the highest and lowest voltages recorded across the loads, were taken into account.
Moreover, the maximum THD in the loads was also considered.

3.1. Power of the Substation Transformer

Initially, the power of the substation transformer was analyzed for the scenarios
outlined in Section 2.3. Figure 5 illustrates that the power of the substation transformer
fluctuates as EVs are introduced into the network and the impact of harmonics caused
by the EVs is taken into consideration. Case 2 without harmonics exhibits the lowest
power value, whereas the highest power value among all scenarios is observed when
harmonics are introduced into the network. The high current resulting from harmonics
saturates the system’s conductors, which diminishes the effect of power injection by the PV
generation. Additionally, the situation deteriorates when there is only one PV generation
in the distribution system. Likewise, an analysis of the network’s performance in Cases 5
and 9, which include distributed PV and EV systems, reveals a distinct impact of harmonic
distortions. Specifically, the presence of harmonics causes a reduction in the current output
of the PV systems.

The power with harmonics is internally calculated by OpenDSS through multiple
simultaneous simulations. First, the power of the fundamental component is computed,
followed by repeated simulations for each of the harmonic components configured in the
spectrum file. Consequently, OpenDSS provides separate power results for each harmonic,
and in MATLAB, the contribution of each harmonic is summed. Equation (1) illustrates the
outcome of this calculation.

P =
m

∑
n=1

Vn In

2
cos(θn − ϕn) (1)

where:

P is the active power;
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n is the harmonic;
Vn is the voltage of nth harmonic;
In is the current of nth harmonic;
θn is the voltage angle of nth harmonic;
ϕn is the current angle of nth harmonic.

Figure 5. Substation transformer power curve for each case.

3.2. Load Voltages

This study examined the behavior of maximum and minimum voltages across the
loads (customers) in the network to ensure that they meet the limit values prescribed by the
ANSI C84.1-2006 standard for each simulation scenario. A base RMS voltage of 240 VAC
was assumed for the network, and the standard limits of 0.9 pu and 1.05 pu were used,
which correspond to 216 VAC and 252 VAC, respectively. The simulations showed that
Cases 5 and 9 had lower RMS voltage values than case 8, which had the highest voltage at
the customer terminal connected to the PV generator. It was observed that high voltage
values coincided across different simulation cases (see Figure 6). Notably, minimum voltage
values were found to be within the standard limits across all simulation scenarios.

 
(a) (b) 

Figure 6. Voltages at customer bars. (a) Maximum values on all customers by selected case. (b) Mini-
mum values on all customers by selected case.

Table 2 displays the highest and lowest power values of the substation transformer,
along with the voltage and current at the customer’s terminals. It is evident that in Case 2
with harmonics, the transformer requires the most power, both in terms of maximum and
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minimum power during the 24 h period. With regard to voltage, scenarios with harmonics
do not seem to have a significant impact. However, the current remains at a high level
during the minimum of Case 2 with harmonics.

Table 2. Power, current, and voltage obtained from the analyzed scenarios.

Case Transformer Power (kW) Load Voltage (V)

(1) Base
Max 48.95 243.67

Min 4.81 225.50

(2) Only EVs
Max 48.95 243.99

Min 4.81 238.89

(3) EV and distributed PV
Max 43.29 249.01

Min −47.06 223.07

(4) EV and single PV
Max 43.29 291.93

Min −52.75 215.76

(5) Distributed EV and distributed PV
Max 45.76 260.91

Min −209.20 224.01

(6) Case 2 plus harmonics
Max 54.48 244.02

Min 5.79 221.02

(7) Case 3 plus harmonics
Max 43.29 249.02

Min −44.94 223.23

(8) Case 4 plus harmonics
Max 43.29 291.97

Min −50.28 215.95

(9) Case 5 plus harmonics
Max 83.81 260.94

Min −209.20 224.04

3.3. Load Harmonics

Through a comprehensive analysis of the system’s response to specific injected har-
monics throughout a 24 h duration in each case, notable observations were made. The
findings revealed that the third harmonic held a dominant presence, aligning with the mea-
surements conducted in controlled laboratory settings. The obtained results exhibit distinct
harmonic profiles for Case 6 and Case 7, showcasing interesting trends in the magnitudes
of various harmonics. In Case 6, the analysis unveiled a maximum value of 2.5% for the
third harmonic, indicating its prominent influence on the system. On the other hand, the
seventh harmonic exhibited the lowest magnitude, with a minimum value of 0.3%. Case 7
demonstrated a similar pattern, with the third harmonic maintaining its position as the
most significant harmonic in terms of magnitude, while the seventh harmonic retained
its status as the least influential. Moreover, it is worth noting that the minimum values of
the fifth harmonic displayed a noticeable increase of approximately 30% compared to the
other harmonics. This observation suggests a distinct behavior and potential sources of
harmonics within the system, warranting further investigation into the underlying causes
and implications of this phenomenon.

These findings shed light on the harmonic characteristics of the system under inves-
tigation, highlighting the prevalence of the third harmonic and the varying magnitudes
across different harmonics. This analysis provides valuable insights into the harmonic
composition and distribution within the network, aiding in the identification of potential
sources and facilitating the development of appropriate mitigation strategies.

The behavior in Case 8 was comparable; however, the minimums of the third, fifth,
and seventh harmonics (H3, H5, and H7) increased by up to 60% in comparison to previous
cases. Finally, Case 9 demonstrated the most significant harmonic behavior, with the
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dominance continuing in the third harmonic and its peaks reaching a magnitude of 4.5%.
Moreover, the increase in the minimum values was substantial, reaching up to 300%
compared to other cases (refer to Figure 7a). The analysis of the maximum THD behavior in
loads, as depicted in Figure 7b, revealed that Cases 6 and 7 exhibited higher harmonic levels
compared to other cases. Conversely, during the connections of EVs, Case 9 displayed a
lower THD value.

 
(a) 

 
(b) 

Figure 7. Harmonic behavior. (a) Case 9; (b) THD.

3.4. Hosting Capacity Limited by Harmonics

One crucial parameter in an electric distribution network with distributed generators
and loads such as electric vehicles is the determination of hosting capacity. Traditionally,
the analysis of this parameter relies on the limits of power supply quality and the thermal
limits of network components. However, there is a limited number of studies addressing
hosting capacity specifically considering harmonics.

Within the scope of this study, a hosting capacity analysis was undertaken to assess the
influence of harmonic values recorded at customers’ premises on the power distribution
network. The analysis focused on a specific scenario, namely, Case 9, which encompasses
a diverse distribution of both PV system EVs across the network’s loads. By examining
this particular case, this study aimed to examine the potential repercussions of harmonics
on the network’s overall performance and functionality. A base case was established with
55 EVs, each with a nominal power rating of 7.2 kW and an average energy consumption of
50.4 kWh, and 55 PV systems, each with a nominal power rating of 5 kW. Through MATLAB
simulations, the number of EVs in the system was increased in multiples of their nominal
power ratings while ensuring that the maximum THD and individual harmonic distortions
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remained in compliance with the IEEE 519-2022 standard (see Table 3). The results indicate
that while the system can accommodate the connection of up to 104 EVs, the limitation
on the third harmonic restricts the number of vehicles that can be connected to 65. The
analysis also considered the probability function of connecting vehicles at different times.

Table 3. Maximum Load Total Harmonic Distortion.

EVs Connected Max THD (%)
Max Harmonic (%)

3th 5th 7th 9th 11th

55 2.64 1.61 1.66 0.71 1.18 0.71

65 5.44 4.73 3.51 1.93 1.48 0.77

104 8.08 7.05 4.95 3.33 1.65 0.82

4. Conclusions and Future Work

This study aimed to investigate the impact of harmonics produced by EV charging
stations on an electric distribution network with a high level of photovoltaic generation.
Two distinct scenarios were examined, one with distributed photovoltaic power generation
and the other with centralized generation. The results indicate that the scenario with single
photovoltaic generation and EVs distributed throughout the system had the poorest perfor-
mance. Overvoltages were observed at the terminals of nearby users, while undervoltages
were observed at nodes further away from the system. When the harmonic analysis was
added, it was found that undervoltages improved in this case. However, overvoltages
were still observed at the terminals, and it was also observed that THD was higher at
all nodes in the system. These findings highlight the importance of considering multiple
factors when evaluating the performance of an electrical system with distributed electric
vehicles and photovoltaic generation. The analysis of both voltage and harmonic distortion
is crucial in identifying potential issues and developing strategies to address them. Further
research is necessary to investigate the interaction between electric vehicles, photovoltaic
generation, and other components of the electrical grid, such as energy storage systems,
and to develop more comprehensive approaches for evaluating the performance of these
systems. This research reveals that harmonics resulted in considerable variations in the
voltage, current, and power of the substation transformer, with the magnitude of the third
harmonic exceeding 300% compared to other cases. This study also collected information
on the magnitude and angle values of harmonics for EVs and charging stations by directly
measuring them at the battery terminals, enabling a comprehensive analysis of the entire
energy conversion system of both the station and the EV. Upon reviewing the hosting
capacity of Case 9, considering harmonics, it was observed that the high values obtained
from the third harmonic decrease the total number of electric vehicles that the network can
accommodate by 37.5% in comparison with a grid without PV and harmonics. Expanding
the harmonic analysis with a greater number of electric vehicle brands is required, and
it is also important to examine the effect of charging station efficiency. Additionally, it is
necessary to conduct an analysis involving a wider variety of load types to verify their
interaction with EVs, such as heat pumps, motors, and thermal generators, among others.
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Abstract: This work investigates how to balance the electricity supply and demand in a carbon-neutral
northern Europe. Applying a cost-minimizing electricity system model including options to invest in
eleven different flexibility measures, and cost-efficient combinations of strategies to manage variations
were identified. The results of the model were post-processed using a novel method to map the net
load before and after flexibility measures were applied to reveal the contribution of each flexibility
measure. The net load was mapped in the space spanned by the amplitude, duration and number of
occurrences. The mapping shows that, depending on cost structure, flexibility measures contribute to
reduce the net load in three different ways; (1) by reducing variations with a long duration but low
amplitude, (2) by reducing variations with a high amplitude but short duration and low occurrence
or (3) by reducing variations with a high amplitude, short duration and high occurrence. It was found
that cost-efficient variation management was achieved by combining wind and solar power and
by combining strategies (1–3) to manage the variations. The cost-efficient combination of strategies
depends on electricity system context where electricity trade, flexible hydrogen and heat production
(1) manage the majority of the variations in regions with good conditions for wind power while
stationary batteries (3) were the main contributors in regions with good conditions for solar power.

Keywords: flexibility measures; variation management; VRE; electricity system modeling; wind
power integration; solar power integration; sector coupling

1. Introduction

The aim of this work is to visualize how variations in a future northern European
electricity system can be cost-efficiently managed. The work first examines climate neutral
energy systems with extensive electrification of the industry, transport and heating sectors.
Outlooks for Nordic [1], northern European [2,3] and European [4] electricity systems have
been presented in recent years. The common features of these outlooks are a substantial
increase in electricity demand which, to a large extent, is supplied by wind and solar power.
Given the varying generation of wind and solar power, the ability of the electricity system
to manage these variations have become a question of high priority [5].

There exists a wide range of technologies and strategies to provide flexibility, ranging
from shifting the electricity demand for heat pumps in time in single-family dwellings by
exploiting the thermal inertia of buildings, to using large-scale underground storage of
hydrogen produced for industrial applications. Lund and Lindgren [6] have compiled a
comprehensive overview of the different approaches for increasing energy system flexibility.
Flexibility measures serve two main purposes: to assure the reliability or increase the cost
efficiency of a given electricity system. This work concerns the latter subset, i.e., flexibility
measures with the purpose to manage variability such that the social cost of electricity
is reduced. This subset is referred to as variation management strategies (VMSs) [7,8].
The potential of flexibility measures to reduce the social cost of meeting the demand
for electricity is well documented. Previous work investigating the impact of flexibility
measures on the operation of a given electricity system reported reduced costs because
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of reduced curtailment [7,9] and because of reduced operation of peak generation units
in favor of varying renewable electricity (VRE) and base load generation [10]. Studies
on the impact of flexibility measures on the cost-optimal system composition reported
reduced costs as investments in varying renewable electricity generation capacity replace
investments in more expensive electricity generation options [8,11]. Johansson et al. [8]
investigated the impact of a range of variation management strategies on the cost-optimal
system composition of electricity systems with different preconditions for VRE. It was found
that different strategies influenced the operation of the electricity system and investment
in electricity generation capacity in different ways. In addition, it was found that the cost-
optimal investments in variation management strategies depends on the preconditions for
VRE generation. These findings indicate that there are different types of variability which
need to be matched with the most cost-efficient strategies for each type. It is reasonable to
assume that all types of variations are present in all electricity systems, albeit to different
degrees, and what we look for is a balanced combination of strategies adequate for the
given electricity system.

Few outlooks for the northern European electricity system address in detail how
variations in the electricity system can be met cost efficiently. Pursiheimo and Kiviluoma [3]
analyzed electrification scenarios for northern Europe with a focus on Finland. They
applied the model of Backbone [12], an investment model with a high time resolution and
consequentially with the ability to balance options to cost-efficiently manage variations.
Variation management was addressed by illustrating the dispatch of one winter week and
one summer week for the Finnish electricity system. The illustrations of the dispatch of
electricity systems provided a detailed understanding of how the demand for electricity
was met every hour, including how variations were managed when plotted for a limited
time span such as a couple of weeks. However, to give an overview of how variations are
managed more generally across one or several years, other options for visualization are
needed. Several efforts have been made to measure and graphically represent flexibility
provision in the electricity system. IEA [13] proposed a flexibility assessment tool (FAST)
to estimate if there is sufficient flexibility in a given electricity system to accommodate
additional wind and solar power, accounting for flexibility on the demand and supply side
as well as the storage and interconnection capacity. Yasuda and Carlini [14] introduced
flexibility charts which map the capacity for flexible generation and interconnections
relative to the peak capacity of a given electricity system. The tools by IEA and Yasuda
et al. rely on statistics which are easy to access to give a first idea of the ability of a
given electricity system to manage variations. Using time series from actual or modelled
electricity system operations, the contribution of each flexibility supplier can be assessed
in more detail. Heggarty and Bourmaud [15] introduce two graphical tools, the flexibility
solution modulation stacks and the flexibility solution contribution distribution, to visualize
the contribution of flexibility suppliers on annual, weekly and daily timescales.

This paper adds to the previous outlooks for future northern European electricity
systems by focusing on how variations in the electricity system are managed using a
novel approach of visualizing the net load variability and the contribution of different
strategies to reduce this net load. A cost-efficient combination of strategies to manage the
net load was derived using a cost-minimizing electricity system model with high temporal
resolution representing 11 strategies to manage variations on the demand side and the
generation side, as well as pure storage technologies. The contribution of each strategy was
visualized using a novel graphical representation in the space spanned by the amplitude,
duration and the number of occurrences of the net load variations. Based on the results, the
functionality of different strategies to manage variations can be generalized and connected
to a functionality-based framework for strategies to manage variations which facilitate the
choice of a strategy for a given electricity system context.
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2. Method

To find cost-efficient strategies to meet the demand for electricity, heat and hydrogen
in a carbon-neutral northern Europe, the cost-minimizing electricity system model ENODE
was applied. Given a time-resolved demand for electricity, heat and hydrogen, together
with costs and technical limitations of generation and storage technologies, ENODE gener-
ates investments in and operations of technologies for generating and storing electricity,
heat and hydrogen. From these results, net loads (i.e., electricity demand which cannot be
moved in time, reduced by wind and solar power generation) for each region with and
without accounting for strategies to manage variations were produced to visualize the role
of each strategy in a carbon-neutral northern Europe.

2.1. Electricity System Investment Model

In this work, cost-efficient deployment of variation management strategies was identi-
fied using the cost-minimizing electricity system investment model ENODE. The objective
of the ENODE model is to minimize the cost of investments and operation while meeting a
given demand for electricity, heat and electricity-based hydrogen. The ENODE model was
first presented in [16] and further developed in [8,17] to include more options to manage
variations and to better represent the heat sector. The model has a high temporal resolution
and a detailed technology description, while the temporal scope is limited to 1–2 years. As
such, the model results provide a good understanding of the interplay between electricity
generation technologies and variation management strategies on the timescale of hours to
seasons. In this work, the model was run with a 3 h time resolution for two years (with
investment costs represented as annualized costs) representing the year 2050 in terms of
technology costs and carbon emission limitation, i.e., only technologies without net carbon
dioxide emissions were included as investment options. Existing hydropower was assumed
to remain in place together with the new nuclear power in Finland and the nuclear power
under construction in the UK.

In this work, the ENODE model was applied to northern Europe subdivided into
14 regions as given by the map in Appendix A Figure A1. The demand for electricity, heat
and hydrogen must be met in each region at every timestep. Electricity could be traded
between regions. The existing transmission grid was assumed to remain in place and
additional investments in transmission capacity of up to 5 GW per connection was allowed.

On the supply side, nine technology options were included including thermal base
load generation such as nuclear power, biomass-based combined heat and power and bio-
blended coal with carbon capture and storage as well as thermal peak generation in terms of
biogas open-cycle and combined-cycle gas turbines. A total list of the technologies together
with their cost properties are given in Appendix B. On- and offshore wind power and solar
PV were represented using time-resolved wind and solar power production potential for the
investigated regions. The power production potential was derived using [18] which relies
on ECMWF ERA5 [19] and the Global Wind Atlas [20] for the historical years 1991–1992.
These two years were chosen since they represent one year with a lower hydropower inflow
in the Nordic countries (1991) and one year with a higher hydropower inflow in the Nordic
countries (1992). The potential for wind and solar PV investments per region together
with their respective full load hours are given in Appendix B. The electricity demand
corresponding to temperature variations in the historical years 1991–1992 was also derived
using [18].

This work investigated a future northern European electricity system assuming a
carbon-neutral energy system which was targeted to be attained by the European Union by
around 2050 [4]. By 2050, it is expected that we will have already experienced a significant
increase in temperature due to global warming [9]. Thus, in this work, we assumed an
increase in global mean temperature of 2 degrees. In northern Europe, a warmer climate is
expected to mainly impact the energy system through altered hydropower inflow, reduced
demand for heating and increased number of incidents induced by extreme weather [21].
In this work, we accounted for the two former factors based on [22] which showed an
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increased annual average hydropower production distributed more evenly across the year
in the Nordic countries together with reduced demand for district heating and electricity
for heating purposes in the wintertime.

In this work, an electrification of the transport sector and the industry sector was
assumed together with a shift from natural gas for heating purposes to individual heat
pumps in Germany, the Netherlands, Poland and the UK. The electricity demand for the
heating of single-family dwellings was calculated according to Nyholm [23], accounting for
energy efficiency improvements. In addition, there was a heat demand corresponding to
the demand for district heating in the investigated regions [24]. The heat demand could be
met by heat-only boilers, but also combined heat and power plants (CHP), heat pumps and
electric boilers. The inclusion of thermal energy storage enabled a temporal decoupling be-
tween heat production and electricity production/consumption and facilitated an adapted
heat production which offered flexibility to the electricity system.

The electrification of industry includes electrification of steel, cement and ammonia.
The total production of steel, cement and ammonia in the investigated regions was assumed
to remain at today’s levels. In cement production, we assumed plasma burners were
used for high temperature heating with a continuous demand for electricity over time.
There was an exogenous demand for electricity-based hydrogen (i.e., hydrogen produced
from electricity) corresponding to the electricity demand from the steel industry and
the ammonia industry. The hydrogen demand was a simplified representation of an
electrification of industry and was distributed evenly across all hours of the year, assuming
a continuous operation of industrial processes. By overinvesting in the electrolyzer capacity
and hydrogen storage, an adapted hydrogen production, which offers flexibility to the
electricity system, can be achieved.

A full electrification of the road transport was assumed. The majority of vehicles were
assumed to charge as they are parked. However, 30% of the cars charged flexibly over time
and could also discharge back to the grid. Vehicle charging was implemented as described
by Taljegard [25]. It should be noted that flexible cars were also constrained to meet the
demand for transportation as defined by the vehicle movement data collected by Kullingsjö
and Karlsson [26].

Furthermore, the model included the option to invest in stationary batteries to manage
variations as well as fuel cells to regenerate electricity stored as hydrogen. Thus, the strate-
gies to manage the variations included in this work encompassed supply side, demand-side,
and pure storage options. Table 1 list the strategies to manage variations included in this
work together with the technologies they involve.
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Table 1. Strategies to manage variations included in this work together with the technologies involved
and their key properties. CCGT = Combined Cycle Gas turbine, CHP = Combined Heat and Power
Plant.

Strategy Technology
Investment Cost
[kEUR/MW(h)]

Efficiency
[%]

Fixed O&M Costs
[kEUR/MW(h),

year]

Lifetime
[year]

Charging or discharging of
electric vehicles - - - -

Charging or discharging
Li-Ion batteries

Charge/discharge 80 1 1 25

Storage capacity 70 25

Charging or discharging
hydrogen storage system

Fuel cell 500 50 55 10

Electrolyzer 390 79 18 20

Hydrogen storage 10 100 - 40

Adapted
hydrogen production

Electrolyzer 390 79 18 20

Hydrogen storage 11 100 - 50

Adapted heat production
Heat pump 1000 300 8 25

Tank storage 3 80 - 25

Opportunistic
heat production Electric boiler 50 100 - 20

Opportunistic biogas open-cycle
electricity production Gas turbine 450 42 17 30

Adapted biogas combined-cycle
electricity production CCGT 900 61 15 30

Adapted biomass combined heat
and power production

CHP 3260 30 105 40

Tank storage 3 80 - 25

Adapted biomass electricity
production Steam turbine 1980 35 52 40

Adapted nuclear power
production Steam turbine 3980 33 123 60

2.2. Visualizing the Net Load

The method to visualize the net load suggested in this work is based on the proposition
that variability can be defined by its amplitude, duration and number of occurrences. Here,
we refer to number of occurrences as how often variations with a certain amplitude and
duration takes place. According to time series analyses, any time series in a linear system
can be described in two dimensions: amplitude and frequency. Weather systems, wind
speeds and thus the net load in electricity systems supplied to a large extent by wind
power, are composed of a combination of linear and non-linear phenomena. For this reason,
we find it practical to subdivide the frequency into duration and number of occurrences
and we will refer to the three-dimensional space spanned by the amplitude, duration and
number of occurrences as the variation space.

Algorithm 1 describes how to map the net load of any electricity system into the varia-
tion space in six steps. The resulting plot illustrates to which extent the net load variations
to be managed are variations with a high amplitude, long duration, high occurrence or
any combination of these. We refer to the map of the net load in the variation space as the
variation profile of the electricity system. An overview of the variation profile is a first step
in identifying cost-efficient strategies to manage the net load variations.

To understand the role of different strategies to manage variations in an existing
electricity system, or a future system proposed by electricity system models, the remaining
net load after the strategy is applied is calculated and plotted. By comparing the original
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variability profile and the variability profile after a strategy has been applied, it is possible
to identify to which extent the strategy reduces variations with a high amplitude, long
duration or high number of occurrences.

Algorithm 1. Creating the Variability Profile.

1:
Calculate the net load nt ∈ N as the total electricity demand fixed in time and reduced by non-dispatchable generation for
every timestep t ∈ T.

2:
Define a list L:= (min N:max N, s) where the step length s is small enough to give a high resolution of the amplitude in the
plots. Here, we use s = 0.1 GW.

3:

Make a vector cl,t which counts up as long as the net load n is above amplitude l ∈ L (or as long as net load n is below
amplitude l for negative net loads).

For l ∈ L:
For nt ∈ N:

if l > 0 and nt < l:
cl,t = cl,t−1 + 1

else if l < 0 and nt > l:
cl,t = cl,t−1 + 1

nt = nt+1
l = l + s

4:

Find the end of each variation interval and obtain the duration dl,t.
For l ∈ L:

For nt ∈ N:
if l > 0 and nt−1 > l and nt < l :

dl,t = cl,t
else if l < 0 and nt−1 < l and nt > l :

dl,t = cl,t
nt = nt+1

l = l + s

5:

Count the number of occurrences ol,d for a certain combination of duration and amplitude.
For d ∈ T:

ol,d = ∑
t

dl,t

d = d + 1
6: Plot occurrences of variations with amplitude l on the x-axis, duration d on the y-axis and occurrences o on the z-axis.

3. Results

Figure 1 shows the annual electricity demand for the investigated regions. The historic
electricity demand (grey) represents the electricity demand prior to electrification. The
direct electricity demand from the transport (yellow) and industry sectors (green) and the
electricity for hydrogen production (blue) are a consequence of the assumptions and input
data presented in the Section 2. The electricity demand for heating (orange) corresponds to
electricity for individual heat pumps replacing natural gas, which is given exogenously, but
also electricity demand for district heating, which can be met by combined heat and power
plants and heat-only boilers as well as heat pumps and electric boilers. The total electricity
demand for heating was thus a result of the optimization. For the case investigated, the
increase in electricity demand from electrification corresponded to an increase in the annual
electricity demand of around 80% in northern Europe. As illustrated in Figure 1, the
electricity demand following the electrification of the transport sector was particularly
high in the regions with a high population density such as southern Germany (DE_S),
southern Poland (PO_S) and southern UK (UK_S). The electricity for hydrogen production
was located in regions with an extensive industrial sector (Sweden, Germany, Poland, the
BENELUX region and the UK).

Figure 2 shows the annual electricity production in the investigated regions calculated
by the electricity system model presented in the Section 2. Applying the costs presented in
the Appendix, it was found to be cost-efficient to meet 2/3 of the annual electricity demand
in northern Europe with wind power (blue). As illustrated in Figure 2, there were two
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major clusters of offshore wind power in northern Europe: one off the coast of northern
Germany, the Netherlands and Denmark and one off the coast of the UK. With very good
conditions for wind power but a limited electricity-intensive industry, Denmark was the
single largest exporter of electricity (DK exports 90 TWh/year). The opposite was true
for southern Germany which imported 165 TWh/year for the investigated years. Solar
PV energy supplied 1/5 of the electricity demand in northern Europe and was mainly
located in the southmost regions (southern Germany and southern Poland) from which
other regions imported solar power. The southern UK also had large solar PV investments
to complement wind power since import capacity from continental Europe was limited.
The model was limited to northern Europe and trade outside the modeled scope was
omitted. In reality, there is significant transmission capacity between northern Europe and
continental Europe and the results for regions on the border with central Europe (southern
Germany and southern Poland) should be viewed with this simplification in mind.

Figure 3 shows the installed capacity of energy storage for the investigated regions.
The total energy storage capacity in northern Europe corresponded to 11 TWh. The volume
of energy storage capacity reflected the investment cost of energy storage capacity. Tank
heat storages were the cheapest energy storage option but were only relevant in regions
with district heating (district heating is very limited in Norway and the UK). Hydrogen
storage was the second cheapest option for energy storage, and was relevant to regions
with a demand for hydrogen. Batteries were significantly more expensive and battery
investments were mainly located in regions with substantial electricity supplies from
solar PV energy. To investigate the role of energy storage in the different regions and
how electricity demand and supply was balanced every hour, four regions with different
conditions for wind and solar power and different access to flexibility measures were
further investigated.

Figure 1. Annual electricity demand for northern Europe as a whole (left), together with electricity
demand by region investigated in this work (right), subdivided into electricity demand of today
(grey), electricity demand for heat pumps in district heating systems (orange), for new individual
heat pumps replacing natural gas (yellow), for hydrogen production (blue), for light vehicles (light
green) and for trucks and buses (dark green).
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Figure 2. Annual electricity production in northern Europe (left) and by region (right).
ST&CHP = steam turbine and combined heat and power, CCS = carbon capture and storage, GT = gas
turbine (open cycle and combined cycle).

Figure 3. Installed energy storage capacity for northern Europe (left) and by investigated region
(right), subdivided into underground lined-rock cavern hydrogen storage (blue), stationary lithium-
ion batteries (yellow) and hot water tank storage in district heating systems (orange).

Figures 4a, 5a, 6a and 7a show the variation profile for DE_S, DK, UK_S and SE_S
as defined in the Section 2. These four regions represent four different types of regions
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observed in the model of northern Europe; regions with extensive solar PV capacity (DE_S
and PO_S), regions with extensive wind power for domestic use and export (DK, BAL,
PO_N and UK_N), regions with a combination of wind and solar power (UK_S, BENELUX
and DE_N) and regions with access to hydropower (SE_S, SE_N, FI, NO_N and NO_S).
The color scale was limited at 50 occurrences, implying that the number of occurrences
may be higher in the deep red fields. The y-axis was limited at 168 h (one week). Some
variations with a longer duration occurred and plots with a y-axis of 300 h for all regions
are shown in Appendix C (Figures A2–A15).

As Figures 4a, 5a, 6a and 7a show, net load variations were very different between
the investigated regions. Net load variations in Denmark (Figure 5a), with a supply side
dominated by wind power, had a low amplitude and number of occurrences but long
duration. This was contrasted by net load variations of southern Germany (Figure 4a)
with a high amplitude and high number of occurrences but few variations with a long
duration. The pattern of the variations in solar power dominated Germany and represented
the nature of solar PV energy with a high occurrence in positive net load at a duration
of 12–15 h corresponding to night, high number of occurrences in positive net load with
high amplitude and a duration of a few hours corresponding to afternoon peaks and
high number of occurrences of negative net load with a duration of 2–10 h and varying
amplitude corresponding to daytime solar PV production. Variations with a longer duration
reoccurred with 24 h intervals and corresponded to cloudy days. The variation profile of
southern UK (UK_S) was a combination of the variation profile of southern Germany and
Denmark, with the typical pattern of solar PV variations, but with lower amplitudes and
lower number of occurrences than those in southern Germany due to a lower total installed
capacity, but there were also positive and negative variations with a longer duration which
are characteristic of wind power. The variation profile of southern Sweden (SE_S) resembles
the one of Denmark, indicating a wind-dominated net load. However, the net load was
oriented towards positive amplitudes corresponding to a need for additional generation
capacity to complement the wind power to meet the load.

Figures 4–7 illustrate how strategies to manage variations reduced the net load vari-
ability in the four example regions. The 11 strategies in Table 1 were aggregated into
six groups of strategies to facilitate an overview. Here, the category Thermal includes
all thermal electricity generation options except open-cycle gas turbines (adapted biogas
combined-cycle electricity production, adapted biomass combined heat and power produc-
tion, adapted biomass electricity production, adapted nuclear power production). Based
on the electricity generation supplied by different sources (see Figure 2), nuclear power
dominated this group of strategies. Batteries included stationary batteries and charging of
electric vehicles since previous work showed that these strategies act on the same timescales
in the electricity system [2]. This implies that we added a load, which was fixed to 70% and
flexible to 30% according to assumptions, together with the charging and discharging of
stationary batteries. Finally, here, Heat includes both heat production with heat pumps
and electric boilers connected to the district heating system (adapted heat production
and opportunistic heat production in Table 1). However, this group mainly represents
variation management by heat pumps since electric boilers played a very minor role in all
investigated regions.

Figure 4b–g shows the net load reduction by six different strategies for southern
Germany. Electricity was imported to solar PV-dominated southern Germany, reducing
the positive nighttime net load. The positive net load was further reduced by base load
generation (Figure 4d). At the same time, base load generation increased the negative net
load with long durations. Due to the limited flexibility of nuclear power, production was
not only added when needed but also during hours of low net load. The negative net load
with a long duration caused by base load generation was reduced by adapted production of
hydrogen and heat (Figure 4f–g). However, in the solar PV-dominated southern Germany,
the strategy with the largest impact on the net load was batteries (Figure 4e). Stationary
batteries matched the charging of electric vehicles (in this work, 70% of the vehicle charging
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was fixed in time) to the solar PV generation and thereby reduced the net load variations.
Batteries have a relatively low cost of charging and discharging power and high efficiency
which makes them well suited for the solar PV variations with a high amplitude and
high number of occurrences. In general, it can be observed that investments in stationary
batteries were particularly substantial in regions with a large demand for electricity for
transport (cf. Figures 1 and 3) and that solar PV generation was high in the same regions
(Figure 2). The net load variations with a low amplitude, duration and a low number of
occurrences which remained in Figure 4f was supplied by biogas open-cycle gas turbines.

Figure 5b–g shows the gradual net load reduction by the six strategies to manage the
variations in Denmark. Denmark has some of the best conditions for offshore wind power
in northern Europe and together with its central location between the Nordic countries and
continental Europe it becomes an ideal exporter of electricity. The majority of this electricity
was exported to northern Germany and onwards to load centers in southern Germany. The
extensive export results in a strong reduction of the wind-dominated net load variations
(Figure 5b). Trade with Germany also introduced solar variations in Denmark, as seen in
Figure 5b. These variations were efficiently reduced by batteries. The remaining net load
variations had a low amplitude but sometimes had a long duration. In Denmark, these
variations were primarily reduced by heat pumps in the district heating system (Figure 5g).

Figure 6b–f shows the net load reduction by strategies to manage variations in the
southern UK. The system composition here was a combination of wind and solar power,
as illustrated in Figure 2, and the net load had both variations with a long duration and
variations with a high amplitude and a high number of occurrences. It is important to note
that by combining wind and solar power in the electricity mix, net load variations were, to
some extent, already reduced from the start. In particular, solar PV production reduced the
duration of low wind events and wind power reduced the positive nighttime net load of
solar power. These complementary effects can be visualized by comparing the net loads in
Figure 6a to those in Figures 4a and 5a. Trade, primarily with northern UK, further reduced
net load variations with a 20–24 h duration. However, it was by combining wind and solar
power together with the use of batteries for variations with a high amplitude and high
number of occurrences that the majority of the variations in this region were managed.
Some variations with a low duration and low number of occurrences were managed by
adapted production of hydrogen. The net load which remained in Figure 5f was managed
by biogas open-cycle gas turbines.

Figure 7b–f illustrates how the net load was reduced by five different strategies to
manage variations in southern Sweden. Figure 7b shows the net load reduced by trade
(except for northern Sweden). As the figure shows, trade shifted the net load to the
left, indicating that southern Sweden imported electricity. However, since the electricity
was mainly imported from Denmark, which is wind-dominated like southern Sweden, the
variability of the net load curve was similar after accounting for trade. Some solar variations
with a high number of occurrences and high amplitude but short duration were introduced
with the trade. Figure 7c shows the net load reduced by trade and hydropower, including
trade with northern Sweden. Even though electricity demand in northern Sweden increased
substantially, hydropower from the north was exported to southern Sweden during low
wind events since the demand in the north was predominantly composed of electricity for
hydrogen production which was avoided during low wind events. As the figure shows,
the positive net load was drastically reduced by hydropower and hydropower managed
positive net loads of any duration. Batteries and the charging of electric vehicles reduced
the amplitude of the remaining negative net load (Figure 4e). The remaining net load had a
low amplitude and any duration which was managed by adapted production of hydrogen
(Figure 4f) and heat (Figure 4g). With the high cost of electricity consumption capacity
(electrolyzer and heat pump) but low cost of energy storage (underground hydrogen
storage and storage of hot water), variations with a low amplitude but long duration
matched the cost structure of these strategies. It is important to note that adding electricity
consumption adapted to the net load, i.e., adapted production of heat and hydrogen, does
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not only imply that “excess” electricity was consumed. These flexible electricity demands
stimulated investments in wind power production without increasing consumption during
low wind events. Since there was also some wind power production during low wind
events, adapted consumption of hydrogen and heat reduced the net load during these
events. The little remaining net load visible in Figure 7f was met by open-cycle gas turbines.

Figure 4. Net load of southern Germany (DE_S) (a) reduced by (b) trade, (c) trade and hydropower,
(d) trade, hydropower and base load, (e) trade, hydropower, base load and batteries, (f) trade,
hydropower, base load, batteries and adapted hydrogen production and (g) trade, hydropower,
base load, batteries, adapted hydrogen production and adapted heat production. The color scale
indicates number of (#) occurrences and was limited to 50 occurrences, implying that the number of
occurrences may be higher in the deep red fields. The y-axis was limited at 168 h (one week).

Figure 5. Net load of Denmark (DK_T) (a) reduced by (b) trade, (c) trade and hydropower, (d) trade,
hydropower and base load, (e) trade, hydropower, base load and batteries, (f) trade, hydropower,
base load, batteries and adapted hydrogen production and (g) trade, hydropower, base load, batteries,
adapted hydrogen production and adapted heat production. The color scale indicates number of
(#) occurrences and was limited to 50 occurrences, implying that the number of occurrences may be
higher in the deep red fields. The y-axis was limited at 168 h (one week).
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Figure 6. Net load in southern UK (UK_S) (a) reduced by (b) trade, (c) trade and hydropower,
(d) trade, hydropower and base load, (e) trade, hydropower, base load and batteries, (f) trade,
hydropower, base load, batteries and adapted hydrogen production and (g) trade, hydropower,
base load, batteries, adapted hydrogen production and adapted heat production. The color scale
indicates number of (#) occurrences and was limited to 50 occurrences, implying that the number of
occurrences may be higher in the deep red fields. The y-axis was limited at 168 h (one week).

Figure 7. Net load in southern Sweden (SE_S) (a) reduced by (b) trade, (c) trade and hydropower,
(d) trade, hydropower and base load, (e) trade, hydropower, base load and batteries, (f) trade,
hydropower, base load, batteries and adapted hydrogen production and (g) trade, hydropower,
base load, batteries, adapted hydrogen production and adapted heat production. The color scale
indicates number of (#) occurrences and was limited to 50 occurrences, implying that the number of
occurrences may be higher in the deep red fields. The y-axis was limited at 168 h (one week).
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4. Categorizing the Cost-Efficient Contribution of Variation Management Strategies

The results confirm that different variation management strategies contributed with
different functionalities in the electricity system. At the same time, the contribution from
each strategy, in terms of reduction in net load amplitude and number of occurrences on
different timescales, was qualitatively similar in the four investigated regions. However,
the size of the investments in different strategies and their quantitative contribution was
different in the different system contexts.

As the objective of the model applied in this work was to minimize the total cost of
the electricity system, the investments in, and operation of, the variation management
strategies as given in this work was cost efficient given the available options. That is, the
functionality provided was motivated by the cost structure and technical limitations of
each strategy. High reductions in the amplitude of recurring variations were cost-efficiently
supplied by strategies with a low cost of charging and/or discharging power, such as
batteries. To manage variations over longer timescales, a low cost of energy storage is
required. In the examples given in this work, the cost of hydrogen storage represents the
cost of storing hydrogen in large-scale underground caverns, which is low compared to
energy storage in batteries. The cost of storing heat in tank storages is even lower. The cost
of storing fuel for thermal generation was omitted in the model, which allows combined-
cycle gas turbines and combined heat and power plants to manage the variations with a
long duration. Variations with a low number of occurrences were managed most efficiently
using strategies with a low investment cost, such as open-cycle gas turbines. With a low
number of occurrences a high running cost is acceptable.

The roles identified by these measures can form the basis for a functionality-based
categorization of strategies to manage variations. Whereas previous categorizations of
strategies to manage variations were based on the technical properties of the strategies,
a categorization supporting the understanding of the functionality of the strategies to
manage variations in the electricity system should rely on the cost structure. Based on the
above reasoning and the work by [7,8], the following categories are proposed:

• Peaking strategies, which manage variations with a low number of occurrences. Sim-
ilar to peak production plants, peaking variation management strategies have low
investment costs in terms of charging, discharging and storage capacity. However, the
low investment cost is typically accompanied by a high operational cost, i.e., a high
cost of electricity discharged or low value of electricity charged.

• Shifting strategies, which reduce recurring variability on shorter timescales. These
strategies are associated with a low cost of charging and discharging capacity and a
low cost of operation, since variability on shorter timescales have high amplitude and
high number of occurrences. However, a low cost of charging and discharging capacity
is typically associated with a high cost or a limited capacity to store energy. Thus,
these strategies are mainly applied for shifting loads or production during shorter
time intervals.

• Complementing strategies, which manage recurring variations on longer timescales.
These strategies are associated with a low cost of energy storage. However, since
the amplitude of variations on longer timescales is lower, a higher cost associated
with the charging and discharging power is acceptable. A low to medium cost of
operation is required from these strategies since the variations being managed have a
long duration and medium recurrence. This category could be further subdivided to
differentiate between complementing strategies managing variations on weekly and
seasonal timescales.

A categorization based on the cost structure has the advantage that the category
reveals the functionality of the strategy. This categorization thus facilitates the choice of
variation management strategies for different system services and contexts.
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5. Discussion and Limitations

In this work, net load variations were plotted in the space spanned by amplitude,
duration and number of occurrences (i.e., the variation space) to better understand how
different strategies to manage variations complement each other. For this analysis, the
cost-efficient combination of a large set of strategies provided by the electricity system
investment model was required. However, plotting a gradually reduced net load in the
variation space can also be useful to understand how variations are managed in an existing
system, using electricity production data.

Applying the method proposed to map the contribution of flexibility measures to
reduce the net load, functionality-based categories of variation management strategies can
be identified. The vast majority of previous categorizations have focused on the technical
properties of the flexibility measures. For example, Fuchs and Lunz [27] and Zhao and
Wu [28] subdivided electricity storage systems into electrical, mechanical, chemical and
thermal storage units, while Sauer [29] differentiated between electricity-to-electricity stor-
age, electricity-to-anything storage and anything-to-electricity storage systems. Palizban
and Kauhaniemi [30] have mapped energy storage systems with respect to those appli-
cations for which they are suitable and unsuitable for, using a color-coded matrix. Other
categorizations have focused on the motive for the investment, such as single-use/double-
use [31] which distinguished between investments that are actively made and are dedicated
to provide flexibility in the electricity system (single-use) and those cases in which assets
that are already integrated in the electricity system for other purposes are used (double-use).
While all these categorizations support the understanding of flexibility measures, measures
with the same functionality in the electricity system are distributed between the categories
in the above-mentioned frameworks. A previous work by the author [7] proposed instead
a functionality-based framework, organizing variation management strategies according
to the service they provide in the electricity system. This work further developed this
framework.

The strategies applied in the regions modeled in this work are cost efficient from an
energy-only perspective. However, without the perfect foresight of the modelled world,
flexibility markets may be needed to stimulate investments prior to large electricity price
variations. In the design of flexibility markets, a market for each of the above-mentioned
categories would assure competition between strategies providing the same function to the
electricity system and stimulate investments in a balanced set of strategies. The size of the
different markets should be defined by the electricity system context, i.e., the need for the
different functionalities based on the variability profile of the present and future electricity
systems.

This work investigates strategies to manage variations on the timescale of hours to a
couple of years. Variations within the hour as well as variations with very a low number of
occurrences (e.g., once every ten or thirty years) is outside the scope of this work. Meng and
Zafar [32] provided an overview on how variations on very short timescales, to recover the
frequency after faults, can be managed in electricity systems with a high share of wind and
solar power. They concluded that batteries with grid-forming converters, with the ability
to provide active power very rapidly, are able to replace synchronous generators while
maintaining the ability to recover the frequency after a fault. However, if synchronous
generators can be replaced completely remains to be investigated. Ullmark [33] showed
that if batteries are allowed to meet the demand for variations within the hour, these
variations can be managed at a low cost (<1% of total system cost).

Ruhnau and Qvist [34] investigate the impact of variations in the German electricity
system over a 30-year period and found that there were low wind events with a long
duration (60 days with short periods of interruption) which occurred very rarely. As
shown in this work, the choice of strategy for a certain type of variation depends on the
cost structure. Variations with a long duration and low number of occurrences are cost-
efficiently managed by strategies with a low cost of storage and low investment cost. A
cost-efficient strategy to manage the variations identified by [34] would thus be biogas
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gas-turbines with a sufficiently large storage of biogas. Sufficient biogas turbine capacity is
likely to already be available to the electricity system to manage variations with a shorter
duration occurring on a yearly basis. The fuel costs during the 60-day period would be
significant but, since these events occur very rarely, this fuel cost would have a low impact
on the total system cost and the overall electricity system composition.

6. Conclusions

In this work, a novel tool to map variations in electricity systems was applied to
visualize how variations can be cost-efficiently managed in a future northern Europe. The
results show that cost-efficient variation management depends on the system context. More
specifically, it depends on the nature of the variations present in the electricity system
as well as the context-specific prerequisites for variation management, such as extensive
demand for hydrogen from industry, availability of district heating grids or access to
hydropower. In particular, the access to strategies suitable to manage variations with a
long duration varied between the investigated regions. As a consequence, the dominant
strategy to manage variations with a long duration varied between, for example, Denmark,
where adapted heat production has an important role, and southern Sweden, which relies
more on hydropower and adapted hydrogen production to manage these variations.

Electricity systems with good conditions for solar power and extensive electricity
demand for transportation were subject to variations with a high amplitude and high
number of occurrences which can be cost-efficiently managed using batteries with a low
cost of charging and discharging power and low losses per cycle. Examples of such regions
in northern Europe were southern Germany and southern Poland, with inland locations
and high population densities. In these regions, there may also be potential for some base
load generation.

Electricity systems with good conditions for wind power, such as Demark, the Nether-
lands and northern Germany, managed variations through trade, including import of solar
PV energy and adapted production of hydrogen and/or heat. Extensive industrial hydro-
gen demand or district heating systems facilitated the integration of wind power since
wind variations have long durations and hydrogen and heat can be stored at a relatively
low cost.

In regions with good conditions for wind power but limited trade, such as the UK,
it was cost efficient to combine wind power capacity with solar PV capacity to reduce
the duration of low wind events. It was often cost efficient to combine hydropower with
batteries, where the former managed the positive net loads with short and long durations
but the latter managed variations with a high amplitude including negative net load. In
general, cost-efficient variation management was achieved by combining wind and solar
power, and with strategies to manage variations with different cost structures.
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Appendix A

Figure A1. Northern Europe subdivided into 14 regions as applied in this work.

Appendix B

Table A1 shows the investment costs together with the operation and maintenance
costs (O&M) for electricity and heat generation applied in this work. The costs are based
on IEA [35] and the Danish Energy Agency [36], except for nuclear power and wind power
with low specific power (SP). The investment costs for nuclear power were estimated after
dialogues with experts. It corresponds to the average investment cost in the case where
several units are invested in and is lower compared to levels given for Europe by the
IEA. The cost to manage waste (today 4 EUR/MWh in Sweden) was expressed as a small
addition to the variable cost (0.5 EUR/MWh) to manage fuel waste and a larger fixed cost
to manage the plant at the time of decommissioning (corresponding to 3.5 EUR/MWh
after 60 years with 90% utilization) were allocated to fixed O&M. Nuclear energy was
assumed to be able to vary its output between 70–100% of rated power. The majority of
wind turbines today have a specific power around 300 W/m2. However, turbines with
a lower specific power (generator capacity over swept rotor area) are advantageous for
sites with lower average wind speeds and offshore locations. Hodel and Göransson [37]
assessed cost-efficient turbine designs in different system contexts using a cost model to
assess the cost of a range of wind turbine designs. Investment costs for onshore wind
turbines with a specific power of 100 W/m2 and tower height of 150 m and for offshore
wind turbines with 200 W/m2 and 150 m tower height were based on their work.

Table A2 shows the cost and properties of the energy storage options. These costs were
based on the Danish Energy Agency [36]. The cost of transmission capacity was assumed
to 2k EUR/MW and km, where the distance is taken as the distance between a point in
each region with extensive grid capacity. The calculations applied annual investment costs
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which were derived using a 5% interest rate and technical lifetimes as given in Table A1.
Table A3 shows the fuel costs applied in this work.

Table A1. Costs and properties of electricity and heat generation units. CHP = Combined Heat and
Power, CCS = Carbon Capture and Storage, CCGT = Combined Cycle Gas Turbine, OCGT = Open
Cycle Gas Turbine.

Technology
Investment Cost
[MEUR/MW(h)]

Variable O&M
Cost [EUR/MWh]

Fixed O&M Cost
[kEUR/MW, year]

Technical
Lifetime

[year]

Efficiency
[%]

Biomass steam 2.0 2.1 52 40 35

Biomass CHP 3.3 2.1 105 40 30

Coal w. CCS 1 3.5 2.1 107 40 40

Biogas CCGT 0.90 0.8 17 30 61

Biogas
OCGT 0.45 0.4 15 30 42

Nuclear power 4.0 7.1 123 60 33

Solar PV power 0.3 0.5 7 40 100

Onshore wind power
(100 W/m2 150 m) 1.65 1.1 13 30 100

Onshore wind power
(300 W/m2 100 m) 1.0 1.1 13 30 100

Offshore wind power
(200 W/m2 150 m) 1.75 1.1 36 30 100

Heat pump 0.9 2.2 2 25 3

Electric boiler 0.1 1 1 20 1
1 Coal was assumed to be mixed with biomass in order to compensate for emissions which are not captured.

Table A2. Costs and properties of storage technologies. Investment costs for batteries (power),
electrolysis and fuel cells are given in MEUR/MW while costs for batteries (energy) hydrogen storage
and heat storage are given in MEUR/MWh.

Technology
Investment Cost
[MEUR/MW(h)]

Efficiency
(ch/disch)

[%]

Fixed O&M Cost
[kEUR/MW(h), year]

Technical Lifetime
[year]

Battery, Li-ion (energy) 0.08 96/96 - 25

Battery, Li-ion (power) 0.07 100 0.5 25

Electrolysis 0.4 70 18 20

Fuel cell 0.5 50 55 10

Hydrogen storage 0.011 100 - 40

Heat storage 0.003 100 1 0.009 25
1 Heat storages have a continuous loss corresponding to 0.023% per unit of time and energy stored.
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Table A3. Cost of fuel applied in the calculations.

Fuel
Fuel Cost

[EUR/MWhth]

Biomass 40

Biogas 77

Uranium 1.65

Coal w. biomass blend 7.5

On- and offshore wind power and solar PV power were represented using time-
resolved wind and solar power production potential for the investigated regions derived
using [18] which rely on ECMWF ERA5 [19] and the Global Wind Atlas [20] for the historical
years 1991–1992. These two years were chosen since they represent one year with a lower
hydropower inflow in the Nordic countries (1991) and one year with a higher hydropower
inflow in the Nordic countries (1992). The potential for wind and solar PV investments per
region together with their respective full load hours are given in Tables A4 and A5. Elec-
tricity demand corresponding to temperature variations in the historical years 1991–1992
was also derived using [18]. After the removal of unsuitable and protected areas, the
potentials for onshore wind power, offshore wind power and solar power were derived
applying an assumed factor of social acceptability. For offshore wind power and solar PV
power, 33% and 5% of the share of the remaining land was assumed to be available in all
regions, respectively. For onshore wind power, 8% of the remaining land was assumed to
be available except for Norway (1%), Sweden, the UK and Ireland (4%) where acceptance
for wind power investments has proven to be low. The potential area for wind power was
subdivided into five wind classes for each region representing different wind conditions.
Wind turbine technologies were chosen to match the conditions of their respective area,
with wind turbines with 100 SP (Specific Power, i.e., generator capacity relative to swept
rotor area in W/m2) and 150 m hub height for onshore sites with low average wind speeds
(i.e., wind class 1–3), 300 SP and 100 m hub height for areas with high average wind speeds
(i.e., wind class 4–5) and 200 SP and 150 m hub height for offshore wind turbines.

Table A4. Potential for electricity production (GW) for the five classes of onshore wind power
(WON1-WON5), the five classes of offshore wind power (WOFF1–WOFF5) and solar PV parks (PV)
for the regions considered in this work. SP = Specific Power, i.e., generator capacity relative to swept
rotor area in W/m2.

Region
WON1
100SP

WON2
100SP

WON3
100SP

WON4
300SP

WON5
300SP

WOFF1
200SP

WOFF2
200SP

WOFF3
200SP

WOFF4
200SP

WOFF5
200SP

PV

SE_N 0.7 5.1 5.3 3.4 2.1 0.0 0.0 1.7 16.3 2.8 86.3
SE_S 0.2 1.5 7.0 8.2 0.9 0.0 0.0 0.1 22.9 47.7 44.1

DE_N 0.0 0.0 2.9 18.7 9.6 0.0 0.0 0.0 0.0 29.4 161.4
DE_S 1.0 5.1 6.7 10.1 0.6 0.0 0.0 0.0 0.0 0.0 180.2
BAL 0.0 0.0 7.3 34.9 0.5 0.0 0.0 0.0 10.5 41.9 193.5
PO_S 0.1 0.9 8.4 27.3 0.1 0.0 0.0 0.0 0.0 0.0 256.3

NO_N 0.1 0.3 0.5 1.8 2.0 0.1 0.7 1.3 4.9 7.9 194.5
DK_T 0.0 0.0 0.0 1.1 10.8 0.0 0.0 0.0 0.1 77.4 53.2

BENELUX 0.0 0.0 0.4 6.2 4.2 0.0 0.0 0.0 0.0 83.5 51.3
FI 0.0 7.1 26.1 7.7 0.9 0.0 0.0 1.4 27.3 31.6 43.7

NO1 0.4 0.6 0.6 1.1 1.0 0.0 0.0 0.1 2.2 18.3 125.0
PO3 0.0 0.1 4.2 27.4 0.4 0.0 0.0 0.0 1.0 17.5 160.2
UK1 0.0 0.0 0.1 5.4 12.2 0.0 0.0 0.0 0.8 134.5 181.6
UK2 0.0 0.0 0.2 2.9 9.5 0.0 0.0 0.0 0.3 46.7 85.6
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Table A5. Full load hours before curtailment for the five classes of onshore wind power (WON1-
WON5), the five classes of offshore wind power (WOFF1–WOFF2) and solar PV parks (PV) for the
regions considered in this work. SP = Specific Power, i.e., generator capacity relative to swept rotor
area in W/m2.

Region
WON1
100SP

WON2
100SP

WON3
100SP

WON4
300SP

WON5
300SP

WOFF4
200SP

WOFF5
200SP

PV

SE_N 4127 5062 - - 4244 - - 1006
SE_S 4162 5178 5823 3451 4131 5159 5348 1233

DE_N - 4932 5734 3556 4265 5338 5577 1263
DE_S 3313 4560 5190 3417 3987 - - 1320
BAL - 5387 5799 3407 4076 5256 - -
PO_S 3762 4808 5644 3364 4006 - - 1288

NO_N 3614 - - - 4393 - - -
DK_T - - - 3823 4270 - 5555 1299

BENELUX - 5020 5475 3483 4106 - 5198 1267
FI 4607 5470 5852 - 4340 - - 998

NO1 3319 - - 3429 4251 - 4869 1156
PO3 - 5424 5838 3490 4086 5215 5390 1271
UK1 0 0 5303 0 4254 5026 5237 1237
UK2 0 4933 5345 3624 4558 0 5501 1087

Appendix C

Appendix C.1 Solar PV Dominated Regions (DE_S, PO_S)

Figure A2. Net load in southern Germany (DE_S) (a) reduced by (b) trade, (c) trade and hydropower,
(d) trade, hydropower and base load, (e) trade, hydropower, base load and batteries, (f) trade,
hydropower, base load, batteries and adapted hydrogen production and (g) trade, hydropower,
base load, batteries, adapted hydrogen production and adapted heat production. The color scale
indicates number of (#) occurrences and was limited to 50 occurrences, implying that the number of
occurrences may be higher in the deep red fields.
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Figure A3. Net load in southern Poland (PO_S) (a) reduced by (b) trade, (c) trade and hydropower,
(d) trade, hydropower and base load, (e) trade, hydropower, base load and batteries, (f) trade,
hydropower, base load, batteries and adapted hydrogen production and (g) trade, hydropower,
base load, batteries, adapted hydrogen production and adapted heat production. The color scale
indicates number of (#) occurrences and was limited to 50 occurrences, implying that the number of
occurrences may be higher in the deep red fields.

Appendix C.2 Wind Dominated Exporting Regions (DK_T, BAL, PO3, UK_N)

Figure A4. Net load in Denmark (DK_T) (a) reduced by (b) trade, (c) trade and hydropower, (d) trade,
hydropower and base load, (e) trade, hydropower, base load and batteries, (f) trade, hydropower,
base load, batteries and adapted hydrogen production and (g) trade, hydropower, base load, batteries,
adapted hydrogen production and adapted heat production. The color scale indicates number of
(#) occurrences and was limited to 50 occurrences, implying that the number of occurrences may be
higher in the deep red fields.
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Figure A5. Net load in Estonia, Latvia and Lithuania (BAL) (a) reduced by (b) trade, (c) trade and
hydropower, (d) trade, hydropower and base load, (e) trade, hydropower, base load and batteries,
(f) trade, hydropower, base load, batteries and adapted hydrogen production and (g) trade, hy-
dropower, base load, batteries, adapted hydrogen production and adapted heat production. The
color scale indicates number of (#) occurrences and was limited to 50 occurrences, implying that the
number of occurrences may be higher in the deep red fields.

Figure A6. Net load in northern Poland (PO_N) (a) reduced by (b) trade, (c) trade and hydropower,
(d) trade, hydropower and base load, (e) trade, hydropower, base load and batteries, (f) trade,
hydropower, base load, batteries and adapted hydrogen production and (g) trade, hydropower,
base load, batteries, adapted hydrogen production and adapted heat production. The color scale
indicates number of (#) occurrences and was limited to 50 occurrences, implying that the number of
occurrences may be higher in the deep red fields.
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Figure A7. Net load in northern UK (UK_N) (a) reduced by (b) trade, (c) trade and hydropower,
(d) trade, hydropower and base load, (e) trade, hydropower, base load and batteries, (f) trade,
hydropower, base load, batteries and adapted hydrogen production and (g) trade, hydropower,
base load, batteries, adapted hydrogen production and adapted heat production. The color scale
indicates number of (#) occurrences and was limited to 50 occurrences, implying that the number of
occurrences may be higher in the deep red fields.

Appendix C.3 Regions with Wind and Solar Power (UK_S, DE_N, BENELUX)

Figure A8. Net load in southern UK (UK_S) (a) reduced by (b) trade, (c) trade and hydropower,
(d) trade, hydropower and base load, (e) trade, hydropower, base load and batteries, (f) trade,
hydropower, base load, batteries and adapted hydrogen production and (g) trade, hydropower,
base load, batteries, adapted hydrogen production and adapted heat production. The color scale
indicates number of (#) occurrences and was limited to 50 occurrences, implying that the number of
occurrences may be higher in the deep red fields.
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Figure A9. Net load in northern Germany (DE_N) (a) reduced by (b) trade, (c) trade and hydropower,
(d) trade, hydropower and base load, (e) trade, hydropower, base load and batteries, (f) trade,
hydropower, base load, batteries and adapted hydrogen production and (g) trade, hydropower,
base load, batteries, adapted hydrogen production and adapted heat production. The color scale
indicates number of (#) occurrences and was limited to 50 occurrences, implying that the number of
occurrences may be higher in the deep red fields.

Figure A10. Net load in Belgium, the Netherlands and Luxemburg (BENELUX) (a) reduced by
(b) trade, (c) trade and hydropower, (d) trade, hydropower and base load, (e) trade, hydropower,
base load and batteries, (f) trade, hydropower, base load, batteries and adapted hydrogen production
and (g) trade, hydropower, base load, batteries, adapted hydrogen production and adapted heat
production. The color scale indicates number of (#) occurrences and was limited to 50 occurrences,
implying that the number of occurrences may be higher in the deep red fields.
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Appendix C.4 Regions with Access to Hydropower (SE_S, FI, NO1, SE_N, NO_N)

Figure A11. Net load in southern Sweden (SE_S) (a) reduced by (b) trade, (c) trade and hydropower,
(d) trade, hydropower and base load, (e) trade, hydropower, base load and batteries, (f) trade,
hydropower, base load, batteries and adapted hydrogen production and (g) trade, hydropower,
base load, batteries, adapted hydrogen production and adapted heat production. The color scale
indicates number of (#) occurrences and was limited to 50 occurrences, implying that the number of
occurrences may be higher in the deep red fields.

Figure A12. Net load in northern Sweden (SE_N) (a) reduced by (b) trade, (c) trade and hydropower,
(d) trade, hydropower and base load, (e) trade, hydropower, base load and batteries, (f) trade,
hydropower, base load, batteries and adapted hydrogen production and (g) trade, hydropower,
base load, batteries, adapted hydrogen production and adapted heat production. The color scale
indicates number of (#) occurrences and was limited to 50 occurrences, implying that the number of
occurrences may be higher in the deep red fields.

220



Energies 2023, 16, 3548

Figure A13. Net load in Finland (FI) (a) reduced by (b) trade, (c) trade and hydropower, (d) trade,
hydropower and base load, (e) trade, hydropower, base load and batteries, (f) trade, hydropower,
base load, batteries and adapted hydrogen production and (g) trade, hydropower, base load, batteries,
adapted hydrogen production and adapted heat production. The color scale indicates number of
(#) occurrences and was limited to 50 occurrences, implying that the number of occurrences may be
higher in the deep red fields.

Figure A14. Net load in southern Norway (NO_S) (a) reduced by (b) trade, (c) trade and hydropower,
(d) trade, hydropower and base load, (e) trade, hydropower, base load and batteries, (f) trade,
hydropower, base load, batteries and adapted hydrogen production and (g) trade, hydropower,
base load, batteries, adapted hydrogen production and adapted heat production. The color scale
indicates number of (#) occurrences and was limited to 50 occurrences, implying that the number of
occurrences may be higher in the deep red fields.
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Figure A15. Net load in northern Norway (NO_N) (a) reduced by (b) trade, (c) trade and hydropower,
(d) trade, hydropower and base load, (e) trade, hydropower, base load and batteries, (f) trade,
hydropower, base load, batteries and adapted hydrogen production and (g) trade, hydropower,
base load, batteries, adapted hydrogen production and adapted heat production. The color scale
indicates number of (#) occurrences and was limited to 50 occurrences, implying that the number of
occurrences may be higher in the deep red fields.
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Abstract: This paper provides an overview of the development of a 3D formed and metal-based
facade element that combines a custom design and solar thermal functionality. To achieve this, a
novel simplified solar thermal collector structure was developed using formed sheet metal half-shells
with an integrated channel structure on the inside and a special absorber coating on the outside. The
sheet metal half-shells were manufactured by highly innovative incremental sheet forming (ISF),
which allows seamless integration into existing facades. As a part of this paper, the initial test results
on thermal efficiency and the energy accumulation of the new collector type are presented.

Keywords: absorbance coating; facade elements; sheet metal design; solar thermal collector

1. Introduction

The reduction of harmful greenhouse gases is one of the biggest challenges of our time.
The use of unlimited available solar thermal power as renewable energy can help to support
efforts to reduce CO2 emissions worldwide. More than 40% of the total energy consumption
in Europe can be allocated to heating, hot water, and illumination [1]. This corresponds to
almost 20% of the total CO2 emissions. Especially in the building industry, reducing CO2
emissions is one of the main drivers. By using modern building envelopes, the required
energy for heating and cooling can be minimized [2]. The major goal is the realization of
affordable zero-energy buildings. One effective way of achieving these objectives is the use
of solar thermal energy. The solar radiation at our latitudes is perfectly suited for thermal
use.

In central Europe, solar radiation produces, on a 1 m2 area, 1000 kWh/year to
1100 kWh/year [3], which is equivalent to 100 L of fuel oil or 100 m3 of natural gas.
For this reason, the building sector has a strongly growing interest in facade-integrated
solar thermal absorbers, which shall be presented in this paper.

A broad range of solar thermal collectors have been available on the market for
decades worldwide. These products are credible and generally made to a high technical
standard, especially in Europe with a homogeneous market. However, there is a shortage
in the field of solar thermal products that are suited for building envelope integration to
create high-quality architecture [4,5]. Functional and constructive aspects, together with
aesthetics, have to be considered. State-of-the-art solar thermal collectors are not flexible in
shape and size due to the hydraulic fluid circuits fixed to solar absorbers. Architectural
requests for design freedom require the hydraulic system concept to be redesigned, which
is generally difficult and expensive for conventional means of production. Conventional
production methods for absorbers limit the flexibility in collector design [6] and such a lack
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of flexibility significantly reduces the potential application of solar thermal systems [7]. The
production of solar collectors in sheet metal half-shell design by means of hydroforming
was investigated in the European Union (EU) project with the acronym “BIONICOL” [8]
and in “Industrielle Gemeinschaftsforschung” (IGF) project No. 339 ZN [9]. However,
curved surfaces cannot be obtained with the shown technologies and the channel structures
can only be manufactured on both sides, which has a disadvantageous effect on the design
freedom of the facade. The integration of flat-plate solar thermal collectors is only possible
for opaque envelopes (roofs and facades) so far [10]. The structure of evacuated tubes
allows mounting on transparent envelopes as sun shading, but this kind of application is
rare. The application potential of incremental sheet forming (ISF) in solar absorbers was
demonstrated in [11] by the production of absorber lamellae using incremental forming
technology.

The thickness of solar collectors affects their integration, especially for facades. Thick
solar thermal collectors are difficult to implement as functional elements or as sun shading.
The appearance of solar collectors is affected by the glass (glazed collector) and absorber
surface treatment. State-of-art collectors apply highly transparent, low-iron glass for
glazing and black or dark-blue spectrally selective coatings with high absorptance (0.95)
and low emittance (0.05). Solar collectors integrated into facades are more conspicuous
than collectors installed on rooftops. Many studies and surveys have shown that architects
prefer a large variety of absorber colors [12], and they even regard the possibility of a
custom color choice as essential. Manufacturers can meet the demand for a variety of
absorber colors by means of solar paint coatings, but such collectors show considerably
reduced thermal performance compared with quality selective coatings in the usual solar
collectors commercially available in Europe [13].

This paper presents a new design of a solar thermal collector. The focus of this
paper is fabrication with ISF, concepts for integration into facade systems, possible design
arrangements, and the development of the absorber coating. Furthermore, initial results
on the thermal efficiency and performance of the new collector type are presented and
evaluated.

2. Materials and Methods

2.1. Principal Collector Design

Figure 1 shows the layout of the developed collector design, which consists of two
layers of cold-rolled deep-drawing steel DC06 (t = 0.8 mm) joined together in a fluid-tight
manner by laser welding.

(a) (b) 

 

Figure 1. Principal collector design: (a) CAD model of the assembled collector and (b) drawing of the
inner sheet with the channel structure.
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The three-dimensional shaped outer sheet is designed as a closed cassette with inte-
grated notches for hooking into the façade’s substructure. To integrate the solar thermal
functionality, the flat inner sheet has a two-dimensional channel structure and is attached
to the outer sheet. The use of this simple geometry for the inner sheet ensures a good
fit between the two components, which is essential for the joining process. The channel
structure chosen was a harp structure, which has also been used in commercially available
flat plate collectors. With this structure, the area to be cooled can be efficiently passed
through with low pressure loss at the same time. For hydraulic connection, parallel planar
surfaces were proposed in the inlet and outlet areas for the easy integration of conventional
fittings.

The representative design of the geometry of the exterior sheet was determined by the
results of the solar gain analysis, the architectural design boundaries, and the constraints of
the forming process, which are described in the following sections.

2.2. Architectural Aspects and Facade Integration
2.2.1. Necessity of Research into Solar Thermal Facade Elements in Architecture

Endeavoring to be part of the solution, the publicly funded research project “FutureFa-
cade” strives to do its part for climate protection in the construction industry by utilizing
the inextricable connection to resource and energy efficiency. The integration of solar ther-
mal energy into facades holds great potential for generating solar yields that have, so far,
remained largely untapped. Although a study by the Leibniz Institute for Ecological and
Regional Development (IÖR) shows that a total of 12,000 km2 of facade area in Germany
can be used for solar energy, no architecturally sophisticated solar thermal facade elements
exist yet [14,15]. The combination of solar thermal energy with inner-city building surfaces
can be used for domestic hot water, heating support, and cooling. Regarding unforesee-
able developments in the cost of all fuels, solar thermal energy offers a sustainable and
cost-effective alternative.

2.2.2. Architectural Innovation

While conventional collectors are visually recognizable by the glass and the dark-blue
absorber surface, more complex appearances can be created using mono-material panels
made of metal. Hence, through innovating solar modules, a novel structure was created
in this project. Linking architectural aspiration and sustainability was paramount. The
functional integration, which was not visible on the outside, was achieved by two combined
sheet metal panels invisibly welded together.

2.2.3. Design Criteria for the Collector Geometry based on Solar Thermal Aspects

Optimizing the geometry of the outer panel was most important in order to adapt the
modules as efficiently as possible to the irradiation conditions using site-specific weather
data while also taking into account the manufacturing constraints (e.g., maximum wall
angle and minimal radius). The adjustment of the module geometry and, thus, the solar-
active area and the irradiation angle was regulated by a digital parametric design tool. This
allowed the yields to be controlled and optimized, which is a pioneering development in
sustainable building construction.

The solar gain analysis showed that the chosen shape could provide 792 kWh/m2

per year for a southern orientation using the Chemnitz, Germany, region as an example
(Figure 2). Different rectangular-based shapes were tested throughout the project. The
analysis showed that flat collectors had the lowest potential for solar gain. Plenty of design
studies have been conducted. Round, triangular, rectangular, and hexagonal formats were
also tested as irregular freeform shapes. In the end, the final polygonal shape lent itself
best to the chosen forming technique and the solar gains that were to be achieved. The
rectangular base allowed standardized substructures to be used. The rather simple basic
shape contained a lot of freedom in the arrangement and variation of the geometry as a
pattern, ensuring that design freedom could be kept (Figure 3). Compared with the chosen
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polygonal shape, there would be a loss of 165 kWh/m2 per year. Round double-curved
shapes had the best solar-gain effect (809 kWh/m2 per year), but were excluded due to the
manufacturing technique after some forming tests, as there was a large spring-back effect
after forming. Therefore, the polygonal shape was optimal from all tested design studies
(Figure 2).

(a) 

 
(b) 

 

Figure 2. Solar gain analysis (a) of different shapes (b) with a rectangular base performed with the
energy-simulation engine EnergyPlus™ in combination with the Grasshopper plugin Ladybug for
Rhinoceros® 3D.

 

Figure 3. Variations and patterns of polygonal panels.
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2.2.4. Facade Construction and Hydraulic System

The facade panel was designed as a simple standardized cassette and could thus be
hooked into the bolt suspension. (Figure 4b). Owing to the standardized system used, it
was possible to use facade (under-) constructions from various manufacturers. (Figure 4a).
By using a standardized substructure, the effort required for assembly and maintenance
can be decreased and the economic efficiency can be increased.

(a) (b) 

 

Figure 4. Visualization of facade construction (a) and under-construction detail (b).

The facade panel was a mono-material system. There was an outer panel and an
inner panel welded together. The inner panel represented the channel structure, which was
designed as a common harp shape. (Figure 5a) With regard to the most energy-efficient
design of the fluid channels within the facade elements, computational fluid dynamics
(CFD) simulations were carried out to achieve optimized performance for the facade
element.

(a) (b) (c) 

   

hydraulic 
connection 

bolt holder 

U-profiles 

solar 
module 

panel 

Figure 5. Schematic illustration of the addition of the panels (a), schematic illustration of facade
construction (b), and schematic illustration of panel function (c).

To build a facade system that can operate as a power plant, the panels were connected
in series and formed one module when connected in a mirrored position. (Figure 5c). One
module at a time was then connected to the vertical cable routing. (Figure 5b). A pump
ensured the circulation of the fluid in the facade. A heat exchanger provided the energy to
the heating units, so the facade system became its own sustainable power plant to harvest
renewable heat.

2.2.5. Architectural Results

The designed panel holds the potential to create new appearances for urban spaces
and positively influence the use of renewable energy. (Figure 6) The panel can be used
for new construction and existing projects. It can be used on large-scale installations in
rural areas, as well as on urban facades, and thus has multiple applications. Therefore,
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the project is a huge step in Mono-Material Design, facade design, architecture, and the
building industry and renewable energies in general.

 

Figure 6. Visualization of a sample façade.

2.3. Demonstrator Manufacturing
2.3.1. Forming

For the manufacturing of the solar collector sheets, incremental sheet metal forming
(ISF) in combination with subsequently performed bending operations (only for the outer
sheet) was used. With ISF, the final part of the geometry is successively formed by the CNC-
controlled movement of a forming stylus over a counter die (Figure 7a). In comparison
with conventional forming methods (e.g., deep drawing), this reduces tool costs and the
time required to achieve the first finished part.

(a) (b) (c) 

 

Figure 7. Incremental sheet forming: (a) process principle, (b) clamped outer sheet after forming, and
(c) clamped inner sheet after forming.

For the forming of the test components, a polyurethane counter-die (material:
obomodulan® 1600 sand) was used, in which the cut-to-size sheets were clamped by
means of a blank holder (Figure 7b,c). As a lubricant, Raziol CLF 125F was used for all
forming trials.

To avoid wrinkling during forming, the outer sheet was formed in two steps. In the
first step, a stylus diameter of 100 mm with a z-increment of 0.2 mm was used. In the
second step, the final shape was formed with a stylus diameter of 6 mm and an increment
of 0.2 mm. For both steps, a z-constant tool path in helix design was chosen, with a total
forming time of approx. 2 h. After unclamping, the edges of the outer sheet were folded and
mechanically joined at the corners to create the closed cassette design shown in Figure 1.

The shape of the inner sheet could be formed in one step with a forming stylus
diameter of 6 mm, a z-increment of 0.2 mm, and a forming time of approx. 45 min, also by
using a z-constant tool path in helix design. With these parameters, the inner and outer
sheets could be successfully formed without failures. For both geometries, the global shape
deviation was approx. 1 mm compared with the original CAD geometry which is within
the common tolerances for facade panels.
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2.3.2. Joining

A welding Nd:YAG laser of 3 kW mounted on a robot was used for the assembly of the
inner and outer formed sheets. The experimental set-up is presented in Figure 8a. Specific
tools were used to optimize the contact between the welded surfaces and to prevent gaps
from forming between the steel sheets; otherwise, the upper sheet could be pierced by
the laser beam. The first tool (Figure 8b) was developed to allow the welding of the outer
contour of deformed panels, and the second one (Figure 8c) was designed for the welding
of lines between the channels, allowing the passage of fluid through the drawn network
and avoiding the swelling of the panels. Finally, the fluid connectors were fixed using
manual tungsten inert gas (TIG) welding (Figure 8d).

(a) (b) (c) (d) 

Figure 8. Laser welding setup: (a) laser head mounted on a robot, (b) clamped tool for outer contour,
(c) clamped tool for inner channels; (d) TIG welding for fluid connectors.

Laser welding requires a compromise between the thermal load and the welding
speed in order to limit damage to the outer sheet’s steel surface. The laser beam must
cross the top sheet and penetrate the bottom one without crossing it. Figure 9a shows a
cross-section micrograph of the welding of two steel sheets. The focal spot is in the range
of 0.8 mm to 1 mm for the following welding parameters: laser head speed of 3 m/min,
steel sheet thickness of 0.8 mm, and laser power of 1.4 kW. Various parameters, such as
the accuracy of the robot trajectory, the variation in the steel thickness generated by the
incremental forming, as well as the distance between the steel sheets, can influence the
welding beam penetration, leading to marks on the back side of the panel. Figure 9b (left)
shows the impact of the welding beam on the back side of the panel. However, additional
surface treatment, such as sandblasting, can remove the oxides generated by the laser beam
overheating and can also considerably decrease the thermal stress near the welding lines.
Figure 9b (right) shows the same surface as Figure 9b (left) after sandblasting.

A potential optimization requires an increase in the thickness of the back metal sheet
to decrease the thermal effect and to increase the welding process parameters. However, for
this project, the choice to simplify the assembly system drove the use of the same material
and same thickness for both the inner and outer shaped steel sheets.

(a) 

 

(b) 

 

Figure 9. (a) Cross-section micrograph of the welding of two steel sheets and (b) welding lines on the
front side of the panel: as initially welded (left) and after sand-basting (right).
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2.3.3. Strategies and Concepts for Absorbing Coatings

The design of a non-glazed solar absorber for practical application requires the devel-
opment of a robust coating applied by low-cost techniques. This coating must exhibit high
absorption efficiency in the ultraviolet and visible regions of the solar radiation spectrum.
Therefore, the reflectance should be minimized in these regions of the solar spectrum.
Additionally, the loss of heat to the surroundings via convection or conduction should be re-
duced as much as possible. Thus, there are conflicting requirements for strong absorption in
the solar spectrum, with minimum emission in the infrared range. The use of deep-drawing
steel DC06 as a substrate requires additional corrosion protection. The outer formed steel
sheet was protected by an 80 μm-thick aluminum coating deposited by the twin arc-wire
thermal spray technique. The role of this additional coating is to prevent steel corrosion
in case of surface scratches during the manipulation of the panels. Thermally sprayed
aluminum, in combination with organic and ceramic coatings, is a common method used
for corrosion protection for bridges, ships, and oil and gas installations. These systems are
supposed to provide a long lifetime (>20 years) and, with that, be both cost-effective and
environmentally friendly [16]. The sand-blasting used to remove the welding defects on the
outer steel formed surface is a convenient surface treatment for the thermal spray arc-wire
coating of aluminum. The twin arc-wire system was the PERFECT Spray from SMS Group,
Düsseldorf, Germany. The typical conditions for arc spraying were arc parameters of 28 V
and 90 A, and a wire speed of 2 m/min. The diameter of the aluminum wire was 1.6 mm.
The coating was sprayed uniformly over all of the surface of the outer formed steel sheet.

A black absorbing coating was applied to the outer formed steel sheet by spraying,
followed by curing at 300 ◦C. The benefits of such surfaces are their comparative simplicity
to produce and the potential for cost-effectiveness. This novel coating chemistry combines
high solar-absorbing performance, high thermal resistance to withstand excessive heat
from the metal surface, and good resistance to UV and humid conditions to ensure a long
service life. The coating thickness can be controlled in the range of a few micrometers to
several tens of microns by using several steps of spraying and drying. The reflectance
spectrum of the coating deposited as a solar absorber is presented in Figure 10. The solar
absorptance in the UV-VIS-NIR spectra is 95% and can slightly change depending on the
surface roughness and the coating thickness. The emissivity of the coating was relatively
high, as the solar absorbance was low in the NIR region of the spectrum, leading to the
solar absorber exhibiting non-selective behavior.

 

Figure 10. Reflectance spectrum of the silica–carbon sol-gel coating applied as the solar absorber.

2.4. Collector Testing Setup

A solar thermal collector integrating incremental formed panels coated with sol-gel
absorbing layers was manufactured for thermal testing. The collector contained eight
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panels to generate a surface of 1.6 m2, comparable to solar thermal collectors available on
the market. Figure 11a shows a view of the rear side of the solar collector as manufactured,
while Figure 11b shows the same view with insulation. The insulation material installed
on the back of the solar panels was PIR foam boards laminated with aluminum foil, 4 cm
thick, from IKO Enertherm (thermal conductivity 0.022 W/m·K). The flexible pipes were
insulated with polyethylene slotted-pipe lagging (inner diameter 15 mm, wall thickness
13 mm, and thermal conductivity 0.036 W/m·K). Leakage tests were performed to confirm
the quality of the welding and the connections of the flexible fluid pipes.

(a) 

 

(b) 

 

Figure 11. Pictures of the solar collector as manufactured without insulation (a) and with rear
insulation (b).

3. Collector Characterization

A schematic diagram of the experimental set-up is presented in Figure 12. This system
provides the fluid to the thermal panels via insulated pipes equipped with measurement
probes and a circulator. The probes are placed directly at the inlet and outlet of the panel in
order to minimize the losses and errors of measurements related to the pipes. The flow rate
is adjusted via a manual valve in series on the sample supply circuit. The temperatures are
measured at the inlet and outlet of the panel via thermocouples. In order to achieve very
good stability for the inlet temperature, the measuring system has a large buffer tank and an
internal temperature regulation system. This system is cooled via an external water cooling
unit (chiller). The storage tank is equipped with a water-mixing unit to guarantee the
homogeneity of the temperature. The heat output of the panel is determined by considering
the characteristics of the fluid, the temperature variation, and the flow rate. The thermal
conversion efficiencies of the panel are determined by controlling the flux density of the
radiation source and knowing the active surface of the panel.

Figure 12. Schematic diagram of experimental test for thermal characterization.
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The thermal performance tests were carried out in collaboration with ELIOSYS SA,
Liege, Belgium. The investigated heat transfer fluid was water without glycol. As the
thermal characteristics of the thermal solar collector were multifactorial, we decided to
fix certain parameters. The sample inlet temperature was fixed at room temperature to
avoid losses between the pipes and the environment. The measurement of the ambient
temperature was carried out in a ventilated enclosure and by obscuring solar irradiance.
The measurement time was at least 15 min in steady state. The irradiance measurement was
carried out during all tests using a calibrated pyranometer and the thermal environment
was controlled by a pyrgeometer. The stability of the irradiation was 0.1% for the duration
of the test. Figure 13a shows the experimental setup. Knowing the characteristics of the
heat transfer fluid, temperature variations, and flow rate, it was possible to determine the
heat output of the system. By controlling the stability of the surface power of the radiation
source and knowing the active surface of the sample, it was possible to calculate the thermal
conversion efficiencies of the sample. The source of the irradiation was a continuous solar
simulator capable of creating irradiation of 200 W/m2 to 1100 W/m2 with a maximum
variation of less than 1% over 1 h. The spectrum of this simulator was classified B for
the wavelength from 800 nm to 900 nm and A for all other wavelengths according to IEC
60904-9 [17].

(a) (b) 

  

Figure 13. Experimental setup, including the solar collector and irradiance lamps (a) and infrared
camera image of the solar collector in operation (b).

Figure 13b shows an example of thermal imaging, helping to visualize the intercon-
nection of panels. The first panel (top right) was cooler than the last panel in the chain
(bottom right). The irradiation power was fixed at 1000 W/m2 and the water temperature
input was fixed at 30 ◦C +/− 0.2 ◦C in the panel located at the top-right and exits at the
temperature given at the bottom-right. Outside the cooled areas of the panels, a significant
increase in temperature was detected, contributed by thermal conduction to the increase in
fluid temperature.

3.1. Thermal Power

The thermal power of the collector was determined for various irradiance values
(Figure 14a). For a typical irradiance of 1000 W/m2 and a cooling water flow of
3.7 L/min, the total output power of the collector was 745 W/m2. This graph also shows
that the thermal conversion was better at low irradiance than at high irradiance. This
phenomenon was slight and mainly originated from first- and second-order thermal losses,
which increased with the temperature difference between the collector and the environment.
The tilt angle of the collector significantly influenced the thermal power, as presented in
Figure 14b). Indeed, the installation of the collector in a vertical orientation decreased the
output power to around 17% compared with the horizontal orientation.

234



Solar 2023, 3

(a) (b) 

 

Figure 14. Variation in the thermal power of the collector versus the irradiance for a constant water
flow rate of 3.7 L/min (a) and variation in the thermal power versus the irradiance angle (b).

3.2. Thermal Efficiency

The European standard EN 12975 [18] defines the efficiency η of a thermal collector on
the basis of four parameters according to Equations (1) and (2):

η = η0

(
a1·ΔT

E0

)
−
(

a2·ΔT2

E0

)
(1)

ΔT = Twater out − Twater in (2)

where:
η—collector efficiency;
η0—optical efficiency;
a1 and a2—heat loss coefficients;
E0—solar radiation;
ΔT—Temperature difference of the solar fluid between the inlet and outlet of the

collector.
The overall efficiency η is, therefore, not a single value, but a characteristic curve.

The optical efficiency η0 represents the maximum efficiency of the thermal collector when
the temperature of the fluid is at ambient temperature (no thermal losses). Measured
under standardized test conditions (AM1.5 spectrum, solar irradiation E0 = 1000 W/m2,
perpendicular to the sensor), the efficiency of a thermal collector depends on the properties
of the glazing and/or the selectivity of the absorber. Figure 15 shows the variation in the
collector efficiency as a function of the flow rate of the cooling fluid. The thermal insulation
of the collector slightly influenced its efficiency. On the characteristic curve, the stagnation
temperature of the collector was defined as the temperature difference at which the solar
gains could not compensate for the thermal losses.

Figure 15. Collector efficiency with and without back insulation for E0 = 1000 W/m2.
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4. Economic Analysis

An economic feasibility study was carried out to estimate the manufacturing costs of
the new type of collector. To show the influence of the forming technology used on the total
manufacturing costs, ISF was compared with a conventional deep drawing for quantities n
of 1 and 1000 pieces.

The starting point for the cost calculation was the scaled collector geometry shown in
Figure 1 and the consideration of the process chain described in Figure 16.

Figure 16. Simplified process chain for the manufacture of the collector.

In this simplified representation of the manufacturing process, the steps of the single-
part production of the inner and outer sheets are summarized in the first three superordinate
processes of blank trimming, forming, and trimming.

In addition to the main forming costs, the one-time costs for the formation of simu-
lation (deep drawing), as well as the path generation (ISF), are included in the forming
process step. All trimming and joining operations were performed using a laser. The
coating process itself was divided into the sub-processes of corrosion protection and solar
coating.

The assumed boundary conditions and the determined costs for each (sub-)process
step are given in Table 1.

Table 1. Boundary conditions and detailed cost distribution by process step for collector-
manufacturing depending on the formation technology and quantity n.

Process Sub Process
ISF Deep Drawing

n = 1 n = 1000 n = 1 n = 1000

Raw material
(inner + outer sheet) - ≈16 € ≈16 €

Forming
(inner + outer sheet)

Simulation (one-time) - ≈800 €
Tool-path generation
(one time) ≈200 € -

Tooling costs (one time) ≈1500 € ≈20,000 €
Manufacturing time per
collector ≈2.9 h ≈0.09 h

Forming cost per
collector ≈292 € ≈22 €

Total forming cost per
collector ≈2192 € ≈294 € ≈21,622 € ≈43 €

Trimming
(inner + outer sheet)

Jig costs (one-time) ≈250 € ≈250 €
Laser trimming cost per
collector ≈4.20 € ≈4.20 €

Total trimming cost per
collector ≈254 € ≈5 € ≈254 € ≈5 €

Joining Total joining cost per
collector ≈270 € ≈25 € ≈270 € ≈25 €

Coating

Costs of corrosion
protection (Al-Zn) ≈245 € ≈20 € ≈245 € ≈20 €

Costs of solar coating
(sol-gel) ≈37 € ≈17 € ≈37 € ≈17 €

Total coating cost per
collector ≈282 € ≈37 € ≈282 € ≈37 €

Total manufacturing costs per collector ≈3014 € ≈376 € 22,444 € 126 €
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The results of the process chain analysis show that the formation and associated
tooling investment costs were the drivers for all process variants investigated. As expected,
for small quantities, ISF can take advantage of its universal forming stylus and low overall
tooling costs. With total manufacturing costs per collector of approx. 3014 € for a quantity of
one, the costs of ISF were 87% lower compared with the use of conventional deep-drawing
technology. In contrast, deep drawing has advantages for larger quantities due to the
significantly short process times. When considering a number of 1000 pieces, the unit
price per collector of 126 € for the deep drawing variant was 33% lower than that of the
ISF variant. For large quantities, conventional forming is clearly preferable. In the case of
prototypes or small quantities, however, ISF is an interesting alternative. In this specific
case, the break-even would be at 73 collectors. From this point on, the manufacturing costs
for deep drawing are lower than those for ISF.

In view of the large-scale production capability of the collector type presented, the
graphical representation of the cost distribution in Table 2 shows that, in addition to
formation, coating and joining account for the largest shares in terms of total costs. In the
deep drawing scenario at a quantity of n = 1000, the share of formation is approx. 34%,
followed by coating (≈29%) and joining (≈20%).

Table 2. Overview of the estimated manufacturing costs per collector depending on the forming
technology and quantity n.
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If the costs are related to the collector area, the costs for the new collector type were
approx. 625 €/m2 under the assumptions made. In combination with the degree of design
freedom made possible for the first time, the type of collector presented represents an
interesting addition and extension to existing systems.

5. Discussion

As shown above, there is good potential for all-sheet metal solar collectors, as the
thermal performance and cost were comparable to those of modern flat plate collectors,
with the added benefit of three-dimensional design freedom for seamless integration into
facade systems.
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It was demonstrated that the manufacture of complex collector geometry with the
chosen parameters without cracks was possible by ISF. However, as expected, the cost
analysis showed that the area of application for this manufacturing technology was only
limited to small quantities (e.g., prototypes or individualized elements) due to the long
manufacturing time. For large quantities with recurring geometries, it would make more
economic sense to use conventional forming technologies with high output rates. The
high quantities amortize the initial investment costs in the forming tools and enable low
marketable unit costs.

Laser welding was proven to be an efficient method for the assembly of an all-sheet
metal collector, despite the 3D complex shape. However, the increase in the metal thickness
could considerably improve the welding robustness influenced by sheet formation.

The use of sol-gel painting spray was an efficient and low-cost way to deposit the
solar-absorbing layer on a complex-shaped surface. The high solar absorptance and high
emissivity of the solar layer could generate a high thermal efficiency of the solar collector at
a low temperature. The overheating effect of the present thermal panels was significantly
reduced, as the maximum heating temperature was under 100 ◦C. Indeed, the overheating
effect observed in the case of fluid stagnation (e.g., power cut, failure of the primary pump,
or when the heat demand is low) for conventional glazed thermal panels using selective
absorbing layers generates a high increase in the fluid temperature (>150 ◦C), leading to
premature component degradation. The large surface available for the implementation
of these new solar facades, combined with their high efficiency at low temperature, can
generate an economical approach to saving energy. However, the coating design could be
improved to decrease the surface emissivity and, consequently, to increase the efficiency
at higher temperatures; however, this can be achieved only by using complementary
antireflective coatings.

6. Conclusions

This project has shown that, within the research project “FutureFacade”, new potential
for renewable energies in cities can be created. Solar thermal-active facades are particularly
suitable for large buildings with large facade areas, as these are the first places where it
becomes economically viable.

The approach of using standardized facade substructures was proven successful. How-
ever, this project still has a lot of development potential. With regard to the manufacturing
process, it is advisable to switch to the more economical manufacturing process for sub-
sequent projects. This would also make the production of smaller facades and quantities
more economical. The material could also be changed to aluminum instead of steel in
order to minimize the weight of the facade construction. Changes in material and forming
technology also allow new design freedom in the geometry of further developed facade
panels, which can be further extended by adapting the coating. In terms of appearance,
it would be desirable to be able to create more variance in color with the same or similar
efficiency. In terms of efficiency, it would also be advisable to further develop the channel
structure professionally with the help of meaningful CFD simulations. When considering
the efficiency, its ratio with the absorber surface must always be taken into account. With
regard to the panel size, adjustments could be made in the future. As long as the absorber
surface area is 2 m2, the collector remains comparable to conventional absorbers.

All in all, the “FutureFacade” approach has brought many new insights and provides
new stimuli for further research on solar thermal facades.
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Abstract: This study addresses the use of former gas storage facilities as short-term storage for
renewable energy through power-to-gas (PtG) technology in Germany. Three test cases with coupled
thermal-hydromechanical (THM) modelling were conducted to evaluate short-term injection and
production schedules. The operating rates were controlled by the upper and lower limits of the
wellbore pressure. The maximum difference in pore pressure and effective stress was 0.6 MPa in all
cases. Fault reactivation analysis was performed on the THM models to estimate fault stability. The
critical pore pressure for safe reservoir operation was determined to be 1.25 times the original pore
pressure, corresponding to a WBHP value of 20.25 MPa. The upper limit of the gas injection rate
for safe storage operation was estimated to be between 100,000 and 150,000 m3/day. The thermal
stresses were found to be negligible for short-term cases. The storage capacity of PtG technology
was reported to be up to 1,322,400 kWh/d of renewable electricity, which can contribute to Germany
becoming a greenhouse gas neutral country by 2050. The workflows and results of the study are
applicable to all gas storage in a porous medium, including methane, CO2, and hydrogen.

Keywords: THM modelling; short term underground gas storage; dynamic modelling; “battery” for
power-to-gas

1. Introduction

High energy demand has intensified research into the “underground gas storage”
(UGS) discipline [1]. As a result, both long-term (seasonal) and short-term (weekly) gas
storage projects have gained the attention of UGS researchers [1]. An idea in this context is
to store methane produced by “power-to-gas (PtG)” technology from excessive electricity
produced by renewable sources, such as solar and wind. The stored gas can then be reused
for power generation whenever needed. Thus, UGS is used as a kind of “battery” for
surplus green energy.

Short-term storage cycles may cause some geomechanical issues in the porous reservoir.
The pore fluid pressure in the reservoir fluctuates due to intensive gas injection and
withdrawal phases. These fluctuations in fluid pressure change the effective stresses in
the reservoir and may also change the in-situ stress state outside the reservoir area [2].
These changes have implications for geomechanical phenomena related to fault stability,
caprock integrity, and surface deformation. Numerical modelling, e.g., 3D geomechanical
modelling, provides a platform to integrate lithological and mechanical heterogeneities
and investigate stress state changes during injection-production cycles of high frequency.

This study concentrates on a geomechanical assessment of a former gas field in the
Bavarian Molasse Basin east of Munich (Germany) for which a hypothetical transforma-
tion into an UGS site is investigated. Various scenarios with variable short-term (weekly)
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schedules to test cases for gas storage and withdrawal are considered to evaluate stresses
(e.g., effective stress) and deformation due to pressure changes with high-frequency injec-
tion/production cycles. German data for excess electricity from renewable energy sources
(such as solar and wind) throughout the calendar year 2017 are also considered in two cases
to address the issue of irregular schedules in gas supply (via PtG) and energy demand.

The modelling results provide information about the stress state within and around
the reservoir because of the production and injection of each selected time step, and they
are compared with the stress states at the depletion and replenishment stages. The pro-
duction history of the reservoir (porous media) is categorically useful to determine stress
paths within and around the reservoir and wellbore periphery, as well as caprock integrity.
Further, the modelling results provide information about ground surface subsidence during
peak depletion and replenishment time steps, which can be useful to minimize geomechan-
ical risks to any gas storage facility, not only for methane or CO2 but also for hydrogen.
Finally, fault reactivation analyses are also incorporated to obtain a safe gas injection rate
for safe storage capacity.

The most popular gas storage method is underground gas storage among others, such
as liquefied natural gas (LNG), storage tanks, and pipeline storage [3,4]. Two important
issues are associated with UGS. First, it relies on gas imports due to increased demand
for power generation (gas-to-power) and other domestic usages. Second, any damage to
infrastructure could lead to higher gas prices or disruption of supply, with unpredictable,
costly consequences for customers [1]. To address these challenges, various research
has suggested using depleted gas/oil porous reservoirs or aquifers as UGS, with which
significant volumes can be strategically stored [1,5].

One of the main advantages of depleted gas reservoirs is that they allow convenient
and cost-effective gas storage, as they have suitable permeability properties and pore
connections [6,7]. Some vital data, such as geological and geophysical characteristics, petro-
physical properties, storage capacity, pressure, and the production history of depleted gas
reservoirs, have been thoroughly studied and well recorded during the development phase
of the reservoir field, enabling numerical modelling to simulate the injection-production
process of underground gas reservoirs [3,6,8].

Water encroachment occurs in the porous reservoir vertically and laterally during the
development phase of the gas reservoir. This water invasion causes fewer porous spaces
in the reservoir, and different fluid distribution areas are formed in the longitudinal and
traverse planes of the reservoir. During the injection and production operations of gas
storage, the gas-water interface moves downward when gas is injected and moves upward
when gas is produced [9]. Furthermore, as the foreign gas is injected into the reservoir,
which has a different temperature than the reservoir’s actual temperature, these thermal
changes in the reservoir also cause some thermal stress changes in the reservoir, which
is not the case in the reservoir exploitation phase. Therefore, it is necessary to conduct a
systematic modelling study of the changes in the thermal-hydraulic-mechanical properties
of UGS due to repeated water intrusion and multiphase seepage rules during high-speed
injection production operations. The state-of-the-art thermal-hydro-mechanical (THM)
modelling provides a platform to analyse and investigate all these issues related to porous
UGS systems discussed above. THM models are typically derived from a wide range of
geological, geophysical, and engineering data, including field measurements, core tests,
well logs, drilling, and production data. After calibration, these THM models can be used
for ground surface subsidence, thermal stress changes, maximum safe storage capacity,
and maximum threshold pressure, avoiding fault reactivation and maintaining caprock
integrity [10–12].

This modelling case study is a THM assessment of a former depleted gas reservoir
field from the Molasse Basin in South Germany and has been presented in [10]. This
dynamic modelling study addresses the following issues related to short-term and long-
term operations of UGS: (1) the storage capacity of the reservoir; (2) thermal analysis
with changing temperatures of the reservoir due to the injection of gas; (3) potential fault
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reactivation analysis; and (4) stress path changes due to changes in pore pressure because
of short-term production/injection cycles. These types of THM models, particularly short-
term scheduled models, have implications for PtG technology in which simulations help us
to understand that excess power from renewable resources can be stored in underground
gas storage reservoirs and vice versa.

2. Methodology

2.1. Hydraulic Model

The flow simulation accounts for multiphase fluid flow in porous media. A hydraulic
model is usually conducted by reservoir simulation, i.e., a form of numerical modelling
in which physical phenomena are quantified and interpreted throughout the history of
a reservoir and beyond, with the ability to extend this model to future performances.
Reservoir simulation is a proven and effective method for dealing with uncertainties
during exploration and production [13]. It is also helpful to determine the amount of
gas that can be stored in each underground gas (CO2, hydrogen, or methane) storage
reservoir [13]. The physical phenomenon behind (fluid flow) reservoir simulations are
based mainly Darcy’s law and mass material balance [10].

The composition of the fluid can be treated in different ways in reservoir simulations.
Black oil simulators assume oil and gas phases to be one component through space and
time. The properties of this component can change with pressure and temperature, while
the composition does not change [13]. Thereby, the behaviour of the multiphase system
can be described by complex PVT (pressure, volume, temperature) and SCAL (special core
analysis) relations [13].

As a general solution method, the reservoir is divided into several cells with provided
petrophysical properties, such as porosity and permeability. Then, the wells are placed
within cells, and production rates are provided with different time steps. Last, the equations
are solved to determine the pressure, temperature, and saturation for each cell. Each cell is
solved simultaneously; therefore, the number of cells in the reservoir simulation is directly
related to the time required to solve a time step [13].

2.2. Thermal Model

The thermal-flow-stress simulation model considers the proportional heat transfer
in porous media when considering the multi-fluid flow concept in a THM simulation.
The thermal flow model is usually performed by numerical modelling, in which the
thermal hydraulic aspects are quantified together with the geomechanical simulation and
interpreted throughout the history of a reservoir and storage operations in underground
gas storage facilities. The main governing law in the thermal modelling is Fourier’s law,
also known as the law of heat conduction. The law states that the rate of heat transfer
through a material is proportional to the negative temperature gradient and to the area
at right angles to that gradient through which the heat flows. The governing equation of
Fourier’s law describes that the local heat flux density (qh) is equal to the product of the
thermal conductivity (kt) and the negative local temperature gradient (−∇T) [14]:

qh = −kt∇T, (1)

where qh is in (W/m2), kt is in (W/m. K), and ∇T is in (K/m). Fourier’s law can also be
used in uni-dimensional form in any direction, i, j, k; for that reason, the equation becomes:

qh = −kt
dT

d(i, j, k)
, (2)

2.3. Coupled Thermal-Hydraulic-Mechanical (THM) Modelling

The coupling of a reservoir simulator with a geomechanics module is an integral
component for analysing hydrocarbon reservoirs in petroleum, underground gas storage,
and the geothermal industry. A conventional geomechanical simulator provides surface
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subsidence, which is often estimated using a simple mechanical formula without knowing
the full geomechanical response. The only geomechanical parameter considered may be
the pore compressibility, which is not sufficient to reproduce the changes in pore volume
caused by complex pressure and temperature variations [15,16]. For some problems, such
as primary production and linear elastic responses of reservoirs, subsidence calculated by a
reservoir simulator alone can produce results comparable to coupled solutions [16,17].

In a coupled simulator, flow can be strongly influenced by the stress and strain
distributions that lead to changes in porosity and permeability, but effective stress changes
are ignored in conventional simulation methods. Such approaches cannot provide adequate
predictions when considering a stress-sensitive reservoir (e.g., underground gas storage
reservoir) [15,18]. There are two main components of coupling: volume coupling and fluid
flow coupling according to [15,17].

In volume coupling, the changes in pore volume occur in response to variations in
stress, pressure, and temperature. For convergence, the calculated pore volume changes
should be the same in both the fluid flow model and the geomechanical model. The pore
volume changes of the geomechanical model are usually more accurate than those of the
fluid flow model because they are calculated by volumetric strain via a more realistic
complex material constitutive model. This method is well suited to shear and plastic
deformation, which involve large changes in pore volume or porosity. These problems
are common in unconsolidated heavy oils and oil sands, North Sea chalk, Californian
diatomite, and possibly some other materials [15,17].

In case of fluid flow coupling, the changes in permeability and relative permeability
are related to the changes in stress, shear stress, and compaction. Material parameters,
such as permeability, relative permeability, compressibility, and others, change when
conditions encounter a shear fracture. This fact is important in some reservoirs where the
rock compressibility does not play a significant role in volumetric behaviour, such as gas
reservoirs where volume coupling is not important. Another example is cold water/fluid
injection, which leads to a thermally-induced decrease in horizontal stress until the injection
pressure increases the minimum horizontal stress [19].

To achieve the stress states of the reservoir and surrounding formations throughout
history, as well as during future gas storage operations, the fluid flow and the geomechan-
ical simulation must be coupled. The pore pressure controls the effective stresses and,
hence, deformation, in turn changing rock porosity and permeability, which again affect
fluid flow.

2.3.1. Effective Stress and Poroelasticity

The effective stress for incompressible rock and the concept of one-dimensional con-
solidation are the fundamentals of poroelasticity formulated by Terzaghi in 1923 [17].
Successively, using the basic principles of continuum mechanics and applying the con-
cept of the coupling of stress and pore pressure in a porous medium, Biot developed a
comprehensive three-dimensional theory of consolidation [17,20]. Biot’s theory and the
papers that he published are more aligned towards geomechanics than flow models, due to
which they are rarely compatible with the coupling of geomechanics and flow models. By
introducing the so-called Skempton pore pressure parameters (A and B), Skempton in 1954
procured a relationship between the total stress and the pore pressure under undrained
initial loading [17,21]. Later, however, the relationships among pore pressure, stress, and
volume and the concept of compressibility in a porous medium were better clarified by
Geerstma in 1957 [17,22]. Later, Van der Knaap (1959) extended Geerstma’s work to nonlin-
ear elastic geomaterials only for dense and uncemented sands [17,23]. By applying Biot’s
theory, Geerstma in 1966 examined subsidence problems in oil fields and published proto-
type geomechanical modelling, which is probably the first-ever coupled analysis of fluid
flow [17,20]. Nur and Byerlee (1971) demonstrated that the effective stress law proposed by
Biot is far more general and precise than that proposed by Terzaghi [17,24]. Nevertheless,
there are certain limitations (one-dimensional analysis, neglect of the compressibility of
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fluids and rocks, etc.) that Terzaghi recognized in the assumptions that he made in the 1920s
to solve problems of applied rock mechanics in clay consolidation [17]. Later in the 1970s,
there were further developments on coupled flow stress issues; e.g., fluid compressibility
was introduced into the classical soil mechanical consolidation theory of Ghaboussi and
Wilson [17,25]. Rice and Cleary (1976) showed how poroelasticity problems could be solved
using pore pressure and stress as primary variables, instead of the displacements used by
Biot [17,26].

2.3.2. Simulation Concept and Governing Equations

The numerical modelling of an underground gas reservoir can contribute to the
understanding of the interaction mechanisms between the injected gas and the deformation
of the reservoir. The injection of cold foreign gas into the reservoir leads to thermal and
mechanical disequilibrium in the reservoir by altering the transport properties, including
porosity and permeability. A three-dimensional THM coupling model of a reservoir is
created by incorporating the mechanical equilibrium equation, the fluid flow or seepage
equation (Darcy equation), the heat transfer equation (Fourier equation) of the formation’s
rock matrix, and the THM stress equation. These equations are based on the porosity,
permeability, thermal diffusivity, and other physical and mechanical parameters of the
sandstone formation [27].

The mechanical equilibrium equation can be expressed as follows [27]:

Si,j,j + fi = 0, (3)

where, Si,j,j is the total stress tensor (N/m2), and fi is the body force (N/m3). The equation
of the continuity of the fluid flow in the rock can be written as [27]:

∂ρl
∂t

+
∂(ρlrvr)

r∂r
+

∂(ρlvθ)

r∂θ
+

∂(ρlw)

∂z
= 0, (4)

In this equation vr, vθ , and w are the Darcy velocities (m/s) along the radial, hoop, and
well-depth directions, respectively, in the porous reservoir. The relationship between stress
and porosity/permeability changes in porous rock can be described with the following
equations [27,28],

φ = φr + (φ0 − φr)exp(e.SM), (5)

k = k0 exp(c.(
φ

φ0
− 1)), (6)

In the above equations, SM denotes mean effective stress; φ0 and k0 are the porosity
and permeability at zero stress, respectively; φr represents the residual porosity at high
stress; and the exponents e and c are determined experimentally.

The heat transfer process and the total energy conservation can be express by rewriting
the Fourier equation [29]:

(ρc)t
∂T
∂t

− 1
r

∂

∂r
(ktr

∂T
∂t

)− 1
r2

∂

∂θ
(kt

∂T
∂θ

)− ∂

∂z
(kt

∂T
∂z

)− qtr = 0, (7)

(ρc)t = (1 − φ)csρs + φc f ρ f , (8)

ktotal = φk f + (1 − φ)ks, (9)

In the above equations, the total heat capacity of the solid and fluid phases is denoted
by (pc)t in units (J/(m3.◦C)); ktotal is the total thermal conductivity (J/(m.s.◦C)); qt is the
intensity of the internal heat source (J/(m3.s)); cs and cf are the specific heat capacities of the
formation and the fluid, respectively (J/kg.K); ρs and ρ f are the density of the formation
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and the fluid (Kg/m3), respectively; and ks and k f are the thermal conductivity of the
formation and the fluid (W/(m·K)), respectively [29].

Finally, the governing equation involving all important thermal-hydro-mechanical
parameters is as follows [30]:

2α
(1 − 2ν)

1 + ν
∇2 p + 6βKB

(1 − 2ν)

1 + ν
∇2T −∇. f − 3

(1 − ν)

1 + ν
∇2Sm(total) = 0, (10)

where Sm(total) is the mean total stress (MPa), ν is the Poisson’s ratio of the rock mass, α is
the Biot coefficient, β is the coefficient of linear thermal expansion (1/◦C), and KB is the bulk
modulus of the rock (MPa). The term (2α

(1−2ν)
1+ν ∇2 p) describes the effect of poroelastic stress;

(6βKB
(1−2ν)

1+ν ∇2T) represents thermalelastic stress; and the term (∇. f − 3 (1−ν)
1+ν ∇2Sm(total))

shows the body force [30].

2.4. ECLIPSETM_VISAGETM THM Modelling

The THM modelling is performed using two commercial software packages, referred
to here as the ECLIPSE™-VISAGE™ coupling. ECLIPSE™ is a conventional reservoir
simulator used as the flow simulator for the multiphase flow processes. In the following
study, the ECLIPSE™ 100 finite difference black oil simulator is used for the flow calcula-
tions. VISAGE™ is one of the most advanced and comprehensive stress analysis simulators
commercially available. It is designed for applications in which nonlinear mechanics play
a greater role, for example, in disciplines such as rock mechanics and geomechanics. It
is flexible and can also be used in many other scientific disciplines, e.g., fluid mechanics,
heat transfer, materials science, etc. The system provides high computational power and
sophisticated modelling for many analytical situations, which currently include mining,
civil engineering, reservoir engineering, and geothermal energy.

The advanced and comprehensive finite element code (VISAGE™) has been cou-
pled with the ECLIPSE™ reservoir simulator to include geomechanical processes in this
modelling study. Fluid flow is first calculated in ECLIPSE™, and the results are then
transferred from ECLIPSE™ to VISAGE™ via the ECL2VIS interface for specified time
steps. Updates of porosity and permeability can be calculated via constitutive relations,
e.g., Kozeny–Carman.

The coupled THM models are based on three fundamental laws, namely Hooke’s law
of elasticity, Fourier’s law of heat conduction, and Darcy’s law of fluid flow in porous
media. The governing equations are discussed above.

One-way coupling is usually sufficient for THM modelling of gas reservoirs, as gas
compressibility dominates the bulk rock compressibility, and the mass balance is mainly
controlled by gas pressure rather than by the stresses of solid rock [31]. The THM-coupled
model presented in this paper is a one-way coupled model. With this approach, pressure
data are transferred from the reservoir simulator (fluid flow simulator) ECLIPSE™ to
the mechanical finite element simulator (geomechanical simulator) VISAGE™ at regular
and/or critical times. The fluid pressure drives the geomechanics, but mechanically induced
changes in porosity and permeability are not fed back into the dynamic reservoir simulation.
It is therefore assumed that permeability and porosity are the same for each time step in the
modelling and are not influenced by changes in stresses or ageing effects of the reservoir.
This type of approach is feasible in this case study due to the high permeability of up to
80 mD, which is characteristic of the reservoir.

3. Case Study

The presented modelling study is a working example of how to set up and populate a
3D coupled thermal-hydraulic-mechanical model of an underground gas storage site. The
case study reservoir is a depleted gas reservoir located about 65 km east of Munich in the
Central Molasse Basin. It is an anticlinal structural trap bounded by a normal fault. The
reservoir formation is mainly Early Cenozoic Chattian sand, with 85-m thick, three gas-
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bearing layers, found at a depth of 1770 m (1200 m below sea level). The initial gas-water
contact is at 1239 m below sea level (BSL). The reservoir has produced 528 million m3 of
gas over 18 years from 1958 till 1976; replenishment started in 1978 and has continued to
the present, and the reservoir has not been in operation to date [10]. The modelling study
uses pore pressure development during the production history and subsequent shut-in
phase to calibrate the dynamic reservoir fluid model.

The 3D MEM model is built using a hydraulic model (green area in Figure 1), which
comprises a high-resolution reservoir section and regions of lower resolution away from
the reservoir section, called the sideburden, overburden, and underburden sections. Topog-
raphy is extracted from the elevation maps of the ground level to include the top surface of
the model. The horizons bounding the reservoir are used to make overburden layers and
underburden layers. The basal unit of the model comprises crystalline basement rocks at a
depth of about 5 km. However, as none of the wells has reached this depth, this information
is inferred from regional geological knowledge. The final 3D THM model consists of
12 horizons and 11 lithostratigraphic units with dimensions of about 30 × 24 × 5 km3 in
the X, Y, and Z directions, respectively. The grid of the THM with the reservoir model em-
bedded is shown in Figure 1. The higher resolution in the area of interest (reservoir) and the
lower resolution outside make up a grid that creates balance between simulation precision
and computational demand. The initial pore pressures and elastic properties are upscaled
and interpolated from the 1D MEM’s. The calculated and calibrated log-derived properties,
including pore pressure, Young’s modulus, Poisson’s ratio, and density, are upscaled from
the well locations to the entire model domain. The Kriging interpolation method is used to
populate the 3D geomechanical model. The precision is of course decreasing away from
the wells, but the model fits well with overall trends.

Figure 1. Reservoir model proper embedded in 3D geomechanical model with reservoir, overburden,
underburden, and sideburden zones: (a) is the top view, and (b) is the oblique view, the arrows
represent north direction [10].

Further details regarding the model setup, population of the model from 1D MEMs,
history match, etc., are explained in our previous publication [10]. The starting point of the
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further modelling study in the following sections is the state after the replenishment phase,
achieved by a history match of the production and pressure data from the production and
subsequent shut-in phases, respectively.

4. Modelling

4.1. Modelling Scenarios

The following section describes the dynamic fluid flow models setup for future sce-
nario testing cases designed for short-term (weekly) gas storage operations. The pressure
profile of different future testing scenarios can be coupled with and incorporated into the
THM model. The concept for these scenario tests is to evaluate geomechanical stresses on
the reservoir due to pressure changes with intensive injection/production cycles. There
are various models with different short-term cases that have been considered. German
data for excess electricity throughout 2017 have also been considered in one case to address
the issues of renewable energy aspects. This case implies that the excess of power energy
(electricity) in Germany can be stored in underground gas storage with the power-to-gas
(PtG) concept, and then the stored gas can be reused for power generation (gas-to-power)
when needed. All the cases are summarized in Table 1. The starting pressure point of
these future scenario testing cases is the end point pressure of the replenishment phase,
i.e., ~15.8 MPa.

Table 1. All modelling scenarios with input parameters. WBHP is well bottom hole pressure, WGIR
is well gas injection rate, and WGPR is well gas production rate.

Modelling
Scenarios

Subdivisions Input Parameters

WBHP
upper limit

(MPa)

WBHP
lower limit

(MPa)
WGIR

(m3/day)
WGPR

(m3/day)

Short-term
(weekly)

cases

Case A
(with

water-cut
5 m3/day)

With
three wells

(two vertical
wells,

one horizontal
well)

18.8 13.8 100,000 100,000

Case B
(without
limited

water-cut)

With
three wells

(two vertical
wells and

one horizontal
well)

18.8 13.8 100,000 100,000

Real-
world
cases

Case C
(with

water-cut
5 m3/day)

With one well 18.8 13.8 100,000 100,000

Case D
(without
limited

water-cut)
With one well 18.8 13.8 100,000 100,000

Short-term scenario cases represent weekly storage operations. The scenario scheme
has been designed to compensate for the excess power produced in a season and to store
power-to-gas energy into same underground gas storage. A short-term cycle consists of
phases of one week of injection, one week of shut in, two weeks of production, and one week
of shut (1wkInj-1wkShut-2wkProd-1wkShut) for one year. During the injection week, gas
is injected into the reservoir, which builds up field pressure (but again limited by 18.8 MPa,
the upper limit of WBHP); then, one week of shut in maintains the pressure, followed by a
two-week production phase to withdraw gas, which drops the field pressure (lower limit
constraint to 13.8 MPa), and again a shut in phase to maintain the well bore pressure.
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4.2. Case A

There are three wells considered for this scenario: two wells are vertical wells (X2
and X6), and one is a horizontal well (H1). All the wells have been considered to have
the same short-term weekly schedule as discussed above. This case comprises the same
schedule as discussed above, but the well water production rate (WWPR) is limited to
5 m3/day to take into consideration the economic aspects of operating the gas storage.
The commercial storage industry limits the water production rates to minimize operating
costs and enhance economic returns. Therefore, this aspect has also been considered in
this case study. The gas rate for injection and production both is 100,000 m3/day. Bottom
hole pressure is constrained by an upper limit of 18.8 MPa and a lower limit of 13.8 MPa in
cases of injection and production, respectively. The water cut-off is again 5 m3/day in the
production phase to limit the production of water from each well.

The FPR profile for this case is shown in Figure 2. The progressive oscillation cycles of
FPR are injection (upward) and production (downward) phases. The overall upward trend
of FPR from its initial pressure of ~15.39 MPa represents the buildup pressure with each
passing schedule cycle.

Figure 2. Field pressure (FPR) profiles of all three wells (X2, X6, and H1) with schedule 1wkInj-
1wkShut-2wkProd-1wkShut for one year.

The upward trend of FPR throughout the schedule year is due to the well water
production rate (WWPR) (Figure 3d), and as a result, the field pressure is not stabilized
in such a short time span. To maintain material balance in this scenario, the injection rate
should be lowered to the actual production rates of each cycle.

The comparison of the properties of all three wells is summarized in Figure 3. The
WBHP of X6 reaches the maximum limit of 18.8 MPa at the end of each injection cycle
and drops back to ~15 MPa at the end of the production phase. The WBHP of X2 also
shows similar behaviour but at a lower pressure; e.g., it varies between 16 MPa and 17 MPa
at the end of each injection phase and drops back to the same level of ~15 MPa. The
WBHP behaviour of H1 is however different from that of both X2 and X6. It reaches a
maximum value of 16 MPa at the peak injection time and drops to the lowest level of
~14 MPa (Figure 3a). The WGPR behaviour of all three wells is similar with respect to
linear increases with each increasing cycle. However, the rates are completely different for
each well. The WGPR of well X2 ranges within ~10,000–11,000 m3/day during the initial
cycles but reaches up to 18,000 m3/day at the end of the schedule. Contrarily, the WGPR
of well X6 ranges within ~5000–6000 m3/day during the initial cycles but reaches up to
~9000 m3/day at the last cycle. An entirely different behaviour of WGPR is exhibited by
well H1, showing ~50 m3/day during the initial cycles but reaching up to ~1100 m3/day at
the end of the schedule year (Figure 3b).
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Figure 3. Well properties comparison of the three-well case scenario with the short-term schedule
1wkInj-1wkShut-2wkProd-1wkShut for one year. X2 and X6 are vertical wells, and H1 is the horizontal
well: (a) well bottom hole pressure (WBHP) of all wells; (b) production gas rates (WGPRs) for all
three wells; (c) injection gas rates (WGIRs) for all three wells and; (d) well water production rate
(WWPR) for all the wells.

The WGIR profile of each well is completely different from the profile of the WGPR;
the WGIR of well H1 shows the highest WGIR rates among other vertical wells (X2 and X6).
The WGIR of H1 reaches to the maximum rate of 100,000 m3/day. The WGIR of well X2
and X6 reach a maximum of 40,000 m3/day and 50,000 m3/day, respectively (Figure 3c).

The comparison shows that the horizontal well allows more gas injection and less gas
production than the vertical wells and vice versa.

Results

The modelling results of this case are presented in the form of pore pressure and
effective stress changes of the top layer of the reservoir. Two-time steps have been selected
for the analyses of changes in pore pressure and effective stresses acting on the reservoir.
Time step t1 (16 December 2020) represents the lowest pressure during the production
phase of the schedule cycle, and t2 (23 December 2020) indicates the maximum injection
pressure. The fluctuations in pore pressure and effective stress on the reservoir during t1
and t2 are the main results of this model.

Figure 4 shows the locations of three wells, which are denoted by H1, X2, and X6.
The pore pressures at t1 and t2 for the well H1 are ~15.0 MPa and ~15.3 MPa, respectively,
whereas the effective stress values are ~29.3 MPa at t1 and about 29.0 MPa at t2. There is a
difference of about ~0.3 MPa for both pore pressure and effective stress from t1 to t2.

The vertical wells X2 and X6 are close to each other; therefore, the differences in the
change in pore pressure and effective stress at these well locations are negligible. The values
of pore pressure at both well locations at t1 and t2 are about 15.4 MPa and ~15.7 MPa,
respectively. The effective stresses at t1 and t2 are ~28.5 and ~28.2 MPa, respectively, at
both well locations. There is an increase in pore pressure of ~0.3 MPa from t1 to t2 and a
decrease in effective stress of about 0.3 MPa.
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Figure 4. Pore pressure (Pp) and effective stress (Se f f ec) changes from t1 (16 December 2020) to t2
(23 December 2020) in the short-term case with three wells (X2, X6, and H1) with a water cut-off rate
of 5 m3/day. The arrows show the location of maximum observed fluctuations in Pp and Se f f ec from
t1 to t2. The color scale is in MPa. (a) is pore pressure at time t1; (b) is pore pressure at time t2; (c) is
effective stress at time t1; (d) is effective stress at time t2.

4.3. Case B

Three wells are considered for this scenario, two of which are vertical wells (X2 and
X6), and one is a horizontal well (H1). All wells are assumed to have the same short-
term weekly schedule as described above. WGIR and WGPR both have same value of
100,000 m3/day; however, they are constrained by the upper limit of BHP of 18.8 MPa and
the lower limit of BHP of 13.8 MPa in the cases of injection and production, respectively.

The FPR profile for this case is shown in Figure 5. The progressive oscillation cycles of
the FPR are injection (upward) and production (downward) phases. The general trend of
the FPR remains within the limits of ~15.85 MPa and ~15.375 MPa during the injection and
production phases, respectively.

The comparison of the properties of all three wells is summarized in Figure 6. The
WBHP of X6 reaches the maximum limit of 18.8 MPa at the end of each injection cycle and
falls back to ~13.8 MPa at the end of the production phase. The WBHP of X2 also shows
almost similar behaviour. However, the WBHP behaviour of H1 is different from both X2
and X6. It reaches a maximum value of 17.4 MPa at peak injection time and drops to the
lowest level of ~13.8 MPa (Figure 6a). The WGPR behaviour of all three wells is similar
in terms of linear increase with each increasing cycle. However, the rates are completely
different for each well. The WGPR of well X2 is ~12,000–16,000 m3/day during the initial
cycles but reaches up to 24,000 m3/day at the end of the schedule. In contrast, the WGPR
of well X6 varies between 14,000 and 15,000 m3/day during the initial cycles and reaches
up to 22,000 m3/day at the end of the last schedule cycle. The WGPR of well H1 is entirely
different from the other two wells because it shows ~400–500 m3/day during the initial
cycles but reaches up to ~70,000 m3/day at the end of the schedule year (Figure 6b).
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Figure 5. Field pressure (FPR) profile of all three wells (X2, X6, and H1) with schedule 1wkInj-
1wkShut-2wkProd-1wkShut for 1 year.

Figure 6. Well properties comparison of the three-well case scenario with short-term schedule 1wkInj-
1wkShut-2wkProd-1wkShut 1 year. X2 and X6 are vertical wells, and H1 is the horizontal well:
(a) well bottom hole pressure (WBHP) of all wells; (b) production gas rate (WGPR) for all three wells;
(c) injection gas rate (WGIR) for all three wells and; (d) well water production rate (WWPR) for all
the wells.

The WGIR profile of each well is completely different from the WGPR profile; the
WGIR of well H1 shows the highest WGIR among the other vertical wells (X2 and X6).
The WGIR of well H1 reaches the maximum value of 100,000 m3/day. The WGIRs of
wells X2 and X6 reach maximum values of 44,000 m3/day and 45,000 m3/day, respectively
(Figure 6c). The comparison shows that the horizontal wells allow for higher WGIR and
WGPR than the vertical wells under the same WBHP conditions.

The WWPR of well X2 allows a maximum rate of 5 m3/day throughout schedule
year, and the WWPR of well X6 also remain constant over the schedule year with a rate of
10 m3/day, while the WWPR of well H1 remains higher, within the range of 250 m3/day
to 310 m3/day (Figure 6d).
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4.3.1. Results

The modelling results of this case are presented in the form of pore pressure and
effective stress changes of the top layer of the reservoir. Two time steps with the greatest
fluctuations in pore pressure have been selected. Time step t1 (9 December 2020) corre-
sponds to the lowest pore pressure point, and t2 (23 December 2020) corresponds to the
highest pore pressure point of the schedule cycle. The fluctuation in pore pressure and the
effective stress on the reservoir during time t1 and t2 are the main results of this model.

Figure 7 shows the locations of three wells, which are denoted by H1, X2, and X6.
These three wells are the operating wells for this scenario. The main changes in pore
pressure, along with the effective stress, occur around these wells. The pore pressures at
t1 and t2 for well H1 are ~15.5 MPa and ~15.4 MPa, respectively, whereas the effective
stress values are ~29.1 MPa at t1 and about ~28.7 MPa at t2. There is a difference of about
~0.4 MPa for both pore pressure and effective stress at t1 and t2.

 

Figure 7. Pore pressure (Pp) and effective stress (Se f f ec) changes from t1 (9 December 2020) to t2
(23 December 2020) in the short-term case with three wells (X2, X6, and H1) without a water cut-off
rate of 5 m3/day. The arrows show the location of maximum observed changes in Pp and Se f f ec from
t1 to t2. The color scale is in MPa. (a) is pore pressure at time t1; (b) is pore pressure at time t2; (c) is
effective stress at time t1; (d) is effective stress at time t2.

4.3.2. Real World Cases

The excess of electricity produced [32,33] in Germany could be stored in underground
gas storage by converting the power energy into gas (Power-to-Gas). PtG is a process of
generation of a gas with high energy density through the electrolysis of water. The first
intermediate product is power-to-hydrogen, which can be converted into synthetic methane
gas power-to-methane in a subsequent methanation process that requires injection of CO2.
In this way, the same seasonal underground gas storage can also be used as a battery for
excess energy in a calendar year. Figure 8 shows Germany’s data on excess electricity
produced in calendar year 2017. It can be seen from the data that, during the summertime
(from March till August), electricity produced from renewable sources, such as wind and
solar, increases enormously. The combined wind energy (onshore and offshore) shows high
variation during the first and fourth quarters of the year, meaning this high variation of
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electricity production from renewable sources can be stored (power-to-gas) and reused
(gas-to-power) in cases of excesses and shortages of electricity, respectively.

 

Figure 8. Data show the consumption of total electricity in Germany, along with electricity produced
from renewable energy sources (such as wind, either offshore or onshore, and solar) in calendar year
2017 [32,33].

These scenarios have been performed on well X6. The schedule is based on the data
shown in Figure 8. The baseline of 10 GW is the shut-in period. Greater than the 10-GW
baseline is considered to have an excess of electricity that can be used as injection periods
for power-to-gas storage, and less than the limit of 10 GW is a shortage of electricity. These
periods have been considered for the production of gas for gas-to-power conversion. These
data [32,33] on excess electricity from Germany have been used to conduct two short-term
real world case schedule cases: one with limited water cut-off and one without limited
water cut-off.

4.4. Case C

This scenario has been performed on vertical well X6. The schedule timeline of one
year has been adopted from Figure 8. The well water production rate (WWPR) is restricted
to 5 m3/day (Figure 9c). The FPR eventually increases in this case to up to 15.72 MPa with
slight variations during the gas production cycles. Gas injection succeeds to maintain the
pressure, and it increases from ~15.39 MPa and reaches approximately ~15.72 MPa at the
end of the one-year period (Figure 9a). The variability in WBHP is directly proportional
to the gas production cycles. As shown in Figure 9a, as the gas production increases, the
well bottom-hole pressure decreases even as the gas injection continues. The maximum
WBHP reaches a value of 18.8 MPa, the minimum WBHP reaches a value of 14.4 MPa, and
these maximum and minimum pressure values represent injection and production cycles
(Figure 9b). The well gas injection rate (WGIR) varies during the year, having a minimum
injection rate of approximately 32,000 m3/day and a maximum rate of about 66,000 m3/day.
In contrast, the well gas production rate (WGPR) has minimum and maximum values of
4300 m3/day and 19,000 m3/day, respectively (Figure 9d). The lower WGPR compared
to the WGIR is due to the limited WWPR, which does not allow the well to produce at a
higher WGPR.
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Figure 9. The fluctuation in electricity produced in Germany from renewable sources in 2017 is
modelled into a future scenario testing case with limited water cut-off (5 m3/day). The excess of
energy can be stored in UGS and can be used when needed. This schedule is helpful to understand
in which month of the year energy can be stored as gas in UGS and in which month of the year this
energy can be utilized when shortage occurs: (a) field pressure (FPR) profile for these cycles; (b) well
bottom hole pressure (WBHP) of well X6; (c) well water production rate (WWPR) for well X6; and
(d) well gas injection rate (WGIR) and well gas production rate (WGPR) for well X6.

Results

The modelling results of this case are presented in the form of the pore pressure and
effective stress changes in the top layer of the reservoir. Two time steps have been selected
for the conclusion of the results for this model. Time step t1 is the starting point of the
schedule case, i.e., 1 January 2020, and t2 is the end schedule point (31 December 2020).
The pore pressure at the well X6 location is about 15.2 MPa at t1 and increases to about
15.8 MPa at t2; simultaneously, the effective stresses at well X6 is about 28.6 MPa, and it
decreases to about 28.0 MPa at time steps t1 and t2 (Figure 10). There is an increase of
0.6 MPa in pore pressure and decrease of 0.6 MPa in effective stress at the top surface of
the reservoir layer near well X6 from t1 to t2.

Figure 10. Cont.
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Figure 10. Pore pressure (Pp) and effective stress (Se f f ec) changes from t1 (1 January 2020) to t2
(31 December 2020) in the short-term case with one well (X6) with a water cut-off rate of 5 m3/day
and a random schedule. The arrows show the location of the maximum observed fluctuation in Pp

and Se f f ec from t1 to t2. The color scale is in MPa. (a) is pore pressure at time t1; (b) is pore pressure
at time t2; (c) is effective stress at time t1; (d) is effective stress at time t2.

4.5. Case D

This scenario has been performed on vertical well X6. The schedule timeline of one
year has been adopted from Figure 8. There was no water cut-off rate limit set in this
scenario; hence, the maximum water production rate (WWPR) increases up to 43 m3/day
and remains less than 20 m3/day throughout the production and injection period of one
year, respectively (Figure 11c). The FPR is sustained in this case by gas injection and
increases to up to a maximum value of 15.62 MPa with slight variation during the gas
production cycles in the one-year period (Figure 11a). The alteration in WBHP is directly
proportional to the gas production cycles without a water cut-off limit. As shown in
Figure 11b, the WBHP reaches a maximum value of 18.8 MPa and a minimum value of
approximately 13.8 MPa. The well gas injection rate (WGIR) varies during the year, having
a minimum injection rate of approximately 32,000 m3/day and a maximum rate of about
60,000 m3/day, whereas the well gas production rate (WGPR) has minimum and maximum
values of 16,000 m3/day and 40,000 m3/day, respectively (Figure 11d).

Results

The modelling results of this case are presented in the form of pore pressure and
effective stress changes of the top layer of the reservoir. Two time steps have been selected
for the conclusion of the results for this model. Time step t1 is the starting point of the
schedule case, i.e., 1 January 20, and t2 is the end schedule point (31 December 2020). The
pore pressure at the well X6 location is about 15.1 MPa at t1 and increases to about 15.7 MPa
at t2, whereas the effective stress at well X6 is about 28.7 MPa, and it decreases to about
28.1 MPa at time steps t1 and t2. There is an increase of 0.6 MPa in pore pressure and a
decrease of 0.6 MPa in effective stress at the top layer of the reservoir around well X6 from
t1 to t2 (Figure 12).
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Figure 11. The fluctuation of electricity produced in German from renewable sources in 2017 is
modelled into a future scenario testing case without limited water cut-off. The excess of energy can
be stored in UGS reservoirs and can be used when needed. This schedule is helpful to understand
which month of the year’s energy can be stored as gas in UGS and in which month of the year this
energy can be utilized when shortages occur: (a) field pressure (FPR) profile for these cycles; (b) well
bottom hole pressure (WBHP) of well X6; (c) well water production rate (WWPR) for well X6; and
(d) injection (WGIR) and production (WGPR) gas rates for well X6.

 

Figure 12. Pore pressure (Pp) and effective stress (Se f f ec) changes from t1 (1 January 2020) to t2
(31 December 2020) in short-term case with one well (X6) without a water cut-off rate of 5 m3/day
with a random schedule. The arrows show the location of the maximum observed fluctuation in Pp

and Se f f ec from t1 to t2. The color scale is in MPa. (a) is pore pressure at time t1; (b) is pore pressure
at time t2; (c) is effective stress at time t1; (d) is effective stress at time t2.
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The summary of all the results is compiled in Table 2 to have better understanding of
pore pressure and effective stress changes of all future testing cases with time (t1 to t2).

Table 2. Summary of results for all future test scenarios. The sign + in the pore pressure changes
indicates a positive change or an increase in pore pressure from time step t1 to t2, while the sign—in
the changes in effective stresses denotes a decrease in magnitudes of effective stresses for time step t1
to t2. These two quantities are inversely proportional to each other and are expressed in MPa and
KPa for a better understanding of the changes.

Modelling
Scenarios

Subdivisions Results

Pore pressure
changes

ΔPp

Effective stress
changes
ΔSe f f ec

Short-term
(weekly) cases

Case A
With three wells

(two vertical wells,
one horizontal well)

+0.3 MPa
+300 KPa

−0.3 MPa
−300 KPa

Case B
With three wells

(two vertical wells,
one horizontal well)

+0.4 MPa
+400 KPa

−0.4 MPa
−400 KPa

Real-world cases
Case C With one well +0.6 MPa

+600 KPa
−0.6 MPa
−600 KPa

Case D With one well +0.6 MPa
+600 KPa

−0.6 MPa
−600 KPa

5. Thermal Analysis

The same dynamic model has been used for thermal analyses. Since long-term injection
would impact the thermal changes in the reservoir significantly, a long-term seasonal case is
used to analyse the temperature changes within the reservoir if a foreign gas is injected into
it. Therefore, six months of gas injection and six months of gas withdrawal are considered
in this modelling case. The initial reservoir temperature is ~45 ◦C, and the foreign gas
temperature is 25 ◦C. Two cycles have been considered to analyse the temperature changes
during these injection/production operations. Gas is injected into the reservoir for the first
half year and produced in the second half of the year. Two wells, X2 and X6, are considered
to analyse the temperature changes around the well bore vicinity. The bottom hole pressure
(WBHP) for both wells is set to an upper limit of 18.8 MPa and a lower limit of 13.8 MPa in
case of the injection and production phases, respectively. These pressure limits are set in
place to avoid fault reactivation or fracture-inducing phenomena during the injection phase,
as well as to avoid sand production or contraction of the reservoir during the production
phase. The WGIR and WGPR are set to 100,000 m3/day for both wells.

Thermal stresses are the stresses that occur due to the change in temperature in the
system, i.e., original temperature minus final temperature. If foreign gas is injected into
the underground gas reservoir, the temperature in the reservoir changes, which causes
thermal-related stress changes in the reservoir. The relationship of temperature changes
and thermal stress is expressed by the following equation [34]:

St = E ∗ αt(Tf − T0) = E ∗ αt(ΔT), (11)

In the above equation, St is thermal stress, E is the Young’s modulus, αt is the thermal
coefficient, Tf is the final temperature of the reservoir, T0 is the original temperature of the
reservoir, and ΔT is the temperature difference in the reservoir. Less ΔT causes less thermal
stress in the reservoir and vice versa.

The following section describes the results, i.e., temperature changes with injection
of colder foreign gas (25 ◦C) into the reservoir (i.e., about 45 ◦C) through space and time
with seasonal cyclic injection/production phases. The top view of the reservoir surface is
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shown in the figure at different time steps (Figure 13). Two injection/production cycles
with four-time steps have been selected to show thermal changes in the reservoir with
injection and production phases. Time step t1 (1 January 2020) is the pre-operational history
temperature of the reservoir at wells X2 and X6 (Figure 13a). Time step t2 (1 July 2020)
represents the end of the injection time of colder foreign gas (25 ◦C), which is injected for
the first half of 2020 (Figure 13b). Time step t3 (1 January 2021) is the end of the production
period of the cycle (Figure 13c), and t4 (1 July 2021) is again the end of injection phase of
the second cycle (Figure 13d).

 

Figure 13. Temperature changes around wells X2 and X6 by injecting colder foreign gas at different
time steps (t1, t2, t3, and t4). Time steps t1, t2, t3, and t4 correspond to 1 January 2020, 1 July 2020,
1 January 2021, and 1 July 2021, respectively. The arrows show the exact location of significant
temperature differences during injection/production phases. The colour scale is in ◦C, whereas the
arrows with N indicate a northward direction. (a) is temperature at time t1; (b) is temperature at time
t2; (c) is temperature at time t3; (d) is temperature at time t4.

The reservoir temperature is 45 ◦C at time step t1, which is the pre-operational tem-
perature. The temperature decreases to about 43 ◦C at well X6 and 42.5 ◦C at well X2 at
time step t2 after constant injection of colder gas (25 ◦C), with a well gas injection rate
(WGIR) of 100,000 m3/day for six months. The temperature increases to about 43.5 ◦C and
~43 ◦C at wells X6 and X2, respectively, at time step t3. There is only about a 0.5 ◦C increase
in temperature from t2 to t3. Temperatures at well X6 and X2 decrease to about 41.5 ◦C
and 42 ◦C, respectively, again in the second cycle of injection at t4. Thermal changes are
minor and occur only at the vicinity and around the well locations. The thermal effects
on the stress are not significant in the reservoir even after injection of 100,000 m3/day
of colder gas for about a half year. This outcome shows that the thermal changes in the
short-term cases are negligible for analysing the geomechanical stresses on the reservoir in
storage operations.

6. Potential Fault Reactivation Analyses

6.1. Model Setup

Fault reactivation is the possibility of failure in geomechanical assessment of the
reservoir, which can risk operational safety, cause micro seismicity within and around
reservoirs, and provide a leakage path for gas to escape. Fault reactivation occurs when
the shear stress acting on the fault planes exceeds the shear strength of the fault. The
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Mohr–Coulomb failure criterion relationship of pore pressure and the principal stresses of
this case study reservoir (lies in normal stress regime) are expressed by this equation [35]:

Pp =
1
α
[
1
2
(Sv + Shmin) +

1
2
(Sv − Shmin) cos 2θ − 1

2
(Sv − Shmin)

sin 2θ

μ
], (12)

where α is the Biot coefficient (assumed 1), Sv is the vertical and maximum principal stress,
Shmin is the minimum horizontal stress, θ is the angle between the dip line of the fault and
the Shmin direction, Pp is the critical pore pressure, and μ is the coefficient of friction.

These analyses include the calculation of the critical pore pressure with the aim
of observing possible differences in pore pressure required for fault reactivation. The
pore pressure derived from the history matching scenario is multiplied by a fixed factor
controlled by gas rates until fault reactivation occurs. The upper limit of the BHP is removed
to obtain a higher pore pressure. The factors used for this operation are 1.15, 1.25, and 1.5
(Figure 14). It is then possible to evaluate pressure changes in the reservoir required to
reactivate the fault, as well as the safe storage capacity of the reservoir.

 

Figure 14. Pressure profiles for the history matching scenario and scenarios multiplied by fixed
factors (Pp , Pp X 1.15, Pp X 1.25, and Pp X 1.5) controlled by gas injection rates until fault
reactivation occurs.

Figure 14 shows different pressure profiles based on distinct gas injection scenarios.
The Pp (history match pressure) curve exhibits a maximum value of ~16.2 MPa with
gas injected at a rate of 100,000 m3/day for one year, whereas to reach a pressure value
1.15 times the actual history match pressure case, 175,000 m3/day of gas are injected for
1 year. The pressure increased up to 18.6 MPa. In case Pp X 1.25, 240,000 m3/day is injected
to reach a pressure of about 20.25 MPa. Similarly, in case of Pp X 1.5, a gas volume of
560,000 m3/day is injected (for one year), which increases the pressure up to 24.3 MPa.

6.2. Results

The results of this section are based on the model setup explained in the above section.
The methodology follows the different cases in which the initial reservoir pore pressure
is multiplied by a factor of 1, 1.15, 1.25, and 1.5, corresponding to pore pressure values of
~16.2 MPa, ~18.6 MPa, ~20.25 MPa and ~24.3 MPa, respectively. The results display the
oblique view of the topmost layer of the reservoir (Figure 15). The Mohr circles correspond
to the well X6 location near the main fault (Figure 15). Two time steps have been considered
for all the cases: t1 (1 January 2020) is the starting time step, and t2 (1 January 2021) is the
end time step of the schedule year.
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Figure 15. The computation of fault reactivation for initial pore pressure multiplied by a factor of
1 (a), 1.15 (b), 1.25 (c), and 1.5 (d) is shown on the left side. White boxes show the cells with stress
states exceeding the failure criterion (arrows show northward direction). On the right side of the
figure are the shear stress Ss vs. normal stress Sn diagrams, showing the Mohr–Coulomb failure
criterion at the well X6 location (which is nearest the main fault of the reservoir). Time steps t1 and
t2 correspond to the starting (1 January 2020) and final (1 January 2021) time steps of the tested
cases, respectively. The increase in pore pressure leads to a decrease in effective stresses, causing the
corresponding Mohr circle to shift to the left. If the failure line is finally touched, plastic straining
and—in case of a fault zone—fault reactivation occur.

Fault reactivation is observed already at Pp X 1.25 (~20.25 MPa) (Figure 15b), at which
the corresponding Mohr circle has just touched the tensile failure line. The amount of
failure in the cells becomes more prominent as pore pressure increases to greater than the
pore pressure factor of 1.25 (i.e., Pp X 1.5), and it causes the corresponding Mohr circles to
move further left (Figure 15c,d). The increase in pore pressure causes decreases in effective
stress, causing the Mohr circles to move to the tensile failure line. Thereafter, the material
enters the plastic regime; therefore, in case of failure, fault reactivation occurs.
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6.3. Safe Injection Rate for Safe Storage Capacity

The pore pressures for fault reactivation for the different scenarios calculated in the
numerical modelling analysis provide an estimate of the pressure at different injection rates.
The injection rate (in terms of volume rate) to achieve a perfect history match (16.2 MPa)
is about 100,000 m3/day, and fault reactivation is already observed at Pp times 1.25, i.e.,
about 20.25 MPa at an injection rate of 240,000 m3/day. With the determination of the
critical pore pressure, it is also possible to derive an upper limit for the injection rate to
be selected for injection processes. By considering the highest safety margin, the injection
rate between 100,000 m3/day and 150,000 m3/day would be the considered safe injection
rate for safe storage for the case study reservoir. A gas injection rate greater than this
threshold value can have a significant impact on the risk management and operational
setup of underground gas storage.

6.4. Storage Capacity of Power-to-Gas and Gas-to-Power

Regarding the storage capacity of power-to-gas technologies, the case study reservoir
can store 881,600 kWh/d up to maximum of 1,322,400 kWh/d of power from renewable or
other resources with respect to the conversion of a natural gas volume of 100,000 m3/day
to a maximum of 150,000 m3/day, respectively. Power-to-gas and gas-to-power convertible
units are summarized in Table 3.

Table 3. Power-to-gas and gas-to-power convertible units.

m3 Natural Gas kWh Power

1 8.816
0.113 1

7. Discussions

7.1. Hydraulic Model

The results of the hydraulic model show variations in gas saturation at different
phases during short-term injection-production cycles. Figure 16 shows that the injection-
production cycle increases the gas saturation during the later cycles, as more gas is produced
with increasing cycles until convergence is reached. This outcome indicates the adoption of
high-speed multicycle injection-production in UGS with time. This characteristic of UGS
indicates the increase in gas-containing pore space with time and explains encroachment
of gas flow continuously into the ground water zone for production in the pore throat
development area, as the injection-production cycle increases. Meanwhile, under the
wetting function, the water film is concentrated in the small pore space compared to the
larger pore space; the storage space occupied by the formation of water and dead gas zones
is released by the gas execution. Further analysis of the data shows notable findings on the
correlation between the time and the amplitude of the gas saturation increase, as shown in
Figure 16.

During injection and production cycles, gas saturation increases from ~35% to ~50%
from the first cycle to the sixth cycle. Therefore, it appears that, during multi-cycle injection
and production in the pre-UGS gas zone, the pore gas storage space in reservoirs with
low permeability generally increases sharply, as evident from the correlation between low
permeability and high initial water saturation (according to [6]). Moreover, the higher the
relative quantity of liquid phase that is continuously transported and dried during high
velocity development, the greater the increase in gas saturation.
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Figure 16. Gas saturation (%) during injection-production cycles.

The gas injection production capacity tends to improve in the UGS gas zone when gas
production is increased during the injection production cycle. Further investigation of the
UGS gas zone shows that the degree of gas production also increases with the injection-
production cycle, but the degree of gas production varies according to the different physical
properties and connectivity of the pore spaces [6]. Strong seepage is observed in reservoirs
with high permeability, and the gas production and degree of gas recovery are also high
under the same injection-production conditions [6].

The gas saturation first decreases in the pre UGS phase and then increases significantly
during multi-cycle injection and production, showing the decrease in gas saturation and
gas storage space when the gas-drive water zone (gas-water zone, where gas saturation is
more dominant) is converted into gas storage. Due to the intrusion of lateral and bottom
water, part of the gas storage space is occupied by water during the slow exploitation
phase, and a capillary trap for the gas-containing space is also created. Further data show
that higher permeability causes water to penetrate, leading to an even greater reduction
in gas saturation. During the multi-cycle injection and production phase in UGS, there is
no water encroachment, or the part where water encroachment occurs is displaced in the
initial gas injection phase of gas storage into the gas-drive water zone. In contrast, under
the influence of high velocity injection and production cycle extraction, residual water is
produced that is like that in the gas zone before UGS [6]. The experimental analysis shows
that the gas-drive water zone is the main expansion zone of the UGS, as the storage space
and storage capacity are greatly increased in this gas-drive water zone [6].

The variation of gas saturation in the gas-drive water zone shows the same trends
compared to both the trend in the single core experiment and the trends of average gas
saturation in the parallel multicore experiment. However, in the multicore parallel experi-
ment, the reduction in gas saturation caused by water encroachment is relatively small [6].
The distinctive feature of reservoir heterogeneity, a formation with high permeability, has
a great impact on the water body as it promotes water intrusion, while formations with
medium and low permeability are less affected by water intrusion. During high veloc-
ity injection and production, the gas preferentially percolates into the high permeability
formation, resulting in gas saturation recovery in the high permeability reservoir.

The gas permeability of the reservoir may also decrease due to clay minerals in the
reservoir, which may expand when they encounter water, thereby occupying the pore space.
For this reason, gas production and gas content are relatively low in the first injection and
production cycle. Meanwhile, the gas recovery level and gas production level are low due
to lower vertical permeability [6]. Furthermore, gas production and injection increase with
increasing permeability.

The transition of the reservoir characteristic of the gas-water transition may indicate
that water intrusion is caused not only by exploitation of the gas field but also by the
gas storage cycle in the operational phase. In general, the gas saturation decreases both
in operational zones of the reservoir and in the gas-water zone. However, the effects of
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physical properties and heterogeneity, wettability, and capillary pressure of the reservoir
make the production mechanism of multicycle injection complex. The relationship between
gas and water in the gas-water transition zone tends to be rational, and the gas saturation
tends to plateau during multicycle injection production [6]. Alternatively, residual gas
and trapped gas are effectively reduced due to the back-and-forth movement of gas and
water through the gas-containing spaces, but the changes in gas saturation are small
throughout the reservoirs. Conversely, in high-speed injection and production, water is
still continuously transported into the pore throat for production, but in gas storage, the
main discharge concerns water in the large pore throat because it is difficult to displace
water in the micropores. For this reason, gas saturation tends to plateau in the gas-water
transition zone. Due to the reduction in water intrusion energy, gas saturation increases
slightly in the subsequent phases of injection and production operations.

These results show that low gas saturation and poor recovery are observed in the
gas-water transition zone of UGS and that effective exploitation of the gas-water transition
zone is affected by reservoir heterogeneity [6]. Therefore, the effective utilization of the
gas-containing pore space under the high-speed injection and production conditions of gas
storage is significantly different from the utilization of the gas reservoir. For that reason,
the optimal design of UGS capacity and calculation of gas storage parameters should be
founded on the effective utilization of the gas-containing pore space, as well as on the
effective pore space of the reservoir structure in different zones [6].

7.2. THM Coupled Modelling

The geomechanical approach presented in this paper allows for characterization,
from a geomechanical point of view, of the target reservoir in a very understandable
way. The coupled simulation of one-way flow and geomechanics (VISAGETM) focuses on
understanding the variation in effective stresses due to pressure changes associated with
gas injection into the subsurface reservoir. In other words, the focus is on the pore pressure
changes during operation. The VISAGETM model is created directly from the geological
model and can therefore be considered more accurate in terms of geometry compared to
another finite element model, such as an ANSYSTM model. The material properties in
the VISAGETM model are scaled up from borehole logs, and their population contains
information about the original vertical and horizontal variations. The VISAGETM simulator
treats faults as 3D cells with different material parameters in relation to the surrounding
rock. The output of the VISAGETM model is continuous through space, and the presence
of faults can be detected by an abrupt change in depth at the point of displacement, even
if the horizon is technically not present at that point. Therefore, VISAGETM is used for
ECLIPSETM-VISAGETM coupling to build a coupled THM model to achieve the desired
geomechanical results.

THM coupled modelling involves coupling of static geomechanical model with dy-
namic fluid (hydraulic) modelling. The geomechanical stresses of the reservoir change in
space and time when coupled with pore pressure, either from reservoir history or from
future testing scenarios. In general, these dynamic models are based on the concept of
effective stress to characterize the effects of pore pressure changes on reservoir and caprock
integrity, as well as fault stability. Simplified geomechanical models rely mainly on the con-
cept of effective stress to distinguish the effects of pore fluid changes on reservoir integrity
and fault stability. Terzaghi [36] proposed this effective stress concept for soil systems. The
result of the increase in pore fluid pressure is equal to the decreased effective stress on the
rock mass, and conversely, this concept implies that the effective stress experienced by the
rock framework is due to the changes in fluid pressure, with the absolute magnitudes of
the principal in situ stresses themselves remaining unaltered.

From a classical point of view from Terzaghi [36], changes in vertical stress can be
predicted as the effective vertical stress increases and decreases during withdrawal and
injection, while the reservoir stress path effect can clearly distinguish the changes in the
effective minimum horizontal stresses. As a result of the increased fluid pressure, the Mohr
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circle drifts to the left, in turn reducing the diameter of the circle, implying that the fault is
under a lower differential stress. The theoretical viewpoint consolidates only the concept of
effective stress, and the assumption can be made that the stress path during compression is
parallel to the failure envelope rather than towards it [2]. A steeper stress path during the
injection process is the result of a small Poisson’s ratio, a large Biot coefficient, a large shear
modulus, and a shallower reservoir, further causing drift away from the failure envelope.

At the case study reservoir, reactivation of the fault with increasing fluid pressure
would not be possible if the stress path could be assumed to be exactly linear to higher
fluid pressures. The magnitude of the stress path in the reservoir is an absolute criterion to
ensure that the faults are not tapered by pressurization or depressurization. Furthermore,
this linear extrapolation of the stress path is obviously only suitable for moderate fluid
pressure levels. During pressurization of the system, there are some points at which the
horizontal stress becomes the maximum principal stress instead of the vertical stress. This
outcome shows that, in the absence of stress path effects, the stress path changes and moves
towards the failure criterion.

One of the main aspects of the THM modelling results is the deformation within and
outside of the reservoir formation because of injection and withdrawal of fluid/gas in
reservoirs. Pressurization and depressurization cause deformations in both the reservoir
and the overburden, which are part of the effective results of geomechanical modelling.
During overpressure or underpressure, the elastic or non-elastic expansion or contraction
of the rock mass causes such deformations. The reactivation of faults and the integrity of
the rock may be affected by deformations within the reservoir. In addition, deformations
associated with reservoir depletion can also pose a serious problem in terms of casing
collapse and can become a major obstacle to subsequent drilling [37].

The main risks related to pressurization and depressurization of a field during injec-
tion and withdrawal periods, respectively, are fault reactivation and associated permeable
leakages. During gas injection and production phases, reactivation of the fault and asso-
ciated permeable pathways is one of the main risks associated with pressurization and
depressurization. The classical fault model would predict that, as the fault approaches
shear reactivation, there will be an increase in fluid pressure that would reduce the effective
normal stress on the fault. However, the stability of the fault is significantly affected by the
progression of reservoir stresses through the effects on horizontal stress magnitudes. As
discussed in the above section, the simulation results of the THM model predict decreases
in effective stresses but increases in pore pressure in various short-term storage cases. If
this difference in effective stresses and consequently in pore pressures is very small, no
significant stress perturbations would occur. However, if this difference is large, i.e., if the
pore pressure in the reservoir is large, then there is a high probability of fault reactivation
with increasing pore pressure, as described in the above regarding the various fault reac-
tivation cases. Fault reactivation occurs in the reservoir already at 1.25 times the initial
pore pressure of the reservoir, indicating that the Mohr circle reaches the failure line at
this pressure.

Distinguishing deformations above and at the surface of the reservoir is also important
for surface monitoring and for potential reactivation of faults in the reservoir section. These
deformations (either elastic or sometimes plastic) occur due to contraction and expansion
of the rock mass during over-pressuring and under-pressuring phases. Over- and under-
pressuring of reservoirs are directly related to large amounts of gas injection and production
rates, respectively. For this reason, the upper (18.8 MPa) and lower (13.8 MPa) limits of
bottom hole pressure (BHP) are considered, which do not allow the pressure to rise or drop
below the designated pressure limits. The deformation caused by this over-pressuring
and under-pressuring of reservoirs could initiate fault reactivation and may affect caprock
integrity. The significant drop in reservoir pressure due to rapid depletion may damage the
casing and induce drilling complications for newly planned wells in the reservoir [37].

This study does not include a sensitivity analysis to determine the stress field or
displacement of the ground surface when elastic properties vary. Due to the poor correlation
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between the mechanical properties of the rock and the porosity in the individual wells,
there can be considerable variation in the construction of the static geomechanical model,
which can affect the distribution of the mechanical properties, rather than the magnitudes.
In contrast, the successive calibration of the sonic logs and the mechanical tests themselves
appear to have close correlations, demonstrating their accuracy. However, it is possible that
the actual values for Poisson’s ratio and Young’s modulus may differ slightly from those
used in the modelling. There are several studies have already been performed on these
parameter studies and the effects of parameter variation on geomechanical stresses and
ground surface displacement [38]. Chen (2012) modelled the pressurization of a reservoir
at 600 m of depth by 1 MPa using Young’s modulus and Poisson’s ratio values close to our
case study reservoir. This modelling study suggests reducing the stiffness of the reservoir;
i.e., reducing the value of Young’s modulus from 5 GPa to 3 GPa, the vertical displacement
increases from 0.08 to 0.12 mm [38]. Similarly, a reduction in the Poisson ratio from 0.3
to 0.2 results in an increase in the ground surface displacement from 0.11 to 0.13 mm [38].
It should be borne in mind that the sensitivity of these parameters is highly dependent
on several different factors, including the depth and size of the reservoir, the stress field,
and the properties attributed to the surrounding formations [38]. However, the work
presented by Chen gives a rough idea of the types of variations that might be expected
from such modelling.

8. Conclusions

THM modelling provide important results for short term gas storage, e.g., conversion
of the former gas field to a storage site with short-term (weekly) injection-production
schedules. There have been three cases tested for future scenarios with short-term oper-
ations. German surplus energy data from renewable energy sources (such as wind and
solar energy) from 2017 have also been incorporated into these future testing cases to
implement PtG technology on former gas reservoirs to meet Germany’s future energy
demand. The operating volumes in these cases are controlled by the upper (18.8 MPa) and
lower limits (13.8 MPa) of well bottom hole pressure (WBHP). The results of the coupled
THM modelling of these cases show that the maximum difference in pore pressure and
subsequently effective stress is observed to be 0.6 MPa among all tested cases.

Fault reactivation analyses are performed on the THM models, which evaluate various
gas injection scenarios without any upper limit of WBHP. The quantified stresses are then
examined against Mohr–Coulomb failure criterion to estimate fault stability. This goal is
achieved by including faults with specific properties in the 3D geomechanical model. The
stress state of the 3D cells with fault properties exceeding the shear failure line is observed
against different gas injection volumes. Fault reactivation occurred at the gas injection rate
of 240,000 m3/day, yielding a value of critical pore pressure. This critical pore pressure
was observed to be 1.25 times the original pore pressure, which is equivalent to the WBHP
value of 20.25 MPa. With the determination of pore pressure, it is also possible to estimate
an upper limit of the gas injection rate for safe storage operation, which in this case study
is observed to be in the range between 100,000 and 150,000 m3/day.

In this study, the critical pore pressure is calculated at the well location, whereas
the reference location for further studies can be anywhere in the reservoir, and the high
permeability of the reservoir can reduce possible differences in the reference sites. Analysis
of the case study numerical modelling results shows that a 4-MPa increase in pore pressure
would be sufficient to trigger fault failure.

Thermal stresses depend merely upon the thermal-dynamic processes in the system.
Therefore, one case (seasonal) has been tested for thermal stress analysis using the same
THM model. The original reservoir temperature is 45 ◦C, and the injected gas temperature
is set at 25 ◦C. The thermal changes are small (0.5 ◦C) and occur only near and around
the wellbore. The thermal effects on stress are not significant in the reservoir, even after
injecting 100,000 m3/day of colder gas for about half a year. This outcome suggests that
the thermal changes in the short-term cases are negligible to be considered in the analysis
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of geomechanical stresses in the reservoir during storage operations. This finding is due to
the low operating volumes and short time cycles for injection production (weekly schedule)
in short-term cases.

In terms of storage capacity of PtG technologies, the case study storage can store up to
maximum of 1,322,400 kWh/d of electricity from renewable or other resources, converting
the maximum gas volume of 150,000 m3/day. This amount of energy storage can at least
contribute to Germany becoming a greenhouse gas neutral country (GHGND) in 2050,
corresponding to an energy demand of 1600 TWh of electricity.

The entire workflow outlined and tested in this study is not site specific but generally
applicable to any gas storage in a porous medium including methane, CO2, and hydrogen.

Perspectives

The modelling schemes described in this study provide a thermal-hydraulic-geome-
chanical assessment consistent with the observational data presently available. This THM
modelling study can be used to assess borehole stability, which can be achieved by analysing
the hydraulic and mechanical limits of the borehole walls. Another application of the model
can be a fully coupled model, in which geomechanical and hydraulic models are coupled
in such a way that both can receive and process the required parameters simultaneously
(explained in the last paragraph). This modelling study can also serve as a benchmark for
the use of UGS as a seasonal battery for PtG technologies. In this way, the excess energy
can be stored as gas in the UGS and later converted back into electricity when needed.

The rock properties of the reservoir have an important influence on the estimated
amount of subsidence. For future modelling, it would be useful to conduct detailed
rock mechanics experiments with representative samples from the deposits in the region.
It is important to have as much reliable data as possible on vertical elevation changes
in the region to test different hypotheses related to subsidence. Such data could come
from repeated surveys of existing first-order contour lines, GPS, or InSAR observations.
In addition, sensitivity analyses or parameter studies to determine the stress field or
displacement of the ground surface as elastic properties vary would be useful to understand
the reservoir behaviour in response to changes in, for example, Young’s modulus or
Poisson’s ratio.

THM modelling in this study uses a one-way coupling simulation approach. The
coupling between dynamic fluid flow and geomechanical simulation can improved by
adopting two-way or even fully coupled simulations. Such a simulation means that
not only the pore pressure is passed from the fluid flow model to the geomechanical
model, but also properties from the geomechanical model, such as porosity, permeability,
and rock compressibility, are passed back to the fluid flow model to obtain continuously
updated accurate modelling results. Two-way and fully coupled simulation approaches
would also be useful to analyse ageing effects in reservoirs due to long- and short-term
storage operations.
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Abstract: In the context of energy transformation, the importance of energy storage devices in
regional integrated energy systems (RIESs) is becoming increasingly prominent. To explore the
impact of energy storage devices on the design and operation of RIESs, this paper first establishes a
bi-level dynamic optimization model with the total system cost as the optimization objective. The
optimization model is used to optimize the design of three RIESs with different energy storage devices,
including System 1 without an energy storage device, System 2 with a thermal energy storage (TES)
device, and System 3 with TES and electrical energy storage (EES) devices. According to the design
and operation results, the impact of energy storage devices on the operational performance of RIESs is
analyzed. The results show that under the design conditions, energy storage devices can significantly
increase the capacity of the combined heating and power units and absorption chillers in System 2
and System 3 and reduce the capacity of the ground source heat pumps and gas boilers; the impact of
the TES device on System 3 is more significant. Affected by systems’ configuration, the operating cost,
carbon tax, and total cost of System 2 are reduced by 2.9%, 5.5%, and 1.5% compared with System
1, respectively. The EES device can more significantly reduce the operating cost of System 3, with a
reduced rate of 5.7% compared with that in System 1. However, the higher equipment cost makes
the total cost reduction rate of System 3 less than that of System 1, which is 1.75%. Similar to the
design conditions, under the operation conditions, the TES device can effectively reduce the carbon
tax, operating cost, and total cost of System 2, while System 3 with an EES device can significantly
reduce its operating cost regardless of whether the energy price changes or not. To some extent,
this study systematically elucidated the impact of TES and EES devices on the optimal design and
operation performance of RIESs and provided a certain reference for the configuration of energy
storage devices.

Keywords: regional integrated energy system; energy storage device; Bi-level dynamic optimization
model; optimal design; operational analysis

1. Introduction

In recent years, the sustainable development of energy has received extensive attention.
Regional integrated energy systems (RIESs) are expected to become an important way to
improve the energy structure and achieve sustainable energy development [1]. However,
the intermittency and volatility of renewable energy have brought certain challenges to the
stable operation of RIESs [2,3]. With the rapid development of energy storage technology,
the development of RIESs with hybrid energy storage has become the main way to solve
the volatility of renewable energy and alleviate the contradiction between supply and
demand [4,5].

To explore the performance of the integrated energy system with hybrid energy
storage, the studies shown in Table 1 have conducted in-depth research on RIESs from
aspects of system structure, operation strategy, and optimization model. Different from the
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traditional energy system, the RIES involves the deep coupling of multiple heterogeneous
energy sources. The modeling idea of the Energy Hub (EH) proposed by Geidl et al. [6] was
used to describe the relationship between energy conversion and conservation. However,
this modeling idea is not conducive to the RIES’s extension and matrix representation in the
model. To improve the model portability, an EH modeling method based on graph theory
was proposed [7]. Based on this modeling idea, Ma et al. [8] adopted the static equipment
model to establish the coupling system optimization model with the total system cost as
the optimization objective. User-side energy saving and load management are also one of
the main ways to reduce the total cost of RIESs [9–11]. To make full use of the flexibility
of loads, Liu et al. [12] established a coupling system optimization model considering the
comprehensive demand response. At the same time, this model is also used to explore the
impact of energy storage devices on the design and operation of a RIES [13]. The static
system optimization model cannot reflect the off-design characteristics of the equipment.
To address the issue, a dynamic system optimization model, considering the off-design
characteristics of the equipment, was established [14]. On this basis, Mansouri et al. [15]
established a dynamic multi-objective optimization model and used it to optimize the
design of a RIES with power-gas (P-G) technology. The results showed that the gas storage
device could effectively improve the utilization of renewable energy. Unfortunately, none
of the above optimization models realizes the decoupling of design and operation.

To achieve the decoupling of design and operation, Mago et al. proposed the following
electric load (FEL), following thermal load (FTL), and following hybrid electric-heating
load (FHL) strategies according to the role of the combined heating and power (CHP) unit
in RIESs [16,17]. Based on the above strategies, Kang et al. [18] explored the operational per-
formance of a RIES under different loads. Wang et al. [19] investigated the impact of energy
storage characteristics on the system optimization results based on the system optimization
model with the total system cost as the optimization objective. To take the economic,
energy-saving, and environmental performance of systems into account, a weighted multi-
objective optimization model was established for the optimal design of RIESs [20]. Based
on the weighted multi-objective optimization model, Zeng et al. [21,22] used the static and
dynamic equipment models to optimize the coupling systems of CCHP and ground source
heat pump(GSHP), respectively. However, the value of weight is often subjective. Thus, a
multi-objective optimization model with the optimization objectives of cost-saving rate,
primary energy saving rate, and CO2 emission reduction rate was proposed for the optimal
design of a RIES [23]. Zhai et al. [24,25] used this model to explore the impact of building
types on the operational performance of RIESs. Different types of building loads have
certain complementary characteristics. For this reason, Li et al. [26] explored the impact of
loads’ complementary characteristics on optimization results and operational performance
of a RIES. The research showed that the complementary characteristics of loads could
reduce the capacity of energy storage devices to a certain extent. In addition, the equipment
model and operation strategy also have a certain impact on the optimization results of
RIESs. Therefore, Deng et al. [27] established a dynamic multi-objective optimization model
based on the dynamic equipment model. Han et al. [28] used a dynamic multi-objective
optimization model to optimize the design of a RIES with hybrid, compressed air energy
storage. To improve the operational performance of RIESs, an improved FEL strategy was
used in the optimal design of a RIES [29]. Compared with the traditional FEL strategy, the
improved operation strategy could effectively reduce the energy consumption, operating
cost, and CO2 emission of the RIES. At the same time, the adaptive operation strategy,
based on user load, was proposed successively to improve the operational performance of
RIESs [30]. However, the relatively fixed operation strategy could not realize the flexible
scheduling of RIESs. Hence, Luo et al. [31] adopted the decision tree method to formulate
the operation strategy of RIESs. Nonetheless, machine learning greatly relies on building
historical load data. To avoid this problem and achieve the flexible scheduling of RIESs, a
bi-level optimization model was proposed where the upper-level optimization model is
used to determine the optimal configuration of systems, and the lower-level optimization
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model is used to realize the flexible scheduling of systems [32]. Based on the bi-level
optimization model, Luo et al. [33] optimized the standalone renewable energy system with
the total system cost as the optimization objective. Energy storage devices can improve the
penetration rate of renewable energy. Li et al. [34] used the bi-level optimization model
to optimize the design of an electricity-hydrogen RIES. Ma et al. [35] used this model to
explore the impact of shared energy storage on the renewable energy utilization rate and
operating cost of RIESs. Although the bi-level optimization model has been widely used
in the optimization design and operation analysis of the integrated energy system with
energy storage devices, few studies have systematically explored the effects of different
energy storage devices on the optimal design and operational performance of the system
by the bi-level dynamic optimization model.

Table 1. Literature review of the integrated energy system with energy storage.

Ref.
Renewable

Energy
Energy Storage

Device
Operation
Strategy

Equipment Model
System Optimization

Model

[8] Solar and
wind energy EES, TES / Static model Coupled single objective

optimization

[13] Wind energy EES, TES / Static model Coupled single objective
optimization

[14] Solar and
wind energy EES, TES, Fuel cell / Dynamic model Coupled single objective

optimization

[15] Wind energy EES, HES / Dynamic model Coupled multi-objective
optimization

[18] Geothermal energy / FEL
FTL Static model Weak decoupling single

objective optimization

[21] Geothermal energy TES FEL
FTL Static model Weak decoupling weighted

multi-objective optimization

[22] Geothermal energy TES FEL
FTL Dynamic model Weak decoupling weighted

multi-objective optimization

[24] Solar energy TES FEL
FTL Static model Weakly decoupled

multi-objective optimization

[25] Solar energy
Geothermal energy

EES
TES

FEL
FTL
FHL

Static model Weakly decoupled
multi-objective optimization

[27] Geothermal energy TES FEL
FTL

Dynamic
model

Weakly decoupled
multi-objective optimization

[30] Solar, wind and
geothermal energy

EES
TES FSF Dynamic

model
Weakly decoupled

multi-objective optimization

[31] Solar energy EES
TES Dynamic strategy Dynamic

model
Weakly decoupled

multi-objective optimization

[34] Solar, wind and
geothermal energy

EES, hydrogen
storage FOF Static model Bi-level optimization model

[35] Solar and
wind energy SES FOF Static model Bi-level optimization model

Different energy storage devices can realize the time-series transfer of different en-
ergies. To explore the impact of energy storage devices on the design and operation of
RIESs, this paper optimizes three RIESs with different energy storage devices and compares
their operational performance according to a public building load in Changsha. The main
contributions of this paper are as follows: (1) A bi-level dynamic optimization model is
established based on the dynamic equipment model; (2) Three RIESs with different energy
storage devices are optimally designed; (3) According to the optimization results, the oper-
ational performance of three RIESs with different energy storage devices is compared. The
remainder of this study is organized as follows: Part II is the introduction and equipment
modeling of RIESs with different energy storage devices; Part III is the establishment of the
bi-level system optimization model; Part IV presents the impact of different energy storage
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devices on the optimal design and operational performance of the integrated energy system
based on the case results; and the conclusions of this work are drawn in Part V.

2. Modeling of RIESs

2.1. Basic structure of RIESs

RIESs can not only realize efficient energy conversion but also gratify the cooling,
heating, and electricity needs of users simultaneously. In the RIES shown in Figure 1, the
input energy mainly comes from grid electricity, municipal gas, and regional renewable
energy (such as solar and geothermal energy). Energy conversion equipment is used to
realize the conversion of input energy to output energy, mainly including the transformer,
photovoltaic (PV) arrays, CHP unit, gas boiler, GSHP, and absorption chiller (ABC). There-
fore, the power, heating, and cooling hubs are introduced in the modeling idea of EH to
realize the collection and distribution of different energies and ensure the balance of the
supply and demand for energy. In addition, to explore the influence of energy storage
devices on the optimal design and operational performance of RIESs, three RIESs with
different energy storage devices are considered, and their energy storage configurations
are shown in Table 2.

Figure 1. The basic structure of RIESs.

Table 2. Three RIESs with different energy storage devices.

System Name TES Device EES Device

System 1 � �

System 2 � �

System 3 � �

2.2. Equipment Mathematical Model
2.2.1. Energy Conversion Device

The equipment model is the basis of system design and operation optimization. In the
RIES shown in Figure 1, the PV arrays are one of the effective ways to utilize solar energy,
and its power generation is usually affected by the ambient temperature, solar irradiation
intensity, and power generation efficiency. Compared with PV arrays, the CHP unit can not
only generate electricity, but also the waste heat can be used to meet the cooling and heating
needs of buildings. Other than that, the rest of the building’s cooling and heating loads
are met by the GSHP and gas boiler. When constructing mathematical models for the CHP
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unit and cooling and heating equipment, relevant studies generally adopt the black-box
model based on energy efficiency. The model is usually divided into two types: the static
equipment model and the dynamic equipment model. The static model assumes that the
operating efficiency of the equipment is constant. The dynamic equipment model considers
the influence of equipment partial load rate on its efficiency. To accurately describe the
operation performance of the equipment, the dynamic equipment model will be established
in this paper, and the specific expressions for different equipment dynamic models are
shown in Table 3.

Table 3. Equipment dynamic model.

Items Mathematical Models Ref.

PV Ppv(t) = Apv·ηpv·I(t)·(1 − 0.005 × (ta(t)− 25)),
ηpv = 0.165. [36]

CHP unit

Pchp,e = Fchp·ηchp.e, Pchp,h = Fchp·
(

1 − ηchp,e − ηloss

)
ηchp,e =

{
0 PLRchp < 0.2

a0 + a1·PLRchp + a2·PLR2
chp PLRchp ≥ 0.2

PLRchp = Echp/Echp,r, a0 = 0.1, a1 = 0.4, a2= −0.2.

[37]

GB

Pgb = Ggb ∗ ηgb,
PLR = Pout

gb /Pout
gb,r , PLF = ηgb/ηgb,r,

ηgb,r = 0.9, PLFgb = −0.046PLRgb + 1.046,
0.1 ≤ PLRgb ≤ 1.

[38]

GSHP

Pgshp = Egshp ∗ COPgshp,
PLRgshp = Pgshp/Pgshp,r , PLFgshp = COPgshp/COPgshp,r,

COPgshp,r = 4.5,

PLFgshp = PLRgshp/
(
−0.2137PLR2

gshp + 1.119PLRgshp + 0.1007
)

,
0.1 ≤ PLRgshp ≤ 1.

[38]

ABC

Pabc,c = Pabc,h ∗ ηabc,
PLRabc = Pabc/Pabc,r , PLF = ηabc/ηabc,r,

ηabc,r = 0.9,
PLFabc = PLRabc/

(
0.75PLR2

abc + 0.0195PLRabc + 0.213
)
,

0.2 ≤ PLRabc ≤ 1.

[39]

2.2.2. Energy Storage Devices

On the basis of System 1, this paper investigates the impact of energy storage devices
on the optimization and operation of RIESs by sequentially configuring TES and EES
devices in System 2 and System 3. Different from the energy conversion equipment, the
source-load duality of energy storage devices allows it to achieve the time-series transfer of
energy to meet the supply-demand balance of RIESs. Therefore, the mathematical model of
energy storage devices can be expressed by the charging and discharging state and power,
and its specific expression is shown as follows [40]:

Sk(t + 1) = Sk(t) +
(

Pch,k(t)ηch,k −
Pdis,k(t)

ηdis,k

)
Δt (1)

where Sk(t + 1) and Sk(t) are the energies stored in energy storage device k at time t + 1
and t, respectively; ηch,k and ηdis,k are the charging and discharging efficiency of energy
storage device k; and Pch,k(t) and Pdis,k(t) are the charging and discharging powers of
energy storage device k at time t.

3. Bi-Level Optimization Model

Energy storage devices not only affect the optimal design of RIESs but also affect their
operational performance. To explore the impact of energy storage devices on the optimal
design and operation of RIESs, a bi-level dynamic optimization model is established in this
paper. In this model, the upper-level optimized configuration model takes the system’s total
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cost as the optimization objective to determine the equipment capacity of RIESs. The lower-
level optimal scheduling model takes the operating cost as the optimization objective to
determine the reasonable scheduling scheme. To facilitate the understanding of the solution
process of this model, the optimization process is drawn in Figure 2. Firstly, based on the
outdoor design parameters, the design and operating loads of the building are calculated
by Energy Plus. Secondly, the constraints of the upper-level and lower-level optimization
models are established according to the design loads and the EH model. Among them, the
main constraints of the upper-level optimized configuration model include the maximum
equipment capacity and the design load in winter. And the constraints of the lower-level
scheduling model include energy conservation and equipment operating power. Finally,
the design load, outdoor parameters, and economic parameters are imported into the
bi-level optimization model for solving to obtain the equipment capacity of three RIESs.
With the equipment capacity known, this paper uses the lower-level scheduling model to
optimize the operation of three RIESs and analyzes the impact of energy storage devices on
their operational performance.

 

Figure 2. Flow chart of system optimization configuration and operation analysis.

3.1. Upper-Level Optimal Configuration Model
3.1.1. Optimization Objective

To determine the equipment capacity of the three RIESs, this paper optimizes them
with the minimum total cost as the optimization objective. In this study, the total cost
mainly includes the system equipment cost, operating cost, and carbon tax. The specific
calculation expressions are shown below:

min Ctotal = Cequ + Ctax + Cop (2)

where Ctotal is the total cost; Cequ is the equipment cost; Ctax is the carbon tax; and Cop is
the operating cost, the values can be obtained from the lower-level scheduling model.

The system equipment cost mainly includes the initial investment and equipment
maintenance cost. The initial investment in equipment depends on its capacity and the
initial unit investment. The initial unit investment in the RIESs, showed Figure 1, is listed
in Table 4. Under the condition that the initial unit investment of equipment is known,
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the initial investment of RIESs on the design day can be determined by the following
formula [41].

Cinv =
k

∑
k=1

(
i(1 + i)n

(1 + i)n − 1
·Capk·Ck)/365 (3)

where i is the annual interest rate, which is 0.08 in this paper; n is the planning period,
which is 20 years; Capk is the design capacity of the equipment k; and Ck is the initial unit
investment in the equipment k. As the initial investment in the system’s equipment is
known, the maintenance cost of the system’s equipment can be estimated at 2% of its initial
investment [42].

Table 4. The initial unit investment in equipment Reproduced from [43,44].

Equipment Name Unit Price Equipment Name Unit Price

PV 2315 (CNY/m2) CHP unit 6812 (CNY/kW)
Boiler 790 (CNY/kW) GSHP 2782 (CNY/kW)
ABC 1436 (CNY/kW) TES device 358 (CNY/kW)

EES device 1794 (CNY/kW)

In the context of peak carbon dioxide emissions and carbon neutrality, carbon tax
compensation has become an effective means to limit greenhouse gas emissions. In the
RIESs shown in Figure 1, CO2 emissions mainly come from grid power and gas, so the
carbon tax cost can be calculated by the following formula.

Ctax = ϑtax

24

∑
t=1

(
Pgrid(t)·λCO2,grid + Pgas(t)·λCO2,gas

)
(4)

where ϑtax is the carbon tax price; λCO2,grid and λCO2,gas are the equivalent CO2 emissions
of coal power and gas, which are 0.968 kg/kWh and 0.220 kg/kWh, respectively [45]; and
Pgrid(t) and Pgas(t) are the consumption of grid power and gas at time t, which can be
obtained from the lower-level scheduling model.

3.1.2. Optimization Variables and Constraints

In the upper-level optimization model, the optimization variable is the capacity of
the candidate equipment. Considering the equipment installation conditions and building
loads, its optimization variables must satisfy the following constraints.

0 ≤ Capk ≤ Capmax
k (5)

where Capmax
k is the maximum design capacity of equipment k, whose value is usually the

maximum value of the corresponding load.
In addition, this study uses the design-daily load in summer as the design parameter.

To gratify the load demand in winter, the maximum heat production capacity of the system
must be greater than the maximal heating load.

Pmax
gshp,h + Pmax

chp,h + Pmax
gb,h ≥ Lmax

user,h (6)

where Pmax
gshp,h is the maximum heat production of the GSHP; Pmax

chp,h is the maximum heat
production of the CHP unit; Pmax

gb,h is the maximum heat production of the gas boiler; and
Lmax

user,h is the maximum heating load in winter.
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3.2. Lower-Level Optimal Scheduling Model
3.2.1. Optimization Objective

To achieve flexible scheduling, the minimum operating cost is used as the optimization
objective to optimize the operation of three RIESs. The operating cost mainly comes from
the electricity and gas costs, whose values can be determined by the following formula:

minCop =
24

∑
t=1

(
Pgrid(t)·ϑgrid(t) + Pgas(t)·ϑgas

)
(7)

where ϑgrid is the time-of-use (TOU) electricity price; and ϑgas is the gas price.

3.2.2. Optimization Variables and Constraints

In the lower-level optimization model, the main optimization variable is the operating
power of the equipment. The operating power should not only gratify the capacity con-
straints of the upper-level equipment but also meet the supply-demand balance constraints
of the EH.

1. Equipment operating power constraints

(1) Energy conversion equipment

The operating power of the energy conversion equipment is both restricted by the
capacity of the upper-level equipment and affected by the start-up and shutdown of the
equipment. Therefore, the operating power is a semi-continuous variable whose range is
shown in the following formula:{

0 PLRk < PLRmin
k

Pmin
k ≤ Pk ≤ Pmax

k PLRk ≥ PLRmin
k

(8)

where PLRk is the part-load ratio of equipment k; PLRmin
k is the minimum part-load ratio

for the start-up of equipment k; and Pmin
k and Pmax

k are the minimum and maximum output
power of equipment k in the operating state.

(2) Energy storage equipment

Different from energy conversion equipment, energy storage devices should not
only gratify the charging and discharging power constraints but also the charging and
discharging state constraints, which are specifically expressed as follows:

0 ≤ Pch,k(t) ≤ uk·γmax
ch,k ·Sk (9)

0 ≤ Pdis,k(t) ≤ (1 − uk)·γmax
dis,k·Sk (10)

αmin
k ·Sk ≤ Sk(t) ≤ αmax

k ·Sk (11)

where uk is a variable of 0 or 1, which is introduced to ensure that the charging process
and discharging process will not happen simultaneously; γmax

ch,k and γmax
dis,k are the maximum

charging and discharging ratios of energy storage device k; αmin
k and αmax

k are the minimum
and the maximum energy storage ratios of energy storage device k, respectively; and Sk is
the capacity of energy storage device k.

2. Energy balance constraint

During the operation of RIESs, the EH is only used for energy collection and distri-
bution. Therefore, the three energy hubs must maintain a balance between supply and
demand, with the balance constraint shown below.

Pgrid(t) + Pchp,e(t) + Ppv(t) + Pdis,ees(t) = Luser,e(t) + Pgshp,e(t) + Pch,ees(t) (12)

Pgshp,c(t) + Pabc,c(t) = Luser,c(t) (13)
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Pchp,h(t) + Pgb(t) + Pdis.tes(t) = Luser,h(t) + Pabc,h(t) + Pch.tes(t) (14)

where Pgshp,e is the electricity consumption of GSHP; Pgshp,c is the cooling power of GSHP;
Pabc,c is the cooling power of ABC; Pabc,h is the heat consumption of ABC; and Pgb is the
heat production of the gas boiler.

3.3. Model Solving

The solution methods of the bi-level optimization model usually include classical math-
ematical programming theory and the combination of intelligent optimization algorithms
and classical mathematical programming theory [46,47]. In this study, the lower-level
scheduling model takes into account the off-design characteristics of the equipment, which
makes the lower-level scheduling model non-convex and nonlinear, and thus makes it
difficult for classical mathematical programming theory to solve the bi-level dynamic opti-
mization model. Therefore, this study will adopt the method of combining an intelligent
optimization algorithm and classical mathematical programming theory to solve it, in
which the upper-level optimization model is solved by a genetic algorithm. However,
the calculation of the upper-level optimization objective often depends on the solution
of the lower-level model. To realize the fast and accurate solution of the lower-level op-
timization model, this paper performs piecewise linearization on the performance curve
of the equipment and calls Gurobi’s non-convex solver to solve it to obtain the minimum
operating cost and operating energy consumption. The lower-level optimization model
transfers the optimization results to the upper-level optimization model to calculate the
total cost of the system, while the upper-level optimization model transfers the optimized
equipment capacity to the lower optimization model to constrain its scheduling. After
repeated iterations, the optimal configuration and scheduling schemes of three RIESs can
be obtained. Figure 3 shows the flow chart of the bi-level dynamic optimization model.

 

Figure 3. Solution flow chart of the bi-level optimization model.

4. Case Study

This paper takes a public building in Changsha as an example to explore the impact
of energy storage equipment on the optimal design and operation results of RIESs. The
building consists of two parts, the main building and the podium building, of which the
main building has twelve floors, and the podium building has five floors, covering a total
area of 2500 m2. Considering the energy-saving requirements of the building, its envelope
adopts the standard building envelope structure in hot-summer and cold-winter climates.
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4.1. System Design Parameters

In the process of the optimization of RIESs, outdoor meteorological parameters and
design load are the basis of system optimization design. Therefore, through relevant
literature, this paper determines the outdoor design temperature of air conditioning in
Changsha and the average water temperature of the Xiangjiang River, whose values are
shown in Table 5. Unlike the heat load in winter, the cooling load calculation in summer
is usually transient. For this reason, this paper corrects the outdoor design temperature
of air conditioning in summer, and the hourly outdoor design temperatures and solar
radiation intensities obtained from the correction are shown in Figure 4a. Based on the
above design parameters, this paper uses Energy Plus to calculate the design load of the
building, and the result is shown in Figure 4b. On summer design days, the heating load is
mainly domestic hot water load, while the winter heating load includes air conditioning
heating load and domestic hot water load. When the design load is known, this paper
determines the equipment capacity optimization range, shown in Table 6, according to the
design load and equipment installation requirements.

Table 5. Air conditioning outdoor design temperature and groundwater temperature Reproduced
from [48,49].

Design Conditions Design Dry-Bulb Temperature Groundwater Temperature

Summer 36 °C 17 °C
Winter −1 °C 11 °C

  
(a) (b) 

Figure 4. Outdoor parameters and building load under design conditions: (a) Hourly outdoor design
temperature and solar radiation intensity in summer; (b) Cooling, heating, and electric load on the
design day.

Table 6. Optimization range of equipment capacity.

Equipment Name Symbol Unit Limitations

CHP unit Capchp kW [0,2000]
Boiler Capgb kW [0,1000]
GSHP Capgshp kW [0,2300]

TES device Captes kW·h [0,1000]
EES device Capees kW·h [0,1000]

PV Apv m2 [0,1500]

In addition, the energy price and carbon tax price are also indispensable input param-
eters for calculating the optimization objectives. For this reason, this paper determines the
energy and carbon tax prices shown in Table 7 according to relevant literature.

280



Energies 2023, 16, 2629

Table 7. Energy price and carbon tax Reproduced from [50–52].

Item Unit Price (CNY/kWh) Time Period Description

Gas 0.3275 – –

Electricity

1.224 20:00–23:00 Peak hours

0.911 9:00–12:00,
16:00–20:00 High hours

0.68 8:00–9:00, 12:00–16:00 Flat hours
0.306 0:00–8:00, 23:00–24:00 Valley hours

Carbon tax 0.3 (CNY/kgCO2) – –

4.2. System Optimization Results and Analysis
4.2.1. Optimization Results

Based on the above inputs, this paper takes the total cost as the optimization objective
and adopts the bi-level dynamic optimization model to optimize the design of three RIESs.
The equipment capacity obtained by optimization is shown in Table 8. Compared with
System 1, the TES device can significantly increase the capacity of the CHP unit and ABC in
System 2 and reduce the capacity of the GSHP and boiler. Identically to the TES device, the
EES device can also increase the capacity of the CHP unit and ABC in System 3. However,
the EES device has less impact on the capacity of energy conversion equipment than the
TES device.

Table 8. System equipment capacity.

System
Name

Capchp
(kW)

Capgb
(kW)

Capgshp
(kW)

Capabc
(kW)

Captes
(kW · h)

Capees
(kW · h)

Apv(
m2
)

System 1 1122 205 1780 520 0 0 1500
System 2 1265 0 1682 618 961 0 1500
System 3 1272 0 1678 622 947 926 1500

The difference in equipment capacity affects the equipment cost and operational per-
formance of RIESs. Figure 5 shows the equipment costs, carbon taxes, operating costs, and
total costs of the three systems under the design conditions. The difference in equipment
capacity makes the equipment cost of System 2 and System 3 larger than that of System 1,
with increasing rates of 5.7% and 17.8%, respectively. In comparison to the TES device, the
EES device will significantly increase the equipment cost of System 3. Different from the
equipment cost, the carbon tax, operating cost, and total cost of System 2 and System 3 are
all less than that of System 1. Compared with System 1, the carbon tax, operating cost, and
total cost of System 2 decreased by 5.5%, 2.9%, and 1.5%, respectively.The EES device can
significantly reduce the operating cost of System 3, with a reduction of 5.7% compared with
System 1. However, affected by the equipment cost, the total cost reduction rate of System
3 compared with System 1 is only 1.75%. It can be seen that under the design conditions,
the TES and EES devices can reduce the operating cost, carbon tax, and total cost of the
RIES to different degrees. However, the EES device has less impact on the carbon tax and
total cost of RIESs.
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Figure 5. Cost differences between the three systems.

4.2.2. Analysis of Results

The energy utilization cost directly affects the operational performance of RIESs. To
analyze the influence of energy storage devices on the operating cost, this paper first
calculates the electric load supply-demand relationship and the part-load ratio of the CHP
unit in System 1 under design operating conditions. As seen from Figure 6, during the
low tariff hours, the grid power consumption is larger than gas-fired generation, and the
CHP unit is at the minimum part-load ratio. However, the CHP unit is operating at full
load during other hours. This shows that the electricity cost from the grid is less than the
utilization cost of gas during the low tariff hours, while during other hours, the electricity
cost from the grid is greater than the utilization cost of gas.

Luser,e Pgshp,e Pgrid Pchp,e Ppv

Figure 6. Electric load supply−demand relationship and part-load rate of CHP unit in System 1.

On the premise that the difference in energy utilization cost is known, this paper
compares the scheduling process of System 1 and System 2 under the design conditions, as
displayed in Figure 7. Figure 7a depicts the cooling load supply-demand relationship of
the two systems. First, during the low tariff hours, the cooling load of the two systems is
gratified by the GSHP. During other hours, the cooling load is met by the GSHP and ABC.
However, the difference in equipment capacity makes the cooling power of the GSHP in
System 2 less than that in System 1. Secondly, as seen in Figure 8, the operating efficiency
of the GSHP in System 2 is greater than in System 1. The electric load of System 2 is less
than System 1 due to the higher operating efficiency and lower cooling power. As shown
in Figure 7b, the heating load of System 1 is gratified by the CHP unit and the gas boiler,
while the heating load of System 2 is gratified by the CHP unit under the action of the
TES device. This ensures the efficient use of gas while avoiding the use of the gas boiler in
System 2. When combined with the relationship between supply-demand of electric load
shown in Figure 7c, the larger capacity of the CHP unit can effectively reduce the power
purchased from the grid during other hours for System 2. Based on the above analysis, the
TES device can improve the overall energy efficiency of System 2 and reduce the electric
load. Moreover, it increases the power generation of the CHP unit and reduces the grid
power consumption, especially during other hours. Therefore, the carbon tax and operating
costs of System 2 are less than System 1.
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Pgshp,c Pabc,c Luser,c

Pgshp,c Pabc,c Luser,c

 
(a) 

Pchp,h Pgb Pdis,tes Luser,h Pabc,h Pch,tes

Pchp Pgb Pdis,tes Luser,h Pabc,h Pch,tes

 
(b) 

Pgrid Pchp,e Ppv Luser,e Pgshp,e

Egrid Echp Epv Luser,e Pgshp,e

 
(c) 

Figure 7. Scheduling process of System 1 and System 2 in design conditions: (a) Cooling load; (b)
Heating load; (c) Electric load.

Figure 8. The efficiency of GSHP in System 1 and System 2.
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To analyze the difference between the impact of the TES and EES devices on RIESs,
this paper compares the electric load supply-demand relationship in System 2 and System
3 under the design conditions, as illustrated in Figure 9. First, the smaller capacity of the
GSHP makes the electric load of System 3 less than that of System 2, while the larger CHP
unit increases the power generation of the CHP unit in System 3. However, the carbon
tax of System 3 is slightly less than that of System 2 due to the slight capacity difference
between the GSHP and CHP units between System 2 and System 3. Secondly, the EES
device can increase the grid power consumption during flat and valley hours and reduce
the grid power consumption during high and peak hours. The difference in grid power
consumption during different hours makes the operating cost of System 3 less than that of
System 2.

Pgrid Pchp,e Ppv Luser,e Pgshp,e

Pgrid Pchp,e Ppv Pdis,es Luser,e
Pgshp,e Pch,es 

Figure 9. Electricity scheduling process of system 2 and system 3.

4.3. System Operation Result and Analysis
4.3.1. Calculation of Operating Load

The purpose of optimization design is to improve the operational performance of
RIESs. To compare the operational performance of the three systems, the annual operating
load was calculated by Energy Plus based on the typical annual outdoor meteorological
parameters shown in Figure 10a, as shown in Figure 10b. In Changsha, which is hot in
summer and cold in winter, the cooling load of the building is much greater than the
heating load. Under summer operating conditions, the system cooling load is the building
cooling load, and the heating load is the domestic hot water load. However, under winter
operating conditions, the system heating load includes the building heating load and
domestic hot water load. In addition, since the design parameters are determined by the
method of non-guarantee days, the operating load may be greater than the design load
most of the time. However, to ensure the feasibility of operation optimization, this study
only considers days when the operating load is less than or equal to the design load.

 
(a) (b) 

Figure 10. Outdoor parameters and building load under the operating conditions: (a) Annual outdoor
meteorological parameters; (b) Building load under operating conditions.
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4.3.2. Operation Results

Based on the above operating loads, the carbon taxes, operating costs, and total costs
of the three systems are calculated under winter and summer operating conditions, and
the results are shown in Table 9. Under the summer operating conditions, the carbon tax,
operating cost, and total costs of System 2 and System 3 are less than those of System 1.
Compared with the carbon tax, operating cost, and total cost of System 1, the corresponding
costs in System 2 are reduced by 3.2%, 1.5%, and 0.3%, respectively. Different from System
2, since the carbon tax of System 3 is larger than that of System 2, the carbon tax reduction
rate of System 3 compared with System 1 is smaller, only 2.7%. However, the EES device
can significantly reduce the operating cost of System 3, which results in a 6.2% reduction in
the operating cost of System 3 compared to System 1. Affected by the difference in building
loads between winter and summer, the carbon taxes, operating costs, and total costs of
the three systems under winter operating conditions are less than those under summer
operating conditions. Under winter operating conditions, the carbon tax, operating cost,
and total cost reduction rates of System 2 compared with System 1 are greater, whose values
are 5.5%, 7.3%, and 2.8%, respectively. Similar to the summer operating conditions, System
3 can significantly reduce operating costs compared to System 2 but can also increase its
carbon tax. Therefore, under operating conditions, compared with System 1, the TES device
can significantly reduce the carbon tax, operating cost, and total cost of System 2, while the
EES device can reduce the operating cost of System 3 even more significantly.

Table 9. Costs of three systems under winter and summer operating conditions.

Operating
Condition

Summer Winter

Ctax (CNY) Cop (CNY) Ctotal (CNY) Ctax (CNY) Cop (CNY) Ctotal (CNY)

System 1 526,636 1,582,405 2,672,662 301,465 774,952 1,581,733
System 2 509,527 1,558,375 2,663,411 285,012 718,724 1,537,640
System 3 512,367 1,484,274 2,660,567 294,405 688,785 1,578,434

4.3.3. Operation Result Analysis

According to the analysis of the design condition results, the performance difference
of RIESs is mainly affected by energy consumption and the consumption of different types
of energy. To analyze the energy consumption of the three systems, this paper compares the
average operation efficiency of the GSHPs and CHP units under the operating conditions,
as shown in Figure 11. Firstly, under winter and summer operating conditions, the average
operation efficiency of the GSHP in System 1, System 2, and System 3 increases sequentially
due to the influence of energy storage devices. However, there is little difference between
the average operation efficiency of the GSHP in System 2 and System 3. Secondly, the
average operation efficiency of the CHP unit in System 2 is greater than in System 1 and
System 3, especially in winter operating conditions. This shows that the TES device can
significantly improve the operation efficiency of the GSHP and the CHP unit. In addition,
the average operation efficiency of the CHP unit in System 3 is greater than that in System 1
under summer operating conditions, while under winter operating conditions, the average
operating efficiency of the CHP unit in System 3 is approximately the same as that in
System 1. The higher the average operation efficiency of the GSHP and the CHP units,
the lower the energy consumption. Therefore, under the operating conditions, the energy
consumption of System 2 and System 3 is less than that of System 1.
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Figure 11. The average efficiency of GSHPs and CHP units under two operating conditions.

In the RIESs, carbon tax not only depends on the energy consumption of systems but
is also affected by the ratio of different energy consumptions. To this end, different power
consumption ratios of the three systems under winter and summer operating conditions are
counted in this paper, and the results are shown in Figure 12. Under summer and winter
operating conditions, the ratio of grid power consumption in System 1 is greater than that
of System 2 and System 3; hence the carbon tax of System 2 and System 3 is less than that
of System 1. Although there is a slight difference in the ratio of grid power consumption
between System 2 and System 3 under summer operating conditions, the average operation
efficiency of the CHP unit in System 3 is lower than that in System 2. Therefore, under
summer operating conditions, the carbon tax of System 3 is slightly larger than System
2. Different from the summer operating conditions, the grid power consumption ratio of
System 2 is significantly smaller than for System 3 under the winter operating conditions.
As a result, the carbon taxes of System 2 and System 3 are greater than that of System 1,
especially System 2.

 
Figure 12. Different power consumption ratios under two operating conditions.

The system’s operating cost is closely related to the TOU power price. To analyze
the operating cost difference between the three systems, this paper draws the power
consumption ratio of the three systems under TOU price hours, as shown in Figure 13.
Under the summer operating conditions, the grid power consumption ratios of System
2 and System 3 during high and peak hours are less than that of System 1, especially for
System 3, which accounts for only 22.12% during high and peak hours. Similar to the
summer operating conditions, the power consumption ratios of System 2 and System 3
during high and peak hours are less than that of System 1 under winter operating conditions.
However, under winter operating conditions, the difference in the grid power consumption
ratio between System 1 and System 2 is greater than that between System 2 and System 3
during high and peak hours. Therefore, under winter and summer operating conditions,
the operating costs of System 2 and System 3 are greater than that of System 1, and the
operating cost of System 3 is the lowest, especially under winter operating conditions.
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Figure 13. The ratio of grid power consumption under the TOU power price.

The above analysis shows that the carbon taxes and operating costs of System 2 and
System 3 are less than those of System 1 under winter and summer operating conditions
due to the impact of the average efficiency of the equipment, the ratio of different energy
consumptions, and the grid power consumption ratio under the TOU power price. The
smaller carbon tax and operating cost make the total cost of Systems 2 and System 3 less
than that of System 1. However, affected by the equipment cost, the total cost reduction
rate difference between System 2 and System 3 compared with System 1 is not so obvious.
In addition, under winter operating conditions, the total cost of System 3 is greater than
that of System 2 due to the lower operating cost difference between System 2 and System 3.

4.4. Uncertainty Analysis of Energy Price

In the actual operation process, the price of grid power and gas directly affected the
operation result of the system. To explore the impact of energy price uncertainty on system
operation results, this study increases or decreases the energy prices to ±30% in a 10%
step, based on the energy prices in the design conditions. The three systems are optimized
for operation according to different energy prices. Based on optimization results, the cost
reduction rates of System 2 and System 3 compared with System 1 are calculated, as shown
in Figure 14. In the case of changes in energy prices, the reduction rates of the carbon
tax, operating cost, and total cost of System 2 compared with System 1 are greater than
zero. Different from System 2, the operating cost reduction rate of System 3 compared
with System 1 is larger, while the carbon tax and total cost reduction rates are lower. Even
under partial energy prices, the carbon tax and total cost of System 3 are greater than they
are for System 1. Under different energy prices, the TES device can effectively reduce the
operating cost, carbon tax, and total cost of the RIES, while the EES device can significantly
reduce the system operating cost.

Ctax Cop Ctotal Ctax Cop Ctotal Ctax Cop Ctotal Ctax Cop Ctotal

(a) (b) 

Figure 14. Cost reduction rates of system 2 and system 3 compared with system 1 under changes in
electricity and gas prices: (a) Affected by changes in electricity prices; (b) Affected by changes in gas
prices.
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5. Conclusions

The purpose of this study is to explore the impact of energy storage devices on the
optimal design and operation of RIESs. For this purpose, a bi-level dynamic optimization
model was first established based on the dynamic equipment model. Then, the bi-level
dynamic optimization model was used to optimize the design of RIESs with different
energy storage devices, and the optimization results are System 1, System 2, and System 3,
respectively. According to the optimization results, the impact of energy storage devices on
system performance is compared and analyzed. The main conclusions of this study include
the following three points:

1. Compared with System 1 without energy storage devices, energy storage devices
can increase the capacity of CHP units and ABCs in System 2 and System 3 and
reduce the capacity of GSHPs and gas boilers, especially the TES device. Affected by
the equipment capacity, the equipment cost increase rates of System 2 and System 3
compared with System 1 are 5.7% and 17.8%, respectively. This shows that the EES
device will significantly increase the equipment cost of System 3.

2. The difference in equipment capacity affects not only the equipment cost but also the
operation performance of the system. Under the design conditions, higher equipment
operation efficiency and lower grid power consumption make the operation cost,
carbon tax, and total cost of System 2 lower than that of System 1, with reductions
of 2.9%, 5.5%, and 1.5%, respectively. Under the influence of TOU electricity price,
the EES device can significantly reduce the operating cost of System 3, which is 5.7%
lower than that of System 1.

3. Under the operating conditions, the operating cost, carbon tax, and total cost of
System 2 and System 3 remain lower than that of System 1, even if the energy price
changes. Therefore, in the design of future RIESs, energy storage devices, especially
TES devices, can be used to improve the energy efficiency of RIESs and reduce the
operation cost and total cost.
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Nomenclature

Nomenclature Greek symbols

Abbreviation η Charging and discharging efficiency
A Area ϑ Energy price/ carbon tax price
ABC Absorption chiller α Energy storage ratios
Cap Capacity λ Carbon dioxide emissions factor
CCHP Combined cooling heating and power γ Charging and discharging ratios
CHP Combined heating and power Subscript

COP Coefficient of performance a Ambient
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EES Electrical energy storage abc Absorption chiller
EH Energy hub c Cooling
FEL Following electric load ch Charge
FHL Following hybrid electric-heating load chp Combined heating and power
FOF Following objective function CO2 carbon dioxide
FSF Following system flexibility dis Discharge
FTL Following thermal load e Electricity
GA Genetic algorithm equ Equipment
GB Gas boiler ees Electrical energy storage
GSHP Ground source heat pump gas Natural gas
HES Hydrogen energy storage gb Gas boiler
L Load gshp Ground source heat pump
P Power grid Grid power
P-G Power-gas h Heating
PLF Part-load ratio inv Initial investment
PLR Part-load factor k Device type
PV Photovoltaic op Operating
RIES Regional integrated energy system pv Photovoltaic
S Energy storage device status r Rated
SES Share energy storage tes Thermal energy storage
t Temperature/Time Superscript

TES Thermal energy storage max Maximum
TOU Time-of-use min Minimum
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Abstract: The highly variable power generated from a battery energy storage system (BESS)–
photovoltaic distributed generation (PVDG) causes harmonic distortions in distribution systems
(DSs) due to the intermittent nature of solar energy and high voltage rises or falls in the BESS.
Harmonic distortions are major concerns in the DS, especially when the sizes and locations of these
resources are sub-optimal. As a result, many studies are being performed on the optimal allocation of
BESS/PVDG systems in distribution network systems. In this regard, this paper seeks to review the
existing planning models, optimization methods and renewable energy resources that uncertainty
models have employed in solving BESS/PVDGs allocation problems in terms of obtaining optimal
solutions/allocations and curtailing the harmonic contents of the DSs. However, studies on optimal
allocation planning of BESS/PVDGs have achieved minimum cost but were not able to meet the
standard harmonic level of the DSs. The results identified GA, PSO and AIS as some of the most used
methodologies while LP, MILP and different configurations of NLP were used in the model formula-
tions of BESS/PVDGs problems. The results also revealed DC-link voltage and switching and grid
voltage harmonics as the notable causes and sources of harmonic distortions in BESS/PVDG systems.
The current allocation models presented in the recent literature for the planning of BESS/PVDGs do
not include the variables necessary for curtailing the harmonic contents in their planning formula-
tions. This paper, therefore, recommends an improved and all-encompassing planning model with an
efficient intelligent search algorithm capable of obtaining a global optimum solution and curtailing
harmonic distortions from the BESS/PVDG-connected DSs.

Keywords: photovoltaic distributed generation; battery energy storage system; distribution network
system; optimization methodologies; harmonic distortions

1. Introduction

The rapid expansion in socioeconomics has led to increasing global energy demand
and usage. To balance the resulting widening energy deficiency, renewable energy dis-
tributed generation (REDG) is considered as an effective approach to solve the rising energy
demand and other power system issues that are technical, economic and environmental in
nature [1–3]. REDGs are generation technologies integrated at distribution networks near
load users to satisfy immediate power demand, defer network upgrade, enhance power
quality and reliability, diversify energy resources, and to reduce power losses, distribu-
tion and transmission loading, distribution and transmission costs and on-peak operating
costs [4].

The battery energy storage system–photovoltaic DG (BESS/PVDG) is a viable re-
newable option because the resources are inexhaustible, complementary, economically
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profitable, environmentally friendly and bi-directional [5–8]. However, the power gen-
erated from BESS/PVDG depends on charge and discharge schedules of BESS, which is
associated with high voltage rise or fall, and temperature and irradiation of solar energy
that is intermittent in nature [6,9–11]. Hence, a substantial number of research studies have
unanimously agreed/concurred that harmonics occur in the distribution system when
BESS/PVDG units are absorbed due to the intermittent and variable nature of PVDG
output power and the high variability of voltage and frequency of BESS schedules. In
essence, current harmonics occur as a result of sudden disparity between the aggregate
output power of BESS/PVDGs and other generations and the total power demand at an
instant in a distribution system. The high rises and falls of the voltage and frequency from
battery charge/discharge schedules may result in voltage harmonics [11].

The harmonic distortions are a troubling power quality issue for BESS/PVDG power
generation, and they have significant consequences on the DNs. The extent of current har-
monics is determined by the active output power from BESS/PVDGs. Thus, the magnitudes
of current harmonics are enormous at utility-scale BESS/PVDGs penetration levels. The in-
termittency of PVDG units and the high voltage rise or fall from BESS/PVDG raise concerns
on distribution system harmonic distortions, which have negative effects on power quality,
stability and reliability of distribution systems [6,12,13]. The high harmonic contents in the
power system lead to increased losses in system elements such as transformers and generat-
ing plants; economic costs such as productivity, energy and device/equipment losses; and
fire hazards due to overheating of system elements [7,14,15]. The issues mentioned make
the integration of a large-scale BESS/PVDG into the distribution systems difficult [6,15,16].
Meanwhile, the locations and sizes of BESS/PVDG units could either improve or impair the
magnitudes current and voltage harmonic levels of the networks [17–19]. The mentioned
issues make the solution of BESS/PVDG allocation problems formulated using simple
mathematical models unrealistic. A realistic model, therefore, requires a dynamic model
representation of the network, the use of multi-period planning horizon as well as all the
necessary constraints. The problem then becomes a multi-objective one with a maximi-
sation of renewable active and reactive powers into the DNs and a minimisation of the
total cost subject to the capacity, investment, technical, stability and harmonic constraints
throughout the planning horizon.

Several studies have been performed to proffer optimal solutions for the planning
allocation of BESS/PVDG in distribution systems [11,13,16,20–23]. The studies on op-
timal planning of REDG allocation warrant detailed investigations on the prospects of
BESS/PVDGs for generating power, the impact on the DNs, and the effects on the in-
adequate availability and rising cost of energy, the global economy and environment.
Various researchers have reviewed some aspects of the BESS/PVDG allocation planning
(BESS/PVDGs-AP) problem. Many solution algorithms, planning models, and emerging
technologies deployed in BESS/PVDG-AP have been presented [24–28]. Zahraee et al. [24]
presented an analysis of some artificial intelligence optimum plans used in the optimization
and sizing of hybrid renewable energy systems. The main contribution of this work is
the extensive penetration of renewable energy features for economic performance of the
systems. The authors in [25] dealt with the review of some solutions that were used to
improve the ability of the distribution system to cope with variable renewable energy
source unpredictability such as energy storage technologies, PV and wind energy systems.
This study concluded that battery energy storage and pump hydro energy storage are
the most used technologies to improve the impact of the variable renewable power on
distribution systems. A review presented by Hannan et al. [26] on the planning of BESS and
renewable energy hybrid DGs discussed the optimal sizing objectives, various optimization
models, the BESS system constraints together with their advantages and weaknesses. A
detailed discussion of the BESS applications and shortage of optimal BESS sizing models
could be identified as the strong point of this study. In [27], a review of the latest research
developments and challenges on optimal planning of a BESS-PVDG connected distribution
system was presented. The authors suggested key parameters in the process of optimal
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planning for a PV–battery system such as economic and technical data, objective functions,
energy management schemes, design constraints, optimization algorithms, and electricity
pricing regimes.

In view of the contribution of the existing review works on the BESS/PVDGs-AP
problem, this study is distinct in these ways:

• Based on the authors’ awareness, no literature has presented the evaluation of harmonic
components of BESS/PVDGs during integration into distribution networks/systems.

• Unlike the existing reviews, this review presents an overview of harmonic distortions
in battery energy storage–photovoltaic hybrid distributed generation systems.

• This study provides a methodology for curtailing harmonic distortions from the
BESS/PVDGs-connected distribution systems.

• Moreover, a substantial and diverse number of optimization/solution algorithms
deployed in solving the BESS/PVDGs allocation problem is surveyed, comparing
all their characteristics to assist the researchers to utilize them successfully and in a
cost-effective way.

Despite numerous reviews and studies on BESS/PVDGs, some aspects have not been
adequately captured for investigation, review and research. These themes, bulleted above,
are comprehensively treated in this paper.

The remaining parts of this paper are organized as follows: Section 2 presents the
overview of harmonic components in the BESS/PVDG connected distribution networks.
Section 3 details a review of various optimization models and techniques published in
the existing research works and some promising algorithms that are recently introduced
and used for solving BESS/PVDG allocation optimization problems. The methodological
approach for curtailing the harmonic distortions in a BESS/PVDG connected distribution
system is presented in Section 4. The characteristics of all the models and techniques are
compared, and their shortcomings are discussed under Results and Discussion in Section 5,
to assist the researchers in choosing and applying them successfully and in a cost-effective
way. Section 6 is the concluding part of the paper, and the recommendations for future
research directions are also presented here.

2. Overview of Harmonic Components in BESS/PVDG Systems

Power system harmonic distortion is a major issue for power utilities throughout
the world. In recent times, statistical analysis reports have revealed that power system
harmonics has become a very troubling power quality issue in BESS/PVDG systems. These
harmonics have resonating impacts in generating other power quality problems in large-
scale BESS/PVDG [7,15,29–31]. The sources of harmonics produced in BESS/PVDGs are
broadly classified into DC-link voltage harmonics, switching harmonics and grid voltage
harmonics [7,32].

2.1. DC-Link Voltage Harmonics

The DC-link voltage ripples have become a major source of harmonics produced
by BESS/PVDGs [32]. The DC-link voltage harmonics are generated by PVDGs due to
solar irradiation intermittency and the high rises or falls of BESS voltage. Du et al. [32]
illustrated this phenomenon with the experimental setup simulated in MATLAB Simulink.
The experimental results in Figure 1 show that the harmonic distortion increases as DC-
link voltage increases. However, these harmonics are usually taken as constant in the
analyses and designs of BESS/PVDG inverters. They are not always so in the practical
sense. This accounts for the odd harmonic frequencies discovered in the spectrum of
BESS/PVDG inverter’s output current [33]. In addition, Mansor et al. [34] investigated
harmonic generation in three-phase BESS/PVDG inverters and found that the second-
order harmonics in the DC link produced the third-order harmonic discovered on the
AC side of the inverter. [34]. Many methods have been proposed by the researchers to
eliminate the current harmonics generated by the DC-link voltage ripple [35–39]. Some of
the proposed methods reduced the dynamic performance of the system, and many lack
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quality information on the connection between the output current harmonics and DC-link
voltage ripples [32].

Figure 1. Impact of BESS/PVDG DC-link voltage ripples on harmonics [32].

2.2. Switching Harmonics

Switching harmonics is one other cause of current harmonics in BESS/PVDG inverter
output. It occurs due to a mismatch in thee generation of switching pulses. The switching
harmonics in PWM inverters always double their switching frequency [40,41]. Switching
harmonics are very difficult to control and require an appropriate control strategy and
optimized BESS/PVDG units; otherwise, system instabilities, harmonic generation and
power losses ensue [32,42,43]. Various researchers have presented different methods to
control or eliminate the switching harmonics of BESS/PVDG inverters [40,44,45].

Other research works maintained that the effects of quantization and resolution on con-
trol systems’ measuring instruments are another potent source of harmonics in BESS/PVDG
systems [44,46]. Also listed are the inadequacies of the current controllers of inverters in
reducing harmonic contents and the positioning of sensors and locations of BESS and
PVDG units in the distribution networks [47–49]. The outer voltage control loop of a two-
series control algorithm and the PLL system could be another cause of reference current
harmonics. In addition, output current harmonics could emerge from the dead time for
switching pulse of the BESS/PVDG inverters [32,43].

2.3. Grid Voltage Harmonics

The BESS/PVDG inverter output current is produced due to the variation between
the inverter’s AC output voltage and the distribution network voltage. The output current
harmonics are generated from the grid voltage when the grid voltage waveform includes
harmonic components. The field measurements and research literature revealed that
the grid voltages consistently have harmonics in varying degrees at different locations
of the network [7,31,42,43]. For example, Figure 2a,b show the measured individual
voltage harmonics up to the 31st order for one PVDG inverter at phase B of the grid
and the combination of one PVDG and one BESS inverter for harmonics up to order 25
at phase B [31]. Grid voltage harmonics are usually low orders and are very difficult
to annihilate by the filters. Numerous methods have been presented to control current
harmonics generated from the grid voltage harmonics [50–53]. Du et al. [43] stated that the
current harmonics sourced from grid background voltage do not depend on the magnitude
of inverter output power. The grid voltage harmonics only reflect the magnitude of output
current harmonics [43].
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(a) 

 
(b) 

Figure 2. Individual voltage harmonics of phase B at (a) PVDG, (b) BESS outputs [31].

2.4. Harmonic Standards for Large-Scale BESS/PVDGs

Power quality is a power system requirement stipulated in all the international stan-
dards governing the grid connection of BESS/PVDG systems. Table 1 shows the IEEE
1547 and IEC 61727 standards as related to the requirements for current harmonics of the
grid-connected BESS/PVDG systems [42,54,55]. The total harmonic distortion (THD) of
generated current should not exceed 5% limit.

Table 1. Current harmonics limits by IEEE 1547 and IEC 61727 standards [54].

Harmonics Orders (IH) Corresponding to Fundamental (%)

A. Odd Harmonics

3, 5, 7, 9 Less than 4%
11, 13, 15 Less than 2%
17, 19, 21 Less than 1.5%
23, 25, 27, 29, 31, 33 Less than 0.6%
>33 Less than 0.3%

B. Even Harmonics (All) Less than 25% of various Odd harmonics

Total Harmonic Distortion (THD) Less than 5%
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During the conversion processes, the total harmonics produced by a BESS/PVDG sys-
tem are in high quantity, despite that the inverters are parallel connected and
multileveled [48,54]. This is a big issue when such inverter outputs are delivered into
the distribution network. The current magnitude of many high-power inverters together
with their harmonic contents can release large quantities of harmonics into a distribution
system. This is because the magnitudes of current harmonics is proportional to the active
output power of the BESS/PVDG system [7,31]. The loss of power in BESS/PVDG is
mostly due to harmonics produced during the BESS/PVDG power conversions. In this
sense, the proper location of BESS/PVDG units in the DN will result in network harmonic
reduction due to harmonic cancellation effects. Power losses as a result of harmonics is
seen as a very challenging issue worldwide due to technical damage and economic losses it
causes. The economic losses related to harmonics have been geometrically growing at a
high rate in recent years because of the high penetration of large-scale BESS/PVDGs into
the distribution system. Consequently, re-evaluating the existing optimization models and
algorithms used in the planning allocation of BESS/PVDGs to determine their effectiveness in
curtailing the harmonics produced by the BESS/PVDGs is important, while taking cognizance
of the huge amount of technical damage and economic losses occasioned by the harmonics.

3. Framework for Optimizing BESS/PVDGs into Distribution Networks

BESS/PVDG optimization is the methodological approach for obtaining optimal
locations, sizes and times of BESS and PVDG units and installing them in a distribution
network under network operating, investment and BESS/PVDG capacity constraints. The
sizing and placement of BESS/PVDG units is a highly constrained, complex, nonlinear,
mixed-integer and multi-objective optimization problem whose global optimum solution
is very hard to find. The optimization of hybrid BESS/PVDGs involves considering
contradicting objective functions such as maximising BESS/PVDG capacity and minimising
power quality index; complex decision variables such as DG type, size, location and time;
constraints such as network harmonic limits, DG voltage limit and power flow constraint;
and the required conditions for modelling the uncertainties, especially the intermittency of
the constituent distributed units (inaccurate mathematical model) [4,6,56]. Figure 1 provides
the framework for optimizing BESS/PVDG into the distribution networks.

3.1. Optimization Objectives

The BESS/PVDG optimization objective functions can be either a single objective or
multi-objective. The common single-objective functions used in the recent research works
are minimisation of costs, energy losses, power losses, copper losses, emissions, voltage
deviations, total harmonic distortions level (voltage and current); maximisation of benefits,
profits, revenue of distribution system, DG capacity, reliability metric; enhancement of
voltage profile, voltage stability; etc. The formulation of single-objective optimization prob-
lem can be from the perspectives of distribution system operator (DSO), the distribution
energy resources developer, etc. [2,4,6,57]. A multi-objective function optimization problem
requires the addition or combination of many single objectives that are conflicting and from
which a single solution obtained may not be able to solve all the different objectives. The
multi-objective function optimization involves simultaneous minimisation or maximisation
of decision variables to obtain a single-objective formulation.

3.2. Decision Variables for BESS/PVDG Optimization

The decision variables are the unknown design variables that are determined during
BESS/PVDG optimization procedures. The BESS/PVDG decision variables are formed
from one or an amalgamation of size, location, number of DG, DG type, generated power of
DG, installation year, real power and reactive power of DG or storage device, bus voltage
angle and bus voltage magnitude [2,4,6]. The bus voltage angle and magnitude are the
variables used for the decisions on the stability and power quality of the network.
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3.3. Constraints for BESS/PVDG Optimization

Constraints are used in DG optimization problems to impose restrictions on some
decision variables during the optimization of the objective function. Some of the commonly
applied constraints in the formulation of DG allocation problems are as grouped [2,4,57].

3.3.1. Investment Constraints

They are constraints enforced on investment variables. Investment constraints can
take on continuous, discrete or binary values. For example, the inequality constraints
imposed on budget limit, divestment and investment options.

3.3.2. Safety Constraints

These are constraints to guarantee network and people’s safety. Examples are the
inequality constraints imposed for right of way in the installation of DG units, etc.

3.3.3. Technical Constraints

These are the power generation, network power flow and reliability constraints. These
guarantee constant and continuous generation, transmission and distribution of power to
the consumers. Some of the technical constraints are:

• The equality constraints for power balance that are imposed on active and reactive
power of each network bus.

• The inequality constraints imposed on generations from DG units. e.g., DG penetration
limits, discrete sizes of DG units, DG capacity limits, DG unit’s constant power factor,
maximum number of DGs, etc.

• The inequality constraints imposed on transmission lines and other network equip-
ment/elements, e.g., transmission supply limits, transformer or line-overloading
limits, dedicated buses for DG installations, transformer or line capacity limit, etc.

• The inequality constraints imposed on the transmission of power to the consumers,
e.g., short-circuit constraints, maximum SAIDI, and radiality constraints.

3.3.4. Network Stability Constraints

Network stability constraints are imposed on the system to ensure power system
stability. They are the constraints imposed on voltage drop, bus voltage magnitude, volt-
age angle, etc. The network stability constraints are formulated based on two network
variables—voltage magnitude and voltage angle.

• The voltage magnitude constraints are imposed in the networks to ensure voltage
stability. Inappropriate voltage magnitude could lead to voltage instabilities in power
systems and cause damage to customers’ devices, equipment and apparatuses.

Vi(min) ≤ Vi ≤ Vi(max) OR ΔVi(min) ≤ ΔVi ≤ ΔVi(max); i = 1, 2, . . . n. (1)

The inequality constraint presented in (1) is imposed on all the network buses to
enforce voltage stability of the network.

• The phase angle constraints are imposed on the network based on some stability
conditions to ensure dynamic stability such as small signal stability of the network.
Voltage angle limits are crucial to dynamic stability, as the voltage magnitude is related
to voltage stability of the network. Failure to maintain appropriate voltage angle
limits can cause enormous dynamic instabilities that can result in total power outage
and other serious economic losses. However, almost all the works on distributed
generation allocation expansion planning do not utilize voltage angle constraints in
the formulation models.

θmin ≤ | ∠Vi − ∠Vj | ≤ θmax; OR θmin ≤ θij ≤ θmax (2)
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This constraint (2) is imposed on all the network buses to enforce some stability
criteria.

3.3.5. Power Quality Constraints

These power quality constraints are imposed to ensure the quality of power integrated
into the distribution system. Different power quality indices such as total harmonic distor-
tion (THD), total demand distortion (TDD), displacement power factor (DPF), oscillation
power factor (OsPF) and transmission efficiency power factor (TEPF) could be used for
power quality evaluation. A single power quality index that represents these indices could
be formulated to evaluate the power quality of the distribution systems.

• The inequality constraints include voltage rise limits, voltage and current total har-
monic distortion (THD) bounds, voltage sag bounds, etc.

• The harmonic constraints can be formulated based on the most important distribu-
tion network’ constraints such as the voltage magnitude limits and voltage angle
constraints.

The voltage magnitude constraints of the system can be reformulated and extended
to impose constraints on the voltage harmonics of the distribution system during the
integration of BESS/PVDG systems.

THDv =

√
∑∞

h=2 V2
h

V1
(3)

Vh(min) ≤ Vh ≤ Vh(max) ; h = 1, . . . N (4)

Similarly, the phase angle constraints could be formulated considering some parame-
ters and assumptions that relate phase angle to active power (current) and can be extended
to distribution networks if current harmonics are expected to be curtailed.

THDI =

√
∑∞

h=2 I2
h

I1
(5)

θh(min) ≤ θh ≤ θh(max) ; h = 1, . . . N (6)

3.4. Modelling the Uncertainty of BESS/PVDGs

Modelling the uncertainties of BESS/PVDG units, including BESS and solar PV units,
and the uncertainties of loads are very important to obtaining accurate solutions for a
BESS/PVDG optimal allocation problem. The uncertain parameters that can be modelled in
the planning of an electric power system for accounting the uncertainties in the distribution
system are also presented in Figure 3. However, several previous research works place
the uncertainties of these resources into consideration in their formulation models. Some
of the uncertainties that are being considered and modelled in BESS/PVDG optimization
studies include uncertainties of solar irradiance, wind speed, PV modules, wind and solar
DG units, uncertainties of fuel, generated power, electricity market price, uncertainty of
BESS and uncertainty of loads [1,4,14].
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Figure 3. Framework for optimizing BESS/PVDG into distribution networks.

4. Optimization Models and Methods for BESS/PVDGs Allocation

The design and planning of battery energy storage system–photovoltaic distributed
generation system is a research area that has continued to generate a lot of interest from
many researchers, hence the large number of literature studies on the topic. The planning
problem mentioned above concerns the hybrid energy systems that have optimal patterns
and whose optimal sizes, placement/location and type of generation components/units can
be assigned with minimum costs over the lifetime of the technologies. Therefore, the planning
by the minimum net present value (NPV) of cost is called the optimal planning or optimal
allocation of all probable hybrid technologies that are in optimal transition [11,24,56,58].

There are several methods for obtaining an optimal planning solution and many real-
time, commercially available software applications for energy systems integration. In addi-
tion, various researchers have applied different optimal techniques to solve BESS/PVDG
allocation problems. Different optimization methods, such as conventional methods,
population-based intelligence search methods, some promising heuristic intelligence search
approaches and commercial software applications, have been applied by the researchers to
optimize hybrid BESS/PV distributed generation systems.

4.1. Conventional Optimization Methods

Conventional optimization methods are analytical and numerical techniques that
usually present numerical equations to resolve optimal allocation problems. The meth-
ods involve computations, mathematical and theoretical analysis. The accuracy of these
methods greatly depends on the efficacy of the model formulated. The advantages of these
methods are the ease of implementation and short computation time to obtain convergence
for the problem. However, under a complex problem, the accuracy of the solution may not
be satisfactory because of the hypotheses used in simplifying the problem. Some of the
conventional methods are discussed as [2,57–59].

4.1.1. Sensitivity Analysis Methods

Sensitivity-analysis-based methods use sensitivity indices used to optimally allocate
DG units. In these methods, the original nonlinear equations are linearized about their
starting operating points to lower the numbers of feasible solutions in the search space. The
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advantages of sensitivity analysis methods are reduced computation time, which is critical
for large practical systems, and good ability to assess the uncertainties of renewable energy
resources. Anuradha et al. [60] present a loss-voltage sensitivity index for optimizing the
renewable DG size, BESS capacities and power dispatch in distribution networks. The
objective is to simultaneously evaluate both minimum effects of network losses and voltage
variations for optimizing the DG size [60]. A hybrid of loss sensitivity analysis methods
and novel voltage stability index is applied by Murty and Kumar [61] to find optimal
sizes and locations of active and reactive power DGs. The objective is to minimise copper
losses and enhance network voltage profile. In Saini and Gidwani [62], a comprehensive
assessment of battery energy storage system installation and the placement of photovoltaic
(PV) units in a radial distribution network is performed utilizing different load models.
The objective is to minimise annual energy losses, control overvoltage and reverse power
flow problems in a distribution network. Nevertheless, the solutions obtained from the
sensitivity analysis methods solely found optimal placements of distributed generators,
but the levels of optimality of such solutions are not known [4,58].

4.1.2. Linear Programming

Linear programming (LP) is a method that uses a mathematical model with linear
mathematical relationships for optimizing the objective function(s). LP is used in power
system optimization problems to obtain optimal sizes of DG units, because it provides
precise solutions [2,56,57]. In Altintas et al. [63], the authors proposed a two-objective LP
algorithm to incorporate solar and wind renewable DGs as well as BESS into distribution
system expansion planning. The objective minimises the total cost of investment and
carbon emissions. This algorithm performed a sensitivity analysis test on the effect of
investment costs with respect to wind and solar DGs and BESS. Alturki et al. [64] presented
an LP method to obtain optimal hosting capacity of a distribution grid with the objective
to maximise the PVDG power using some fundamental variables and to minimise total
cost using some uncertain criteria. The results revealed that the computation time for the
proposed LP algorithm was very small, especially for large-scale problems. However, the
network harmonic level and stability were not considered for evaluation in these works.

4.1.3. Mixed-Integer Linear Programming

The mixed-integer linear programming (MILP) method uses a mathematical model
with linear objective function and linear constraints in which, at the minimum, one design
variable must be an integer. The implementation of MILP is difficult in large-scale problems
because it uses too much computation time. In Santos et al. [1], MILP is applied to determine
the optimal locations, sizes and timing of smart-grid technologies for minimising the net
present value of the total cost and for maximising the renewable DG integration. In
Mishra et al. [65], a chance-constrained stochastic MILP algorithm is modelled to determine
optimal investment decisions of DGs considering operational uncertainties, while an
evolutionary vertical sequencing protocol algorithm is used to further optimize the objective
function that minimises the total cost of investment and operation. Santos et al. [66]
proposed an improved model aimed at optimizing the system operation in a coordinated
way, where distributed renewable energy sources (DRES), energy storage systems (ESS)
and distribution network system reconfiguration (DNSR) are considered along with the
uncertainty of the resources. The objective function was modelled to incentivize the uptake
of DRES by considering the cost of emissions to decarbonize the power system. In Ajeigbe
et al. [67,68], the authors applied the MILP algorithm to maximise the optimal allocation of
solar, wind and biomass DGs into the distribution system by minimising the NPV of total
cost and by confining the small signal stability of the networks to a required level. All the
works reviewed here modelled uncertainties of renewable energy resources and evaluated
voltage stability of the network but were not able to evaluate the impact of BESS/RERDG
powers on the harmonic contents of the networks. Likewise, their results did not report
global optimal solutions to BESS/PVDG optimal allocation problems.
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LP and MILP suffer from a lack of flexibility. They normally require pre-conditions
such as convexity, linearity and continuity of objective functions, which are difficult to meet
in practice [2,57].

4.1.4. Nonlinear Programming

Nonlinear programming (NLP) is a mathematical programming method that uses
nonlinear objective function and solely continuous variables and constraints. The NLP
computation involves the differentials of objective functions and constraints. In solving
nonlinear problems, a search path is selected iteratively by defining the starting partial
differentials of the problem equation. This approach could be based on first-order or higher-
order methods such as the reduced gradient method [69,70] and other search methods [71,72],
Newton Raphson method [73] and successive quadratic programming [74,75] which are
used for solving DG allocation planning problems.

4.1.5. Mixed-Integer Nonlinear Programming

Mixed-integer nonlinear programming (MINLP) utilizes a mathematical model with
nonlinear objective functions and constraints and both continuous and discrete variables.
MINLP algorithms have been applied in power systems to determine the optimal sizes and
locations of DGs and BESSs. Some of the disadvantages of MINLP are long computation
time and a very large number of decision variables [2,56,57]. Salyani et al. [76] applied
MINLP in the mathematical modelling for the simultaneous optimal allocation planning
of high- and medium-voltage substations, robust medium-voltage feeder routing and re-
newable DG units. The authors used adaptive GA to find optimal locations and sizes while
the uncertainties of renewable DGs, fuel prices, electricity and demand were evaluated.
A mixed-integer nonlinear programming-model-based methodology is presented in Va-
lencia et al. [11] for the optimal location, selection, and operation of BESSs and renewable
distributed generators (DGs) in medium–low-voltage distribution systems.

4.1.6. Fuzzy Logic

The fuzzy logic (FL) method was developed in 1979 to solve power system problems.
The FL method is based on the concept of a classical set, such as the identification of a
membership function that is associated with each member as indicated by a binary number
0 and 1 [77]. The membership function dictates the resemblance level of a member in a
fuzzy subset. Some of the common membership functions are the triangular, trapezoidal,
piecewise-linear and Gaussian functions [2,57,59]. In Injeti and Kumar [78], FL is applied
to DG allocation problems, with minimisation of power losses and improvement in voltage
profiles as the objective function. Sharma et al. [79] proposed a FL controller in determining
the optimal sizes and locations of DGs in order to minimise power losses and to enhance
loadability and voltage profiles of distribution networks. However, the results from these
works did not report the optimality of their solutions, the evaluation of network stability or
harmonic contents.

The works discussed thus far on FL have not considered the impact of DGs and BESS
on the oscillatory modes and harmonic contents of the distribution networks. To achieve
practical solutions, dynamic networks must be simulated for the evaluation of distribution
system stability and harmonic contents.

4.2. Intelligence Search Methods for BESS/PV Distributed Generations

Artificial intelligence (AI) is the application of human intelligence to perform tasks
in machines [59]. AI is applied in the intelligence search methods (ISM) used in power
systems for optimal sizing and placement of DGs. Intelligence search methods are heuristics
algorithms that fasten up the processes of obtaining near-optimal solutions for complex and
large DG problems. The advantages of intelligence search methods over other conventional
methods is the simplicity of implementation and robustness. However, the accuracy and
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precision of ISMs are not reliable. They usually take much computation effort [2,56,57,80].
Some of intelligence search methods are presented below.

4.2.1. Genetic Algorithm

Genetic algorithm (GA) is an intelligence search algorithm that was introduced earlier
to solve optimization problems. GA is developed from natural selection and genetics
principles such as selection, mutation, inheritance and crossover [56,57]. In GA, a set of
selection rules is specified to allow a population to achieve a maximum state of fitness.
Then, the elements in a population are integrated into chromosomes to enable the potential
elements to achieve a better state. The first population of elements evolved through
the evolution of generations. The principle of mutation is applied to modify the chosen
element to evolve into a new population. The algorithm repeats this procedures until
an acceptable solution or the highest number of iterations is attained. [4,6,56]. Genetic
algorithms utilize continuous and discrete variables for implementation and work better at
obtaining global optimums of various functions. GAs can effectively solve poorly defined
and complex problems. GA is the most used optimization method to find optimal locations
and sizes of DGs in the literature [22,81,82]. In Liu et al. [22], the authors presented a
mixed-integer GA to obtain optimal sizes and locations of hybrid battery energy storage
and renewable energy DGs units with objective aiming to minimise system total cost, end-
user satisfaction loss caused by demand side management, and tie-line power fluctuation.
The methodology in Liu et al. effectively determined the solution of the multi-objective
optimization problem compared to others validated with it. However, neither uncertainties
of the renewable energy sources nor the voltage variability of the BESS were modelled. In
addition, the requirements for the evaluation of network stability and harmonic contents
were not included in the proposed methodology. Moreover, genetic algorithms have the
disadvantage of evaluating the repeated fitness functions that are time intensive for large
and complex problems. The various configurations of GA that are proposed to improve the
performance of the GA method in the DG allocation problems are quantum GA (QGA) [83],
adaptive genetic algorithm (AGA) [84], etc.

4.2.2. Simulated Annealing

Simulated annealing (SA) uses an iterative procedure for solving combinatory opti-
mization problems. SA employs the process of crystallization at a discrete search space of a
physical system [57]. The SA algorithm depends on the cooling criterion and uses initial
temperature (T), final temperature (Tmin) and cooling rate (β) variables. SA algorithms are
extensively proposed in the literature to allocate DG units at lower computational time.
Simulated annealing algorithms perform effectively in solving reliability-criteria-based
optimization problems [2,57]. The advantages of SA algorithms are robustness, simplicity
of implementation, and capability to provide feasible solutions to combinatorial problems.
Nevertheless, SA algorithms have large computation times without upper limits, terminate
at local minimums and lack details on the level of variation between a local minimum and
global minimum [56,85]. In Koziel et al. [86], the authors presented a feasibility-preserving
SA algorithm to obtain DN reconfiguration with the objective to minimise power loss and
improve voltage profile. This study concluded that the proposed algorithm was more
efficient than some published population-based intelligence search methods with respect
to computational cost and solution repeatability. However, the optimality of the solution
was not reported, and the harmonic contents and dynamic stability of the networks were
not evaluated in the proposed work.

4.2.3. Particle Swarm Optimization

Particle swarm optimization (PSO) methods are developed based on the social adap-
tation of flocking bird and schooling fish. In PSO, single intersection of all dimensions
produces a particle, and these particles move randomly in a complex search space. The sys-
tem is then adjusted using a number of solutions that are randomly selected. During each
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iteration, the particles use their fitness level to assess their positions. Then, the contiguous
particles update their previous “best” position to upgrade the final solution [2,57,87]. The
advantages of PSO are robustness, simple implementation and running simultaneous com-
putations in less computation time. PSO algorithms use a couple of parameters to modify
and converge faster. PSO can also be effectively used to solve DG allocation problems with
inaccurate mathematical models. However, the initial design parameter are difficult to
define with PSO. During complex DG allocation problems, PSO may converge prematurely
and terminate at the local minimum [6,56]. In Prabpal et al. [88], the PSO technique was
applied to obtain optimal sizes and locations of multiple BESS and PVDG units with the
objective to minimise total cost, minimise the impact of large-scale penetration of BESS,
improve voltage profile and increase the stability of the power system. The results showed
that PSO and GA methods equally performed better in achieving fewer numbers of iter-
ations and quality of solutions. Shahzad et al. [23], Jamian et al. [89], Rathore et al. [90]
and Zeinalzadeh et al. [91] proposed multi-objective PSO methods for determining optimal
locations and sizes of BESSs/PVDGs to minimise power losses and improve voltage pro-
files. However, the uncertainties of the intermittent DGs and BESSs were not modelled,
and the impact of their variable output power on the dynamic stabilities and harmonic
contents of the distribution networks was not considered. Only the uncertainties related to
BESS/PVDG market scenarios were evaluated in Rathore et al. [90].

4.3. Promising Intelligence Search Methods

Promising intelligence search methods are the additional optimization algorithms
developed to effectively solve distributed generation optimization problems. Some of these
methods are as stated [2,57,59].

4.3.1. Artificial Bee Colony Algorithm

The artificial bee colony (ABC) algorithm was developed from the searching behaviour
of a swarm of honeybees. Khasanov et al. [16] proposed an application of hybrid teaching-
learning and artificial bee colony (TLABC) technique for determining the optimal allocation
of PV-based distributed generation and battery energy storage units in a distribution
system with the aim of minimising the total power losses. ABC algorithms are applied in
Mohandas et al. [92] and Dixit et al. [93] to find optimal DGs locations and sizes with the
objective of minimising power losses and of improving voltage stability of the network.
In Abu-Mouti and El-Hawary [94], the authors proposed an algorithm of ABC to adjust
the control inputs, iteration number and colony size in the DG allocation optimization. El-
Zonkoly and Kefayat et al. [95,96] utilized ABC algorithms to solve distribution expansion
planning problems and to obtain optimal reinforcement and commitment scheduling for
PVDG allocation. Padma Lalitha et al. [97] presented and compared the ABC and PSO
algorithms. The authors observed that the ABC algorithm outperformed PSO, having better
solutions and convergence. Notwithstanding, the works discussed here do not provide
indices to evaluate harmonic contents and dynamic stabilities of the systems.

4.3.2. Ant Colony Algorithm

The ant colony (AC) algorithm is adapted from ants’ social behaviours in searching for
the shortest route to obtain food. The AC algorithm process begins with random solutions
obtained from the ants’ random searches in their movements. Ants share information
about their movements by leaving chromosome trails behind during their movements.
Consequently, a path with trail density becomes the shorter path. This knowledge is utilized
in the optimization search to obtain feasible solutions [57]. The advantages of AC algorithms
are the ability to discover good solutions and guarantee convergence and the ability to
search among a population simultaneously and adapt to changes such as new distances.
However, AC optimization algorithms are weak in changing probability distribution,
uncertainty of convergence time, sequences of random decisions and theoretical analysis,
since they are highly experimental researches. These algorithms are variously used in
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the literature for optimal allocation of DGs [6,56]. In Gomez et al. [98], Vlachogiannis
et al. [99], Wang and Singh [100] and Amohadi and Fotuhi-Firuzabad [101], the variant of
AC and ant colony system (ACS) algorithms were presented. They found optimal sizes
of DGs, locations of DGs and re-closers in the radial DNs with an objective to use the
composite reliability index. Transient stability and reliability of the distribution systems
were evaluated to validate the proposed methods. ACS algorithms were observed to be
more satisfactory in many engineering applications. However, these works did not include
the installation of renewable DGs and could not access the impacts of integrating BESS/PV-
distributed generations on the harmonic distortion and oscillation of the networks.

4.3.3. Artificial Immune System Algorithm

The artificial immune system (AIS) algorithm is adapted from immunology, the im-
portance of the immune system and their values in the natural world [102]. The immune
system is an indispensable defence against self-approach to protect human health from
pathogens such as viruses and microbes. The procedure differentiates between self-cells
and non-self-cells. Thereafter, the immune system effects immune actions to destroy the
non-self-cells [103–105]. To apply the AIS optimization process in solving DG allocation
problems, the instructions in the search area (objective functions, design variables, con-
straints, etc.) are encrypted in an antigen population of an AIS algorithm. AIS algorithms
are proposed in Aghaebrahimi et al. [106] and Hatata et al. [107] to find the optimal lo-
cations and sizes of the DGs, with the objective to minimise the power losses of the DN
considering bus voltage limits and line current. Souza et al. [108] proposed an AIS algo-
rithm in expansion planning to allocate DG units into distribution network considering the
uncertainty of load demands.

4.4. Probable Hybrid Intelligence Search Methods

Hybrid optimization methods are a useful combination or collaboration of more
than one different intelligence search method. These approaches extract the benefits of
the component methods to obtain an optimum solution for a specific planning problem.
The allocation expansion planning of BESS/PVDGs problems is multi-objective in nature.
Hence, applying a hybrid method in their investigation begets an excellent planning
objective and a suitable alternative algorithm to solve the problems that involve better
understanding of the methods.

A summary of the various optimization techniques that are developed and applied by
the researchers for BESS/PVDGs allocation is presented in Table 2.

Table 2. Summary of optimization methods.

Optimization Method Optimized Factor Comment

Conventional Method
• Sensitivity Analysis [60–62]
• Linear Programming (LP)

[63,64]
• Mixed Integer Linear

Programming [65–68]
• Nonlinear Programming (NLP)

[69–75]
• Mixed-Integer Nonlinear

Programming (MINLP) [76]
• Fuzzy Logic [77–79]

Hybrid renewable energy sources
(solar, wind) and battery energy
storage, and cost

Using numerical equations that can be
applied to optimization problems due
to their capability to provide accurate
mathematical model formulation

Intelligence Search
• Genetic Algorithm [81–84]
• Simulated Annealing [85,86]
• Particle Swamp [87–91]
• Artificial Bee Colony [92–97]
• Artificial Immune System

[102–108]
• Ant Colony [98–101]

Hybrid renewable energy sources
(solar, wind) and battery energy
storage, and cost

Using the exhibition of intelligence in
machines to determine optimal
locations and sizes of hybrid DGs in
power system

Deterministic Approaches [59–63]
Standalone renewable energy sources
(solar, wind) with battery energy
storage, and cost

Using mathematical equations for
determining particular values when
fixed factors are set
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Table 2. Cont.

Optimization Method Optimized Factor Comment

Probabilistic Approaches [63–67,74,75]

• Efficiency of hybrid renewable
energy systems, and cost

• Uncertain parameters in power
system

Using statistical data gathering
methods for finding optimized factors

Software Based Methods [109–116]
• HOMER
• HYBRIDS, etc.

Hybrid solar/wind and or diesel
generators with battery energy storage

Using software applications that uses
input file with all necessary data

4.5. Commercial Software Applications for Allocation of (BESS/PV) Hybrid DG Systems

Several software applications have been developed and applied for the sizing of hybrid
renewable energy systems (HRESs) such as HOMER [109–111], HYBRIDS [112], HYBRID
2 [113], RET Screen [114], TRNSYS [115] and IHOA [116].

Comparatively, HOMER has a significant application in optimal sizing of HRESs
because of its capacity to quickly obtain optimal sizes of energy systems. In addition, it is
useful in investigating sensitivity analyses of some uncertainty parameters and changing
factors related to the HRESs. However, the mentioned software tools are incapacitated to
investigate major network system issues related to the integration of distributed HRESs
(DHRESs) such as harmonics and small signal and transient stabilities. A list of commer-
cially available software for the planning of HRES is presented in Table 3.

Table 3. Software applications for optimizing BESS/PVDGs.

Name of Software Optimization Input Optimized Output

HOMER

• Load command
• Resource input
• Cost details (capital, O&M,

replacement costs
• System control

• Optimize unit size(s)
• NPV and energy cost

HYBRIDS
• Wind turbine size(s) and type
• Solar size(s)
• Type and number of battery

storage

• NPV and energy cost
• Amount of green-house gases

HYBRID 2
• Resources input
• Load demand
• Cost details (O&M,

investment, components costs)

• Optimize unit size(s)
• NPV and energy cost
• Proportion of green-house

gases released.
• System payback time

RET SCREEN

• Load command
• Solar size(s)
• Climate data input
• Invention and hydrology data

input

• NPV and energy costs
• Economic capability
• Production rate
• Risk analysis
• Energy used and saved

IHOGA
• Load command
• Resources data input
• Components and economic

factors

• Improve multi-objective
optimization

• Cost of energy
• Life cycle release

TRYSYS • Climate data
• Ingrained models

• Dynamic simulation of
renewable energy resources

5. Results and Discussion

The increasing needs for energy and the resultant environmental issues arising from
fossil energy utilization have encouraged the extensive study of renewable energy tech-
nologies in place of traditional fossil fuels. Precisely, hybrid distributed generations, which
have been described as a collaboration of renewable energies and support systems, are a
significant alternative to confront the concerns over sustainability of energy demands and
environmental safety. The planning and optimization of hybrid distributed power systems
can meet the essential requirements of a geographical location in terms of availability of
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potential energy resources, area topography and various kinds of energy demands. Conse-
quently, the optimal allocation of renewable energy sources and storage systems relating to
environmentally friendly hybrid distributed systems considerably improves the technical
and economic aspects of the power supply system. The addition of storage technologies in
the allocation of distributed generations can smoothen output power and reduce REHDG
intermittent effects in the network. Including storage devices in the DGs allocation prob-
lems provides supporting services to the optimal solutions by eliminating the effects of
intermittency in the renewable sources power output. Several allocation methodologies
have been proposed to determine the best hybrid renewable energy system with respect
to the economy and technology. Determining the optimal allocation of hybrid battery
storage and PV-distributed generation systems and other hybrid renewable energy systems
is important to increase the technical and economic efficiency of the power distribution
system and to encourage the extensive use of environmentally friendly resources.

Various allocation methodologies presented in the recent literature with different
optimization algorithms are reviewed here. The GA, PSO, SA and AIS are some of the
feasible artificial intelligence algorithms used to investigate the planning and optimization
of DG allocation problems. The most important benefit of GAs are the ordered capability
to find the global optimal and the ease of achieving a local minimum when used in hybrid
system allocation. Another advantage that makes GA suitable for allocation planning
studies is code-ability because it is not accessible in other methods such as PSO. For
instance, when at most three parameters are to be coded such as in a wind/PV/BESS
system, both GA and PSO can perform effectively. However, when more than three
elements are involved, only the GA method would be more capable of obtaining optimal
solutions. Some other times, PSO has some advantages over GA, although both are very
effective in utilizing the same repeatable search approach. Moreover, employing SA in
hybrid distributed systems is not as common as GA and PSO methods, but presently,
SA is generating more research interest in some approved areas of application. The ACS
algorithms have been presented to reduce power losses and to improve power system
factors of a radial distributed system. Similar to GA, the AIS optimization algorithm
has “collection” and “transformation” operatives which improve the probability of the
algorithm to find the global optimum point.

AIS is bound to have a high application in sizing studies because it is similar to GA
and can be effective in finding the global optimum in difficult problems. However, GA
has greater application than AIS, especially in addressing a large number of parameters.
In addition, conventional methods such as LP, MILP and NLP are still being applied in
existing studies to detail the features of any physical system into a mathematical model
formulation. Often, hybrid optimization methods are applied by combining two or more
methods to take beneficial advantage of them in terms of their convergence time during the
optimization process. Hybrid methods are characterized due to their dynamic flexibility
during the allocation process. Hence, they are the most applied allocation methods.

The intermittent nature of photovoltaic and wind output power and the high voltage
rise and fall from BESS cause harmonic distortions which have a negative impact on the
power quality, reliability and stability of the distribution networks. The majority of the
current works do not include the uncertainties of the renewable and battery storage power
sources in their formulation models. They did not combine all the associated investment,
technical, safety, DG capacity, network stability, power quality and reliability constraints
in the formulation models for the DG allocation problems. In most of these works, the
minimum harmonic level and dynamic stability of the network are not constrained but
are only assumed, while the constraints for the right of way are neglected for the required
buses. All these necessary and associated constraints need to be incorporated to obtain a
practical solution from the REHDG allocation models. In essence, future research studies
should give adequate consideration to modelling of the impacts of renewable energy
intermittencies and the resulting variable output power to culminate in more feasible
solutions to BESS/PVDG optimization problems.
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In addition, the operations of hybrid DG systems are dynamic. Hence, the planning
and design of optimal sizes and placement of RERDGs should be optimized on dynamic
networks but not on static ones, as they are mostly performed in the existing planning
models. The dynamical issues such as harmonic and system instabilities are very visible
while using dynamic networks, since the real power networks are dynamic networks
whose load profile periods are estimated hourly during a dynamic planning horizon.
Future research needs to focus on the use of dynamic networks to entirely incorporate the
intrinsic characteristics of the distribution network such as the harmonic components and
dynamic stability of the network.

Moreover, the sizes and locations of battery energy storage, photovoltaic and wind
DG units in the distribution network (DN) affect the network harmonic contents by having
either positive or negative impacts on the magnitude of the current and voltage harmonics
of the networks.

6. Conclusions

This study presents a review of prior research on the optimization methodologies for
designing and planning hybrid renewable energy resource distributed generation such as
hybrid battery energy storage–photovoltaic DG and other hybrid distributed systems. This
paper reviewed more than one hundred papers published by renowned referenced journals
on battery energy storage systems and renewable energy resources as well as on robust
and efficient optimization methods for solving hybrid DG allocation planning problems.
Optimization studies, in the last decade, on DG allocation planning using conventional and
intelligence search methods have been analysed, and hybrid optimization algorithms have
been presented.

Intelligence search methods have been mostly used in the last decade due to their
capacity for shorter computation times, and because they provide better accuracy and have
better convergence than the conventional methods. In conclusion, at the beginning, this
study investigated a number of research works that have applied optimization methods to
solve renewable energy DG allocation problems, including solar, wind and battery energy
systems. Many research works use intelligence search methods, most especially GA, PSO
and AIS, to solve these allocation problems. Notwithstanding, conventional methods,
especially LP and MILP and different configurations of NLP methods are still being used in
current studies. In the case of curtailing harmonic distortions of the DNs, which indicate the
strength of this study, an optimal planning model is yet to be developed for optimal sizing,
placement and timing of renewable DGs and battery energy storage systems. Although,
in most cases, the optimal sizing and placement of BESS/REDGs may have attained a
minimum cost, the requirements for minimum harmonic levels are yet to be achieved. These
requirements are merely presumed in the existing works. Further research is required in
this regard to improve the current expansion planning model to obtain optimal allocation
of BESS and renewable energy DGs and to constrain the decision variables related to
harmonic distortions to a required level. A more comprehensive expansion planning model
together with an efficient intelligence search algorithm that has that capability to obtain a
global optimum solution is an important approach towards solving optimal BESS/PVDG
allocation problems and towards reducing harmonic components of distribution systems
during the integration of hybrid battery energy storage systems and photovoltaic DGs.
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Abstract: Hydro generation is the simplest and oldest method of electricity generation, with a century
of successful operation. Using a pump as a turbine (PAT) is an optimal solution for minimizing the cost,
particularly in low-head and small-scale hydro plants. Commercially available centrifugal pumps have
become a popular solution for small-scale hydro and pumped-hydro facilities owing to their simple
geometry, ease of operation, maintenance, and abundant availability in local markets. Variations in
the water flow in hydro facilities, such as pumped-hydro and small-scale hydro facilities, are common;
however, a PAT is unable to respond to variable flows because it is a fixed-speed device. To overcome
this problem, different techniques have been suggested by researchers: (a) a system of parallel PATs;
(b) geometrical modifications in the impeller of the PAT; and (c) power electronics-based variable
frequency drives. All the aforementioned techniques have limitations, such as low output, high cost,
complexity, transportation, and operation and maintenance. In this study, a simple and economical
technique is proposed to smooth the output of a PAT on variable/decreasing water flow profiles. In the
proposed technique, water columns connected in parallel (PWCs) are used to produce a pressurized
water flow, as they have a convergent nozzle at the outlet. The PWC creates more space for water, and
this additional mass of water boosts the water flow at the outlet. In this manner, the PWC technique
maintains the flow at the inlet of the turbine. A serial integration of five PWCs with the same dimensions
was conducted to inject the additional flow into the existing PAT penstock, governing a 37-kW generator.
The design flow was maintained at 192.1 L/s without any additional power usage at the inlet of the PAT,
and the output was smoothed even at the minimum water flow/head. Pump design and computational
fluid dynamics simulations were performed using ANSYS software, whereas generator simulations
were performed using MATLAB/Simulink software.

Keywords: energy resources; hydropower generation; small hydro; pump as turbine; PWC technique;
smooth output power

1. Introduction

Environmental effects, fear of the extinction of conventional energy sources (such as oil,
gas, nuclear, and coal), and the high running costs of these costs have compelled planners
toward renewable energy sources [1–4]. Among these resources, hydro energy contributes
to nearly 16% of the global energy mix [5,6]. However, extensive capital costs, danger to
aquatic life, significantly long construction times, and limited locations are the drawbacks
of hydro-generation technology. To overcome these drawbacks, new arrangements for
hydro facility construction, such as run-of-river, small hydro, and mini, micro, and pico-
hydro plants, have been studied [7–9]. These new arrangements of hydro technology have
reduced the initial cost, construction time, and environmental effects while increasing the
location spectrum for the construction of hydro plants.
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In pumped hydro storage (PHS) and small-scale hydro plants, using pumps in reverse
(PAT) instead of conventional turbines is preferable to minimize the capital cost [10–12].
However, commercially available pumps are not designed to function in reverse mode, and
if this mode is exercised, the pumps prove to be low-efficiency devices. Despite their low
efficiency, PATs are used in small-scale hydro-generation and PHS facilities [13]. The use of
PATs is abundant for numerous reasons, such as their low cost, bulk availability in local
markets, and ease of installation. Furthermore, no specialty is required for operation and
maintenance [14]. However, small-scale PHS and hydro-generation plants encounter flow
fluctuations for several reasons, including intermittent upstream inflows and the decrement
of the head in the upper reservoir of the PHS facility during generation. A PAT is unable
to respond to these flow fluctuations owing to its simple geometry, and the output of the
plant decreases. The design flow, which is obtained by the design head, determines the
maximum efficiency of a PAT. Variations in the flow from its original design flow, for any
reason, have an adverse effect on the output [15].

Researchers have adopted various methods to mitigate the adverse effects of flow
fluctuations on the output, such as parallel PATs of different capacities, geometrical modifi-
cations of a PAT, and power electronics-based variable frequency drives (VFDs). In parallel
PATs, when the flow is reduced and a PAT with a large capacity cannot deliver its rated
output, it is either manually or automatically turned off. A PAT with a lower capacity is op-
erated to minimize the adverse effects of flow fluctuations. However, the output is reduced
by the newly available water flow, and the cost increases owing to paralleling, thereby
making the design more complex [13,16]. Regarding the geometrical modifications of PATs,
different researchers have suggested certain design modifications of the impeller [13,17–22],
which better manage the variable flows. However, these modifications are unable to
manage all the flow variations, and the cost is increased. Power electronics-based VFDs
can provide any speed profile of variable flow inputs [23,24]. When the flow decreases,
which affects the output of the plant, the VFD changes the speed of the generator, and the
output of the plant becomes smooth. However, this method is significantly costly because
devices with high ratings are required, causing installation, operational, maintenance, and
transportation problems.

In this study, a simple technique is proposed to mitigate the adverse effects of flow
variations on the output of a plant. This study is novel because a parallel water column
(PWC) technique is used to smooth the output of a PAT system while maintaining the
water flow at the inlet of the PAT by acting as an auxiliary penstock. With this technique,
water columns connected in parallel are used with the existing penstock of a plant to inject
additional flow at the inlet of the PAT in the event of a decreasing flow. This additional
flow will maintain the smooth rated output of the plant, even at the minimum head. The
effectiveness of the PWC technique was confirmed by performing a simulation using
ANSYS software for the case study of a variable flow profile. Subsequently, based on the
output obtained from the PAT, the electrical output of the generator was analyzed using
MATLAB/Simulink software.

2. Materials and Methods

The details of the adverse effects of the flow fluctuations on the output of the PAT are
discussed herein, along with the basic concepts of the PWC theory for a better understand-
ing of the proposed PWC technique.

2.1. Effect of Flow Variations on the Output of PAT

The output of any hydro system is solely determined by the water flow, as given
below [14,25]:

Pout = ηρgHQ (1)

where Pout is the output power, η is the efficiency, ρ is the density of water, g is the
gravitational acceleration due to gravity (9.81 m/s2), H is the head, and Q is the water flow.
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The fluctuation of the flow “Q” varies the output of the hydro system. A smooth
output can be achieved while maintaining a constant flow, which can be accomplished
using the aforementioned techniques. A smooth output makes the system more efficient.
The effects of flow fluctuations on the efficiency of PAT are shown in Figure 1, in which
five scenarios were considered for the calculations based on a previous study [15]. Notably,
the total reduction in flow is 38.4 L/s, which causes a significant decrease of 6.62% in the
efficiency of the system. This decrease in plant efficiency is dangerous for the stability of
the system.

 
Figure 1. Effect of flow variations on efficiency.

The reduction in flow can be eliminated using the PWC technique. The basics of this
newly proposed technique are discussed herein.

2.2. Water Column Theory

The atmospheric pressure (0.1 MPa) is created by a column of air over the surface of
the earth. Similarly, water exerts pressure at its bottom, owing to the weight of water acting
vertically downward. A water column having a height of 10.3 m creates pressure that is
equal to the atmospheric pressure, that is, 101 kPa [26]; pressure is the force acting on an
area. Mathematically,

P = F/A (2)

where P is the pressure, F is the force, and A is the area. In this study, “A” indicates the
area of the water discharge. If the area of discharge decreases, then the pressure will
increase while the force remains constant, which is the weight of water working vertically
downward and is indicated by the following:

w = mg (3)

where w is the weight of water, m is the mass of water, and g is the gravitational acceleration.
Here, “g” is a constant, and the mass of water should be increased to increase the weight.
Traditionally, no arrangement can be used for the increment of the mass of water because
the penstock is a fixed entity and functions as a singular body. Therefore, flow fluctuations
threaten the stability of the system. Therefore, the PWC technique is presented in this
study. Increasing the number of PWCs allows more space for a larger mass of water, which
increases the force at the same height. In particular, the PWC technique makes the penstock
more flexible and can manage increased flows per the requirements.
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Alternatively, the pressure is inversely proportional to the area of the discharge area.
Therefore, to increase the pressure, the discharge area must be reduced. This reduction was
achieved using a nozzle to increase the pressure, which boosted the velocity of the water.

As the PAT is a low-head device, and this study is regarding low heads, only the Q
parameter, which indicates the discharge/flow of water, in Equation (1) can increase the
output of the PAT system. Mathematically,

Q = Av (4)

where Q is the water discharge, A is the area of the water discharge, and v is the velocity
of the water. According to the continuity equation, the flow in a closed system is always
constant. Mathematically,

Qı = Q2 (5)

where Qı is the flow through point 1, and Q2 is the flow through point 2. Furthermore,

Aı vı = A2 v2 => v2 = A1v1/A2 (6)

The inlet of the PAT is constant since it is a fixed body, and the only option for increas-
ing the value of Q through the PAT while maintaining the same height is by increasing the
velocity. The nozzle at the bottom, which has a velocity of “v2”, as indicated in Equation
(6), will increase the velocity of water, which will in turn increase the value of ‘Q’.

In this manner, as the number of water columns increases, Aı increases, which increases
v2. The PWC technique injects the additional flow at the inlet of the PAT in the event of
a flow decrease with the existing penstock of a plant; the adverse effects of the flow
fluctuations are filtered, which smooths the output of the PAT.

2.3. PWC Technique with the Design of Experiment

The PWC follows certain rules to produce an output. To understand the behavior
of the PWC, an experiment in which five water columns were connected in parallel was
conducted. This experimental design is called a “double-nozzle setup”, in which one nozzle
makes the main outlet, which injects the additional water into the existing penstock of the
PAT, while each water column has a separate nozzle. Computational fluid dynamics (CFD)
simulations were performed using ANSYS software R1 2021 [27]. The dimensions of the
PWC and specifications of the FLUENT solver are listed in Table 1.

Table 1. Dimension of the water columns and solver settings.

Dimensions/Settings Values

Head 10 m
Diameter of the outlet nozzle 0.0635 m

Upper diameter of each water column 0.4572 m
Diameter of the nozzle used at the bottom of

each water column 0.2286 m

Working fluid Water (liquid)
Outlet pressure 0 Pascals

Turbulence model k-ω (SST)
Density of water 1000 kg/m3

Boundaries
Inlet Velocity inlet

Outlet Pressure outlet
Wall function Standard

The geometrical dimensions of the PWC were composed in a design modeler, and the
settings were changed from solid to fluid, while meshing of the PWC was performed using
ANSYS meshing. A tetrahedral mesh was created using a patch-confirming algorithm, and
the span angle center was set to fine. Meshing of the PWC is shown in Figure 2, the details
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of which are provided in Table 2, including the meshing method, inflation layers, element
size, and number of elements per PWC.

 

Figure 2. Meshing of PWCs.

Table 2. Mesh report of PWC.

No. of PWC Element Size Method of Meshing Inflation Layers No. of Elements

1 40 Tetrahedrons 7 274,274

2 40 Tetrahedrons 7 358,456

3 40 Tetrahedrons 7 543,020

4 40 Tetrahedrons 7 736,088

5 40 Tetrahedrons 7 926,713

A mesh independence test was performed for two PWCs to obtain the optimal element
size and number of elements. Element sizes of 20, 30, 40, 50, 60, 70, 80, and 90 mm
were applied to create 1,477,215, 655,237, 358,456, 237,308, 174,459, 138,933, 100,099, and
77,206 mesh elements, respectively. The optimal element size was 40 mm, which was
selected for all the PWC simulation cases. A size of 40 mm yielded 358,456 elements for the
two PWCs, as proven by the grid independence test shown in Figure 3.
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Figure 3. Grid independence test of the two PWCs.

In the experimental design, the dimensions of the PWCs were kept constant, while
the number of PWCs was increased individually. The velocity inlet was assigned as the
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boundary condition at the inlet of the PWCs, whereas the pressure outlet was assigned
at the outlet. The velocity and pressure produced in each case, which were processed in
CFD-Post, are illustrated in (a–e) of Figure 4.

Figure 4. Velocity and pressure produced by (a) one water column, (b) two water columns,
(c) three water columns, (b) four water columns, and (e) five water columns.
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Two types of results were obtained from the experimental design study. First, the
output behavior of the PWC was determined, and a mathematical model was developed. If
the dimensions and output of the water column are known, the optimal number of PWCs
can be derived for any flow, velocity, or pressure profile. Second, the optimal number of
PWCs was derived for the aforementioned PAT, the water flow of which was variable at its
inlet owing to the variations in the head of the upper reservoir during generation.

The results of the flow, outlet velocity, and pressure were calculated in CFD-Post with
a function calculator, while the dimensions of the PWC were maintained to be the same;
only the number of PWCs was increased individually according to the requirements of the
design flow, as shown in Figure 5.
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Figure 5. Variations in the pressure, flow, and velocity as the number of PWCs increases.

2.4. Findings from the Design Experiment

The findings obtained from the design experiment are presented (Figure 5) while
developing a mathematical model to determine the output of the PWC.

Finding 1: Flow

The flow graph shown in Figure 5 demonstrates that the flow increases linearly as the
number of water columns increases. Mathematically,

F = Fi × n (7)

where F is the flow of water, Fi is the flow obtained from one water column, and n is the
number of PWCs used.

Finding 2: Velocity

The velocity of water also increases linearly as the number of water columns increases,
as shown in the velocity graph (Figure 5). The mathematical relationship between the
velocity and PWCs is as follows:

v = vi × n (8)

where v is the velocity at the outlet, vi is the velocity obtained from one water column, and
n is the number of PWCs used.

Finding 3: Pressure

The water pressure at the nozzle inlet increases with the square of the number of water
columns, which increases the water flow at the nozzle outlet. The pressure graph (Figure 5)
describes the mathematical relationship between the PWC and the generated pressure.
Mathematically,

P = Pi× n2 (9)

where P is the total generated pressure, Pi is the pressure obtained from one water column,
and n is the number of PWCs used in any setup.
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3. Optimal Number of PWCs for a Smooth Output of the PAT

Based on Section 2.1, the decrease in the flow of the PAT is 38.4 L/s, for which,
according to Equation (7), a total of five PWCs with a flow of 8 L/s each are required to
smooth the flow at the inlet of the PAT. The PWC dimensions used for this purpose were
the same as those shown in Table 1. Thus, the outlet nozzle of the PWC design becomes an
additional inlet of the PAT, injecting the flow into the existing penstock, which is required
for a particular stage of operation. Initially, the flow through the turbine was a design
flow, and no change was required. As the flow decreases, the output also decreases. One
water column is added by the system to acquire the design flow; if the new flow through
the turbine meets the design flow, no further water column will be added by the system.
However, considering a further deviation from the smooth output, another water column
is added to the system to check whether the new scenario provides a smooth output. No
changes are required if the new output is smooth. These five PWC were added to the
system according to the flowchart shown in Figure 6.

 

Figure 6. Integration of the PWC to maintain the flow.

The integration of the five PWCs with the existing PAT penstock and the injection of
an additional flow at the inlet were conducted in ANSYS, as shown in Figure 7.

 

 

Figure 7. Integration of the PWC with the existing penstock.

As the number of PWCs is increased according to the demand, the flow is maintained
at approximately the designed value, as listed in Table 3.
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Table 3. Flow profile of PAT before and after the addition of the PWCs.

Flow (L/s) Reduced Flow (L/s)
PWC Added
(8 L/s Each)

Additional
Flow (L/s)

New Flow (L/s)

192.1 Nil No Nil 192.1
182.2 9.9 1 8 190.2
172.9 19.2 2 16 188.9
167.1 25 3 24 191.7
153.7 38.4 5 40 193.7

4. Torque Calculation and Generator Behavior

The aforementioned flow profile produces torque in the PAT, which is applied as an
input to the generator to monitor its output. Simulations were performed using ANSYS
and MATLAB software.

4.1. Torque Produced by PAT on Different Flow Values

A pump with a flow of 192.1 L/s was designed using the ANSYS (Vista CPD) tool,
consisting of a volute and impeller with six blades, as shown in Figure 8. A flow analysis
through PAT was conducted in ANSYS CFX [13,28], in which water was used as the
material, and the standard atmospheric pressure was considered to be one atm.

 

Figure 8. Side views of the pump designed in Vista CPD.

The pump was meshed using TURBO GRID, while the impeller and volute were
separately meshed, achieving a good quality mesh, as shown in Figure 9.

Figure 9. Meshing of the impeller and volute.

A detailed mesh report is provided in Table 4, which demonstrates the domains of the
analysis, location of the domains, number of nodes, and number of elements.
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Table 4. Mesh report of the pump.

Domain Nodes Elements Tetrahedra Wedges Hexahedra

R1(Passage) 663,175 627,640 0 0 627,640
S1(B75) 82,927 258,746 165,196 93,550 0

All Domains 746,102 886,386 165,196 93,550 627,640

The mesh independence is checked for the pump and eight different cases with regard
to. element numbers, which are obtained by changing the element size and global size
factor for the volute and impeller, respectively. Element sizes of 15, 20, 25, 30, 35, 40, 45,
and 50 mm were applied for the volute in meshing, yielding 330,438, 281,176, 258,746,
248,172, 240,762, 237,168, 234,902, and 232,452 elements, respectively. In contrast, the
global size factor was the main parameter that was manipulated for impeller meshing,
achieving a range of eight element numbers. Different global size factors for the impeller
were assigned in TURBO GRID; the 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, and 1.5 sizes produced
141,792, 203,553, 280,080, 385,118, 501,128, 781,482, and 1,019,900 elements, respectively.
The output parameter was the velocity at the outlet, which is demonstrated by the mesh
independence test shown in Figure 10; 886,386 elements were selected for the simulations,
which were produced by a 25-mm element size and a 1.3 global size factor.
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Figure 10. Meshing independency test of the pump.

The steady-state boundary conditions for this simulation were set for the PAT. The
stationary (S1) domain is the volute, while the rotating (R1) domain is the impeller of the
pump. The inlet was assigned a boundary condition for the mass flow, while the outlet was
the pressure, and the standard atmospheric pressure was assigned. The blade and all other
boundary walls were assigned a boundary condition (no slip). A frozen-rotor mixing model
was adopted for the interface between S1 and R1. The SST turbulence model was applied
for the flow analysis, while in the solver control panel, a high resolution was applied as
an advection scheme, 1.0 × 10−5 for convergence, first order for numeric turbulence, and
SIMPLEC [27,29,30]. Transient or unsteady simulations were also performed after steady
simulations. The total time was set to 1 s, the time step to 0.0001 s, and the initial time value
to 0 s for the transient case. The transient rotor-stator mixing model was assigned to the
interface between S1 and R1. Cartesian velocity components were selected as u = 0 m/s,
v = 0 m/s, and z = 0 m/s for the global initialization [31].

Here, the pump functions as a turbine; therefore, the outlet of the pump is the inlet of
the PAT, and the direction of the flow of water through the PAT is shown in Figure 11.
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Figure 11. Direction of the flow of water for the PAT.

As indicated in Section 2.1, the torque produced by the variable water flow was calcu-
lated using ANSYS CFD-Post, which is a function calculator. A graphical representation of
the flow and the produced torque is shown in Figure 12a. When the PWC is integrated, and
a new range of flows at the inlet of the PAT is obtained, the model is simulated once again
to calculate the new torque produced by the new values of the water flow. A graphical
representation of the new flow and torque produced is shown in Figure 12b.

Figure 12. Torque produced by PAT (a) before PWC integration and (b) after PWC integration.

The torque produced by the PAT at variable and smooth flows is compared in Table 5,
along with the deviations given before and after the integration of the PWC. These results
clearly demonstrate that the values of the produced torque decrease with decreasing flow.
Hence, fluctuations in the flow rate significantly affect the torque of the PAT. When the flow
rate is kept constant with the integration of the PWC, the torque of the PAT is smoothed
and maximized according to the design flow.
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Table 5. Torque of PAT regarding different flow values.

Before PWC Integration After PWC Integration

Flow (L/s) Torque (Nm) Deviation (%) Flow (L/s) Torque (Nm) Deviation (%)

192.1 226.559 0 192.1 226.559 0
182.5 204.519 9.73 190.2 222.105 1.97
172.9 183.693 18.92 188.9 219.085 3.3
167.1 171.664 24.23 191.7 225.619 0.41
153.7 145.042 35.98 193.7 230.342 1.64

4.2. Generator Behavior on the Variable and Smooth Torque

Although a smooth torque is obtained, which ultimately smooths the output of the
PAT, in most cases, the PAT and generator are directly coupled. However, a Simulink model
was developed to observe the behavior of the generator with variable and smooth torques,
as shown in Figure 13.

 

Figure 13. Overall system to observe the behavior of the generator.

A built-in asynchronous machine block rated at 37 kW was selected from the Simulink
library to simulate the behavior of the generator. This block can simulate both motors
and generators, using (+) and (−) signs with the torque, respectively. The variable and
smoothed torques obtained from ANSYS CFX, as shown in Figure 14, were used as the
input signals in the Simulink model [32,33]. The model was simulated for 25 s, and each
duration of five seconds corresponds to a different torque value.

Figure 14. Torque input signal to the generator.
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The simulation results of the peak value of the generator current are shown in Figure 15,
which demonstrates the variations in the current with respect to the torque obtained from
the PAT. In a hydro system, the torque varies with the flow variation. The current depends
on the torque value. Therefore, any fluctuation in the flow rate affects the output current of
the generator. However, the PWC technique provides a smooth flow, which results in a
smooth output.

Figure 15. Output current of the generator for both variable and smooth torques.

5. Conclusions

A simple and economical PWC technique was proposed in this study to maintain the
design flow at the inlet of a PAT under variable flow conditions. The proposed technique
employs the series integration of parallel water columns with the same dimensions using
a double-nozzle design. Paralleling the water columns creates more space for water to
provide the design flow at the outlet. When water flow is decreased owing to a decrease in
the upstream flow or in a PHS facility, the PWC maintains a flow at the inlet of the PAT by
acting as an axillary penstock.

The design of the experiment and its findings indicate that, for a given case, the
designed flow of 192.1 L/s can create a maximum torque of 226.559 Nm. The reduction
in the flow to 153.7 L/s produced a reduced torque of 145.042 Nm. A total reduction of
38.4 L/s in the water flow was compensated for by integrating five PWCs, each having a
flow capacity of 8 L/s. After the integration, the new flow and torque values were 193.7 L/s
and 230.342 Nm, respectively, which were nearly identical to the designed values with a
deviation of only 1.64%. Furthermore, based on the smooth output of the PAT, the generator
output was confirmed. Thus, integration of the PWC using a double-nozzle design is an
effective technique for maintaining smooth output of the PAT and generator.
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Nomenclature

A area of water discharge [m2]
F force [N]
g gravitational acceleration [m/s2]
H head height [m]
m mass of water [kg]
n number of water columns
P pressure [Pa]
Pout output power [W]
PAT pump as turbine
PWC parallel water columns
Q flow of water [L/s]
v velocity of water [m/s]
w weight of water
η efficiency [%]
ρ density of water [kg/m3]
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Abstract: In this paper, a method for rationally allocating energy storage capacity in a high-permeability
distribution network is proposed. By constructing a bi-level programming model, the optimal capacity
of energy storage connected to the distribution network is allocated by considering the operating cost,
load fluctuation, and battery charging and discharging strategy. By constructing four scenarios with
energy storage in the distribution network with a photovoltaic permeability of 29%, it was found
that the bi-level decision-making model proposed in this paper saves 2346.66 yuan and 2055.05 yuan,
respectively, in daily operation cost compared to the scenario without energy storage and the scenario
with single-layer energy storage. After accessing IEEE-33 nodes for simulation verification, it was
found that the bi-level decision-making model proposed in this paper has a good inhibition effect on
voltage fluctuation and load fluctuation after energy storage configuration. In addition, this paper
analyzes the energy storage that can be accessed by photovoltaic distribution networks with different
permeability and finds that when photovoltaic permeability reaches 45% and corresponding energy
storage is configured, the economic and energy storage benefits of the system are the best.

Keywords: high PV penetration; energy storage; optimal configuration; bi-level decision-making
models

1. Introduction

In recent years, with global carbon dioxide emissions hitting record highs, China
has proposed a "two-carbon" target to tackle environmental problems. Promoting the
development of new energy and the transformation of energy structures has become an
important part of global development. Due to abundant reserves and easy access, solar
energy has been developing rapidly in recent years, and its proportion in the power grid
has been increasing year by year [1]. While improving energy utilization, this has brought
a lot of trouble to the power distribution network. With the continuous increase in the
penetration rate of photovoltaics integrated into the power distribution network, problems
such as voltage collapse may occur, which has a serious impact on the safe and stable
operation of the system [2].

Studies have shown that a large number of photovoltaics connected to the distribution
network will also increase the number of system equipment, which will bring a burden to
the system and easily generate harmonic interference. In addition, the retrograde power
generated by the grid connection is prone to exceed the limit of the system node voltage,
which not only reduces the power quality but also deteriorates the user experience. When
high-penetration photovoltaics are connected to the grid, the uncertainty of output cannot
be matched with the load of the distribution network in real-time, which will affect the
power balance of the system. When the photovoltaic output fluctuates greatly due to the
change in environment and climate, the stability of the system will be affected [3]. In
addition, the high-penetration photovoltaic grid connection requires a large number of
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power electronic equipment to join the distribution network, which leads to the existence
of harmonics and affects the power quality [4], and the dispatching flexibility of the
distribution network is greatly reduced, which makes it more difficult for the power system
to develop a power generation plan. If such problems cannot be properly solved, it will not
only seriously threaten the safe and stable operation of the system but also cause a waste of
energy and limit the future development of photovoltaic power generation [5].

The authors in [6–8] analyze the influence of photovoltaic systems from the aspects
of voltage fluctuation, voltage amplitude, and frequency. From the perspective of stabil-
ity, Rasoul proposed a new framework to analyze the influence of different photovoltaic
permeability on voltage stability [9]. During the study, Zetty found that in a high perme-
ability renewable energy distribution network, load fluctuation is the main factor leading
to the voltage fluctuation of the system, and the realization of various fluctuations in the
high-light voltage permeability distribution network is important content to achieve the
increase of photovoltaic permeability in the distribution network [10]. The introduction of
energy storage devices improves the power quality while improving the photovoltaic stable
output [11–13]. Through reasonable regulation and control of a BESS, the absorption of
new energy on the power generation side can be completed, the permeability of distributed
power supply on the transmission side and distribution side can be improved, and the safe,
stable, and economic operation of the system can be ensured [14,15]. The authors in [16–18]
studied the working principle and characteristic analysis of different types of energy stor-
age devices and different types of BESSs and discussed the practicability of combining
BESS energy storage and generation measurement. From the perspective of photovoltaic
and load output prediction, Rahman and Zhao verified the feasibility of combining energy
storage optimization configuration with the prediction by comparing scenarios with or
without prediction [19,20]. In order to meet the photovoltaic energy storage demand in
the distribution network, Wang’s multiple operation scenarios of energy storage were
divided into grid scenarios to obtain the demand relationship of energy storage capacity
under different operating conditions and to complete the calculation of energy storage
capacity [21].

Access to energy storage equipment requires considerable capital investment in actual
project construction and operation and maintenance. Therefore, the demand response for
energy storage capacity is important content in optimizing energy storage configuration.
In [22], Balouch proposed an optimization goal of matching demand and supply. Based
on the analysis of line planning, low-cost scheduling, and demand response, the energy
utilization efficiency and comprehensive operating cost of a smart grid were optimized.
The authors in [23,24] introduced the improved optimization algorithm to improve the
optimization ability so as to determine the optimal scheme of energy storage optimization
configuration and realize a higher degree of response between demand and supply by
analyzing various indicators of access to the power grid. In [23], Balouch optimized a
response scheduling scheme by introducing the GWCSO algorithm. Higher robustness and
computational efficiency of the algorithm make the optimization results more advantageous
in power cost and peaking ratio. In [24], Mostafa improves the PSO algorithm, improves
the accuracy and effectiveness of the algorithm, and optimizes the location and capacity
allocation of energy storage in distributed networks. While the optimization objects are
complex and diverse when connecting to the power system, the choice and update of the
Pareto optimal solution will determine the quality of the final optimization result [25].

In the existing studies, it seems obvious for everyone to apply energy storage in high-
permeability photovoltaic distribution networks [26–32]. In the case of low photovoltaic
permeability, access to energy storage can indeed improve photovoltaic output and power
quality. However, few researchers have analyzed whether energy storage can still meet
expectations in the scenario of high photovoltaic permeability, and how to rationally
allocate energy storage in a distribution network with high photovoltaic permeability. In
this paper, the application of energy storage in a high permeability photovoltaic scenario is
analyzed, and the energy storage in a high-light volt distribution network is configured by
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establishing a two-layer planning model of the distribution network. The optimal size of
energy storage was configured considering the fluctuation of power grid voltage and load,
economic benefits and energy storage benefits, and the working condition of energy storage
in the scenario of high-light voltage permeability, and the improvement of benefits in all
aspects of the distribution network were studied. Finally, the feasibility of the proposed
method was verified in the IEEE-33 node system.

The main contributions of this study are summarized below:

• Proposed a method for optimal allocation of energy storage capacity of a distribution
network based on a two-layer programming model and verified its feasibility.

• Used the K-means method to complete an analysis of the uncertain photovoltaic
output into the deterministic scenario.

• The multi-objective particle swarm optimization algorithm was improved to solve the
optimal configuration, and the advantages of the improved algorithm were compared.

• By constructing different scenarios, it was verified that energy storage can still improve
the power quality in the distribution network with high-light voltage and permeability.

• Through analysis of the optimal configuration of energy storage in the distribution
network with different photovoltaic permeabilities, the optimal economic photovoltaic
permeability was concluded.

The rest of this paper is organized as follows: The treatment method for the PV
uncertainty and the selection of the PV working curve is introduced in Section 2. In
Sections 3 and 4, the bi-level decision-making programming model is constructed and
solved to realize the addressing and capacity selection of the energy storage device. At
the same time, in the fourth section, the specific content of particle swarm optimization is
described. In Section 5, four scenarios are constructed to discuss the benefits generated by
energy storage configuration and optimization benefits brought by algorithm improvement.
Finally, in Section 6, we summarize the content of the thesis.

2. Analysis of Photovoltaic Output Characteristic

Due to the great influence of light and the environment, photovoltaic power generation
is full of uncertainties. For further analysis, we collected the annual daily output data of
photovoltaic power stations (annual output of an operational photovoltaic power station
in Henan Province from June 2019 to July 2020), as shown in Figure 1. When considering
energy storage benefits, excessive uncertainty in output will lead to uncertainty in energy
storage benefits. In order to avoid this influence, this paper will process various output
curves by clustering the division method, summarizing the photovoltaic output with high
uncertainty into six typical output scenarios and analyzing them, and transforming the
uncertainty into a deterministic analysis.

2.1. K-Means Cluster Analysis Method

The K-means clustering method is a classical clustering analysis method based on the
iterative method which has the advantages of high efficiency and convenience in processing
large-scale uncertain data [33]. Through the K-means clustering method, a large number
of output data can be refined and extracted, and fewer typical output scenarios can be
obtained that can represent the output of photovoltaic power stations.

The K-means algorithm sets an initial cluster center in all scenes and iterates clustering
for a large number of scenes based on the optimal distance. The iteration is not finished
until the clustering presents a steady-state equilibrium. The iteration results are shown
in Figure 2. After the whole process is complete, the center of each cluster scene is set as
the partition scene, and the probability of each cluster scene is set as the required partition
probability Pr(s).
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Figure 1. Annual daily output curve of photovoltaic power plants.

Figure 2. K-means clustering method results.

Set the number of initial scenarios ξs(s = 1, 2 . . . N) to Ns. The number of target
scenarios is Ms, and the entire calculation procedure is as follows:

1© Ms target scenes with random data are set as the cluster center, and the set of these
scenes is Center =

{
ξCenter

s
}
(s = 1, 2 . . . Ms).

2© Excluding the cluster center set, the other scene set is set as Member = {ξCenter
s } (s = 1,

2 . . . Ms), and the distance from the other scene set to the cluster center scene set is

calculated:

{
DTs,s′ = DT

(
ξCenter

s , ξMember
s

)
= ||ξCenter

s − ξMember
s ||2

s = 1, 2 . . . Ms , s′ = 1, 2 . . . Ns − Ms
3© The other scene sets excluding the cluster center set are divided into the nearest

cluster center according to the distance calculated in 2©. We obtain the cluster set
Cluster = {Ci}, i = 1, 2 . . . Ms, where Ci is a set of similar scenarios.

4© Set the same cluster Ci including Ls scenarios. Add the distances from each scenarios
to the others: CTs = ∑Ls

s′=1
s′ 	=s

||ξs − ξs′ ||2, and scene ξk in CTs = Min(CTs) is selected as
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the clustering center of the next iteration. This is used to calculate the next iteration
cluster center set.

5© At this point, stable cluster centers and clustering results can be obtained by repeating
steps 2©– 4©. The probability number of each type of scenario is the probability number
of a single scenario in that type of scenario.

The process of the clustering algorithm to reduce the scene is shown in Figure 3.

Figure 3. Cluster reduction flowchart.

2.2. Selection of Typical Output Scenarios

After data processing and division by the K-means clustering method, six output
scenarios as shown in Figure 4 can be obtained. The occurrence probability and the number
of curves of each output scenario are shown in Table 1.

Table 1. Typical scenario probability.

Scenario
Number of

Curves
Probability Scenario

Number of
Curves

Probability

1 35 0.0959 4 24 0.0658
2 7 0.0192 5 127 0.3479
3 75 0.2055 6 97 0.2658
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Figure 4. Clustering of typical scenarios.

As can be seen from Figure 4 and Table 1, the photovoltaic output power in Scenario
1 is low, while the output in Scenario 2 has great fluctuation and uncertainty. The inter-
mediate level of output in Scenarios 3 and 4 cannot represent photovoltaic output, and
Scenarios 5 and 6 have a high probability and good output curve. In contrast, Scenario
5 with the maximum annual output is selected as the typical photovoltaic output curve,
which can better reflect the output characteristics of photovoltaic power generation. In
order to facilitate the analysis of the combined effect of photovoltaic and energy stor-
age under different permeability, in this paper, we will only select Scenario 5, which is
the most representative and has the highest probability of occurrence at the same time,
as the analysis object to study the influence of energy storage access to the power grid
during daily operation on voltage fluctuation, operation cost, and other benefits of the
distribution network.

3. BESS Bi-Level Decision-Making Model Configuration

Due to the mutual influence between the optimal configuration of the energy storage
system and the stable operation of the distribution network, this will bring difficulties to
the dispatching of the energy storage devices and will cause the operation stability of the
distribution network to decline. Therefore, it is necessary to consider a reasonable location
and capacity while taking into account the operation economy of the distribution network.
The bi-level decision-making model relies on its own two-level hierarchical structure to
optimize the system objectives hierarchically. The upper and lower levels influence each
other and seek the overall optimal solution according to the independent objective function
and the corresponding constraints [34,35].

3.1. Upper-Level Model Objective Function

In the upper-level optimization, energy storage configuration location, rated power,
and installed capacity are considered to reduce the total cost of the energy storage system
and distribution network investment and maintenance. The installation location and
capacity of the BESS are optimized. After the optimal configuration of energy storage
is obtained, the information is transmitted to the lower level to adjust the charge and
discharge power of energy storage.{

Fmin = fsto + fope
s.t.g(X) ≤ 0

(1)
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where Fmin is the minimum daily total cost after the energy storage is connected; fope is the
total cost of distribution network operation investment. fsto is the input costs for energy
storage construction. X = [x1, x2, x3], and x1, x2, x3, respectively, represent the BESS input
node, power, and capacity.

3.2. Lower Objective Function

In the lower-level optimization, due to the influence of the energy storage installation
location and capacity selection on the energy storage life, the lower-level decision-making
model fully considers the change of the energy storage charging and discharging power to
realize the economical operation mode of the distribution network and achieve the smallest
fluctuation range of node voltage and load. The lower optimization objective function is
as follows: {

min
(

fope, f2, f3
)

s.t.h(y) ≤ 0
(2)

where f2 is the amplitude of the voltage fluctuation of the distribution network node caused
by the access to energy storage, f3 is the amplitude of the load fluctuation of the distribution
network, and y = [y1, y1, y2 . . . y24] is the average hourly charging and discharging power
of the energy storage system throughout the day.

(1) The voltage fluctuation of distribution network nodes caused by energy storage access
can be expressed as:

min f2 =
24

∑
t=1

N

∑
k=1

[
uk(t)− ukn

Δukmax

]2
(3)

where N indicates the number of system nodes, and uk(t) indicates the voltage value
of node k at time t.

(2) The load fluctuation of the distribution network caused by access to energy storage
can be expressed as:

min f3 =
1
T

T

∑
t=1

[
P′

load(t)− P′
ave
]2 (4)

where P′
ave represents the average load in a period of time when energy storage

is connected.

3.3. Constraints

(1) Constraints at the BESS access node

1 ≤ x1 ≤ Nmax (5)

where x1 are nodes invested in energy storage, and Nmax is the maximum number of
nodes expressed as energy storage input.

(2) The constraints of power rating and capacity energy storage devices can be ex-
pressed as {

Pmin
ess ≤ Pessn ≤ Pmax

ess
Emin

ess ≤ Eessn ≤ Emax
ess

(6)

where Pmax
ess and Pmin

ess is the maximum and minimum value of the rated output of the
energy storage, and Emax

ess and Emin
ess are the maximum and minimum values of the

energy storage input capacity.
(3) Power balance constraints

Pgrid + Pgv = Pload + Ploss + Pess (7)

where Pgrid is the power value received by the grid, Pgv is the PV output power, Pload
is the output power, Ploss is the network loss, and Pess is the BESS input power.
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(5) BESS charge and discharge power constraints{
0 ≤ Pcha

ess (t) ≤ Pessn
−Pessn ≤ Pcha

ess (t) ≤ 0
(8)

(6) Voltage constraints in distribution network nodes

umin
k ≤ uk(t) ≤ umax

k (9)

where umin
k and umax

k are the minimum and maximum voltages of node k at time t.
Energy storage system SOC constraints

SOC(t) =
E(t)
Esn

= SOC0 +
∑t

k=1

{
d1(t)Pcha

ess (t)nc

}
Δt + ∑t

k=1

{
d2(t)Pcha

ess (t)/nd

}
Δt

Essn
(10)

where SOC0 is the initial state of the energy storage system, including power and
capacity. Essn is the rated capacity of the energy storage battery.

(7) Supplementary constraints

1© Due to the limitation of the SOC range of the BESS, there will be a large number
of infeasible solutions during the recovery of its all-day charging and discharging
power. If its charge and discharge power is processed, this will greatly improve the
convergence rate in the solution process and reduce the amount of calculation.

P′
ess =

{
Pess(t) SOCmin ≤ SOC(t) ≤ SOCmax

0 otherwise
(11)

where P′
ess(t) is the energy storage charge and discharge power value that has been

processed at time t. In this way, the infeasible solution is transformed into an effective
feasible solution, and the charging and discharging power that is not within the SOC
range of the energy storage is changed to 0.

2© Using the penalty function method to deal with the constraints that are not within the
valid range:

F(x, M) = f (x) + M
r

∑
i=1

max(gi(x), 0)− M
s

∑
i=1

min(hi(x), 0) + M
t

∑
i=1

|ki(x)| (12)

where M is the penalty coefficient. gi(x) indicates the negative inequality constraint.
hi(x) indicates the positive inequality constraints. ki(x) indicates the equality con-
straint at zero. r, s, t are the number of constraints.

4. Solution of Model

For the bi-level programming model, this paper selects the genetic algorithm (GA)
for the optimization of the upper layer and improved multi-objective particle swarm
optimization (IMOPSO) for the optimization of the lower level. The calculation process is
as follows:
1© Input the demand parameters of the distribution network into the system.
2© Initialize the decision variables for the upper level (including BESS installation lo-

cation, power rating, and capacity). Under the constraint, the population and other
parameters of the GA algorithm are initialized.

3© Initialize the decision variables of the lower level, including the BESS charge–discharge
method. Under its constraints, the IMOPSO algorithm population and other related
parameters are initialized to solve the initial fitness of each optimization objective.

4© After the optimization of the lower layer is completed, the TOPSIS multi-attribute
decision-making method is used to select the upper Pareto solution set obtained, and
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the best scheme is selected and fed back to the upper layer to solve the fitness of the
upper layer target.

5© The upper-level GA algorithm population is updated, and the third and fourth steps
are continuously executed until the upper-level optimization is completed.

6© The optimal BESS configuration scheme of the upper layer, the corresponding optimal
charge-discharge method of the lower layer, and the optimal Pareto solution set
are obtained.

The calculation process is shown in Figure 5. In the following sections, we will
give a specific description of the improvement content of the multi-objective particle
swarm optimization.

Figure 5. Calculation process.

4.1. Improved PSO Algorithm

The particle swarm optimization (PSO) algorithm is an iterative optimization algo-
rithm. By converting the target into a certain number of particles, the position is updated
in each iteration, and the optimal solution is searched through continuous iteration. The
updating method is as follows:

vk+1
id = wvk

id + c1r1

(
p(k)id − x(k)id

)
+ c2r2

(
g(k)d − x(k)id

)
(13)

x(k+1)
id = x(k)id + v(k+1)

id (14)

where w represents inertia weight; c1, c2 are acceleration coefficients of particle motion
respectively. r1, r2 are randomly selected in the range of 0 to 1; P(k)

id represents the d-
dimensional component of the particle numbered i in the optimal position vector at time k;
and g(k)d represents the d-dimensional component of the optimal position of all particles at
time k.

In the process of iterative optimization, the traditional muti-objective particle swarm
optimization algorithm is prone to fall into local optimal and appear ‘Premature conver-
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gence’. Therefore, this paper cross-mutates the prescribed bit vectors of particles to prevent
them from falling into the local optimum.

Xi,d = Xmin + (Xmax − Xmin)r (15)

where Xmin represents the minimum position variable of the particle; r represents any value
between 0 and 1.

Random cross variation is carried out when the probability distribution P < Pm is
satisfied. When the fitness of particles tends to be the same or locally optimal, the w will
increase. Otherwise, the w will decrease as the particles tend to disperse [36].

w =

{
wmax − (wmax−wmin)( fi− favg)

fmax− favg
fi ≥ favg

wmax fi ≤ favg
(16)

where fi is the fitness value of the particle i, wmax,wmin are the maximum and minimum of
w, and fmax, fmin, favg are the average and maximum, minimum, and average fitness of all
particles at present, respectively.

In order to make the optimal solution distributed evenly in a certain range, the Pareto
solution set should be optimized step by step. In this paper, a dynamic image Pareto
solution set updating method is adopted, as is shown in Figure 6. In the initial distribution
stage of particles, referring to all particles of the original comparison rule, an image ViD is
established with the optimal particle as an optimal Pareto solution set. With the progress
of iteration, the average value of particles is obtained between every two images, and the
optimal solution is used to make the speed and position of particles updated at this time so
that the particle population moves towards the target direction. In the whole process, new
particles constantly exchange information with image particles and update data in image
particles continuously until the end of iteration:

Vt+1
iD = wvt+1

iD + c1rand1

(
piD − Xt+1

iD

)
+ c2rand2

(
Average

(
pbestp

)− xt
iD
)

(17)

xk+1
iD = xk

iD + vk+1
iD (18)

where t is the number of iterations; D is the dimension of the decision variable; piD is the
best historical value of single particle i; and pbestp is the optimal particle of the current
Pareto solution set in the image. Average

(
pbestp

)
is the superior particle of the optimal

Pareto solution set in the two images.

Figure 6. Dynamic image Pareto solution updates schematic.
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There are differences in the selection of the optimal solutions between the multi-
objective particle swarm optimization and single-objective particle swarm optimization,
and the results obtained are complementary dominated Pareto solutions, which cannot be
obtained by direct comparison of the particle fitness function. Therefore, in this section, the
first 20% Pareto solutions with lower crowding distances and higher priority orders are
randomly selected to guide the iterative updating of the particle population.

4.2. Multi-Attribute Decision-Making Based on TOPSIS Method

After solving the lower multi-objective optimization problem, the optimal solution
obtained by the IMOPSO algorithm is a set of Pareto solutions, and the selection of the
optimal solution is essentially a multi-attribute decision problem. TOPSIS is a method for
ordering by similarity to an ideal solution, it selects the optimal solution set and the worst
solution set through the established initial decision matrix, then compares the distance
between the two solution sets and the evaluation index with the optimal solution set and
finally sorts them to evaluate the pros and cons of the scheme. The TOPSIS method has
high strict requirements in selecting weights. In this paper, the information entropy method
is used to determine the weight of each target value. The information entropy method
determines w by the difference of the target value in the Pareto solution, improves the
accuracy of the final decision, reduces the difference, and ensures the objectivity of the
decision. By using the TOPSIS method, we can determine a set of optimal Pareto solutions
to guide us to choose an energy storage configuration scheme.

The optimal solution of the Pareto solution set obtained is selected from X1 ∼ XN
and combined into N alternative schemes. The scheme Xi is selected from N records. It is
the composition of some optimal solutions in the Pareto solution set. gm(Xi) represents the
value of the mth attribute of the scheme Xi. Since each attribute is different, it should be
unified and changed into the same type. The new attribute value is Gm(Xi) , which can be
expressed as:

Gm(Xi) =
gm(Xi)√

1
N ∑N

i=1 g2
m(Xi)

(19)

d(xi) =
d+(xi)

d+(xi) + d−(xi)
(20)

d+(xi) =

√
n

∑
m=1

[
λmg′m(xi)− λmg′m+

]2 (21)

d−(xi) =

√
n

∑
m=1

[
λmg′m(xi)− λmg′m−

]2 (22)

where d(xi) is the relative distance of scheme xi; d+(xi) represents the distance between
scheme xi and the optimal solution. d−(xi) represents the distance from solution xi, the
negative worst solution. λm indicates the weight value of gm(Xi), which is randomly set
between 0 and 1. g′m+ and g′m− indicate the optimal and worst values of all schemes gm.

5. Analysis and Discussion

5.1. Case Description

In this paper, the proposed scheme is tested on the IEEE-33 node distribution net-
work [37]. In addition, the structure of the system is shown in Figure 7.

In this paper, the rated voltage of the selected distribution network is 12.66 kV, and
the total load is 3715 kW + j2300 kvar. The upper and lower limits of the node voltage are
specified as not exceeding ±5% of the rated voltage. Node 1 is a balance node, which is
connected to the upper-level distribution network for power transmission. Taking into
account the actual work and construction of photovoltaic power generation connected to
the distribution network, photovoltaic power generation is connected to Node 9, and its
installed power generation capacity is 1.077 MW (29% penetration rate).
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Figure 7. The topology diagram of IEEE-33 bus system.

The typical PV output curve selected by the method in Section 2 is shown in Figure 8.
The typical daily load curve in this area is shown in Figure 9.

Figure 8. Photovoltaic typical sunrise force curve.

Figure 9. Typical daily characteristic curve of load.

In this paper, the battery is used as the energy storage system for research and intro-
duces the time-of-use pricing strategy proposed in [38]. The specific time-of-use price is
shown in Table 2. The energy storage control parameters are shown in Table 3. The specific
setting parameters of the energy storage configuration optimization simulation are shown
in Table 4.
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Table 2. Time-of-use electricity price table.

Type Period Electricity Price (yuan/kWh)

Peak time 17:00–22:00 0.9796

Normal time 8:00–17:00
22:00–00:00 0.6570

Trough time 00:00–8:00 0.35

Table 3. Energy storage control parameter table.

Energy Storage Control Parameters Data

Service life (year) 11
Discount Rate 0.02

Rated power cost (yuan/kW) 1000
Installation cost (yuan/kW) 2500

Operation and maintenance cost (yuan/kW) 0.05
State of charge SOC range 20–90%

Rated power upper limit (MW) 1
Maximum installed capacity (MWh) 5

Table 4. Simulation parameter settings.

Parameter Data

Power purchase cost of grid 0.35
Expansion cost 1000

Expansion annual profit margin 8%
Load annual growth rate 1.5%

Genetic algorithm population size/number of iterations 60/200
IMOPSO algorithm population size/number of iterations 100/200

Crossover/variation rate 0.1/0.05
Inertia weight range 0.4–0.9

Threshold for difference X 0.1
The size of the Pareto solution set 100

In order to study the actual effect of energy storage configuration, we first analyzed the
specific benefits of a photovoltaic distribution network connecting to energy storage config-
uration and demonstrated that energy storage still has good benefits in the high-light volt
distribution network. Then, we compared the photovoltaic distribution network scenarios
under different permeability and analyzed and compared the change of photovoltaic per-
meability with the corresponding change of optimal energy storage configuration scheme.
The specific analysis content is introduced in the following section.

5.2. Energy Storage Optimization Scenario Division

Analyze the effectiveness of the method proposed in this paper, set different conditions,
divide it into four scenarios, and compare them one by one to verify the feasibility of
the method:

Scenario 1: No energy storage.
Scenario 2: With access to energy storage, use the IMOPSO algorithm in this paper to solve

the optimization objective of lower-level model in the bi-level decision-making
model; introduce the charging and discharging strategy of the energy storage
system to simulate and analyze it.

Scenario 3: When solving its single-level model, ignore the charging and discharging
management strategy of energy storage in the lower model, and only the energy
storage system and distribution network are considered to have the lowest total
cost. At the same time, in the time-of-use electricity price model, the energy
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storage system is charged and discharged at a constant power regardless of the
high or low electricity price.

Scenario 4: The optimal configuration result of energy storage in Scenario 2 is used as
the constraint condition of this scenario, and the traditional multi-objective
PSO algorithm is used to simulate and analyze the lower model in the optimal
configuration model of the energy storage double-level. Node voltage curves
and load curves in different scenarios are shown in Figures 10 and 11 below,
and Table 5 shows the optimization results of different scenarios.

Figure 10. System node voltage curve in different scenarios.

Table 5. Optimization results in different scenarios.

Scenario
Node/Power
(kw)/Capacity

(kwh)

Cost of
Investment

Distribution
Network

Operating
Costs (Yuan)

Voltage
Fluctuation

Value

Load
Variance

Total Cost
(Yuan)

Degrees of
Savings

1 - 0 16,703.6 70.21 36,5721.76 16,703.6 1.77%
2 14,650,3392 1879.32 14,532.67 63.52 15,3971.12 16,411.99 0%
3 20,273,2733 1497.62 15,717.64 64.98 24,9754.21 17,215.26 4.89%
4 14,650,3392 1879.32 14,767.71 64.85 15,9894.09 16,647.03 1.43%
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Figure 11. Load curve in different scenarios.

By comparing Scenario 1 and Scenario 2, it can be found that the voltage amplitude
curve of the photovoltaic distribution network is smoother after the energy storage is
connected, and the voltage fluctuation and load fluctuation are reduced to a large extent,
which indicates that the BESS plays a good role in suppressing the node voltage fluctuation
and load fluctuation when it is connected to the distribution network. Compared with
Scenario 3, the load fluctuation range of Scenario 2 is smaller, and the load smoothing
capacity is better. At the same time, the total cost of Scenario 2 is 803.27 yuan lower than that
of Scenario 3 economically, which verifies the good characteristics of the model proposed
in this paper.

The optimal Pareto solution set distribution of Scenario 2 and Scenario 4 is shown in
Figure 12. Scenario 2 adopts the improved IMOPSO algorithm in this paper to solve the
inner model, and Scenario 4 adopts the unimproved MOPSO algorithm to solve it. The
Pareto solution set in Scene 2 is more evenly distributed than that in Scene 4 due to the
introduction of particle cross mutation, adaptive inertia weight, and the Pareto solution set
update method of the dynamic image. Moreover, Scene 2 adopts multi-attribute decisions
based on the TOPSIS method, resulting in a more diverse solution set.

Figure 12. Pareto solution set distribution.
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Through the comparison of scenes, it is obvious that the optimization results of the
IMOPSO algorithm are obviously better than the MOPSO algorithm, and the search accu-
racy is higher. In order to compare the performance of the two algorithms, the external
solution set and the spacing S are used in this paper to measure the optimization perfor-
mance of the two algorithms. The S index refers to whether the particles in the Pareto
solution set are evenly distributed in space. The mean variance of the particle density dis-
tance is used in this paper to characterize the uniformity and global nature of the population
particles, as shown in Equation (23).

S =

√√√√ 1
N

N

∑
i=1

[I(xi)− I]2 (23)

where I represents the average of all particles I(xi) in the Pareto solution set.
According to the different internal environments of the two algorithms, after 20 cycles,

the node voltage and load fluctuations in the optimization target are taken as the research
object, as shown in Figure 13 and Table 6.

Figure 13. Convergence curves of external solutions for different objectives.

Table 6. Algorithm performance comparison.

Algorithm

External Solution

Distance ‘S’Node Voltage
Fluctuation

Load Fluctuation

MOPSO 0.8869 0.2103 0.0485
IMOPSO 0.7154 0.1226 0.0317

By combining and comparing the charts, it was concluded that the IMOPSO algorithm
proposed in this paper reduces the number of iterations in the node voltage fluctuation and
load fluctuation, and the convergence performance is obviously better than the MOPSO
algorithm. In addition, the improved algorithm and Pareto solution set update strategy
make the solution set distribution more uniform and the type of solution set more diverse,
and the improved MOPSO has better robustness and convergence.

5.3. Energy Storage Benefit Analysis under Different Photovoltaic Permeability

In order to verify the effectiveness of the dual-layer multi-objective optimal config-
uration model of the energy storage system proposed in this paper in the high-light volt
permeability distribution network, the upper limit of photovoltaic power generation per-
meability was set at 60%, and the verification started from 30% permeability. Using the
optimal configuration strategy of the BESS, the curve as shown in Figure 14 was obtained.

346



Energies 2023, 16, 2168

Figure 14. Changes in energy storage capacity and power under different photovoltaic
penetration rates.

When the photovoltaic permeability increases from 30% to 60%, the capacity and
power of the energy storage system have an obvious rising trend. When the photovoltaic
permeability reaches 50%, the growth slows down and tends to remain unchanged. In
other words, it is of little significance to increase the capacity of the energy storage system
when the permeability reaches a certain level.

Figure 15 below shows the variation trend of energy storage investment and the
total cost of distribution network operation under different photovoltaic permeability.
It can be clearly seen that the total cost of the system decreases first and then increases
when the photovoltaic permeability increases, and the total cost is the minimum when
the permeability is 45%. As the cost of photovoltaic power generation decreases with the
continuous increase of the permeability but is limited by the load level, the cost of the
energy storage system increases with the increase of the capacity. The interaction between
the two makes the total cost of the system decrease to the minimum when the photovoltaic
permeability is 45%. When the permeability increases again, the system’s total cost will
keep rising, and the system operation economy will be seriously affected.

Based on the discussion of the above two legends, it is found that the total capacity of
the BESS should be controlled in the optimal range according to the actual situation, and
the photovoltaic permeability should also be controlled at a certain value so as to ensure the
system operation economy while ensuring the safe and stable operation of the system. In
order to improve the overall economy of the system, this paper selected 45% photovoltaic
permeability to verify and analyze the two-layer programming model of the energy storage
system proposed in this paper.

As shown in Figure 16 below, after optimizing the configuration of the energy storage
system with 45% photovoltaic permeability, the load curve of the distribution network
presents an obvious smoothing trend, and the peak–valley difference decreases. The
sufficiency proves that the two-layer optimal configuration model of energy storage can
still effectively improve the off-peak load, reduce the peak load of the distribution network,
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and increase the scheduling flexibility of the distribution network under the condition of
high photovoltaic permeability.

Figure 15. Total cost curve under different PV penetration rates.

Figure 16. Distribution network load curve before and after energy storage configuration optimization
under 45% photovoltaic penetration rate.

348



Energies 2023, 16, 2168

6. Conclusions

In order to ensure the power quality and scheduling flexibility of the photovoltaic
distribution network with increasing permeability, this paper proposes a joint optimization
operation mode of optical storage. Firstly, the PV output model was analyzed, and the
scenario planning method was applied. The K-means clustering algorithm was used to
divide the output scenarios, and the typical output scenarios were selected for analysis.
A BESS two-layer decision model was established, and the improved IMOPSO algorithm
was used to solve the two-layer model. The IEEE-33 node example was adopted, and the
simulation verification was carried out based on the current feed-in price, selected energy
storage parameters, and other parameters. The simulation analysis results are as follows:
1© Access to energy storage can effectively smooth the load fluctuation and voltage

fluctuation of system nodes in a photovoltaic distribution network. In a distribution
network with high-light volt permeability, energy storage can effectively improve the
off-peak load of the distribution network and reduce the peak load, thus increasing
the scheduling flexibility of the distribution network.

2© The bi-level programming model proposed in this paper has a good optimization
ability for the rational allocation of energy storage.

3© The improved IMOPSO in this paper has good convergence performance and robust-
ness and has good applicability in application optimization

4© When the optimal energy storage capacity under different photovoltaic permeability is
configured, the total cost of the system is optimal when the photovoltaic permeability
is 45%, and when the permeability increases again, the total cost of the system will
keep rising and seriously affect the operation economy of the system. The analysis
of this paper provides a theoretical basis for the optimal configuration of the energy
storage system and an important reference for the safe, stable, and economic operation
of a high permeability photovoltaic distribution network.

7. Future Work

In this paper, only batteries are considered in the selection of batteries in the energy
storage system. However, with a wider application of energy storage, a single energy
storage system may not be able to meet the actual demand in the future. In subsequent
research, we will combine other types of energy storage for optimization analysis of hybrid
energy storage.

At the same time, because of the variety of renewable energy, more and more dis-
tributed power is connected to the distribution network. This paper only analyzes access
to photovoltaic power generation. In a follow-up study, we will conduct a further study on
scenarios with access to various energy sources.

In addition to the voltage fluctuation and load fluctuation considered in this paper,
the power system with energy storage access has more indicators to measure security. In a
follow-up study, we will also analyze the improvement and influence of energy storage
access on various indicators.
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Abstract: One of the urgent tasks of applied materials science is the creation of novel high-effective
materials with target properties. In the area of energy systems, there is a problem in the conversion of
chemical energy to electricity without mechanical work. Hydrogen energy provides a way using elec-
trochemical devices such as protonic ceramic fuel cells. Novel advanced proton-conducting materials
with the top characteristics of target properties are strictly needed. Layered perovskites are a novel
and promising class of protonic conductors. In this work, the layered perovskite BaLa0.9Pr0.1InO4

was obtained and investigated as a protonic conductor for the first time. The possibility for water
intercalation and proton transport is proved. It was shown that isovalent doping Pr3+ → La3+ leads
to an increase in the crystal lattice size, proton concentration and proton mobility. The proton conduc-
tivity value for doped BaLa0.9Pr0.1InO4 composition is 18 times greater than for undoped BaLaInO4

composition. Layered perovskites based on BaLaInO4 are promising materials for application in
proton-conducting electrochemical devices.

Keywords: layered perovskite; oxygen-ion conductivity; proton conductivity; hydrogen energy;
Ruddlesden–Popper structure

1. Introduction

Applied materials science plays an important role in the development of various areas
of human life. Critical areas such as medicine, energy and mechanical engineering cannot
develop without the creation of new materials with targeted properties. Ceramic materials
are required for very different needs such as medical applications (endoprosthetics) [1–6]
and components for various electrochemical devices [7–12], as examples. The high priority
of sustainable development necessitates the development of advanced energy technolo-
gies, one of them being hydrogen energy [13–16]. The switchover to renewable energy
is, actually, not only for increasing energetically efficiency, but, also, due to the pursuit
in decreasing climate changes and the lowering of cases of respiratory diseases [17–23].
Hydrogen energy is considered as an actual, sustainable and promising approach for energy
generation [24–35]. This industry includes aspects such as the production, transportation
and use of hydrogen as an energy source. The conversion of the chemical energy of hy-
drogen oxidation to electrical energy can be implemented using electrochemical devices
such as protonic ceramic fuel cells [36–41]. This requires new high-effective materials
such as electrodes, electrolytes and interconnectors with good compatibility between each
other. The traditional and most investigated proton-conducting materials are barium cerate
zirconates BaCeO3-BaZrO3, which are characterized by perovskite structure [42,43]. How-
ever, they are characterized by a relatively low concentration of protons and low chemical
resistance to carbon dioxide. Consequently, novel advanced proton-conducting materials
with top characteristics of target properties are strictly needed.

Layered perovskite structure is related to classical perovskite structure. The main dif-
ference is the separation of the perovskite framework by the layers with different structures.
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Layered perovskites with the general formula AA’nBnO3n+1 belong to members of layered
perovskite family such as compositions with the Ruddlesden–Popper structure. Perovskite
slabs A’BO3 are divided by the rock salt layers AO in this structural type, and the existence
of compositions with a different “n” is possible. Layered structures provide a concentration
of protons an order of magnitude higher than that of classic perovskites. The realization
of proton transport was proved for monolayer perovskites such as BaNdInO4 [44–48],
BaNdScO4 [49], SrLaInO4 [50–54], BaLaInO4 [55–60] and compositions based on them in
the last few years [61]. Such compositions can be potentially used as electrolytic materi-
als in the proton-conducting fuel cells. Various types of doping, including cationic [62]
and oxyanionic [63], were investigated. However, the substitutions were implemented
by the ions with a stable oxidation state. Meanwhile, the introduction of ions capable of
changing their valence can provide control over the contributions of the electronic and
ionic components of conductivity. In the future, this can ensure the creation of electrode
and electrolyte materials with the same crystal structure and similar chemical composition,
which should provide excellent compatibility. In this work, a Pr-doped ceramic material
based on BaLaInO4 was obtained and investigated for the first time. The possibility of
protonic transport was revealed.

2. Experimental Procedure

The phase BaLa0.9Pr0.1InO4 was synthesized via the nitrate–citrate route according
to [52]. The starting reagents Ba(NO3)2, In(NO3)3·6H2O, Pr(NO3)3·6H2O and
La(NO3)3·9H2O were used. The X-ray diffraction analysis (XRD) was implemented at
the Cu Kα diffractometer Bruker Advance D8. The full profile Le Bail regiments were
implemented via the FullProf Suite software. The method of scanning electron microscopy
(SEM) of powder and ceramic samples was realized using microscope VEGA3 TESCAN
coupled with an energy-dispersive X-ray spectroscopy system (EDS).

The thermogravimetry (TG) measurements were implemented by the Netzsch Anal-
yser STA 409 PC. The samples were initially hydrated using the method of cooling from
1000 to 150 ◦C (0.5 ◦C/min) at wet Ar flow. During TG-measurements, the samples were
heated from 40 to 1000 ◦C with the speed 10 ◦C/min at dry Ar flow.

The resistance of ceramic samples was collected via the impedance spectrometer Elins
Z-1000P. The ceramic pellets with a 10 mm diameter and 2 mm thickness were pressed
for the investigations. Pt-electrodes were applied on the surfaces of the samples. The
temperature range 200–1000 ◦C was covered, and the speed of cooling was 1◦/min. The
dry atmosphere was obtained by the circulating of air or Ar through phosphorus pentoxide
(pH2O = 3.5 × 10−5 atm). The wet atmosphere was obtained by the passing of air or Ar
through a saturated solution of potassium bromide (pH2O = 2 × 10−2 atm).

3. Results and Discussions

The phase characterization of composition BaLa0.9Pr0.1InO4 was made using XRD
analysis. Figure 1a represents the Le Bail refinement of the X-ray obtained data. The
composition is single phase and it has orthorhombic symmetry (Pbca space group). The
image of the crystal structure of the monolayer perovskite is presented in the inset of
Figure 1a. The introduction of Pr3+ ions into the La3+ sublattice (isovalent doping) leads
to the expansion of the crystal lattice (Table 1). An increase in the size of the unit cell
is observed during doping despite the close ionic radii of trivalent metals Pr3+ and La3+

(rLa3+ = 1.216 Å, rPr3+ = 1.179 Å [64]). The presence of ions with different electronegativity
(χLa = 1.10, χPr = 1.13 [65]) could be the cause of the changes in the local structure and
in the interatomic distances due to the additional repulsion effects. A similar effect was
observed for another doped composition based on BaLaInO4 [59,60], and the presence of
ions with different electronegativity in the same sublattice can be considered as the reason
of the changes in the crystal lattice size.
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Figure 1. The results of the XRD—(a) (Rp = 2.11, Rwp = 2.25, χ2 = 1.32) and SEM-investigations
(b,c) for the composition BaLa0.9Pr0.1InO4.

Table 1. The geometric characteristics of the crystal lattice for the compositions BaLa0.9Pr0.1InO4

and BaLaInO4.

Composition a, Å b, Å c, Å V, (Å3)

BaLa0.9Pr0.1InO4 12.968 (1) 5.911 (9) 5.917 (9) 453.17 (7)
BaLaInO4 [56] 12.932 (3) 5.906 (0) 5.894 (2) 450.19 (5)

The morphology of the obtained sample was checked using scanning electron mi-
croscopy. Composition BaLa0.9Pr0.1InO4 consists of grains (~3–5 μm) agglomerated in the
particles with the size ~10 μm (Figure 1b,c). The elemental composition was proved via
EDS analysis. The average element ratios for BaLa0.9Pr0.1InO4 composition are presented in
Table 2. The good agreement between theoretical and experimental values was confirmed.

Table 2. The results of the energy-dispersive analysis for the composition BaLa0.9Pr0.1InO4 (theoretical
values in atomic % are provided in the brackets).

Metal Barium Lanthanum Praseodymium Indium

Content
33.4 29.9 3.2 33.5

(33.3) (30.0) (3.3) (33.4)

The amount of water uptake was measured via thermogravimetry (TG) coupled with
the differential scanning calorimetry (DSC) method. The results are presented in Figure 2.
As we can see, the initially hydrated composition loses mass due to water release that was
confirmed by MS-results. No other volatile components were detected. The main mass
loss happens at ~ 200–400 ◦C, which is confirmed by the signal on the DSC-curve (green
line in Figure 2). The dissociative water intercalation into the crystal structure of layered
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perovskites is possible due to the placement of hydroxyl groups in the rock salt space of
the layered framework [62]:

H2O + Ox
o ⇔ (OH)•o + (OH )

′
i (1)

Figure 2. The TG, DSC and MS results for the composition BaLa0.9Pr0.1InO4.

Consequently, the increasing of the crystal lattice size should lead to the increasing
of the water uptake [62]. As we can see, the water uptake for the Pr-doped composition
is about 1 mol water per formula unit (Figure 2), which is bigger than 0.62 mol registered
for undoped BaLaInO4 composition [62]. In other words, a good correlation between the
changes of the geometric characteristics of the unit cell and water uptake is observed.

The electrotransport properties of the Pr-doped composition were investigated via
the impedance spectroscopy method. Nyquist plots under dry and wet air at 400 ◦C are
presented in Figure 3a as an example of collected data. The calculation of conductivity
values was made using the resistance value obtained by extrapolating the high-frequency
semicircle to the abscissa axis (capacitance ~10−12 F/cm). The effect of variation in oxygen
partial pressure to the conductivity values is presented in Figure 3b. As we can see, the
electrical conductivity is mixed hole ionic at dry oxidizing conditions. The share of oxygen
ionic transport does not change at the temperature variation, and it is around 25%, which is
comparable with the value (20%) for undoped BaLaInO4 composition [56]. We can suggest
that the dopant concentration of 0.1 mol is not enough to have a meaningful impact on
the conductivity nature. At the same time, the nature of dopant is also a possible reason
for the absence of significant changes in the nature of conductivity. However, a significant
increase in the conductivity values (~1.5 orders of magnitude) during doping is observed
(Figure 3c,d). The most probable reason for the increase in the mobility of oxygen ions is
due to the increase in the size of the crystal lattice and space for ionic transport. It should
be noted that the conductivity values from the electrolytic area (oxygen ionic conductivity,
pO2 < 10−5) do correlate well with the conductivity values obtained at the Ar atmosphere.
This allows us to consider the values obtained in argon as ionic conductivity values.
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Figure 3. The Nyquist plots for the composition BaLa0.9Pr0.1InO4 obtained under dry and wet air
at 400 ◦C (a), the dependencies σ – pO2 for the composition BaLa0.9Pr0.1InO4 (violet symbols) at
dry (closed symbols) and wet (open symbols) atmospheres (b), the dependencies σ –1000/T for the
compositions BaLa0.9Pr0.1InO4 (c) and BaLaInO4 [56] (d).

The humidity of the atmosphere affects the conductivity values below 600 ◦C. The
proton concentration increases with temperature decreases. This is because of the increase
of the conductivity under wet conditions in comparison with dry conditions (Figure 3b,c).
The proton conductivity was calculated as the difference between conductivity values
obtained under wet Ar and dry Ar:

σH+ = σwet Ar − σdry Ar = σion
wet − σion

dry (2)
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and its temperature dependencies are shown in Figure 4a. As we can see, the pro-
tonic conductivity for the Pr-doped composition is higher than the undoped sample by
~1.5 orders of magnitude. This increase is due to the increase in both the proton con-
centration and proton mobility (Figure 4b). The proton conductivity value for doped
BaLa0.9Pr0.1InO4 composition is 5.0 × 10−6 S/cm (T = 400 ◦C) in comparison with
2.7 ×·10−7 S/cm for BaLaInO4 composition that is 18 times greater. It can be suggested that
the change in the dopant concentration and dopant nature can lead to significant changes
in the nature of electrical conductivity.

Figure 4. The dependencies of conductivity (a) and mobility (b) of protons vs. temperature for the
compositions BaLa0.9Pr0.1InO4 and BaLaInO4 [56].

4. Conclusions

The layered perovskite BaLa0.9Pr0.1InO4 was obtained and investigated as a pro-
tonic conductor for the first time. The possibility of proton transport is shown. It was
proved that isovalent doping Pr3+ → La3+ leads to an increase in the crystal lattice size,
proton concentration and proton mobility. The proton conductivity value for the doped
BaLa0.9Pr0.1InO4 composition is 5.0 ×·10−6 S/cm (T = 400 ◦C), in comparison with the
2.7·× 10−7 S/cm for BaLaInO4 composition that is 18 times greater. Further research for a
dopant capable of a significant change in its electrical conductivity nature is relevant. Lay-
ered perovskites based on BaLaInO4 are promising materials for application in proton con-
ducting
electrochemical devices.
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Abstract: The purpose of this study is to develop an effective control method for a hybrid energy
storage system composed by a flow battery for daily energy balancing and a lithium-ion battery
to provide peak power. It is assumed that the system operates behind the meter, the goal is to
minimize the energy cost in the presence of a PV installation (as an example of a local renewable
source) and energy prices are determined by 3-zone tariffs. The article presents the application of
an optimization method to schedule the operation of each battery in the system. The authors have
defined an optimization method aimed at minimizing the total cost of the system, taking into account
energy costs and batteries depreciation. The techno-economical model of the system, including
battery degradation, is constructed and the cost optimization methods are implemented in Python.
The results are validated with real energy and price profiles and compared with conventional control
strategies. The advantages of optimization in terms of energy cost are discussed. The experiment
shows that not only is a hybrid energy system successful in lowering the total operation cost and in
increasing self-consumption but also that the implemented methods have slightly different properties,
benefits and issues.

Keywords: hybrid energy storage system; optimization algorithm; peak shaving

1. Introduction

Large scale deployment of energy storage systems (ESS) is seen as a cost-effective
solution for deep decarbonization of electric power systems, which also allows the system
stability in the presence of intermittent renewable energy sources (RES) to be maintained [1].
ESS are also seen as part of the solution to reduce the reliance on external fossil fuel imports
and high electricity prices [2]. Among available technologies, pumped hydro is still leading;
however, grid-scale battery storage is gaining momentum with lithium-ion technology
leading and flow batteries emerging [3]. In [4], the overview of technologies, optimization
objectives and approaches regarding battery energy storage systems are presented.

Each battery technology is suited for different applications, ranging from short term
power system stabilization requiring high power [5] to energy balancing on a daily basis
that requires high capacity [6]. The most popular goal of using ESS is the reduction of the
operation costs and the maximization of the self-consumption from RES. The profitability
aspects are key for the practical popularization of energy storage. An ESS enhances the
possibilities of the system by introducing the possibility of shifting part of the energy
usage from the moments when cheap or surplus energy is available to the times when it
is most needed and/or most costly. The economic outcome is one of the most popular
optimization goals realized by a number of methods using classic, e.g., mixed-integer linear
programming [7] and heuristic methods, e.g., deep reinforcement learning [8], genetic
algorithm and particle swarm optimization [9].

Energy storage is usually just an element of a more complex system that manages
the installations and the whole microgrid. Such systems need to be governed by so called
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energy management systems (EMS), which have been developed for a long time in various
configurations. The key to battery functionality and long life depends largely on the battery
management system (BMS) and the EMS [9]. Many such models have been developed;
some focus on a very detailed model that includes temperatures, voltages, currents and
state of charge, e.g., [10], while others use less detailed models but consider the long-term
behavior of the system [11].

Basic concepts and different topologies of EMS are presented in [12]; the review
of the different approaches can be found in [13,14]. In [15], an EMS, including battery
management, which was tested in a real-life environment, is presented.

Hybrid energy storage systems (HESS), consisting of at least two battery types with
complementary characteristics, are seen as a comprehensive solution in many applica-
tions [16]. Specifically, stationary microgrids seem to benefit from HESS integration [17];
their role may include energy balancing [18], power quality improvement [19] and off-grid
operation [20]. Although most of the articles that focus on the energy management of HESS
refer to electric vehicles and battery/supercapacitor combination, stationary applications
are less explored.

In the review [21], the general classification of energy management systems that are
focused on hybrid energy storages is presented. The types of management systems are
divided by the objectives and by types, with two general categories: a classical approach
and an intelligent approach. There are a few publications regarding EMS that consider
hybrid energy storage. In [22], the application of a hybrid storage, consisting of a flow
battery and a lithium battery, were simulated for a setup with off-grid renewable power.
Ref. [23] shows the advantages of heterogeneous energy storage systems but also explains
the possible problems with the implementation of EMS in such a setup, especially when
the characteristics of the batteries are substantially different.

The challenge in developing a HESS is to create a more optimal environment for bat-
teries of different technologies in order to maximize their lifetime and the benefits resulting
from their operation. We approach this by enclosing the different battery technologies in a
single system, a sort of energy storage black box from outside, which automatically creates
the best possible environment and usage patterns for the contained technologies.

In order to make the hybrid battery work, a modular EMS is created that consists
of two parts: an optimizer that uses predictions and an online controller that copes with
deviations from the predictions. The optimizer needs the prediction of both the energy
usage and the energy production in order to determine the charging schedule for the next
time frame. However, predictions are always prone to uncertainty, so an online controller
considers the predictions and adjusts them for the reality of the moment.

In this work, the focus is on a method to optimally determine the operation of the
HESS applied to historical data rather than predictions. The reason for this is that it will
show us the possibilities and impacts of the batteries, not only for peak-shaving purposes
but also for economic purposes. In particular, that latter aspect is of importance: showing
the economic viability of the hybrid battery on historical data allows for verification against
the true results and can be used as justification for the hybrid battery concept.

The goal of the presented work is to develop a control strategy for an EMS that
schedules HESS with the aim of minimizing energy cost. The original contribution of this
work is:

• Design and implementation of a techno-economical model of a HESS operating in
a microgrid;

• The creation of a model that includes two battery types with their respective round trip
efficiencies and costs of depreciation related to battery degradation during cycling;

• The design of an optimization method that calculates a schedule for each battery in a
24 h window;

• The validation and comparative analysis of a proposed method with a benchmark
approach based on real life energy usage and production data of a research centre
in Poland;
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• The novelty of the proposed method is the considering of the multi-battery setup
and the inclusion of battery depreciation cost related to its degradation, so that total
operating costs are minimized.

2. Materials and Methods

2.1. HESS Model

The setup considered in this work was a scenario of a microgrid that is equipped with
RES; in the presented case, this was in the form of a photovoltaic (PV) installation. The
system was equipped with a behind-the-meter HESS as shown in Figure 1.

Figure 1. The schematic model of the HESS operating in a microgrid.

Energy profiles were extracted from the historical data recorded by power analyzers
at the KEZO Research Centre, Jabłonna, Poland. The usage was gathered from 3 buildings,
which had laboratories, conference rooms, kitchens, bathrooms, administration offices,
hotel rooms and a server room. The annual consumption was around 221 MWh; it was
characterized with irregular patterns of usage—there were long intervals with a very high
level of usage, but also non regularly appearing peaks. The usage was variable, ranging
from 10 kW to 60 kW, with two dominating values around 20 kW and 38 kW (Figure 2). The
centre was equipped with PV installations amassing 180 kWp in total, generating 144 MWh
annually. The profiles of power generation and usage were aggregated in 15 min intervals,
which is a commonly used interval of energy data gathering and it is consistent with the
standard output of the energy meters. The usage and production aggregated per month is
presented in Figure 3.

The HESS installed and used in the KEZO power system and modelled in this work
consisted of a vanadium redox flow battery (VRFB) and a lithium-iron-phosphate (LFP)
battery. The parameters of HESS batteries used for simulations are given in Table 1.
Generalized battery cost and performance (number of cycles, efficiency) data were based
on [24]. The batteries were connected logically in one network and were managed by the
EMS system installed on an industrial computer.
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Figure 2. The histogram of power of consumption in the used example in KEZO Research Centre.

Figure 3. The energy of usage and production aggregated by month (data from the KEZO Re-
search Centre).

Table 1. Hybrid energy storage system parameters assumed for the simulation.

Parameter Symbol Unit VRFB LFP

Installed capacity Ebol kWh 100 54

Max. continuous power Pmax kW 15 32

Allowed depth of discharge DoD % 100 80

Nominal number of cycles NoC - 5200 2000

Round trip efficiency RTE % 68 86

Battery block replacement cost ReC PLN/system 166,000 60,750

The model included linear battery degradation, which reflected the battery capacity
loss during its usage and the cost of replacing the battery block (ReCi) after exceeding
nominal energy throughput (Thi). To evaluate depreciation cost of operating the battery,
the degradation cost was calculated by multiplying discharge energy by a degradation cost
factor (DCF). This factor was calculated as follows for each of the batteries (i—index of each
battery in the HESS):

DCFi = ReCi/Thi (1)
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where:
Thi = NoCi ∗ (DoDi ∗ Ebol,i) (2)

The Thi is the nominal throughput of the storage calculated as the multiplication of
number of cycles (NoC), depth of discharge (DoD) and the nominal capacity (Ebol)—the
values for the considered setup are presented in Table 1.

The battery model also accounted for energy losses in the batteries. At the battery
charging instants, a round trip efficiency (RTE) factor was applied to calculate the energy
available for discharge.

For the sake of model simplification and reduction of computational burden, efficiency
and degradation remained independent of the battery’s operational parameters, such as
temperature, current and DoD.

The model was simulated with up-to-date Polish market prices in tariff B23, which is a
real tariff for this type of building and usage. The energy tariff has three zones: the morning
peak (from 7:00 until 12:00)—2.53 PLN/kWh, the evening peak (varies between seasons
but ranges from 16:00 until 22:00)—3.43 PLN/kWh and the off-peak—1.96 PLN/kWh [25].
Surplus of energy was sold at the flat rate of 0.472 PLN/kWh [26]. The price profiles are
depicted in Figure 4.

Figure 4. The price tariff for the selling and purchase of energy to/from the grid for months
October–March.

The aim was to show that the HESS can be economically justifiable and that it increases
the self-consumption of the energy produced from the RES. The aim of the implemented
optimization method was solely to minimize the cost of operation, a problem for which a
solver was used. A simple control method—energy balancing—was given as a benchmark.
Control methods are described in detail in the following sections. We assumed that the
usage and production of the energy was not subject to changes. The only thing that changed
the balance at the point of coupling with the grid was the operation of the HESS.

2.2. Energy Balancing

The benchmark method was chosen to represent the most simplistic operation of the
ESS in the given setup. The idea of the basic energy balancing was very simple: the energy
storage charges when production exceeds load and discharges when power was imported
from the grid [27]. This control method minimized the exchange of energy with the
external grid and did so without considering tariffs or even energy prices, thus foregoing
possibilities for price arbitrage. On the other hand, such a method was guaranteed to use
as much of the local RES overproduction as possible, in which case it potentially managed
to increase self-consumption. In periods with low production from RES, the energy storage
may not have a chance to charge. In our model, which assumed PV sources, this occurred
in times with less sunshine, and, as a consequence, the HESS spent most of the winter time
in a discharged state, thus not helping to decrease the costs of energy. On the upside, not
using the battery implied that there is no degradation cost—the model is simplified and did
not consider any degradation that might be caused by leaving the battery in an extremely
low state of charge.
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2.3. Economic Optimization

The operation of the HESS is described by its average power in a time period t and
denoted as pHESS(t) = ∑i∈{LFP, VRFB} pi(t). The optimization happened in a time window,
which had T periods. Any length of time window can be chosen, but the size of this time
window correlated with the duration of the computation: the longer the total time, the
longer the computation will be. As we assumed that energy comes from PV and, in general,
daily cycles are observed in usage patterns, it made sense to choose the total duration of T as
24 h. To speed up the calculation of the solver, an initial solution was calculated and passed
to the optimizer; this was a vector of length T of values pi(t), where i ∈ {LFP, VRFB}.
This initial solution suggested discharging at times of high-price tariff and charging in the
low-price tariff. The gain in the time of calculation was small and neglectable. The grid
balance at time t was denoted by pgrid(t). The general rule was that the energy sent from
the installation to the grid and the energy from the installation to the battery was positive;
the energy taken from grid and the energy taken from the battery was negative.

The aim was to minimize the total balance that is influenced by the battery operation;
therefore, the goal function fi was:

fi =
T

∑
t=0

⎧⎨⎩
∣∣∣pgrid(t) + pi(t)

∣∣∣ ∗ cbuy(t) + degri(t), i f
(

pgrid(t) + pi(t)
)
> 0∣∣∣pgrid(t) + pi(t)

∣∣∣ ∗ csell(t) + degri(t), i f
(

pgrid(t) + pi(t)
)
≤ 0

(3)

degr(t) =
{

pi(t) ∗ DCFi, i f xi(t) < 0
0, i f xi(t) > 0

(4)

The goal function includes the tariffs: cbuy(t) is the unit cost for buying energy from
the grid for the given time frame t, and csell(t) is the unit profit for selling energy to the
grid. As we assumed that the tariff can change in each t, the main difference with peak
shaving was that now it was not just the amount of energy that mattered at a time t, but
this amount was linked via the tariff with the time at which it occurred. This combined
energy with price, allowing an optimization for the general idea of reducing the amount of
energy bought during price peaks with the aim of reducing the cost.

The constraints included the limitation for charging power:

∀t : pi(t) + pchg,i > 0 (5)

where pchg,i is the maximum power allowed for charging the battery.
Symmetrically there is a limitation for discharging power:

∀t : pdchg,i − pi(t) > 0 (6)

where pdchg,i is the maximum power allowed for discharging the battery. In the examples,
pchg,i = pdchg,i = Pmax,i.

Constraints of the state-of-charge (SOC) values were defined for each of the consecutive
power values for energy storage at each time t. For not exceeding maximum state of charge,
constraints were defined as follows:

∀t : (Ebol,i − ei(t))−
t

∑
j=0

ei(j) > 0 (7)

There are T-1 such constraints for charging the energy storage as power had to be
recalculated to the equivalent energy e(t) that was inserted into the battery. The charging
energy was multiplied by the RTE value.

For not exceeding minimum state of charge, constraints were defined as follows:

∀t :
(

ei(t)− Ebol,i ∗
(

SOCmin,i

100

))
+

t

∑
j=0

ei(j) > 0 (8)
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In this equation e(t) is the energy that is discharged or charged, in case the charging
of the RTE value is considered.

2.4. Implementation

The model was implemented in Python [28] as it is one of the popular languages with
many well-implemented libraries. The libraries used were: pandas (which contains the very
useful DataFrame structure that allows for database-like operation on data), numpy [29] (a
package that contains a wide number of data structures and functions for data analysis and
scientific methods), scipy [30] (which is equipped with a set of well-known optimization
methods and also methods for interpolation and statistical analysis) and datetime (library
for advanced operations on date–time formats).

The scheme of the software developed by the authors to run the technical and economic
models, to calculate the optimization algorithm and to analyze and plot the results is
illustrated in Figure 5. The model was designed to analyze the long-term (yearly) operation
of the installation, and for that purpose a 15 min time-step was chosen, as it is a standard
resolution of energy meters in Poland. This strictly binds the model to the data gathered in
real systems.

Figure 5. The general scheme of the operation of the optimization method.

The input data for the program were:

• The initial setup parameters, which included the general description of the microgrid
parameters and date range for the simulation—the program allowed us to calculate
the optimization for any data from a database or csv files.

• The information regarding energy prices—for the calculation of costs and revenues,
it was necessary to have the full information regarding the zones, which can change
monthly, and the prices of tariffs. The program has the ability to read the prices from a
csv file in case there are dynamic tariffs; for the purpose of the project, the most typical
Polish tariffs were implemented.

• The setup of the HESS—the parameters relevant for cost calculation and optimization
of each battery that constitutes HESS had to be defined. The parameters were: the
capacity, the maximum power of charging and of discharging, depth-of-discharge
(DoD), number of cycles limit (NoC), round-trip efficiency (RTE), the capex cost and
the cost ReC of replacing the battery unit when it reaches the end of its life.

• Time series of load and generation values for the installation—the required format
consisted of separate files with a timestamp and average power in a row of csv files.

• The tariff profile file that consisted of a timestamp, the price for purchasing energy
from the grid (or other entity in future, e.g., an aggregator) in PLN per kWh, the price
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for selling energy to the grid (or other) in PLN per kWh. It can represent dynamic
tariffs [31] related to market or fixed peak hours tariffs. We assumed that changes can
occur after a 15 min interval.

The data flow of the implemented model is schematically presented in Figure 5. The
first stage is the initialization of a single DataFrame type structure with all the data indexed
by a timestamp. Thanks to this, it is possible to make fast operations on columns and rows
without the danger of missing the time alignment of the data. The program calculates initial
balances of the energy pgrid that result from local load pload and generation pPV profiles and
initializes structures for energy storage operation. The output data are the input to the
optimization algorithm, which sequentially calculates the battery levels.

The program divides the data into 1-day-long chunks (starting from midnight) as
daily patterns in usage are very often present and the production from PV modules has, by
default, strong daily patterns.

Many different solvers were tested, the COBYLA [32] solver was the fastest in execu-
tion, but there were small fluctuations in the result that were not explainable in context of
the test case. We chose SLSQP [33] as it is based on verified methods; for the considered
problem, it should be effective in finding an optimal solution—if there is one—in reasonable
time, without the need for extensive adjustments of the solver’s parameters. The SLSQP
optimizer is a sequential least squares programming algorithm, it applies the Han–Powell
quasi-Newton method with a Broyden–Fletcher–Goldfarb–Shanno algorithm update of the
B-matrix and an L1-test function in the step-length algorithm. Its implementation contains
a modified version of Lawson and Hanson’s nonlinear least-squares solver. The original
source code was provided by Dieter Kraft in 1991, based on his work presented in [34].
The SLSQP was used in many publications in the domain of energy, e.g., [35,36]. The
convergence and properties of the SLSQP are described in [37] and [38]. The parameters of
the solver in this implementation were: maximum 500 iterations and the precision goal for
the value of the goal function in the stopping criterion equals 0.1.

The optimization algorithm was called for each 24 h time window independently; only
the final state of charge of each battery within HESS was passed to the next iteration. The
outcome of the optimization was a time-series of the HESS operation—its discharge and
charging power, change in the state of charge and amount of losses. Losses of the battery
were defined as impacting the energy while charging—the program subtracts part of the
energy that was equivalent to the 1–RTE.

The order of calculating the energy storage was defined by the durability of the battery,
which was the nominal number of cycles NoC. The storage was ranked with this parameter,
and the one with the highest value was considered first. This approach was chosen as a
method to maximize overall durability of the HESS. When the first energy storage was
calculated, the program recalculated the balances to include the energy storage impact on
the installation. Then, the optimizer started with the next battery in line. Due to the nature
of applied batteries it was assumed that priority would go to VRFB because of its high
cycle life, low power and large capacity. The LFP battery was calculated in the second step
to supplement operation of energy storage when higher power was needed. After each
round, the details on the operation of each battery were saved and were also aggregated to
the operation of the whole hybrid storage, which consisted of the sum of charging power,
discharging power and losses.

The last step was calculating the economic balance of the costs and revenues from
the installation. This was calculated for two cases: (a) with HESS and (b) without HESS.
On the side of the revenues was the energy that was sold to the grid, which was solely
overproduction from the local energy sources. On the cost side was the energy that had to
be bought from the grid, as well as the cost of the degradation of the batteries, which was
calculated proportionally to the battery throughput.

The analysis of the complexity was performed. We used the O-notation, as defined
in [39], as it is a known standard in the defining of algorithm’s complexity. In the balancing
algorithm, the complexity depended only on the number of considered batteries (Nb) and
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number of days the calculation was performed for (n), the complexity is O(Nb×n) as the
time of calculation of the operation plan for a battery was constant. The optimization
method was different—it used a solver and the number of iterations varied depending on
the shape of the goal function. The worst case scenario was when there was no convergence
and solver reached the maximum number of iterations, which was set to 500. Given that
the maximum number of iterations was limited, this can be treated as a constant factor, and
according to the O-notation this means the complexity of the operation was also O(Nb×n).

To estimate the mean time of calculation, we checked the distribution of the number
of iterations—the histogram is presented in Figure 6. The number of iterations in time for
both batteries is presented in Figure 7. On average, the simulation takes 186 iterations for
each 24h window, per battery.

Figure 6. The histogram of the number of iterations for the cost optimization method.

LFP VRFB

Figure 7. The number of iterations for each day of calculation for the cost optimization method.

3. Results

The annual energy balance without an energy storage system is presented in Figure 3.
In the following sections, a series of the graphs to visualize the performance of the behavior
of the HESS operating for a full year are presented. The performance of HESS governed by
different algorithms is analyzed in daily and seasonal horizons. Annual results for each
algorithm are summarized and discussed in Section 4.

To describe the context, the situation of energy flows and costs without any battery
system is presented in Figure 8. It is clearly visible that in winter, the purchase of energy in
different tariff zones is comparable to the duration of those zones in a day. In the summer
months, the photovoltaic installation is producing enough energy to cover the morning
peaks almost completely. However, the production cannot cover the evening peak tariffs.
The overall cost balance for the year is PLN 295,000, which includes the purchase of energy
and the selling of surpluses from PV production.
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(a) (b)

Figure 8. Monthly economic indicators for the setup without HESS or any other energy storage:
(a) purchase cost classified by tariff zones (tariff prices), (b) costs, profits and financial balance.

3.1. Energy Balancing

The first set presents the operation of the simple energy balancing algorithm. Figure 9
presents the performance indicators aggregated per month to give an overview of the
whole year’s operation. It is clearly visible that in winter months (November to February)
the role of the production from photovoltaic is marginal and almost all of the produced
energy is used for the self-consumption. In winter, the energy storage has no chance to
charge as there is no surplus of energy. From March to October the activity of the energy
storage is substantial, yet still, the storage is not able to completely rule out any purchase
energy from the grid for June and July. Figure 9d represents the monthly aggregation of
the energy bought and sold; in summer both can occur: sale and purchase can be present
in the same month as one month can contain days when there is enough power from RES
to cover the usage and sell, but the month can also contain days that might be too cloudy,
making it necessary to buy energy.

(a) (b)

(c) (d)

Figure 9. Results for the energy balancing method, aggregated monthly: (a) grid energy balance,
(b) energy usage and production (input data), (c) activity of the energy storage, (d) cost of purchased
energy and profit for sold energy.

The more detailed view of each month gives a much better picture of the actual HESS
performance. In Figures 10 and 11, the two different months are presented—January is
the month with minimal energy storage activity, and July is the month when a surplus
of produced energy allows the storage to cover the energy use in the evenings. On the 1
January, due to the initial settings of the simulation, the batteries are charged up to 50%,
which causes the discharge of the battery immediately. In the other days in January, PV
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generation does not exceed the load, so there is no ESS activity. In July, however, the
situation is much more interesting—there are days where there is no need to buy energy
from the grid (Figure 10d), which shows the real usefulness of the energy storage.

(a) (b)

(c) (d)

Figure 10. Results for the energy balancing method—data for the month of January, aggregated per
day: (a) grid energy balance, (b) energy usage and production (input data), (c) activity of the energy
storage, (d) cost of purchased energy and profit for sold energy.

(a) (b)

(c) (d)

Figure 11. Results for the energy balancing method—data for the month of July, aggregated per
day: (a) grid energy balance, (b) energy usage and production (input data), (c) activity of the energy
storage, (d) cost of purchased energy and profit for sold energy.

The following figures illustrate daily power profiles of the microgrid, including HESS.
To fully illustrate behavior of control algorithms under different conditions, three days are
chosen: 27 July with high PV generation (Figure 12), 4 October with medium PV generation
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(Figure 13) and 6 February with almost no PV generation (Figure 14). The dynamics of the
different types of batteries are clearly visible—the VRFB has more capacity, which cannot be
fully used due to its lower power. Very visible is the non-optimal behavior of immediately
discharging the storage at the beginning of the day in case the batteries have not discharged
during previous day. Night time is related to lowest energy prices, so such behavior is not
economically justifiable.

(a) (b)

(c) (d)

Figure 12. Results for the energy balancing method—data for 27 July: (a) grid power balance,
(b) energy usage and production (input data), (c) batteries power, (d) batteries state of charge.

(a) (b)

(c) (d)

Figure 13. Results for the energy balancing method—data for 4 October: (a) grid power balance,
(b) energy usage and production (input data), (c) batteries power, (d) batteries state of charge.

(a) (b)

(c) (d)

Figure 14. Results for the energy balancing method—data for 6 February: (a) grid power balance,
(b) energy usage and production (input data), (c) batteries power, (d) batteries state of charge.

In October, the situation is similar to the summer time—there is still enough PV produc-
tion that allows using both batteries to reduce the power exchange with the grid—first the
VRFB is discharging, later the LFP takes over.
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In winter (Figure 14), the energy storage is not active as there is little overproduction
to be used.

Figure 15 summarizes the financial aspect of the HESS operation. Figure 15a depicts
cost of energy purchased in each tariff zone, which clearly demonstrates that the high
afternoon peak is not avoided, especially in winter months. In summer months, the PV
production combined with the storage can substantially reduce the exchange with the
grid. The overall costs and profits are presented in Figure 15b showing that the overall
financial outcome is positive in June. Figure 15c gives the values of the surplus RES energy
used directly or captured by the HESS. It is calculated as the costs that would have been if
there was no energy production. In Figure 15d, the costs saved by the energy storage are
presented, this includes the costs that are caused by the degradation of the storage—it is
calculated from the difference of the total outcome with and without HESS. The overall
cost balance has substantially decreased compared to the situation without the batteries at
all, the value is PLN 266,028. This clearly shows that even the simple algorithm of battery
management can lower the yearly costs of the operation of the facility.

(a) (b)

(c) (d)

Figure 15. Results for the energy balancing method—monthly economic indicators: (a) purchase
cost classified by tariff zones (tariff prices), (b) costs, profits and financial balance, (c) costs of energy
saved by PV generation, (d) costs of energy saved by HESS operation.

3.2. Economic Optimization

The method of economic optimization is focused on reducing the overall cost of operating
of the facility; it should use the energy storage to decrease the usage during peak times and
charge in case of surplus or during low-zones of the tariffs. Before the run of the experiments, an
analysis of the tariff prices and the degradation costs showed that, according to the calculations,
the VRFB should be profitable to use for arbitrage when low tariff and evening peak tariff is
considered. It is not profitable to use this storage to move energy from the morning peak to
evening peak. The LFP battery has a different degradation cost and RTE, which makes it useful
to move energy from the low and morning peak tariff to the evening peak. The using of batteries
to increase the surplus of energy produced by PV is always profitable. The execution of the
program showed that, very rarely, there is problem with convergence, especially in days with
high production from PV modules. On such days there is an excess of energy, which generally
creates the multiple solutions that are equivalent for the optimizer.

A comparison of the balancing method and the economic optimization method showed
that the latter uses HESS all year round (see Figure 16c). However, the energy purchase costs
and sell profits are not much different compared to the balancing algorithm (Figure 16d).
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(a) (b)

(c) (d)

Figure 16. Results for the economic optimization method, aggregated monthly: (a) grid energy
balance, (b) energy usage and production (input data), (c) activity of the energy storage, (d) cost of
purchased energy and profit for sold energy.

The more detailed view of each month provides a much better picture of the actual
performance. In January, the HESS uses a lot of the batteries but only to move energy from
the expensive time of the day to the cheaper tariff times. There is almost no difference in
the cash flow of selling energy, but there is a visible difference when the cost of buying
energy from the grid is considered (Figure 17d).

(a) (b)

(c) (d)

Figure 17. Results for the economic optimization method—data for the month of January, aggregated
per day: (a) grid energy balance, (b) energy usage and production (input data), (c) activity of the
energy storage, (d) cost of purchased energy and profit for sold energy.

In July, the situation is very different—the energy storage reduces bought energy and
consumes less from the surplus of the produced energy (Figure 18a). The total sell profits
are higher, but also the cost of import from the grid is higher (Figure 18d). The economic
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optimization method in certain situations is more costly compared to the energy balancing
method; it is due to the limitation of the optimization process to 24 h; this is the reason for
the modified economic optimization, which is described further in the next section.

(a) (b)

(c) (d)

Figure 18. Results for the economic optimization method—data for the month of July, aggregated per
day: (a) grid energy balance, (b) energy usage and production (input data), (c) activity of the energy
storage, (d) cost of purchased energy and profit for sold energy.

Checking the details of the algorithms, a very clear difference can be seen in the
example day in July (Figure 19)—the batteries are discharged slowly and their energy is
almost uniformly distributed over the whole period where there is a need to decrease
energy usage. Similarly, charging shows no extremes, the speed of charging is decreased
but maintained for a longer time. Analyzing the behavior day by day, it is clear that the
optimizer is considering the degradation costs—the batteries are charged only to the point
that is necessary to cover the single day. On 27 July and 4 October, it is especially visible
(Figure 20) that the state of charge of the batteries is not reaching the maximum levels,
even when it is possible to fully charge from the surplus of produced energy. Generally,
the optimizer finds solutions that require smaller power to charge or discharge batteries,
which is positive from the durability of the batteries but does not use the full capacity of
the batteries when it is possible to charge from the PVs.

(a) (b)

(c) (d)

Figure 19. Results for the economic optimization method—data for 27 July: (a) grid power balance,
(b) energy usage and production (input data), (c) batteries power, (d) batteries state of charge.
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(a) (b)

(c) (d)

Figure 20. Results for the economic optimization method—data for 4 October: (a) grid power balance,
(b) energy usage and production (input data), (c) batteries power, (d) batteries state of charge.

During winter (Figure 21), the behavior of the batteries shows the typical schedule of
the HESS operation used for price arbitrage. Batteries are being charged during off-peak
hours, even if it means importing extra amounts of energy from the grid. During the
morning peak, the HESS power remains close to zero, while in the evening peak the highest
priced batteries are being discharged. Both the VRFB and the LFP battery follow similar
patterns. This behavior is consistent with our assumptions, based on the difference in prices
between the price zones in the tariff.

(a) (b)

(c) (d)

Figure 21. Results for the economic optimization method—data for 6 February: (a) grid power balance,
(b) energy usage and production (input data), (c) batteries power, (d) batteries state of charge.

The economic factors clearly show that the economic algorithm that reduces the
purchase of energy is the highest tariff (Figure 22a), at the same time increasing the use of
energy from the lowest tariff, especially in winter months. The general costs of the system
are smaller when compared to the situation without any energy storage and also lower
than the benchmark. The arbitrage in winter is decreasing the overall cost of operation of
the whole facility. The experiments revealed a problem in which the batteries do not charge
fully in case of a surplus of energy (this situation is visible on Figure 19b). This is caused
by the fact that there is no value for the optimizer to keep a higher state of charge of the
batteries at the end of the day. To solve the issue, the obvious action would be to run the
optimization for a longer period (e.g., a week, a month) but then the number of changing
variables would be significantly increased, which would bring two problems: the problem
with convergence and the extended time of computations.
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(a) (b)

(c) (d)

Figure 22. Results for the economic optimization method—monthly economic indicators: (a) purchase
cost classified by tariff zones (tariff prices), (b) costs, profits and financial balance, (c) costs of energy
saved by PV generation, (d) costs of energy saved by HESS operation.

3.3. Modified Economic Optimization

To deal with the problem of single-day optimization, a modification is proposed—the
optimizer does not care about the state of charge of the battery at the end of the day, but for
the next day it would be generally beneficial to have a higher state of charge, especially
when there is a surplus of production that could have been used. To implement that, an
extra rule was enforced after the optimization stage: when there is surplus of energy from
the renewable sources, the battery will always try to use as much of this surplus as possible
to charge. This modifies the solution returned by the solver in a way that the energy storage
reaches the full state of charge faster and more often, which, in consequence, causes an
increased state of charge of the energy storage at the end of the day. For the following day,
the optimizer will be given this raised state of charge to start its calculations. We tested
the solution and present the outcome on the following graphs—Figures 23–29. Figure 23
presents the monthly aggregated data—the increase in the operation of the energy storage in
the summer months is clearly visible in comparison with the optimization method without
modification. What is more, the import of energy has decreased, and, as a consequence, the
cost of imported energy is also lower.

The more detailed view of each month gives a much better picture of the actual
performance. In January (Figure 24), there are no changes in comparison to the optimization
method as there is no surplus of energy.

For the summer months, the differences are much more visible; the graph for July
shows the reduction in import and export of energy from and to the grid (Figure 25a). The
batteries are charging and discharging more (Figure 25c) and the cost of energy import has
dropped (Figure 25d). In this case, the difference between the energy balancing method and
the modified economic optimization is very small and is mainly caused by small oscillations
of the solutions given by the optimizer when it failed to reach the optimum solution in the
defined number of iterations.

In July, the increase in the amount and duration of the charging of both batteries is
visible. More of the surplus from the PV production is used. By the end of the day, the state
of charge of the VRFB is higher in comparison to economic optimization (Figure 26).
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(a) (b)

(c) (d)

Figure 23. Results for the economic optimization method with modifications, aggregated monthly:
(a) grid energy balance, (b) energy usage and production (input data), (c) activity of the energy
storage, (d) cost of purchased energy and profit for sold energy.

(a) (b)

(c) (d)

Figure 24. Results for the economic optimization method with modifications—data for the month of
January, aggregated per day: (a) grid energy balance, (b) energy usage and production (input data),
(c) activity of the energy storage, (d) cost of purchased energy and profit for sold energy.

The operation on 4 October (Figure 27) and 6 February (Figure 28) is almost the same
as in the economic optimization without modifications.

The economic indicators show very interesting changes—the modification is reducing
the use of the energy from the evening peak tariff, decreasing the overall energy costs for
the facility and increasing the savings from the PV production and the operation of the
HESS. The differences are not very significant, but the improvement is very clear, albeit
only in summer months.
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(a) (b)

(c) (d)

Figure 25. Results for the economic optimization method with modifications—data for the month
of July, aggregated per day: (a) grid energy balance, (b) energy usage and production (input data),
(c) activity of the energy storage, (d) cost of purchased energy and profit for sold energy.

(a) (b)

(c) (d)

Figure 26. Results for the economic optimization method with modifications—data for 27 July:
(a) grid power balance, (b) energy usage and production (input data), (c) batteries power, (d) batteries
state of charge.

(a) (b)

(c) (d)

Figure 27. Results for the economic optimization method with modifications—data for 4 October:
(a) grid power balance, (b) energy usage and production (input data), (c) batteries power, (d) batteries
state of charge.
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(a) (b)

(c) (d)

Figure 28. Results for the economic optimization method with modifications—data for 6 February:
(a) grid power balance, (b) energy usage and production (input data), (c) batteries power, (d) batteries
state of charge.

(a) (b)

(c) (d)

Figure 29. Results for the economic optimization method with modifications—monthly economic
indicators: (a) purchase cost classified by tariff zones (tariff prices), (b) costs, profits and financial
balance, (c) costs of energy saved by PV generation, (d) costs of energy saved by HESS operation.

4. Discussion

The overall aim of this work is to present an economic optimization algorithm for
hybrid energy storage that will improve the financial outcome of the setup and show that
the hybrid energy storage is a feasible solution to improve the self-consumption of energy
from PV installation. The results of the simulations for the benchmark and the proposed
HESS control strategies are summarized in Table 2.

The first part of the table focuses on the energy between the facility and the power grid.
The batteries generally decrease the import and export of energy; the energy balancing
approach is the most limited, due to the fact that it only operates on the surplus of the
energy produced by the PV installation. The economic optimizations are realizing arbitrage
all year round—buying energy when it is cheap and using it during peak times. The
self-consumption rates are interesting—this is the percentage of the energy produced by
the PV installation that was used within the installation, which show that, thanks to the
batteries, over 77% of the produced energy is either directly consumed or stored for later
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use. The difference between the storage management methods in this context is very small,
which shows that any storage increases the use of energy from PV and that the optimization
algorithms are rationally using the surplus from the PV production.

Table 2. Comparison of the control methods and the setup without storage.

Unit Without HESS
Energy

Balancing
Economic

Optimization

Modified
Economic

Optimization

Import of energy [MWh] 138.4 115.86 123.59 122.38
Export of energy [MWh] −61.5 −30.68 −32.84 −31.08

Self-consumption rate [%] 57.3 78.7 77.8 79.3
Energy balance [MWh] 76.8 85.19 90.75 91.3

Cost of import [PLN] 324,091 270,695 261,351 258,820
Profit from export [PLN] 29,060 14,478 15,502 14,671

VRFB Charge energy [MWh] 23.11 35.88 37.71
VRFB Discharge energy [MWh] − 15.78 24.45 25.71
VRFB Equivalent cycles - − 158 244 257
VRFB Expected Lifetime [years] − 33 21 20
VRFB Depreciation cost [PLN] 5038 7804 8207

LFP Charge energy [MWh] 7.78 17.78 18.21
LFP Discharge energy [MWh] − 6.79 15.33 15.78
LFP Equivalent cycles - − 126 284 292
LFP Expected Lifetime [years] − 16 7 7
LFP Depreciation cost [PLN] 4773 10,778 11,096

Energy cost [PLN] 295,031 256,217 245,850 244,150
Financial outcome
(including battery

depreciation)
[PLN] 295,031 266,028 264,432 263,453

The second section of Table 2 presents the costs of import and profit from the export of
energy. Although profits from exports are clearly correlated with the self-consumption rate,
the cost of imports are affected by the cost in tariff zones. Here, the energy balancing method
has the highest cost but uses the lowest amounts of import, which clearly demonstrates
that economic optimization methods manage to shift energy between the zones.

The subsequent section presents the summary of the batteries’ operation. Battery
charge and discharge energy is accumulated over the year to estimate the annual through-
put and calculate energy losses. Equivalent cycles are calculated using discharge energy,
nominal capacity and DoD. This, in turn, is used to estimate the lifetime of each battery
within HESS, allowing the estimation of the point in the investment horizon that replaces
the battery blocks. The economic optimization approaches make much more use of the
energy storage, and thus also shorten its lifetime.

The financial outcome accounts for energy trading costs (which include battery losses)
and for the depreciation of each battery (to account for the cost of battery block replacement
at the end of the expected battery lifetime). For comparison, the values of financial outcome
without depreciation costs was presented as this better shows how much the depreciation
of the battery costs.

Energy balancing uses every opportunity to charge batteries with surplus generation
that would be exported otherwise. As soon as the load is larger than generation, stored
energy is used to supply loads. Energy balancing does not cycle batteries at all in winter
time, when the PV installation does not generate surplus energy. It can be assumed that a
single battery performs on average one cycle every two days. As a result, the balancing
algorithm generates almost no cost savings in the winter months when the HESS stays in
an idle state.
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By contrast, the economic optimization methods leads to heavy balancing of the
batteries, resulting in the shortening of the expected lifetime. Additional cycles are caused
by the fact that cost optimization implies time-of-use strategy that charges a battery in an
off-peak tariff to use it during peaks. This results in increased energy losses and battery
depreciation. The advantages of including time-of-use strategy are seen in the financial
outcome. Figures 21 and 29 confirm that the majority of energy consumed is drawn from
the grid in the off-peak tariff. The HESS leads to cost savings all year round.

The optimization method has another significant advantage over the balancing al-
gorithms that was not reflected in the costs: it results in the operation of the LFP battery
with relatively lower power. This leads to operation of the battery at lower temperature,
and thus to an increased lifespan. This phenomenon has not been captured by the model
applied but is an important point to investigate in future works.

The modification of the optimization method was introduced to partly overcome the
problems connected to optimizing in 24 h windows. This 24 h window limits the horizon of
the optimizer to the end of the day, and as such the optimizer is unable to increase the state
of charge of the HESS, even if this would be beneficial for the next day. The implemented
modification improved the solution, but there might still be a slight improvement if the
optimization was calculated using longer time windows.

In this work, we limited the calculations to a 24 h window because the optimizer was
also intended to perform the on-line optimization for the continuous management of an
energy storage using forecasts; reliable forecasts can, however, only be obtained for the
next day. Additionally, we considered a single day time rational in the case of a setup with
a PV installation. The calculations were performed on standard desktop computers (CPU
i5 3.2 GHz, 16 GB RAM) and while the balancing algorithm calculation time was below a
minute, the simulation of an entire year using the economic optimization methods took
24 h. There is no possibility to parallelize the computations for this simulation as the state
of charge of the storage at the end of the day is an input for the next-day computation.

5. Conclusions

A valuable tool has been implemented to test, simulate and analyze the behavior of
the modelled HESS with battery models. The tool integrates a techno-economical model
of a microgrid, including loads and RES. The model includes two battery types with their
respective round trip efficiencies and costs of depreciation related to battery degradation
during cycling. This simulation tool facilitates the sizing of the HESS installation, as well as
the development and testing of control algorithms for scheduling the HESS operation. The
graphical interface allows easy provisioning of input data while also allowing a visualiza-
tion and analysis of the output data. The authors have implemented HESS control methods,
including a simple energy balancing algorithm and using an energy cost optimization. The
model and methods have been tested with real energy profiles recorded at a research centre.

The results explain the difference between the tested methods. The simple balancing
algorithm stores surplus RES energy in the HESS and increases self-consumption rate
to reduce the cost of energy; it does not do arbitrage as such, as it does not care about
prices or tariffs. The advantage of this algorithm is its simplicity and moderate financial
outcomes–using energy storages with such an algorithm brings profits in comparison to
the setup without storage. The disadvantage is that this approach relies on the surplus of
RES energy, otherwise the batteries are not used at all. Such an algorithm can be profitable
when the averaged production from RES exceeds the usage of the facility. The economical
optimization method on the other hand minimizes the costs of the operation during a single
day. It uses the fact that there is a sufficient difference in cost of energy in different zones of
the tariffs–using batteries for arbitrage can become profitable.

The total cost of using the VRFB battery (taking into account depreciation cost and
losses related to the round trip efficiency) is not compensated by the difference between
the prices in morning peak and off peak tariff zones. Adding an LFP battery, which has
different properties and therefor cost balance, allows for reducing usage in all price peaks.
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The combination of both batteries allow to improve the cost balance of the operation and
prolong the lifetime of the batteries.

In the presence of overproduction of PV installation, the simple balancing algorithm
at times outperformed the economical optimization method. The reason for this is that the
methods employ a 24 h time window, during which the simple balancing algorithm tried to
charge the battery as much as possible (it did not count the cost), whereas the economical
optimization limited the charging to what was necessary for this day. This meant that in
the economical optimization, a subsequent day might start with a lower SOC level, even
though there was the potential to charge them the day before. To compensate for this, a
modification of the economic optimization was performed, where the surplus of energy in
a day was used to charge the HESS as much as possible. This modification improved the
economical optimization method compared to the simple balancing algorithm.

The economical optimization method uses the HESS for arbitrage and, as a result,
causes a more intense cycling of both batteries within the HESS. The simulation with
realistic technical and economic data show that the arbitrage introduced by the economic
optimization method has a small effect on the overall financial result. Although the energy
consumption in the peak hours, and thus the energy cost, is reduced, there are additional
costs of battery depreciation and energy losses in the batteries. The potential for energy
price reduction comes at a cost—the final economic result is only slightly better than the
simple energy balancing when the battery depreciation cost is included. It should be noted
that the impact of leaving a battery in a discharged state, which happens during winter
months in the simple energy balancing, is not considered in the model.

Obviously, the financial results depend on a variety of factors, such as battery perfor-
mance and cost, energy usage and generation patterns and most of all energy price profiles.
For this reason, future work includes analyzing different HESS operating scenarios and
adjusting the optimization method to take into account additional services that the HESS
can provide.

The designed methods will be tested in a real environment with forecasted profiles
being the basis for the optimizer. What is more, we plan to test the optimizer on the prices
from the day-ahead market, where both the purchase and selling prices are changing every
hour. The tool is intended to be further developed into a commercial tool for ESS installation
planning and management. The tool will be modified to work with the predictions of load
and production rather than with historic data, then it will become a scheduler that can be
used to manage the operation of the energy storage, together with a real-time controller.
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Abstract: This study aims at investigating the improvement in the thermal performance of energy
storage for a hydronic system when it is equipped with evacuated tubes integrated within a hot
water tank. The PCM shell in the bottom section is thicker than at the top to maintain a uniform,
minimal water temperature difference of 5 ◦C between the top and bottom sections of the hot water
tank. The thermal performance of the system was analyzed in diverse months when the ambient
temperature fluctuated. The results have revealed that the thermal performance in December, March,
and June was 80%, 81%, and 84%, respectively, meaning that the thermal performance is optimal
in warm weather. The results confirmed that the system had boosted the presence of hot water
throughout the whole day, including the time of the sun’s absence, due to the release of stored PCM
latent heat. The designed system solves the overheating problem and expands the availability of hot
water through the cold weather. The system is characterized by lower heat losses because the average
water temperature has decreased.

Keywords: phase change material; solar energy; thermal energy storage; hydronic solar system;
paraffin wax

1. Introduction

Intensive combustion processes of conventional petroleum-based fuels pose a signif-
icant impact on the environment in the long term and in the vicinity of residential areas
due to exposure to harmful concentrations of gaseous emissions, namely COx, SOx, and
NOx. As a result, stringent environmental regulations against these gaseous emissions
and the operability of thermal combustion facilities to reduce environmental impacts are
legitimized [1]. Due to the rising costs of petroleum end-products and increased demands
in thermal applications by the residential and industrial sectors, researchers have been
encouraged to investigate new resources of renewable energies (REs) and develop eco-
environmentally friendly REs such as photovoltaics (PVs) and thermal solar panels (SPs).
The installation of solar panels on wide terrain is intended to collect solar energy during the
day. Moreover, the current thermal energy demands strongly encourage researchers to ex-
plore promising engineering solutions for effective thermal energy depots and dispatching
solutions. Thermal energy storage has become increasingly crucial, owing to its interaction
with variable production resources, the increase in the demand for conventional fuels for
the combustion process, and the adverse environmental impact of other RE sources. There-
fore, the ideal way to balance thermal energy is for it to be stored in conservative depots
utilizing phase change materials such as paraffin based PCMs, which are ecologically and
economically ideal.
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Thermal energy storage is a feasible compensation for fluctuations between produc-
tion and consumption rates during peak demand periods through thermal energy depot
facilities that could be integrated within RE producers’ and consumers’ buildups. The
integration of PCMs with an energy storage system has several potential applications,
including the intensive and cumulative latent heat of phase changes. Furthermore, the
phase change process is compatible and better monitored, since it occurs ideally at isother-
mal temperatures [2]. Despite these REs’ potential, they possess a few deficiencies, such
as crisp efficiency and less availability than other RE sources such as wind, traditional
solar, and substrates for biofuel production [3]. The availability of sunlight varies across
continents and between the earth’s upper and lower hemispheres, potentially influencing
energy availability.

The PCM products can be classified into three categories: eutectic, organic, and
inorganic materials [4–9]. Organic PCMs include paraffin and non-paraffin. The main ad-
vantages of organic materials are changing their phase without segregation and latent heat
degradation; self-nucleation; non-corrosiveness; chemical stability and safety. Inorganic
PCMs include salts, hydrates, and metallic materials. They have a high storage density,
high thermal conductivity, are non-flammable, and are readily available, but they need a
nucleation agent and have a super-cooling problem in the phase transition. Eutectics are
mixtures of two or more components [4–9].

Hydronic systems are usually associated with liquid water as a heat transfer medium
for the cooling and heating processes. A hydronic system typically includes both cooled
and heated water cycles to allow for separate heat transfer. Typical temperature differ-
ences of such systems are within the range of 0 and 15 ◦C for cooling and between 20 and
100 ◦C for heating [10–12]. Recently, solar water collectors have been considered a signifi-
cant alternative to traditional electric heaters in meeting domestic hot water requirements.
Although solar water heaters are composed of various types, passive or natural convection
types are used widely due to their simplicity and operational efficiency [13,14].

The development of traditional solar heating and cooling systems was reviewed in
Ge et al., 2018; storing excess heat for further applications was recommended, and
enhancements to the solar energy storage system were highlighted [15]. Moreover,
Buker et al., 2015 discussed improvements in solar panel design, such as panel surface, tilt,
and shading, that could have a significant influence on the performance of the integrated
hydronic systems [16]. Nevertheless, the obstacle that limits the solar water collectors is
the scarcity of matching demand and supply throughout the day. The operation of solar
water collectors depends on the availability of the sun [17] and heat losses [18].

Several researchers have confirmed that thermal energy storage is an essential issue
by using appropriate thermal storage material within the solar energy system, which could
be incorporated in a storage tank [19–21] or with collector tubes [22,23]. Recently, the
heat that is absorbed or released during a phase change of PCMs has been employed as
a thermal storage battery, due to its higher latent heat, wide operating temperatures, and
very good thermal properties [24–31]. A PCM absorbs and stores thermal energy during
the sunny hours of the day; later, it releases the stored energy after the sun’s absence,
which improves the solar system’s efficiency. Organic PCMs, such as paraffin wax, are
best known for storing a large amount of energy due to their high latent heat, thermal
and chemical durability, little sub-cooling, and non-toxicity [32,33]. In the recent liter-
ature, the thermal behavior of paraffin-based PCMs was studied for the energy depot
process. Murali et al., 2015 have examined the effectiveness of flat-plate solar water col-
lectors incorporating paraffin as a PCM in a container placed in the top section of the
water tank. Their findings appear to improve the performance of the solar system [34].
Kumar et al., 2020 have investigated the behavior and effect of applying synthesized
nano-PCMs on the energy storage of evacuated solar water heating systems. According
to their findings, PCMs were filled in evacuated solar tubes, which were connected to
cylindrical containers placed inside the water tank [21], and such PCMs flowed as liquid
inside and served as an energy storage medium to heat the water inside the main tank. In
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a previous study, we investigated the thermo-physical properties of PCMs by studying
the enhancement of the thermal conductivity of the heat transfer medium of a PCM with
the addition of carbon nanotubes (CNT) and graphite nanoparticles (GNP) as nanofillers
to PCM composites [35]. So, future outcomes will focus on the enhancement of the per-
formance efficiency of the solar system by adding nanoparticles to the PCM, which are
then incorporated into the system. In this context, prior studies [36–38] have addressed
the application of a shell and tube thermal storage heat exchanger equipped with finned
outer walls for the tubes, and the enthalpy-porosity method was utilized to reveal the
transient behavior of the PCMs’ melting process. This approach could be subject to various
complexities, and several criteria must be met to apply the proposed enthalpy-porosity
method. In addition, the wavy annulus tubes could cause apparent vortices inside the heat
exchanger that affect the natural convection of heat transfer.

Generally, the reviewed studies imply that the integration of PCMs within a solar
system could ameliorate the performance of the thermal mass, maximize operational
simplicity, and recover the thermal energy of the hydronic solar system for off-peak periods.
It could be understood that few attempts were made to establish an in-field hydronic system
that has a potential application of heating water in residential and industrial premises and
to replace conventional electrical/fuel-based water heating systems, thereby improving
energy storage efficiency during off-peak periods and reducing relevant energy expenses
in premises. This study may offer guidance for future research and the thermal design
of domestic hydronic solar systems. The performance of the system is assessed with an
integrated PCM that is distributed on the shell side of the water storage tank, such that the
PCM shell has a different thickness at the top and bottom of the storage tank (the bottom
portion is thicker than the top). The effect of the PCM in a natural circulation solar water
collector was examined through normal domestic hot water consumption, complete and
sudden emptying of the hot water storage tank, and no hot water consumption.

2. Methodology

2.1. Experimental Setup

The manufactured hydronic solar system is located on the Jordan University of Sci-
ence and Technology campus. Its geographic coordinates are 32.49◦ N (latitude) and
35.99◦ E (longitude). The solar collector that was used is an evacuated tube setup with an
inclined angle of 45◦. The inclined angle was chosen after making calculations to obtain
higher gains in energy in the winter and solve the overheating problem in the summer. The
main features of the evacuated tube of the solar collector are presented in Table 1.

Table 1. Features of the evacuated tube of the solar collector.

Parameter Value

Number of tubes 20

Outer diameter 0.058 m

Inner diameter 0.047 m

Length 1.8 m

Tube material Borosilicate glass

Absorptivity coefficient 95%

Emissivity coefficient 5%

In addition to evacuated tubes, the system contains a water storage tank with a total
capacity of 0.200 m3, a length of 1.6 m, and a diameter of 0.45 m. It is made of galvanized
steel with an outer shell with a diameter of 0.53 m and contains paraffin wax as PCM with
a thickness of 2 cm at the top and 4 cm in the bottom portion; such an asymmetric design is
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believed to assist in charging and discharging heat into the system since it provides more
effective buoyancy motion for the liquid PCM. The tank was thermally insulated by rock
wool to reduce the loss of energy. The insulation shell is covered with galvanized steel
sheet. All specifications of the storage tank are shown in Figure 1.

 
Figure 1. Schematic representation of the storage tank with instrumentation.

The phase change material that was used in this system was paraffin wax with
a melting temperature of 48 ◦C. It was chosen due to its thermal stability, low price,
no sub-cooling problem, and suitable latent heat. The thermal specifications of paraffin
wax are presented in Table 2.

Table 2. Thermal specifications of paraffin wax [39].

PCM Melting Temperature [◦C] Latent Heat [kJ/kg]
Specific Heat

[kJ/kg·◦C]
Thermal Conductivity

[W/m·◦C]

Paraffin wax 48 210 2.4 (liquid)
2.1 (Solid) 0.24

Additionally, the system consists of a solenoid valve that is programmed to meet
the level of family consumption of hot water throughout the day. This valve withdraws
hot water at specific times; the following diagram shows the proposed water consump-
tion pattern, which presents the distribution of hot water throughout the day. Figure 2
shows a daily water consumption pattern according to real observed consumption and
required estimations.

The system contains a cold water tank to recover hot water discharged from the
hot water tank. Thermocouples (Type K) were fixed through the storage tank to notice
and record water and PCM temperatures during the heating process. Thermocouples
were installed in the system to detect the temperatures of the water, PCM, and ambient.
They were placed in the water region in three positions: two at the top and one at the
bottom. Additionally, other thermocouples were placed in three positions throughout the
PCM region: two at the top and one at the bottom. One thermocouple reads the ambient
temperature. All thermocouples were connected to a converter that gives temperature
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readings in Celsius. The data logger was connected to read and record the temperatures
with Windows software easily plugged into a computer. For measuring irradiance (w/m2),
a pyranometer was used. The data was acquired and stored every 4 min. An additional
experiment was performed every 5 s and the reading was recorded. The hot water tank
was discharged completely in the evening (specifically at sunset) to investigate the water
and PCM temperature behavior in this case.
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Figure 2. The hot water consumption pattern throughout the day.

As for the hot water region, the PCM region was also equipped with two holes and
a lid to fill and discharge the PCM at any time based on necessity. Moreover, the problem of
high pressure throughout the system is resolved by setting up vents for both the water and
the PCM regions. A photographic view and schematic diagram of the system are presented
in Figure 3. The water is replenished from the water supply tank. The hot water storage
cylinder receives hot water passively from the evacuated tube, whereas the hot water flows
up to the tank naturally due to thermosiphon circulation. The hot water was then used for
domestic use, and hot water consumption was recovered by the water supply tank. When
water gains heat from solar energy, it conductively exchanges this energy with the PCM.
Conversely, as the temperature of water decreases, the latent heat will be released to the
water from the PCM during the liquid phase until solidification in the absence of the sun.

2.2. Thermal Model

Energy balance is applied to both parts of the hydronic solar system under steady-state
conditions: the evacuated tube and hot water storage tank. The useful energy gained from
solar radiation by evacuated tubes can be expressed by [40,41]:

Quse f ul = I Ac (τα)e f f kθi − Qloss (1)

and
Qloss, tube = UL,tube Ac (Tw − Ta), (2)

where I represents a global solar irradiance, Ac represents a solar collector area, (τα)eff repre-
sents an effective transmissivity-absorptivity product coefficient, kθi represents an incident
angle modifier, UL,tube. represents an over-all heat transfer coefficient of heat loss from the
evacuated tubes, and Tw and Ta. represent water and ambient temperatures, respectively.
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The solar collector’s efficiency  . is determined by the value of the ratio between
useful energy and solar radiation that falls on the collector. This can be expressed by:

 =
Quse f ul

I Ac
(3)

Solar collector efficiency (evacuated tubes) can be explained by:

 
collector = (τα)e f f kθi −

UL,tube (Tw − Ta)

I
(4)

  
(a) (b) 

Figure 3. Hydronic evacuated tube solar system with a PCM: (a) photographic view;
(b) schematic diagram.

The following equation clarifies how the useful energy leaving the evacuated tubes
moves to the water tank, which transfers to paraffin, giving rise to temperature changes:

QPCM =
(
mPCM cp, PCM ΔT

)
solid + mPCM λPCM +

(
mPCM cp, PCM ΔT

)
liquid (5)

Energy balance in the water tank can be expressed by:

Eaccumulation = Quse f ul ± QPCM − Qload − Qloss,tank (6)

Useful energy, load energy, and the heat loss of the water tank can be calculated by:

Quse f ul = mw, tank ·cp, w ·(Tout, w − Tin, w) (7)

Qload = mw,load ·cp, w ·(Tw − Ta) (8)

Qloss, tank = UL, tank Atank (Tw − Ta) (9)
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The overall heat transfer coefficient of energy losses in the system (UL,sys) is equivalent
to the losses of both the evacuated tube and the water tank. This can be expressed by:

UL,sys = UL,tube + UL, tank (10)

The efficiency of the system with paraffin as the PCM is:

 system =  
collector ·  PCM (11)

 system =

[
(τα)e f f kθi −

UL,sys
(
TH2O − Ta

)
I

]
·
[

QPCM
I Ac

]
(12)

The domestic hydronic solar system was evaluated according to EN 12976 standards,
where the solar radiation, water temperature, ambient, and PCM temperatures were
recorded for more than 9 months consecutively under two test types: with PCMs and
without PCMs. According to ISO 9459-5 DST, the withdrawals of hot water from the
storage tank depended on family consumption patterns throughout the testing period.
Thermal output characterization tests were conducted according to the results of calculating
instantaneous system performance experimentally and theoretically and calculating water
storage tank heat losses. The hydronic solar system’s thermal performance was measured
on days with daily solar radiation and temperatures recorded over consecutive months
at different water storage inlet temperatures. Protection against overheating and pressure
resistance standards were considered necessary to save the system from deformation.

3. Results and Discussion

The average values of the solar radiation at the JUST campus throughout the year
are shown in Figure 4. The temperature distributions of the ambient, water, and PCM
at the storage tank were recorded during system testing. All parameters of the sys-
tem were studied for many months over a year to investigate the effect under different
weather conditions.
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Figure 4. Measured monthly radiation data.

3.1. Temperature Distributions

The temperature distributions of the ambient, PCM, and water at the storage tank
(average) with and without PCMs are shown in Figures 5–7. In these figures, it is noticeable
that the water temperature increases from sunrise until it reaches the melting temperature of
paraffin. The water temperature remains at a fixed value until the paraffin melts completely,
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at which point it increases to a specific value. The temperatures decrease with the decrease
in energy gained from the sun at the end of the day. While the water temperature rises
through circulation in the evacuated tubes, water flows into a storage tank where thermal
energy exchange starts between hot water and paraffin, which further raises the paraffin’s
temperature. So, the temperature of the paraffin at the beginning of the day increases
gradually with the increasing water temperature that comes from the evacuated tubes.
When paraffin reaches its melting point, the temperature stays constant, increases to the
maximum specified value, and then gradually decreases at night as a result of the absence
of energy from solar radiation. At the melting and solidification temperature of the PCM,
the water temperature stays at a fixed value, which can be observed in Figures 5–7.
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Figure 5. Temperature distribution of the system through December 2021: (a) using paraffin as PCM;
(b) without PCM.
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Figure 6. Temperature distribution of the system through March 2022: (a) using paraffin as PCM;
(b) without PCM.

The following can be observed by using a PCM case: when the PCM temperature
reaches its melting point throughout the day, the stored energy begins the PCM phase
change from a solid to a liquid. This stored energy is used as released energy in water to
maintain its temperature within the domestic usage range.

The temperatures of paraffin decrease constantly in the afternoon to reach a solidifica-
tion point and stay at the same temperature for a short period, with an exchange of latent
heat that is released in water. This process is reflected in the values of water temperatures,
where the decrease is very small. Energy loss during the late afternoon and night hours
is higher than at any other time during the day. The water temperatures are in the range
for domestic use, which is the main goal of the system. The thermal energy that transfers
between water and paraffin depends on the temperature difference between them and on
the phase of paraffin (liquid or solid). Throughout the day, with the presence of solar energy,

397



Energies 2023, 16, 126

the glazing temperature, energy collected, and water temperature increase. Approximately
at solar noon, water temperatures reach their maximum.
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Figure 7. Temperature distribution of the system through June 2022: (a) using paraffin as PCM;
(b) without PCM.

It can be observed in Figures 5–7 that water temperatures at solar noon without
using a PCM case are higher than those with PCMs. Higher values due to the transfer of
energy from water to PCMs mean a reduction in overheating problems in the water tank.
Conversely, through early morning and late afternoon, the water temperatures are lower
than those reached when using paraffin as a PCM.

Figure 8 shows different temperature distributions, and the experiment of discharging
the storage tank of hot water completely was performed. This experiment was conducted
to study the behavior of the PCM and heat exchange with water by discharging all amounts
of hot water in the water tank at 4:00 PM. The withdrawal of hot water is replaced by cold
water. It is evident from Figure 8 that the water temperature decreases sharply through
the discharge process, along with the PCM temperature. After that, the water temperature
begins to rise as a result of the heat exchange from the PCM.

398



Energies 2023, 16, 126

 

0
10
20
30
40
50
60
70
80
90

1:
30

 P
M

2:
27

 P
M

3:
25

 P
M

4:
22

 P
M

5:
20

 P
M

6:
18

 P
M

7:
15

 P
M

8:
13

 P
M

9:
10

 P
M

10
:0

8 
PM

11
:0

6 
PM

12
:0

3 
AM

Te
m

pe
ra

tu
re

, o C

Local Time

Tpcm
Tw
Ta

Figure 8. Temperature history of the system through complete hot water consumption.

The water and PCM reach the same temperature at a specific point in time. Addition-
ally, the temperature of the water in the domestic use range can be considered optimal. This
experiment shows the exchange of stored thermal energy in PCMs with water and its effect
on water temperature. This experiment explains the family’s sudden and complete drain of
the hot water from the water storage tank and how the PCM raises the water temperature
by 10 ◦C over a short period of time.

Furthermore, Figure 9 shows the temperature distributions of hot water, PCM, and
ambient temperature in the absence of hot water consumption throughout the day. This
experiment was performed in approximately similar weather conditions to the previous
one. It can be noticed that higher values of hot water and PCM temperatures are due to the
absence of load energy. Moreover, it is clear that the temperature difference between water
and paraffin is small; this difference is less than 1 ◦C in the morning hours with increasing
gains in energy.
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Figure 9. Temperature history of the system through no hot water consumption.
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Due to the design of the storage tank, the thickness of the PCM layer on the top and
bottom of the tank was different. The thickness at the bottom is higher than the top, which
means more mass of PCM and more stored energy through the sun’s presence. This stored
energy is released in the water at the bottom of the tank, which has a lower temperature than
that in the top region. Releasing energy from PCMs means heating water, which makes the
water through the whole tank have similar or small differences in temperature, especially
in the late afternoon hours. Figure 10 presents the temperature distribution of water on
the top and bottom regions; as can be seen, the maximum difference is approximately
5 ◦C during the daybreak hours. It can be observed that the water temperatures at the
top and bottom of the tank are the same at solar noon. This study shows a decrease in
water temperature compared with a hydronic solar system without a PCM, which is an
advantage to reducing heat losses from the system and avoiding superheating through the
tank. Furthermore, Azimi et al., 2015 found that the water temperature at the bottom of the
tank is close to ambient temperature without PCMs [42].
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Figure 10. Temperature distribution of water through the top and bottom of the storage tank [42].

Figure 10 presents a comparison and disparity between our study and that of
Azimi et al. Not only do our results demonstrate a decrease in the difference between
hot water and temperature at the top and bottom of the storage tank greater than that of
Azimi et al., but they also show a decrease in the hot water in the system (within domestic
use), which means less thermal energy losses and covers the hours of solar absence.

3.2. System Efficiency

The results of our experiments and theoretical calculations are summarized in
Tables 3–5. The results show useful gains and losses in energy with the water temperature
in the water storage tank for the clear days of December, March, and June. The lowest
rate of useful energy is in the evening and morning. However, the highest value of useful
energy at solar noon is due to the increasing gain in solar energy. Due to the greater
temperature difference between the water and the ambient, heat loss is greater at noon than
in the morning and evening. The experimental efficiency of the hydronic solar system was

estimated by (
Quse f ul

I Ac
). It is clear from the tables that the system efficiency rises progressively

from sunrise to solar noon, the maximum value, then falls off. The maximum experimental
efficiency is around 80% in December, 81% in March, and 84% in June. The instantaneous
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efficiency of the system without using PCMs is around 60%. So, the positive effect of using
PCMs on the performance of the hydronic solar system is clear.

Figure 11 illustrates the relationship between the system’s thermal efficiency (  system)
and the temperature difference between hot water and ambient (ΔT/I), based on the data
for December, March, and June. The relationship shows a straight line with the overall heat
loss coefficient as a slope. The optical efficiency of the hydronic system is the intercept of
the straight line. The values of the determining factor of the relation (R2 > 0.9) point out
an intense correlation between both parameters. Each figure shows the comparison of the
relationship between systems with and without PCM. It can be concluded from Figure 11
that the case of PCM has higher efficiency than that without PCM.

Table 3. Experimental and calculated results for December 2021 with paraffin.

Local
Time

Tw (K) Ta (K) I (w/m2.5) Quseful (w) Qloss, sys
(w)

ΔT/I
(K·m2/w)

system

Experimental Theoretical

7:00 AM 313.65 285.55 42.09 201.25 92.41 0.37 0.43 0.14

8:00 AM 311.25 285.95 206.47 527.41 82.98 0.12 0.62 0.39

9:00 AM 314.45 288.35 449.72 1170.86 86.23 0.06 0.75 0.46

10:00 AM 316.35 290.35 657.35 1730.45 86.37 0.04 0.77 0.58

11:00 AM 321.15 292.15 660.99 2017.54 97.07 0.04 0.79 0.61

12:00 PM 326.15 293.45 770.52 1540.62 110.55 0.04 0.8 0.6

1:00 PM 330.45 294.25 592.19 924.34 123.29 0.06 0.73 0.55

2:00 PM 334.35 294.75 361.18 311.50 135.52 0.11 0.64 0.47

3:00 PM 336.55 294.45 131.38 194.21 104.64 0.32 0.51 0.1

4:00 PM 336.15 293.05 88.21 141.14 92.41 0.5 0.38 0.05

Table 4. Experimental and calculated results for March 2022 with paraffin.

Local
Time

Tw (K) Ta (K) I (w/m2) Quseful (w) Qloss, sys
(w)

ΔT/I
(K·m2/w)

system

Experimental Theoretical

7:00 AM 312.15 290.65 67.82 162.47 63.84 0.32 0.48 0.17

8:00 AM 314.35 291.05 121.32 302.60 69.39 0.19 0.55 0.32

9:00 AM 317.35 293.45 239.80 615.55 71.69 0.1 0.64 0.47

10:00 AM 321.35 297.35 465.14 1211.92 72.73 0.05 0.7 0.55

11:00 AM 329.95 298.75 671.44 1751.12 95.73 0.05 0.8 0.55

12:00 PM 333.95 300.75 795.03 2075.75 102.87 0.04 0.81 0.6

1:00 PM 337.55 301.95 798.70 2082.36 111.08 0.04 0.79 0.62

2:00 PM 340.55 301.75 681.87 1769.23 121.40 0.06 0.77 0.61

3:00 PM 342.25 299.35 480.51 1231.29 134.41 0.09 0.66 0.56

4:00 PM 342.55 298.15 256.79 636.88 119.08 0.17 0.58 0.34

5:00 PM 343.15 296.25 111.33 249.13 96.66 0.42 0.36 0.08

6:00 PM 339.45 295.35 89.32 190.98 67.18 0.58 0.3 0.03
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Table 5. Experimental and calculated results for June 2022 with paraffin.

Local
Time

Tw (K) Ta (K) I (w/m2) Quseful (w) Qloss, sys
(w)

ΔT/I
(K·m2/w)

system

Experimental Theoretical

7:00 AM 320.45 290.65 124.60 305.87 101.62 0.41 0.21 0.04

8:00 AM 323.55 291.05 138.30 339.54 104.03 0.24 0.46 0.13

9:00 AM 326.45 293.45 145.10 356.24 104.86 0.23 0.55 0.15

10:00 AM 330.25 297.35 401.15 1733.79 127.29 0.1 0.76 0.5

11:00 AM 338.25 298.75 665.25 2138.88 132.21 0.08 0.82 0.54

12:00 PM 341.35 300.75 820.88 2132.10 136.54 0.06 0.84 0.59

1:00 PM 343.65 301.95 819.26 1719.74 145.85 0.05 0.81 0.57

2:00 PM 346.25 301.75 664.39 1045.19 143.57 0.05 0.76 0.5

3:00 PM 343.35 299.35 410.99 565.76 134.29 0.07 0.67 0.46

4:00 PM 339.55 298.15 229.66 272.33 118.24 0.11 0.62 0.42

5:00 PM 333.15 296.25 117.68 248.26 119.90 0.18 0.51 0.3

6:00 PM 332.75 295.35 106.39 117.31 83.18 0.31 0.42 0.04

  
(a) (b) 
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Figure 11. Efficiency of the system versus ΔT/I with and without PCM; (a) December, (b) March and
(c) June.
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Situta-Olcha et al., 2021 [43] examined the thermal efficiency of the solar system with
a heat pipe without a PCM under weather conditions similar to December. Their results
show less than 40% thermal efficiency. Moreover, the results of Azimi et al., 2015 and
Tong et al., 2016 [42,44] present lower thermal efficiency than that achieved in this study,
which was less than 70% and 80%, respectively. Kumar et al., 2020 [21] investigated adding
paraffin wax as a PCM inside a cylindrical container through a hot water storage tank. One
case of their study was carried out under conditions similar to our study through June; the
daily efficiency was less than 70%.

Some of the virtues of the current work are attracting promising investment opportuni-
ties, improving the infrastructure of local residential areas and rural regimes, and providing
customizability in the energy sector for the benefit of the individual market with innovative
products and dependable services.

4. Conclusions

A hydronic evacuated tube solar heating system is fabricated and installed to match
the domestic requirements and uses throughout the day by using PCM latent heat. In the
analysis of the hydronic solar system, the influence of the weather and operating conditions
was considered. The thickness of the PCM shell in the bottom portion is greater than that
of the top, minimizing the water temperature difference at the top and bottom to 5 ◦C.

The water and ambient temperatures through the system testing are presented and
discussed in three cases: the first one was at normal conditions on clear days with water
consumption, the second was without water consumption, and the final case was the effect
of sudden and complete consumption of hot water while observing the behavior of PCMs
in heated water. The results show increasing water temperature after a short period for
domestic water temperature values.

The thermal efficiency of the hydronic solar system in December, March, and June
was 80%, 81%, and 84%, respectively. This conclusion is higher than that of the experi-
ments conducted by Kumar et al., 2020 [21]. Thermal efficiency depends linearly on ( Δ T

I ).
The hot water for domestic use is available throughout the day, which is achieved by
using PCMs.
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Nomenclature

T Temperature: K
Ac Solar collector area, m2

Cp Specific heat, kJ/kg·K
I Global solar irradiance, w/m2

kθi Incident angle modifier
m Mass flow rate, kg/s
QPCM Phase change material energy, w

403



Energies 2023, 16, 126

QLoad Load energy, w
Qloss energy losses, w
Quse f ul Useful energy, w
UL Over-all heat transfer coefficient of heat loss, W/m2·K
rin Inner radius of the hot water tank, m
ro Outer radius of the hot water tank, m
(τα)eff Effective transmissivity-absorptivity product coefficient
λ Latent heat, kJ/kg
η Thermal efficiency, %
Subscripts

a Ambient
w water
tube Evacuated tube solar collector
tank Hot water tank
sys system
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Abstract: In recent years, the goal of lowering emissions to minimize the harmful impacts of climate
change has emerged as a consensus objective among members of the international community
through the increase in renewable energy sources (RES), as a step toward net-zero emissions. The
drawbacks of these energy sources are unpredictability and dependence on nature, leading to
unstable load power supply risk. One way to overcome instability in the power supply is by using a
battery energy storage system (BESS). Therefore, this study provides a detailed and critical review
of sizing and siting optimization of BESS, their application challenges, and a new perspective on
the consequence of degradation from the ambient temperature. It also reviews advanced battery
optimization planning that considers battery degradation, technologies, degradation, objective
function, and design constraints. Furthermore, it examines the challenges encountered in developing
the BESS optimization model and evaluates the scope of the proposed future direction to improve the
optimized BESS, especially its battery.

Keywords: battery energy storage system; sizing; optimal planning; battery degradation; ambient
temperature; renewable energy sources

1. Introduction

Lately, there has been a growing consensus among people worldwide regarding the
importance of reducing emissions to mitigate the adverse effects of climate change. Several
nations and companies globally are beginning to commit to net-zero emissions. Despite
its vulnerability to climate change, it is also realized by Indonesia, which is Although
vulnerable to climate change, this is also realized by Indonesia, which is an archipelago
country country [1]. The utilization of alternative or renewable energy sources (RES) is
one of the most effective ways to reduce emissions generated from fossil fuels. Solar
photovoltaic (PV) is the most extensively utilized RES owing to its installation simplicity,
low cost, and scalability [2]. However, problems arise because the RES generation is
unpredictable and highly dependent on nature, resulting in an unstable power supply to
the load [3]. Due to its high penetration, the uncertainty of PV plants expose the power
grid to many challenges, such as voltage, frequency fluctuations, reverse power flow, and
harmonics [4]. The successful integration of RES into the planning and operating model of
an electric power system on a grid-scale increases the flexibility of the battery [5].

The battery energy storage system (BESS) helps ease the unpredictability of electrical
power output in RES facilities which is mainly dependent on climatic conditions. The
integration of BESS in RES power plants boost PV penetration rates [6], thereby improving
the efficiency and reliability of the generating system [7]. Furthermore, BESS plays an

Batteries 2022, 8, 290. https://doi.org/10.3390/batteries8120290 https://www.mdpi.com/journal/batteries
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essential role in distribution networks, where it is used to assist auxiliary services, load
shifting and leveling, backup power, peak shaving, demand response, renewable energy in-
tegration, frequency control, voltage management, long-term, and seasonal storages [8–10].
Therefore, its optimization is essential.

BESS capacity and its ideal location are both determined by its optimization indicator.
The performance of the electric power system is also significantly improved by its optimiza-
tion in terms of establishing the appropriate capacity and rating. Meanwhile, inadequate
capacities and ratings tend to result in greater power losses and increased costs for both the
investment and operation of the power system [11]. BESS capacity needs to be optimized
to ensure continuous electric power alongside robust and economical operation [12]. Its
optimal placement is also extremely relevant on grid-scale networks. This is because it
affects BESS costs and services by delaying investment from peak loads, improving the
response to changes in electrical energy generation and demand, reducing transmission
and distribution losses, as well as restrictions on RES generation [13]. One of the most
significant decisions to make is planning to optimize the performance of the RES system
to achieve profitable investments. The optimization of BESS capacity and placement is a
significant problem due to the need for ideal energy exchange equilibrium [14] and the
total cost of installation [15].

BESS technology includes the use of lithium-ion (Li-Ion), lead-acid (LA), sodium-
sulfur (NaS), zinc-bromine (ZBB), nickel-cadmium (Ni-Cd), vanadium-redox (VRB), and
polysulfide bromine batteries (PSB) [16,17]. These are typically used for load leveling,
power quality, grid extension and support, demand management, and voltage regulation.
One of the major advantages of LA is that it has relatively low investment opportunities,
and expensive to operate with limited energy density. Although the Li-Ion batteries have
high energy and power densities with long-lasting life cycle and excellent efficiency, it is
an expensive investment [18]. This battery type is also manufactured as packs, organized
in series or parallel to realize the necessary current, voltage, and power. Throughout the
development of this battery, large-scale battery packs were built as power walls [19].

Li-Ion batteries’ performance deteriorated over time and is referred to as calendar and
cycle life [20]. This is due to two causes, first is the loss of Li-Ion triggered by the formation
of a solid electrolyte contact (SEI). Second is the loss of electrode sites [21], which increases
internal resistance, lowers capacitance and efficiency, and diminishes battery life [22,23].
Consequently, battery deterioration always impacts the optimal operation and longevity of
Li-Ion battery energy storage, particularly the percentage of power systems [24]. It also
predicts battery life, maximum charge or discharge cycles, or Ah-overall. The data is then
used for cost or benefit analysis [25].

The degradation costs for a charge or discharge cycles need to be considered when
analyzing real-time energy management challenges. In this case, the energy management
running expenditures tend to grow because of battery life and actual unrepresented elec-
tricity prices [26]. According to Cardoso et al. [27] the overall annual power cost reductions
from PV and storage systems can be reduced by 5–12% if the battery deterioration limits
are considered. Ren et al. [28] stated that it significantly reduces the system’s electrical per-
formance and increases unanticipated maintenance expenditures. Battery failure is usually
due to deterioration caused by increased rate of usage, and this can limit its lifespan and
potentially lead to significant accidents. Likewise, battery degradation significantly reduces
the system’s electrical performance and increases unanticipated maintenance expenditures.
Severson et al. [29] stated that the prediction of battery life facilitates new production, use,
and optimization opportunities. If one can accurately anticipate the lifespan of a battery,
then they can create new uses as well as optimize its performance. This leads to innovative
opportunities for the manufacturing process and optimization.

The present study examines the optimization plan for the BESS system problem by
considering battery degradation due to ambient temperature. It serves as a reference for
investigating areas of electrification using renewable energy sources. This engineering topic
covers BESS planning in relation to deterioration from a practical standpoint. However, this

408



Batteries 2022, 8, 290

static problem involves battery capacity and location to attain the desired goals. These tend
to be influenced by technological and economic concerns, as well as other factors such as re-
liability. As a result, BESS planners encounter certain challenges in gathering and inputting
data, dealing with design constraints, and implementing effective energy management.

The following are the key contributions of this research:

• Explain the state-of-the-art expansion planning with BESS optimization.
• Explain how battery degradation due to ambient temperature can affect BESS.
• To study different technologies, objectives, and constraints of BESS.
• Review the challenges and future scopes encountered in developing BESS optimization.

The present research is arranged as follows. Section 2 outlines the methods used
to review the literature. Section 3 investigates BESS with respect to expansion planning.
Sections 4 and 5 reviewed its application and battery technology, respectively. Section 6
focuses on the study of battery degradation. Meanwhile, Section 7 reviews the objective
function, design constraint, and algorithm of BESS optimization. Section 8 discusses the
issues and challenges of BESS, while Section 9 concludes the research and provides areas
for future works.

2. Methodology

The systematic literature review (SLR) was summarized using the preferred reporting
items for systematic reviews and meta-analyses (PRISMA) approach. Data were selected
from the Scopus, Science Direct, IEEE Xplore and Web of Science databases in three stages,
namely identification, screening, and reporting. Figure 1, shows the identification stage,
which is carried out by searching for related articles in each database, as illustrated in Table 1.
The strategy adopted at the time of initial screening on the database is in accordance with
the provision of the title, abstract, and keyword. This led to the realization of 1584 articles,
of which 824, 352, 187, and 221 were from Scopus, Science Direct, IEEE Xplore, and Web of
Science concerning the optimization of BESS and battery degradation, respectively.

Table 1. Search term selection.

Search Term Descriptor

Database Scopus, Science Direct, IEEE Xplore, and Web of Science

Keyword Fields Battery Energy Storage System; Sizing; Battery Degradation;
Battery Aging

Year Publication 2018–2022
Document Type Article

After checking and removing duplicate reports and records marked as ineligible by
automation tools, 139 papers were obtained for screening. The papers were selected in
accordance with exclusion and inclusion criteria based on Table 2. Incidentally, 42 records
were excluded, 12 were not retrieved, and 15 reports were omitted due to inclusion and
exclusion criteria at the screening stage. Finally, the total number of comprehensive SLR
articles to be reviewed are 69.

Table 2. Criteria for the systematic literature review.

Criteria Description

Inclusion

A journal that has the highest relevance with BESS and battery
degradation due to ambient temperature

Has an impact factor Q1
Paper publication 2018 to 2022

Exclusion
Studies that have information relatable to support

state-of-the-art BESS or battery degradation
Paper publication 2018 to 2022
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Figure 1. Block diagram selection based on PRISMA flow diagram approach [30].

As a result, this SLR was carried out to respond to the following research objectives
and questions.

1. How does the development of BESS optimization affect expansion planning and the
impact of the BSS applications on the grid or microgrid?

2. How does the battery technologies use affect BESS? And what can affect battery degradation?
3. How does battery degradation due to ambient temperature affect BESS optimization?
4. What are the main parameters and variables in BESS optimization planning?

The number of publications on this topic has increased over the past five years, as
shown in Figure 2. For example, from 2018 to 2021 there were 53 articles, with 16 new
publications in October 2022.
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Figure 2. Number of BESS-related publications eligible for review in the last five years.

Meanwhile, 69 comprehensive articles have been selected for review. The acquired
data has a Q1 journaling tool from the Scimago Journal Rank (SJR). Table 3 shows the list of
publications or journals selected for review.

Table 3. Distribution of articles in each journal.

Journal Name Scimago Journal Rank Impact Score Number of Articles

IEEE Transactions on Smart Grid 5.25 11.95 1
IEEE Transactions on Power Systems 4.64 8.42 2

IEEE Transactions on Industrial Informatics 4.33 12.03 2
IEEE Transactions on Sustainable Energy 4.16 9 3

Applied Energy 3.06 11.3 9
IEEE Transactions on Transportation Electrification 2.17 7.64 1

IEEE Transactions on Energy Conversion 2.09 5.79 1
Energy 2.04 8.51 4

IEEE Transactions on Industry Applications 1.98 5.21 2
Journal of Power Sources 1.98 9.07 2

Journal of Cleaner Production 1.92 10.96 3
Renewable Energy 1.88 8.65 3

IEEE Transactions on Green Communications and Networking 1.87 3.88 1
Energy and Buildings 1.68 7.13 1

International Journal of Electrical Power and Energy Systems 1.54 6.06 1
Journal of Energy Storage 1.35 8.78 5

Electric Power Systems Research 1.11 4.39 3
MRS Energy and Sustainability 1.03 2.2 1

IEEE Access 0.93 4.3 4
Batteries 0.87 5.77 4

PLoS ONE 0.85 3.58 1
International Journal of Energy Research 0.81 5.81 1

Sustainability (Switzerland) 0.66 4.17 1
Energies 0.65 3.54 11

Automotive Innovation 0.4 1.99 1
International Journal of Renewable Energy Research 0.3 1.61 1

Brief Review

Until now, the trends of BESS have been widely studied in several aspects. As ex-
plained in Table 4, a BESS is often applied to solve microgrid, grid-scale, and hybrid
renewable energy system (HRES) problems. However, to obtain economical results, its
sizing and siting was optimally analyzed with a significant dependence on the problem
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to be solved. BESS is usually used to solve problems related to system flexibility, such as
demand load shifting, loss of load, avoidance of RES curtailment, and RES peak shaving. As
its research progresses, it becomes increasingly important to consider the impact on battery
health, as well as the choice of battery technology used, which can affect the system and
its economic value. Battery health needs to be considered to ensure it does not experience
degradation, when the BESS needs to be replaced. In general, the battery degradation
factors considered during the optimization process are SOC, DOD, cycle number, and
battery lifetime. Furthermore, studies have also been developed on the use of recycled
batteries from electric vehicles with BESS integrated into the microgrid system. Research
on the effect of temperature on the optimization of BESS was also considered recently. The
temperature factor that affects BESS consists of operating temperature and ambient temper-
ature. However, little research has been carried out on the effect of BESS environmental
temperature optimization. Yuhan Wu et al. [31] conducted research on optimizing BESS
considering the ambient temperature. However, in this research the temperature variable
was not explained in sufficient detail.

Table 4. Review of a recently published article on BESS optimization.

Ref Research Topics Research Gaps

Cardoso et al. (2018) [27] BESS optimization was discussed while taking battery
degradation and micro sizing problems into account

Investigate the operating temperature of the BESS
because it has a significant impact on battery health

Alsaidan et al. (2018) [32]

Using BESS to find a solution to the specific problem of
microgrid expansion. Considering the characteristics of

various technologies, a distributed deployment,
considering the impact of in-depth discharge, and the

number of charging and discharging cycles

The challenges in BESS optimal sizing are brought on by
the need to use the it for multiple applications and the

use of linear power flow model to calculate the angle and
voltage magnitude at each bus as well as the active and

reactive power flow

Talal Alharbi, et al.
(2019) [33]

Framework for the planning and operation of the BESS is
based on recycled batteries from electric vehicles

The problem of optimizing BESS requires reducing the
computation complexity and incorporating more

dynamic decision variables, both of which can benefit
from the application of decomposition methods

A. Pena-Bello et al.
(2019) [34]

Develop an optimization framework to determine the
most suitable battery PV self-consumption. The

avoidance of PV curtailment, demand peak shaving,
demand load-shifting, and technology depending on

the size

The proposed challenge is to extend the optimization
framework to more regions, while considering transport
demand and trade-offs as well as incorporating heat and

electric vehicles

Timur Sayfutdinov et al.
(2020) [35]

The most optimal placement, sizing, and technology
choice for BESS was discussed, by considering the

degradation obtained from the state of charge and the
depth of discharge

Although the constraint of BESS degradation taking SOC
and DOD into consideration has been provided, the
temperature value was still fixed when the model

was developed

G. Mohy-Ud-Din et al.
(2020) [36]

The energy management strategy that has been described
is used to optimize the functioning industrial microgrids,
with the BESS scalability serving as a limiting factor due

to the presence of uncertainties

The challenges of integrating many decentralized energy
sources into a microgrid controller in a way that allows it

to be used in an economic dispatch

Yunfang Zhang et al.
(2021) [37]

An optimal sizing model was presented for grid-scale
BESS, taking into consideration its operation under

uncertainties induced by volatile wind generation. The
cycle life model of batteries was evaluated, and marginal

economic utility analysis performed

Studies on BESS allocation planning needs to consider
the decision regarding installation location

Mohammad Amini et al.
(2021) [38]

A description of the optimal BESS size, technology, depth
of discharge, and replacement year was provided,

reckoning the system’s technical characteristics, service
life, and capacity degradation. This was conducted to

reduce the total cost of MG scheduling while
simultaneously improving the BESS’s precision and

economic feasibility

The temperature factor has not been taken into
consideration in the BESS degradation model
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Table 4. Cont.

Ref Research Topics Research Gaps

Rehman et al. (2022) [39]

Presented optimal sizing for a BESS and PV system in an
extremely fast charging station (XFCS) to reduce the

annualized total cost. This was carried out with
consideration given to evaluating optimal energy

management for the station as well as energy arbitrage

This research proposed a model of battery degradation;
however, the lifetime project only used one year and did

not consider replacement batteries

Yuhan Wu et al.
(2022) [31]

Examined the algorithm for optimal capacity allocation
of BESS in contemporary distribution networks, while

considering the ambient temperature

A model of battery degradation, which concerns the
ambient temperature has been developed. However, the

variable of temperature has not been described in
sufficient detail

This review provides a discussion about the expansion planning with BESS opti-
mization by considering battery degradation due to ambient temperature to fill in the
research gaps. Figure 3 shows the mind map of BESS relating to the application, batteries
energy storage technologies, battery degradation, objective function, design constraints,
optimization algorithms, and challenges used in this review.
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Figure 3. Mind map of BESS optimization.
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3. Expansion Planning Overview

A combination of BESS technology and expansion planning is frequently adopted to
overcome the issues of VRE integration. For example, generation expansion planning (GEP)
tries to meet energy demands alongside several economic and technological restrictions. It
determines the generating capacity of an ideal investment plan during a specific study period.
Governments and decision-makers routinely utilize GEPs to select when and where to invest in
generating technologies. Based on the decision factors, energy expansion approaches are broadly
classified as GEP and transmission expansion planning (TEP). However, storage expansion
planning (SEP) is widely used when dealing with BESS investment choices. In reality, creating,
transmitting, and storing processes tend to be synchronized [5].

The main challenge of GEP is determining the appropriate capacity size, generating
unit, and timing of a new facility’s building to fulfill the electric power requirement, at least
during the planning period. GEP models are made more versatile by considering numerous
goal functions and constraints as shown in Table 5. Its goal function typically consists of
two major components, namely, investment and operation. To establish an optimal GEP
strategy, different restrictions that impact the execution of the plan must be considered.
There are two types of constraints, namely required and discretionary. One of the relevant
limitations is ensuring the balance of electricity demand. Therefore, there is a possibility
that minimizing total expenditures for a GEP project is not an effective target function,
especially if there are other fascinating aspects that compete for attention. Consequently,
issues related to GEP are frequently posed as a multi-objective optimization process. This
approach can handle the simultaneous compromising of multiple goal-planning functions
to determine which alternative capacity is the most effective. Several of these goals are
intertwined, such as incorporating DSM and RES in the generating mix, reducing pollution,
reliability, fuel consumption, costs associated with the intermittent nature of RES, and the
risk of fluctuations in energy expenditure. All these are carried out to improve the flexibility
of the GEP model [40–42].

Table 5. Generic objective function, constraint, and uncertatnties in GEP [40–42].

Categories in
GEP Problem

Objectives Constraint Uncertainties

Social-Economic Emission Cost Peak Demand Electrical price variability
Energy Cost Spin Reserve Public Health

Emission Cost Emission Level Social Acceptance
Fuel cost Generator Capacity Behavior Shift

Electric Vehicle Cost Renewable Penetration Level Demand Growth Rates
Storage Cost Interest Rates

Electricity Price Fuel Cost fluctuation
Renewable Cost Carbon Prices

Social acceptance

Policy Target Energy Governmental Policy National Energy Policies
Target Renewable Penetration Industrial Policy International climate agreements

Target Environmental Regulation Carbon Market Taxation regime
Target Access to Energy Resources Environmental Regulation Energy Security

Renewable Supporting Schemes International Climate Agreements

Technical Increasing Energy Penetration
With Other Energy Sectors Renewable Curtailment Ramping Capability

Ancillary Services Flexibility and Reliability Learning Rate Evolution For
Energy Supply Technologies

Target Ageing Infrastructure Grid curtailment Flexibility and Reliability Needs
Forced outages

Reliability Margin
Energy Balance

Network Constraint
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Table 5. Cont.

Categories in
GEP Problem

Objectives Constraint Uncertainties

Climate/Envir-
onmental

Target Renewable
Energy Generation Renewables Availability Renewables Variability

Target Life-Cycle Infrastructure Climate Change Natural Disaster
Use of Fossil Fuels Life-Cycle Assessment Extreme Climatic Events

Resource Allocation
Retirement or Lifespan

Peak Energy Generation

SEP can be categorized by its storage capacity, geographical distribution, and mo-
bility, in addition to the kind and quantity of BESS. Furthermore, energy storage systems
are classified as either short or long-term, depending on their capacity. Short-term
appliances, such as capacitors, flywheels, compressed air energy techniques, and BESS,
stores energy from seconds to days. Certain long-term appliances, such as hydrogen
storage and water reservoirs, can supply energy from one week to an entire season. BESS
can also be classified as centralized or dispersed. When categorized by centralized, it
refers to a single place. Even though most BESS are either centralized or dispersed, BESS
can categorized by mobility such as on electric vehicles (EVs) [5].

The primary goal of decoupling is to ensure that cost-cutting initiatives are carried
out by central planners (vertically integrated electrical firms) or politicians, as opposed
to private investors. In the SEP model, reliability indices account for expected energy
not served (EENS) or loss of load probability or expectation (LOLP/LOLE). There is
also a possibility of adding any necessary technical constraints for unit commitment
(UC) that are essential for scheduling the operation of the producing sector. These
include minimal timeframes between turning on and off, beginning and shutting down,
ramping up and down, as well as the least power outputs. There is a possibility that
further operational reserve limits, such as the spinning types, alongside frequency and
voltage support replacements, are imposed on the way the system operates [5].

4. BESS Application Overview

BESS delivers various services to network operators, DG plants, energy retailers, and
consumers. Figure 4 categorizes its applications in in the grid based time scale. Additionally,
BESS consumption is classified in accordance with the time scale of its deployment, which
ranges from milliseconds to hours. Its applications in grids or microgrids tend to improve
power quality, voltage management, peak shaving, load smoothing, frequency control, and
energy arbitrage [43].
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Figure 4. Application of BESS based on time scale [43,44].

4.1. Power Quality

The power quality index is used to measure voltage and current waveform distortions
in pure sinusoidal ideals [43]. Variations in solar irradiance and wind speed trigger the
negative effect of high-variance DG plants. Consequently, the BESS added to the DG plant
has the potential to smoothen temporary power fluctuations. In this situation, it is viewed
as an extra cost component with respect to the RES plant that serves as a revenue system.
The provision of economic incentives to plant owners to reduce power fluctuations is a
technique used to compensate for revenue losses [45,46].

4.2. Voltage Control

Capacitor banks, tap changers, voltage regulators, and static VAR compensators are
equipment used to manage voltage during grid distribution. This is because DG injection
makes the regulation of equipment at the substations useless, such as transformer tap
changers, with many units scattered around the network selectively creating reactive
power to allow for simpler voltage management. For example, a PV generator produces
overvoltage at the network’s end [43]. Therefore, implementing BESS in such cases has
been proven to be effective and potentially reduce overvoltage [47,48].

4.3. Peak Shaving and Load Smoothing

Both peak shaving and load smoothing aim to reduce the maximum amount of power
visible to the system by striking a balance between the generation profile and demand.
This approach produces real-time network congestion solutions by minimizing conductor
overloads caused by the generation of peak power loads. Furthermore, peak shaving and
load smoothing help to reduce network losses. BESS operations also reduce system losses
by increasing load-to-local-generation profile matching [43,49].

4.4. Frequency Regulation

In an auxiliary service market, frequency regulation is typically provided by gener-
ators connected to a transmission network. Interestingly, it is described as a commercial
offering. However, in recent years, generators and energy storage devices connected to the
distribution network also provided this service. This is possible because the distribution
network has become more decentralized. Additionally, the increasing demand for renew-
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able energy brought about the modification of this policy. Both the generator and BESS use
drop control to monitor the frequency and adjust the power output appropriately. In this
scenario, BESS allows restrictions to be specified by the state charges (SOC) [50,51].

4.5. Energy Arbitrage

Energy arbitrage is the process of simultaneously purchasing and offering energy
supplies in the marketplace. It was only initiated by commercial users because the power
sectors of most countries do not have any form of regulation. The application of BESS
pairs with DG or load, in which storage units are utilized to redirect energy production
or generation, is aimed at maximizing profit irrespective of the fluctuations in market
prices [43,52]

5. Battery Energy Storage Technologies

LA, Li-Ion, NaS, and RF are grid applications’ most common battery technologies.
These are classified according to their energy density, efficiency, lifespan, and cost when
coupled to a storage network, as shown in Tables 6–8. The LA battery has high efficiency
between 80 and 90% and low costs within the range of 50 to 600 $/kWh [52,53] However,
when compared to other technologies, it has a significant disadvantage in terms of lifespan
(approximately 2500 cycles) [54] and low energy density (within the range of 20 and
30 Wh/kg). A high discharge depth shortens an LA battery‘s life [52,55].

The characteristics of Li-Ion batteries are based on the chemical composition of both
the cathode and anode, which typically consists of graphite and lithium metal oxide. In-
terestingly, the cathode and anode give the battery its name and power, respectively. This
technique is highly efficient, with a maximum efficiency of approximately 90%. On the
other hand, some commercial devices boast reported round trip efficiencies of more than
95% with energy density within the range of 90 to 190 Wh/kg [56] and extended service life
of relatively 10,000 cycles [54]. Cell temperature, an essential element in the deterioration
process, significantly affects the battery life [30]. Li-Ion batteries are commonly found in
electronic devices and recently emerged as the industry standard for EV. This technology
is suitable for grid-connected network applications, even though it is still somewhat ex-
pensive. Presently, there are several Li-Ion technologies, for example, lithium manganese
oxide (LiMn2O4), lithium cobalt oxide (LiCoO2), lithium nickel cobalt aluminum oxide
(LiNiCoAlO2), lithium iron phosphate (LiFePO4), and cobalt-based Lithium nickel man-
ganese oxide (LiNiMnCoO2) [57]. Tables 7 and 8 show details of the Li-Ion and nickel-based
battery specifications, respectively.

NaS batteries have a high working temperature (approximately 300 ◦C), efficiency
(>80%), energy density within the range of 150 to 240 Wh/kg, and a long lifespan of
relatively 4500 cycles [58,59] As a result, this technique has been utilized to lessen the
effect of renewable energy-based generators as an in-grid [58,60]. Vanadium redox flow
batteries (VRB) batteries comprise two containers, one containing two chemical reagents
and the other two electrodes partitioned by a membrane. Incidentally, when the two
components combine, it results in an oxidation reaction. One of the containers holds
the chemical reagents, while the other contains the electrodes. The amount of stored
chemicals contributes to the flow cell’s total energy capacity. Meanwhile, the electrodes and
membrane filtering system are responsible for individual energy capacity flow cell. The
power and energy ratings are separated, resulting in the increased design and operational
flexibility. The energy density of VRB is relatively low, ranging from 15 to 30 Wh/kg, and
its efficiency is approximately 75% in some cases [61]. On the other hand, they are not
constrained by reactant life cycles or discharge depth [62]. Due to the low costs involved in
their maintenance and operation, VRB have been suggested as viable options for large-scale
grid-based energy storage [63]. The reactants have been investigated, and several chemical
compositions have been proposed. The most utilized ones are vanadium and Zn-Br [64].
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Table 6. Review of technology BESS [65–69].

Technology
Efficiency

(%)
Life Cycle

(DOD 80%)
Battery Energy
Density (Wh/L)

Battery
Power Density

(W/L)

Application
Battery

Benefits Disadvantage

Lead Acid
(LA) 75–85 300–3000 50–90 10–400

Diesel electric-
powered

submarines,
electric motors

Cheap
Low energy

density, limited
cycling ability

Lithium Ion
(Li-Ion) 90–99 3000–10,000 200–500 1500–10,000 Laptops, mobile

phones, EV

Fast response
time, high

efficiency, and
energy density

Some security
issues depend on

the type

Sodium Sulfur
(NaS) 75–90 4500 150–300 140–180

Load
residential,

support ups

High efficiency
and life cycle

High maintenance
and operating
temperatures

Nickel
Batteries 15–400 500–3000 10–150 50–1200

Mobile phones,
emergency

lighting

High reliability
and energy

density, long
cycle life,

Environmental
hazards,

influenced by the
memory effect

Zinc Bromine
(ZnBr) 2000 30–65 <25 65–80 Diesel electric-

powered

Long lifetime,
high energy
density, and

deep discharge
capacity,

Dendrite
formation,

corrosivity, require
working

temperature, and
low cycle
efficiency

Polysulfide
Bromine (PSB) - 20–30 <2 60–75

Electrical
vehicle, support

ups

Fast reaction
speed

No large-scale
application

experience, and
environmental

issues,

Vanadium
Redox Flow

(VRB)
65–85 2000–20,000 40 -

Electrical
vehicle,

support ups

Stability for
large scale

Difficult
maintenance,

complex battery

Table 7. Specification of technology lithium-ion batteries [70,71].

Technology Efficiency (%)
Life Cycle

(DOD 80%)
Battery Energy
Density (Wh/L)

Battery Power
Density (W/L)

Lithium Iron Phosphate (LiFePO4) 92 >2000 90–120 1932

Lithium Cobalt Oxide (LiCoO2) 95.7–98.4 500–1000 150–200 2710

Lithium Nickel Manganese Cobalt
Oxide (Li(NixMnyCo1−x−y)O2) 90 1000–2000 150–220 -

Lithium Nickel Cobalt Aluminum
Oxide (Li(NixCoyAl1−x−y)O2) - 500 200–260 -

Lithium Manganese Oxide
(LiMn2O4) - 300–700 100–150 -

Lithium Titanate (Li4Ti5O12) 98 3000–7000 50–80 -

Table 8. Specification of technology nickel batteries [69].

Technology Efficiency (%)
Life Cycle

(DOD 80%)
Battery Energy
Density (Wh/L)

Battery Power
Density (W/L)

Ni-Cd 70–90 2000–2500 15–150 75–700
Ni-MH 90 700–1000 38.9–350 7.8–588
Ni-Zn <87 >5000 80–400 121.38
Ni-Fe <65 - 25–80 12.68–35.18
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6. Battery Degradation

Battery degradation leads to a reduction in its capacity and efficiency and even safety
problems. The term cycle life refers to the total number of times a battery can be discharged
or charged before it is replaced [72]. Nonlinearity in battery degradation can be traced to a
variety of causes, such as SOC, high temperature, depth of discharge (DOD), and charge
or discharge current rate [73], as shown in Figure 5. One of the issues contributing to the
short lifespan of Li-Ion batteries, for example, is the highly utilized DOD, which tends to
significantly reduce the total number of cycles [74,75].

Figure 5. Relationship between battery capacity and SOC, DOD, and cycle life Li-Ion battery [38].

The remaining useful life (RUL) and state of health (SOH) are the most critical factors
in predicting Li-Ion battery degeneration. Generally, usage capacity, energy, and accessible
power, which diminish with battery age, influence SOH and RUL [76]. Although SOH tests
detect a decrease in performance, they also prevent potential accidents [77]. The accuracy
with which one may anticipate the RUL of a given battery capacity relies on several factors,
and the most important is the ability to calculate the SOH. Managing discharge problems,
improved performance, and optimized operation requires precise and reliable prediction
algorithms to determine a battery SOH and RUL.

SOH refers to the percentage of a battery cell’s capacity that is still usable and used to
quantify the entire aging degree. This value is expressed as a percentage [78] and ideally,
the SOH of the new battery should be 100%. The decreasing trend of SOH is due to the
accelerated aging of the battery, which is one of the reasons of the increased cycle times.
When the state of health reaches the failure threshold, the battery becomes ineffective [79].
The formula for SOH is written in Equation (1).

SOH(t) =
Ct

C0
(1)

where Ct and C0 denote the t-th cycle and initial battery capacity. The maximum capacity
of the battery tends to drop in accordance with the number of times it is cycled, with
continuous increase in the battery’s internal resistance. Generally, a battery fails when
its internal impedance increases to a level that is twice as high as its initial impedance.
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Several performance parameters, such as power and the number of charge and discharge
cycles, can also be used to define SOH. Further studies must utilize a wide variety of
methods or models to estimate SOH, such as the use of direct measurement and indirect
analysis. By measuring the standard aging characteristic parameters of the battery, the direct
measurement technique determines the value of its current capacity, internal resistance,
cycle times, etc. This is the technique through which the values of the current state’s
identifying parameters are determined. Examples of direct measurements are counting
ampere hours, cycle numbers, measuring internal resistance and impedance. The indirect
analysis consists of obtaining the SOH value by estimation based on online observable
data from health indicators that have a high link with the performance and characteristic
parameter degradation that occurs with the SOH condition. Model-based analysis, data-
driven analysis, and hybrid analysis are examples of indirect analysis [80].

Wei J et al. [81] monitored the estimated diagnosis of battery SOH with three stages.
In the initial stage, a particle filter (PF) technique was initiated, followed by the execution
of a procedure to update the particle’s time. The support vector regression (SVR) model
was also used to estimate the capacity in each battery cycle number in the second stage.
This SVR model is trained with characteristics collected from sensor data during constant-
voltage (CV) charging mode at cycle number, to determine the charged capacity. The third
stage updated the particle constitutes, which can be resampled based on their normalized
importance weights. In accordance with the PF-based estimator, the anticipated capacity
at the cycle number is considered as a Gaussian distribution, whose variance and mean
are obtained. SOH is further defined as the ratio between the capacity of a new battery
and the expected capacity. In general, the SOH estimation flowchart can be seen in the
flowchart in Figure 6.

Oflline Model Development Online Model Development

Dataset Historical 
Parameter Battery Feature Extraction

Normalization Data

Offline model aprroach 
(mathematic; data-

driven; hybrid)

Ageing Battery Model

Sensor Measured 
Data Battery

Normalization/
Scaling Data

Ageing Estimation Model

State of Health

Time Update

 

Figure 6. Block diagram of SOH estimation in general.

RUL refers to the information on the remaining life of a battery. It is imperative
to change old and damaged batteries whose SOH has reached 0%, to guarantee the
safety of the system and hence prevent problems [80,82]. The formula for RUL is written
in Equation (2):

RUL(t) = t − teol (2)

where t and teol denote the t-th and number of cycles remaining at the completion of a
battery’s life. It is difficult to compute the RUL of a battery due to several variables, such as
its present health condition, historical data, and failure. Therefore, further study needs to
be conducted on the prediction of batteries’ RUL. Presently, there is no standard framework
that is considered the optimal model for estimating RUL due to a lack of available data,
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model complexity, and system limitations. In general, RUL prediction methods can be
categorized as physics-based, mathematical, data-driven, or hybrids [80].

Wei J et al. [81] also predicted the RUL of a battery using the SVR-based model using
a flowchart as shown in Figure 7. Monitoring the prediction of RUL starts with developing
a model that has been trained using extracted sensor data features and predicted capacity
for SVR-based input models. Wei J. et al. applied the average degradation parameter to
characterize the expected capacity distribution in this section. The result showed that RUL
is considered the n + 1 after the predicted capacity has reached the EOL threshold.

Oflline Model Development Online Model Development

Dataset Historical 
Parameter Battery Feature Extraction

Normalization Data

Offline model aprroach 
(mathematic; data-

driven; hybrid)

Lifetime Battery Model

Sensor Measured 
Data Battery

Normalization/
Scaling Data

Lifetime Prediction Model

Remaining Useful Life (Lifetime/ Cycle Battery)

Cycle Update

 

Figure 7. Block diagram of RUL prediction in general.

The diagram in Figure 8 illustrates the connection between SOH, RUL, and the model-
ing of battery degradation. Some preliminary research developed a battery deterioration
mechanism model using a framework that incorporated SOH and RUL [76]. The ele-
ments that influence general battery deterioration and failure were further explained in
the SOH estimation model. Furthermore, its diagnostics and estimation help boost RUL
battery modeling by determining how much time or cycles are left to attain 80% SOH.
As a result, the reliable prediction of SOH and RUL is required for modeling battery
deterioration behavior.
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SOH Steps

RUL Steps

Diagnostics Prognostics

 

Figure 8. Relationship battery degradation models.
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The SOH of a battery is measured in terms of its present ability to supply a certain
quantity of energy in comparison to the initial capacity. At the same time, the RUL is
helpful for monitoring the state of the battery and is also essential for executing operations
that evaluate its degeneration. Due to the nonlinear nature of battery deterioration, it is
necessary to have appropriate RUL estimations that are based on aging processes and
suitable life models at various fading stages [76]. This entails calculating the time until
a battery reaches its EOL. It tends to occur when the battery has reached the failure
threshold. Moreover, the time left and the total number of charge-discharge cycles are
considered [83]. The RUL estimation and degradation process are intimately linked to
the working circumstances and dependability of Li-Ion batteries. Previous studies have
reported that the successful prediction of the RUL prevents failure and timely functional
maintenance without irreversibly harming the battery [84].

Scholars estimated the RUL using several different methodologies, as shown in
Figure 9. These tend to be broken down into one of the four categories, namely based
on physics, mathematics, data, or hybrid models. The amount of time a battery is going
to be valuable is evaluated using a model-based technique. Therefore, a model that is
representative of a battery application found in the real world, as well as an estimated
algorithm used to predict voltage or other characteristics, needs to be developed. Empirical,
analogous circuit and electrochemical models, including Kalman filters, are a few examples
of the various methods that fall under this category. Data-driven RUL estimation is a pre-
diction method that collects excess information and continues recording until battery health
reaches its limit. Meanwhile, applying a hybrid model implies combining a model-based
method with a data-driven model [76].

Battery SOH and RUL Estimation Method

Direct Assessment Approach/
Physics Based 
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Simple structure model

Disadvantages
Low robustness
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Model parameters and thresholds 
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Figure 9. Classification method estimation RUL battery [76,82].

Table 9 reviews variables used to optimize BESS capacity size and placement with
battery degradation models, which vary in different studies. Aside from the SOH and
RUL models, preliminary research also used fading capacity and residual battery life for
BESS optimization. Table 10 reviews the algorithm used for battery degradation models for
BESS optimization.
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Table 9. Review of variable features used in battery degradation models for optimization of BESS
sizing and siting.

Author

Feature Variables for Battery Degradation Model
Model Battery
DegradationSOC DOD Temperature Cycle Life

Charging/
Discharging

Alsaidan I et al. [32] � � Lifetime
Khezri R, et al. [85] � � Capacity fade

Sayfutdinov T, et al. [86] � � � Capacity fade
Cardoso G, et al. [27] � � Capacity fade, lifetime

Hernandez J, C, et al. [87] � � � � � Lifetime
Garrido A.G, et al. [88] � � Capacity fade, SOH, lifetime

Shin H et al. [46] � � � Capacity fade, SOH
Arias N.B et al. [89] � RUL
Amini M, et al. [38] � � Capacity fade, lifetime

Mulleriyawage
U.G.K, et al. [90] � � SOH

Wu Y, et al. [91] � � � SOH, capacity fade

Table 10. Advantages and disadvantages of battery degradation algorithm for BESS optimization.

Author
Battery

Degradation
Factors

Algorithm
Battery

Degradation
Advantages Disadvantages

Alsaidan, et al.
(2018) [32]

Energy capacity fading,
cycle battery

Piecewise linear
approximation

Easy to apply in small
data on time to the

events provided

When much data
requires many limits

Timur Sayfutdinov, et al.
(2020) [86]

Energy capacity fading,
calendar aging,
cycling aging

Least-squares fitting Simple, easy to apply

Very sensitive to
outliers, tendency to

overfit, unreliable
when the data
distribution is

not normal

Mohammad Amini et al.
(2021) [38]

Energy capacity fading,
calendar aging, cycling
aging, lifetime battery

Mathematical model
Simple structure, low
model difficulty, and

fast performance

Less robust and
significantly affected by

operating conditions

Hunyong Shin, et al.
(2022) [92]

Energy capacity fading,
SOH, operating

temperature,
cycle battery

Rainflow-counting
algorithm

Estimation of model
parameters is based on

linear regression
analysis, which can be
carried out with simple

hand calculations.

Requires a lot of
experimental data

application of
parameters based

on estimates

Battery lifespan is influenced by calendar and cycling aging. However, this is also
determined by cycle or float lives [93]. Even though the computation of the BESS life value
tends to be inaccurate, its datasheet is dependent on two limits, cycle and float lives. Both
restrictions are measured in years, and when the BESS maximum life is equal to or exceeded
by its float life, it is said to have a floating life equal to or exceeds its maximum life. The
cycle life is represented as the maximum number of charge and discharge cycles that can
occur prior to the BESS failing, and it varies depending on the technology of both the BES
and the DOD [38].

6.1. Battery Degradation Due to Changes in Ambient Temperature

The performance of lithium-ion batteries and their lifespan is significantly influenced
by temperature. When exposed to high temperatures, its rate of degradation is significantly
accelerated. Li-Ion batteries are temperature-sensitive [9], and their performance is affected
not only by the temperature of the cell itself but also by the environment in which it is
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located. Battery degradation is caused by a combination of the SEI and the loss of active
material. The one brought about by SEI is the most common and fundamental cause of
capacity fade rate in batteries. As a result of the high temperature, the surface particles of
the electron undergo a rapid development of SEI, thereby causing the battery’s capacity to
reduce [94]. According to some literature [95] on the systematic establishment of the theory
on SEI growth and reduction in battery capacity, it was asserted that temperature changes
trigger capacity fade due to alterations in the SEI layer. Incidentally, SEI growth can occur
in idle situations, during the cycle, and during temperature changes. Some literature [96]
clearly stated that temperature changes severely affect battery degradation. This process is
of two types, namely actual and temporary capacity fading and loss. The actual capacity
fading suggests that there has been irreversible cell loss due to the ingestion of lithium-ion.
The high temperature of the battery accelerates the rapid rate of cell deterioration. On the
other hand, a temporary capacity loss is caused by a drop in temperature during a specific
cycle. It can be restored if the battery temperature returns to a certain level.

The literature [97] focuses on the ambient temperature impact on a battery’s lifespan.
The formation of the film on the electrodes of Li-Ion batteries explains the effect that the
surrounding temperature has on its lifespan. This is because of the oxidation of the cell,
proven by the film produced on the electrodes. It causes an irreversible increase in the
Li-Ion battery’s internal resistance, ultimately leading to damage. The findings on the
simulation process show that higher temperatures during idle battery scenarios resulted in
extreme capacity loss and self-discharge.

Some studies on calendar aging reported that it is related to temperature. Battery
aging testing is performed at different temperatures, SOC, and end-of-life. The tests were
conducted in a laboratory with temperature control facilities and charging or discharge
operations. In reality, the battery is in extremely harsh operational conditions. The results
of Li-Ion testing for EVs are reported to last 2000 and 800 cycles at temperatures of 25 ◦C
and 55 ◦C, respectively [98]. Additionally, testing the influence of battery temperature
due to discharge rate differences such as 1C, 2C, 3C, and 4C was also conducted [99]. It is
possible to determine the varying contours due to the changing temperatures of the battery
cells and their discharge at a consistent rate.

The pace at which capacity is lost is significantly affected by the temperature of the
surrounding environment. Meanwhile, when it is greater than 35 degrees Celsius, it triggers
more changes in the composition of the electrolyte due to the substantial temperature rise.
This causes the process at which active lithium is utilized to quickly move forward [100].
As a result, the battery’s capacity starts to decrease at various room temperatures, as shown
in Figure 10. It is evident that when the perimeter temperature is greater than 35 ◦C, the
capacity fades level drops significantly during the first 50 cycles. This phenomenon occurs
while the battery is being used. When the temperature is 55 ◦C, the maximum capacity
fades, while the temperatures of 25 ◦C and 35 ◦C are projected to be the same [100].

Characteristics of the capacity fade rate of the battery which is affected by the ambient
temperature as shown in Figure 11. Yuhan Wu et al. [31] stated that LiFePO4 battery
degradation caused by the average temperature in BESS is modeled by combining cal-
endar and cycle aging. This model is depicted by a single operating cycle, as shown in
Equations (3)–(8). By knowing the characteristics of the battery aging cycle to set the opti-
mal operating temperature of BESS, it can reduce the battery degradation rate so that the
battery life is longer.

ξ = ξcal + ξcyc (3)

ξcyc = fd,soc
(
SOCavg

)
(4)

ξcal = ∑n
i=1 fd,dod(DODi) fd,T

(
Ti,avg

)
(5)

fd,soc
(
SOCavg

)
= k1SOC2

avg + k2SOCavg (6)

fd,dod(DODi) = k3DOD2 + k4DOD (7)
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fd,T
(
Ti,avg

)
=

{
ek5/T/k6, 298K ≥ T ≥ 273K
ek7/T/k8, 333K ≥ T ≥ 298K

(8)

where ξ represent of battery degradation from calendar aging (ξcal) and cyclic aging (ξcyc).
n is the number of cycles charged or discharged in one day. SOCavg represents the average
SOC, DODi depicts the difference between the i-th charge and discharge cycles DOD, and
Ti,avg is the average temperature in BESS. In most cases, the value of the k parameter is
determined by the experimental observation [31,35].

Figure 10. Capacity fade rate of LiFePO4 battery at each temperature during cycling [100].

Figure 11. Characteristic cycle aging battery [31].
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6.2. Battery Thermal Management

Complex electrochemical reactions and electric-to-thermal conversion determine the
thermal characteristics of a battery [101]. The production of heat by Li-Ion batteries is a
complex process that involves a knowledge of how the rate of electrochemical reaction
varies with time and temperature, in addition to how current flows within the battery [102].
Simply, heat generation of the battery is written as Equation (9):

Q = I(U − V)− I
(

T
dU
dT

)
(9)

where Q denotes the rate of heat generation, I denotes the electric current flowing through
the cell, U denotes the open-circuit voltage, and V represents the voltage of each individual
cell in the Li-Ion batteries. In general, the thermal model of a battery has been examined
according to the dimensions of the battery as well as the physical mechanism (electro-
thermal model, electrochemical thermal model, and thermal runaway propagation model)
(lumped model, 1D, 2D, and 3D). In most cases, the charging and discharging procedures for
Li-Ion batteries result in the production of three distinct types of heat. These forms of heat
include activation of irreversible heat as a result of the polarization of an electrochemical
reaction, joule heating as a result of ohmic losses, and reversible reaction heat as a result
of the change in entropy that takes place during the charging and discharging processes.
Consequently, if the heat created by the battery while charging or discharging is not
correctly dissipated, the temperature of the battery may grow because of heat accumulation,
which may have a severe influence on the battery’s performance, life, and safety [102].

The thermal management process, which is a critical component of the battery man-
agement system, is most concerned with estimating the precise state of temperature (SOT).
Using more traditional measurement methods, such as thermocouples, it is simple to obtain
an accurate reading of the temperature at the surface of the battery. Nevertheless, the
temperature on the inside of the cell during transients is significantly different [103]. In
general, the SOT estimation methods can be broken down into four categories: the direct
measurement method, the electrochemical impedance-based method, the model-based
estimation method, and the data-driven method.

Using a direct measurement methodology, researchers proposed ways for monitoring
the temperature of a battery’s internal layers. Temperature micro-sensors are integrated into
the interior layers of the battery cells in these technologies. Thermocouples and resistance
thermometers are the two most common types of sensors used to indicate the temperature
of a battery’s interior. The model-based estimation approach typically makes extensive
use of numerical thermoelectric and thermal models when attempting to determine an
object’s internal temperature. To construct thermoelectric and thermal models such as the
lumped-parameter battery model and the distributed battery thermal model, it is very
required to understand heat generation, conduction, dissipation, balancing, and thermal
boundary conditions. A few different approaches for calculating the temperature of a
battery based on electrochemical impedance spectroscopy EIS measurements have been
proposed in the electrochemical impedance-based approach without first constructing a
thermal model. Temperature can be linked to impedance indicators acquired via EIS. These
indicators include phase shift, real part amplitude, and imaginary part amplitude, per
the most recent data-driven strategies. Data-driven approaches were used to estimate the
temperature of the batteries inside [103].

7. Objective, Design Constraint, and Algorithm BESS Optimization

This section explains the objective functions frequently reported by previous studies,
design constraints, algorithms used for BESS optimization, and a review of its state-the-art
development. The steps involved in BESS optimization are depicted in the flowchart shown
in Figure 12. This starts with collecting input system data, then determining the direction of
the model development, selecting an objective function and design constraints, optimizing
strategy and algorithm, and finally evaluating the optimization results.
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Figure 12. Flowchart of optimization of BESS.

7.1. Objective Function BESS

Since BESS plays an important role, its sizing is essential to ensure the normal func-
tioning of distribution networks. An accurate and realistic model improves the operating
systems from an economic and safety standpoint [104]. BESS optimum sizing is centered
on finding its optimal capacity and the ability to minimize distribution network operating
costs while meeting performance goals. Its investment cost is an essential component in
calculating the distribution network operating expense. Moreover, this is affected by the
investment payback period. As a result, BESS life is significant, and the number of cycles it
can complete as well as the SOC at which it runs, are the two most important parameters
used to determine the longevity of the battery. To assess the expenses linked to BESS, the
anticipated lifespan was used [105]. In [106], the lifetime was determined by predictive
models. The main objective of the study is to reduce costs, integrate RES, analyze its effects,
and obtain benefits for the network.

7.1.1. Objective Function BESS to Reduce Total Cost Storage Expansion Planning

In the literature [32] the objective function was considered to reduce the total cost of
storage expansion planning on the microgrid. It is defined as follows

Min ∑
i∈G

∑
d

∑
h

Fi

(
Pidh(), Iidh()

)
+ ∑

d
∑
h

ρdhPM
dh()

+∑
s

prs ∑
b∈K

∑
d

∑
h

LSbdhsv

+∑i∈B ∑b∈K
(

PR
ib
(
CPa

i + CMi
)
+ CR

ib
(
CEa

i + CIa
i
))

(10)

The first two-term Equation (10) indicates the operating cost of the microgrid when
connected to the grid. Where b, d, h, i, l, s and B are the bus, day, hour, distributed energy
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resources, lines, scenarios, and battery technologies indices, respectively. Fi represents
the microgrid local DG units cost function, Pidh() is DG output power, Iidh() depicts the
commitment state of dispatchable units, ρdh is electricity market price ($/kWh), and PM

dh()
illustrates the power transferred to and from the utility grid. The third term accounts for
the costs of dissatisfying the requirements of the MG demand. Due to insignificant changes
in the demand for microgrids, the output of generators distributed at the price of electricity
during the planning period need to consider the historical data of one year. Where prs is
the probability of islanding scenarios, LSbdhs depicts load curtailment, and v represents
the value of lost load ($/kWh). Incidentally, the value of lost load (VOLL) measures the
economic losses associated with underserved energy. It depicts the willingness of customers
to pay for reliable electrical services. This number is not dependent on the time or length
of the outage rather, it is determined by the kind of consumer and location. The last term
reflects the costs of BESS. Where CR

ib, PR
ib is BESS rated energy and power, CEa

i , CPa
i depicts

annualized energy or power investment cost of BESS, CIa
i is the cost of BESS installation

on an annualized basis and CMi represents the annual operating and maintenance cost
of BESS.

In addition, there is also a BESS objective function to be applied in storage expansion
planning on the grid. Based on the literature [35], it is stated as follows

min ∑s∈S πs ∑t∈T

[
∑i∈I AG

i PG
s,i,t

2 − BG
i PG

s,i,t + ∑km∈Br

(
F2

s,km,t
Rkm

V2
km

CAPL

)]
Δt + ∑k∈K ∑j∈J

EES
j,k CE

j + PES
j,k CP

j

365 TLt
j

(11)

Equation (11) shows the objective function that considers the exchange between
investment costs and BESS operations. Due to this, BESS can demonstrate energy time-
shift applications, which, in turn, contributes to the reduction in the day-to-day running
expenses of the network. This is accomplished through a series of hypothetical situations
that reflects the whole life span of BESS. The first group indicates the total operating cost
of DG, where S represent the set of future network operation scenarios, T is the time
intervals, πs depicts the probability value of the scenario s, I represent the generation units,
AG

i , BG
i illustrates a generation cost function, and Ps,i, it is the scheduled power output of a

thermal unit. The second term shows active power losses on the network, Fkm, Rkm, Vkm
depicting thermal limit, resistance, and the voltage level of the line. Br is an index of
branches connecting pairs of nodes km, while CAPL represent energy price for active power
losses. The last term illustrates the investment cost of BESS, where K represent of index of
transmission grid nodes, J is the set of energy storage technologies, PES

j,k , EES
j,k represents the

rated power and energy capacity of BESS, CE
j , CP

j depicts the investment costs of battery

technology, and TLt
j is the service lifetime battery.

7.1.2. Objective Function BESS of Life Cycle Cost Energy System

This energy system objective Life Cycle Cost (LCC) is used to minimize the total
planning costs calculated only from BESS [91]. It is defined by some literature as follows:

Min LCC = Cbatt + CO−M (12)

CO−M =
∑Y

y=1(1 + r)Y−y[∑8760
t=1 (Cout.y(t) + Cf it.y(t) + ξCbatt]

(1 + r)Y (13)

Cbatt = Capbat μbatt (14)

Cout.y(t) =
(

Pg−b
y (t) + Pg−l

y (t)
)

Δt ∅buy (15)

Cf it.y(t) =
(

Pb−g
y (t) + Ppv−g

y (t)
)

Δt ∅sell (16)
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Equation (12) is an LCC consisting of the initial investment cost of BESS (Cbatt), in-
cluding the cost of operation and maintenance BESS (CO−M). Furthermore, Equation (13)
is used to obtain the operation and maintenance costs where y and t is the index year,
and time interval respectively, Cout.y(t) depicts electricity bills, and Cf it.y(t) is the benefit
from selling electricity to the grid. Equation (14) represents the initial investment cost of
BESS, where Capbat depicts the capacity of the battery, and μbatt is the unit capacity price.
Additionally, Equation (15) is used to calculate the electricity bills where Pg−b

y (t) represents

the power flow from grid to BESS (kW), Pg−l
y (t) is the power flow grid to the line, and

∅buy depicts electricity price. Equation (16) is the profit realized from selling electricity to

the grid, where Pb−g
y (t) represents power flow battery to the grid, Ppv−g

y (t) illustrates the
power flow PV to the grid, and ∅sell is feed-in tariff.

7.1.3. Objective Function BESS for Battery Degradation Cost

According to the literature [107], the optimal scheduling of BESS is supposed to
minimize the degradation costs, which are the proposed objective function. The intended
degradation charge model accounts for the nonlinearities of battery life. As a result, the
ideal SOC profile is the same regardless of the degradation cost model if the pricing pattern
is either too flat or there are excessive disparities between the maximum and minimum
prices. The objective function is stated in the following equation:

Min ∑t(
(

λtPgrid,t

)
+ CE(SoCaux

t )− CE(SoCt−1) (17)

Equation (17), is the optimal cost scheduling of BESS. It consists of power grid expense
and degradation cost function for optimal scheduling, where t represents index of time
interval, λt is electricity price, Pgrid,t represents the power from the grid, CE denotes
degradation cost for scheduling, SoCaux

t , SoC is auxiliary and actual SOC BESS.

7.2. Design Constraint

In an arbitrary situation, the requirements or needs that must be considered are re-
ferred to as constraints. The power balance between the consumption and generation aspect
is the most important constraint [108]. In distribution networks, electricity is imported or ex-
ported to the major grid, although this is often limited [109], to BESS-based operations [31].
The following are the most important limitations in maximizing the BESS size.

7.2.1. BESS Operation Constraint

The most common operational constraints when sizing BESS optimization techniques
are charge or discharge or SOC constraints. In addition, battery degradation rate and
life span needs to be regarded. The literature published by [110–113] reported other-
wise, that the optimization of the BESS must consider the SOC. This constraint was taken
into [114–118] consideration by maximizing BESS power loss, capacity, method, power
balance, and battery lifecycle. In [32], the impact of BESS operation constraints is analyzed
based on microgrid application and stated as follows

Pmin
i xib ≤ PR

ib ≤ Pmax
i xib (18)

αmin
i PR

ib ≤ CR
ib ≤ αmax

i PR
ib (19)

PR
ib , CR

ib denote power and energy rating BESS. The maximum and lowest BESS power
ratings of Pmin

i , Pmax
i are represented by Equation (18). To determine the current investment

status of BES technology, the binary variable x is used. Equation (19) utilized the power
capacity to compute the maximum discharge time and measure the BESS capacity, where
αmax

i , αmin
i indicates the highest and lowest possible energy to power rating ratios for

the BES.
0 ≤ Pdch

ibdhs ≤ PR
ib uibdhs (20)
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− PR
ib(1 − uibdhs) ≤ Pch

ibdhs ≤ 0 (21)

The charging or discharge power of BESS Pch
ibdhs, Pdch

ibdhs is limited depicted in
Equations (20) and (21), where i, b, d, h, and s denote the distributed energy resources,
bus, day, hour, and scenarios indices, respectively. uibdhs is BES operating state. BESS power
turns negative and positive while charging and discharging, respectively. The current state
of the BESS operation is determined by the value of the binary variable u. BESS can only
flow when it is equal to one, and charges when it is equivalent to zero. The magnitude
of the discharge has a direct bearing on the BESS life cycle, which varies from the diverse
technologies. The BESS cycle refers to a complete one that includes both charging and
discharging of the battery.

ξibdhs =
(

uibdhs − uibd(h−1)s

)
uibdhs (22)

∑d ∑h prsξibdhs ≤ 1
T ∑m∈N KimWibm (23)

Equation (22) is used to determine the BESS cycle, where ξibdhs is BESS cycle indicator.
Every time the charging process begins, the value is bound to be one, otherwise, it is zero.
During the planned time horizon, the total BES cycle need not exceed the specified lifespan
regarding the determined maximum DOD and the life project stated in Equation (23),
where Kim is BESS lifecycle, and Wibm represents a binary variable that reflects the value of
the BESS maximum DOD.

∑m∈N Wibm ≤ xib (24)

Cibdhs = Cibd(h−1)s −
Pdch

ibdhsT
ηi

− Pch
ibdhsT (25)

(1 − ∑m∈N YibmWibm)CR
ib ≤ Cibdhs ≤ CR

ib (26)

Equation (24), assures that for each BESS deployed, only one maximum depth of
discharge value is evaluated. According to Equation (25), the energy stored at each time
interval is equal to the preceding period minus the discarded or charged energy, where
Cibdhs is stored energy BESS during each interval. Meanwhile in Equation (26), BESS cannot
be discharged with less energy than the minimum value specified by the maximum depth.
This is not indicated by the discharge, nor can it be charged with more energy than its rated
capacity allows during the process. Where Yibm is maximum DOD BESS.

7.2.2. Battery Degradation of BESS Constraint

Battery degradation in BESS is important to consider. Cardoso et al. [27], stated that
the total annual electricity cost savings from PV and BESS can be reduced by 5–12% by
solely considering the battery degradation constraint limitations. Furthermore, some litera-
ture [35] stated that a battery degradation model is based on cycling and aging conditions.
Afterwards, it is used in the BESS operation constraint to support its optimization by
lowering the planning cost of energy storage.

γIdl
(

SoCj,k

)
= AIdl

j SoC2
j,k + BIdl

j SoCj,k + Cidl
j (27)

γCyc
(

DoDj,k,n

)
= ACyc

j DoD2
j,k,n + BCyc

j DoDj,k,n (28)

Equations (27) and (28) are capacity fade rates during idling and cycling conditions
resulting from historical data on battery characteristics and adjusted to the least squares
fitting method [35]. Where j, k, n are the battery technology, transmission grid nodes, and
charge/discharge cycles indices, respectively. γIdl , γCyc is the capacity fade rate during the
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idling condition, and AIdl
b , BIdl

b , CIdl
b , ACyc

b , BCyc
b is a quadratic, linear, and constant of the

degradation functions during idling and cycling.

0 ≤ EBESS
s,j,k,t ≤ EBESS

j,k

[
1 −
(

γIdl
(

SoCj,k

)
+ ∑n ynγCyc

(
DoDj,k,n

))
Y(s)

]
(29)

BESS charging is limited to the energy rating of those batteries which continues to fade
due to the life horizon, depicted in the Equation (20), where EBESS

b,i,y,d,t is the BESS continuity

energy, and EBESS
b,i represents the installed BESS Energy. The value can be 0.5 for half cycles

and 1.0 for full ones yn. Y represents years for the number of the scenario s.

remj,k = 1 −
(

γIdl
(

SoCj.k

)
+ ∑n ynγCyc

(
DoDj.k,n

))
TLt

j (30)

EoLj ≤ remj.k ≤ 1 (31)

Equation (30), remj,k is a formulation of the remaining BESS capacity at the end of
battery service life due to idling degradation and cycling. TLt

j represents service lifetime
period BESS of a manufacturer. The selected operating strategy is dependent on the
remaining BESS capacity. remj.k ensures that the remaining capacity is not less than the
EOL threshold, moreover a constraint is applied in Equation (31).

7.2.3. Power and Energy Balance Constraint

When it comes to BESS size, the power, and energy balance between demand and
generation is crucial. In the following literatures [112,116,118–122], the energy and power
balance are constraints in the process of optimizing the size of the BESS. Based on [32], the
power and energy balance constraints are expressed as follows

∑g∈[G,W]
μibPidhs + ∑b∈B

(
Pch

ibdhs + Pdch
ibdhs

)
+ ∑i∈I ψib fidhs + PM

dhs + LSbdhs = Dbdh (32)

The balance of power and energy constraints are stated in Equation (32). This guaran-
tees the amount of power provided by the distributed energy resources (DER) installed on
that bus, plus or minus the amount of electricity going into or emanating from it, is equal
to the quantity of power locally needed on that bus. If there is not enough generation to
maintain BESS balance, the load is reduced, and the strength tends to be positive while the
system is discharging and negative while it is charging. However, if the power is flowing
from the utility grid into the microgrid, then it has a positive value, otherwise, it is negative.
Where i, b, d, h, and s are the distributed energy resources, bus, day, hour, and scenarios
indices, respectively. μib is a generation-bus incidence matrix element, Pidhs is DER output
power, Pch

ibdhs, Pdch
ibdhs depicts BESS charging and discharging power, ψib represents a line-bus

matrix element (one if line l is connected to bus b, 0 if otherwise), fidhs denotes distribution
line power flow, PM

dhs is electricity moved to and from the utility grid, LSbdh is the load
shedding cost, and Dbdh is total load demand.

− PM,maxzdhs ≤ PM
ds ≤ PM,maxzdhs (33)

0 ≤ LSbdh ≤ (Dbdh − CDbdh) (34)

− f max
l ≤ fidhs ≤ f max

l (35)

Equation (33) is the limitation of a microgrid network of power transfer to the grid.
Furthermore, Equation (34) is the limit for load reduction, where PM,max denotes the
maximum power capacity of the microgrid to the utility grid, zdhs is microgrid/utility grid
status, Dbdh, CDbdh represents the sum of all load demands as well as the critical load
demand. Equation (35) is the amount of power that flows through a distribution network
microgrid due to channel capacity constraints, where f max

l is the maximum power capacity
of distribution line.
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7.3. Optimization Strategy and Algorithm

Size, capacity, cost, and lifetime are all aspects of the BESS that need to be improved.
Existing research on BESS sizing-related problems is categorized according to grid scenario,
goals that need to be achieved, the strategy applied, test bus, and various advantages and
limitations to optimize the different algorithms. These include genetic algorithms (GA),
particle swarm optimization (PSO), dynamic programming (DP), taboo search, fuzzy PSO,
and bat algorithm. Simulation and modeling technologies such as PSLF, MATLAB, CPLEX,
OpenDSS, GAMS, Gurobi, PowerFactory, and DIgSILENT are extensively used to improve
BESS sizes. MATLAB is also a viable choice. Moreover, several research use a test bus
from the IEEE study case to evaluate the system’s performance instead of the current test
systems [44]. The following are some of the most often used algorithms for predicting
BESS size.

7.3.1. Probabilistic

Since several parameters tend to be improved, the probabilistic technique is regarded
as one of the simplest ways of measuring BESS. The fundamental constraint of such a
method is the number of parameters that need to be examined. Based on preliminary
research, the probabilistic method was discovered to be the most useful approach for
calculating the uncertainty parameter of the optimization process to obtain the best BESS
measure [123–129]. Its key benefit is the need for a small amount of data to conclude. As a
result, probabilistic approaches are excellent in circumstances where information is scarce.

7.3.2. Deterministic

The deterministic techniques examine various electrical configurations, system com-
ponents being altered, and how they need to be optimized based on preset principles. A
deterministic technique is a direct approach to cost [130] and capacity [131,132] alongside
the optimization process investigated by some other analysis.

7.3.3. Rule-Based Optimization

The rule-based optimization (RBO) method defines an expected solution, such as
fuzzy logic. In accordance with the following literature [131,133–136], optimization of BESS
sizing is realized using fuzzy logic. Based on the research, a fuzzy-based method was
adopted to reduce both the RES and the cost of BESS [137]. According to the data, an ideal
BESS reduces microgrid costs by 3.2 percent, and battery longevity significantly affects
MG costs. The primary advantage of utilizing a fuzzy optimizer is that either the total
number of parameters is unknown or the scale of the optimization issue is unaffected by
any change [138].

7.3.4. Mathematical-Based Optimization

The most comprehensive method is mathematical modeling when it comes to finding
the solution to the BESS sizing-related problem. This approach for determining the optimal
size of the BESS is categorized as linear programming (LP), nonlinear, or mixed-integer
programming (MILP). Mathematical optimization is approached in three different ways,
namely DP, convex programming (CP), and second-order cone programming (SOCP). Since
the DP model separates this process into several different time slots, and the solutions are
recognized at each level, it is both possible and advantageous to combine time-varying
elements. In some literature, this model was used to maximize BESS size [111,139–141].
The CP technique also has the advantage of discretionary independence. Furthermore,
its optimization strategy is employed in [142,143], to achieve the best possible results
in minimizing the linear objective function. It is necessary to intersect the affine linear
manifold with the product of second-order cones. Based on the literature published
by [144,145], SOCP is used to size BESS.
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7.3.5. Heuristics

Heuristic strategies allow suitable, non-ideal arrangements to be applied in real time.
There is no mathematical foundation that is effective in obtaining optimal solutions, instead,
approaches such as nature-inspired algorithms are used. These include GA [146], PSO [147],
bat algorithm [148], and taboo search [149]. The key benefits of using heuristic approaches
are flexibility, high accuracy, and computation timelessness.

7.4. Review of Existing Studies BESS

A state-of-the-art review of BESS optimization considering battery degradation was
conducted to discover new perspectives in terms of developing its models. Table 11
summarizes several selected studies that can be distinguished based on main objectives,
design constraints, algorithms, and battery degradation factors. It is evident that the
perspective of battery degradation in BESS optimization is getting deeper. Its factors
vary, such as energy capacity fading, calendar, and cycling aging, battery lifetime, cycle
battery, and temperature. The development of the BESS optimization model considering
battery degradation due to temperature is an interesting and rare study. There are certain
related studies [27,35] in terms of developing a battery degradation model for optimal BESS
using a fixed value of battery temperature. Meanwhile, literature [31] tends to develop
a degradation battery model due to ambient temperature with dynamic values during
the winter. Based on the study of the optimal BESS, ambient temperature affects battery
degradation, according to the literature [100] The capacity fade level drops significantly
when the perimeter temperature exceeds 35 ◦C. Therefore, the development of a battery
degradation model due to ambient temperature is a new perspective in optimizing BESS.

Table 11. Literature review of studies of the BESS optimization effect considering battery degradation.

Author
Main

Objective
Constraint

Battery
Technology

Case Study
Algorithm/Method
Optimization

BESS

Battery
Degradation

Factors

Algorithm
Battery

Degradation

Ting Qiu, et al.
(2017) [150]

Sizing BESS for
co-planning the

transmission model
of expansion

CDC, CC, PEBC,
PELC, RCC Li-Ion

Modified
IEEE-RTS

24-bus system
MILP

Energy capacity
fading, calendar,

and cycling aging

Flat rate
degradation

Cardoso, et al.
(2018) [27]

Sizing BESS by
considering the linear
battery degradation

model for
microgrid problem

CDC, PEBC, FC Li-Ion San Francisco MILP

Capacity loss,
battery lifetime,

and cycle,
operating

temperature

Mathematical
model

Alsaidan, et al.
(2018) [32]

Optimal sizing BESS
for microgrid

expansion problem
by considering

technology, cycle life,
and maximum depth

of discharge

CDC, CC, PELC,
PEBC, RCC Li-Ion Modified

IEEE-5 bus MINLP
Energy capacity

fading, cycle
battery

Piecewise linear
approximation

A. Pena-Bello, et al.
(2019) [34]

Sizing BESS by
considering

self-consumption,
demand load-shifting,

demand peak
shaving and
avoidance of

PV curtailment.

CDC, PELC,
PEBC, EFC

NCA, NMC,
LFP, LTO,

VRLA, & ALA

Austin (US),
Geneva

(Switzerland)
MILP N/A N/A

G. Mohy-Ud-Din,
et al. (2020) [36]

Energy management
system for industrial

microgrids with
optimal size BESS

CDC, PELC,
EFC Li-Ion Australia

two–stage
energy

management
strategy

(single-stage
linear program)

Energy capacity
fading, cycle

battery

Mathematical
model

V.V. S. N. Murty, et al.
(2020) [151]

Microgrid energy
management by

considering
multi-objective

solution and optimal
sizing BESS

CDC, PELC,
PEBC Li-Ion N/A Multi-Objective

(MILP, Fuzzy) cycling aging Mathematical
model
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Table 11. Cont.

Author
Main

Objective
Constraint

Battery
Technology

Case Study
Algorithm/Method
Optimization

BESS

Battery
Degradation

Factors

Algorithm
Battery

Degradation

Timur
Sayfutdinov, et al.

(2020) [35]

Optimal siting,
sizing, and

technology selection
of BESS

CDC, CC,
PEBC, PELC

LFP, LMO,
NMC, LTO

Modified
IEEE-9 bus,

14 bus, 24 bus,
39 bus

Mixed Integer
Convex

Programming
(MICP)

Energy capacity
fading, calendar,

and cycling aging,
cycle battery

Least-squares
fitting

Yang Li, et al.
(2020) [25]

Application of Li-Ion
for optimal sizing of
BESS in renewable

power plant

CDC, CC Li-Ion
A hypothetical
100-MW wind

farm

Particle Swarm
Optimization

Energy capacity
fading, SOH, state

of energy (SOE)
Physics-based

Hunyong Shin, et al.
(2020) [92]

The process of sizing
BESS for renewable

power plant is
becoming economical

CDC, CC, FC Li-Ion

RES with
storage power

plants in
South Korea

battery
augmentation
scheme (BAS)

Energy capacity
fading, SOH,

operating
temperature,
cycle battery

Rainflow-
counting
algorithm

Mattia Secchi, et al.
(2021) [152]

Multi-objective sizing
BESS for renewable

energy with
communities

CDC, PEBC Li-Ion

Modified IEEE
906-bus

European Low
Voltage

NSGA-II N/A Mathematical
model

Farihan
Mohamad, et al.

(2021) [153]

Sizing and Siting
BESS to minimize

solar energy
curtailment

CDC, CC,
PEBC, PELC Li-Ion

IEEE 24-bus
reliability test

network (RTN)

GA dan
Sequential

Monte Carlo
(SMC)

N/A Mathematical
model

Nataly Bañol
Arias, et al.
(2021) [89]

Sizing BESS by
considering

frequency regulation
and peak shaving

CC, PEBC,
PELC Li-Ion

240-node
three-phase
distribution

system

Pareto optimal
Energy capacity

fading, cycle
battery

Mathematical
model

Yunfang Zhang,
et al. (2021) [37]

Optimal Sizing BESS
for grid scale by

considering
uncertainties and
wind generation

CDC, CC,
PEBC, PELC Li-Ion Modified IEEE

RTS-24
Two-level

model (MILP) N/A N/A

Mohammad
Amini, et al.
(2021) [38]

Sizing BESS for
flexible, effective,

efficient and better
microgrid

performance

CDC, CC,
PEBC, RCC,

PELC

NaS, Li-Ion,
Lead-Acid,

Nicd

Connected/Islanded
Microgrid MILP

Energy capacity
fading, calendar,

and cycling aging,
battery lifetime

Mathematical
model

U.G.K.
Mulleriyawage,

et al. (2021) [154]

Optimal sizing BESS
by considering the

demand and
management

attributes

CDC, CC,
PELC, PEBC Li-Ion

A
grid-connected
residential DC

microgrid

MILP

Energy capacity
fading, calendar,

and cycling
aging, SOH, EOL

Physics-based

Yuhan Wu, et al.
(2021) [31]

Optimal capacity
location BESS by
considering the

ambient temperature

CDC, CC,
PEBC, PELC LiFePO4

modified IEEE
33 distribution

network

Bi-level (GA,
simulated
annealing

algorithm (SA))

Energy capacity
fading, calendar

and cycling
aging, ambient

temperature

Rainflow-
counting
algorithm

Yaling Wu, et al.
(2022) [91]

Sizing BESS by
considering the

long-term battery
degradation

CDC, CC,
PEBC, PELC Li-Ion Connected/Islanded

Microgrid

two-layer
optimization

method
(MINLP)

Energy capacity
fading, calendar,

and cycling
aging, SOH

Mathematical
model

Davide Fioriti, et al.
(2022) [155]

Multi-year sizing
BESS for residential

applications

CDC, CC,
PEBC, PELC Li-Ion

Residential
grid-connected

(399
Italian

households in
different regions
(North, Center,

South, and
islands))

Heuristic
optimization

Energy capacity
fading, calendar

and cycling
aging, operating

temperature

Rainflow-
counting
algorithm

Waqas ur
Rehman et al.

(2022) [39]

Optimal sizing BESS
and solar generation
system in an extreme
fast charging station

to reduce the
annualized cost

CDC, CC,
PEBC, PELC Li-Ion

Extreme fast
charging station
(XFCS) demand

modeling

MILP
Energy capacity

fading, cycle
battery

Mathematical
model
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Table 11. Cont.

Author
Main

Objective
Constraint

Battery
Technology

Case Study
Algorithm/Method
Optimization

BESS

Battery
Degradation

Factors

Algorithm
Battery

Degradation

Mohammad-Ali
Hamidan, et al.

(2022) [156]

Optimal sizing BESS
for loss reduction and

reliability
improvement

CDC, CC, PEBC,
PELC Li-Ion

30-bus radial
distribution

network, 69-bus
radial

distribution
network

Evolutionary
algorithm
based on

decomposition
(MOEA/D)

N/A N/A

Noman Shabbir, et al.
(2022) [157]

Optimal sizing BESS
for solar PV systems
to be self-sufficient

and sustainable

CDC, CC, PEBC,
PELC, FC Li-Ion

Estonian low-
distribution

network

Heuristic
optimization

Energy capacity
fading, cycle

battery

Mathematical
model

CC, capacity constraint, CDC, charging and discharging constraint, PEBC, power and energy balance constraint,
PELC, power and energy limit constraint, EC, environmental constraint, RCC, ramping capability, EFC; efficiency
losses constraint, FC, financial constraint.

In addition, the battery degradation algorithm needs to be considered. Similar models
are generally mathematical, physics-based, data-driven, and hybrid. Algorithm battery
degradation affects the speed and convergence of BESS optimization. Therefore, several
studies still utilize mathematical algorithm models because they are simple and exhibit
rapid performance. However, data-driven models are flexible in modeling battery degra-
dation due to several factors. Examples are piecewise linear approximation, least-squares
fitting, and the rainflow-counting algorithm.

8. Issues and Challenge BESS

In terms of optimizing BESS sizing and location, several factors need to be considered
by the expected operating objectives. To reduce the investment cost BESS not only makes
it cost-effective. But, can be adjusted to boost reliability, power and voltage quality, peak
shaving, load smoothing, frequency control, and energy arbitrage. One of the challenges of
BESS optimization is battery degradation. The selection of battery technology is essential
and BESS optimization solutions need to be assessed.

8.1. Economic Analysis

The economic aspect of building a BESS system is perhaps the most challenging. Pre-
liminary studies created a BESS sizing and siting system to reduce investment costs or
optimize profits received once it was implemented. Its cost is determined by numerous
aspects, including the type of BESS technology selected, the number of energy source inte-
grations, geographical conditions, features of the deployed region, installation expenses,
and maintenance expenses. Technology types differ depending on energy density, efficiency,
battery longevity, and cost. Installation and maintenance expenses include the capital for
converter interface power, such as energy costs for storage capacity investment, replace-
ment, annual operating and maintenance expenditures. Furthermore, various factors
influence the cost of the BESS system, including service life, battery capacity, degradation
rate, power loss, and SOC. As a result, its capacity and placement must be properly speci-
fied to minimize the installation cost. A BESS capacity that is extremely large is bound to
raise the total cost of the system, thereby resulting in power loss. Assuming it is extremely
tiny, it reduces efficiency and creates an imbalance in supply and demand.

The uncertainty of the RES system influences BESS cost optimization, such as peak
shaving and load shifting. Peak shaving is an efficient method of lowering demand costs
by leveling the highest electricity consumption. Meanwhile, load shifting is a temporary
reduction in power used followed by subsequent production increases when prices are low.
As a result, advanced optimization of the BESS model is required in conjunction with the
uncertainty of RES to achieve optimal system planning and operational costs.
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8.2. Technology Battery Storage Selection

Some of the battery technologies for BESS include LA, Li-Ion, Nickel Batteries, ZnBr,
NaS, PSB and VRB. The appropriate one can be employed to optimize the system planning
or operational costs. Energy density, extended discharge time, battery efficiency, longevity,
and life cycle are all factors that determine technology selection. This battery is great
for power quality and frequency management applications. It is due to the high-power
density possessed as well as the lightning-fast response time. Although this type of battery,
with its high energy density and longer discharge time, is ideally suited for long-term
applications, it can also be used in certain circumstances to enable peak shaving and load
shifting. This is because of the battery’s extended discharge period. Therefore, the selection
of battery technology is critical to supporting its applications and indirectly impacts the
cost of installing BESS.

8.3. Optimal Charge or Discharge

Selecting the optimal BESS charge or discharge strategy is an important aspect of
optimal sizing and tends to influence the life cycle of the battery. When determining the
ideal size of a BESS, the most important parameters to take into consideration are speed
of charging, rate of discharging, efficiency, and length of service life. Additionally, the
effective control of the BESS charge and discharge can contribute to developing more
advanced models.

8.4. Degradation of Battery Due to Ambient Temperature

Due to calendar and cycle aging, the amount of time a battery has been in use impacts
how old it appears. Even though its life is determined by calendar aging, the BESS datasheet
includes two limits cycle and float life. The likely computation of the BESS life value being
accurate is low since battery life is dependent on cycle or float life. This is unlikely to
affect the computation process. The term float life refers to the length of time that a BES
is guaranteed to operate at its maximum capacity. When designing a BES system, the
impacts of battery aging need to be considered with respect to the overall cost. High
operating temperature, SOC, DOD, and charge or discharge current rate are all nonlinear
factors that influence battery degeneration. The aging of the battery has an impact on the
BESS performance and the cost of the electric power system. The major parameters of
its deterioration capacity are voltage, current, charge or discharge cycle, and battery life.
Generally, two things contribute to battery degeneration. First, there is loss of lithium ions
as a result of SEI production. Second, it is caused by the loss of electrode particles. This is
because the battery experiences an increase in its internal resistance. It causes a decrease in
the battery’s capacity as well as its efficiency, which eventually results in a shorter lifespan.

The battery performance and life cycle of Li-Ion batteries are susceptible to high
temperatures, which tend to accelerate degradation significantly. This triggers the rapid
growth of SEI on the surface of electron particles, leading to a loss in battery capacity. It
is since the rapid growth of SEI on the surface of electron particles causes a decrease in
battery capacity. In addition to this, the temperature of the surrounding environment has
a significant bearing on the rate at which capacity is lost. The temperature of the battery
cell and the high ambient contribute to the rapid growth of SEI on the surface of electron
particles. Its development also contributes to a decrease in the capacity of the battery.
According to the literature [100], when the ambient temperature exceeds 35 ◦C, changes in
electrolyte composition increase. This is due to a significant temperature rise, accelerating
active lithium consumption rate. Therefore, ambient temperature considerations can be
challenging in influencing BESS battery degradation.

8.5. Retired Batteries for BESS

Hazardous chemical waste on BESS construction cells significantly affects the en-
vironment. Damaged batteries can be recycled and reused. Approximately 95% of the
main material in LA batteries are recyclable and reusable [15,158]. In the past ten years,
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approximately five million EVs and 400 GWh of lithium-ion batteries have been sold all
over the world [159]. The development of the EV market will eventually result in a large
flow of retired batteries. Meanwhile, Li-Ion recycling is likely feasible, battery reuse and
recycling are complementary processes that only slow down the cycle of excess resources.
lion recycling has proven to be uneconomical [160]. The repurposing of retired batteries
from EVs as BESS is a new challenge. To reduce battery disposal problems due to EOL [161]
in electric power systems, BESS can be built to provide related services from EOL batter-
ies. This is because these batteries tend to qualify for less-demanding grid services [162].
Retired BESS can increase the RES penetration of the electric power system for reverse
spinning [163] with relatively cheaper installation costs.

8.6. Flexibility of Variable Renewable Energy Sources

Because of nature intermittency, RES such as solar PV and wind energy are inextricably
connected to uncertainty. Higher renewable penetration rates substantially influence
microgrid or grid system operation, data transfer, and handling, including remote sensing,
decision-making, and system control. Therefore, this RES requires storage facilities such as
BESS to store and supply electricity as needed. Most studies generate RES variability data
using probabilistic methods such as Monte Carlo simulations, analytical and approximation
models. However, these methods are insufficient for expressing random variables. These
processes are also computationally challenging and need large amounts of historical data,
extended run times, and precise mathematical premises. As a result, precise modeling
and analytical treatment of this uncertainty while considering the geographic situation
are crucial to making the best operational and financial decisions during microgrid or
grid applications.

9. Conclusions

This study reviews the state-of-art BESS optimization methods considering battery
degradation in connection to its diverse technologies. A comprehensive analysis of the
development of the current BESS modeling approach with the objective function, battery
degradation characteristics, and design constraints was employed. BESS is related to
expansion planning, often called SEP. Its primary goal is to ensure that central planners,
such as vertically integrated power companies and policymakers from governments or
groups of countries responsible for minimizing costs rather than maximizing the benefits
to private investors. Additionally, the use of BESS on the grid or microgrid is adopted to
improve power quality, voltage and frequency control, peak shaving, load smoothing, and
energy arbitrage.

LA, Li-Ion, NaS, and VRB are grid applications most common battery technologies.
The energy density, efficiency, longevity, and cost of batteries linked to a storage network
are all classed. Battery degradation reduces power efficiency in BESS. As a result, its dete-
rioration needs to be considered during BESS optimization. The degradation of batteries
owing to ambient temperature is currently understudied. Lithium-ion batteries’ perfor-
mance and life cycle are extremely temperature sensitive. In addition, high temperatures
greatly accelerate battery degradation. The ambient temperature has a significant influence
on the capacity fading rate, especially when it surpasses 35 ◦C, the composition of the
electrolyte changes because of the large increase in temperature.

Generally, the objective function of optimizing BESS is to reduce the total cost of
planning. The objective function and design constraints of BESS are highly dependent on the
purpose for which BESS is used. BESS objective function is used to reduce LCC and battery
degradation costs to minimize the total cost of system planning. The only components
that make up this LCC are the costs of operation and maintenance, as well as the initial
investment in the BESS. Based on the study of the optimal BESS, ambient temperature
affects battery degradation. The development of its model due to ambient temperature can
be a new perspective in optimizing BESS. The battery degradation algorithm affects the
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speed and convergence of BESS optimization. The determination of the model algorithm
and battery degradation factors needs to be appropriately considered.

The challenges that need to be faced and the scope of future research in optimizing
BESS by considering battery degradation of ambient temperature are the economic analysis,
utilizing proper battery storage technology, and developing optimal charge or discharge
model. Others include developing model degradation due to ambient temperature of BESS,
considering retired batteries for BESS, and using the RES variable due to the uncertainty of
natural conditions.
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The following are some of the abbreviations that can be found in this manuscript:

BESS Battery Energy Storage System
CV Constant-Voltage
CP Convex Programming
DER Distributed Energy Resources
DG Diesel Generator
DOD Depth Of Discharge
DP Dynamic Programming
EENS Expected Energy Not Served
EIS Electrochemical Impedance Spectroscopy
EOL End-Of-Life
EV Electric Vehicles
GA Genetic Algorithms
GEP Generation Expansion Planning
LA Lead-Acid
LCC Life Cycle Cost
LiCoO2 Lithium Cobalt Oxide
LiFePO4 Lithium Iron Phosphate
Li-Ion Lithium-Ion
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LiMn2O4 Lithium Manganese Oxide
LiNiCoAlO2 Lithium Nickel Cobalt Aluminum Oxide
LiNiMnCoO2 Cobalt-Based Lithium Nickel Manganese Oxide
LOLP/LOLE Loss Of Load Probability Or Expectation
LP Linear Programming
MILP Mixed-Integer Programming
NAS Sodium-Sulfur
Ni-Cd Nickel-Cadmium
PRISMA Preferred Reporting Items For Systematic Reviews And Meta-Analyses
PSB Polysulfide Bromine Batteries
PSO Particle Swarm Optimization
PF Particle Filter
PV Photovoltaic
RBO Rule-Based Optimization
RES Renewable Energy Sources
RF Redox Flow
RUL Remaining Useful Life
SEP Storage Expansion Planning
SJR Scimago Journal Rank
SLR Systematic Literature Review
SOC State Of Charges
SOCP Second-Order Cone Programming
SOH State Of Health
SOT State Of Temperature
SVR Support Vector Regression
TEP Transmission Expansion Planning
UC Unit Commitment
VOLL Value Of Lost Load
VRB Vanadium-Redox
ZBB Zinc-Bromine
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Abstract: There is a rising trend to integrate different types of distributed generation (DG), especially
photovoltaic (PV) systems, on the roofs of existing consumers, who then become prosumers. One
of the prosumer impacts is voltage violations, which conventional strategies find hard to solve.
However, some prosumers, such as those with PV with inverters in their configurations, can actively
participate in voltage optimization. To help find the optimal PV inverter setting with the objective
of voltage optimization, an optimal power flow (OPF) can be a promising and reliable tool. This
paper tries to shed light on the complex problem of voltage optimization in distribution networks
(DNs) with PV prosumers. Relevant scientific papers are analyzed and optimization characteristics
such as objective functions, variables, and constraints are summarized. Special attention is given
to the systematization and classification of papers according to the mathematical formulation of
the optimization problem (linear, nonlinear, integer, etc.) and the applied solving methods. Both
analytical and computational intelligence optimization methods as well as their advantages and
limitations are considered. Papers are also categorized according to the distribution network model
used for testing the developed solutions.

Keywords: active distribution networks; optimal power flow; prosumers; PV inverter volt/VAR
optimization; review

1. Introduction

The participation of renewable energy sources (RESs), battery storage systems, and
other flexible loads, commonly referred to as prosumers, changes the character of distri-
bution networks (DNs) from passive to active. For this reason, both generating units and
loads are included in the determination of power flow and voltage profile. The nature
of prosumers is unpredictable and intermittent, so existing DNs are not adapted to their
influence. This is particularly evident in frequent voltage violations [1]. A voltage rise is
addressed as a major issue caused by prosumers and impacts DNs [2]. The distribution
system operator (DSO) is responsible for maintaining voltage within the allowable limits
for the secure operation of DNs [3]. However, voltage control mechanisms that were once
applicable in passive DNs become less valid and new mechanisms are required [4–6].

While DG can cause voltage violation in the DN, the same DG can help solve the
problem of voltage violation, for example by managing active or reactive power. This
problem/solution principle is especially interesting in the case of reactive power manage-
ment [7]. When it comes to RESs in DNs, the main representative is a photovoltaic (PV)
system [8,9]. Traditionally, most DSOs require PVs to operate with the unit or fixed power
factor [1]. PV inverters have several modes of operation, but volt–VAR control has become
certainly significant for voltage optimization. A major advantage of using a PV inverter
and volt–VAR control is that reactive power can be injected/absorbed even where there
is no production. Since prosumers contribute to the complexity and unpredictability of
such DNs, it is crucial to use optimization methods and analyzed software tools that allow
DN monitoring and finding suitable and optimal set points for PV inverters. In addition,
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optimal power flow (OPF) has proven to be an efficient tool for the operation of active
DNs. In order to illustrate the problem/solution principle of PV inverters, a case study is
developed in this paper presenting the low voltage DN with the connected PVs. Different
power flow simulations are presented and they include:

• the situation when PVs production is maximal and voltage rise along the feeder
is present;

• the situation when PV inverters inject reactive power.

Nowadays, optimal management of active DNs represents an attractive topic, and a
large and growing body of literature focuses on this topic. Some related reviews on the
optimization DNs are listed in Table 1. Refs. [10,11] show the impact of PV on DNs, the
related problems, and possible solutions. Refs. [12–14] study voltage violation mitigation
and voltage control strategies. Ref. [12] deals with voltage control methods in DNs with
PVs and their advantages and disadvantages. In addition to [12], a comprehensive review
of voltage control methods is given in [13]. In [14], voltage control models and methods
are divided according to the communication strategy. The application of OPF in DNs is
discussed in [15,16]. The researchers in [15] address a probabilistic approach to solving
OPF in active DN. The authors in [16] study OPF in smart DNs and microgrids according
to objectives, methods, and future challenges.

Table 1. Related review papers on the optimization of DNs.

Review Paper Year Focused Topics Prosumer Notes

[10] 2016 Impact of distributed generation
(DG) on voltage control on DNs Yes

Reviewed voltage control with DG with a
focus on smart network

technologies—demand side management
(DSM) and energy storage systems (ESS)

[11] 2016
PV impact on DNs including voltage

regulation issues, harmonic, and
islanding operation

Yes

Reviewed issues caused by PV penetration
in DN insight voltage regulation, harmonic,

and islanding operation, and proposed
technical solution

[14] 2017 Distributed and decentralized
voltage control in smart DNs Yes

Reviewed smart DNs according to
communication systems, control models,

and methods

[16] 2017 Application of OPF in smart DNs
and microgrids Yes Reviewed OPF according to objectives,

constraints, methods, and challenges

[12] 2018 Mitigation methods for voltage
regulation in DNs with PV Yes

Discussed ESS strategies, active power
curtailment-based strategies, and reactive

power control strategies

[13] 2020 Mitigation methods for voltage
violation in DNs with PV systems Yes

Presented different mitigation methods for
voltage regulation in DNs and their merits

and shortcomings

[15] 2022 Probabilistic OPF in active DNs Yes Scientometric review of OPF in active
DNs—characteristics and challenges

While refs. [15,16] present interesting and useful reviews of OPF application to modern
DNs, they are mainly focused on active power objectives [16] and probabilistic OPF [15].
So far, the research gap is present in the area of voltage optimization objectives in the case
of using PV inverters for reactive power management. The problem/solution principle of
using PV inverter reactive power for voltage mitigation motivated the authors of this paper
to focus their review on scientific papers that applies OPF for voltage optimization in the
DN using PV inverter reactive powers. The contributions of this review paper are:

1. Summary and classification of OPF objectives and variables in the case of voltage
optimization in the DNs using PVs reactive power.
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2. Comparison of the used mathematical formulations of the OPFs and their connections
to analytical or computational intelligence solution methods.

3. Review of the different DN examples that are used for testing the developed optimiza-
tion solutions.

This paper aims to provide the readers with starting points for OPF applications in
PV-rich DNs and, in some way, to compare with conventional OPF. Therefore, the authors
searched several bibliographical databases—IEEE Xplore, ScienceDirect, and MDPI.

The paper is structured as follows: Section 2 gives a prosumer definition, describes the
voltage control capabilities of PV inverter, and presents the case study that illustrates the
impact of PVs on the DN voltages. Section 3 addresses OPF in PV-rich DN—objectives and
variables. OPF formulation and solution methods are discussed in Section 4. Test network
models used in the literature are presented in Section 4. Conclusions with a note on future
research are given in Section 5.

2. PV Prosumers in Distribution Network

In this section, various definitions and configurations of prosumers are presented.
Then, the focus is on PVs and their voltage control capabilities. Finally, theoretical founda-
tions are supported by the case study in which the part of the low voltage DN is presented
and various cases are simulated.

2.1. Prosumer Definition and Configuration

Historically, the term “prosumer” was first mentioned in 1980 in Alvin Toffler’s book
The Third Wave [17]. In this book, the author discusses the transition of society from an
Industrial Era in which production and consumption were separated to the Information
Era. In this new concept of society, the term prosumer is created by combining a producer
and a consumer. Nowadays, with the increase of integration of PVs in DNs, the notion
of prosumer and prosumerism has become increasingly significant in electrical engineer-
ing [18]. Therefore, many authors propose the definition of a prosumer. The authors
in [19–21] define a prosumer as an end-user that consumes electrical energy, acts as an
energy producer, and shares surplus energy with utility networks and other consumers.
In [22], prosumers are described as energy consumers or energy producers in different
periods depending on their electricity demand and price. The focus is on the prosumer that
only generates electricity. In [23,24], the authors include a facility for electricity generation
and energy storage systems in the prosumer definition. The definition of prosumer was
expanded in [25,26] and includes consumers that generate electricity and/or contain in
their configuration home energy management systems (EMS), ESS, electric vehicles (EVs),
and electric vehicle-to-grid (V2G) systems. In [27], a prosumer has been deemed as a
consumer or an electricity producer and can be actively managed.

The European Union defined an active consumer uniform in its 2016 directive [28]. Ac-
cording to [28,29], an active consumer is “a customer or a group of jointly acting customers
who consume, store or sell electricity generated on their premises, including through aggre-
gators, or participate in demand response or energy efficiency schemes provided that these
activities do not constitute their primary commercial or professional activity”.

While a variety of definitions of the term prosumer have been suggested, this paper
uses the following definition: a prosumer is an entity that not only withdraws/retracts
energy from a network but also produces energy that can be consumed, stored or sold to
the network and other consumers and actively participates in providing more flexibility
such as voltage and reactive power control.

Prosumer configuration and interconnection with DN is shown in Figure 1. The main
representative of distributed generation is the PV system. It often includes an ESS such as a
battery in its configuration and together forms a hybrid system. EVs, electric V2G vehicles,
smart home EMS, and other flexible loads represent demand-side management (DSM).
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Figure 1. Prosumer configuration and interconnection with DNs.

2.2. PV System Capabilities for Voltage Optimization

This paper deals with PV prosumers with reactive power capability, i.e., other pro-
sumer types are not considered. DSOs have the main responsibility for voltage opti-
mization in DNs. Traditionally, the available variables are limited to the capacitor bank
placement, tap changing transformer, network reconfiguration, cross-section enhancement,
etc. However, some researchers [30,31] suggest that the aforementioned strategies may
not be effective for prosumer-based DNs due to their slow response. The application of
PV inverters represents a promising solution and in combination with already present
control mechanisms can give results, so several studies have proposed their use for voltage
optimization [32–36]. Different modes of operation are possible for PV inverters and the
authors of [30] distinguish the following:

• fixed power factor mode;
• volt–VAR control;
• volt–watt control;
• mode for power rate limit;
• voltage balance mode.

In the fixed power factor mode, the power factor is maintained at a constant value
and thus voltages are directly affected. Voltage control in the volt–watt control mode is
achieved by active power from PVs. In the power rate limit mode, the rate of active power
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output from the PV inverter is limited. In volt–VAR control, reactive power from the PV
inverter is used for voltage optimization. The general operating principle of volt–VAR
control is described using a volt–VAR curve shown in Figure 2 [37]. The volt–VAR curve
represents a relation between a voltage value at the point of common coupling (PCC) and
reactive power from the PV inverter. If the voltage value on PCC is lower than the specific
threshold, the PV inverter injects reactive power. On the other hand, in the case of the
higher voltage value on PCC, reactive power is absorbed.

Figure 2. Volt–VAR curve of the PV inverter. Inductive reactive power reduces voltage value while
capacitive reactive power increases the voltage value.

Reactive power capability determines the amount of reactive power available from
the inverter [38]. Figure 3 represents reactive power capability determined with vectors
of apparent power S and active power P [8,38,39]. The reactive power of the PV inverter
depends on the active power and can be determined as:

Q2
1 ≤

√
S2

1 − P2
1 (1)

Figure 3. Power capability curve of PV inverter.

2.3. PV Inverter Impact on Distribution Feeder Voltage Profile

To provide a better insight into the voltage problem in DN caused by PVs, a case
study is carried out. Two PV inverter control modes are chosen to clarify its capabilities for
voltage optimization. The DN model, presented in Figure 4 [40], consists of three radial
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feeders supplied by a 10/0.4 kV substation. Each feeder supplies 20 residential consumers.
More information about the network model can be found in [40]. It is assumed that half of
the residential consumers have PV systems on their rooftops. The nominal power of each
PV plant is 5 kW. The case studied in the simulations corresponds to maximum production
and consumption of 0.2 kW with an inductive power factor of 0.9.

Figure 4. Model of DN used in the case study.

DIgSILENT PowerFactory [41] software is used for case study implementation and
the conventional power flow is analyzed. Two modes of PV inverter operation are used
in simulations: fixed power factor mode and volt–VAR control mode. The results for the
fixed power factor mode are presented in Figure 5. The power factor range is taken from a
real-life example of an inverter [42]. The voltage profiles at different power factor values
are compared. There is an increase in the voltage profile at the unit power factor. The
voltage profile is corrected by changing the power factor.

The comparison of voltage profiles at the unit power factor and the applied volt–VAR
control mode is shown in Figure 6. In the case without voltage control (unit power factor),
there is a voltage rise in the distribution feeder caused by PVs. The voltage values are in
the range of 1.005 p.u. to 1.05 p.u. In the volt–VAR control mode, the voltage values are
lower than the unit power factor and are in the narrower range of 0.992 p.u. to 1.005 p.u.
These values are more acceptable for the operation of DN, i.e., voltage deviation is smaller.
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Figure 5. Voltage profile in a distribution feeder obtained using the fixed power factor control mode.

Figure 6. Voltage profile in the distribution feeder obtained using the volt–VAR control mode.

The obtained results show an improvement in the voltage profile of DN compared to
the case without voltage control (unit power factor of the PV inverter). Voltage control in
PV prosumer-rich DNs has a positive impact. The case study shows the possibilities of
PV inverters regarding voltage control and the situation when there are lots of inverters
placed at different positions in the DN. Determining the optimal operating point of the PV
inverters imposes using optimization algorithms from which the OPF are imposed as a
logical solution.

3. Voltage Optimization in PV-Rich Distribution Networks—Objectives and Variables

The OPF concept was proposed in the early 1960s [43] as an enhancement of economic
dispatch to find the optimal solution for controlling variable settings under different
constraints. The OPF is used as a universal term for problems associated with network
optimization [44–47]. The OPF is ordinarily modeled to the appliance on transmission level
considering large generating units. Besides the fundamental variables, the OPF model may
contain ancillary generation units and variables representing the other segments of the
power system used for optimal operation.

The transmission network (TN) diverges from DN in topology, nature, electrical
parameters, power flow values, and a number of control devices. Unlike TNs, DNs are
inherently unbalanced and more complex [48]. The reason for the imbalance is that the DN
supplies unequal single-phase loads and contains unequal conductor interspace of three-
phase segments [49,50]. The R/X ratio is high in DNs and contributes to the complexity of
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control and optimization. In contrast, the R/X ratio is low for TNs. Compared to DNs, TNs
have a few direct consumers. The simple control and a well-built communication system
of TNs are the main reasons why OPF has applied only at the transmission level. The
integration of DGs and flexible loads such as EVs makes OPF feasible in DN optimization.
To incorporate unpredictable DG and to exploit the potential of flexible loads, OPF became
imminent for DNs [51]. Although there is no official record in the literature of the beginning
of the application of OPF in DNs, it can be said it started with the integration of different
types of prosumers in DNs [48].

3.1. General Formulation—Objectives and Variables

The OPF problem can be described as minimizing the objective function while taking
equality and inequality constraints into account [48]:

minF(x,u) = 0 (2)

g(x,u) = 0 (3)

h(x,u) ≤ 0 (4)

where F(x,u) represents the objective function and g(x,u) represents nonlinear equality
constraints i.e., power flow equations, h(x,u) represents nonlinear inequality constraints.
The vectors x and u present state variables, and control variables, respectively.

In [48], the generally used objectives for OPF formulation are given. It should
be noted that the objectives and constraints must be modeled accurately to obtain a
satisfactory solution.

Scientific papers are included in this review if at least one of the objectives is voltage
optimization and if one of the optimization variables is PV inverter reactive power injection.
Furthermore, the voltage optimization problem is mostly described as the objective of volt-
age deviation (VD) minimization, i.e., maintaining voltages within boundaries determined
by grid codes. The general mathematical expression for VD is:

Vdev = ∑
i∈N

(Vi − Vnom)2 (5)

where:
Vdev—voltage deviation;
Vi—voltage at bus i;
Vnom—nominal voltage.
Another objective that appears is related to the voltage unbalance, commonly pre-

sented as the voltage unbalance factor (VUF). The definition of VUF is given in [52] as
the ratio of negative V−

sequence and positive V+
sequence voltage sequences and is most often

expressed in percentages:

VUF =
V−

sequence

V+
sequence

. (6)

In addition to voltage optimization, the following objectives also appear: (i) power
loss minimization [53–55], (ii) on load tap changer (OLTC) switching operation mini-
mization [56], (iii) PV cost minimization [38], (iv) reactive power injection/absorption
minimization [57], (v) active power curtailment (APC) minimization [58], (vi) cost of pur-
chased energy minimization [59], (vii) peak shaving minimization [59], and (viii) security
margin index (SMI) minimization [59]. The mathematical expressions of the commonly
used objectives are given in Table 2.
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Table 2. Mathematical expressions of the commonly used objectives in voltage optimization problems.

Objective Formulation Explanation

Power loss minimization [53–55] ∑N
k=i gik(V2

i + V2
k − 2ViVk cos θik)

∑(i,k)∈B riklik,t

Vi, Vk—voltage magnitude at i th and k th
buses

θik—phase angle ith and kth elements of
conductance gik

lik,t and rik—square value of current and
resistance of branch line from bus i to

bus k

OLTC tap operation minimization [56] ∑M
m=1 sm,t

M—number of discrete devices
sm,t—status of discrete device m at time t

APC minimization [58] ∑N
i=1 |PPV,curt

t,i | PPV,curt
t,i —curtailed active power of PV at

time t

PV inverter loss minimization [38] ∑3
p=1 ∑i∈γ(k

p
i1Sp

PVi
2
+ kp

i2Sp
PVi + kp

i3)

p—phases
γ—set of buses with PVs
Sp

PVi—apparent power
kp

i1, kp
i2, kp

i3—coefficients of each inverter’s
efficiency data

Reactive power inj./abs.
minimization [57] |Qinj.|/|Qabs.| Qinj. and Qabs.—injected/absorbed

reactive power

Cost of energy minimization [59] ∑t∈T αtP1,tΔt

αt—price of energy at tth time
P1,t—active power imported from the

external network at time t
Δt—duration of time intervals

Security margin maximization [59] ∑t∈T(1 − min| Il,t−Ir
l

Ir
l

|) Il,t—line current in lth line at time t
Ir
l —ampacity of line current in lth line

In power systems, the conventional power flow is both nonlinear and nonconvex
and commonly solved by the Newton–Raphson iterative method. In constrained OPF
applications, equality constraints incorporate conventional power flow equations and other
constraints to ensure balance. A detailed version of the power flow is named AC power
flow [60]. AC power flow as a constraint in OPF is most often formulated in the polar
form [60]:

Pi =
N

∑
k=i

|Vi||Vk||Yik| cos(δi − δk − θik) (7)

Qi =
N

∑
k=i

|Vi||Vk||Yik| sin(δi − δk − θik) (8)

where:
Pi—active power at bus i;
Qi—reactive power at bus i;
Vi—voltage magnitude at bus i;
Vk—voltage magnitude at bus k;
Yik—ikth element of bus admittance matrix Ybus;
δi—voltage phase angle at ith bus;
δk—voltage phase angle at kth bus;
θik—phase angle of ikth element of bus admittance matrix Ybus.
Besides AC power flow, the authors use two other formulation approaches: decoupled

AC power flow [49] and DC power flow [50]. In decoupled AC power flow, active and
reactive powers are decoupled as a function of voltage angle and voltage magnitude, respec-
tively. Assumptions made for the DC power flow formulation include purely imaginary
elements of Y and a small difference between two voltage angles of two adjacent busses.

Various inequality constraints are given in [48,61]:
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• control variables limit;
• limits for power generation (active and reactive power upper and lower limits);
• network operational limit determined in the network analysis (e.g., MVA limit).

Voltage optimization needs to meet the following constraint requirements:

1. Power flow equations given as Equations (7) and (8);
2. Voltage constraint

Vmin
i ≤ Vi ≤ Vmax

i (9)

where Vmin
i and Vmax

i are the lower and upper voltage limits.
3. PV active and reactive power constraint

0 ≤ PPV,i ≤ PPV,av,i (10)

−
√

S2
PV,i − P2

PV,i ≤ QPV,i ≤
√

S2
PV,i − P2

PV,i (11)

where PPV,i, , QPVi , and SPV,i are active, reactive, and apparent powers at bus i. PPV,av,i
is available active power at bus i.

4. Line current (thermal) constraint

Imin
ik ≤ Iik ≤ Imax

ik (12)

where Imin
ik and Imax

ik are the lower and upper limits of the line current between buses i
and k.

5. OLTC tap position constraint (if it is included)

Tmin
i ≤ Ti ≤ Tmax

i (13)

where Tmin
i and Tmax

i are the lower and upper positions of OLTC tap at bus i.
6. Capacitor constraint (if it is included)

Qmin
Ci ≤ QCi ≤ Qmax

Ci (14)

where Qmin
Ci and Qmax

Ci are the lower and upper limits of capacitor reactive power at
bus i.

7. Energy storage constraint (if it is included)

SoCmin
i,t ≤ SoCi,t ≤ SoCi, tmax (15)

where SoCmin
i,t and SoCmax

i,t are the lower and upper limits of the charge state of the
storage system at time t.

The voltage optimization problem can be single-objective or multi-objective. OPF
objectives and variables used in the review papers are categorized and summarized in
Table 3.

Table 3. Overview of objectives and variables.

Reference
Single/

Multi-Objective
Objectives Variables

[62] multi-objective min VD from 0.95 pu threshold, min losses,
min reactive power from capacitors PV inverter reactive power, OLTC, SC, and

[63] multi-objective min losses, min VD—DN, min active power
curtailed from available power—prosumer PV active and reactive power

[64] multi-objective min VD from expected CVR voltage,
min losses

PV inverter reactive power, OLTC/AVR,
and CBs
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Table 3. Cont.

Reference
Single/

Multi-Objective
Objectives Variables

[65] single-objective min VD PV inverter reactive power, OLTC

[38] multi-objective min losses, min VD, min VUF, min PV
generation cost, min PV APC cost PV inverter reactive power

[66] multi-objective min losses, min VD, improvement VSI PV inverter reactive power and static
compensator

[53,54,67–69] multi-objective min losses, min VD PV inverter reactive power
[70] multi-objective min VD, min losses PV inverter reactive power, CBs, and OLTC

[71] single-objective min VUF PV inverter active and reactive power, power
injected by TS

[72] single-objective min VD PV inverter reactive power

[73] multi-objective
min losses, min cost of APC and

generated/consumed reactive power, min
VD

PV inverter reactive power

[74] multi-objective min VD, min voltage unbalance PV inverter reactive power, OLTC, VR, and
CB

[75] multi-objective min losses, min VD, min VUF PV inverter reactive power
[32] single-objective min VUF PV inverter reactive power
[76] single-objective min VD PV inverter reactive power, OLTC

[77] multi-objective min losses, min VD, min control action of
OLTC and SC PV inverter reactive power, OLTC, SC

[78] single-objective min VD PV inverter reactive power, OLTC
[79] multi-objective min VD, min losses PV inverter reactive power, OLTC, and SC

[57] multi-objective min VD, min losses, min reactive power
injection, and absorption PV inverter reactive power

[80] multi-objective min VD, min losses PV inverter reactive power, OLTC
[81] single-objective min VD PV inverter reactive power, OLTC, and VR
[58] multi-objective min VD, min losses, min APC PV inverter reactive power, OLTC and CB

[55] multi-objective min VD, min losses PV and EV inverter reactive power, the
compensation device

[56] multi-objective min VD, min OLTC tap operation PV inverter reactive power, OLTC

[82] single-objective min VD PV inverter reactive power,
charge/discharge rate of ESS

[83] multi-objective min losses, min VUF PV inverter reactive power

[34] multi-objective min cost, min losses, min cost associated
with active power setpoints, min VD PV inverter active and reactive power

[84] multi-objective min active and reactive power output, min
VD PV inverter active and reactive power

[37] multi-objective min VD, min losses, min peak of reactive
power PV inverter reactive power

[85] multi-objective min VD, min losses PV inverter reactive power, OLTC, CB

[59] multi-objective min VUF, min cost of purchased energy, min
peak shaving, min losses, min SMI, min VD

PV inverter reactive power, EV active and
reactive power, bus voltages at all time

intervals of the day
[86] multi-objective min VUF, min losses PV inverter reactive power, OLTC, CB
[87] single-objective min VD PV inverter reactive power
[88] multi-objective min VD, min losses PV inverter reactive power, SC, OLTC, ESS

[89] multi-objective
min VD, min losses, min number of

switching operations of OLTC and CB, min
APC

PV inverter active and reactive power, CB,
OLTC

[90] multi-objective min VD, min operational cost PV inverter active and reactive power, CB,
OLTC, ESS

[91] multi-objective min VD, min losses, min peak of reactive
power PV reactive power

[39] single-objective min VD PV inverter reactive power

The abbreviations are as follows: CVR: conservation voltage reduction; VSI: voltage stability index; SC: shunt
capacitor; AVR/VR: automatic voltage regulator; CB: capacitor bank.
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According to the literature review, the multi-objective problem prevails.
Besides PV inverter reactive power, other variables include: (i) PV active power,

(ii) OLTC, (iii) CB, (iv) static compensator, (v) reactive power from the substation, (vi) VRs,
(vii) charge/discharge rate of ESS, (viii) EV active power, and (ix) SC.

3.2. Objectives and Variables—Discussion

Figure 7 represents objectives quantitatively. Almost all objectives include VD. In
multi-objective problems, VD is most combined with losses, however, many other objectives
also appear.

If OPF is regarded as a part of the distribution energy management system (DEMS),
the dominance of the multi-objective formulation of OPFs is logical. DSO tries to reach
the optimal operation point regarding several objectives and the most commonly used
ones are loss minimization together with voltage deviation minimization. Additionally,
active power curtailment (APC) minimization is frequently a combined objective with the
minimization of voltage deviations. Other objectives are rare and they are used only in a
few papers.

The variables are presented quantitatively in Figure 8.
A similar conclusion can be made regarding optimization variables. DSO tries to

utilize all the available controls such as OLTC tap settings, CB reactive power, and ESS
variables. Some of the variables are continuous but some are discrete (such as OLTC tap
settings), which will affect the formulation of the OPF problem (the appearance of integer
variables) and largely the choice of the solution method.

Figure 7. Quantitative presentation of the objectives.

Figure 8. Quantitative presentation of the variables.
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4. Voltage Optimization in PV-Rich Distribution Networks—Formulation and
Solution Methods

The complexity of the OPF depends on the power flow formulation approach. If the
original AC power flow equations are used for OPF formulation, an optimization problem
is nonlinear and hard to solve. Thus, many researchers try to simplify OPF formulation in
order to obtain a linear or quadratic optimization problem that is easier to solve. According
to [60], the OPF formulation can be classified into:

• nonlinear programming (NLP);
• linear programming (LP);
• quadratic programming (QP);
• mixed-integer linear programming (MILP);
• mixed-integer nonlinear programming (MINLP).

In early papers, continuous NLP formulation is used. All discrete variables are
approximated as continuous for simplicity. This formulation includes nonlinear objectives
and constraints. The LP formulation uses the DC power flow approach, i.e., both the
objectives and the constraints are linear. Due to its simplicity, robustness, speed, and well-
developed solution methods, it is an attractive OPF formulation, especially for industry [51].
However, due to the modeling assumptions, LP is not adequate for problems such as
minimizing power losses, and a global optimum cannot be guaranteed. QP is a special case
of NLP with quadratic objective and linear constraints and represents an alternative to LP.
The inclusion of discrete variables (transformer tap settings, shunt capacitor settings, etc.)
in NLP results in MINLP being the most realistic and accurate formulation of OPF, but also
the most complex and difficult to solve. However, there is a trade-off between the system
description and the tractability of the problem. One way is to linearize and apply MILP.
For more details, see [60,92].

The OPF formulation determines which solution method is used. Figure 9 presents
the mathematical formulation and solution methods. For each solution method in Figure 9,
a scientific paper in which it is applied is listed. The basic categorization of OPF solu-
tion methods is divided into analytical methods and computational intelligence methods.
The most commonly used analytical methods for linear OPF are the well-developed sim-
plex methods [93], sequential linear programming (SLP) [94], and interior point methods
(IPMs) [95]. In the first period, analytical iterative methods were applied to the NLP OPF.
They were Newton-based methods [96]; gradient methods—reduced gradient method
(RG) [97], conjugate gradient method (CG) [98], and generalized reduced gradient method
(GRG) [99]; IPMs [100]; sequential quadratic programming (SQP) [101]. Recently, computa-
tional intelligence methods have been applied to solving OPF problems. Computational
intelligence methods have been developed to overcome the weak capabilities of analyti-
cal methods for solving global optimization [102]. Although computational intelligence
methods do not require a precise mathematical formulation of the OPF problem, the au-
thors include them in the group of solution methods that can solve nonlinear and integer
formulations of the OPF since they can take into account nonlinearities in the original prob-
lem. Computational intelligence methods include artificial neural networks (ANNs) [103],
genetic algorithms (GAs) [104], particle swarm optimization (PSO) [105,106], ant colony op-
timization (ACO) [107,108], bacterial foraging algorithm (BFA) [109], simulated annealing
(SA) [110], tabu search (TS) [111], and fuzzy logic (FL) [112].
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Figure 9. Mathematical formulation and solution methods used in OPF solving.

4.1. Analytical Methods

Classical analytical methods are used in multi-field optimization problems. In addition
to the basic methods such as LP, QP [69], NLP, MINLP [76], and MILP, some papers deal
with problems that reduce to the basic ones (see Table 4). In [65], SLP is developed to
solve the optimization problem in real time. To obtain global optima, SQP has been
developed in [38]. The iterative gradient projection method is implemented to specify
VAR outputs for voltage optimization in [87] and additionally, active power outputs
in [84]. A method for solving linear and nonlinear optimization problems was developed
in [34,78]. The alternating direction method of multipliers (ADMM), which is one of the
augmented Lagrangian-based methods, was developed as one of the most used methods for
a network optimization problem. In ADMM, the optimization problem is decomposed into
subproblems to deal with it. The subproblems are coordinated to seek the global optimal
solution. The authors in [70,72,73] solve the voltage optimization problem using ADMM.

Table 4. Overview of formulation and analytical methods.

Formulation Analytical Methods Reference

NLP
ADMM-based method

IPM
SQP

[69]
[36]
[54]

LP SLP [63]

QP
QP

Gradient projection methods
ADMM-based method

[52,53,74]
[59,82]
[70,71]

MILP MILP [58]

MINLP QP
IPM

[74]
[76]
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4.2. Computational Intelligence Methods

In recent years, computational intelligence methods have been increasingly used to
solve voltage optimization problems. One of the main advantages of computational intelli-
gence methods is that they do not require a mathematical formulation of the optimization
problem. For the sake of unification and formality, the authors keep the formulation of
the OPF problem in Table 5 even though it is not required for computational intelligence
methods. The most commonly used methods are GA [37,57,62,83] and PSO [64,82,85,88].
Other computational intelligence methods that appear in the literature are the sine-cosine al-
gorithm (SCA) [66], feasibility pump (FP) method [67], sparrow search algorithm (SSA) [74],
pattern search algorithm [80], and grey wolf optimization (GWO) [81]. In some papers,
hybrid methods are applied. In [79], a GA is applied to solve the day-ahead scheduling
optimization problem in the first stage, while the pattern search algorithm (PSA) is used
to solve the real-time optimization problem in the second stage. The branch-bound algo-
rithm is combined with the IPM in [86] to solve the discrete problem. The combination
of modified PSO and direct load flow (DLF) is used in [75]. DLF is used for power flow
analysis and according to obtained data and PSO is used to evaluate network performance.
In [77], the authors used both computational intelligence methods and analytical methods.
In [55], five multi-objective evolution algorithms (MOEAs), named promising-region-based
evolutionary many-objective algorithm (PREA), strength Pareto evolutionary algorithm 2
(SPEA 2), nondominated sorting genetic algorithm II (NSGA-II), nondominated sorting
genetic algorithm III (NSGA-III), and two-phase framework (ToP), are used to determine
the reactive power capacity of PVs and EVs. The results obtained by MOEAs are used
to train a deep deconvolution neural network (DDNN) to solve the problem of voltage
deviation and loss minimization. For inverter coordination, the authors in [113] use deep
deterministic policy gradient (DDPG).

Table 5. Overview of formulation and computational intelligence methods.

Formulation
Computational Intelligence

Methods
Reference

NLP GA [37,57]
MINLP GA [62]

NLP NDSGA II [83]
NLP PSO [68,82]

MINLP PSO [64,85,88,114]
NLP SCA [66]

MINLP C&CG algorithm [53]
NLP SSA [74]

MINLP GWO [81]
MINLP Modified PSO, DLF algorithm [75]
MINLP MOPSO, IPM [77]
MINLP GA,PSA [79]

NLP PREA, SPEA2, NSGA-II,
NSGA-III, ToP, DDNN [55]

MINLP FP [67]
MINLP PSA [80]
MINLP NSGA-III [89]
MINLP ε-constrained method and FL [90]
MINLP DDPG [113]
MINLP ANN [114]

4.3. Formulation and Solution Methods—Discussion

Analytical solution methods require a strictly mathematical formulation of the OPF
problem, which can then be solved by an appropriate analytical method. Since there
are a few effective analytical algorithms for solving nonlinear problems (especially with
integer variables), most of the papers in which analytical methods are used transform the
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original NLP (or MINLP) into some of the more convenient forms—usually QP or MIQP.
Transformations into a linear form (LP or MILP) are very rare due to the nature of the
problem, i.e., the quadratic function of voltage deviation and poor performance of DC
power flows in the environment of the DN (ratio R/X is not as small as in the TN).

According to Table 5, the popularity of computational intelligence methods can be
observed. According to Figure 10, a decision about which solution method would be used
depends on the objective and mathematical formulation. To briefly address Table 3, multi-
objective optimization problems dominate. In single-objective problems, analytical solution
methods prevail. Analytical methods require that a multi-objective (usually known as
Pareto optimization) problem transforms (scalarizes) into a single-objective using weighting
coefficients, which is not a straightforward procedure. Computational intelligence methods
are most used for multi-objective problems. A comparison of analytical and computational
intelligence methods is presented in Table 6.

Analytical methods are well-developed and applicable in systems where the require-
ments of modeling accuracy are low. Analytical methods are able to straightforwardly find
an optimal solution but there is no guarantee that the optimum is global. If multiple local
optima exist, global optima cannot be guaranteed and the analytical method can stuck in
local optima. To apply the analytical method, it is necessary to perform a transformation
of the original problem to a level that it can solve. This is where the problem of trade-off
comes in. On the one hand, there is an accurate real-life system description and, on the
other hand, there is an applicable solution method. Some shortcomings of analytical meth-
ods are solved by computational intelligence methods. These methods do not depend on
mathematical formulation because they required only parameters that can be calculated
separately (for example solution of the power flows). Compared to analytical methods, a
hard computational effort is required and there is no guarantee of finding an optimal solu-
tion thus some expert knowledge of the system is needed. In recent years, computational
intelligence methods are used in co-simulation with proven power flow tools DIgSILENT
PowerFactory [41], DLF [75], OpenDSS [115], etc. This approach simplified the application
of computational intelligence methods for large-scale DNs.

(a) (b)

(c)

Figure 10. Solution methods for different objectives and formulations. (a) Multi-objective problem
and continuous formulation. (b) Multi-objective problem including integer variables. (c) Single-
objective problem.
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Table 6. Comparison of analytical and computational intelligence methods.

Advantages Shortcomings

Analytical methods
(simplex method, SLP, SQP, ADMM,

gradient projection method, IPM)

- well-developed methods
- fast computational performance of

linear methods and IPMs

- stuck in local optima
- modeling accuracy problem
- the sensibility of initial conditions
- cannot handle the multi-objective

problem properly
Computational intelligence methods
(evolutionary and biologically inspired

methods, artificial intelligence
methods, FL)

- do not depend on mathematical for-
mulation

- convergence is easier to set up com-
pared to analytical methods

- hard computational effort
- do not guarantee optima

4.4. Test Network Models

To validate the efficiency of different solution methods for the voltage optimization
problem, the authors use test network models that can be divided into a standard test
model and a test model based on real-life examples. The most common test network
models used in literature represent IEEE test network models which, depending on the
number of buses, can be IEEE–13 bus, IEEE–15 bus, IEEE–33 bus, IEEE–34 bus, IEEE–37
bus, IEEE–69 bus, IEEE–123 bus, and IEEE–8500 bus. Almost all have radial topology.
According to the processed problem, some authors modify standard test models. For
instance, the standard test model [70] is modified according to balance. Real-life-based
models represent urban residential feeders located in the US, China, Italy, Egypt, Australia,
Ireland, and the UK. Unbalanced networks are mostly low voltage and belong to real-life
models. In Table 7, test network models, their voltage level, and balance are summarized.
According to the reviewed literature, more authors utilize standard test network models
IEEE–33 bus, IEEE–69 bus, and IEEE–123 bus node due to their flexibility and robustness.
One possible problem that can appear is the OPF application for unbalanced DNs. For
instance, the authors in [72] reduce an unbalanced system to a balanced assuming that
voltage magnitudes between phases are analogous and phase angles on nodes are not
drastic. Therefore, an unbalance between phases is low, and almost balanced. For more,
see [72].

Table 7. Overview of test network models.

Reference Test Network Model Voltage Level Balanced/Unbalanced

[32,79,80] IEEE–34 bus MV–24.9 kV and 4.16 kV Balanced

[70] IEEE–34 bus modified according
to balance MV–24.9 kV and 4.16 kV Unbalanced

[55,63,67,81,82,85,89,90] IEEE–33 bus MV–12.66 kV Balanced
[63] Real–266 bus, Shenzen, China MV–20 kV Balanced

[53,64,83,88,113] IEEE-123 bus MV–4.16 kV Unbalanced

[70,72] IEEE–123 bus modified according
to balance MV–4.16 kV Balanced

[65] Real distribution feeder–187 bus MV–12.47 kV and LV–120/240 V Balanced
[38,75] Perth Solar City–101 bus LV–415/240 V Unbalanced

[66] Tala City, Egypt–37 bus MV–11 kV Balanced
[67,76,78,81] IEEE–69 bus MV–12.66 kV Balanced

[32,57] IEEE–13 bus MV–4.16 kV Balanced
[70] IEEE–13 bus MV–4.16 kV Unbalanced
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Table 7. Cont.

Reference Test Network Model Voltage Level Balanced/Unbalanced

[71] Real UK l LV–0.4 kV Unbalanced
[72] IEEE–15 bus MV–11 kV Unbalanced
[74] IEEE–8500 bus MV and LV Both
[75] Real Australian–565 bus MV–22 kV and LV–415 V Both
[68] 22 bus MV–11.4 kV Balanced
[78] 17 bus MV–25 kV Balanced

[56,113] IEEE–37 bus MV–4.16 kV Unbalanced

[56] Real Californian utility
feeder–2884 bus N/A Unbalanced

[34] Illustrative model LV N/A

[84] K1 feeder–1747 bus in the
southeastern US MV and LV N/A

[69,116] 33 bus MV–12.66 kV N/A
[69] 830 bus N/A N/A

[37,91] Real South Korean–20 bus MV–22.9 kV Balanced
[59] Real South Italian–16 bus LV Unbalanced
[39] Real Irish suburban–85 bus LV N/A
[58] Modified PG&E–69 bus MV Balanced

[114] CIGRE–12 bus MV N/A
[116] 118 bus MV N/A

5. Conclusions

This paper aims to systematize and categorize scientific papers that are dealing with
the optimization of voltage in the DN using the reactive power management of PV in-
verters. Additionally, the papers are categorized according to the optimization problem
formulation and applied solution methods. It can be observed that the original voltage
optimization problem is nonlinear due to a quadratic objective function and nonlinear
power flow equations. Additionally, some authors propose a mixed-integer nonlinear
formulation due to integer variables such as the OLTC tap setting. To solve such complex
optimization problems, some authors use analytical methods and some use computational
ones. In this review paper, the authors tried to point out the advantages and shortcomings
of both approaches without favoring one. When analytical methods are used, the compro-
mise regarding the transformation of the original problem into a standard one is present
but the analytical approach enables the straightforward method to find the optimum of a
well-defined optimization problem (although special attention is required in order to deter-
mine whether a calculated optimum is local or global). On the other hand, computational
intelligence methods can solve complex optimization problems without the transformation
of the original formulation but they required higher computational performance as well
as more computational time. One of the trends in applying computational intelligence
methods is using well-known power flow calculation tools in order to feed the computa-
tional intelligence method with multiple power flow solutions. This principle is recognized
as co-simulation.

The research potential of the reviewed field lies in the fact that more and more inverter-
based sources are installed in distribution networks worldwide. The importance of voltage
optimization is specifically stressed in microgrids where voltage supports depend mainly
on the inverter-based source. Since the PV active power production depends on variable
and stochastic sun irradiation, further research direction in the field of voltage optimization
will strive to create an adequate probabilistic formulation of the OPF problem which is
computationally more demanding since large numbers of possible scenarios need to be
analyzed. Some probabilistic OPF solutions are already created for the transmission system
environment but their replication in the distribution network (or microgrid) is not straight-
forward. It is hard to foresee which solution methodology (analytical or computational
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intelligence) will show better performance in a probabilistic environment and there is still
plenty of research challenges and gaps present for further research.
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Featured Application: The developed solar air heater can be applied in drying and space heating

applications from 50 ◦C to 90 ◦C. The solar collector could be modular, so it can be coupled to a

variety of processes.

Abstract: Solar air heaters can reduce climate change by replacing conventional fossil fuel-burning
technologies in drying and space heating applications. Concentrating solar technologies, such as
compound parabolic concentrators, allow air temperatures up to 120 ◦C; however, it is desirable to
improve their heat transfer to reduce the space requirements for their installation. In this work, a
parabolic concentrator composed of a flat receiver designed to recover heat from the cover–receiver–
reflectors cavity is analyzed, operating it as a U-shape double pass solar heater. With this operation,
first, the air flows through the cavity, and then it is incorporated into the duct, where the dominant
heat gain occurs due to the capture of solar radiation. Thus, four input–output configurations in the
cavity were modeled through dynamic simulations to determine the influence of the inlet and outlet
air flow positions on the solar concentrator outlet temperature. Therefore, the incorporation of the first
pass has a contribution of between 36% and 45% in useful energy gain, showing that this appropriate
and relatively simple strategy can be implemented to improve the thermal performance of solar air
collectors, resulting in instantaneous efficiencies higher than 75%. However, the simulation results
demonstrate that the position of the inlets and outlets does not significantly impact the efficiency and
outlet temperature.

Keywords: solar energy; CPC; solar heating; solar drying; industrial process; solar air heater;
space heating

1. Introduction

Air heating is used for various applications, such as heating and air conditioning of
buildings or drying of food and industrial products, among others. Air can be heated with
electric heaters or by directly burning fuels such as gas; however, their use implies the
emission of greenhouse gases and their consequent contribution to climate change. One
way to minimize fossil fuel burning is to use solar collectors to directly heat the air, ranging
from flat-plate collectors to solar concentrators.

According to the International Energy Agency, 985 MWth of solar air collectors were
installed by the end of 2020, and the global market was around 12 MWth [1]. As of March
2022, 41 solar air collector systems producing solar process heat are registered, with a
cumulative capacity of 6 MWth [1]. Thus, the direct application of solar collectors for
air heating is low due to the boost that low fossil fuel prices give to using conventional

Appl. Sci. 2022, 12, 12199. https://doi.org/10.3390/app122312199 https://www.mdpi.com/journal/applsci
471



Appl. Sci. 2022, 12, 12199

technologies [2], so it is essential to develop reliable and economically efficient solar air
heating technologies. Flat-plate solar collectors are recommended for temperatures below
70 ◦C because of their ease of manufacture and operation. For higher temperatures, it
is necessary to use some solar concentrating technology, such as compound parabolic
concentrators (CPCs), which allow fluid heating temperatures up to 120 ◦C, depending on
their design, and are easy to operate and maintain.

However, to ensure good efficiency of CPCs, it is necessary to perform an optimal
optical design and minimize thermal losses or improve heat transfer. Strategies to reduce
convection losses in the receiver of a solar collector include using evacuated tubes or
filling the CPC cavity with gases such as Argon and Krypton [3,4], which are denser gases
and have lower thermal conductivity than air, or even applying a vacuum throughout
the cavity [5]. In contrast, double absorbers have been proposed to reduce conduction
losses [6].

In other technologies, such as flat-plate solar air heaters, it has been proposed to
increase the heat transfer rate by incorporating multiple passages, including extended
surfaces, artificial roughness, and packed mesh [7]. This multi-pass strategy is used in
hybrid CPCs (PV/T) to cool the photovoltaic cells on the flat-plate receiver with fins on the
back side [8].

In the general design of solar collectors, computational fluid dynamics (CFD) tools
can be used to reliably estimate their thermo-hydraulic performance before building them,
saving time and resources. Several analyses of solar collectors by computational fluid
dynamics (CFD) can be found in the literature, both for liquid and air heating. Table 1
provides an overview of the different solar collector models and assumptions found in the
literature review.

Table 1. Solar collectors CFD and radiation models in the literature review.

Reference Solar Technology TES Fluid CFD Model Radiation Model

[9] Flat-plate Air in gap of upper part
2D model

Newtonian and incompressible gas
Boussinesq approximation

ER: Constant radiative flux

[10] Heat-pipe evacuated
tube (HPETC)

Water in heat pipe
Air or OCMs in inner

evacuated tube

3D model
Boussinesq approximation

ER: Time-dependent polynomial
function for the solar irradiance data

as a boundary condition

[11]
Evacuated tubes with
and without circular

ribs
Air

3D steady-state model
RNG k-ε turbulence model with
enhanced wall treatment model
under periodic flow conditions

ER: Uniform and constant heat input
as a boundary condition

[12]
Flat plates with

selective surfaces and
rectangular fins

Air

3D steady-state model
Incompressible air

Boussinesq approximation
Standard k–ε turbulence model

IR: Discrete ordinates model
ER: Constant solar heat flux

[13]
CPC with a

single-pass evacuated
tube receiver

Air 3D steady-state model
k–ε turbulence model

ER: Ray-tracing and finite volume
solver to determine the non-uniform

solar flux distribution on the
absorber surface

[14] CPCs with three types
of tubular receiver Water

3D transient-state model
Incompressible fluid

Spalart-Allmaras turbulence model

ER: Ray-tracing and finite element
solver to determine the incident solar

flux on the absorber surface

[15]
CPCs with tubular
receivers (with and
without ETFE foil)

Water in absorber
Air in cavity

3D steady-state model
Boussinesq approximation

Standard k-ε turbulence model

IR: S2S radiation model
ER: Ray-tracing used to determine a
correlation of absorbed solar energy

as a function of angle
along perimeter
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Table 1. Cont.

Reference Solar Technology TES Fluid CFD Model Radiation Model

[16]
CPCs with tubular

receivers and
flat-plate receiver

Air in cavity

2D pseudo-transient model
Incompressible ideal gas

Buoyancy forces
k–ε turbulent model

IR: S2S radiation model
ER: Solar radiation is

completely absorbed by the receiver

[17] Panels of CPCs with
tubular receiver Air in cavity

2D pseudo-transient model
Incompressible ideal gas

k-ε turbulent model with the
enhanced wall treatment

IR: S2S radiation model
ER: Receiver temperature as a

boundary condition (solar radiation
is not simulated)

[18] CPC with
flat-plate receiver Air in cavity

3D steady-state model
Incompressible ideal gas

Thermo-physical
properties constants

Non-Bousinessq approximation
Standard k–ε turbulence model with

enhanced wall treatment

IR: Discrete-ordinate radiation model
ER: Thermal boundary condition

with the surface external
emissivity specified

[19] Multi-pass flat-plates Air

2D and 3D steady-state models
k–ε turbulent model

Standard k–ε turbulent model with
realizability constraints in the

vicinity of walls

IR: S2S radiation model
ER: External Radiation Source

sub-node is applied to contribute to
the incident radiative heat flux on

the solar spectral bands

[20]
Three-pass and
quadruple-pass

flat-plates
Air 3D steady-state model

k–ε turbulence model Not specified

[21] Double-pass flat-plate Air 3D steady-state model
RNG k–ε turbulence model

IR: Discrete-ordinate radiation model
ER: Energy equation and Discrete

Transfer radiation model

[22] Double-pass
flat-plates Air

2D steady-state model
Incompressible flow

k–ε turbulence model
ER: Uniform heat flux

[23]
Double-pass

flat-plates with three
fin configurations

Air 2D steady-state model
RNG k–ε turbulence model ER: Constant heat flux

[24] Double-pass curved
collectors Air 2D steady-state model

k-ε turbulence model ER: Constant solar radiation flux

IR: Internal radiation; ER: External radiation.

Thus, Mekahlia et al. determined the influence of the thickness and number of
transparent covers to reduce the heat losses of a flat-plate solar collector [9], and Pawar
and Sobhansarbandi modeled an evacuated heat-pipe solar collector with and without
integrated phase change materials as a thermal storage medium [10]. In the particular
case of solar air collectors, Singla et al. analyzed an evacuated tube collector with ribs of
different roughness [11]. At the same time, Ammar et al. performed a three-dimensional
CFD model to optimize the design of a solar air collector with an extended surface area by
a different number of rectangular fins [12]. In addition, they analyzed the effect of adding a
selective surface on the absorber.

Regarding the analysis of CPC collectors, Li et al. analyzed by CFD the thermal behav-
ior of an evacuated tube collector as a receiver of a compound parabolic concentrator, and
the simulation was validated with experimental data [13]. Barrón-Díaz et al. performed the
numerical simulation of CPCs with tubular receivers, with and without fins, for residential
water heating [14]. This study focused on the ray-tracing analysis of radiation and heat
transfer by coupled finite element and CFD methods. In addition, Yuan et al. developed
two simplified computational fluid dynamics models to determine the temperature and
velocity distribution in two almost identical parabolic tube-receiver CPCs [15]. One had a
transparent ETFE sheet around the receiver to reduce convective heat losses. The models
included the reflector, receiver, cover, and back insulating material and allowed the analysis
of both air movement in the cavity and water movement in the absorber tube. Ray tracing
was applied to analyze the radiation distribution on the receiver tube at normal incidence,
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with a correlation of the absorbed solar energy as a function of the angle along the perimeter
of the tube. Both models were experimentally validated, and relative errors of less than
3.7% in temperature and 1% in efficiency were obtained.

On the other hand, Antonelli et al. analyzed the air heat transfer inside the cavity
of a collector with a tubular receiver and with a flat-plate receiver and developed some
correlations to express the Nusselt over the receiver [16]. Subsequently, Francesconi and
Antonelli performed the numerical analysis of a panel with several tubular receiver CPCs
to determine the influence on the thermal efficiency of the number and position of the
CPCs along the panel, the use of a second transparent cover, the spacing between collectors,
and the truncation of the reflectors [17]. For their part, Reddy et al. performed three-
dimensional modeling of a flat-plate receiver CPC to determine the thermal losses in the
cavity as a function of its aspect ratio and tilt, the optical properties of the materials, and
the absorber and ambient temperatures [18]. To model the internal radiative heat transfer,
they used a discrete ordinary radiation model, and for the external one, they established
the thermal boundary conditions and emissivity.

As mentioned above, another strategy to improve the efficiency of solar air heating
collectors is to increase the number of passes. Thus, Al-Damook et al. analyzed the
effect of double-pass configuration in a solar air heater when operating in concurrent
parallel flow, parallel in counterflow, and double U-pass [19]; the latter presented the best
thermal performance. Tuncer et al. analyzed, through CFD simulation, two flat-plate solar
collectors for air heating with three and four passes and determined which one had the
best performance to evaluate it experimentally [20]. In both solar collectors analyzed, air
enters through the lower pass and exits through the upper pass, which has the radiant heat
gain. They found that the four-pass collector has a heat gain 3 ◦C higher than that obtained
with the three-pass collector and that the maximum deviation between the CFD model and
the experimental results was 10%. In addition, Mutabilwa and Nwaigwe performed a CFD
analysis of a two-covers, double-pass flat-plate solar collector for air heating, which was
validated with experimental results [21]. The air enters through the space between the two
covers and returns between the second cover and the absorber plate. The temperatures on
the absorber plate obtained with the model had a standard deviation from experimental
results between 1.05 K and 4.65 K, while for the cover, it was between 0.1 K and 0.45 K.

Likewise, improved surfaces or novel geometries have been incorporated in multi-
passes solar collectors, such as the work of Desisa and Shekata [22]; they analyzed the
impact of using smooth, rough, and corrugated surfaces in a double-pass flat-plate air solar
collector and obtained average thermal efficiencies of 78%, 62%, and 90%, respectively.
On the other hand, Singh determined the performance of double-pass flat-plate air solar
collectors with different fin configurations [23]. They varied in size, angle, arrangements
(in-line, staggered, and hybrid), and hydraulic diameter. Finally, Kumar et al. proposed a
curved air heater with asymmetric double-pass counterflow turbulators, whose design was
determined from CFD analysis by comparing various flow configurations and geometric
parameters [24].

Two or more pass technologies have been applied in flat-plate solar collectors to
improve their efficiency; however, this strategy has not been applied in CPCs for air
heating. This study proposes the CFD analysis of a CPC-type solar air heater with U-shape
double-pass airflow. The air first circulates through the trapezoidal cavity contained in the
volume formed by the cover, the reflecting walls of the CPC, and the flat-plate receiver
and then circulates in counterflow through the receiver’s duct interior. The objective of
the numerical analysis presented is to test different inlet and outlet configurations in the
CPC array to determine how these configurations influence the velocity distribution, outlet
temperature, and instantaneous efficiency of the U-shape double-pass CPC solar heater.

Section 2 of this manuscript describes the main characteristics of the U-shape double-
pass CPC and the four air inlet/outlet configurations considered in its design. It also
defines the mesh design to perform the CFD simulation, the mathematical model for such
simulation, the boundary conditions applied in the study, and the methodology followed
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to estimate the thermal efficiency of the U-shape double-pass CPC. Section 3 includes a
summary of the simulation results obtained and their discussion and concludes with a
summary of the efficiencies calculated for each of the four configurations analyzed.

2. Materials and Methods

2.1. U-Shape Double-Pass CPC Description and Physical Model

The proposed solar air heater is a variant of the flat-plate receiver Compound Parabolic
Concentrator (CPC) conceptualized as a U-shape double-pass heat exchanger. Figure 1a
shows the evaluated geometry dimensions and the inlet and outlet positions, whereas, in
Figure 1b, the CPC cross-section is shown. The CPC is tilted 24◦ since it is the latitude of
the City of interest (Durango, Mexico) and consists of a flat-plate receiver, two reflectors, a
cover, and a duct. The first pass of the airflow inside the CPC occurs in the cavity formed
by the receiver, two reflectors, and the cover, while the second pass is in the duct section.
The aperture area where the solar radiation enters the CPC is 0.42 m2, while the area where
it is absorbed is 0.20 m2.

(a) 

(b) 

Figure 1. U-shape double-pass CPC solar heater. (a) Geometry; (b) Cross-section.

The analysis of the position of the air inlet and outlet in the cavity consisted of the
study of four configurations that were positioned concerning the height of the cavity (hcav):
(a) inlet 1

4 hcav-outlet 1
4 hcav (Down–Down), (b) inlet 1

4 hcav-outlet 3
4 hcav (Down–Up), (c) inlet

3
4 hcav-outlet 3

4 hcav (Up–Up), and (d) inlet 3
4 hcav-outlet 1

4 hcav (Up–Down). The air inlet and
outlet configurations are shown in Figure 2.
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Figure 2. Inlet and outlet studied configurations of U-shape double-pass CPC.

The properties were considered constant in the solid (Table 2). The reflector is made of
anodized aluminum, while the other components of the U-shape double-pass CPC, shown
in Table 2, were considered in the CFD simulation with a certain thickness to model the
conduction. The duct is made of aluminum, and the receiver substrate has a selective
surface; this surface has high absorptivity in the solar spectrum and low emissivity in
the infrared to avoid losses due to thermal radiation. Finally, the cover is made of solid
polycarbonate, and an insulating material (EPS) was considered outside the reflector and
the duct to avoid thermal losses from the surface exposed to the environment.

Table 2. Material properties of the U-shape double-pass CPC elements.

Material
Thickness

(m)
Thermal Conductivity

(W/m·K)
Density
(kg/m3)

Specific Heat Capacity
(J/kg·K)

Aluminum
(receiver, duct) 0.001 237 2702 903

Expanded polystyrene (EPS)
(insulation) 0.050 0.046 14 1210

Polycarbonate
(cover) 0.003 0.210 1200 1300

For air, the density, thermal conductivity, and viscosity were considered as polynomial
functions of temperature, and the specific heat as a piecewise-linear function (Table 3).

Table 3. Thermal properties of air.

Property Type Coefficients/Interval
Temperature Interval of

Validity (K)

Density *, ρ, kg/m3 Polynomial 2.1781T − 0.0033 273.15–393.15
Thermal conductivity *, k, W/(m K) Polynomial 0.003792T + 7.3e−5 273.15–393.15
Molecular viscosity *, μ, kg/(m s) Polynomial 5.141e−6T + 4.5e−8 273.15–393.15

Specific heat, Cp, J/(kg K) Piecewise-linear

1006@273.15 K;

273.15–398.15
1007@288.15 K;
1008@353.15 K;
1011@398.15 K

* The polynomial functions were obtained with data from [25].
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2.1.1. Computational Domain

The fluid and solid domains were generated in the SolidWorks 2013 SP2.0 software.
The solid domain simulated the absorber plate, while the fluid domain was sectioned into
three volumes to facilitate meshing: (a) inlet section, (b) cavity, and (c) elbow-duct.

2.1.2. Mesh

A hexahedral structured mesh was generated according to the proposed computational
domain. The near-wall model approach was used to accurately predict the hydrodynamic
behavior of the flow and the heat transfer in the system. The method was to implement
15 cells to cover the viscous and buffer sublayer to have accurate results in a reasonable
computation time.

The mesh refinement was carried out considering the shear stress for the hydrody-
namic phenomenon and the Nusselt number (Nu) for the thermal boundary layer. The
Nusselt number represents the dimensionless temperature gradient in the wall of interest.

The mesh size was refined until the variation of the shear stress and the average Nu
was less than 1%. Next, the size of the viscous sublayer and the buffer sublayer were
calculated for the interval 0.5 < y+ < 5 using Equation (1), and for the thermal sublayer,
the Nu was monitored. In addition, y+ values of 35 and 60 were applied to the turbulent
sublayer to carry out the mesh independence study; this monitoring was carried out to
describe the viscous sublayer. Then, to obtain the final mesh size used in this work, the
mesh was refined in the z-axis from 100 divisions to 1600. Through the analysis, Nu varied
0.2% with y+ values of 0.8 and 0.5, selecting y+ 0.8.

y =
y+μ

ρuT
(1)

Additionally, the mesh size was verified in the direction of the entrance flow with a
cavity mesh refinement in the longitudinal axis (z-axis), as shown in Figure 3. The analysis
found that the Nusselt had a variation of less than 0.1% from 550 divisions onwards. In
Figure 3a, a cross-section of the U-shape double-pass CPC solar heater is shown, with
the magnified detail of the mesh in the receiver. Figure 3(b1,b2) present the longitudinal
section, where the coarse and refined mesh in the cavity are presented.

The k-ω models are y+ insensitive treatments; therefore, the ω-equation can be inte-
grated without additional terms through the viscous sublayer. Nevertheless, the Transition
SST k-ω model requires a more stringent grid resolution to solve the thin laminar boundary
layer upstream of the transition location. For this reason, using a near-wall mesh with
y+ ≈ 1, especially for heat transfer predictions, is recommended [26].

2.2. Mathematical Model

The mathematical model had the subsequent considerations for the governing equa-
tions: steady state, Newtonian fluid, incompressible flow, and transition turbulence regime;
therefore, the governing equations for the U-shape double-pass solar heater are as follows.

∂ρ

∂t
+∇ ·

(
ρ
→
v
)
= 0 (2)

∂

∂t

(
ρ
→
v
)
+∇ ·

(
ρ
→
v
→
v
)
= −∇p +∇ ·

(
=
τ
)
+ ρ

→
g +

→
F (3)

∂(ρE)
∂t

+∇ ·
(→

v (ρE + P)
)
= ∇ · (∑

j
h′ j Jj) (4)
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(a) 

  
(b1) (b2) 

Figure 3. Solar collector mesh. (a) Transversal section; (b1) coarse mesh in longitudinal section;
(b2) refined mesh in longitudinal section.

2.2.1. Turbulence Model

A preliminary hydrodynamic analysis performed in the SolidWorks 2013 SP2.0 soft-
ware determined that the flow separates due to the sudden expansion at the cavity inlet.
Furthermore, the flow was found to be under development (Lh,turbulent < Lcollector), and
the calculated average Reynolds numbers (Re) were very low (for flow 1 (0.01 kg/s) was
Recav-1 = 2972, and for flow 2 (0.02 kg/s) was Recav-2 = 5961). The k-ω turbulence models
are better at predicting adverse pressure gradient boundary layer flows and separation,
and they also have the ability to simulate the laminar–turbulent transition of wall boundary
layers [26]. Additionally, the k-ω models have low-Reynolds number terms (Re < 104)
that mimic laminar–turbulent transition processes. However, this function is not widely
calibrated in the SST k-ω model; therefore, it is recommended to use the Transition SST
k-ω model [27,28].

The Transition SST model was selected based on the described above and considering
the required accuracy to predict heat transfer from the absorber plate to the air as the
flow. Furthermore, the buoyancy effects were adjusted to full, and the viscous heating was
activated. The turbulence modeling consisted of implementing the Transition SST k-omega
model described in Equations (5)–(12). Equation (5) corresponds to the transport equation
for intermittency (γ), whereas Equations (6) and (7) represent the transition sources Pγ1
and Eγ1, respectively; and Equations (8) and (9), the destruction/re-laminarization sources
Pγ2 and Eγ2.
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Flows 1 and 2 were selected based on a preliminary analysis using the thermal model
described in [29]; among those flows, the best balance between air outlet temperature
and thermal efficiency was found. In the calculation of the Reynolds number, the cav-
ity was approximated as a trapezoidal cross-section duct for calculating the hydraulic
diameter (Dh).

∂(ργ)

∂t
+

∂
(
ρUjγ

)
∂xj

= Pγ1 − Eγ1 + Pγ2 − Eγ2 +
∂

∂xj

[(
μ +

μt

σγ

)
∂

∂xj

]
(5)

Pγ1 = Ca1FlengthρS[γFonset]
cγ3 (6)

Eγ1 = Ce1Pγ1γ (7)

Pγ2 = Ca2ρΩγFturb (8)

Eγ2 = Ce2Pγ2γ (9)

On the other hand, Equation (10) refers to the interaction of the transition model with
the SST turbulence model by modifying equation k, where G∗

k and Y∗
k are the original

production and destruction terms of the SST model [28].

∂(ρk)
∂t

+
∂(ρkui)

∂xj
=

∂

∂xj

(
Γk

∂k
∂xj

)
+ G∗

k − Y∗
k (10)

G∗
k = γe f f G̃k (11)

Y∗
k = min

(
max

(
γe f f , 0.1

)
, 1.0
)

Yk (12)

The pressure-based solver with the Coupled scheme was selected, and a second-order
spatial discretization scheme was implemented. The gradient evaluation method selected
was based on Least Squares Cell-Based, and the high-order term relaxation option was
used. The pressure factor was adjusted to 0.1, and the Flow Courant Number to 4.

2.2.2. Boundary Conditions

The momentum boundary conditions in the walls were considered no-slip stationary
with a constant rugosity of 0.5. The thermal boundary conditions modeled the incident
solar radiation on the cover and the absorber plate as a heat generation source, calculated
using Equations (13) and (14).

qc(t) =
(

I(t)
[
αc + αcτc�p�

2〈n〉
r

] Ac

Ap

)
/wc (13)

qp(t) =
(

I(t) τc�n
r Pg

[
αp + αp�p�c�2〈n〉

r
Ap

Ac

]
Ac

Ap

)
/wp (14)

where q(t) is the heat generation, I(t) is the solar irradiance, Pg is the gap loss factor (0.96), α
is the absorptivity, τ is the transmissivity, ρ is the reflectivity, Ac is the cover area, Ap is the
absorber plate area, and wc and wg, are the thickness of the cover and plate, respectively.
The optical properties of the cover are αc = 0.05, τc = 0.89 y ρc = 0.05, the receiver are
αp = 0.95 and ρp = 0.05, and from the reflector ρr = 0.91.

The heat transfer coefficient from the cover to the environment (HTCc-a) was obtained
by applying the flow around finite flat-plates methodology reported in [30], while the
convection losses of the external walls were calculated using the heat transfer coefficient
(HTCb) correlation proposed by [31]. Additionally, in laminar flow, the heat transfer coeffi-
cient from the flat-plate receiver to the fluid in the cavity (HTCp-cav) was estimated using
the discretized Fourier’s law, considering the local temperature normal to the wall [26].
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Moreover, in turbulent flow, the HTCp-cav was determined using the law of the wall for
estimating the local temperature of the fluid by applying the Reynolds analogy [26].

The heat conduction in the exterior walls of the CPC was modeled as shell conduction,
whereas the radiation losses in the cover were calculated with an emissivity value of
εc = 0.81, and the sky temperature (Ts) was calculated with the correlation proposed by
Swinbank (Equation (15)), reported in [32], where Ta refers to the ambient temperature.

Ts = 0.0552T1.5
a (15)

Regarding the turbulence parameters, a turbulence intensity of 5% and a turbulent
viscosity ratio of 10 were applied. Table 4 summarizes the parameters of the boundary
conditions of the CFD modeling.

Table 4. Boundary conditions considered in the CFD modeling of the U-shape double-pass CPC.

Boundary Type of Boundary Characteristics

Inlet Inlet-vent Tps1,in = 298.15 K

Outlet Mass flow
.

m1 = 0.01 kg/s
.

m2 = 0.02 kg/s

Cover
Wall

Mixed (convection, radiation,
and heat generation)

qc = 37.37 kW/m3

HTCc–a = 8.27 W/m·K
Ta = 298.15 K
Ts = 280.05 K

Bottom duct
Wall

Convection
Conduction

HTCb = 0.6 W/m·K

Absorber plate Wall
Heat generation

I = 900 W/m2

εp = 0.35
qp = 13,481 kW/m3

Fluid interfaces: Coupled wall -
- cavity-absorber plate
- duct-absorber plate

The pressure-based solver with the Coupled scheme was selected. In addition, a
Second-Order scheme for spatial discretization was implemented because of numerical
simulation stability. The formal truncation errors of individual terms in the governing
equations were calculated; the error for the HTCp-cav was 1.27%, 0.051% for the shear stress,
and 0.05% for the Nusselt number (with a security factor of Fs = 3) [32]. In addition, values
of 1 × 10−4 for the mass residual and a mass imbalance of 5.3 × 10−8% and 2 × 10−7

energy residual were accomplished. The verification of the results was carried out by
quantifying the uncertainty of the numerical calculations. For Nu, the spatial error of 0.51%
was obtained, while for HTCp-cav and shear stress were 0.66% and 0.37%, respectively. The
grid convergence index was also verified, finding out 0.05% for Nu, 0.19% for shear stress,
and 0.09% for HTCp-cav.

2.3. Efficiency Calculation

The thermal efficiency of the collector is calculated as the ratio between the useful
energy gained by the fluid on the collector’s cavity and absorber and the net solar energy
on the collector’s aperture, using Equation (16):

η =
Qu

Ac I
(16)
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The heat transfer of the analyzed solar collector resembles a counterflow heat ex-
changer, where the cold fluid flows through the cavity, and the hot fluid flows through the
duct. Therefore, the useful energy gain of the collector is calculated using Equation (17).

Qu =
.

mCp,avg
(
Tps2,out − Tps1,in

)
(17)

3. Results and Discussion

Once the simulation model of the four CPC configurations with different inlet and
outlet positions was implemented (see Figure 2), simulations were carried out considering
the boundary conditions for two different values of mass flow rates to analyze: 0.01 kg/s
and 0.02 kg/s. The materials, air properties, and boundary conditions are presented in
Tables 2–4, respectively. In addition, the results of the hydraulic and thermal behavior of
the air in the cavity of the CPC for each of these configurations are presented below.

3.1. Hydraulic Behavior

Figures 4 and 5 show the velocity streamlines with the two analyzed air mass flow
rates (flow 1: 0.01 kg/s and flow 2: 0.02 kg/s, respectively). In Figure 4 (flow 1: 0.01
kg/s), the configurations with an inlet from below (a and b), a sudden expansion occurs
near the inlet of the cavity, forming an eddy in the upper part of the collector. While in
the configurations with the entrance at the top (c and d), the eddy forms at the bottom.
Further, in all configurations except (b), it is observed that after the air enters the cavity,
several families of eddies form until the end of the collector (z = 2.0 m). On the other hand,
in configuration (b), a large eddy is observed in the first half of the cavity, and then the
formation of some smaller eddies. Finally, it is essential to note that the highest magnitude
velocities are generated at the elbow and at the beginning of the duct (second pass).

  
(a) (b) 

  
(c) (d) 

Figure 4. Streamlines at the collector cross-section with air mass flow 1: 0.01 kg/s. (a) Down–Down;
(b) Down–Up; (c) Up–Up; (d) Up–Down.
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(a) (b) 

 
(c) (d) 

Figure 5. Streamlines at the collector cross-section with air mass flow 2: 0.02 kg/s. (a) Down–Down;
(b) Down–Up; (c) Up–Up; (d) Up–Down.

In Figure 5, a similar behavior to the one described for flow 1 is shown for flow 2 (0.02
kg/s), where a sudden expansion of air near the inlets occurs. For configurations (a) and
(b) (inlet from the bottom), a visible jet can be observed at the bottom of the cavity; here,
an eddy at the upper region can also be observed. Contrarily, in the configurations with
an inlet from above, the jet is formed at the top, whereas the eddy occurs at the bottom
region. Additionally, in configurations (a) and (c) (either both inlet and outlet from above
or below), there is a primary air current with high speed. In configuration (a), the current
goes up and down the cavity, generating several eddies at the upper and bottom sides
opposite to the main flow. Contrarily, in configurations (b) and (d), which have inlet and
outlet in opposite positions on the y-axis, a large eddy is formed near the cavity inlet,
observing a larger eddy in configuration (b) that moves towards the exit in a disorderly
manner. Moreover, the largest speed occurs at the elbow of the collector, having higher
speeds in the configurations with a bottom outlet.

One reason that explains a disordered and asymmetric flow is because of the collector
tilt (see Figure 1). In addition, the pressure increase justifies the phenomenon of the
sudden air contraction caused by the elbow area reduction. Furthermore, a higher mass
flow influences the amplitude and turbulence of the eddies found in the first section of
the cavity.

3.2. Thermal Behavior

Figures 6 and 7 show the temperature fields of the four analyzed configurations. In
Figure 6, for flow 1, it is observed that there is an extended region at low temperatures
for all configurations in the cavity inlet, which is related to the air inlet in the form of a jet
described in Figure 4. In all configurations, a region with low temperature is generated
related to the jet of cold air that enters the cavity. For the configurations with an inlet from
the bottom, the zone is located in the upper left corner. This is due to the presence of the
primary eddies observed in the hydrodynamic behavior of the fluid (Figures 4 and 5). In
configurations with a top inlet, the area is also extended towards the middle of the cavity,
which is related to less turbulence in the movement of the fluid.
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(a) (b) 

 
(c) (d) 

Figure 6. Air temperature fields at the collector cross-section with air mass flow 1: 0.01 kg/s.
(a) Down–Down; (b) Down–Up; (c) Up–Up; (d) Up–Down.

 
(a) (b) 

 
(c) (d) 

Figure 7. Air temperature fields at the collector cross-section with air mass flow 2: 0.02 kg/s.
(a) Down–Down; (b) Down–Up; (c) Up–Up; (d) Up–Down.

When the air enters from above, a zone of hot air is generated in the region near the
entrance and another near the exit, while configurations with a bottom inlet have a heat
recovery since the air enters the cavity.
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For all configurations, the region with the highest temperature is located in the proxim-
ity of the receiver, and it is related to the heat generation on the receiver plate. Consequently,
in the final part of the duct, there is another region with high temperatures. High tempera-
tures are highly desirable since heat is extracted from the plate to the working fluid.

In Figure 7 (flow 2: 0.02 kg/s), the temperatures are lower than the ones observed in
flow 1 (0.01 kg/s). In the four configurations, the temperature fields are highly dependent
on the movement of the fluid in the cavity. The phenomena that drive the low temperatures
in the section near the cavity inlet are the presence of a cold air jet from the inlet air and the
consequent formation of eddies throughout the cavity. In the configurations with an inlet
from below (a and b), there is another circumstance that causes the low temperatures, and
it is due to the formation of the main eddy in the upper part of the cavity that promotes the
stagnation of cold air in this section. Similar to the behavior described for temperatures of
flow 1, for flow 2, the highest temperatures are always found in the regions neighboring
the receiving duct.

Figures 8 and 9 show the four configurations of the flat plate receiver temperature
contours at flow 1 (0.01 kg/s) and flow 2 (0.02 kg/s), respectively.

Figure 8. Temperature contours in the flat plate receiver, first pass (Flow 1: 0.01 kg/s).

Figure 9. Temperature contours in the flat plate receiver, first pass (Flow 2: 0.02 kg/s).

484



Appl. Sci. 2022, 12, 12199

Figure 8 (flow 1: 0.01 kg/s) shows that when the air enters from below (configurations a
and b), it removes heat from the first part of the receiver since it enters the cavity. In contrast,
when the air enters from above (configurations c and d), the zones with lower temperatures
are displaced from around positions z = 0.30 m to z = 0.65 m. The displacement of the
presence of the lower temperature zones is a direct consequence of the formation of the main
eddy, which helps to remove heat from the receiver. On the other hand, in configuration
(a) Down–Down, a higher temperature of around 370 K is observed, indicating that the
heat would not be uniformly removed in the first pass. This high-temperature zone is
explained by contrasting with the hydrodynamic behavior observed in Figure 4, since when
the air enters from the bottom, it heats up when it comes into contact with the receiver
and rises, then continues its movement mainly through the upper part and then descend
when looking for the exit that is in the lower part of the cavity. In contrast, configurations
(b), (c), and (d) have a medium–high temperature zone in the center of the receiver. When
the air leaves the collector cavity (z = 2.0 m), low-temperature zones are generated in the
configurations with an outlet from below (configurations (a) and (d)).

In contrast, in configurations (c) and (d), the existence of two zones of low and
medium–high temperature indicates that although heat removal is heterogeneous, energy
is recovered in the zone between z = 0.30 m and z = 0.8 m, which is related to the presence
of a large eddy in the inlet zone surroundings. In configuration (b), two low-temperature
zones are observed at the inlet and outlet of the collector and a medium–high temperature
zone in the center.

In Figure 9, similar temperatures but lesser magnitude can be observed, correspond-
ing to the prevalence of high velocities due to the application of a large mass flow rate
(0.02 kg/s). Low-temperature regions are observed near the inlets in the receiver plates
of configurations (a) and (b), where the inlet is from below. Configurations (a) and (d),
with outlets from below, have low-temperature regions near the outlets meaning that heat
removal mainly occurs in those sections. On the other hand, configurations (a) and (b) have
a sizeable high-temperature area in their central zone, noting that this area comprises most
of the receiver plate extension. For configuration (c), a zone from z = 0.2 m to z = 1.0 m
with lower temperatures is observed, and even though its outlet is from above; it also has a
small region with low temperatures near the exit. Contrastingly, configuration (d) has most
of its receiver flat-plate with high temperatures, except for its final part (around z = 1.7 m
to z = 2.0 m). Still, it is essential to note that the high temperatures observed for the receiver
plates of Figure 9 (around 345 K) are of lesser magnitude than those observed in Figure 8
(around 370 K), and thus higher heat removal was accomplished with the application of
flow 2 (0.02 kg/s).

Table 5 shows the average temperatures in the flat plate receiver (Tp,avg) for both
airflow rates. The highest temperature, as expected, is obtained with flow 1, 362.2 K with
configuration (a); the lowest is obtained with flow 2, with configuration (c), of 338.5 K. The
flat-plate temperature differences between flows 1 and 2 are greater than 19.7 K.

Table 5. Mean temperatures in the flat plate receiver of the U-shape double-pass CPC.

Mean Temperature, Tp,avg (K)

Configuration Flow 1: 0.01 kg/s Flow 2: 0.02 kg/s

(a) Down–Down 362.17 340.77

(b) Down–Up 360.83 341.08

(c) Up–Up 362.03 338.51

(d) Up–Down 359.92 340.00
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Figure 10 displays the first and second pass air temperature profiles for the four
analyzed configurations. The blue line represents the air temperature profile in the first
pass, and the red line is the profile of the second pass. In addition, the scale of the horizontal
axis of the graphs (z-position) is inverted to facilitate the interpretation of the results since
it allows visualizing the air outlet of the collector on the far right.

 
(a) (b) 

 
(c) (d) 

Figure 10. Air temperature profiles. (a) Down–Down; (b) Down–Up; (c) Up–Up; (d) Up–Down.

In the first pass for the configurations with the inlet from the bottom, (a) Down–Down
and (b) Down–Up, the temperature profile has a slight increase near the entrance (z = 0.1 m),
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then it continues to increase until near the end of the cavity (z = 1.9 m) where it has another
sharp increase. In the configurations that have an entrance to the cavity from the top,
(c) Up–Up and (d) Up–Down, it is observed that in the first pass, there is a sudden increase
in temperature in the section close to the entrance of the cavity (z = 0.1 m). In addition,
all the temperature profiles are smooth for both flow rates; nevertheless, the temperature
profiles have a less pronounced slope for configurations (a), (c), and (d).

Furthermore, in the second pass of all configurations, the temperature profile is smooth,
with a sustained increase in temperature, reaching similar outlet temperatures of 327 K for
flow 1 and 313 K for flow 2.

In the second pass for all the studied configurations, the temperature profile steadily
increases from z = 2.0 m to z = 0.0 m, where it is observed that the temperature profiles
are smooth for both flow rates. The differences in the behavior among the configurations
in the second pass are only slight differences in the temperatures at the inlet and outlet,
where the lowest inlet temperature is found in configuration (c) Up–Up, and the highest in
(a) Down–Down.

On the other hand, the configurations that have an outlet from above, (b) Down–Up
and (c) Up–Up, present a higher temperature at the outlet end of the cavity (end of the first
pass) than at the entrance to the duct (beginning of the second pass). The phenomenon is
caused by stratification in the cavity, so the air enters the connecting elbow at a temperature
lower than that shown in Figure 10 (See Table 6). This occurs with both flows but is more
significant with 0.01 kg/s due to the greater air stagnation in the cavity.

Table 6. Air temperatures in the elbow inlet and outlet of the U-shape double-pass CPC.

Flow 1: 0.01 kg/s Flow 2: 0.02 kg/s

Configuration Telb,in (K) Telb,out (K) Telb,in (K) Telb,out (K)

(a) Down–Down 308.7 311.0 303.2 304.9

(b) Down–UP 309.7 310.5 303.8 304.1

(c) Up–Up 308.2 308.5 303.5 304.0

(d) Up–Down 307.8 309.8 302.9 304.4

Table 6 shows the elbow inlet and outlet temperatures for both air flow rates. The
presented elbow inlet temperature refers to the average temperature at the outlet of the
cavity (z = 2.0 m) in positions y = 0.1255 m to y = 0.1645 m, where the height of the elbow is
0.036 m. As expected, the temperatures corresponding to flow 1 (0.01 kg/s) are higher than
flow 2 (0.02 kg/s). Therefore, all the air temperatures at the elbow inlet are lower than the
air temperatures at the outlet of the cavity z = 2.0 m. On the other hand, the elbow outlet
air temperatures and the duct inlet air temperatures are the same.

Figure 11 shows the heat transfer coefficients (HTCp-cav) in the cavity for both air flow
rates. As expected, the coefficients are lower when the airflow is lower and higher when
the air flow rate is higher. Configurations with an inlet from below ((a) and (b)) have a
high coefficient at the entry, which decreases to subsequently increase until it reaches a
maximum near the outlet for configuration (a) and at the outlet (z = 2.0 m) for configuration
(b). It is also noted that configuration (a) has a sharp increase and then a decrease from z
= 0.2 m to z = 0.8 m, which is caused by the rise of the jet until it reaches the cover (see
Figures 4a and 5a). In contrast, configurations with an inlet from the top (c and d) have
an increase in the HTCp-cav in the region near the entry; then, it sharply declines to later
gradually increase towards the region near the outlet where it reaches its maximum value.
For example, the maximum HTCp-cav values with flow 1 are 15.0 W/(m2 K), 15.8 W/(m2 K),
16.0 W/(m2 K), and 15.9 W/(m2 K), while for flow 2 of 24.4 W/(m2 K), 22.3 W/(m2 K),
21.9 W/(m2 K), and 25.0 W/(m2 K), for configurations (a), (b), (c) and (d).
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(a) (b) 

 
(c) (d) 

Figure 11. Flat-plate receiver heat transfer coefficients (HTCp-cav). (a) Down–Down; (b) Down–Up;
(c) Up–Up; (d) Up–Down.

In configurations where the air enters from the top ((c) and (d)), there is a high HTCp-cav
at z = 0.1 m; nevertheless, all configurations have the maximum HTCp-cav in the region
near the outlet. The above observations indicate that the HTC p-cav maximums correspond
to the presence of the eddies produced by the sudden expansion at the inlet. While in the
region near the outlet, there are also high HTCp-cav at z = 2.0 m in configuration (b), but in
configurations (a), (c), and (d), it occurs around z = 1.8 m to z = 1.9 m. For configurations
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(c) and (d), this occurs because the fluid becomes turbulent in the final region of the cavity
as air is forced out of the manifold elbow.

Table 7 shows the pressure drop in each configuration for the two mass flow rates. First,
the highest pressure drop is seen in the bottom outlet configurations (a and d). Moreover,
the pressure drop increases three to four times with the highest air flow rate.

Table 7. Pressure drop in the system.

Pressure Drop (Pa)

Configuration Flow 1: 0.01 kg/s Flow 2: 0.02 kg/s

(a) Down–Down 10.97 36.85

(b) Down–Up 9.01 31.31

(c) Up–Up 8.84 31.33

(d) Up–Down 10.70 37.58

3.3. Efficiency

Table 8 shows the temperature increments in the first and second passes and the
outlet temperature for each configuration. The temperature increase resulting from the first
pass (ΔTps1) and the second pass (ΔTps2) are more significant with flow 1. Moreover, for
each flow, the U-shape double-pass CPC collector outlet temperature (Tps2,out) of all the
configurations is very similar, with differences between 0.7 K and less.

Table 8. U-shape double-pass CPC temperature increments and outlet temperature (Tf1,in = 298.15 K).

Flow 1: 0.01 kg/s Flow 2: 0.02 kg/s

Configuration ΔTps1 (K) ΔTps2 (K) Tps2,out (K) ΔTps1 (K) ΔTps2 (K) Tps2,out (K)

(a) Down–Down 12.84 16.10 327.09 6.74 8.33 313.22

(b) Down–Up 12.31 15.90 326.36 5.98 8.99 313.12

(c) Up–Up 10.30 17.94 326.39 5.87 8.54 312.57

(d) Up–Down 11.62 16.60 326.37 6.29 8.66 313.10

Table 9 shows the contribution of the first pass (cavity) and second pass (receiver duct)
to the useful energy gain inside the U-shape double-pass CPC collector and the efficiency
for each configuration applying Equations (16) and (17). For instance, in configurations (a)
and (b), between 40% and 45% of the total heat is extracted in the first pass with both flows.
While in configurations (c) and (d), the heat recovery depends on the operating flow and is
between 36% and 42% in the first pass.

Moreover, the efficiencies are higher with flow 2 due to the better heat transfer and
lower heat losses to the ambient. In addition, it is observed that configuration (a) Down–
Down is the most efficient, while configuration (c) Up–Up provides the lower efficiency of
the cases analyzed at flow 2.

Configuration (a) has the highest efficiency because the air flows predominantly
through the bottom section of the cavity, which is closest to the receiver plate. This surface
has the highest temperature, thus is where heat recovery is desired. In addition, as the
air descends, the final part of the cavity recovers heat since the fluid is forced to exit from
the bottom.

489



Appl. Sci. 2022, 12, 12199

Table 9. U-shape double-pass CPC useful energy gain percentage and thermal efficiency
(Tf1,in = 298.15 K).

Flow 1: 0.01 kg/s Flow 2: 0.02 kg/s

Configuration Qu,ps1 (%) Qu,ps2 (%) η (%) Qu,ps1 (%) Qu,ps2 (%) η (%)

(a) Down–Down 44.37 55.63 77.31 44.75 55.25 80.52

(b) Down–Up 43.64 56.36 75.37 39.93 60.07 80.01

(c) Up–Up 36.47 63.53 75.44 40.75 59.25 77.02

(d) Up–Down 41.18 58.82 75.40 42.09 57.91 79.88

4. Conclusions

This work investigates a compound parabolic concentrator (CPC) design for air heating
with a double U-pass configuration. The double pass is incorporated to recover part of the
heat lost by the flat plate receiver inside the CPC cavity. Overall, four configurations have
been studied, and they are differentiated by the position of the air inlet into the cavity and
the position of the air outlet of the cavity towards the receiving duct that constitutes the
second pass of the collector.

In general, adding the first pass through the CPC cavity significantly increases the air
temperature. Hence, by making the air circulate first through the CPC cavity, instead of a
conventional manner where it only circulates through the duct, an increase in temperature
is accomplished before entering the receiving duct. As a result, an average increase in air
temperature of 11.8 K at a mass flow rate of 0.01 kg/s and 6.2 K at a mass flow rate of
0.02 kg/s was achieved. This represents a minimum temperature rise of 36% (0.01 kg/s)
and 40% (0.02 kg/s) when only the first pass is used.

In addition, the analysis showed that the positions of the air inlet and outlet in the
cavity do not influence the outlet temperature of the U-shape double pass CPC solar heater
due to an efficiency difference of up to 3.5% being achieved. The Down–Down configuration
is the one that provides slight outlet temperature and thermal efficiency increases. With this
configuration, an air temperature increase from the U-shape double-pass CPC inlet to the
outlet of 28.9 K and an efficiency of 77.3% are obtained when the airflow rate is 0.01 kg/s,
and 15.1 K and 80.5% when the flow rate is 0.02 kg/s. This is because the air heated in
the cavity is transported more effectively, as it is a more homogeneous flow and the heat
transfer coefficient in the flat-plate receiver is high.

The first pass allows an extraction between 36% and 45% of the total heat, justifying
its inclusion into the solar collector. Although configuration (a) Down–Down presents a
slightly higher efficiency with both studied flows, the difference between the values of
configurations (b), (c), and (d) seems irrelevant. Therefore, the decision of the configuration
should be based on other aspects such as the manufacture of the collector, air pumping
requirements, and the design of the collectors’ array, which are highly dependent on the
application conditions and needs.

In the case of the (a) Down–Down configuration, including elements that restrict air
circulation from the cavity to the area near the flat-plate receiver could be explored to
encourage contact with the hot surface. Strategies to accomplish this are to add a second
cover close to the receiver inside the cavity or to increase the truncation of the collector
reflectors. Finally, the structural design and financial analysis remain as future work to
determine the potential application of this technology.
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Nomenclature

<n> Average reflections number, dimensionless
A Area, m2

C Constant
Cp Specific heat, J/(kg K)
Dh Hydraulic diameter, m
E Relaminarization source
F Empirical correlation of length of the transition region, m
→
F Force vector, N
→
g Gravitational acceleration, m/s2

Gk Generation of turbulence kinetic energy due to mean velocity gradients, J/kg
Gw Generation of specific dissipation rate, 1/s
h Height, m
h′ Species enthalpy, J/kg
I Solar irradiance, W/m2

J Mass flux, kg/m2

k Turbulent kinetic energy, J
L Length, m
ṁ Mass flow rate, kg/s
Nu Nusselt number, dimensionless
P Pressure, Pa
Pg Gap loss factor, dimensionless
q Heat generation, W/m3

Qu Useful heat gain, W
Re Reynolds number, dimensionless
S Strain rate magnitude
t Time, s
T Temperature, K
u Velocity magnitude, m/s
U Local velocity, m/s
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uT Friction velocity, m/s
V Free-stream speed, m/s
v Wind velocity above cover, m/s
w Width, m
x Velocity field coordinate
y Wall-normal distance, m
Y Destruction term of SST turbulence model, m2/s3

y+ Dimensionless distance in wall coordinates
Greek letters
α Absorptance, dimensionless
γ Intermittency
Γ Effective diffusivity, dimensionless
ε Emittance, dimensionless
η Thermal efficiency, dimensionless
μ Molecular viscosity of air, kg/(m s)
ρ Air density, kg/m3

ρ Reflectance, dimensionless
τ Transmittance, dimensionless
=
τ Stress tensor, Pa
υ Eddy viscosity, m2/s
Ω Vorticity magnitude, 1/s
Subscripts
a Ambient
a1, a2 Turbulence damping constants
ap Aperture
avg Average
b Bottom duct
c Cover
cav Cavity
collector Collector
duct Duct
elb Elbow
e1, e2 Dissipation
h Hydrodynamic
i, j Orthogonal coordinate
in Inlet
k Turbulence kinetic energy
length Length
out Outlet
p Flat plate receiver
ps1 Pass 1 (Through the cavity)
ps2 Pass 2 (Through the duct)
r Reflectors
s Sky
turb Turbulent
γ1, γ2 Intermittence
Acronyms
CFD Computational fluid dynamics
CPC Compound parabolic concentrator
EPS Expanded polystyrene
ETFE Ethylene tetrafluoroethylene (fluorine-based plastic)
HTC Heat transfer coefficient, W/(m2 K)
PV/T Photovoltaic/Thermal
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Abstract: Replacing the traditional rotating generators with renewable energy will reduce the grid’s
inertia and with it the minimum frequency when N-1 contingency occurs triggering an Under-
Frequency Load Shedding (UFLS). This study proposes a method for the energy storage system
(ESS) to simultaneously provide energy arbitrage, reserve capacity, and assist N-1 contingency, by
modifying the restriction formula of economic dispatch (ED) and limiting the SOC range of the ESS.
Let the ESS join the Spinning Reserve. Through the PSS®E iterative ESS charging power required at
moments when the frequency of contingency is too low in the ED. Let the ESS act as a N-1 contingency
extra frequency reserve. This would prevent UFLS and still maintain the demand. The proposed
method is applicable to different types of ESS. The method allows energy storages, originally designed
for energy arbitrage, to participate in frequency support and spinning reserve.

Keywords: energy storage system; renewable energy; economic dispatch; security constraint; PSS®E

1. Introduction

When the power generation and the power consumption are not equal, the frequency
will deviate from the nominal value [1]. In the power system, if one of the generators fails,
it will cause an energy mismatch and the frequency will begin to drop. The system needs
to provide for the missing power generation immediately. There are frequency control
responses that can be applied during generator contingency. First is the inertia response
which comes from the rotating synchronous generator connected to the grid. When the
frequency drops, the rotational inertia will be converted from kinetic energy into electrical
energy and input into the grid instantly, reducing RoCoF (Rate of Change of Frequency).
The second response is the droop control of some generators wherein the governor is
controlled automatically to respond when the frequency starts to deviate [2]. This control
allows more steam to enter the turbine to generate electricity, matching the grid energy
for a few seconds, preventing frequency reduction, and using renewable energy instead of
traditional rotation.

In the case of system energy imbalance, the rotational kinetic energy stored in the
rotor of the traditional synchronous generator is used to provide inertial support for the
power grid, keeping the minimum frequency of accidents at a certain level. However, most
inverter-based sources (IBRs) such as wind or solar cannot provide inertia [3]. Replacing
traditional generators with IBRs will reduce the inertia of the system, causing a larger
RoCoF and a lower minimum frequency when the generator trips [4].

In the past, the power system usually used under-frequency load shedding (UFLS)
to balance the insufficient power generation when the generator contingency caused the
reduction of supply [4–7]. Some literatures [8–13] used RoCoF and the lowest frequency
point to estimate the energy storage system (ESS) capacity and location for the frequency
regulation required by the system.

Appl. Sci. 2022, 12, 11953. https://doi.org/10.3390/app122311953 https://www.mdpi.com/journal/applsci
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In [10,14], the virtual inertia and the primary frequency response (PFR) provided by
the ESS are taken into account to estimate the required ESS power and capacity. These two
studies consider ESSs that can quickly respond to frequencies, but according to [15] not all
ESSs have the ability to adjust the frequency.

In [16–18], ESS was added to the economic dispatch (ED) to deal with a high penetra-
tion of renewable energy. These two papers used ESS for peak shaving but did not consider
frequency stability.

In [19], an ED considering automatic generation control (AGC) is proposed when the
proportion of renewable energy is high, but peak shaving ESS is not considered. In [20],
it is proposed to consider both PFR and secondary frequency response (SFR) in the unit
commitment (UC) and consider the cost rate of ancillary services in different regions to
propose a new market settlement strategy to compensate for the regional marginal cost of
providing frequency reserves.

At present, most of the ED studies that consider security constraints do not include ESS.
Further, most of the EDs that include ESS do not consider frequency security constraints.
Therefore, this study proposes a method to incorporate both security constraints and ESS
into the ED to find a safe and economical schedule.

In this study, the ESS was first added to the spinning reserve in the ED, which could
reduce the generator’s online time and thus reduce the cost. The base models are described
in [21] with the addition of the ESS. With the inclusion of the ESS, the ESS will reduce the
cost in the ED through its charging and discharging, and will automatically perform energy
arbitrage, thereby providing two functions at the same time. However, due to the high
penetration of renewable energy, the occurrence of N-1 contingency during certain periods
will result in very low frequency. It is, therefore, important to calculate how much the ESS
needs to be charged during these periods.

When an N-1 contingency occurs, the charging of the ESS can be cut off immediately
to compensate for insufficient power generation and not trigger the UFLS during the low
frequency. The addition of security constraints in the ED would find a safe ED to schedule.

PSS®E is a software from Siemens widely used in the analysis of power systems [22–24].
The N-1 contingency minimum frequency was also calculated using PSS®E in papers [22,23]
and was used in this study. PSS®E mainly uses the dynamic reduction method to calculate
contingency minimum frequency [25,26].

The content of the paper is as follows: Section 2 describes the proposed strategy;
Section 3 describes the constraints of ED; Section 4 describes the simulation scenarios;
Section 5 shows the simulation results; Section 6 is the discussions; and Section 7 is the
conclusion.

2. Proposed Preventive Control Strategy

The flowchart shown in Figure 1, shows the flow of the simulations for the proposed
preventive control strategy. The hourly power generation and hourly forecasted data of
renewable energy will be first read to calculate the net load. Then, using the MILP, an ED
for the new generator and ESS will be determined for the next 24 h. The scheduled ED will
be used to determine the minimum frequency (Fnadir) that will be calculated at each hour
using the PSS®E software. If the minimum frequency is lower than the set value (Fmin),
then the charging power of the ESS will be calculated by adding 0.1 MW in that hour to
meet the Fmin requirement. This charge will be added to the ED constraint and rescheduled
until the minimum frequency per hour is higher than the set value. If the maximum charge
of the ESS is reached, one generator will be added to the schedule and the ED will again
be computed. An additional charge will again be included in the ESS schedule to make
sure that the new minimum frequency is greater than the set value. In other words, the
minimum frequency of N-1 contingency should always be higher than the set value every
hour to make sure that the charge from the ESS can support a sudden drop in frequency.
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Figure 1. Flow chart.

3. Constraints of Economic Dispatch

3.1. Objective Function

The objective function is to minimize the operating cost, as shown in Equation (1).
CL(t) represents the total fuel cost of all diesel generator sets at time t, Cst(t) is the total
startup cost of all diesel generator sets at time t, and Cbatt(t) represents the ESS cost. The
power generation cost of PV in this study is set to 0. F represents the total economic cost.

Min F =
24

∑
t=1

[CL(t) + Cst(t) + Cbatt(t)] (1)

3.2. Diesel Generator

Equation (2) indicates the total fuel cost of a diesel generator in quadratic form, where
FCn represents the fuel cost of the nth diesel generator. The an, bn and cn represents the
quadratic fuel cost constants of the nth diesel generator. Pn(t) is the power generated by
the nth diesel generator at time t. Figure 2 shows a typical fuel cost in quadratic form.
However, because MILP is used, the quadratic curve needs to be linearized. In order to
have a linear equation that is near the quadratic form, the curve is divided into segments
and a line is drawn in each segment as the linear representation of the fuel cost curve for
the ith segment.

FCn(Pn(t)) = an + bnPn(t) + cnPn(t)2 (2)
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Figure 2. Typical generator cost curve with piecewise linearization.

Equations (3)–(5) are limits on the amount of electricity generated by the generator,
where Pn_i_max and Pn_i_min are the maximum and minimum power generation in the ith
line segment of the n generator set, respectively. Bn_i(t) is a binary integer representing
whether diesel generator n is running in the ith linear interval at time t. Pn_i(t) is the
amount of electricity generated in line segment i. The i represents the number of the line
segment in the quadratic curve. Inequality (5) ensures that only one line segment is selected
for the nth generator at any given time t.

Bni (t)Pnim
≤ Pni (t) < Bn_i(t) Pn_i_max (3)

Pn(t) =
I

∑
i=1

Pn_i(t) (4)

I

∑
i=1

Bni (t) ≤ 1 (5)

The total fuel cost of all generators set at time t is expressed in Equation (6). Un(t)
represents a binary integer variable of whether the nth diesel generator is turned on at time
t. N represents the total number of diesel generators. αn_i and βn_i represent the slope and
intercept, respectively, of the linear fuel cost when the nth diesel generator operates on line
segment i at time t.

CL(t) =
N

∑
n=1

I

∑
i=1

Un(t)Bni (t) [αni Pni (t) + βn_i] (6)

Equation (7) represents the total startup cost of N diesel generators at time t. STprice
represents the startup cost of generators.

Cst(t) =
N

∑
n=1

STprice(Un(t)− Un(t − 1)) (7)

3.3. ESS

Inequalities (8) and (9) limit the charge and discharge power of the ESS so that it
does not exceed the limit of the maximum charge and discharge power. The Bbatt_dis(t)
and Bbatt_ch(t) are binary integers representing the discharge or charge states of the ESS at
time t while. The Pbatt_dis_max and Pbatt_ch_max on the other hand represent the maximum
discharge power and the maximum charging power of the battery ESS, respectively.

0 ≤ Pbattdis
(t) ≤ Pbatt_dis_maxBbatt_dis(t) (8)
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− Pbatt_ch_maxBbatt_ch(t) ≤ Pbattch
(t) ≤ 0 (9)

Inequality (10) is used to ensure that a single ESS cannot be charged and discharged at
the same time.

Bbatt_dis(t) + Bbatt_ch(t) ≤ 1 (10)

Equation (11) describes the charge and discharge cost of the ESS. The purpose is to
prevent the ESS from charging and discharging at an unnecessary time. Because if the
battery ESS does not add the cost of charging and discharging. It may be charged and
discharged in two time periods with the same electricity price. For example, if the average
power generation cost of the first hour and the fifth hour is both 4. The battery ESS may be
fully charged in the first hour and fully discharged in the fifth hour. This will not affect
the final cost. However, this phenomenon is unreasonable in scheduling. Therefore, it is
appropriate to add some small costs to the charging and discharging of the ESS to resolve
this. Where COSTbatt represents the cost of the battery ESS per unit of charge and discharge.
In this study, it is set to 0.1 NTD/kWh

Cbatt(t) =
(

Pbattdis
(t) + Pbattch

(t)
)× COSTbatt (11)

Equation (12) is mainly to calculate the power of the battery ESS at time t. SOC(t)
represents the state of charge(SOC) of ESS at time t, δt is the time interval, ηInd and
ηInc represent discharge and charge efficiency of the ESS, respectively, and Pbatt_capacity
represents the capacity of the ESS.

In inequality (13), SOCmin and SOCmax represent the minimum and maximum value
of SOC. Table 1 shows the specifications of the different ESSs used for this study. As seen in
the table, since different energy storages have different capacities and power characteristics,
the two energy storages will not be able to charge or discharge full power when they are
close to their full energy or almost no energy [27,28].

Table 1. ESS specification.

Type Specification Original Function SOCmin SOCmax

ESS1 lithium ion 2 MW/1 MWh frequency regulation x x
ESS2 sodium-sulfur 1.8 MW/10.8 MWh energy arbitrage 19% 81%
ESS3 not yet announced 4 MW/24 MWh energy arbitrage 19% 81%

Originally, the SOCmin and SOCmax for both ESS2 and ESS3 are 10 and 90%, respec-
tively. However, for this study, it would be set to 19 and 81%, respectively. These two
values were adjusted because when an N-1 contingency occurs, the energy storage takes
about half an hour (for the case of Kinmen Island) of continuous charging or discharging
before a new generator is turned on. This charge or discharge decreases the SOC by 8.33%.
Therefore, in order for the ESS2 and ESS3 to join the spinning reserve, their SOCmin should
be set to 19% and SOCmax is set to 81% to make sure that the 8.33% of SOC for the N-1
contingency is always on standby and available at any time period.

In Equation (14), the final SOC must return to its initial value. SOCini and SOCend
represent the initial and end SOC, respectively.

SOC(t) = SOC(t − 1)− δt

(
Pbattdis

(t)
ηInd × Pbattcapacity

+
ηInc × Pbatt_ch(t)

Pbatt_capacity

)
(12)

SOCmin ≤ SOC(t) ≤ SOCmax (13)

SOCini = SOCend (14)
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3.4. Power Balance Constraint

Shown in Equation (15) is the power balance constraint of the power system. Where
PPV(t) represents the total power generation of renewable energy at time t. Ptolerance(t)
represents the allowable error value for the solution. PL(t) is the total load at time t.

PPV(t) + PInv(t) +
N

∑
n=1

Pn(t) + Ptolerance(t) = PL(t) (15)

3.5. Spinning Reserve Constraint

In inequality (16), the ESS available power is added to the spinning reserve to improve
the reliability of the power grid. Pn_max(t) in (12) represents the maximum power generation
of the nth generator while Pspin_reserve is the required standby capacity of the overall system.
The current maximum generating capacity of the system at time t is used as the reserve
capacity limit, representing the left side of the Equation (16).

N

∑
n=1

Un(t)(Pn_max(t)− Pn(t)) + Pbatt_dis_max(t)− Pbattdis
(t) + Pbattch

(t) ≥ Pspin_reserve (16)

3.6. Ramp Rate Constraint

In inequality (17), Rrate_n(t) represents the ramp rate of the nth diesel generator per
second at the tth time. Rrate_min represents the minimum required ramp-up and ramp-down
per second of the grid.

N

∑
n=1

Un(t)Rrate_n(t) ≥ Rrate_min (17)

3.7. PV Curtailment Constraint

Curtailment of generated power is required when the penetration rate is too high. The
scheduled PV generation needs to be less than the predicted generation, as shown in (18).

0 ≤ PPV(t) ≤ PPV_predict(t) (18)

3.8. Security Constraints

ESS charging power is used to increase the minimum frequency when the grid is
vulnerable. The inequality is shown in Equation (19). Pbatt_ch_ESS2(t) and Pbatt_ch_ESS3(t)
represent the respective charge amounts of the two ESSs specifically used for energy
arbitrage. The Pconstraint_batt_ch(t) represents the minimum total charge required to support
the N-1 contingency for these two ESSs at time t.

|Pbatt_ch_ESS2(t)|+ |Pbatt_ch_ESS3(t)| ≥ |Pconstraint_batt_ch(t)| (19)

4. Description and Introduction of Simulation Environment

4.1. System Model and Settings

This study takes the Kinmen grid as the system under study. Kinmen Island is a small
island west of Taichung City (R.O.C.), Taiwan, very close to mainland China. The winter
load is about 21.9 to 42.95 MW while the summer load is about 43.26 to 73.81 MW.

Kinmen Island uses diesel to generate electricity making its cost usually higher because
of the cost of transporting fuel. On the other hand, solar energy is a cheaper replacement
for fossil fuel.

Currently Kinmen Island has two power plants and a 12.3 MW PV plant. Power plant
1 has 10 heavy oil diesel generators. Power plant 2 has 6 light oil generators and 2 ESSs.
ESS1 is 2 MW/1 MWh lithium-ion batteries used for frequency regulation, while ESS2 is
1.8 MW/10.8 MWh sodium-sulfur batteries used for energy arbitrage. It is expected that an
additional 4 MW/24 MWh ESS will be built in 2023 for energy arbitrage.
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This study considers the future winter conditions of Kinmen Island. Only heavy
oil diesel generators will be used because of the low operational cost of heavy oil diesel
generator. There is a 27 MW PV plant with the three ESSs mentioned in the previous
paragraph. The system has 4–22.8 kV busbars, 4–11.4 kV busbars, 4 main transformer loads,
and 2 substations. A simplified schematic diagram of connections between all facilities is
shown in Figure 3. The trip settings for the underfrequency relays has four levels, 57.3, 57.0,
56.5, and 56.0 Hz. After triggering the underfrequency relay, it takes about 5–6 cycles to
open the circuit breaker [5,29]. In this study, Fnadir is set to 57.3 Hz, in order not to trigger
UFLS.

Figure 3. System diagram.

The ED is solved using mixed integer linear programming (MILP) using the IBM
CPLEX 12.10.0 solver. The computer used is for these simulations is an Intel Core (TM)
i5-7500 CPU @ 3.4 GHz. 16G RAM. PSS®E version is 33.4.0. It is coded in a Python program
for automated simulation.

4.2. Generator ED Model

Various parameters of diesel generators and upper and lower limits of power genera-
tion in ED is shown in Table 2.

Table 2. Parameters of diesel generators.

Units
Capacity
(MVA)

Minimum Power
Generation (MW)

Maximum Power
Generation (MW)

Plant1 #1–4 10.2 4 7.7
Plant1 #5–8 9.7 4.1 7.8
Plant1 #9–10 13.8 5.5 10.5
Plant2 #1–6 4.36 1.5 3.488

The fuel cost coefficients an, bn, and cn of the hypothetical heavy oil diesel generator
are shown in Table 3. The generator fuel cost after piecewise linearity is shown in Table 4.

Table 3. Diesel generator cost factor and startup cost.

Units an bn cn Start-Up Cost

Plant1 #1–4 15 1.9161 0.0661 7
Plant1 #5–8 13 1.8518 0.0657 7
Plant1 #9–10 12 1.7966 0.0615 10
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Table 4. Diesel Generator Linear Fuel Cost.

Units Segment 1 Segment 2 Segment 3

Plant1 #1–4 2.526x + 13.617 2.690x + 12.763 2.853x + 11.709
Plant1 #5–8 2.471x + 11.564 2.634x + 10.699 2.796x + 9.635
Plant1 #9–10 2.576x + 9.576 2.781x + 8.107 2.986x + 6.296

According to the government website [30], it is assumed that the ramp-up and ramp-
down rate per sec of each generator set is shown in Table 5. In this study, this value was
set to 430 kW/s. Since the highest ramp-up and ramp-down value of a single generator to
420 kW/s, the value of 430 kW/sec is chosen here to ensure that at least two generator sets
will be running at any point in time. Two generators are needed because if the system trips
contingency, at least one generator can provide the reactive power required for the grid to
maintain voltage stability.

Table 5. The ramping rate of the generator set.

Units Ramping Rate (kW/s)

Plant 1 #1–4 15
Plant 1 #5–8 15
Plant 1 #9–10 420

4.3. Selection of Diesel Generator Model in PSS®E

The generator model selected in PSS®E is as shown in Table 6. All ESS models use
second generation ESS general model of Western Electricity Coordinating Council (WECC).
It consists of REPC_A, REEC_A and REGC_A.

Table 6. Diesel Generator model in PSS®E.

Units Dynamic Models Excitation System Model Governor Model

Plant1 #1–4 GENSAL ESAC8B DEGOV
Plant1 #5–8 GENSAL IEEEX1 DEGOV1
Plant1 #9–10 GNSAE AC7B DEGOV1

4.4. ESS’s Response in Trip Contingency

Different ESSs will respond differently when a N-1 contingency fault occurs. The
following will show the grid frequency and the actual power output of the two ESSs when
a N-1 contingency fault occurs.

4.4.1. ESS1(Frequency Regulation)

ESS1 is used for frequency regulation. When the frequency exceeds the deadband
(59.85–60.12 Hz), the ESS will start to discharge power. The rising time from 0 to full output
is 167 ms. The response is shown in Figure 4.

Using the calibrated generator parameters set in Section 4.3, as also use in the pa-
per [29], the ESS1 response can be replicated using the PSS®E, as shown in Figure 5. Figure 5
shows the data measured during an N-1 contingency when the load is 36.3 MW on 13
December 2019. At this time, the ESS1 and ESS2 has not been completed. Figure 6 shows
the frequency measurement and simulation results for this N-1 contingency. A good match
exists of Fnadir between calibrated simulation and measurement.
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Figure 4. ESS1 real power output and grid frequency when N-1 contingency occurs.

 

Figure 5. Output response of ESS1 to an N-1 contingency from PSSE and as measured from phasor
measurement Unit (PMU).

 

Figure 6. Frequency response simulation (PSSE) of ESS2 and ESS3 to a N-1 contingency and as
measured from PMU.

4.4.2. ESS 2 and ESS 3 (Energy Arbitrage)

The responses of ESS2 and ESS3 during charging and discharging are as follows:
When the ESS is charging and a fault occurs, the ESS will quickly stop charging using

low frequency relay tripping. As shown in Figure 7.
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Figure 7. ESS 2 and ESS 3 grid frequency and real power output when N-1 contingency occurs while
charging.

When the ESS is discharging and a fault occurs, the ESS will keep discharging. As
shown in Figure 8.There would be a time delay of 83.33 ms from exceeding the deadband
(59.85–60.12 Hz) to cutting off the ESS.

 

Figure 8. Grid frequency and real power output when contingency occurs during ESS2 and ESS3
discharge.

When ESS2 and ESS3 are discharging and the contingency occurs. As long as the
voltage does not exceed the allowable range of high voltage ride through (HVRT) and low
voltage ride through (LVRT), the ESS will continue to discharge and not cut off from the
grid.

The transient performance of ESS2 and ESS3 depends on the circuit breaker, it is
assumed that the local circuit breaker can cut off the electricity after about 5 cycles [27]. It
can be seen from the picture that the simulated energy storage transient output and the
lowest frequency of the contingency have a good match with the actual measurement.

5. Simulation Results

5.1. Case 1: Multi-Function ESS (Proposed Method)

Figure 9 show the results of the first ED or the initial ED. The N-1 contingency
minimum frequency per hour is shown in Figure 10 with a blue line. Two generators
are operating on at the 9th hour, with values of 6.4 and 7.1 MW. In the 15th hour, two
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generators are operating with output of 6.6 and 7.1 MW. The N-1 contingency minimum
frequency for the 9th and 15th hours are 56.079 and 56.074 Hz, respectively.

  
(a) (b) 

Figure 9. Case 1: result of first ED of (a) PV generation and the charge and discharge of ESS and (b)
the power output of the diesel generators.

 

Figure 10. Minimum frequency of N-1 contingency per hour for three schedules of case 1.

The 9th hour frequency simulation results with generator active power outputs are
shown in Appendix A. The ESS2 and ESS3 were not charged in both hours. The total
cost of this third ED is 2422 kNTD. Using the process flow as discussed in Figure 1, the
ESS requires 1.7 MW to charge at 9th hour and 1.7 MW to charge at 15th hour to get the
frequency above the set value, equivalent to the 8.33% of SOC. Adding these two limits for
the said hours, the second ED is rescheduled.

The results of the second ED are shown in the Figure 11. Case 1: result of second ED
of (a) PV generation and the charge and discharge of ESS and (b) the power output of the
diesel generators.
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(a) (b) 

Figure 11. Case 1: result of second ED of (a) PV generation and the charge and discharge of ESS and
(b) the power output of the diesel generators.

The minimum frequency of the N-1 contingency per hour is shown in Figure 10 in the
orange line. Notice that the minimum frequency touches the set value of the frequency.
The minimum frequency of N-1 contingency for the 9th hour and the 15th hour are 57.287
and 57.287 Hz, respectively. Using the proposed procedure to determine the required ESS
charging for the 9th and 15th hours, the charging power required are 1.8 MW for the 9th
hour and 1.8 MW for the 15th. Again, it is required to add this in the charging limits for the
next ED. The total cost of this third ED is 2422 kNTD.

The result of the third ED is shown in Figure 12. The minimum frequency of N-1
contingency per hour is shown in Figure 10 in the green line. The 9th hour frequency
simulation results with generator active power outputs are shown in the Appendix A. The
minimum frequency of each hour is higher than the set value. Therefore, this is the final
ED to support the N-1 contingency. The total cost of this third ED is 2422 kNTD.

  
(a) (b) 

Figure 12. Case 1: result of third ED of (a) PV generation and the charge and discharge of ESS and (b)
the power output of the diesel generators.
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The Figure 13 shows the changes in ED of the ESS2 and ESS3. In the second and third
results, the two energy storages are in the state of charge and discharge at the 9th and 15th
hours, so that Fnadir can be increased, and keep close to the original total output of that
hour.

 
Figure 13. ED results of the ESSs (a)Result of 1st ED (b) Result of 2nd ED (c) Result of 3rd ED.

5.2. Case 2: ESS Functioning as a Frequency Support

Removing the two ESS, that function as energy arbitrage, verifies energy arbitrage
function of our proposed method. The Figure 14 shows the ED result when the ESS2 and
ESS3 are removed. According to the system conditions, two generators must be turned on
to maintain the system stability.

  
(a) (b) 

Figure 14. Case 2: Result of the scenario without ESS for (a) the PV generation and (b) the power
output of the diesel generators.

Since there are no ESS performing energy arbitrage, low net load causes the PV power
generation to be curtailed, as shown in the Figure 14a, as the pink bar is lower than the red
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bar. Furthermore, without energy arbitrage, the total operating cost raises to 2555 kNTD
from 2422 kNTD.

6. Discussion

It can also be found from the simulation results that when N-1 contingency occurs, the
most dangerous instance is not necessarily when the penetration of renewable energy is
the highest, but tends to occur in the midway from zero penetration to highest penetration.

The reason may be that when the penetration of renewable energy at its peak, the ESS
will be charged more. If a contingency occurs, it can quickly trip and reduce a lot of energy
use. The lowest point of the frequency is related to the amount of power generation that is
tripped. When the penetration rate is the highest, the generators are almost always lightly
loaded, so the reduced power generation of the contingency is relatively small. Therefore,
even if the system inertia at that time is small, the lowest frequency may not be the lowest
during this period.

Furthermore, in theory the outcome of stopping the charging of EVs would be similar
to cutting off the ESS from charging in this study, probably also increasing the minimum
frequency of N-1 1 contingency. The results of this study can be used to set the time price of
electric vehicles to charge, so that more EVs can be charged when the power grid is weak.

In the picture., two ESSs are used to charge and discharge, respectively, to improve
the safety of the N-1 contingency. In the real world, energy loss will occur due to the
round-trip efficiency of the ESS. This situation can be understood as exchanging energy for
N-1 contingency resiliency. May be especially suitable for pumped-storage power plants
when rainwater is abundant.

7. Conclusions

This paper proposes a method by which energy arbitrage energy storage can help the
N-1 contingency. The frequency regulation ESS and the energy arbitrage ESS are considered
in the simulation. PSS®E is used to verify that the energy arbitrage ESS disconnected from
charging can increase the minimum frequency when contingency occurs. In this way, the
ESS can provide spinning reserve, energy arbitrage, and help N-1 contingency at the same
time. This method is also not only suitable for lithium-ion batteries, but for all battery
types. It can also be applied to various ESSs, such as flow batteries, pumped storage power,
etc. The simulation results show that the proposed method can effectively improve the
minimum contingency frequency higher than the set value.
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Appendix A

Figure A1. N-1 contingency frequency at 9th hour of first ED.

 

Figure A2. Generators active power at the 9th hour of the first ED.

Figure A3. N-1 contingency frequency at 9th hour of 3rd ED.

 
Figure A4. Generator power at the 9th hour of the 3rd ED.
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Abstract: This paper proposes a method of energy storage capacity planning for improving offshore
wind power consumption. Firstly, an optimization model of offshore wind power storage capacity
planning is established, which takes into account the annual load development demand, the uncer-
tainty of offshore wind power, various types of power sources and line structure. The model aims
at the lowest cost of investment, operation and maintenance of the system, and takes lower than a
certain abandoned wind level as the strict constraint to obtain two parameters of power capacity
and energy capacity of energy storage on the source side. Secondly, taking a coastal power grid as a
typical case, the energy storage capacity planning method is verified. Finally, the key factors affecting
offshore wind power consumption are summarized, and the sensitivity analysis is carried out from
the point of view of the transmission protocol of the transmission lines outside the province and the
capacity allocation of the tie lines in the province. This study will be helpful for the planning and
operation of the high-proportion of offshore wind energy power systems.

Keywords: offshore wind power; energy storage system; wind power consumption; planning
optimization model

1. Introduction

With the development of the economy, fossil energy is decreasing and environmental
pollution is increasing day by day. In order to alleviate the pressure of energy shortages
and environmental deterioration, various countries are committed to the development and
utilization of clean energy. The proposal of the carbon peaking and carbon neutrality goals
demonstrates China’s determination to actively respond to climate change and achieve
high-quality economic development. To further accelerate the development and utilization
of non-fossil energy, especially new energy represented by wind and solar energy, is
an important measure to achieve the arduous task of the carbon peaking and carbon
neutrality goals.

Compared with other clean energy sources, wind power has greater development
advantages and competitive potential. In the last 10 years, global onshore wind power has
achieved rapid development, and the development of onshore wind power in some coun-
tries has become saturated. At present, there is an urgent demand for offshore wind power
development and application all over the world [1]. China’s offshore wind power has
great development potential and good development prospects. To develop a high-quality
offshore wind power industry and accelerate the development of offshore wind power
from near-sea to deep-sea to far-sea, promoting the large-scale, intensive and sustainable
development of offshore wind power is an important support to promote the adjustment
of China’s energy structure and achieve the carbon peaking and carbon neutrality goals [2].
Compared with onshore wind power, offshore wind power has three outstanding charac-
teristics: (1) The offshore wind energy resources in the southeast coastal areas of China are
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abundant and close to the power load center, which is convenient for the consumption and
utilization of the power grid. However, transmission cables need to be configured; (2) The
overall output level of offshore wind farms is higher, with higher annual power generation
utilization hours; (3) The transmission mode of offshore wind power is more flexible and
does not need to occupy land resources.

The cost of transmission cable is high, and it is often difficult to send it complete.
On the one hand, offshore wind power connected to the grid for operation will cause
abandoned wind due to transmission congestion in part of the overall output. On the other
hand, it will bring severe challenges to the peak regulation of the power grid. The lack of
peak regulation capacity of the power grid leads to abandoned wind. The installation of an
energy storage system is flexible, and the configuration of energy storage for an offshore
wind power station can promote it to become a high-quality power supply. The source-side
energy storage mainly works out a charge and discharge scheme to stabilize the fluctuation
of its output power to achieve a higher proportion of offshore wind power consumption.
However, there are some problems, such as the high cost of the energy storage configuration,
the mismatch between energy storage technology and offshore applications, and so on.
The improper use of energy storage equipment limits the appropriate absorption of wind
power and increases the cost. The optimal allocation of energy storage capacity has always
attracted much attention, and domestic and foreign researchers have carried out a lot of
research on this issue.

The current research is mainly focused on energy storage capacity planning [3–6]
and wind–storage operation optimization [7–10], and there is little research in [11,12]
considering the interaction between the energy storage system planning and operation at
the same time; a two-layer collaborative optimization model for energy storage capacity
planning and operation is proposed. Starting from the wind power delivery channel, based
on multi-stage stochastic programming and sequential Monte Carlo simulation, an optimal
energy storage allocation method for wind farm stations considering energy storage life
loss and delivery channels is proposed in [13]. Based on the characteristics of the wind
farm, references [14–16] determined the energy storage allocation method based on a wind
power prediction error, wind farm generation curve deviation correction, and wind farm
output smoothing, respectively, but the work done in these references does not take into
account the influence of the power grid peak regulation capacity. References [17–19] put
forward the optimal allocation method of energy storage from the point of view of the
influence of insufficient peak regulation capacity of grid-connected wind power, so that
the power grid has a more downward regulation capacity to accept wind power, but only
the performance of thermal power peak regulation is considered. The work done in these
references does not consider the comprehensive effects of many types of power sources.

Reference [20] studies the feasibility and rationality of wind–storage combined power
generation under current market conditions from the point of view of a technical and
economic evaluation, which provides a reference for an optimal allocation in a wind–
storage combined power generation system. References [21,22] fully consider the operation
characteristics of the energy storage system and determine the energy storage allocation
method based on the dynamic adjustment of charge state and a variable life model. The
joint planning model of energy storage and the transmission network for improving the
receptive capacity of wind power is established in [23], but the focus is on the power
capacity of the energy storage, and the energy capacity is not mentioned. Based on the
characteristics of offshore wind power, an optimal scheduling method for the joint operation
of offshore wind power and seawater-pumped storage power stations is proposed in [24],
but the work done in the reference only mentions optimization and does not involve the
optimal allocation of offshore energy storage units. There is little research on offshore wind
power and energy storage. A physical model combining offshore wind power generation
with an underwater compressed air energy storage system was established in [25]. In [26],
an optimal energy storage allocation model was constructed based on the improved scene
clustering algorithm under the application scenario of smoothing the offshore wind power
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output fluctuation. A new multi-objective programming framework is proposed in [27]
to determine the optimal capacity of battery energy storage systems in the cooperative
operation of large offshore wind farms and battery energy storage systems. The cited
references present the different technologies of energy storage. Their characteristics are
shown in Table 1.

Table 1. The characteristics of common energy storage types.

Types Advantages Drawbacks Efficiency Application

pumped hydro
storage

Mature
technology, large

capacity, low
cost and long

life.

The installation position
has special

requirements, and the
conveying loss is large.

65−75%

improve the
capacity of new

energy
consumption;

smooth the
short-term

fluctuations of
new energy

output;
provide capacity

reserve and
power grid peak

and frequency
modulation

services.

lithium battery

High energy
density and fast

charge and
discharge.

High production cost
and a special charging
circuit is required to
avoid overheating.

85−98%

lead–acid
battery

Mature
technology, easy

availability of
raw materials
and low cost.

Low energy density and
short life during deep
charge and discharge.

80−90%

sodium-sulfur
battery

High energy
density and fast
response time.

Electrode materials are
flammable and there are

risks in
high-temperature

operation.

75−90%

liquid flow
battery

Large capacity,
good safety and
long cycle life.

High maintenance cost
and low energy density. 75−85%

Pumped hydro storage is the most reliable, economical, large capacity and most
mature energy storage device in the power system. It has the advantages of flexible start-
up, fast climbing speed, peak cutting and valley filling, and it is an important part of
the development of new energy. However, it depends on geographical conditions and
needs high hydropower stations. It has a great impact on geography and terrain, and
the construction cost is high. Large-scale battery energy storage systems can be used
for power grid energy management and peak regulation, and the technology is quite
mature. Moreover, it has a fast load response and daily regulation ability, so it is suitable
for large-scale wind power generation.

This paper presents two innovative points: based on the idea of combining planning
and operation through operation simulation, an optimization model of offshore wind
energy storage capacity planning is established, which aims to minimize the total national
economic expenditure of the system. It considers the offshore wind power transmission
channel constraint and uses the abandoned wind rate below a certain level as a strict
constraint. Further, based on 24 scenarios for the optimization model and the contour line
of annual cost and the contour line of abandoned wind rate, an energy storage capacity
planning method for improving offshore wind power consumption is proposed, which can
obtain a reasonable economic and optimal energy storage configuration scheme quickly.

The rest of the paper is organized as follows. The optimization model of offshore wind
energy storage capacity planning is established and the principal block diagram of the
planning and optimization process is shown in Section 2. The case study and data analysis
for the optimization model for offshore wind energy storage capacity planning are carried
out and an energy storage capacity planning method for improving offshore wind power
consumption is proposed in Section 3. Finally, Section 4 concludes the paper.
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2. Model and Methods

At present, electrochemical energy storage systems are the most widely used tech-
nology on the source side of offshore wind farms. Small-scale battery storage systems are
generally used in ships and offshore platforms, while large-scale battery storage systems are
mainly used in islands and coastal areas. This paper takes electrochemical energy storage
systems as an example to conduct relevant research on the energy storage technology of
offshore wind farms [28–33].

The electrochemical energy storage for offshore wind farms is required to meet the
applicable conditions of environmental temperature; it is not easy to maintain the working
temperature of high-temperature sodium-sulfur batteries and liquid metal batteries in the
sea environment. It is required that the mechanical moving parts of the energy storage
device should be as few as possible, so as not to be damaged by corrosion or wave impact
in the marine environment. The liquid flow battery should not be adopted because of its
electrode characteristics with many such parts. It is required that the leakage of battery
materials has no obvious harm to prevent pollution of the marine environment, so lead–acid
batteries, lithium-ion batteries, seawater batteries and silver–zinc batteries can be used for
offshore wind farms [34]. Offshore energy storage needs to be resistant to wind and wave
impact, seawater immersion, seawater corrosion, and so on. Therefore, developing offshore
energy storage systems tends to be more costly than developing onshore energy storage
systems. It is necessary to configure suitable offshore energy storage capacities for offshore
wind power to avoid excessive costs.

2.1. Optimization Model of Offshore Wind Energy Storage Capacity Planning
2.1.1. Objective Function

On the premise of satisfying the system demand and all kinds of constraint conditions,
the system can minimize the total national economic expenditure in the whole planning
period. The objective function of the model can be expressed as:

MinFΣ =
Nm

∑
t=1

Ct(1 + i)Nm−t +
NT

∑
t=1

(
Fgt + Fkt + Ot − Bt

) · (1 + i)−NT (1)

where Nm is the construction cycle of the newly invested energy storage power station, Ct
is the investment cost of the newly invested energy storage power station at the beginning
of the year t, and Fgt and Fkt are the fixed operation and maintenance costs and fuel costs of
the system in year t, respectively. Ot is the outage loss cost of the system in year t, and Bt is
the benefit obtained by the system in year t, except for power generation. NT is the number
of planning years and i is the discount rate.

Taking the first year as the base year, when the construction process of the newly
invested energy storage power station is simplified, it can be considered that the power
station generates investment costs at the beginning of the first year of the planning period,
and the loss of power outage and other benefits are ignored. The total calculated cost of the
planning period can be equivalent to the annual cost. It means that the investment cost of
the new power station at the beginning of the first year can be evenly allocated to each year
of the planning period, and then added to the annual operating cost. Then the objective
function can be expressed as:

MinF =
i(1 + i)NT

(1 + i)NT − 1
× Cess +

(
Fg + Fk

)
(2)

Cess, the investment cost of the energy storage power station, can be expressed as:

Cess = λpPess + λeEess (3)

Eess = PessTess (4)
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where Pess and Eess are the rated power capacity and energy capacity of the energy storage,
respectively, Tess is the charging and discharging time of energy storage, and λp and λe are
the cost per unit power capacity and the cost per unit energy capacity, respectively.

The annual fixed operation and maintenance cost Fg consists of a conventional thermal
power station Fg1 and an energy storage station Fg2, which can be expressed as:

Fg1 = αg1 · Cg1 (5)

Fg2 = αg2 · Pess (6)

Fg = Fg1 + Fg2 (7)

where Cg1 is the total investment cost of a conventional thermal power station, αg1 is the
annual fixed operation and maintenance cost rate of the power station, and αg2 is the fixed
operation and maintenance cost of energy storage per unit power.

The thermal power station’s annual operating fuel cost Fk can be expressed as:

Fk = βk · Ek (8)

where Ek is the annual energy yield of a conventional thermal power station, and βk is the
fuel cost of the unit energy yield of the power station.

2.1.2. Constraint

In comprehensively considering a variety of power supply types, including wind
power, photovoltaic, hydropower, thermal power, pumped storage and new energy storage
units, the electricity transmitted by the inter-provincial tie lines and the transmission lines
outside the province can be classified into the load demand, and the constraint conditions
to be met are shown in the following equations.
1© Constraints on system power balance:

Pesst + P0t = LDt(1 + ρ + σ) (9)

where Pesst represents the output of the newly invested energy storage system at time t, P0t
represents the output of the original power station of the system at time t, LDt is the load
value of the system at time t, and ρ and σ are the power consumption rate and system line
loss rate, respectively.
2© Maximum and minimum output constraints of power station:

Pkmin ≤ Pk ≤ Pkmax (10)

where Pkmin and Pkmax are the minimum and maximum technical outputs of unit k.
3© Thermal power fuel consumption constraints:

τ

∑
t=1

Eitβi ≤ Aiτ (11)

where Eit is the generating capacity of the thermal power plant i at time t, Aiτ is the fuel
consumption limit of power plant i in the period τ, and βi is the average fuel consumption
per unit of power plant i.

4© Climbing constraints of thermal power units:

Ui
tDRi ≤ Pi(t)− Pi(t − 1) ≤ Ui

tURi (12)

where URi and DRi are the loading and unloading rate of unit i, respectively, and Ui
t

represents the start-stop state of thermal power unit i at time t, which is 0–1. The start-up is
1, and others are 0.
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5© Constraints on the start and stop of thermal power units:

t+TS−1

∑
k=t

(1 − Ui
k) ≥ TS(Ui

t−1 − Ui
t) (13)

t+TO−1

∑
k=t

Ui
k ≥ TO(Ui

t − Ui
t−1) (14)

where TS and TO are the minimum shutdown and start-up time of the thermal power unit,
respectively.
6© Constraints on the generating capacity of hydropower units:

τ

∑
t=1

Ejtβ j ≤ Wjτ (15)

where Ejt is the generating capacity of the hydropower plant j at time t, Wjτ is the available
water limit of power plant j in the period τ, and βj is the average water consumption per
unit of power plant j.
7© Constraints on pumped storage units:

EjG = ηjEjP (16)

CP.t = mPPS.P.N (17)

where ηj is the pumping-power generation conversion efficiency of pumped storage power
station j, and EjG and EjP are the generating capacity and pumping load capacity of the
pumped storage power station j, respectively, within its dispatching period τ. The pumped
power of a pumped storage power station at a certain period of time must be an integer
multiple of its single capacity. CP.t is the pumping capacity of the pumped storage power
station at time t, and PPS.P.N is the rated pumping capacity of the pumped storage unit.
8© Energy storage operation constraints:

− Pcmax_ESS ≤ Pout_ESS ≤ Pdmax_ESS (18)

Emin ≤ Et ≤ Emax (19)

Eess(0) = Eess(T) (20)

where Pcmax_ESS and Pdmax_ESS are the maximum charge and discharge power, respectively.
Pout_ESS is the real-time output power, and Et is the real-time energy capacity.

9© Standby constraints:
N

∑
i=1

Ui
t(Pi,max − Pi(t)) ≥ urN(t) (21)

N

∑
i=1

Pi,max ≥ αLDmax (22)

where N units are providing a certain reserve capacity, urN(t) represents the spinning
reserve of N units at time t, α is the total reserve rate, and LDmax is the maximum load.

 Offshore wind power transmission channel constraints:

Ppass ≤ ηPWN (23)

where Ppass is the maximum transmission capacity of the offshore wind power transmission
channel. PWN is the rated installed capacity of the offshore wind farm, and η is the
transmission channel ratio.
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2.2. Principal Block Diagram of Planning and Optimization Process

A typical case of a coastal power grid is taken to verify the effectiveness of the energy
storage capacity planning method. First, the methods of cluster analysis and probabilistic
modeling are adopted to consider the uncertainty of offshore wind power, and the annual
output characteristic curves are shown in Figure 1.
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Figure 1. Offshore wind power output curve clustering scenario set.

The principal block diagram of offshore wind power storage capacity planning and
optimization is shown in Figure 2. The long-term operation data of the combined wind–
storage system can be obtained through operation simulation, and the consumption index
of offshore wind power can be calculated. After a comprehensive optimization comparison
and sensitivity analysis, the optimal planning results can be outputted.
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Figure 2. Principal block diagram of offshore wind energy storage capacity planning and optimization.
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3. Results and Discussion

3.1. Description of the Basic Conditions of the Example

It is expected that by 2025, the annual maximum load of the power grid in this coastal
area will be 0.0111 billion kW, with a total power consumption of 59.2 billion kWh, and
the total installed offshore wind power will reach 9176.5 MW. The transmission channel
ratio η = 0.8, and this means that the maximum capacity of the transmission channel will
be 7341.2 MW.

The multi-type power supply and line structure in this coastal area are shown in
Figure 3. The installed capacity of the multi-type power supply corresponding to Figure 3
is shown in Table 2. The installed capacity of offshore energy storage needs to be planned
and then configured. Load characteristics are described by an annual maximum load curve,
typical weekly maximum load curve and typical daily load curve. Load data are shown in
Figure 4.

 

Figure 3. Power supply and line structure in this coastal area.

Table 2. The installed capacity of various power sources of the coastal power grid.

Power
Sources

Offshore
Wind Power

Photovoltaic
Thermal

Power
Hydropower

Pumped
Storage

Capacity/MW 9176.5 8220.7 9490 772.5 2400
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Figure 4. Annual load characteristic curves.
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We used the Gurobi solver to solve the model in the MATLAB programming envi-
ronment. The simulation was carried out with the year as the cycle and the day as the
unit. Inputs should be the load curves and offshore wind power output curves of the
coastal area based on historical data, combined with the power installation structure and
the grid structure inside and outside of the province. The monthly statistics of offshore
wind power and abandoned wind power in this coastal area can be obtained without new
energy storage, as shown in Figure 5.
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Figure 5. Annual utilization of offshore wind power in this coastal area.

All of the offshore wind farms in this coastal area can generate 25,441.25 GWh of
electricity in a year. The practical electricity is 24,085.76 GWh, and the abandoned wind
power is 1355.49 GWh. The abandoned wind rate is 5.33%, and the utilization hours of
offshore wind power are 2625 h. Further, the utilization hours of the transmission channels
are 3281 h. It can be seen from Figure 5 that the abandoned wind power of offshore wind
power is mainly concentrated from January to April, with the most serious abandoned
wind in February and a little abandoned wind in November and December.

For lead–acid battery and lithium-ion battery energy storage systems, the cost coeffi-
cients per unit of energy capacity, per unit power capacity, the operation and maintenance
costs and engineering life obtained, are shown in Table 3.

Table 3. Related parameters of energy storage.

Type λp (104 Yuan/MWh) λe (104 Yuan/MW)
αg2

104 Yuan/(MW×Year)
Engineering Life

(Years)

rich liquid lead–acid 150 125 15 20
lithium-ion battery 500 175 20 20

According to relevant parameters, the planning period is selected as 20 years, and the
comprehensive discount rate for the whole society is 10%. According to the offshore wind
energy storage capacity planning optimization model, the next step is to set up the energy
storage configuration. The offshore wind farms are configured with an energy storage
capacity of 10% to 40% of their rated installed capacity. Therefore, the rated power capacity
of the energy storage system is described as 0.1~0.4 in the following. The installed capacity
of energy storage under different configuration schemes is shown in Table 4. With daily
cycle adjustments of energy storage devices, the charging and discharging time is set from
1 to 6 h, respectively, and the 24 energy storage configuration schemes are combined with
different power P and charging and discharging time T.
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Table 4. Storage capacity configuration of offshore wind farms.

Configuration Ratio 10% 20% 30% 40%

Capacity (MW) 917.65 1835.3 2752.95 3670.6

3.2. Example Analysis of Simulation Results

Based on the energy storage configuration scheme, the annual electricity balance
of operation simulation from the planning level is conducted to obtain the operation
simulation results of the coastal area. The relationship between the abandoned wind rate of
the offshore wind power and the energy storage configuration scheme is shown in Table 5.
Thus, with the further increase in new energy storage power capacity and energy capacity,
the abandoned wind rate of offshore wind power gradually decreases.

Table 5. Relationship between the abandoned wind rate of offshore wind power and the energy
storage configuration scheme in this region.

(P/T) Without Storage 0.1 0.2 0.3 0.4

1

5.33%

5.31% 5.08% 4.78% 4.67%
2 5.18% 4.88% 4.67% 4.41%
3 5.10% 4.82% 4.44% 4.04%
4 5.04% 4.62% 4.21% 3.97%
5 5.02% 4.51% 4.15% 4.10%
6 4.90% 4.43% 4.07% 4.11%

Here, when the lithium-ion battery energy storage system with a scale of 917.65 MW/
917.65 MWh is configured in the offshore wind farm of this coastal area, the annual cost is
analyzed, as shown in Table 6.

Table 6. Composition of annual expenses (104 Yuan).

Annual Value
of Energy
Storage

Investment
Costs

Annual
Operation and
Maintenance

Cost of Energy
Storage

Annual
Operating and
Maintenance

Cost of Thermal
Power

Annual Fuel
Cost for

Thermal Power
Operation

Annual Total
Cost

72,756.1 13,764.8 1,933,090 5,431,380 7,450,990.9

Based on this, the relationship between different energy storage configuration schemes
and the annual costs can be obtained, as shown in Table 7. It can be seen that with the
further increase in new energy storage power capacity and energy capacity, the annual
system costs gradually increase. Therefore, the decrease in the abandoned wind rate of
offshore wind power is accompanied by an increase in the annual system cost. This paper
studies the method to achieve the lowest annual cost while meeting the strict constraints
below a certain curtailment level.

Table 7. Annual total cost under different schemes.

107 Yuan Without Storage 0.1 0.2 0.3 0.4

1

7343.4

7451 7516.9 7597.8 7684.2
2 7496 7634.6 7778.3 7905.5
3 7550.2 7741.5 7924.8 8118.2
4 7602.2 7847.3 8096.9 8330.4
5 7655.8 7953.1 8255.7 8545.5
6 7708.6 8058.5 8416.0 8761.9
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Based on Tables 5 and 7, contour lines of wind curtailment rate and annual cost can be
drawn on a two-dimensional plane, as shown in Figures 6 and 7, respectively. The curve of
wind curtailment rate indicates that different energy storage configurations can bring the
same consumption effect of offshore wind power.

Figure 6. Contour lines of abandoned wind rates of offshore wind power.

 
Figure 7. Contour lines of the annual cost of the planning scheme.

In order to find the optimal economic scheme combined with the annual cost contour
line, it can be known that when the abandoned wind rate is at a certain standard level,
different annual cost contour lines are used to be tangent to the determined abandoned
wind rate contour line, and the tangent point (power P, charge and discharge time T) is the
best scheme.

In practical application, 5% of new energy is allowed to abandon power, which is sci-
entifically reasonable. Therefore, the alternative energy storage configuration schemes are
(0.3, 1), (0.2, 2), (0.1, 6), etc. According to this method, the best energy storage configuration
scheme is (0.3, 1). It means that the scale of the lithium-ion battery energy storage system
configured for the offshore wind farm with a total installed capacity of 9176.5 MW in the
coastal area is 2752.95 MW/2752.95 MWh.

At this time, the practical electrical output of the offshore wind farm is 24,225.85 GWh.
The abandoned wind power quantity is 1215.4 GWh, and the abandoned wind rate is 4.78%.
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The utilization hours of offshore wind power are 2640 h, and the utilization hours of the
transmission channel are 3300 h. Further, the annual cost is 75.978 billion yuan.

For this study, only 24 scenarios, based on the optimization model to present the
energy storage capacity allocation method, were used. By using fast computer calculation,
the step size of the configuration scheme is further reduced. Based on the energy storage
capacity planning method proposed in this paper, the configuration scheme with the best
economy and applicability can be obtained more quickly and accurately.

3.3. Sensitivity Analysis

According to the above scheme, the configuration of a 2752.95 MW/2752.95 MWh
lithium-ion battery energy storage system is relatively large in terms of the annual cost
from 73.434 billion yuan to 75.978 billion yuan. This section studies the factors influencing
the abandoned wind rate of offshore wind power from other perspectives, exploring
feasible schemes to reduce the abandoned wind rate, and further allocating the source-side
energy storage, paving the way to reduce the power capacity and energy capacity of the
energy storage system configuration, thus reducing the investment costs and operation and
maintenance costs, and improving the economic performance.

As shown in Figure 3, the consumption and utilization of offshore wind power in this
coastal area are not only related to the installed scale of the power structure, including
offshore wind power and energy storage but it is also affected by the transmission agree-
ment signed with other provinces and the exchange of electricity in contact lines with other
regions in the province. Therefore, a sensitivity analysis is carried out from the transmission
agreement of the transmission lines outside of the province and the capacity allocation of
the link line within the province.

3.3.1. Influence of Transmission Line Agreement

Out-of-province transmission line refers to a power transmission line from another
province to the coastal area, with a maximum transmission capacity of 760 MW, which is
sent to the coastal area in accordance with the transmission agreement signed with another
province and given priority to use. Taking the daily transmission curve as an example, the
transmission agreement can be adjusted to 1.1 times the original transmission agreement,
the original transmission agreement, 0.9 times the original transmission agreement, and
0.8 times the original transmission agreement, as shown in Figure 8.
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Figure 8. Schematic diagram of different transmission protocols.

The original transmission agreement refers to the existing transmission agreement
between the grid in the coastal area and another province. Under the existing transmission
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agreement, this paper adjusts it to 1.1 times, 0.9 times and 0.8 times, and then obtains
the utilization of offshore wind power according to the optimization model, and analyzes
the reasons for this situation. After the operation simulation, the changes in the offshore
abandoned wind power rate under different transmission agreements can be compared
and analyzed, and the results are shown in Table 8.

Table 8. Utilization of offshore wind power under different transmission agreements.

Transmission
Scenario

Consumption Power
(GWh)

Abandoned Power
(GWh)

The Abandoned
Wind Rate

1.1 times 24,053.65 1387.61 5.45%
the original
agreement 24,085.76 1355.49 5.33%

0.9 times 24,119.29 1321.96 5.20%
0.8 times 24,362.69 1078.56 4.24%

Therefore, it can be seen that the electricity sent by the out-of-province transmission
lines in this coastal area is too much, which affects the consumption and utilization of
internal offshore wind power. Therefore, the transmission agreement can be optimized in
the direction of reduction without additional cost.

3.3.2. Capacity Allocation of Tie Lines

There is a contact exchange between this coastal area and other areas A and B in the
province. The maximum exchange capacity of the contact line between this coastal area and
area A or area B is 3000 MW. This means that the total capacity of the external contact line
in this coastal area is 6000 MW. This is because the total annual load demand power ratio
of region A and region B is 1:1.2. Without changing the coastal area foreign link under the
premise of a total exchange capacity of 6000 MW, the capacity ratio of the two contact lines
is adjusted, and the changes in the abandoned wind rate of the offshore wind power under
different capacity ratios of the contact line are compared and analyzed after the operation
simulation. The results are shown in Table 9.

Table 9. Utilization of offshore wind power under different capacity ratios of tie lines.

The Total Capacity (MW)
Transmission Ratio The Total

The Coastal Area-Area A The Coastal Area-Area B Abandoned Wind Rate

6000

1 1 5.33%
1 1.2 5.27%
1 1.4 5.23%
1 1.6 5.20%
1 2 5.13%
1 3 5.09%

Therefore, the capacity ratio of the contact line can be optimized according to the load
demand of the contact area. This is to reduce the maximum exchange capacity of the contact
line between the coastal area and area A with low electrical demand, to limit and reduce
the amount of electricity fed back to the coastal area, and promote the absorption and
utilization of internal offshore wind power. Increasing the maximum exchange capacity
of the link line between the coastal area and region B with a high electricity demand can
effectively export the electrical power of the coastal area, and further export and utilize the
offshore wind power that is difficult to be absorbed internally when needed.

On one hand, the abandonment of offshore wind power comes from transmission
congestion in the transmission channel, and on the other hand, it comes from the lack of
peak regulation capacity of the system. When the transmission protocol or tie line capacity
ratio is optimized, the source-side energy storage can be further configured according to
the method described in this paper, which can reduce the energy storage investment costs
and operation and maintenance costs, and improve the economic performance.
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4. Conclusions

This paper studies an energy storage capacity planning method for improving offshore
wind energy consumption, and the conclusions are as follows:

(1) An optimization model for offshore wind power storage capacity planning is estab-
lished to seek an economic and reasonable energy storage power construction and
configuration scheme within the planning period, on the premise of meeting the
system’s annual load development needs and other various constraints;

(2) Based on the power supply and line structure of the power grid in a coastal area, an
example analysis of offshore wind power storage planning was conducted. According
to this method, the best energy storage configuration scheme was (0.3, 1), at an annual
cost of 75.978 billion yuan. In order to fully utilize offshore wind power and further
improve economic performance, the sensitivity analysis of the abandoned wind rate
of offshore wind power in this coastal area was carried out. The result proved that the
reasonable optimization of the transmission agreement and the capacity ratio of tie
lines can improve the acceptance capacity of the power grid to offshore wind power.

The results of this paper can provide some reference value for further research on
capacity planning and the optimal operation of offshore wind energy storage. However,
this paper sets a fixed value for the capacity of the offshore transmission channel, without
joint planning of the offshore energy storage and the offshore transmission channel.

Author Contributions: Conceptualization, H.Y.; methodology, H.C.; software, X.Y. and S.L.; vali-
dation, X.Y. and S.L.; resources, H.C.; data curation, H.Y.; writing—original draft preparation, X.Y.;
writing—review and editing, H.Y.; visualization, Y.L.; supervision, Y.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the Science and Technology Project of China Southern Power
Grid Co., Ltd., grant number 037700KK52190012 (GDKJXM20198282) and supported by the Research
and Development Plan in key areas of Guangdong Province, grant number 2021B0101230004.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the reviewers for their valuable comments on
this research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chi, Y.N.; Liang, W.; Zhang, Z.K.; Li, Y.; Jin, S.L.; Cai, X.; Hu, J.H.; Zhao, S.X.; Tian, W. An Overview on Key Technologies
Regarding Power Transmission and Grid Integration of Large Scale Offshore Wind Power. Proc. CSEE 2016, 36, 3758–3771.

2. Yao, G.; Yang, H.M.; Zhou, L.D.; Li, D.D.; Li, C.B.; Wang, J. Development Status and Key Technologies of Large-capacity Offshore
Wind Turbines. Autom. Electr. Power Syst. 2021, 45, 33–47. [CrossRef]

3. Song, Y.H.; Tan, Z.F.; Li, H.H.; Liu, W.Y. An Optimization Model Combining Generation Side and Energy Storage System With
Demand Side to Promote Accommodation of Wind Power. Power Syst. Technol. 2014, 38, 610–615.

4. Li, J.L.; Guo, B.Q.; Niu, M.; Xiu, X.Q.; Tian, L.T. Optimal Configuration Strategy of Energy Storage Capacity in Wind/PV/Storage
Hybrid System. Trans. China Electrotech. Soc. 2018, 33, 1189–1196. [CrossRef]

5. Dai, L.S.; Ye, C.J.; Fu, X.H.; Sun, K.; Bian, Q.Y.; Xin, H.H. Distributional Robust Joint Chance Constrained Optimal Capacity
Installment of Energy Storage in Power System With High Penetration of Wind Power. Power Syst. Technol. 2017, 41, 769–777.

6. Xu, G.D.; Cheng, H.Z.; Ma, Z.F.; Fan, S.L.; Fang, S.D.; Ma, Z.L. Overview of ESS planning methods for alleviating peak-shaving
pressure of grid. Electr. Power Autom. Equip. 2017, 37, 3–11.

7. Lou, S.H.; Yang, T.M.; Wu, Y.W.; Wang, Y.C. Coordinated Optimal Operation of Hybrid Energy Storage in Power System
Accommodated High Penetration of Wind Power. Autom. Electr. Power Syst. 2016, 40, 30–35.

8. Feng, J.X.; Liang, J.; Zhang, F.; Wang, C.F.; Sun, B.H. An Optimization Calculation Method of Wind Farm Energy Storage Capacity.
Autom. Electr. Power Syst. 2013, 37, 90–95. [CrossRef]

9. Chen, H.H.; Du, H.H.; Zhang, R.F.; Jiang, T.; Li, X. Optimal capacity configuration and operation strategy of hybrid energy
storage considering uncertainty of wind power. Electr. Power Autom. Equip. 2018, 38, 174–182.

524



Sustainability 2022, 14, 14589

10. Shi, L.; Luo, Y.; Tu, G.Y.; Shi, N. Energy Storage Sizing Method Considering Dispatchability of Wind Farm. Trans. China Electrotech.
Soc. 2013, 28, 120–127. [CrossRef]

11. Zheng, L.; Hu, W.; Lu, Q.Y.; Min, Y.; Yuan, F.; Gao, Z.H. Research on Planning and Operation Model for Energy Storage System to
Optimize Wind Power Integration. Proc. CSEE 2014, 34, 2533–2543.

12. Xie, P.; Cai, Z.X.; Liu, P.; Li, X.H.; Zhang, Y.J.; Sun, Y.Y. Cooperative Optimization of Energy Storage Capacity for Renewable and
Storage Involved Microgrids Considering Multi Time Scale Uncertainty Coupling Influence. Proc. CSEE 2019, 39, 7126–7136.

13. Wu, W.P.; Hu, Z.C.; Song, Y.H. Optimal Sizing of Energy Storage System for Wind Farms Combining Stochastic Programming
and Sequential Monte Carlo Simulation. Power Syst. Technol. 2018, 42, 1055–1062.

14. Ye, R.L.; Guo, Z.Z.; Liu, R.Y.; Liu, J.N. Reliable power output based on confidence interval estimation and optimal ESS
configuration of wind farm. Electr. Power Autom. Equip. 2017, 37, 85–91.

15. Cao, M.H.; Yu, J.L. Capacity Planning Method of Electrochemical Energy Storage System for Generation Curve Deviation
Correction of Wind Power Farm. Autom. Electr. Power Syst. 2022, 46, 27–36. [CrossRef]

16. Gan, W.; Guo, J.B.; Ai, X.M.; Yao, W.; Yang, B.; Yao, L.Z.; Wen, J.Y. Multi-scale Multi-index Sizing of Energy Storage Applied to
Fluctuation Mitigation of Wind Farm. Autom. Electr. Power Syst. 2019, 43, 92–98.

17. Xu, G.D.; Cheng, H.Z.; Fang, S.D.; Ma, Z.L.; Zhang, J.P.; Zhu, Z.L. An Optimization Model of Battery Energy Storage System
Configuration to Improve Benefits of Wind Farms. Autom. Electr. Power Syst. 2016, 40, 62–70.

18. Sun, W.Q.; Song, H.; Qin, Y.H.; Li, H. Energy Storage System Optimal Allocation Considering Flexibility Supply and Demand
Uncertainty. Power Syst. Technol. 2020, 44, 4486–4497. [CrossRef]

19. Yan, G.G.; Feng, X.D.; Li, J.H.; Mu, G.; Xie, G.Q.; Dong, X.C.; Wang, Z.M.; Yang, K. Optimization of Energy Storage System
Capacity for Relaxing Peak Load Regulation Bottlenecks. Proc. CSEE 2012, 32, 27–35.

20. Jiang, S.P.; Qiao, Y.; Xu, F.; Nie, H.Z.; Hu, D. Capacity Optimization and Sensitivity Analysis of Cogeneration System of Wind
Power and Energy Storage. Autom. Electr. Power Syst. 2013, 37, 16–21. [CrossRef]

21. Zhang, X.; Zhang, F.; Gong, N.Q.; Liu, H.K.; Liang, J.; Yang, L.B. BESS capacity planning based on dynamic SOC adjustment.
Electr. Power Autom. Equip. 2015, 35, 20–25.

22. Lou, S.H.; Yi, L.; Wu, Y.W.; Hou, T.T.; Yang, Y.F. Optimizing Deployment of Battery Energy Storage Based on Lifetime Predication.
Trans. China Electrotech. Soc. 2015, 30, 265–271. [CrossRef]

23. Huang, Y.; Liu, B.Z.; Wang, K.Y.; Ai, X. Joint Planning of Energy Storage and Transmission Network Considering Wind Power
Accommodation Capability. Power Syst. Technol. 2018, 42, 1480–1489.

24. Wu, H.Y.; Deng, C.H.; Li, D.L.; Yao, W.W.; Zhang, H.; Ying, H.M. A multi-time scale optimal dispatching method for combined
operation of offshore wind power and seawater pumped storage. Eng. J. Wuhan Univ. 2021, 54, 361–368.

25. Liu, Y.B.; Chen, J.S.; Li, Q.J.; Zhang, J.W.; He, T.; Wu, Z.L. Operation and Varying Load Analysis of Offshore Wind-Underwater
Compressed Air Energy Storage System. South. Power Syst. Technol. 2022, 16, 50–59.

26. Yi, J.G.; Zhu, Z.W.; Xie, Q. Research on Optimal Allocation of Energy Storage in Offshore Wind Farm Based on Improved Scene
Clustering Algorithm. China Electr. Power 2022, 1–9. Available online: https://kns.cnki.net/kcms/detail/11.3265.TM.20220622.1
427.006.html (accessed on 6 October 2022).

27. Paul, S.; Nath, A.P.; Rather, Z.H. A Multi-Objective Planning Framework for Coordinated Generation From Offshore Wind Farm
and Battery Energy Storage System. IEEE Trans. Sustain. Energy 2020, 11, 2087–2097. [CrossRef]

28. Koohi-Fayegh, S.; Rosen, M.A. A review of energy storage types, applications and recent developments. J. Energy Storage 2020,
27, 101047. [CrossRef]

29. Wang, Z.; Carriveau, R.; Ting, D.S.K.; Xiong, W.; Wang, Z. A review of marine renewable energy storage. Int. J. Energy Res. 2018,
43, 6108–6150. [CrossRef]

30. Li, B.; DeCarolis, J.F. A techno-economic assessment of offshore wind coupled to offshore compressed air energy storage. Appl.
Energy 2015, 155, 315–322. [CrossRef]

31. Lawder, M.T.; Suthar, B.; Northrop, P.W.C.; De, S.; Hoff, C.M.; Leitermann, O.; Crow, M.L.; Santhanagopalan, S.; Subramanian,
V.R. Battery Energy Storage System (BESS) and Battery Management System (BMS) for Grid-Scale Applications. Proc. IEEE 2014,
102, 1014–1030. [CrossRef]

32. Lu, M.; Chang, C.; Lee, W.; Wang, L. Combining the Wind Power Generation System With Energy Storage Equipment. IEEE Trans.
Ind. Appl. 2009, 45, 2109–2115. [CrossRef]

33. Vazquez, S.; Lukic, S.M.; Galvan, E.; Franquelo, L.G.; Carrasco, J.M. Energy Storage Systems for Transport and Grid Applications.
IEEE Trans. Ind. Electron. 2010, 57, 3881–3895. [CrossRef]

34. Gao, J.; Zhao, B.; Yang, C.; Yang, H.R.; Han, X.G. Development and Prospect of Energy Storage at Sea. Adv. New Renew. Energy
2020, 8, 136–142. [CrossRef]

525





Citation: Zhang, X.; Meng, F.; Sun, L.;

Zhu, Z.; Chen, D.; Wang, L. Influence

of Several Phosphate-Containing

Additives on the Stability and

Electrochemical Behavior of Positive

Electrolytes for Vanadium Redox

Flow Battery. Energies 2022, 15, 7829.

https://doi.org/10.3390/en15217829

Academic Editors: Luis

Hernández-Callejo, Jesús Armando

Aguilar Jiménez and Carlos Meza

Benavides

Received: 16 September 2022

Accepted: 18 October 2022

Published: 22 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Influence of Several Phosphate-Containing Additives on the
Stability and Electrochemical Behavior of Positive Electrolytes
for Vanadium Redox Flow Battery

Xukun Zhang 1,2,3, Fancheng Meng 1,2,3,*, Linquan Sun 1,2,3, Zhaowu Zhu 1,2, Desheng Chen 1,2,4

and Lina Wang 1,2,3,*

1 Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of
Sciences, Beijing 100190, China

2 National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process
Engineering, Chinese Academy of Sciences, Beijing 100190, China

3 School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 101408, China
4 Hebei Zhongke Tongchuang Vanadium & Titanium Technology Co., Ltd., Hengshui 053000, China
* Correspondence: fcmeng@ipe.ac.cn (F.M.); linawang@ipe.ac.cn (L.W.)

Abstract: The poor operational stability of electrolytes is a persistent impediment in building redox
flow battery technology; choosing suitable stability additives is usually the research direction to solve
this problem. The effects of five phosphate containing additives (including 1-hydroxyethylidene-1,1-
diphosphonic acid (HEDP), hexamethylene diamine tetramethylene phosphonic acid (HDTMPA),
amino trimethylene phosphonic acid (ATMPA), sodium ethylenediamine tetramethylene phospho-
nate (EDTMPS), and diethyl triamine pentamethylene phosphonic acid (DTPMP)) on the thermal
stability and electrochemical performance of the positive electrolyte of vanadium redox flow battery
were investigated. With 0.5 wt% addition, most of the selected additives were able to improve the
thermal stability of the electrolyte. HEDP and HDTMPA extended the stability time of the pentavalent
vanadium electrolyte at 50 ◦C from 5 days (blank sample) to 30 days and 15 days, respectively. The
electrochemical performance of the electrolyte was further investigated by cyclic voltammetry, steady
state polarization, and electrochemical impedance spectroscopy tests. It was found that most of
the additives enhanced the electrochemical activity of the positive electrolyte, and the diffusion
coefficients, exchange current densities, and reaction rate constants of V(IV) species became larger
with the addition of these additives. It is verified that the thermal stability and electrochemical
stability of the electrolyte are significantly improved by the combination of ATMPA + HEDP or
ATMPA + HDTMPA. This study provides a new approach to improve the stability of the positive
electrolyte for vanadium redox flow battery.

Keywords: vanadium redox flow battery; positive electrolyte; phosphate containing additives;
stability; electrochemical behavior

1. Introduction

The vanadium redox flow battery (VRFB), proposed by Maria Skyllas-Kazacos and
dating back to 1970, is considered the most promising renewable energy storage system,
with the advantages of high capacity, excellent stability, high operation security, and long
cycle, and it has attracted widespread attention and been investigated worldwide [1].
The positive and negative electrolytes of VRFB are stored in two separate tanks, and
they flow through a separate half-cell during operation and then return to the tank for
recirculation. Each half-cell of VRFB consists of an electrode and bipolar plate, and two
half-cells are separated by a membrane that allows selective ion exchange while preventing
cross-contamination of the electrolyte [2]. The chemical reactions occurring at the electrodes
of positive and negative half-cell, as well as the overall cell reaction, are as follows:
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Positive cell reaction:

VO+
2 + 2H+ + e− � VO2+ + H2O (1)

Negative cell reaction:
V2+ � V3+ + e− (2)

Overall cell reaction:

VO+
2 + V2+ + 2H+ � VO2+ + V3+ + H2O (3)

Under the fully discharged circumstance, the positive and negative electrolytes contain
only V(IV) (VO2+) and V(III), respectively. During charging, the V(III) ions in the negative
electrolyte are reduced to V(II), and the VO2+ ions in the positive electrolyte are oxidized to
V(V) (VO2

+). The electrons move through the bipolar plate from the positive electrode to
the negative electrode, causing hydrogen ions (H+) to diffuse across the membrane to the
negative electrode. The same reaction occurs in reverse when discharging [3].

Despite the rapid development of VRFB in recent years, some issues limiting its
commercialization need to be addressed, one of which is the fact that the vanadium
compound, as the active substance in the electrolyte, accounts for a substantial part of
the capital cost (40%) [4]. In addition, the battery capacity depends on the vanadium
concentration, and the pentavalent vanadium species have a low solubility in sulfuric acid
(<2 M) and a narrow operating temperature window (10–40 ◦C), thus limiting the energy
density of the battery (typically < 25 Wh L−1) [5]. At higher temperatures (>40 ◦C), the
precipitation of V5+ in the positive electrolyte is as follows [6]:

2[VO 2(H 2 O)3
]+ → 2VO(OH)3 + 2H2O + 2H+ (4)

2VO(OH)3 → V2O5 + 3H2O (5)

The precipitation process of V2O5 is irreversible, which is mainly responsible for the
loss of battery capacity. In order to improve the solubility of vanadium compounds in the
sulfuric acid electrolyte, the introduction of additives is commonly performed. Owing
to their being cost-effective and not interfering with electrolyte performance, they have
been investigated widely nowadays [7]. Skyllas-Kazacos et al. used phosphoric acid and
ammonium phosphate as additives. The results show that phosphate anions enhance
the stability of V(V) compounds at high temperatures, whereas for ammonium cations,
the opposite is true—ammonium cations stabilize the negative half-cell electrolyte at low
temperatures. The effects of sodium triphosphate and sodium hexametaphosphate as
additives were also studied; they both retarded the precipitation to a certain extent [8,9].
Roznyatovskaya et al. investigated the mechanism of precipitation retarding by phosphate
in the vanadium electrolyte using nuclear magnetic resonance (NMR) spectroscopy and dy-
namic light scattering (DLS). It was concluded that the electrolyte stabilization mechanism
by phosphoric acid at high temperatures could be attributed to the interaction between
them and V(V) monomers or dimers forming two phosphate-containing substances, thus
retarding the V2O5 precipitation [10]. Park et al. used 0.05 M sodium pyrophosphate as an
additive in the positive electrolyte with 2.0 M V(V) and 4.0 M H2SO4, and the long-term
stability of electrolyte was improved compared with the blank solution. In addition, none
of the new precipitation was proved to have been generated in the electrolyte. Nonetheless,
its electrochemical cycling performance was optimized [11]. Zhang et al. investigated
the effect of Na3PO4 as an electrolyte additive and found that it indeed delayed the V2O5
precipitation, but the VOPO4·2H2O precipitation was detected on the positive graphite mat
after several cycle tests [12]. Li et al. reported some organic additives containing hydroxyl
(–OH), such as sorbitol, mannitol, glucose, and fructose, and elaborated their stabilizing
mechanism, indicating that these organic additives can clad the hydrated V(V) species and
thus inhibit the formation of precipitation [13]. Zhang et al. selected 1 wt% HEDP as an
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electrolyte additive and confirmed that it can improve the electrolyte thermal stability and
battery cycle efficiency of VRFB. Besides, the research confirmed in two ways (the Job plot
and the Benesi–Hildebrand plot methods) that HEDP interacts with VO2

+ in a 1:1 binding
stoichiometry, which is the reason for the enhancement in the stability of the electrolyte [14].
Through the above studies, it is found that both phosphate and –OH have a good effect on
stabilizing pentavalent vanadium. In summary, some research results on additives of the
positive electrolyte are summarized in Table 1.

Table 1. Some research results on additives of the VRFB positive electrolyte.

Additive Amount V(V)/M H2SO4/M Temperature/◦C
Effect of
Thermal
Stability

References

Sodium tripolyphosphate 1 wt% 2 - 44 Improved [8]
Sodium hexametaphosphate 1 wt% 2 - 44 Improved [9]

Sodium pyrophosphate 0.05 M 2 4 25 Improved [11]
glucose 1 wt% 1.8 4.8 20–60 Improved [13]
K3PO4 1 wt% 3 5 30/50 Improved [15]

Polyacrylic acid 0.5 wt/vol% 4.7 6 50 Slightly
improved [16]

(NH4)2SO4 2 wt% 1.8 5 50 Improved [17]

H3PO4 1 wt% 2 5 50 Significantly
improved [17]

CH3SO3H 2.1–3 wt% 2 5 40 Improved [12]
Hexadecyl trimethyl ammonium

bromide (CTAB)
0.00106–0.0053

M 1.5 4.5 45 Improved [18]

Phytic acid N/A 1.8 3 25–60 Improved [19]

In the present work, five additives containing both phosphate and more –OH, includ-
ing 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP), hexamethylene diamine tetra-
methylene phosphonic acid (HDTMPA), amino trimethylene phosphonic acid (ATMPA),
sodium ethylenediamine tetramethylene phosphonate (EDTMPS), and diethyl triamine
pentamethylene phosphonic acid (DTPMP), were selected and added into the V(V) elec-
trolyte to investigate their effects on precipitation inhibition and electrochemical behavior,
and the obtained results were compared with those of the original blank electrolyte. Among
the five selected additives, except HEDP, other additives have not been used and discussed
in such studies. The novelty of this paper is that this research has explored five kinds
of phosphate containing positive electrolyte additives and their effects on stability and
electrochemical performance and found two combinations that can improve the thermal
stability and electrochemical performance of the electrolyte at the same time.

2. Materials and Methods

2.1. Materials

VOSO4·3.5H2O (99%) was provided by Shenyang Haizhongtian Fine Chemical
Co., Ltd.(Shenyang, China). The additives are listed in Table 2. HEDP (60% in water),
ATMPA (50% in water), EDTMPS (98%), and DTPMP (50% in water) were purchased from
Shanghai Aladdin Bio-Chem Technology Co., Ltd., Shanghai, China. HDTPMA (>98%)
was obtained from Adamas-beta Co., Ltd.(Shanghai, China). Other chemicals used in
the experiment are of analytical grade. The previous experiment shows that, under the
experimental conditions selected in this study, the five additives are stable.

2.2. Preparation of the V(V) Electrolyte Solution

VOSO4·3.5H2O (99%) was dissolved in a 3 M H2SO4 solution to prepare 2 M VOSO4
solution, and the prepared V(IV) electrolyte solution was placed in a double-chamber
electrolytic cell with 50 mL and 25 mL of positive and negative electrolyte tank capacity,
respectively. The electrolyte was then charged (cut-off potential: 1.55 V, stepwise current
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density: 200−10 mA cm−2) until the V(IV) ions in the positive electrolyte were converted
to V(V) and the V(IV) ions in the negative electrolyte were converted to V(II). When the
electrolysis was done, the total vanadium concentration in the positive electrolyte was
determined by redox titration using a potentiometric titrator (PHS-3C, Shanghai Leici
Co., Ltd., Shanghai, China).

Table 2. Molecular structure of the studied organic additives.

Chemical Name (Short Form) Molecular Structure

Hexamethylenediamine tetramethylene phosphonic acid
(HDTMPA)

1-hydroxyethylidene-1,1-diphosphonic acid (HEDP)

Amino trimethylene phosphonic acid (ATMPA)

Sodium ethylenediamine tetramethylene phosphonate
(EDTMPS)

Diethyl triamine pentamethylene phosphonic acid (DTPMP)

2.3. Thermal Stability Test of V(V)

To investigate the effect of various phosphonates additives on the long-term stability
of the V(V) electrolyte, electrolyte samples containing 0.05 wt% additives and blank sample
were stored in a sealed oven at 50 ◦C until measurable orange precipitation was observed.
All thermal stability tests were performed without any agitation. Each sample was visually
monitored more than twice a day during the test to record the V2O5 precipitation and the
change in solution color. The samples were filtered and their equilibrium concentrations of
vanadium were determined by redox titration again, at the end of the 30-day test.

2.4. Electrochemical Tests

The CV cycle test and steady-state polarization curve test of the electrolyte were
performed using a CHI 760B electrochemical workstation (Shanghai Chenhua Instrument,
Shanghai, China). We recorded the current versus potential curves using a three-electrode
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electrochemical cell in the CV cycling test with a scan rate range of 10–200 mV s−1 in a
potential range of −0.6–1.8 V at 25 ◦C, in which the graphite electrode (surface area of
3.14 mm2), saturated calomel electrode, and platinum electrode (surface area of 1 cm2)
are the working electrode, reference electrode, and counter electrode, respectively. The
steady-state polarization curve was tested with a potential range of 0.49–0.56 V and a
scan rate of 1 mV s−1, because the current and voltage are closer to a straight line under
the condition of lower potential. Electrochemical impedance spectroscopy (EIS) was also
obtained at room temperature with the sinusoidal excitation voltage of the electrolyte of
5 mV and the frequency range between 0.01 Hz and 100 kHz. Prior to each electrochemical
measurement, the working electrode was polished with SiC paper and then washed with
distilled water. The reference electrode was washed with distilled water and the solution
in salt bridge was replaced before use. Platinum plate electrode is cleaned with distilled
water and ultrasonically treated.

3. Results and Discussion

3.1. Effect of Additives on the Stability of the V(V) Electrolyte

The effect of different additives (Table 1) on the thermal stability of the V(V) electrolyte
was investigated by adding 0.5 wt% of additives at 50 ◦C. Table 3 shows the very time
when V2O5 started to precipitate in the V(V) electrolyte samples with different additives
and the V(V) concentration in the positive electrolyte after 30 days.

Table 3. Effect of several additives (dosage 0.5 wt%, 50 ◦C) on the thermal stability of the
2 M V(V)/3 M H2SO4 electrolyte.

Blank HDTMPA HEDP ATMPA EDTMPS DTPMP

Time to precipitation 5 days 15 days 30 days 4 days 10 days 12 days
V(V) concentration after 30 days 1.27 M 1.46 M 1.86 M 1.20 M 1.40 M 1.44 M

It was observed that the selected additives, except for ATMPA, delayed the precipita-
tion of V(V) in the electrolyte under the same experimental conditions. The blank sample
started to precipitate after 5 days and the retarding effect for the additives follows the
order: HEDP (30d) > HDTMPA (15d) > DTPMP (12d) > EDTMPS (10d) > ATMPA (4d). The
remaining V(V) concentration in the electrolyte after 30 days showed the same variation pat-
tern as the initial time of precipitation. The remaining V(V) concentration in the electrolyte
with HEDP was 1.86 M, followed by 1.46 M for HDTMPA, and that of the blank electrolyte
sample was 1.27 M after 30 days. As for ATMPA, it was 1.20 M, which had a negative effect
in this test. The vanadium concentration in the electrolyte directly determines the energy
density and capacity of the battery [20], and the experimental results show that the thermal
stability of the V(V) electrolyte is improved by the additives (except ATMPA). This means
that these additives facilitate the VRFB to improve its energy density and capacity.

The stabilizing mechanism of HEDP for the electrolyte might be attributed to the
synergism of –OH and phosphate. –OH could clad the hydrated penta-coordinate V(IV)
vanadate, which prevents it from being oxidized at a low concentration and inhibits its
precipitation [9,21]. Phosphate could interact with V(V) monomers or dimers, forming a
stable phosphate-containing substance, and thus retarding the precipitation [10]. Similarly,
the stabilizing capability of HDTMPA and DTPMP is probably due to the presence of
more phosphate. The EDTMPS, with good chemical stability and temperature resistance,
is soluble in water, non-toxic, and environmentally friendly. It can dissociate into eight
anions/cations in aqueous solution, and thus chelate with multiple V(V) ions, forming mul-
tiple monomeric structured reticular macromolecular complexes that are loosely dispersed
in water, so the normal precipitation process of V(V) was disrupted [22]. Although ATMPA
was reported to have low limit inhibition, good chelation, and lattice distortion effects [23],
it exhibited the worst effect on the thermal stability, which was likely due to the formation
of chelate, which is not conductive to solution stability.
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3.2. CV Test

Figure 1 shows the CV curves of V(IV) electrolyte samples with additives and blank
one, and it can be observed that all CV curves show the similar peak position and one pair
of redox peaks with a similar shape. The additives slightly changed the shape and position
of the peak, which means that these additives will affect the reversibility of V(IV)/V(V)
redox pairs to some extent [19]. The relevant data derived from Figure 1 are summarized
in Table 4. The effect of additives on the V(IV)/V(V) redox coupling is characterized by
IpO/IpR (ratio of the oxidation peak current to reduction peak current) and ΔVp (separation
between the oxidation and reduction peak potential). The HDTMPA just incurred a minor
decrease in the ΔVp of the electrolyte and a small increment in the IpO/IpR as if it had little
effect on the reversibility of the V(IV)/V(V) redox pair. In addition, it had a small effect on
the oxidation peak current and reduction peak current as well as the overall peak shape of
the curve, indicating that its effect on the electrode reaction kinetics of the electrolyte was
not that significant either [24]. The addition of HEDP increased the ΔVp of the electrolyte
while decreasing IpO/IpR significantly. The addition of HEDP, DTPMP, ATMPA, and
EDTMPS had a greater effect on the reversibility of V(V)/V(IV) redox pairs, and the HEDP
significantly increased the peak oxidation current and peak reduction current, indicating
that it might enhance the electrode reaction kinetics of the electrolyte. The main reason for
the improvement in electrode reaction kinetics by HEDP might be attributed to the fact
that the –OH could complex with V(IV)/V(V) ions, which provide more available –OH to
the stable electrode reaction of V(IV)/V(V) for ion exchange on the electrode surface, thus
resulting in a higher oxidation peak current and reduction in peak current [25]. Among all
additives, ATMPA best enhanced the electrode reaction kinetics of electrolyte, but it caused
a decrease in electrolyte thermal stability. HDTMPA, EDTMPS, and DTPMP probably
affect the cyclic reversibility performance and electrode reaction kinetics of the electrolyte
by, firstly, phosphate and, secondly, according to calculations, the C atoms adjacent to
N atoms have a high positive charge density, counteracting the strong electron affinity
of N atoms [26], and the positively charged C atoms activated by the N atoms can work
as an active site, affecting electron distribution, thereby improving the electrochemical
performance. In addition, EDTMPS benefits from its Na+ ions, increasing the number of
ionizable cations in the solution, which enhances the electrode reaction kinetics [12]. As
for HDTMPA, its large groups slightly hinder the ion exchange and charge transfer on the
electrode surface owing to the steric hindrance, which is obviously unfavorable [18]. When
ATMPA and HDTMPA are used in combination, ΔVp of the electrolyte declined compared
with the blank sample and IpO/IpR displayed a small change. The combination of ATMPA
and HEDP also showed the same performance. At the same time, compared with the
CV curve of the blank sample, the peak current and the peak area of these two complex
schemes are larger, which indicates that the electrolytes affected by these two schemes have
better electrochemical performance.

A series of CV curves on graphite electrode for the blank electrolyte and the electrolyte
with different additives at different scan rates are depicted in Figure 2, which further reveals
the effect of additives on the electrode reaction kinetics. The peak potential of the anode
and cathode varies gradually with the scan rate, presenting the typical characteristics of a
quasi-reversible single-electron process [27]. The diffusion coefficient of the quasi-reversible
reaction (D) is between that of the reversible reaction (D1) and irreversible reaction (D2) [28].
As for the reversible and irreversible one-step single-electron reactions, their peak current
(ip) can be represented as follows [29]:

ip = 0.4463(F3/RT)
1/2

CAn3/2v1/2D1
1/2 (Reversible reaction) (6)

ip = 0.4958(F3/RT)
1/2

CAα1/2n3/2v1/2D2
1/2 (Irreversible reaction) (7)

where R is the universal gas constant; F is the Faraday constant; T is the Kelvin temperature;
n is the amount of substance of transferred electrons during electrode reaction; A is the
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surface area of working electrode; C is the bulk concentration of primary reactant; v is the
scanning rate; α is the transfer coefficient for an irreversible reaction; and D1 and D2 are the
diffusion coefficients of reversible and irreversible reactions, respectively.

For a single-electron reaction at room temperature, Equations (6) and (7) can be
simplified as follows:

ip = 2.69 × 105 ACD1/2
1 v1/2 (8)

ip = 2.99 × 105α1/2 ACD1/2
2 v1/2 (9)

According to the present experimental conditions, Equations (10) and (11) can be
further derived from Equation (8) and Equation (9), respectively:

ip/A = 538D1v1/2 = v1/2k (10)

ip/A = 598D1/2
2 v1/2 = v1/2k (11)

Equations (10) and (11) indicate that the current density (ip/A) is linearly related to
the square root of scan rate (v1/2) and k denotes the slope of this line, illustrated in Figure 3,
thus D1 and D2 were calculated. The values of k for the blank electrolyte and those with 0.5
wt% of different additives are concluded in Table 5.

D1 = 3.45 × 10−6k2 (12)

D2 = 2.80 × 10−6k2 (13)

 
Figure 1. CV curves of the electrolyte (2.0 M V(IV)/3.0 M H2SO4) with additives (0.5 wt%) and the
blank one at a scan rate of 20 mV s−1 at room temperature.

Table 4. ΔVp and IpO/IpR of the electrolyte (2.0 M V(IV)/3.0 M H2SO4) with additives (0.5 wt%) and
the blank one on the graphite electrode.

Additives Blank HDTMPA HEDP DTPMP ATMPA EDTMPS ATMPA + HEDP ATMPA + HDTMPA

ΔVp/V 0.241 0.231 0.340 0.320 0.275 0.285 0.208 0.200
IpO/IpR 1.462 1.496 1.242 1.299 1.432 1.246 1.470 1.474
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Figure 2. CV curves of the electrolyte (2.0 M V(IV)/3.0 M H2SO4) with/without additives ((a) blank
sample; (b) HDTMPA; (c) HEDP; (d) DTPMP; (e) ATMPA; (f) EDTMPS; (g) ATMPA + HDTMPA;
(h) ATMPA + HEDP) on the graphite electrode at different scan rates at room temperature.
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Figure 3. Linear plot of ip versus v1/2.

Table 5. Diffusion coefficients (D1 and D2) of V(IV) species at 25 ◦C.

Additives
Diffusion Coefficient D1 and D2 of V(IV) Species (cm2 s−1)

D1 D2 Error (%)

Blank 2.20 × 10−7 1.88 × 10−7 1.9
HDTMPA 2.26 × 10−7 1.84 × 10−7 1.3

HEDP 3.89 × 10−7 3.15 × 10−7 1.5
DTPMP 4.86 × 10−7 3.94 × 10−7 1.3
ATMPA 6.80 × 10−7 5.52 × 10−7 1.3

EDTMPS 3.48 × 10−7 2.83 × 10−7 1.6
ATMPA + HDTMPA 4.34 × 10−7 3.53 × 10−7 1.8

ATMPA + HEDP 5.43 × 10−7 4.40 × 10−7 1.7

In fact, the diffusion coefficient of the electrolyte is between D1 and D2 for the quasi-
reversible process. Under the present experimental conditions, the diffusion coefficient
is 1.88–2.20 × 10−7 for the blank electrolyte and 1.84–2.26 × 10−7 for the sample with
HDTMPA, and the result of the latter is close to that of the blank electrolyte. When it
comes to the rest, their diffusion coefficients are 3.15–3.89 × 10−7 (HEDP), 3.94–4.86 ×
10−7 (DTPMP), 5.52–6.80 × 10−7 (ATMPA), and 2.83–3.48 × 10−7 (EDTMPS), respectively.
These increased diffusion coefficients of the electrolyte with additives indicate that the
additives (except HDTMPA) can effectively improve the diffusion of vanadium species at
the electrodes and enhance the mass transfer and charge transfer of the V(V)/V(IV) redox
pair, thus increasing the corresponding reactivity. Compared with the blank sample, the
combination of ATMPA + HDTMPA and ATMPA + HEDP also have a larger diffusion
coefficient, showing that the compounding scheme has played a positive role in mass
transfer and charge transfer in the electrolyte.

3.3. Steady-State Polarization Test

The steady-state polarization curve of the V(IV) electrolyte allows the determination of
the polarization resistance, the exchange current density, and the electrochemical reaction
rate constant.
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In the relatively-low-overvoltage region, the overvoltage and current density are
approximately linearly correlated [6]. These parameters can be calculated by Equation (14).

Rct =
η

i
, i0 =

RT
nFRct

, k0 =
i0

nFC0
(14)

where Rct, i0, and k0 refer to the charge-transfer resistance, exchange current density,
and rate constant, respectively; R, T, n, F, and C0 are the universal gas constant, Kelvin
temperature, amount of transferred electrons in the electrode reaction, Faraday constant,
and solution concentration, respectively [30].

The steady-state polarization curves of the 2.0 M VOSO4/3.0 M H2SO4 electrolyte
with different additives on graphite electrode are demonstrated in Figure 4, and the cor-
responding parameters derived from Equation (14) are listed in Table 6. One can see that
the charge transfer resistance of electrolyte samples with additives decreased and the elec-
trochemical reaction rate constant and the exchange current density increased compared
with the blank sample. The charge transfer resistance of the electrolyte with EDTMPS
and DTPMP, for example, decreased from 12.40 Ω cm2 (blank sample) to 8.15 Ω cm2 and
8.84 Ω cm2, respectively, at 25 ◦C, while the exchange current density of these two samples
increased from 2.07 mA cm2 (blank sample) to 3.15 mA cm2 and 2.91 mA cm2, respectively.
The corresponding electrochemical reaction rate constant increased from 1.07 × 105 cm s−1

(blank sample) to 1.63 × 105 cm s−1 and 1.51 × 105 cm s−1, respectively, at 25 ◦C. The
other additives also accelerated the chemical reaction process of V(IV) on the electrode
surface to varying degrees. The rest of the selected additives also accelerated the kinetics
process of V(IV) species on the electrode surface to a certain level. Compared with the
blank sample, the combination of ATMPA + HDTMPA and ATMPA + HEDP also had lower
charge transfer resistance and higher exchange current density and electrochemical reaction
rate constant, which was consistent with the CV tests.

 

Figure 4. Steady-state polarization curves for the 2.0 M V(IV)/3.0 M H2SO4 blank electrolyte and
those with 0.5 wt% additives on graphite electrode at a scan rate of 1 mV s−1.

Table 6. Kinetic parameters for the 2.0 M VOSO4/3.0 M H2SO4 experimental electrolyte with different
additives on the graphite electrode.

Additives Rct (Ω cm2) i0 (mA cm−2) k0 (10−5 cm s−1)

Blank 12.40 2.07 1.07
HDTMPA 11.48 2.24 1.16

HEDP 9.40 2.73 1.42
DTPMP 8.84 2.91 1.51
ATMPA 9.01 2.85 1.48

EDTMPS 8.15 3.15 1.63
ATMPA + HDTMPA 10.35 2.48 1.29

ATMPA + HEDP 9.11 2.82 1.46
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3.4. Electrochemical Impedance Spectroscopy Test

For the further analysis of the electrode reaction diffusion kinetics of vanadium and
the charge transfer and mass transfer of the V(IV)/V(V) redox pair, Nyquist plots of the
eight (including two compound schemes) V(IV) electrolyte samples at room temperature
were recorded by electrochemical impedance spectroscopy. Figure 5 shows that each
plot consists of a semicircle in the high-frequency region and a diagonal line in the low-
frequency region, indicating that the redox reaction of the V(IV)/V(V) pair is controlled
by both high-frequency charge transfer and low-frequency diffusion. The radius of the
semicircle corresponds to the charge transfer resistance and the linear part relates to the
diffusion of vanadium species on the electrode [31]. The equivalent circuits of these Nyquist
plots were fitted, and the corresponding parameters were obtained using ZView software,
which are listed in Table 7. In the equivalent circuit, R1 is the resistance consisting of the
solution resistance, electrode resistance, and contact resistance, and R2 and W0 represent
the charge transfer resistance and diffusion impedance, respectively. The constant phase
element (CPE) represents the bilayer capacitance at the electrode–electrolyte interface.

 

Figure 5. Nyquist plots of the 2.0 M V(IV) electrolyte on the graphite plate and the corresponding
equivalent circuit.

Table 7. Model parameters of equivalent circuits corresponding to Nyquist plots.

Additives R1/Ω cm2
CPE/S sn cm−2

R2/Ω cm2 W0, Y0,2/S s−5 cm−2

Y0,1 n

Blank 0.218 5.33 × 10−3 0.775 0.168 0.409
HDTMPA 0.223 9.11 × 10−3 0.727 0.215 0.411

HEDP 0.268 10.85 ×
10−3 0.707 0.205 0.397

DTPMP 0.268 8.18 × 10−3 0.737 0.152 0.397
ATMPA 0.286 8.70 × 10−3 0.727 0.154 0.408

EDTMPS 0.279 5.61 × 10−3 0.769 0.116 0.390
ATMPA +
HDTMPA 0.276 16.87 ×

10−3 0.621 0.206 0.283

ATMPA +
HEDP 0.282 18.63 ×

10−3 0.552 0.186 0.288

The additives slightly increased the contact resistance of the electrolyte, and all addi-
tives except HDTMPA and HEDP decreased the charge transfer resistance of the solution.
The decrease in charge transfer resistance implies a faster charge transfer process, which is
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consistent with the above study. All of the additives except HDTMPA decrease the diffu-
sion resistance of the electrolyte, which facilitates the diffusion process on the electrode
surface and enhances the electrochemical reaction kinetics. In addition, all additives lead
to an increase in the CPE parameter Y0,1, indicating an enhanced bilayer capacitance at
the electrode–electrolyte interface. n represents the index of CPE, ranging from 0 to 1. The
larger the n, the higher the capacitive property and the lower the resistive property of CPE.

Compared with the samples using HDTMPA and HEDP additives alone, the charge trans-
fer resistance of the two compounding schemes (ATMPA + HDTMPA and ATMPA + HEDP)
is reduced, which accelerates the charge transfer in the solution, indicating that the com-
pounding schemes (HDTMPA + ATMPA and HEDP + ATMPA) improve the electrochemical
performance of the electrolyte.

After the above experimental investigation, it was found that the different additives
selected could have a positive effect on the positive electrolyte of VRFB in terms of thermal
stability and electrochemical performance. In future studies, it is expected that these
additives may work better if used in combination, rendering these additives potential and
promising for development.

4. Conclusions

In this study, five phosphate-containing scale inhibitions, including HDTMPA, HEDP,
DTPMP, ATMPA, and EDTMPS, were employed as additives for the VRFB positive elec-
trolyte and their effects on the electrolyte thermal stability and electrochemical performance
were investigated. HDTMPA has a great positive effect on the thermal stability of the elec-
trolyte, extending the time at which the electrolyte begins to precipitate to 15 days, while
it has a lesser effect on the electrochemical performance; HEDP, DTPMP, and EDTMPS
effectively improve the thermal stability of electrolyte and simultaneously accelerate its
electrochemical reaction kinetics, but they have a greater effect on the cyclic reversibility
of electrolyte, among which HEDP extended the time at which the electrolyte began to
precipitate to 30 days, and the charge transfer resistance of the electrolyte decreased to
9.40 Ω cm2; and the addition of ATMPA greatly improves the mass transfer kinetics of
the electrolyte, increasing the electrolyte diffusion coefficient on the electrode surface to
6.80 × 10−7, simultaneously causing poor thermal stability of the electrolyte. In addition,
the compounding effect of additives was studied. It was verified that the compounding
combination of ATMPA + HDTMPA and ATMPA + HEDP had a good effect on the elec-
trochemical performance of the electrolyte. In conclusion, most of the additives selected
in this study have positive effects on the positive electrolyte of VRFB in terms of ther-
mal stability and electrochemical performance; the diffusion coefficients of the electrolyte
were 4.34 × 10−7 and 5.43 × 10−7, respectively. The necessity of combined utilization of
these additives should be recognized, which may work better and has great potential for
future development.
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Abstract: This article analyzes the relationship between artificial intelligence (AI) and photovoltaic
(PV) systems. Solar energy is one of the most important renewable energies, and the investment of
businesses and governments is increasing every year. AI is used to solve the most important problems
found in PV systems, such as the tracking of the Max Power Point of the PV modules, the forecasting
of the energy produced by the PV system, the estimation of the parameters of the equivalent model
of PV modules or the detection of faults found in PV modules or cells. AI techniques perform better
than classical approaches, even though they have some limitations such as the amount of data and
the high computation times needed for performing the training. Research is still being conducted
in order to solve these problems and find techniques with better performance. This article analyzes
the most relevant scientific works that use artificial intelligence to deal with the key PV problems by
searching terms related with artificial intelligence and photovoltaic systems in the most important
academic research databases. The number of publications shows that this field is of great interest to
researchers. The findings also show that these kinds of algorithms really have helped to solve these
issues or to improve the previous solutions in terms of efficiency or accuracy.

Keywords: PV; artificial intelligence; MPPT; forecasting; parameter estimation; faults detection

1. Introduction

Energy is essential in our society, being the motor of almost every sector. Fossil-fuels
are historically the most important source of energy, representing 80.2% in 2019 [1] These
kinds of energies have different problems; one of them is their scarcity, since they are
limited resources that have been exploited for a long time. Another critical problem is
the pollution caused by the burning and extraction of these fuels, which is hazardous for
people [2] and the environment [3]. To solve these problems, other energy sources can
be used. These alternative energies, renewable energies, have two main benefits. First
of all, they are based on unlimited resources that will not run out, even with extensive
exploitation. Their exploitation is also nonpolluting. Investment in these energies has been
rising in the last years, even with a crisis such as the COVID-19 pandemic [1,4].

One of the most important green energies is solar energy. This energy is composed
of solar, thermal and photovoltaic (PV). The latter has been found to be more useful and
profitable for industry production [5,6] and has been growing steadily in recent years. As
we can see in Figure 1, the share of PV systems is increasing, and it is expected to be one of
the prime energy sources in the next years [7].

PV energy is produced by photovoltaic modules. Each module is composed of different
sub-units, called solar cells, which absorb the energy emitted by the sun [8]. PV panels
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are usually connected in series to each other, this is known as a PV array. Each PV array
is connected to a power inverter to control the production and check the performance
of the array [9]. PV farms (also known as PV plants) are usually composed of many PV
arrays. The maintenance of these factories is extremely complex. The production of the
modules depends on different conditions, this makes mechanisms of control to optimize
the production necessary. Solar modules are also vulnerable to physical defects, which can
reduce or even nullify the production of one cell, or even the whole modules in the worst
cases. This is usually dealt with by human labor, checking each module in a certain period
of time.

Figure 1. Evolution of the importance of PV sector (adapted from [7]). (a) Evolution of the energy
share of PV systems; (b) evolution of the investment in PV energy; (c) evolution of employment in
the PV sector.

Solutions to maintenance problems in PV systems have been traditionally circumscribed
either to simplistic automatic supervision approaches [10] or costly direct human supervision.

In the past recent years, however, artificial intelligence (AI)-based approaches have
emerged. AI techniques are being applied in almost every research field or industry to
improve services or solve problems which are impossible for traditional methods [11].

These techniques can also be applied to solve the problems of PV systems. In this
review, we analyze how AI is being applied to the PV sector. PV systems face different
problems during installation but also during exploitation, since PV modules are vulnerable
to the climate conditions’ unpredictable events. An analysis of the problems found in PV
plants can be found in [12,13]; also, the maintenance of the modules is key in order to
secure maximum production and to improve the security of the installations [14]. In order
to reduce the scope of this review, only the four most critical problems related to energy
optimization and maintenance are considered:

• Max Power Point Tracking: Vital for optimizing the production.
• Output Power Forecasting: Critical for predicting possible problems in production

related to climate conditions.
• Parameter Estimation: Extremely important for optimizing the production of PV modules.
• Defect Detection: Important for finding bad-performing modules or faults that can

be fatal for overall system performance and security.

The most important problems and the technologies that have been used for dealing
with each one of these problems are addressed. The final objective of this review is to
analyze the most important techniques used and how they have improved the solutions of
the problems in order to have a clear understanding of the state of the art in the area.

The paper is structured as follows: First, an explanation of the problem is described in
Section 2, in order to provide more information to readers who are not familiarized with
this topic. After that, the artificial intelligence techniques used of each of the problems are
explained. The Maximum Power Point Tracking is discussed in Section 3.2; Section 3.3 is
about the forecasting; Section 3.4 presents the parameter estimation, and defect detection
problems are discussed in Section 3.5. Finally, an analysis of the different problems is
performed in Section 4, identifying the tendencies and flaws in the research of each one
of them.
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2. Relevant PV Problems

As we explained before, PV installations have to face a large amount of problems.
The most important ones are related to optimizing energy production, since it is the final
objective of an energy installation. They are also related to the maintenance of equipment,
mostly the solar modules. In this section, four problems related to this issue are explained
in order to give the reader a basic context of the different problems.

2.1. Maximum Power Point Tracking (MPPT)

PV cells have a complex relationship between their environment and the power they
can produce. Along the IV curve (Figure 2) of solar cells there is a point where the power
will be maximized, this is called the Maximum Power Point (MPP). This point usually
changes depending on conditions such as irradiation, temperature or the state of the PV
cell. These conditions can change the shape of the curve, making the problem nonlinear
and time-varying due to the changes produced by the atmospheric and load conditions.

Another problem is that it is not possible to directly obtain the IV curve of a single PV
cell. The IV curves are usually taken from one single module or even from a PV array. The
measured curves are more complex than the IV curve of a cell. The more complex a curve
is, the harder it is to track the MPP.

Figure 2. Different IV curves. Green circle: Max Power Point; Red Star: Open-Circuit Voltage (VOC);
Yellow Square: Short-Circuit Current (ISC).

The algorithms to solve this problem can be classified according to different criteria;
one of the most important ones is according to the number of variables used for measuring
the tension. Another interesting approach is to classify the method according to the control
strategy used. A brief explanation of the most important traditional methods can be found
in Table 1, and more information can be found in works such as [15,16].
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Table 1. Traditional Methods for MPPT.

Methods Features

Perturbation and Observation [15,16]

This algorithm does not depend on previous
knowledge, it is the simplest and is widely
used due to its balance between efficiency and
simplicity. It disturbs the operating point of the
system, causing the PV voltage to fluctuate
near the MPP voltage.

Incremental Conductance [15,16]

This method is based on the basis that the slope
of a PV curve is zero at MPP. The algorithm
tracks the MPP by searching for the peak of the
PV curves. This algorithm uses the
instantaneous conductance I/V and the
incremental conductance dI/dV.

Curve Fitting [15,16]

This method implements a mathematical
function to describe the output of the generator.
The disadvantage of this method is that it
requires a high memory capacity and is not
optimum for high-speed changes in
the irradiance.

Open Circuit [15,16]

This method implements a mathematical
function to describe the output of the generator.
The disadvantage of this method is that it
requires a high memory capacity and is not
optimum for high-speed changes in the
irradiance. This method is simple, and it uses a
single control loop.

Feedback Tension [15,16]

This method can be used with the feedback of
the voltage of the panels, which is compared
with the tension of constant reference to adjust
the word cycle. This system is unable to adapt
to changes in irradiance or climate.

Measurement of the Current of the PV
Generator [15,16]

This method is based on one variable, the
output current of the PV Generator, which is
the input current of the generator. The control
of the output optimizes the maximum
output current.

2.2. Forecasting Problems

There are several variants of the forecasting problem which arise in PV: weather
forecasting, solar irradiance forecasting and energy production forecasting, which is to
estimate the energy production of the system. This is really important to optimize the
real-time management of systems that use this kind of energy (smart cities, villages, etc.).
This problem has high priority for electric companies because they want a more robust and
reliable system to predict the changes in energy loads and demands. Another important
aspect is the amount of time that has to be predicted.

• Short-term forecasting is usually from 1 hour to a week ahead and is used for schedul-
ing energy transfer, economic load dispatch and demand response.

• Mid-term forecasting is usually considered between 1 month and 1 year ahead, usually
for planning the near-forthcoming power plans and to show the dynamics of the
system in that interval.

• Long-term forecasting is considered between 1 year and 10 years. Its function is to
plan the generation power plant so as to satisfy future requirements and cost efficiency.

Another important factor for forecasting is the number of parameters, the amount of
information and data is key when it comes to obtaining a precise forecasting model, but it
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is also true that sometimes too much data can provide noise or misleading information that
can injure performance.

Each kind of forecasting is usually tacked as a different problem, since the amount of
data and precision required are highly different. More information about forecasting can
be found in [17].

2.3. Estimation of Parameters of Model Circuits

The simulation of PV systems is important to optimize the production of the real
systems. It is know that any PV can be modeled and represented by an equivalent electric
circuit, whose parameters control the predicted or estimates operation of the PV cell or
module. The single-diode circuit presents five unknown parameters [18,19] (Iph, Isd, Rl , Rsh
and n), and the output current is evaluated as follows:

I = Iph − Isd ×
[

exp
(

q × (VL + Rs × IL)

n × k × T

)
− 1
]
− VL + RS × IL

Rsh

where IL, Iph, Id and Ish are the solar cell output current, total current, diode current and
shunt current, respectively. Rs represents the series, and Rsh denotes the shunt resistances.
In addition, VL means the cell output voltage; n is the ideal factor of diode. k represents the
Boltzmann constant, which is set as 1.3806503 × 1023 J/K; q is set as 1.60217646 × 1019 C,
which is the electron charge, and T means the cell absolute temperature.

The double-diode model presents seven unknown parameters [18,19] (Iph, Isd1, Isd2, Rl , Rsh,
n1 and n2 ), and the output current is evaluated as follows:

IL =Iph − Isd1 ×
[

exp
(

q × (VL + Rs × IL)

n1 × k × T

)
− 1
]

− Isd2 ×
[

exp
(

q × (VL + Rs × IL)

n2 × k × T

)
− 1
]
− VL + RS × IL

Rsh

where Isd1 and Isd2 represent the diffusion and saturation currents, while n1 and n2 represent the
ideal factors of diffusion and recombination diode. The other parameters have the same meaning
as the previous equation.

This problem is presented as a optimization problem, where the output to optimize is IL,
and the variables to be found are the unknown parameters.

2.4. Defect Detection

Solar modules are vulnerable to modifications in their surface; therefore, it is required to
have a system to find faults. These kinds of faults and defects affect to the production of the
module, making it not work at all in the worst cases. The problem is that the majority of faults
are not detected with typical cameras (Figure 3), so it is necessary to apply different techniques
such as thermography (Figure 3) or electroluminiscence (Figure 3).

The traditional way of finding faults is by performing a manual visual inspection, but
the size of the solar farms has made this method almost unmanageable. In order to solve this
problem, different techniques have been proposed, most of them using electroluminiscence.
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Figure 3. Different techniques for photography modules. (a) Visual spectrum; (b) thermography; (c) electro-
luminiscence.

3. Artificial Intelligence Applied to PV Systems

3.1. Methodology

With an intention to provide the most relevant and comprehensive review, a proper selection
criterion is needed; therefore, different bibliographic databases were searched: Web of Science,
Scopus, Google Researcher and Arxiv. With the aim of finding relevant works, a selection was
performed searching keywords related with AI and PV systems. The articles with fewer than
8 citations were excluded since they were not considered relevant enough to the state of the art.
As a exception to this rule, the articles published in 2021 were selected even if they did not have
enough citations. After removing duplicates and nonrelated papers, 250 articles were obtained.
The articles tackled different problems found in PV systems, but most of them were focused on
four different problems due to their importance:

• Max Power Point Tracking.
• Forecasting of the energy production.
• Estimation of parameters of model circuits.
• Detection of defects and faults in solar modules.

In this section, these different problems are addressed by explaining the contributions of
each paper in order to provide a global vision of the state of the art of each problem.

3.2. Maximum Power Point Tracking (MMPT)

The tracking of the Maximum Power Point is vital to optimize the PV systems, and it is
probably the most interesting problem for research. Different techniques have been used to
solve this problem, as it can be seen in Figure 4. Some classical techniques include Incremental
Conductance and Perturb and Observe. Recent trends show that AI techniques are also used to
solve this problem. Metaheuristics and Neural Networks were found as the most used techniques
after surveying the literature.
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Figure 4. Taxonomy of most used IA method for MPPT.

3.2.1. Fuzzy Logic

Traditional Logic [20] is limited to only two values of truth (True and False), this limits its
versatility and makes it difficult to model some systems. Fuzzy Logic (FL) [21] is an extension of
Traditional Logic. The main benefit of FL is that it can give a true value between 0 and 1. FL is
specialized in addressing uncertainty in inputs and obtaining high performance under rapidly
changing conditions, such as atmospheric ones. These kinds of techniques can also be used to
aid other systems in order to improve their performance. In this section, the most important
techniques related to FL are reviewed.

The first implementation focused on MPPT can be found in [22]. This system uses 7 mem-
bership functions for each variable with two input variables: error in the power and the change
in error; the output inferred by the fuzzy system is the change in duty cycle that controls the
pulse width generation block. The main benefit of FL control is that it does not require changes
or variations in its membership functions.

In order to evolve these systems, it was necessary to find a method to modify the parameters
of the fuzzy systems. In [23], a Fuzzy Controller that is able to perform online parameter auto-
tuning is found. This system used 2 kinds of control. First, a traditional PID control to manage
the small deviations and an Adaptive Fuzzy Controller to deal with the larger deviations, since
this system is ideal for obtaining rapid responses. A switching function was set to determine the
controller to be used. The initial fuzzy controller used triangular-shape functions as membership
functions, changing the curve depending on the error. This system reduces the oscillation near
the Maximum Power Point, reducing the loss of power.

Another implementation of the adaptive behavior can be found in [24]. This proposal
combines Fuzzy Cognitive Networks (FCN) with Fuzzy Logic Control (FLC). FCN is constructed
as an extension of another system called Fuzzy Cognitive Maps (FCM) [25]. FCMs are composed
of nodes and weighted arcs. Nodes represent the concepts represented, and the arcs represent the
causal relationships between them. FCN relies on the knowledge of experts for the description of
the nodes and the construction of the graph but does not need an initial estimation of the weights
of the arcs. The combination of FLC and FCN makes the system able to track and adapt to any
kind of physical variation. A Fuzzy controller needed 12 iterations to reach the same MPP that
this algorithm found with 5.
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In order to further improve the tracking speed and accuracy of FLC, the classic Open-Circuit
Technique [26] is used to find an initial estimation of the MPP voltage. The implemented system
showed a good response even under variable atmospheric conditions.

The work in [27] used Type-2 Fuzzy Logic [28], an extension of classical FL [29]. The main
feature of Type-2 FL is that membership functions are also fuzzy, and it is used in applications
where determining the exact function of a set is difficult [30]. The Type-2 FL functions are three-
dimensional, they depend on three different parameters, allowing them to directly model and
handle uncertainties. The changes in PV power and voltage are set as the input variables, each one
using seven membership functions. The simulation showed that the system tracked MPPT even
in irradiance and load variation. Oscillations around MPPT are greatly reduced and are useful for
rapidly changing conditions. The overall output energy due to the proposed MPPT method was
around 27.7%. The implementation and simulation were performed with MATLAB/Simulink
simulation studies [31]. Type-2 Fuzzy Logic is also used for MPPT in [27,32–34].

Another important FL extension used in MPPT is the Takagi–Sugeno Fuzzy Model (T-S
FM) [35–37], T-S FM [38] is usually used in approximating complex nonlinear systems [39] and is
really important due to the fact that they enable a kind of control called parallel distributed control.
The results of these systems present better settling time than classical FL, fewer oscillations
and accurate output. The tracking is achieved even for abrupt insulation variations. The
implementation and simulation are usually conducted with MATLAB.

One of the most popular trends is to use fuzzy logic as a complement of other techniques.
In [40], it is used to tune the PID controller parameter. In [41], the fuzzy behavior of the
PSO algorithms improves the system. Fuzzy Logic has also been used along with Neural
Networks [42–45]. These works demonstrate that this combination improves the original
algorithms, improving the results of the fuzzy systems but reducing the data and time needed
to train neural networks.

A summary of the Fuzzy Logic methods applied to MPPT can be seen in Table 2.

Table 2. Fuzzy Methods for MPPT.

Method Features

FLC [22–24,26,46]

FLC systems provide quick responses to changes
and low oscillations near MPPT that reduce the
power loss compared with traditional systems.
The combination with FCN or the initial
estimation of the MPP voltage further improves
the results.

Type-2 [27,32–34]
Type-2 FL provides the methods to model and
handle uncertainties, boosting the robustness of
the system and hence its results.

T-S [35–37]

The parallel distributed control provided by the
T-S FL further improves the results of FL systems,
having an acceptable settling time, less oscillations
and an accurate output.

Combined with other methods [40–45] Other methods can take advantage of the benefits
of FLC systems to improve their results in MPPT.

3.2.2. Metaheuristics

Metaheuristics [47] are algorithmic approaches specialized in solving problems that are
not possible to directly find the best solution in a feasible amount of time. They will search the
solution space in order to identify the best solution that they can find. In this section, the most
important metaheuristics applied to this problem are reviewed. These kinds of algorithms can be
used alone or with the aid of other algorithms.

One of the most common classifications for metaheuristics [47] is the differentiation between
the algorithms that try to imitate the behavior of animals or things of nature (ants, bees, particles,
etc.) and the algorithms which are focused on imitating the basis of genetics.
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Genetic Algorithms (GA) [48] are one of the most important genetic metaheuristics because
of their capacity to find great solutions to many problems, commonly used as a way to improve
the performance of other Artificial Intelligence techniques. In [49], GA are used to optimize the
training data for an ANN of 5 hidden nodes. The objective of the GA was to produce a smaller
and more effective input dataset. The GA is used to remove the unnecessary data, reducing the
error at the end of the network training. This technique can be also used with other techniques,
as it is independent of the model that is applied afterward. In [50], a GA is used to determine the
number of neurons of an ANN. The number of hidden neurons is one of the key problems of
optimizing an ANN since it can improve its performance but can also slow its training. Three
different objective functions were tried on the GA. The best neural network was found with
5 hidden nodes. In [51], they are used to optimize the membership functions on an FLC system.
The chromosomes decode the shape of these functions; the algorithm will try to minimize the
quadratic function based on the error between the desired power and the maximum power
delivered by the system. The results show faster convergence and a more stable tracking, which
leads to reduced oscillations.

Behavior-oriented metaheuristics can also be used to solve MPPT. Particle Swarm Opti-
mization (PSO) [52] is also used for this. Each particle is initialized with a value in the voltage
search interval. Each particle is evaluated by the inverse of the PV power; after that, each
particle will have its position and velocity updated. Finally, a new evaluation will be performed
until all iterations have been carried out. Ref. [53] showed a better performance than other
methods, being able to operate even on rapidly changing atmospheric conditions. The work
by [54] proposed the use of an Accelerated PSO. This algorithm combines PSO and Permute
and Observe to accelerate MPP searching. It also offers a higher convergence speed and better
dynamic response compared with PSO.

Another important metaheuristic is the Firefly Algorithm (FA), developed by [55] for solving
multimodal problems, and it has also been used to solve MPPT. The algorithm mimics how
fireflies interact with each other using their lights. The attractiveness of the light will depend
on its brightness and distance. For solving MPPT, the position of the firefly is related to the PV
voltage [56]. This algorithm assures fast convergence, with almost zero steady-state oscillations,
providing good tracking speed.

Artificial Bee Colony (ABC) [57] is focused on simulating the behavior of honey bees and
was used for MPPT in [58,59]. ABC consists of three different kinds of agents: workers, onlookers
and scouts. First of all, worker bees go to the food sources, estimate their utility value and dance
back in the hive. Every onlooker observes the dances, chooses one of their sources and goes there.
Abandoned food sources are located by scouts and are exchanged with the new food sources
found by them. The fitness function is set as the generated power when this algorithm is used
for MPPT. The algorithm will continue until the solutions do not change. The main advantage of
ABC is that it does not need hyper-parameter tuning as in the case of other metaheuristics such
as GA. In MPPT, this algorithm provides quick convergence and accuracy in tracking.

Ant Colony Optimization (ACO) [60] is used in [61] for optimizing neural networks in
order to solve the MPPT problem more efficiently. The ACO method was adopted in the learning
algorithms for adjusting the weights and biases of the neurons in the process of training. The
final network had a single hidden layer with 20 nodes. The results show an improvement over
the networks which are not optimized and over other traditional methods.

Other metaheuristics have been used for MPPT as can be seen in other reviews, such
as [62,63]. A summary of the commented methods can be found in Table 3.
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Table 3. Metaheuristic Algorithms for MPPT.

Algorithm Features

GA [49–51] Genetic Algorithms improves the results of other
methods such as ANN or FPSO

PSO [53,54] PSO is used to optimize Neural Network learning

FA [56]
This algorithm is used directly to solve MPPT. It
assures fast convergence with almost zero
oscillations

ABC [58,59,64] In MPPT, this algorithm provides quick converge
and accuracy in tracking.

ACO [62]
ACO is used in the learning process for adjusting
weights and biases or the neural networks in other
to improve its results

3.2.3. Neural Networks

Neural Networks have shown excellent adequacy and high capabilities for complex learning
problems and, thus, they are ideal for tracking the Max Power Point. They can be used alone
or helped by other methods. The hybrid techniques are usually focused on improving the
performance of the neural networks by optimizing the hyper-parameters of the networks since
it is a really complex task. In [65], the proposed NN was composed of a single hidden layer
of twenty nodes, two inputs and one or two outputs, all of them using tangent sigmoid. Two
networks are built, one for approximating the voltage and current curves and the second for
estimating the optimal voltage factors. The input of both networks is temperature modules and
solar irradiation. The outputs for the first networks are the optimal PV voltage and optimal PV
and optimal voltage factor for the second. This method improves the deficiency of traditional
algorithms and improves its results.

The work in [49] presents an NN composed of 5 nodes on a single hidden layer but with the
novelty of prepossessing of the data via genetic algorithms, using the same inputs (irradiance and
temperature) but with only one output: the Voltage at VMPP. The model improves the transitional
state and reduces the oscillations in the steady state compared with traditional methods.

The approach presented by [66] uses a hyperbolic activation function. The structure is
defined by 4 inputs, 1 output and 3 hidden layers with 8,7,7 neurons, respectively. The inputs are
composed of three irradiation levels and the temperature. The output is a prediction of the PV
voltage corresponding to the MPP; this output goes to a calculation block where it is converted
for the traditional P&O algorithm. The training was carried out with a Bayesian regulated
back-propagation, which performed better than standard BP. The results provide better efficiency
compared with classical methods, even under partial shading. The authors used MATLAB for
the implementation and simulations.

The technique presented in [67] combines Fuzzy Logic and Neural Networks, building the
system known as the Adaptive Neural Fuzzy System Interface (ANFIS). The ANFIS does not
need any prior knowledge of the system like the other NN methods. The structure is composed
of 5 layers: inputs (irradiance and temperature), output and three intermediate layers which
maintain the fuzzy logic system and provide the output based on the rules. Each input has
three membership functions that are generated by the ANFIS method. The results show that
the system is efficient to track MPP even under varying weather conditions. The method was
designed with MATLAB/Simulink.

The work in [40] provides a different approach using recurrent neural networks along with
fuzzy logic. The structure of the networks is composed by a hidden layer, a context layer storing
the results of the previous outputs of the hidden layers, the output layer (solar radiation intensity)
and the input layer (voltage of PV cell and the current of PV cell at the operational point. With
the solar radiation intensity and temperature, the VMPP is computed using the mathematical
model. Another improvement found in this work is how a metaheuristic is used to optimize
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the structure and the weights/bias of the RNN. The results show an improvement over other
competitive methods.

Another important hybrid is the method in [68], which combines ANN with Support
Vector Machines (SVM) [69]. The Course Gaussian Support Vector Machine (CGSVM) is used to
improve the dataset before sending the dataset to the neural network. The CGSVM is a type of
nonlinear SVM and is usually used on optimization tasks. The NN was composed of 2 inputs
(temperature and irradiance), 1 output (PV current) and a single hidden layer with 13 neurons.
The results are slightly worse on power than the ANFIS, but the required time was significantly
less than the ANFIS.

The work presented in [41] shows a new way of optimizing the ANN for MPPT. The
ANN is composed of a 2-3-3-1 structure in order to make real-time applications and to avoid
memorization events. The ANN takes input as irradiance and temperature and gives output as
maximum voltage and is optimized with a metaheuristic called FPSOGSA. The method compares
different activation functions in order to maximize performance. The results are compared with
P&O and traditional NN; it is found that the method provides more stability and efficiency. A
similar approach is presented in [70]. A PSO algorithm is used to find the best topology, find the
best 20 hidden nodes and to optimize the initial weights of the neural network. Two inputs are
used (G—level of irradiance and T—temperature), and a single output (predicting power of PV
array at MPP). The model proved to be more effective under various weather conditions than
other ANN or FLC techniques.

The work in [61] attempts to optimize an ANN using ACO. Using this algorithm for ANN
training results in quicker training. Tangent sigmoid is chosen as the activation function. Six
different topologies were evaluated in order to find the best structure, the best being a single
hidden layer with 20 neurons. Two inputs are transmitted to the ANN, PV array voltage and
current. The output is set as the duty cycle (d). The model tracks MPP efficiently even under
irradiation changes.

The approach found in [71] uses the concept of Deep Reinforcement Learning (DRL), which
tries to implement Reinforcement Learning (RL) through NN. The advantage of RL for MPPT is
that RL techniques are model-free, they do not require knowing the behavior of the PV source or
predefining its dynamics. A continuous state space is defined, corresponding to the current (I)
values. The action space is also continuous, so it contains all the actions that can be applied to
generate a change in the system. Finally, the reward function is computed directly proportional
to the power, and no prior knowledge about the system is needed to define it. The system uses
four networks, one for computing the policy, one for the critic and two called targets that are used
to stabilize the learning procedure. The model can learn highly efficient policies from scratch,
and the results show higher performance than other models.

With the aim of improving ANFIS, a new hybrid was proposed in [42]. The ANFIS is trained
using the BAT algorithm [72]. The use of metaheuristic improves the training of metaheuristic
compared with back-propagation; the BAT algorithm provides better convergence, simplicity
and faster tracking speed than other techniques. The results show an improvement over standard
ANFIS or ANFIS optimized with other metaheuristics such as PSO. Similar work is found in [73],
where an ANFIS-CPHO is presented. The Crowded Plant Height Optimization [74] is in charge
of training the ANFIS. The results are compared with standard ANFIS and show an increase in
the speed and efficiency of the tracker.

A summary of the analyzed models in this section can be found in Table 4.
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Table 4. Neural Network Models for MPPT.

Type Reference Features

FeedForward
Neural Network

[65] 2 networks. Each one with a single hidden layer of
20 nodes.

[49] 5 Nodes on a single layer. Data preprocessed by Genetic
Algorithm.

[66] Three hidden layers with 8,7,7 nodes, respectively.
Bayesian-Regulated back-propagation for training.

[68] A Single hidden layer with 13 neurons. Data created by a
Course Gaussian Support Vector Machine.

[41] 2-3-3-1 structure. The NN is optimized by FPSOGSA.

[70] The topology and best weights are optimized by a PSO
algorithm.

[61] ACO is used to optimize the neural network.

Adaptive Neural Fuzzy
System Interface

[42] Bat Algorithm is used to train the network.

[73] Crowded Plant Height Optimization is in charge of
performing the learning of the network.

[67]
Combines Fuzzy Logic and Neural Networks. Three
intermediate layers in which the output is based on fuzzy
rules.

Recurrent Neural Network [40]
A hidden layer and a context layer storing the results of
the previous outputs of the hidden layer. A metaheuristic
is used to optimize the structure and weights.

Deep Reinforcement
Learning [71]

Four networks, one for computing the policy, one for the
critic and two called targets that are used to stabilize the
learning procedure

3.3. Forecasting

Energy production forecasting has been an important problem, even in traditional systems,
and it has been tackled with different techniques, as it can be seen in Figure 5.

In [75], we found a system that uses Support Vector Machines (SVM) [69]. SVM is mostly
used for regression. The model uses two different inputs: solar irradiance and environmental
temperature, with energy production as the output. This work included the use of a parameter
to tune the number of support vectors during the training. The results show a low error, with a
Mean Absolute Percentage Error (MAPE) of 0.1143, but it was really intolerant at errors in the
input data. The method was implemented using MATLAB. Another approach related with SVM
is found in [76]. The authors propose a multi-input support vector. Three different inputs were
tested. Only solar power, solar power and solar irradiance combined and finally solar power,
temperature and irradiance. The best predictions were made when the third vector was used
to train the network with. The model showed better results than analytical methods with a
MAPE of 36%, but it was found that it was weak against changes in the climate. The method
was implemented using MATLAB.

In [77], a Neural Network was used for Short-Term Forecasting. The input data were
composed of the the deviation of load power and temperature of 30 days before the forecast day
and the same data of 60 days before and after the forecast day in the previous year. If the forecast
day is changed, the neural network needs to be retrained. The network is composed of 9 inputs
nodes, 20 hidden nodes and one output neuron. The results show a Mean Absolute Percentage
Error (MAPE) of 1.63% on average.
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Figure 5. Taxonomy of most used IA methods for forecasting.

The work of [78] tries to go further, presenting a neural network of 2 hidden layers, one of
6 nodes and the second with 4. This model has nine inputs (Day, Time, Cloud Cover Index, Air
Temperature, Wind speed, Air Humidity, UV index, precipitation and air pressure) and is trained
using a hybrid metaheuristic, which combines PSO and GA [79]. This hybrid is faster and more
robust than back-propagation for this problem.

Neural Networks have been found to be sensitive to many factors, including the architecture
or the initialization of weights. Combining different NNs in an ensemble has been found to
be a strategy to reduce these problems. The work of [80] tested different combinations using
temperature and solar irradiance as inputs. Every combination was found to be better than using
only a single NN. The data were composed of 7300 data from 365 different days. The findings
were that the best architecture for forecasting is the one which uses an iterative methodology to
find the outputs, forecasting one at a time with a Mean Absolute Error (MAE) of 51.48% and
Mean Relative Error (MRE) of 17.24%.

The work in [81] used a fixed methodology, changing activation functions, learning rules
and architecture in order to find the best neural network for their dataset. The data were acquired
along a period of 70 days, obtaining 11,200 examples. The best network had 1 hidden layer
with a Linear Sigmoid Activation Function. The learning rule as Conjugate Gradient [82], which
uses second derivatives to determinate the weight update, inputs temperature and photovoltaic
power and outputs next-day forecasting of PV power output. The validation study indicates that
this network is simple and versatile and can precisely forecast with a minimum MAPE of 0.8655.
The experiments were implemented using the NeuroSolutions [83].

Another problem of NN is that training can be slow since back-propagation is highly
demanding. For solving this problem, the work in [84] used the extreme learning machine (ELM)
technique to train the network. ELM [85] has a faster learning speed while obtaining better
generalization performance, and it also optimizes the number of hidden neurons. The system is
composed of three networks, one for each kind of weather. The network is trained with the PV
output history and the weather history data. Based on the weather report of the next day, the
model is chosen to forecast the day-ahead PV. The results show that ELM networks outperformed
BP networks with a MAPE of 2.78% in the best case. The experiments were implemented using
MATLAB.

Another improvement can be found in [86]; the neural network is aided by a technique
known as Wavelet Transform (WT) [87]. This algorithm is specialized in isolating the spikes
produced by continuous fluctuations of the PV data. It has two stages: decomposition of the
input signal, which is performed before the neural networks, and reconstruction, which is
performed with the output of the NN. The model used is a Radial Basic Neural Networks
(RBNN) [88], which needs less computation time and is more effective than Back-propagation
Neural Networks and takes as input the PV, solar irradiance and temperature of the current
hour, twelve hours before and twenty hours before in order to predict the one-hour-ahead power
output. The results show that the proposed model outperformed RBNN without WT for hourly
PV for the horizon of 12 hours with a MAPE of 2.38% in the best case.
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WT is used along other architectures as in [89]. RNNs are probed to be useful in order
to predict from time series and WT deals with the fluctuations on the data provided by the
meteorological time series obtained from sampling at intervals of 10 min and stored as time
series. This combination proved to be able to forecast 2 days ahead more accurately than other
Neural Networks.

A recent use of WT is found in [90]. This work presents a hybrid algorithm composed of WT,
PSO and RBFNN used to forecast from 1 to 6 hours ahead. The inputs that are used in the model
are set as Actual PV, irradiance and temperature. The WT is used to perform an data filtering on
the past 15 days before the forecast day. The RBFNN is optimized by the PSO algorithm. The
network performed better than the compared methods, with an MAE of 4.22% on average for a
1-hour-ahead forecast, 7.04% for a 3-hour-ahead one and 9.13% for 6-hour- ahead one.

Recurrent Neural Networks are also used in [91]. Deep Recurrent Neural Networks
(DRNN), RNNs with many hidden layers, are used to forecast. These networks are capable of
representing complex functions more efficiently than RNNs. The input data are composed of
high-resolution time series, which are preprocessed and normalized to obtain a high-resolution
time-series dataset of four different days. The architecture used was a DRNN with Long Short-
Term Memory (LSMT) [92] units with two hidden layers of 35 neurons. Other models showed
lower accuracies and more bias error than the proposed method that obtained an RMSE of 0.086.
The experiments were implemented using MATLAB and the Keras library (now on tensorflow)
in Python.

Another RNN method is found in [93]. The authors compared 5 different architectures of
RNN: A basic LSTM, an LSTM with the window technique, an LSTM with time steps, an LSTM
with memory between batches and stacked LSTMs with memory between batches. Two datasets
of different cities were used to test the 3 models. The results show the third proposal with an
RMSE of 82.15 in the first dataset and an RMSE of 136.87 in the second, which uses prior time
steps in the PV series as inputs, is the most accurate and reliable, even compared with other
methods such as ANN. The experiments were implemented using Keras.

The authors of [94] present an interesting modification of RNN. This work used the net-
works know as Echo State Network [95]. ESN presented a dynamical reservoir instead of the
traditional hidden layers of RNN. Their main advantage is that only the output weights need
to be trained since the reservoir and input ones are random. These networks can obtain better
results than typical RNN. A restricted Boltzmann machine (RBM) [96] and principal component
analysis (PCA) [97] are used in order to determine the number of reservoirs and inputs. The
network parameters are found by a DFP Quasi-Newton algorithm [98]. Compared with other
PV forecasting methods, the results show that the proposed model could outperform other
forecasting systems with a MAPE of 0.00195%.

A complex hybrid is found in [99]. This system uses NN aided by different algorithms
trained on data obtained during a year. Random Forest (RF) [100] is used to rank the different
factors that affect PV in order to eliminate the less important ones. This importance degree,
computed by RF, is transferred to Improved Gray Ideal Value Approximation (IGIVA) [101] as
weights to determine the similar days of different climates type. The objective of this is to improve
the quality of datasets. After that, the original sequence is decomposed by Complementary
Ensemble Empirical Mode Decomposition (CEEMD) [102] to reduce the fluctuation of the original
data. Finally, the neural network is optimized by a modification of PSO known as dynamic
inertial factor particle swarm optimization (DIFPSO) [103,104]. The proposed model reduced
training time and improved the forecasting accuracy with an MAE of 2.84 on sunny days, 10.12
on cloudy days and 13.01 on rainy or snowy days.

Another interesting approach is the Neuro-Fuzzy hybrid found in [105]. Fuzzy Logic is
applied as a filter to the input data obtained in the energy production and weather forecast for
12 months (day, irradiance, temperature, humidity, pressure, wind speed and cloud clover) in
order to speed up the system. The neural structure is composed of 7 inputs, 2 hidden layers of 9
and 5 nodes, respectively, and input. The network is trained by BP aided by a combination of
PSO and GA, known as Genetic Swarm Optimization [106]. This method improved convergence
speed and the predictive performance over other hourly forecast methods. The experiments
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were implemented using MATLAB Convolutional Neural Networks have also been applied to
time-series data since they are able to learn filters that represent repeated patterns in the data
without needing any prior knowledge. They also work well with noisy data. In [107], CNNs are
applied for forecasting PV power using Solar Data and Electricity Data as inputs. The CNNs used
the ReLu activation function, Adam optimizer and dropout to avoid overfitting. The parameters
were selected by testing different architectures and choosing the most promising. The models
were compared of an FFNN and an RNN of 128 hidden nodes. The results show that CNN
performed similarly to LSTM and better than MLP with an MAE of 114.38.

An interesting approach mixing Big Data and Deep Learning is found in [108]. This method
was used to next-day-ahead forecast in 30 min intervals. It used a multistep methodology that
decomposes the forecasting problem in different subproblems. For the Big Data, Spark Apache
was used. The neural Network parameters were searched using the grid search strategy. The
best structure was found with 3 hidden layers with between 12 and 32 neurons. The method
demonstrated that DL is suitable for big solar data since it has a linear increase in training time
and performs better than other methods.

The work of [109] makes use of a new kind of Neural Network, the Dendritic Neuron
Network [110], in order to forecast PV power. These kinds of neurons have 4 types of layers:
synaptic layer, branch layer, membrane layer and cell-body layer. The input data (temperature
and irradiance of the actual moment and the last) are transferred to the synaptic layers where
they are converted by the sigmoid function and summarized to the branch layer. The results
are transported to the cell-body layer for numerical judgment. This layer will transmit the data
thought the axon to other neurons when the data exceed a given threshold. This new kind of
network provides higher convergence speed and enhanced fitting ability. The network is also
aided by WT. The results show that the model outperformed typical Feed-Forward models
with an average MAPE of 10.9, with strong fluctuations and 4.55 on weak fluctuations. The
experiments were run using MATLAB.

In Table 5, a summary of the reviewed models is presented.

Table 5. Models for forecasting.

Type Features

Feed-Forward Neural Network

Nine inputs, 20 hidden nodes on a single
layer. [77]
Nine inputs, 2 hidden layers with 6 and 4 nodes,
respectively. Trained by a hybrid PSO GA
algorithm. [78]
Two inputs, creates ensembles of neural
networks. [80]
Two inputs, 1 hidden layer, Conjugate Gradient as
learning rule. [81]
Three neural networks, one for each kind of
weather. Uses Extreme Learning to optimize the
parameters and architecture. [84]
Fuzzy Logic is applied as a filter to the input data.
Seven inputs, 2 hidden layers of 9 and 5 nodes,
respectively. Trained by a hybrid of PSO and
GA. [105]
Uses Big Data. Multistep methodology
decomposes the problems into subproblems. [108]
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Table 5. Cont.

Type Features

Convolutional Neural Networks Two inputs. Parameters are selected by testing
different combinations. [107]

Dendritic Neural Networks Aided by WT. Provides better convergence speed
and better fitting ability. [109]

Radial Basis Network

Two inputs, aided by Wavelet Transform to
preprocess the input data. [86]
High-resolution time series as input. Aided by
Wavelet Transform to preprocess input data and
PSO to optimize the neural network. [90]

Recurrent Neural Network

Aided by Wavelet Transform to deal with
fluctuation in time series input data. [89]
Preprocessed and normalized high-resolution
time series as input. Two hidden layers of
35 neurons. [91]
Tested Different RRN architectures. LSTM, which
uses previous time steps, found the best one. [93]
Uses Echo State Networks aided by Restricted
Boltzmann Machine, Principal Component
Analysis and DFP Quasi-Newton Algorithm to
optimize the network. [94]

Support Vector Machines

Two inputs. A parameter to tune the number of
SVM during training. [75]
SMV compared with KNN. SMV was found to be
better. [111]
Multi-input SV. Different combinations of inputs
were tested. Three inputs was the best one
found. [76]

3.4. Parameter Estimation

Finding the parameters of the PV models is vital to simulate their behavior and to optimize
their production. This problem is simplified by finding the unknown parameters in order to
optimize the output power. Different techniques, most of them metaheuristics, have been used
to solve this problem, as can be seen in Figure 6.

Figure 6. Taxonomy of most used metaheuristics for parameter estimation.

Metaheuristics are the most used techniques to estimate PV parameters. Different kinds
of algorithms have been evaluated in recent years. The work in [112] compares different
evolutionary algorithms, comparing Genetic Algorithms [48], Particle Swarm Optimization [52]
and differential evolution [113]. DE is an evolutionary algorithm similar to Genetic Algorithms
but which uses real numbers to codify the problem, this solves the problem of GA when it
comes to converging speed. The fitness function was computed as the sum of the absolute errors
in current and voltage. The findings showed that the best results were given by DE and the
worst ones by GA. The authors also implemented different hybrids: Tabu Search [114] assisted
differential evolution to avoid falling in local minimums, PSO assisted DE in which PSO is
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activated after 5 generations of DE and DE assisted by Tabu Search where DE is used to search
for the optimal solution in a subset of the whole search space, while TS is used to move the local
search within the global space. These hybrids performed better than the originals and provided
more stability. DE assisted TS and provided the best results, and it was the fastest.

In [18], an ABC-based approach is proposed. This method combines Extreme Optimization
(EO) with 2 different versions of ABC. EO provides new insights into the optimization of
metaheuristics due to the fact that only the worst variables in the suboptimal solutions are
selected to be mutated, instead of favoring the good ones; this is provided by the strong local-
search capability of EO. The introduction of EO to ABC is applied when the global optimum
is not becoming better for several iterations. The results show that the addition of EO to ABC
outperformed other metaheuristics such as PSO on the single-diode model (mean RSME of
1.1678 × 10−3) and on the double-diode model (mean RSME of 1.1479 × 10−3). The major
drawback is that EO has a higher computation cost than other methods. The experiments were
run in MATLAB.

The authors of [115] presented a variant of the Covariance Matrix Adaptation Evolu-
tion Strategy. CMA-ES is an efficient derivative-free optimization algorithm. It operates
using the 3 typical evolutionary operations (recombination, mutation and selection). The
proposed variant combines CMA-ES with 2 strategies that can adjust the evolutionary
directions and enrich the population diversity (Anisotropic Eigenvalue Adaptation and
Local Search). The results show that the algorithm was competitive in terms of convergence
efficiency and accuracy, with a mean RSME of 9.8603 × 10−4 and Standard Deviation of
1.6550 × 10−17 on the single-diode model and mean RSME of 9.8402 × 10−4 and Standard
Deviation of 1.3398 × 10−12 on the double-diode model. It also had a good balance of
exploration and exploitation. The simulation and experiments were implemented with
MATLAB.

The Whale Optimization Algorithm is a recent metaheuristic that simulates the hunting
behavior of humpback whales. The basic WOA is composed of three consecutive stages:
encircling prey, bubble-net attacking and searching for prey. In [116], a variant of WOA is
used to estimate the parameters of a PV system. The proposed method, RLWOA, adopts a
modified conversion parameter update rule and relies on the Logistic Model to balance
between exploration and exploitation. This algorithm mitigates the slow convergence
and ease of being trapped in local optima of the original. The results show that RLWOA
performed better or at least competitively with standard WOA, other WOA variants and
other metaheuristics with a mean RSME of 9.8602 × 10−4 on single-diode. The experiments
were run in MATLAB.

The work in [117] presents a new optimization method called backtracking search
algorithm with competitive learning (CBSA). The principle basis of BSA is composed of
4 parts: the initialization of the population, selection, genetic operators such as mutation or
crossover and second selection in order to select the best candidate. The main idea of CBSA
is to increase the chance of the backtracking algorithm to jump out of the local optimum by
the designed competitive learning machine. Each population is divided in two subgroups,
then each subgroup has three different search operations in order to update its individuals.
Unlike other metaheuristics, CSBA does not need any extra control parameters. The results
show the superiority of CBSA for complex optimization problems with a mean RSME of
9.8602 × 10−4 on the single-diode model. The experimentation was performed in MATLAB.

Another interesting metaheuristic is found in [118]. The author presents an advanced
version of the Gray Wolf Optimizer [119] applied to parameter estimation. GWO is moti-
vated by gray wolf behavior. Wolves are divided into four categories: Alpha wolves, which
are dominant, and beta wolves, which are used to assist alpha wolves in decision making
or in other activities. The order given by alpha and beta is followed by the delta wolves.
Finally, the omega wolves play the role of scapegoat. The presented method is known as
the Intelligent Gray Wolf Optimizer, which incorporates sinusoidal truncated functions as
a bridging mechanism and opposition-based learning. The results show that the algorithm
was competitive with other optimizers, with a mean error of 4.65 × 10−13 on single-diode
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mono-crystalline, a mean error of 1.07 × 10−12 on double-diode mono-crystalline, a mean
error of 8.50 × 10−12 on single-diode poly-crystalline and a mean error of 1.95 × 10−12 on
double-diode poly-crystalline. Additionally, execution time was not compromised.

A hybrid between PSO and GWO is found in [120]. The fundamental principle of this
hybridization is to ingrate the social thing capability of PSO with the local search ability of
GWO. After performing PSO, each particle position with a certain probability is updated
using the average of the three best wolves. This method reduces the drawbacks of PSO,
increasing the possibility of the running of local optimums and improving the balance
between exploration and exploitation. The results confirm the superiority of PSO–GWO
compared with other competitive methods, with an RMSE of 3.06 × 10−3 and an MAE of
2.43 × 10−3 on a PV module model.

In [121], a variant of the Chicken Swarm Optimization is used to solve this problem.
CSO [122] is inspired by the foraging behavior and hierarchy of chicken flocks. In CSO,
each chicken is considered a potential solution. The chicken flock is divided into the rooster
subflock, hen subflock and chick subflock according to the fitness of each individual. Each
group uses a different update mechanism to update its position. The algorithm is upgraded
by using a Spiral Movement Strategy. The spiral movement allows each hen to bypass the
rooster and explore a wider space instead of being limited to the search space between
them. The experimental results show that the algorithm performs better in robustness
and accuracy than other metaheuristics with a mean RSME of 9.8602 × 10−4 and standard
deviation of 2.3517 × 10−12 on a single-diode model and a mean RSME of 9.8366 × 10−4

and standard deviation of 1.4171 × 10−6 on single-diode model.The experimentation was
performed in MATLAB.

Another interesting proposal is found in [123]. An Enhanced JAYA (EJAYA) is pre-
sented. The basis of the original JAYA [124] algorithm is as follows: After initializing the
solutions, the algorithm identifies the best and worst solutions and modifies all the solu-
tions based on them. All of the solutions that have better performance than the originals
are kept. This process is repeated until the stop criteria are achieved. EJAYA presents three
improvements: A modified evolution operator to increase the probability of approaching
the victory. A simple deterministic population resizing to control the convergence rate
during the search and a generalized opposition-based learning mechanism to avoid being
trapped on local optima. The results indicate that the algorithm can estimate the most
accurate model parameters with a mean RSME of 9.8602 × 10−4 on a single-diode model
and a mean RSME of 9.8248 × 10−4 on a double-diode model. It also provided a high
computational efficiency among the compared methods.The method was implemented in
MATLAB.

The work in [125] presents a Marine Predator Algorithm [126] applied to parameter
estimation. The optimization process of MPA is divided into three main phases: The first is
in high-velocity ratio or when prey is moving faster than the predator. The second is when
both are moving at the same pace and the third is in a low-velocity ratio when the predator
is faster than the prey. The algorithm extracted PV parameters in an accurate manner, fast
speed, less time of computation and high reliability and robustness with a mean RSME of
7.73 × 10−4 on a single-diode for a France Solar cell and a mean RSME of 7.65 × 10−4 on
double-diode for a France Solar cell. The examination and test occurred via MATLAB.

A novel approach is found in [127] presenting a variant of P system Optimization
Algorithms (POAs). POAs are helpful and reliable search techniques that abstract the
structure and function of living cells. The proposed Micro-change Field Effect P System is a
deeper exploration of the standard POA. The experiments showed that the method can pro-
duce solutions of high quality and has great stability with a mean RSME of 9.8606 × 10−4

on the single-diode model and a mean RSME of 9.8256 × 10−4 on the double-diode model.
The method was implemented in MATLAB.

In the Table 6, a summary of the reviewed models is presented.
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Table 6. Models for parameter estimation. SD: single diode, DD: double diode, MC: monocrystalline,
PC: polycrystalline.

Type Features Error

ABC and CE

Combines Extreme
Optimization with ABC. EO is
introduced in ABC when the
global optimum is not
improving. EO has a high
computation cost. [18]

RMSE: SD: 1.1678 × 10−3 DD:
1.1479 × 10−3

CMA-ES

This evolutionary algorithm
brings a good balance
between exploration and
exploitation and is
competitive with other
methods. [115]

RMSE: SD: 9.8603 × 10−4 DD:
9.8402 × 10−4

WOA and LM

A variant RLWOA changes
the parameter update rule and
relies on the Logistic Model to
balance exploration and
exploitation [116]

RMSE: SD: 9.8602 × 10−4 DD:
—

CBSA

Combines the exploratory
capacities of WOA and
convergence capacities of
Social Group Optimization.
[117]

RMSE: SD:9.8602 × 10−4 DD:

GWO

Improves basic GWO with a
new bridging mechanism and
opposition-based
learning. [118]

MAE: SD-MC: 4.65 × 10−13

DD-MC: 1.07 × 10−12 SD-PC:
8.50 × 10−12 DD-PC:
1.95 × 10−12

GWO and PSO

This method combines the
social thing capability of PSO
with the local search ability of
GWO. [120]

RMSE: SD: 3.06 × 10−3 DD: —

CSO
CSO is improved by a Spiral
Movement Strategy in order
to improve the results. [121]

RMSE: SD: 1.1678 × 10−3 DD:
—

JAYA

This method improves basic
JAYA with an improved
evolution operator, control of
the size of the population and
generalized opposition-based
learning. [123]

RMSE: SD: 9.8602 × 10−4 DD:
9.8248 × 10−4

MPA

The algorithm extracted the
parameters faster and with
high reliability and
robustness. [125]

RMSE: SD: 7.73 × 10−4 DD:
7.65 × 10−4

POA

Proposes an extension of
standard POA. The results
show that the method
produces solutions of high
quality. [127]

RMSE: SD: 9.8606 × 10−4 DD:
9.8256 × 10−4

GA, PSO, DE and others

Propose a comparison of
different algorithms and
crossover between them;
differential evolution assisted
by Tabu Search is found to be
the best. [112]

RMSE:— SD: — DD: —
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3.5. Defects Detection

Finding defects on the surface of the PV cells is a problem completely related to com-
puter vision. As observed in the bibliography, the most used technique for photographing
the images is electroluminescence. The datasets are usually private, but there are some
exceptions. We can see in Figure 7 the most used techniques for detecting defects.

Figure 7. Most used IA method for defect detection.

Classical approaches as found in [128], which tried to detect defects in the solar
modules using image processing techniques. In order to segment the different modules,
they used the first derivative of the statistic curve in order to find the division line between
each chip. After that, they used another technique, the otsu method, to obtain a binary
image. Finally, the algorithm tries to identify the state of the module using the geometry
of the resulting image. This algorithm produced interesting results, with a recognition
rate of 80% on cracked modules, 95% on fragmented and 99% on good state modules.
The recognition was also quite fast. The algorithms were implemented and applied via
MATLAB.

Another approach is found in [129]. This method combines the image processing
techniques with Support Vector Machines. The dataset featured 13,392 samples of EL
images of solar cells. The images are preprocessed in order to reduce spatial noises and
to accurately highlight crack pixels in images. After that, binary processing is performed,
and finally, the features are extracted from the image. These features are used by different
SVMs in order to classify the cells. The results present that the SVM with penalty parameter
weighting is the best SVM, with a correct detection rate of 91%, with specificity and accuracy
of more than 97%. The experiments were run in MATLAB.

In [130], the author compare Convolutional Neural Networks with SVM. The SVM
is trained with data from the ELPV dataset, composed of 2624 EL images of solar cells,
obtained by finding the features of the images using different feature descriptors. The
CNN used was a pretrained VGG19 with the upper layers changed and trained with
the examples. The models were tested with both monocrystalline and polycrystalline
modules. The results show that both classifiers were useful for visual inspection, both with
an average accuracy of 82.4%. The algorithms were implemented in Python, using Keras
for the Neural Network.

The work in [131] presented a similar approach using SVM and CNN. The CNN was
composed of two convolutional layers with leaky-relu and max-pooling. The convolutional
part was aided by two leaky-relu dense layers and the output layer. The SVM was trained
with different features extracted from the images. The dataset was built with 90 images of
full-sized commercial modules that were segmented afterward, obtaining 540 cells. The
results show similar behavior in both methods, with an accuracy of 98%. The article also
tackled unsupervised learning, trying to cluster the images by two features. This resulted
in a model that was able to assign the correct label in 66% of cases.The algorithms were
implemented in Python, using Tensorflow and OpenCV.

The work found in [132] presents a CNN with 13 convolutional layers, an adaptation
of the VGG16 architecture. The dataset was obtained by photographing solar modules of
6 × 12 cells with an EL camera. The network was trained using oversampling and data
augmentation in order to reduce the error. The results show that the network performed
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the best when both oversampling and data augmentation were presented with a Balance
Error Rate of 7.73% on binary classification problems of quick convergence. The method
was implemented with Keras. The preprocessing was performed with OpenCV.

The authors of [133] present new models that are trained not only with images with
cracks but also with corrosion. The images were obtained by photographing modules with the
EL technique and performing segmentation afterward, obtaining 5400 images. The models
are SVM and CNN. The CNN is composed of two convolutional layers. The SVM parameters
are optimized by a grid search. The results show a precision of 99%, an improvement over
other methods. The experiments were conducted via Keras and Tensorflow.

A variation of convolutional networks is found in [134]. A multichannel CNN is
presented. This network has different convolutional layers for each kind of input. This
network also can use inputs of different sizes. After each convolutional layer, a dense layer
is applied. Finally, a final dense layer combines all the previous data in order to classify the
image. This multichannel CNN improves the feature extraction of single-channel CNNs.
The dataset was made by 8301 different EL images of cells. The results show a 96.76%
accuracy, much more than the 86% presented by single-channel CNNs. The algorithms
were implemented in Python using Keras.

The model presented in [135] is composed of six convolutional layers using different
regularization techniques such as batch optimization. The dataset used was the ELPV
dataset, with 2624 images. The resulting network is a light architecture that achieved high
performance using few parameters with an accuracy of 93%.The experiments were run
on Tensorflow.

In order to further improve the results, a new approach is presented in [136]. The
authors use Fully Convolutional Neural Networks. An FCNN is a CNN without any dense
layer. The model used is the U-net, which has been used previously in biomedical image
problems with low data. This dataset was composed of 542 EL images. It is composed
of 21 convolutional layers of different sizes. The results show that it was better to accept
a slight decrease in the performance in order to improve the speed of the system. The
algorithms were implemented in python using Keras and Tensorflow.

Wavelet Transform is used in [137]. This method combines two kinds of WT: Discrete
WT and Stationary WT in order to extract textural and edge features from solar cells that
have been previously preprocessed. The dataset was composed of 2300 EL images. Finally,
two different classifiers are used: An SVM and an FFNN. The best model was the FFNN
with 93.6% accuracy, over the 92.6% presented by the SVM.

Another Neural Network used is the Complementary Attention Network in [138].
The CAN is composed of a channel-wise attention subnetwork connected with a spatial
attention subnetwork. This CAN can be grouped with any CNN, Fast R CNN [139] being
the one chosen by the authors. Two datasets were used, one composed of 2029 images
and another of 2129 EL images. The network was used for classification and detection,
obtaining an accuracy of 99.17% for classification and a mean average precision of 87.38%.
The network was faster and had similar parameter numbers to other commercial methods.
The algorithms were implemented using Python.

A very interesting approach is presented in [140]. This method is Deep-Feature-Based,
extracting features through convolutional neural networks that are classified afterward for
classification algorithms such as SVM, KNN or FNN. The particularity of this system is
that it used features from different networks. These features are combined using minimum
redundancy and maximum relevance for feature selection. The dataset used was the ELPV
dataset, with 2624 images. The selected CNNs for feature extraction are Resnet-50, VGG-16,
VGG-19 and DarkNet-19. The best method was found with SVM, selecting 2000 features
with an accuracy of 94.52% in two-class classification and 89.63% in four-class classification.

In the Table 7, a summary of the reviewed models is presented.
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Table 7. Models for detection of faults.

Type Features Accuracy Dataset Size

Image Processing Techniques

Segmentation +
obtention of binary
image +
classification. [128]

from 80% to 99% —

SVM + Image Processing Techniques

Images are preprocessed
and features are
extracted from the
image. These features
are used in an SVM with
penalty parameter
weighting. [129]

97% 13,392

SVM and CNN

Pretrained VGG19 using
different feature
descriptors. Similar
results for both
methods. [130]

82.4% 2624

CNN is composed of
2 layers using leaky-relu.
SVM trained with
different features
extracted from the
images. Similar behavior
in both models. [131]

98% 540

CNN is composed of
2 convolutional layers.
SVM parameters
optimized by search
grid. [133]

96%. 2840

CNN

Thirteen convolutional
layers, an adaptation of
VGG16. Uses
oversampling and data
augmentation. [132]

Uses a different
measurement 5400

Multichannel CNN.
Accepts inputs of
different sizes. Improves
the feature extraction of
single-channel
CNN. [134]

96.76% 8301

Six convolutional layers.
Regulation techniques
such as batch
optimization. [135]

93% 2624

Fully Convolutional
Neural Network.
Pretrained u-net,
composed of
21 convolutional layers.
[136]

Uses a different
measurement 542

CNN aided by a
Complementary
Attention Network,
composed of a
channel-wise attention
subnetwork connected
with a spatial attention
subnetwork. Usable
with different
CNNs. [138]

99.17% 2300

WT+ SVM and FFNN

Combines discrete WT
and stationary WT to
extract features and
SVM and FFNN to
classify them. [137]

93.6% 2029

CNN + SVM, KNN, etc.

Extracts features from
different networks,
combining them with
minimum redundancy
and maximum relevance
for feature selection.
Uses Resnet-50, VGG-16,
VGG-19 and
DarkNet-19. [140]

94.52% 2624
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4. Discussion

In Section 3, the different IA techniques applied are reviewed for each problem by
explaining various important works. In this section, a discussion about the state of the
art is performed, summarizing the trends of research and some possible new approaches
to consider.

The tracking of the Maximum Power Point has been considered in numerous ways,
from traditional and simple methods to methods that use complex technology such as
neural networks. The most simple methods still have importance, since a large amount of
systems do not need complex MPPT algorithms in order to optimize production. The most
complex algorithms are used only in the biggest power plants, where the configuration of
the PV arrays, and the large amount of them, makes the process of tracking the Maximum
Power Point more complex. Comparing the different techniques presented, it is clear that
the most used technologies are the Feed-Forward Neural Networks and the FLC systems
(Figure 8). Neural Networks perform better than Logic Systems, but they have some flaws.
Neural Networks are highly demanding in terms of computational cost compared with FL
systems. The need for large amounts of data is an intrinsic problem of Neural Networks,
but it is not as important as it used to be thanks to the high availability of data. Another
important problem is the complexity in the optimization of the hyper-parameters, since
Neural Networks have a large amount of them. The solution has been found by using
optimization algorithms, such as metaheuristics. These algorithms can be used to find the
best combinations of parameters or even to find the optimal architecture. As we observed,
the problem is still regarded nowadays, since there are ways to improve the efficiency and
performance of the most complex systems. To fulfill this objective, more of the newest
technologies applied in other sectors should be tried, since as it has been confirmed with the
previous works that these kinds of algorithms perform really well on this problem. The FL
methods and metaheuristics are usually implemented with MATLAB, but Neural Networks
can be implemented with Python as well, using libraries such as Tensorflow [141].

(a) (b)

(c) (d)

Figure 8. Different algorithms for each of the problems. (a) MPPT; (b) forecasting; (c) parameter
estimation; (d) defects detection.
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Forecasting is a key problem in PV systems. The estimation of the energy produced by
solar plants has been approached as a regression problem in the majority of papers. Due to
the availability of data, neural models are highly suitable for solving this problem (Figure 8).
The trend is to use the newest neural architectures while optimizing their parameters and
their architectures using other methods such as metaheuristics. As observed, an increase
in the complexity of the networks improves the results, but this is not the only way of
increasing performance. The combination with other systems such as Wavelet Transform
increases reliability. Alternative network systems such as Recurrent Networks or Dentritic
Networks further improve the results of traditional Neural Networks. This area also has
some room for improvement since forecasting is a tricky problem due to its dependence
on a large amount of variables. For future research, it would be interesting to test a
new combination of parameters, improve the datasets or even try the most innovative
technologies that have been used in similar problems. Most of the works are run on
MATLAB, but there is an increase in the presence of Python in the latest years due to the
Deep Learning Libraries.

Estimating the parameters of the PV models has been conducted with a large number
of different algorithms, most of them from the family of metaheuristics (Figure 8). The
results are quite similar between them in terms of error (Figure 9); this fact shows that
trying to further minimize error is not a worthy effort. The most promising works present
a mixture of different metaheuristics, solving the problems or flaws of one metaheuristic
by using others. The focus of research should be moved towards finding algorithms with
lower computational cost while maintaining the same levels of error. The majority of the
methods can be found implemented in MATLAB [141].

(a) (b)

Figure 9. RMSE of the different models for parameter estimation. (a) Single-diode; (b) double-diode.

Analyzing the state of modules or cells has always been important for optimizing
production since damaged modules are not as productive as they should be. As it seen, this
problem has been applied mostly to the cell level, segmenting images previously taken of
solar modules. Some author have even presented open datasets in order to test the models
with a more regular amount of data. The main reason for this problem is related to its
nature. The majority of models are trained with unbalanced datasets since the number
of damaged modules is usually considerably smaller than good state modules. Another
different way of improving the neural models is using pretrained neural networks such
as VGG-19 in order to make use of the patterns found in other datasets. Even with their
problems, in the bibliography, a considerable amount of models are presented, and they
obtain good results (Figure 10); the Convolutional Neural Networks being the most used
ones (Figure 8). However, there is a lot to do in this area, mostly, all of the models only use
electroluminescence images; the utilization of other techniques such as thermography could
bring more information and better results to the models. Another interesting new approach
could be fixing the unbalance in the data. Some studies have tried to use simple methods
such as flips or rotations, but it is necessary to implement more complex algorithms to
generate images that can be used to better train the models. The deep learning methods are
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mostly implemented with Tensorflow, and OpenCV is usually used for preprocessing the
images. MATLAB is used for traditional methods.

Figure 10. Accuracy of the different models for detection.

5. Conclusions

In this article, the relationship between Artificial Intelligence and Photovoltaic Systems
is explained. Numerous problems in this sector can be solved with the use of AI techniques.
These techniques present better performance than traditional methods.

Different techniques are applied to the MPPT problem, Neural Networks being the
ones which provided better results, even considering their limitations such as high compu-
tational requirements or the need for large amounts of data, other approaches involve Fuzzy
Logic and Metaheuristics. The forecasting problem is key for PV installations, different
models have been created to solve this problem, most of them related to Artificial Neural
Networks. These models are usually aided by other algorithms such as metaheuristics to
optimize the architecture or the hyperparameters. The estimation of model parameters is
also a really important problem, a large variety of metaheuristics have been used to solve
this problem with notably good results in terms of error and efficiency. The detection of
faults in PV modules has been proved to be vital for the maintenance of PV installations.
This is mostly conducted at the cell level and usually only with electroluminescence images.
Convolutional Neural Networks are the most used technology for the classification of
images, but they need to be empowered with some techniques such as Data Augmentation
or Knowledge Transfer.

Research in these areas is not finished, and it is still a hot topic nowadays as it can be
seen from the number of publications in recent years; the ways of improving performance
and efficiency are still being researched to adapt to every Photovoltaic System. It is observed
that one of the most important issues is the quality and quantity of the data. Machine
Learning methods need big amounts of data to be able to find patterns for predicting. This
issue is even more critical in Deep Learning methods. This research group is addressing
this issue for defect detection, creating synthetic EL images of photovoltaic cells to obtain
more examples to train models. These images could even be used in other problems of
PV systems.
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Abstract: Electrical energy is critical to the advancement of both social and economic growth. Be-
cause of its importance, the electricity industry has historically been controlled and operated by
governmental entities. The power market is being deregulated, and it has been modified throughout
time. Both regulated and deregulated electricity markets have benefits and pitfalls in terms of energy
costs, efficiency, and environmental repercussions. In regulated markets, policy-based strategies are
often used to deal with the costs of fossil fuel resources and increase the feasibility of renewable
energy sources. Renewables may be incorporated into deregulated markets by a mix of regulatory
and market-based approaches, as described in this paper, to increase the systems economic stability.
As the demand for energy has increased substantially in recent decades, particularly in developing
nations, the quantity of greenhouse gas emissions has increased fast, as have fuel prices, which are
the primary motivators for programmers to use renewable energy sources more effectively. Despite
its obvious benefits, renewable energy has considerable drawbacks, such as irregularity in genera-
tion, because most renewable energy supplies are climate-dependent, demanding complex design,
planning, and control optimization approaches. Several optimization solutions have been used in the
renewable-integrated deregulated power system. Energy storage technology has risen in relevance as
the usage of renewable energy has expanded, since these devices may absorb electricity generated
by renewables during off-peak demand hours and feed it back into the grid during peak demand
hours. Using renewable energy and storing it for future use instead of expanding fossil fuel power
can assist in reducing greenhouse gas emissions. There is a desire to maximize the societal benefit of
a deregulated system by better using existing power system capacity through the implementation
of an energy storage system (ESS). As a result, good ESS device placement offers innovative control
capabilities in steady-state power flow regulation as well as dynamic stability management. This
paper examines numerous elements of renewable integrated deregulated power systems and gives
a comprehensive overview of the most current research breakthroughs in this field. The main ob-
jectives of the reviews are the maximization of system profit, maximization of social welfare and
minimization of system generation cost and loss by optimal placement of energy storage devices
and renewable energy systems. This study will be very helpful for the power production companies
who want to build new renewable-based power plant by sighted the present status of renewable
energy sources along with the details of several EES systems. The incorporation of storage devices in
the renewable-incorporated deregulated system will provide maximum social benefit by supplying
additional power to the thermal power plant with minimum cost.

Keywords: regulated system; deregulated system; energy storage devices; modern power system;
profit; compressed air energy storage
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1. Introduction

Electrical energy storage (EES) systems have demonstrated unique skills in coping
with several important aspects of electricity, for instance, hourly changes in demand and
pricing [1]. Firstly, EES saves power costs by storing electricity obtained during off-peak
hours when its price goes down, for use at peak hours, rather than electricity purchased
then at higher costs [2]. Second, in order to increase power supply stability, EES systems
assist users when electricity network disruptions occur as a result of natural catastrophes,
for example. Thirdly, it preserves and enhances power quality, frequency, and voltage [2].
Electric vehicles with batteries are the most potential off-grid method for replacing the
conventional sources with renewable energy [3]. Smart grid relates to power grid updates.
Smart grid technology integration makes the grid more adaptable and responsive, with the
potential to provide real-time feedback by sharing data among electricity producers and
consumers to provide a more sustainable and efficient power supply. EES is one of the key
elements in developing a smart grid [4].

1.1. Role of EES

Two properties of electricity cause challenges with its usage while also creating market
demand for EES. To begin with, power is consumed at the same moment it is created. To
fulfill the shifting demand, the appropriate amount of power must constantly be given.
The second trait is that power plants are often positioned distant from where electricity is
utilized [5].

1. Because power lines are constantly required, if a line fails (due to congestion or any
other reason), the provision of energy is halted; also, because lines are always required,
delivering power to mobile applications is problematic.

2. Depending on the locations and amounts of power supply and demand, a large
amount of power flow may be focused onto a single transmission line, causing
congestion.

1.1.1. Optimization: High Generation Cost during Peak Hours

Generation costs vary across periods. Power suppliers should supplement base-load
power plants with less cost-effective but more adaptable kinds of production, such as oil-
and gas-fired generators, during peak hours. Costly methods of generating can be shut
down during off-peak hours. This surplus can be held in EES and used to lower generating
costs. In contrast, EES can reduce energy cost for customers because it can store energy
purchased at cheap off-peak prices and use it during prime times in place of costly power.
During off-peak time, users can recharge batteries and may also sell to utilities or to other
users during peak time [5–7].

1. From the standpoint of utilities, there is a significant opportunity to lower total
generating costs by storing electricity during the off-peak hours and reintroducing it
into the power system during hours of maximum demand.

2. During peak periods of higher-than-average energy use, power suppliers must sup-
plement the conventional base-load power facilities with less costly but more flexible
sources of production, such as oil- and gas-turbine generators.

3. Conversely, from the perspective of customers, EES can cut down the financial burden
since it can store electricity purchased at cheap rates during off-peak and use it during
peak hours, which would have been costlier if purchased during peak hours.

1.1.2. Continuous and Flexible Supply: Need of the Hour

The main issue for utilities is delivering a consistent and adaptable power supply
for consumers, which is a critical quality of energy. If the proper amount of electricity
is not accessible when consumers need it, power quality will suffer and service will be
disrupted in the worst-case situation. To meet fluctuating power consumption, sufficient
amounts of energy should be produced on a regular basis, based on an accurate assessment
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of demand variations [1,2]. Power generators require two extra functions in addition to the
basic generating function. Firstly, producing facilities must have a “kilowatt function” that
permits them to generate enough power (kW) as per requirement. Secondly, generating
facilities must feature a frequency control mechanism that adjusts the output to fit minute-
by-minute variations. To take care of the fluctuating power consumption, adequate amounts
of energy should be generated and be available, based on an accurate estimate of demand
fluctuations. Such issues are intended to be addressed by EES. When produced electricity
is in low supply, pumped hydro has been routinely employed to deliver a huge amount of
power [7].

1.1.3. Distance between Generation and Consumer: A Deciding Factor

Consumers’ premises are usually located far from power-producing facilities, increas-
ing the likelihood of a power failure [8]. Natural calamities and causes due to human
factors trigger system failures that interrupt power supply and have the potential to affect
broad areas [9]. When power failures occur, EES will support consumers by continuing
to provide electricity. Semiconductor and LCD manufacturing are two industries where
voltage sag for just a few milliseconds has an impact on product quality, employ EES [10].

1.1.4. Power Grid Congestion: A Point of Concern

The power flow in transmission networks is determined by the demand and supply.
Power congestion can occur during the process of balancing supply and demand [11].
Utility companies strive to avoid future bottlenecks by moving generating output or estab-
lishing additional transmission connections. EES, when installed at appropriate places such
as substations at the extremities of heavily loaded lines, can help to reduce congestion [12].
This method also helps utilities delay or cease power network reinforcement.

1.1.5. Transmission by Cable: Point of Difficulty

Because power transmission usually entails the use of cables, supplying power to
mobile applications and isolated areas is difficult. EES technology, with its mobility and
charging functionality, can be beneficial to address this issue. It may be difficult to charge
an EV in remote places without access to a power grid, but EES can aid in the creation of a
green transportation system that does not rely on traditional IC engines [13].

1.2. Emerging Needs for EES

Two key market needs for EES as a critical and evolving technology are: (i) the use of
more renewable energy and lower consumption of conventional fuel and (ii) a future smart
grid [1] (shown in Figure 1).

1.2.1. A Step towards Greener Earth: More Renewable Energy, Less Fossil Fuel
On Grid Areas

The variability in the output of renewable sources makes it challenging to regulate the
frequency of the system, and if the frequency deviation is too great, system performance
may suffer [14].

Thermal generators are not operated at full capacity but rather with a positive and
negative output margin (i.e., output increases and decreases) that is utilized to change
frequency. If EES can reduce output variation, thermal generator margins can be decreased,
and they can run more efficiently [6].
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Figure 1. EES: Sustainable option towards greener earth.

Off-Grid Areas

Fossil energy should be replaced with non-fossil energy. This not only eliminates the
prohibitive initial costs but also provides a good clean alternative. In particular, low-carbon
power produced primarily from renewables ought to take the place of fossil fuels.

1.2.2. Smart Grid

Existing equipment may be energized with EES and be included into the smart grid.
By employing a home energy management system to track their actual usage in real
time, residential consumers will take an active role in changing their energy consumption
patterns [15]. EVs are projected to be a new source of electricity as well as a potential storage
medium in a smart grid that uses a portable, distributed energy resource as a load-shifting
function, allowing utilities to continue delivering power even as electricity costs rise.

2. Types of Electrical Energy Storage System (EES)

EES systems classified on the basis of the kind of energy consumed are: (i) mechanical,
(ii) electrochemical, (iii) chemical, (iv) electrical, (v) thermal and (vi) superconducting
magnetic categories [8,12,16]. The classification of EES based on type of energy consumed
is shown in Figure 2.
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Figure 2. Classification of EES based on type of energy consumed.

3. Working of Electrical Energy Storage System (EES)

3.1. Mechanical Storage Systems

Mechanical energy storage devices store received energy by utilizing kinetic or gravi-
tational forces. These systems are useful in real-world applications due to quality materials,
advanced computer control systems, and imaginative design [17]. Mechanical energy
storage operates in complicated systems that employ heat, water, or air in conjunction with
compressors, turbines, and other machinery.

3.1.1. Pumped Hydro Storage (PHS)

Pumped hydro storage power plants provide for more than 95% of the world’s current
electrical storage capacity [18]. In pumped hydro storage systems, two water reservoirs
at different heights are utilized to pump water during off-peak hours (charging), and as
needed, water flows downstream from the top pool to the lower reservoir, driving a turbine
that produces electricity (discharging). The efficiency of the PHS plant ranges from 70% to
85% [19]. The main benefits of this system are long life and almost unlimited cycle stability,
while its drawbacks are its topography and heavy land use. The world’s largest PHS plants
have installed capacity of 3003 MW and 2400 MW (as of December 2021), respectively.

3.1.2. Compressed Air Energy Storage (CAES)

CAES has been used in a range of industrial applications since the eighteenth century.
Electricity is used to compress air and store it in a subsurface construction or an above-
ground system of containers or lines. Subsurface storage options include tunnels, aquifers,
and abandoned mines. Diabatic technology is well proven; the plants are highly reliable
and can operate without external power [20] (shown in Figure 3). CAES has a large
capacity, but it has drawbacks such as low round-trip performance (less than 50%) and
geographical constraints.
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Figure 3. Compressed air energy storage system schematic.

3.1.3. Flywheel Energy Storage (FES)

In flywheel energy storage, kinetic energy is stored in an accelerated rotor which is
a massive rotating cylinder. Electricity is supplied to the flywheel using a transmission
mechanism and with rise in the speed, amount of stored energy increases [17]. Flywheels
are commonly utilized for power quality in industrial and other applications. Flywheels
have advantages of exceptional cycle stability and long life, low maintenance, greater power
density and the use of environmentally friendly materials. However, it has demerits such
as high self-discharge and poor current efficiency [21]. Efforts are focused on improving
the management of flywheels as power storage devices for usage in cars and industries for
long operation hours (shown in Figure 4).

Figure 4. Flywheel energy storage system schematic.

3.2. Electrochemical Storage Systems

Electrochemical energy storage devices have the ability to make a major contribution to
the deployment of sustainable energy. Electrochemical energy storage is based on systems
with high energy density (batteries) or power density (electrochemical capacitors). High
energy and high power densities in the same material are increasingly required in current
and near-future applications [17,22]. These are categorized in two types: secondary batteries
and flow batteries. The secondary batteries have again classified into following types: lead–
acid, NiCd/NiMH, Li-ion, metal–air, sodium–sulfur and sodium–nickel chloride [22].
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3.2.1. Secondary Batteries

A secondary battery, or charge accumulator, is a cell or set of cells with reversible cell
processes. This implies that the original chemical conditions inside the cell can be restored
by allowing current to flow into it, i.e., charging from outside [22].

Lead–Acid Battery (LA)

Lead–acid batteries are the most widely used form of battery in the world, dating back
to roughly 1890. Service life is typically 6–15 years, with a service life of 1500 cycles at a
% depth of discharge and a cycle efficiency of 80–90% [22–24]. The downsides are lower
energy density and the use of lead, a dangerous element that is prohibited or restricted in
some locations. Advantages include a good cost/performance ratio, simple recyclability,
and a simple charging method. The current focus of lead–acid battery development is to
improve their efficiency for micro-hybrid electric vehicles.

Nickel–Cadmium and Nickel–Metal Hydride Battery (NiCd, NiMH)

Before the commercial launch of nickel–metal hydride (NiMH) batteries in 1995, nickel–
cadmium (NiCd) batteries had been in use since around 1915. NiMH batteries contain all of
the advantages of NiCd batteries, such as greater power density, marginally better energy
density, and a larger number of cycles, with the exception of a 10-fold lower maximum
nominal capacity. They are far more robust and secure than lithium-ion batteries. However,
due to the toxicity of cadmium, they have been limited for consumer use since 2006. NiMH
batteries are currently about the same cost as Li-ion battery packs [22].

Lithium-Ion Battery (Li-Ion)

Lithium-ion batteries have been the most important form of storage in portable and
mobile applications since about the year 2000. With a cell voltage of only 1.2 Volts, one
lithium-ion cell may substitute three NiCd or NiMH batteries [22]. The most significant
impediment is the high cost of the unique packaging and incorporated overload protection
circuits. Safety is a serious problem in lithium-ion battery technology. Most metal oxide
electrodes are thermally unstable and can melt at high temperatures. Lithium-ion batteries
feature a monitoring device that prevents overcharging and discharging to lessen this
risk [22]. A voltage regulation circuit is often provided to monitor and avoid voltage
changes in each individual cell. Lithium-ion battery technology is constantly improving,
with plenty of possibilities for advancement. The evolution of cathode materials is being
studied [22–26]. The construction of typical Li-ion battery module is depicted in Figure 5.

Metal–Air Battery

A metal–air electrochemical cell’s anode is made of pure metal, while the cathode is
connected to an infinite supply of air. In the electrochemical process, only oxygen from
the air is used. Because of its greater specific energy excluding oxygen (theoretically 11.14
kWh/kg), the lithium air battery is the most enticing of the several metal–air battery
chemical couples [22]. Due to lithium’s high reactivity to air and humidity, it can catch fire,
creating a serious safety risk. Only a zinc–air battery with a theoretical specific energy of 1.35
kWh/kg (without oxygen) is theoretically practical at the moment. It is difficult to design
rechargeable zinc–air cells since zinc precipitation from the water-based electrolyte must be
properly handled. Although a viable, electrically rechargeable metal–air system could offer
low material costs and high specific energy, none has yet attained marketability [22–26].

Sodium–Sulphur Battery (NaS)

In sodium–sulfur batteries, a solid beta-alumina ceramic electrolyte isolates the active
constituents (molten sulfur at the anode and molten sodium at the cathode). NaS batteries
have a discharge time of 6.0 to 7.2 h and a standard life cycle of around 4500. They are
both effective and quick to respond (round-trip efficiency based on AC is around 75%) [23].
Over 200 places in Japan have tested the NaS battery technology, largely for peak shaving.
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Many countries employ NaS batteries as well. Although the lack of a heat source is a
significant drawback, with correctly sized insulation, the heat developed in the battery
may be managed in frequent use by its own reaction heat. These batteries are suited for
high-frequency cycling applications [27,28]. The construction of typical NaS battery module
is depicts in Figure 6.

Figure 5. Typical Li-ion battery module.

 

Figure 6. NaS battery system.
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Sodium–Nickel Chloride Battery (NaNiCl)

The sodium–nickel chloride (NaNiCl) battery, also known as the ZEBRA battery is a
high-temperature (HT) battery that, like the NaS battery, has been available on the market
since approximately 1995 [24]. NaNiCl batteries outperform NaS batteries in terms of
safety and cell voltage, and they can withstand limited overload and discharge. These
batteries have been employed effectively in a variety of electric vehicle designs, and they
are a viable alternative for fleet applications. Upgraded variants of the ZEBRA battery with
greater power density values for hybrid electric vehicles, as well as high-energy versions
for conserving renewable power for load-leveling and industrial purposes, are presently
being developed.

3.2.2. Flow Batteries

NASA invented flow batteries in the early 1970s as an EES for long-term space
flights [25]. They have the potential to store energy for hours or days and have a power
of many megawatts. Flow batteries are of two types: redox flow batteries and hybrid
flow batteries.

Redox Flow Battery (RFB)

The electrolytes present at the negative and positive electrodes of a redox flow battery
are anolyte and catholyte. During discharge, electrodes are continually provided with
dissolved active masses from the tanks; once converted, the product is returned to the tank.
During the charge exchange, a current flows between the electrodes, which may be used
by a battery-powered device. Redox flow batteries are being studied for use in electric
vehicles; however, electrolyte energy density has proved too low thus far. An RFB may
potentially be “refilled” in minutes by draining out the emptied electrolyte and replacing it
with recharged electrolyte. In RFBs today, many redox couples, such as a Fe-Ti system or a
poly S-Br system, have been investigated and tested (shown in Figure 7) [27,28].

Figure 7. Schematic of redox flow battery.

Hybrid Flow Battery (HFB)

One active mass in a hybrid flow battery (HFB) is kept within the electrochemical
cell, while the other is kept externally. The benefits of classic secondary batteries and
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RFBs are combined in HFBs. HFBs include the Zn-Ce and Zn-Br systems. The anolyte
is a Zn2+ ion-acid solution, and the electrodes are primarily carbon-plastic composites.
Exxon pioneered the Zn-Br hybrid flow battery in the early 1970s, and it is now being
commercialized by a variety of companies. In addition, 5 kW/20 kWh community energy
storage devices are also being developed [22,28].

3.3. Chemical Energy Storage

A chemical energy storage system is the only idea that allows for the long-term storage
of significant amounts of energy, up to TWh, even as periodic accumulation. SNG and
hydrogen may be used in a range of industries, including commuting, movement, heating,
and the chemical industry. They have lesser overall efficiency than PHS and Li-ion storage
technologies, but are more cost efficient and effective than ordinary batteries [26].

3.3.1. Hydrogen (H2)

An electrolyzer is a type of electrochemical converter that splits water into hydrogen
and oxygen using electricity. It is an endothermic reaction, which indicates that heat is
required throughout the process. Hydrogen may be stored under pressure in gas bottles or
tanks for nearly indefinite periods of time. Electrolysis releases oxygen into the environment
rather than retaining it, and oxygen from the air is utilized to create electricity [26].

3.3.2. Synthetic Natural Gas (SNG)

Methane (synthetic natural gas or SNG) may be synthesized to store energy. SNG can
be stored in pressure tanks, underground, or fed directly into the gas infrastructure. To
prevent energy losses, CO2 and H2 transport to the methanation plant should be avoided.
The fundamental drawback of SNG is its low efficiency as a result of conversion losses
in electrolysis, methanation, storage, transport, and power production [27]. The overall
AC-AC efficiency of 35% is significantly lower than that of hydrogen [13].

3.4. Electrical Storage Systems

The classifications of EES are as follows:

3.4.1. Double-Layer Capacitors (DLC)

DLCs, also known as super-capacitors, are a 60-year-old electrochemical double-layer
capacitor (DLC) technology. The extremely high capacitance values, on the order of thou-
sands of farads, and the capability to charge and discharge very fast due to extremely low
inner resistance are the two important properties. This technology offers a lot of space for
advancement because it might result in substantially greater capacitance and energy density
than standard capacitors, permitting for more compact designs. Durability, dependability,
no maintenance, prolonged lifetime, and functioning across a wide temperature range are
further benefits. With the exception of the chemical used in capacitors, which deteriorate
in 5–6 years regardless of the number of cycles, the lifetime surpasses one million cycles
without degradation. The efficiency is often more than 90%, with discharge times varying
from seconds to hours. DLCs are not suitable for long-term energy storage due to their
high self-discharge rate, low energy density, and hefty investment needs [28]. As a UPS, a
DLC is excellent for bridging small power disruptions. The electric automobile might be
used in a unique way, as a buffer system for acceleration and regenerative braking [4].

3.4.2. Superconducting Magnetic Energy Storage (SMES)

SMES devices store magnetic energy in a magnetic field that is generated by a su-
perconducting coil held less than its critical temperature. A temperature of around 4 ◦K
was required at the early age but now materials with higher critical temperatures (about
100 ◦K) have been developed and are now accessible. Particle detectors for high-energy
scientific experiments and nuclear fusion use large SMES systems with more than 10 MW of
power [29]. The main benefits of SMES are high overall round-trip efficiency (85–90%), the
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extremely high power output and the extremely fast reaction time: the required power is
practically instantly accessible [30]. The energy can be stored basically as long as the cooling
system is running, but longer storage times are restricted by the refrigeration system’s
energy demand.

3.5. Thermal Storage Systems

Thermal storage systems capture heat from a wide range of sources and preserve it in
an insulated storage for later use in industrial and residential applications. Thermal storage
systems are used to act as an intermediary between thermal energy demand and supply,
making them crucial for the integration of renewable energy sources [31].

There are three forms of thermal storage: sensible heat storage, latent heat storage and
thermochemical adsorption and absorption storage [17]. A storage medium can be a liquid
or a solid. Thermal energy can only be stored by varying the temperature of the storage
medium. A storage system’s capacity is determined by the specific heat capacity and mass
of the medium used. For latent heat storage, phase change materials (PCMs) are utilized
as storage media. Organic (paraffins) and inorganic PCMs (salt hydrates) are also viable
options for such storage systems. Latent heat is the energy transmitted during a phase
transition, e.g., ice melting [17]. It is also referred to as “hidden” heat since there is no
temperature difference during energy transmission. The most well-known latent heat—or
cold—storage method is the ice cooler, which uses ice in an insulated container or chamber
to keep food cool on hot days. The solid–liquid phase shift is used in the majority of PCMs
currently in operation, such as molten salts as a thermal storage device for concentrated
solar power (CSP) plants [32–41].

3.6. Superconducting Magnetic Energy Storage

A superconducting magnetic energy storage system (SMES) is a tools that stores
electricity from the electrical grid within the magnetic field of a coil contained of super-
conducting wire with very little energy loss. The SMES systems are categorized into three
groups: power supply, control systems and contingency systems [16].

4. Review: A Journey towards the Future with Guidance from the Past

A detailed literature review was conducted on deregulated power systems with the
integration of renewable energy sources and energy storage devices. The main objectives
of the reviews are the maximization of system profit, maximization of social welfare,
and minimization of system generation cost and loss by optimal placement of energy
storage devices.

K.C. Divya’s study [42] focuses on the incorporation of non-conventional energy
sources into the power grid and the usage of energy storage devices for profit maximiza-
tion. The role of electric hybrid car battery storage systems has been considered. This
article proposed that energy storage using battery will play an important role in the sus-
tainable and cost-effective functioning of smart electric grids integrated with renewable
energy. There is no single storage system that can fulfill all of the criteria for an ideal EES.
Various storage systems are compared by Chen in terms of technological specifications
and characteristics, applications, and implementation status [43]. Among the developed
technologies, CAES is beneficial in terms of the lowest capital cost. R. Banos looked at
some of the major difficulties of renewable energy sources in this research [44], such as
generation discontinuity, which is an environment-dependent and continuous develop-
ment in optimization techniques utilizing computing resources. The current state of the art
computational optimization methods is reviewed in this paper, providing a comprehensive
picture of the most recent research developments in this subject. Heuristic techniques,
Pareto-based multi-objective optimization, and parallel processing have all been discovered
to be interesting study areas in the realm of renewable and sustainable energy. In the
article [45], Aqeel Ahmed Bazmi discusses the importance of modeling and optimization in
the power and supply sectors, as well as the future prospects of optimization modeling
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as a tool for sustainable energy systems. Modeling and optimization have been found
to be effective and valuable methods for solution development in the power and supply
sector, particularly for policymakers establishing policies based on extensive assessments
of competing technologies and large quantities of scenario studies.

Zhimin Wang [46] developed a unique methodology for energy management in home
area using EESs to facilitate energy storage, with the goal of providing wholesale energy at
reduced cost and supporting LV distribution networks for network investment reduction.
The aim is to create the optimum possible DRs-to-energy-price and network-congestion
balance feasible, hence improving customer and network operator advantages. The authors
of this work [46] suggest a novel dispatch approach for consumers and DNOs to share
ownership of residential energy storage batteries. Ref. [47] discusses various applications
of EES technologies in power systems, with a focus on their collaboration with renewable
energy sources. The function of ESSs in intelligent micro power grids is also highlighted,
as the stochastic nature of renewable energy sources might have an impact on power
quality. Each type’s applicability in power systems is examined and compared to others.
An energy storage system’s technological and physical features are also examined in depth.
Yanine and Sauma’s [48] research focuses on supervisory management of micro-generation
systems when connected to the grid and when energy storage is not involved. The goal is
to increase energy efficiency, thriftiness, and sustainability. Suggestions have been made
that future advancements in smart micro-grid operation should be increasingly focused on
recognizing that SHES can be intelligent. Mwasilu [49] conducted a complete evaluation
and appraisal of the most recent research and advancements in electric vehicles (EVs)
interaction with smart grid, depicting the future electric power system model. The smart
V2G system’s viability is also addressed. The interactions of electric vehicles with the smart
grid as a future energy system model are thoroughly examined in this work.

Zhang [50] presented a two-stage EES-based optimum wind power dispatch system
with risk analysis to increase financial advantages through day-ahead operations. Through
simulations, the suggested strategy demonstrated promising outcomes in terms of im-
proving financial benefits and risk-reduction capability. Muruganantham, Gnanadass, and
Padhy’s research [51] demonstrates the several obstacles that DN suffers while adopting
RES. This research investigates the significance of energy storage in distributed networks
and how to manage the demand. This research provides a high-level overview of the DN’s
evolution and issues. This provides a quick overview of distribution power flow algo-
rithms, electricity pricing systems and the simultaneous working of DGs and DN. Huang,
Xu and Courcoubetis [52] conducted an investigation on three joint market mechanisms
to analyze EES investment and operation for locational marginal pricing. The numerical
analysis brings out the significance of building integrated storage investment and working
mechanisms, while market regulation/schemes focusing simply on EES are unable to
produce socially optimal solutions. Das and Bass [53] presented an overview of optimal
ESS deployment, size, and operation in power networks in their study. Flywheel energy
storage (FES) should also be considered in several distribution network situations. There
are many different types of ESSs, each with its own set of benefits and drawbacks. The best
ESS for you will be determined by the projected performance improvements, features, and
application types. Researchers have already devised various meta-heuristic methodologies
for optimization, but there is always room for improvement. Thopil, Bansal, Zhang, and
Sharma observed in their research [54] that the abundance of coal-powered generation is
not practical, mostly because renewable energy is not yet ready to be the dominant source
of energy. Adopting a hybrid and bidirectional energy paradigm, in which customers
remain connected to the grid while being fueled by renewable energy sources via small-
and medium-scale distributed generators that may be put within the consumer’s premises,
is suggested as a realistic alternative.

Hirsch (a) defines a microgrid and (b) gives a multidisciplinary portrayal of today’s
microgrid drivers, practical applications, problems, and future possibilities in the review
paper [55]. Proper planning and understanding is needed well in advance to find the most
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suitable architecture to integrate various distributed energy resources. Various factors in-
cluding regulations, legal issues, quality of power and financial benefits, etc. will play major
roles in deciding the sustainability of microgrids in the long run. Howlader’s work [56] on
independent ESS to minimize profit uncertainty for retailers in the ISO Market highlighted
the problem of financial burden of hour ahead considering load mismatch. This has also
concentrated on lowering the cost of IESS installation. This study demonstrates a novel en-
ergy market model where IESS is used to compensate for power adjustments. Furthermore,
these IESS may be utilized to compensate for predicting errors and solve a variety of other
problems. Kong and Jung’s research [57] study presents a way for estimating the amount
of ESS when there is inadequate data for future PV and WT providers. The predicted ESS
size differs from the optimal size with the least amount of error. For future RES suppliers
to enhance their profitability, the suggested approach employing polynomial regression is
utilized to predict the ESS magnitude. Akbari-Dibavar [58] explored the suitable energy
managing techniques of a net-zero emission MPGS incorporating RERs, hydrogen energy
systems, and storage units in a deregulate scenario. The robust optimization technique was
used to analyze the impacts of wind power uncertainty in order to provide an acceptable
level of resilience for the system. Solar and wind power are employed for clean energy
generation due to the sustainability characteristic of the micro power grid system (MPGS).
Ahmad, Zhang, and Yan [59] provide unique insights into a critical and systematic review
of renewable energy and power projection models used as an energy planning tool. The ap-
proaches are assessed in terms of prediction applicability, spatial and temporal forecasting
accuracy, and relevance to policy and planning objectives. The study’s findings help in the
recognition of prediction methodologies and allow users to choose the best methods for
meeting their intended aims and forecasting criteria. Forecasting capabilities are improving,
and some countries are coming closer to developing fully automated smart grids.

Liu, Hu, Kimber and Wang’s research gives a complete categorization and assessment
of ESS electric grid applications [60]. The most recent optimization and control approaches
for each application category were examined. In addition, a cost–benefit analysis for three
categories of investors as well as a detailed comparison of market policies regarding ESS
involvement in various wholesale markets has been performed. Given the vast variety
of improvements in energy storage technologies, the energy storage technologies were
critically analyzed in depth and then classified, and comparative studies were conducted
to understand the features, limits, and benefits of each energy storage system. Tan, Ra-
machandaramurthy, Solanki, and Raveendran proposed alternative energy storage system
frameworks based on their application [61]. This evaluation included several HESS com-
binations in which multiple ESS types were blended to provide a better form of energy
storage. Mcllwaine, Morrow, Al Kez, and Best [62] undertook a rigorous study of EES and
quality of power at the distribution level. The research combined with a Pugh analysis
emphasized worldwide trends in power markets with increased renewable energy penetra-
tion. The investigation’s findings suggest that further study is needed to classify, quantify,
and evaluate the installing of bulk energy storage, during distribution.

When RE penetration is low, the electrical market functions efficiently; however, when
RE penetration is high, the market is frequently disrupted. Divya Asija threw light on the
advancement of renewable energy generation, the inclusion of renewables into the current
unregulated power sector, the composition of present power market, main obstacles with
RE integration in deregulated power markets, and driving factors [63]. A research study
investigated the involvement of a composite energy system comprising wind energy and
CAES in the electricity market from the standpoint of a private owner [64]. Due to the high
level of unpredictability linked with market values, wind power levels, and regulatory
inputs, the problem was modelled using distributionally robust optimization (DRO). The
ideal outputs indicate DRO’s performance in terms of higher realized earnings and less
conservative results. Another study looks at the prospects, problems, and technologies of
EVs in a V2G linking system in depth [65]. M.A. Hannan’s study demonstrates the benefits
of both the EV owners and the power system, as well as relevant suggestions for the future

585



Batteries 2022, 8, 124

research areas to address existing research gaps and challenges. Dhillon, Kumar, and
Singal [66] conducted a detailed analysis of the fundamentals of wind energy, PSP, Wind–
PSP System and their present state, applications, and issues with operation in a deregulated
market, as well as optimization strategies employed in the advance planning of Wind–PSP
System. The researchers proposed optimization strategies such as EA-based, GA with LVQ,
HIDSS, and NSGA-II to identify the best feasible solution of complicated computational
problems with instabilities for Wind–PSP operation. Global market participants may create
a new electricity market architecture in order to reap the benefits of long-term agreements
with stakeholders.

Wind energy system modeling is a goal oriented problem that can be solved utilizing
advanced computer methodologies. Many algorithms only engage with a sub-model and
do not capture the entire picture. The research by Chinmoy, Iniyan, and Goic [67] has
focused on essential cost modeling for wind energy projects as well as market associated
risk and its mitigation issues. A thorough research on the use of approaches in power
balancing in microgrids with renewable generators by Komala, Kumar, and Cherukuri
categorized the methods into distinct categories depending on their principle of operation,
infrastructure required, and component of the microgrid [68]. The different methodologies,
as well as their mathematical models and virtues and drawbacks in application to power
balancing in microgrids, have been evaluated. During a literature review, it was discovered
that optimal usage of all forms of sustainable energy resources is critical to achieving
sustainable energy development (SED). The key problem for SEH modelling is determining
the best design/sizing and operating strategy for system components depending on the un-
predictability of renewable sources, demand, energy market spot prices, and so on. Lasemi,
Arabkoohsar, Hajizadeh, and Mohammadi-ivatloo discovered that uncertainty modelling
based on RO and scenario-based stochastic optimization are the most common for SEH
modelling [69]. Due to worst-case scenario analysis, a robust method would provide the
greatest answer for risk-averse decision makers, whereas a probabilistic approach would
provide the optimal answer for risk-neutral decision makers.

Singh and Parida [70] conducted an extensive study on the betterment of the integra-
tion of flexible demand as demand response, demand-side management (DSM), and grid
proficiency. The evaluation of important data revealed that effective DG allocation will
be good for the environment as well as economically favorable for utilities and customers.
When DGs are incorporated into the system, the passive distribution or sub-transmission
network becomes active, resulting in various technical and economic challenges. Khare,
Nema, and Baredar [71] conducted a detailed evaluation of many facets of HRES, focusing
on pre-feasibility analysis, optimal size, modeling, control features, and reliability issues.
The use of evolutionary techniques and game theory in hybrid renewable energy systems
has also been emphasized. Another study looked at current global PHES capacity, techno-
logical progress, and hybrid systems (wind-hydro, solar pv-hydro, and wind-pv-hydro)
and offered the best options. According to Rehman and Al Hadhrami’s research, PHES
is the ideal technology for tiny autonomous island grids and huge energy storage, with
PHES’s efficiency fluctuating in practice between 70% and 80%, with some estimating up
to 87% [72]. PHES sizes vary from 1000–1500 MW to 2000–3000 MW across the world.
Photovoltaic-based pumped storage systems have only been used on a small scale (few
homes only).

The purpose of this study is to provide a complete analysis of current improvements
in the ADS’s (Active Distribution Systems) operation from the perspective of operational
time-hierarchy. In contrast to earlier review publications, prospective applications of ADS
devices are evaluated in terms of operating time periods. This study by Ghadi and Ghavidel
covers real-world system operations in which network components are initially planned
for the stated period ahead, and then their operational status deviations from reference
points are updated throughout three time intervals encompassing static, dynamic, and
transient periods [73]. There is always a need for DN organizations to investigate current
facilities and management systems and then provide some unique practical solutions in
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the related areas. A critical analysis conducted by Banshwar and Sharma [74] examined
the prospects of RES in energy and Ancillary Services (AS) markets and concluded that
changes in market designs and norms are still needed in the existing electrical market to
integrate energy, AS, and variable energy sources. In another work by Kim and Suharto,
storage methods and additional assessments of similar technologies conducted by other
scholars were examined [75]. The work has explained the solution techniques to address
different difficulties using a case study and also reviewed the assessment parameters.

Tables 1–3 display the summary of reports for considered objective functions, applied
system details, and used optimization techniques for the considered pieces of literature.
Ghadi and Rajabi’s [76] insightful work on the transformation of traditional passive DNs
into ADSs, as well as the study based on grid operational features engaged in deregulated
electricity market at the distribution level, has provided a new perspective. This study
underlines the need to optimize current facility capacity through creative management
strategies and practical solutions. Saboori and Hemmati [77] evaluated the challenges of
optimal bus position, power rating and energy capacity estimation in distribution networks
to improve the functioning of the optimal planning process. While analyzing, energy
storage systems and models, as well as their applications and related objective functions,
network modelling, solution methodologies and problem uncertainty management, were
all taken into account. Zhou and Li’s work provides an insight of the design and functional
modules of smart HEMS [78], which is critical for a more secure and environmentally
friendly energy supply for smart grids. For the purposes of analysis, various non-traditional
sources have been considered.

Carreiro and Jorge underline the importance of energy management system aggre-
gators in the Smart Grid framework, particularly in conjunction with demand response
programs and technologies that include end-user participation in the provision of ancillary
services [79]. They suggest that establishing algorithms, technological benchmarks, and
low-cost systems requires deliberate collaboration among academics, industry, and regu-
lators. Modern power management evaluates the performance of various green energy
sources against several criteria rather than focusing on a single factor—consumption [80].
This study by Bhowmik and Ray examines the diverse work on separate techniques, in-
tegrated approaches, multi-criteria decision-making methodologies, and so on for the
green energy planning and scheduling challenge. This study not only confirms that en-
ergy management tactics are superior to previous ways, but it also assists scholars and
policymakers in implementing the processes. Sundararagavan, Sandhya’s research [81]
examines the prices of several energy storage systems and identifies the critical aspects
that influence their economic feasibility. Rong-Gang Cong [82] identifies several important
factors affecting the expansion of renewable energy generation in this article based on
a review of current research. Following extensive research, a novel optimization model
is developed to optimize future renewable energy generation through the best capacity
planning, while taking into account various constraints such as economic, technological,
and others. In paper [83], Helder Lopes extensively analyzed several energy storage devices
with varying attributes and degrees of maturity. Power rating, discharge duration, energy
density in terms of weight and volume, power density, effectiveness, time and cycle dura-
bility, and availability have all been compared. Aggarwal, Sanjeev Kumar [84] provides an
overview of several price-forecasting approaches used in deregulated systems, as well as
an analysis of important difficulties. Lixin Tang [85] presented a policy for a deregulated
method to decrease CO2 emissions in generator scheduling for thermal power stations in
his study. The proposal called for a new penalty component depending on emissions. The
scheduling maximizes generation profitability based on income gained from sales, cost of
generating, and the emissions penalty. Enrique B. CEDEO [86] examines the numerous
relationships between the various sections of the deregulated power industry, proposing an
integrated model for increasing generation and transmission capacity. The purpose of this
methodology is to evaluate and find the best macroeconomic indicative investment ideas.
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Table 1. Summary of reports for considered objective function in the literature.

Paper ID
Type Objective Function

Regulated Deregulated Profit Max. Loss Min. Gen. Cost Min Social Welfare Max.

[42]
√ √

[43]
√

[44]
√ √

[45]
√ √

[46]
√ √ √ √

[47]
√ √

[48]
√ √

[49]
√ √ √

[50]
√ √ √

[51]
√ √

[52]
√ √ √ √

[53]
√ √ √

[54]
√ √ √

[56]
√ √ √

[57]
√ √

[58]
√ √

[59]
√

[60]
√

[63]
√

[65]
√ √

[66]
√

[67]
√ √

[68]
√ √

[69]
√

[70]
√

[72]
√ √

[73]
√

[74]
√ √

[75]
√

[76]
√

[78]
√

[80]
√

[81]
√ √

In paper [87], Pavlos S. Georgilakis proposes a genetic algorithm (GA) solution to
the price-based unit commitment problem, which is used by each producing business
to maximize its profit in a deregulated market by optimizing its generation schedule.
Luo Xing’s [88] provides a comprehensive comparison of the most cutting-edge energy
storage methods. The study helps to alleviate the problem of selecting acceptable EES
technology for a given application and deciding where they would be best integrated
into a power generation and distribution system. In his work, Moein Parastegari [89]
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develops an optimization model for the energy market that includes auxiliary services. The
model is used to jointly operate wind farms (WF), pump-storage units (PSU), photovoltaic
(PV), and energy storage devices (ESD). The model takes into account WPG, energy and
reserve prices, and PV generation unpredictability. A. Zahedi [90] investigated the potential
benefits of grid-connected renewable energy-distributed generating in this review paper
(RE-DG). It also looked at the factors that are driving the rising use of RE-DG, the technical
challenges that come with high RE-DG penetration, and the effect of RE-DG connection
points on system voltage. Piyasak Poonpun provided a study on the life-cycle cost of
several grid-connected electric energy storage systems in the paper [91]. The results are
given as a cost per kilowatt hour of stored and released power. Das [92] how energy storage
can curtail risk factors in a competitive power system. In this study, Stephen Frank [93]
examines numerous optimization algorithms that have been utilized to achieve optimal
power flow (OPF), with an emphasis on their benefits, downsides, and computational
aspects. It begins with an overview and then delves into the deterministic optimization
methodologies utilized on OPF.

Table 2. Summary of reports for considered system details along with energy storage and renewable
energy sources.

Paper ID
Renewable Energy Sources Energy Storage

Wind Solar Hydro Others Generalized PSH Battery CAES Others Generalized

[42] EDV
√

[43]
√ √ √

[44]
√ √ √ Bio, Geo,

Hybrid
√ √

[45]
√ √ √

Bio, Geo
√

[46]
√

[47]
√ √ flywheel storage,

electrochemical storage

[48]
√ √

[49]
√ √ √

EV

[50]
√ √

[51]
√ √ √ √

EV

[52]
√ √ √ √ √ √

[53]
√ √ √

[54]
√

[56]
√ √ √ √

[57]
√ √ √

[58]
√ Fuel cell, Hydrogen

energy storage

[59]
√ √

Geothermal

[60]
√ √ √ √

[63]
√ √ √ √

Flywheel, thermal

[65]
√ √

[66]
√

[67]
√ √

[68]
√

[69]
√ √ √ √ √ √

[70]
√ √
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Table 2. Cont.

Paper ID
Renewable Energy Sources Energy Storage

Wind Solar Hydro Others Generalized PSH Battery CAES Others Generalized

[72]
√ √ √

[73]
√

[74]
√ √

[75]
√ √

[76]
√ √

[78]
√ √

[80]
√ √ √

[81]
√ √

Table 3. Summary of reports for used optimization techniques in the literature.

Paper ID
Optimization Techniques

PSO ABC BAT GA Heuristic Others

[44]
√ √ √

Lagrangian relaxation, quadratic programming and
Nelder–Mead Simplex search; heuristic optimization

methods, especially genetic algorithms and particle swarm
optimization; Pareto-based multi-objective optimization

[45]
√ √ simplex method, dynamic programming, Lagrangian

relaxation, sequential quadratic programming, Newton’s
method and reduced gradient method

[50]
√

LMP

[51]
√

[53]
√ √

[57]
√

[58] adjustable robust optimization

[65] robust optimization

[67]
√

[70] Monte Carlo

[72]
√ √

Game theory

[81]
√ √

MOCPSO

Ramesh Kumar Selvaraju [94] investigated the efficacy of a deregulated electricity
system combined with various energy storage technologies in this study. For determining
the LFC controller gain values in a deregulated environment, the Artificial Cooperative
Search technique, a new two-population-based optimization strategy, is devised. In pa-
per [95], Patil examines the impact of wind energy system on a deregulated energy market
from different perspectives. Bus sensitivity factor and locational marginal pricing have
been given special attention. Different optimization algorithms have been investigated
and slime mold algorithm has been implemented for the first time in this field. In another
work [96], same author examines a hybrid system with energy storage and studies profit
maximization in deregulated energy market with imbalance cost improvement. It also
covers value at risk and cumulative value at risk factors. In paper [97], Ustun examined
integration of EV storage with local solar generation to maximize renewable energy capture
without overburdening local distribution network. Driving patterns and solar generation
profile are studied along with local load profile to actively control EV batteries to maximize
local renewable energy capture,
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5. Facts and Analysis of Renewable Energy: A Glimpse

A more significant change in the generating mix is hidden by the total power gener-
ation’s comparatively high resilience. In particular, generation from renewable sources
(wind, solar, biofuels, and geothermal energy, etc.) saw its greatest ever growth despite the
decline in overall power consumption. Strong gains in the generation of wind and solar
energy were the main drivers of this expansion [98].

The proportion of renewable energy in the world’s generation has increased at its
quickest rate ever. Around 60% of the increase in worldwide power output over the
previous five years has come from renewable sources, with wind and solar power being
major among them (shown in Figure 8) [98,99].

 

Figure 8. Transition of renewable energy generation around the world.

An emerging market economy is a developing country’s economy that is getting
increasingly involved in global markets as it expands. A developing economy is one with a
low human development index, low growth, low per capita income, and a preference for
agriculture-based activities over industrialization and entrepreneurship. In other terms,
a developing economy is also known as a developing country or a less developed econ-
omy. With increased infrastructure expenditure in Europe, China, and the United States,
investments in power networks are anticipated to increase by 10% in future after dropping
for the fourth straight year in 2020 due to the COVID-19 epidemic. As part of the effort to
attain carbon-free power generation, measures to build more robust and digital grids are
being incorporated with ambitious growth and recovery plans.

However, in the Net Zero Emissions by 2050 Scenario, the level of grid investment
triples by 2030, particularly for smart grids and digital investments, which should make up
around 40% of all investments in this decade (shown in Table 4 and Figure 9) [98,99].
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Table 4. Investment spending in electricity networks by region, 2016–2021 in USD billion.

Region 2016 2017 2018 2019 2020 2021

USA 63.1 65 66 71 75.8 77.1

China 86.9 83.7 83.2 76.6 70.7 82.6

Emerging market and
developing economies 93.9 88.2 81.1 63.5 53.5 60

Europe 50 48.7 49.5 48.5 51.8 56.7

Rest of the world 17 17.5 15.9 12.6 10.8 12.6

 

Figure 9. Investment spending in electricity networks by region.

The maximum net generating capacity of power plants and other facilities that employ
renewable energy sources to create electricity is used to measure the capability of renewable
power generation. The data shows the installed and connected capacity at the end of the
calendar year for the majority of nations and technologies (shown in Figures 10 and 11) [99–101].

 

Figure 10. Worldwide renewable electricity capacity (MW) statistics.
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Figure 11. Worldwide renewable electricity generation (MW) statistics.

Comprehensive Energy Storage Roadmap (India)

India has set a target of 40% non-fossil power production in the energy mix by 2030
and is dedicated to lowering GHG emission intensity by 33 to 35% from the level in 2005.
In order to achieve this, the percentage of renewable energy (RE) must be scaled up above
and above the current goal of 175 GW by 2022. In the upcoming years, grid operators will
face a challenge in ensuring grid reliability and the supply of 24 × 7 quality power due
to the increased penetration of renewable energy sources and electric vehicles (EV). This
will open the door for the deployment of energy storage systems for grid support [102,103].
This will enable utilities to understand the economic opportunities of such systems at
various levels of RE and EV penetrations, as well as their impact on grid reliability (shown
in Figure 12) [104].

 

Figure 12. Comprehensive energy storage roadmap of India.

From this section, it is observed that the use of renewable energy system is not an op-
tion, it is essential [105]. Due to the discontinuous availability of renewable energy sources,
energy storage system is essential for any renewable integrated power system [106,107].
This is especially true for off-grid systems that are more vulnerable to system devia-
tions [108–118]. It may come in different forms, such as hydrogen storage [119], EV battery
applications [120] or together with other novel devices such as smart inverters [121–124] In
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this scenario, this paper provides the clear idea about the different types of energy storage
system with the constructions and applications [125].

6. Comparative Study of EES Systems

The comparative study of different types of EEs systems are depicted in Table 5 [126–129]
and Table 6 [130–132]. The efficiency, discharge time, cost, and environmental impacts of EES
systems are considered for this study.

Table 5. Comparison of EES Systems in terms of efficiency, discharge time and cost [126–129].

System
Max. Power

Rating (MW)
Efficiency

(%)
Discharge

Time
Cost/KW

(USD)
Cost/KWh

(USD)
Energy Density

(Wh/L)

PHS 3000 70–85 4 h–16 h 600–2000 5–100 0.2–2

CAES 1000 40–70 2 h–30 h 400–800 2–50 2–6

FES 20 70–95 sec–mins 250–350 1000–5000 20–80

Lead-acid 100 80–90 1 min–8 h 300–600 200–400 50–80

NiCd/NiMH 40 sec–hours 500–1500 800–1500 60–150

Li-ion 100 85–95 1 min–8 h 1200–4000 600–2500 200–400

Metal-air 0.01 50 secs–day 100–250 10–60 500–10,000

Sodium-sulfur 0.05–8 75–90 sec–hours 1000–3000 300–500 150–250

RFB/HFB 100 60–85 hours 700–2500 150–1000 20–70

H2 100 25–45 min–week 10 600

Fuel Cell 50 60–80 secs–day 10,000 500–3000

SMES 10 MW 95 millisec–secs 200–300 1000–10,000 0.2–2.5

Thermal 150 80–90 hours 200–300 30–60 70–210

Table 6. Comparison of EES Systems in terms environmental impact [130–132].

System Life Time/Cycles Environmental Impact Description of Impact

PHS 30–60 years -ve Cutting trees and landscapes for reservoirs

CAES 20–40 years -ve Remains from fossil fuel

FES 20,000–100,000 Negligible

Lead-acid 6–40 years -ve Toxic residues

NiCd/NiMH 10–20 years -ve Toxic residues

Li-ion 1000–10,000 -ve Toxic residues

Metal-air 100–300 Very small Slight residues

Sodium-sulphur 10–15 years -ve Toxic residues

RFB/HFB 12,000–14,000 -ve Toxic residues

H2 5–30 years Yes
Emission of hydrogen in atmosphere can create
disturb in distribution of methane and ozone;

thereby causing imbalance.

Fuel Cell 5–15 years -ve Remains from fossil fuel

SMES 20 years -ve High magnetic field

Thermal 30 years Small Releasing charge into atmosphere

7. Conclusions

Presently, while the entire world is concerned about the future of the planet in terms
of reducing the carbon footprint and making it a greener one, the electricity industry is
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focusing on more efficient and sustainable power supply, judicious consumption of energy
and CO2 reduction. While doing so, main areas of research are identified as anticipated
growth of renewable generation, design of renewable technology for better performance,
design and implementation of smart grids, integration of RNE into smart grid for better
energy demand management by optimization techniques.

The followings are important in the present scenario of the electrical system:

• Energy storage systems will play a pivotal role for managing contingency situations
apart from acting as integrated part of smart grid.

• The modest and scattered EES market is likely to be large when the smart grid and
microgrids are implemented.

• The market for EES systems, particularly small and distributed ones, is growing and
will grow in tandem with the renewable energy sector.

• Technical challenges, and also cost and compatibility/sustainability, are potentially
critical topics for future initiatives.

• There is scope to work on optimization, power quality and safety issues.
• Upon comparison of different optimization techniques, it has been found that meta-

heuristic algorithms outperformed heuristic and linear optimization techniques with
the considered objective functions.

Considering the future and investors’ interest, it is obvious that the maximization of
system profit and minimization of system generation cost and loss will help in increasing
societal benefit. This study examines numerous aspects of renewable integrated deregulated
power systems and provides an in-depth appraisal of the most recent research advances
in this sector. In this context, this study will be helpful in understanding, analyzing and
applying the EES technologies for a better tomorrow.
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Abstract: This paper proposes a new method to determine the optimal size of a photovoltaic (PV) and
battery energy storage system (BESS) in a grid-connected microgrid (MG). Energy cost minimization
is selected as an objective function. Optimum BESS and PV size are determined via a novel energy
management method and particle swarm optimization (PSO) algorithm to obtain minimum total cost.
The MG was designed to use its own energy as much as possible, which is produced from renewable
energy resources. Since it is a grid-connected system, it can demand energy from the grid within
the determined limit with penalty. It differs from the studies in the literature in terms of optimizing
both parameters such as PV and BESS size, being a grid-connected self-contained MG structure and
controlling the grid energy by an energy management algorithm and optimizing the parameter via
PSO with an energy management system (EMS). Results are compared for different PV and BESS.
Moreover, effectiveness of the novel energy management method with PSO is compared with the
genetic algorithm, which is the one of the well-known optimization algorithms. The results show
that the proposed algorithm can achieve optimum PV and BESS size with minimum cost by using
the new energy management method with the PSO algorithm.

Keywords: energy management; energy storage; microgrid; particle swarm optimization; photo-
voltaic systems

1. Introduction

Today, fossil fuels such as coal, oil and natural gas are the main sources of electrical
energy generation. However, these fuels cause greenhouse gas emissions and environ-
mental pollution. In addition, while the world energy demand is increasing year by year,
fossil fuels’ reserves are limited and are about to deplete. Nevertheless, new restrictions are
performed by environmental policies to reduce greenhouse gases emissions [1]. The Paris
agreement, which was signed by 192 countries plus the European Union, is a promising
example to deal with climate change. Countries that signed the agreement are planning to
reduce their greenhouse gases emissions [2]. Renewable energy resources (RESs) such as
photovoltaic and wind energy systems are environmentally friendly and good alternatives
to fossil fuel since they do not cause any harmful gas emissions.

The number of grid-connected RES installations has been increasing year by year.
Along with many advantages, these systems have some disadvantages such as inter-
mittency that can cause scheduling, frequency, and voltage regulation problems on the
grid [3,4]. Conventional generation systems with fossil fuels have slower responses to
regulate frequency deviation in the short term [5]. With the increase in the number and
total capacity of the RES installation, these problems and risk on power system stability
have become more severe. Installing larger RES systems may overcome this problem [4].
However, it results in high investment cost. Battery energy storage systems (BESS) show up
as an effective solution for this problem [3]. A BESS can be advantageous to maintain the

Appl. Sci. 2022, 12, 8247. https://doi.org/10.3390/app12168247 https://www.mdpi.com/journal/applsci
601



Appl. Sci. 2022, 12, 8247

balance between supply and demand with its fast dynamic response characteristics com-
pared to conventional generators or other types of energy storage systems [6]. Particularly
modern distribution networks are attracting attention for the solution of nanogrid (NG)
and microgrid (MG) challenges. Hereby, BESSs are considered as a significant element of
modern MGs and smart grids [7].

The MG is a concept that enables effective integration of distributed generation (DG) re-
sources [8]. It is a controllable small network that combines RESs, conventional sources and
loads in both grid-connected (on-grid) and island mode (off-grid) [9]. Figure 1 demonstrates
a typical MG with these two operation modes [10]. Since DGs’ power output characteristics
are different from conventional generation systems, the MG should handle power quality
problems by itself such as unpredicted fluctuation, robustness of reactive power support,
resilience and a reliable system. The BESS is a good choice for maintaining resiliency and
reliability with fast and adaptable characteristics. BESS can store the remaining power for
later use, thus compensating for unexpected power outages and fluctuations in the RES.
Although BESSs and PVs have great advantages in the MG system, they also have some
disadvantages. Size and cost are gaining importance as high capacity causes increases in
cost and size, while low capacity may not be enough to prevent unexpected power prob-
lems and may not meet load demand. Consequently, BESS size must be carefully calculated
to determine the optimum size for a given system [8]. Moreover, research has shown that
BESSs that are optimally sized for the current loads provide the best performance [11].
Thus, system designers need to find the optimal BESS size according to the specific system
to obtain an efficient, reliable, and economical MG system [9].

 

Figure 1. The structure of an AC microgrid.

In the literature, generally one parameter is kept constant and the other parameter
is optimized in PV and BESS optimization studies. In most PV and BESS systems, the
PV size is kept constant and the BESS size is optimized. A similar approach is used for
structures with an energy management system (EMS), and most of them are proposed
for island mode operation. BESS sizing is performed according to the system parameters
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with various methods. Some of the methods can be performed identically to any sized
system [10]. Mathematical-based optimization methods are also used for sizing problems.
Dynamic programming (DP) and linear programming (LP) are examples of mathematical
methods [10]. DP is used in [12], but it is difficult to apply to large-scale systems [13]. LP
optimization is chosen as a simpler method in [13], and it is implemented for a small energy
storage system (ESS) in [14]. However, it has some problems when it is applied to large
scale systems. As a result, LP and DP are not good tools for complex systems [10]. As a
remedy, different optimization techniques that are named as probabilistic methods (PMs)
have been developed. The Markov chain decision method (MCDM) is one of them and is
used for battery sizing optimization due to its simple structure. Energy storage devices are
scheduled optimally with an MCDM in [15]. However, probabilistic methods are effective
when the number of optimized criteria is less (generally one) [10]. These methods are
not suitable for optimizing the two parameters together in interaction with the energy
management system in the structure that is the subject of this study.

Since RES output is uncertain, metaheuristic approaches are suggested in many ap-
plications. Metaheuristic methods give more accurate results on large and nonlinear
optimization problems [16,17]. The Genetic Algorithm (GA) is used for cost reduction and
optimization of the energy storage system in a hybrid energy system in [18]. The bottleneck
of GA is that its results are not conclusive [13]. The Bat Algorithm (BA) is used to find opti-
mum BESS size for a grid-connected low-voltage MG in [19]. The Grey Wolf Optimization
(GWO) algorithm is chosen for optimum BESS sizing and decreasing fuel usage, and GWO
performance is compared with BA and PSO in [20]. The Artificial Bee Colony algorithm
(ABC) is used to calculation of optimal battery size and operation for revenue increasing in
a hybrid power system [21]. The Grasshopper Optimization Algorithm (GOA) is another
method used for optimal battery, PV, wind, and diesel sizing in a microgrid [22]. Particle
Swarm Optimization (PSO) has simplicity and ease of use among other metaheuristic
optimization algorithms, yet it can present a high convergence rate [8]. Its robustness of
convergence comes from being less dependent on setting initial points among other meth-
ods. The PSO algorithm also needs less parameters than other metaheuristic algorithms. In
addition to these, it needs lower data storage [8]. The PSO-based frequency control method
for an off-grid microgrid is implemented to evaluate optimum BESS size and reduction in
cost [23]. The PSO algorithm is used to find optimum battery size and minimum cost for a
grid-connected residential system that currently has an available PV system [24]. Similarly,
PSO is selected for battery capacity optimization and effective battery installation for an
island mode microgrid in [25]. PSO is used for optimal sizing of wind, PV and tidal as a
primary and battery as an auxiliary source considering the reliability index [25]. PSO is also
proposed to determine optimal BESS with load shedding [5]. The objective of this paper is
to enhance frequency control by load shedding, and thus, operation cost reduces. The cost
optimization of a PV and BESS system in the grid-connected MG using PSO is proposed
in [26]. However, this study does not use an energy management system.

In this paper, optimum energy storage and PV size considering cost minimization
is determined based on the novel energy management method, and the PSO algorithm
is proposed for a grid-connected microgrid. In past studies, various algorithms were
used for different systems for optimization. According to the literature study, although
the PSO algorithm is a common and well-known algorithm, it has not been used as an
optimization algorithm for both PV and BESS sizing. In the majority of studies, one of
the parameters is kept constant (mostly PV size), and the remaining parameters (mostly
battery size) are optimized. In a limited number of studies, the PSO algorithm is used
to determine optimal size of the PV system and BESS but only for island mode systems.
Most of the remaining studies have not used cost minimization as an objective function
or energy management system. A limited number of studies used cost minimization
as an objective function or energy management system but with different optimization
algorithms [1,8,9,11–13,15,16,18–27]. This paper presents cost minimization as an objective
function by finding both optimum PV and BESS sizes and proposes a new optimal energy
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management method for a grid-connected MG. It is applied to a grid-connected microgrid
that consists of a PV system with battery storage. MG is allowed to import energy from the
grid with penalty. Thus, by allowing a limited amount of energy to be taken from the grid,
it provides a more optimum structure by minimizing the effects of possible instantaneous
high power demands. This paper focuses on determining the optimum PV and BESS sizes
when the MG supplies energy as much as possible to its loads. The purpose is to create
self-sufficient MG with limited grid support by considering cost minimization and defining
optimum BESS and PV sizes. Studies are carried out for two different scenarios. In addition,
the proposed energy management system with a PSO-based method is compared with
GA, which is a well-known optimization algorithms. The results show that the proposed
algorithm can achieve optimum PV and BESS size with minimum cost by using the new
energy management method with a PSO algorithm. The proposed energy management
method provides more flexibility to system designers for various system constraints. This
can be accomplished by its configurable parameters. Thus, the new energy management
method with PSO can be applied for various systems.

2. System Configuration and Modelling

The grid connected microgrid structure used in this paper is shown in Figure 2. It
consists of the BESS, PV, AC bus, grid and load. It is connected to the grid via the AC
bus. The battery and PV are connected to the DC bus via DC/DC converters that charge
the battery from the PV throughout the DC bus. The DC bus is connected to the AC
bus through the DC/AC inverter. The energy management system tracks load demand,
available PV power and battery energy level, and it controls charge/discharge status of the
battery and decides whether to demand energy from the grid.

 

Figure 2. The architecture of the microgrid system.

Solar PV module performance is affected by irradiation, pollution, aging, shading and
ambient temperature. Since the aim of this study is not maximum power point tracking
design, the effects of these parameters will not be examined, and the net output power of
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the system will be used directly from the previously obtained data. Two different data sets
were used to create different scenarios: case 1 and case 2. The data sets used in this study,
which show the relationship between the power produced by the PV system and the load
demand, are given in Figure 3a,b. The PV data in Figure 3a are obtained by taking the daily
average of the annual data of the International Energy Agency (IEA) future prospect. To
test the proposed system for another scenario, the PV and load data in Figure 3b are scaled
from data published by the Belgian electricity system operator.

Figure 3. Average load demand and single PV module output for: (a) case 1; (b) case 2.

The converter efficiency that affects the amount of energy from the PV to the load is
given as 95%. Thus, total PV output to load is:

Ppv(t) = Ppvgen(t)× ηconv (1)

where Ppvgen(t) is generated power from the PV modules during time interval t, ηconv is
the converter efficiency, and Ppv(t) is transferred power from the PV to load during time
interval t.

The power generation capabilities of PV modules deteriorate from year to year due
to aging. Thus, the economic life of a PV is considered as 25 years in this study, and PV
modules are considered, as they will not be replaced during system cost calculation. The
cost and other parameters are listed in Table 1.

Table 1. PV cost parameters.

Parameter Value Unit

Efficiency (nPV) 95 %
Capital, Operation and Maintenance Cost 97 USD/Unit

As is known, the minimum and maximum of battery state of charge (Bsoc) should be
defined to prevent shortening the battery life. Bsoc can be given as:

Bsoc(t) = [Ebat(t)/Ebat,rated(t)]× 100% (2)

where Ebat(t) is battery energy level and Ebat,rated(t) is rated energy capacity [28]. Overcharg-
ing and deep discharging of the battery should be prevented, as it will reduce its lifespan
and cycle life. Thus, the following limits are defined:

Ebat,min(t) ≤ Ebat(t) ≤ Ebat,max(t) (3)

where Ebat,min(t) is minimum energy limit, and it is defined as 0.48 kWh. Ebat,max(t) is a
single battery module’s maximum energy limit and it is defined as 2.4 kWh.
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Battery charging and discharging action defined as below, respectively [28]:

Ebat(t)[EPV(t)− ELoad(t)/ηinv]× ηBch (4)

Ebat(t)[ELoad(t)/ηinv − EPV(t)]× ηBdch (5)

where EPV(t) is the generated energy, and ELoad(t) is the load demand during time interval t.
ηBch, ηBdch and ηinv are battery charging, discharging and inverter efficiencies, respectively,
which are defined as 95%.

The capacity of battery modules will also decrease over time. In this work, battery
module life is taken as 8 years. Battery modules are replaced three times during system
cost calculation. Accordingly, BESS cost and other parameters are given in Table 2.

Table 2. BESS cost parameters.

Parameter Value Unit

Efficiency (nBESS) 95 %
Capital, Operation and Maintenance and Replacement Cost 493 USD/Unit

Changes in the efficiency of system elements can cause errors. In addition, since the
battery capacity and PV must be a certain level as an integer (selected unit has a certain
value), it will cause some errors. They can be minimized by reducing the PV unit power
and battery unit capacity values. However, using a small PV module and batteries with
small capacities may not be both practical and economical. More precisely, this is another
optimization problem.

3. Proposed Algorithm

The proposed algorithm will be given in sequence as the objective function, energy
management strategy for grid-connected and island modes and the proposed PSO algo-
rithm. First, the PSO algorithm generates random PV and BESS sizes. The proposed energy
management algorithm, which also will be explained later, uses these sizing values and
generates PV and BESS power output according to the inputs and constraints.

3.1. Objective Function

In this study, the energy cost is chosen as an objective function. The goal is to obtain
minimum total energy cost for the MG without compromising defined constraints; thus,
the optimum PV and BESS size can be found.

The energy cost (EC) is calculated as:

EC = (PVTotal,energy × PVcos t) + (BESSTotal,energy × BESScos t) (6)

Here, PVTotal,energy and BESSTotal,energy are total output energy of PV and BESS, respec-
tively. They are generated from the energy management algorithm in a defined time span.
PVcos t and BESScos t are the cost of PV and BESS, which include the capital, replacement,
operation and maintenance costs.

3.2. Energy Management Strategy

The management of the power flow is an important process for optimizing the system
components and the efficient operation of the system. The proposed energy management
strategy can be divided into two parts as island mode and grid-connected mode operation.
Figure 4 shows the flowchart of the proposed energy management strategy.
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Figure 4. Proposed energy management flowchart.

In the island mode, the MG operates without grid support. The load demand can be sat-
isfied by PV generation and/or BESS available capacity. There is always a balance between
the available PV power, BESS capacity and load. Net energy (Enet(t) = EPV(t) − ELoad(t)) is
followed, and it is decided that the battery is charged if Enet(t) > 0 and BSOC(t) < Ebat,max(t).
Batteries are charged with EBch(t) until their Ebat,max(t) level. If BESS reaches its charge
limit and there is still available power in the PV system, this remaining power cannot be
used or sold to the grid due to the island mode operation. If Enet(t) = 0, then there is no
excess energy, and thus, load demand is equal to PV generation. If there is not enough PV
generation to satisfy load demand (Enet(t) < 0), EMS controls Bsoc(t) level at that time. If
BESS has available energy, batteries can be discharged until their Ebat,min(t) level. Finally, if
both Enet(t) < 0 and BSOC(t) < ELoad(t), but there is still some available PV power generation
(that is, 0 < EPV(t) < ELoad(t)), then batteries are charged by PV power.

607



Appl. Sci. 2022, 12, 8247

For the grid-connected mode operation, the MG operates with grid support. In this
study, the aim is to find optimum PV and BESS size for mostly self-sufficient MG in a yearly
period. The grid energy is only used for supplying load demand if there is not enough
energy in the PV and batteries. In this study, the grid is not used for charging batteries. It is
assumed that it is costly to obtain energy from the grid. Thus, there is a grid cost limitation.
The MG can be partially or fully supplied from the grid only for a limited time when there
is either no or not enough energy in the BESS and PV. The EMS tracks the current energy
level of the system components, the status of the PV system and BESS, and if there is not
enough energy to be able to supply the load demand (EPV(t) + BSOC(t) < ELoad(t)), then the
MG can obtain energy from the grid with penalty. There is a flag that holds the record of
obtained energy from the grid. If energy from the grid exceeds a previously defined limit
value, the flag increases. Hence, the PSO algorithm, which is explained below, decides to
increase the PV or BESS module capacity to minimize the dependency of grid connectivity
by considering the total installation cost.

3.3. PSO Algorithm

The PSO algorithm presents a model of flight patterns of birds and their social be-
havior for the optimization model, which was proposed by J. Kennedy and R. Eberhart in
1995 [29,30]. Its ties artificial life to the behavior of animal groups, such as bird flocking,
fish schooling and swarming theory [30]. The simple explanation of the PSO model can be
explained as follows. Each single bird is pointed in the Cartesian Coordinate System (CCS).
Their initial location and velocity are assigned randomly. Then, the algorithm is executed
with “the nearest proximity velocity match rule”; thus, every bird has the same speed
as their closest neighbor. Since iteration maintains in the same direction, all the points
will have the same velocity. Because of the simplicity of this structure and not exactly the
same as in real situations, a random variable is added to the speed point. In each iteration,
aside from meeting “the nearest proximity velocity match”, each speed will be added with
a random variable that provides convergence to the real case. In this model, every bird
can find their maximum points. These can only be local maximum points. After every
bird meets, in other words, birds finish their movement on the coordinate system, all the
maximum points will be found. The highest value of these maximum points is the global
maximum point [31,32].

In this study, PSO is used to find the minimum points, meaning minimum cost.
Particles represent PV and BESS module counts (or sizes), and they are initialized randomly
in the CCS. nPop is the swarm size, and it is defined as 50, which means 50 particles. The
maximum iteration, MaxIt, count is set to 100. The inertia coefficient is set to 1. There are
two acceleration coefficients, and both of them are selected as 2.5. Each particle’s velocity is
zero at the beginning. The objective function, which is explained in the previous section, is
called in every iteration to calculate the particle’s total cost. Each particle’s cost is compared
with each other’s and the best cost, which is the minimum, is saved as the global best cost.
In every iteration, PSO generates random PV and BESS sizes, and their costs are compared
with the global best. The lowest value is saved as the new global best. At the end of all
iterations’ location, which means PV and BESS sizes, of the global best cost is the optimal
point [16,33]. Each PV and BESS has a position, and these positions have a velocity. The
velocity of the kth particle is:

vj
k,new = wvj

k,old + c1r1(xj
k,pbest − xj

k) + c2r2 (7)

where vj
k,new refers to the recent velocity of the kth particle at jth iteration, the w refers to

the inertia weight, vj
k,old refers to previous velocity of the kth particle at the jth iteration, c1

and c2 are the acceleration constants, and r1 and r2 pair are randomly determined numbers
between 0 and 1. The position of the kth particle is renewed as below [16]:

xj
k,new = xj−1

k,old + vj
k,new (8)
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where xj−1
k,old is the previous position of the kth particle from the past iteration [16]. The posi-

tion x is the size of PV and BESS, and in this study, their minimum value is VarMin = 1 and
maximum value is VarMax = 50. Figure 5 shows the flowchart of the applied PSO algorithm.

Figure 5. Proposed PSO algorithm flowchart.

4. Results and Discussion

In this paper, optimal sizing of the PV and BESS for MG, which can be operated in
island mode and grid-tied mode, is carried out with two different data sets. The data are
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yearly average of a single PV output and the load. Yearly PV generation data have been
taken from the IEA database. Then, they are degraded to 24 h by calculating average values
for every hour. Yearly load data have also been taken from the IEA database, but some
arbitrary changes have been applied on that data to create the desired test system. Then,
they have been degraded to 24 h by calculating average values for every hour for case 1. In
the second scenario, the data published by the Belgian electricity system operator is used
by scaling. For each case, island and grid-connected mode operations are performed at
the same time. The optimization algorithm computes the optimum PV and BESS size with
regard to optimization parameters and the total cost of the system for case 1 and case 2.
The total system cost includes cost of energy, battery and PV module cost, installation cost,
battery degradation, and battery and PV lifetime/replacement cost.

First, the PSO algorithm generates a random PV and battery module size between
1 and 50. The first module (or particle) count is equal to npop; thus, it is 50. That is,
50 parameters are spread out to different locations randomly at the beginning. Within each
iteration, this spreading continues with different velocities depending on c1, c2, w, and
wdamp (damping ratio) values. These are the values that affect the speed and accuracy of the
parameter reaching the optimum point. They can be close to the optimum point at the end,
but they may take a long time to reach the optimum point due to their slowness. Contrarily,
they can find the optimum point fast, but accuracy may not be guaranteed.

The PSO parameters are chosen to obtain faster and more accurate results. The
population size is set to 50, the maximum number of iterations is set to 200, c1 and c2
are set to 2.5, and wdamp is set to 0.99. The number of battery and PV modules is limited
from 1 to 50. Then, the novel energy management algorithm calculates total PV and BESS
power outputs and how much energy is needed from the grid to supply loads. Here,
providing uninterrupted power to the loads is the main concern. For this purpose, the
energy management algorithm can decide to demand energy from the grid. However, it
should be a limited time and level that is defined by the grid total cost parameter at the
system design stage. If the MG loads cannot be supplied by any source, there will be a
large increase in the total cost. This effect is controlled by another parameter such as the
penalty parameter, and thus, the cost increases. The algorithm selects an optimum level
of the PV system and BESS capacity to supply the load with the energy required in a day.
After the energy management algorithm is calculated for daily total average PV and BESS
energy output, total energy cost can be found. The calculated energy cost is compared by
the PSO algorithm for every particle, which equals npop = 50, along with iterations. The
best particle cost over 50 particles (npop count) is found, and this is called the “particle best
cost”. This is saved for the next iterations. The particle best cost can be updated with a new
value at the next iteration by a particle that holds lower cost. Thus, after all iterations are
completed, the best updated “particle best cost” value will be the “global best”. This shows
the calculated optimum PV and BESS size with minimum cost with defined constraints.
The best particle costs between each of the 50 particles inside an iteration and every best
cost throughout the iterations can be seen in Figure 6a,b for case 1 and case 2.

At the first iterations, the PSO algorithm generates lower PV and BESS module counts,
which means that the PV and the BESS particles are far from the optimum point. (Cost can
be seen on the second y-axis in Figure 6a,b. The y1-axis and y2-axis scales are different).
Since loads are supplied mostly from the grid, the cost is increasing. After defined the
maximum grid cost is exceeded, the total system cost increases faster due to the penalty
factor, and the system can obtain supply mostly from renewable energy resources (because
increasing the rate of renewable energy use decreases the system total cost). After 200 itera-
tions, calculations were performed by the energy management algorithm. It was found that
the optimum PV and BESS module counts were 47 and 28, respectively, and the total cost
was USD 40.972 for case 1. Similarly, it was found that the optimum PV and BESS module
counts were 24 and 28, respectively, and the total cost was USD 24.186 for case 2.

To prove the results obtained from the proposed method, the total cost variation of
the system according to different PV and battery sizes and penalty factor are given in
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Figure 7a,b, respectively. At the first point in Figure 7a, there are 45 PV modules and
five battery modules. The total system cost at this first point is USD 49.993. In the first
area (depicted in Figure 7a), while the number of PV modules is decreasing, the number
of battery modules is increasing. It should be considered that the energy cost penalty
highly affects the total system cost. The total system cost is increasing slowly until the
sixth calculation point. Then, when the number of PV modules is too low, the system cost
increases rapidly. At the eighth calculation point, there are five PV modules and 40 battery
modules, and this is the highest cost in the figure, which is USD 127.040. At this point, there
are not enough PV modules to supply the loads, and there are not enough PV modules to
charge this amount of battery modules. Thus, the loads are supplied from the grid for a
longer period. At this longer period, as an option, the cost can be increased excessively
or the maximum limit can be set in order to prevent taking more energy from the grid.
In this study, the maximum level of energy cost that can be taken from the grid has been
determined. After reaching the maximum allowable grid supply limit cost, the energy
management algorithm cuts off the electricity. Eventually, the total cost will be high in this
situation. In the second area, while the number of PV modules has increased, the number of
battery modules is low. In this case, the total cost is decreasing because there will be more
PV modules to generate energy to supply the loads in the daytime. PV modules can also
charge batteries when the number of PV and battery modules are closer to the optimum
point. Thus, BESS can supply the loads at night when there is no PV energy. In the third
area, both the number of PV and battery modules are increased. The total cost decreases,
but at the 18th point, it increases again due to the increased number of battery modules. At
the fourth calculation area, both the numbers of PV and battery modules are decreased,
and the total cost also starts to decrease. Finally, the number of PV and battery modules
reaches the optimum point, such that the total cost is at the lowest value at the 20th point.
There are 47 PV modules and 28 battery modules. Total system cost is USD 40.972 at the
20th point. The same study was carried out for case 2. It can be seen from Figure 7b that
the cost of the system for 24 PV modules and 28 batteries is USD 24.186. This means that
the loads of the MG can be fully supplied by PV and BESS in the daytime, and they can be
supplied by BESS most of the night. Therefore, MG can be supplied mostly by its RES, and
its dependency to the grid is low. However, the total system cost rises as the number of
battery and PV modules continues to decrease because the system needs to import more
energy from the grid, which increases the grid supply cost. Another reason is that as the
number of both PV and battery modules continues to decrease, the longer the blackout
durations occur and thus the penalty cost increases.

  
(a) (b) 

Figure 6. Particle best cost per iteration and best costs through all iterations of the proposed energy
management method with PSO: (a) case 1; (b) case 2.
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(a) 

 
(b) 

Figure 7. System total cost for various PV and BESS module combinations: (a) case 1; (b) case 2.

As can be seen, this process is not simple, such as defining the number of PV and
battery modules regarding the known changing load demand. PV generation changes
according to irradiation and weather conditions. There is an allowed grid supply limit that
is defined at the system design stage. Therefore, the energy management algorithm should
decide when to charge and discharge the batteries, and when to obtain energy from the grid
by considering cost. Eventually, the results show that the proposed optimization algorithm
correctly determines the optimum PV and BESS size within the defined constraints. The
proposed energy management system with the PSO algorithm has some advantages and
superiorities. It also needs only a few initial parameters. In addition, it can be used
with different algorithms. Furthermore, the constraints and parameters used in the energy
management strategy are also configurable such that they can be easily adapted for different
systems. The flexible nature of the proposed approach is its most important strength.
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In order to test the performance of the PSO-based method with the energy management
algorithm, its performance is compared with GA, which is the one of the well-known
optimization algorithms. The obtained results with the GA are shown in Figure 8a,b for
case 1 and case 2, respectively. The parameters used in the GA algorithm are as follows:
the population size is set to 50, the maximum number of iterations is set to 200, crossover
rate = 1, mutation rate = 0.04, and the number of battery and PV module is limited from
1 to 50. As can be seen in Figure 8a,b, the novel energy management method with the
PSO algorithm gives better performance than the novel energy management method with
the GA algorithm. In addition, the energy management method with GA found that the
optimum PV and BESS modules count as 47 and 28, respectively, and the total cost is
USD 40.972 at the 192nd iteration for case 1 and the PV and BESS modules count as 24
and 28, respectively, and the total cost is USD 24.186 at the 187th iteration for case 2. It
takes more time to find the global point than the proposed algorithm. Furthermore, this
comparison is proven that the proposed novel energy management system can also work
with other algorithms.

  
(a) (b) 

Figure 8. Obtained best cost results obtained from the proposed energy management method with
GA: (a) case1; (b) case2.

Comparisons between existing studies and the proposed study are given in Table 3.
A close examination of Table 3 provides an idea of the difference between the proposed
system and the other algorithms. In past studies, various algorithms have been used for
different systems for optimization. This study differs from other studies in the following
aspects. As can be seen from the table, some of the studies in the literature do not use the
PSO algorithm for both PV and BESS sizing. In most of the studies, one of the PV and BESS
parameters was kept constant, and the other parameter was optimized. Although the PSO
optimization algorithm has been proposed for both PV and BESS in a limited number of
studies, they have only been used for island mode systems. Most of the remaining studies
did not use cost minimization as an objective function or energy management system. A
limited number of studies have used cost minimization as an objective function or energy
management system, but with different optimization algorithms.
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5. Conclusions

This study presents a PSO-based algorithm with a new energy management strategy
to find the optimum PV and BESS size for a grid-connected MG. The MG can operate in
island mode and, if necessary, in grid-connected mode with some limitations. The MG
structure is designed in such a way that it can demand energy from the grid when there is
not enough energy in the PV system and BESS. However, the amount of demanded energy
is limited by the system authorities. The aim is to find an optimum PV and BESS size by
considering the defined energy cost. This allows the microgrid to be supported from the
grid in critical situations, although supplying loads from the RES has priority, regardless of
whether the system will demand energy from the grid and/or the amount of energy to be
demanded from the grid can be configured with the proposed energy management method.
Therefore, the energy management algorithm can be reconfigured and used for various
systems and different constraints. To validate the proposed approach, various calculations
are carried out for different PV and BESS sizes. Furthermore, to prove the effectiveness of
the new energy management method with PSO, it has been compared with GA. Results
show that the PSO-based algorithm with the energy management strategy can determine
the optimum PV and BESS size, with the minimum cost defining the system constraints.
Consequently, PV and battery sizes have been optimized together with the proposed PSO
algorithm and novel energy management system. The effectiveness of the system is also
explained by comparing the results with different algorithms.
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Nomenclature

ABC Artificial Bee Colony
BA Bat Algorithm
BESS Battery energy storage system
BESSTotal,energy Output energy of BESS
Bsoc Battery state of charge
CCS Cartesian Coordinate System
COE Cost of energy
c1, c2 Acceleration constants
DPSP Deficiency of power supply probability
DG Distributed generation
DP Dynamic programming
Ebat Battery energy level
Ebat,max Battery module’s maximum energy limit
Ebat,min Battery minimum energy limit
Ebat,rated Battery rated energy capacity
EC Energy cost
ELoad Load demand energy
EMS Energy management system
Enet Net energy
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EPV PV generated energy
ESS Energy storage system
GA Genetic Algorithm
GOA Grasshopper Optimization Algorithm
GW Grey Wolf Optimization
IEA International Energy Agency
LP Linear programming
MaxIt Maximum iteration count
MCDM Markov chain decision method
MG Microgrid
NG Nanogrid
npop Particle population count
PBAT Battery power
PGRID Grid power
PINV-Load Inverter power
PM Probabilistic methods
PPV PV power
Ppvgen Generated power from PV
PREN Renewable power
PSO Particle Swarm Optimization
PV Photovoltaic
PVTotal,energy Output energy of PV
RES Renewable energy sources
SOC State of charge
V Velocity
VarMax Maximum value of the size of PV and BESS
VarMin Minimum value of the size of PV and BESS
w Inertia weight
wdamp Damping ratio
ηBch Battery charging efficiency
ηBdch Battery discharging efficiency
ηconv Converter efficiency
ηBES Battery energy storage efficiency
ηinv Inverter efficiency
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Abstract: Within this study, single-cable propagation facilitated by PV strings’ wiring characteristics
is considered for an adapted design of PLC electronics. We propose to close the communications
signal path, resulting in a ring topology where a resonance condition could be implemented. A
PLC topology using the resulting circular closed-loop path of a PV series string as its physical
communication support is designed and leveraged for practical use. When the path length or the
number of transceivers is changed, the resonance properties that come with the circular path as
the physical support are affected but are shown to be preserved with the application of automatic
adjustable tuning. This automatic tuning guarantees that the resonance improves propagation
parameters and reverts the system to its optimal values at the chosen carrier frequency.

Keywords: loop antenna; power line communication; resonance; single-wire transmission; tuning

1. Introduction

Monitoring and maintenance tasks within solar plants are becoming the focus of many
research efforts, and a growing number of sensors and measuring devices are proposed
to be installed along different points of the solar module associations, even within each
solar module [1]. In this scenario, communications between solar modules and central-
ization points (combiner boxes) become an essential subject for research. Considering the
year-on-year growing amount of solar modules within modern solar plants, the cost of
the communications elements (module transceivers, wiring, etc.) becomes a key point in
constructing optimal designs for future practical communication implementations. Regard-
ing the cabling, an ideal solution would be a power line communication (PLC) system in
order to use the same power cables already installed as a communications physical support,
bypassing the need for extra communications wiring.

Some authors have developed works where PLC is used as an automatic transfer
switch (ATS); ATS selects the electrical connection circuit in the solar plant [2]. In [3], PLC
is used to send the data from the photovoltaic plant through the AC power line. Ref. [4]
employs a PLC-based system to avoid the islanding of the PV solar plant; in this work, the
authors propose the control of the connection and disconnection devices. Ref. [5] employs
a PLC-based communication and control system to control cascade inverters.

Most of the literature regarding PLC over the DC power lines within a photovoltaic
(PV) plant makes use of circuitry and several components designed initially for the standard

Appl. Sci. 2022, 12, 7973. https://doi.org/10.3390/app12167973 https://www.mdpi.com/journal/applsci
619



Appl. Sci. 2022, 12, 7973

physical support of traditional PLC systems [6,7], namely power wires with two conductors
that run parallel to each other. Transmission in these kinds of lines is performed by means
of TEM or quasi-TEM modes, and the traditional transmission lines theory is applicable,
with of course some limitations, such as the nonuniformity of the distributed parameters.
Ref. [8] presents an intelligent PV module monitoring scheme based on a parallel resonant
coupling unit, which uses the DC bus as the communication channel and modulates the
monitoring data into a 200 KHz carrier for communication. However, the topology of the
power cables in each string of PV plants is essentially different since there is a single cable
connecting the PV modules in series that runs away from other sections of the line, at least
in parts of it. This part of the power line can be modelled as a single cable line, where the
propagation mode cannot be TEM and where the classic transmission line theory is not
applicable. This difference suggests that the optimal electronics, carrier frequencies and
general strategy could be different than the ones intended for traditional PLC systems.

This single-wire topology is imposed by the inherent characteristics of the power
wiring within each PV string. As such, in this work, we propose an adapted strategy with
electronics for implementing PLC communications over this cabling topology of a single
PV string, where we start considering this essential difference from classic PLC standards,
since the two-wire physical support common for classic PLC applications is absent in
this configuration.

One of the first studies focused within the area of single-cable transmission was
performed by G. Goubau [9] in 1950, based on a previous study of A. Sommerfeld from
1899 [10]. These studies showed the possibility of radiofrequency propagation via a sur-
face wave guided by a single conductor, in conjunction with the formulation of a TM
propagation mode for the signal. By 2008, Corridor Systems, Inc. (Santa Rosa, United
States)registered a patent application [11] for a single-cable transmission line proposed for
carrier frequencies from 50 MHz to 20 GHz. Later studies have been published adding
updated formulations of the single-cable transmission phenomena [12] and complementing
the theory with the calculation of ohmic currents’ distributions, losses and characteristic
impedance or even creating a classic two-wire-line equivalent model for the single-cable
propagation [13]. One of the most interesting conclusions of these works is the possibil-
ity of a very-low-loss propagation over a single cable. Therefore, this study evaluates
the performance and accompanying possible benefit of the propagation mode of the PV
plant single-cable segment and the need for compensatory electronics to sustain the innate
benefits of the behaviour of the mode in the event where the cable is altered.

Our proposal for the PV string PLC communications system is to close the single-cable
signal path by means of a capacitor connected between the combiner box terminals, in such
a way that the line becomes a ring-shaped path for the communications signal, susceptible
to being pushed to a loop-antenna-like resonance, improving the signal levels along the
line. This work is structured as follows: Section 2 shows the theoretical frame and materials,
Section 3 presents the results and Section 4 shows the conclusions and future work.

2. Theoretical Frame and Materials

This section presents the theoretical framework on which the presented work is based
as well as the materials used in it.

2.1. Theoretical Frame

The previous documents mentioned regarding single-cable transmission in Section 1
considered frequencies of transmission above 50 MHz (higher than the ones we worked
with in this first demonstration stage for our PV–PLC system), whose current distribution
is expected to be flowing superficially or in a thin layer close to the surface of the cable
(skin effect), with propagation described to be carried out by a surface wave whose phase
velocity is c (the speed of light). Our direct measurements of the phase velocity over a line
of single PV cable at a frequency of 20 MHz showed speeds around 0.6 c, closer to what
is observed in typical coaxial cables [14], even when the propagation mode is different in
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our single-cable medium (TM) than the one in coaxial cables (TEM). The lower frequency
used in our single-cable support suggests that the current distribution flows in a thicker
layer inside the conductor, and the influence of the material lowers the phase velocity with
respect to the previously mentioned Sommerfeld surface wave. As a result, the single-cable
analogy applied to the PV plant cable cannot allow us to assume the same propagation
mode described in Section 1, and since our aim with this document is not to establish a
theoretical background but to develop a practical approach for implementing a working
PLC system specific for PV plants, we assumed the measured phase velocity of 0.6 c and
tried to start from a simple model to characterize our system.

The influence of the topology of the physical wiring in the previous literature on PLC
systems for PV strings is not usually discussed, probably because the low-frequency carriers
proposed do not show limitations related to higher frequencies, such as interferences or
resonance issues. Some previous works use an open line topology [7,15,16] and some
others propose a current loop topology [17]. The frequencies are normally in the order of
100 kHz or less, that is to say, considering the assumed phase velocity (0.6 c) wavelengths
are around 1800 m, much bigger than the usual length of the string. With this work, we
try to explore the possibility of setting the carriers of higher frequencies (from 1 MHz on),
analysing the effects of the increased frequency and offering a practical solution, which
inevitably leads to considering the physical topology of the wiring.

In a single PV string, the power wires starting from a combiner box return to the same
box after connecting the modules in series. In essence, it is easy to establish a circular
communications path by means of a capacitor connected between the two cables arriving
at the combiner box and to bypass capacitors connected through each PV module. This
allows for a cable loop configuration to be a communications physical support for a single
string. The choice of a closed-loop configuration for the signal path has several advantages
for communications purposes. This topology sets all the points along the circular line at
the same level regarding attenuation, so differences in reception levels are reduced to a
minimum and it allows for a resonance condition to be established for the signal along the
loop, since there is a natural reactive impedance associated with a cable loop depending on
the relationship between the wavelength and the physical length of the loop, which can be
compensated for by some added lumped reactive impedance, leaving only a low-resistance
path for the signal.

Adding the ring topology proposed to the aforementioned assumption about phase
velocity = 0.6 c, a simple propagation model can be considered. Our starting point is the
schematic in Figure 1.

Figure 1. Schematic of the communications loop (signal path) excited by a current generator (I), with
a perimeter d.
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The cable ring of perimeter d represents a simplified sketch of the signal path, includ-
ing the PV cable line and bypass capacitors (with enough capacitance for presenting a very
low impedance at our working frequency), where the I/O impedance of the transceivers
located along the ring is neglected for a first approximation. It is excited by a current
generator (which in practice could be the secondary binding of a transformer). A general
expression of the current wave along this loop is:

I(x) = I
(

A e−jkx + B ejkx
)

(1)

Representing the sum of two waves moving in opposite directions along the ring,
where I is the current amplitude with its time dependency:

I = I0 e−jwt (2)

Here, x is a coordinate indicating the distance along the loop measured clockwise from
the generator position and k is the wavevector depending on the frequency (f) and phase
velocity (0.6 c) and A and B are constants (which could be complex) to be determined.

The boundary conditions imposed are related to the continuity of the current at the
generator thus:

I(0) = I (A + B) = I(d) = I
(

A e−jkd + B ejkd
)
= I (3)

leading to
A + B = 1 ; A e−jkd + B ejkd = 1 (4)

In general, the solutions of this system of equations lead to (complex) values of A and
B different from zero and thus to a stationary wave pattern for the current distribution.
These solutions are not desirable to implement a communications system because stationary
waves give rise to maximum and minimum current amplitude points along the loop, which
means different reception levels since a transceiver could be located at any point in the ring.
For the case where

kd = π(1 + 2n) (5)

where n is an integer value, this system of equations is incompatible and there is no solution,
representing a destructive interference between clockwise and anticlockwise waves. The
optimal solutions for our purpose are those where A = 0 or B = 0, which leads to a travelling
wave solution of the form:

I(x) = I e−jkx or I(x) = I ejkx (6)

not presenting maximum or minimum current amplitude points. To obtain these kinds of
solutions, it is mandatory that:

kd = 2 π n (7)

that is to say, the perimeter of the loop is an integer multiple of the wavelength.
However, even when the above condition is satisfied, there are stationary wave

solutions (A and B 	= zero) satisfying only the extra condition A + B = 1. In order to
determine the actual spatial current distribution over a typical PV cable loop, we built
a setup comprising 20 m of cable from our real test PV plant (Figure 6, show later) and
measured and assessed the string as one single conductor line travelling in a straight fashion
from the positive lead of one signal generator to the end of the PV array arrangement where
it then turned around, coming back as a loop at a distance of one metre apart from the
initiated point at the positive lead, finishing in the negative lead of the signal generator. The
topology of the circuit is thus a loop-like one, but the shape is elongated from a circular one.
The generator was adjusted for a sinusoidal signal of 9.142 MHz (determined as the signal
corresponding to a wavelength equal to the loop length, fulfilling the above condition) and
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10 volts of amplitude. The validation of the system in short wire installations is interesting,
since for longer installation lengths resonance can be achieved at the same frequency by
means of higher-order modes, where more than one wavelength is present in the line.
Essentially, if it works for our 20 m loop, it will work also in loops which are 40 m, 60 m,
etc., and the fine adjusting for intermediate lengths can be easily achieved by the tuning
circuit designed (see Section 2.2).

The current measurements were made in a low-invasive fashion at different points
along the loop, sensing the AC magnetic field associated by means of a toroidal ferrite core
surrounding the cable, with a 30-turn enamelled cable wiring. This way, an induced AC
voltage proportional to the AC current in the line can be measured with an oscilloscope
across the terminals of the wiring. The high input impedance of the oscilloscope guarantees
that a very low current will flow through the wiring, so a negligible inductance was added
to the loop during measurements. Figure 2 shows the results of these measurements taken
every metre along the loop, and it shows a clear stationary wave pattern. These results
agree with the literature about the current distribution on loop antennas, the theory of
which is close to the one here considered.

Figure 2. Current amplitude distribution along the loop (normalised (%); measurement points and
fitting to a stationary wave envelope function).

The difference between the maximum (100%) and minimum (21%) current amplitude
levels from the measurements represents 13.55 dB, which can be managed easily by an au-
tomatic gain control (AGC) within receptors. There are two possibilities for fully exploiting
the advantages of a resonant loop for communications avoiding significant differences in
the signal levels along the loop: (I) Find a simple way to excite only the travelling wave
mode over a one-wavelength ring (optimal). (II) Work at carrier frequencies low enough in
a fashion that the loop length is a fraction of 1⁄4 of the wavelength or less. This is the slower
option, but it still leads to carrier frequencies over 2 MHz (assuming a propagation speed of
0.6 c and a loop length of 20 m), significantly higher than the average previously reported.

Regarding solution I, some authors have faced the theory of travelling wave solutions
for loop antennas [18], compared with standing wave solutions [19], and even have de-
termined the necessary conditions for exciting the travelling wave modes [11]. All this
work, however, is focused on antenna design and consequently looks for the best radiation
properties. For our application, radiation losses are not desired, since they mean power
losses and could affect the electromagnetic compatibility of the system. Fortunately, the
drastic reduction in the loop area due to the particular shape of our setup will prevent the
system from great radiation losses, since radiation integrals obtain contributions of opposite
current elements much closer to each other [20]. The travelling wave or quasitravelling
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wave mode of propagation for our system could be achieved by fulfilling some of the
conditions exposed in [18,21].

However, these conditions are not easily applicable in a practical environment, so
the insertion in series of a nonreciprocal device is proposed. These kinds of devices will
attenuate the waves travelling in one direction, leaving unaffected ones travelling in the
opposite direction, leading to a travelling wave propagation mode. Some of the possible
practical devices that could accomplish this task are magnetic-circulator-based isolators or
unity gain amplifiers referenced to Earth in such a way that waves arriving towards the
output will find very low impedances to Earth, being attenuated, but the ones arriving
towards the input will find very high impedances and will progress to the output almost
unaffected. In this work, we focus on resonance control, and isolator insertion is left for
future research.

Regarding solution II, if we work at wavelengths four times the length of the loop or
bigger, the phase changes along the loop in π/4 radians maximum. For a loop length of
1⁄4 wavelength, the general solution for its current wave is:

A =
1 + J

2
, B =

1 − J
2

, I(x) = I
(

Ae−jkx + Bejkx
)

(8)

where kx goes from 0 to π/2 along the loop length, so the maximum change in the current
wave amplitude is:

Imax

Imin
=

√
2 ,

Imax

Imin
= 1.5 dB (9)

This value is small enough to avoid AGC systems in receptors and simplifies the
electronics, allowing carrier frequencies over 2 MHz as explained before. This carrier
(depending on the modulation system) can lead to baud rates around 200 kbps, which are
higher than the previous baud rates reported in the literature for PLC within PV plants, so
even when this mode of propagation represents the lower baud rate for our model, it still
supposedly should provide an improvement on the speeds previously reported.

In addition, the resonance condition can still be achieved for this case because even
when the impedance variations related to auto interference are almost not present, there is
an inductance associated with the line and reactive impedances representing the transceivers
(capacitive or inductive depending on the coupling chosen) that must be compensated for
with a lumped element in order to push the loop to resonance. For the higher-frequency
(lower-wavelength) option, as a starting point, we can consider a model of signal propaga-
tion along a closed loop similar to the ones previously mentioned regarding loop antennas,
which show series resonances (impedance close to zero) at frequencies whose wavelengths
are integer fractions of the loop lengths [20]. In this way, a constructive interference gives
rise to a spatial resonance, and a maximum in the signal amplitude is observed. Since
one key goal of a communications system is the integrity of the signal, we must satisfy
the above condition in our cable loop in order to work at an optimal point with the best
SNR possible.

For a chosen carrier frequency, a loop length is fixed to fulfil the above condition;
however, the length of the loop is an imposed parameter depending on the physical
dimensions of the installation, and therefore it is necessary to find a way to adjust the
natural loop resonance to match the frequency of the carrier. The insertion of a coil in
series with the cable loop has the effect of increasing the electrical length seen by the signal
(length expressed as a wavelength multiple), that is to say, the loop will resonate at lower
frequencies. The opposite of this behaviour is seen with the insertion of a capacitor. As
such, the insertion of a reactive component in series with the loop could be used to perform
the matching between the carrier and loop resonance frequencies. This effect is shown
in Figure 3 from our measurements over a typical PV string cable loop 20 m long with a
vector network analyser (VNA) connected to the loop, where the resonance condition is
recognized by the minimum in the modulus of the S11 scattering parameter (maximum
power sent to the loop) and a sudden change in its phase. Figure 3 shows curves around
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the first resonance frequency (9.192 MHz without compensation) corresponding to the
connection in series of a coil, three values of capacitors and the raw cable.

(a) 

(b) 

Figure 3. The shift of the loop resonance frequency with the addition of a reactance in series: the
modulus (a) and phase (b) of the scattering parameter-1 measured with a VNA connected to the raw
cable loop and with the addition in series of a coil and three increasing values of capacitors.

These measurements have been used to determine more precisely the phase velocity
in our PV cable. Since the first cable resonance (9.192 MHz) corresponds to one wavelength
in the 20 m long cable:

λ =
Vf

f
⇒ Vf = 20mx f = 20 ∗ 9192000 = 0.613c (10)

2.2. Materials

Even though a preinstallation length compensation is feasible (installing a fixed re-
active series component), employing automatic adjustable tuning would more so be con-
venient in confining the transmission around an optimal point, in order to account for
the inevitable occurrence of small variations in the loop (for example, the addition of one
more PV module to a string, which would increase the loop physical length). For this
purpose, a simple tuning circuit was designed which was able to show either capacitive or
inductive impedance by means of a control voltage. The basic variable component used
was a varicap diode whose capacity could be adjusted depending on the inverse voltage
applied. The circuit is shown in Figure 4a, and it is composed of a toroidal transformer
with the primary (L2) connected to the cable loop and the secondary (L1) connected to
the variable capacitor (C) (voltage controlled). The actual implementation circuit for the
voltage-controlled capacitor is shown in Figure 4b.
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(a) (b) 

 
(c) 

Figure 4. Schematic of tuning circuit in (a) its generic representation and (b) actual implementation,
and (c) schematic of voltage doubler detection circuit.

The network analysis of the circuit in Figure 4a leads to an impedance seen from the
primary port:

Z = jwL2(1 − w2 L1C (1 − K2))÷ (1 − w2L1C) (11)

where the mutual inductance coefficient in the transformer is expressed by:

M = K
√

L1L2 (12)

and K is the coupling coefficient, showing a parallel resonance at

w1 = 1 ÷
√

L1C (13)

and a series resonance at
w2 = w1 ÷

√
1 − K2 (14)

This impedance has two inductive regions, (w < w1) and (w > w2), and one capacitive
region: (w1 < w < w2). In the centre of the capacitive region with a good coupling in the
transformer (1 − K2 << 1), we have (1 >> w2 L1C (1 − K2) and (1 << w2L1C), so

Z ≈ 1 ÷
(

jwC
L1

L2

)
(15)

and our circuit works as a capacitor multiplier by the factor L1
L2

, which can be very useful
for loops requiring high-capacitive compensation with values higher than the maximum
achieved by the varicap diode, for example, for loops with high inductance in series (the
inductive coupling of the transceivers).

For loops with low series inductance (the capacitive coupling of transceivers), the usual
length of a typical PV string and carrier frequencies over 5 MHz, our circuit is better used
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in the region around the higher frequency of resonance w2, where the impedance is close to
zero, and for frequencies lower than w2 the impedance is capacitive, and for frequencies
higher than w2 the impedance is inductive. Around this region and (1 � w2L1C), the
impedance can be expressed as:

Z = jwL2(1 − K2)− jL2 ÷ (wL1C) (16)

equivalent to a series LC circuit with

Lequ = L2(1 − K2) (17)

and
Cequ =

L1

L2
C (18)

resonant at w2. Since the capacitor C can be dynamically adjusted, connecting this circuit
in series with the cable loop, we can add series inductance, capacitance or none of them
depending on what is required by the loop, and the dynamic adjusting range can be selected
with the value of L2 since it is a common factor in the expression of Z around w2. The
possibility of the capacitance control varying a biasing inverse voltage on the varicap diode
allows us to implement a microcontroller-based tuning system that will also require some
kind of detection of the resonance condition in the loop.

The carrier amplitude through the primary coil in the circuit in Figure 4a will show
a maximum if the loop is pushed to resonance, so if this signal is used as an input for a
voltage doubler detection circuit (Figure 4c), we will obtain at the output a DC voltage
proportional to the amplitude of the carrier in the loop and the resonance can be detected
as a maximum in the DC voltage output. Finally, automatic resonance adjusting can be
implemented by sampling the detector DC output with an analogue-to-digital converter
(ADC) integrated in the microcontroller (MCU), where the convenient firmware will search
for a maximum outputting a DC voltage sweep towards the tuning circuit.

Figure 5 shows the real implementation of the circuits proposed, with all the com-
ponents labelled. Figure 5a shows the front side of the board and Figure 5b shows the
back side.

  
(a) (b) 

Figure 5. Picture of the electronics developed for loop automatic tuning: (a) front side; (b) back side.

The PV plant used is shown in Figure 6. This plant is located on the facilities of the
Duques de Soria campus of the University of Valladolid. The campus is in the city of Soria,
Spain. The modules used in this article for the communication line are those on the upper
row. Each module has the characteristics shown in Table 1.
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Figure 6. PV plant on Duques de Soria campus of the University of Valladolid.

Table 1. Technical characteristics of the PV module.

Model Cells Power/W VOC/V ISC/A VMPP/V IMPP/A

Eoply 72 cells 175 44.35 5.45 36.26 4.83

3. Results

Figure 7 shows the action of the compensation described, where a 20-m-long loop
was kept in resonance at 9.5 MHz initially with the corresponding control voltage of 5 V.
Then, the length of the loop was shortened to 15.10 m, and with the resonance control
electronics off, the resonance frequency was displaced to 11.1 MHz. If we then switched on
the electronics, the control voltage was readjusted by the MCU to get the resonance back to
9.5 MHz. All the electronics described above could work to keep the resonance condition
on any of the two modes described in Section 2. The S21 modulus was measured with a
VNA connected in series with the loop, the tuning circuit and a 50-ohm load. Maximums
show the frequencies of minimal attenuation of the propagation along the (loop)-(tuning
circuit) chain. The black trace corresponds to the 20 m cable with a control voltage of 5 V
in the tuning circuit, where the maximum is over the chosen carrier frequency (9.5 MHz).
The blue solid trace corresponds to a variation in the loop length from 20.00 m to 15.10 m
with no change in control voltage, and the new maximum is over 11.1 MHz and the carrier
(9.5 MHz) is attenuated from |S21| = 0.228 to 0.100. The blue dashed trace corresponds to
the new loop length (15.10 m) after the tuning circuit action for compensation, leading to a
control voltage of 0.9 V, and the maximum is back over the carrier at 9.5 MHz.

Figure 7. Effect of microcontroller action to retune the loop, in response to variations in cable distance.

During the current distribution measurements in the one-wavelength loop presented
before (Figure 2), with an exciting signal of 10 volts in amplitude, the absolute voltages
measured across the current sensor were between 70 and 330 mV, which, considering that
the sensor sensibility is 10 Volts/Amp, indicates averaged current amplitude values in the
order of 200 mA. This suggests that with much lower exciting voltages, communication
with reasonable SNRs is possible due to loop resonance, making simpler and low-cost
transceivers conceivable.
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As a validation of the current levels present in the short-loop configuration (1⁄4 wave-
length), measurements were made over an experimental setup composed of a cable loop
20 m long with ten capacitors and ten small toroidal transformers distributed evenly in se-
ries simulating the bypass capacitors and the transceiver inductively coupled and installed
within each PV module in a real installation. The toroidal transformers had a transforma-
tion ratio of 30:1 with the secondary connected to the loop, and their inductances were
adjusted to form with the bypass capacitors LC resonators at the carrier frequency, in such
a way that the transceivers were LC resonators at the same frequency as the loop resonance.
The control electronics were also placed in series with the loop. A carrier frequency of
1 MHz was chosen, fulfilling the condition of a loop shorter than 1⁄4 wavelength, and was
injected in the primary of one of the transformers with an amplitude of 5 volts, simulating
a transmission from one of the transceivers towards the others. The voltage amplitude
measurements at the primaries of the ten transformers receiving the signal are shown in
Table 2.

Table 2. Voltage amplitude measurements of the 1⁄4 wavelength configuration.

Receiver Voltage Amplitude (V)

1 32.3

2 32.1

3 32.3

4 33.5

5 34.6

6 34.0

7 33.5

8 32.7

9 32.5

10 32.8

4. Conclusions and Future Works

An analysis of a ring topology as physical support for a PLC system specially intended
for PV strings has been presented, proposing that pushing this loop to resonance optimises
the reception levels along the cable. Previous works on this subject had proposed resonant
circuits for coupling to the line; we added here to this feature the possibility of working
with the whole loop under resonance, improving even more the signal levels along the
line. In addition, the conditions needed for the levels to be reasonably equalised has
been derived. Control electronics have been designed to keep the communications signal
path on resonance, making the system flexible and able to self-adapt to different specific
installations or changes within the same setup. As this check and adaptation to resonance is
a task that does not need to be accomplished continuously (it would be enough to execute
it once per day), the MCU that controls all the communications in a final application could
be the same, allowing a lower-cost system.

The insertion of transmission (TX) and reception (RX) circuits along the loop shows
reactive impedances (inductive or capacitive coupled to the line) or even small resistances,
consequently modifying the resonance condition on the loop; nonetheless, our tests have
shown that the addition of the compensation reactance supplied by the circuit described
before is able to return the loop to the optimal working point of resonance. The approach
here presented is useful as a starting point for further research that could determine the
precise influence of lumped impedances along the loop in the communications performance,
but for moderate reactances in the TX/RX circuits (enough for signal injection and recovery),
the compensation circuit is enough, with only small deviations compared to the behaviour
of the raw cable loop.
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Two options regarding the relationship between the loop length and the wavelength
have been presented: a loop with one wavelength perimeter and a loop with 1⁄4 wavelength
perimeter or less. The measurement levels in the loop have shown the possibility of working
with relatively low signal levels without compromising the SNR in both options, allowing
the design of cheaper and simpler transceivers. The main line of research from our results
must be to explore and test for future work the ways proposed to excite the travelling wave
mode in the one wavelength loop, which in essence could suppose a great leap forward
for equalising the signal levels working at carrier frequencies over 5 MHz, leading to baud
rates close to or even over 1 Mbps (depending on the spectral efficiency of the modulation
scheme chosen), keeping all the advantages of working in resonance.
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Abstract: Heat is the largest energy end-use sector, accounting for half of the global final energy
consumption and more than 40% of energy-related CO2 emissions. China produces more than
one-quarter of global heat. Policy interventions are of great necessity to overcome the economic and
non-economic barriers the sector encounters. The purpose of this study is to explore the evolution
history of China’s renewable heat policies over the last 20 years and to assess the effectiveness
of the current policy system. The evolution of the policies is strongly linked to China’s socio-
economic background and is driven by various factors at each stage. A policy intensity index model
is formulated to further dive into the dynamic characteristics of renewable heating. The results
indicate that regulation-based instruments are always preferred, with varying degrees of lag for
the other three types of instrument. Since the inception of the clean heating program in 2017, the
intensity of renewable heating has increased dramatically, revealing that renewable heating has
received increasing policy attention and is gradually becoming a key pillar in the context of climate
change targets.

Keywords: renewable heating; policy; instrument

1. Introduction

China has committed to peaking carbon emissions by 2030 and achieving carbon neu-
trality by 2060 (“30/60 targets”). Reaching the 30/60 targets demands a dramatic scaling
up of clean energy. Heating is the largest energy end-use sector, accounting for half of the
global final energy consumption and more than 40% (13.1 Gt) of worldwide energy-related
CO2 emissions in 2020 [1]. More than one-quarter of global heat is produced and consumed
in China, where the heat sector remains heavily reliant on fossil energy [2]. Renewable en-
ergy plays a critical role in decarbonizing and providing a greener energy supply option [3].
However, for a long time, renewable energy sources of heating (renewable heating) have
been neglected in favor of a focus on renewable electricity, with less than 10% of energy
supply coming from renewable energy sources.

The deployment of renewable energy in the heating sector should be accelerated to
meet 30/60 targets, which will also bring additional benefits, including decreasing air
pollution emissions and enhancing energy security [4]. However, there are still many
obstacles to overcome, such as high capital costs, low prices of fossil fuels, and subsidies
for fossil fuels. Policy intervention is needed to overcome the economic and non-economic
barriers faced by the sector. In the past 20 years, China has already formulated some
policies to support the deployment of renewable energy in the heating sector; however,
there have been few systematic reviews of the existing renewable heating policies, and the
key factors in designing the policies are still not well understood.

Besides, the majority of literature on renewable heating focus on specific renewable
modes, e.g., geothermal, biomass, wind power heating etc. [5–7], analysis of the effec-
tiveness of renewable heating systems [8–11], and evaluation of the impact of policies on
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energy use, climate change, and technology penetration [12–14]. These efforts have assisted
in gaining a better understanding of the renewable heating system; however, the policy
itself is rarely studied, especially when it comes to the implementation level. In China,
policy implementation is crucial due to its special administrative structure [15]. Zhang et al.
evaluated the energy saving and environmental policies in China, and proposed that the
effectiveness of these policies are largely determined by the implementation level factors,
including the instruments applied and the intensity of the policy itself [16,17]. However,
few studies have evaluated renewable heat policies from these perspectives.

To fill the aforementioned research gaps, this study covers three aspects. Firstly, the
development and framework of renewable heat policies formulated in the last 20 years
are reviewed to construct a broad picture of the policy system. Secondly, the policies are
clustered according to the instruments applied to bolster a quantitative analysis and obtain
an in-depth insight into the dynamic development process. Finally, suggestions to establish
a more efficient renewable heat policy system are provided. The results of this study will
contribute to a comprehensive understanding of China’s renewable heat policy and will
shed light on policy design and implementation in the future.

2. Methods

In this study, a systematic review of renewable heat policies in China, spanning from
2000 to 2021, is conducted to understand the framework of China’s renewable heat policy
and to determine the key drivers in policy making. The review approach is developed
by referencing several studies, including Zhu Bei et al. [18], Liu Junxia et al. [15], and
Chul Kim [19].

To quantify the effectiveness of existing policies, a policy intensity index (PII) model
is employed. A policy intensity index is developed based on the game theory of public
policy to quantify the impact of policies. The index was first developed by Libecap [20]
in 1978, and then widely used to quantify policy effectiveness. The structure of the PII in
this paper is established based on previous studies concerning China’s energy saving and
clean heating policies [16–18,21], and specific modifications are made to precisely reflect
the characteristics of renewable heat policy. The modification contains 2 aspects. Firstly,
the score scope is narrowed down to 3 degrees. Secondly, the policies are classified into
3 categories instead of 5 categories, to simplify the evaluation.

Table 1 shows a breakdown of the index indicators, which includes 2 primary aspects:
issuance level and target level. The policy’s authority level is measured by the level of
issuance. The issuance level aims to measure the authority degree of the policy through
3 sub-indicators: document type, issuer level, and coverage of the policy. The target level
includes 2 indicators, the refinement and the duration of the targets, with the purpose of
assessing the stringency degree of the targets in the policy. Each sub-indicator is endowed
with the same score rules, from 1 to 3.

In terms of data processing, we gathered policy documents from official government
websites, such as the official websites of the state council (SC), the National Development
and Reform Commission (NDRC), the Ministry of Ecology and Environment (MEE), and rel-
evant policy databases. A total of 146 relevant policies were collected. The keywords for text
analysis included “policy,” “regulation,” “renewable heating,” “geothermal,” “biomass,”
“wind power heating,” “clean heating,” and “solar heating”. Screen criteria was identified
to ensure that the policy type was in the form of law, regulation, opinion, measure, or
notice. The collected policies were standardized for further quantitative analysis by issue
time, issuer, the number of issuers, target type, coverage, etc. The timeline ranged from
2000 to 2021, with the consideration that few policies were released before 2000.
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Table 1. The breakdown of PPI indicators.

Indicator Sub-Indicator Score Rules

1. Issuance level

1.1. Document type (P1)

� Law: 3
� Strategy, guidance opinion, plan, and

action plan: 2
� The announcement, notification, and

implementation measures: 1

1.2. Coverage (P2)
� National level: 3
� Provincial level: 2
� City level: 1

1.3. Issuer level (P3)

� State council: 3
� Ministries (more than 3): 2
� Less than 2 ministries or provincial

governments: 1

2. Target level

2.1. Refinement of targets (P4)
� Specific quantitative targets: 3
� Only overall targets: 2
� Only qualitative targets: 1

2.2. Duration of targets(P5)
� More than 5 years: 3
� 3–5 years: 2
� One year or less: 1

After each indicator was scored, the policy intensity for a policy was calculated by
multiplying all the sub-indicators. The model is shown in the following formula.

Pi = ∑N
j

(
P1j,i × P2j,i × P3j,i × P4j,i × P5j,i

)
, i = [2000, 2021] (1)

Pi represents the policy intensity of year i, while j represents the ordinal number of the
policy in year i. P1j,i to P5j,i represent the score of the sub-indicator in a specific year of
policy j.

3. Development of China’s Renewable Heat Policy

3.1. Architecture of Renewable Heat Policies in China

China’s current renewable heat policy system has been formed from scratch after more
than 20 years of efforts. The architecture of the system is illustrated in Figure 1, to elucidate
the inner relationship of the policies. Generally, policies can be classified into several levels.
The first level is law, which lays out a fundamental legal framework for the development
of renewable heating. The second level is medium- to long-term strategies or plans. The
third level focuses on short-term comprehensive plans, including conventional plans and
unconventional plans. The fourth level is sub-plans and special policies. The fifth level
refers to local plans and policies.

China introduced the Renewable Energy Law in 2005, and since then renewable energy
has become a preferential area for energy development. Renewable law lays a legal basis
for renewable heating development. To implement the renewable heating law, central and
local governments have formulated a series of policies.

Under the renewable law, medium- to long-term strategies are made. “The Medium-
and Long-Term Renewable Development Plan” [22] and the relevant climate and environ-
ment strategy mainly addressed the principles and priority tasks for making short-term
national renewable energy plans in China.
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Figure 1. The structure of the renewable policy in China.

Based on strategy and high-level guidance, central governments usually make con-
ventional plans to guide the next five years of development. The first renewable energy
development plan was issued in 2012, and China has since began to promulgate a renew-
able development plan for each five-year period. These plans generally include mandatory
goals that should be achieved by the end of the fifth year. Alongside conventional plans,
some unconventional plans were also promulgated to address important and urgent issues.
In 2017, the Clean Heating Plan for Northern China (2017–2021) (clean heating plan) was
released jointly by nine ministries to facilitate the transformation of clean heating, and to
control air pollution caused by coal-fired boilers [23]. The implementation of the clean
heating plan spanned three years until the end of 2021 and covered “2 + 26” cities in
Northern China.

The targets in these comprehensive plans are usually broken down into more specific
targets and presented in sub-plans with specific measures. China has issued special plans
for geothermal energy heating, biomass energy heating, renewable electricity heating, solar
water, and heating policies [24–28]. Additionally, it is of significance to engage in the
implementation of comprehensive plans and supporting policies, such as subsidies and tax
credits, to show sufficient support and attention.

Local governments commonly release renewable heat policies according to local
conditions under the umbrella of national policies. For example, Inner Mongolia issued the
“Notice on wind power for heating to support the utilization of wind power for heating in
winter seasons” [29]. Furthermore, local governments are also encouraged to formulate
local standards to enhance the implementation of renewable policies and regulations. As of
2015, more than 28 provinces had already issued compulsory regulations requiring new
buildings to install solar heating systems [30].

3.2. The Development of Renewable Heating in China

When the cost of solar water heating systems dropped significantly in the 2000s,
renewable heating started to receive more attention from policymakers [30]. Since then,
progress in policies has been accelerated to push forward the deployment of renewable
energy in the heating sector. The evolution of renewable heat policies has been closely
associated with the socio-economic context of the last 20 years [24]. The development of
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renewable heating policies can be divided into four stages, as shown in Table 2. The key
drivers and the role of renewable heating are different in different stages.

Table 2. The four stages of renewable heating development.

Projection Period
Stage 1 Stage 2 Stage 3 Stage 4

2000–2013 2013–2016 2017–2020 2021–Present

Key driver Increasing demand for
consumption Air pollution issues

Clean heating program
to achieve higher

air quality

New climate change
goals and the need for
the energy transition

Key policy
Renewable law, solar

heating incentives, and
compulsory standards

12th and 13th five-year
plans for

renewable heating

Plan for clean heating
in Northern China

(2017–2021)

Notice on
implementing
renewable heat

according to
local conditions

Policy goals No specific goals for
renewable heating

Quantitative goals:
substitution of coal

achieving 100 million
by the end of 2015 and
400 million m2 for solar
heating 580 million m2

Quantitative goals: one
billion square meters of
geothermal, 2.1 billion

square meters of
biomass, and 50 million

square meters of
solar energy

Quantitative goals: the
scale of geothermal

heating, biomass
heating, biomass fuels,

solar thermal
utilization, and other

non-electric utilization
reached 60 million tons
of standard coal by the

end of 2025

Role of renewable
heating at the
policy level

A supplement to
energy use especially

in household

A supplement when
coal is replaced

One of the main
sources of clean
heating supply

Imperative solution for
climate change goals

• Stage 1: driven by household demand, from 2000 to 2013

Since 2000, China has undergone rapid urbanization, along with a rapid increase in
the application of domestic solar water systems. Strong demand from the consumption
side drove the significant growth of the installation of solar water heating systems, which
achieved 323.1 million m2 by the end of 2012 [4]. Incentive measures, i.e., subsidies,
tax credit, and compulsory standards greatly promoted the deployment of solar heating.
The solar heating market expanded rapidly with strong responses, since solar heating
was integrated into the energy saving livelihood program (China started to implement
the energy saving livelihood program in 2012, by providing subsidies for energy-saving
products, including solar water products). This required direct delivery of subsidies
for households that were equipped with solar heating systems. However, the year 2014
witnessed the beginning of a decline in the growth rate due to the expiration of the program.
The market progress of solar heating is described in Figure 2.

In this stage, solar heating dominated the renewable heating market, with other
renewable heating technologies accounting for little market share. This stage is marked by
an initial stage of renewable heating, with household demand as the key driving factor.
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Figure 2. The development of the solar heating market in China.

• Stage 2: driven by air pollution issues, from 2013 to 2017

In 2013, extreme haze weather hit northern areas of China with a high frequency.
The increasing environmental awareness of the public and concerns over air pollution
instigated heating reform focusing on clean energy transition [31]. In 2013, the state council
(SC) issued the Air Pollution Prevention and Control Action Plan [32]. Following this,
regulations on the substitution of coal for residential heating became a vital part of national
air pollution control and environmental supervision. Moreover, renewable heat policies
were introduced accordingly in this stage, focusing on specific technologies, such as biomass
and geothermal energy. In 2013, a special policy titled “Guidance opinions on promoting
utilization of geothermal energy” [24] was released, clarifying the main objectives, key
tasks, and measures required to foster the geothermal heating industry. It is also worth
noting that the first renewable heating target for the whole country was confirmed at this
stage. In the 12th Five-Year Renewable Energy Development Plan [33], a quantitative
indicator for renewable heating, namely the amount of substitution of fossil energy, was
established. Subsequently, in the 13th Five-Year Renewable Energy Development Plan, the
targets were further enhanced, from 10 billion tce by 2015 to 15 billion tce by 2020 [34].

At this stage, policies on renewable heating began to be more vigorously implemented,
and specific quantitative targets for renewable heating development were determined
for the first time. The primary policy measures in this stage were aimed at providing
resolutions to air pollution issues, and renewable heating was deemed as a supplementary
solution to replacing coal.

• Stage 3: driven by demand of higher air quality

In 2017, 10 ministries and commissions jointly promulgated the Plan for Clean Heating
in Northern China (2017–2021) [23], which formally defined the energy sources of clean
heating, including geothermal energy, biomass, solar energy, natural gas, electricity, indus-
trial waste heat, clean coal combustion, nuclear energy, etc. In the policy, an ambitious
target was proposed, striving to achieve a 50% clean heating rate by 2019 and 70% by 2021.
Furthermore, renewable heating was for the first time identified as the main source of clean
heating energy rather than playing a supplementary role in the previous stage. Specific
goals were given for each renewable heating technology, i.e., one billion square meters for
geothermal energy, 2.1 billion square meters for biomass, and 50 million square meters for
solar energy by the end of 2021.

To ensure the implementation of the plan, regulations on subsidies and price mecha-
nisms were also released at this stage. In 2017, the Ministry of Finance provided subsidies
to 43 pilot cities, with an annual subsidy of one billion RMB for municipalities, 700 million
RMB for provincial capitals, as well as 500 million RMB for other cities [35]. Following

638



Sustainability 2022, 14, 9297

this, the National Development and Reform Commission (NDRC) issued a policy titled
“Opinions on Clean Heating Price in North China” to overcome the issue of price distortion,
clarifying that renewable energy should be given high priority in heating energy supply
and linkage of electric heating, wind, and solar power generation curtailment should be es-
tablished [36]. Thereafter, the 13th Five-Year Development Plan of Geothermal Energy [37]
specified the goals and strengthened the measures, in which specific geothermal modes,
shallow geothermal systems, and hot rock geothermal systems were introduced to solve
the problem of winter heating where applicable. Meanwhile, in the 13th Five-Year Devel-
opment Plan of Biomass Energy [26], biomass heating, especially biomass co-generation,
was highlighted to supplement the energy supply with regard to the implementation of
“coal to gas” or “coal to electricity” policies.

At this stage, renewable heating was formally integrated into the clean heating system
as a main source of energy supply, rather than a supplement. Applying more diverse policy
instruments could contribute to ensuring the implementation of the clean heating plan.

• Stage 4: driven by ambitious climate change goals, 2021–

In 2021, a comprehensive policy titled “Notice on advancing the development of
renewable heating according to local conditions” was launched [38], consisting of six
aspects: (1) release special plans for renewable heating, including specific renewable heating
goals aligned with the requirements of climate change goals; (2) promote various types
of renewable heating technologies according to local conditions; (3) continue promoting
pilot demonstration work and major project construction; (4) guarantee policy support of
renewable heat; (5) strengthen R&D support for key technical equipment; and (6) improve
the government management system for renewable heat. The policy symbolized the
significant achievements of clean heating policies in China and initiated a new era of
renewable heating development. The 30/60 targets served as the dominant driver for this
stage. Subsequently, a series of policies concerning renewable heating were released. The
most recent policy is “Several opinions on promoting the development and utilization of
geothermal energy” [25], jointly issued by eight ministries, which highlights the importance
of geothermal utilization.

In summary, the year 2021 witnessed the transformation of renewable heat policy with
the release of a comprehensive renewable heating program. This indicates that renewable
heating in China has been formally integrated into the energy transition system as a key
measure to address climate change.

4. Evaluation of Renewable Heat Policy

In China, policies have varying impacts according to the authority level of the issuer.
Regulations issued by the state council generally have the highest authority, followed
by regulations or policies jointly issued by multiple ministries. Policies released by the
signal ministry or province (autonomous region, municipality) have the lowest authority.
Furthermore, the efficacy of a policy is also greatly related to the document type, i.e., law
has the highest efficacy, followed by strategy.

A policy instrument provides the link between policy formulation and policy im-
plementation. The instrument used in a policy has a significant impact on how well it is
implemented [39]. Policies can be divided into four categories using the instrument applied:
regulation-based policy, fiscal instrument-based policy, price mechanism-based policy, and
financial instrument-based policy. Regulation-based instruments include targets, planning,
compulsory standards, etc. Fiscal instruments commonly include subsidies, grants, tax
credits, etc. Price-based instruments include heat-trading mechanisms, carbon markets, etc.
Typical financial instruments are bonds, loans, and direct equity investments [4].

In this section, renewable heat policies are evaluated from two perspectives. First, we
focus on the instrument in the policies to find out how the policy is implemented. Second,
PII is used to further understand the intensity of the existing policies and their efficacy.
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4.1. The Instruments of Renewable Heat Policies

In this paper, the cumulative number is used to quantify the instrument applied in
policies. To be specific, policies are classified according to the type of instrument and a
specific instrument that appeared in a specific year was counted in the subsequent years.
Policies that use several instruments are counted into primary instrument types to avoid
double counting. The cumulative numbers of the four types of policies according to
instruments applied from 2000 to 2021 are illustrated in Figure 3.

 

Figure 3. Development of policies according to instruments.

Overall, it demonstrated an upward tendency of all four types of renewable policies
since stage 2, particularly for regulation-based policies, which increased from 20 to more
than 100 over seven years. Comparatively, it can be seen that the other three types all
showed some degree of delay. The amount of fiscal incentive policies has grown moderately
since 2015, while the price and financial instrument-based policies began to increase steadily
only after 2017.

In terms of the amount of the four types of policies, regulation-based policies are
largest with a share of approximately 70% by 2021. Fiscal incentives began to increase
in 2017, leading to a share of 11% by the end of 2021, with the remaining two types at
less than 20%. Regulation-based policies are preferred, with an amount much higher
than the other three instruments, showing a structured imbalance in the application of
different instruments.

4.2. Evaluation of Policy Intensity

To further illustrate the dynamic changes in renewable heat policies over the last
20 years, the policy intensity index from 2012–2021 was gained using the model introduced
in Section 2. The results are shown in a bubbling figure (Figure 4), where the size of the
bubble represents the intensity of the policies of a specific year.

It can be seen that the intensity of the four types of policies showed different patterns,
among which regulation-based policies showed the strongest intensity of all four stages.
The intensity of regulation-based policies reached the highest level in the year 2017, which
can be attributed to a series of policies issued by high-level authorities, including the
SC. Fiscal relevant policies followed after and financial instrument-based policies had the
lowest intensity. The years following 2017 witnessed an increase in the intensity of the four
types of policies, indicating the increasing political will for renewable heating from the
policy maker.
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Figure 4. Policy intensity index of the four types of policies.

For the four types of policy instruments, the following can be found if Figures 3 and 4
are combined:

Regulation-based policies dominated in the policy system, which were both largest
in amount and strongest in stringency. The high-frequency application of regulation-
based instruments in renewable heat policies reflects that the renewable heating market
is still primarily driven by governments and is still at an initial stage, where mandatory
regulations are greatly needed. However, it is not recommended that regulation-based
policies are applied long term, due to the lack of flexibility and cost effectiveness.

Fiscal incentives have been implemented since 2017 when the clean heating program
was initiated, marking a major step. However, the incentive options are limited, and
subsidy is the most common approach. Fiscal instruments can play a great role in the initial
stages by supplementing the capital cost, but put great pressure on the government. More
diverse instruments can be deployed when providing fiscal support. One example is the
renewable heating incentive (RHI) from the United Kingdom, which is similar to the tariff
mechanism in the generation market. The tariff mechanism can be more result-orientated
and flexible compared to subsidy.

Market-based policies, including price mechanism and financial incentives, are least
used. Market-based policies are seen as the most cost-efficient way to foster a renewable
market by internalizing the environmental and economic cost. The application of market-
based policies should be greatly accelerated.

5. Conclusions and Suggestions

5.1. Conclusions

China’s renewable heat policies have advanced quickly in the last two decades. Numer-
ous policies have been implemented. However, few studies have examined the evolution
of these policies. We used the PII model to present the dynamic changes in the renewable
heat policies and three conclusions were summarized as follows.

Firstly, we systematically reviewed and illustrated the overall development of re-
newable heat policies from 2000 to 2021. China has established a renewable heat policy
system, which consists of five levels of policy, each with different power and authority.
The top levels are law, strategies, and plans, which provide macro guidance for long-term
development. The middle levels are comprehensive policies and regulations in the form
of five-year plans, special plans, etc., to further specify targets and measures. The policies
at the bottom levels are commonly designed for guiding implementation, including sup-
porting policies with incentives, special plans, or regulations, targeting specific renewable
heating technology models and local policies.
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Secondly, the 20 years were divided into four stages. In stage 1, the main driver was
the increasing heating demand from households, when the market for solar water heating
soared quickly. In this stage, regulation-based policies, such as compulsory standards,
pushed the expansion of the market. Furthermore, incentives also played an important
role. The second stage began in 2013. In this stage, issues with air pollution pushed
the development of renewable heating, with more political attention paid to renewable
heating to supplement the coal-to-gas program in fighting against air pollution. In 2017,
China initiated its clean heating plan, when renewable heating began to formally integrate
into the clean heating system. The fourth stage was driven by new climate change goals.
In this stage, the development of renewable heating became a certainty. The renewable
heating development of the past 20 years has a strong link with the socio-economic context,
showing various features in different stages. Thirdly, to further dive into the renewable
heat policy, we classified the existing renewable heat policies into four categories according
to the instruments applied. The results showed that the structure of the four instruments
were in disproportion, with regulation-based instruments the most preferred. While the
government began to apply other instruments to overcome price distortion and other
issues, the impact is still limited. The number of policies with all four instruments increased
dramatically since stage 3, when China began to implement its clean heating program. To
enhance the implementation of the 30/60 targets, the application of market-based policies
are greatly needed.

5.2. Policy Suggestions

To further accelerate the deployment of renewable energy in the heating sector, the
following suggestions are proposed:

Firstly, multiple barriers in the renewable heating sector call for a range of policy
instruments, often in combination. Regulation-based instruments, which generally lack
flexibility and cost-effectiveness, should be supplemented by other policies, especially
market-orientated policies. The application of regulation instruments can be strengthened
by increasing the application of other types of policy instruments. Instrument diversifica-
tion is required to strike a balance between cost, adaptability, and efficacy.

Secondly, the incentive system for renewable heating needs to be strengthened. The
externality of renewable heating can be partially compensated by incentives. Instead of
relying solely on subsidies, the government can use a variety of incentives, such as tax
breaks, tariffs for renewable heating sources, etc., to alleviate the financial load. Addition-
ally, innovative measures, such as result-based incentives and loan guarantees, can also be
applied when applicable.

Thirdly, market-orientated instruments should be further enhanced in policies. Car-
bon market and green finance instruments have great potential in further enhancing the
development of the renewable heating market. Financial instruments should be more
embodied in future policies, such as green loans and green bonds.

Finally, policy coordination should be further strengthened. Coordination can improve
the efficiency of resource allocation, as well as avoid unnecessary conflict in implementation.

The present work provides a first and comprehensive review of China’s renewable
heating policy at the national level. Further research regarding the role of the policy’s
executor, the local government, would be of great help in understanding the effectiveness
of renewable heating. In addition, a considerable amount of work is needed to evaluate
the impact of renewable heating on energy transition and carbon emission, to examine
the evolution of household heating patterns, and to explore the possible demand-side
management option using an experimental approach.
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Abstract: Recycling of problematic photovoltaic modules as raw materials requires considerable
energy. The technology to restore cells in hotspot modules at a relatively low cost is more economical
than replacing them with new modules. Moreover, a technology that restores power by replacing
a cell-in-hotspot of a photovoltaic module with a new cell rather than replacing the whole module
is useful for operating power plants. In particular, power plants that receive government subsidies
have to use certified modules of specific models; the modules cannot be replaced with other modules.
Before putting resources into module restoration, predicting the power of a module to be restored
by replacing a cracked cell with a new cell is essential. Therefore, in this study, the module output
amount after restoration was calculated using the previously proposed relative power loss analysis
method and the recently proposed cell-to-module factor analysis method. In addition, the long-
term degradation coefficient of the initial cell and the loss due to the electrical mismatch between
the initial and new cell were considered. The output of the initial cell was estimated by inversely
calculating the cell-to-module factor. The differences between the power prediction value and the
actual experimental result were 1.12% and 3.20% for samples 190 A and 190 B, respectively. When the
initial rating power and tolerance of the module were corrected, the differences decreased to 0.10%
and 2.01%, respectively. The positive mismatch, which restores cells with a higher power, has no
loss due to the reverse current; thus, the efficiency of the modules is proportional to the average
efficiency of each cell. In this experiment, the electrical mismatches were only 0.37% and 0.34%. This
study confirmed that even if a replacement cell has a higher power (<20%) than the existing cell, the
power loss is not significantly affected, and heat generation of the existing normal cell is not observed.
Hence, it was concluded that when some cells are damaged in a crystalline solar cell, the module
could be restored by replacing only those cells instead of disposing of the entire module. However,
for commercialization of the proposed method, a long-term reliability test of the module repaired
using this method must be performed to confirm the results. Following this, recycling cells instead of
recycling modules will be an economical and eco-friendly alternative.

Keywords: cell-in-hotspot; cell replacement; module repair; restoration technology; module recovery;
power prediction; electrical mismatch; CTM factor analysis

1. Introduction

Renewable energy, including photovoltaic power generation, has steadily increased
globally through [1,2] continuous cost-cutting efforts based on eco-friendly elements and
low maintenance costs [3,4], despite the high costs and relatively low economy in the
early stages of its implementation [5]. Owing to economic security and increased supply
of renewable energy [6,7], the achievement of grid parity has recently accelerated [8,9],
with a certain percentage of fossil fuel usage steadily being replaced by renewable energy
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usage, and hence, the total use of renewable energy has increased over the past decade [10].
Expanding the solar energy supply may reduce carbon dioxide emissions and achieve
a healthy mix of energy sources to overcome the climate crisis [11,12]. However, the
increasing demand for solar energy may cause shortages of the resources used in the
advanced production of solar modules [13–15]. In particular, owing to the scarcity of
resources such as silver, indium, and bismuth, target material consumptions of 2, 0.38,
and 1.8 mg/Wp [16,17], respectively, have been proposed; thus, a significant reduction in
material consumption is required to expand renewable energy supply [18].

The large-scale installation of photovoltaic modules results in the problems of eco-
nomic use of resources during production and processing of waste modules after use [19,20].
By 2050, 80 million tons of accumulated photovoltaic modules are expected to reach their
service life worldwide, with 10 million tons in the US alone [21]. With the rapid increase
in the installation of photovoltaic modules in countries such as China, the collection and
recycling of end-of-life photovoltaic modules is becoming an important task, and various
methods of building efficient recycling systems are being investigated [22]. According
to previous studies, the predicted accumulated waste that will be generated from 2020
to 2080 in existing solar power plants varies in proportion to solar installations, and is
expected to peak at 130,000 tons in 2051 and 141,297 tons in 2054 [23]. Currently, the life
of a photovoltaic module is approximately 20–30 years; therefore, the life of photovoltaic
modules installed in the early 2000s will expire on a large scale, and the disposal of waste
modules will increase rapidly. Photovoltaic modules consist of expensive materials, such
as aluminum, silver, copper, tin, and silicon wafers. In addition, they can be used as
highly attractive recycled materials in terms of the environmental charges imposed when
filling landfills. In the recycling process of a general photovoltaic module, research has
primarily focused on recycling by collecting silicon wafers and refabricating them into opti-
mized silicon solar cells [24,25], pyrolyzing organic materials such as ethylene vinyl acetate
(EVA) [26], and removing organic materials such as glass and ribbon metals [27,28]. As a
research example on recovering the performance of photovoltaic modules, a technology
for recovering the insulation resistance of aging modules by injecting coatings based on
polyurethane, epoxy, silicone, and synthetic rubber of crystalline photovoltaic modules was
introduced [29,30]. However, recycling or reuse technology generally involves removal of
frames, junction boxes, or cables, etc., from crystalline photovoltaic modules, followed by
thermal or chemical decomposition of the laminated module to collect glass, silicon, metal,
and polymer [31,32].

This recycling technology is not currently widely used because it is expensive and the
return on investment (ROI) is less than approximately −0.25 as of 2022 [33]. In addition, the
recycling method, which involves collecting the raw materials separately, is not applicable
to the recovery of damaged modules in an operating power plant because the failure
of a part of the module results in the crushing of other usable parts. Accordingly, this
paper proposes a technology to recover photovoltaic modules at the same or a higher
level of the initial power value by replacing cells at a safety risk, such as power loss and
hotspots, owing to damage to some cells of an aged silicon photovoltaic module. Most
commercial solar power plants receive subsidies from the government. In this case, only
certified modules of a particular model should be used during the generation period. If
the module fails, it cannot be replaced by another model. Moreover, owing to the rapid
improvement in cell efficiency every year [34,35], the module model continues to change.
In commercial power plants, restoring the output of a module by cell replacement is very
useful. Technological advancements in the restoration of the module result in a power
deviation between the initial and new cell [36,37]. Therefore, when replacing a cell with
a new cell having a higher power, the possibility of an electrical mismatch loss occurring
should be considered, and the long-term power degradation of the initial cell should be
confirmed. Hence, the purpose of the experiment was to determine the extent to which
the output improvement of the new cell is reflected in the output of the module to be
restored. Previous studies have shown that the prediction of power mainly includes power
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degradation in modules with hotspots or how much power decreases as a result of EL in
modules with potential-induced degradation (PID) [38,39]. However, the purpose of this
study was to predict the improvement to power through replacement of damaged cells
in a module, which has not been attempted before. The results of this study suggest that
the energy and environmental costs of recycling modules can be significantly reduced by
reusing waste modules in more diverse states.

2. Experiments

2.1. Methods and Procedures

The overall experiment was conducted in the following order: module power output
and defect verification, calculation of grade of originally applied cells, grade verification
of replacement cells, power prediction, module power recovery, comparison of predicted
power output and experimental results, and application of correction values. First, the
defects and power output of the module to be recovered were checked via electrolumi-
nescence (EL) measurement and a sun-simulator. EL measurements are used to identify
internal defects that cannot be visually identified using EL in solar cells. Table 1 provides
the nomenclature for the electrical characteristics of the module.

Table 1. Nomenclature for the electrical characteristics of the module.

Isc Short-circuit current Imp Current at the maximum power output
Voc Open-circuit voltage Vmp Voltage at the maximum power output

Pmax Maximum power output FF Filling coefficient factor

The current corresponding to the cell Isc and the voltage at the same level as the
module Voc were applied for the measurement. EL images of the module were captured
in several parts of a darkroom, recollected, and displayed on a screen. The EL equipment
manufactured by MC Science in Korea was used for the measurements. The simulator
measures the module’s Isc, Voc, Pmax, etc., under the standard test condition (STC) at 25 ◦C,
1 Sun (1000 W/m2), and air mass 1.5, and corrects the actual temperature to output the
calculated value to the screen. The equipment used in this study was a Spire-Nissinbo
Sun Simulator. The equipment was calibrated for proper use in the certification test of the
photovoltaic module by receiving the AAA in three evaluation items: uniformity, stability,
and spectrum. Measurements of power output from equipment are displayed in various
ways, i.e., 1–4 digits after the decimal point; however, in this study, the third digit after
the decimal point was rounded to two digits to maintain consistency. The CTM (cell to
module) factor calculation method was applied to the power analysis of the cells used at
the time of manufacturing the target samples and the review of the cells to be replaced [40].
The grade of the applied cell was inversely calculated based on the initial power output of
the module disclosed on the Internet by the manufacturer. The module power after cell
replacement was predicted after checking the grade of the cell to be replaced.

The CTM coefficient k-factor calculation method was used to analyze the power of
the original cell of the target samples and review the replacement cell. Manufacturing
modules from cells, models, and formulas for classifying the CTM coefficient k-factor,
which affects efficiency or power, and analyzing loss or acquisition mechanisms have been
presented in previous research [41,42]. If the dimension data and rated power of a module
released by the module manufacturer are the initial power outputs of the module, the
module efficiency is calculated to be 13.6%. Because the module power output is calculated
from the sum of the CTM coefficient k factor and the initial solar cell power in the module
power output calculation model, the power output of the module can be calculated using
Equations (1) and (2) [41,43]. The factors i and m in Equations (1) and (2) are variables of
the routinely used pie function, and refer to the extension of the CTM factor. The CTM
k-factor consisted of 15 types: k1 (module margin), k2 (cell spacing), k3 (cover reflection),
k4 (cover absorption), k5 (cover/encapsulant reflection), k6 (encapsulant absorption), k7
(interconnection shading), k8 (cell/encapsulant coupling), k9 (finger coupling), k10 (intercon-
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nector coupling), k11 (cover coupling), k12 (cell interconnection), k13 (string interconnection),
k14 (electrical mismatch), and k15 (junction box and cabling). The meaning of I = 3−m in
the ∏-function of Equation (1) means CTM k-factor from k3 to k15. Then, the sum of the
cell power outputs from j = 1−n from the ∑-function is the number n of cells applied to
the module.

Pmodule =
m

∏
i=3

ki·
n

∑
i=1

Pcell.j (1)

CTMpower=
m

∏
i=3

ki (2)

In terms of module efficiency, factors affecting the entire area of a gap module between
modules are important; however, when a module is produced from a cell, a design margin
(k1) to ensure an electrical insulation distance and a loss factor (k2) owing to the cell
interval are not related to a power change. The module efficiency can be expressed by
Equations (3) and (4) [41].

ηmodule =
Pmodule

ESTC·(Amodule + Acell spacing + Acells)
(3)

ηmodule = ηc·(k1 + k2 − 1)·
m

∏
i=3

ki (4)

Therefore, according to this model, the module efficiency is proportional to the average
efficiency of the cell rather than being dominantly affected by the lowest efficiency. The
average efficiency of the cell was calculated by considering the electrical mismatch loss (k14)
of the cell to predict the power output of the module to be restored. For the loss caused
by the electrical mismatch of cells, studies were published prior to research on the CTM
factor, and the widely known definition of RPL is expressed as the difference between the
maximum power (Pmpc) of n individual cells connected in series to form a cell string or
module. RPL can be expressed as Equation (5) from the difference between the sum of the
maximum power of all cells and the maximum power of the module.

RPL =
∑n

i=1 ·Pmpci − Pmodule

∑n
i=1 ·Pmpci

(5)

In theory, when individual cells operate completely independently, the maximum
power output is denoted as P′

max, and when the average cell power output value in a
group is Pmax, the calculation of RPLB (relative power loss of a module using Bucciarelli’s
equation) is as shown in Equation (6).

RPLB =
P′

max − Pmodule

n·I−mpV−
mp

(6)

The power output after cell replacement and the state inside the module were also
confirmed using the EL and Sun simulators. The cell replacement process is discussed in
the next section. After cell replacement, the gain factor (power increment of the replacement
cell), loss factor (long-term degradation, electrical mismatch), and unidentified tolerance
parts of the module track the experimental results and apply the same to the two samples,
correct the power predictions, and finally compare them with the results.

2.2. Experiments

Figure 1 presents an EL image of a 6-inch 54-cell 3BB polycrystalline silicon solar
module, where the hose power degrades owing to cell damage. Figure 1a shows the
first sample of 190-Wp grade, referred to as 190 A for convenience, and its appearance.
Figure 1b–d depict EL images of 190 A, the second sample of the 190-Wp class (190 B),
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and 190 B, respectively. As shown in images (a) and (c), a weak yellowish appearance,
which was not severe, was observed. In addition, approximately six to nine dark areas
were observed in the EL image (Figure 1b) and approximately six dark areas were observed
at 190 B (Figure 1d). In the green-marked cell of (d), the dark area in the cell occurred
because of poor soldering between the mutual connector and the busbar.

 
Figure 1. Module appearance and EL images with degraded power output due to cell breakage. (a) is
the appearance of 190 A, (b) is the EL image of 190 A, (c) is the appearance of B, and finally (d) is the
EL image of 190 B.

The modules used in this study included samples collected from commercially op-
erated power plants; however, the current–voltage (I–V) data at the time of manufacture
were unknown. Therefore, the electrical characteristics of the model disclosed by the
manufacturer were assumed as the initial electrical performance.

Table 2 lists the initial electrical specifications of samples 190 A and 190 B and the
electrical data of the failed samples after a certain period of operation. As confirmed in the
EL image, the FF was severely degraded by the damaged cells in the middle of the string.
For 190 A and 190 B, the power decreased by −21.69% and −26.47%, respectively.

Table 2. Electrical data of the modules in the initial stage and after use.

Sample Pmax (Wp) Isc (A) Voc (V) Imp (A) Vmp (V) FF Tolerance

190 A 54 cells initial 190.00 7.89 33.00 7.31 26.00 0.73 ±3%
failed 148.80 8.16 32.77 5.16 28.84 0.56

190 B 54 cells initial 190.00 7.89 33.00 7.31 26.00 0.73 ±3%
failed 139.70 7.95 32.67 5.67 24.66 0.54

Figure 2 displays the I–V and voltage–power (V–P) curves of modules 190 A and 190 B.
The I–V curves appear step-shaped, while the V–P curves have two or more multi-peaks,
which is a typical form caused by the decrease in Isc due to the cracking of a specific cell in
a cell string [44].
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Figure 2. I–V and V–P curves of modules with degraded power output owing to cell breakage.

Figure 3 shows the process of removing the broken cells of 190 A and 190 B cells and
replacing them with new cells. (a) First, the module is placed on a hot plate to heat the
sun-side and soften the EVA, then, the back sheet is removed from the edge. (b) When
the back sheet is completely peeled off, (c) the tape attached to fix the cell-string gap was
removed. If it is a material such as EVA, it does not require removal; however, for a tape
using polyethylene terephthalate (PET) as a basic material, a gap is formed between the
tape and cell owing to the loss of adhesion.

When cleaning the back sheet removal surface or the cell removal area using ethanol
or isopropyl alcohol (IPA), the permeated organic solvent may cause solvothermal swelling
in the lamination process, or gas may accumulate to cause swelling [32].
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Figure 3. Module recovery process by replacing broken cells. (d) Next, the EVA along the boundary
of the cell to be removed was cut, and the tab of the cell to be removed was cut by 15 mm or more
for electrical connection during recovery. (e) Subsequently, the broken cell was removed using a
scraper with a blade. (f) The remaining EVA was trimmed to the interface of the adjacent cells, and
the removed surface was washed. After cell removal, the module was removed from the hot plate
and cooled to room temperature. (g) EVA was placed between the glass and the new cell to connect it
to the module. Here, the size of the EVA is important because it should be perfectly connected to the
first EVA of the existing module without leaving a bubble after lamination of the module. Thus, the
EVA should be cut accurately with an error of less than 1 mm. If it is larger than the removal surface,
stress is applied to the replacement cell, which can cause the cell edge to crack during the lamination
process. (h) Subsequently, while electrically connecting the new cell and the existing adjacent cell
through re-soldering, insulation was applied to prevent the first EVA from melting in the heat. (i) The
second EVA was slightly thicker than the original size. (j) A margin of less than 5 mm should be
given, and if it is more than that, the overlapping part of the edge EVA of the cell replaced after
lamination is exposed, causing a repair mark. (k) Finally, the EVA and new back sheet covering the
entire module were laid up. (l) The electrical connection was checked, and the lamination process
was completed.

3. Result and Discussion

3.1. Power Output Analysis of Initial Cells Applied to Each Sample and Specification of
Replacement Cells

The initial CTM of the cells analyzed above was approximately 1.78% based on power,
with the median value of 0.9%, as suggested in the optimized module process published
in a previous study, and 2.72% of the CTM value of a general photovoltaic module [41].
The calculated power output of the individual cells was approximately 3.6 Wp, which is
approximately 14.8% in terms of cell efficiency. Table 3 lists the initial power output of the
cell applied to the module using Equations (1) and (2).
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Table 3. Initial applied cell grade analysis of sample modules (190 A, 190 B) to be recovered.

CTM Factor (k) K conventional (%) CTM power Ratio Initial CTM power of 190 A, 190 B

Module efficiency (STC)/Power 18.31 98.23% 190.0
k15 (junction box and cabling) −0.05 −0.23% −0.45
k14 (electrical mismatch) −0.04 −0.19% −0.36
k13 (string interconnection) −0.03 −0.14% −0.27
k12 (cell interconnection) −0.037 −0.17% −0.33
k11 (cover coupling) 0.28 1.30% 2.51
k10 (interconnector coupling) 0.09 0.42% 0.81
k9 (finger coupling) 0.17 0.79% 1.52
k8 (cell/encapsulant coupling) 0.16 0.74% 1.43
k7 (interconnection shading) −0.44 −2.04% −3.94
k6 (encapsulant absorption) −0.03 −0.14% −0.27
k5 (cover/encapsulant reflection) −0.01 −0.02% −0.05
k4 (cover absorption) −0.14 −0.65% −1.26
k3 (cover reflection) −0.31 −1.44% −2.78
Cell efficiency (STC)/Power 21.58 100.00% 193.45

As cells of the same grade were already discontinued, a module was repaired using
the 3-bus bar cell, which had the lowest power among the cells currently in use. The Pmax
and cell efficiency of the cell used in the initial manufacture of the module are listed in
Table 2. Assuming that the FFs of the module and cell were the same, the cell Vmp and Voc
were calculated by considering the number of cells from the module Vmp and Voc, and Isc
and Imp were determined using Pmax and FF of the cell.

The electrical characteristics of the initial and replacement cells used to restore the
modules are presented in Table 4. The tolerance of the initial cell follows that of the module
specification sheet.

Table 4. Electrical data of initial cell and replacement cell.

Item Eff. Cell Pmax (Wp) Isc (A) Voc (V) Imp (A) Vmp (V) FF Tolerance

Initial cell 14.80 3.58 8.07 0.61 7.32 0.49 0.73 ±3%
Replacement cell 17.60 4.28 8.62 0.63 8.39 0.51 0.78 ±3%

3.2. Predicting the Power Output of the Restore Module When Applying A Replacement Cell

The following are the considerations for predicting the power of a module to be
recovered when a new cell is installed: the first element is the deviation between the actual
power output of the initial module and rated power output. This part was expected to be
within the initial tolerance range, and after module recovery, the results and discussion
were verified. Next, the power increase of the replacement cell should be added and
the value of the field-aged power degradation rate from the initial power of the existing
cell should be deducted. Moreover, the loss from the electrical mismatch between the
cells should also be considered. The increase in the power of the replacement cell can be
easily calculated using Equations (2) and (4). The next part to be considered is the loss
caused by the electrical mismatch. A recent study reported that the result of power loss
from the electrical mismatch of cells within a module was difficult to determine; however,
when the direct parallel configuration of modules was different, the relative power loss
(RPL) of the array due to electrical mismatch was 1.3–2.6% [45]. In previous studies, the
power loss caused by the electrical mismatch of cells was reported to be approximately
0.009–0.19% [46]; thus, it is already reflected as −0.19% in the CTM factor; therefore, it
should be applied conservatively. In the prediction of the power output, the final part to
be considered is the loss from power degradation owing to the field aging factor of the
existing cell. In general, the rate of power output degradation guaranteed by a module
manufacturer is 0.7%/year, which is a guaranteed limit design considering the power
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degradation caused by the failure of some modules in PV power plants. Referring to the
results reported in a previous study, the actual power output degradation rate of more
than 80% for crystalline PV modules in PV power plants that have been operated for more
than 10 years is approximately 0.27%/year on average [47]. This figure is significantly
lower than the limit guaranteed by manufacturers. In this study, we applied this figure to
calculate the power output prediction. Table 5 lists the power output predictions for the
recovered modules.

Table 5. Power output prediction for recovered modules.

CTM Factor (k) CTM Power Ratio 190 A (10 New Cells) 190 B (6 New Cells)

Module efficiency (STC)/Power 98.23% 196.40 193.50

Long term degradation of used cell −0.27%
× (% of remaining cell) −0.34(−0.17%) −0.47(−0.24%)

k15 (junction box and cabling) −0.23% −0.46 −0.46
k14 (electrical mismatch) −0.19% −0.37 −0.37
k13 (string interconnection) −0.14% −0.28 −0.28
k12 (cell interconnection) −0.17% −0.34 −0.34
k11 (cover coupling) 1.30% 2.60 2.56
k10 (interconnector coupling) 0.42% 0.84 0.82
k9 (finger coupling) 0.79% 1.58 1.56
k8 (cell/encapsulant coupling) 0.74% 1.49 1.46
k7 (interconnection shading) −2.04% −4.08 −4.03
k6 (encapsulant absorption) −0.14% −0.28 −0.28
k5 (cover/encapsulant reflection) −0.02% −0.05 −0.05
k4 (cover absorption) −0.65% −1.30 −1.28
k3 (cover reflection) −1.44% −2.88 −2.84
Cell power (STC, + power gain) 100.00% 200.32 197.52

For 190 A, 10 broken cells were replaced; thus, (10 × 4.28 Wp) + (44 × 3.58 Wp) = 42.8
+ 157.52 = 200.32 Wp is the total power output value of the cell. In 190 B, six cells were
replaced: (6 × 4.28 Wp) + (48 × 3.58 Wp) = 25.68 + 171.84 = 197.52 Wp. The results are
presented in Table 4. Through the calculation, the predicted power output values of 190 A
and 190 B were calculated as 196.40 Wp and 193.50 Wp, respectively. The CTM factor ki
values ranging from k1 to k15, and k3 to k15 are shown in the table; however, k1 and k2 values
are not shown in the table nor described here. The CTM factor k1 is the module margin,
which is approximately −2.03% in a typical module, and k2 is the cell spacing, which is also
generally −0.53%. This value is a design factor for the module area and depends on module
dimensions. However, the module margin or cell interval for insulation distance affects
only the area efficiency of the module and does not produce power by itself; therefore, the
calculation of CTM power was excluded from previous research.

3.3. Results of Power Recovery by Cell Replacement of 190 A and 190 B Samples

Figure 4 shows a comparison of the EL images of the modules before and after repair.
In Figure 4c,d, the relatively bright cells are the newly replaced cells. In Figure 4a,

when replacing cells of the 190 A sample, one more cell was replaced by damaging adjacent
cells while removing the cells from the hot plate, and as the cell replacement operation was
repeated, the same mistake was not repeated. Some small cracks not shown in Figure 4a are
observed in Figure 4b, which are defects occurring during manual cell removal. However,
the result shown in Figure 4d is not much different from that in Figure 4c because cell
replacement has become familiar and cell removal progressed much more easily. For an
easy recovery process, care should be taken to prevent additional cell cracks when collecting
and reinstalling the modules to be repaired.
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Figure 4. EL images in modules before and after recovery. (190 A, 190 B). (a) Among a total of 54 cells
from 190 A, 10 cells with a severe crack degree were removed and (b) replaced with a new cell to
recover. (c) Sample 190 B exhibited severe power degradation in approximately six cells, and hot
spots due to pore soldering also occurred in the busbar–interconnector connection. (d) However,
both the power and FF were recovered after cell replacement and pore soldering repair.

Table 6 lists the electrical characteristics of the module before and after recovery.
The module power increased by approximately 4.50% to 198.60 Wp from the rated power
for 190 A, and by approximately 5.10% to 199.70 Wp for 190 B. We verified that, considering
the loss of electrical mismatch between the existing cell and the new cell, the higher power
of individual cells had a greater effect on the power of the module.

Table 6. Electrical data of modules before and after recovery.

Item Replacement Pmax (Wp) Isc (A) Voc (V) Imp (A) Vmp (V) FF Initial Comparison

190 A 10 cells before 148.80 8.16 32.77 5.16 28.84 0.56 −21.69%
recovery 198.60 8.11 32.95 7.54 26.35 0.74 +4.53%

190 B 6 cells before 139.70 7.95 32.67 5.67 24.67 0.54 −26.47%
recovery 199.70 7.99 32.89 7.50 26.64 0.76 +5.11%

As mentioned in Section 3.2, when the difference in cell mismatch is not large, the loss
due to mismatch is insignificant in the range 0.10–0.19%, and most (>80%) of crystalline
photovoltaic modules are only approximately 0.27%/year on average. Therefore, it matches
well with the result that predicted that the gain factor would have a greater impact on the
final power output of the module than the loss factor [46,47].

Figures 5 and 6 show the I–V curves before and after power recovery for 190 A
and 190 B, respectively. The results in Figures 5 and 6 show that Isc and Voc do not change
significantly before and after module restoration and that the V–P curve is deformed by
cell breakage, the FF is recovered, and the power of the module is restored.
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Figure 5. I–V and V–P curves before and after power recovery for sample 190 A.

Figure 6. I–V and V–P curves before and after power recovery for sample 190 B.

As shown in Figures 5 and 6, both the cell-in-hotspot-specific stepped I–V and
multipeak-shaped V–P curves are recovered.

Figures 7 and 8 show a brief circuit diagram of module 190 A before and after recovery,
respectively. In the figures, Iph represents the solar irradiance and Ipv represents the power
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output current. D1, D2, and D3 denote bypass diodes #1–#3, respectively, and Rs denotes
the series resistance.

Figure 7. Sub-circuit diagram of 190 A before recovery.

Figure 8. Sub-circuit diagram of module 190 A after recovery.

In the EL image of Figure 7, nine cells were cracked, resulting in resistance loss. In
this case, the ratio of shaded (or inactive) areas causing hot spots in the cell increased
proportionally with the range of inactive areas between 20% and 50%. If the resistance
becomes excessively large over a greater range or if the bypass diode is short-circuited [48],
it causes 100% power loss to the entire connected string [49,50]. A part looks relatively
brighter around the interconnector immediately next to the dark area of the damaged cell,
and the current is concentrated on a part of a cell with relatively low resistance owing to
cracks; thus, power loss occurs in the shaded and connected cells.

Figure 8 shows the EL of the module whose power was recovered after the cell
replacement of the 190 A sample and its diagram. The picture for 190 B is repeated, so I
omit it.
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3.4. Comparative Analysis of Power Recovery Results and Predicted Values

Table 7 shows the difference between the predicted power output value obtained using
the CTM analysis before module recovery and the value measured after cell replacement.

Table 7. Comparison of predicted and experimental values.

Item
Before

Recovery
Predicted

Value
Experimental

Value
Difference Tolerance

190 A 148.80 196.40 198.60 +1.12% ±3%
190 B 139.70 193.50 199.70 +3.20% ±3%

Even when applying the power deviation when manufacturing a module, both cases
exhibited a positive deviation; therefore, the loss, such as electrical mismatch, in the CTM
factor was considered conservative among the possible ranges. The CTM power analysis
results at 190 A are shown in Figure 9.

 
Figure 9. CTM power analysis for a recovered module (190 A).

The sum of the power of the initial and replacement cells was defined as 200.32 Wp
using the values calculated in Equation (1) and Table 4, and when CTM factors were applied,
the predicted value of 198.60 Wp was determined. Here, if 2.20 Wp, i.e., the difference
from the experimental results, was reflected, it was analyzed, as shown in Figure 9. The
difference between the predicted and experimental result for 190 A was 1.12%, which fell
within 3% of the power output tolerance value of the initial module. The analysis result of
sample 190 B indicated that the error was larger. Figure 10 shows the CTM power analysis
of the recovered module (190 B).

Sample 190 B was of the same grade as 190 A, and because there were fewer replace-
ment cells (six), the power acquisition from the replacement cell was smaller than that
at 190 A; therefore, the total power output of the cell was calculated as 197.52 Wp. In addi-
tion, the numbers of remaining cells in 190 A and 190 B were 44 and 48 cells, respectively;
thus, the long-term degradation was then calculated to be −0.47 Wp, which is greater
than −0.34 Wp for 190 A. The experimental value was 199.70 Wp, i.e., 6.20 Wp higher than
the predicted value of 193.50 Wp. This is approximately 3.20% higher than the predicted
value of 3% or more, which is the power output tolerance value of the initial module.
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Figure 10. CTM power analysis for a recovered module (190 B).

3.5. Analysis of Prediction Error and Correction of Prediction Value Reflecting Initial Tolerance

The error begins with the sum of the cell power output values. The final power
value was 199.70 Wp, and the sum of the calculated cell power values was 197.52 Wp,
which began with a difference of 2.18 Wp even if the CTM was assumed to be “0.” The
value 2.18 Wp was 1.15% of the initial rated power value of 190 Wp, which was within
the allowable tolerance range of the module. Therefore, assuming that the initial use cells
of 190 A and 190 B were the same, sample 190 B corrected the experimental deviation
of 2.18 Wp. Those of 190 A were calculated by adjusting the number of cells to calculate
the correction value of 2.00 Wp. Accordingly, the predicted power output values of 190 A
and 190 B could be recalculated as listed in Table 8. The initial power output prediction
value of sample 190 A was 196.4 Wp. For the power correction value of 1.998 Wp within the
tolerance shown in the experimental result, the correction prediction value was 198.4 Wp.
Additionally, the error decreased to 0.10% with the final experiment result of 198.6 Wp.
When the initial power output prediction value of 193.5 Wp was corrected for 190 B, the
corrected prediction value was 195.68 Wp, which was approximately 2.13% lower than the
experimental result for 199.7 Wp.

Table 8. Analysis of predicted and experimental values.

Item
Predicted

Value
Tolerance

Calibration
Correction

Experimental
Value

Difference

190 A 196.40 2.00 198.40 198.60 +0.10%
190 B 193.50 2.18 195.68 199.70 +2.01%

When the tolerance value calculated above was added to the initial rated power, the
initial power of the module was approximately 192.45 Wp. Based on this, the power before
and after module recovery owing to cell damage and the recovery trend of the FF are shown
in Figure 11.
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Figure 11. Result of module recovery via cell replacement (power and FF).

Table 9 summarizes the initial, failed (before recovery), and recovered (after recovery)
values of the power degradation module owing to cell cracking.

Table 9. Electrical data deviation of initial, faulty, and recovered module.

Item Pmax (Wp) Isc (A) Voc (V) Imp (A) Vmp (V) FF Tolerance

54 cells initial 190.00 7.89 33.00 7.31 26.00 0.73 ±3%

190 A
failed 148.80 8.16 32.77 5.16 28.84 0.56 −

recovered 198.60 8.11 32.95 7.54 26.35 0.74
Rate of decline (initial) +4.53% +3.55% −0.16% +3.13% +1.36% +1.92%

190 B
failed 139.70 7.95 32.67 5.67 24.67 0.54 −

recovered 199.70 7.99 32.89 7.50 26.64 0.76 −
Rate of decline (initial) +5.11% +1.28% −0.33% +2.57% +2.42% +4.11%

The characteristic of the recovery of the cell in the hotspot module by cell replacement
is that the Voc value hardly changes step-by-step but decreases within the error range by
step. The largest negative mismatch factor in the phase of the power drop to the cell in
the hotspot was Imp, exhibiting a 29.43% decrease at 190 A compared with the initial value,
which had the greatest impact on the power decrease of −21.69%. Even in sample 190 B,
Imp degradation caused a −22.48% decrease in the cell in the hot spot stage, and a power
degradation of −26.47% was also the largest factor. For a positive mismatch with a high
power, the Isc and Imp values both increased, and the Vmp value decreased step-by-step
at 190 A; thus, the factor that most affected the positive mismatch was the increase in Isc
and Imp; the increase in Imp, in particular, was the largest factor. Figure 12 shows the EL
images of samples (a) 190 A and (b) 190 B recovered by cell replacement, and (c) IR images
measuring whether the module generated heat by installing them again in the power plant.
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Figure 12. Images of the recovered module (190 A, 190 B). (a) is an EL image of the repaired 190A
module, and (b) is an EL image of the repaired 190B module. (c) is an IR image of 190A and 190B
re-installed at the plant.

A difference in brightness was observed between the replaced and existing cells in
the EL images shown in Figure 12a,b, but in Figure 12c, no significant heat generation was
observed in the IR image at the installation site. The IR camera used to measure cell heat
generation was a Ti400 FLUKE equipment.

Thus, we confirmed the restoration potential of modules that are underpowered by
cells in hotspots in commercial power plants. When some cells are damaged in a crystalline
PV module, the module can be restored by replacing those cells instead of discarding
the entire module. Assuming that this method restores more than 180 sheets per day on
a 200-Wp module basis, the cost of restoring the module is approximately 0.17 $/Wp. This
is slightly more than half of the recent crystalline module price of 0.30 $/Wp. However, for
commercial use, a long-term reliability test of a module repaired using this method must
be performed to confirm the results. Accordingly, reuse of modules instead of recycling
will be an economical and eco-friendly alternative.

4. Conclusions

In this study, the power loss caused by the damage of a cell in a module was de-
termined through EL images and I–V and V–P curves of the module, and research was
conducted to recover only the damaged cells to be equal to or higher than the initial power
of the module. The recovery of modules is important in the electrical serial–parallel design
and application of existing structures in PV power plants. Therefore, the grade of the cell
applied at the time of module production was calculated using the CTM factor analysis
method and applied considering the dimensions and tolerance of the specification sheet of
the module presented by the manufacturer. To predict the power of the recovered module,
the power degradation factor from the aging factor of the module, not in the existing
CTM formula, and the mismatch loss of the cell were checked again and recalculated. The
results of the power output prediction calculated using the formula and the power output
of the recovered module measured as the experimental result had an error of 1.12% in
sample 190 A and 3.20% in sample 190 B. This was determined to be an error, assuming that
the rated power output was the initial power output, because the accurate power output
of the initial module was unknown. As a result of calibrating the power of approximately
2 Wp by feeding back the initial tolerance from the recovered module power output, the
revised prediction was calculated as 198.40 Wp in 190 A and 195.68 Wp in 190 B, and the
experimental results indicated error rates of 0.10% and 2.01%, respectively. This study
confirmed that even when a replacement cell applied to the recovered module had an
average power output of approximately 19.60% (4.28 Wp) higher than that of the existing
cell, and Isc had an average value of approximately 8.98% higher (8.62 A), the loss of
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electrical mismatch did not significantly affect the power, and heat generation of existing
normal cells was not observed. In addition, even for modules operated for a long time
(>10 years), the power reduction rate is significantly smaller than the 0.70%/year suggested
by the module manufacturers. Even if a degradation of approximately 2.40% over 10 years
was applied, there was no significant error in the power prediction. As the life of a PV
module increases, the recovery technology for discontinued modules becomes a very im-
portant economic factor for PV power plants with a considerable remaining operating
period. Module recovery technology through cell replacement is useful as an economical
reuse and high-value-added technology to prevent power degradation in an operating
power plant. A technology to recover a module function by selectively replacing only the
necessary cells and recovering a module function, even when it has expired commercially,
would be significantly more economical than decomposing and collecting it as raw material.
We believe that in future studies, work should continue to verify the effect of electrical
mismatch in a wider range of cells on modules as well as the long-term reliability to predict
the lifetime of restored modules.
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Abstract: With the development of 1500 V photovoltaic (PV) systems in recent decades, multilevel
inverters such as the five-level inverter have gained much attention for their higher equivalent output
frequency and low semiconductor devices’ voltage stress. Among five-level inverters, the active
neutral-point-clamped five-level (ANPC-5L) inverter is very competitive due to its simple structure
and control methods. However, with its conventional commutation strategy, the topology of the
ANPC five-level converter has the security risk of overvoltage in the power device when switching to
dead time under special conditions, which affects the reliability and safety of the switch state switch-
ing process. In this paper, this issue is analyzed in detail and a modified commutation strategy is
proposed. Meanwhile, a novel soft start-up method adopted to an ANPC-5L inverter is also proposed.
A prototype is also set up to analyze the issue of traditional switching commutation strategies and to
verify the effectiveness of the proposed commutation strategy and the soft start-up method.

Keywords: ANPC-5L converter; reliable switching state; modulation; PV grid-tied inverter

1. Introduction

Photovoltaic generation has been paid more attention recently because of the shortage
of fossil fuels and the increasingly serious levels of environmental pollution, which play
an important role in PV systems [1]. Compared with previous 1000 V systems, the 1500 V
system reduces the number of cables and PV plants, and decreases the line cost and
conduction loss [2,3]. Moreover, it provides more voltage range which is used to ensure
maximum power point (MPPT) availability by controlling front-end circuits or adjusting
the grid-connected voltage [4,5].

Nowadays, multilevel inverters such as the five-level inverter have gained much
attention for their high equivalent switching frequency and low voltage stress, which
are benefits for increasing the inverter’s power density [6,7]. The neutral-point-clamped
(NPC) inverter, flying capacitor (FC) inverter and T-type inverter are traditional three-level
inverters which have been widely employed in industrial application. The NPC inverter
is generally adopted in centralized PV grid-tied inverters because of its simple operation
principle and high power level capability [8,9], which are different from the demands of PV
string inverters. When used in low bus voltage applications, the T-type inverter is suitable
on account that it can reach a higher work frequency, higher conversion efficiency, and
higher power density [10,11]. The unbalance of neutral-point voltage is the main issue in
multilevel inverters, except in the FC inverter [12]. However, one more floating capacitor is
added in each phase, resulting in a larger volume and poorer power density, and its control
scheme is more complex.
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Many efforts have been made on topologies for photovoltaic multilevel inverters.
Five-level topology reduces both the voltage stress of semiconductor devices and the
volume of filter inductance compared with three-level topology due to its better harmonic
performance, which may lead to loss reduction and system cost reduction. NPC-5L is
the usual topology used for five-level topology [13], in addition to other topologies such
as cascaded H-bridge five-level (CHB-5L) and FC five-level (FC-5L). Problems such as
relatively large switching losses, unbalanced voltages of capacitors, and poor stability have
promoted research into five-level topologies [14]. Other different topologies of multilevel
inverters have also been adopted in industrial application: the stacked multi-cell (SMC) [15],
the H-bridge NPC (H-NPC) [16], the neutral-point piloted (NPP) [17], and the modular
multilevel converter (MMC).

The ANPC-5L converter, as shown in Figure 1, has been paid more and more attention
since it was proposed [18,19], and is the combination of two types of inverters. One is the
FC three-level inverter, the other is the active NPC three-level inverter. The advantages of
this inverter consist of low switching losses and the convenience of capacitor voltage bal-
ance [20,21]. Switches which are connected in series in this topology switch at fundamental
frequency, while the others switch at carrier frequency. Meanwhile, the switching cost of
this topology is low because the stress of the switches is VDC/4, while VDC is the voltage of
DC-link. Moreover, if different switching states are chosen appropriately, the voltage of
floating capacitors is easy to balance.

Figure 1. Topology of the ANPC-5L inverter.

Researchers have carried out a lot of work on ANPC-5L modulation technology,
flying capacitor voltage control, neutral-point voltage control, and other issues [22,23].
The modulation strategy of the ANPC-5L inverter is simple and reliable most of the time.
However, less attention has been paid to the voltage stress of switching devices in ANPC-5L
converters, and the voltage stress of switching devices is very important for the safe and
reliable operation of inverters. Document [24] analyzes the operation state of inverters
based on space vector pulse-width modulation, including 125 vector combinations, and
limits the stress of the switching devices by using the safe switching state switching process.
Meanwhile, under the conventional modulation scheme, the analyzed inverter has the
security risk of overvoltage in the power device when switching to dead time at the
zero-crossing point of voltage when the output current is inductive, which affects the
commutation safety [25].

In this article, this issue is analyzed in detail and a modified modulation strategy is
proposed. In comparison with other modulations, this method provides several free degrees
which are used to ensure the elimination of the voltage stress of power devices by choosing
favorable circuit states and controlling current commutations. Additionally, it can realize
the flying capacitor voltage balance in several carrier wave periods. The implementation of
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the proposed strategy in digital systems is rather simple. Meanwhile, a novel soft start-up
method adopted to the ANPC-5L inverter is also proposed. Experimental results prove
that the proposed strategy is valid.

The rest of the paper is organized as follows. Section 2 presents the traditional
switching states. Section 3 analyzes the power device’s overvoltage issue in detail. Section 4
proposes the modified modulation strategy to solve the potential safety hazards. Section 5
proposes a control method for soft start-up. Section 6 illustrates an inverter prototype for
analysis verification. The conclusions are given in Section 7.

2. Traditional Modulation Strategy

As shown in Figure 1, the ANPC five-level inverter has eight power switches S1–S8,
a floating capacitor CF, a upper capacitor CUP, and a lower capacitor CDOWN. For the
ANPC-5L inverter, as shown in Table 1, the conventional modulation scheme uses eight
basic switching states to produce five voltage levels. There are redundant states at the +E
and −E levels (E is 1/4 of bus voltage VDC) which affect the charging or discharging states
of the floating capacitors. The balance of the floating capacitor voltages can be realized by
choosing appropriate switching states.

Table 1. Traditional switching states of the ANPC-5L inverter.

State S1 S2 S3 S4 S5 S6 S7 S8 Vo
Vcf

Io > 0 Io < 0

V1 0 1 0 1 0 1 0 1 −2E - -

V2-1 0 1 1 0 0 1 0 1 −1E C D

V3 1 0 0 1 0 1 0 1 −1E D C

V4-1 1 0 1 0 0 1 0 1 −0 - -

V5-1 0 1 0 1 1 0 1 0 +0 - -

V6 0 1 1 0 1 0 1 0 +1E D C

V7-1 1 0 0 1 1 0 1 0 +1E C D

V8 1 0 1 0 1 0 1 0 +2E - -

The harmonics of the phase disposition (PD) contain a few carrier harmonics because
of the different phases of the four carrier waves, as well as DC components, fundamental
components, and carrier sidebands. However, some other modulation schemes, such as
alternative phase opposition disposition (APOD), phase opposition disposition (POD),
and two kinds of phase-shift carriers (PSC), have no carrier harmonics. In terms of single-
phase inverters, the harmonic performance of the above-mentioned modulation is just
the same due to the signal–energy conservation law. As far as the three-phase system is
concerned, the harmonics are quite different. When the carrier waves of the three-phase
system are synchronous, the carrier harmonics of the adjacent phases will exactly coincide,
which represents that this harmonic will not appear in line voltage. However, carrier
sidebands have no similar features. The harmonic performance of PD is the best. The
next is APOD and PSC. The worst is POD. The characteristics of line voltage spectrums
are far more diverse in the cause of common mode voltage. Eventually, considering the
harmonic performance, the PD-PWM method is preferable among various methods. Under
the traditional PD modulation of the ANPC-5L inverter, there are four cascaded carrier
waves. As shown in Figure 2, comparison with the first carrier wave makes the output
voltage change between +2E and +E. Switching between these states changes only two
switch devices, and the switching processes are safe. Similarly, the switching processes in
comparison with the other carrier waves are also reliable.
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Figure 2. Traditional modulation strategy of the ANPC-5L inverter.

3. Overvoltage Issue of Traditional Modulation

However, there are potential overvoltage issues in the conventional modulation
scheme. As shown in Figure 3, according to the counter mode of up–down or down–
up, the output voltage will change from +E to −0 or from +0 to −E. Unlike the former
switching process, switching between these two states changes six switch devices. Al-
though the dead time of each pair of devices’ switch exists, there will be safety problems
under certain circumstances.

Figure 3. Switching process at zero crossing point.

As shown in Figures 4 and 5, taking the change from +0 to −E as an example, the
circuit changes from state V5-1 to V2-1. Due to the existence of the dead zone, all the
devices are turned off and there will be an intermediate state (VDANGER (S1-S8:01000000)),
which will cause the overvoltage issue.

Figure 4. Traditional switching process of the ANPC-5L inverter.
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Figure 5. Switching states V5-1 and V2-1 at zero crossing point. (a) Switching states V5-1. (b) Switch-
ing states V2-1.

A detailed analysis is presented as below. In the state of V5-1, the initial states of the
parasitic capacitance of the MOSFETs are shown in Figure 6; S3 has a potential difference of
E while S6 has 2E. During the dead time of S5, assuming the output current IO is greater
than zero, S3 and S4 are all off. The continuous current path is shown in Figure 6, and the
final states of the parasitic capacitance decide the safety of the commutation process.

Figure 6. (a) Initial potential difference of V5-1. (b) Potential difference of VDANGER. (c) Equivalent
circuit of the charging process from V5-1 to VDANGER.

During the dead time, S3, S5 and S6 are all off, closed switches equivalent to parasitic
capacitances. Therefore, as shown in Figure 6, the equivalent circuit of the switching
process is equal to the charging of parasitic capacitances.

Because of the charge–balance principle, increased charge on S3 should be equal to the
summation of increased charge on S5 and reduced charge on S6. Moreover, the sum of the
voltages of the S5 and S6 constants is equal to 2E, and the increased voltage on S5 is equal
to the reduced voltage on S6. According to the capacitance definition:

dQ = C · dU (1)
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Equation (2) can be obtained:

Cp · dUS5 + Cp · dUS6 = Cp · dUS6 + Cp · dUS6 = 2Cp · dUS3 (2)

The voltage of endpoint O changes from +E to −E by focusing on the steady state of
−E, and according to Kirchhoff’s Voltage Law (KVL) Equation (3) can be obtained:

2E − dUS6 = E + dUS3 + (−E) (3)

Combining the above two formulas, increased voltage on S3 can be obtained:

dUS3 = E (4)

Therefore, as shown in Figure 7, the final voltage of S3 will be 2E. The voltage stress
will be higher than the voltage the device can withstand, which may cause overvoltage
breakdown and influence the normal operation of the circuit.

Figure 7. The overvoltage stress issue. (a) Experimental waveforms. (b) Experimental circuit.

Before the switching process of S5, there are three possible states for S3 and S4. As
shown in Figure 8, when S4 is on and S3 is off, or S3 and S4 are both off, assuming the
output current IO is greater than zero, the conduction path and the charging process are
analyzed as above.

Figure 8. Conduction path of S3 and S4 equals to 0.1 or 0.0. (a) Positive current. (b) Negative current.

However, when S4 is off and S3 is on, as shown in Figure 9, the switching process is
different. If the IO is greater than zero, turning off S5 causes the conduction of S6’s reverse
diode, the voltage of point O changes from +E to −E and the initial voltage on S8 is 2E.
The process seems similar to the above situation, but the direction of S4 decides that the
charging current IC reduces its voltage to zero; then, the reverse diode will conduct and
there will be no overvoltage risk. However, the output voltage goes through 0, +E, −E. The
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ideal process is 0 to −E, although the commutation is not perfect. Therefore, a modified
switching method is proposed to achieve the best commutation.

Figure 9. (a) Conduction path and potential difference when S3, S4 equals to 1.0 (b) Equivalent circuit
of the charging process.

4. Proposed Modified Modulation Strategy

The conventional modulation scheme only considers eight simple states. After analyz-
ing the switching states and overvoltage issues, eight other states (V2-2, V2-3, V4-2, V4-3,
V5-2, V5-2, V7-2, V7-3) are obtained, as shown in Table 2, which can be included in the
state cutover.

Table 2. The ANPC-5L converter’s switching states and influence on the voltage of the flying capacitors.

State Sx1–Sx8
Vcf

Vox Level
Io > 0 Io < 0

V1 01010101 − − −Vdc/2 −2

V2-1 01100101

C a D −Vdc/4 −1V2-2 01100100

V2-3 01110100

V3 10010101 D C −Vdc/4 −1

V4-1 10100101

− − 0 0V4-2 10100100

V4-3 10110100

V5-1 01011010

− − 0 0V5-2 01010010

V5-3 01110010

V6 01101010 D C Vdc/4 1

V7-1 10011010

C D Vdc/4 1V7-2 10010010

V7-3 10110010

V8 10101010 − − Vdc/2 2
a C: charging; D: discharging.

By combining additional circuit states, a modified modulation strategy and complete
state machine are proposed, as shown in Figure 10. Under the proposed modulation
scheme, a safe switching process within a power circle can be achieved and there will be no
overvoltage stress, as shown in Figure 11.
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Figure 10. Complete state machine for the ANPC-5L process.

Figure 11. Reliable switching process of proposed modified modulation strategy.

The presented modulation strategy for the ANPC-5L converter is deeply researched in
this section. Consisting of modulation signal, output current, driving signal and the voltage
of the flying capacitors, Figure 4 shows the schematic diagram. With the scheme that is
proposed, the switches, which are series-connected in the ANPC-5L converter, switch at
fundamental frequency while the others switch at carrier frequency, which results in low
switching losses. In the meantime, low switching and conduction loss can be achieved
because the stress of all devices can be restricted to Vdc/4.

A. Flying capacitor voltage balance

The voltage of floating capacitors can be affected by different circuit states. One is E
and the other is −E (V6, V7-1 and V2-1, V3), which can cause the capacitor to charge or
discharge. To go a step further, we can use +E and −E levels within a sinusoidal voltage
wave. If circuit states are selected appropriately, the balance of the voltage of FC will be
achieved during the whole cycle.

Figure 12 shows that with a positive output current in V6, the flying capacitor is
charging, and with a negative output current in V7-1 the flying capacitor is in a discharging
state. With the increasing carrier frequency in each fundamental period, the balance of
FC voltage will be better controlled in several carrier periods. Because the carrier wave
period is much shorter than the fundamental period, the capacity value of the flying
capacitor in the ANPC-5L inverter can be significantly reduced for a definite maximal
permissible voltage range, compared with those inverters controlling a fundamental period.
Ultimately, with the reduced volume of the flying capacitor, the power density of the
inverter increases significantly.
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Figure 12. The waveform of the floating capacitor voltage.

B. Commutation

The inverter should always be in the state of safety switch during the commutation
process, so the problems of shoot-through and high voltage stress during state cutover
should be avoided. To distinguish positive current flow from negative current flow, the
circuit can be separated into two parts to comprehend the state commutation.

1. V8 to V6: As shown in Figure 13a, S1 is turned off and after the turn-off delay S2
is turned on. Moreover, with the positive phase current, the state change, current
commutation and switching loss occurs at S1 OFF. In contrast, with the negative phase
current, the commutation of current and switching loss occurs at S2 ON;

2. V8 to V7-1: As shown in Figure 13b, it is inevitable to turn off S3 and turn on S4. If
the phase current is positive, the commutation of current and switching loss occurs at
S3 OFF;

3. V6 to V5-1: As shown in Figure 13c, it is inevitable to turn off S3 and turn on S4,and if
the phase current is positive, the commutation of current and switching loss occurs at
S3 OFF;

4. V5-1 to V7-1: As shown in Figure 13d, it is inevitable to turn off S2 and turn on S1;
5. V5-1 to V2-1: As shown in Figure 13e, it is inevitable to turn off S5, S7, and S4 and turn

on S3, S6, and S8 in the cutover from V5-1 to V2-1. If the phase current is negative, the
middle state VM5 generates zero voltage level, not −E voltage level.

Moreover, as shown in Figure 12, under the conduction of the state machine, the
switching frequency of switch S5 to S8 is the same as modulation frequency, while switching
frequency of switch S1 to S4 is the same as carrier frequency. Moreover, the voltage stress
of power devices can be limited to Vdc/4. To sum up, shoot-through problems and
overvoltage issues will not be caused by the commutation of current and state cutover.
Accordingly, the modulation scheme which is proposed in this section is appropriate for
the ANPC-5L inverter.
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Figure 13. State cutover and current commutation. (a) V8 to V6. (b) V8 to V7-1. (c) V6 to V5-1.
(d) V5-1 to V7-1. (e) V5-1 to V2-1.

5. Proposed Control Method for Soft Start-Up

The overvoltage issue of the ANPC-5L inverter includes two kinds of problems causing
high voltage stress. The first kind is caused by the dead zone of the output voltage switching
stage of the half-bridge circuit in series, and the second kind is caused by the soft start
process. In the traditional inverter’s soft start-up scheme, the dynamic change in voltage
may lead to the overvoltage of low-voltage devices.

Start-up is an indispensable process in the control of the photovoltaic inverters, es-
pecially among power converters with flying capacitors. There will be very large current
stresses on DC-bus capacitors, flying capacitors, and voltage stresses on power switches
during the buildup of capacitor voltage if the procedure is not well controlled. Connecting
current-limiting resistance in series with voltage sources can limit these stresses in conven-
tional ways. In addition, when bus capacitors are pre-charged but flying capacitors are not
fully charged, the voltage stress of several switches will increase by using normal working
states, as shown in Figure 14.

Motor windings are used as part of a boost circuit to build up the voltage of flying
capacitors with a constant pre-charging current for ANPC-5L converters, and the voltage
stress of several switches will double. A pre-charge method applied to flying capacitor
multilevel inverters is proposed in [26]; however, it requires plenty of AC contactors and
even low-voltage DC power supply, which is not suitable for photovoltaic application.

It is clear that further efforts need to be made to reduce the voltage stress of power
devices in the process of soft start-up, as well as to produce flying capacitor pre-charging
means with less additional auxiliary circuits. The following part presents an analysis and
proposes methods to settle these challenges.
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Figure 14. High voltage stress without optimal control.

As shown in Figure 15, there are twelve devices in each phase and switches S3, S4,
S5 and S8 are used to connect CF with CUP and CDOWN in parallel. Then, these capacitors
can be charged by the DC-link voltage source in the meantime. Assuming the DC-link
voltage source is constant, by controlling the main switches S3, S4, S5 and S8, the voltage
of the flying capacitor CF takes priority over the voltage of CUP and CDOWN, reaching its
reference voltage to ensure that the voltage stress of the switches is not higher than VDC/4.

Figure 15. Proposed soft start-up process. (a) State 1. (b) State 2. (c) State 3. (d) Sequence diagram.

In a summary, the proposed soft start-up method can be divided into three states, as
follows:

• State 1: When the upper bus capacitance CUP and the lower bus capacitance CDOWN
are zero, and the flying capacitor Cf is not charged and the contactors K1 and K2 are
disconnected, the ANPC five-level single-phase converter is in the initial condition
with no energy in the capacitors. As shown in Figure 15a, since the main switches S3,
S4, S5 and S8 are turned on and the contactor K2 is connected, the DC-link voltage
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source charges the upper bus capacitor CUP, the lower bus capacitor CDOWN, and the
flying capacitor Cf simultaneously through the current limiting resistance R1. The
voltage-divider resistances, R2 and R3, are placed in parallel with each bus capacitor
to avoid the influence of the unbalanced characteristics of the upper and lower bus
capacitors. In Figure 15d, the voltage of the flying capacitor Cf and bus capacitors
increases gradually from t1 to t2;

• State 2: Until the voltage of Cf arrives at E, a quarter of the total bus voltage and power
devices S3, S4, S5 and S8 are turned off and the voltage of bus capacitors will be half
of flying capacitor voltage. Thus, the voltage stress of power switches is not higher
than VDC/4 in the entire stage, which meets its request. As shown in Figure 15b, the
DC-link capacitors are going to be charged by the DC-link voltage source at the same
time with the voltage divider resistances in parallel with each bus capacitor to avoid
the influence of the unbalanced characteristics of the bus capacitors;

• State 3: The voltage of CUP and CDOWN increases gradually until they reach their
reference value 2E, as shown in Figure 15d from t2 to t3. When CUP and CDOWN are
fully charged, the contactor K1 is connected and K2 is disconnected. Then, the ANPC
five-level single-phase converter starts up well with enough energy in the capacitors,
as shown in Figure 15c and is ready to work.

The proposed method is applicable to the single-phase of the ANPC-5L inverter and
pre-charges through the original PV DC voltage source in the photovoltaic application. The
power resistance R1 has an impact on the charge current of the whole startup process, but
will not influence the final capacitor voltage. While the converter is in H-bridge topology or
in three phase topology, it is still sufficiently practical for the tolerance of the voltage stresses.
This method uses the DC side power supply to charge the capacitor in the converter, and
has the advantages of simple structure, convenient control, fewer additional auxiliary
branches, and reliable soft start-up.

6. Experimental Results

To further verify the feasibility of the proposed strategy and theoretical analysis, a low-
power prototype was established in the laboratory. Table 3 lists the electrical parameters of
the prototype.

Table 3. Electrical parameters of the prototype.

Parameters Values

Inverter DC-bus voltage 400 V

Output frequency 50 Hz

Converter rating 1 kVA

Switching frequency 10 kHz

Inductance of filter 0.3 mH

Capacitance of DC-link capacitor 2 mF

Capacitance of flying capacitor 660 μF

Figure 16 shows the proposed control scheme for the soft start-up and modulation
scheme. Vf is sensed for the balance of the flying capacitor voltage, and iL is sensed
to judge the output current direction. Meanwhile, Vf is sensed for the soft start-up of
the inverter. The proposed control scheme can be digitally realized in DSP or CPLD
collaborative controllers.
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Figure 16. Proposed control scheme for soft start-up and modulation scheme.

The voltage of the DC-bus is 400 V, output voltage is 100 Vac and the switching device
is 650 V MOSFET IPW60R190Z. As shown in Figure 17, under the traditional modulation
strategy, there exists an overvoltage issue in the dead time at the zero crossing point of
the waveform. Under the 400 V DC-bus, the voltage stress is about 300 V due to voltage
ringing, and if the device is used under a normal bus of 800 V DC, there will be a risk
of breakdown.

Figure 17. The overvoltage stress issue. (a) Under fundamental frequency. (b) Under multiple
switching cycles. (c) Under single switching cycle.

To solve the overvoltage stress issue, the driving signal shown in Figure 18 is applied.
As shown in Figure 18, there will be no overvoltage stress or output voltage level jump
during the same switching process.
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Figure 18. (a) Traditional and (b) modified modulation strategy.

As shown in Figure 19, under the proposed modified modulation strategy, there is no
overvoltage issue in the dead time at zero crossing point of the waveform.

Figure 19. The waveform under the proposed modified modulation strategy. (a) Under fundamental
frequency. (b) Under multiple switching cycles. (c) Under single switching cycle.

Figure 20 shows the experimental waveforms of Vc_up, Vc_down and VFc during the
soft start-up of the inverter under different charging resistances. As discussed in Section 5,
the flying capacitor and DC-link capacitor are charged by the DC-link voltage source in the
meantime until the flying capacitor reaches its reference voltage Vdc/4 and the DC-link
capacitor is charged to the bus voltage continually by controlling several main switches.

The experimental results have demonstrated that, by using the proposed method, the
switching frequency of S5–S8 is the same as the fundamental frequency while the switching
frequency of the other switches will switch at carrier frequency. Moreover, the stress of
power devices can be no more than Vdc/4. By controlling the main switches S3, S4, S5
and S8, the flying capacitor and bus capacitor are fully charged without the overvoltage
problem of the switches.
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Figure 20. Soft start-up under different charging resistance. (a) R1 = 500 Ohms; (b) R1 = 50 Ohms.

7. Conclusions

For the ANPC-5L inverter, the traditional modulation strategy has the security risk of
the overvoltage of the power device in the switching dead time when the output current
is inductive, which affects the commutation safety and leads to an overvoltage issue. In
this paper, the overvoltage mechanism is deduced through the voltage stress analysis of
different switching states. Meanwhile, a modified modulation strategy is proposed to
solve this issue. In comparison with other modulations, this method provides several free
degrees which are used to ensure the elimination of the voltage stress of power devices
by choosing favorable circuit states and controlling current commutations. Additionally,
it can realize the flying capacitor voltage balance in several carrier wave periods. The
implementation of the proposed strategy in the digital system is rather simple. Meanwhile,
a novel soft start-up method adapted to the ANPC-5L inverter is also proposed. In addition,
an experimental prototype is also built to verify the issue of traditional modulation strategy
and the validity and feasibility of the proposed modulation strategy.
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Abstract: Increasing wind generation insertion levels on electrical grids through power converters
may cause instabilities in the AC grid due to the intermittent wind nature. Integrating a Battery
Electric Energy Storage System (BESS) in wind generation can smooth the power injection at the
Common Coupling Point (PCC), contributing to the power system voltage and frequency stability.
In this article, it is proposed to analyze the operation of a lithium-ion battery technology based
1 MW/1.29 MWh BESS connected in parallel with wind generation with a capacity of 50.4 MW. The
main characteristics investigated are power smoothing and power factor correction. Experimental
results show that BESS contributes to smoothing the active power and correcting the power factor of
wind generation, improving the quality of electrical energy at the PCC.

Keywords: storage system; batteries; power smoothing; power factor correction; wind generation;
power converter; stability; electrical power quality

1. Introduction

The growing concern about the environment and the depletion of fossil fuels has given
rise to a new scenario to meet the energy needs of society: renewable sources [1,2]. Among
the various renewable sources of electricity, wind generation has been presented as the
most interesting and the fastest growing in the world [2,3]. According to the Global Wind
Energy Council (GWEC) 2022 report, the wind industry had its second-best year in 2021,
with nearly 94 GW of capacity added globally. Total global wind power capacity is now
up to 837 GW, helping the world avoid more than 1.2 billion tons of CO2 annually—the
equivalent of South America’s annual carbon emissions.

The growth of wind energy in the world energy matrix is due to its advantages,
such as: it does not emit greenhouse gases; it takes little time to build wind farms; it
diversifies the electricity matrix; it is independent of the variation in fuel prices; it is easy
to expand the capacity of wind farms; it provides new markets etc. [2]. However, due to
the highly uncertain and variable nature of the wind, wind energy can present undesirable
characteristics in its generation and impact the Electric Power Systems (EPSs). With an
increasing share of EPSs, the uncertainty of wind energy and its power fluctuation will
affect the ability of grid operators to balance generation and demand. Furthermore, the
significant penetration of wind generation in the grid can harm the Power Quality, the
dynamics, and the system reliability [2,4].

Energies 2022, 15, 4586. https://doi.org/10.3390/en15134586 https://www.mdpi.com/journal/energies
681



Energies 2022, 15, 4586

According to [2,5], the main concerns regarding the connection of wind generation in
electrical systems are related to the impact on the stability and Power Quality of the grid,
the ability to compensate for active power fluctuations, and the impact on grid voltage,
both short-term and long-term. To minimize some of these problems, additional flexible
resources must be used to manage the variability and uncertainty of wind generation.
Battery Energy Storage Systems (BESS) can be used to reduce power fluctuations, as well
as provide ancillary services (voltage and frequency regulation), manage energy during
disturbances (short circuits), and increase network reliability.

There is a wide range of possible BESS applications in the electrical sector, such
as power generation, transmission, and distribution, and direct applications to the final
consumer. However, it can be said that the attractiveness of each specific solution depends
on the characteristics and needs of the applications. For example, BESS can be used for
short-term power smoothing in wind farms in a generation. Using BESS, it is possible to
mitigate the adverse effects of the power fluctuation in wind generation and, consequently,
improve the Electrical Power Quality (EPQ) and the power grid operation. As for the
final consumer, BESS can be used to perform arbitrage, charging the batteries during
lower-priced hours, and discharging during higher-priced hours (i.e., during peak hours).

The BESS can be idle for a significant fraction of time, depending on the application.
Thus, to make this solution more viable, it is possible to merge different applications. For
example, BESS systems installed in more robust systems, such as the Brazilian National
Interconnected System (SIN), can implement other services such as arbitrage, operating re-
serve, frequency control, voltage control, and black start. Thus, the merging of applications
increases the use of BESS over time.

Energy storage systems have been widely simulated to reduce power fluctuations
from wind generation with different control strategies [6–9], and [10] proposed using a
storage system integrated into a wind system to reduce high-frequency fluctuations in the
generated power, using filters to separate the operation of the inverter controllers and the
storage system in the frequency domain. In [11], it is seen that to provide constant supply
from a 39.6 MW wind farm, a 2 MWh capacity energy storage system was used to maintain
consistent production for one hour and up to 103 MWh to provide consistent output for
one day.

In [12], it is seen that the intermittent operation of renewable energy sources, faults
occurrences, or PCC disturbances can cause voltage or frequency deviations, resulting in
instability problems, which can become severe in weak power networks. In [12], a storage
system was used to regulate voltage and frequency in microgrids.

There are many different papers which evaluate the power smoothing of wind genera-
tion through BESS. Among the recent papers, there are relevant talks about the problem of
the power fluctuation in many different contexts and settings, such as the power smoothing
in the context of transmission or distribution, different technologies of BESS, different types
of power control for BESS, complementary applications for power smoothing, different
settings of connection of BESS, and different ways to evaluate and present the results [2].
However, considering these different contexts and settings there are still topics to be ex-
plored and improved. Several papers do not verify the effects of power smoothing in wind
generation, as well as do not use numerical indicators to evaluate the performance of the
power smoothing techniques. Thus, the main contribution of this article is to analyze the
effects of power smoothing in wind generation in a case study at the Campo dos Ventos
Wind Complex located in João Câmara, Rio Grande do Norte (RN)—Brazil. The numerical
indicator of Maximum Variation Power (MVP) is also used to evaluate the performance of
the power smoothing techniques. The MVP indicator quantifies the largest power of wind
generation within a predefined time interval.

Furthermore, this paper addresses, in a complementary way, the application of power
smoothing, the analysis of the storage system operating in the power factor correction mode,
and its impact on Power Quality for the Campo dos Ventos Wind Complex. Experimental
results are performed to validate the performance of BESS.
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2. Project Description

The purpose of the Research and Development R&D Project PA3026, entitled “Impact
Analysis of a Battery Energy Storage System Connected in Parallel to a Wind Farm”, is to
study energy storage applications from different qualitative and quantitative perspectives.
This project is formed by the group of institutions CPFL Energy (Light and Power Com-
pany of Sao Paulo State), Institute of Technology Edson Mororó Moura (ITEMM), Federal
University of Pernambuco (UFPE), and PSR—Energy Consulting and Analytics.

Brazil still presents a relatively immature environment for the development of energy
storage technologies. Faced with regulatory and even non-regulatory gaps, the R&D Project
PA3026 seeks to resolve existing uncertainties about the applicability and effectiveness of
services and assist recognition through adequate remuneration for these storage systems.

From this perspective, the project proposes to investigate the operationalization of
several actions applied to a real wind farm. Among the main functions destined for the
storage system identified in the project are produced power smoothing and power factor
correction. These two proposals are tested with the operation of a BESS composed, among
other components, by a set of Lithium Iron Phosphate (LFP) batteries, which is a lithium-ion
battery technology with a capacity of 1 MW/1.29 MWh integrated into an electric power
substation of a wind farm. The choice of this technology was due to the benefits that the LFP
battery presents, such as: (1) high energy density (about 1932 W/L) [13], (2) high conversion
efficiency (90~95%) [14], (3) low self-discharge rate, and (4) fast response time [13]. It should
be noted that the service life (>2000 cycles) still needs to be improved and there are potential
fire hazards [13,14].

According to [13], flow batteries are safe as they are non-flammable and have a long
cycle life (2000 to 20,000 cycles) and do not depend on the depth of discharge. However,
the energy density is low, occupies a large amount of land, and the conversion efficiency is
low (65–85%) [15]. Hydrogen batteries have the highest specific energy (500–3000 Wh/L)
compared to other storage systems and have a high cycle life (about 20,000 cycles). Although
hydrogen batteries have a long-life cycle, they have a high initial cost [13]. The lead-acid
battery is safe and reliable, but its energy density is low and its cycle times (300–3000 cycles)
are limited [16].

The wind farm choice considered the capacity and arrangement of machines with
different technologies. The Campo dos Ventos Wind Complex, located at João Câmara—Rio
Grande do Norte (RN)—Brazil, a synchronous generator with a full converter and Double
Powered Induction Generators (DFIG), was chosen. This farm has twenty-four turbines,
each with 2.1 MW rated power, totaling 50.4 MW. Therefore, the 1 MW/1.29 MWh capacity
BESS can be analyzed in terms of its real impact on the proposed objectives. The turbines
and BESS are connected through a SCADA system. The simplified single-line diagram for
the Campo dos Ventos Wind Complex is shown in Figure 1. The installation of BESS at the
Campo dos Ventos Electric Substation (ES) is illustrated in Figure 2.

The main objectives of using the storage system are to smooth the wind production
through instantaneous power injection and instantaneous power consumption, counterbal-
ancing its instantaneous output and, consequently, removing variations introduced by the
wind intermittence acting on each other the wind turbine.

Considering other storage system application options, it is expected to use the remain-
ing storage capacity for reactive power compensation, firstly, to improve the power factor
and, secondly, to improve the voltage with the consequent reactive power control.
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Figure 1. Single-line diagram of the Campo dos Ventos Wind Complex.

 
Figure 2. Installation of BESS in the Campo dos Ventos Substation.

3. Battery Energy Storage System (BESS)

3.1. General View

In general, the main components of BESS are batteries, battery management system
(BMS), energy management system (EMS), power conversion system (PCS), fire detection
and suppression system, heating system, ventilation, air conditioning (HVAC), Uninter-
ruptible Power Supply (UPS), container, transformer (if voltage increase is required), cables
(primary and secondary) and other auxiliary systems. Figure 3 shows the BESS and some
of these components. The system installed at the Campo dos Ventos Wind Complex has
two 500 kW PCSs that convert DC energy into AC or vice versa and is connected to the DC
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side batteries and connected in parallel to the AC side wind generation bus. EMS controls
PCSs and communicates with BMS and SCADA and contains all system applications.

 
Figure 3. Schematic of BESS and its components [17]. Reprinted from [17] with permission (License
1431469) from U.S. Department of Energy Office of Scientific and Technical Information [17,18].

3.2. Batteries

The battery is one of the main components of the BESS. It is in the battery that
energy is stored. There are various battery types integrated into generation, transmission,
distribution, and end-consumer worldwide. Each type may use the system differently.
Battery selection is mainly focused on the BESS application (e.g., applications that demand
more power and energy) and cost-effectiveness ratio due to the high proportion of the
battery’s monetary value to the total cost of the project (about 50–60%) [19].

LFP batteries were used in the BESS. The LFP battery pack has an output voltage of
51.2 V and a capacity of 180 Ah. Fourteen battery packs are grouped in series in a cluster,
totaling an output voltage of 716.8 V and a capacity of 180 Ah. The BESS contains 10 clusters
in parallel, leading to an output voltage of 716.8 V and a capacity of 1800 Ah.

3.3. BMS

The BMS plays a vital role in the BESS. The integration of the BESS with the wind
generation bus means that multiple batteries are connected in parallel, improving safety
and reliability.

The BMS is designed to provide safe operations by monitoring the voltages, currents,
and temperature of the cells in the batteries. In addition, the BMS offers the following
functions [19–21]:

• Protection for battery cells;
• Evaluation of battery cell recharge and health status;
• Energy balancing between battery cells (including battery charging and discharg-

ing patterns).

3.4. EMS

The EMS is responsible for continuously relevant BESS data acquisition and storage,
such as voltage, frequency, active and reactive power, power factor, battery cell voltage,
etc. This data acquisition and storage can be either in local or remote forms. Additionally,
the EMS receives the control setpoints to allow changes in the BESS operating modes and
subsystems. The BESS applications of this project are power smoothing, frequency control,
voltage control, and power factor correction. Lastly, it contains manual control for active
and reactive power injection and absorption.
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EMS controls BESS to regulate battery recharges and discharges to achieve optimal
efficiency generation requirements. All battery cells are individually monitored to ensure
any deviation in performance is detected and corrected before problem occurrences. The
EMS can be viewed remotely as needed and communicate with CPFL’s local SCADA.

3.5. PCSs

The current project BESS contains two bidirectional PCSs to perform DC/AC and
AC/DC conversions. In addition, it controls voltage and frequency, ensuring that the
electricity output meets desired connection requirements.

The BESS uses two bidirectional 500 kW PCSs, connected on the DC side to the power
bank battery. The PCSs in question contain anti-islanding protection, in which the inverter
detects problems in the electrical grid, such as a power outage, and switches off to interrupt
the supply. This protection is needed because, after electrical grid problem occurrences, it
is assumed that workers will be dispatched to deal with the issue; therefore, it is necessary
that the electric power lines are entirely safe and electric current free.

Another functionality of PCSs is stability for under and over voltage/frequency ranges,
in which the inverter does not trip if the anomaly duration exceeds a specific period. This
function is an essential feature to improve grid stability.

The PCSs’ operating modes are:

• P-Q Control mode is when a reference voltage and a constant frequency are supplied
by another source (usually the electrical grid). The inverter can change the active and
reactive power.

• V-F Control mode (Autonomous Mode): V-F control mode occurs when, regardless of
the varying inverter power, the amplitude and frequency of the output voltage are
constant. The inverter with V-F control can provide voltage and frequency support
to the microgrid during island operation. The inverter acts as a voltage source. The
current amplitude and the power factor (PF) will be determined by the sum of the
generation (if any) and the consumption load.

The PCSs’ operating modes are in four quadrants, as illustrated in Figure 4, both in
on-grid and off-grid modes, which means that active power and reactive power can be in
four characteristics:

• Consumes active power plus inductive reactive power;
• Consumes active power plus capacitive reactive power;
• Provides active power plus inductive reactive power;
• Provides active power plus capacitive reactive power.

Figure 4. Four-quadrant operation of PCSs.
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Control System

The PCS installed on the BESS operates in grid-connected and islanded mode. Active
and reactive power control (P-Q Control) is used in grid-connected mode, while constant
voltage and frequency control (V-F Control) is employed in islanded mode. These two
control strategies are based on [22] and detailed below.

(a) P-Q Control

When the PCS is connected to the electrical grid, it operates in P-Q Control mode.
Active and reactive power based on instantaneous active and reactive power theory are
shown in Equation (1) [22]. {

p = 1.5
(
νdid + νqiq

)
q = 1.5

(
νqid − νdiq

) (1)

When the q component of the voltage is zero and assuming that the voltage vector is
in the d-axis direction, Equation (1) can be represented by:{

p = 1.5νdid
q = −1.5νdiq

(2)

The reference current can be calculated by:⎧⎨⎩ idre f =
Pre f

1.5νd

iqre f = − Qre f
1.5νd

(3)

where Pre f represents active power and Qre f represents reactive power, the expected output
values. Figure 5 illustrates the simplified P-Q Control block diagram.

Figure 5. Block diagram of the P-Q Control structure [22]. Reprinted from [22] with permission
(License 978-1-4799-7720-8/14) from U.S. Department of Energy Office of Scientific and Technical
Information [22].

(b) V-F Control

In the islanded mode operation of PCS, it is controlled as the main power source to
supply constant voltage and frequency (V-F Control). To obtain constant V-F Control, a
closed loop voltage control structure was adopted. The closed loop voltage control equation
using a PI controller is described below [22]:⎧⎨⎩νdr = kp

(
1 + 1

Ti s

)
∗
(

νdre f − νd

)
νqr = kp

(
1 + 1

Ti s

)
∗
(

νqre f − νq

) (4)

where the proportional gain is represented by kp and the integral time constant of the
voltage loop controller is represented by Ti, vd and vq are the voltages after the coordinate
transform, from abc to dq, where these are the components of the d and q axes, respectively.
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While vdre f and vqre f are the voltages after the coordinate transform, also components of
the d and q axes, but these represent the component of the reference voltage (vare f , vbre f
and vcre f ). Figure 6 illustrates the block diagram of the V-F Control which is equivalent to
Equation (4).

Figure 6. Block diagram of the V-F Control structure [22]. Reprinted from [22] with permission
(License 978-1-4799-7720-8/14) from U.S. Department of Energy Office of Scientific and Technical
Information [22].

3.6. Fire Detection and Suppression System

The fire detection and suppression system are a set of components used to ensure the
safety of the place where it is installed, as well as that of people who transit internally and
in the vicinity of the BESS. For this, the system is configured to have quick and efficient
responses, ensuring agility to contain/extinguish the fire, as well as ensuring the evacuation
of individuals.

The minimum elements that the fire detection and suppression system must in-
clude are:

• Control panel or alarm center: equipment responsible for interconnecting all the
elements of the system; in other words, it receives and sends warning signals and
activation of fire protection devices.

• Sensors/detectors: precision devices that evaluate the conditions of the place where it
is installed. The main ones are:

� Smoke detector;
� Temperature detector;
� H2 and H2S detector if the technology is lead.

• Audible alarm: device responsible for emitting audible signals when fire is detected.
• Emergency lights: it is a type of visual alarm, which helps individuals to find the exit

from the place.
• Signage: the presence of signs, stickers, and other visual alarms is required, which

inform and assist in directing the emergency exit(s).

3.7. HVAC

The HVAC system regards the basic functions of the climatization system, allowing
the environment to be in the right conditions for safe and efficient operation. Among the
components that make up the HVAC are:

• Heating (H): function of keeping the place at the correct system operating temperature
for regions that have low temperature days. Furthermore, it is used to maintain the
relative humidity of the air;

• Ventilation (V): used for the renewal of oxygen and air circulation, avoiding the
concentration of undesirable gases, as well as removing and/or reducing odors and
impurities from the place;
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• Air conditioning (AC): used to artificially cool the place, controlling the temperature,
and preventing it from becoming high. In addition, this equipment usually has filters,
which carry out the removal of impurities and contaminants from the air.

These systems are essential for the proper functioning of the BESS, since by controlling
the temperature, leaving it close to the most efficient temperature of the components (25 ◦C),
it increases the productivity of the system. Furthermore, it promotes oxygenation of the
place, air filtration, and reduction of air pollutants and the proliferation of fungi/mold.

3.8. UPS

The UPS is a secondary power system, which provides emergency power to the load
when the primary supply is interrupted. As opposed to generators, the UPS operates very
quickly, avoiding interruptions in the power supply.

In general terms, the UPS is made up of converters and batteries, which may or may
not have a bypass switch. With respect to BESS, its load is not all the components of the
system, but those that must always be kept in operation, allowing that in case of failure
some action can be taken.

4. Results and Discussion

In this topic, the power smoothing and power factor correction functions are analyzed,
as well as the approach of results and discussions of the data obtained using the two
operating modes.

4.1. Power Smoothing Application

The results related to power smoothing are analyzed mathematically through the
Maximum Power Variation (MVP) indicator. The active power smoothing technique
performance of wind turbines is numerically evaluated. The MVP indicator corresponds to
the maximum power variation in the wind generation rated power within an established
time interval. Energy companies and system operators widely use this indicator from
different European countries to restrict wind generation fluctuations, limiting the MVP to
10% in 1 min and 10 min intervals [23,24].

In the present article, a 5 min time interval (MVP5) is used, in which the calculation
is performed from the difference between the maximum and the minimum power curve
values in the specified interval and, according to that, the rated power of the generation
to which the BESS that is connected is obtained. For example, considering a 50 MW wind
generation rated power and a power curve whose difference between the highest and
lowest value is 10 MW during the 5 min interval, the MVP is 20%. Thus, the lower the MVP
value, the better the power smoothing quality. In an ideal case (i.e., a constant curve), the
MVP would be 0% for any evaluated interval.

The BESS operating principle is performed through the EMS control system for the
power smoothing function. The generation active power on the bus where the BESS is
connected is verified. When the EMS verifies the 500 kW variation in a 60 s window, the
system acts, absorbing or supplying active power, depending on the current generation
status, that is, increasing or decreasing. Figure 7 illustrates a BESS operation based on the
power wind generation variation.

In Figure 7, when the wind generation (blue curve) decreases in an interval of 60 s,
the BESS supplies active power (orange curve). When wind generation increases, the BESS
absorbs active power. The negative sign of active power means that the BESS is providing
power and the positive sign of power implies that BESS is absorbing power.

The BESS performance operating in power smoothing mode connected in parallel to a
group of wind turbines with 50.4 MW rated active power is illustrated in Figures 8 and 9.
These figures show the generation curve behavior and its smoothing. Data from different
days are shown.
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Figure 7. Real-time BESS operation based on power generation variation. The measurement was
carried out on 28 July 2021.

Figure 8. Active power of smoothed wind generation. Real-time measurement performed on
31 August 2021.
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Figure 9. Active Power of Smoothed Wind Generation. Real-time measurement performed on
6 September 2021.

The blue curve indicates the power of the generation without BESS usage, while the
smoothed curve is shown in orange. It is observed that the smoothed curves have smaller
peaks and valleys and more attenuated curves.

The MVP index is used to evaluate wind generation power smoothing numerically.
This analysis has better precision to evaluate power smoothing performed by the BESS
in the present wind farm. Thus, in percentage terms, the smoothing effect results with
the most significant gains points are presented in Table 1 (measurement in Figure 8) and
Table 2 (measurement in Figure 9).

It can be seen from Table 1 that the MVP5 index, with the application of BESS, showed
a considerable improvement in different time intervals. The best-obtained result for the
31 August 2021 day was an approximate 3.97% power fluctuation reduction, from 11:20 to
11:25 and 13:10 to 13:15. On the 6 September 2021 day (Table 2), the best result was a 3.97%
reduction from 12:25 to 12:30. Different time intervals can be seen in Figures 8 and 9.

Table 1. Main indicators from the 31 August 2021 day.

Case Time Interval
Maximum Power

Value (MW)
Minimum Power

Value (MW)
Wind Generation Rated

Power (MW)
% Value

Without BESS
operation

07:35 to 07:40 39.29 32.00 50.4 14.46%
09:45 to 09:50 43.71 37.62 50.4 12.08%
10:20 to 10:25 42.66 35.72 50.4 13.77%
11:20 to 11:25 43.86 35.99 50.4 15.62%
11:40 to 11:45 42.35 34.19 50.4 16.19%
11:45 to 11:50 43.62 34.45 50.4 18.19%
12:30 to 12:35 33.72 26.67 50.4 13.99%
13:10 to 13:15 38.37 22.70 50.4 31.09%
13:30 to 13:35 40.03 28.84 50.4 22.20%
13:40 to 13:45 34.25 25.39 50.4 17.58%
17:45 to 17:50 46.05 41.87 50.4 8.29%
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Table 1. Cont.

Case Time Interval
Maximum Power

Value (MW)
Minimum Power

Value (MW)
Wind Generation Rated

Power (MW)
% Value

With BESS
operation

07:35 to 07:40 38.29 32.83 50.4 10.83%
09:45 to 09:50 43.52 38.62 50.4 9.72%
10:20 to 10:25 42.13 36.72 50.4 10.73%
11:20 to 11:25 42.86 36.99 50.4 11.65%
11:40 to 11:45 41.53 35.19 50.4 12.58%
11:45 to 11:50 42.89 35.45 50.4 14.76%
12:30 to 12:35 32.72 26.76 50.4 11.83%
13:10 to 13:15 37.37 23.70 50.4 27.12%
13:30 to 13:35 39.53 29.84 50.4 19.23%
13:40 to 13:45 33.72 26.39 50.4 14.54%
17:45 to 17:50 45.69 42.56 50.4 6.21%

Table 2. Main indicators from the 6 September 2021 day.

Case Time Interval
Maximum Power

Value (MW)
Minimum Power

Value (MW)
Wind Generation Rated

Power (MW)
% Value

Without BESS
operation

12:00 to 12:05 34.29 22 50.4 24.38%
12:05 to 12:10 39.43 26.87 50.4 24.92%
12:25 to 12:30 38.09 26.73 50.4 22.54%
13:25 to 13:30 31.22 21.76 50.4 18.77%
13:30 to 13:35 35.22 25.84 50.4 18.61%
13:55 to 14:00 36.81 25.64 50.4 22.16%
14:00 to 14:05 37.23 26.87 50.4 20.56%
15:30 to 15:35 42.31 36.86 50.4 10.81%
16:15 to 16:20 44.44 36.84 50.4 15.08%
19:25 to 19:30 37.72 32.07 50.4 11.21%
20:40 to 20:45 41.95 35.86 50.4 12.08%

With BESS
operation

12:00 to 12:05 33.29 23.00 50.4 20.42%
12:05 to 12:10 39.43 27.87 50.4 22.94%
12:25 to 12:30 37.09 27.73 50.4 18.57%
13:25 to 13:30 30.46 22.76 50.4 15.28%
13:30 to 13:35 34.22 26.40 50.4 15.52%
13:55 to 14:00 35.81 26.20 50.4 19.07%
14:00 to 14:05 36.51 27.87 50.4 17.14%
15:30 to 15:35 41.64 37.86 50.4 7.50%
16:15 to 16:20 43.71 37.84 50.4 11.65%
19:25 to 19:30 36.72 32.72 50.4 7.94%
20:40 to 20:45 40.95 36.75 50.4 8.33%

4.2. Power Factor Correction Application

The power factor is an energy utilization index whose adequate control in wind
generation is significant, not only from an electrical energy point of view but also because it
is monitored, in the case of Brazil, by the National Electric System Operator, and the power
generator may incur fines. In this case, the BESS compensates for the excess reactive power,
bringing the power factor within the regulatory limit (currently, in Brazil, the limit power
factor is 0.95 in the PCC between wind generation and the transmission grid).

The EMS checks the power factor information generated by the wind turbines in
the bus connected to the storage system. A power factor reduction (less than 1.00) acti-
vates BESS to operate with capacitive or inductive characteristics, depending on the wind
generation power factor behavior (inductive or capacitive).

Figure 10 illustrates the BESS operation behaving with capacitive characteristics when
the power factor measured at the bus is less than one (1.00). Therefore, according to the
EMS programming, the system acts by injecting reactive power, trying to correct the power
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factor to the unit value (1.00). In Figure 10, the left scale refers to the system’s reactive
power (blue legend), and the right scale refers to the power factor value (orange legend)
measured on the bus that connects the BESS to the group of wind turbines. It should
be noted that the negative sign for reactive power means that the BESS is operating in
capacitive mode and the positive sign in inductive mode.

 

Figure 10. Real-time BESS operation in the power factor correction function. The measurement was
carried out on 25 March 2021.

Figure 11 illustrates the BESS operation on 23 March 2021, where it is seen that the
system remains without acting while the power factor is unity (1.00). The BESS works by
compensating reactive power when there is a drop in the power factor, aiming to establish
the unit value. Figure 12 illustrates the operation of BESS on 19 April 2021, where it is seen
that the system operates in both capacitive and inductive modes.

 

Figure 11. Real-time BESS operation in the power factor correction function. The measurement was
carried out on 23 March 2021.
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Figure 12. Real-time BESS operation in the power factor correction function. The measurement was
carried out on 19 April 2021.

From the 19 April 2021 measurement data (Figure 12), it is possible to graphically
characterize the resulting power factor behavior, considering the BESS performance, as
illustrated in Figure 13. It can be seen from Figure 13 that the BESS corrects the power factor
at different instances of time, aiming at the unit value (1.00), and thus helps to prevent the
power factor from falling below 0.95.

Figure 13. Power factor resulting from the application of BESS. The measurement was carried out on
19 April 2021.

5. Conclusions

From the measurement analysis, it is observed that the power smoothing function
implemented in the EMS does not present problems regarding the operating logic and
operating time and shows satisfactory results. It was seen that the BESS manages to
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smooth the wind generation power with gains of up to 3.97% (measurements recorded
in Tables 1 and 2) according to the MPV5 indicator. It is noteworthy that this result is
considered satisfactory since the BESS rated power is 1 MW, and it is connected to a
50.4 MW wind generation.

From the measurements, it is observed that the BESS usage in power smoothing mode
contributes to reducing power fluctuations at the point that connects the power output
of the wind farm and the transmission line, generating improvements in the wind farm
energy quality.

The power factor correction function performance analysis implemented in the BESS
EMS shows that this function does not present problems regarding its operating logic
and operating time. It was seen that BESS acted by correcting the power factor whenever
necessary, reducing losses to the wind farm.

It should be noted that the constant growth of wind generation should amplify the
effect of power fluctuation in transmission, distribution, and microgrid systems. Thus,
wind generation should increasingly impact the operation and energy quality of electrical
systems. The use of a BESS operating in active power smoothing mode represents a way to
circumvent this problem and enable the use of intermittent renewable energy sources.
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Abstract: The capacity aging of lithium-ion energy storage systems is inevitable under long-term
use. It has been found in the literature that the aging performance is closely related to battery
usage and the current aging state. It follows that different frequency regulation services, C-rates,
and maintaining levels of SOC during operation will produce different battery aging rates. In the
simulations, the researchers used real frequency data to generate SOC curves based on the Taiwan
frequency regulation services under different C-rates and different battery SOC target levels. Then,
the aging formula of lithium iron batteries (LiFePO4 battery, LFP battery) and the proposed improved
rainflow counting algorithm were used. The capacity aging situation and economy under different
usage scenarios were analyzed. The simulation results showed that using a high C-rate and a low
SOC level had a higher net profit, and the income of dReg was more than that of sReg. The SOC of
BESS has an important impact on the life cycle. Keeping the SOC at a lower level will help prolong
the life cycle and increase the net income. In dReg0.5, maintaining the SOC at 30% would yield 8.5%
more lifetimes than 50%, 20.6% more lifetimes than 70%.

Keywords: battery energy storage system (BESS); frequency regulation service; battery degradation;
automatic frequency control

1. Introduction

In Taiwan, frequency regulation services can be roughly divided into two categories:
dynamic regulation (dReg) and static regulation (sReg). There are currently three different
modes on the power trading platform, dReg0.5, dReg0.25, and sReg. Applying the three
different modes mentioned, there are three different outputs under the same grid frequency.
Under long-term operation, the three different modes will obtain completely different state
of charge (SOC) battery curves. In the study of [1], the authors said that the higher the
SOC, the faster the aging of the battery, which is consistent with the experimental results
of [2].Therefore, the aging behavior of the battery energy storage system(BESS) has a great
relationship with the SOC curves. It follows that the aging speed of the batteries following
the different frequency regulation modes will have completely different aging behavior.

The global energy storage ancillary services market has grown rapidly in recent years,
with few large-scale battery storage systems operating and reaching the end of their life
cycle so far. Thus, the effect of different ancillary services and control methods on the
aging of the BESS is still unknown. Market managers and market participants need a more
accurate economic analysis to formulate better market structures or make better bidding
strategies [3]. Researchers in [4] evaluated the optimal battery capacity configuration for
the frequency regulation market in Germany but not the different frequency regulation
services. In [5], the frequency support technoeconomic analysis of energy storage working
in conjunction with wind power plants but not pure energy storage plants was evaluated.
For this reason, this study proposes to evaluate the aging situation of BESS which is used
with different ancillary services and control methods. In this way, this research can help
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market managers formulate reasonable bidding prices and can help market participants
make the best investment decisions.

The aging speed of a battery affects the profit of the system operators due to differences
in battery life. The purpose of this paper is to establish a battery aging model based on the
SOC curves simulated by different frequency modulation modes and the ratio of different
rated capacity to total battery energy, find out its aging characteristics, and evaluate battery
aging in each situation.

2. BESS and Frequency Regulation Service

2.1. BESS

BESS includes batteries, battery management systems (BMS), power conditioning sys-
tems (PCS), and energy management systems (EMS). Applications of lithium-ion batteries
are very common nowadays due to their several advantages, such as high energy and
power densities and longer lifetime than that of other technologies [6]. Specifically, the
lithium ternary battery (LiNiMnCoO2 battery, NMC battery) and the lithium iron phos-
phate battery (LiFePO4 battery, LFP battery) are in the mainstream of MW-level battery
energy storage systems.

The main applications of BESS can be roughly classified into five categories: large-scale
energy services, ancillary services, services for transmission and distribution, client services,
and renewable energy integration. Specifically, renewable energy smoothing, frequency
regulation services, voltage regulation services, peak-shaving, and load-shifting are some
of the most common applications in modern life [7,8]. This study will focus on frequency
regulation services, which is going to be discussed in detail in the following section.

2.2. Frequency Regulation Service

Presently, the frequency regulation services that the Taiwan Power Company (TPC)
promotes include two different types, namely, dReg and sReg; each service has its corre-
sponding efficiency offer price [9]. The efficiency offer prices corresponding to the frequency
regulation are shown in Table 1.

Table 1. Efficiency level and the price of each mode.

Efficiency Level Frequency Regulation Mode Efficiency Offer Price ( NTD
MWh ·Wh)

1 dReg0.25 350
2 dReg0.5, sReg 275

2.2.1. Dynamic Regulation (dReg)

dReg can dynamically follow the grid frequency and actively provide corresponding
power every second based on the current grid frequency to help maintain the stability of
the power system frequency. Such a service is required to respond within a second.

Depending on the corresponding system frequency range and operating power, it
can be divided into two types: dReg0.25 and dReg0.5. To be more specific, the operating
frequency range of dReg0.25 is from 59.75 to 60.25 Hz, while that of dReg0.25 is from 59.5 to
60.5 Hz. Figure 1 shows the response curve of dReg, and Figure 2 shows its corresponding
parameters [9]. The blue area in Figure 1 is the deadband, where the BESS can charge and
discharge to maintain the SOC.

2.2.2. Static Regulation (sReg)

sReg does not need to respond as fast as dReg but is required to output 100% of
its rated power within ten seconds when the frequency drops to a certain value. The
output should return to zero once the frequency increases and reaches a certain frequency.
Furthermore, the system is not allowed to start the charging operation until the frequency
is over 60 Hz. Figures 3 and 4 show the detailed specifications of sReg [9].
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Figure 1. The response curve of the dReg mode.

Figure 2. The response table of the dReg mode.

Figure 3. The response table of the sReg mode.

Figure 4. The response curve of the sReg mode.
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3. Aging of Lithium-Ion Batteries

3.1. Aging Mechanisms of Lithium-Ion Batteries

The aging mechanisms of lithium-ion batteries are very complicated. With use, various
aging mechanisms lead to the loss of active materials and the increase of internal resistance.
Tracing back to the sources, the interaction between the electrolyte, the anode, and the
cathode, as well as the degradation of the electrolyte itself, are where the aging phenomenon
mainly comes from.

Since the aging behavior of batteries has a lot to do with the current degradation status,
even if the operating conditions remain the same throughout, they will be completely
different at every moment. Based on some research, it can be classified into two categories
according to the features of use: calendar aging and cycling aging [10–12], and the aging
formula of the lithium iron phosphate battery (LFP battery) quoted in this article can refer
to Equations (1) and (2) [13].

3.2. Calendar Aging

Calendar aging refers to the degradation behaviors of capacity and power capability
with saving under the same SOC level for a long period. Moreover, calendar aging is closely
related to environmental conditions such as storage temperature; that is, the speed of aging
varies according to the conditions mentioned above.

According to the study in [13], under 25 degrees Celsius, the capacity fade can be
described in Equation (1).

Cf _cal = 0.1723·e0.007388·SOC·t0.8 (1)

where Cf _cal represents the percentage of capacity fade, SOC refers to the storage SOC level,
and t represents the storage period (month).

Figure 5 shows the calendar aging curve drawn by Equation (1). From this figure, it
can be seen that the curve is nonlinear and tends to be flat as the storage time increases. In
other words, the higher the storage SOC level is, the faster the aging rate will be.

 
Figure 5. Calendar aging curves.

3.3. Cycling Aging

Cyclic aging refers to the aging caused by the charging and discharging cycle of the
battery, and its aging performance has a great relationship with cycle depth (CD). Cycle
depth indicates the change in charge state during a cycle and is related to the amount of
charge gained or lost during the charge and discharge process.
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Based on the research in [13], the relationship between capacity fade and the operation
conditions, including cycle depth, average SOC, and the number of cycles (NC), under the
conditions of 25 ◦C storage temperature, is shown in Equation (2):

Cf _cyc = 0.021·e−0.01943·SOC·cd0.7162·nc0.5 (2)

where Cf _cyc represents the percentage of capacity fade caused by cycling aging, SOC
represents the average SOC level during the cycle, and cd and nc represent the cycle depth
and the number of cycles, respectively. Figure 6 shows the calendar aging curve drawn by
Equation (2).

Figure 6. Cycling aging curves.

Compared with calendar aging, the rising slope of cycle aging curve is steeper when
the number of cycles is low but tends to be flat when the number of cycles increases. In
some cases, the batteries with a deeper cycle depth will have a faster aging rate than the
ones with a shallower cycle depth. Sometimes, the difference can be several-fold.

4. Aging Model Establishment

4.1. Introduction of the Aging Model

Since the aging of a battery is a nonlinear problem, it is difficult to apply the traditional
mathematical programming method. This research proposes the use of the rain flow algorithm,
which has been widely used in the technical and economic analysis of BESS [2,14,15] to solve
this nonlinear problem. It extracts the aging features from SOC curves. For details, please
refer to Section 4.2.

The aging model of lithium-ion batteries in this study can be roughly divided into two
parts: the extraction of aging features and the superposition of aging quantity.

In cycle aging, the feature values of each cycle, such as cycle depth, cycle average SOC,
and cycle times, were extracted and recorded as cycle aging events. Meanwhile, in calendar
aging, the continuous SOC and its duration were recorded as calendar aging events.

The behavior of battery aging has a lot to do with the current aging state of the
batteries; thus, even if the operating conditions remain the same, different aging results
will be obtained corresponding to the state of aging. Therefore, it is vital to arrange the
aging event sequence in the correct order.

After the extraction, the aging features should be quantified and superpositioned.
Seeing that the result from each aging event can not be superpositioned directly because
the aging curves are not linear, this study proposed a method named the mapping super-
position method to solve the problem.
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4.2. The Rainflow Cycle Counting Method

In this study, the four-point algorithm [16] of the rainflow counting method [17] was
applied to extract the cycle depth and cycle times.

In the beginning, four consecutive points in the series must be identified and specified
as A1, A2, A3, and A4.Then, calculate the distances S1, S2, and S3 between every two
adjacent points. The schematic is shown in Figure 7.

S1 = |A1 − A2| (3)

S2 = |A2 − A3| (4)

S3 = |A3 − A4| (5)

Figure 7. A schematic diagram for the four-point algorithm.

If it meets the condition:

S2 ≤ S1 and S2 ≤ S3 (6)

then A2 and A3 will be extracted from the series.
Then, the following four adjacent points will be repositioned, operating again until

there are no more adjacent four points in the series that meet the conditions. Finally, the
remaining sequence will be copied and attached to the end of itself, and then repeated.
Examples are described in Appendix A.

4.3. Aging Features’ Extraction

Before the calculation, aging features must be extracted. Figure 8 shows the schematic
diagram of the extraction architecture.

According to the concept of the rainflow counting method mentioned in [18], the
continuous SOC curve is processed to remove unnecessary values, leaving only the relative
peaks and relative valleys in the series. Therefore, the original SOC curve is filtered twice,
and then the rainflow counting algorithm is used. The schematic is shown in Figure 9.

The original input SOC data has a resolution of 0.5%. Through the first filtering, we
can separate the continuous parts of the SOC value from the original SOC sequence and
record it as calendar aging events, including the placing time and storage SOC. Since the
values between the relative maximums and relative minimums are not meaningful during
the rainflow cycle counting method, these values should be removed from the sequence first
in the following second filtering to generate a new one with only the relative maximums
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and minimums. In the final stage, cycling aging features such as cycle depth, the number
of cycles, and the average SOC of the cycle will be identified through the rainflow counting
algorithm and recorded as cycling aging events in sequence.

Figure 8. A schematic diagram for aging feature extraction.

Figure 9. A schematic diagram of the applied rainflow counting method of SOC. (a) Raw SOC curve.
(b) Curve After filtering continuous values. (c) Only the relative peaks and valleys are left, and the
values between the peaks and valleys are removed. (d) Start rainflow cycle counting method.

4.4. Superposition

Because the aging behavior of batteries is nonlinear and is affected by more than one
variable, the capacity decay caused by aging cannot be superposed directly. Such as the
example shown in Figure 10, we can regard the aging event that “maintains the SOC-level
at 50% for three months” as three identical continuous aging events that “maintains the
SOC-level at 50% for one month”. If we apply the direct superposition method on the latter,
which means to superpose the capacity decay by directly adding them together, we will
obtain a result that has a considerable disparity from the result of the former.

Seeing the incompleteness of the direct superposition method, another method, named
the mapping superposition method, is proposed in this study, as shown in Figure 11. In
other words, before the superposition, the equivalent quantity of aging features should be
calculated according to its former state of the amount capacity fade.
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Figure 10. A schematic diagram for direct superposition.

 

Figure 11. A schematic diagram for superposition.

In calendar aging, the former decay quantity must be “mapped” to the curve corre-
sponding to the SOC level of the aging event to be superposed, so as to obtain the equivalent
placing time. The equivalent placing time plus the placing time of this aging event is the
equivalent total placing time, which can be used to calculate the aging quantity further.

The relevant calculation formula can be derived from Equation (1):

teq = 9.00831·Cf ,cal
1.25·e−0.009235·SOC (7)

C′
f ,cal = 0.1723·e0.007388·SOC·(teq + Δt)0.8 (8)

In Equation (7), teq represents the equivalent placing time, Cf ,cal represents the former
calendar aging amount, and SOC represents the storage SOC level of this aging event.
According to this formula, the equivalent placing time teq under the conditions of the aging
event can be derived. Meanwhile, in Equation (8), C′

f ,cal and Δt represent the final calendar
aging capacity fade after superposing and the placing time in the aging event, respectively.

On the other hand, in the case of cycling aging, the former aging amount should be
“mapped” to the curve corresponding to the conditions including cycle depth and the
average SOC of the aging event to be superposed, so that the equivalent number of cycles
can be derived. The equivalent number of cycles plus the number of cycles of this aging
event is the equivalent total number of cycles, which can be used to calculate the aging
amount further.

nceq = 2267.573696·Cf ,cyc
2·e0.03886·SOC·cd−1.4324 (9)

C′
f ,cyc = 0.021·e−0.01943·SOC·cd0.7162·(nceq + Δnc

)0.5 (10)

Similarly, in Equation (9), nceq, Cf ,cyc, cd, and SOC represent the equivalent number of
cycles, the former cycling aging amount, the cycle depth, and the average SOC of this aging
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event, respectively. In Equation (10), C′
f ,cyc stands for the capacity fade after superposing,

while Δnc refers to the number of cycles of the aging event.
Applying the mapping superposition method, a result closer to the theoretical values

than that when using the direct superposition method can be obtained, as shown in
Figure 12.

Figure 12. A schematic diagram for mapping superposition.

5. Result of Simulation

5.1. Simulation Scenario

Under the same frequency, different frequency regulation modes will have their
required output so that their corresponding SOC curves can be generated. Then, the
different aging features can be extracted and recorded from each by implementing the
aging model.

Based on the aging results of dReg0.25, dReg0.5, and sReg under different BESS
system parameters, including the rated power and the storage capacity, this study will
iterate them repeatedly in three months until the capacity fade reaches 20%, i.e., the end-of-
life (EOL) criteria. This paper uses SOC curves under nine different scenarios of different
modes and different BESS system parameters to simulate the aging results, then discuss
the performances of each. Table 2 shows each scenarios.The real frequency data of Taiwan
in three different seasons, December 2019, March 2020, and May 2020, were used as input
data for every scenario. The frequency distribution and features of the SOC curves are
described in Appendix B.

Table 2. Specification of simulation scenarios.

Scenario Mode Spec. of BESS SOC Level Target

1 dReg0.5 5 MW/6.25 MWh 70%
2 dReg0.5 5 MW/6.25 MWh 50%
3 dReg0.5 5 MW/6.25 MWh 30%
4 dReg0.5 5 MW/3.125 MWh 50%
5 dReg0.25 5 MW/6.25 MWh 50%
6 dReg0.25 5 MW/3.125 MWh 50%
7 sReg 5 MW/6.25 MWh 90%
8 sReg 5 MW/12.5 MWh 90%
9 sReg 5 MW/6.25 MWh 70%

5.2. Result and Discussion of Each Scenario

This section compares the battery aging results under each scenario, discussing the
relationship between the capacity fade behavior and the system conditions, including the
frequency regulation service mode, the rated power, and the storage capacity. Table 3
shows the detailed information of the comparisons.
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Table 3. Overview of comparison between scenarios.

Battery Life Comparison Scenarios for Comparison

A dReg0.5 with different SOC level targets 1,2,3

B dReg under different C-rates 2,4(dReg0.5)
5,6(dReg0.25)

C dReg0.5 and dReg0.25under the same spec. 2,5
D sReg under different C-rates 7,8
E sReg under different SOC level targets 7,9

A. dReg0.5 with the same rated capacity and battery energy but a different SOC level target:

Scenario 1, 2, and 3 were all in dReg0.5 mode with a 5 MW/6.25 MWh BESS. The only
difference was the SOC level targets, with 70%, 50%, and 30%, respectively. As shown in
Figure 13, Scenario 1, the one that had the highest SOC level target had the shortest lifetime,
as described in Section 3.2.

Figure 13. The result under different SOC levels (dReg0.5).

Calendar aging was the main source of capacity fade of the three scenarios, as shown in
Figure 14. Since the SOC level target of Scenario 1 was the highest, its capacity fade caused
by calendar aging was the highest among the three. Calendar aging was continuously
accumulating, so the higher the calendar aging rate, the shorter the life it had. This was
probably the reason why Scenario 1 reached its end-of-life the earliest. Maintaining the
SOC at 30% yielded 8.5% more lifetimes than 50%, 20.6% more lifetimes than 70%.

B. dReg with the same rated capacity but a different battery energy:

Both Scenarios 2 and 4 used the dReg0.5 mode with the same rated power of 5 MW
but had different storage energies of 6.25 and 3.125 MWh, respectively, with the results
shown in Figure 15. Similarly, both Scenarios 5 and 6 used the dReg0.25 mode but also
differed in the storage energy.

As shown in Figure 16, although most of the aging in the four different situations came
from calendar aging, the fade caused by cycling aging in Scenario 4 was significantly higher
than that in Scenario 2, and in Scenario 6 it was also higher than that in Scenario 5. Since
the SOC level target was 50% for each scenario in this comparison, theoretically, the rate of
calendar aging should not have been significantly different. Therefore, it was estimated
that with the same SOC level target, the cycle times and depth of the scenario with a higher
C-rate would be more than that of the one with a lower C-rate, and thus, it would reach
EOL faster.
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Figure 14. The aging ratio of Scenarios 1 to 4.

Figure 15. The result under different C-rates using dReg0.5 and dReg0.25.

 

Figure 16. The aging ratio of Scenarios 5 and 6.

C. dReg0.5 and dReg0.25 with the same rated capacity and battery energy:

Scenario 2 and Scenario 5 were dReg0.5 and dReg0.25 at 5 MW/6.25 MWh, respectively,
with the results shown in Figure 17. In this case, it can be estimated that for the energy
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storage system with the same rated capacity and the same total battery energy, the battery
lifetime of dReg0.5 mode would be longer than that of dReg0.25.

Figure 17. The result under dReg0.5 and dReg0.25.

Compared with dReg0.5, dReg0.25 often needs to carry out more output outside the
deadband, so the cycle depth of dReg0.25 is higher than that of dReg0.5 under the same
frequency conditions. Therefore, the capacity fade rate caused by cycling aging of dReg0.25
is much faster than that of dReg0.5, which indirectly leads to dReg0.25 reaching the end of
battery life faster.

D. sReg with the same rated capacity and SOC level target but different battery energy:

As shown in Figure 18, Scenario 8 with a lower C-rate did lived longer than with a
higher C-rate (Scenario 7), but the difference was almost negligible. Considering the cost of
installation, the total battery energy of Scenario 8 was twice that of Scenario 7, which may
not be economical.

Figure 18. The result under different C-rates (sReg).

As shown in Figure 19, in the scenarios of the sReg mode with the SOC level target
at 90%, the proportion of calendar aging was significantly higher than that of cycle aging,
especially in the case of Scenario 8, which almost dominated the battery life. Outputting
the same power, the SOC variation of the scenario with a lower C-rate will be lower than
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that of the one with a higher C-rate, so in the long run, the overall capacity fade caused by
cycling aging will indeed be lower. However, as the proportion of cycling aging in these
scenarios was not high, the effect of reduced cycle aging on the overall battery life was
not significant.

Figure 19. The aging ratio of Scenarios 7 and 8.

E. sReg with the same rated capacity and battery energy but different SOC level target:

As shown in Figure 20, Scenario 7, which had a SOC level target of 90%, reached its
end-of-life after only 159 months, while Scenario 9, with a 70% SOC level target, reached
EOL through 180 months of use. In conclusion, it could be preliminarily supposed that
those with a lower SOC level target had a longer battery life.

Figure 20. The result under different SOC levels (sReg).

As shown in Figure 21, in Scenario 7, because the SOC level target was higher than
that of Scenario 9, the calendar aging rate was higher, which made it reach the end-of-life
faster. Simply by lowering the SOC level target, the battery life of Scenario 9 would be
about 20 months longer than that of Scenario 7. Therefore, if the SOC level target could be
as low as possible within the allowable range, the battery could have a longer lifetime.

Table 4 shows the battery life of all the scenarios. From (Scenario 1, 2, 3), (Scenario 7,
9) it was found that lowering the SOC level significantly improved battery life. From
(Scenario 3, 4), (Scenario 5, 6), and (Scenario 7, 8) it was found that the battery life with a
lower capacity was shorter.
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Figure 21. The aging ratio of Scenarios 7 and 9.

Table 4. Battery life overview for each scenario.

Scenario Mode Spec. (Pr/Er) SOC Level mEOL(Month)

1 dReg0.5 5 MW/6.25 MWh 70% 189
2 dReg0.5 5 MW/6.25 MWh 50% 210
3 dReg0.5 5 MW/6.25 MWh 30% 228
4 dReg0.5 5 MW/3.125 MWh 50% 195
5 dReg0.25 5 MW/6.25 MWh 50% 189
6 dReg0.25 5 MW/3.125 MWh 50% 165
7 sReg 5 MW/6.25 MWh 90% 159
8 sReg 5 MW/12.5 MWh 90% 162
9 sReg 5 MW/6.25 MWh 70% 180

5.3. Profit Estimation and Comparison

Table 5 is a rough estimate of the system construction costs based on the statistics of
the data from various manufacturers [19]. CSB

t , CSBOS
t , and CPE

t represent the cost of the
storage block (SB), storage-balance of system (SBOS), and power equipment (PE), while Pr
and Er stand for the rated power and battery energy, and finally, CBESS

t refers to the cost of
the entire BESS.

Table 5. Establishment cost estimation of each scenario.

Scenario
Pr

(MW)
Er

(MWh)
CSB

t
(Thousand NTD)

CSBOS
t

(Thousand NTD)
CPE

t
(Thousand NTD)

CBESS
t

(Thousand NTD)

1 5 6.25 31,850 7350 11,900 51,100
2 5 6.25 31,850 7350 11,900 51,100
3 5 6.25 31,850 7350 11,900 51,100
4 5 3.125 15,925 3675 11,900 31,500
5 5 6.25 31,850 7350 11,900 51,100
6 5 3.125 15,925 3675 11,900 31,500
7 5 6.25 31,850 7350 11,900 51,100
8 5 12.5 63,700 14,700 11,900 90,300
9 5 6.25 31,850 7350 11,900 51,100

This study calculated the profit earned until EOL in each situation, and the related
formulas are shown in Equations (11) and (12). To simplify the calculation, there were some
simple assumptions in this paper:

REOL
t =

mEOL

∑
m=1

dm

∑
d=1

24

∑
h=1

(
pcap(m, d, h) + pe f f (m, d, h)

)
× q(m, d, h) (11)
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REOL
net = REOL

t − CESS
t (12)

q(m, d, h) = 1 {m , d, h |1 ≤ m ≤ mEOL, 1 ≤ d ≤ dm, 1 ≤ h ≤ 24} (13)

where REOL
t and REOL

net represent the total revenue and net profit estimated until the battery’s
EOL; mEOL represents the number of months until the battery reaches its EOL. pcap, pe f f ,
and q represent the capacity offer price described in Table 1, the efficiency offer price varying
with the market bidding price every day, and the quality factor of operation, respectively.

A. dReg0.5 with the same rated capacity and battery energy but different SOC level target:

As shown in Figure 22, Scenario 3 had the highest net profit among the three. The
BESS specifications of the three Scenarios were the same so that the construction cost was
also the same. Scenario 3 had the longest battery life and could thus earn the most profit.

Figure 22. Net profit under different SOC levels (dReg0.5).

B. dReg with the same rated capacity but different battery energy:

As shown in Figure 23, either under the dReg0.5 or dReg0.25 mode, those with a higher
C-rate had a higher net profit in the simulation results of this study. Although the battery
life of those with a higher C-rate was shorter, the construction cost of their BESS was lower.
Therefore, the net profit was still higher than that of those with a lower C-rate. However,
these results are only the conclusion from the simulated data in this study; thus, the real
results may vary due to the actual construction cost of actual sites and many other factors.

Figure 23. Net profit under different C-rates using dReg0.5 and dReg0.25.
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C. dReg0.5 and dReg0.25 with the same rated capacity and battery energy:

As shown in Figure 24, the net profit difference between Scenario 2 and Scenario 5
was small. The two scenarios had the same specifications of BESS, so the construction
cost was similar, but dReg0.5 (Scenario 2) had a slightly longer life. dReg0.5 and dReg0.25
have different efficiency offer prices, which is one of the main factors that determine the
profits; thus, in this case, the one that had a longer battery life did not necessarily give more
net profit.

Figure 24. Net profit under dReg0.5 and dReg0.25.

D. sReg with the same rated capacity and SOC level target but different battery energy:

As shown in Figure 25, the battery life in Scenario 8 was slightly longer than that in
Scenario 7, but the difference was almost ignorable, so the total revenue should have been
about the same. Since the construction cost of Scenario 8 was significantly higher than that
of Scenario 7, the former had a dramatically lower net revenue than the latter.

Figure 25. Net profit under different C-rates (sReg).

E. sReg with the same rated capacity and battery energy but different SOC level target:

Figure 26 shows that a lower SOC level target led to a higher net profit because of its
longer battery life; thus, Scenario 9 had a higher net profit than Scenario 7 did.
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Figure 26. Net profit under different SOC levels (sReg).

For the results of this study, considering the operational requirements of dReg0.5 and
dReg0.25 modes, it was not necessary to maintain SOC at a high level. On the contrary,
a high SOC level target was necessary for the sReg mode to cope with the situation of
long-time full-power output.

Figure 27 shows the net profit curves of all scenarios. The net profits of the scenarios
under dReg0.5 were close to those under dReg0.25, but they were all generally higher than
that under sReg.

Figure 27. Net profit overview under each scenario.

From this simulation, it was estimated that for either dReg0.5 or dReg0.25 modes, the
net profits of those with a higher C-rate would indeed be higher than that of those with a
lower C-rate, but the effect did not seem to be that significant. Under the sReg mode, the
reduction of C-rate did not bring much benefit to the battery life but led to a significant
decrease in net profit due to the increased construction cost. Finally, SOC-level-targeting
had a significant impact on overall net profits regardless of what the frequency regulation
mode was, so evaluating to which level to set the SOC target is critical to enhancing
the profits.

6. Discussion

From (Scenario 1, 2, 3), (Scenario 7, 9) it was be found that a low SOC level gave a
higher net profit. Therefore, market participants can increase revenue by reducing the SOC
level. From (Scenario 3, 4), (Scenario 5, 6), and (Scenario 7, 8), it was found that no matter
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how the price changed, the income of a high-C-rate battery was always relatively high
and its construction cost was relatively low. It could be inferred that this market is more
suitable for high-C-rate batteries. The net profit in Scenario 8 was below zero most of the
time, which meant that if the capacity selection is wrong, it may lead to loss of money in
the sReg market.

7. Conclusions

This research has shown that there are differences in battery life under different
frequency regulation. The following can be observed for each type of frequency regulation:

For systems under dReg0.5, those with a lower SOC level target had a longer battery
life and, thus, a higher net profit.

Then, comparing the systems in dReg0.5 and dReg0.25 modes, although the battery
life of the system with a lower C-rate was longer, when considering the construction cost, it
did not mean that the net profit would be more than that of the system with a higher C-rate.

Finally, for the sReg, since most of the aging comes from calendar aging, the SOC level
maintained for a long time seriously affected its battery life. Furthermore, the lower the
SOC level, the longer the life. In addition, the effect of a low-C-rate battery on increasing
the lifetime was not significant, and the cost was relatively high, so the high C-rate scenario
had higher net profit. For a BESS with the same rated power and the same total energy
capacity, due to sReg usually being used in response to possible emergencies which needs
BESS to maintain a higher SOC level than that in the other two services, it results in a
shorter battery life and a lower net income for the batteries operating with sReg.

The limitation of the proposed method is that even for batteries of the same chemical
material, batteries manufactured by different battery manufacturers will still have differ-
ent aging properties, and the parameters of the model need to be adjusted according to
different batteries.

Future research will focus on evaluating the optimal capacity configuration of BESS
in various ancillary services. Because the BESS of more than hundreds of MW will be
composed of dozens of PCS with batteries of a specific capacity, the overall C-rate can be
very fine; any number between 0.25–1C is possible, and it is not limited to a specific C-rate.
It depends on how many PCS and how many batteries are used. The method proposed
in this study can iterate the most suitable configuration according to various regions and
various auxiliary services.
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Appendix A

Figures A1 and A2 show the iteration procedure of the rainflow cycle counting algorithm.
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Figure A1. Example of extracting a single cycle using the rainflow counting algorithm. (a) It shows a
line graph of the original sequence [4, 7, 2, 10, 5, 9, 4, 6] (b) Using rainflow counting method extract
cycle: 5-9, the depth of this cycle is 4, the average is 7. (c) It shows the sequence after the extraction
(d) Concatenate the original sequence with other sequences.

Figure A2. Example of extracting several cycles using the rainflow counting algorithm. (a) Extract
the cycle of the blue triangle and use the red dotted line to fill the interval, the cycle depth is 2, the
average is 5. (b)Using the same method to extract cycle [4,7], depth is 3, average is 5.5. (c) Use the
same method to extract cycle [2,10], depth is 8, average is 6. (d) Sequence after Extraction.
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Appendix B

Figure A3. Frequency distribution of December 2019.

Figure A4. Frequency distribution of March 2020.

Figure A5. Frequency distribution of May 2020.

Features of SOC Curves

The aging features extracted from SOC curves could be roughly classified into two
types, one about cycle depth, and another about storage SOC, which closely relate to
cycling aging and calendar aging, respectively. Figures A6–A8 show the SOC curves for
the simulations of Scenarios 2, 5, and 7 based on the three-month frequency, as described in
Section 5.2, and the distribution charts of the two main feature types mentioned above.
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Figure A6. SOC curve and aging features of Scenario 2.

Figure A7. SOC curve and aging features of Scenario 5.
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Figure A8. SOC curve and aging features of Scenario 7.
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Abstract: The first hard rock shallow-lined underground CAES cavern in China has been excavated
to conduct a thermodynamic process and heat exchange system for practice. The thermodynamic
equations for the solid and air region are compiled into the fluent two-dimensional axisymmetric
model through user-defined functions. The temperature regulation model and experimental study
results show that the charging time determines the air temperature and fluctuates dramatically under
different charging flow rates. The average air temperature increases with increasing charging flow
and decreasing charging time, fluctuating between 62.5 ◦C and −40.4 ◦C during the charging and
discharging processes. The temperature would reach above 40 ◦C within the first 40 min of the initial
pressurization stage, and the humidity decreases rapidly within a short time. The use of the heat
exchange system can effectively control the cavern temperature within a small range (20–40 ◦C).
The temperature rises and regularly falls with the control system’s switch. An inverse relationship
between the temperature and humidity and water vapor can be seen in the first hour of the initial
discharging. The maximum noise is 92 and 87 decibels in the deflation process.

Keywords: compressed air energy storage; heat exchange system; thermodynamic response; high
pressure; charging process; temperature regulation

1. Introduction

With the gradual development of global carbon emission reduction actions, vigorously
developing renewable energy has become an inevitable choice in the new situation. Re-
newable energy has the advantage of being clean and pollution-free. It has many defects
such as instability and difficulty in storage which urgently need corresponding energy
storage technology innovation to match. Compressed air energy storage (CAES) is one
of the most promising large-scale energy storage technologies. Compared with pumped
hydroelectric storage (PHS), CAES is not limited by water source and is a better choice for
efficient storage and utilization of clean energy [1].

Today, two existing commercial CAES plants are in operation: a 290 MW unit built
in Huntorf, Germany, in 1978, and a 110 MW unit built in McIntosh, AL, USA, in 1991 [2];
the monitoring data of their successful operation bring some valuable validation data
for the research related to compressed air energy storage caverns [3]. The research and
development progress on energy storage technologies in China has also developed more
rapidly [4]. The grid connection of the Feicheng salt cavern advanced CAES plant was
realized in 2021 [5]. Other caverns, such as salt caverns [6], abandoned mine caverns [7],
underground aquifers [8], and artificial rock-lined caverns [9], can also be used as gas
storage design alternatives. Moreover, compared with natural reservoir caverns, artificial
caverns with lining, which are more flexible in site selection and more adaptable to the

Sustainability 2022, 14, 6788. https://doi.org/10.3390/su14116788 https://www.mdpi.com/journal/sustainability
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design of large-scale energy storage, are one of the preferred options for achieving energy
storage in the future.

Kushnir et al. [10] derived an analytical solution for the temperature and pressure
variation of the air in the cavern in adiabatic mode. Then, the theoretical solution for
the thermodynamics of the cavern in the heat transfer model was derived based on the
air mass and energy conservation equations considering the heat transfer at the cavern
wall. It significantly affects the air temperature and pressure variation compared to the
adiabatic model [11]. Many scholars also cite this calculation model, and the calculation
results are compared with the test data of the Huntorf power station [12]. Kim et al. [13]
applied TOUGH-FLAC to study the thermodynamic and mechanical response of lined
caverns, and Zhou et al. [14] calculated the heat–flow–solid (THM) coupling process of
lined caverns based on COMSOL. Many thermodynamic simulations of CAES caverns
show that the temperature field inside the air storage caverns is unevenly distributed
and may form extremely high temperatures locally, which poses a significant threat to
the lining and surrounding rocks [15]. At the same time, the gas inside the cavern may
produce significant temperature fluctuations during the cyclic gas filling and discharging
process of the air storage caverns. Under the coupling effect of cyclic temperature and
stress, the chambers are prone to thermal stress disasters and safety risks in long-term
operation [16]. One of the significant problems of CAES systems is the air temperature rise
or fall during the compression or expansion operation, resulting in low efficiency. Some
works of literature describe enhancing heat transfer by implementing thermal management
measures [17]. Others use numerical and experimental methods to characterize fluid flow
patterns and heat transfer behavior at the local level [18–20]. GOUDA proposed a 3D CFD
model to simulate the air compression process to achieve near-isothermal operation [21].
It is essential to carry out a thermodynamic simulation of the cavern chamber filling
and discharging process and to intervene manually in the possible extreme temperature
conditions to realize piezo gas storage power generation [22].

In order to gain insight into the thermodynamic and mechanical response of the opera-
tion process of CAES caverns, many countries internationally have carried out experimental
cavern tests. Ishihata et al. [23] tested the sealability of a deeply buried underground gas
storage reservoir with a test air pressure of 0.9 MPa. However, the test results showed
severe cracking of the sealing layer. Swedish scholars GEISSBÜ conducted AA-CAES
demonstration plant gas storage adiabatic mode thermal storage test. Due to concrete plug
leakage, the air pressure only reached 7 bar, and the thermodynamic response was consis-
tent with the simulation results [24]. An underground lined rock cavern for small-scale
pressure gas storage tests as a storage reservoir was tested by Kim. At 100 m underground
burial depth, the radius of the cylindrical tunnel designed for gas storage was 2.5 m, and
the maximum gas storage pressure was 5 MPa [13]. It is a tremendous challenge for a
compressed air energy storage plant to determine whether the test can be conducted for
high internal pressure in an underground storage cavern without guaranteeing leakage.

Taking the exploration tunnel of Pingjiang Pumped Storage Plants in Hunan Province,
China’s first underground gas storage test cavern with a shallowly buried lining of hard rock
has been reconstructed to realize the gas storage test with a high internal pressure of 10 MPa.
In this paper, we would like to develop a temperature field analysis model for a model
underground high-pressure air storage cavern, analyze the temperature fluctuation law
of the gas filling and discharging process, and design a heat transfer system in the cavern.
Based on thermodynamic, heat transfer, and numerical heat transfer methods, air charging
and discharging and heat transfer performance tests in the cavern will be conducted.

2. CAES Cavern Design

The test cavern established in this study is located in the exploration tunnel (PD4) of
the underground powerhouse of the Pingjiang Pumped Storage Power Station in China.
The design of the cavern is shown in Figure 1. The buried depth of the testing cavern
was about 110 m. The length, the inner diameter, the volume, and the inner surface area
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were 5.0 m, 2.9 m, 28.8 m3, and 50.6 m2, respectively. A concrete lining of 0.5 m was set in
the testing cavern with a fiber-reinforced plastic (FRP) sealing layer on the surface of the
lining. A plug was set at the inlet end of the test chamber to bear the thrust of high-pressure
compressed air (maximum design pressure was 10.0 MPa). The test system includes a
vehicle-mounted air compressor pressurization system, a charging and discharging pipeline
system, cavern gas storage, sealing, and measurement system. The surrounding rock in
the flat exploration cave was mainly granite and granite gneiss with a mean value of
elastic modulus, deformation modulus, and compressive strength of 63.62 GPa, 35.59 GPa,
and 78~130 MPa, respectively. The location of the rock mass was of good quality. The
fundamental physical parameters such as density, specific heat, and thermal conductivity
of solid materials are shown in Table 1. It was assumed that the changes in solid physical
parameters within the calculation temperature range are small and have little effect on
the results. The air compressor was designed with a heat storage device to cool down
gradually, and the outlet temperature would be cooled down to 30 ◦C.

Figure 1. Schematic diagram of the Pingjiang CAES cavern. (Unit: mm).

Table 1. Physical parameters of solid materials.

Material
Young’s Modulus

(GPa)
Poisson’s Ratio

Density
(kg/m3)

Specific Heat
(J/kg/K)

Coefficient of Thermal Conductivity
(W/m/K)

FRP 2.9 0.3 1800 1260 0.52
Concrete 28 0.167 2500 920 1.74

Rock 18 0.2 2800 920 3.49
Steel door 200 0.3 8030 502.48 16.27

3. Numerical Models of Thermodynamic Processes

3.1. Modeling

The simplified axisymmetric numerical calculation physical model was established
according to the CAES cavern structure diagram shown in Figure 2. Considering the low
thermal conductivity and small thermal diffusivity of the surrounding rock and concrete
layer and the limited influence of the air temperature change in the cavern, the surrounding
rock, and concrete areas were simplified to a certain extent. The calculation results had little
affection. Because of the small calculation area, the calculation speed would be accelerated,
and the calculation cost would be saved. The calculated thickness of the surrounding rock
and the cylindrical concrete layer was 1000 mm and 480 mm, respectively.
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Figure 2. Axisymmetric simplified thermodynamic calculation model: (a) charging process; (b) dis-
charging process.

The charging–maintaining–discharging of the underground CAES cavern was a com-
plex thermodynamic process coupled with multiple physical phenomena, as shown in
Figure 2. The process includes: air compression (charging process)/expansion (discharging
process) in the cavern, convection heat transfer between high-pressure air and the wall
of the glass fiber-reinforced plastic cylinder, heat conduction inside the solid area such as
the glass fiber-reinforced plastic cylinder, concrete layer and surrounding rock, the area
absorbs or releases heat due to its heat capacity, as well as convection heat exchange with
the outside air in the FRP door area. Considering that the air pressure and temperature
fields in the cavern were approximately uniform, a simplified thermodynamic equilibrium
equation could be adopted to obtain the internal air’s average temperature and pressure.
The solid region heat conduction model was coupled to form a complete thermodynamic
model of the air storage cavern.

In order to study the thermodynamic process of the gas and solid in the cavern during
different charging and discharging processes, numerical simulations were carried out
for different charging and discharging flow rates (1000 Nm3/h, 500 Nm3/h). The initial
temperature field was set to 298 K. Before charging, the pressure of the cavern was 0.1 MPa,
and the maximum air pressure was about 10.0 MPa. The gas storage time was two hours,
and then the gas was released at (1000 Nm3/h, 500 Nm3/h) until the pressure in the cave
was close to 0.1 MPa.

According to the conservation of energy, the change of the total internal energy of
the air in the cavern is equal to the total enthalpy of the charged/discharged air and the
coupled heat transfer between the cylinder wall and the air:

∂(Mu)
∂t

= kwall Awall(Twall − Tair) +
∂m
∂t

hTair ,Pair (1)

∂(Mu)
∂t

= kwall Awall(Twall − Tair) +
∂m
∂t

hTair ,Pair (2)

where u is the unit internal energy of air, M is the total volume of air at the current moment,
hTair ,Pair is the unit enthalpy of air, ∂m/∂t is the air flow rate, which is negative when
discharged, kwall is the convective heat transfer coefficient between the wall of the cavern
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and the air, Tair is the air temperature, Twall is the average temperature of the cavern
surface, Qwall is the coupling heat exchange between the cavern surface and the air, and
Qwall = kwall Awall(Twall − Tair).

From Equation (1), the unit internal energy change can be obtained as:

Δu =
kwall Awall(Twall − Tair) + Δm·hTair ,Pair

M + Δm
(3)

High pressure air temperature increment can be obtained as:

ΔT =
Δu
cv

∣∣∣∣
Pair

(4)

The unit internal energy, temperature, and density of the gas at the moment t + Δt are:

u(t+Δt) = ut + Δu

T(t+Δt) = Tt + ΔT

ρ(t+Δt) = ρt=0 +

.
m·t
V

(5)

The pressure value of the compressed air can be calculated by the Peng–Robinson equation:

a = 0.45723553
R2T2

c
Pc

b = 0.07779607
RTc

Pc

κ = 0.37464 + 1.54226ω − 0.26993ω2

α =
(

1 + κ
(

1 −
√

T/Tc

))2
(6)

ΔP =
RT

(vm − b)
− αa

v2
m + 2bvm − b2 (7)

where R is the universal gas constant and R = 8314.47
(

J·kmol−1·K−1
)

, Tc is the air temper-
ature in the critical state and Tc = 132.5306 K, Pc is the air pressure in the critical state and
Pc = 3.79 MPa, ω is the eccentricity factor and ω = 0.0335, vm is the unit molar volume of
air and vm = MM/ρ

(
m3/kmol

)
, MM is the air molar mass and MM = 28.95 (kg/kmol).

In solid areas, such as glass fiber-reinforced plastic cylinders, concrete lining, sur-
rounding rock, and steel doors, the temperature change can be obtained by solving the
two-dimensional axisymmetric unsteady heat conduction energy equation:

ρsc
∂T
∂t

=
1
r

∂

∂r

(
λsr

∂T
∂r

)
+

∂

∂x

(
λsr

∂T
∂x

)
+

.
Q (8)

where λs is the thermal conductivity, ρs is the density,
.

Q is the internal heat source, which is
taken as 0 in this project, the r direction is the radial, and the x-direction is the axial direction.

The boundary condition settings include thermal boundary conditions for the solid re-
gion, where the outer surfaces of the surrounding rock and concrete can be set as isothermal
wall boundary conditions:

T = T∞ (9)

where T∞ = 298 K is the ambient temperature.
The outer surface of the steel door can be set as the convective heat transfer bound-

ary condition:
q′′ = k∞(T − T∞) (10)
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where k∞ is the convective heat transfer coefficient between the steel door and the air in
the access hole, which can be taken as a constant, k∞ = 8 W/m2K. The inner surface of the
FRP cylinder is the convection heat transfer boundary condition of the inner surface of the
FRP cylinder and can be described as:

q′′ = kwall(Twall − Tair) (11)

where kwall is the average convective heat transfer coefficient between the wall and the
compressed air. According to the formula for the heat transfer coefficient of gas-filled
convection in a closed storage tank proposed by Heath et al. [25] and Bourgeois et al. [26],
the heat exchange system can be calculated by the following formula:

Nu = u(d/D)0.5R0.67
e + 0.104R0.352

a (12)

where Nu is the Nusselt number, the first term on the right is the convective heat transfer
effect, which is related to the size of the inlet pipe, and the second term is the natural
convection heat transfer effect, which is related to the Rayleigh number Ra = GrPr. The
outgassing process only needs to consider the effects of natural convection.

The relationship between the convective heat transfer coefficient and Nu can be de-
scribed as:

k =
Nu·λair

D
u(d/D)0.5 (13)

The above equations can be compiled into the fluent two-dimensional axisymmetric
solid thermal conductivity model through a user-defined function (UDF), and the values
can be updated after the calculation of each time step to realize the calculation of the
temperature field in the entire cavern area.

3.2. Simulated Result

The variation law of air average temperature, inner cavern surface average tempera-
ture, and air pressure over time in the whole process obtained by numerical calculation is
shown in Figure 3. It can be seen that the whole process is divided into the charging stage,
the pressure-holding stage, the discharging stage, and the stop stage. The temperature and
pressure changes in each stage have apparent characteristics.

 
(a) (b) 

Figure 3. Temperature and pressure variation: (a) flow rate of 1000 Nm3/h; (b) flow rate of 500 Nm3/h.

The average air pressure rises steadily during the charging process. For the two
charging and discharging processes with a flow rate of 1000 Nm3/h and 500 Nm3/h, the
time used to charge the air with 10 MPa is 9542 s and 19,684 s, respectively. The air and
cavern temperature increases rapidly at the beginning of the charging, especially in the
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first 100~200 s. Due to the low air pressure and small total mass in the storage cavern,
the compression effect is powerful, and the air temperature rises rapidly from 25 ◦C to
about 50 ◦C. After that, the air temperature gradually slowed down due to the relative
weakening of the compression effect and the combined effect of the high-temperature
air on the increase of heat dissipation on the cavern surface. At the end of the charging,
the average air temperature reached 62.5 ◦C and 52.4 ◦C, and the average cavern surface
temperature reached 58.0 ◦C and 49.4 ◦C, respectively. In the pressure-holding stage, the
inlet pipe is neither filled with air nor released and does not perform work on the air.

At this time, since the air with a higher temperature continues to dissipate heat to
the wall with a lower temperature, the average temperature of the air begins to drop
continuously, and the inner cavern surface passes the heat through. The heat is transferred
to the lower temperature solid area, and the average temperature of the inner cavern
surface also continues to drop and gradually approaches the air temperature. After the
holding stage, the average air temperature is 43.0 ◦C and 40.3 ◦C, respectively, and the
average wall temperature is 41.9 ◦C and 39.5 ◦C. As the average air temperature dropped,
the air pressure in the cave also dropped slightly. During the discharging stage, the average
temperature and pressure of the air in the cave dropped rapidly.

Moreover, the air temperature drops rapidly below the average temperature of the
inner cavern surface. The cavern surface begins to provide heat for the air, but the heat
transfer from the cavern surface is limited. At the end of the discharging stage, the air
pressure drops to 0.1 MPa (due to the pressure gradient on the outlet pipe under actual
conditions, the pressure in the cavern should be slightly higher than the atmospheric
pressure). According to the equation of state, a decrease in air pressure results in a decrease
in temperature, and the rate of temperature decrease is proportional to the rate of decrease
in air pressure. The average air temperature drops to −40.4 ◦C and −20.9 ◦C, and the
average temperature of the inner cavern decreases to 1.9 ◦C and 8.5 ◦C, respectively.
The hot cylinder cavern and surrounding rock heat the air at the stop stage. Both air
temperature and pressure increase slightly. The slower the discharging rate, the more heat
the compressed air gets from the cavern surface and surrounding rock, and the lower the
rate of air temperature drop. It can be seen from the simulation of the air storage process
that the temperature in the cavern during the charging and discharging process fluctuates
wildly, which brings security risks to the safety and stability of the cavern. It is necessary to
control the heat transfer of the air temperature in the cavern.

4. Heat Exchange System Design

Figure 4 shows the schematic diagram of thermodynamics in the air storage cavern
with a heat exchange circulation system. With the influx of external air during the charging
process, the internal energy gradually increases with air temperature. Part of the heat is
transferred to the FRP cylinder through the convection heat exchange between the cavern
surface and the air, and then it dissipates through the FRP cylinder and the concrete.
Another part of the heat is transferred to the circulating cooling water in the tube. The
heated circulating cooling water loses heat through the circulating cooling tower. During
the discharging process, the internal energy and air temperature gradually decrease with
the release of the air. Due to the temperature difference, the cavern surface and the hot
water in the tube transfer heat to the air. In order to maintain the stable air temperature in
the cavern, the outside (cavern surface or heat exchange tube) needs to transfer a certain
amount of heat to the air or take away a certain amount of heat.
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Figure 4. Thermodynamics in the air storage cavern with a heat exchange circulation system:
(a) charging process; (b) discharging process.

The energy conservation equation for the whole thermodynamic system can be ex-
pressed as:

∂(Mu)
∂t

= ktube Atubeη(Twater − Tair) + kwall(Twall − Tair) +
∂m
∂t

hTair ,Pair (14)

where ktube is the convective heat transfer coefficient of the heat exchange tube wall, and
Twater is the temperature of the water in the heat exchange tube.

Therefore, the heat transferred from the hot water in the heat exchange tube to the air
can be obtained:

ktube Atubeη(Twater − Tair) =
∂m
∂t
(
uTair ,Pair − hTair ,Pair

)
+ M

∂u
∂t

− kwall(Twall − Tair) (15)

where kwall(Twall − Tair) is the heat transfer from the cavern surface to the air, ∂(Mu)/∂t is
the total internal energy change of the air in the tube, u·∂m/∂t is the total mass change of
air, (M·∂u/∂t) is the internal energy change per unit of air,

(
hTair ,Pair ·∂m/∂t

)
is the energy

of the outlet air.
Assuming the air temperature control in the cylinder is stable at 25 ◦C, which means

the temperature change is equal to 0 and the temperature difference between the cavern
surface and the air is also kept at 0, the heat transferred from the cavern surface to the air is
close to zero:

∂u
∂t

= cv
∂T
∂t

= 0 (16)

Twall − Tair = 0 (17)

In order to keep the air temperature stable, the heat exchange power that the heat
exchange tube needs to provide should satisfy the following equation:

ktube Atubeη(Twater − Tair) =
∂m
∂t
(
uTair ,Pair − hTair ,Pair

)
(18)

The additional heat required from the heat exchanger piping to maintain a constant
air temperature of 25 ◦C at different pressures is essentially the same. The heating powers
for different flow rates are between 30.4 kW~30.7 kW (1000 Nm3/h) and 15.2 kW~15.3 kW
(500 Nm3/h), respectively.

Typical finned heat exchanger tube dimensions are shown in Figure 5.
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Figure 5. Schematic diagram of finned heat exchange tube structure.

The heat exchange power can be calculated as:

Q =
Twater − Tair

Ri + Rtube + Ro
(19)

where Q is the heat exchange power, Ri is the thermal resistance of the water in the tube
and Ri = (1/kwater)·(ro/ri), kwater is the convective heat transfer coefficient between water
and the inner wall of the heat exchange tube and k = (Nu·Di)/λwater, Rtube is the thermal
resistance of the tube, Ro is the external thermal resistance.

According to the Gnielinski equation, the turbulent convective heat transfer Nussle
number, Nu, can be calculated as [27]:

Nu =
( f /8)(Re − 1000)Pr f

1 + 12.7
√

f /8
(

P2/3
r f − 1

)[1 +
(

d
l

)2/3
]( Pr f

Prw

)0.11

(20)

( Pr f

Prw

= 0.05 ∼ 20
)

(21)

where the friction factor f can be calculated the turbulent flow resistance coefficient and
f = (1.82lgRe − 1.64)−2.

The fluid resistance in a straight tube section can be calculated as:

ΔP = f · l
Di

·ρv2

2
(22)

The thermal resistance of the tube be calculated as:

Rtube =
ln(r2/r1)

2πλtubel
(23)

where λtube is thermal conductivity of the tube.
The outer surface of the tube can be calculated according to natural convection, and

the convection intensity can be characterized by the Grashof number Gr:

Gr =
gβΔtD3

o
υ2 =

gβ|Ttube − Tair|D3
o

υ2 (24)

β = −1
ρ

(
∂ρ

∂T

)
p
≈ 1

Tair
(25)

where ρ is the density (kg/m3), υ is the viscosity (kg/ms), g is gravity acceleration (m/s2),
β is the thermal expansion coefficient, Tair is the temperature of the air (K), and Ttube is the
temperature of the tube (K).
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The Nussle number, Nun , and the heat transfer coefficient, kn, can be calculated as:

Nun = C(Gr·Pr)
n (26)

kn =
Nun ·λ

D
(27)

where C and n are constants, when 104 < Gr < 5.76 × 108, C = 0.48 and n = 0.25; when
5.76 × 108 < Gr < 4.65 × 109, C = 0.0445 and n = 0.37; when Gr > 4.65 × 109, C = 0.1 and
n = 0.333.

The fin efficiency η f can be obtained through Figure 6 [28]:

η f =
th(mH′)

mH′ (28)

H′ = Hf ·
(

1 + 0.35ln
ro + Hf

ro

)
(29)

where H′ = H + δ/2, AL = H′δ, r2
r1

= r1+H′
r1

, mH = (H′)3/2[h/(λAL)]
1/2.

Figure 6. Efficiency curve of Annular Rectangular Rib.

The external thermal resistance Ro can be obtained as:

Ro =

(
kn·

η f A f + Ao

Ao

)−1

(30)

where Ao is the outside surface area of tube and Ao = π·Do·l, A f is the fin area and

A f = 0.5π·
[(

Do + 2Hf

)2 − D2
i

]
· 1

P , Do is the outside diameter of the tube, Di is the inside

diameter of the tube, l is the tube length, P is the fin spacing, and Hf is the fin height.
The heat exchange heat is all carried out by the circulating cooling water, and the

internal energy added by the circulating water at the inlet and outlet is equal to the heat
exchange power:

Q = cw
.

mw(Tw,i − Tw,o) = cw
.

mwΔTw (31)

The heat exchange area can be maintained by increasing the number of tubes. The
water circuit can be divided into N processes in parallel to control the flow speed and
reduce the flow resistance to less than 50 kPa.

The flow of each waterway can be obtained as:

.
mw =

.
mw,t

N
(32)
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where
.

mw,t is the water flow rate.
Two types of finned tubes with fin height H = 12 mm, fin thickness δ = 0.5 mm, fin

pitch P = 6 mm, and tube thickness (r2 − r1) = 8 mm are selected (pipe outer diameter is
50 mm and 40 mm, respectively) to calculate the required heat exchange area and waterway
loss. The two-way parallel connection method is adopted, and the air temperature, water
temperature difference, and water flow rate are 25 ◦C, 4 ◦C, and 6.6 t/h, respectively. The
calculation results are shown in Figure 7.

  
(a) (b) 

Figure 7. Influence law of heat exchange system parameters: (a) Twater = 45 ◦C; (b) Twater = 50 ◦C.

It can be seen from Figure 7 that the tube temperature decreases significantly with the
increase of pressure. The higher the circulating water temperature, the higher the tube’s
temperature. The heat transfer coefficient also increases as the pressure increases, and the
higher the water temperature, the greater the heat transfer coefficient. The outer surface
area of the tube, the number of ribs, and the fluid resistance decrease rapidly and then
slowly with the increase of pressure.

Two schemes have been calculated here to ensure the efficient operation of the heat
exchange system. Based on a two-way parallel finned tube system with a single tube length
of 4 m, the number of loop tubes needs to be 10 and 13, respectively, for a tube diameter of
50 mm and 40 mm. To provide circulating hot water through an electric heater, it should
meet the following requirements: the electric heater must meet the heating power of not
less than 47 kW (considering the heat dissipation loss outside the cave), and the heating
temperature should not be lower than 50 ◦C. The water volume of the pump is not less than
10.0 t h−1, and the water head should be equal to the flow resistance of the tube outside the
cavern plus 50 kPa.

According to the design and calculation results of the heat exchange system, combined
with the internal dimensions of the Pingjiang CAES cavern and the processing limitations
of the finned tubes, the final selected finned tubes had an outer diameter of 51 mm, an
inner diameter of 40 mm, a fin height of 11 mm, a fin thickness of 1 mm, and a pitch of
5 mm. The structure of the heat exchange system is shown in Figure 8.

The thermodynamic and heat transfer calculations were carried out for the air tem-
perature change in the cavern during the charging–maintaining–discharging of the heat
exchange system. The calculation results are shown in Figure 9. Since the heat exchange
system could use the circulating water at room temperature to take away a large amount
of compression heat generated by air compression during the charging stage. Except that
the large amount of heat generated by the severe compression in the early stage could
not be quickly discharged, the air temperature in the cave was significantly reduced and
stabilized at 35 ± 3 ◦C (1000 Nm3/h) and 30 ± 3 ◦C (500 Nm3/h). At the same time, due to
the decrease in air temperature, the time of the compression stage was prolonged, and the
amount of air stored in the cave increased. In the discharging stage, the heated circulating
cooling water could continue to provide heat for the low-temperature air to expand and
cool. The heat could not be replenished in time due to the violent expansion in the later
stage of discharging. The air temperature in the cavern was maintained at about 30 ◦C
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(1000 Nm3/h) and 25 ◦C (500 Nm3/h). A stable temperature was maintained, and air
temperatures below 0 ◦C could be avoided. From the calculation results of the complete
charging and discharging cycle, the air temperature was maintained between 20–40 ◦C
(1000 Nm3/h) and 20–40 ◦C (500 Nm3/h). In particular, when the pressure was greater
than 1.6 MPa, the temperature range was controlled between 25−38 ◦C (1000 Nm3/h) and
25–31 ◦C (500 Nm3/h). The heat exchange system can sufficiently suppress the temperature
fluctuation during the charging and discharging process.

 
Figure 8. The structure of the heat exchange system in Pingjiang CAES cavern.

 
(a) (b) 

Figure 9. The temperature controlling effect of the heat exchange system: (a) flow rate of 1000 Nm3/ h;
(b) flow rate of 500 Nm3/h.

5. Experimental Testing of CAES Cavern Heat Exchange System

5.1. Installation of Heat Exchange System

The tube of the heat exchange system was processed following Figure 8. Then it was
transported to the on-site cavern for welding and connection one by one (Figure 10). In
the welding process, an electric welding cloth was arranged on the entire wall surface
to avoid damage to the glass fiber-reinforced plastic by high-temperature welding slag
and flame. Due to the heavy weight of the steel tube, a tendon plate should be placed
between the outriggers of the temperature control tube and the FRP at different contact
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positions (left, right, and bottom of the cavern) to protect the FRP from being crushed. Since
the temperature-controlled tube was subjected to an external pressure of 10 MPa, if there
were a defect in the welding seam, the water in the pipe would be pressed out to form a
high-pressure water hammer flow, which was quite dangerous. Therefore, all welds were
subjected to penetration non-destructive testing to ensure that the test was 100% qualified.
If the weld was defective, repair welding must be carried out.

  
(a) (b) 

Figure 10. In situ heat exchange system: (a) inside the cavern; (b) outside the cavern.

A cube temperature-controlled pool with a side length of 2 m was built outside the
CAES cavern. The pool was composed of an upper water outlet pipe, a lower water inlet
pipe, a heater, and a vertical water pump. The high-temperature water heated by the heater
would be circulated into the compressed air chamber to increase the air temperature to
avoid freezing in the cavern. The heating tube of the heater was 1.9 m long, only the lower
part of 1.7 m could generate heat, and it would be under the water during operation. The
pool’s water level was stable at 1.75 m~1.85 m.

5.2. Heat Exchange Test Results

In order to test the operational performance of the heat exchange system, it was
designed to turn on the temperature control when the temperature reaches above 40 ◦C in
the charging process. The heating water cycle would be turned on when the temperature
drops below 10 ◦C, and the heater would be turned off, but the water cycle system would
be maintained during the discharging process.

The barometer was welded to the charging and discharging pipes next to the test
cavern to collect the air pressure. Two sets of thermocouples were used to measure the
temperature at 10 positions at different depths (0 m, 1 m, 2 m, 3 m, 4 m, 5 m) in the wall
and the middle of the cavern. The hygrometer sensor probe was mounted on the steel door
of the plenum inside the hole.

Figure 11 shows the results of the temperature control test during the two CAES
conditions. In the initial pressurization stage (when the pressure is less than 1 MPa),
regardless of the speed of the pressurization rate, the temperature reaches above 40 ◦C, and
the humidity decreases rapidly within a short time (40 min).
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(a) (b) 

Figure 11. Experimental results of heat exchange system: (a) Maximum charging pressure of 8 MPa;
(b) Maximum charging pressure of 10 MPa.

When the temperature reached above 40 ◦C, the temperature control system was
turned on according to the test plan. There was no significant change in the air pressure and
the pressurization rate, but the temperature dropped rapidly, and the humidity increased
slightly. During the pressurization stage, the opening temperature of the heat exchange
system decreases, and the closing temperature of the heat exchange system increases,
showing a reasonable regularity. The air pressure decreased very little during the pressure
stabilization stage. Moreover, the temperature decrease was mainly caused by the heat
transfer of FRP to the outside. The humidity also increased at this time. Temperature and
humidity were inversely related. When the discharging process began, the temperature
decreased rapidly, and the humidity increased. After the temperature control system was
turned on, the temperature drop could be controlled and even have a recovery trend.
However, there was no change in the trend of pressure changes. There was still an inverse
relationship between temperature and humidity. There would be noise during the deflation
process, with the maximum noise being 92 and 87 decibels, respectively, and water vapor
could be seen in the first hour of the initial discharging.

6. Conclusions

In this study, a simulation of the temperature variation law of the underground CAES
cavern in the whole cycle of charging–high pressure air storage–discharging was carried
out based on thermodynamics and numerical heat transfer methods. Moreover, a pilot
cavern was excavated to conduct a thermodynamic process and heat exchange system for
practice. Based on the obtained results, the following conclusions can be drawn:

(1) According to the conservation of energy, the thermodynamic equations for the solid
and air region were compiled into the fluent two-dimensional axisymmetric model
through a user-defined function (UDF), and the values were updated after the calcula-
tion of each time step to realizing the calculation of the temperature field in the entire
cavern area. The average air pressure rises steadily during the charging process, and
the air temperature rises rapidly from room temperature to about 50 ◦C in the very
first moment. At the end of the charging, the average air temperature reached 62.5 ◦C.
At the end of the discharging stage, the average air temperature drops to −40.4 ◦C,
showing a wild fluctuation.

(2) A two-way parallel finned tube heat exchange system of the Pingjiang CAES cavern
was designed to provide circulating hot/cool water. The tube temperature decreases
significantly with the increase of pressure. Two designing schemes were calculated
to ensure the efficient operation of the heat exchange system. A stable temperature
was maintained, and air temperatures below zero degrees could be avoided. The air
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temperature was maintained between 25 ◦C and 38 ◦C when the pressure was greater
than 1.6 MPa. The heat exchange system can sufficiently suppress the temperature
fluctuation during the charging and discharging process.

(3) According to the experimental testing results of the CAES cavern heat exchange sys-
tem, it was designed to turn on the temperature control when the temperature reaches
above 40 ◦C in the charging process and below 10 ◦C in the discharging process.
There was no significant change in the air pressure and the pressurization rate, but the
temperature dropped rapidly, which means that the heat exchange system can control
the temperature within a small range (20–40 ◦C) without affecting the air charging
efficiency. Temperature and humidity were inversely related, and water vapor could
be seen in the first hour of the initial discharging. There would be noise during the
deflation process, and the maximum noise was 92 and 87 decibels, respectively.
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