
Topic Reprint

Structural Health Monitoring 
and Non-destructive Testing 
for Large-Scale Structures
Volume II

Edited by 

Phong B. Dao, Lei Qiu, Liang Yu, Tadeusz Uhl and Minh-Quy Le

Published in Journals: Aerospace, Energies, 

Materials, Sensors and Applied Sciences

mdpi.com/topics



Structural Health Monitoring and
Non-destructive Testing for Large-Scale
Structures—Volume II





Structural Health Monitoring and
Non-destructive Testing for Large-Scale
Structures—Volume II

Editors

Phong B. Dao

Lei Qiu

Liang Yu

Tadeusz Uhl

Minh-Quy Le

Basel • Beijing • Wuhan • Barcelona • Belgrade • Novi Sad • Cluj • Manchester



Editors

Phong B. Dao

AGH University of Krakow

Krakow, Poland

Lei Qiu

Nanjing University of

Aeronautics and Astronautics

Nanjing, China

Liang Yu

Northwestern Polytechnical

University

Xi’an, China

Tadeusz Uhl

AGH University of Krakow

Krakow, Poland

Minh-Quy Le

Hanoi University of Science &

Technology

Hanoi, Vietnam

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Topic published online in the open access journals Aerospace (ISSN

2226-4310), Energies (ISSN 1996-1073), Materials (ISSN 1996-1944), Sensors (ISSN 1424-8220), and Applied

Sciences (ISSN 2076-3417) (available at: https://www.mdpi.com/topics/shmndtlss).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

Lastname, A.A.; Lastname, B.B. Article Title. Journal Name Year, Volume Number, Page Range.

Volume II

ISBN 978-3-0365-9935-9 (Hbk)

ISBN 978-3-0365-9936-6 (PDF)

doi.org/10.3390/books978-3-0365-9936-6

Set

ISBN 978-3-0365-9931-1 (Hbk)

ISBN 978-3-0365-9932-8 (PDF)

© 2024 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license. The book as a whole is distributed by MDPI under the terms

and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

license.



Contents

About the Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Huawei Ji, Chuanping Zhou, Jiawei Fan, Huajie Dai, Wei Jiang, Youping Gong, et al.

Angular Displacement Control for Timoshenko Beam by Optimized Traveling Wave Method
Reprinted from: Aerospace 2022, 9, 259, doi:10.3390/aerospace9050259 . . . . . . . . . . . . . . . . 1

Namju Byun, Jeonghwa Lee, Joo-Young Won and Young-Jong Kang

Structural Responses Estimation of Cable-Stayed Bridge from Limited Number of Multi-Response
Data
Reprinted from: Sensors 2022, 22, 3745, doi:10.3390/s22103745 . . . . . . . . . . . . . . . . . . . . 17

Sergei Khotiaintsev and Volodymyr Timofeyev

Assessment of Cracking in Masonry Structures Based on the Breakage of Ordinary Silica-Core
Silica-Clad Optical Fibers
Reprinted from: Appl. Sci. 2022, 12, 6885, doi:10.3390/app12146885 . . . . . . . . . . . . . . . . . 35

Lı́via Ribeiro de Souza, Matheus Pimentel, Gabriele Milone, Juliana Cristina Tristão

and Abir Al-Tabbaa

Carbon Nanofibers Grown in CaO for Self-Sensing in Mortar
Reprinted from: Materials 2022, 15, 4951, doi:10.3390/ma15144951 . . . . . . . . . . . . . . . . . . 53

Yunpeng Zhang, M. Hesham El Naggar, Wenbing Wu and Zongqin Wang

Torsional Low-Strain Test for Nondestructive Integrity Examination of Existing High-Pile
Foundation
Reprinted from: Sensors 2022, 22, 5330, doi:10.3390/s22145330 . . . . . . . . . . . . . . . . . . . . 73

Thanh-Cao Le, Tran-Huu-Tin Luu, Huu-Phuong Nguyen, Trung-Hau Nguyen, Duc-Duy Ho

and Thanh-Canh Huynh

Piezoelectric Impedance-Based Structural Health Monitoring of Wind Turbine Structures:
Current Status and Future Perspectives
Reprinted from: Energies 2022, 15, 5459, doi:10.3390/en15155459 . . . . . . . . . . . . . . . . . . . 89

Ying He, Yuanbo Wang, Hao Zhou, Chang Li, Leian Zhang and Yuhuan Zhang

Research on Mechanical Properties and Damage Evolution of Pultruded Sheet for Wind Turbine
Blades
Reprinted from: Materials 2022, 15, 5719, doi:10.3390/ma15165719 . . . . . . . . . . . . . . . . . . 121

Qiangqiang Zhang, Gonglian Dai and Yu Tang

Thermal Analysis and Prediction Methods for Temperature Distribution of Slab Track Using
Meteorological Data
Reprinted from: Sensors 2022, 22, 6345, doi:10.3390/s22176345 . . . . . . . . . . . . . . . . . . . . 139

Yuliang Zhao, Zhiqiang Liu, Dong Yi, Xiaodong Yu, Xiaopeng Sha, Lianjiang Li, et al.

A Review on Rail Defect Detection Systems Based on Wireless Sensors
Reprinted from: Sensors 2022, 22, 6409, doi:10.3390/s22176409 . . . . . . . . . . . . . . . . . . . . 159

Xiaofei Yang, Zhaopeng Xue, Hui Zheng, Lei Qiu and Ke Xiong

Mechanic-Electric-Thermal Directly Coupling Simulation Method of Lamb Wave under
Temperature Effect
Reprinted from: Sensors 2022, 22, 6647, doi:10.3390/s22176647 . . . . . . . . . . . . . . . . . . . . 185

v



Alain Gomez-Cabrera and Ponciano Jorge Escamilla-Ambrosio

Review of Machine-Learning Techniques Applied to Structural Health Monitoring Systems for
Building and Bridge Structures
Reprinted from: Appl. Sci. 2022, 12, 10754, doi:10.3390/app122110754 . . . . . . . . . . . . . . . . 203

Yang Meng, Ying Bi, Changchuan Xie, Zhiying Chen and Chao Yang

Application of Fiber Optic Sensing System for Predicting Structural Displacement of a
Joined-Wing Aircraft
Reprinted from: Aerospace 2022, 9, 661, doi:10.3390/aerospace9110661 . . . . . . . . . . . . . . . . 243

Cheng Zhang, Nan Zhang, Yunshi Zhang and Xiao Liu

Prediction of Traffic Vibration Environment of Ancient Wooden Structures Based on the Response
Transfer Ratio Function
Reprinted from: Sensors 2022, 22, 8414, doi:10.3390/s22218414 . . . . . . . . . . . . . . . . . . . . 261

Thomas McDonald, Mark Robinson and Gui Yun Tian

Developments in 3D Visualisation of the Rail Tunnel Subsurface for Inspection and Monitoring
Reprinted from: Appl. Sci. 2022, 12, 11310, doi:10.3390/app122211310 . . . . . . . . . . . . . . . . 279

Li Wang, Guoqiang Liu, Chao Zhang, Yu Yang and Jinhao Qiu

FEM Simulation-Based Adversarial Domain Adaptation for Fatigue Crack Detection Using Lamb
Wave
Reprinted from: Sensors 2023, 23, 1943, doi:10.3390/s23041943 . . . . . . . . . . . . . . . . . . . . 315

Tengfei Ma, Yang Li, Zhenggan Zhou and Jia Meng

Wrinkle Detection in Carbon Fiber-Reinforced Polymers Using Linear Phase FIR-Filtered
Ultrasonic Array Data
Reprinted from: Aerospace 2023, 10, 181, doi:10.3390/aerospace10020181 . . . . . . . . . . . . . . 337

Phong B. Dao

On Cointegration Analysis for Condition Monitoring and Fault Detection of Wind Turbines
Using SCADA Data
Reprinted from: Energies 2023, 16, 2352, doi:10.3390/en16052352 . . . . . . . . . . . . . . . . . . . 351

Jersson X. Leon-Medina and Francesc Pozo

Moving towards Preventive Maintenance in Wind Turbine Structural Control and Health
Monitoring
Reprinted from: Energies 2023, 16, 2730, doi:10.3390/en16062730 . . . . . . . . . . . . . . . . . . . 369

Junpil Park, Mohammed Aslam and Jaesun Lee

Ultrasonic Nonlinearity Experiment due to Plastic Deformation of Aluminum Plate Due to
Bending Damage
Reprinted from: Materials 2023, 16, 4241, doi:10.3390/ma16124241 . . . . . . . . . . . . . . . . . . 373

Cong Tuan Truong, Thanh Hung Nguyen, Van Quang Vu, Viet Hoang Do

and Duc Toan Nguyen

Enhancing Fire Detection Technology: A UV-Based System Utilizing Fourier Spectrum Analysis
for Reliable and Accurate Fire Detection
Reprinted from: Appl. Sci. 2023, 13, 7845, doi:10.3390/app13137845 . . . . . . . . . . . . . . . . . 385

Hangming Yuan, Tao Jin and Xiaowei Ye

Modification and Evaluation of Attention-Based Deep Neural Network for Structural Crack
Detection
Reprinted from: Sensors 2023, 23, 6295, doi:10.3390/s23146295 . . . . . . . . . . . . . . . . . . . . 397

vi



Xiaohan Lu, Min Zhu, Yilong Liu, Shengao Wang, Zijian Xu and Shengnan Li

Triangular Position Multi-Bolt Layout Structure Optimization
Reprinted from: Appl. Sci. 2023, 13, 8786, doi:10.3390/app13158786 . . . . . . . . . . . . . . . . . 409

vii





About the Editors

Phong B. Dao

Phong B. Dao received an Engineering degree in Cybernetics in 2001, an M.Sc. degree in

Instrumentation and Control in 2004, both from Hanoi University of Science and Technology in

Vietnam, and a Ph.D. degree in Control Engineering in 2011 from the University of Twente, the

Netherlands. In May 2020, Dr. Dao received a D.Sc. degree (Habilitation) in Mechanical Engineering

from the AGH University of Science and Technology, Poland. He is currently an Associate Professor

at the Department of Robotics and Mechatronics of the AGH University of Krakow. His research

interests include structural health monitoring (SHM), non-destructive testing (NDT), wind turbine

condition monitoring and fault diagnosis, statistical time series methods for SHM and NDT, advanced

signal processing, and intelligent control. He has been the recipient of several awards for scientific

achievements and has published over 50 articles, mostly as the first, single, or corresponding author,

in major international peer-reviewed journals and conferences. He is the co-inventor of a European

Patent on the homoscedastic nonlinear cointegration methodology for SHM. He is the author of

the monograph entitled “Cointegration-Based Approach for Structural Health Monitoring: Theory

and Applications” published in 2018. He delivered five invited lectures on topics about structural

damage detection and wind turbine condition monitoring. He serves as an active reviewer for many

international Top-10 journals such as IEEE Transactions on Industrial Electronics, Expert Systems with

Applications, Applied Energy, and Mechanical Systems and Signal Processing.

Lei Qiu

Lei Qiu is a doctoral supervisor at the State Key Lab of Mechanics and Control for Aerospace

Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics,

and the Director of the Institute of Smart Materials and Structures. His interests include aircraft

smart structures and structural health monitoring (SHM) technology, and he has made innovative

advancements in SHM principles and methods of complex structures, reliable diagnostic mechanisms

for structural damage under the influence of service, aircraft smart skin based on flexible electronics,

and equipment development for aerospace applications. Prof. Qiu has presided over more than

40 projects and is currently undertaking projects such as the general program of the National

Natural Science Foundation of China, the Outstanding Youth Foundation of Jiangsu Province of

China, key project subjects of Foundation Strengthening of Military Commission of Science and

Technology (173) and the pre-research program of the Army Armament Department. He has

received nine important honors and technological awards, such as the China Youth Science and

Technology Award, two first prizes in Science and Technology from Jiangsu Province, the Jiangsu

Province Youth May Fourth Medal, the Youth Science and Technology Award of Chinese Society

of Aeronautics and Astronautics, and the best paper award of the 8th European Workshop on SHM, etc.

Liang Yu

Liang Yu received a bachelor’s degree in communication engineering from Hubei University

of Technology, Wuhan, China, in 2007, a double M.S. degree in communication and information

systems from Shanghai University, Shanghai, China, and Waseda University, Fukuoka, Japan, in 2011,

and a Ph.D. degree in acoustics from INSA de Lyon, Lyon, France, in 2015. He is currently a Full

Professor with Northwestern Polytechnical University, Xi’an, China. His research interests include

fault diagnosis of mechanical equipment, intelligent signal processing methods and advanced acoustic

measurement, and experimental aeroacoustics.

ix



Tadeusz Uhl

Tadeusz Uhl graduated from the AGH University of Science and Technology, obtaining his

doctorate in 1983 and the title of professor in 1997. He worked in research centers and universities

abroad in the Netherlands, France, Belgium, Japan and the USA. Since 2020, he has been the Director

of the AGH UST Space Technology Center. His research interests include mechatronics, structural

health monitoring, hydrogen vehicles, robotics, and space technologies. He is the author of over 1,000

publications, with over 400 in JCR journals. He has a citation index of h = 32 (according to SCOPUS).

He is the promoter of 49 defended doctoral theses and over 150 master’s theses. He is the Coordinator

of many European projects in topics related to structural diagnostics, transport and energy with

partners such as Alstom, Siemens, Airbus, Dassault, EDF, FIAT, RENAULT, LMS, Bombardier, and

ABB. He carries out extensive cooperation with universities and research centers around the world. He

has 51 national and foreign patents. He was a member of HLG in the field of Key Enabling Technology

at the European Commission in 2014 – 2017. In 2020, Stanford University placed him on the prestigious

list of ”World’s Top 2% Scientists”. He effectively implements the latest technologies in the economy,

and he is the founder of 28 start-ups, several of which have grown to the size of a large company.

Minh-Quy Le

Minh-Quy Le received his BS degree from Hanoi University of Science and Technology, Vietnam,

in 1995, and his MS degree in Mechanical Engineering from University of Poitiers, France, in 1997. He

obtained his Ph.D. in Mechanical Engineering in 2004 from Kyungpook National University, Republic

of Korea. In 2007–2008, he worked as a Postdoctoral Fellow at the Technical University of Dresden,

Germany. Currently, he is a Full Professor at the School of Mechanical Engineering, Hanoi University

of Science and Technology, Hanoi, Vietnam. His research interests include computational mechanics,

solid mechanics, nanomechanics, fracture mechanics, finite element method, molecular dynamics

simulation, and material testing methods.

x



Preface

Structural health monitoring (SHM) and non-destructive testing (NDT) have gained significant

importance for civil, mechanical, aerospace, and offshore structures. Nowadays, we can find SHM and

NDT applications being used on various structures with very different requirements. The SHM-NDT

field involves a wide range of transdisciplinary areas, including smart materials, embedded sensors

and actuators, damage diagnosis and prognosis, signal and image processing, wireless sensor networks,

data interpretation, machine learning, data fusion, energy harvesting, etc.

Since the 1970s, there has been a large and increasing volume of research on SHM and NDT;

a great deal of this effort has focused on developing cost-effective, automatic, and reliable damage

detection technologies. However, few industrial and commercial applications can be found in the

literature. The practical implementation of strategies for the detection of structural damage to real

structures outside of laboratory conditions is always one of the most demanding tasks for engineers.

One reason for the rare transfer of research into industrial practice is that most of the methods that

have been developed have been tested on simple beam and plate structures in the laboratory, while

many practical problems only manifest themselves in complex structures. Another reason is the

influence of environmental and operational variations (EOVs) on damage-sensitive features. Thus, for

the successful development of SHM and NDT for large structures, techniques should be enhanced

to have the capability of dealing with the influence of EOVs. In addition, signal/data processing

plays an important role in the implementation of SHM and NDT technologies. The processing and

interpretation of the massive amount of data generated through the long-term monitoring of large and

complex structures (e.g., bridges, buildings, ships, aircrafts, wind turbines, pipes, etc.) has become an

emerging challenge that needs to be addressed by the community.

This Topic brings together the most established as well as newly emerging SHM and NDT

approaches that can be used for the detection and evaluation of defects and damage development

in large-scale or full-scale structures. After a strict peer-review process, 44 papers were published,

which represent the most recent progress in SHM and NDT methods/techniques for aerospace, civil,

mechanical, and offshore infrastructures.

Phong B. Dao, Lei Qiu, Liang Yu, Tadeusz Uhl, and Minh-Quy Le

Editors
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Angular Displacement Control for Timoshenko Beam by
Optimized Traveling Wave Method

Huawei Ji 1,†, Chuanping Zhou 1,2,*,†, Jiawei Fan 1,*, Huajie Dai 3, Wei Jiang 3, Youping Gong 1, Chuzhen Xu 1,

Ban Wang 1,4 and Weihua Zhou 4

1 School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China;
jhw76@hdu.edu.cn (H.J.); gyp@hdu.edu.cn (Y.G.); zhangjingxiangcrcc@foxmail.com (C.X.);
bigban@zju.edu.cn (B.W.)

2 School of Mechatronics Engineering, University of Electronic Science and Technology of China,
Chengdu 611731, China

3 Aerospace Systems Engineering Research Institute of Shanghai, Shanghai 201108, China;
qinlongcrcc@foxmail.com (H.D.); chenmingcrcc@foxmail.com (W.J.)

4 College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China; dididi@zju.edu.cn
* Correspondence: zhoucp@hdu.edu.cn (C.Z.); 19205311@hdu.edu.cn (J.F.); Tel.: +86-1342-9168-099 (C.Z.)
† These authors contributed equally to this work.

Abstract: The vibration of flexible structures in spacecraft, such as large space deployable reflectors,
solar panels and large antenna structure, has a great impact on the normal operation of spacecraft.
Accurate vibration control is necessary, and the control of angular displacement is a difficulty of
accurate control. In the traditional control method, the mode space control has a good effect on
suppressing low-order modes, but there is control overflow. The effect of traveling wave control
on low-order modes is worse than the former, but it has the characteristics of broadband control.
It can better control high-order modes and reduce control overflow. In view of the advantages
and disadvantages of the two control methods, based on Timoshenko beam theory, this paper uses
vector mode function to analyze the modal of spacecraft cantilever beam structure, establishes the
system dynamic equation, and puts forward an optimized traveling wave control method. As a
numerical example, three strategies of independent mode space control, traditional traveling wave
control and optimized traveling wave control are used to control the active vibration of beam angle.
By comparing the numerical results of the three methods, it can be seen that the optimal control
method proposed in this paper not only effectively suppresses the vibration, but also improves the
robustness of the system, reflecting good control performance. An innovation of this paper is that the
Timoshenko beam model is adopted, which considers the influence of transverse shear deformation
and moment of inertia on displacement and improves the accuracy of calculation, which is important
for spacecraft accessory structures with high requirements for angle control. Another innovation is
that the optimized traveling wave control method is exquisite in mathematical processing and has
good results in global and local vibration control, which is not available in other methods.

Keywords: Timoshenko beam; modal space control; optimized traveling wave method; angular
displacement control

1. Introduction

Flexible cantilever structures are often used in spacecraft structures, such as large
antenna structures, large space deployable reflectors and solar panels. In the space environ-
ment, the damping is small, and the damping of the flexible structure itself is also small.
When it is excited or disturbed by work, such as attitude adjustment and docking, orbit
change and solar wind, if the vibration is not controlled, the vibration will last for a long
time, which will affect the normal work of the structure and even reduce the service life of
the structures [1–6].

Aerospace 2022, 9, 259. https://doi.org/10.3390/aerospace9050259 https://www.mdpi.com/journal/aerospace
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At present, Euler–Bernoulli beam theory is mainly used in vibration control of beam
structure, while Timoshenko beam theory is seldom used for the control difficulties in
mathematics. The Euler–Bernoulli classical beam theory has some limitations in struc-
tural dynamic analysis, especially in some composite structures. Because the influence
of transverse shear deformation and moment of inertia is considered, the analytical re-
sults of Timoshenko beam theory are closer to engineering practice [7,8]. Therefore, the
Timoshenko beam theory begins to be applied in structural dynamics analysis. Based on
Timoshenko beam theory and elastic wave theory, Carvalho and Zindeluk [9] studied the
active control of bending waves in infinite Timoshenko beams. Halkyard and Mace [10]
studied the bending vibration feedback adaptive control of beam structures by using wave
control method. EL-Khatib et al. [11] used a tuned vibration absorber to study the bending
wave suppression in a beam. Hu et al. [12] concerned with the control of flexural waves
in a beam using a tuned vibration absorber. Su and Ma [13,14] compared three analy-
sis methods: Laplace transform, ray and normal mode to study the dynamic transient
response of cantilever Timoshenko beam under impact force. Cardoso [15] blended the
Euler–Bernoulli beam theory with idealized transverse shear flows to study a new beam
element for aircraft structural analysis. Xing and Liu [16] studied the dynamic modeling
and adaptive boundary control of a three-dimensional Timoshenko beam to realize vibra-
tion suppression. Ishaquddin et al. [17] studied the flexure and torsion locking phenomena
in out-of-plane deformation of the Timoshenko curved beam element. Endo et al. [18]
studied a contact-force control problem for a flexible Timoshenko arm. Mei [19] studied a
hybrid approach to active control of bending vibrations in beams based on the advanced
Timoshenko theory. Pham et al. [20] developed a novel dynamic model of a variable-length
Timoshenko beam attached to a translating base. The stability of the closed-loop system
under the proposed boundary control law was analyzed. Eshag et al. [21] studied a global
sliding mode boundary control method for the Timoshenko beam reduction of the vibration
induced by rotation boundary disturbance, uncertainties and distributed disturbance. By
using exponential reaching law, the chattering phenomena is avoided. Fleischmann and
Könözsy [22] developed an explicit finite difference numerical method to approximately
solve the bending equation of non-uniform fourth-order Euler–Bernoulli beams. The equa-
tion has velocity-dependent damping and second-order moments of area, and mass and
elastic modulus distribution varying with beam spacing. The method is grid convergent
and numerically stable. According to literature studies [9–24], it can be seen that the finite
element method has become an important theoretical analysis method because it can deal
with complex objects and has many general programs. However, the finite element method
is more suitable for low-frequency vibration. For medium- and high-frequency vibration,
many elements must be divided to accurately describe the vibration characteristics of the
system, which will lead to large numerical errors and a sharp increase in the amount of
calculation, and the overflow problem will inevitably be encountered when considering vi-
bration control. In addition, enough grid elements must be divided to describe the dynamic
characteristics of the structure, the grid of the element is continuously encrypted, and the
accumulated error will increase. High requirements for computer hardware configuration
are also needed. The modal space control method is to analyze the vibration of the structure
from the perspective of the modal. The essence of modal analysis is coordinate transfor-
mation. It transforms the coupled motion equations in physical coordinates into modal
coordinates for decoupling; thus, as to solve the modal parameters of the system. The above
traditional numerical methods can deal with the response of structural vibration well in the
low frequency band. However, there are limitations in the medium- and high-frequency
bands. With the increase in analysis frequency, it will face many problems, such as the
problem of dense and overlapping structural modes.

In this paper, based on Timoshenko beam theory, the vibration control of the cantilever
beam is studied by using the optimal traveling wave control method. First, based on
Timoshenko beam theory, the modal analysis of the cantilever beam structure commonly
used in spacecraft is carried out by using vector vibration mode function, and the system

2
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dynamic equation is established. Then, based on the Timoshenko beam theory and the
overall motion of the structure, the modal space control method is used to design the global
vibration control of the structure. The traveling wave control is used to control the vibration
energy flow in the specified area of the structure. According to the local characteristics of the
structure, the wave control method is used to absorb the energy carried by the propagating
wave in the structural vibration, and the reflection coefficient and transmission coefficient
of the wave in the Timoshenko beam when the control torque is applied are obtained.
Finally, combined with the advantages of modal space control method, we optimize the
traveling wave control method and design an optimized waveform controller to control
the rotation angle of the beam. The control results show that the optimized traveling wave
control method is better than the traditional traveling wave control method or mode space
control method, it and improves the robustness of the system.

2. Structural Dynamic Characteristics of Timoshenko Beam

In engineering practice, it is assumed that the cross-section size of the beam is small
compared with its length, thus neglecting the influence of shear deformation and beam
section rotation, which is suitable for most members. However, when the ratio of height
to span is high or when the composite members are widely used in structures, the effects
of shear deformation and cross-section rotation should be taken into account, which have
great influence on the higher frequency and mode shape. At this time, Timoshenko beam
theory needs to be used. The cantilever Timoshenko beam structure studied in this paper is
shown in Figure 1.

 
Figure 1. Schematic diagram of wave control in the cantilever Timoshenko beam.

It is assumed that the rotation angle of the cross section produced by the bending
moment M is ψ. If there is no shear deformation, the cross section is perpendicular to the
elastic axis, and Ψ equals the slope of the elastic axis. When shear deformation is taken into
account, the rotation angle generated by shear force is γ. The actual cross section angle is
α = ∂w/∂x; then, we can obtain:

α = ψ − γ (1)

The angle ψ and γ meet the following relationship:{
∂ψ
∂x = M

EI
γ = − Q

κGA
(2)

where, E, I, κ, G, A respectively represent the elastic modulus, the moment of inertia of
the beam section, the shear conversion coefficient, the shear modulus and the section area,
and I = Ah2

12 , G = E
1+ν , κ = π2

12 , in which h, ν are respectively the section height and the
Poisson’s ratio of the material.

3
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Respectively, ρ, q, m denoted the mass density, transverse load and bending moment
of the beam. Considering the equilibrium of the beam element, the following equilibrium
equations can be obtained.{

−Qdx + ∂M
∂x dx − ρI ∂2ψ

∂t2 dx + mdx = 0
− ∂Q

∂x dx − ρA ∂2w
∂t2 dx + qdx = 0

(3)

Substituting Equation (2) into Equation (3), we can obtain:{
D ∂2ψ

∂x2 + C ∂w
∂x − Cψ + m = ρI ∂2w

∂t2

C ∂2w
∂x2 − C ∂ψ

∂x + q = ρA ∂2w
∂t2

(4)

The bending moment and shear force in a beam are expressed as:⎧⎨⎩ M = D ∂ψ
∂x = D

(
ρ

GA
∂2w
∂t2 − ∂2w

∂x2

)
Q = −C

(
∂w
∂x − ψ

) (5)

where D = EI is the bending stiffness of beams, C = κGA, G is the shear modulus.
Equation (4) can be written in matrix form as follows:

M
∂2Φ

∂t2 − K
∂2Φ

∂x2 + CEΦ = F(x, t) (6)

where Φ =
[

w ψ
]

is the generalized displacement, w, ψ are the deflection of beam and
angle of rotation, respectively; M is the generalized mass; t is the time; F(x, t) = [ q m ];
F(x, t) is the external disturbance dynamic vector, and the expression of M, K, E is

M =

[
ρA 0
0 ρI

]
, K =

[
C 0
0 D

]
, E =

[
0 ∂/∂x

−∂/∂x 1

]
In order to analyze the frequency characteristics of the beam and consider the free

vibration state of the beam, the following equations can be obtained by decoupling the
displacement w and the rotation angle ψ in Equation (4):

D
∂4w
∂x4 + ρA

∂2w
∂t2 − ρI

∂4w
∂x2∂t2 − ρAD

C
∂4w

∂x2∂t2 +
ρ2 AI

C
∂4w
∂t4 = 0 (7)

Equation (7) above shows two degrees of freedom of the Timoshenko beam: the free
vibration characteristics w of deflection and rotation angle ψ are exactly the same, that is, the
modes of corresponding order, both of which have the same frequency ω and wave number
k. In Equation (7), the first and second items denote the basic conditions of vibration, the
third and fourth items denote the effect of the cross section moment of inertia and shear
deformation, respectively, and the last item denotes the coupling effect of moment of inertia
and shear deformation.

3. The Simulation Results and Discussions in the Deorbiting Process

For flexible structures, the low frequency modes are dense; thus, it is difficult to design
the controller directly by physical coordinates. In the modal space, the vibration control of
the structural system can be transformed into a small number of modal coordinate vibration
controls. The response of the structure can be expressed as the sum of infinite modes:

Φ(x, t) =
N

∑
i=1

ϕi(x)qi(t) (8)

4
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where ϕi(x) is the ith-order mode function, qi(t) is the ith-order modal coordinates, and N
is number of modal truncation.

By deriving Equation (4) from time variables and space variables, the following
equation can be obtained at the left end of Equation (4) as:⎧⎪⎪⎨⎪⎪⎩

M ∂2Φ
∂t2 = M

N
∑

i=1
ϕi(x) ∂2qi(t)

∂t2

K ∂2Φ
∂x2 − CEΦ =

N
∑

i=1
[K ∂2ϕi(x)

∂x2 −CEϕi(x)]qi(t)
(9)

Substituting Equation (9) into Equation (6), we can obtain:

M
N

∑
i=1

ϕi(x)
∂2qi(t)

∂t2 −
N

∑
i=1

[K
∂2ϕi(x)

∂x2 −CEϕi(x)]qi(t) = F(x, t) (10)

where ϕi(x) is the modal vibration function and should satisfy the homogeneous differen-
tial equation as follows:

[K
∂2ϕi(x)

∂x2 − CEϕi(x)] + ω2
i Mϕi(x) = 0 (11)

Then, the frequency characteristics of the system are analyzed. Assuming Φ =

Re[ei(kx−ωt)[ 1 1
]T
]
↔

AB, and substituting into (7) to obtain:

k4 −
(

ρI
D

ω2 +
ρA
C

ω2
)

k2 +
ρA
D

ω2
(

ρI
C

ω2 − 1
)
= 0 (12)

where k0 =
(
ρAω2/D

)1/4 is the elastic traveling wave number of classical Euler beam and
k is the wave number of the modal vibration function ϕ(x).

When the vibration frequency of the beam is ω ≥ ωc, the elastic wave number is
k2

i ≥ 0(i = 1, 2), which indicates that there are two pairs of propagating waves in the
structural beam, and the phase velocity is c = ω/k. When the vibration frequency of the
beam is ω < ωc, the elastic wave numbers are k2

1 > 0 and k2
2 < 0, which indicate that there

are a pair of propagating waves and a pair of attenuation waves in the structural beam.
Where ωc =

√
C/ρI denotes the transition critical frequency of the extended state and the

local state. Because the structure vibration can be regarded as the superposition of multiple
reflection of the elastic wave mode, the propagation wave can form the whole vibration of
the finite region of the structure, while the attenuation wave forms the localized vibration
in the finite area of the structure. Thus, in the beam, a main vibration mode function is
determined when a set of wave numbers k1 and k2 corresponding to the natural frequencies
are determined.

ϕi(x) =
[

wi
ψi

]
=

[
a1
b1

]
cos(k1x) +

[
a2
b2

]
sin(k1x) +

[
a3
b3

]
cos(k2x) +

[
a4
b4

]
sin(k2x) (13)

To study the cantilever beam, use the modal coordinate equation of the beam.

..
qi(t) + ω2

i qi(t) = fi(t), i = 1, 2, · · · N (14)

where q(t) = [q1(t), q2(t), · · · , qN(t)]
T , fi(t) = 1

mi

∫ l
0 ϕi

TF(x, t)dx is the external distur-
bance force.

The essence of independent modal control is to reconfigure the poles of the vibration
system by state feedback; thus, the state space description of the system is established first.
Assuming the modal control force is ui(t) = 1

mi

∫ l
0 ϕi

TU(x, t)dx, for the vibration system:

..
qi(t) + ω2

i qi(t) = fi(t) + ui(t), i = 1, 2, · · · N (15)

5



Aerospace 2022, 9, 259

Considering the control of the pth-order mode, and introducing the state vector

X(t) = [XC(t)
...XR(t)], where XC = [qT(t),

.
q

T
(t)]

T
2p×1, the controlled partial state equation

of the system is expressed as follows:

.
XC(t) = ACXC(t) + BCu(t) + DCfC(t) (16)

where

AC =

[
0 I

−ω2 0

]
2p×2p

, BC = DC =

[
0
I

]
2p×p

, ω2 = diag[ω2
i ]p×p

In Equation (16), the 0 and I are a zero matrix and a unit matrix, respectively; u(t),
f (t) are the modal control force and the modal disturbance force, respectively. When the
controllability matrix rank([B AB]) = 2p, based on the linear system theory, we know that
the state of the system is completely controllable, and the pole can be arranged arbitrarily.
Introducing the state feedback, the control force u(t) is given as follows:

u(t) = −GXC(t) = −[ g h
][ q

.
q

]
(17)

The closed-loop dynamic equation of the system (15) is as follows:

.
XC(t) = (AC − BCG)XC(t) + DCfC(t) (18)

According to Equation (18), the characteristic structure of the original vibration system
can be changed arbitrarily by adjusting the feedback gain G.

Considering point force control input U(x, t) =
p
∑

i=1
ũi(t)δ(x − xi), point force distur-

bance input, F(x, t) =
n
∑

i=1
f̃i(t)δ(x − xi) in physical coordinates, where p, n are respectively

the number of controlled modes and the number of disturbance forces, and the jth-order
mode control force uj(t) and disturbance force fj(t) are expressed as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

uj(t) = 1
mj

p
∑

i=1

l∫
0
ϕj(x)ũi(t)δ(x − xi) =

1
mj

p
∑

i=1
ϕj(xi)ũi(t)

fj(t) = 1
mj

n
∑

i=1

l∫
0
ϕj(x)̃fi(t)δ(x − xi) =

1
mj

n
∑

i=1
ϕj(xi )̃fi(t)

(19)

where the control input force vector is ũ =
[
ũx1(t) ũx2(t) . . . , ũxp(t)

]T , and the disturbance

input force vector is f̃ =
[

f̃x1(t) f̃x2(t) · · · f̃xn(t)
]T

. Thus, the transformation rela-
tions of the force vectors between the modal coordinates and the physical coordinates are
written as follows

u = Ψcũ, Ψc =

⎡⎢⎢⎢⎣
ϕ1(x1) ϕ1(x2) · · · ϕ1

(
xp
)

ϕ2(x1) · · · ϕ2
(
xp
)

...
...

...
ϕp(x1) · · · ϕp

(
xp
)
⎤⎥⎥⎥⎦

p×p

,fd = Ψd f̃, Ψd =

⎡⎢⎢⎢⎣
ϕ1(x1) ϕ1(x2) · · · ϕ1(xn)
ϕ2(x1) · · · ϕ2(xn)

...
...

...
ϕp(x1) · · · ϕp(xn)

⎤⎥⎥⎥⎦
p×n

(20)

There is no corresponding relation between the position coordinates xi of the above two
equations, that is, the position of the control force and the disturbance force is not necessarily
the same; and the selected position coordinates should at least ensure Ψc, Ψd invertible.

6
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Substituting Equation (20) with Equation (15), the state equation of the controlled part
can be obtained as follows: .

XC(t)=ÃCXC(t)+B̃C f̃(t) (21)

where

ÃC =

[
0 I

−(ω2 + g
) −h

]
2p×2p

, B̃C =

[
0

ΨdC

]
2p×n

where g, h are the generalized displacement gain of the modal control and the generalized
velocity gain matrix, respectively. It is obvious that the modal structure of the system is
reconstructed by state feedback, and the modal damping and stiffness of the system are
improved effectively.

The state equation of the part of the uncontrolled mode should be:

.
XR(t)=ÃRXR(t)+B̃R f̃(t) (22)

where

ÃR =

[
0 I

−ω2 0

]
2(N−p)×2(N−p)

, B̃R =

[
0

ΨdR

]
2(N−p)×n

The deflection w(x0, t) at the position coordinate x0 is selected as the output of the
system, and the following results can be obtained from Equation (8);

w(x0, t) = wC(x0, t) + wR(x0, t) =
p

∑
i=1

ϕi(x0)qi(t) +
N

∑
i=p+1

ϕi(x0)qi(t) (23)

The final output of the system is:

w(x0, t) = CX (24)

where ⎧⎪⎪⎪⎨⎪⎪⎪⎩
C =

[
ΨT

0C
... 0

... ΨT
0R

... 0
]

1×2N
Ψ0C = [ϕ1(x0)ϕ2(x0) · · ·ϕr(x0)]

T
1×p

Ψ0R = [ϕr(x0)ϕr+1(x0) · · ·ϕN(x0)]
T
1×(N−p)

Equations (21), (23) and (26) constitute a complete state space description of partially
controlled vibration systems. It is clear that the controlled and uncontrolled modes are
independent of each other.

4. Rotating Angle Traveling Wave Control of Timoshenko Beam

Vibration in structure is essentially the propagation of elastic wave in structure. An
elastic wave can be regarded as the representation of vibration propagation in a continuous
medium. When an elastic wave propagates in a bounded structure and various waveforms
are superimposed and stable, its external performance is often regarded as a vibration.
Structural vibration is a special form of wave expression, which can be regarded as the
result of the superposition of traveling waves satisfying certain conditions. Therefore, the
vibration of the structure can be regarded as the propagation, reflection and transmission of
the elastic disturbance in the structure, and the whole structure shows a wave characteristic.
Therefore, the dynamic response and vibration control of a missile structure can be studied
from the perspective of a traveling wave. The vibration in the structure can be described
by the superposition of wave modes. The active control method of a traveling wave is to
control the energy propagation in the structure, that is, to reduce the transmission from
one part of the structure to the other, or to absorb the energy carried by the traveling wave.
In wave control, the control law is the transfer relation between the input and output of
the controller. It can be divided into time domain design method and frequency domain
design method. The control force can be a point force or a point moment. The frequency

7
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domain design method is used here. In this paper, a wave controller is designed to control
the rotation angle of the beam, and the wave control torque is applied when the rotation
angle is controlled.

There are two methods to describe vibration: modal mode description and wave
description. In essence, the former belongs to standing wave expression, while the latter is
traveling wave expression. Considering the free vibration of the Timoshenko beam, the
time factor exp(−iωt) is omitted:

Φ = A1
− exp(−ik1x)+A2

+ exp(ik1x)+A3
− exp(−k2x)+A4

+ exp(k2x) (25)

In the above equation, + and − represent the positive and negative propagation
waves, respectively. The modes with spatial factors exp(−ik1x) and exp(ik1x) represent
the propagating waves carrying energy, while the modes with spatial factors exp(−ik2x)
and exp(ik2x) represent the local vibrational modes that do not carry energy. The purpose
of wave control is to dissipate and absorb the energy in the propagating wave. When there
are no discontinuous points in the infinite beam structure, the above elastic waves will
propagate to infinity, and the local vibration modes will decay quickly.

Considering the existence of excitation force in beam structure (shear discontinuity
point), according to the traveling wave theory, the reflection and transmission of the elastic
wave will occur at the discontinuous incidence. Assuming that a sequence of forward
propagating waves is incident at x = 0, resulting in reflected, transmitted and near-field
waves, the displacement of the beam at x ≤ 0 and x ≥ 0 is as follows⎧⎪⎪⎨⎪⎪⎩

ϕ−(x) =
[

w−
ψ−

]
=

[
a+

b+

]
exp(ik1x) +

[
a−
b−
]

exp(−ik1x) +
[

a−N
b−N

]
exp(k2x)

ϕ+(x) =
[

w+

ψ+

]
=

[
c+

d+

]
exp(ik1x) +

[
c+N
d+N

]
exp(−k2x)

(26)

In the feedback wave control, the sensor and actuator are located in a certain area of
the structure to control the propagation of elastic wave. In this case, the control force is a
discontinuous point. In the frequency domain feedback wave control, the applied wave
control moment is taken as

T(ω) = −H(ω)Ψ(ω) (27)

According to the conditions of generalized displacement continuity and generalized
force equilibrium, the function of beam satisfies at x = 0⎧⎪⎪⎨⎪⎪⎩

w−(0) = w+(0)
ψ−(0) = ψ+(0)
M+(0)− M−(0) = Hψ+

Q+(0) = Q−(0)

(28)

In Equation (28), H is the transfer function of the wave controller, and the symbols −
and + represent the corresponding mechanical quantities of the beam at x ≤ 0 and x ≥ 0,
respectively.

According to the expressions of bending and shear forces, Equation (28) can be
written as⎧⎪⎪⎪⎨⎪⎪⎪⎩

[
1
ik1

]
b+ +

[
1 1

−ik1 k2

]
B− =

[
1 1

ik1 +
H
D

H
D − k2

]
D+[

k2
1

ik3
1

]
b+ +

[
k2

1 −k2
2

−ik3
1 −k3

2

]
B− =

[
k2

1 −k2
2

HρJω2

D2 + ik3
1

HρJω2

D2 + k3
2

]
D+

(29)

where

B− =

[
b−
b−N

]
=

[
r1
r2

]
b+, D+ =

[
d+

d+N

]
=

[
t1
t2

]
b+

8
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Denoted as H = H
Dk1

, ρJω2

D =
k4

0h2

12 , the following equation can be obtained:⎧⎨⎩ 1 + r1 + r2 = t1 + t2, i − ir1 +
k2
k1

r2 =
(
i + H

)
t1 −

(
k2
k1
− H

)
t2

1 + r1 + r2 = t1 + t2, i − ir1 +
k2
k1

r2 =
(
i + H

)
t1 −

(
k2
k1
− H

)
t2

(30)

It is the same as the method of the wave controller designed to control the lateral
displacement, denoted as H(ω) = (1 + i)ωg. The energy reflected and transmitted by unit
incident energy is E(g) = |r1|2 + |t1|2. The maximum energy dissipation in discontinuous
structure is taken as the performance index of optimal control, and the optimal control law
H(ω) is determined.

E(g) = (288k2
1k2

2 + 288k4
2 + 24gh2k4

0k1k2ω − 288gk3
1k2ω + g2h4k8

0ω2 − 24g2h2k4
0k2

1ω2

+144g2k4
1ω2 + 24g2h2k4

0k2
2ω2 − 144g2k2

1k2
2ω2 + 144g2k4

2ω2)/(288k2
1k2

2
+288k4

2 + 24gh2k4
0k1k2ω − 288gk3

1k2ω + 24gh2k4
0k2

2ω + 288gk4
2ω + g2h4k8

0ω2

−24g2h2k4
0k2

1ω2 + 144g2k4
1ω2 + 24g2h2k4

0k2
2ω2 − 144g2k2

1k2
2ω2 + 144g2k4

2ω2)

(31)

When E(g) reaches the minimum, the feedback gain is

g =
a
b

(32)

where⎧⎪⎨⎪⎩
a = 12

√
2
√

h2k4
0k2

1k2
2 + h2k4

0k4
2 + 12k2

1k4
2 + 12k6

2, b =
√

g1 + g2

g1 = h6k12
0 ω2 − 24h4k8

0k2
1ω2 + 144h2k4

0k4
1ω2 + 36h4k8

0k2
2ω2 − 432h2k4

0k2
1k2

2ω2

g2 = 1728k4
1k2

2ω2 + 432h2k4
0k4

2ω2 − 1728k2
1k4

2ω2 + 1728k6
2ω2

The corresponding reflection and transmission coefficients of incident waves are
expressed as follows, respectively:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r1 = −(gh2k4
0k2ω + 12gk3

2ω
)
i/{(k1 − k2i) [(−12 + 12i) k1k2

−(12 + 12i)k2
2 − gh2k4

0ω + 12gk2
1ω + 12gk1k2ωi − 12gk2

2ω
]}

t1 = [(−12 + 12i) k2
1k2 − (12 − 12i)k3

2 − gh2k4
0k1ω + 12gk3

1ω
]
/{(k1 − k2i)

[(−12 + 12i) k1k2 − (12 + 12i)k2
2 − gh2k4

0ω + 12gk2
1ω + 12gk1k2ωi − 12gk2

2ω
]} (33)

If the wave control moment is applied at the point x = xw, the tuning PD control
becomes:

mw(x, t) = −[c1w(x, t) + c2
.

w(x, t)]δ(x − xw) (34)

At this time, wave control Equation (34) is applied to the original vibration system,
and the matrix form of the motion equation of the system is written as follows:

Mw
..
q + Cw

.
q + Kwq = f (35)

where f = [ f1 f2 · · · fn ]
T , fi(t) = 1

mi

∫ l
0 ϕi

TF(x, t)dx, Mw, Cw, Kw are mass ma-
trix, damping matrix and stiffness matrix, respectively, and the expressions of them are
as follows:

Mw = I, Cw = c2Ψw, Kw = ω2 + c1Ψw (36)

where

Ψw =

⎡⎢⎢⎢⎣
ϕ1(xw)ϕ1(xw) ϕ1(xw)ϕ2(xw) · · · ϕ1(xw)ϕN(xw)
ϕ2(xw)ϕ1(xw) · · · ϕ2(xw)ϕN(xw)
...

...
...

ϕN(xw)ϕ1(xw) · · · ϕN(xw)ϕN(xw)

⎤⎥⎥⎥⎦
N×N

9
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It is important to note that c1, c2 will also be a matrix, not a number, in subsequent
programming calculations. For ease of use in optimized control, we can also write Ψw in
block form:

Ψw =

[
ΨCC ΨCR
ΨRC ΨRR

]
(37)

When there is no wave control force, the mass array M is N × N identity matrix, C is
the N × N zero matrix, K is diagonal matrix with the square of natural frequency. However,
the wave control moment is coupled with the vibration modes of the uncontrolled original
system, and the mode of the wave control system changes as a result.

Introducing the state vector X(t) = [qT(t) :
.
q

T
(t)]

T
, Equation (39) is written in the

form of a state space:
.
X(t) = AX(t) + Bf (38)

where the coefficient matrix is:

A =

[
0 I

−Mw
−1Kw −Mw

−1Cw

]
, B =

[
0

Mw
−1Ψd

]
, Ψd =

⎡⎢⎢⎢⎣
ϕ1(x1) ϕ1(x2) · · · ϕ1(xm)
ϕ2(x1) · · · ϕ2(xm)

...
...

...
ϕN(x1) · · · ϕN(xm)

⎤⎥⎥⎥⎦
N×m

5. Traveling Wave/Modal Optimized Control of Timoshenko Beam Rotation Angle

The optimized control method of the independent mode and traveling wave is used
in this paper. First, the former pth-order mode is controlled by independent modal space
control, and the partially controlled vibration system is obtained. The modal dynamic
equation of the system is as follows:

Mm
..
q + Cm

.
q + Kmq = f (39)

where

Mm = I, Cm =

[
h 0
0 0

]
, Km =

[
ω2

c + g 0
0 ω2

R

]
Applying wave control force to the system, combined with (35) and (36), the modal

dynamics equation of the system is as follows:

Mh
..
q + Ch

.
q + Khq = f (40)

where

Mh=I, Ch =

[ (
h + c2ΨCC

)
c2ΨCR

c2ΨRC c2ΨRR

]
, Kh =

[
ω2

C + g + c1ΨCC c1ΨCR
c1ΨRC ω2

R + c1ΨRR

]

Introducing the state vector X(t)=[qT(t):
.
q

T
(t)]

T
, and the equation of the state is:

.
X(t)=ÃX(t)+B̃f (41)

where

A =

[
0 I

−Mh
−1Kh −Mh

−1Ch

]
, B =

[
0

Mh
−1Ψd

]
, Ψd =

⎡⎢⎢⎢⎣
ϕ1(x1) ϕ1(x2) · · · ϕ1(xm)
ϕ2(x1) · · · ϕ2(xm)

...
...

...
ϕN(x1) · · · ϕN(xm)

⎤⎥⎥⎥⎦
N×m

10
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6. Numerical Example and Analysis and Discussion

Using the independent modal space method and optimized control method, the
dynamic response of the structural beam subjected to control force is investigated. Taking
the characteristic length as the length of the beam l, the following dimensionless quantities:
Poisson ratio ν = 0.30; high to length ratio h/l = 0.1; damping factor before control
ζ = 1.0 × 10−4; ωi

2/ω0
2 = (k0iL)

4/(k01L)4; k0i is the elastic traveling wave number
corresponding to the ith-order natural frequency. Table 1 shows the first 10 dimensionless
natural frequencies of the Timoshenko beam.

Table 1. The first 10 dimensionless frequency of the Timoshenko beam.

Order of Mode 1 2 3 4 5 6 7 8 9 10

natural frequency 1.00 6.02 15.99 29.35 45.34 63.34 82.98 104.02 126.30 149.59

Figures 2–7 show the frequency response of the structure before and after the control
with three different control methods under different parameters. In Figures 2–7, the
horizontal coordinates are dimensionless frequency values, while the vertical coordinates
are the common logarithmic values of the frequency response. In Figures 2–4, the position
of disturbance action is xd = 0.15l. Figure 2 shows the frequency response before and after
modal control; the positions of mode control force applied are xm1 = 0.215l, xm2 = 0.525l,
xm3 = 0.775l, xm4 = 1.0l; the first four modes are controlled, and the measuring position of
the dynamic response is xs = 0.265l, where the occurrence point of the maximum value
of the total deflection of the first 10 modes is. Figure 3 shows the frequency response of
the structure before and after the control when the position of the wave control force is
xw = 0.40l. Figure 4 describes the frequency response of the structure before and after the
traveling wave/modal-optimized control.

 
Figure 2. Comparison of frequency response before and after modal control (xd = 0.15l, xs = 0.265l).
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Figure 3. Comparison of frequency response before and after wave control (xd = 0.15l, xw = 0.40l).

Figure 4. Comparison of frequency response before and after optimized control (xd = 0.15l).
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Figure 5. Comparison of frequency response before and after modal control (xd = 0.10l, xs = 0.295l).

 

Figure 6. Comparison of frequency response before and after wave control (xd = 0.10l, xw = 0.30l).
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Figure 7. Comparison of frequency response before and after optimized control (xd = 0.10l).

In Figures 5–7, the position of disturbance action is xd = 0.10l. Figure 5 shows the
frequency response before and after modal control. The positions of the modal control
force applied are xm1 = 0.215l, xm2 = 0.525l, xm3 = 0.775l, xm4 = 1.0l, the first four modes
are controlled, and the measuring position of dynamic response is xs = 0.295l, where the
occurrence point of the maximum value of the total deflection of the first 10 modes is.
Figure 6 shows the frequency response of the structure before and after the control when
the position of the wave control force is xw = 0.30l, and Figure 7 describes the frequency
response of the structure before and after the travelling wave/modal-optimized control.

When applying the wave control force, the node of the first 10 mode vibrations should
be avoided as much as possible. The frequency responses of the single-use wave control,
independent mode space control and the optimized traveling wave control, including the
controlled and uncontrolled frequency response, are compared. In the approximation of
the optimized control method, the controller is tuned to the optimum at the fifth mode. In
the case of the independent modal space control, the first four-order damping factor of the
structure is increased to 0.1 by using the pole assignment method. Through the analysis,
we can obtain the discussion as follows:

Figures 2 and 5 show that modal control has good control effect on low-order modes
of structure, and it has good independence and has little effect on other modes; thus, the
rapid change of the uncontrolled modal response still exists.

Figures 3 and 6 show the frequency response of the structure before and after the use
of the wave controller. The response of the structure before the control is sharp, but the
wave control can be regarded as adding damping to the structure, absorbing the energy in
the structure, and the sharp response is weakened. The figure also shows that the modal
characteristics of the whole structure have changed after the wave control; that is, the
natural vibration frequency has changed. Finally, we can see that the position of the wave
controller is different for the control effect of each mode frequency.

Figures 4 and 7 show the frequency response of the structure before and after using
wave control and independent mode space control. It reflects the excellent control effect of
the optimized control. Because the optimized control combines the characteristics of the
former two methods, that is, the wave control can control the response at higher frequencies
better, and the independent modal space control can effectively control the first four modes.
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It makes up for the poor control effect of wave control at low frequency. Therefore, the
performance of using one of the above controls alone is improved.

7. Conclusions

(1) In this paper, the active vibration control of the Timoshenko beam structure is in-
vestigated in a more comprehensive way. First, considering the influence of section
rotation and shear deformation, the vibration equation of the Timoshenko beam is
established, and the modal and wave analysis are employed. The finite dimensional
system dynamic equation is obtained by modal expansion. Then, we adopt three
different control methods: traditional mode space control method, traditional trav-
eling wave control method and optimized traveling wave control method. As a
numerical example, three strategies of independent mode space control, traditional
traveling wave control and optimized traveling wave control are used to control the
active vibration of the beam angle. By comparing the numerical results of the three
methods, it can be seen that: the traditional mode space control method has good
effect on the low-frequency control, but it is easy to overflow because of omitting the
high-order modes.

(2) Traveling wave control can effectively control the high-order modes of the system,
while the effect of low-order mode control is far less than that of modal control. In
addition, the application position of wave control torque has important influence on
the control result.

(3) Using the optimized traveling wave control method and Timoshenko beam theory,
the dispersion relationship of waves in structural vibration is determined, and the
wave numbers of propagating waves and attenuation waves in the Timoshenko beam
are given. The problem of solving the natural frequency and mode of the cantilever
Timoshenko beam is effectively solved. The optimized traveling wave control method
involves using the traveling wave control outside the modal nodes of each order,
coupled with the global mode space control method. The optimized traveling wave
control method not only effectively suppresses the main low-order modes, but also
suppresses the high-order modes by wave control, effectively reduces the control
overflow and enhances the robustness of the system.

In this paper, the Timoshenko beam model, which considers the influence of transverse
shear deformation and moment of inertia on displacement, improves the accuracy of
calculation. It is important for spacecraft accessory structures with high requirements for
angle control. In terms of vibration control results, not only the vibration is well suppressed,
but also the robustness of the system is improved by using the optimal traveling wave
control method proposed in this paper. The optimized traveling wave control method is
exquisite in mathematical processing and has good results in global and local vibration
control, which is not available in other methods. Therefore, the optimized control method
shows better vibration active control performance than any traditional control method.
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Abstract: A cable-stayed bridge is widely adopted to construct long-span bridges. The deformation
of cable-stayed bridges is relatively larger than that of conventional bridges, such as beam and
truss types. Therefore, studies regarding the monitoring systems for cable-stayed bridges have been
conducted to evaluate the performance of bridges based on measurement data. However, most
studies required sufficient measurement data for evaluation and just focused on the local response
estimation. To overcome these limitations, Structural Responses Analysis using a Limited amount of
Multi-Response data (SRALMR) was recently proposed and validated with the beam and truss model
that has a simple structural behavior. In this research, the structural responses of a cable-stayed bridge
were analyzed using SRALMR. The deformed shape and member internal forces were estimated
using a limited amount of displacement, slope, and strain data. Target structural responses were
determined by applying four load cases to the numerical model. In addition, pre-analysis for initial
shape analysis was conducted to determine the initial equilibrium state, minimizing the deformation
under dead loads. Finally, the performance of SRALMR for cable-stayed bridges was analyzed
according to the combination and number of response data.

Keywords: cable-stayed bridge; multi-response data; deformed shape; member internal force;
SRALMR

1. Introduction

The construction of bridges with longer spans is a challenging task in civil engineering.
A cable-stayed bridge is widely adopted to construct long-span bridges, in which the cable
connects the bridge deck and the pylon to support the bridge deck. The forces generated in
cables can be divided into horizontal and vertical components. The horizontal component
of the cable force causes a significant compressive force on the girder, and the girder has
a complex distribution of bending moment owing to the vertical component of the cable
force. In addition, horizontal and vertical components of the cable force cause a bending
moment and compressive force on the pylon, respectively. The brokenness of one cable can
affect the entire equilibrium system of the structure. Therefore, ensuring the integrity of
cable-stayed bridges is a significant factor in structural maintenance. Various responses
and environmental conditions have been measured using a monitoring system to evaluate
the integrity of cable-stayed bridges [1–3].

If the Structural Health Monitoring (SHM) that can evaluate the integrity of the struc-
ture using measured data such as displacement, strain, slope, acceleration, and temperature
is successfully applied to on-site structure, the limitations of manpower and budget for
maintenance can be overcome. The main objective of SHM is the detection of degradation
of structure and to provide useful data for maintenance decision making. The research
field for SHM can be divided into three fields according to the objective: damage detec-
tion [4,5], response pattern prediction [6], and unmeasured response estimation (URE) [7–9].

Sensors 2022, 22, 3745. https://doi.org/10.3390/s22103745 https://www.mdpi.com/journal/sensors
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This paper is a study on the field of URE. In previous studies for URE, measured data
(displacement, slope, strain, and acceleration) related to the structural stiffness has been
generally utilized.

Displacement, which is a structural response, is typically utilized to indirectly evaluate
the performance of a structure. The performance of the structure was indirectly evaluated
by comparing the measured displacement with the deformation limit determined via
numerical analysis and a loading test. Linear variable differential transformers (LADTs)
and laser Doppler vibrometers (LDVs) are widely used to measure the displacement of
structures. However, these conventional displacement sensors have limitations, such as the
requirement of additional fixed reference points and high sensitivity to the surrounding
climate. To overcome these limitations, studies have been conducted on displacement
estimation methods using other response data.

Among the analyzed structural responses, acceleration, strain, and slope data have
been widely used to estimate the displacement of structures. Using acceleration data, dis-
placement can be estimated based on the relation that displacement is a double integration
of acceleration. Park et al. [10] estimated the displacement through double integration of
acceleration, assuming that the initial displacement and average velocity were zero. Lee
et al. [11] proposed a time-domain finite impulse response filter (FIR filter) for estimating
displacement without initial conditions in a way that minimizes the square error between
acceleration, which is assumed as the central finite difference of displacement, and mea-
sured acceleration. In addition, a wireless displacement measurement system using the
FIR filter proposed by [11] was developed and validated with experimental acceleration
data [12]. These methods use acceleration for accurate estimations at low prices; however,
only the displacement at positions where the acceleration sensors are installed can be
estimated because the spatial parameter is not included in the acceleration response.

In contrast, the slope and strain response, which include spatial parameters, can
be used to estimate the displacement at positions where sensors are not installed. The
shape superposition method (SSM) is mostly adopted for estimation methods that use
slope and strain data. SSM consists of a shape function and weight factor. The weight
factor is derived by minimizing the least-square error between the measured response
and product of shape function and weight factor. Hou et al. [13] estimated displacement
using slope data based on the SSM. The power series was utilized as a shape function,
and the coefficient was considered to represent the boundary condition. The displacement
estimation using strain data was firstly conducted by Foss and Haugse [14] based on the
modal mapping. Modal mapping is SSM using the mode shape as a shape function. For
general use of modal mapping, a theoretical mode shape composed of sine functions was
adopted as the shape function, and its effectiveness was validated with experimental data
from various structures [15]. A study using mode shape derived by frequency analysis
of a finite element method (FEM) model was also conducted to improve the accuracy
of displacement estimation [16]. The results of the research showed that the FEM mode
shape can estimate the displacement more accurately than the theoretical mode shape.
In addition, modal mapping proposed by [14] was widely adopted as a basic method to
estimate displacement [17–21].

Recently, studies on displacement estimation using strain and acceleration data fusion
have been conducted to cope with the drawback of estimation by one type of data. Park
et al. [22] developed an indirect displacement estimation using acceleration and strain
(IDEAS) method by combining FIR filter [11] and modal mapping [14]. The estimation by
the IDEAS method showed better accuracy than that by only strain data. Then, the ex-
tendibility of the IDEAS method was investigated for various types of beam structures [23].
The Kalman filter, actively studied for the accuracy enhancement in aerospace engineer-
ing, was also applied to the IDEAS [24]. IDEAS using FIR and Kalman filter has been
widely adopted to indirectly estimate displacement based on the strain and acceleration
data [25–27].
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Although the previously proposed methods can indirectly well estimate displacement,
they use one or two types of response data and focus on the estimation of displacement
at specific points. To accurately evaluate the integrity of the structure, the response shape
for the entire structure is required, not the displacement at specific points. In addition,
in order to apply the estimation method to the monitoring system in which the sensor
is already installed, various combinations of response data need to be available to the
algorithm. As the Global Navigation Satellite System (GNSS) has been developed, which
overcomes the limitations of conventional displacement sensors, the “Structural Responses
Analysis using a Limited amount of Displacement data” (SRALD) was proposed [28,29].
The deformed shape was estimated using the displacement data, and the internal force was
determined using the deformed shape using the stiffness method. In addition, SRALD was
validated for the beam, truss, and cable-stayed bridge finite element method (FEM) models
by comparing the estimated responses with values estimated by the spline interpolation
method. Subsequently, SRALD was improved to the “Structural Responses Analysis using
a Limited amount of Multi-Response data” (SRALMR), which uses the slope and strain
response as additional data to reduce the required number of expensive GNSS [30]. In
addition, SRALMR was applied to the beam and truss FEM models, and its effectiveness
was verified by comparing it with SRALD. The SRALMR was established by extending the
shape superposition theory basically used in previous estimation studies to use the three
response data in various combinations. Compared to the previously developed estimation
methods, the major strength of the SRALMR is that it can utilize any combination of
displacement, slope, and strain data and estimate the response shape of the entire structure
rather than the response of a specific point. However, the validation of SRALMR for
structures that have complex structural behavior compared to beams and trusses is required
for on-site applications.

Therefore, the validation of SRALMR for a cable-stayed bridge FEM model that has
complex structural behavior owing to the cable is conducted in this study. The deformed
shape was estimated using a limited amount of displacement, slope, and strain response
data. Additionally, the girder axial force, girder moment, and cable force were determined
using the deformed shape estimated by using the stiffness method. The pylon is also
an important element for the entire equilibrium system, but it has a simple distribution
of internal force, and its integrity can be relatively simply estimated using displacement
data at the top of the pylon. For this reason, internal force estimation in this study is
limited to the cable and girder elements. For the deformed shape and internal force, the
estimation performance of SRALMR for the cable-stayed bridge was analyzed according to
the combination and number of response data.

2. Estimation Algorithm

Choi et al. [28] developed an SRALD technique that can estimate the deformed shape
and internal force from limited displacement data. Byun et al. [30] introduced SRALMR by
improving SRALD to use slope and strain data for estimation. SRALMR is based on the
shape-superposition method for the structural shape of each response. In a linear problem,
each response of the structure can be expressed as the product of the shape function Φ and
the weight factor α, as shown in Equations (1)–(3). Φu, Φθ , and Φε, are the shape functions
of the displacement, slope, and strain, respectively. The weight factors for displacement
u, slope θ, and strain ε are the same because the slope and strain are the first and second
derivatives of the displacement, respectively. This is the basic concept of SRALMR.

{u} = [Φu]{α} (1)

{θ} = [Φθ ]{α} = [Φu]
′{α} (2)

{ε} = [Φε]{α} = [Φu]
′′ {α} (3)

In this study, the structural shape function (SSF) is derived by applying a unit load to
each node of the numerical model. The ith SSF Φi,u, Φi,θ , and Φi,ε for displacement, slope,
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and strain are represented as Equations (4) and (6), respectively. Finally, comprehensive
SSF Φi in Equation (7) can be derived by combining all the SSF values for each response in
one matrix.

Φi,u
T =

[
ui1 ui2 ui3 ui4 · · · uiNdo f ,u

]
(4)

Φi,θ
T =

[
θi1 θi2 θi3 θi4 · · · θiNdo f ,θ

]
(5)

Φi,ε
T =

[
εi1 εi2 εi3 εi4 · · · εiNdo f ,ε

]
(6)

Φi =

⎡⎣ Φi,u
Φi,θ
Φi,ε

⎤⎦(Ndo f × 1
)

(7)

Here, Ndo f = Ndo f ,u + Ndo f ,θ + Ndo f ,ε is the number of degrees of freedom (DOF),
Ndo f ,u, Ndo f ,θ , and Ndo f ,ε are the numbers of DOF for each response, respectively; and
uiNdo f ,u , θiNdo f ,θ

, and εiNdo f ,ε
are the ith displacement, slope, and strain value at each DOF,

respectively.
As indicated above, the structural response shape can be represented as a superpo-

sition of the SSF. An arbitrary response shape ÃRS needs to be defined to establish an
error function with measurement data. As shown in Equation (8), ÃRS is defined as the
superposed SSF multiplied by the weight factor. Ns f is the number of shape functions

used to estimate the structural response, and the ÃRS in matrix form is represented by
Equation (9).

ÃRS = α1Φ1 + α2Φ2 + α3Φ3 + · · ·+ αNs f ΦNs f =

Ns f

∑
i=1

αiΦi (8)

ÃRS =
[
Φ1 Φ2 Φ3 · · · ΦNs f

]
⎡⎢⎢⎢⎢⎢⎣

α1
α2
α3
...

αNs f

⎤⎥⎥⎥⎥⎥⎦
(

Ndo f × 1
)

(9)

ÃRS is composed of response values at each DOF. The measurement data matrix
MD is composed of the response values measured at certain points where the sensors are
installed. ω, ∅, and ε are the measurement data values for displacement, slope, and strain,
respectively. The MDs for each response are defined in Equations (10)–(12), and Nmd is the
number of measurements. A comprehensive MD to establish the error function with ÃRS
is constructed by combining the MD for each response.

MDω
T =

[
ω1 ω2 ω3 ω4 · · · ωNmd,ω

]
(10)

MD∅
T =

[
∅1 ∅2 ∅3 ∅4 · · · ωNmd,∅

]
(11)

MDε
T =

[
ε1 ε2 ε3 ε4 · · · ωNmd,ε

]
(12)

MD =

⎧⎨⎩
MDω

MD∅

MDε

⎫⎬⎭(Nmd × 1) (13)

The weight factor required to estimate the deformed shape can be calculated using
MD and ÃRS. Owing to the difference in the matrix size between MD and ÃRS, the matrix
size of the ÃRS needs to be adjusted to establish the error function. The ÃRS is converted
to an ARS matrix including only response values for DOF where the measurement data
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exist. Finally, the error function E is defined as the sum of the square errors between MD
and ARS in Equation (14). Partial differentiation is performed with respect to the weight
factor to minimize the error, which must equal zero. The calculation process is represented
by Equations (15)–(17).

E =
Nmd

∑
j=1

(
MDj − ARSj

)2 (14)

∂E
∂αk

= 2
Nmd

∑
j=1

[(
MDj − ARSj

)(∂MDj

∂αk
− ∂ARSj

∂αk

)]
= 0 where k = 1, 2, · · · , Ns f (15)

∂E
∂αk

=
Nmd

∑
j=1

⎡⎣⎛⎝Ns f

∑
i=1

αiΦij

⎞⎠(Φkj

)⎤⎦ =
Nmd

∑
j=1

[(
MDj

)(
Φkj

)]
where k = 1, 2, · · · , Ns f (16)

[Φ]TNmd×Ns f
[Φ]Nmd×Ns f

{α}Ns f ×1 = [Φ]TNmd×Ns f
{MD}Nmd×1 (17)

The weight factor that minimizes the square error between ASD and MD can be
calculated by Equation (17), using the inverse matrix of [Φ]T [Φ]. However, if the Ns f is
greater than the Nmd, [Φ]T [Φ] becomes a rank-deficient matrix. In general, the amount of
measurement data is limited owing to the cost. To solve this problem, the singular value
decomposition (SVD) method is adopted to solve Equation (17). By substituting the weight
factor calculated using the SVD method in Equation (1), the structural deformation shape
can be estimated.

Based on the stiffness method, the internal force can be determined using the relative
rotation and displacement of the nodes attached to the element. Therefore, the internal
structural force can be estimated using the estimated deformed shape (EDS). In this study,
the internal force of a cable-stayed bridge was estimated by applying EDS to the numerical
model as the displacement load.

3. Validation Process

The most representative characteristic of a cable-stayed bridge, which differs from
other types of bridges, is the cable connected to girders and pylons. The cable force
supports the girder and can be decomposed into vertical and horizontal forces. The
horizontal component of the cable force causes a compression force in the girder. However,
the girder has a complex moment shape owing to the vertical component of the cable force.
Therefore, cable-stayed bridges consist of geometric nonlinearity, such as the cable sag
effect, beam–column effect, and large displacement, whereas material nonlinearity arises
when bridge elements exceed their individual elastic limits. The nonlinear effects must be
considered when analyzing the ultimate behavior of a cable-stayed bridge [31].

However, cable-stayed bridges under normal operating conditions can be analyzed
using a linear model. Ren [32] investigated the ultimate behavior of cable-stayed bridges
up to failure, considering the material and geometric nonlinearity. The investigation
results demonstrated that the behavior of a cable-stayed bridge is affected by geometric
nonlinearity when the live load is four times greater than that of the dead load, and it
is affected by material nonlinearity when the live load is two times greater than that of
the dead load. In general, the dead load of a bridge is larger than the live load. Namely,
the nonlinearity of a cable-stayed bridge is sufficiently small to be ignored under normal
operating conditions. Therefore, SRALMR based on the superposition method can be
applied to cable-stayed bridges.

The validation process of SRALMR for cable-stayed bridges is illustrated in Figure 1.
The analysis of cable-stayed bridges is divided into two parts: initial shape analysis consid-
ering geometric nonlinearity and linear analysis with live load. The initial shape analysis
was performed to determine the optimal cable forces that ensured minimal deformation of
the structure under dead load conditions; whereas the linear analysis with the live load
was performed to represent the structural behavior generated by the live load. The results
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of the linear analysis with the live load are used to assume the real response of the structure
because the sensors installed after construction are complete and can only measure the
response data generated by the live load. In addition, the response data (displacement,
strain, and slope) at a limited point from the real response of the structure are utilized as
measurement data for deriving the error function. The deformed shape and internal force
of the target model are determined by superposing the results of the initial shape analysis
and linear analysis with a live load.

 

Figure 1. Validation analysis scheme of SRALMR for cable-stayed bridge.

SRALMR is applied to estimate the deformed shape and internal force generated by a
live load because the sensor usually measures the response data generated by the live load.
Therefore, the SSF and ARS required for estimation are derived from a linear analysis with
a live load. The error function is then established using the ARS and MD. The deformed
shape and internal force were estimated using the calculated weight factor to minimize
the error function. Finally, the SRALMR was validated by comparing the results of the
estimated and target models.

4. Numerical Model for Validation

4.1. Validation Model

The radiating-type cable-stayed bridge shown in Figure 2, which has three spans,
two pylons, and forty cables, was used as the validation model in this study. The total
length of the bridge was 920 m, and the lengths of the three spans were 220, 480, and
220 m, respectively. The height of each pylon was 165 m. The girder was composed of
185 nodes and 184 beam elements, and each pylon had 34 nodes and 33 beam elements.
However, a truss element with no compression was used for the cable. Both ends of the
girder were in the roller-supported condition, and both bottoms of the pylon were in a
fixed condition. At the connections between the girder and pylon, a roller for the girder
and free for pylon were applied for the boundary condition. Table 1 presents the materials
and geometric properties of the main members. Abaqus 2022 is used for numerical analysis
of the validation model. Girder and pylon are modeled by the beam element, and the cable
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is modeled by a truss element with no compression. In addition, all analyses for the initial
shape, structural shape function, and target model are material and geometrically linear.

Figure 2. Validation model configuration.

Table 1. Material and geometric properties of main members.

Girder Pylon Cable

Elastic modulus E (kN/m2) 2.1 × 108 2.1 × 108 2.1 × 108

Sectional A (m2) 0.749 0.374 0.02
2nd moment of inertia I (m4) 1.446 3.143 −

Unit weight γ (kN/m3) 218.27 76.90 76.90

4.2. Initial Shape Analysis

The deformation and internal force of a cable-stayed bridge are critically dependent on
the cable force. Therefore, it is important to determine the cable force and initial equilibrium
state to minimize the deformation under dead loads. Various methods of initial shape
analysis, such as the trial-and-error approach, successive substitution method, and target
configuration under dead load (TCUD), have been suggested [33–35]. In this study, the
initial force method was used to determine the initial equilibrium state of the validation
model. In the initial force method, the geometric nonlinear analysis is repeated considering
the internal force of all members at the current iteration as an initial internal force at
the next iteration. Figure 3 presents the displacement of the girder center and pylon top
according to the number of iterations. The cable forces for the original model are zero,
and the appropriate cable forces that satisfy the equilibrium state under a dead load are
determined by iteration. As the iterations progressed, the displacement converged to zero.
The displacements of iteration 6 were 3.86 cm for the girder center and 0.38 cm for the pylon
top. This is negligibly small compared to the span length of 450 m. Therefore, the deformed
shape and internal force at iteration 6 were used for the results of the initial shape analysis.
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Figure 3. Pylon and girder displacement in each stage of initial shape analysis.

4.3. Target Model

In this study, the target models used for the validation of SRALMR were derived using
the numerical model. Figure 4 presents the deformed shape of the target model according to
the applied force, and the magnitudes of each force are presented in Table 2. The static load
is applied for target models, and the magnitudes of each load are determined for sufficient
variation of internal force compared to the initial internal force generated by self-weight.
Only one concentrated load is applied to each span for TM1 and TM2. Different loads act
on two points for TM3. TM4 is the most complex case, in which three different loads are
applied. The displacement, slope, and strain data of each target model were used as the
measurement data for the validation of SRALMR.

  
Target model 1 (TM1) Target model 2 (TM2) 

  
Target model 3 (TM3) Target model 4 (TM4) 

Figure 4. Deformed shape of target model.

Table 2. Details of applied force for target models.

Force (kN)

TM1 TM2 TM3 TM4

P1 5000 5000 5000 2000
P2 - - 3000 2500
P3 - - - 3000
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4.4. Structural Shape Function (SSF)

The SSF for the validation model was first derived to estimate the deformed shape
and the internal force. The SSF can be derived by applying a unit load on each node of
the girder, excluding the boundary conditions. The total number of SSFs was 181. As
indicated above, each SSF is composed of displacement, slope, and strain response data.
The horizontal and vertical directions were considered for the displacement data, whereas
only the longitudinal direction was considered for the slope and strain data. In addition,
the displacement and slope data were derived from the nodes, whereas the strain data
were derived from the elements. The number of nodes and elements were 253 and 290,
respectively. Therefore, the matrix size of the SSF established for the validation model is
1049 × 181.

4.5. Measurement Location

Each element of the response data of the target model at the limited points was used
as measurement data for validation in this study. The location of the measurement data can
significantly affect estimation accuracy. Therefore, an effective sensor placement method
has been studied. Kammer [36] first introduced the effective independence (EI) method,
which maximizes both the spatial independence and signal strength of the shape function by
maximizing the determinant of the associated Fisher information matrix. Papadopoulos and
Garcia [37] proposed a driving point residue (DPR) coefficient to overcome the drawback
of the EI method, which can select a location with a low energy content. However, the
EI and EI-DPR methods can only be applied when the number of shape functions is
larger than the number of measurement data. Therefore, the EI-DPR-distance method
proposed by Byun et al. [30] was adopted to estimate the deformed shape and internal force.
Equations (18)–(20) express the EI-DPR-distance method. The distance coefficient di is the
minimum value among the distances from the ith candidate location to each previously
selected sensor location. The ith candidate location with the highest effective independence
distribution EDi was selected as the sensor location, and the distance coefficient was
recalculated by considering the previously selected sensor locations. This procedure was
repeated until the selected number of locations for each response was equal to the planned
number of sensors. The EI-DPR-distance method can overcome the limitations of the EI
and EI-DPR methods and consider the effects of different response sensor locations.

[E] = [Φ]
(
[Φ]T [Φ]

)−1
[Φ]T (18)

DPRi =

Ns f

∑
j=1

Φ2
ij∣∣Φj
∣∣
max

(19)

EDi = diagonal([E])i × DPRi × di (20)

If the sensor location is determined via the EI-DPR-distance method, the sensor
layout case is numerous according to the number of each response sensor due to the
distance coefficient. For this reason, the only example of measurement location using one
displacement sensor and seven displacement sensors is represented in Figures 5 and 6,
respectively. As shown in Figures 5a and 6a, the measurement location of the slope is
different due to the measurement location of the displacement. In addition, Figure 5b,c
shows the different measurement locations of the strain due to the measurement location
of the slope. All combinations of response data are used for deformed shape validation
and only three combinations of response data are used for internal force validation.
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(a)  

 
(b)  

 
(c)  

Figure 5. Example of measurement location using 1 displacement sensor. (a) ω = 1, ø = 6, ε = 0;
(b) ω = 1, ø = 0, ε = 6; (c) ω = 1, ø = 6, ε = 6.

 
(a)  

 
(b)  

 
(c)  

Figure 6. Example of measurement location using 7 displacement sensors. (a) ω = 7, ø = 6, ε = 0;
(b) ω = 7, ø = 0, ε = 6; (c) ω = 7, ø = 6, ε = 6.
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5. Validation Results

In this study, the application of SRALMR was validated using a numerical model
of a cable-stayed bridge. The deformed shape and internal forces (girder axial force,
girder moment, and cable force) were estimated from limited multi-response data. The
estimated response shape (ERS) was then compared with the target response shape (TRS).
The accuracy of the estimation according to the number of measurement data was analyzed
using the normalized mean absolute percent error (NMAPE) represented in Equation (21),
where Ndo f is the number of DOFs.

NMAPE(%) =
100
Ndo f

Ndo f

∑
i=1

|TRSi − ERSi|
|TRS|max

(21)

5.1. Deformed Shape

In this section, the deformed shapes for TM1-4 are estimated using the SSF and EI-
DPR-distance methods to identify the internal force. The parameter for estimating the
deformed shape was the number of measurement data points for each response. The
number of measurement data varied from one to seven for the displacement and zero to
six for the slope and strain. The number of slope and strain data points increases equally.
Based on the EI-DPR-distance method, the position of the displacement sensors was first
determined by considering the location of the boundary conditions, and the position of
the slope sensors was determined according to the position of the displacement sensors.
Finally, the strain sensors were placed considering the displacement and slope sensors.

Figure 7 presents the NMAPE of EDS according to the number of measurements. The
NMAPE is calculated considering the vertical and horizontal deformed values of all the
nodes. The maximum NMAPEs are 11.04% for TM1, 11.10% for TM2, 11.51% for TM3, and
13.51% for TM4. The difference in the maximum NMAPE for each TM is not large because
the deformed shape of the pylon can be estimated using only one displacement data point
on the girder center. The NMAPE of the EDS decreased as the number of measurement data
points increased. The estimation results demonstrated that displacement data, including
vertical and horizontal values, are the most effective estimation responses. However, slope
and strain data, including only one-dimensional values, can also be used to enhance the
estimation accuracy. Namely, slope and strain data can reduce the number of expensive
GNSSs required to estimate the proper deformed shape. Figure 8 presents the position of
the sensors for each response and the enhancement of the estimation accuracy by the slope
and strain data. The target deformed shape (TDS), EDS with only one displacement data,
and EDS with one displacement data, six slope data, and six strain data are compared in
Figure 8.

  
(a) (b) 

Figure 7. Cont.
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(c) (d) 

Figure 7. NMAPE of the EDS according to the number of measurement data. (a) TM1; (b) TM2;
(c) TM3; (d) TM4.

 

Figure 8. Example of EDS for TM4.

5.2. Internal Force

The displacement value at a certain point of the structure has generally been used to
indirectly evaluate the performance of a structure by comparing it with a limited standard
displacement. Therefore, most studies have focused on the estimation of displacement at
a certain point, such as the girder center, using other response data. However, if internal
forces such as axial force and moment can be estimated, the performance of the structure
can be more precisely evaluated by comparing the internal force with the section strength.
Based on the stiffness method, the internal force of the structure can be derived using
displacement and rotation. The internal forces of each element were determined by using
the relative displacement and rotation of the end nodes. The deformed shape was estimated
in this study, including the relative displacement at all the nodes of the cable-stayed bridge.
Then, the internal forces (girder axial force, girder moment, and cable force) were estimated
by applying the deformed shape as a displacement force to the numerical model. The
following three cases according to the number of each response data are considered for the
estimation of the internal force: case 1 (ω 1, ø 0, ε 0), case 2 (ω 1, ø 6, ε 6), and case 3 (ω 7,
ø 6, ε 6). Case 1 represents insufficient data and case 3 represents sufficient data. The results
of case 2 were used to validate the effect of the slope and strain data. The displacement
measurement location of case 1 is the center of the two-span girder. The measurement
locations of case 2 and case 3 are shown in Figures 5c and 6c, respectively.

5.2.1. Girder Axial Force

The girder axial force that significantly occurs owing to the horizontal component of
the cable force should be considered to evaluate the performance of cable-stayed bridges.
Figure 9 presents examples of the initial, target, and estimated girder axial forces for TM4.
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The initial line represents the axial force derived from the initial shape analysis, considering
the dead load. The maximum axial force is generated at the junction between the girder
and pylon, and the minimum axial force is generated at the center of the girder.

 

Figure 9. Example of estimated girder axial force for TM4.

Figure 10 presents the normalized absolute percentage error (NAPE) of the axial
force along the girder span length for TM4. The estimation error of case 2 dramatically
decreases compared to that of case 1, and the estimation error of case 3 is almost zero. These
results indicate that slope and strain data can be used as additional data to improve the
estimation accuracy, and the exact axial force can be estimated if sufficient multi-response
measurement data are provided. The tendency for improvement in the estimation accuracy
is represented equally in Table 3. For all cases and TMs, the girder axial force of the
cable-stayed bridge can be properly estimated using SRALMR.

Figure 10. NAPE of estimated girder axial force for TM4.

Table 3. NMAPE of estimated girder axial force for each TM and case.

TM1 TM2 TM3 TM4

Case 1 1.471 2.275 2.819 2.382
Case 2 0.332 0.074 0.157 0.115
Case 3 0.002 0.021 0.022 0.019

5.2.2. Girder Moment

A girder moment is an important factor that should be considered when evaluating
the performance of bridges with long spans, such as cable-stayed bridges, where the
distribution of girder moment is complex owing to the vertical component of the cable
force. An example of the initial, target, and estimated girder moments for TM4 is shown
in Figure 11. In the initial shape analysis, the positive moment was mainly large at the
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girder center, and the negative moment was mainly large at the connection between the
girder and pylon. The final girder moment is then determined according to the location
and magnitude of the live load.

 

Figure 11. Example of estimated girder moment for TM4.

Figure 12 presents the NAPE of the moment along the girder span length for TM4.
Based on the stiffness method, the girder moment was determined by the relative dis-
placement and rotation of the end node at the element. Even a small error in the relative
displacement and rotation can cause a large moment-estimation error. SRALMR estimates
the deformed shape by minimizing the difference between the ARS and MD only at the
locations where the sensors are installed. Additionally, the concentrated load applied to
the target model caused a large relative displacement and rotation near the location where
the load was applied. Therefore, the estimation error for the moment is generally larger
than that for the axial force, and a large error occurs, particularly at the load locations. The
maximum NAPEs of the girder moment for TM4 were 80.15, 52.45, and 18.98% for case 1,
case 2, and case 3, respectively. The addition of measurement data significantly decreased
the estimation accuracy.

The NMAPEs for all cases and TMs are presented in Table 4. The estimated moments
for TM1 and TM2 considering one load were more accurate than those for TM3 and TM4
considering multiple loads because the moment distributions of TM1 and TM2 are simpler
than those of TM3 and TM4, respectively. In addition, using additional slope and strain
data, case 2 can estimate the girder moment more accurately than case 1 for all TMs, and
the estimation error of case 3 using a sufficient number of response data is lower than 5%.
Therefore, SRALMR can be applied to estimate the girder moment of a cable-stayed bridge
if a sufficient amount of response data can be used.

 

Figure 12. NAPE of estimated girder moment for TM4.
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Table 4. NMAPE of estimated girder moment for each TM and case.

TM1 TM2 TM3 TM4

Case1 6.024 7.127 12.891 12.410
Case2 2.240 3.261 6.647 8.035
Case3 0.345 2.238 3.458 4.164

5.2.3. Cable Axial Force

A cable that allows the bridge to have a long span is the main characteristic of a
cable-stayed bridge. Owing to this characteristic, the cable suffers a significant tension
force and should be considered when evaluating the performance of cable-stayed bridges.
The cable force that suffers only from tension can be easily determined using the relative
displacement at both ends of the cable. Therefore, the deformation of the girder and pylon
should be estimated precisely to determine the proper cable axial force.

Figure 13 represents examples of the initial, target, and estimated cable forces for TM4.
The target and estimated cable forces were determined by superposing the cable forces
generated by the dead and live loads. Owing to the dead load, the cable forces near both
ends of the girder and the girder center are relatively large. The NMAPE for each case for
TM4 is shown in Figure 14. A large estimation error of approximately 10% occurred at a
certain cable for case 1. However, the estimation error for case 2 dramatically decreases
compared to that of case 1, and the estimation error of case 3 is almost zero. Similar to
the girder axial force and moment, strain and slope data can be used as additional data to
improve the estimation accuracy for the cable force. In addition, the exact cable force can be
determined if sufficient multi-response data are provided. The tendency for improvement
in the estimation accuracy is represented equally in Table 5.

Figure 13. Example of estimated cable axial force for TM4.

 

Figure 14. NAPE of estimated cable axial force for TM4.

31



Sensors 2022, 22, 3745

Table 5. NMAPE of estimated cable axial force for each TM and case.

TM1 TM2 TM3 TM4

Case1 2.905 3.320 3.495 3.406
Case2 0.773 0.335 0.615 0.580
Case3 0.008 0.143 0.132 0.146

6. Conclusions

In this study, the applicability of SRALMR was extended to the cable-stayed bridge
that has complex structural behavior beyond the beam and truss previously validated
in [30]. To apply SRALMR to the cable-stayed bridge, an analysis scheme including initial
shape analysis was proposed, and performance was verified with four numerical target
models. The deformed shape of the cable-stayed bridge was estimated according to the
various combinations of limited displacement, slope, and strain data. Then, the girder
axial force, girder moment, and cable force were determined for three sensor layout cases
using the deformed shape as the displacement force. The numerical validation can be
summarized as follows:

1. The deformed shape of the cable-stayed bridge can be well estimated by SRALMR
using various combinations of displacement, slope, and strain data. In addition,
estimation results show that slope and strain data can enhance the estimation accuracy
and reduce the required number of displacement data.

2. From the deformed shape estimated by SRALMR, internal force (girder axial force,
girder bending moment, cable axial force) can be properly determined according
to the limited amount of response data. A greater amount of used response data
enhances the accuracy of internal force estimation.

The results of this study evidence the applicability of SRALMR to the cable-stayed
bridges that have complex behavior compared to beams and trusses. However, future
studies for validation using experimental data in laboratory and on-site schemes are
required to apply SRALMR to the real structure.
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Abstract: This paper presents a study on the suitability and accuracy of detecting structural cracks in
brick masonry by exploiting the breakage of ordinary silica optical fibers bonded to its surface with
an epoxy adhesive. The deformations and cracking of the masonry specimen, and the behavior of
pilot optical signals transmitted through the fibers upon loading of the test specimen were observed.
For the first time, reliable detection of structural cracks with a given minimum value was achieved,
despite the random nature of the ultimate strength of the optical fibers. This was achieved using
arrays of several optical fibers placed on the structural element. The detection of such cracks allows
the degree of structural danger of buildings affected by earthquake or other destructive phenomena
to be determined. The implementation of this technique is simple and cost effective. For this reason,
it may have a broad application in permanent damage-detection systems in buildings in seismic
zones. It may also find application in automatic systems for the detection of structural damage to the
load-bearing elements of land vehicles, aircraft, and ships.

Keywords: structural health monitoring; seismic assessment; detection of structural cracks; masonry
buildings; optical fiber; distributed optical fiber sensors

1. Introduction

1.1. Earthquakes: A Need for Rapid Assessment of Structural Damage

Earthquakes destroy buildings and cause the loss of human lives in various regions of
the world. The crisis situations that follow have many complex aspects [1]. Among them,
a quick assessment of damage to buildings and the scope of destruction in the affected
region is crucial to making the right decisions. Thus, it is better to have rapidly available,
“good enough” analysis, rather than “perfect” information and analysis that comes too
late. Late analysis, no matter how good, is of little use in designing immediate life-saving
interventions” [2].

Modern buildings are usually quite resistant to damaging factors, but some still suffer
from strong earthquakes, the degradation of materials, land sinking, etc. [3,4]. Moreover,
many old buildings are exposed to great risks from earthquakes and other damaging
factors [5,6]. The rapid detection of partial, frequently non-visible damage to buildings
is particularly important since the degree of risk that it poses is high. However, such a
risk is not always visible to the occupants of the buildings or to rescue teams. Moreover,
timely information allows decision-makers to take appropriate measures, and thus avoid
more serious consequences. Permanent seismic structural health monitoring systems can
significantly reduce the human and economic losses from earthquakes. Given the millions
of public and residential buildings, and the common dwellings in seismic zones, installing
permanent structural health-monitoring systems on such buildings is feasible, provided
that such systems are simple and cost-effective [7].

This paper presents studies on the suitability and accuracy of detecting structural
cracks in brick masonry by exploiting the breakage of ordinary silica optical fibers bonded
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to its surface. Brick masonry is common in buildings in many locations where baked clay
brick is the main building material [8,9]. Furthermore, virtually the same technique can be
applied to other masonry structures found worldwide [10,11].

1.2. Methods for Detecting Damage to Civil Engineering Structures

There is a variety of visual, mechanical, electrical, acoustical, computer vision, global
dynamic behavior, and other methods that are used for damage detection in civil engi-
neering structures [12–21]. Nevertheless, many are susceptible to the adverse effects of
moisture, chemical corrosion, electromagnetic interference, and lightning discharges. These
factors make it rather difficult to use these tools on large structures, especially outdoors.

Over the past few decades, optical fiber sensors have reached a high level of sophisti-
cation and performance, and they are increasingly used for structural health monitoring
(SHM). The advantages of using optical fiber sensors in civil engineering are numerous.
Firstly, the optical fibers (shown schematically in Figure 1) are made of dielectric materials,
and, therefore, they do not conduct electricity and are immune to electromagnetic interfer-
ence. Secondly, they are chemically inert, and therefore immune to adverse climatic factors.

  
(a) (b) 

Figure 1. Schematic drawings of ordinary communication-grade silica-core silica-clad optical fibers:
(a) multimode; (b) single mode.

The optical-fiber sensor systems that are most commonly used for SHM employ Opti-
cal fiber Bragg gratings (FBGs), optical frequency domain reflectometry (OFDR), Brillouin
scattering optical time-domain analysis (BOTDA), and optical fiber Fabry–Perot resonators
(FPRs). These optical-fiber sensor systems are highly sensitive to strain and have a dis-
tributed sensing capability (for details, see the reviews [22–28] and references therein).

Monitoring strain in structural elements is a useful way to confirm and ensure that
bridges, buildings, etc., are indeed behaving as expected. Even in cases of seemingly
proper structural behavior, these sensors provide useful information about the degree
of coincidence between the predicted and observed behavior of the structure. Moreover,
monitoring strain in existing buildings makes it possible to ensure their safety during
nearby construction work or other hazardous activities. In addition, monitoring strain
in buildings threatened by environmental or man-made factors helps specialists to take
timely remedial measures. Some buildings from the past centuries are already equipped
with distributed optical fiber sensor systems that provide useful information about the
structural behavior of the buildings [29–33].

Moreover, distributed optical fiber sensors provide indirect information about struc-
tural damage. Anomalous strain concentrations in the vicinity of cracks indicate the
cracking of structural elements [34–40]. This allows specialists to locate cracks and estimate
their width using strain measurements and indirect numerical methods developed for this
purpose. Such estimations have been carried out on reinforced concrete (RC) beams [34–38].
However, the maximum width of the cracks evaluated using this technique did not exceed
0.4 mm. In a previous study, structural cracks were detected in masonry, but the relationship
between an anomalous strain and the respective crack width was not established [40].
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Despite the impressive achievements in assessing the strain and temperature distri-
bution in structures with the help of FBG, BOTDA, OFDR, and FPR-based sensors, the
drawbacks of these sensors include the high cost of optical signal analyzers (also called
interrogators) and the FBG, OFDR, and FPR gauges (the estimated cost of a high-resolution
OTDR is USD 30,000–40,000; the cost of an FBG interrogator is USD 10,000–50,000; the
cost of an OFDR interrogator is USD 60,000–100,000; and the cost of a high-performance
BOTDA analyzer reaches USD 100,000, with the cost being highly dependent on the specific
configuration and technical specifications. In addition, FBG and OFDR sensor systems
require special optical fibers with embedded Bragg gratings, which have an estimated cost
of USD 500–1000 per 100 m), as well as the need for specially trained personnel to work
with these systems and interpret the results of the strain measurements.

Given the high cost and complexity of the said optical fiber sensor systems, FBG,
BOTDA, OFDR, and FPR-based sensor systems are mainly used to monitor new original
structures and precarious buildings to ensure that they behave properly and safely in real-
world conditions [41,42]. For mass application in permanent damage-detection systems,
which this work targets, only a much simpler and cheaper method of detecting structural
damage is suitable.

1.3. Cracking of Load-Bearing Structural Elements

The cracking of the load-bearing structural elements of buildings is a significant
indication of structural damage. The degree of danger of a crack is influenced by many
factors—the type of building, its structural features, and other factors. Generally, the
wider the crack, the greater the structural risk that it poses. There is no generally accepted
classification of cracks in buildings. Various manuals and handbooks treat the danger
posed by cracks differently [43–45]. In most documents, microcracks and cracks less than
1 mm wide are considered insignificant. According to the manual in [43], cracks from 1 mm
to 3 mm wide in masonry present a medium structural risk, while in the case of wider
cracks, the structural risk is high. The handbook in [44] states that cracks wider than 3 mm
in concrete and masonry pose a serious structural risk and require a detailed structural
evaluation. This is in contrast with the classification in [45], which considers that only
a few 3-millimeter-wide cracks or a single crack over 5 mm wide in masonry buildings
present “serviceability” issues. A stringent crack-width limit provides more safety. For
this reason, this work aimed to detect cracks with a width of 1 mm or more, as they are
capable of posing a structural hazard in masonry after earthquakes and causing other
damaging effects.

1.4. Optical Fiber Breakage as an Indication of Cracking of Structural Elements

The appearance of structural cracks can be indicated by the breakage of optical fibers
that are attached to the element or embedded in it and cross the crack. A fiber break causes
a sharp decrease in the intensity of optical radiation passing through the fiber, which is
easily detected by appropriate instruments. This method was proposed and applied to
detect cracks in steel and aluminum components, as well as in composite materials, as early
as the 1980s [46,47]. However, it was believed that this method produced poor results in
detecting structural damage [48]. This opinion may be the result of the following:

- First, the optical coupling between the two parts of a broken fiber depends not only
on their axial displacement but also on many random factors, including the angle
between the crack and the fiber axis, the shear displacement of the two parts, and the
roughness of their end faces. Therefore, signal loss cannot be uniquely related to the
expansion of the crack.

- Second, optical fibers, as a brittle material, break at slightly different structural crack
widths each time (this property is discussed in detail in the following sections).

- Third, the pioneering work did not demonstrate a practical cost-effective implemen-
tation of this method. These might be the three main reasons as to why it has never
been used to detect structural damage in buildings.
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1.5. Ultimate Strength of Optical Fibers

The ultimate strength is the maximum stress that a material can withstand before
rupture. The ultimate tensile strength of optical fibers varies among supposedly identical
specimens. As with any brittle material, the ultimate tensile strength of optical fibers of
silica depends on the size and distribution of flaws, which are random [49,50]. Therefore,
a breakage of an optical fiber cannot be attributed to a single strain or a single structural
crack opening. Instead, a probabilistic rather than a deterministic definition describes the
width of a structural crack when the crack is detected through a breakage of an optical
fiber [49,51].

It should be noted that silica optical fibers are subjected to a tensile proof test at a
specific stress of σpt = 0.69 GPa (100 kpsi) at production facilities. That is, the silica optical
fibers available on the market are guaranteed to withstand a stress of σpt = 0.69 GPa. This
stress corresponds to a tensile force of F = 8.6 N in the case of a silica-core silica-clad optical
fiber with a cladding diameter of d2 = 125 um. Furthermore, the ultimate tensile strain,
εu, of thin silica optical fibers is much higher than that of brick masonry, with their values
being about 0.035 and 0.0001, respectively [52,53]. That is, masonry cracks are under a
much lower strain than the silica optical fibers bonded to the masonry. Therefore, the
optical fiber bonded to masonry initially stretches under masonry deformation and the
onset of small structural cracks. It then breaks at a certain crack width, δc. A particular
crack width, δc, depends on the ultimate strain of the optical fiber, εu; the bond between
the silica cladding and the plastic coating; the coating material and its stiffness; the bond
between the coating and the binder; and the stiffness of the binder [54–58].

1.6. The Authors’ Previous Research

The authors previously investigated the possibility of detecting cracks in RC beams
using fiber breaks [59–61]. Several embedding techniques were tested and twelve types of
optical fibers were studied both in terms of their survival rate and their abilities to detect
cracks. Large-diameter optical fibers successfully detected the progressive cracking of the
RC beams under increasing load up to the ultimate failure of the beams. However, the
correlation between fiber breakage and crack width could not be established due to the
impossibility of assessing the width of internal cracks in a concrete beam.

Moreover, the prospects of detecting structural cracks in brick masonry using the
present method were investigated in [62]. In this work, optical fibers were bonded to
separate baked clay bricks that were pressed tightly together and laid on a platform. Then,
the bricks were pushed apart at a strain rate of 0.25/min until the optical fiber broke [63].
Optical fibers of silica core, silica cladding, various coating materials, and various adhesives
were tested. The most rigid bonding was achieved in the case of acrylate-coated optical
fibers bonded to bricks with an epoxy adhesive. Further progress was described in the
conference publication [64], which reported the detection of cracks with a minimum width
of 1 mm in masonry using optical fibers.

1.7. Objectives

The general objective of this work was to evaluate the suitability and accuracy of
detecting structural cracks in brick masonry by exploiting the breakage of ordinary silica
optical fibers bonded to its surface. Of particular interest were the behavior of optical signals
upon the deformation and cracking of the test specimen and the relationship between fiber
breakage and the crack width that caused the breakage.

The specific objectives included the choice of the most suitable optical fiber for this
application, the fabrication of a brick masonry test specimen, the instrumentation of the
specimen with an array of optical fibers, the design and implementation of the monitoring
system, and the load testing of the sample. Moreover, the specific objectives included
analyses of the results: deformations of the specimen under load, the behavior of the optical
signals under the deformation and cracking of the test specimen, and a statistical and
probabilistic evaluation of the results.
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2. Materials and Methods

2.1. Choosing the Right Optical Fiber

There are a variety of silica-core silica-clad optical fibers of different core and cladding
diameters available on the market. The silica core and cladding constitute a monolithic
silica member. The tensile strength of a silica-core silica-clad optical fiber depends on the
overall diameter of the silica member, d2, as well as on the ultimate stress of the fiber, σu. In
practice, the tensile strength of 20 m fiber samples averages about 4 GPa [65]. The average
ultimate strength, σu, increases with a decrease in the length of fiber samples, since the
probability of a flaw in a sample is inversely proportional to its length.

However, the type of coating material affects the strength of optical-fiber bonding to
a structural element. Based on the above considerations and previous research [61], and
with the aim of detecting structural cracks in the mm range [43,44], acrylic-coated optical
fibers of the smallest available cladding diameter d2 = 125 um were chosen for this study.
Among the fibers in this group, the optical fibers with the largest available core diameter
d1 = 105 um were chosen and used (a large core diameter facilitates the efficacious coupling
of inexpensive light sources—light-emitting diodes (LEDs) and optical fibers). The optical
fibers chosen had an acrylate coating with a diameter of d3 = 250 um, numerical aperture of
NA = 0.22, and optical attenuation of α = 15 dB/km @ λ = 633 nm.

The suitability of these optical fibers for the present application was verified by a
simple tensile test, similar to that in [62], on 20 samples of these optical fibers. The test
consisted of bonding an optical fiber sample to two separate ceramic bricks and pushing
the two bricks apart at a strain rate of 0.25/min until the breakage of the fiber [63]. This
led to a steep decrease in the pilot optical signal transmitted through the fiber to almost
zero. The test yielded a minimum detected crack of about 1 mm wide, a mean structural
crack width of M = 2.34 mm, a variance of σ2 = 0.79 mm2, and a standard deviation of
σ = 0.89 mm (see Figure 2). (The zero probability of failure at a structural crack width
range of 0 < δc 1 mm is due to the screening out of optical fibers that failed the proof tests of
σpt = 0.7 GPa at the production facility.) These cracks fitted a range of 1 mm to 5 mm wide,
which corresponds to a medium-to-high structural hazard for masonry [43,44]. Therefore,
the above-named optical fiber was used in this work.

 
Figure 2. Probability of breakage of the optical fiber, p, as a function of structural crack width that
causes the crack, δc, obtained by performing a simple tensile test and determined for sequential
intervals of a width of 0.5 mm.

2.2. Test Specimen

A clay brick masonry specimen was designed, fabricated, instrumented with the
optical fibers, and subjected to a vertical load of the magnitude encountered in earthquakes.
It was a stack with dimensions of 520 (W) × 520 (D) × 510 (H) mm3 of baked clay bricks of
60 × 120 × 240 mm3 and a sand–cement mortar (proportion 2:1, type II Portland cement
and fine pumice sand). All the aforesaid components are typical of the clay brick masonry
elements of dwellings and other brick masonry structures in central Mexico. To achieve
a uniform compression load distribution on the brick stack, two RC platens, each about
100 mm thick, were built on the top and bottom of the stack. There were five reinforcing
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steel bars of diameter 3/4′′ in each platen. The total height of the stack with two platens
was 710 mm. The stack is shown in Figure 3a–c.

  
(a) (b) 

 
(c) 

Figure 3. Brick masonry specimen instrumented with the optical fibers: (a) schematic; (b) photograph;
(c) an enlarged view of the points of connection of optical fibers to the specimen (photos). (1) Brick
masonry specimen; (2) segments of optical fibers bonded to masonry that serve as crack detectors
(not visible under opaque epoxy adhesive); (3) RC platen; (4) tray with free ends of the optical fibers;
(5) free ends of the optical fibers; (6) points of connection of the optical fibers to the masonry specimen.

The mortar of the brick specimen was cured for 28 days. Then the specimen was
instrumented with the optical fibers, transported to the load machine, and installed in
its test frame, as shown in Figure 4a. Moreover, the specimen was instrumented with
eight electrical linear variable displacement transducers (LVDTs), in compliance with
compression test methodology generally accepted in structural mechanics. The LVDTs were
installed on the four faces of the brick specimen in the horizontal and vertical directions, as
shown in Figure 4b,c. The transducers measured the horizontal and vertical deformations
of the specimen in the central part of each lateral face at a length of 250 mm.

2.3. Optical Fiber Array

Segments of optical fibers, each about 5 m long, were prepared in advance. The ends
of the optical fibers were cut at a right angle, and the quality of the cut and the integrity of
the fibers were checked. The optical fibers were placed on a special tray that protected the
fibers from possible damage, and they were delivered to the test site. The specimen was
instrumented with twelve optical fibers. The optical fibers were bonded to the specimen
over its perimeter at several (six) equidistant horizontal planes. A horizontal position for
the optical fibers was chosen because cracks in masonry stacks subjected to a compression
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load arise predominantly in the vertical direction. Two optical fibers were bonded near
each other in each of the six planes of the specimen at about a 70 mm distance, as shown
schematically in Figure 3a, using a two-component industrial-grade epoxy adhesive.

 
(a) 

  
(b) (c) 

Figure 4. Brick masonry specimen: (a) instrumented with the optical fibers and LVDTs and installed
in the test frame of the load machine; (b) the specimen front face (A); (c) the specimen back face
(C). (1) Universal load machine; (2) brick masonry specimen; (3) opto-electronic monitoring system;
(4) horizontal LVDT; (5) vertical LVDT.

The optical transmission of all 12 fibers was verified after bonding and again after
24 h. The aim was to identify possible damage to the optical fibers that could occur during
bonding to the brick specimen or could be caused by the volumetric shrinkage of the
adhesive due to its polymerization. The check was carried out with a common LED lamp.
Each optical fiber was illuminated at one end, and the light coming out of the other end was
observed. The inspection showed that all the fibers transmitted light normally; that is, none
of the fibers were damaged during the process of bonding and polymerization shrinkage.
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2.4. Opto-Electronic Monitoring System

To monitor the integrity and breakage of the optical fibers of the crack detection array,
a special optoelectronic system was used, the configuration of which is schematically shown
in Figure 5.

Figure 5. Schematic diagram of the opto-electronic monitoring system: (1) optical fibers; (2) test speci-
men; (3) array of 12 optical fibers for detection of structural cracks; Tx—optical transmitter, 12-channel;
Rx—photoreceiver, 12-channel; DAQ—data acquisition module (multichannel analog-to-digital con-
verter); CPU—computer central processing unit for storing the measured optical transmission in
digital form; Display—an indicator of the structural damage in visual form.

The system monitored the intensity of the optical radiation transmitted through all
optical fibers of the array by the multichannel optical transmitter, Tx. The breakage of the
optical fiber led to a decrease in the signal intensity. The signals of all optical fibers were
received by the multichannel optical receiver, Rx, and converted from analog to binary
(two-level) form, that is, “1” or “0”, by comparing the signal values against a given value.
The zero level was interpreted as a structural crack, and the state of the corresponding color
indicator on the display changed from green to red.

The optical radiation generated by the transmitter Rx was a continuous 1 kHz sine op-
tical pilot signal. The light sources were LEDs operating at a wavelength of 633 nm (visible
red light). Each LED was coupled to one of the optical fibers of the array. The outputs of
the optical fibers were connected to the respective photoreceivers. Each measuring channel
had a threshold amplitude device, the purpose of which was to automatically signal a fiber
break. This device turned on a light indicator on a special display when the signal dropped
below a certain level. The threshold was set at 50% of the nominal, as it was assumed
that such a threshold would minimize the false alarms of the signaling system caused by
possible fluctuations in light sources and all kinds of noise.

For this experiment only, the monitoring system was complemented with a 16-channel
data acquisition device (DAQ) and a CPU that stored the data of all measuring channels
in digital form. It should be noted that neither a DAQ nor a CPU is needed for a practical
crack detection system. Instead, a practical system would require a means of transmitting
alarms to the system users. (The cost of all elements and components of this monitoring
system is about USD 300. The wholesale cost of the multimode optical fiber is about USD
50 per 1 km.).

2.5. Structural Load Test

The compression load test was carried out by means of a 200 kN universal load
machine. The test was carried out in several stages of loading and unloading, until the
specimen began to split off (at F = 1334 kN). The vertical and horizontal deformations of
the specimen were measured by the electrical LVDTs installed in the central part of each
lateral face of the specimen over a length of 250 mm.

The optical signals of all fibers were measured continuously by the above monitoring
system, stored in the CPU, and post-processed after finalizing the test. The breakage of
the optical fibers was easy to observe visually due to the red light emanating from the
broken optical fibers. Photographs were taken of the locations where the fiber breakage

42



Appl. Sci. 2022, 12, 6885

occurred. The width of the structural cracks causing the fiber breakage was determined by
measuring the width of the cracks in the photographs. With this method, the actual width
of the cracks may be somewhat smaller than that measured, since the cracks may expand
from the time the fiber breaks to the time the photo is taken. Nevertheless, the use of other,
more accurate methods to measure the width of structural cracks at the moment of fiber
breakage requires a much more complex and expensive infrastructure, and was therefore
not possible in this experiment.

3. Results

3.1. Data Overview

The changes in the load and deformation of the specimen, measured by the electrical
LVDTs in the central part of each face of the specimen over a length of 250 mm, are repre-
sented by graphs in Figure 6. Some differences in the horizontal and vertical deformations
were observed on the four lateral faces of the specimen. These can be explained by the
heterogeneity of the materials, the geometric asymmetry of the specimen, and eccentric
loading. It is difficult to avoid these factors in these types of tests.

 
(a) 

 
(b) 

 
(c) 

Figure 6. Specimen behavior under load: (a) variation in compressive force, F; (b) specimen vertical
deformation, dv; (c) specimen horizontal deformation, dh, with time, t, as measured with electrical
LVDTs at the center of each specimen lateral face—A, B, C, and D—during the test.
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All vertical and horizontal deformations of the specimen returned to zero in the first
three cycles of the load after the vertical compressive force F was removed. This indicates
an elastic behavior of the specimen under a vertical compressive force of F ≤ 530 kN. With
F > 530 kN in the last load cycle, the vertical deformation increased non-linearly with force
F. Such a behavior was especially noticeable on faces C and D of the specimen, which
showed the change from an elastic to a plastic deformation regime.

It is worth noting that the electrical LVDT sensors did not detect the onset of cracks in
the specimen, because they were installed in the center of the four faces of the specimen,
while cracks formed on one of its corners. At the same time, the development of structural
cracks led to the breakage of the optical fibers crossing the cracks, and accordingly, to a
decrease in the output signals of the monitoring system. In some optical fibers, the breakage
was observed visually due to the red light coming from the broken optical fibers (Figure 7).

  
(a) (b) 

Figure 7. Broken optical fibers in locations where they intersect structural cracks: (a) completely
broken optical fibers; (b) optical fibers with broken silica cores and claddings that stay in the intact
but stretched elastic coatings.

The plots in Figure 8 show the variation in the applied vertical compressive force on
the stack, F, and the respective dimensionless amplitude of the output signal, A, of the
twelve optical fibers with time, t. The graphs of the dimensionless amplitude of the signal,
A, are displayed in groups of four for levels 1 and 2, 3 and 4, and 5 and 6 of the specimen.

The sharp decrease in the signal amplitude observed in these diagrams was caused
by optical fiber breaks, complete or partial, due to the occurrence of structural cracks.
There are several characteristic points on the plots in Figure 8, denoted with the lowercase
italic letters q, r, s, t, and u. Some optical fibers (1a, 1b, 3a, 3b, 4a, and 4b) broke and
consequently decreased their optical transmission at a load of about 400 kN in the fourth
load cycle (interval q-r), and then they partially recovered it when the load returned to zero
(interval r-s). Other optical fibers (2a, 2b, 5a, 5b, 6a, and 6b) sharply decreased their optical
transmission at a larger load of about 620 kN in the fifth load cycle (point u).
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(a) 

 
(b) 

 
(c) 

Figure 8. Plots of applied vertical compressive force F (—) and dimensionless amplitude of the output
signal A (color lines) of the optical fibers mounted at different specimen levels vs. time t: (a) levels
1 and 2; (b) levels 3 and 4; (c) levels 5 and 6.

The observed differences in the behavior of some of the optical fibers can be attributed
to the structural inhomogeneity of the specimen. This led to inhomogeneous cracking of
the specimen under load, and the first structural cracks developed in the most strained
parts of the specimen. The optical fibers that crossed the structural cracks were stretched,
and their silica members were broken, while the elastic plastic coatings were stretched
but not broken. The optical transmission decreased but was not completely interrupted
(interval q-r). With the load dropped to zero, the structural cracks partially closed in the
generally elastic specimen. The elastic plastic coatings of the optical fibers contracted and
brought the end faces of the broken optical fibers back to a closer position. In this way,
optical transmission was partially restored in the said optical fibers (point t). In the fifth
load cycle, the structural cracks in the specimen opened again and continued to grow. At a
load exceeding 620 kN, the optical transmission of all optical fibers dropped sharply (point
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u). This was caused by the onset and widening of two large vertical structural cracks in
the two adjacent lateral faces of the specimen. The width of these cracks varied along the
sample height and ranged from 3 mm to 4.6 mm. These cracks caused the breakage of
all optical fibers. However, the optical signal of some fibers (5a and 6a) did not vanish
completely, as the plastic coatings of these fibers stretched but did not break. As can be seen
in Figure 7, the coatings kept both parts of the fibers’ broken silica members in a position
that provided a finite optical coupling of the two parts and a non-zero amplitude of the
optical signal.

3.2. Statistical and Probabilistic Evaluation

Statistical analyses yielded a mean structural crack width of M = 2.68 mm, a variance
of σ2 = 1.12 mm2, and a standard deviation of σ = 1.06 mm (n = 12). The relationship
between the probability of the optical fiber breakage, p, and the width of the structural
crack in the test specimen that caused the fiber breakage, δc, determined for sequential
intervals of a crack width of 0.5 mm is illustrated in Figure 9.

 
Figure 9. Probability of breakage of the optical fiber, p, as a function of the width of the structural crack
that caused the fiber breakage, δc, measured in the test specimen of brick masonry and determined
for sequential intervals of a width of 0.5 mm.

As can be seen in the diagram, all optical fibers broke at cracks 1–5 mm wide. Half
of all of the optical fibers broke at cracks 1–2.5 mm wide, and three-quarters of all optical
fibers broke at cracks 1–3.5 mm wide. Cracks of this width present a medium-to-severe
structural hazard, which is targeted in this work.

Furthermore, the probability that at least one fiber of an array of n optical fibers breaks
due to a crack with a width in the range Δδc, P1, is [66]

P1 = 1 − (1 − p)n (1)

where p is the probability of the optical fiber breakage in the range Δδc (see Figure 9), and n
is the number of optical fibers.

Table 1 shows the probability of breaking at least one fiber in an array of n optical
fibers, P1, calculated for some ranges of crack widths Δδc. Calculations were made for the
detection arrays of 1, 2, 4, 6, 8, 10, and 12 optical fibers.

The data in Table 1 show that the probability of the breakage of at least 1 fiber of an
array of 12 optical fibers, due to a crack in different parts of the 1–5 mm range, is high
(0.888 < P1 < 1.0). A high probability of the breakage of at least one fiber exists even for
rather small cracks 1–1.5 mm wide (P1 ∼= 0.888). Reducing the size of the detection array
even by a factor of two (to 6 fibers) reduces the probability P1, but only the probability of
detecting the narrowest cracks degrades significantly (P1 = 0.665@Δδc = 1–1.5 mm). The
above data illustrate the high probability of detecting cracks with detection arrays of a
moderate size, as well as the possibility of trade-off between the size of the detection array
and the desired probability of detecting cracks of a certain width.
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Table 1. Probability that at least one fiber of an array of n optical fibers breaks, P1, calculated for
several ranges of crack widths Δδc and detection arrays of 1, 2, 4, 6, 8, 10, and 12 optical fibers.

Number of Optical
Fibers of the

Detection Array

The Range of Crack Width in Which the Fiber Break Occurs, Δδc
(mm)

n 1–1.5
(p = 0.167)

1–2
(p = 0.333)

1–3
(p = 0.583)

1–4
(p = 0.833)

1–5
(p = 1.0)

Probability that at least one fiber of an array of n optical fibers breaks, P1

1 0.167 0.333 0.583 0.833 1.0

2 0.306 0.556 0.826 0.972 1.0

4 0.518 0.802 0.970 >0.999 1.0

6 0.665 0.912 0.995 >0.999 1.0

8 0.767 0.961 >0.999 >0.999 1.0

10 0.838 0.983 >0.999 >0.999 1.0

12 0.888 0.992 >0.999 >0.999 1.0

4. Discussion

Silica-core silica-clad optical fibers can be installed in new and existing buildings and
serve as artificial “nerves” that indicate structural failure, just as nerves indicate pain in the
body, during the lifetime of the buildings. This technique is simple and inexpensive, for
the following reasons:

- The use of ordinary optical fibers of silica without any built-in special sensing elements,
such as gratings and tapers. This contributes to the low cost of the optical fiber
detector array.

- The use of multi-mode optical fibers rather than single-mode optical fibers. Multi-
mode optical fibers have a large core diameter, which allows the use of inexpensive
and reliable LEDs instead of expensive and delicate semiconductor lasers needed to
efficiently launch light into the small diameter core of single-mode optical fibers.

- The use of optical fibers with their original polymer coating. The removal of the poly-
mer coating used in the manufacture of FBGs with subsequent recoating compromises
the strength of the optical fiber. Keeping the original coating intact contributes to the
long service life and reliability of optical fibers.

- The use of a sufficiently large number of optical fibers in the crack detection array.
This makes it possible to reliably detect structural cracks of a certain width.

- The use of a binary conversion and interpretation of the optical signals.
- The use of time division multiplexing (TDM) to monitor the optical transmission of all

fibers of the crack detection array. TDM is much simpler and cheaper than the optical
spectral multiplexing used in distributed FBG and OFDR sensors.

Many of the characteristics of this method, as well as the singularities of its application
in buildings of different types, require further collaborative study by experts in civil engi-
neering, and measurement and information technologies. It is preferable to install optical
fiber arrays at locations of maximum stress and in the direction of the maximum equivalent
strain. This ensures the predominantly perpendicular crossing of the optical fibers and
the structural cracks. For a given crack, signal loss with a perpendicular crossing is less
than that in other cases. More specifically, the signal loss depends on the angle between the
crack trace and the fiber axis. Therefore, the expected geometry of the intersection of a fiber
with a crack should be taken into account when placing optical fibers on structures. Typical
crack patterns in structures under different loadings are generally well known. Moreover,
proper stress and strain fields can be obtained by modeling the stress–strain state in the
most loaded areas of the structure using numerical methods, such as the finite element
method and artificial neural networks [67,68].
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There are many options for informing users of the occurrence of structural risk. The
simplest form is to notify users about the appearance of a new crack on the monitored
building using special displays and sirens at the facility, automatic calls, etc. More ad-
vanced and more efficient forms involve the connection of various damage-monitoring
modules to data processing facilities by means of different kinds of communication links or
networks [69].

5. Conclusions

In this work, cracks in a masonry specimen were detected by exploiting the breakage
of ordinary silica optical fibers bonded to its surface. For the first time, a reliable detection
of structural cracks with a width exceeding a given minimum value was obtained despite
the random nature of the ultimate strength of the optical fibers. This was achieved using
arrays of several optical fibers placed on the structural element. This paper established
a relationship between the number of fibers in the detector array and the probability of
detecting a structural crack of a given width. A fairly moderate number of optical fibers
(about 6 to 12) was sufficient to detect cracks 1–3 mm wide with a probability of more than
0.99, while the probability of detecting cracks with a width of 1–5 mm tended toward unity.

Overall, this work confirmed the suitability of ordinary silica optical fibers for reliably
assessing cracks in masonry that poses a structural risk. The simplicity of this technique and
the low cost of ordinary optical fibers make it suitable for broad application in permanent
damage-detection systems in buildings in seismic zones. This technique can also potentially
be applicable in the detection of structural damage to the load-bearing elements of large
land vehicles, aircraft, and ships.

Further work is needed to test this method in various scenarios, to better characterize
it, and to obtain more data. In addition, our future objectives are to explore the possibility
of detecting narrower and wider structural cracks than those detected in this work.
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Abstract: Intelligent cementitious materials integrated with carbon nanofibers (CNFs) have the
potential to be used as sensors in structural health monitoring (SHM). The difficulty in dispersing
CNFs in cement-based matrices, however, limits the sensitivity to deformation (gauge factor) and
strength. Here, we synthesise CNF by chemical vapour deposition on the surface of calcium oxide
(CaO) and, for the first time, investigate this amphiphilic carbon nanomaterial for self-sensing in
mortar. SEM, TEM, TGA, Raman and VSM were used to characterise the produced CNF@CaO. In
addition, the electrical resistivity of the mortar, containing different concentrations of CNF with and
without CaO, was measured using the four-point probe method. Furthermore, the piezoresistive
response of the composite was quantified by means of compressive loading. The synthesised CNF
was 5–10 μm long with an average diameter of ~160 nm, containing magnetic nanoparticles inside.
Thermal decomposition of the CNF@CaO compound indicated that 26% of the material was composed
of CNF; after CaO removal, 84% of the material was composed of CNF. The electrical resistivity of
the material drops sharply at concentrations of 2% by weight of CNF and this drop is even more
pronounced for samples with 1.2% by weight of washed CaO. This indicates a better dispersion of the
material when the CaO is removed. The sensitivity to deformation of the sample with 1.2% by weight
of CNF@CaO was quantified as a gauge factor (GF) of 1552, while all other samples showed a GF
below 100. Its FCR amplitude can vary inversely up to 8% by means of cyclic compressive loading.
The method proposed in this study provides versatility for the fabrication of carbon nanofibers on a
tailored substrate to promote self-sensing in cementitious materials.

Keywords: carbon nanofibers; self-sensing; CVD; piezoresistivity

1. Introduction

Self-sensing concrete refers to concrete materials and structures possessing intrinsic
properties that sense various physical and chemical parameters. This property can be
harnessed for traffic monitoring [1,2] and structural health monitoring (SHM), including
monitoring of load [3], strain sensing [4,5], crack formation [6], freeze-thaw [3], electric
magnetic shielding [7] and self-healing performance [8]. To achieve sensing, functional
fillers are distributed in the cementitious matrix in order to promote electrically conductive
properties [9]. The resultant self-sensing composite is easily prepared and offers good
compatibility with concrete structures, making it a more attractive alternative to conven-
tional sensing devices [5]. Among the different types of conductive fillers, steel and carbon
materials are commonly used, as recently discussed in several reviews [9,10]. Although
the macroscale of the former allows for easier production and use, as well as a lower cost,
its main drawback is associated with its susceptibility to corrosion [11]. Carbon nanoma-
terials, on the other hand, offer high electrical conductivity and durability [9]. Graphene
nanoplatelets [12,13], carbon nanotubes (CNTs) [14–16] and carbon nanofibers (CNFs)
alone, as well as the synergic effect of the combination containing these materials [17–19],
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are examples of conductive fillers used to promote the electrical properties of cementitious
systems. Beyond increasing conductivity, the inclusion of carbon-based nanomaterials in
cementitious matrices has been gaining attention due to its contribution to accelerating
hydration [20] and its effect on durability and mechanical properties [21].

Percolation theory is used to describe the electrical behaviour of a system containing a
conductive filler. Above a critical concentration, also known as the percolation threshold,
these functional fillers form a conductive network inside the matrix [7], leading to changes
in the electrical properties as external forces change. Nanofibrous materials, such as
CNFs/CNTs, have very high aspect ratios and specific surface areas, resulting in percolation
at lower concentrations than for other functional fillers [22]. However, because of the high
van der Waals forces between the materials, the high aspect ratios and large surface areas
of CNTs/CNFs lead to agglomerations. When dispersed in the cementitious matrix, these
functional fillers are likely to cluster rather than be uniformly dispersed [23,24]. As a result,
poor dispersion increases the amount of material required to achieve adequate conductivity
in the sample [8]. To address this issue, a combination of sonication and surfactants is
typically used to increase the dispersion of the nanomaterials. However, sonication is a
time-consuming and energy-intensive step that poses a significant challenge in large-scale
applications. Experimental work has revealed that cement paste containing 2% CNF by
weight of cement is sensitive to its own structural damage [4]. In mortar, xperiments
and modelling of the dispersion of CNF in mortar indicate a threshold value between
1.6–2%vol [25,26]. However, previous research also demonstrates a significant decrease in
resistivity for cement paste containing 0.1% CNF, as well as changes in resistivity under
compressive loads of up to 5% [27]. When comparing CNT and CNF, a smaller fractional
change in resistance has been observed when comparing 0.6 wt% of CNF and CNT under
identical loading conditions [28]. Thus, the exact values associated with the percolation
threshold are unknown, with significant factors associated with the size and length of the
CNF, the cementitious matrix used (cement paste or mortar), the water-to-cement ratio and
the superplasticizer content used in the mixing [9,29]. To facilitate substrate dispersion in
the hydrophilic cement paste, we propose using CaO as a substrate for the growth of CNF,
resulting in an amphiphilic composite.

Chemical vapour deposition (CVD) offers a versatile route to obtaining carbon nanofibers
in the laboratory. In this process, a vaporised carbon source is catalytically reduced and
deposits itself on a substrate as graphite and CNTs/CNFs [30,31]. Catalytic CVD has
also been used for large-scale commercial production of multiwalled carbon nanotubes
(MWCNT) [32,33]. In this case, the price for MWCNTs is in the range of 0.1–0.15 €/g,
depending on the material quality and acquired quantities [34]. In addition to its low cost
and scalability [35], an attractive feature of this method is the wide variety of carbon sources,
catalyst particles and substrates that can be used for the production of CNTs/CNFs. Thus,
the synthesis can be fine-tuned towards sustainable sources of carbon [36], maximising
production of CNTs/CNFs by catalyst particle selection and substrate selection based on the
final application. For example, in order to facilitate dispersion in the cementitious matrix,
carbon nanofibers have recently been synthesised using Portland cement as a substrate [37].
In this case, iron (III) oxide (Fe2O3) naturally present in the cement acts as a catalyst for
the growth of carbon nanotubes. However, the limited amount of catalyst leads to small
amounts of carbon nanofibers being produced—typically 2.5 to 3.2% by weight [37,38].
Alternatively, CVD results using Portland as a substrate and containing conversion powder
as a catalyst have shown CNT/CNF concentrations as high as 12% by weight [39,40], while
using Ni as the catalyst resulted in the production of composites with ~25 wt% of CNT [2].
Due to the high natural iron content, fly ash has also been investigated, using ferrocene as
an extra catalyst, yielding CNF ~33% by weight [41]. Furthermore, CNT synthesised on
the surface of fly ash showed good dispersion in the mortar and excellent piezoresistive
response [42]. Based on a similar principle, we suggest the use of CaO as a substrate for the
production of CNF, since the material has an amphiphilic character—hydrophobic CNF
grows on top of a hydrophilic substrate [43]. In addition, it offers an excellent bond to the
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cement and a route to easily remove the substrate by acidic attack, increasing the dispersion
of the carbon nanofibers.

Here, we report the production of amphiphilic carbon nanofibers (CNF) and, for the
first time, its application to increase the conductivity and promote the piezoresistivity
of mortar. We produce CNF using chemical vapour deposition (CVD) of ethanol over
a calcium oxide substrate doped with iron nanoparticles. The width and length of the
CNF are characterised using SEM, as well as the deposition of the fibres on the surface
of CaO. The encapsulation of iron nanoparticles inside the fibres was visualised using
TEM. Thermogravimetric analysis of the produced fibres is used to investigate the thermal
stability and concentration of the CNF over the CaO substrate. Once the CNF@CaO is
dispersed in the matrix, SEM is also used to investigate the dispersion and interaction of
the composite. To demonstrate the role of the CNF in decreasing the electrical resistivity of
mortar, different concentrations of fibres are dispersed in the matrix and the conductivity
is measured using the four-point probe method. To assess the piezoresistive response of
the material, a cyclic compressive load is applied and the gauge factor quantified. The
approach in this study demonstrates versatility for fabrication of carbon nanofibers with a
tailored substrate to achieve better dispersion of the nanofibers in the cementitious matrix.

2. Materials and Methods

Magnetic carbon nanofibers supported in CaO (CNF@CaO) were produced via chem-
ical vapour deposition using ethanol as a reagent. First, mixed calcium iron oxide was
produced via wet impregnation by adding 0.8 g of calcium oxide to an aqueous solution
containing 1.4 g of iron (III) nitrate to produce samples with Fe/CaO contents of 20 wt%.
The resulting suspension was heated to 90 ◦C, under constant stirring, until complete
evaporation of the water. Then, the material was calcined at 800 ◦C for 1 h. The resulting
substrate is composed of Ca2Fe2O5, as indicated in Equation (1). The presence of this
phase was confirmed in previous work [43], where XRD and Mössbauer spectroscopy
confirmed the presence of Ca2Fe2O5. The presence of mixed iron oxide, instead of phases
of stable oxides such as hematite, indicates that the iron was homogenously added to the
substrate [43].

2Fe(NO3)3·9H2O + 2CaO + O2 → Ca2Fe2O5 + 6NOx + 18H2O (1)

After calcination, a nitrogen flow of 100 mL min−1 was purged through a gas-washing
bottle containing ethanol at room temperature. The resulting nitrogen, saturated with
~6 vol% of ethanol, passed through a quartz tube containing 200 mg of mixed calcium
iron oxide. The quartz tube was placed horizontally inside a furnace (Tubular furnace
1200, Sanchis, Porto Alegre, Brazil) and the temperature was raised at a heating rate of
5 ◦C min−1 up to 900 ◦C and maintained for 1 h. The production of carbon nanofibers
is shown schematically in Figure 1. The iron nanoparticles dispersed in CaO acted as
catalysts for the dissociation of the gaseous phases and templates for the nucleation and
growth of the carbon nanofibers [44]. After CVD, Mössbauer analysis was performed in
the as-synthetised samples to identify the iron phases after the reduction with ethanol.
Phases of α-Fe and iron carbide were primarily identified (75%) [43]. Other phases were
associated with CaFe2O4 and a solid solution of iron and carbon (γ-Fe(C)). XRD showed
different phases of CaCO3, Ca(OH)2, CaO and Fe formed. The calcium oxide substrate
could be easily removed after acid attack, but also acted as a hydrophilic moiety, conferring
amphiphilic properties to the CNF@CaO composite. In this work, to remove the substrate,
2.6 g of CNF@CaO as grown was mixed with 50 mL of HCl 1 M. After mixing, the CNF
was separated with a magnet until the solution was clear. Then the acid was removed and
the CNF was washed with water until neutralisation.
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Figure 1. Schematics of production of mixed calcium iron oxide, carbon nanofibers supported in CaO
and pure magnetic nanofibers.

Scanning electron microscopy (SEM) was carried out using a Evo LS15 (Carl Zeiss,
Cambridge, UK). The samples were gold coated using a rotary pumped sputter coater
(Agar Sputter Coater B7367A, Agar Scientific Ltd., Essex, UK) to improve the conductivity
of the surface of the samples and to prevent overcharging. For the CNF deposited in
the surface of CaO, the SEM operated at an accelerating voltage of 8 kV; for the mortar
composite containing CNF, the voltage was 6 kV. It was difficult to distinguish ettringite
from nanofibers in the overall surface sample at the maximum distance in the SEM. As a
result, the air bubbles in the mortar were chosen for investigation because they contained
small agglomerates of fibres. To measure the diameter and length of the CNF, as well
as observe the encapsulation of iron nanoparticles and graphene layering of the carbon
nanofibers, a transmission electron microscope was used (TEM, FEI Tecnai Osiris FEGTEM,
Hillsboro, OR, USA). The CNF@CaO samples were washed with acid, followed by water
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neutralisation. The suspended material was then placed over a carbon film with a Cu grid
for analysis.

Thermogravimetrical analysis (TGA) was used to assess the weight ratio of as-grown
CNF@CaO using a PerkinElmer STA6000 (Shelton, CO, USA) between 100 and 800 ◦C
at a rate of 5 ◦C min−1 under air atmosphere. After acid washing the material with HCl
1 M, followed by washing with water until the pH was ~5, another TGA was performed
of the dried material in the same conditions as before. Approximately ~5 mg of material
was analysed. To investigate the magnetic properties of the samples, the hysteresis of
CNF@CaO and washed CNF were measured using a Lakeshore Cryotronics (Westerville,
OH, USA) vibrating sample magnetometer as a function of the magnetic field up to 15 kOe
at room temperature. Raman spectra were collected on a XploRA Plus (Horiba Jobin Yvon,
Villeneuve d’Ascq, France) using a 638 nm laser.

Ordinary Portland Cement (CEM I 42.5) provided by Heidelberg-UK was used
for the production of the mortar samples. Sieved and cleaned sand ranging between
0.18–2 mm was used as fine aggregate. The workability of the mixture was aided by adding
0.3 wt% by weight of cement (bwoc) with modified polycarboxylic ether as the superplasti-
ciser (MasterGlenium 315C, BASF). All mortar mixes had a water–cement ratio (w/c) of
0.6 and a sand–cement ratio (s/c) of 3. In situ grown carbon nanofibers were added to the
mortar matrix at 0.4, 1.2 and 2 wt% by weight of cement (bwoc) or 0.36, 1.08 and 1.8% by
volume of cement, respectively, considering a density of CNF ~1.6 g/cm3 and the cement
density as 1.44 g/cm3. The quantity of CNF@CaO to achieve the mentioned concentrations
of carbon nanofibers was calculated with the weight ratio obtained from TGA. To assist in
the dispersion of carbon nanofibers, the CNF@CaO composite was sonicated (Fisherbrand
FB11203, Singer, Germany, 80 kHz frequency and 100% power) for 30 min in a solution
of water and superplasticiser. The ready-dispersed CNT and superplasticizer suspension
were mixed into a rotary mixing according to the following protocol: sand and cement
were dry-mixed in a mixer pan for 3 min, and then half of the water containing the su-
perplasticiser and the nanomaterials was added and mixed in for another 1 min, before
adding the rest of the water and mixing for another 1 min. The mixture was then mixed at
maximum velocity for 0.5 min, followed by 1 min at minimum speed before adding to the
oiled mould. The process is schematically represented in Figure 2.

The mix proportions are shown in Table 1. Triplicates of all samples were cast into
oiled moulds to produce samples of 20 × 20 × 80 mm. Four perforated steel sheets of
dimension 40 × 17 × 0.55 mm, with a 3 mm hole diameter, were embedded in the sample
(Figure 3A). All samples were placed in an electric vibrator (Controls Automatic Sieve
Shaker D407, Cernusco, Italy) for 30 s for good compaction and to reduce air bubbles,
then covered with plastic film for 24 h, curing at room temperature. The specimens were
demoulded and cured in a moist container at 20 ± 1 ◦C and with a relative humidity ≥95%
for 28 days.

Table 1. Mix proportions used for test mortars.

Specimen w/c s/c
CNF (%
bwoc)

CNF@ CaO
(% bwoc)

Superplasticiser (% bwoc)

Control 0.6 3 - - 0.3
CNF 0.4 0.6 3 0.4 1.6 0.3
CNF 1.2 0.6 3 1.2 4.8 0.3
CNF 2 0.6 3 2.0 8.0 0.3

CNF 1.2(A) 0.6 3 1.2 - 0.3
CTRL-CaO 0.6 3 - 1.9 0.3
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Figure 2. Workflow used for dispersion of CNF in mortar, followed by measurement of
electrical properties.

The electrical resistance (R) was measured using the four-probe method with a digital
multimeter (TTi 1604, Aim & Thurlby Thandar Instruments, Huntingdon, UK), as shown
in Figure 3B. Direct current (DC) of 20 V was applied between the two outer electrodes
and the electric potential was measured between the two inner electrodes (Figure 3B). An
insulator was also added in between the compressive plates and the sample. The electrical
resistivity (ρ) was calculated using the following equation:

ρ = R· A
L

(2)

where ρ is electrical resistivity in ohm meters, L is the internal electrode distance in meters,
A is the electrode area in square meters and R = V/I is the measured resistance determined
by measuring the voltage drop across the specimen (V) in volts and the applied current (I) in
amperes. To tackle the polarization effect, the values were collected after 15 min of constant
tension applied to the outer two electrodes [45]. The application of compressive load to
the mortar sample was accomplished with a hydraulic press (Instron 5567, Norwood, MA,
USA—30 kN capacity) operating under a distance control of 0.8 mm min−1, up to 7.5 MPa.
Figure 3C shows a schematic of the PC-controlled acquisition system that was used to
collect the data for load, strain gauge, voltage and current from the samples while a voltage
of 20 V was applied.
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Figure 3. Set-up for measuring the conductivity of the samples. (A) Mortar sample with 4 electrodes;
(B) multimeters for measurements; (C) experimental set-up used to measure the piezoresistive
behaviour of the mortar samples containing CNF.

3. Results

3.1. Production and Characterisation of Carbon Nanofibers

The carbon nanofibers (CNF) containing magnetic nanoparticles were synthesised
using chemical vapour deposition (CVD) with CaO as the substrate. Calcium oxide was
selected as a substrate due to its compatibility with cementitious materials and its polar
nature, which grants an amphiphilic property to the CNF@CaO composite. Through
CVD, the substrate containing mixed calcium iron oxides as catalyst reacted with nitrogen
saturated with ethanol at 900 ◦C. At this temperature, the reduction of Ca2Fe2O5 by ethanol
results in the formation of Fe0, Fe3C, CaFe2O4 amorphous carbon and CNF [43]. The
production of carbon nanofibers is shown schematically in Figures 1 and 4A,B shows
entangled CNF grown on the surface of CaO.
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Figure 4. Carbon nanofibers supported in calcium oxide. (A,B) SEM images from the as-grown
samples showing the growth of the CNF on the surface of calcium oxide particles. (C–I) TEM images
after the acid washing for the removal of the calcium oxide support.

The calcium oxide substrate was then removed by acid washing, resulting in free
CNF to be observed using TEM and shown in Figure 4C–I. Figure 4C shows the differ-
ent widths of the CNF, with fine CNF around 40 μm and typical ones ~160 μm. The
high length-to-width ratio of the CNF is demonstrated in Figure 4D, with fibrous struc-
tures ~11 μm long and 280 μm wide. In general, the length of the CNF ranged between
5–10 μm and the diameter was between 40–300 nm, with average values around 160 nm.
The high length-to-diameter aspect ratio of the CNF is particularly suitable for sensing,
as it contributes to more conduction paths [9]. Amorphous carbon was observed through
TEM analysis, as shown in the central part of Figure 4D. After the CNF has grown, the
catalyst particles are trapped inside the graphene layers, as shown in Figure 4E, and empty
channels are inside the CNF (Figure 4F). The angle between the graphite basal planes and
the tube axis is different from zero, resulting in the term carbon nanofibers of composites. In
contrast, the term carbon nanotube (CNT) refers to graphene sheets rolled up in concentric
cylinders with walls parallel to the axis [46]. This is demonstrated in Figure 4F–I, where
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the angle between the nanosheets and the tube axis is different from zero; Figure 4I is
a zoom of the graphene layers in Figure 4H. Although the recorded images identify the
presence of carbon nanofibers, multi-walled carbon nanotubes are likely to also occur.
Controlling the size distribution of the catalyst particles is a standard way to tune the CNF
diameter dispersion [44]. As a result, the nanoparticles trapped inside the nanofibers have
an elongated shape and vary between 46–200 nm, slightly smaller than the diameter of the
CNF. These trapped nanoparticles inside the nanofibers are responsible for the magnetic
behaviour of the CNF, even after washing with acid.

Thermogravimetric analysis (TGA) was performed to quantify the metal content after
full oxidation of carbon and to examine the thermal stability of the as-grown CNF over
substrate. The oxidation temperature was determined by TGA curves (deflexion point—
Figure 5A) and more precisely by the DTA curves (Figure 5B). The curves of the as-grown
CNF show: (1) oxidation between 372–427 ◦C, attributed to amorphous carbon, where
~2% of the mass was lost; (2) a second weight loss, attributed to the oxidation of CNF,
peaking at 602 ◦C, where 26% of the mass was lost; and (3) at around 688 ◦C, loss of 26%
of the mass, corresponding to the transformation of CaCO3 [43] into CaO. The residual
material was ~45%, representing the CaO support and the iron-based catalyst. After acid
washing the sample, the CaO was removed, together with most of the amorphous carbon
during the neutralisation process. Consequently, the TGA (black curve) presented only
one thermal event, corresponding to the oxidation of the CNF, with a maximum weight
loss rate at 590 ◦C, where 84% of the material was lost. The residual mixture of catalyst
and any residual support made up ~11%, comprised of catalyst metallic oxides. This is
consistent with the previous characterisation of the washed CNF, in which the elemental
analysis revealed a carbon concentration of ~80 wt% [43]. At ~580 ◦C, an anomalous mass
gain is observed, where a sharp decrease in specimen mass is accompanied by a rapid
increase in temperature by 6 ◦C, followed by a quick decrease. Similar behaviour has been
observed on as-produced, unpurified and uncompacted nanotubes [47] and attributed to
spontaneous combustion; i.e., the heat released in the exothermic reaction is enough to
sustain rapid burning of the sample [48]. This behaviour seems to be mainly associated
with single-walled carbon nanotubes, which could imply their presence in the sample,
despite not being observed in the TEM.

The Raman spectra obtained for the pure CNF are shown in Figure 6C (bottom). In
the first-order region, two bands can be observed in the red laser (638 cm−1). The so-called
D band is sited around 1325 cm−1, and it is associated with disordered structures in carbon
materials [49]. The peak around 1575 cm−1 is the G band associated with the high degree
of symmetry and order of carbon materials [50]. Finally, a third, weak band is observed at
1614 cm−1, associated with D’. The strong, dispersive band around 2643 cm−1 is designated
as the G’ band (called 2D sometimes). For the sample CNF@CaO (Figure 6C—top), the
bands are in a similar region, but much more intense. When comparing the ID/IG ratios
calculated from the intensities in the D and G bands, a small rise is observed: the ratio
for CNF@CaO is 0.57, whereas the ratio for washed CNF is 0.64. These findings suggest
that washing the sample increases the ratio of disordered to organised carbon. This could
be attributed to defects created in the graphitic structure during the acid washing for the
removal of CaO.

To determine the magnetic properties of the CNF samples, a vibrating sample mag-
netometer was employed at room temperature. As indicated in Figure 6D, CNF and
CNF@CaO have saturation magnetisation values of 7.3 and 11.8 emu/g, respectively.
Similar values were reported for iron-doped diatomite, which exhibited a saturation mag-
netisation in the range of 10–15 emu/g [51]; other reports of CNT doped with a high iron
content demonstrated a saturation magnetisation as high as 38 emu/g [52]. Coercivity
values (Hc) for pure CNF and CNF@CaO are −414 and −277 Oe, respectively. This low co-
ercivity of remanence is indicative of a superparamagnetic property (i.e., responsiveness to
an applied field without retaining any magnetism after removal of the same). This property
allows for simple separation of the washed carbon nanofibers suspended in solution.
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Figure 5. Characterisation of CNF@CaO as produced and CNF after acid washing. (A) Thermogravi-
metric analysis of as-grown CNF in the surface of CaO (teal) and acid-washed nanomaterial, purified
for the removal of CaO (black); (B) Weight loss rate for the as-grown CNF (purple) and purified CNF
(teal); (C) Raman spectra of CNF@CaO (top) and CNF—washed (bottom); (D) Magnetisation curve
of CNF@CaO (teal) and CNF—washed (black).

 

Figure 6. Scanning electron microscopy of carbon nanofibers supported in CaO, dispersed in mortar.
Scale bar 2 μm. (A–C) mortar surface containing the nest of CNF; (D–F) details of the CNF next,
white arrows indicate CNF and black arrow indicate portlandite.
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3.2. Dispersion of Carbon Nanofibers in Mortar

Scanning electron microscopy was used to investigate the dispersion of the carbon
nanofibers in mortar, using the sample with 2 wt% of CNF. The highest content of carbon
nanofibers was used due to the challenge in locating the carbon nanofibers in the matrix—
the carbon nanofibers are difficult to differentiate from hydration products, particularly
ettringite. After the CNF was dispersed and the material cured in high humidity for
28 days, the sample was dried in air, followed by vacuum drying before SEM. The fibres
were mainly observed as small conglomerates, ranging between 3 and 7 μm, inside the
pores in the mortar (Figure 6A–C). No conglomerate larger than 7 μm was observed,
indicating the nanofibers are distributed in small nest-like bundles throughout the matrix.
Previous investigations of carbon nanofibers and nanotubes distributed in cementitious
matrix have shown that a poor dispersion may lead to agglomerated CNT; alternatively, a
better dispersion of the fibres leads to high-density products dispersed as clumps [53,54].
Figure 6F also shows portlandite entangled with the carbon nanofibers (Figure 6D,E),
demonstrating the hydration of the CaO substrate.

3.3. Influence of CNF Concentration on Electrical Resistivity

The addition of carbon nanofibers to the mortar has the effect of increasing the electri-
cal conductivity of the specimens. The electrical resistivity measured with the four-probe
point method is presented in Figure 7 and differed with the hydration levels of the specimen,
as well as the content of carbon nanofiber and presence of the CaO support. The electrical
resistivity was much lower for samples immediately after 28 days of curing in a high-
humidity (>95%) environment, as shown in Figure 7A. For the damp samples, the voltage
between the internal electrodes at the central electrodes was ~8–10 V and the current ranged
from 400 to 1400 μA. As a result, the electrical resistivity of the mortar samples with high
relative humidity was between 80–230 Ω m, with a slight decrease in conductivity for samples
with washed CNF and CaO. Similar values were found in water-saturated mortar samples
containing CNF [3,8]. These lower values of electrical resistivity to the water-saturated speci-
men were attributed to the high conductivity of the pore solution. The electrical resistivity
of mortar samples after drying (Figure 7B) was markedly increased—between 0.77–42 kΩ
m. For the dried samples, the voltage measured in the internal electrodes was ~4–8 V
whereas the current was significantly lower—between 1 and 110 μA. Furthermore, for the
dried samples, the contribution of the content of CNF to the changes in conductivity was
more pronounced when compared with the damp samples. In this case, the samples with
control and with 0.4 wt% of CNF in mortar presented similar values of resistivity, ~2 × 104

Ω m. This indicates that, up to 0.4 wt% CNF, the mortar is still presenting DC electrical
resistivity in the range of 104–107 Ω m, i.e., acting as an quasi-insulator [9]. However, when
the content of CNF increases to 2 wt%, the resistivity drops to 5 × 103 Ω m, which is at least
one order of magnitude less than the control. For this sample, an increased standard devia-
tion was observed, possibly associated with the sample’s non-uniform conductivity and
bonding issues with the steel electrode. In addition, the values of electrical resistivity were
7.7 × 102 Ω m, two orders of magnitude lower, for the samples containing 1.2 wt% of CNF
after the material was washed with acid, i.e., when the CaO was removed. Unfortunately,
two specimens containing CNF(A) −1.2 wt% fractured between the matrix and the steel
electrode; thus, there was no standard deviation associated with this sample. The decrease
in resistivity highlights the strong effect of the CNF in the composite. These results are
in agreement with other reports, where the required dosage of CNF to achieve a well-
established current through tunnelling varies between 0.6 wt% [28] and 2.25 vol% [23]. The
results also show the increased conductivity of the composites once the support is removed.
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Figure 7. Effect of CNF concentration on the electrical resistivity of mortar specimens (A) immediately
after 28 days in a high-humidity chamber and (B) after drying.

Interestingly, the control with only the substrate, i.e., the precursor used for the deposi-
tion of the material, was also investigated and the values of resistivity were
~1.1 kΩ m. The substrate was produced from the reaction between CaO and Fe3+ to
produce mixed oxides with iron and calcium, Ca2Fe2O5, as shown in Equation (1). It is the
reduction of Ca2Fe2O5 by ethanol that results in the formation of the carbon nanofibers,
and also the reduced forms of iron, including nanoparticles of iron and iron carbide. In
this case, ~1.8% by weight of cement (bwoc) of calcium oxide containing mixed oxides
with iron and calcium was added to the mortar. Other authors have also investigated the
use of nanoparticles of iron oxide to successfully increase the conductivity of cementitious
matrix [55]. However, it is interesting to notice that the conductivity of the samples with
iron oxides is markedly increased when compared with samples containing more iron
and CNF. The reason behind the difference is not immediately apparent. Iron oxides are
poorer conductors when compared with the reduced forms of iron [56]. However, it could
potentially highlight how the pure powder dispersion in water is a lot more favourable
than the material coated with CNF. Therefore, the dispersion is favoured and increases the
conductivity. However, more studies are necessary.

3.4. Influence of CNF Concentration on the Piezoresistive Response under Compressive Loading

The piezoresistivity of the mortar samples under compressive load was investigated in
the elastic region. This focuses on the potential application of the composite for load
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detection and structural soundness, i.e., for non-destructive systems. The four elec-
trodes in the mortar samples were positioned perpendicular to the plane of compression
(Figure 3a), with a load exerted at a rate of 0.8 mm min−1 up to 7.5 MPa. The linear
response of the stress–strain curve aspect (Figure 8) confirms the elastic behaviour of the
sample and the slope of the curve was 29 GPa for the control sample with SP (CTRL-SP),
42 GPa for the control sample with CaO (CTRL-CaO) and between 23.7 and 35.3 GPa for
the samples with CNF. The addition of CNF/CNTs in cementitious composites has been
proven effective in developing the mechanical properties of the materials [57], since fibres
can bridge microcracks, fill pores and accelerate hydration. However, the obtained stiffness
parameters are not accurate due to the presence of electrodes and the cuboid shape of the
samples. Compression tests following standards were not performed in this study due to
the limited amount of material.

Figure 8. Stress–strain relationship of mortar specimen under compressive loading. Inside detail:
experimental setup for the piezoresistivity testing.

Mortar samples containing CNF showed piezoresistive behaviour dependent on the
concentration of CNF. To investigate the stability and repeatability of the piezoresistive
response to compressive loading, 18 cycles with an amplitude of 7.5 MPa and a loading
rate of 0.8 mm·min−1 were applied to the mortars. The fractional change in resistivity
(FCR) was calculated by dividing the difference in resistivity at each point with the no-load
resistivity (or baseline resistivity). Figure 9 shows that the electrical resistivity of all mortars
is consistent with expected response under compression and decreases with the increase in
the compressive load due to the shortening of the conduction path. Typically, samples take
some time to stabilise, with the first few cycles still not returning to zero. The increase in the
baseline electrical resistivity over time is caused by the polarisation effect, mainly due to the
presence of water and dissolved ions in the water. This also indicates that residual water
is still present in the sample, as dry samples are less prone to variations on the curve [27].
Furthermore, micro damages separating adjacent nanofibers may also lead to an increase
in resistivity, consequently, an increase in the baseline [6]. The control mortar without
CNF (Figure 9A), as well as the sample with only CaO and mixed iron and calcium oxides
(Figure 9B), present a small amplitude for the FCR values on loading, with a maximum
modular FCR (FCRmax) of 1%, indicating a negligible piezoresistive behaviour. The FCR of
the samples with CNF reached FCRmax of 0.5, 8.4 and 1.3% in concentrations of 0.4, 1.2%
and 2 wt% CNF, respectively. For the sample with washed CNF at 1.2 wt%, the FCRmax
was 1.0%.
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Figure 9. Piezoresistive behaviours of mortars under cyclic compressive loading. (A) Control mortar;
(B) control mortar with CaO substrate; (C) mortar with 0.4 wt% of CNF; (D) mortar with 1.2 wt%
CNF; (E) mortar with 2.0 wt%; (F) mortar with 1.2 wt% washed CNF.

The obtained values, as well as the pronounced change in resistivity for the sample
with 1.2 wt% of CNF, were interpreted in relation to percolation theory [9]. For the samples
with CNF 0.4 wt%, we conjecture that the concentration may not be sufficient to achieve a
conductive network capable of sensing the variation in the state of strain. Thus, values of
resistivity (Figure 7) and FCR under compressive loading were similar to the control. On
the other hand, when the CNF@CaO concentration increases to 1.2 wt%, changes in contact
resistance increase due to the formation/breakage of CNF junctions. In addition, under
compressive loading, the distance between CNF decreases, facilitating a tunnelling effect.
The unique nest-like morphology of the CNF (Figure 6D,E) distributed in the mortar may
also facilitate the high FCR observed in this sample, providing many possible locations
for triggering CNF contact and tunnelling [42]. When the concentration of CNF increases
further, by the addition of 2 wt% of CNF and 1.2 wt% of washed CNF, the sample already
has a more pronounced and stable conductive network. Thus, its electrical properties
were not particularly affected by any external load; that is, the piezoresistive effect caused
by the variation in proximity between CNFs is not so pronounced. As a consequence,
the resistivity values (Figure 7) were lower than the control, but the FCRmax is similar to
the control. This indicates that, to obtain a piezoresistive behaviour for the sample with
washed CNF, reduced concentrations of material should be used. When compared to the
literature, a maximum FCR of 9% was observed for carbon nanofibers at 2.25 vol% [23] and
an FCR maximum of 2% for mortar samples with 2.5 vol% of CNF [58], thus indicating a
lower concentration of the material here also shows a good result for the sample at 1.2 wt%
(1.08 vol%). Alternatively, an FCR max of 5.5% was observed for the cement samples with
0.1 wt% of CNF, indicating a better piezoresistive response under loading [27]. This could
be attributed to a conductive network being obtained in this sample under compressive

66



Materials 2022, 15, 4951

loading at 0.1 wt% of CNF. It could be that the dispersion of the material is better, since the
material does not form clumps. This could have been the case for washed samples if the
CaO substrate had not been used.

To examine the relationship between strain and variations in electrical resistivity in
the mortar, the strain versus FCR curves are presented in Figure 10. To quantify the strain
sensitivity, the gauge factor (GF) was used, as it represents the relative change in electrical
resistivity due to the mechanical resistance. The relationship between strain amplitude and
resistance change can be described as follows:

GF =
dρ/ρ

ε1
(3)

where ε1 is compressive strain measured by a strain gauge and dρ/ρ is equal to the FCR.
The GF is then obtained by applying Equation (3) via fitting with a linear regression to the
FCR–strain curve, as shown in Figure 10.

For the mortar without CNF, as well as the mortar with 0.4, 2 wt% of CNF and
1.2 wt% of washed CNF, the GF is ~30, confirming that the specimens are not applicable for
strain sensing under a compressive load. However, when 1.2 wt% of CNF is added, the GF
markedly increases to 1552, demonstrating the high sensitivity of the material. Moreover,
the sample with 1.2 wt% shows a more constant variation, without noise. This indicates
the potential of mortar embedded with CNF for more stable piezoresistive behaviours. Re-
cently, Ding et al. (2022) investigated the piezoresistivity of cement composites containing
0–5 wt% of CNT synthesised in the surface of cement, resulting in gauge factors of
22–748 [2]. Likewise, CNT@cement embedded in mortar at a concentration between
0.4–2 wt% resulted in gauge factors between 744 to 1170 [42]. For future work, a different
design of experiments could be considered, including more points around 1.2 wt% CNF, to
better understand the behaviour of the material.
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Figure 10. FCR versus strain for mortar specimens at different CNF concentrations under a monotonic
uniaxial compressive loading with an amplitude of 7.5 MPa. (A) Control mortar; (B) control mortar
with CaO substrate; (C) mortar with 0.4 wt% of CNF; (D) mortar with 1.2 wt% CNF; (E) mortar with
2.0 wt%; (F) mortar with 1.2 wt% washed CNF.

4. Conclusions

This study presents a versatile method for fabricating carbon nanofibers on substrates
designed to facilitate the dispersion of the nanomaterial. Using iron as a catalyst, CNF was
produced by chemical vapour deposition (CVD) on the surface of calcium oxide (CaO). This
substrate was chosen due to its ease of removal, which results in free CNF, and its polarity,
which lends an amphiphilic quality to the composite and facilitates its dispersion in mortar.
Small agglomerates of loose fibres were observed with a SEM after the fibres were dispersed
in the mortar, indicating a good distribution of the material. Increasing the concentration
of CNF in the mortar resulted in a decrease in resistivity, with the lowest values occurring
at around 2 wt%. Additionally, after removing CaO, the electrical resistivity decreased to
0.8 kΩ m for contents containing approximately 1.2 wt% CNF. Under compressive loading,
the piezoresistive response of CNF was studied, and the composite containing 1.2 wt% of
unwashed CNF exhibited an excellent variation in electrical resistivity. The gauge factor
(GF) was used to quantify the sensitivity to deformation, and the sample containing 1.2%
by weight of CNF@CaO had a gauge factor of 1552 while the others had gauge factors
below 100. This sample’s exceptional deformation sensitivity suggests that the contact
points formed between small adjacent CNF@CaO clusters can be easily formed and broken,
thereby increasing the nanocomposite’s sensitivity. Potential applications for the enhanced
electrical properties include evaluating the condition of civil engineering structures.
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Abstract: Low-strain tests are widely utilized as a nondestructive approach to assess the integrity
of newly piled foundations. So far, the examination of existing pile foundations is becoming an
indispensable protocol for pile recycling or post-disaster safety assessment. However, the present
low-strain test is not capable of testing existing pile foundations. In this paper, the torsional low-strain
test (TLST) is proposed to overcome this drawback. Both the upward and downward waves are
considered in the TLST wave propagation model established in this paper so that a firm theoretical
basis is grounded for the test signal interpretations. A concise semi-analytical solution is derived and
its rationality is verified by comparisons with the existing solutions for newly piled foundations and
the finite element results. The main conclusions of this study can be drawn as follows: (1). by placing
the sensors where the incident wave is applied, the number of reflected signals can be minimized; (2).
the defects can be more evidently identified if the incident wave/sensors are input/installed close to
the superstructure/pile head.

Keywords: nondestructive test; existing pile integrity; low-strain test; wave propagation

1. Introduction

Among many structure health monitoring approaches (static load test [1], image-
based displacement measurement [2], low-strain test [3], and high-strain test [4]), the
low-strain test is so far the most intuitive and economical way to assess the integrity of
deep foundations, especially pile foundations [5–8]. This is because the test signal of the
low-strain test is easily identifiable and it involves no disposable equipment or gauges.
The traditional low-strain test utilizes longitudinal harmonic excitation as the incident
wave so that an exposed cross-section of the foundation is needed to conduct the test [9,10].
Hence, the low-strain test is commonly used as the integrity inspection for newly piled
foundations instead of existing ones. However, after decades of vigorous developments in
infrastructure construction, the testing demands in major global construction markets have
shifted from the newly piled foundations to the existing ones [11–14]. As a result, upgrading
the low-strain test to satisfy the testing of existing foundations is especially urgent.

The fundamental theory of the low-strain test for pile foundations originates from
the longitudinal vibration theory of the pile [15,16]. The combination of one-dimensional
rod theory and the subgrade reaction model forms the mathematical prototype of the
low-strain test [17–19]. High-frequency interferences often occur during the tests of large
diameter piles, which are not revealed by the one-dimensional rod theory. The high-
frequency interference can be addressed by simulating the soil and pile as three-dimensional
continuum media [20,21]. However, due to the massive computation involved in rigorous
3D continuum models, digital signal filters (e.g., Savitzky–Golay) are preferred by engineers.
Compared to the longitudinal vibration of piles, torsional vibrations receive less attention
because they are not that common in nature. For most studies, torsional vibrations of piles
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are only regarded as additional problems caused by eccentric loadings [22]. However, since
torsional vibration is less common in nature than longitudinal or horizontal vibration, it
is an ideal subject for studying pile testing, as its strain wave signal may not be easily
jammed or suppressed by other environmental loads. Moreover, because the velocity
of the torsional wave is much smaller than that of the longitudinal wave, the torsional
low-strain test has a smaller detection blind zone than the traditional low-strain test [23,24].
The torsional vibration theory is initially established on a similar basis to the longitudinal
one: by simplifying the soil medium to infinitely thin layers, the rigorous 3D continuum
theory for soil medium can be reduced to the plane strain model, based on which the
straightforward closed-form solutions can be derived [25–29]. As the torsional vibration
of pile foundations gained interest in the most recent decade, the finite element method
(FEM) [30–32], finite integration technique [33], and boundary element method [34,35]
all considerably fulfilled the knowledge of wave propagation across the soil-pile system
during vibration.

In the literature mentioned above, the torsional incident wave is input at the pile
head, under which circumstance there will only be an upward wave or a downward wave
inside the intact pile body at the same time and neither will exist simultaneously [36–38].
However, when conducting the test for existing high-pile foundations, the incident wave
can only be input at the shaft of the pile, because the pile head is fixed into the super-
structure firmly. As a result, the upward and downward waves propagate inside the pile
body simultaneously, dramatically increasing the complexity of strain wave signals. To
account for this phenomenon, a rigorous torsional wave propagation model, taking both
the upward and downward waves into account, is established in this paper to guide the
signal interpretations of the TLST for existing high-pile foundations. Based on the proposed
model, the optimal excitation and signal receiving layouts in the TLST for existing high-pile
foundations are revealed.

2. Mathematical Model and Assumptions

The layout of the TLST for the existing high-pile foundation is depicted in Figure 1.
Due to the head of the existing pile being firmly fixed in the superstructure, the torsional
incident wave can only be input at the extending pile shaft so that both the upward and
downward strain waves are generated. The pile is modeled as a one-dimensional rod in the
proposed mathematical model and the surrounding soil is modeled as a three-dimensional
viscoelastic medium. The interactions between the pile and the superstructure are simpli-
fied to springs and dashpots. Further, the fictitious soil-pile model [28] is introduced herein
to authentically simulate the wave reflection at the interface of the pile bottom and the pile
end soil. Other general assumptions adopted are listed as follows:

1. Throughout the TLSTs, the soil-pile system only undergoes small strain deformations
so that the surrounding soil and the pile shaft are assumed to remain in perfect contact.

2. The incident wave utilized as the input of TLSTs in this paper is a half-sine har-
monic impulse.

3. There are no normal and shear stresses at the ground surface and the amplitude of the
strain wave diminishes to zero in radial infinity in the soil.

4. The displacement and forces at the interfaces of the fictitious soil pile and the real pile
are continuous. By increasing the length and modulus of the fictitious soil pile, the
foundation can shaft from the end-bearing piles to the floating piles.

5. The velocity response at the pile shaft is acquired to simulate the test results collected
from the velocity or acceleration sensors installed at the pile shaft.

74



Sensors 2022, 22, 5330

Figure 1. Schematics of torsional low-strain test for existing high-pile foundations.

3. Governing Equations and Boundary Conditions

3.1. Governing Equations

Based on the continuum theories, the equilibrium equations for the soil medium in a
cylindrical coordinate system can be written as

(
Gs

j + ηs
j

∂

∂t

)
∇2us

j (z, r, t) = ρs
j

∂2us
j (z, r, t)

∂t2 (1)

where Gs
j , ηs

j , us
j , and ρs

j denote the shear modulus, material damping, circumferential

displacement, and density of the jth (vertically labeled) soil layer, respectively. ∇2 =
∂2

∂r2 +
∂

r∂r +
∂2

∂z2 − 1
r2 is the Laplacian written in the cylindrical coordinates.

The three-dimensional rod theory can better reveal the wave propagation during the
TLSITs. However, its adoption would significantly increase the mathematical complexity
of the problem, resulting in terrible computational efficiency. Further, it was reported by
Zhang et al. [24] that the wave signal captured at the pile edge is limitedly influenced by
the three-dimensional effect during the TLSITs. Hence, the pile is modeled through the
one-dimensional rod theory in pursuit of a more efficient closed-form solution. Commonly,
the high-pile foundation can be divided into two parts: one embedded in the soil, the other
one extending out of the soil. For the part that is embedded in the soil, the equilibrium
equation can be written as

(
Gp

j Ip
j + η

p
j Ip

j
∂

∂t

)∂2 ϕ
p
j (z, t)

∂z2 − 2πr2
1 f s

j (z, t) = ρ
p
j Ip

j

∂2 ϕ
p
j (z, t)

∂t2 (2)

For the part extending out of the soil, the equilibrium equation can be written as(
Gp

m Ip
m + η

p
m Ip

m
∂

∂t

)
∂2 ϕ

p
m(z, t)
∂z2 = ρ

p
m Ip

m
∂2 ϕ

p
m(z, t)
∂t2 (3)

where Gp
j , η

p
j , Ip

j , ϕ
p
j , ρ

p
j , f s

j , and r1 are the shear modulus, material damping, polar moment
of inertia, twist angle, density, pile-side resistance, and the radius of the jth pile segment.
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3.2. Boundary and Initial Conditions

The displacement and stress in the soil medium diminish at the radial infinite so that
the following boundary conditions can be acquired:

us
j (z, r, t)

∣∣∣
r→∞

= 0 (4)

τs
j (z, r, t)

∣∣∣
r→∞

= 0 (5)

The interactions between the soil layers are simulated by a distributed Kelvin–Voigt
model, whose formulas can be presented as[(

Gs
j + ηs

j
∂

∂t

)∂us
j (z, r, t)

∂z
−
(

kj + cj
∂

∂t

)
us

j (z, r, t)

]∣∣∣∣∣
z=hj

= 0 (6)

[(
Gs

j + ηs
j

∂

∂t

)∂us
j (z, r, t)

∂z
+

(
kj−1 + cj−1

∂

∂t

)
us

j (z, r, t)

]∣∣∣∣∣
z=hj−1

= 0 (7)

The transient impulse is subjected to the side of the extending part. Considering that
the stress distribution inside the pile shaft is continuous, these boundary conditions can be
written as[(

Gp
m Ip

m + η
p
m Ip

m
∂

∂t

)
∂ϕ

p
m(z, t)
∂z

]∣∣∣∣∣
z=hm

+ T(t) =

[(
Gp

m+1 Ip
m+1 + η

p
m+1 Ip

m+1
∂

∂t

)
∂ϕ

p
m(z, t)
∂z

]∣∣∣∣∣
z=hm

(8)

ϕ
p
j

∣∣∣
z=hj

= ϕ
p
j+1

∣∣∣
z=hj

(9)

τ
p
j

∣∣∣
z=hj

= τ
p
j+1

∣∣∣
z=hj

(10)

The pile end soil-pile end interaction is modeled by the fictitious soil pile. At the end
of the fictitious soil pile, the displacement is supposed to be zero.

ϕ
fp
1 (z, t)

∣∣∣
z=L

= 0 (11)

The interaction between the pile and the upper structure is simplified to elastic springs
and dashpots:[(

Gp
m+1 Ip

m+1 + η
p
m+1 Ip

m+1
∂

∂t

)
∂ϕ

p
m(z, t)
∂z

+

(
kT + cT

∂

∂t

)
ϕ

p
m(z, t)

]∣∣∣∣∣
z=0

= 0 (12)

where kT and cT denote the elastic and damping coefficients of the springs and dashpots,
respectively.

When conducting the low-strain integrity test, both the soil and pile only go through
tiny deformations, under which circumstance the motions of the soil and pile can be
regarded as simultaneous.

ϕ
p
j (z, t)

∣∣∣
r=r1

· r1 = us
j (z, r, t)

∣∣∣
r=r1

(13)

At the initial moment, the system has no velocity nor acceleration, and the transient
pile-side impulse is the only reason for the system vibration.

us
j (z, r, t)

∣∣∣
t=0

= 0 (14)
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∂us
j (z, r, t)

∂t

∣∣∣∣∣
t=0

= 0 (15)

ϕ
p
j (z, t)

∣∣∣
t=0

= 0 (16)

∂ϕ
p
j (z, t)

∂t

∣∣∣∣∣
t=0

= 0 (17)

4. Solution of Dynamic Equilibrium Equations

4.1. Solution of the Governing Equation in the Surrounding Soil

By performing Laplace Transform on both sides of Equation (1) and conducting the
variable separation method, Equation (1) can degenerate to the following two differen-
tial equations:

r2Rs
j
′′ (r, s) + rRs

j
′(r, s)−

[
κ2

j r2 + 1
]

Rs
j (r, s) = 0 (18)

Zs
j
′′ (z, s) + β2

j Zs
j (z, s)= 0 (19)

where κ2
j =

ρs
j s2

Gs
j +ηs

j s + β2
j . Therefore, the general solution of Equation (1) can be acquired

through the combination of general solutions of Equations (18) and (19) as

Us
j (z, r, s) =

[
EjK1

(
κjr
)
+ FjI1

(
κjr
)]

·
[

Mj sin(β jz) + Nj cos(β jz)
]

(20)

where Us
j is the Laplace Transform of us

j , while Ej, Fj, Mj and Nj are all undetermined
coefficients. Meanwhile, I1(·) and K1(·) are modified Bessel Function of order one of the
first and second kind, respectively.

Submitting Equation (20) into Equations (4) and (5), one obtains

Us
j (z, r, s) =

[
Mj sin(β jz) + Nj cos(β jz)

]
· K1

(
κjr
)

(21)

Further considering the interaction between soil layers, as listed in Equations (6) and (7),
the following transcendental equations can be established:

Gs∗
j β2

j

[
tan(β jhj)− tan(β jhj−1)

]
+ Gs∗∗

j β j

[
tan(β jhj) tan(β jhj−1) + 1

]
+
[
tan(β jhj−1) + tan(β jhj)

]
= 0 (22)

where Gs∗
j =

(
Gs

j +ηs
j s
)2

(kj+cjs)(kj−1+cj−1s)
and Gs∗∗

j =

(
Gs

j +ηs
j s
)
(kj+cjs+kj−1+cj−1s)

(kj+cjs)(kj−1+cj−1s)
. With the introduc-

tion of local coordinates [0, lj], the transcendental equation can be simplified to

tan(β jlj)−
(

Gs
j + ηs

j s
)(

kj + cjs + kj−1 + cj−1s
)

β j(
Gs

j + ηs
j s
)2

β2
j −
(
kj + cjs

)(
kj−1 + cj−1s

) = 0 (23)

Through numerical iterations, the above transcendental equations can be solved
with a series of numerical answers, which can be denoted as β j1, β j2, β j3, . . . ,β jn. Then,
Equation (21) can be written as

Us
j (z, r, s) =

∞

∑
n=1

Ajn sin(β jnz + ϕjn) · K1

(
κjnr
)

(24)
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where Ajn =
√

M2
jn + N2

jn, ϕjn = arctan
(

Njn
Mjn

)
,

Ms
jn

Ns
jn

=
(kj+cjs)(

Gs
j +ηs

j s
)

β jn

. The resistance force of

soil acting on the pile side can be expressed as

f s
j =

(
Gs

j + ηs
j s
) ∞

∑
n=1

Ajnκjn sin(β jnz + ϕjn)K2

(
κjnr1

)
(25)

4.2. Solution of the Governing Equation of the Pile

Similarly, by performing Laplace Transform on both sides of Equations (2) and (3),
one obtains

(
Gp

j Ip
j + η

p
j Ip

j s
)∂2φ

p
j (z, s)

∂z2 − 2πr2
1 f s

j (z, t) = ρ
p
j Ip

j s2φ
p
j (z, s) (26)

(
Gp

m Ip
m + η

p
m Ip

ms
)∂2φ

p
m(z, s)
∂z2 = ρ

p
m Ip

ms2φ
p
m(z, s) (27)

where φ
p
j is the Laplace Transform of ϕ

p
j with respect to t. It can be found that

Equations (26) and (27) are non-homogeneous and homogeneous functions, respectively.
The general solution of the corresponding homogeneous function of Equation (26) can be
given as

φ
p
j (z, s) = Cp

j sin(λjz) + Dp
j cos(λjz) (28)

where λj =

√
− ρ

p
j s2

Gp
j +η

p
j s

. The specific solution of Equation (26) is found as

∞

∑
n=1

Ajnκjnks
jn sin(β jnz + ϕjn) · K2

(
κjnr1

)
(29)

where ks
jn = − 2πr2

1

(
Gs

j +ηs
j s
)

(
Gp

j Ip
j +η

p
j Ip

j s
)

β2
jn+ρ

p
j Ip

j s2
. The general solutions for the buried and extending

pile segments can then be written as
Embedded pile segments:

φ
p
j (z, s) = Cp

j sin(λjz) + Dp
j cos(λjz)

+
∞
∑

n=1
Ajnκjnks

jn sin(β jnz + ϕjn) · K2

(
κjnr1

) (30)

Extending pile segments:

φ
p
m(z, s) = Cp

m sin(λmz) + Dp
m cos(λmz) (31)

Based on the small strain assumption, the displacements at the soil-pile interface for
embedded pile segments are continuous. Next, Equation (30) is substituted into (13), herein
introducing the orthogonality of the following equations:

∫ lj

0
sin(β jnz + ϕjn) sin(βinz + ϕin)dz =

⎧⎨⎩ 0, j �= i
lj
2 − sin(2β jnlj+2ϕjn)−sin(2ϕjn)

4β jn
, j = i

(32)

With the utilization of Equation (32), one obtains

Ajnκjn = Cp
j δjn1 + Dp

j δjn2 (33)
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In addition, the undetermined coefficients Cp
j and Dp

j , and other parameters, can be
derived from the following relations:

δjn1 =
r1κjnχjn1

χjn3

[
K1

(
κjnr
)
− ks

jnr1K2

(
κjnr1

)] (34)

δjn2 =
r1κjnχji2

χjn3

[
K1

(
κjnr
)
− ks

jnr1K2

(
κjnr1

)] (35)

χjn1 =
1
2
·
⎡⎣ sin(λjlj − β jnlj − ϕjn) + sin(ϕjn)

(λj − β jn)
−

sin(λjlj + β jnlj + ϕjn)− sin(ϕjn)(
λj + β jn

)
⎤⎦ (36)

χji2 =
1
2
·
⎡⎣cos(λjlj − β jnlj − ϕjn)− cos(ϕjn)

(λj − β jn)
−

cos(λjlj + β jnlj + ϕjn)− cos(ϕjn)(
λj + β jn

)
⎤⎦ (37)

χjn3 =
lj

2
−

sin(2β jnlj+2ϕjn)− sin(2ϕjn)

4β jn
(38)

After the above derivation, the general solution for the embedded pile segments can
then be given in a homogeneous equation form.

φ
p
j (z, s) = Cp

j

[
sin(λjz) +

∞
∑

n=1
ks

jnδjn1 sin(β jnz + ϕjn) · K2

(
κjnr1

)]
+Dp

j

[
cos(λjz) +

∞
∑

n=1
ks

jnδjn2 sin(β jnz + ϕjn) · K2

(
κjnr1

)] (39)

To acquire the undetermined coefficients (Cp
j and Dp

j ), the continuous deformation bound-
ary conditions at pile segment interfaces are utilized. Substituting Equations (30) and (31) into
Equations (9) and (10), the iteration relations between different embedded pile segments can be
obtained as [

Cp
j+1

Dp
j+1

]
=

[
ψj+1,1(lj+1) ψj+1,2(lj+1)
ψj+1,3(lj+1) ψj+1,4(lj+1)

]−1

×
[

ψj1(0) ψj2(0)
ψj3(0) ψj4(0)

][Cp
j

Dp
j

]
(40)

ψj1(z) = sin(λjz) +
∞

∑
n=1

δjn1ζ1
jn(z) (41)

ψj2(z) = cos(λjz) +
∞

∑
n=1

δjn2ζ1
jn(z) (42)

ψj3(z) = Gp∗
j

[
λj cos(λjz) +

∞

∑
n=1

δjn1ζ2
jn(z)

]
(43)

ψj4(z) = Gp∗
j

[
−λj sin(λjz) +

∞

∑
n=1

δjn2ζ2
jn(z)

]
(44)

ζ1
jn(z) = ks

jn sin(β jnz + ϕjn) · K2

(
κjnr1

)
(45)

ζ2
jn(z) = ks

jnβ jn cos(β jnz + ϕjn) · K2

(
κjnr1

)
(46)

Gp∗
j = Gp

j Ip
j + η

p
j Ip

j s (47)

Similarly, the coefficient transform relations between the embedded and the extending
pile segments can be expressed as
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[
Cp

m
Dp

m

]
=

[
sin(λmlm) cos(λmlm)

Gp∗
m λm cos(λmlm) −Gp∗

m λm sin(λmlm)

]−1

×
[

ψm−1,1(0) ψm−1,2(0)
ψm−1,3(0) ψm−1,4(0)

][
Cp

m−1
Dp

m−1

]
(48)

The continuous stress conditions at the location of the pile side impulse can be
written as[

Cp
m+1

Dp
m+1

]
=

[
sin(λm+1lm+1) cos(λm+1lm+1)

Gp∗
m+1λm+1 cos(λm+1lm+1) −Gp∗

m+1λm+1 sin(λm+1lm+1)

]−1

×
[

0 1
Gp∗

m λm 0

][
Cp

m
Dp

m

]
+

[
sin(λm+1lm+1) cos(λm+1lm+1)

Gp∗
m+1λm+1 cos(λm+1lm+1) −Gp∗

m+1λm+1 sin(λm+1lm+1)

]−1[
0

T(ω)

] (49)

where T(ω) = T
π2−T2ω2 (1 + e−iωT) represents the half-sine harmonic impulse acted on the

pile shaft in the frequency domain. Combing the boundary conditions at the pile top and
end, one obtains

Cp
1

Dp
1
= −

ψ1,2(lj)

ψ1,1(lj)
(50)

Cp
m+1

Dp
m+1

= − kT + cTs
Gp∗

m+1λm+1
(51)

The deformation and stress at the interfaces of different pile segments are continuous
so that [

Cp
m+1

Dp
m+1

]
=

[
χ1 χ2
χ3 χ4

][
Cp

1
Dp

1

]
+

[
μ1
μ2

]
(52)

where the matrices
[

χ1 χ2
χ3 χ4

]
and

[
μ1
μ2

]
can be derived from

[
χ1 χ2
χ3 χ4

]
=

[
sin(λm+1lm+1) cos(λm+1lm+1)

Gp∗
m+1λm+1 cos(λm+1lm+1) −Gp∗

m+1λm+1 sin(λm+1lm+1)

]−1

×
[

0 1
Gp∗

m λm 0

][
sin(λmlm) cos(λmlm)

Gp∗
m λm cos(λmlm) −Gp∗

m λm sin(λmlm)

]−1

×
[

ψm−1,1(0) ψm−1,2(0)
ψm−1,3(0) ψm−1,4(0)

]
. . . . . .

[
ψ3,1(lj+1) ψ3,2(lj+1)
ψ3,3(lj+1) ψ3,4(lj+1)

]−1

×
[

ψ2,1(0) ψ2,2(0)
ψ2,3(0) ψ2,4(0)

][
ψ2,1(lj+1) ψ2,2(lj+1)
ψ2,3(lj+1) ψ2,4(lj+1)

]−1

×
[

ψ1,1(0) ψ1,2(0)
ψ1,3(0) ψ1,4(0)

]
(53)

[
μ1
μ2

]
=

[
sin(λm+1lm+1) cos(λm+1lm+1)

Gp∗
m+1λm+1 cos(λm+1lm+1) −Gp∗

m+1λm+1 sin(λm+1lm+1)

]−1[
0

T(ω)

]
(54)

Equation (52) can be further simplified to

Cp
m+1 = χ1Cp

1 + χ2Dp
1 + μ1 (55)

Dp
m+1 = χ3Cp

1 + χ4Dp
1 + μ2 (56)

in which,

Cp
1 =

Gp∗
m+1λm+1μ1 + (kT + cTs)μ2[

Gp∗
m+1λm+1χ2 + (kT + cTs)χ4

]ψ1,1(lj)

ψ1,2(lj)
−
[

Gp∗
m+1λm+1χ1 + (kT + cTs)χ3

] (57)

Dp
1 =

Gp∗
m+1λm+1μ1 + (kT + cTs)μ2[

Gp∗
m+1λm+1χ1 + (kT + cTs)χ3

]ψ1,2(lj)

ψ1,1(lj)
−
[

Gp∗
m+1λm+1χ2 + (kT + cTs)χ4

] (58)
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Cp
m+1 =

[
χ2 − χ1

ψ1,2(lj)

ψ1,1(lj)

]
Dp

1 + μ1 (59)

Dp
m+1 =

[
χ4 − χ3

ψ1,2(lj)

ψ1,1(lj)

]
Dp

1 + μ2 (60)

Then, the undetermined coefficients of the near-ground pile segment can be acquired
through the inverse transfer function as

[
Cp

m
Dp

m

]
=

[
0 1

Gp∗
m λm 0

]−1[ sin(λm+1lm+1) cos(λm+1lm+1)

Gp∗
m+1λm+1 cos(λm+1lm+1) −Gp∗

m+1λm+1 sin(λm+1lm+1)

]
×
[

Cp
m+1

Dp
m+1

]
−
[

0 1
Gp∗

m λm 0

]−1[ 0
T(ω)

] (61)

The twist angle and velocity response of the near-ground pile segment can be ob-
tained as

φ
p
m(z, s) = Cp

m sin(λmz) + Dp
m cos(λmz) (62)

Vp
m(z, t) =

1
2π

∫ +∞

−∞
φ

p
m(z, s) · s · eiωtdω (63)

5. Model Verification

To verify the correctness of the proposed model, the results calculated from the present
solution are compared with those derived from the TLST theory aimed at the newly piled
foundation and those computed from the finite element method (FEM). The soil-pile
parameters utilized in this section are presented in Tables 1 and 2.

Table 1. Soil parameters utilized for model verification and parametric studies.

Density Young’s Modulus Poisson’s Ratio Shear Modulus

1800 kg/m3 12 MPa 0.3 4.6 MPa

Table 2. Default pile parameters utilized for model verification and parametric studies.

Density
Young’s

Modulus
Poisson’s

Ratio
Shear

Modulus
Length Radius

2500 kg/m3 24 GPa 0.2 10 GPa 10 m 0.5 m

5.1. Comparisons with the TLIST Signals of Newly Piled Foundations

As mentioned, the classic TLST theory is established for newly piled foundations.
Consequently, it is only capable of simulating the specific testing case in which the incident
wave is input at the pile head. Unlike the newly piled foundations, the selections of incident
wave input and signal receiving locations can be diverse for the testing of existing high-pile
foundations. he and hr are defined as the distances from the incident wave input location
and the signal receiving location to the pile head. By adopting the soil and pile parameters
in Tables 1 and 2, the present solution is compared with the classic TLST theory established
in Ref. [28]. The length of the fictitious soil pile is set as zero to simulate an end-bearing
condition. As shown in Figure 2, the reflection of the upward wave at the pile head would
result in an inverse wave signal after the incident wave. Further, as the incident wave is
input more away from the pile head, the time intervals between the incident wave and
the reflection of the upward wave would increase. Once the incident wave is input close
enough to the pile head, the incident wave and the reflection of the upward wave will
combine into one signal. It is also noticed that the reflection at the pile end in the newly
piled foundation signal would always match the second reflection of the downward wave
in the existing foundation signal, as long as the sensors are installed in the same place as
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the input of the incident wave. This is because the distance traveled by the strain wave at
this time is exactly equal to twice the length of the pile, as the reflection at the pile end in
the newly piled foundation signal does.

 t

T r h h

h

h

h

t

T r h h

h

h

h

Figure 2. Comparisons of velocity response between existing and newly piled foundations: (a) vis-
coelastic boundary at the pile end (T = 0.5 ms); (b) fixed boundary at the pile end (T = 1.0 ms).

5.2. Comparisons with the FEM Results

To verify the accuracy of the proposed solution in simulating the simultaneously prop-
agating upward and downward strain waves, the results calculated from the present model
are compared with those computed from FEM. The finite element model is established and
solved using Abaqus Explicit solver and C3D8R is utilized as the elements for both the soil
and pile, the mesh of which is depicted in Figure 3.

 

Figure 3. Mesh of the Finite element model.

As shown in Figure 4, the results derived from the present solution show good
agreement with those calculated from the FEM, especially for the occurrence time of each
reflection. However, there can be seen some deviations in the amplitudes of the reflected
signal, mainly because of more significant strain wave energy dissipation in the 3D FEM
model than in the present solution. In addition, by inputting the incident wave as close
to the pile head as possible, the incident wave and the reflection of the upward wave at
the pile head are more likely to be identified as one signal so that the difficulties of signal
interpretation can be considerably reduced.
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Figure 4. Comparisons of velocity response between present solution and FEM results: (a) he = 1 m;
(b) he = 2 m.

6. Parametric Studies

6.1. Layouts of the Input and Signal Receiving Locations

Based on the above analysis, a preliminary conclusion is drawn: by inputting the
incident wave as close to the pile head as possible, the difficulty in signal identification
and interpretation can be reduced. This section investigates the influence of the layouts
at the input and signal receiving locations on the velocity response, aiming to find the
optimal layouts for the TLSTs. In order to simulate the test for floating piles, the length of
the fictitious soil pile is set as 5 m.

As shown in Figure 5, once the sensors are placed where the incident wave is applied,
the number of the reflected signals is minimized, making the signal spectrum clearer. In
addition, the time intervals between the incident wave and the reflection of the upward
wave collected by the sensors installed above the input position of the incident wave would
not vary with the changes in the input position. In contrast, the time intervals collected
by the sensors installed below the input position would increase when the input position
moves away from the pile head. For cases where inputting the incident wave close to
the pile head is difficult, installing the sensors close to the pile head can be an alternative.
However, the optimal layouts of the TLST are inputting the incident wave close to the pile
head and installing the sensors close to the pile head as well.

Figure 5. Cont.
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Figure 5. Influence of the layouts of the input and signal receiving locations on the TLSIT spectrums:
(a) he = 1 m; (b) he = 2 m; (c) he = 3 m.

6.2. Identification of Defects from the TLST Spectrums

Defect identification is one of the major tasks for the integrity examination of the
existing pile foundations. Further, the neckings and concrete segregations are the two most
commonly found defects in practice. This section investigates the identification ability of
these two defects utilizing the TLSTs.

The results shown in Figures 6 and 7 again justified the rationality of the optimal
layouts of the TLSTs proposed in the above paragraphs. As shown in Figures 6a and 7a,
both the necking and concrete segregation defects can be clearly identified, as long as the
incident wave is input close to the pile head and the sensors are installed close to the pile
head as well. However, once the incident wave is input far from the pile head, identifying
the reflected signals at the defect turns out to be extremely difficult because the reflected
signals can no longer be identified as one signal but as several separate signals reflecting all
the time, making the signal spectrum a mess. In addition, the concrete segregation defects
would alter the pile body’s wave velocity so that each reflected signal’s occurrence time
would vary, while the reflected signals caused by necking defects would not.
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Figure 6. Identification of necking defects through TLSIT: (a) he = 0.5 m; (b) he = 2.0 m.
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Figure 7. Identification of concrete segregation through TLSIT: (a) he = 0.5 m; (b) he = 2.0 m.

7. Conclusions

This paper establishes a rigorous mathematical model to simulate the strain wave
propagation during the torsional low-strain test (TLST) for existing high-pile foundations.
In the proposed model, the simultaneous propagation of the upward and downward strain
waves inside the pile body is considered. The parametric analysis reveals the optimal
layouts of the TLSTs for the existing high-pile foundation. The main conclusions can be
drawn as follows:

1. By placing the sensors where the incident wave is applied, the number of reflected
signals can be minimized to acquire a more precise signal spectrum.

2. The optimal layouts of the TLST are inputting the incident wave close to the pile head
and installing the sensors close to the pile head as well. By doing this, the defects can
be more easily identified from the signal spectrum.

3. The existence of concrete segregation defects would influence the occurrence time of
each reflected signal, while the necking defects would not. Hence, this is a helpful tip
for distinguishing the concrete segregation defects (decrease in strength of pile body
material) from the necking defects.
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Abstract: As an innovative technology, the impedance-based technique has been extensively studied
for the structural health monitoring (SHM) of various civil structures. The technique’s advantages
include cost-effectiveness, ease of implementation on a complex structure, robustness to early-stage
failures, and real-time damage assessment capabilities. Nonetheless, very few studies have taken
those advantages for monitoring the health status and the structural condition of wind turbine
structures. Thus, this paper is motivated to give the reader a general outlook of how the impedance-
based SHM technology has been implemented to secure the safety and serviceability of the wind
turbine structures. Firstly, possible structural failures in wind turbine systems are reviewed. Next,
physical principles, hardware systems, damage quantification, and environmental compensation
algorithms are outlined for the impedance-based technique. Afterwards, the current status of the
application of this advanced technology for health monitoring and damage identification of wind
turbine structural components such as blades, tower joints, tower segments, substructure, and the
foundation are discussed. In the end, the future perspectives that can contribute to developing
efficient SHM systems in the green energy field are proposed.

Keywords: wind turbine; structural health monitoring; impedance-based technique; damage detection;
piezoelectric material

1. Introduction

Wind energy has overgrown and is now becoming one of the most cost-effective means
of providing electricity and decarbonizing the energy industry in many countries [1,2]. It
is forecasted that a typical onshore wind turbine installed in 2035 will have a capacity of
3.25 MW with a 174-m rotor diameter and 130-m hub height (see Figure 1). The offshore
wind turbine’s capacity will be 17 MW with a 250-m rotor diameter and 130-m hub height
by 2035 [2]. With the increase of turbine sizes to efficiently harvest more energy, the wind
turbine structure becomes more complex and prone to damage [3]. A comprehensive
wind turbine failure analysis reported that the blade failure is the most common damage
accounting for 23%, followed by the fire-induced failure with 19%; the structural failure
and the environmental damage accounted for 12% and 9%, respectively (see Figure 2) [4].
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Those failures could be caused by multiple factors such as moisture absorption, fatigue,
wind gusts, thermal stress, corrosion, fire, and lightning strikes [5,6].

Figure 1. Expected turbine size in 2035 for onshore and offshore wind, compared to 2019 medians: (a)
onshore wind turbines and (b) offshore wind turbines.

Figure 2. Failure types of wind turbine accidents.

The operation, repair, and maintenance expenditures make up a large percentage of
wind energy projects’ total life cycle costs. It is reported that those costs for a 500-MW
offshore wind farm were about 26% over a service lifetime of 25 years [7]. Thus, developing
innovative condition monitoring technologies that can enhance the safety and reliability
of wind farms is a crucial priority for the wind energy sectors [8,9]. The implementation
of structural failure detection and characterization procedure for engineering structures
is known as structural health monitoring (SHM) [10]. Generally, there are five levels of
SHM: detection of structural damage (Level 1), damage localization (Level 2), damage
quantification (Level 3), damage classification (Level 4), and structural integrity assessment
(Level 5). To the wind industry, a low-cost and reliable integrated SHM system could reduce
the wind turbine life cycle costs and secure the efficiency of a wind farm [3]. The SHM data
can be used to prevent unnecessary component replacement and unexpected catastrophic
failures, minimize the inspection times, make the wind energy supply chain run smoothly
and confidently, support further development of a wind turbine, and provide supervision
at remote sides and remote diagnosis.

So far, there have been several SHM technologies that can be applied for the damage
assessment in wind turbine structures, such as acoustic emission monitoring [11], imaging
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technique [12], ultrasonic method [13], impedance-based technique [14], modal properties-
based approach [15,16], and strain monitoring [17,18]. Among those SHM technologies, the
impedance-based method has been extensively studied and constantly shown its practical-
ity in assessing the structural damage in civil, mechanical, and aerospace structures [19–22].
Moreover, the impedance-based technique is suitable for damage detection and severity
quantification in the early stage, which is particularly important in SHM systems. In brief,
the technique utilizes a non-instructive piezoelectric transducer, which is surface-mounted
on a host structure, to sense the electromechanical impedance response in ultrasonic fre-
quency bands. The impedance response represents the local dynamics of the host structure,
so it will be altered when the structural damage occurs [23]. The use of short wavelengths
in high-frequency bands enables the technique to easily detect minor damages close to the
vicinity of the transducer. Unlike the local vibration method, the local impedance technique
utilizes the local vibrations in a high frequency, which could be up to 1 MHz in some cases.

A comparison of SHM technologies considering their damage assessment capabilities
is outlined in [24]. The piezoelectric impedance-based SHM technology has achieved
Level 3 of SHM [24] and is approaching Level 4, thanks to advanced machine learning
algorithms [19,21,25]. It is noted that a Level 5 damage assessment is still a concept for SHM
technologies so far [24,26]. As summarized in [22,27], the significant advantages of the
impedance-based technology include: (i) cost-effectiveness, since the technique uses inex-
pensive, lightweight, fast-response, self-diagnostic piezoelectric transducers (such as PZT)
to sense the impedance response of the host structure; (ii) being able to detect various types
of damage such as fatigue cracks, corrosion, or loosened bolts; (iii) easy implementation
for complex structures regardless their materials; (iv) robustness to early-stage damages
due to the use of high-frequency and short-wavelength excitation; (v) advances in low-cost,
onboard-computing, multi-functional, wireless data acquisition systems have reduced the
cost of large SHM systems [28]; (vi) the technique is potential for the integration with
other SHM technologies to enhance the safety and the optimization of maintenance costs.
Additionally, impedance-based SHM still has some limitations, including limited sensing
range of the transducers, temperature/noise effects on impedance responses, and required
impedance data before damage (i.e., the reference). Nonetheless, many advanced signal
processing algorithms have been developed for compensating the noise and environmental
effects [19,21,29] and reference-free damage assessments [30]. Those have significantly
enhanced the performance of the impedance-based technique, making this technology an
ideal candidate for developing an effective SHM system for wind turbines.

Over the past decades, the impedance-based technique has shown its capacity and
effectiveness for detecting and quantifying structural damages in pipeline systems [31,32],
reinforced concrete [33–35], steel joints [36–38], and aerospace engineering systems [39,40].
It also can be applied for corrosion monitoring [41,42], soil monitoring [43–45], and cable
monitoring [46,47]. However, a very small number of studies have reported the appli-
cations of the impedance-based technique for the SHM of wind turbine structures, and
most of them have focused on blade monitoring such as fatigue detection [48], added
mass and stiffness change [49], crack monitoring [14], and ice monitoring [50]. Recently,
the reference [51] showed the potential of the impedance response for damage detection in
the grouted connection of offshore wind turbines. Another study reported the feasibility of
the impedance-based technique for bolted joint monitoring in a wind turbine tower [52].
There are several challenges with the SHM of wind turbines, such as: (1) difficulties in the
field inspection and maintenance due to the height of the structure, the operation of the
blades, (2) the effect of environmental conditions, especially under offshore atmosphere,
and (3) the remote site of wind farms [3,9]. Since it is measured in the high-frequency
band, the impedance response is insensitive to changing boundary conditions and any
operational vibrations [3]. Therefore, the impedance-based SHM technology is ideal for
damage assessment in wind turbines under operation.

In 2008, Ciang et al. [3] published a comprehensive review reporting different tech-
niques for SHM of wind turbines and discussed the unique advantages of the impedance-
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based technique. In 2015, Antoniadou et al. [53] published a mini-review discussing ad-
vanced signal processing approaches for SHM strategies in the wind energy sector. In 2016,
Martinez-Luengo et al. [9] reviewed many SHM techniques for offshore wind turbines with
a focus on statistical pattern recognition methods and highlighted the need for developing
novel effective SHM methods to measure and analyze the meaningful responses of the
wind turbines. The specific issues of structural monitoring of wind turbine blades have
been well-presented in recent papers [54,55]. In 2022, Civera and Surace [56] presented a
comprehensive review of nondestructive techniques performed during the last 20 years for
SHM and condition monitoring of wind turbine systems. They also highlighted important
works that have been receiving significant interest from the academic community.

An excellent review of the piezoelectric-based impedance-based SHM was presented
by Na et al. [22]. The advances and challenges of this SHM technology were discussed
by Huynh et al. [27]. Physics-based and data-driven methods for the impedance-based
SHM were also discussed in the review paper by Fan et al. [57]. However, no recent
and updated review papers have focused on the applications of the impedance-based
method in the wind turbine monitoring field. Therefore, in this review paper, we aim to
give the readers an overview of how this advanced technology has been applied for the
damage identification and safety evaluation of wind turbine systems and future research
areas that can turn the technology into practical SHM applications. At first, the potential
damages to wind turbine structures are presented. Afterwards, the fundamentals of the
impedance-based technique are outlined with two critical aspects: impedance sensing
technology and damage identification algorithms. Then, the paper discusses the current
status of the application of this SHM technology for wind turbine monitoring, focusing
on critical structural components such as blades, towers, substructures, and foundations.
From that, we highlight potential applications and outline new research topics for the
future development of low-cost impedance-based SHM systems in the green energy field,
including the concept of impedance-based smart blades, the development of wearable
sensor devices, corrosion probes for towers, the concept of a smart sensor bar for scour
monitoring, and the development of smart aggregates for concrete foundation monitoring.

2. Potential Damages in Wind Turbines

2.1. Blade Failure

A typical construction layout of a wind turbine blade is a thin-walled multicellular
hollow airfoil-shaped cross-section structure with different materials, including fiber com-
posites and sandwich composite systems, primers, UV gel coats, paint, bolted joints, and so
on. As a complex structural element, wind turbine blades are easily damaged. The blade
damage type depends on the surrounding environment and the land morphology of the
installation area of the wind turbines [6]. The blade damages impose not only severe
repairing costs but also the income lost due to the unwanted interruption of the wind
turbine operation and the reduction in the aerodynamic performance of the blades. As
reported in [6], the blade failures can be classified into four main types: damage from
lightning, leading-edge erosion, structural fatigue damage, and damage from icing, as
depicted in Figure 3.

i. Damage from lightning is regarded as the most frequent damage to the wind turbine
blades [6]. Light strikes a blade could cause delamination, debonding in the upper
and lower shells, and shell and tip detachments [58].

ii. Leading-edge erosion is mainly due to airborne particulates in the form of rain,
hailstone, sea spray, dust and sand, and UV light and humidity/moisture. As
reported in [59], leading-edge erosion can occur after only two years of wind
turbine operation, and it is dependent on the site.

iii. Structural fatigue damage can occur when the wind turbine is subjected to repeated
loads during its life cycle induced by wind. The turbine’s cyclic starts and stops,
with yaw error, yaw motion, and vibrational resonance-induced loads from the
dynamics of the structure.
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iv. Damage from icing is caused by the accretion of ice or snow on the blade structures
exposed to the icing atmosphere. As reported in [6], there are two distinguished
types of atmospheric icing, in-cloud icing (rime ice or glaze) and precipitation icing
(freezing rain or drizzle, wet snow). Icing causes added mass and could induce
unbalanced vibrations of the blade, resulting in considerable reductions in the
economic efficiency of the wind energy project.

 
Figure 3. Potential damage sources of wind turbine blades: (a) damage from lightning, (b) failures
due to fatigue, (c) leading-edge erosion, and (d) damage from icing (adapted from [6]).

2.2. Tower Failure

The structural failure averagely accounted for 12% of the total failure cases, as reported
in [4] and shown in Figure 2. Fatigue cracks, joint failure, storm-induced failure, improper
installation, and even lighting damage can contribute to the structural failure of wind
turbine towers [3,52,60].

i. Fatigue cracks. Different materials can be used for constructing wind turbine
towers. From the beginning, a wind turbine tower was made of steel truss-like
structures with many connections that could be easily corroded. With increased
turbine capacity, steel tubular tubes are preferred for the wind turbine tower design.
Harte et al. [61] reported that a steel tubular tower with a height of over 85 m is
extremely challenging to balance the dynamical excitation. A concrete tower can be
an alternation, but it faces thermal constraints that cause cracking damages in the
tower, reducing the stiffness of the whole system. On the other hand, wind turbine
towers are often subjected to repeated loads during their life cycle, which can result
in fatigue cracks that can expand and carry potential, leading to the tragic collapse
of a whole tower.

ii. Joint failure. In the steel tubular tower, the segments are assembled by high-strength
bolts, which are indeed hot spots in the tower. The self-looseness is one of the main
reasons for the failure of a bolted joint, especially under transverse loads [62,63].
Regarding the wind tower joint, the bolt failures such as loose and broken could
be found during harvesting wind energy [64]. Imbalanced loads across a clamping
bolted connection could cause local plastic zones and create proper conditions for
corrosion damages [60]. Figure 4a shows the scene of the tower’s structural failure
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at the wind farm Abuela de Santa Ana in Spain in 2008 [65]. A field investigation
found signs of corrosion in the damaged flange section of the joint, which eventually
led to the failure of the whole tower, as shown in Figure 4b.

iii. Storm-induced failure. A turbine tower could be broken and toppled over during a
storm, as reported in [66]. Accidents are ranked the third most common cause of
failure [60]. Cheng and Xu [67] investigated the structural failure of wind turbines in
China’s Shanwei City caused by the super typhoon Usagi in 2013. The representative
tower failure is presented in Figure 4c. The local buckling was observed at the shell
wall thickness transition zone in the tower during the typhoon, as depicted in
Figure 4d. Their study further reveals that the tubular tower collapsed at a hub
wind speed lower than the design survival wind speed. A finite element model was
constructed to predict the failure modes and failure locations in the tubular towers
caused by the Usagi typhoon [68].

 

Figure 4. (a) The scene of the wind turbine tower collapsed at the wind farm Abuela de Santa
Ana, Spain caused by joint failure. (b) The view of the damaged joint where the failure began.
(c) The structural failure of a wind turbine tower in China’s Shanwei city caused by super typhoon
Usagi. (d) The view of local buckling of the tower at wall-thickness transition zone. (e) The view
of the fractured tubular tower section of a wind turbine in Taiwan. (f) The scene of fractured bolts
((a,b) adapted from [65], (c,d) adapted from [67], and (e,f) adapted from [4]).

iv. Improper installation. In some realistic situations, faulty construction and poor
quality control are responsible for the collapse of new turbine structures [3]. As
reported in [64], faulty bolt installation related to an insufficient preload at the joint
induced the failure of a wind turbine tower in Sweden. In 2008, the Jangmi typhoon
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struck Taiwan, resulting in strong winds and heavy rains that caused the collapse
of a wind turbine [4]. The actual views of the fractured tubular tower section and
fractured bolts are depicted in Figure 4e,f, respectively. Chou et al. [4] conducted a
failure analysis of the collapsed wind turbine and found that the designed strength
of the bolts and the used ones during the construction was different.

v. Lightning damage. Lightning can cause severe damage and even destroy the tower.
Wind turbine towers are getting so high and attractive to lightning, primarily when
they are frequently located in flat areas with nothing around. Unlike the blades, the
tower’s damage related to lightning is rarely observed. A survey of wind turbine
tower collapse cases reported that lightning produced only two incidents of the
tower collapse, with the occurrence of lightning-related damage being 2.8% [60].

2.3. Substructure and Foundation Failures

Structural damage can be anything in the substructure and the foundation of wind
turbines. Different types of potential cracks and damages in concrete foundations have
been reported for onshore wind turbines [69]. They occur in the foundations for many
reasons, including using substandard concrete mixes, faults in the design, or multi-stage
concreting in extreme weather conditions [70].

i. Concrete foundation damage. In Germany, in 2000, four turbines experienced
sudden and total collapse due to concrete damage at the base. This led to the
shutdown of forty-four similar turbines for pending investigation [66]. The steel
tower is clamped to the foundation through pre-stalled anchor bolts, and there are
many problems in the mortar grout between the steel flange and the foundation.
The potential damages can be the vertical shrinkage cracks, the side excess material,
the weak mortar grout caused by the separation of the motor, and the voids between
the concrete and the tower segments [69]. The combination of the stresses caused
by the serviceability load and the thermal stresses could result in cracks in a high
concrete foundation pedestal. Cracks can propagate and lead water and dirt from
the outside to the inside of the foundation pedestal. Further, the cracks could
potentially occur in the transition zones between the insert ring of the tower and
the concrete foundation, as reported in [69].

ii. Corrosion, scouring, grounded connection failure, and fatigue damage in substruc-
tion. The offshore environment is one of the harshest. Under the offshore atmo-
sphere, many potential damages can occur in the substructure and foundation of
offshore wind turbines, including corrosion [71,72], scours in the sea bed [73], failure
of the grouted connections [74], and cracks in welding/bolted joints [75]. An exam-
ple of corrosion that has occurred inside a substructure is illustrated in Figure 5a.
Many factors influence the rate of corrosion in the offshore atmosphere, such as
temperature, humidity, biological organisms, and airborne contaminants [3]. When
a wind turbine is placed offshore, locally increased current and wave motions are
induced around the structure, resulting in scouring, as depicted in Figure 5b [76].
Grouted connections are commonly used as the structural joint between the sub-
structure and the foundation of an offshore wind turbine [74]. A typical failure of a
grouted connection is shown in Figure 5c. Under the different ambient conditions
and high dynamical loads caused by waves and wind, the grouted connections are
potentially damaged, leading to a reduction in their mechanical stability [77,78],
especially severe fatigue damages [74]. The combination of wave and wind loading
could also result in fatigue damage in a tripod support structure. The previous
analysis of fatigue damage assessment [75] shows that the hot spots (the most severe
regions) in the tripod are at the joints between the central column and the bracing
members and between the pile and the brace (see Figure 5d).
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Figure 5. Structural damages in offshore wind turbine substructure and foundation: (a) corrosion in
the substructure (obtained from [72]), (b) scouring in the sea bed (obtained from [73]), (c) failures
of the grouted connection (obtained from [74]), and (d) potential fatigue damage in the joint of the
offshore wind turbine tripod (obtained from [75]).

3. Fundamentals of Impedance-Based SHM

Figure 6 shows two main aspects that must be considered in developing an impedance-
based SHM system for a wind turbine structure, including (i) the hardware for impedance
sensing and (ii) the interpretation algorithm for damage detection. The hardware consists of
a PZT patch surface bonded to a host structure to sense the electromechanical impedance in
a frequency domain through an impedance analyzer. Afterwards, interpretation algorithms
are implemented to process the impedance signals and assess the host structure’s health
status. Since the impedance data consists of the local dynamic information of the structural
region near the PZT patches, any structural damages in the host structure could be identified
by interpreting the impedance change. In the following sections, those two aspects are
briefly described.
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Figure 6. Scheme of the impedance-based SHM process.

96



Energies 2022, 15, 5459

3.1. Impedance Sensing Technology
3.1.1. PZT-Driven System

Piezoelectric materials are at the heart of the impedance-based technique. They are
smart and low-cost materials that show the potential of converting mechanical energy into
electrical energy and vice versa, so they can provide an excellent opportunity to create
intelligent, efficient, and effective SHM systems. PZT is today considered one of the most
economical piezoelectric elements with a considerable product market. A PZT patch costs
only a few dollars, but it can be applied to high-frequency applications at hundreds of kHz
and above.

By utilizing the unique piezoelectric effect, Liang et al. [79] developed the electrome-
chanical impedance technique for dynamic analysis and damage detection in structural
systems. A theoretical model of the PZT-driven system that can predict the impedance
response was proposed in [79]. As shown in Figure 7, the PZT is electrically excited by
a harmonic voltage. Under the piezoelectric effect, the PZT is mechanically expanded,
and its deformation causes an exciting force at the contact between the PZT and the host
structure. The ability of the structure to resist this exciting force is defined as the structural
impedance, consisting of the dynamic properties as follows:

Zs(ω) = c + m
ω2 − k/m

ω
i (1)

where Zs is the structural impedance of the host structure, the terms m, c, and k are the
mass, the damping coefficient, and the stiffness of the host structure, respectively; the term
ω is the exciting frequency of the harmonic voltage.
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V ω
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Figure 7. A theoretical impedance model of a PZT-driven system.

The PZT patch has itself the electrical impedance Za, and the overall electromechanical
impedance is a combination of Za and Zs, as expressed in [80]:

Z(ω) =
V
I
=

{
iω

baha

ta

[
ε̂T

33 −
1

Za(ω)/Zs(ω) + 1
d2

31ŶE
11

]}−1
(2)

where ŶE
11 = (1 + iη)YE

11 is the complex form of Young’s modulus of the PZT at a zero
electric field; ε̂T

33 = (1 − iδ)εT
33 is the complex form of the dielectric constant at zero stress;

d31 is the 1-directional piezoelectric coupling constant at zero stress; and ba, ha, and ta are
the width, the height, and thickness of the PZT, respectively. The terms η is the structural
damping loss factor, and δ is the dielectric loss factor of the PZT.

As expressed in Equations (1) and (2), any changes in the structural properties
(m, c, and k) as the result of structural damages would lead to the variation in the mea-
sured impedance response of the PZT-driven system. Therefore, the structural damage
could be assessed by monitoring the change in the impedance response. It is noted that
the frequency band of the impedance response should be carefully selected to realize the
structural damage. As demonstrated in [81], the effective frequency band should cover
the resonant frequencies of the host structure to enhance the opportunity of diagnosing
small-size damages. The effective frequency range for a given host structure is obtained by
trial-and-error methods or finite element modelling.
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3.1.2. Impedance Analyzer
Wired Impedance Analyzers

The impedance or admittance (inverse of impedance) signatures are acquired over a
high-frequency range (typically 30–400 kHz). Commercial high-performance impedance
analyzers such as Agilent E4980A, LCR meter HIOKI 3532, Wayne Kerr impedance analyzer,
and HP 4192A/4194A are commonly-used in impedance-based SHM practices. Generally,
a user interface (UI) package is installed on a computer to control the impedance analyzer
via an I/O interface. After setting the parameters in the UI, the PZT is interrogated in the
impedance analyzer and excited by a harmonic voltage to generate the short wavelength
and high-frequency waves into the host structure. The recorded impedance data is then
transferred to a computer and saved for data interpretation. Although the commercial
impedance analyzers can measure the impedance in a very high-frequency band, up to
MHz, they are often bulky, expensive, and inconvenient for field applications.

Wireless Impedance Analyzers

Many researchers developed new, low-cost, and portable hardware to reduce the cost
and enhance the portability of impedance measurement systems. In 2007, Mascarenas et al. [82]
presented the first portable, low-energy consumption, and wireless impedance sensor node,
as shown in Figure 8a. The node uses a cheap impedance chip AD5934 for recording the
impedance from the PZT [83]. The chip is embedded with multifunctional circuits: function
generator, current-to-voltage amplifier, antialiasing filter, analog-to-digital converter (ADC),
and discrete Fourier transform (DFT) analyzer. A microcontroller ATmega128L is used for
controlling and computing, and a radio frequency module XBee (2.4 GHz Zigbee) wirelessly
transmits the recorded data. A microwave wireless energy transmission module powers
the node to maximize the portability of the device.

Figure 8. (a) Block diagram of the first wireless impedance sensor node [82]; (b) Prototype of a
low-cost wireless impedance sensor node [28].

Based on the pioneering study by Mascarenas et al. [82], many researchers have
improved the initial prototype to achieve a low-cost multifunctional wireless impedance
sensor node. In 2009, Park et al. [84] embedded more functions into the sensor node, such
as temperature recording, multi-channel measurement, and a SD memory card slot. A year
later, Min et al. [85] embedded damage detection/sensor self-diagnosis algorithms and
power management with energy harvesters. In 2012, Nguyen et al. [86] developed an
Imote2-platformed impedance sensor node for wireless, autonomous, cost-efficient, and
multi-channel monitoring. The Imote2 board could enable high operating speed, low
power requirement, large storage memory, and onboard computing capability for onsite
applications [87]. To provide stable software and reliable hardware suitable for full-scale
and autonomous SHM, Perera et al. (2017) [28] proposed a flexible wireless impedance
sensor node, which was also developed on the low-cost impedance chip AD5933. Figure 8b
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depicts a prototype of the sensor node in which a printed circuit board (PCB) is designed
with an AD5933 chip, a multiplexer, an Atmega644PA microcontroller, a wireless XBee
S2C 802.15.4 RF module, and a real-time clock DS3221. The battery module includes
a solar panel, a battery board MCP73871 and rechargeable batteries for power supply
and management.

The in situ applicability of the wireless impedance analyzers was verified for impedance-
based SHM of cable-stayed bridges [88] and large girder bridges [85] and building roofs [85].
The solar energy harvesting and consumption, as well as the survivability of the Imote2-based
wireless sensor nodes during field testing, were discussed in [88], revealing the stable
operation of the designed SHM system. Despite many benefits that a wireless impedance
sensor network can offer, the existing wireless sensor nodes can provide only a limited
frequency band for impedance measurements, since they have relied on the impedance
chip AD5933/AD5934 that can generate signals ≤ 100 kHz.

3.2. Damage Identification Method
3.2.1. Traditional Metrics

For damage detection, the impedance change is traditionally quantified using statisti-
cal damage metrics such as root mean square deviation (RSMD), covariance (COV), corre-
lation coefficient deviation (CCD), and mean absolute percentage deviation (MAPD) [22].
The formulas of those standard metrics are expressed in Equations (3)–(6). Each metric
exhibits different behaviors in quantifying the impedance change, and the selection of
optimal metrics depends on the detection’s purpose or target structure. The RMSD and
MAPD metrics are found to be more appropriate for localizing and characterizing the dam-
age growth. Meanwhile, the COV and CCD metrics are more suitable for diagnosing the
damage size increment at a fixed location [22]. For monitoring concrete curing and strength
gain, it is found that the MAPD metric is better than the RMSD and CCD metrics [89]. As
reported in Le et al. [47], the CCD metric is an excellent indicator to detect the prestress
force change in the piezoelectric-based smart strand. The RMSD index showed good per-
formance for sensor fault diagnosis, such as sensor debonding and breakage problems [90].
Some researchers used other, less common metrics such as average square deviation (ASD),
Rx/Ry, chessboard distance (CD), united mechanical impedance (UMI), ellipse damage
index (EDI), and so on. Hu et al. [91] developed an alternative metric, so-called Rx/Ry,
and showed that it was more suitable for damage identification in a concrete slab. Another
researcher used the chessboard distance (CD) and showed that it was better than RMSD for
detecting damage in a composite structure under different temperatures.

RMSD =

⎛⎜⎜⎜⎝
N
∑
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[
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in which Re(Zk)i denotes the real part of the reference impedance signature (i.e., intact
state), and Re(Zk)j is the real part of the current impedance signature (i.e., unknown state),
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N is the number of swept frequencies (i.e., the number of data points), and the terms Z and
σZ signify the mean and the standard deviation of an impedance signature, respectively.

3.2.2. Advanced Damage Identification Algorithms

For damage detection under environmental conditions, alternative damage metrics
should be employed. It is noted that the piezoelectric material and the host structure
are temperature-dependent [92], and the traditional damage metrics are just statistical
comparisons of the two impedance signatures. Thus, the temperature change will indeed
induce alternations in the damage metrics, leading to a false damage detection unless
the temperature effect is well-compensated. Fabricio et al. [93] observed that the peak
frequencies of impedance signatures were reduced when the temperature increased. They
also found that the frequency shift was more significant at higher-frequency bands. Several
advanced signal processing algorithms have been developed to deal with the effect of
temperature change on damage detection results.

Advanced Statistical Index

To remove the temperature effect, Park et al. [94] proposed one of the first tem-
perature compensation algorithms. They verified the proposed algorithm for damage
detection in gears, composite reinforced structures, and bolted joints under varying tem-
peratures of 25–75 ◦C. The temperature compensation algorithm is developed based on
the reconstruction of the damage metric through a correction scheme, as expressed by the
following equation:

M =
n

∑
i,j=1

[
Re(Yi,1)− Re(Yj,2)

]2
where Re(Yj,2) = Re(Yj,2)measured + δs (7)

In Equation (7), the variable M is the sum of the real impedance change squared, Yi,1 is
the impedance of the pre-damaged structure at the ith frequency, and Yj,2 is the impedance
of the post-damaged structure at the jth frequency; δs is defined as the average difference
between the reference impedance and the measured impedance, which can be determined
by minimizing the value of damage metric via an iteration process. The experimental
result shows that, by incorporating the developed compensation technique into health
monitoring applications, the impedance-based technique can detect early-stage structural
damage, even with severe temperature variation.

Assuming that the temperature change mainly causes the shift in the impedance
pattern, Koo et al. [95] developed a temperature-compensated damage index based on the
concept of effective frequency shift. The Koo’s method looks for the maximum value of the
CC metric (maxCC) by shifting the effective frequency band. The formula for the maxCC
metric can be expressed as [95]:

maxCC
ω̃

= max
ω̃

{
1
N

N

∑
i=1

(x(ωi)− x)(yi(ωi − ω̃)− y)

}
/(σxσy) (8)

In Equation (8), x and y are the mean of the impedance signature x(ωi) and y(ωi),
respectively, σx and σy are the corresponding standard deviations, ω̃ is the effective fre-
quency shift, and ωi is the ith frequency. They proposed a strategy combining the maxCC
metric with the outliner analysis for damage assessment. They applied the maxCC method
to monitor the structural damage in a lab-sized steel truss bridge member. The results show
that the proposed strategy can accurately detect a 2-mm cut of the test specimen with a
99.5% confidence level.

Machine Learning Algorithms

Over the past decade, machine learning algorithms have enhanced the automation
capability of impedance-based damage detection, which is mainly required for real-time
SHM under different environmental conditions. Sepehry et al. [96] presented a radial basis
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function network (RBFN) for compensating temperature effects on the impedance response
of steel plates and bolted joints of a gas pipe. The RBFN learned the impedance signatures
corresponding to different temperatures to predict the RMSD metric. Lim et al. [97] devel-
oped a kernel principal component analysis (PCA)-based data normalization technique to
minimize false alarms caused by varying temperature and loading conditions. Moreover,
the proposed technique was successfully verified on a composite aircraft wing under a
temperature range of −30 ◦C to 50 ◦C (5 ◦C interval) and a loading range of 10–40 MN
(5-MN intervals). The simulated damage was bolt-loosening with a half-turn severity, and
the impedance data was recorded in a range of 60–70 kHz (20 Hz interval). The ability of
the PCA-based technique for the problem of temperature filtering/compensation is also
confirmed by other research groups [98].

Recently, Gianesihi et al. [99] developed a general poly-nominal regression-based
methodology to remove the temperature effect during impedance-based SHM. The pro-
posed method was successfully applied to two aluminum beams and one steel pipe with a
considered temperature range from −40 ◦C to 80 ◦C and a studied frequency range from
10 to 90 kHz. Du et al. [100] developed a convolutional neural network (CNN) model to
compensate the effects of temperature change on the impedance response for bolt loosening
detection. The model is based on a modified Unet for temperature compensation and a
lightweight subnetwork to identify bolt looseness. The proposed model can achieve good
damage detection results under the varying temperature condition, even when the network
is trained by limited data. The validation accuracy was 97.71% when the model was trained
by only about 30 samples from each damage state. The developed model also showed good
generality to untrained temperatures and bolt torques.

A promising feature of the machine learning-based models is that they can be retrained
to learn new nonlinear temperature and frequency dependences of impedance signatures,
so it is readily incorporated into real-time systems. However, one of the important issues
is that most machine learning models need to be trained not only by the impedance
signature before the failure but also by the data after the failure to ensure the accuracy
of damage detection. However, acquiring the training data for damaged states from the
structures being used without corrupting them is very challenging. To overcome this
issue, Huynh et al. [29] presented a different temperature compensation strategy using a
set of the RBFN models to predict the baseline impedance signature at any temperature.
The proposed method requires only the impedance data of a healthy state to train the
network. As shown in Figure 6, this strategy consists of two main phases: training RBFN
for temperature compensation and detecting damage using temperature-compensated
impedance signatures, as detailed in Figure 9. In the first phase, the impedance data of
the healthy state is recorded under varying temperature conditions and used to build
the training data. Then, a set of RBFNs corresponding to all scan frequencies are set up
and trained on the recorded data. In the next phase, the impedance data of an unknown
state at a temperature T is measured, and the impedance baseline at T is predicted using
the trained RBFNs. RMSD and CCD indices are then computed and compared with an
upper control limit (UCL) to assess the structural integrity of the monitored structure.
The experimental verification on a post-tensioned reinforced concrete girder showed that
the proposed method could detect as small as 1 ton prestress loss (roughly 7% damage)
under varying temperatures ranging from 6.72 ◦C to 22.33 ◦C. Those advanced signal
processing algorithms for compensating the operational and environmental effects have
enhanced the accessibility of the impedance-based technique for in-field measurements.
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Figure 9. RBFN-based temperature compensation algorithm for impedance-based damage detec-
tion [29].

4. Current Status of Impedance-Based SHM of Wind Turbines

4.1. SHM of Wind Turbine Blades

An assessment of wind turbine failure cases showed that the blade failure rate is
the highest at 23%; see Figure 2 [4]. Therefore, avoiding wind turbine blade failures will
lead to significant cost reductions related to the maintenance of wind turbines. Several
studies have implemented the impedance-based technique for the SHM of wind turbine
blades. Pitchford et al. [49] investigated the experimental feasibility of implementing an
impedance system integrated inside turbine blades as a field method to detect turbine
blade failure. The experiment procedure can be briefly illustrated in Figure 10a. The test
specimen is an actual wind turbine blade section (TX-100 blade) developed at Sandia
National Laboratories [49]. Three PZT transducers (made of 20 × 20 × 0.27 PSI-5H4E
material, Piezo Systems) are internally bonded to the structural components of the blade,
such as skin (Skin PZT) and spar (spar PZT and carbon PZT). Three damage locations
(1, 2, and 3) were considered. As shown in Figure 10a, damage location 1 is where the
carbon fiber spar cap meets the balsa skin, and damage locations 2 and 3 are the adhesive
between the spar flange and the spar cap on the curved side and the other side of the
blade, respectively. An HP 4194A impedance analyzer is used to measure the impedance of
the PZTs with a 10-Hz resolution. The RMSD index was used to detect and estimate the
damage to the blade.

In [49], two different tests, including indirect damage testing and actual damage
testing, were performed on the testing blade. In the indirect damage testing, as shown
in Figure 10b, magnets of 25 g and a C-clamp were attached to the blade to simulate the
added mass and the added stiffness, respectively. To study the sensing range, the mass
was moved downward the blade away from the PZTs and stopped at 13, 25, and 40 cm,
respectively. The actual damage testing was conducted at locations 1 and 3. As shown in
Figure 10c, the notch damage was created at location 1 with a progressive damage severity
(deep/wide: 8/3, 15/5, and 19/5 mm). Several notch damages in the form of 2.5-cm-long
gaps in location 1 were also created outside the blade with distances of 3, 12, 22, and 31 cm,
respectively. As shown in Figure 10d, holes of progressive sizes (4 cm in depth with 1.6, 3.2,
4.8, and 6.4 mm in diameter) were created in location 3. Additionally, holes were drilled
in location 3 roughly 5 to 6 cm in depth and 6.5 cm in diameter with distances down the
length of the blade of 0, 5, 13, 20, and 28 cm, respectively. The results showed that the
impedance in the frequency band 10–60 kHz was suitable for damage detection. All sensors
could sense the added mass, the added stiffness, and the notch damage in the blade. The
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sensors should be positioned on both sides of the blade to sense the damage. It is found
that the detection range is about 10–30 cm, depending on the transducer and the type of
damage. However, considering the size of the wind turbine blades, such a sensing range
seems pretty narrow. Challenges remain to improve the sensing range of PZT patches and
optimize their placement on actual wind turbine blades.

 

Figure 10. Detecting structural damages on the spar and the skin of a blade segment using the
impedance-based technique [49]: (a) test specimen and procedure, (b) indirect damage testing, (c) and
actual damage testing at location 1 and (d) at location 3.

The fatigue damage detection in a wind turbine blade was investigated by Huh et al. [48].
In their study, four piezoelectric transducers (PVDF film sensor) were attached to the fixing
end of a 10-kW wind turbine blade. The impedance response in 1–200 MHz, the local strain
values of the blade, and the maximum deflection were recorded under fatigue loading
up to 508,249 cycles. The obtained data revealed the local damage or geometrical change
during the experiment. The RMSD metric was used to quantify the impedance change
that showed noticeable variations with different sensor locations and fatigue loads. By
observing the RMSD change, the fatigue damage was successfully identified.

The crack detection in a commercially purchased wind turbine (WINDMAX) when it
was loaded until failure was studied by Ruan et al. [14]. The PZT patches were attached
to the top and bottom of the wind turbine blade near the fixing root, and the Agilent
4294A impedance analyzer was used to record the impedance signatures. The blade was
undergone increasing loading cycles in which the blade tip was loaded by a displacement
of 50, 100, 150, 225, and 250 mm, respectively, while returning to zero displacement before
each cycle. The impedance change was also quantified by the RMSD metric. Visual failure
of the blade was observed around 225-mm and 250-mm tip displacements and a 0.57-kN
load. The recorded impedance data showed rapid changes when the blade nearly failed,

103



Energies 2022, 15, 5459

leading to significant variations in the RMSD index. The RMSD changes from different
sensors provided information about the health status of the blade and the damage location.

Rumsey et al. [101] examined the applicability of MFC (macro-fiber composite) ac-
tuators for monitoring the fatigue damage that occurred in a TX-100 blade, which was
more massive than the blade tested in the reference [49]. Six MFC patches were installed
on the low-pressure (downward-facing) side between 1 and 3 m from the root, where
the potential fatigue failure can be expected. The impedance data in 5–60 kHz recorded
from MFC patches before the fatigue test showed no resonant peaks and, therefore, no
structural information. The recording was continued throughout the fatigue test, but the
damage was not successfully detected. This result suggested that the MFC actuators failed
to activate local dynamical modes of the tested blade. Thus, selecting sensing material in
the impedance-based SHM is a critical issue to secure the success of a damage detection
process. Challenges remain for developing novel piezoelectric materials for better sensing
mechanisms with higher damage sensitivity and a more extended sensing range for SHM
of large-scale wind turbine blades.

4.2. SHM of Wind Turbine Tower
4.2.1. Monitoring of Tower Joint

So far, there have been minimal investigations on the impedance-based SHM of wind
turbine towers. Nguyen et al. [52] conducted a pioneered experiment on the feasibility
of impedance-based SHM for bolt looseness monitoring in a wind turbine tower. The ex-
perimental setup is shown in Figure 11. The test structure was a 300-W wind turbine
(1.845 m in height) fixed to the floor through a bolted joint. In their study, several PZTs
were patched on the bolted flanges of a lab-scale wind turbine structure, and the joint
damage was simulated by sequentially loosening the bolt nuts: B1 and B2, as shown in
Figure 11. The PZTs were excited by a high-frequency voltage using a HIOKI 3532 LCR
HiTester, and the impedance responses of the joint were then recorded. It is observed
that the impedance response in the frequency band of 100–300 kHz, reflecting the local
resonances of the joints, was sensitive to the bolt looseness. The looseness of the bolted
joint was successfully identified by monitoring the change in the RMSD and CCD indices
of the impedance signature. In [52], the impedance-based technique was combined with
the vibration-based technique to enhance the damage detection in wind turbine towers.
However, the experimented tower model is made of rectangular hollow cross-sections, not
tubular cross-sections. Additionally, the effects of the operation of wind turbines and the
temperature variation on the impedance response remain unsolved.

Some impedance-based SHM investigations have been conducted on structures with
similar geometries to a wind turbine tower. Jiang et al. [102] attempted to identify a minor
degree of looseness in flange bolts of a tubular joint. Figure 12 shows the experimental setup,
including a NI impedance acquisition system (see Figure 12a) and an eight-bolt flange joint
with a PZT patch (PZT-5A ϕ16 mm in diameter and 1 mm thick) (see Figure 12b) [102].
The impedance was recorded in the frequency band of 350–650 kHz (0.75-kHz intervals).
The bolts were initially torqued by 40 Nm in the healthy state. Then, the #7 bolt was
loosened with monitor torque reductions ranging from 39.5 Nm to 36 Nm with a 0.5-Nm
interval. Pseudo-random noise (ranging from 5 to 30 dBW with 5-dBW intervals) was added
to the excitation signal of the PZT during the impedance measurement. The significant
impact of the noise on the conductance was observed in Figure 12c. The results show
that traditional damage index RMSD, MAPD, CCD, and RMSCR (root mean square of the
change ratio) were less effective in detecting minor bolts under the added noise. A new
damage evaluation metric (the so-called T index) was developed to deal with the problem
of distinguishing minor damage from noise [102]. The test on the eight-bolt flange showed
that the indication ranges of the T index were distinguishable for the minor looseness and
the noise (i.e., 0.07–0.3 and 0.3–1.2, respectively); see Figure 12d. By comparing the value
of the T index with the set threshold, it was able to identify minor bolt looseness in the
test specimen.
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Figure 11. Impedance-based SHM of a lab-scaled wind turbine model [52].

Figure 12. Impedance-based SHM of a bolted flange (a) impedance analyzer, (b) PZT mounted on an
eight-bolt flange and layout diagram, (c) noise effect on the conductance, and (d) evaluation index
under different working conditions (adapted from [102]).

To enhance the portability, Wang et al. [103] developed a wearable sensor device and
successfully applied it to monitor the change in the bolt preload of a bolted flange. As
shown in Figure 13a,b, the device comprises PZT transducers protected by a rubber layer
and a metallic outer layer that plays as a protection layer. It is also designed with a clamp-

105



Energies 2022, 15, 5459

through-screw mechanism, allowing the device to be easily attached and removed from the
host flange. With an adequate clamping force, the PZTs are contacted with the flange body
without using any permanent adhesive layers. Thus, the device can be worn on the tubular
structure, thus enabling the applications for wind turbine towers. As shown in Figure 13c,
the device was mounted on a 12-bolt flanged valve from which the bolt’s torque was
gradually changed from 30 to 180 lb/ft with 30-lb/ft intervals. The impedance was recorded
in 40 Hz–110 MHz through an Agilent 4294A impedance analyzer. The normalized RMSD
was computed as a bolt looseness index, showing a significant variation under torque
changes, as shown in Figure 13d.

Figure 13. Impedance-based SHM of a valve using wearable technique: (a) wearable sensor device,
(b) layout of the device, (c) device mounted on a valve, and (d) loosening index vs. bolt torque
(adapted from [103]).

4.2.2. Monitoring of Tower Segment

The impedance-based technique can also detect the local cracks in the tower segment.
So far, there has been no study investigating this problem. However, several research
attempts have been made to assess the damages in tubular structures such as wind turbine
towers by the impedance-based technique [31,32]. For example, Du et al. [31] studied the
feasibility of detecting multi cracks in pipeline structures using the PZT array. Two artificial
cracks were inflicted on the tested pipe, with the severity ranging from 0 mm to 9 mm.
The RMSD index of the impedance was computed as a damage indicator. Their results
showed that the impedance-based method could realize the quantitative analysis of the
cracks. A theoretical impedance model was developed to provide an insight into the
impedance response of a PZT pipe system [32]. Based on this model, a new damage-
sensitive feature factor was derived from the mechanical impedance equation for damage
identification of pipe structures.

Recently, Antunes et al. [104] mounted the PZT on the outer surface of the pipes (Pipe 1
and Pipe 2) to acquire the impedance response in the frequency range of 5–120 kHz, as
seen in Figure 14a,b. Structural damage was simulated by adding the masses to the pipes.
They also investigated the varying temperature conditions, ranging from −40 to +80 ◦C, by
putting the pipes into a temperature chamber. Figure 14c shows the shifts in the impedance
resonances in a representative frequency range (i.e., 95–105 kHz) along with the temperature
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change; both vertical and horizontal shifts were observed. A temperature compensation
method was designed to improve the damage detection result. The compensation method
is efficient and can be applied for the SHM of tubular towers under varying ambient
conditions. Since most PZT sensors are flat and brittle, they are not convenient to mount
on the curved surfaces of tubular towers unless their sizes are small enough. Challenges
remain to design novel piezoelectric transducers, both flexible and durable, to record the
impedance response from tubular structures such as wind turbine towers.

Figure 14. PZTs mounted on steel pipes: (a) pipe 1, (b) pipe 2, and (c) shifts in the impedance
resonances in 95–105 kHz due to the temperature effect (adapted from [104]).

Recently, the concept of the wearable sensor device (presented in Section 4.2.1) was
extended for pipes’ corrosion and bearing wear monitoring [105]. The lab-scale experiment
showed that the corrosion-induced changes in the thickness of the pipe led to a shift in
the peak frequency. This experimental investigation has not only evidenced the feasibility
of the wearable sensor device but also provided a promising solution for the problem of
corrosion detection in the wind turbine tower.

4.3. SHM of Substructure and Foundation

Only a few studies reported the application of the impedance-based technique for
SHM of the wind turbine substructure and foundation. Choi et al. [106] investigated
the numerical feasibility of the impedance-based technique for welded joint monitoring
of an offshore wind turbine substructure. As illustrated in Figure 15, a PZT transducer
(type PZT-5A) was supposed to be attached to the central upper joint of a tripod, and
its impedance response of 10–24 kHz under different levels of the crack in welding was
simulated through the COMSOL program. They observed the apparent shifts in the
signature of the impedance peaks that can be used for reliable damage identification.
The numerical simulation also investigated the effect of the PZT’s size on the impedance
response. Three sizes were considered, including 3 × 3 cm, 4 × 4 cm, and 5 × 5 cm. They
observed that the impedance curve was shifted downward with the increasing size of the
PZT, while the impedance resonances were relatively stable. However, more numerical
analyses and experimental verifications are still needed to verify the proposed idea and
optimize the PZT size and placement.

Moll [51] presented a successful preliminary application of the impedance-based
technique for monitoring the structural damage occurring in a lab-scale grouted connection.
Figure 16 shows the experimental setup of a grouted connection for impedance-based
SHM. Six circular piezoelectric transducers of ϕ10 mm were circumferentially mounted
on the outer metal part of the connection. The impedance measurement system includes
a computer, a multiplexer, an amplifier, and a frequency generator (HS3), as illustrated
in Figure 16. A 4-mm hole with a 35-mm depth was created in the concrete part to
simulate the concrete defect, and the corresponding impedance response was recorded
at 25–300 kHz. The RSMD index was computed as the damage indicator. The recorded
impedance response was altered as the grounded connection was damaged in the concrete
part. Moreover, the damage was successfully detected by monitoring the change in the
RMSD index. Nonetheless, the simulated damage was not realistic. Additionally, challenges
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remain in evaluating the durability of the transducer under the marine atmosphere and the
effect of varying environmental and loading conditions on the damage-detectability.
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Figure 15. Impedance-based fatigue crack monitoring of the upper central joint of the offshore wind
turbine tripod [106].

 
Figure 16. Experimental setup of impedance-based SHM of a grouted connection [51].

5. Future Perspectives of Impedance-Based SHM of Wind Turbines

The above literature review shows that the impedance-based technique has been
insufficiently explored for wind turbines. Due to its potential for developing one of the
most effective SHM systems, new applications of the impedance-based technique for the
SHM of wind turbines will be indeed discovered. In Figure 17, we suggest five main
research topics that can contribute to the translation of the impedance-based technique to
practical applications in wind turbine monitoring. They include blade monitoring, tower
monitoring, substructure monitoring, foundation monitoring, and scour monitoring. In the
following sections, those suggested research topics are discussed.
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5.1. Blade Monitoring

So far, the impedance-based technique has been mainly applied for fatigue damage
detection in wind turbine blades. Therefore, more research is needed to explore this
innovative technology for detecting other types of blade failures, such as damage from
lightning, damage from atmospheric icing, and leading-edge erosion. Since the impedance
characteristics corresponding to those damages could be different, the damage severity
prediction model corresponding to each failure should be developed for quantitative SHM
of wind turbine blades.

A previous experiment by Pitchford et al. [49] showed that an added mass to a wind
turbine blade led to variations in the impedance signature. Since the added mass can
be considered a freezing growth, this experiment holds promise for detecting ice on the
blade [107]. However, more numerical and experimental investigations are needed to
make this idea a reality. Leading-edge erosion is related to the loss of the material and
the change in the geometrical parameters of the wind turbine blade. The impedance-
based technique could feasibly detect the wind turbine blade’s mass, according to the
reference [49]. The lightning causes delamination, shell debonding, and tip detachment in
the blade, and such damages could be potentially identified through the impedance-based
technique based on some previous investigations [108,109].

A typical structural design has a critical bolted joint at the blade root, which should be
adequately monitored. The impedance-based technique has been regarded as a promising
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tool for loosened bolt monitoring [37,110,111]. Therefore, there is a need to develop a bolt
looseness monitoring system for the blade root of a wind turbine structure. As reported
in [101], the MFC was insensitive to a thick blade’s damage due to its weak piezoelectric
excitation. Therefore, selecting the piezoelectric transducers corresponding to a target wind
turbine blade could play an essential role in the success of an impedance-based damage
detection process. This deserves a future intensive investigation.

The previous study proposed a smart blade concept for guided wave-based SHM [112].
Based on this concept, we introduce an impedance-based smart blade for the impedance-
based SHM, as shown in Figure 18. The piezoelectric-based smart blade is embedded
with self-powered PZT nerves and embedded signal conditioning and data acquisition
circuits for wireless and autonomous sensing. The blade vibration-induced energy can be
harvested to power the SHM system. Since the impedance-based technique has a limited
sensing range for each PZT transducer, a smart blade should be developed with dense PZT
nerves to provide the health status of any points on the blade.
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Damage

Electric
Wires

Embedded 
Circuit

Figure 18. Proposed prototype of an impedance-based smart blade for impedance-based SHM.

Additionally, the survivability of PZT sensor systems during a lightning occurrence is
also an important issue. The PZT sensors close to the area struck by lightning can be heated
up to tens of thousands of degrees Celsius. During such high temperatures, the piezoelec-
tric materials, bonding layers, and soldering components of the sensors can be damaged,
threatening the regular operation of the monitoring system. Nonetheless, one of the promis-
ing features of piezoelectric impedance-based SHM technology is sensor self-diagnosis.
Thus, a sensor (i.e., breakage or debonding) damaged can be timely identified using the
inverse of impedance signature, which further improves the reliability of operating SHM
system during a lightning occurrence [22,27]. The impact of lightning on the survivability
of the PZT sensors is a good research topic that needs to be studied further in the future.

5.2. Tubular Tower Monitoring

Researchers have paid less attention to the tower failures than blade failures [65].
Although there have been some successful applications of the impedance-based technique
to structures with similar geometry to a wind turbine tower, such as pipelines and bolted
flanges [102,104], there is a long way to go for this technology to be transferred into real
SHM applications. To guarantee the successful translation, we need a comprehensive study
of the impedance characteristics, the sensing range, and the effective frequency band of
the PZT mounted on both lab-scale and real-scale wind turbine towers. Realistic/near-
realistic damages such as fatigue cracks, bolt looseness, lightning, and corrosion should be
investigated to evaluate the practicality of the impedance-based technique. Additionally,
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there is a need to extensively investigate the influence of offshore environmental changes
on the impedance responses and develop robust compensation techniques.

Figure 19 illustrates an example of PZT deployment on the tower for impedance-
based SHM. Lessons learned from the previous accidents [67,68] show that the shell wall-
thickness transition areas of the tower are hot spots where local buckling could have
occurred. Thus, a PZT network should be designed and deployed in those hot spots to
monitor the local buckling damage; see Figure 19. Additionally, the fracture could have
happened at the bolted joint of the tubular tower segments [4]. It is therefore necessary
to install PZT on the flange to monitor multiple bolts simultaneously. A multi-channel
impedance board is developed to record the impedance from the number of PZT patches
in real-time. Efficient deep learning models are developed to autonomously extract the
damage-sensitive impedance features from the recorded data and identify the damage
type, location, and extent of the quantitative SHM of the tower (e.g., convolutional neural
networks [25,113] and graph convolutional network [114]). Besides the fracture and local
buckling, the PZT network can also be used to monitor the tower’s cracks and corrosion.

Figure 19. An example of PZT deployment on the tower for impedance-based SHM.

As reported in [115], the sensing range of an individual PZT patch is dependent on
the material and the density of the monitored structure. Considering the limited sensing
range of a PZT patch, it is necessary to develop an optimal PZT network that can be used to
monitor the whole wind turbine tower effectively. For a large and high tower, it is necessary
to determine the hot spots in the structure and optimize transducer placement to reduce the
number of transducers and the cost of the SHM system. The research on PZT placement,
considering the installation cost and the efficiency, also deserves intensive investigation.

To reduce the cost of SHM systems, along with enhancing the damage detectability,
a research trend is to combine the local impedance-based technique with other techniques
(i.e., guided wave method, thermal imaging technique, fiber optic method, laser vibrometer
technique, and vision-based approach) to build a hybrid system. In [52], the authors
developed a hybrid SHM strategy that combines the local impedance-based technique with
the global vibration-based technique to enhance the damage detection result of a wind
turbine tower. Both accelerometers and PZT patches were attached to the flanges of the
tower, and their recorded responses are fused to detect potential damages. However, this
study did not consider other potential damages, such as cracks and corrosion. Additionally,
the effect of the rotor’s vibration on the impedance response was not investigated.

Developing impedance-based low-cost portable/wearable devices for the SHM of
wind turbine towers is suggested for future research. Some preliminary studies have
developed piezoelectric wearable devices with cost-effectiveness, portability, a predictable
frequency band, and real-time applicability [46,86,103]. For example, Huo et al. [110]
embedded a PZT transducer into a ring to develop the concept of the smart washer for
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single-bolt monitoring. Wang et al. [103] developed a wearable sensor device for bolt group
monitoring. The prototype of the wearable sensor device and its experimental verification
for impedance-based SHM were previously described in Section 4.2.1. The device (com-
prised of many PZT transducers) can be worn on a tubular joint/segment of the tower
through a clamping mechanism to collect the impedance responses, which are then used
for further health monitoring and damage assessment. Despite the preliminary success-
ful verification results [103,105,110], the application of wearable sensor devices for the
impedance-based SHM of wind turbine towers has not been explored. For this purpose, a
large-size wearable sensor device needs to be designed, and its durability and repeatability
performance should be sufficiently investigated before real applications.

Recent developments in machine learning and artificial intelligence have opened
alternative doors toward processing impedance signals. Early studies have explored the ap-
plication of artificial neural networks (ANN) for impedance-based damage detection [116]
and compensation of the effect of temperature on the impedance [29]. There is also some
research developing principal component analysis (PCA) models for the impedance-based
SHM [98]. Some authors explored combining a convolutional neural network (CNN) with
the impedance-based technique for damage detection [113]. However, those models were
not fully automated due to the requirement of preprocessing impedance signals. More
research is needed to develop new machine learning-based algorithms for processing
impedance data with fast operations, higher accuracy, automatic damage-sensitive feature
extraction, and real-time performances.

5.3. Substructure and Foundation Monitoring

Over the past decades, the impedance-based technique was extensively studied and
applied for the SHM of concrete structures. Many numerical and experimental investiga-
tions have been conducted to monitor concrete crack, curing, reinforced rebar corrosion,
and crack repair [33,34,117–119]. For example, Liu et al. [120] applied the technique for
assessing concrete’s freezing–thawing and crack damage and proposed a mathematical
method to evaluate the development of concrete damage. Their result showed that the
RMSD index increased with the development of the freezing–thawing cycles and crack
depth, and the most effective frequency band was found at 100–150 kHz. Zhang et al. [121]
studied the relationship between the stage of the cement setting process and the resonant
frequency shift of impedance peaks to monitor early-age hydration and the setting of
cement paste. Ahmadi et al. [122] monitored the corrosion of rebars embedded in concrete
blocks and the admittance responses under different levels of corrosion. In their study,
the equivalent structural parameters extracted from the admittance response were found as
effective indicators for detecting and quantifying the corrosion damage in rebars. However,
the PZT patches are brittle and easily damaged. To overcome such issues, some authors
embedded a PZT patch inside a concrete block to form a smart aggregate (SA) [33,123]. As
a multifunctional device, a SA can be used as both actuator and sensor, making it ideal for
impedance-based SHM of concrete parts in wind turbine systems.

Despite the impedance-based technique has been a mature technology and the SA
technique has been extensively studied, their application for offshore/onshore foundation
monitoring has not been explored so far. In Figure 20, we propose an idea to embed
the SAs inside the foundation of the onshore wind turbine to monitor inner cracks. The
impedance response of the distributed SAs is continuously monitored, and the impedance
shift can be quantified to predict crack locations. The idea presented in Figure 20 needs
sufficient numerical and experimental investigations to convert it into a reality. Additionally,
intelligent algorithms based on machine learning to predict damage locations are also
suggested for future studies.
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Figure 20. (a) Impedance-based SHM of an onshore wind turbine foundation using the SA technique;
(b) an SA prototype.

To offshore wind turbines, scour is one of the main concerns. Due to its merits,
the impedance-based technique could play a vital role in developing low-cost scouring
systems for offshore foundations. In Figure 21, we propose a piezoelectric-based smart bar
that can be used for monitoring foundation scouring. Several PZT patches are waterproof
and bonded to a stainless-steel bar to form a smart bar, which is then inserted into the sea
bed next to the foundation (such as a monopile in Figure 21). The operating principle is that
the scour will cause the looseness/removal of the material around each PZT patch, leading
to the variations of the impedance responses. The scouring depth could be identified by
analyzing the damage metrics of the PZT patches.

Figure 21. (a) Proposed impedance-based scour monitoring of a wind turbine foundation; (b) smart
bar prototype for scour monitoring.

It is also needed to explore the application of the impedance-based technique for
detecting corrosion in offshore wind turbines. The early study showed that the reso-
nant frequency shift of the impedance peaks was proportional to the corroded area [124].
Zhu et al. [125] investigated the use of mechanical impedance to estimate the corrosion
damage progression of a steel beam quantitatively. Li et al. [41] developed a PZT-based
smart corrosion coupon and established the relationship between the corrosion-induced
thickness loss and the impedance variation for comprehensively monitoring the corrosion
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amount. Future research efforts are required to develop piezoelectric-based corrosion trans-
ducers that can be applied for the SHM of offshore towers and substructures. Under the
marine condition, protection technologies should also be developed for those piezoelectric
devices to secure their functionality during the impedance monitoring process.

6. Conclusions

In the past decades, the impedance-based technique has been extensively studied
for SHM of different civil engineering structures. Thanks to its merits, including cost-
effectiveness, easy implementation for complex structures, robustness to early-stage dam-
ages, and online and autonomous damage assessment, the impedance-based technique
has the potential to create one of the most effective SHM systems. Nonetheless, its SHM
applications in the wind energy industry have been limited. Therefore, this paper was mo-
tivated to present the current status and propose new research topics for impedance-based
SHM of wind turbines.

The contributions of this review paper lie in:

(1) Focusing on the applicability of the impedance-based technique for SHM of different
structural components such as blades, towers, substructures, and foundations;

(2) Identifying research needs for improving the performance of the impedance-based
SHM of wind turbines;

(3) Proposing innovative concepts for the future development of an effective impedance-
based SHM system in the green energy field.

The proposed concepts include (i) the piezoelectric-based smart wind turbine blade
with a self-powering and embedded circuit for real-time SHM purposes, (ii) the piezoelectric-
based smart bar to monitor the scour damage occurring around an offshore wind turbine
foundation, (iii) the PZT-based corrosion probe for monitoring the structural conditions of a
tower and substructure, (iv) the wearable sensor device for the SHM of wind turbine towers
and bolted joints, and (v) innovative SA technologies for quantitative damage estimations
on the concrete foundations of wind turbines.

There are still many challenges to substantiate the application of the impedance-based
technique for wind turbine tower monitoring and to ensure the smooth transition of this
technology from research to practice. Besides the above-mentioned topics, several engi-
neering issues remain for (i) enhancing the sensing range of PZT patches and optimizing
their geometrical parameters considering the sizes of wind turbine structures; (ii) designing
a method of protection for PZT patches from harsh environmental conditions, especially
extreme offshore conditions, to secure their functionality and reliable damage detection;
(iii) developing new piezoelectric materials with better sensing mechanisms, higher damage
sensitivity, and a more extended sensing range and durability under a marine atmosphere;
(iv) developing innovative algorithms based on artificial intelligence and machine learning
for compensating the effects of marine conditions on the impedance response and minimiz-
ing false damage identifications; and (v) designing novel wireless impedance sensor nodes
with higher measurable frequency bands, up to MHz, for practical applications.

We are in the early stage of the discovery journey towards the practical application
of the impedance-based method in the wind energy industry. Many research efforts need
to be carried out to verify the feasibility and evaluate the practicality of the impedance-
based technique for lab-scale and real-scale wind turbine towers. However, the unique
advantages of the impedance-based SHM technology pose it as a possible important tool
for the SHM of wind turbines in the green energy field.
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Abstract: In order to explore the mechanical properties, failure mode, and damage evolution process
of pultruded sheets for wind turbine blades, a tensile testing machine for pultruded sheets for wind
turbine blades was built, and the hydraulic system, mechanical structure, and control scheme of the
testing machine were designed. The feasibility of the mechanical structure was verified by numerical
simulation, and the control system was simulated by MATLAB software. Then, based on the built
testing machine, the static tensile test of the pultruded sheet was carried out to study the mechanical
properties and failure mode of the pultruded sheet. Finally, an infrared thermal imager was used
to monitor the temperature change on the surface of the test piece, and the temperature change
law and damage evolution process of the test piece during the whole process were studied. The
results show that the design scheme of the testing machine was accurate and feasible. The maximum
stress occurred in the beam after loading the support, the maximum stress was 280.18 MPa, and the
maximum displacement was 0.665 mm, which did not exceed its structural stress-strain limit. At the
same time, the control system met the test requirements and had a good follow-up control effect. The
failure load of the pultruded sheet was 800 kN. The failure deformation form included three stages of
elasticity, yield, and fracture, and the finite element analysis data were in good agreement with the
test results. The failure modes were fiber breakage, delamination, and interfacial debonding. The
surface temperature of the specimen first decreased linearly, and then continued to increase. The
strain and temperature trend were consistent with time.

Keywords: wind power blade; pultruded sheet; composite material; static tensile test; infrared
thermal imaging method; testing machine

1. Introduction

According to the outline of the 14th Five-Year Plan and the proposal for 2035, China
will accelerate the development of new energy. Compared with traditional carbon-based
energy, wind energy has huge advantages in terms of sustainable development. In order
to reduce the cost of electricity, the size and power of wind turbines are increasing. The
average power rating of wind turbines has increased from 0.1 MW in 1985 to an average of
10 MW today [1,2]. It is expected that the power of the wind turbine will reach 20 MW in
the future, and the diameter of the impeller will be about 200 m [3]. The traditional manual
lay-up technology can no longer meet the increasing blade size, and the plates produced
by the pultrusion process with high forming quality, high production efficiency and low
production cost can be used for key structural parts such as the main beam of wind turbine
blades [4]. Due to technical risks and high costs, full-scale blade destructive testing still
faces great challenges, so pultruded sheet testing has received more and more attention.
Therefore, studying the failure mode and damage process of pultruded sheets representing
blade design can be used to supplement full-scale blade testing and provide detailed
mechanical performance parameters for the entire blade, which is of great engineering
significance for reducing blade costs.

Materials 2022, 15, 5719. https://doi.org/10.3390/ma15165719 https://www.mdpi.com/journal/materials
121



Materials 2022, 15, 5719

At present, a lot of work has been done on the research of pultruded glass fiber
composites. A comprehensive presentation of pultruded fiber-reinforced polymers by
Alessandro et al. [5] showed that pultruded fiber reinforcements had undergone extensive
experimental and numerical studies to evaluate their performance as structural components.
A critical review of the state-of-the-art in numerical simulation for predicting mechanical be-
havior at the limit state of failure was also presented, and a variety of numerical simulation
methods, including finite element methods, were introduced. Al-Saadi et al. [6,7] conducted
tensile, compression and shear tests on pultruded glass fiber round tubes and square tubes
to explore the mechanical properties and failure modes of the tubes and compared the
numerical simulation with the test results to verify the accuracy of the test. The study
explored the different specifications of materials produced by the pultrusion process, but
not pultruded sheets. Madenic et al. [8] analyzed the bending mechanical properties and
damage process of pultruded glass fiber composites by a three-point bending mechanical
test. The theoretical solution and finite element analysis were carried out, and the obtained
load-displacement curve was compared with the experimental results. It was found that
the numerical simulation and theoretical solution results were consistent with the experi-
mental values, but the article only analyzed the bending mechanical properties. Since the
glass fiber is an anisotropic composite material, only the bending direction analysis is far
from enough. Silva et al. [9] studied the flexural properties of dry and wet composites of
polyester-based glass fiber reinforced plastic flat specimens cut from I-beam pultruded
profiles, and found that the flexural modulus and strength of the material specimens wet-
ted to the saturation level decreased. Paciornik et al. [10] explored the microstructure of
pultruded glass fiber sheets and used an image analysis system to characterize the fiber
size, spatial distribution and filler fraction of the sheets. The bending mechanical behavior
of the sheet was determined, and it was found that in the pultrusion process, even if all
parameters were controlled, the pultruded part still produced uneven fiber distribution and
voids. In this paper, the microstructure of pultruded sheet was explored, but its mechanical
properties and macroscopic damage evolution were not explored. Harizi et al. [11] used
infrared thermal imaging technology to monitor the surface temperature changes of glass
fiber composites under static load and stage load. Through experiments, it was found
that infrared thermal imaging technology could monitor the evolution process of material
damage, and the thermal imaging map could explore the material damage generated under
large load conditions for analysis. Aniskevich et al. [12] designed a novel equipment to
provide a good connection with a conventional existing pultrusion machine, allowing the
production of pultruded pipes that involved cork and polyurethane foam preforms in a
continuous way. The equipment had been developed and tested to obtain high flexural
strength hybrid pultruded products. The above research shows that the technology of
infrared thermal imaging monitoring of the surface temperature change of the test piece is
very mature, and can be directly used for the study of the damage evolution of pultruded
sheets, but the research on pultruded glass fiber sheets for wind turbine blades has not
been involved. Its failure mode and damage evolution need to be specifically explored.

In order to solve the above problems, with the help of the conclusions of many scholars,
this paper mainly studied the tensile mechanical properties and failure modes of pultruded
glass fiber sheets, and explored the damage evolution process through infrared thermal
imaging. First, a wind turbine blade pultrusion fiberglass sheet tensile testing machine was
built. The finite element analysis of its structure was carried out and the control system
was simulated by MATLAB software. Secondly, the static tensile test of the pultruded
sheet was carried out using the built testing machine and compared with the numerical
calculation results to study the mechanical properties and failure mode of the pultruded
sheet. Finally, the damage evolution process was explored by using an infrared thermal
imager to monitor the surface temperature of the pultruded sheet, which provided a
reference for the mechanical properties of the entire wind turbine blade.
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2. Test Principle

2.1. Pultruded Sheet Theory

Pultruded glass fiber reinforced polymer sheet, referred to as pultruded sheet for short,
is made of pultruded fiberglass and epoxy resin through a pultrusion process [13]. In wind
turbine blades, several pultruded sheets are laid to form the main beam structure [14–17].
The main beam structure is mainly determined by the mechanical properties, geometry
and boundary conditions of the glass fiber. It is known that glass fiber is an orthotropic
material, and each unit in the formula is an international standard unit. The constitutive
relation in the plane stress state is:

{σ} = Q{ ε} (1)

In the formula, σ is the stress, ε is the strain, and Q is the positive axis stiffness matrix.
After the positive axis stiffness matrix is obtained from the elastic constant of the

glass fiber, its main direction is converted to the overall coordinate xyz, and the coordinate
conversion matrix T and the corresponding relationship between stress and strain are
obtained. Finally, we calculate the in-plane stiffness coefficient

Aij =
n

∑
k=1

(
Qij
)

f (i= 1, 2, 3; j = 1, 2, 3) (2)

where Q is the transformation stiffness matrix of Q:
The in-plane flexibility S is as follows:

S = A−1 (3)
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0 0 1/G12

⎤⎦ (4)

The orthotropic equilibrium equation and deformation coordination equation are
as follows
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∂y
= 0 (5)
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∂2γxy
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(7)

where τxy is the shear stress between the x and y axes and γxy is the shear strain.
The stress function F = (x, y) is introduced, and the relationship between the stress

functions and σx, σy, and τxy is as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

σx =
∂2F
∂y2

σy =
∂2F
∂x2

τxy = − ∂2F
∂x∂y

(8)

The plane equation of the orthotropic blade composite material is obtained from
Equations (1)–(8)

S22
∂4F
∂x4 + (2S12 + S66)

∂4F
∂x2∂y2 + S11

∂4F
∂y2 = 0 (9)

where S11 = 1/E1, S12 = −v21/E2, S22 = 1/E2, S66 = 1/G12.
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The elastic modulus in the x-direction after regularization is as follows

Ex =
1

tS11
(10)

where t is the total thickness of the plate.
According to the macroscopic treatment method, the fracture study of pultruded sheet

can be regarded as a homogeneous anisotropic material. The fracture criterion of isotropic
materials is extended to plate composite materials, and the stress field and displacement
field near the origin are calculated by the elastic mechanics criterion⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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where κ is the modulus of elasticity, G is the shear modulus, and K is the stress intensity factor.
The energy release rate G is the energy released per unit area of material by crack

propagation. According to elastic fracture mechanics, its relationship with the strength
factor K is described as ⎧⎪⎨⎪⎩

G1 =
1 − v2

E
K2

G2 =
1
E

K2
(12)

where G1 is the plane strain energy release rate and G2 is the plane stress energy release rate.

2.2. Infrared Imaging Theory

Any object can emit infrared radiation. According to Stephen Boltzmann’s law in
thermodynamics, the total energy radiated per unit area of an object’s surface in a unit
time is proportional to the fourth power of the thermodynamic temperature of the object
itself [18,19]. The formula is as follows:

j∗ = εσT4 (13)

Among them, j* is the radiance, T is the absolute temperature, ε is the emissivity of
the black object, and σ is the Stefan constant.

Infrared thermal imaging detection technology is a non-destructive testing technology
that converts invisible infrared radiation into visible images [20]. It is divided into active
infrared thermal imaging and passive infrared thermal imaging [21,22]. Active infrared
thermal imaging needs to excite the test piece by heating, so that the test piece forms a
temperature difference [23]. Then, infrared imaging technology is used to test the specimen,
and the defect is judged according to the difference of temperature [24,25]. In this test, it
is assumed that a small change in temperature during the static tensile test of the testing
machine will cause a large change in the radiation power, so there is no need to stimulate
the curing of the test piece. The passive thermal imager is used for detection, which is
presented in the form of a thermal image, and the detection is realized by comparison.

In addition, heat is transferred from a hotter part of an object to a cooler part, or from
a hotter object to another cooler object in contact with it. This heat transfer process is called
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heat conduction [26]. The heat flow in the pultruded sheet can be determined according to
Fourier’s theorem [27]:

q(r, t) = −λ∇T(r, t) (14)

In the formula, q(r, t) is the heat flow per unit area per unit time in the direction of
decreasing temperature gradient; λ is the thermal conductivity of wind turbine blades,
W/(m·K); and T(r, t) is the spatial and temporal distribution of the temperature in the wind
turbine blade.

Equation (14) reveals the relationship between heat flow and temperature. The internal
relationship of the temperature field in the spatiotemporal domain is usually described by
the heat conduction differential Equation (15)

∇T(r, t) +
qv

λ
=

ρc
λ
∇T(r, t) (15)

where qv is the loading heat source term; ρ is the density of the wind turbine blade, kg/m3;
and c is the specific heat capacity of the wind turbine blade, J/(kg·◦C).

3. Overall Test Plan and Simulation

3.1. Test Machine Structure Scheme

The structure of the pultruded sheet testing machine is composed of a hydraulic
system and a loading mechanism, including loading brackets, fixtures, force sensors and
oil cylinders, which can perform horizontal tension and compression tests. At the same
time, in order to offset the radial force generated during loading, the testing machine is
equipped with a ball head mechanism on the front beam and the rear beam. The pultruded
sheet is connected to the fixture by bolts, and the bolts are subjected to axial load to fasten
the specimen in the fixture. The schematic diagram of the mechanical structure is shown in
Figure 1.

Figure 1. Test machine structure diagram.

When testing in the horizontal direction, the hydraulic cylinder installed on the front
beam exerts an axial force on the component through the cylinder tie rod, which is then
transmitted to the sensor installed on the rear beam. From this, it can be seen that the rear
beam is the main component that bears the load. The design parameters are shown in
Table 1. The force sensor of the front beam converts the electricity into electrical signals
through the transmitter, and feeds them back to the host computer.
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Table 1. Design parameters.

Name Parameter

Maximum specimen length (m) 2
Loading frequency (Hz) 1–3

Maximum load (kN) 1300
Motor power (kW) 36
Force sensor (kN) 150

Force sensor diameter (mm) 100
Sample thread M36

3.2. Structural Finite Element Analysis

The loading bracket of the testing machine was numerically simulated in Ansys
workbench, and its finite element model was shown in Figure 2. The pre-processing steps
for static analysis using the finite element method included assigning material properties,
dividing meshes, selecting elements, applying constraints and loads, etc. [28–30]. The holes
and grooves that generated stress concentration and did not affect the structural strength
were simplified. The loading bracket material was Q345 structural steel, and the material
parameters were shown in Table 2. The Solid185 element was used to construct three-
dimensional solid structures. Due to its large deformation and large strain capacity [5], this
element was used. Since the mesh division had a great influence on the results of the finite
element analysis [31], the mesh of the sensor directly bearing the force on the rear beam was
refined. The element type, total number of nodes, and mesh size after meshing are shown
in Table 2. The front beam and the rear beam of the testing machine have four supports
respectively, which are connected with ground bolts to prevent the testing machine from
overturning, and the contact surface with the ground is set as a restraint surface. When
an external load is applied, the pultruded sheet produces a load towards the inside of the
contacting load bracket.

Figure 2. Finite element modeling and pre-processing: (a) bracket FEA model; (b) model preprocessing.

Grid independence verification was performed first. In Ansys workbench, by setting
the target value, the software automatically calculated many times to determine the grid-
independent solution. Inserted Convergence in the resulting Equivalent Stress. Since it
was simpler to load the scaffold model, we inserted a delta of 0%. After each solution, the
software automatically re-divided the mesh in the area that needs to be refined, calculated
the corresponding equivalent stress, and compared it with the previous result until the
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difference between the results met the set requirements. Then, numerical simulation was
carried out. After 4 calculations, the maximum stress of the structure was calculated to be
280.18 MPa, which was located at the contact point between the pressure sensor and the
front beam. In addition, the stress at the bottom connection reached 249.05 MPa, as shown
in Figure 3. The result was not the allowable stress of the metamaterial, which could meet
the testing requirements. The safety of the structure was demonstrated.

Table 2. Simulation parameters.

Name Parameter

Gross weight (kg) 3912.3
Elastic modulus (GPa) 209

Poisson’s ratio 0.269
Yield strength (MPa) 345

Total number of nodes 270,136
Total number of units 142,078

Grid size (mm) 50
Front/rear beam grid size (mm) 15

Figure 3. Loading bracket static stress analysis cloud diagram.

At the same time, the displacement results of the loading bracket and other com-
ponents of the testing machine obtained by running the example are shown in Figure 4.
The maximum deformation is 0.665 mm, and the combined deformations of the front-end
fixture, rear-end fixture, and bolt of the specimen are 1.381 mm, 2.101 mm, and 0.4485 mm,
respectively, all of which meet the design requirements.

3.3. Test Control Scheme and Simulation

The design scheme of the static tensile test of pultruded sheet is shown in Figure 5. The
test consists of a tensile testing machine and an infrared thermal imaging test system. The
control system of the testing machine is composed of the actuator, the lower computer, the
upper computer, and the data acquisition system. The host computer is written in LabVIEW
language, and the overall control of the platform is carried out through the PC terminal.
The upper computer has the functions of programming the control algorithm, collecting
data, storing and displaying the strain curve. The lower computer is composed of PLC and
RMC in parallel, in which PLC obtains signals such as force sensor, oil temperature sensor
and liquid level sensor. RMC control electro-hydraulic servo valve has the advantages of
fast response speed, high control precision and good dynamic performance. The execution
structure adopts the MOOG servo valve, which has the advantages of high control precision
and fast dynamic response. It can perform high-frequency reversing action and drive sub-
components to perform fatigue tests through the pulling and pressing action of the oil
cylinder. At the same time, the infrared thermal imager observes the workpiece in real time
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and collects data, and transmits the surface temperature data and thermal image of the test
piece to the PC.

Figure 4. Displacement analysis cloud diagram of testing machine parts.

Figure 5. Experimental control scheme diagram.

During the test, the host computer sends a control signal to the controller and then
controls the servo valve to make the oil circuit on and off and change direction, so as to
load the plate with tension. The PLC collects the signal of the force sensor and feeds it back
to the host computer. The signal is processed by the control algorithm in the host computer
to realize the follow-up control of the actual load and the expected load. During the test,
according to the IEC 61400-5 standard [32], it provides a data reference for the selection of
the safety factor of blade material layout, as shown in the following Formula (16):

γm = γm0 · γm1 · γm2 · γm3 · γm4 · γm5 (16)

In the formula, γm0 is the safety factor of the base material; γm1 is the environmental
deterioration factor (irreversible influence); γm2 is the temperature effect factor (reversible
influence); γm3 is the manufacturing effect factor; γm4 is the method calculation accuracy
and verification factor; and γm5 is the load characteristic factor.

Since the loading accuracy and loading frequency of the pultruded sheet are required
to be high during the test process, the actual loading and the expected loading curve should
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ensure high synchronization, so that the slight difference between the two should be as
close as possible, at 0. This means slight differences between the sinusoidal responses
may also have a large impact on the test results. On the MATLAB/Simulink platform, the
Sim Hydraulics module is used to build the simulation model of the control system of the
testing machine, as shown in Figure 6. The figure shows the simulation of the hydraulic
loading system control of the testing machine to achieve precise control of the axial load
of the pultruded sheet, so as to ensure a good follow-up control effect between the actual
axial load and the expected load of the pultruded sheet, and finally verify that the control
system meets the test requirements. According to the test needs, the electro-hydraulic
servo force control system is adopted, and the servo control is realized through the servo
valve. The actuator of the system is a hydraulic cylinder, and one end of the hydraulic
cylinder is connected with the fixture. The servo mechanism is a direct-acting servo valve,
and the servo valve and the hydraulic cylinder form a valve-controlled cylinder structure.
The hydraulic system is powered by a plunger pump, which is connected to the motor
through a coupling. In order to reduce the flow pulsation caused by the plunger pump and
ensure the smooth movement of the hydraulic cylinder, an accumulator is added to the oil
circuit to reduce the corresponding vibration and noise. It should be noted that, since the
components such as the cooler on the hydraulic station mainly play an auxiliary role in
the hydraulic system, the simulation model is simplified to improve the efficiency of the
control algorithm [33,34].

Figure 6. Simulation model of testing machine.

The simulation curve obtained based on the above model is shown in Figure 7, in
which the actual response is the load of the specimen fed back by the force sensor, the
expected response is the desired ideal sinusoidal waveform, and the error is the deviation
between the actual response and the expected response. It can be seen from the figure that
the actual response gradually follows the expected response after 1 s, and its followability
can meet the design requirements of the algorithm, except for a small range of amplitude
attenuation at the peak. Therefore, the control system meets the test requirements, and has
a good follow-up effect.
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Figure 7. Simulation curve of testing machine.

4. Test Platform Construction and Test

4.1. Construction of Test Platform

Based on the design of the wind turbine blade pultrusion plate testing machine and the
static stress analysis of the loading bracket, the construction of the testing machine was com-
pleted. The design parameters are shown in Table 3. The servo motor drives the hydraulic
pump to convert the mechanical energy into hydraulic energy [35], and the hydraulic oil
enters the hydraulic cylinder through the servo valve to work, as shown in Figure 8. The
infrared thermal imager is UTi260B infrared thermal imager from Unitech. This thermal
imager can monitor the temperature change on the surface of the specimen throughout
the whole process. The acquisition frequency is 25 Hz, the pixel size is 320 × 240, and the
thermal imaging sensitivity is less than 60 mK.

Table 3. Component test platform design parameters.

Name Parameter

Specimen length (mm) 1760
Specimen thread M36

Loading frequency (Hz) 1
Maximum load (kN) 1000

Servo valve MOOG D661-G60KOAA4NSM2HA
Force sensor (kN) 150

Inverter Invt CHF100A-022G-2
Motor speed (r/min) 1440
Motor power (kW) 36

Maximum working pressure (bar) 200
Pump maximum output pressure (bar) 31.5

Rotor brake feedback voltage (V) 24
Accumulator 1 volume (L) 2.8

Pump flow (L/min) 210
Air-cooled chiller STSF-10

Rated throughput (T/h) 12

The static tensile test site of the pultruded sheet is shown in Figure 9. During the test,
the ambient temperature was always 13.1◦. The infrared thermal imager mainly monitored
the surface temperature of the test piece. The infrared thermal imager was located on the
outside of the test piece, and the lens was perpendicular to the test piece surface. During
the experiment, a unified measurement standard was maintained, and the distance from
the test piece was 30.00 cm. The strain measured after the ball head cancels the torque was
the tensile and compressive strain. The fixture was fastened to the test piece by means of
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bolts. In order to obtain the strain of the pultruded sheet, the strain gauge was used in
combination with the digital image system. The linear strain gauges A-4 to A-9 used for
strain measurement were attached to the upper and lower surfaces of the expected failure
area, and the rest of the strain gauges were at the transition position between the reinforced
and unreinforced parts of the pultruded sheet, which could detect the detailed force data
of the pultruded sheet.

 

Figure 8. Testing machine hydraulic system.

Figure 9. Static tensile test site of pultruded sheet.

4.2. Analysis of Results

After the test, the strain fed back by the force sensor and the digital image system
and the temperature change of the surface of the pultruded sheet by the infrared thermal
imager are shown in Figure 10. It was found that the strain of the specimen was consistent
with the trend of the infrared temperature change during the static tensile test. The loading
process went through elastic, plastic, and fracture stages. It can be seen from the curve that
the change trend of the pultruded composite sheet in the static test is as follows:

(1) From the beginning of loading to 20 s, the strain and surface temperature of the
pultruded sheet decreased slightly, and the temperature decreased by about 1 ◦C.
The strain drop in this process is due to the linear elastic deformation of the material.
In the elastic deformation stage of the material, the material is subjected to less
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stress and will not yield, and the deformation can be quickly recovered. The reason
for the temperature drop is the thermoelastic effect of the pultruded sheet without
any damage to the surface. In the elastic deformation stage, the specimen is in the
initial stage of tension, and the matrix stress is small, which is not enough to cause
matrix damage.

(2) After the specimen passed through the elastic stage, it continued to be subjected to
the applied load. The strain and temperature values started to rise after reaching
the minimum value, and the curve was nonlinear, which was manifested as a sharp
rise at first and then a slow rise. At this time, the plate changed from linear elasticity
to plastic deformation. When the specimen was stretched for 100 s, the infrared
thermal image of the specimen changed rapidly, and a heat source with a significantly
higher temperature appeared in the delamination defect. In this stage, the surface
temperature of the specimen increased because the irreversible plastic deformation of
the specimen began at this stage, and the mechanical work was converted into heat
dissipation, which increased the temperature at the defect. Heat dissipation continued
to increase cumulatively, making the heat source range larger with increasing load.
When the temperature of the specimen reached the lowest point, the strain of the
specimen presented a turning point. The stress value at this time was the yield value
of the composite material, and the yield value of the specimen could be quickly
determined by infrared thermal imaging technology.

 

Figure 10. Specimen strain time domain diagram.

In the plastic stage, the strain continued to increase, and no obvious change was found
on the surface of the pultruded sheet. The number of damages at this stage increased, and
the sound of fiber breaking was heard during the process, but the damaged part could not
be seen with the naked eye. According to the preparation characteristics of the composite
material, some damage phenomena such as resin cracking, delamination, and interfacial
debonding had already occurred in the specimen during this tensile process.

(3) After a long period of plastic deformation, the specimen continued to be subjected to
the applied load. After the specimen was loaded for 210 s, the specimen entered the
fracture stage, and there was still no change on the surface. When the load reached
800 kN, the specimen broke rapidly.

After analyzing the variation trend of temperature and strain with time, the infrared
thermal image obtained during the experiment was processed by the special infrared
thermal image processing software that came with the infrared thermal imager. We selected
the infrared thermal images at 20 s, 75 s, and 210 s with obvious changes during the test, as
shown in Figure 11. From the infrared thermal images of Figure 11a–c, the temperature
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change trend and heat source distribution of the pultruded sheet composite material during
the entire experimental process are obtained. Figure 11a shows that during the elastic
deformation of the specimen, the surface temperature of the specimen is 0.97 ◦C lower
than the environment, and the reason for the temperature drop is the thermoelastic effect
of the pultruded sheet. Figure 11b shows that the specimen is in the plastic deformation
period; at this time, the surface temperature of the specimen rises, and the temperature at
the delamination damage position is higher than that in other places. Figure 11c shows that
the specimen is fractured, and the surface temperature of the specimen reaches the highest
at this time. The damage of the pultruded sheet in the static stretching process was verified
through the elastic, plastic, and fracture stages by infrared thermal image.

Figure 11. Infrared thermal images at different times. (a) Infrared thermal image at 20 s (b) Infrared
thermal image at 75 s (c) Infrared thermal image at 210 s.

Figure 12a shows the time domain diagram of the force sensor obtained. Each 100 kN
increase in load during the loading process is a stage. The figure shows that the force
increases linearly with time. After reaching 800 kN, the pultruded sheet broke and the
load on the force sensor decreased sharply. At this time, the pultruded sheet still bores a
large load. Over time, the pultruded sheet failed completely. Figure 12b is a comparison of
experimental and numerically calculated strain-displacement data. During the numerical
simulation calculation, the pultruded sheet is considered to be a uniform material, and
the material parameters do not change with space. However, in the pultrusion process,
the uniformity of the pultruded sheet cannot be strictly guaranteed [10], so the numerical
simulation can only obtain a benchmark result [31], which cannot be strictly consistent with
the test. Therefore, it can be seen that the linearization characteristic of the finite element
model is stronger than that of the experimental data.

Figure 13 reveals the internal failure mechanism of the pultruded sheet. After the
failure of the specimen, the surface is intact and there is no obvious fracture, which proves
that the pultruded sheet composite material has a great damage tolerance. The specimen
has no obvious signs before fracture, mainly because the fiber in the composite material
is the main bearing capacity, and the layup angle is ±45◦, which will prevent the crack
propagation at the interface between the fiber and the matrix. Figure 13 shows fiber
breakage along the 45◦ direction with interfacial debonding and delamination. According
to the damage characteristics and on-site failure of composite materials, it is inferred
that the fracture failure modes of pultruded sheets are fiber fracture, delamination and
interfacial debonding.
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(a) 

 
(b) 

Figure 12. Force-displacement curve: (a) force sensor curve; (b) test-simulation curve.

 

Figure 13. Failure area of pultruded sheet.
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5. Conclusions

In this paper, taking the mechanical properties and damage evolution of pultruded
sheet composites for wind turbine blades as the research object, a pultruded sheet static
tensile testing machine was built. Based on this, the static tensile test of the pultruded sheet
composite material was carried out to explore the mechanical properties of the pultruded
sheet for wind turbine blades. At the same time, the temperature change of the pultruded
sheet composite material was monitored by infrared thermal imaging technology to explore
the damage evolution of the pultruded sheet. The main conclusions are as follows:

(1) Through the finite element analysis of the loading bracket of the testing machine,
it was obtained that the beam after the loading bracket was the key part to bear
the load. When the design load of the loading bracket was applied, the maximum
stress of the loading bracket was 280.18 MPa, and the maximum deformation was
0.665 mm, which was lower than the yield limit of the Q345 material and met the
requirements of the test machine. Using the MATLAB/Simulink platform to simulate
the electro-hydraulic servo force control system, it was verified that the control system
met the test requirements and had a good follow-up control effect.

(2) When the pultruded sheet composite was subjected to static load, the failure load
was 800 kN, and it would go through elastic, plastic, and fracture stages during
the loading process. In the elastic deformation stage, the material was under less
stress and could quickly recover from deformation. In the plastic stage, the strain
first rose sharply and then rose slowly, which was irreversible at this stage. Finally,
in the fracture stage, the pultruded sheet composites had damages such as fiber
fracture, delamination, and debonding under static load. During the test, there was
internal damage but no obvious fracture, which proved that the specimen had a large
damage tolerance. The full-scale test of wind turbine blades was supplemented by
exploring the mechanical properties of pultruded sheets to provide data reference for
the mechanical performance parameters of the entire blade.

(3) When the damage mode of the pultruded sheet was detected by infrared thermal
imaging, the surface temperature of the specimen in the elastic stage decreased by
about 1 ◦C. As the load increased, the specimen went through the plastic stage and
the fracture stage, and the surface temperature gradually increased. The temperature
variation trend was consistent with the strain, and its variation range was 5 ◦C.

(4) Infrared thermal imaging technology can analyze the damage evolution process of
layered composites under load from the monitored infrared thermal images. When
the temperature of the surface of the test piece is monitored by an infrared thermal
imager, the yield limit of the test piece can be determined, which is beneficial to
quickly determine the performance parameters of the test piece, and provides a
simple method for engineering applications.
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Abstract: The structural temperature distribution, especially temperature difference caused by
solar radiation, has a great impact on the deformation and curvature of the concrete slab tracks
of high-speed railways. Previous studies mainly focused on the temperature prediction of slab
tracks, while how the temperature distribution is affected by environmental conditions has been
rarely investigated. Based on the integral transformation method, this work presents an analytical
method to determine and decompose the temperature distribution of the concrete slab track. A
field temperature test of a half-scaled specimen of concrete slab track was conducted to validate the
developed methodology. In the proposed method, we decompose the temperature distribution of
the slab track into an initial temperature component and a boundary temperature component. Then,
the boundary temperature components caused by solar radiation and atmospheric temperature are
investigated, respectively. The results show that the solar radiation plays a significant role in the
nonlinear temperature distribution, while the atmospheric temperature has little effect. By contrast,
the temperature change in the slab surface resulting from the atmospheric temperature accounts
on average for only 5% in the hot weather condition. The proposed method establishes a relation
between the structural temperature and meteorological parameters (i.e., the solar radiation and
atmospheric temperature). Consequently, the temperature distribution of the concrete slab track is
predicted via the meteorological parameters.

Keywords: scale model test; slab track; thermal analysis; theoretical study; meteorological data

1. Introduction

Slab tracks have been widely used in high-speed railways because of their advantages
of high stability and smoothness. By 2020, nearly 29,000 km of slab tracks had been built
in China, which accounts for more than 80% of all slab tracks in the world [1]. At present,
there are three types of China Railway Track System (CRTS) slab tracks, namely, CRTS-I,
CRTS-II, and CRTS-III. In particular, the CRTS-III slab track, which is technically improved
from the German Bögl slab track, has been used in new railway lines. Among these, a
CRTS-III slab track laid over a steel bridge was first built, as shown in Figure 1, which
consists of a precast slab, self-compacting concrete, and a concrete base, and can be defined
as a multilayered structure. Different from slab tracks on concrete bridges, the heat flow
through the slab track to the steel bridge is easier and faster due to the limited height of
the concrete members of the bridge-track system. Consequently, this may lead to a larger
temperature difference. The novel construction of a slab track on a steel bridge requires
more attention to be paid to the temperature evolution of concrete slab tracks under the
environmental conditions.
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Figure 1. A concrete slab track on a steel box girder section.

Slab tracks are affected by environmental conditions, such as solar radiation, air
temperature, and wind, and can hypothetically produce two periodic thermal actions.
First, the seasonal changing temperature may cause the overall concrete slab to rise or
drop, and its macro-performance consists of the expansion and contraction deformation.
Second, the daily solar radiation and air temperature variations may lead to a temperature
difference that causes bending deformation in the slab track [2–4]. Considering some
temperature-induced damage problems in other slab tracks, the CRTS-III slab track and
France’s New Ballastless Track have considered the temperature effect on slab tracks [5]. In
addition, some physical methods to reduce the slab temperature have also been tested [6–8].
These involve coating the slab surface with composite materials to reduce the radiation
absorption or increase the reflected radiation.

Temperature is one of the most critical parameters related to the behavior and response
of slab tracks. Temperature tests of slab tracks in the laboratory under specific conditions
have attracted more attention. Yang et al. [2] analyzed the temperature distribution of
the slab track based on a full-scale temperature test and found that a long-term daily
mean air temperature and stronger solar radiation caused the whole slab temperature to
rise under continuous hot weather conditions. Zhang et al. [9] developed a 1:4 scaled
laboratory test for CRTS-II slab track, which was used to quantify the stresses in the various
components of the track system resulting from sudden temperature variations. Zhong
et al. [4] investigated the impact of the daily air temperature on the interface stress of a
full-scale specimen of CRTS-II slab track in the construction stage. Zhou et al. [10] compared
the effect of the constraint conditions on the temperature distribution of a slab track in
two 1:4 scaled specimens and found that the fixed constraint condition decelerated the
temperature transfer of the track slab to the cement asphalt mortar. Zhou et al. [11,12]
carried out a temperature test of a 1:4 scaled specimen for a CRTS-II slab track on three
simply-supported box girders with a heat device and then analyzed the distribution of
the three-dimensional thermal fields in the slab. They also found that the strains in the
track structure increased nonlinearly with the environmental temperature increase [13].
Although there were some satisfactory conclusions to be drawn from the temperature test
of slab tracks, there is currently a lack of research on the different effects of solar radiation
and air temperature on the temperature distribution of slab tracks on a steel bridge.

Slab tracks built in a natural environment undergo a complicated heat transfer, and it
is theoretically necessary to investigate the temperature evolution of slab tracks subjected
to environmental thermal loads. Ou et al. [14] investigated the temperature distribution of
CRTS-II slab track during four seasons based on a simplified solution of heat conduction.
It was found that air temperature was one of main factors affecting the temperature
distribution inside the track structure, and the temperature gradient was biggest in the
summer. Liu et al. [15] offered a simplified solution of the thermal field of concrete slab track
to reveal the relation between temperature distributions and environmental conditions. The
results showed that the combined action of the mean air temperature and solar radiation
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impacted the overall concrete slab temperature, and the air temperature amplitude greatly
influenced the temperature gradient. Zeng et al. [16] provided an analytical solution to
a semi-infinite thermal field model of concrete slab track, which effectively predicted the
temperature gradient of the track structure in different cities in China. Riding et al. [17]
calculated the thermal field of concrete structures using three recommended methods
in specifications and proved that the error based on heat conduction equations was the
smallest. In summary, previous researchers have sought a simplified method for solving the
heat problem of slab tracks under external environmental conditions, which is convenient
for demonstrating the temperature evolution of slab tracks in one day. However, they ignore
the coupling actions of solar radiation and air temperature on the temperature distribution
of slab tracks. Therefore, it is necessary to find an analytical method to distinguish the
different effects of solar radiation from air temperature on the temperature evolution of
slab tracks.

As the slab track system is similar with the multilayered concrete pavement, the
analytical method used for concrete pavement temperature can be consulted in [18–23].
The Green’s function method was used for the analytical solution of thermal field in the
multilayered pavement [18]. A one-dimensional temperature model of the pavement un-
der site conditions was solved by the Laplace transform method [19]. The heat problem
with the measured surface temperature was solved without considering the environmen-
tal conditions [24]. Compared to the semi-infinite pavement system, the slab track is a
three-dimensional thermal field due to the finite size of the structure. The different types
and numbers of boundary conditions make the governing equations hard to be solved by
analytical methods.

Focusing on the different effects of solar radiation and air temperature on concrete slab
tracks, this paper proposes an analytical prediction method for the temperature distribution
of concrete slab tracks via meteorological parameters. The structure of this paper is as
follows. First, an experimental program of a half-scaled specimen of a concrete slab track
was described for an outdoor temperature test. Then, a one-dimensional temperature
model of the concrete slab was developed while considering the meteorological parameters
and solved based on the integral transformation method. The calculation accuracy was
approved using other methods. Combined with the solution, the temperature distribution
in a generic concrete section is decomposed theoretically and the different effects of solar
radiation and air temperature on the time–space temperature distribution in slab tracks
is discussed.

2. Experimental Setup

2.1. Specimen Design

The test site is located on the top of a hillside in Changsha, China (112◦ E, 27◦ N),
with an altitude of 150 m. The region has a subtropical climate with an annual average
temperature of 28 ◦C. Before the construction, a suitable location was chosen in an open
area without shade to meet the requirement of natural solar radiation thermal loads. The
temperature test of the track structure is shown in Figure 2. The experimental beam segment
is 1.2 m in width, 5.7 m in length, and 0.95 m in height. The thickness of the flange and
web of the steel beam are 20 mm and 15 mm, respectively. The concrete slab was cast to
the left side of the steel beam segment, while the other side was manufactured as a ballast
track structure. Since the objective of this paper was to investigate the thermal field of a
concrete slab track structure, only the monitoring results of the left side of the specimen
were used, as shown in Figure 3.

In general, the temperature change in the concrete members along the longitudinal
section is small [15,16,25], so concrete slab tracks can be reduced to a half-scaled concrete
slab specimen, with a specific size of 2.4 m × 1.2 m × 0.3 m. The detailed dimension of
the temperature test specimen is shown in Figure 3. The concrete slab is made of ordinary
cement, water, crushed sand, and gravel with a mixing ratio of 210, 355, 703, and 887 Kg·m−3,
respectively. The beam segment is made of Q235b steel with a grayish color coating. In
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addition, to prevent the slippage of the concrete slab resulting from the thermal action,
vertical reinforcements with a diameter of 20 mm were welded on the top plate of the steel
beam at a spacing of 1.2 m.

 

Figure 2. Temperature test of track structures on a T-steel beam segment.

Figure 3. Geometric dimensions and measuring positions of the testing specimen (unit: mm).

2.2. Arrangement of Temperature Sensors

In this study, the test is to measure the vertical temperature distribution in the concrete
slab. To prevent the influence of the transverse heat flow on the measuring point, the center
location of the concrete slab was selected as the test section, namely, Location 1 (Figure 3).
Five temperature sensors (H1–H5) were embedded in the concrete slab along the depth at
Location 1. The distribution of all temperature sensors is clearly shown in Figure 4.
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Figure 4. Distributions of temperature sensors (unit: mm).

The temperature of the contact interface was measured to obtain the bottom boundary
condition. Two pairs of measuring points were arranged at different locations of the contact
interface. The one pair of measuring points with the numbers H1 and H8 was in Location 1
and another point with the numbers H6 and H7 was in Location 2. Points H7 and H8 were
pasted on the bottom surface of the top plate of the steel beam along Locations 1 and 2.

The PT 100 platinum thermal sensor of 30 mm in length, 8 mm in width, and 4 mm in
thickness was used for the measurement. The working range of the sensor is −50~200 ◦C,
and the testing precision is ±0.2 ◦C. To prevent the influence of reflected radiation on the
exterior sensor (H7 and H8), an aluminum square shell was constructed to cover the sensor,
as shown in Figure 5.

 

Figure 5. The exterior sensor with an aluminum square shell.

2.3. Meteorological Parameters

The monitoring meteorological parameter is essential for the prediction and analysis
methods [26]. For accurate boundary conditions of the thermal field, a weather station
was built at the experimental site, as shown in Figure 6. The weather station monitors
five meteorological parameters. The solar radiometer is used to observe the total solar
radiation intensity on the horizontal plane. The temperature probe in the instrument shelter
records the air temperature. The anemometer and anemoscope are applied to measure wind
direction and wind speed. The net solar radiometer is used to observe the instantaneous
heat budget.
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Figure 6. Environment monitoring system.

A solar-powered system was adopted to provide energy for the structural temperature
and meteorological monitoring system. The data were collected every 30 min by an
automatic acquisition instrument since 1 October 2019.

3. Analytical Prediction Method

3.1. Analytical Solution of a One-Dimensional Temperature Distribution

In practical engineering, the vertical temperature distribution of a slab track is the main
consideration, especially the most unfavorable temperature distribution under extreme
environmental conditions. The calculated result of the multi-dimensional temperature
model was close to that of the one-dimensional model [25]. For mathematical simplicity,
we only consider a one-dimensional heat conduction problem with double convection
boundaries in the finite region, representing change through depth, as shown in Figure 7.

Figure 7. One-dimensional model of the temperature distribution.

In Figure 7, The surfaces BC1 and BC2 of the slab are heated by the convection
of two ambient fluids: f 1(t) and f 2(t). It is necessary to develop a unique function for
the boundary condition variables f 1(t) and f 2(t) when applying analytical methods. A
third-order polynomial function had been used to achieve approximation [19]. For a special
case of the boundary conditions of a period convection in this problem, the mathematical
model of the ambient fluid temperature is assumed to be a cosine function:

fi(t) = Ti,a − Ti,b cos(wi(t − δi)), t ∈ (t1 ∼ t2) (1)

where i is the number of boundary surfaces, Ti,a and Ti,a are the average temperature and
amplitude of the fluid medium, respectively, wi and δi are the frequency and phase of the
function, respectively, and t1 and t2 are the sunrise and sunset time, respectively.

As there is no internal heat source in the temperature model, the heat conduction
equation is expressed as Equation (2). The boundary conditions of surfaces BC1 and BC2
are considered by Equations (3) and (4), and Equation (5) gives the initial condition of
this problem:
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α
∂2T(x, t)

∂x2 =
∂T(x, t)

∂t
in 0 < x < d, t1 < 0 < t2 (2)

BC1 : −k
∂T(x, t)

∂x
+ h1T(x, t) = h1 f1(t) , x= 0 (3)

BC2 : k
∂T(x, t)

∂x
+ h2T(x, t) = h2 f2(t) , x = d (4)

IC : T(x, t1) = T0 (5)

where α is the thermal diffusivity (m2·s−1), k is the thermal conductivity (W m−1·K−1), h1
and h2 are heat transfer coefficients at different surfaces (W·m−2·K−1), and T(x, t) is the
temperature (◦C) at an arbitrary point x at any time t.

To make the initial temperature T(x, t1) be equal to zero, the following temperature
variable is introduced:

θ(x, t) = T(x, t)− T0 (6)

Then, Equations (3)–(5) are transformed as:

BC1 : −k
∂θ(x, t)

∂x
+ h1θ(x, t) = h1( f1(t)− T(x, t1)) (7)

BC2 : k
∂θ(x, t)

∂x
+ h2θ(x, t) = h2( f2(t)− T(x, t1)) (8)

IC : θ(x, t1) = 0 (9)

To solve the aforementioned heat conduction problem, the integral transform pair
for the function θ(x, t) with respect to the x variable is constructed based on the integral
transformation method [27]:

θ(x, t) =
∞

∑
n=1

X(βn, x′)
N(βn)

θ(βn, t) (10)

θ(βn, t) =
∫ d

0
X
(

βn, x′
)
θ
(
x′, t
)
dx′ (11)

where N(βn) is the norm and X(βn, t) is the eigenfunction. There are infinite norms
and eigenfunctions for the eigenvalues βn. By the application of the transformation
(Equations (10) and (11)), the general solution of Equation (2) is in the following form [27]:

θ(x, t) =
∞

∑
n=1

X(βn, x′)
N(βn)

e−αβn
2t
∫ t

0
eαβn

2t′ A(βn, t′)dt′ (12)

where

N(βn) =
∫ d

0

[
X(βn, x′)

]2dx′ (13)

A
(

βn, t′
)
=

α

k
[
X(βn, 0)h1 f1

(
t′
)
+ X(βn, d)h2 f2

(
t′
)]

(14)

For the boundary value problem with a double-convective boundary condition, the
eigenfunction and transcendental function are expressed as follows [27]:

X(βn, x) = βn cos(βn, x) + H1 sin(βn, x) (15)

tan(βnd) =
(H1 + H2)βn

βn2 − H1H2
(16)
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According to temperature variable θ(x, t), the function of ambient fluid temperature
(Equation (1)) becomes:

fi(t) = ΔTf ,i + Tf ,i(t)i = 1, 2 (17)

where ΔTf ,i = Ti,a − T0 and Tf ,i(t) = −Ti,b cos(wi(t − δi)).
The expression (Equation (17)) is introduced into the general solution (Equation (12)).

Then, the definite integral can be evaluated, and the solution is expressed as:

θ(x, t) =
2
∑

i=1

∞
∑

n=1

X(βn ,x)
N(βn)

hiX(βn ,xi)
kβn2 cos(wi ϕi,n)

{
Tf ,i(t − ϕi,n) +

ΔTf ,i

cos(wi ϕi,n)
−
[

Tf ,i(t1 − ϕi,n) +
ΔTf ,i

cos(wi ϕi,n)

]
e−αβn

2(t−t1)

}
(18)

By substituting Equation (6) into Equation (18), the analytical solution of the one-
dimensional original heat conduction problem is obtained, as shown in Equation (19):

T(x, t) = T0 +
2

∑
i=1

∞

∑
n=1

Ci,nX(βn,x)[ fi,n(t)− e−αβn
2(t−t1) fi,n(t1)] (19)

where it is defined that:

fi,n(t) =
ΔTf ,i

cos(wi ϕi,n)
+ Tf ,i(t − ϕi,n) (20)

Ci,n =
Hi cos(wi ϕi,n)X(βn, xi)

N(βn)βn2 (21)

cos(wi ϕi,n) =
αβn

2√
(αβn2)

2 + wi
2

(22)

In Equation (19), the temperature T(x, t) mainly consists of a superposition expression
of the boundary temperature term. The analytical solution is a parametric formula, which
benefits discussing the effect of the dimensional or environmental parameters. When the
initial temperature T0 is determined, the calculation accuracy of the temperature field is
only related to the series expression. The larger the series expansion term n, the higher
the accuracy.

3.2. Temperature Distribution Decomposition

In the analytical solution, the temperature T(x, t) depends on the initial temperature
term and the boundary temperature term. According to the linear superposition principle,
the temperature distribution caused by boundary layers at the ith boundary can be obtained
with decomposing Equation (19). As shown in Figure 8, given an arbitrary thermal field
of a slab section with two boundaries, the total thermal field is the sum of these three
contributions (see Equation (23)).

T = TIC + TBC1 + TBC2 (23)

Figure 8. Temperature decomposition of concrete slab.

The initial temperature component TIC is the temperature distribution of the slab at the
initial time. The temperature gradient is quite small for a thin slab. The initial temperature
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distribution is assumed to be linear. Then, the component TIC is the area weighted average
value of the thermal field:

TIC = T0(x, 0) (24)

The boundary temperature components TBC1 and TBC2 are generated by boundary
surfaces BC1 and BC2, respectively. The component TBCi (x, t) consists of the periodic
function term and exponential attenuation term, as shown in Equation (25):

TBCi(x, t) =
∞

∑
n=1

Ci,nX(βn,x)
[

fi,n(t)− e−αβn
2(t−t1) fi,n(t1)

]
(25)

The temperature decomposition has the advantage of investigating the different ac-
tions of the solar radiation and the air temperature on the vertical temperature distribution
of slab track. Thereby, the effect of different boundary conditions on the thermal field can
be obtained.

3.3. The Method of Dealing with Meteorological Parameters

The site environmental conditions are considered and the procedure for dealing with
meteorological parameters is illustrated. The main steps of the analytical prediction method
for the concrete slab temperature distribution are summarized in Figure 9.

Figure 9. Flowchart of the analytical method using meteorological parameters.

Stage 1: Obtain the site meteorological data for every hour on a sunny and cloudless
day, mainly including three meteorological parameters, namely, solar radiation, wind speed,
and air temperature. The treatment of the meteorological data is described in Section 3.3.1.

In particular, the air temperature variation is not wide in the continuous sunny weather
condition, which is beneficial for the establishment of the ambient fluid model 2 and the
initial temperature distribution. Besides, the regular solar radiation can better establish
the ambient fluid model 1. The wind speed is mainly used to calculate the heat transfer
coefficient, which is not an affecting parameter.

Stage 2: Establish the boundary condition functions f 1(t) and f 1(t) of the concrete slab
according to the meteorological parameters in Section 3.3.2. The mathematical model is a
cosine function (Equation (1)).

Stage 3: Measure the top and bottom surface temperatures of the slab to develop
the initial condition (IC) described in Section 3.3.3. For the thin concrete slab, the initial
condition is a constant initial temperature.

Stage 4: Calculate the total heat transfer coefficient by the formula of the radiation
heat transfer and convection heat transfer in Section 3.3.4. The coefficient of the radiation
heat transfer is calculated approximately using Equation (28).
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Stage 5: Apply the analytical solution to obtain the temperature distribution in Section 3.1.
Stage 6: Use the temperature decomposition method to obtain the temperature com-

ponents in Section 3.2.

3.3.1. Equivalent Radiation Temperature

In the daytime, the structure absorbs heat from the solar radiation and the atmospheric
radiation. Meanwhile, the structure releases heat to the exterior environment through
the convection and longwave radiation. The main processes of heat exchange are split in
radiation, convection, and conduction, as shown in Figure 10.

 

Figure 10. Mechanisms of heat transfer.

Taking the heat exchange at the top surface (BC1) of the concrete slab as an example,
the general equation for net heat transfer is written as:

q = γqs − hc(Tu − Ta)− εC0
(
Tu

4 − Ta
4)

= γqs − (hc + hr)(Tu − Ta)
(26)

where qs is the total solar radiation on a plane, which is gained from the measured solar
radiation on a horizontal plane or the empirical models of solar radiation, γ is the solar
absorptivity coefficient of the concrete slab and is taken as 0.5 [14], ε is the emissivity of
the surface, C0 is the Stefan–Boltzmann constant (5.67 × 10−8 W·m−2·K−4), Tu and Ta
are the surface and fluid temperatures (K), respectively, and hc is the coefficient of the
convection heat transfer (W·m2·K−1). hc is a function of wind speed ν (m·s−1) and is
expressed as [14,15]:

hc = 4v + 5.7 (27)

The variable hr is the coefficient of the radiation heat transfer (W·m2·K−1) calculated
by the radiation heat transfer Equation (28).

hr = εC0

(
T2

u + Ta
2
)
(Tu + Ta) (28)

The net heat conduction equation (Equation (26)) is simplified to the boundary condi-
tion of the third type by substituting into Equations (27) and (28), which is expressed as:

q = −h
[

Tu −
(

Ta +
γqs

h

)]
(29)

where h is the total heat transfer coefficient (W·m−2·K−1) and h = hc + hr.
The combined action of the solar radiation and atmospheric temperature on concrete

slab surface is considered as the equivalent radiation temperature [19]. The assumed
temperature Te is obtained from Equation (29), giving:

Te = Ta +
γqs

h
(30)
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3.3.2. The Boundary Condition

Figure 11a shows the time history curves of the equivalent radiation temperature Te
and solar radiation qs from 21 to 27 July 2020 at the test site. The curve of the equivalent
radiation temperature is proportional to that of solar radiation, and the change trends
are consistent. The variable Te changes regularly with time, which makes it convenient
to be fitted by the cosine function (Equation (1)) during the solar time. In addition, the
continuous warming weather condition makes the uniform temperature distribution in
the concrete slab; thereby, the heating data on the third day were selected to determine the
govern equations of the temperature model, as shown in Figure 11b.

 
(a) 

 
(b) 

Figure 11. Time history curves of environmental parameters. (a) Measured data of the equivalent
radiation temperature and solar radiation from 21 to 27 July 2020; (b) Fitting results of the equivalent
radiation temperature and air temperature on 23 July 2020.

In Figure 11b, the temperature variation of the parameter Te exposed to the solar
radiation is wider. The fitting results of the equivalent radiation temperature and air tem-
perature have a good degree of correlation, with an index R2 of 0.99 and 0.98, respectively.
The fitting formulas f 1(t) and f 2(t) at the boundaries are, respectively:

f1(t) = 32.9 − 32.53 cos
[(

2π

23.43
(t − 0.891)

)]
, R2 = 0.99 (31)

f2(t) = 31 + 4.5 cos
[(

2π

20.5
(t − 15)

)]
, R2 = 0.98 (32)

3.3.3. The Initial Condition

The sensitivity for the initial condition may result in the instability of the calculation
for the time period in which the temperature gradient is high [18]. To avoid the unexpected
oscillations in solutions, the initial temperature distribution in concrete structure was as-
sumed to be uniform and equal to the atmospheric temperature at initial time. Emerson
et al. [28] pointed out that the initial temperature can be approximated by the atmospheric
temperature at 8:00, which was verified for the temperature of concrete beams and compos-
ite beams. The calculated result is more accurate when the initial condition is determined
by the measurement of the structural temperature [29,30].

Figure 12 shows the initial temperature distributions through the depth of the slab
at 6:00 for a week. These temperature profiles present various nonlinear temperature
distributions and temperature differences. The expression of the temperature profile is
necessary when applying analytical methods. Based on the above assumptions of the
initial condition, a uniform temperature along the depth was calculated by the measured
temperatures on 23 July. The maximum error between the calculated temperature and the
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measured one was 0.72 ◦C. Thereby, the calculated temperature (30 ◦C) was taken as the
initial condition of the temperature model.

 
Figure 12. Initial temperature distributions at 6:00 for a week.

3.3.4. The Total Heat Transfer Coefficient

The influence of total heat transfer coefficient on the predicted temperature has been
studied and it was shown that the result with the daily average coefficient instead of the
time-change coefficient involved a maximum error of 6% [31]. The daily averages of the
total heat transfer coefficient on 23 July were calculated using Equation (29), which were
h1 = 15.8 W·m−2·K−1 and h2 = 11.4 W·m−2·K−1.

4. Results and Discussion

4.1. Comparison with the Numerical Solution

The numerical solution of the testing specimen (Figure 3) was calculated using the
COMSOL software. A three-dimensional thermal field model was established by consider-
ing the actual heat transfer behaviors, including the atmospheric radiation, solar radiation,
free convection, and reflected radiation, as shown in Figure 10. The measured meteoro-
logical parameters including the solar radiation, ambient temperature, and wind speed,
were inputted into the boundary conditions of the temperature model. The measured
temperature profile on 23 July was taken as the initial condition. Besides, the ground model
was established to calculated the reflected radiation. The material properties and thermal
coefficients [21,22,31] are listed in Tables 1 and 2.

Table 1. Properties of concrete and steel.

Material Property Concrete Steel

Density, ρ (Kg·m−3) 2800 7850
Specific heat capacity, c (J·Kg−1·K−1) 880 475
Thermal conductivity, k (W m−1·K−1) 1.8 47

Table 2. Thermal coefficients adopted in the temperature model.

Thermal Coefficient Concrete Steel

Shortwave absorptivity, γ (W m−1·K−1) 0.5 0.9
Longwave absorptivity, γ1 (W m−1·K−1) 0.82 0.88

Emissivity, ε 0.82 0.88
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The simulation results of the solar radiation absorbed by surfaces are shown in Figure 13.
Figure 13a,c shows the distribution of solar radiation absorbed by surfaces at 8:00 and 10:00,
respectively. The horizontal solar radiation intensity increases from 540 W/m2 to 785 W/m2

with time variation, and the intensity of the shading area without the solar radiation is
0 W/m2. The shading zone matches well that of the testing specimen (Figure 13b,d). This
indicates that the simulation method of the thermal field model when considering site
conditions is correct.

(a) 
 

(b) 

 
(c) 

 
(d) 

Figure 13. Simulation results of the solar radiation absorbed by surfaces at different times. (a) Sim-
ulation of the absorbed radiation at 8:00; (b) Shading zone at 8:00; (c) Simulation of the absorbed
radiation at 10:00; (d) Shading zone at 10:00.

Figure 14 shows the time–temperature curve of the analytical solution (n = 9) and
numerical solution at different depths. The calculated temperatures at various depths
converge to the initial temperature of 30 ◦C at 6:00. The maximum errors at the top
and bottom surface are 2.4 ◦C and 1.3 ◦C, respectively. Meanwhile, the error within the
concrete slab is less than 0.8 ◦C. The nonhomogeneous boundary condition makes the
nonconvergence of the analytical solution at boundary surfaces. Thereby, the analytical
temperature at the boundary surface requires larger superposition terms n for generating a
higher prediction accuracy.

Figure 14. Comparison between numerical solutions and analytical solutions (n = 9).
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Table 3 lists the maximum error (ME) between the analytical solution and the numer-
ical solution, which is calculated using Equation (33). It can be seen in Table 3 that the
convergence at n = 1 is rather slow, with an accuracy of 11% reached after four terms. The
error after summing the first nine terms is less than 5%. The calculated temperature at
d5 = 0.2 m converged to within 3% (1.3 ◦C) of the numerical value after summing only the
first five terms of the series. In general, as term n increases, the convergence of the series
summation becomes much more rapid. This is readily explained by the exponential term
of Equation (25), which depends on the power of −αλ2

n(t − t1). Clearly this term decreases
exponentially with increasing time and increasing eigenvalues, thereby causing the rapid
convergence of the series.

ME =

{
max(T(n, x, t)− Tm(x, t)/Tm(x, t)× 100%) T(x, t) > Tm(x, t)
min(T(n, x, t)− Tm(x, t)/Tm(x, t)× 100%) T(x, t) < Tm(x, t)

, n = 1, 2, 3 · · · 15; 0 <x = d< 0.3; 6 <t< 19 (33)

where T(n, x, t) is the analytical solution and Tm(x, t) is the numerical solution.

Table 3. Error statistical results.

N
Maximum Error

d1 = 0 m d2 = 0.05 m d3 = 0.1 m d4 = 0.15 m d5 = 0.2 m d6 = 0.25 m d7 = 0.3 m

1 30.46% 16.99% 4.60% 5.59% 11.25% 11.80% 6.96%
2 20.24% 3.6% 6.55% 6.90% 4.92% 6.91% 10.17%
3 13.79% 2.95% 2.26% 4.11% 2.03% 2.41% 2.66%
4 10.73% 3.37% 3.69% 4.24% 2.95% 3.83% 4.54%
5 8.56% 2.63% 3.01% 2.59% 1.96% 2.21% 2.55%
6 7.26% 3.09% 3.31% 2.61% 2.35% 2.42% 2.96%
7 6.26% 2.31% 1.84% 1.27% 1.46% 2.17% 2.42%
8 5.61% 2.45% 1.97% 1.32% 1.54% 1.95% 2.54%
9 4.34% 1.93% 1.64% 1.15% 1.22% 1.52% 2.1%

The calculation error at the position d7 = 0.3 m was used for error statistics, which are
shown in the boxplot of Figure 15. In Figure 15, the maximum error line clearly fluctuates
over a range of n = 1 to n = 8. With the increase in terms n, the fluctuation range of the line is
relatively small. When n is an odd number, it is beneficial for reducing the error. However,
we note that every other term, namely, the even n terms, are adverse for convergence.
This is readily explained by the positive or negative value of the eigenfunction X(βn,x)
in the analytical equation, which depends on the quadrant of the eigenvalue βn. For
the even n terms, βn is in the third quadrant, which produces the positive eigenfunction.
βn changes in the first and third quadrants in turn with the change in the parity of n.
Thus, the maximum error line clearly fluctuates in first eight terms. Furthermore, the error
fluctuation is smaller with greater increases in the terms. This indicates that the errors tend
to be stabilized quickly and change linearly.

 
Figure 15. Error results (d7 = 0.3 m).
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4.2. Comparison with Empirical Formula and Experimental Data

The empirical result of the slab temperature was calculated to present the improvement
of the analytical solution. The empirical formula in the one-dimensional temperature model
was developed without considering the convection heat transfer at the shading surface.
Thereby, the slab temperature is directly related to the equivalent radiation temperature at
the radiation surface. The empirical result is calculated by modifying the amplitude and
phase of the equivalent radiation temperature. The empirical formula is as follows [15]:

Tf (x, t) = f1(t)′ + γ
[

f1(t − δ)− f1(t)′
]

, t1 < t < t2, 0 < x < d (34)

γ =
exp
(−√

π/24αx
)√

1 +
√

πk2/6αhu2+πk2/12αhu2
(35)

δ = − tan−1 1

1 +
√

24αhu2/πk2
−√

π/24αx (36)

where f 1(t)’ is the daily average value of the equivalent radiation temperature f 1(t), γ is the
amplitude correction factor, and δ is the phase correction factor.

Figure 16 shows the analytical, empirical, and measured temperatures at different
measuring points on 23 July 2020. It can be observed that the analytical result (T(x, t))
matches well with the measured temperature (H2~H5). The errors between the calculated
temperature (T(x, t)) and the measured temperature are very small during the three hours
before sunset and after sunrise. However, the error becomes larger when the solar radiation
is stronger at 10:00~15:00. The maximum error rate of the analytical solution occurs at the
measuring point H5, at 5.5% (2.2 ◦C) in Figure 16a. Only while considering the influence of
the top surface on the temperature field, the maximum error rate between the empirical
result (Tf(0.02, 12)) and the measured temperature (H5) is 12.8% (5.5 ◦C) in Figure 16a. This
can be explained by the fact that the daily average of total heat transfer coefficient deviates
too much from that coefficient, changing with time. By contrast, the analytical method with
appropriate assumptions can provide a higher accuracy method for the temperature of the
slab track.

  

Figure 16. Results of the analytical, empirical, and measured temperatures on 23 July 2020. (a) H5; (b)
H4; (c) H3; (d) H2.

4.3. Decomposition of the Concrete Slab Surface Temperature

The temperature components of the concrete slab are a function of variables i, x, and
t, which can be calculated at an arbitrary point x and at any time t using Equation (25).
Figure 17 shows the time history curve of temperature components at the top slab surface.
The curve of component TBC1 is generated through heat exchange with the solar radiation
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and air temperature at the top surface (BC1), and the curve of component TBC2 is generated
by convection with the air temperature f 2(t) at the bottom surface (BC2).

 

Figure 17. Time history curves of temperature components.

In the solar radiation duration, the change trend of the surface temperature T is consistent
with that of the component TBC1. When time is t = 14, the calculated temperature of the top
surface is 48.2 ◦C. Then, by substituting the temperature value into Equations (29) and (25),
the instantaneous net heat flux at the top surface is 253 W·m−2, and the increment of
the top surface temperature contributed by the component TBC1 is 17.3 ◦C, as shown in
Figure 17. In addition, the bottom surface of the slab belongs to the shading surface, where
there is only convection heat transfer and a small amount of radiation heat transfer. The
limited heat flow (t = 14, q = 34 W·m−2) contributes little to the increment in the top surface
temperature. The result from the curve of TBC2 shows that the average contribution of the
component TBC2 is only about 0.5 ◦C in the daytime.

Figure 18 shows the hourly percentages of the components TBC1 and TBC2 in the
heating process of the top surface. According to statistics, the contribution percentage of
the bottom surface temperature accounts on average for only 5% in the increment of the
top surface temperature. The result shows that the temperature change of the top surface is
mainly affected by the temperature components TBC1. For instance, when the top surface
temperature increases by 20 ◦C, the bottom surface temperature only contributes about
1 ◦C to the increment in the top surface temperature.

Figure 18. Hourly percentages of components TBC1 and TBC2 at the top surface.

The comparison of the change characteristics of the temperature components TBC1 and
TBC2 shows that the temperature variation in the top surface is related to the component
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TBC1 and is independent of component TBC2. Using the decomposition method, we can
also obtain the similar change trend of temperature components at different depths.

4.4. Decomposition of the Temperature Distribution of the Concrete Slab

Figure 19 illustrates the temperature distribution of the temperature component TBC1
through the depth of the slab at different times. The temperature profile of the slab is
approximately a straight line at 6:00. With the more heat absorbed by the surface BC1, the
profile becomes nonlinear over the solar time. The largest temperature variation occurs
on the top surface and reaches a maximum of 17.6 ◦C at 15:00, while the bottom surface
temperature is 3.7 ◦C. After that time, the top surface temperature begins to drop. However,
due to the low thermal conductivity of concrete, the bottom surface temperature steadily
increases and reaches 5.2 ◦C at 18:00. The maximum positive temperature difference is
14.7 ◦C at 15:00 under the thermal action of solar radiation.

 

Figure 19. Temperature distributions of component TBC1 at different times.

Figure 20 shows the temperature distribution of component TBC2 at different times.
Only with the convective and reflected radiation heat transfer at the bottom surface (BC2),
the temperature difference varies slightly in the daytime. In addition, one can observe that
the negative temperature difference occurs at 6:00~9:00. Due to the weak solar radiation
during early sunrise hours, the surface BC2 remains heat loss, and the temperature at a
depth of 0.1~0.3 m drops. With the limited amount of heat loss, the negative temperature
difference is very small, at just −0.5 ◦C. The temperature difference values become grad-
ually positive with an increment of the combined action of the convection and reflected
radiation on the surface BC2. The maximum positive temperature difference is 2.2 ◦C at
18:00 under the thermal action of air temperature.

 

Figure 20. Temperature distributions of component TBC2 at different times.
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The comparison of the temperature distribution of the temperature component shows
that the solar radiation has a great influence on the nonlinear temperature distribution of
the concrete slab. Due to the different amount of the heat exchange at the boundary surface,
the temperature profiles of the temperature components TBC1 and TBC2 are not symmetric
along the depth of the concrete slab.

5. Conclusions

With a special focus on the influence of environmental conditions on the temperature
distribution of slab tracks, an analytical method is proposed to calculate and decompose
the temperature distribution of slab tracks. A one-dimensional temperature model was
solved using the integral transformation method. An experimental program on a concrete
slab track structure was conducted to validate the reliability and accuracy of the developed
methodology in this study. Based on the results, the following conclusions are drawn:

(1) The proposed method is convenient to predict the real-time temperature distribution
of concrete slab tracks using meteorological parameters, and shows a high accuracy
and a rapid convergence speed.

(2) The relationship between the temperature of the slab track and meteorological parame-
ters is established through the proposed analytical solution. Based on the temperature
decomposition method, the temperature distribution of slab tracks affected by solar
radiation and atmospheric temperature can be calculated separately.

(3) A method for dealing with meteorological parameters is proposed. The combined
action of solar radiation and atmospheric temperature on the boundary surface is
considered as a fluid medium, which is the expression of a cosine function.

(4) Solar radiation is the main reason for the nonlinear temperature distribution in slab
tracks during the daytime. By contrast, the convection heat transfer caused by air
has little effect, and the temperature change in the slab surface resulting from the
atmospheric temperature accounts for only 5% in the hot weather condition.

In this study, an analytical method of the one-dimensional thermal field in a slab track
is proposed. To improve the applicability of the method, a multidimensional tempera-
ture model of slab tracks in different environmental conditions need to be investigated.
In future works, the transverse temperature distribution can be considered in tempera-
ture measurement, and the effect of extreme weather conditions on slab tracks can be
further studied.
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Abstract: Small defects on the rails develop fast under the continuous load of passing trains, and
this may lead to train derailment and other disasters. In recent years, many types of wireless
sensor systems have been developed for rail defect detection. However, there has been a lack of
comprehensive reviews on the working principles, functions, and trade-offs of these wireless sensor
systems. Therefore, we provide in this paper a systematic review of recent studies on wireless
sensor-based rail defect detection systems from three different perspectives: sensing principles,
wireless networks, and power supply. We analyzed and compared six sensing methods to discuss
their detection accuracy, detectable types of defects, and their detection efficiency. For wireless
networks, we analyzed and compared their application scenarios, the advantages and disadvantages
of different network topologies, and the capabilities of different transmission media. From the
perspective of power supply, we analyzed and compared different power supply modules in terms
of installation and energy harvesting methods, and the amount of energy they can supply. Finally,
we offered three suggestions that may inspire the future development of wireless sensor-based rail
defect detection systems.

Keywords: rail defects detection; wireless sensing system; railway sensors

1. Introduction

During rail service, defects are produced due to material degradation, wheel–rail stress,
thermal stress, residual stress [1], and other reasons. If small defects are not discovered
and repaired in time, they will be aggravated [2] and in turn cause rail breakage [3] and
even serious accidents such as train derailment [4]. Main railway track defects include
surface defects, inner defects [5], and component (fastener) defects [6]. With the continuous
increase in the railway transportation speed, density, and load [7] there has also been an
increase in accidents caused by rail defects. For example, in a mere 10 days in August 2017,
four train derailments occurred in India, causing very serious losses [8]. Therefore, the
detection of rail defects and the life cycle management [9] of rails has become extremely
important. There are also research works focusing on the other part of the railways. For
example, Kaewunruen et al. [10] carried out a related study and investigation on the
stress of railway sleepers. Setsobhonkul et al. [11] assessed the life cycle of railway bridge
transitions exposed to extreme climatic events. Melo et al. showed that the interaction of
defects between different parts of the rail can cause different severe consequences, and
investigated the related methods for predicting the deterioration of the rail [12].

In the early days, the detection of railway track defects mainly relied on manual
detection. Manual inspection is performed by well-trained inspectors who regularly walk
along the railway line to identify rail defects. However, manual inspection is inefficient
and costly and sometimes even threatens the safety of inspectors [13]. Since the world’s
first railway ultrasonic inspection vehicle was put into use in 1959, manual inspection
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methods have been gradually replaced by large inspection vehicles. For example, in 2004,
E. Deutschl et al. [14] designed a vision-based rail surface defect detection system which
can automatically detect rail defects. Large-scale rail defect detection vehicles mainly use
defects detection devices on the train bogies to detect rail defects [15]. The inspections are
conducted once every few months but are not for real-time rail status monitoring [16]. This
method occupies the rail, resulting in the inability to transport passengers or cargo during
the inspection. Furthermore, neither manual detection nor defect detection vehicles can
detect rail damage at the first time when an accident (e.g., derailment and rail breakage)
occurs. This means that it is not possible to promptly locate the injury and fix it before
damage is caused, and this cannot meet the daily inspection needs of modern railways,
especially for high-speed railways [17]. M. Vohra et al. [18] invented a robot-based infrared
sensor rail defects detection system. However, the robot-based detection systems are still
unable to achieve real-time detection since they usually have larger locomotion ranges
than detection ranges. The development of wireless communication and self-organizing
networks (GSM, ZigBee ad hoc networks, etc.) enables the information collected by sensing
devices to be transmitted to terminal in real time and with good realiabitly [19]. This makes
the wireless sensor network a perfect option for the real-time detection of rail defects. E.
Aboelela et al. [20] established a wireless sensor network model for railway safety, which
laid the foundation for the application of wireless networks in railway track detection.
After that, a lot of works [2,21–24] on the wireless sensor-based rail defect detection systems
(WSRDDS) emerged to research the availability of using different sensing methods, wireless
commnication, power supply, and data processing in this area. However, there is no
systmatic review covering all related aspects of the WSRDDS. From the perspective of data
acquisition of the WSRDDS, we focus on the key elements, inlcluding sensing methods,
wireless communication, and power supply, in this paper to give an overview.

For a WSRDDS, the sensor is the core and should be to be considered first. Different
defects require different types of sensors for detecting. To have a long lifetime, a regen-
erative power supply is required for the wireless sensor. Furthermore, a reliable sensor
network architecture should be designed for the data transmission of sensor readings. The
main components of the whole system are shown in Figure 1. With the rapid development
of high-speed railways, our requirements for the maintenance of rail infrastructure status
are increasingly demanded. How to detect rail defects comprehensively, reliably, and in
real-time has become extremely important.

Figure 1. A wireless sensor-based rail defect detection system.
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2. Sensing Method

Since the first rail ultrasonic inspection vehicle was put into use in 1953, various
inspection methods have gradually been proposed for rail defect detection [25]. These
detection technologies can be summarized as contact detection and non-contact detec-
tion based on whether there is physical contact between sensor and rail. Contact sensor
detection technology includes: vibration [26], ultrasonic [27,28], and acoustic emission
technology [29]. Non-contact sensor detection technology includes: ultrasonic [30], thermal
imaging [31], vision [32], electromagnetic wave diffusion [33], etc. In the contact detection
methods, the detection sensors are usually installed on the abdomen of the rail [34]. For
the non-contact detection methods, the detection sensors are often installed on a large rail
detection vehicle [35] or a smart car [36] to detect rail defects. The selection of sensors
is highly dependent on the defect types. For example, visual inspection is suitable for
detecting rail surface defects, ultrasonic and electromagnetic wave diffusion are suitable for
detecting internal rail defects, and thermal imaging is suitable for detecting rail subsurface
defects. This section selects a variety of typical sensing methods for the introduction of the
sensing mechanism and detectable defect types of these methods. At the end of this section,
summarizes the main differences between these methods are summarized.

2.1. Vibration

When the train passes the railroad track, it causes vibration of the railroad track [37,38].
There is a significant difference in vibration signals between healthy rails and defective rails.
Defective rails have flatter peaks and troughs in the vibration acceleration signal compared
to healthy rails [39]. Q. Wei et al. [16] showed that the instantaneous energy distribution is
an effective defect feature. For example, among three defects (rail corrugation, ail head sag,
and rail surface stripping) the intra-class cross-correlation coefficient of the instantaneous
energy distribution is greater than 0.7, while the inter-class ross-correlation coefficient is
below 0.45. Therefore, the vibration signal characteristics of different types of rail defects
can be extracted through multiple experiments. Finally, classification algorithms can be
used to identify and classify rail defects based on these features. M. Sun et al. [40] applied
the sequential backward selection (SBS) method to select important feature parameters,
and the support vector machine method to recognize and classify the rail defects. This
study compares the accuracy of classification before and after using the SBS method and
proves that optimizing the parameter set can improve the accuracy of the classification.

MEMS accelerometers are widely used in rail detection due to their small size, low
price, and high accuracy [41]. M. David et al. [42] compared MEMS sensors with geophones
in 2016. The results prove that MEMS sensors are suitable for track defect detection. Z. Zhan
et al. [5] developed a wireless sensor system for rail fastener detection, which can reliably
identify fasteners with a looseness coefficient greater than 60%. In addition, strain gauges
can also be used to detect missing or broken fasteners. J. J. Zhao et al. [43] demonstrated a
linear relationship between the strain voltage and tightness of fasteners, finding that the
tighter the fastener, the smaller the strain voltage. We summarized the existing techniques
in the literature shown in Table 1.
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Table 1. Comparison of vibration testing methods.

Methods Types of Detected Defects Algorithm Results Comments

MEMS
accelerometers

Rail fastener [5] Finite element method
Reliable identification of
fasteners with a looseness
factor greater than 60%

Small size,
low price,
high accuracy

/ [42] The high- and low-pass filter
This study proves that
MEMS sensors are suitable
for rail defect detection.

Rail head sag, rail surface
stripping, height joint [40]. Peak-finding algorithm

The accuracy rate of the
classification of rail defect
types can reach 93.8%.

Strain gauge

Rail fastener [43] Sequential backward selection

Demonstrated a linear
relationship between
strain voltage and
fastener tightness. Small size,

low price, low
accuracy

Rail fastener [44] Support vector machines

Demonstrated a linear
relationship between strain
voltage and fastener
tightness.

2.2. Acoustic Emission

Different from other detection methods, the acoustic emission (AE) method is suited
to investigate the dynamic behavior of materials and structures [7]. The dynamic expansion
process of rail defects releases transient elastic waves. The acoustic emission (AE) sensor
method works based on this phenomenon [45] (as shown in Figure 2). It is more sensitive
to the forming and expanding of defect but less influenced by the structural geometry.
Furthermore, this method can achieve a detection range as far as 30 m [46]. This method can
estimate the dynamic characteristics of defects and is an ideal choice for online continuous
monitoring [43]. This method can detect railhead defects, inner defects, welding defects,
and surface defects.

Figure 2. AE sensor detection.

H. Jian et al. [47] demonstrated that the acoustic emission frequencies of defective rails
are mainly located in the 100–150 KHz and 150–200 KHz frequency bands, and a small part
is located in the 380–430 kHz frequency band. In 2013, A. G. Kostryzhev et al. [48] found
that the spectral characteristics of the acoustic emission signal depend on the extended
mode of the defect. That is, long duration and low-frequency signals come from ductile
fractures; short duration and high-frequency signals come from brittle fractures. In 2015,
the K.S.C. Kuang team of the Department of Civil and Environmental Engineering of the
National University of Singapore [46] found that the railhead side is the best location
for inspection. At the same time, the research team used the wavelet transform-based
modal analysis location (WTMAL) method to locate defects. The error is less than ±0.30 m
in a high-noise environment, and the average working range reaches 30.0 m. However,
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the defect acoustic emission signal is often interfered with by strong noise. To solve this
problem, X. Zhang et al. [29] presented a joint optimization method based on long short-
term memory (LSTM) network and k-means clustering to cluster noise signals, and the
results showed that most of the noise signals can be reduced. To suppress the influence of
noise and ensure proper time resolution, the research team further studied the characteristic
frequency of the time window for defect detection [43]. This research has greatly promoted
the application of AE sensors in the detection of rail defects. Based on the AE sensor, the
dynamic expansion process of the inner defects of the rail can be detected in real-time.
However, this method is susceptible to interference from external sound waves (trains and
nature). We summarized the existing techniques in the literature shown in Table 2.

Table 2. Comparison of acoustic emission methods.

Methods Types of Detected Defects Algorithm Results Comments

AE Rail-head defects [46] Hilbert transform
Wavelet transform

The error of the location of
rail defects is less than 0.3 m.
Detection distance can
reach 30 m.

Long detection
distance

AE /[49]
Signal adapted wavelet in
the frame of a two-band
analysis/synthesis system

The wavelet designed by the
proposed method has
superior performance in
expressing the defect AE
signal, and can outperform
the most suitable
existing wavelet.

The designed wavelet
shows good
robustness against
noise, which has
profound meaning
for rail defect
detection in practical
applications.

AE Rail fatigue defect [48] Single-hit waveform and
power spectrum analysis

High duration, low
frequency signals result from
ductile fractures.
Low duration, high
frequency signals result from
brittle fractures.

It is demonstrated
that the AE signal
associated with defect
propagation depends
on the fracture mode.

AE
Rail defect, small bearing
defect, and worse
bearing defect [47]

Cepstrum analysis
This study verifies that AE
signals can detect
bearing/rail defects.

2.3. Ultrasonic

The ultrasonic sensor detects the rail defect by analyzing the sound waves reflected
from the rail [50]. The prerequisite for the use of ultrasonic sensors for detection is that
sound waves must be excited inside the rail. The excitation can be realized by either
piezoelectric elements (as shown in Figure 3a) or by lasers (as shown in Figure 3b) and
so on. This method has a high detection rate for the inside of the rail (particularly in the
railhead and waist) [7]. In this subsection, we summarize the existing techniques in the
literature, shown in Table 3.

The focus angle and focus depth of ordinary ultrasound probes are fixed, so the
coverage rate of this method on the guide rail is relatively low [30,51]. To overcome the
shortcomings of ordinary ultrasonic probes, Zhang et al. [51] proposed a high-speed phased
array ultrasonic testing technology. This technology can generate multi-angle beams and
receive defect echo signals from all channels, which greatly improves the detection speed
and detection range. C. Ling et al. [52] combined traditional probes with phased array
probes to detect defects on 60 kg/m rails, and the detection accuracy can reach 6 mm.
Acoustic guided waves can cover the entire rail cross section and have a longer propagation
distance [53]. Therefore, the efficiency of ultrasonic guided wave detection of rail defects
is much greater than the ultrasonic waves. However, different guided wave modes have
different sensitivities to defects in different parts of the rail, which greatly increases the
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complexity of detection [54]. H. Shi et al. [55] studied the mode of the guided wave
propagating in the rail at a frequency of 35 KHZ. The study showed that there are a total
of 20 guided wave modes propagating in the rail at this frequency. After experimental
verification, it proves that modes 7, 3, and 1 are suitable for detecting defects at the rail
head, waist, and seat, respectively. Kaewunruen et al. [56] used ultrasonic measurement
technology to achieve accurate drawing of the three-dimensional profiles of the deep-
sinking defect of the rail. This has important implications for on-site inspections.

Figure 3. (a) Piezoelectric transducer excitation. (b) Laser excitation.

Piezoelectric-based ultrasonic technology is applied in almost all the available studies,
but the application of this technology is greatly limited by a variety of shortcomings, such
as dependence on acoustic coupling agents and requirements for surface pretreatment of
the measured object [57]. The laser-based ultrasonic detection technology can excite various
modes of ultrasonic waves inside the rail [27,58]. The method has higher accuracy than
conventional ultrasonic in the non-destructive detection of small defects in railway tracks.

The ultrasonic sensor emits ultrasound waves that have strong penetration capability
and can detect defects in the head and waist of the rail. Under laser excitation, it can further
detect defects near the surface and on the foot of the rail. However, when the detection
frequency increases, it may easily lose a lot of defect information, and its accuracy is low
in detecting very small cracks. We summarized the existing techniques in the literature
shown in Table 3.
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Table 3. Comparison of ultrasonic testing methods.

Methods
Algorithm or
Simulation

Types of
Detectable

Defects
Results Summarize

Detection
Method

Ordinary
ultrasound

Multi-angle
ultrasonic probe [59]

PCA and
LSSVM Different types of

defects in rail
head, rail waist
and rail foot

Classification
recognition
accuracy: 92%.
Identify seven
types of rail
defects.

Ordinary ultrasonic
waves are usually
single-modal at low
frequencies, and cannot
achieve high-sensitivity
omnidirectional
detection of all parts of
the rail (track surface,
underground,
and interior).

Combination of wheeled
ultrasonic probes [60]

LSTM-based
deep learning
model

Average f1-score:
95.5%. Maximum
detection speed:
22 m/s.

Phased array
ultrasonic

Combination of the
conventional probe and
phased array probe [51]

/

Defects around
bolt holes,
vertical defects
and transverse
imperfections in
the rail head,
waist and
foundation area

Ultrasonic beam
coverage rate up
to 80%

The rails can be
inspected more
comprehensively and
the inspection efficiency
is improved.
Multiple angles
monitoring the same
area.

Phased array with
transverse wedge
block(railhead), transverse
and longitudinal wave
probes (rail waist and rail
foot) [61]

/

Different types of
defects in rail
head, rail waist
and rail foot

Effectively covers
the railhead, rail
foot, and rail
waist

Combination of the
conventional probe and
phased array probe [52]

/

Different types of
defects in rail
head, rail waist
and rail foot

The detection
accuracy can
reach 6 mm.

Ultrasonic
guided wave

High voltage pulse
sequences [62] / / Coverage up to

1000 m

The efficiency of
ultrasonic guided wave
detection of rail defects
is much greater than the
ultrasonic waves.

Sine wave modulated by
the Hanning window
with a frequency of
35 kHz [55]

Phase control
and time
delay
technology.

Rail head, rail
waist and rail foot

Enhance expected
mode and
suppress
interference mode.
The optimal
excitation
direction and
excitation node of
the modes are
calculated.

Excitation
source

Laser
ultrasonic

High energy laser
pulses [58]

Finite
element
simulations

Rail foot

The best detection
position is
300 mm in front
of the defect
position.
The best detection
frequency is
20 KHZ.

Can cover the head,
web, and foot parts of
the rail

Non-ablative
laser source [63]

Analysis of
Variance.
Monte-Carlo
simulations.

Head surface
defects,
horizontal defects,
vertical
longitudinal split
defects, star
defects at colt
holes and
diagonal defect in
waist.

The position of
the sensor has a
greater impact on
detection
accuracy.
The research
results can find
the best detection
position of the
sensor.

Hybrid laser/air coupling
sensor system [35]

Wavelet
transform
and outlier
analysis.

Surface de-
fects(Transverse
defects and
alongitudinal
defects)

Inner defects and
surface defects of
the rail can be
distinguished.

Two staggered
beams of laser [27]

Finite
element
simulations.

Irregular
scratches on rail
surface

The error is about
0.014%.

Electromagnetic
ultrasonic /

Finite
element
analysis [57]

Rail base
Able to detect
common defects
in rail bases

No couplant required
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2.4. Electromagnetic

The motion-induced eddy current (MIEC) is generated on the surface of the rail
by the relative motion between the rail and the detection device under the high-speed
electromagnetic non-destructive testing [64]. Therefore, it is possible to determine whether
defects are present in the rail by analyzing the changes in the inner and surface magnetic
fields of the rail [50]. Electromagnetic wave diffusion detection methods are applied on the
rail defects detection based on the change, mainly include magnetic flux leakage (MFL) [65]
and eddy-current inspection (ECI) [66].

Magnetic flux leakage sensor consists of an excitation source and a detection sensor.
Based on the magnetized excitation source, it can be divided into alternating magnetic
field, DC magnetic field, and permanent magnet. The sensor first magnetizes the rail under
test to saturation through the excitation source [67]. When defects such as cracks or pits
appear on the surface of the rail, the evenly distributed lines of magnetic field inside the rail
bend to deform and spread outside of the rail (as shown in Figure 4b), forming a leakage
magnetic field on the surface of the defect area [68]. For traditional AC magnetic field
excitation technology, the excitation signal is usually a single-frequency sinusoidal signal,
which cannot accurately extract rail defect information. P. Wang [69] solved this problem
by introducing the periodic square wave pulse technology. For high-speed magnetic flux
leakage detection, the collected MFL signals often contain complex noise. The increase
of detection frequency has an approximately linear relationship with the decrease of the
magnetic flux leakage signal. K. Ji et al. [70] proposed an improved adaptive filtering
method that can effectively remove noise. L. Yang et al. [71] proposed a high-speed MFL
detection technique based on multi-level magnetization to effectively suppress the influence
of magnetic after-effects on rail defect detection.

Figure 4. (a) Eddy-current detection. (b) Magnetic flux leakage detection.

The eddy-current inspection sensor consists of an excitation coil and an induction coil
(Figure 4a). Eddy currents cause secondary changes in the strength and distribution of
the magnetic field, which leads to changes in the impedance of the detection coil [50]. If
no defects are present in the inspection area, the impedance of the detection coil remains
constant. If there are defects on and near the surface of the rail, it causes the surface
magnetic field to fluctuate and the impedance of the detection coil to change. In this way,
rail defects can be detected by analyzing the changes in detection coil impedance. However,
many problems are also encountered in high-speed eddy-current testing. For example,
the detection signal varies depending on the location of the sensor and the depth of the

166



Sensors 2022, 22, 6409

detection depending on the detection speed. F. Yuan et al. [64] used the DC electromagnetic
detection method to study the optimal detection position of rail defects, and the study
showed that the optimal detection position is near the inner edge of the excitation coil
against the probe movement direction. The team [72] further demonstrated that the PEC
detection signal increases with the detection speed, and when the detection speed is
constant, the detection signal positively correlates with the defect width and defect depth.

For electromagnetic detection, the velocity effect can affect the amplitude of the
signal, and the signal is subject to greater external interference. Therefore, a well-designed
algorithm is needed to offset these effects. Compared with ultrasonic inspection, the
electromagnetic inspection can detect near-surface defects. We summarize the existing
techniques in the literature, as shown in Table 4.

Table 4. Comparison of electromagnetic testing methods.

Methods Algorithm or Simulation
Types of Detectable

Defects
Research Content and Results

Eddy
current

Pulsed eddy
current [72] 3D transient model

Different installation
positions can detect rail
defects in
different parts.

• The team studied the
relationship between the
pulsed eddy current
detection signal and the
velocity of different defect
depths and widths.

Direct
current [64] 2D Finite element method

Different installation
positions can detect rail
defects in
different parts.

• The optimal detection
position is determined.

AC bridge
techniques [73]

Digital lock-in
amplifier algorithm

Four typical types of
rail defects (transverse
defects, compound
fissure, crushed head,
detail fracture)

• The effect of solving the
lift-off effect is better.

Differential
eddy-current
(EC) sensor
system [33]

• Low-pass filter
• Rotation of EC signal

(To extract maximum
information and have
better visualization)

The degree of looseness
of fasteners

• Can detect fastener features
65 mm above the track

• The type of missing fixture
can be detected by analyzing
the characteristics of the
fastener.

Magnetic
flux leakage

Pulsed
magnetic flux
leakage [69]

2D transient analysis model
under

Vertical and oblique
defects

• With the sensor array, not
only the magnetic field
distribution of the defect can
be detected, but also the edge
effect caused by the magnetic
yoke can be eliminated.

• The introduction of periodic
square wave pulses solves
the problem that
single-frequency sinusoidal
signals cannot effectively
extract rail defect
information.

Multistage mag-
netization [71] Finite element method Rail inner defects

• Magnetic aftereffects are
effectively inhibited in
high-speed MFL detection.

Direct
current [68] 2D simulation model Oblique defect and

rectangle defect

• Analyzed the influence of
speed on magnetic flux
leakage signal (At high
speed, the magnitude of the
flux leakage signal is smaller,
but more stable.)
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Table 4. Cont.

Methods Algorithm or Simulation
Types of Detectable

Defects
Research Content and Results

Magnetic flux
leakage [70] Improved adaptive filtering Different types of

defects in rail surface

• The noise intensity of the
MFL signal is reduced by up
to about 80%.

• The generalization ability of
the algorithm is better, and
the filtering effect becomes
more significant as the speed
increases.

Combination of
permanent
magnets and
yoke [74]

3-D FEM simulations Different types of
defects in rail surface

• The MFL signals from the
subsurface defect will be
more affected by the weakly
magnetized regions
compared to the surface
defect.

• The increase in speed reduces
the magnetization of the rail.

2.5. Thermal Imaging

When an excitation source such as an eddy current is used to excite the rail, a local
heating effect is generated inside the rail [75]. The method for analyzing this effect is called
thermal imaging detection.

Pulse thermal imaging based on eddy currents involves two thermal processes in
the measurement: Joule heating caused by eddy currents and thermal diffusion inside
the material [76,77]. In the heating stage, the presence of surface defects affects the eddy
current density distribution and leads to changes in temperature. The geometry of angular
defects also affects the temperature difference between the groove edges, which leads to
changes in the thermal diffusion mode. Therefore, if the spatial and transient temperature
distribution can be obtained, they can be used to detect and characterize the inner defects
of the sample [31,78]. This method can accurately detect defects with a width larger than
100 μm [36]. A single-channel blind source separation method for eddy-current pulsed
thermography image sequence processing was proposed to extract abnormal patterns and
strengthen the comparison of defects [79]. To verify the influence of the sensor’s shape
on detection, Y. Wu et al. designed sensors of different shapes for comparison [75]. The
results showed that a sensor with a round core structure can only detect partial defects.
The arc-shaped and U-shaped sensors can detect almost all defects, and the arc-shaped
ones have a higher thermal contrast than the U-shaped ones. However, the excitation
of rails by ordinary coils cause angle and instability problems. To solve these problems,
J. Peng et al. [76] proposed a Helmholtz coil with a larger and more stable detection range
than a linear coil (as shown in Figure 5b) and achieved greatly improved detection efficiency.

There are some other methods for generating thermal effects (as shown in Figure 5a).
In 2018, R. Usamentiaga et al. [80] applied optical stimulation to thermally stimulate the
rail. The study has shown that when the camera is installed at 1 m from the track, defects
of 1 cm2 can be detected.

This technology can detect subsurface defects that cannot be directly discovered on
the surface of the rail, greatly improving the ability to detect rail defects. We summarize
the existing techniques in the literature, as shown in Table 5.
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Figure 5. (a) Electromagnetic excitation. (b) Helmholtz coil excitation.

Table 5. Comparison of thermal imaging testing methods.

Thermal Stimulation Algorithm
Types of

Detectable
Defects

Results Comments

Eddy
current

Eddy-current
pulsed
thermography [79]

Single-channel
blind source
separation

Thermal
fatigue defects

The method can
automatically detect rail
defects in both the time
and the spatial domains.

• The research
innovatively
discovered the
changing process of
the mixing vector in
the heating and
cooling phases.

Helmholtz
coils [76]

Finite element
method

Rolling contact
fatigue (RCF)
defects

Solved the problem that
the excitation of
ordinary coils on the
rails would cause
unstable detection areas

• This method
provides a larger
detection area than
linear coils.

Various shapes of
sensors [75]

Inverse Fourier
transformation
(deblurring
method)

RCF defects
and
micro-defect

Verify the detection
effect of various shape
sensors

• The research is
helpful to design
sensors with better
detection
performance.

Easyheat
224 system
with induction
heater [81]

Normalized
difference
vegetation index
(NDVI)

RCF defects

The proposed method
can have a good
correction for the
emissivity.

• Good for correcting
ECPT emissivity

Laser Two halogen
lamps [80] / Rolled-in

material defect
Defects of 1 cm2 can be
detected.

• The study compared
multiple methods to
enhance the defect
signal-to-noise ratio.
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Table 5. Cont.

Thermal Stimulation Algorithm
Types of

Detectable
Defects

Results Comments

Pulsed air-flow
thermography [82]

Subtract the first
image in the
sequence from the
last image
acquired in the
heating sequence
when removing
the background.

Rail surface
defects

The study proved that
the pulsed air-flow
thermography method
used in the experiment
is effective for detecting
rail defects.

• The method needs
further improvement.

High-frequency continuous
sine-wave current [83]

Metric learning
modules Fatigue defects

The method proposed in
this study can not only
reduce the influence of
interference factors but
also expand the feature
space distance between
defective samples and
normal samples.

• Using an open set of
supervision
frameworks, it is
easy to add new
defect samples.

• Good
anti-interference
performance

Apply uniform heat flux
for a time [84]

pulse phase
thermography
(PPT)

Lateral surface
defects

After thermal
stimulation for the same
time, the cooling rate of
shallow defects is faster
than that of
deep defects.

• The study proved the
feasibility of active
infrared
thermography for
detecting rail defects.

2.6. Visual

Visual inspection technology is one of the most important methods in current rail
defect detection. An automatic visual inspection system usually consists of a light source,
a camera, or other image acquiring devices [85,86] (as shown in Figure 6). The visual
inspection system has been widely used in the defect detection of rail facilities along the
railway line [50]. According to the visual inspection algorithms, the existing methodologies
are categorized into two groups: traditional image processing and deep learning.

Figure 6. An auxiliary vision system based on a light source.

The traditional image processing process includes two main steps: extracting effective
rail surface images and identifying defects. L. Guo et al. [85] applied Hough transform
to extract the image of the effective rail surface, and then applied the improved Sobel
algorithm and area filter algorithm to detect rail defects with a minimum area of 0.0068 cm2.
O. Yaman et al. [87] applied the Otsu segmentation method to extract the image of the rail
surface. Next, feature signals are obtained by calculating the variance value through the
rail surface image. By analyzing these signals, and combining fuzzy logic to determine
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the defect type, the success rate can reach 72.05%. Gan et al. [88] proposed a coarse-
to-fine extractor for rail defect detection. The method locates the abnormality of rail
defects by rough extraction, and then further extracts the defect information. However, the
computational complexity of this method is too high.

Due to the extremely complex characteristics of rail surface defects, the use of ordinary
image processing techniques cannot achieve good detection results. Z. Liang et al. [89]
compared the SegNet (a deep convolutional network architecture for semantic segmen-
tation) algorithm with artificial and automatic threshold segmentation algorithms. The
results showed that the accuracy of the deep learning algorithm is 100%, which is much
higher than that of ordinary image processing algorithms (77.8% for manual threshold seg-
mentation and 55.6% for automatic threshold segmentation). For the first time, Li et al. [90]
combined the U-Net graph segmentation network with the saliency cues method of damage
location and applied on the damage detection of high-speed railway rails, with an accuracy
rate of 99.76%. L. Zhuang et al. [91] proposed a cascading rail surface flaw identifier. The
method detects the presence of defect based on DenseNet-169, and then performs defect
classification for the defective rails with a feature joint learning module (FJLM) and a
feature reduction module (FRM).

Visual inspection can effectively detect the surface defects of the rail. However, it does
not provide any information about the inner defects of the rails. We summarize the existing
techniques in the literature, as shown in Table 6.

Table 6. Comparison of visual inspection methods.

Algorithm Results Comments Summarize

Traditional
algorithm

Hough transform and
improved Sobel
algorithm [85]

Minimum detection
area: 0.0068 cm2

• Fast processing speed
• Harder to apply to complex

situations

Weak
generalization
ability and
low accuracy

Otsu segmentation and
fuzzy logic [87]

The success rate of
identifying defect
types: 72.05%

• Types of defects can be identified.

Coarse-to-fine
model [88,92]

CTFM outperforms
state-of-the-art
methods in terms of
pixel-level indices and
defect-level indices.

• Effectively suppress the influence
of noise points

• The proposed computational
requires high computational
resources.

Deep learning

SegNet [89] Detection
accuracy: 100%

• outperform ordinary image
processing algorithms

Strong
generalization
ability and
high accuracy

SCueU-Net [90] Detection
accuracy: 99.76%

• Overcome the interference of
image noise and solve the current
problem of low detection efficiency

MOLO [93]

This algorithm
improves the accuracy
3–5% more than the
YOLOv3 algorithm.

• Image features are extracted using
MobileNetV2 as the backbone
network. At the same time, the
multi-scale prediction and the loss
calculation method of YOLOv3
are used.

• The network structure is relatively
simple, which balances detection
accuracy and detection speed.

Cascading rail surface
flaw identifier [91]

The detection accuracy
rate of defect type:
98.2%

• Better processing performance for
complex scenes

• Accurately identify multiple types
of defects
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2.7. Other Detection Methods

There are other rail defect detection methods such as structured light detection, fiber
grating detection, and infrared detection.

Q. Mao et al. [94] proposed a fastener detection method based on a structured light
sensor. They used a decision tree classifier to classify fastener defects and achieved an
overall accuracy no less than 99.8%, indicating that this method can offer a promising way
to detect fasteners. Compared with two-dimensional vision, the structured light sensor
can obtain a three-dimensional point cloud of fasteners, thereby obtaining more detailed
fastener information.

A laser-based non-contact sensor can be an effective tool for detecting rail defects.
Generally, the sensor consists of two infrared modules: a transmitter and a receiver. The
transmitter emits infrared rays, and the receiver receives the pulses reflected from the
rails. By analyzing the time when the pulses are reflected from the rails, the geometric
parameters of the rails can be tracked, and a high-resolution map with three-dimensional
objects can be generated. This method is effective in detecting surface and welding defects
on the rail [18,95].

2.8. Technology Comparison

The vibration sensors based on MEMS technology have been widely used. This
type of sensor features high accuracy, low price, small size, and convenient installation
while having the ability to detect various rail defects through data analysis. The detection
accuracy of visual inspection technology is high, but this method can only detect the
surface defects. The ultrasonic-based detection technology can detect the inner defects of
the rail, but the detection depth is not less than 5 mm [65], which cannot be used for defect
detection on the near-surface (≤5 mm) of the rail. Magnetic flux leakage and eddy-current
detection technology have high detection accuracy for near-surface defects of rails. The
above methods can only detect the static defects of the rails. The acoustic emission detection
method is suitable for studying the dynamic expansion process of rail defects. Therefore,
the combination of multiple methods can realize the simultaneous monitoring of multiple
different defects. In Table 7, a horizontal comparison is provided to distinguish between
the different methods.

Table 7. Comparison of rail defect detection methods.

Detection Method
Types of Detectable

Defects
Detection Performance

Influence of
Environment on

Detection
Performance

Vibration accelerometer

• The degree of
looseness of
fasteners [5,96]

• Inner [2] and
surface [47]
defects of the rail

• Can detect the degree of looseness of
fasteners [5]

• Small size, easy installation, wide
detection range [42]

Temperatures that are
too low will reduce
the sensitivity of the
sensor.

Ultrasonic

Ordinary
ultrasonic
[51,52,61]

Conventional
probe

• Railhead inner
defects

• Rail foot defects
• Rail waist defects

• Single angle and
low efficiency

In high-speed
inspection
systems, rail
defects with a
depth of less than
4 mm are often
undetectable [76].

When the
temperature changes,
it will affect the speed
of the sound wave in
the rail, so the
localization of the
defect will have an
impact.

Phased array
probe

• Multi-angle
detection

• Better ultrasonic
beam coverage

• Higher efficiency
than traditional
ultrasonic
testing

Electromagnetic ultrasonic • Rail inner defects
• surface defects

• High precision
• No complaint required [57,97]
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Table 7. Cont.

Detection Method
Types of Detectable

Defects
Detection Performance

Influence of
Environment on

Detection
Performance

Laser ultrasonic

• Rail inner
defects [35]

• Surface
defects [98] and
subsurface
defects [58]

• Good penetration ability
• Can cover the entire track for

testing [63]

AE • Subsurface
defects [48]

• Suitable for studying the dynamic
expansion process of rail defects [48]

• Acoustic emission signals are easily
submerged by high-frequency vehicle
speed signals [48].

Other noises will
affect the detection
results.

Electroma-
gnetic

MFL
• Surface and

shallow surface
defects [69,74]

• Highly susceptible to the
environment (white noise and power
frequency interference in the
environment) [71]

• Easily affected by lift-off [64,74]
• As the detection rate increases, the

depth of detection of rail defects
decreases [64]

The temperature will
drift the detection
results of the
eddy-current sensor,
and the two are
negatively
correlated.The increase
in temperature will
cause the magnetic
permeability to
decrease.ECI

• Rail inner
defects [99]

• surface and
subsurface
defects [64]

• Easily affected by lift-off [64].
• Can effectively detect subsurface

defects.

Thermal imaging
• Subsurface defects

[76] and surface
defects [82]

• It can characterize the shape and size
of rail defects [76,80].

Contamination
present on the Rail
surface will attenuate
the signal.

Vision
• Missing fastener

fixture [100]
• Surface

defects [93]

• Can only detect surface defects
• High detection accuracy
• Mature detection algorithm
• Affected by the surface condition (dirt

occlusion, others)

Contaminants such as
snowflakes and leaves
can block rail defects,
making visual
inspection methods
unable to detect rail
defects.

3. Wireless Transmission

In the rail defect detection system, especially in the contact detection technology, many
sensors need to be installed on the rail. If wired transmission is used, too many lines need
to be placed for data transmission. The rapid advance in wireless communication and
self-organizing networks (GSM, ZigBee, others) makes it more reliable and convenient to
wirelessly transmit information to terminals [19]. Therefore, reliable wireless transmission
is more suitable for rail defect detection than wired transmission [101]. E. Aboelela et al. [20]
established a wireless sensor network system for monitoring railway safety which has
laid the foundation for the application of wireless networks in railway detection. In the
last 10 years, wireless sensor networks have gradually replaced wired monitoring along
railway lines. This changes provide enormous convenience for real-time monitoring of
railway facilities [101]. Because wireless transmission networks are responsible for data
exchange between wireless sensors and terminals, they must be carefully designed to
prevent transmission errors, delays, network interruptions, and data loss or damage [19].

3.1. Transmission Node Settings

A good network topology can reduce communication interference, extend the net-
work’s service life, and improve communication efficiency [24]. In a wireless sensor system
for rail defect detection, the nodes are usually set up in the following three ways, as illus-
trated in Figure 7 and compared in Table 8. Each method contains three nodes: the terminal
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node, routing node, and coordinating node. The terminal node collects data, and the rout-
ing node can forward information and assist the coordinator in maintaining the network.
The coordinating node is the central hub of the entire network for transmission data.

Figure 7. Network topology. (a) Tree topology. (b) Line topology. (c) Star topology.

Table 8. Comparison of network topology.

Network Topology Advantages Disadvantages References

Star topology

• Short network
delay time

• Simple structure
• Easy to maintain

• Low line utilization
• The central node load is

too heavy.

[43,102]

Tree topology
• Simple structure
• Easy to maintain
• Easy to expand

• The dependence of each
node on the root is too
large.

[20,24]

Line topology
• Simple structure
• Low cost
• Easy to expand

• Low reliability
• Difficulty in fault

diagnosis and isolation
[103]

3.2. Transmission Media

In rail wireless sensor systems, the transmission from node to node and from node
to base station is usually a short distance, so the wireless communication can be achieved
by various technologies such as Bluetooth, Wi-Fi, and ZigBee. In 2007, Aw et al. [104] de-
veloped a method that uses Bluetooth to transmit rail detection information. This method,
however, has become obsolete due to its weak anti-interference ability and short trans-
mission distance [105]. Zigbee offers limited bandwidth when used for rail condition
monitoring [106]. To overcome this disadvantage, M. Tolani et al. [23] designed a two-layer
transmission network composed of power-efficient ZigBee nodes as the first layer and
bandwidth-efficient WLAN as the second layer. In recent years, Global System for Mobile
Communications (GSM) [107] has emerged as a powerful tool for mobile communica-
tions [108] and has been used in wireless sensor systems for rail defect detection. Its main
advantages are low costs and global availability. Jiaying et al. [102] applied GSM technology
to the detection of the environment surrounding the rail, and the results showed that it
offers good transmission performance.

3.3. Information Transmission

Sustainable running is an essential goal in the design of a wireless sensor network.
Therefore, it is important to minimize the energy consumption of the system [109], which
can be realized by two main methods: optimizing the transmission protocol and optimizing
the hardware design.

In the wireless transmission media access control (MAC) protocol, the energy con-
sumption mainly comes from collision, eavesdropping, and idle monitoring [110]. The
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schedule-based protocol is collision-free, thus reducing energy waste due to collisions.
However, they lack adaptability and scalability to adapt to changes in node density or
traffic load. Contention-based protocols have good scalability but cannot avoid wasting
energy due to collisions, overhearing, and idle listening [111]. Energy consumption can be
reduced by filtering useless data and reducing idle listening time. GM Shafiullah et al. [112]
proposed a new protocol named E-BMA. The protocol minimizes the idle time during
competition and can achieve improved energy efficiency at low and medium traffic. A.
Philipose et al. [113] proposed an improved media access control (MAC) protocol. In this
protocol, each node is awakened only when it needs to work, which reduces the energy
consumption of sensor nodes.

Another method is to reduce energy consumption by optimizing sensor hardware.
This method adopts a sleep strategy when the system is not working, so as to minimize
the energy consumption of the system. M. F. Islam et al. [2] proposed a lazy pole strategy,
in which data is sent only when the vibration sensed by the sensor node is different from
a pre-defined pattern. H. Zhang et al. [114] adopted a synchronous sleep and wake-up
strategy to make idle nodes to sleep and shut down most hardware to greatly reduce
energy consumption.

Therefore, for future designs of wireless sensor networks for rail defect detection
systems, these two methods can be combined to minimize energy consumption.

4. Power Supply

It is extremely important to make a wireless sensor self-powered to reduce the cost
of maintenance and have a long lifetime. The energy generated by the surrounding
environment such as rail vibration [115], solar energy [116], and other types can be stored
in a rechargeable battery [117] for powering the wireless sensing detection system. The
power generation methods of the rail wireless sensor detection system at present are shown
in Figure 8.

Figure 8. Principles of power generation. (a) Principle of solar energy harvester [34]. (b) Principle
of electrostatic harvester [118]. (c) Principle of electromagnetic harvester [119]. (d) Principle of
piezoelectric energy harvester [120].

4.1. Solar

Solar power generation methods include photovoltaic power generation (light energy
is converted into electrical energy) and thermal power generation (thermal energy is

175



Sensors 2022, 22, 6409

converted into electrical energy) [121]. Photovoltaic power generation can achieve a power
density as high as 10–15 mW/cm2 [116], which a enough to power wireless sensors. Solar
thermal power generation is a technology that uses solar concentrators to convert solar
radiant energy into thermal energy and then into electrical energy. However, solar thermal
power generators cannot be used on a large scale in wireless sensors as they are highly
susceptible to weather conditions and other environmental impacts, and it is difficult to
find a suitable location to install them.

4.2. Vibration

Vibration power generation converts the kinetic energy of rail vibration into electrical
energy. Typical vibration power generators include electromagnetic, piezoelectric, and elec-
trostatic generators [106]. An electromagnetic generator converts the orbital vibration into
the relative motion between the permanent magnet and the coil [119] and converts it further
into extremely low-frequency electrical energy [122]. For the first time, X. Zhang et al. [119]
applied supercapacitors to vibration energy harvesting systems. The system amplifies the
small vibrations of the track and store energy from rapidly changing transient currents.
For piezoelectric power generation, when pressure is applied to a piezoelectric material,
a potential difference is generated on the surface of the piezoelectric material [123,124]. J.
Wang et al. [125] studied a theoretical model of using the patch and stacked piezoelectric
transducers to collect piezoelectric energy from railway systems. The electrostatic generator
needs to be driven by an external voltage, so it features high output impedance and high
voltage and is not readily applicable for sensing devices. Table 9 summarizes the main
differences of the related studies. These technologies focus on converting environmental
energy into electrical energy [120].

A solar power generator is highly dependent on external conditions. It requires
stable light conditions, which make it difficult to find an appropriate location for sensor
installation. A vibration-based piezoelectric energy collector has the advantages of a simple
structure and a small size. However, this method requires a large vibration amplitude of
the rail. An electromagnetic energy harvester is much less demanding on the amplitude of
rail vibration, but it is susceptible to external electromagnetic interference.

Table 9. Comparison of energy harvesters based on vibration principle.

Energy Harvesting
Device

Application
Conditions

Installation Location Voltage Power Reference

Piezoelectric
energy harvester

2.5 mph (the speed of
the train)
The resistor connected
in the PZT0 (a single
piezoelectric energy
harvester) was 9.9 KΩ

40 V (the maximum
voltage)

0.18 mW (the
maximum
power)

[120]

Magnetic
levitation oscillator

105 km/h (the speed
of the train)
(one-car train)

 

2.3 V (peak–peak
output voltage) / [106]

Galfenol
magnetostictive
device

60 km/h (the speed of
the train)
60 m (The train is far
from the sensor of
60 m.)  

0.15 V (The voltage
varies with the
distance between the
train and the sensor,
when the distance is
shorter, the voltage is
larger, and the longer
the distance, the
smaller the voltage.)

When the
terminal voltage
is about 0.56 V,
the power is
maximum.

[115]
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Table 9. Cont.

Energy Harvesting
Device

Application
Conditions

Installation Location Voltage Power Reference

A patch-type
piezoelectric
transducer

30 m/s (the speed of
the train)  

4.82 V (at the
beginning of a valid
signal)

0.19 mW (at the
beginning of a
valid signal)

[125]

Drum transducer

0.15 m/s (running
speed)
120 kg (the weight of a
fully-loaded train)

50–70 V (peak
open-circuit voltage) 100 mW [123]

Electromagnetic
energy harvesting
system

6 mm (amplitude)
1 Hz and 2 Hz
(frequencies)

6.45 V (the output
peak–peak voltage) 0.0912 J [119]

Magnetic levitation
harvester

low-frequency
(3–7 Hz) Rail
displacement

 

2.32 V (the output
peak–peak voltage) 119 mW [126]

5. Summary and Future Work

This paper reviews the existing conventional rail detection technologies such as vibra-
tion, ultrasonic, electromagnetic detection, and visual detection and makes comparisons
between them and briefly introduces the wireless transmission method and power genera-
tion methods for the WSRDDS.

There is still some potential improvement for existing systems. We suggest the fol-
lowing optimizations to make these systems more reliable, intelligent, and powerful in
detecting rail defects.

(1) Rail defect feature signals can be extracted to build a complete database of rail defect
and fastener defect features. This database can be used to automatically classify rail
defects and determine the degree of damage to other track components.

(2) For a single detection technology, it is difficult to detect all the information from
the rails. Combining a variety of sensors can achieve all-round and high-precision
detection of rail defects.

(3) Building a comprehensive monitoring system for rail defects based on big data man-
agement and information mining technology is a good direction for achieving all-
round and high-precision detection of rail infrastructure.
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Abstract: Lamb Wave (LW)-based structural health monitoring method is promising, but its main
obstacle is damage assessment in varying environments. LW simulation based on piezoelectric
transducers (referred to as PZTs) is an efficient and low-cost method. This paper proposes a multi-
physics simulation method of LW propagation with the PZTs under temperature effect. The effect
of temperature on LW propagation is considered from two aspects. On the one hand, temperature
affects the material parameters of the structure, the adhesive layers and the PZTs. On the other hand,
it is considered that the thermal stress caused by the inconsistency of thermal expansion coefficients
among the structure, the adhesive layers, and the PZTs affect the piezoelectric constant of the PZTs.
Based on the COMSOL Multiphysics, the mechanic–electric–thermal directly coupling simulation
model under temperature effect is established. The simulation model consists of two steps. In the first
step, the thermal-mechanic coupling is carried out to calculate the thermal stress, and the thermal
stress effect is introduced into the piezoelectric constant model. In the second step, mechanic–electric
coupling is carried out to simulate LW propagation, which considers the piezoelectric effect of the
PZTs for the LW excitation and reception. The simulation results at −20 ◦C to 60 ◦C are obtained and
compared to the experiment. The results show that the A0 and S0 mode of simulation signals match
well with the experimental measurements. Additionally, the effect of temperature on LW propagation
is consistent between simulation and experiment; that is, the amplitude increases, and the phase
velocity decreases with the increment of temperature.

Keywords: structural health monitoring; Lamb Wave; multiphysics simulation; temperature effect;
thermal stress

1. Introduction

Structural Health Monitoring (SHM) technology has the advantages of real-time
monitoring, reducing detection times and improving detection efficiency and condition-
based maintenance. It has been widely studied and applied in the field of aerospace [1–3].
The Lamb Wave (LW)-based SHM method is a promising one, which has the advantages
of high sensitivity and large area monitoring through piezoelectric transducers (PZTs)
network. The method’s fundamental principle is to directly attach PZTs to a monitored
structure and acquire LW signals via the excitation and sensing of these PZTs. The damage
can be measured by analyzing the LW features that the damage has changed. Therefore,
it shows great application potential in structural damage assessment [4–6]. However, in
recent decades, the development of the LW-based SHM method from theoretical and basic
research to engineering application has been quite slow [7–9].

Time-varying conditions are one of the main obstacles to the development of LW-based
SHM [10]. When LW propagates in aircraft structures, it will inevitably be affected by
time-varying conditions, including temperature, moisture, load, and aerodynamic noise.
The extracted damage features are affected by these environmental factors, which reduce
the reliability of damage monitoring. A variety of damage monitoring methods have
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been developed, such as baseline free method, environmental compensation method and
probabilistic model method, to minimize the impact of time-varying conditions [11–15].
In order to further study and verify these damage monitoring methods in aerospace
applications, a large number of LW signals must be obtained under time-varying conditions.

Although the LW signals under time-varying conditions can be obtained by experiment
and simulation, respectively, it is expensive and time-consuming to obtain LW signals via
experiment—especially, those experiments carried out on real aircraft structures under
in-service conditions. However, the LW simulation under time-varying conditions is an
effective and low-cost method, which can not only study the LW propagation in an aircraft
structure but also can be used to verify the related damage monitoring methods.

In recent decades, Finite Element Analysis (FEA)-based LW simulation methods [16–22]
have been intensively explored for simulating LW propagation in metallic and composite
structures. However, the LW simulation method under time-varying conditions considering
the PZTs attached to structures is rarely reported.

The varying temperature condition is a significant one. It has been studied that the
temperature can cause significant changes in the velocity and amplitude of LW signals
acquired by the PZTs [23,24]. The influence of temperature on LW propagation is studied
via theoretical studies and numerical analysis [25–28]. The results show that the main
reason for the variations of the LW velocity and amplitude under the temperature effect
is due to the change in structural materials and the piezoelectric properties, including
the piezoelectric constant and dielectric constant. The effect of temperature change on
the LW is investigated over a temperature range of −200 ◦C to 204 ◦C via ABAQUS [29].
Since the influence of temperature on material parameters is not considered, temperature
change in the range of −200 ◦C to 93 ◦C has no effect on the displacement responses.
Attarian et al. [30] experimentally investigated that thermal cycling reduces the sensitivity
of damage diagnosis because the properties of adhesive layers have changed and how the
influence of the adhesive layers is not negligible. So far, the influence of thermal stress
caused by the inconsistency of thermal expansion coefficients among different materials on
LW propagation has not been studied.

To simulate the temperature influence on LW, Lonkar et al. [31] studied the piezo-
enabled spectral element analysis method containing a piezoelectric model for LW prop-
agation. In the simulation model, the piezoelectric constant and dielectric constant of
the piezoelectric sheet and the shear modulus, Poisson’s ratio and elastic modulus of the
adhesive layers are considered as a function of temperature. Palazotto et al. [32] developed
a 2D simulation model containing a piezoelectric sheet and investigated the influence of
temperature on LW on aluminum plates using ABAQUS simulation software. The influence
of temperature on the elastic modulus and Poisson’s ratio of aluminum plate is considered
in the simulation model. The results show that LW propagation velocity decreases with the
increment of temperature. Yule et al. [33] conducted a 2D-guided wave simulation based
on COMSOL Multiphysics software, considering the influence of temperature on material
parameters, and the influence law of temperature on LW was obtained. However, these
studies neglected the influence of thermal stress caused by the inconsistency of thermal
expansion coefficients among different materials on LW propagation. The piezoelectric
constant of PZT is very sensitive to thermal stress. Thermal stress leads to the change of
the piezoelectric constant of PZT, which will affect LW propagation. Therefore, thermal
stress needs to be considered.

This paper proposes a multiphysics simulation method for LW propagation with the
PZTs under temperature effect. The simulation model includes the changes in material
parameters of the structure, the adhesive layers, and the PZTs with temperature. In
particular, the thermal stress that affects the piezoelectric constant due to the inconsistency
of the thermal expansion coefficients among the three is considered. The FEA model of LW
propagation with the PZTs under temperature effect is constructed based on the COMSOL
Multiphysics computational platform. The LW signals under the temperature effect can
be derived directly from the simulation model. The results show that the waveform of
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simulation signals matches well with the experimental measurements, which indicates that
the simulation method is feasible.

2. Simulation Mechanisms of Temperature Influence on LW

Take the plate-like structure as an example to illustrate the simulation mechanisms of
LW under the temperature effect [34], as shown in Figure 1. Two PZTs are attached to the
structure with an adhesive and are used as an LW actuator and LW sensor, respectively.
A voltage excitation waveform is provided to the actuator to generate the LW signal. The
actuator deforms and transmits the stress to the adhesive layers and the structure due to the
inverse piezoelectric effect. When LW propagates to the sensor in the structure, it is received
and converted into a voltage signal due to the direct piezoelectric effect. It is proposed to
simplify the problem of temperature affecting LW propagation into two parts. One part is
that temperature affects the material parameters of the structure, adhesive layers, and PZTs.
The other part is that thermal stress affects the piezoelectric constant of the PZTs due to
the inconsistency of thermal expansion coefficients among the structure and the adhesive
layers, and the PZTs. The two parts are superimposed for LW propagation simulation
under the temperature effect. In this Section, two parts of the influence mechanisms are
introduced, and the numerical model used in this paper is established.

= Ε + σ
= Ε + σ

Figure 1. Schematic diagram of LW propagation with the PZTs under temperature effect.

2.1. Excitation–Propagation–Sensing Model
2.1.1. Excitation Model

When the PZT is employed as an excitation element, the PZT’s principle for LW
excitation is the inverse piezoelectric effect. The piezoelectric constitutive equations are
presented in the following Equation (1).

e = dTE + sσ
D = εE + dσ

(1)

where e and E refer to strain vector and electric field vector, respectively, s is the elastic
compliance matrix, σ is the stress vector, ε is the dielectric constant matrix, and d and D
refer to the piezoelectric coefficient matrix and electric displacement vector, respectively.

According to Giurgiutiu’s study [35], the strain transfer model between the actuator
and the structure is derived by converting the input voltage to the mechanical strain and
then by calculating the shear-lag model between the top and lower adhesive layer interfaces.
The schematic diagram of LW excitation is shown in Figure 2.

Where lact and tact are the diameter and thickness of the PZT, respectively, tbond is the
thickness of the adhesive layer, tplate is the thickness of the plate structure, Gbond is the
shear strength of the adhesive layer, YE

act is Young’s modulus of the PZT, and Eplate is elastic
modulus of the structure.

In this paper, we use a circular PZT with d31 = d32 and excite the LW by applying a
voltage excitation signal in the 3-direction. Only the piezoelectric constant d31 needs to
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be considered in m/V. The driving strain at the bottom of the excitation sensor along the
x-direction is expressed in the following Equation (2), where Vin is the excitation voltage.

εact(t) = −d31Vin(t)
tact

(2)

l

t

t
t E

G
Y E

x

x

z

Figure 2. Schematic diagram of LW excitation [35].

Based on the shear-lag model, the stress generated by the PZT coupled to the structure
through the adhesive layer is shown in Equation (3).

τ(x) = −Gbond
tbond

× lactεact

Γ cosh Γ
sinh

[
Γ
(

2x
lact

)]
(3)

where Γ is the shear-lag coefficient, and the expression is shown in Equation (4). When
α = 1, shear excitation is used to excite S mode. When α = 3, bending excitation is used to
excite A mode.

Γ2 =
Gbondl2

act
tbond

(
1

YE
acttact

+
α

Eplatetplate

)
(4)

2.1.2. Propagation Model

For the plate structure with a free surface, the displacement and stress in the isotropic
plate can be simplified into the LW frequency equation in symmetric and antisymmetric
mode without consideration for in-plate stress, as shown in Equations (5) and (6).

tan(qh)
tan(ph)

= − 4k2 pq

(q2 − k2)2 (5)

tan(qh)
tan(ph)

= − (q2 − k2)
2

4k2 pq
(6)

where p and q are given by

p2 = (
ω2

c2
L
− k2), q2 = (

ω2

c2
T
− k2) (7)
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where h is half the thickness of the plate, k is wave number, ω is angel frequency, cL and cT
are the velocities of the longitudinal wave and transverse wave, respectively, as shown in
Equations (8) and (9).

cL =

√√√√ YE
plate

(
1 − νplate

)
ρplate(1 + νplate)(1 − 2νplate)

(8)

cT =

√√√√ YE
plate

2ρplate(1 + νplate)
(9)

2.1.3. Sensing Model

Assuming that there is no loss in LW propagation, the strain at the sensor is obtained
according to the basic equation in the adhesive shear-lag model, and the voltage output
can be obtained according to the direct piezoelectric effect [26], as shown in Equation (10).

Vout(t) = dact
31 Cact(Γ)Csen(Γ)

[
d31

e33s13(1 − νact)

]
sen

Vin(t) (10)

where νact is the Poisson’s ratio of the PZT, e33 is the dielectric constant of the PZT, s13 is the
elastic coefficient of the PZT, and C(Γ) is a function of the Γ shear-lag parameter, as shown
in Equations (11) and (12).

Cact(Γ) =
Gbond(1 + νact)R

tbond[(ΓR)I0(ΓR)− (1 − νact)I1(ΓR)]
I1(ΓR) (11)

Csen(Γ) =

� (�
ε

sen
rr +

�
ε

sen
θθ

)
rdrdθ |τ0=1

πR2 (12)

where R is the radius of the PZT. I(ΓR) is the Bessel function.
The LW theoretical model and the related temperature factors that affect the LW

propagation velocity and response amplitude are summarized in Table 1. On the one hand,
the temperature affects the material parameters of the structure, the adhesive layer and the
PZT. On the other hand, the thermal expansion coefficients of the three are inconsistent, so
the PZT is affected by thermal stress, which changes the mechanic-to-electric conversion
characteristics. This is equivalent to the change produced by the external load on the PZT.
Since the PZT is sensitive to stress, the thermal stress caused by thermal expansion is not
negligible, so the change in temperature is accompanied by the load effect.

Table 1. Summary of Lamb Wave theory model and key parameters influenced by temperature.

LW Propagation
Characteristics

Expressions Temperature Effects

Propagation velocity
cL =

√
YE

plate(1−νplate)
ρplate(1+νplate)(1−2νplate)

cT =

√
YE

plate

2ρplate(1+νplate)

Temperature affects the propagation velocity of LW
by influencing the elastic modulus YE

plate, density
ρplate, and Poisson’s ratio νplate of the structure.

Response amplitude
Vout(t) = dact

31 Cact(Γ)Csen(Γ)
[

d31
e33s13(1−νact)

]
sen

Vin(t)

Γ2 = Gbond l2
act

tbond

(
1

YE
acttact

+ α
Eplate tplate

)
Temperature affects the LW amplitude by

influencing piezoelectric coefficient d31 including the
effects of thermal stress, the dielectric constant e33

and elastic flexibility coefficient s13 of the PZT, shear
modulus Gbond and shear-lag constant of the

adhesive layer.
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2.2. Material Parameters under Temperature Effect

In this paper, we take 2024 aluminum alloy as an example. The elastic modulus and
Poisson’s ratio of 2024 aluminum material measured by laser ultrasound was published by
Sandia National Laboratories [36]. Elastic modulus decreases approximately linearly with
the increasing temperature, and Poisson’s ratio increases approximately linearly with the
increasing temperature, as shown in Equations (13) and (14).

Eplate(ΔT) = 73.5 − 0.06 × ΔT (13)

v(ΔT) = 0.344 + 5.13 × 10−5 × ΔT (14)

According to the parameter manual of a typical two-component epoxy adhesive,
its working temperature range is −55 ◦C to 250 ◦C, and its storage modulus at room
temperature is 3.61 Gpa with a thermal expansion rate of 54 × 10−6/◦C. Barakat et al. [37]
gave the curve of storage modulus with temperature. The numerical model for the variation
of adhesive shear modulus with temperature is shown in Equation (15).

Ebond(ΔT) = 3.61 − 0.01 × ΔT (15)

Compared to metallic structures, piezoelectric materials contain both force and electri-
cal properties, so the parameters affected by temperature are more complex. By reviewing
the relevant literature, NASA reported some measurement results about the variation
of PZT parameters with temperature [38]. From the reported results, the impedance,
mechanic-electric coupling coefficient, and dielectric loss of PZT-5A can be approximately
constant in the range of −55 ◦C to 100 ◦C, which can be neglected in the simulation. As
the temperature increases, the dielectric constant and piezoelectric constant show a linear
increasing trend, which needs to be considered in the simulation.

The numerical model of the piezoelectric constant and dielectric constant of PZT-5A
was studied in the temperature range of −20 ◦C to 60 ◦C [34], as shown in Equation (16)
and Equation (17), in agreement with the findings reported by NASA [38]. This numerical
model is used for simulation, but it does not take into account the thermal stress effect.

d31(ΔT) = −167.7 − 0.194 × ΔT (16)

e33(ΔT) = 2155 + 4.12 × ΔT (17)

2.3. Piezoelectric Constants under Thermal Stress Effect

The thermal expansion coefficient of the PZT, adhesive layer, and aluminum structure
are 3 × 10−6/◦C, 54 × 10−6/◦C, and 23 × 10−6/◦C, respectively. The thermal stress is
not negligible for the PZT because the difference between the three thermal expansion
coefficients is large, and the piezoelectric sensor is sensitive to changes in stress.

For most materials, warming causes expansion and cooling causes contraction, and
tiny cells generate thermal stress due to the constraints of adjacent cells and boundary
conditions. It is common to assume a linear relationship between strain and temperature,
as shown in Equation (18), which forms a set of intrinsic relationships between strain
and temperature. The coefficient of thermal expansion is a fundamental parameter of the
material, and the effect of thermal stress can be approximated as a PZT subjected to a
static load.

εx = εy = εz = αΔT (18)

When a PZT is subjected to an external load, its polarization state changes. The
internal electric dipole moments are aligned in the direction of the polarization field and are
confined by the domain walls, thus changing the mechanic-electric transition characteristics
of the PZT.

In the application of excitation-response of LW, the mechanic-electric transition char-
acteristics of piezoelectric materials are usually considered to be linear. However, in fact,
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the piezoelectric material itself is nonlinear, and its mechanic-electric characteristics are
usually reflected as a hysteresis curve, which can be approximated as linear due to the
small voltage and displacement of the excitation and response of LW.

Qiu et al. [39] studied the variation law of LW amplitude and propagation velocity
under static load. It was pointed out that LW propagation velocity is affected by load due
to the acoustoelastic effect, and the structure has a nonlinear change in its stress-strain
intrinsic relationship under external load. Since the effect of thermal stress on the structure
is ignored when discussing thermal stress, the acoustoelastic effect is not considered in this
paper. The amplitude is affected by the load because the piezoelectric constant of the PZT
is changed. This paper focuses on the effect of thermal stress on the LW amplitude. The
nonlinear numerical relationship model between the load and the piezoelectric constant d31
is summarized as shown in Equation (19), where σ is the actual stress caused by the load
in MPa.

d31(Δσ) = d31 + d31 ×
(
−1.1 × 10−5 × Δσ2 + 4.2 × 10−3 × Δσ

)
(19)

In summary, the numerical model of the influence of static load on the piezoelectric
constant studied by scholar Qiu is used to simulate the influence of thermal stress on
the piezoelectric constant. The numerical models of the influence of temperature on the
piezoelectric constant d31 and the influence of thermal stress on the piezoelectric constant d31
are superimposed as the numerical model of the temperature-influenced LW propagation
simulation, including thermal stress, as shown in Equation (20).

d31

(
ΔT, ΔσT) =− 167.7 − 0.194 × ΔT − 167.7 ×

(
−1.1 × 10−5 × ΔσT

2 + 4.2 × 10−3 × ΔσT

)
(20)

where ΔT is relative to the reference temperature 20 ◦C, in ◦C, ΔσT is the thermal stress,
in MPa.

3. Simulation Method of LW under Temperature Effect

3.1. Architecture of the Multiphysics Simulation Method

Three kinds of physics need to be coupled with each other to simulate the LW un-
der temperature effect. One is mechanic-electric coupling controlled by a piezoelectric
instantaneous equation, used to simulate LW excitation and sensing. The other is solid
mechanics controlled by fluctuation equations, which is used to simulate LW propagation.
The temperature field is only a factor affecting LW propagation; that is, it is weakly coupled
with the solid mechanics field and electrostatic field.

This paper adopts the COMSOL Multiphysics platform. Electrostatic and solid me-
chanics can be directly coupled. In addition, the thermal stress effect, piezoelectric effect,
and temperature effect of PZTs can be integrated into the simulation model. The multi-
physics simulation architecture of LW propagation with PZTs under temperature effect is
shown in Figure 3.

In taking an aluminum plate as the research object, nine PZTs are arranged on an
aluminum plate with an adhesive to simulate LW under temperature effect, as shown in
Figure 4. The working condition of the simulation is shown in Table 2, described in detail
as follows.

Table 2. Working condition of LW propagation simulation under temperature effect.

Structure Geometry Excitation Signal Frequency Temperature

2024 Aluminum plate 500 mm × 500 mm × 2 mm
(length × width × thickness) 150 kHz, 200 kHz −20 ◦C to 60 ◦C

191



Sensors 2022, 22, 6647

Figure 3. Architecture of multiphysics simulation method of LW under temperature effect.

Figure 4. LW propagation under temperature effect simulation model.

3.1.1. D Geometry and Definitions

In this paper, the 3D geometry used includes the aluminum plate, the PZTs, and
the adhesive layers. The size of the plate is 500 mm × 500 mm × 2 mm. The diameter
and thickness of the PZTs are 8 mm and 0.48 mm, respectively. Nine PZTs are arranged
symmetrically. The distance between two PZTs is 150 mm. The diameter and thickness of
the adhesive layers are 8 mm and 0.08 mm, respectively.

There are two parts to define. One part is to define the voltage excitation signal
that is modulated by a Hanning window, as shown in Equation (21). Parameters are set
to A = 35 V, f = 200 kHz and N = 5. The other part is to define simulation temperature,
reference temperature, and numerical model coefficients for material parameters under the
influence of temperature.

Ex = A · [1 − cos(2π f t/N)] · sin(2π f t) · [t < (N/ f )] (21)

where Ex is the excitation signal, A is the amplitude, f is the central frequency, t is the wave
propagating duration, and N is the number of cycles within the signal window.

3.1.2. Material Parameters Numerical Model of Temperature Effect

According to the study in Sections 2.2 and 2.3, the temperature influence on LW
propagation can be equated to the effect of temperature on the material parameters of the
structure, PZTs, and adhesive layers and the effect of thermal stress load on the material
parameters of piezoelectric ceramics due to the inconsistent coefficient of thermal expansion.
The numerical models of each part used in this paper are summarized, as shown in Table 3.

3.1.3. Multiphysics Coupling under Temperature Effect

In solid mechanics, the default linear elastic materials, free and initial values are
assigned to the aluminum structure, the adhesive layers, and the PZTs, while piezoelectric
material is only assigned to the PZTs, and low reflection boundary is only assigned to the
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aluminum structure to suppress boundary reflection. In electrostatics, the upper surface of
only one PZT is set as electric potential to apply a defined voltage signal, and the lower
surface of all PZTs is set as ground. The voltage response signals of all PZTs can be received
by defining the upper surfaces of all PZTs as boundary probes. The COMSOL will directly
couple two physical fields in the calculation process by adding a piezoelectric effect to
mulphysical fields and selecting solid mechanics and electrostatic.

Table 3. Material properties of aluminum plate, adhesive, and PZT (PZT-5A).

Material Parameter Value

2024 Aluminum plate

Elastic modulus Eplate(ΔT)(GPa) = 73.5 − 0.06ΔT
Poisson’s ratio v(ΔT) = 0.344 + 5.13 × 10−5ΔT

Density 2700 (kg/m3)
Coefficient of thermal expansion 23.1 × 10−6(/K)

Adhesive

Shear modulus Gbond(ΔT)(GPa) = 3.61 − 0.01ΔT
0.3Poisson’s ratio

Density 1110 (kg/m3)
Coefficient of thermal expansion 54 × 10−6 (/K)

PZT-5A
Piezoelectric constant d31(ΔT, ΔσT) =− 167.7 − 0.194 × ΔT

−167.7
(−1.1 × 10−5 × ΔσT

2 + 4.2 × 10−3 × ΔσT
)

Relative permittivity e33(ΔT) = 4.12 × ΔT + 2155
Coefficient of thermal expansion 3 × 10−6 (/K)

For the calculation of thermal stress, it is necessary to add the thermal expansion to
the nodes of linear elastic material and piezoelectric material, and then set the reference
temperature to T0 and set the target temperature to Tem. It is considered that the tempera-
ture of structure, adhesive layers, and PZTs are the same, so it is not necessary to solve the
solid heat transfer problem.

In solid mechanics physics, it is necessary to add rigid motion suppression to alu-
minum structure when calculating thermal stresses. The reason is that if there is no
displacement constraint, the analysis will not converge without a unique solution, and
the model will indicate “no solution found”. In the stationary study, it is necessary to
find an equilibrium solution where the object is free to deform but not free to move or
rotate, so the reaction forces must balance with each other. If no constraint is provided, the
unbalanced forces will move or rotate the object, and the stationary solver cannot converge.
COMSOL provides rigid motion suppression boundary conditions that can handle the
missing displacement constraints and obtain the correct thermal stress results.

3.1.4. Finite Element Meshes

Yang et al. [40] gave the relationship between the finite element size and the LW
wavelength. The maximum mesh size recommended in the literature is 1/10 to 1/6 of
the minimum wavelength. For LW at 200 kHz, the phase velocities of S0 mode and A0
mode on a 2 mm thick aluminum plate are 5382 m/s and 1731 m/s, respectively, and the
corresponding wavelengths are 27 mm and 9 mm, respectively. Therefore, the maximum
mesh size of the aluminum plate shall be less than 1.5 mm. Considering that the thickness
of PZTs and adhesive layers are 0.48 mm and 0.08 mm, the mesh size of the PZTs and the
adhesive layers are set to 1 mm and 0.5 mm, respectively. Due to the small mesh size, the
model contains 1,890,000 domain elements, 553,000 boundary elements, and 3800 edge
elements, with 5,200,000 degrees of freedom.

3.1.5. Stationary and Time-Dependent Solver Settings

The solver includes the stationary study for thermal stress simulation and the time-
dependent study for LW propagation. First, the stationary study is used to calculate
the thermal stress of piezoelectric elements caused by inconsistent thermal expansion

193



Sensors 2022, 22, 6647

coefficient in step 1. Then, the thermal stress value is input into the parameter table. Finally,
the time-dependent study is used to calculate LW propagation in step 2.

In the thermal stress simulation, the electrostatics and piezoelectric effect are disabled.
In the LW propagation simulation, the thermal expansion and rigid motion suppression
related to thermal stress simulation are disabled. If not disabled, the piezoelectric element
will not only generate the LW signals but also be subjected to the thermal stress of the
structure. At the beginning of the time-dependent study, the thermal stress at the coupling
part between the piezoelectric element and the structure will act as a transient excitation to
generate a wide-band voltage response signal.

When the simulation solver runs once, LW signals at one temperature level can be
obtained. After several runs, LW signals at all temperature levels can be obtained. The
simulation time step is set to 1 × 10−7 s, and the time range in the time-dependent study is
from 0 s to 1.5 × 10−4 s.

3.2. Simulation Results

For LW at 200 kHz, the typical von Mises stress wave fields with the PZTs under
temperature effect are shown in Table 4. It can be seen that both the S0 mode and A0 mode
are excited normally. The S0 mode propagates faster than the A0 mode, and the amplitude
of the S0 mode is weaker than that of the A0 mode. It can be seen that the amplitude
increases with the increment of temperature by comparing the color bar of maximum stress
at different temperatures. In order to better study the effect of temperature on the LW phase,
the region in the red box is selected and enlarged. The wave fields at t = 3 × 10−5 s are
given in Figure 5. It can be seen that the phase is delayed with the increment of temperature.
The third wave packet just reaches the white line at 20 ◦C, exceeds the white line at −20 ◦C,
and does not reach the white line at 60 ◦C.

Table 4. Typical wave fields of LW propagation with the PZTs under temperature effect.

3 × 10−5 s 4.5 × 10−5 s 6 × 10−5 s

−20 ◦C

  

20 ◦C

  

60 ◦C
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Figure 5. The effect of temperature on LW phase.

The simulated LW signals under different temperatures are given in Figure 6, which
are the LW signals of channel 5–6 when the center frequency of the excitation signal is
200 kHz. An enlarged view of S0 mode is given to observe the changes in phase and
amplitude better. It can be seen that the amplitude increases, and the phase delays with the
increment of temperature.

Figure 6. Typical LW response signal results of simulation under temperature effect.
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4. Experimental Verification of the Simulation Method

In order to verify whether the above simulation model can correctly and effectively
simulate the LW propagation under the influence of temperature, experiments were con-
ducted using an aluminum plate of the same size and material. The same adhesive and the
PZTs were arranged at the same position. The LW signals at different temperatures were
obtained. The differences between the experimental signals and the simulated signals were
compared in terms of amplitude and propagation velocity to verify the correctness of the
simulation method.

4.1. Experimental Setup

The geometric dimensions and material parameters of the aluminum plate, the adhe-
sives, and the PZTs used in the experiment are the same as those of the simulation. PZT 5
is used to excite LW. The distance between two PZTs is 150 mm, as shown in Figure 7. The
aluminum plate is fixed on an environmental test chamber THV1070W, which is used to
provide the required temperature environment. The integrated SHM system [41] is used to
excite and obtain LW signals. The experimental system of LW propagation in the aluminum
plate under the influence of temperature is shown in Figure 8.

Figure 7. The aluminum plate with the PZTs and placement of the PZTs network.

Figure 8. Experimental system of temperature influence on LW.

The whole range of temperature is from −20 ◦C to 60 ◦C, with the increment of
5 ◦C from −20 ◦C to 40 ◦C and the increment of 2 ◦C from 40 ◦C to 60 ◦C. The whole
experimental process is about 6 h. There is no continuous signal acquisition in the process
of temperature rise. The signal is acquired only when the temperature reaches the desired
value. The excitation signal is a five-cycle sine burst modulated by a Hanning window
with an amplitude of ±70 V. The central frequency of the LW excitation signal is 150 kHz
and 200 kHz, respectively. The sampling rate is 10 MSamples/s. The signal acquired in the
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experiment is amplified by voltage, so the experimental signal cannot be directly compared
with the simulation signal, and amplitude normalization is needed.

4.2. Experimental Results

The LW signals at 200 kHz under different temperatures are given in Figure 9. The
first wave packet is the signal crosstalk, which can be ignored in the analysis. An enlarged
view of the S0 mode is given to observe the changes in phase and amplitude better. The
amplitude increases, and the phase delays with the increase of temperature. Figure 10
shows the relationship between signal amplitude and temperature. The amplitude increases
linearly with the increase in temperature.

Figure 9. LW signals of central frequency 200 kHz at all temperatures.
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Figure 10. Amplitude change of LW signals at all temperatures.

4.3. Comparison between Simulation and Experiment

The comparison between simulation signals and experimental signals of channel
5–6 under the temperature of −20 ◦C, 20 ◦C, and 60 ◦C are shown in Figure 11. The
experimental signals are amplified by a charge amplifier, but the simulation signals are
not. So, in order to better compare the simulation signals with the experimental signals,
the complex continuous Shannon wavelet transform is used for filtering, and then the
amplitude of S0 mode is normalized. It can be found that the waveform of S0 mode
matches well, while the amplitude and phase of A0 mode have small errors. The reason for
the error may be that the wavelength of A0 mode is less than S0; therefore, the mesh size of
A0 mode needs to be smaller to ensure sufficient accuracy.

Equations (22) and (23) are used to measure the changes in signal amplitude and phase
at different temperatures [42]. The data fit cross zero was performed.

ΔAmp =
AmpTem − AmpT0

AmpT0
× 100% (22)

Δcp =
−c2

p

lp
Δt (23)

where AmpTem is the amplitude of the LW signals at different temperatures, AmpT0 is the
amplitude of the LW signals at −20 ◦C, cp is the phase velocity, lp is the distance of LW
propagation, and Δt is the time shift of the constant phase of the LW signals.

Figure 12 shows the quantitative variations of amplitude and phase velocity of S0
mode between simulation and experiment. Experiment 1 and experiment 2 represent
channel 5–6 and channel 5–8, respectively. It can be seen that the amplitude increases, and
the phase velocity decreases with the increment of temperature. However, there may be
differences in the influence of temperature on material parameters between simulation and
experiment, resulting in the amplitude variations rate of the experiment being greater than
that of the simulation. The phase velocity variations match well between the simulation
and experiment.
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Figure 11. Comparison of LW signals between simulation and experiment.

Figure 12. Comparison for variations of S0 mode between simulation and experiment. (a) Variations
of amplitude; (b) variations of phase velocity.
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5. Conclusions

The paper aims to provide a contribution to the modeling of the LW propagation
with the PZTs under temperature effect. Temperature mainly affects the propagation of
LW from two aspects. On the one hand, temperature affects the material parameters. On
the other hand, the influence of thermal stress on the piezoelectric constant is due to the
inconsistent thermal expansion coefficient. The stationary study for thermal stress and
the time-dependent study for LW propagation are established. The simulation results at
−20 ◦C to 60 ◦C are obtained and compared with the experimental results. The results show
that the waveform of S0 mode matches well, while the amplitude and phase of A0 mode
have small errors. In addition, the influence of temperature on the LW between simulation
and experiment is also consistent; that is, the amplitude increases, and the phase velocity
decreases with the increase of temperature. However, there may be differences in the influ-
ence of temperature on material parameters between simulation and experiment, resulting
in the amplitude change rate of the experiment being greater than that of the simulation.

However, there still exists some issues that will be studied in future work.
(1) LW propagation with the PZTs under load conditions will be considered and

combined with the method proposed in this paper to realize the multiphysics simulation of
LW propagation under temperature and load conditions.

(2) Complex structures and composite structures are widely used in the aerospace
field. Therefore, it is very important to study the multiphysics simulation method of LW
propagation in these structures under time-varying conditions.
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Nomenclature

Symbol Implication

e Strain vector
d Piezoelectric coefficient matrix
E Electric field vector
s Elastic compliance matrix
σ Stress vector
D Electric displacement vector
ε Dielectric constant matrix
lact Diameter of PZT
tact Thickness of PZT
tbond Thickness of the adhesive layer
tplate Thickness of the structure
Gbond Shear strength of the adhesive layer
YE

act Young’s modulus of the PZT
Eplate Elastic modulus of the structure
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d31 Piezoelectric constant
Vin Excitation voltage
Γ Shear-lag coefficient
k Wavenumber
ω Angel frequency of the LW
cL Velocity of the longitudinal wave
cT Velocity of the transverse wave
ρplate Density of the structure
νplate Poisson’s ratio of the structure
e33 Dielectric constant of PZT
s13 Elastic coefficient of PZT
Vout Response voltage
C(Γ) Function of the Γ shear-lag parameter
I(ΓR) Bessel function
ΔT Relative to the reference temperature
ΔσT Thermal stress
Ex Excitation signal
A Amplitude of excitation signal
f Central frequency of excitation signal
t Wave propagating duration
N Number of cycles within the signal window
AmpTem Amplitude of LW signal at corresponding temperature
AmpT0 Amplitude of LW signal at −20 ◦C
cp Phase velocity of LW signal
lp Distance of LW propagation
Δt Time shit of the constant phase of LW signal
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Abstract: This review identifies current machine-learning algorithms implemented in building struc-
tural health monitoring systems and their success in determining the level of damage in a hierarchical
classification. The integration of physical models, feature extraction techniques, uncertainty manage-
ment, parameter estimation, and finite element model analysis are used to implement data-driven
model detection systems for SHM system design. A total of 68 articles using ANN, CNN and SVM,
in combination with preprocessing techniques, were analyzed corresponding to the period 2011–2022.
The application of these techniques in structural condition monitoring improves the reliability and
performance of these systems.

Keywords: structural health monitoring; machine learning; physics-based model; data-based model;
building structures

1. Introduction

Structural health monitoring (SHM) is a field of science that focuses its efforts on
evaluating and monitoring the integrity of a structure of interest [1]. Structural health
monitoring systems are based on the design of sensing systems and structural models to
evaluate machines and structures.

Although SHM systems are not a new field of research, computational advances in
sensing hardware and the computational power of embedded devices drive the genera-
tion of reliable data for developing models based on classification and prediction data,
including machine-learning algorithms in SHM systems. Moreover, sensors, such as ac-
celerometers, are inexpensive compared to other sensors and can be effectively deployed
in a sensing system to implement vibration-based SHM systems [2]. Accelerometers, or
when combining them with other sensors, are the dominant sensing approaches for these
SHM applications [3]. Because vibration-based systems date back to the late 1970s [4],
technological advances represent a field of opportunities to improve existing solutions in
the field of damage identification.

Previous studies have been conducted in the field of SHM using machine-learning (ML)
techniques. However, the importance of this study is to compare the application of artificial
neural networks (ANNs), convolutional neural networks (CNNs) and support vector
machine (SVM) techniques considering the input data, feature selection techniques, the
structure of interest, data size, the level of damage identification and the accuracy of the ML
model. In addition to the fact that each of the above ML techniques has been used for similar
tasks in structural damage and system identification, some of them perform better when the
data comes from data generated by multi-sensor data fusion or when the data are processed
with damage-sensitive feature extraction techniques, such as Hilbert–Huang transform
(HHT) or wavelet packet transform (WPT). In addition, this study could provide a starting
point for the selection of ML techniques and signal processing techniques for future SHM
ML-based solutions where structural configuration or data features have similarity with
previous studies that achieved good structural damag or system identification performance.

Appl. Sci. 2022, 12, 10754. https://doi.org/10.3390/app122110754 https://www.mdpi.com/journal/applsci
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This paper is structured as follows. First, a brief description of the concepts related to
SHM systems is presented in Section 2. In Section 3, the most common feature selection
algorithms are presented, and a review of related works is given. In Section 4, the two
main branches of SHM system models are presented, namely, the physics-related model
(Section 4.1) and the data-driven models (Section 4.2). In Section 4.2, three ML techniques
and their application in SHM systems are explored: ANN, CNN and SVM. At the end of
Section 4, a comparison between the two main model branches is established in Section 4.3.
Section 5 includes a brief review of the use of signal processing techniques to mitigate
uncertainties effects from the environment and noise. In Section 6, a summary of the most
important features of the application of damage identification techniques are presented in
a list. Finally, Section 7 contains conclusions and future work.

2. Damage Classification in SHM

SHM covers several application areas and the assets monitored range from small
components to huge civil structures and complex machines. Building SHM systems focus
on measuring changes in the physical parameters to assess the current state of the structure
and, in some cases, predict the building’s response to future seismic excitations. To make
these predictions, it is necessary to identify the natural frequencies of the buildings [5]. In
the case of buildings, the structure is subjected to the effects of static and dynamic loads,
so the complexity of the analysis presents a challenge in giving an accurate model that
includes all these known and unknown effects.

SHM systems are composed of several hardware and software elements. An overview
of the main components of SHM systems as defined by Farrar and Worden [6] are:

1. Operational assessment: The aspect related to damage conceptualization and opera-
tional conditions.

2. Data acquisition: The sensor system design and data preprocessing.
3. Feature extraction: The selection of sensitive damage features according to the damage

identification capabilities of the desired SHM system.
4. Statistical model development: The design and implementation of the physics-based

or data-based model.

Yuan et al. [1] explored the data acquisition aspect (1) of recent proposals for SHM
systems, showing several features of accelerometer sensing systems that are attractive for
the structural monitoring and evaluation of SHM systems. This study focuses on areas
three and four of SHM systems, analyzing proposals of the physics-based models and the
data-based models presented in the literature that belong to these areas. Figure 1 shows
these areas in SHM systems, and the methods, techniques and algorithms involved.

 

Figure 1. Diagram of structural health monitoring systems areas.
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The core of SHM systems is their ability to perform damage identification. Damage is
the change in the material’s physical properties due to progressive deterioration or as a
result of a single event on a structure. This change can detract from the behavior or integrity
of a structure. Damage characterization can be conceived in several ways depending on
the objectives of the SHM system, and damage states can be defined in terms of extent,
severity, remaining operational time, thresholds, and damage index standards. Rytter [7]
also presents a damage identification classification in SHM systems, as shown in Table 1.

Table 1. Damage characterization levels.

Damage Characterization Level Description

I: Detection The SHM system can decide if there is any damage
to the structure of interest.

II: Localization The SHM system can determine the existence and
location of damage in the structure of interest.

III: Assessment The SHM system can estimate the extent of damage
in the structure of interest.

IV: Prediction The SHM system can estimate the remaining lifetime
of the structure.

3. Feature Selection Algorithms

In the field of SHM, several signal processing techniques can be used to extract damage-
sensitive features and detect, locate and estimate structural damage in the machines and
structures of interest. Some of the techniques used in previous works in this field in-
clude ANFIS [8,9], wavelet-based techniques [10], frequency–response functions (FRF) [11],
Kalman filter-based techniques [12] and soft computing-based techniques [13].

The selection of damage-sensitive features by manual means represents a problem,
as it requires expertise to identify candidate damage-sensitive signals. Algorithms for
producing these features have been explored in the literature and two approaches to the
generation of these features are widely proposed. One common approach is to propose
novel features based on signal processing techniques. Another is to let a machine model the
task of automatically extracting some sensitive features from data hidden on the surface.
Composite damage indicators can also be constructed from the combination of damage-
sensitive features. For example, Lubrano Lobicanco et al. [14] used residual drift ratios and
lateral stiffness to define damage levels and quantify the amount of damage to structures
due to seismic events.

A comprehensive review of some damage-sensitive feature construction algorithms
can be found in the review of Civera and Surace [15]. Among the most recent techniques
applied to the problem of extracting useful information from data for structural dam-
age identification are principal component analysis (PCA), the wavelet transform (WT),
along with its variants, and the application of empirical modal decomposition (EMD) in
combination with the Hilbert–Huang transform (HHT).

3.1. Principal Component Analysis

Principal component analysis (PCA) is a statistical method mainly applied to reduce
data dimensionality, which keeps relevant information from the original data. PCA appli-
cation in ML models improve training time and model performance because redundant
information in training data is removed. Initial data are projected into new variables, named
principal components, with the most data variance. PCA use in SHM systems reduces
large sensor-gathered data processing times, thereby enhancing the system response for
structural changes or events resulting from structural damage.

Table 2 shows a compilation of recent works incorporating the PCA technique on the
data for subsequent use by a machine-learning model. As can be seen, PCA is a popular
technique in recent years due to the advantages that it offers. Although PCA is a powerful
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tool for ML applications, the PCA computation calculates the eigenvalues and eigenvectors
of the data covariance matrix, which is an expensive operation for large data dimensions.

3.2. Wavelet Transform

The wavelet transform (WT) decomposes a signal into a series expansion where
the number of wavelet functions is multiplied by a set of coefficients representing the
original signal. Similar to Fourier transform (FT), WT expresses a signal in more specific
located-in-time functions, but in the case of WT, the original signal can be non-periodic.
In particular, WT analysis of a signal can bring frequency information and its position in
time. Wavelet-based techniques include the discrete wavelet transform (DWT), the wavelet
packet transform (WPT), the continuous wavelet transform (CWT), and the stationary
wavelet transform (SWT). Table 3 shows the combination of WT-based techniques with ML
models for structural damage identification. In data-based models, WT techniques serve as
dimensionality reduction techniques, noise removal filters, and damage-sensitive feature
generators, thereby improving SHM systems’ accuracy and robustness.

3.3. Empirical Mode Decomposition

Empirical mode decomposition (EMD) is one of the most used signal decomposition
techniques in SHM. Several proposals exist in structural damage identification, modal
parameters identification and structural prognosis. The advantages of using EMD over
nonlinear and non-stationary signals, such as structural responses due to mechanical
excitation, are the time–frequency information of the analyzed signal in all the signal
lengths. Another advantage of the application of EMD in comparison to other signal
decomposition techniques is that EMD is signal-adaptative.

Over time, variations have been proposed to tackle the limitations and issues of EMD
applications, such as noise and the well-known mode-mixing problem. Ensemble EMD
(EEMD), multivariate EMD (MEMD) and time-varying filter-based EMD (TVF-EMD) are
used in combination with ML models to achieve better accuracy in structural damage and
system identification, as can be seen in Table 4.

A systematic comparative study between the above-mentioned EMD variants can be
found in [16], proving EMD to be a robust signal processing technique in structural damage
identification, system identification and anomaly detection. Regardless of the benefits of
using EMD variations, including mode-mixing minimization and noise removal, the com-
putation of these algorithms can be prohibitively expensive in SHM real-time applications.

Table 2. PCA review.

Publication Structure Excitation Source

Signal
Processing

and/or Feature
Extraction
Technique

Dataset Size Purpose Year

[17] Instrumented bridge Operational
conditions FFT 43,200,000 data

points

Improve anomaly
detection accuracy and
reduce the size of SHM

transmitted data

2021

[18]
Steel-supported

experimental beam
model

Impact hammer FRF 16,384 data points

Study the relation
between PCA-generated
data to modal analysis

and frequencies to
establish a physical

interpretation of
PCA-compressed data

2020

[19]

The Phase II
IASC-ASCE SHM

benchmark structure
FE model

Simulation MSD 480,000 data
points

Propose a new method to
extract damage-sensitive
features that are invariant
to environmental effects.

2020
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Table 2. Cont.

Publication Structure Excitation Source

Signal
Processing

and/or Feature
Extraction
Technique

Dataset Size Purpose Year

[20]
Simply supported
steel truss bridge

experimental model
Impact hammer FRF, PCA 1200 samples of

512 data points

Propose a combination of
PCA and FRF to obtain a

new damage index
for structural

damage classification

2020

[21]
Benchmark concrete

beam numerical
model

Simulation ARM, LDA, QDA,
NB, DT 8002 data points

Present a comparative
study between PCA and

AR models to extract
damage-sensitive features

and several
classification methods

2019

[22]
Truss bridge FE

model and two-story
frame FE models

Simulation FRF, LUT Not specified

Propose a combination of
PCA and LUT to train an
ML model for structural
damage detection and

localization

2017

[23]
Truss bridge and
two-story frame

FE models
Simulation FRF, 2D-PCA,

ICA

49 samples
(bridge) and
75 samples

(two-story frame)

Propose a structural
damage detection,

localization and severity
estimation using a

PCA-extracted damage
index and an ANN

2017

[24]
Twin-tower

steel structure
experimental model

Shaking table FRF Not specified

Propose a
scalogram-based damage
detection and localization

system using PCA
and FRF

2017

[25] Steel plate
experimental model PZT burst signal Golay filter

algorithm
8 samples of

10,000 data points

Study the noise filtering
capabilities of PCA and

Golay algorithms to train
an ML model for

structural damage
identification

2016

[26] Thin aluminum plate
experimental model PZT burst signal ARM 1000 samples

Propose methodology to
detect structural changes

based on statistical
inference

2016

[27]
Three-story frame

aluminum structure
experimental model

Bumper
AANN, FA, MSD,

SVD, SVDD,
KPCA

17 samples of
4096 data points

Propose a comparative
study between kernel

algorithms for structural
damage detection

purposes

2016

[28]
Three-story frame

aluminum structure
experimental model

Shaking table ARM 1700 samples

Compare the performance
of four PCA-based

algorithms for structural
damage detection under

environmental conditions

2015

[29]
Grid FE model and
steel grid structure

experimental model
Simulation PCA, WGN 4000 samples

Propose an ANN SHM
system for damage

detection due to
temperature changes and

noise perturbations

2015

[30] Small aluminum plate
experimental model PZT burst signal

Chi-square
goodness-of-fit

test
600 samples

Propose a statistical
analysis for structural

damage detection using
PCA-compressed data

2014
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Table 2. Cont.

Publication Structure Excitation Source

Signal
Processing

and/or Feature
Extraction
Technique

Dataset Size Purpose Year

[31]
12-DOF

mass–spring-damped
experimental model

Impact hammer PCP 20,000 samples
Propose a denoising

method using PCP for
SHM systems

2014

[32]

Building structure
experimental model

and Sydney Harbour-
instrumented bridge

Electrodynamic
shaker and
operational
conditions

RP, FT, SVM, PAA

3240 samples of
8192 data points

(building),
6370 samples of

3600 data
points (bridge)

Propose a comparative
study between kernel

algorithms for structural
damage detection

purposes

2014

[33] Aluminum plate
experimental model

Piezoelectric
transducers
attached to

the plate

SOM 750 samples

Propose an SHM model
for structural damage

detection and
classification

2013

[34] Instrumented bridge Numerical
simulation HHT, EMD 500 samples

Propose an environmental
noise removal method to

improve ML model
damage detection

capabilities

2013

[35] 10-story low-rise
building FE model Simulation FRF, PCA 240 samples

Propose a structural
damage detection method

using PCA for data
dimensionality reduction

and noise removal

2013

[36] Aluminum plate
experimental model PZT burst signal CDLM 300 samples

Present a comparative
study between five

different methods for
structural damage

detection and localization

2011

[37] Aluminum plate
experimental model PZT burst signal Chi-square

distribution 100 samples

Propose a new structural
damage detection

methodology based on the
probability distribution of

PCA projections

2011

[38] Supported steel beam
experimental models Impact hammer FRF 8192 data points

Propose a structural
damage identification
method using residual

FRF data in combination
with ANN

2011

Table 3. WT review.

Publication Structure
Machine-Learning

Algorithm
Dataset Size Accuracy Purpose Year

[39]

Three-story
building structure

experimental model
and steel frame

experimental model

DCNN

2280 samples
(building) and
2000 samples
(steel frame)

ACC = 99%
(building),

ACC = 99.610%
(steel frame)

Generate 2D training
samples using CWT from
accelerations scalograms

2021

[40]

Aluminum plate FE
model and aluminum

plate experimental
model

CNN 300,000 data
points ACC = 99.9%

Wavelet transform was
applied to acceleration

signals to obtain wavelet
coefficient matrix (WCM)
in order to train a CNN

2019
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Table 3. Cont.

Publication Structure
Machine-Learning

Algorithm
Dataset Size Accuracy Purpose Year

[41]
Offshore platform FE

model and scaled
experimental model

TF, WPD, PCA

120 samples of
10,000 data points

(FE model),
48 samples of

17,500 data points
(scaled model)

ACC = 78.125%
(FE model),

ACC = 84.375%
(instrumented

model)

WPE and low-order
principal components

were applied to structural
response for SVM

model training

2018

[42]

IASC–ASCE SHM
benchmark four-story

steel structure
FE model

WPD 99 samples ACC = 91.75%

WPE was used to extract
damage-sensitive features
from accelerations signal

to train a damage
detection SVM model

2015

[43]

IASC–ASCE SHM
benchmark four-story

steel structure
FE model

LS-SVM, PSO, HSA,
SF, WPT

16 samples of
40,000 data points

ACC = 100%
(PSHS),

ACC = 98.2%
(Harmony),

ACC = 98.68%
(PSO)

Damage features were
extracted using WPE in
order to train an ANN
and an LS-SVM model

2014

[44]

IASC–ASCE SHM
benchmark four-story

steel structure FE
model

ANN 621 samples

ACC = 95.49%
(damage case 1),
ACC = 96.78%

(Damage case 2)

WPT was used to remove
noise and interferences

from structural responses
signal to build a training

dataset for an ANN
damage detection model

2012

[45] Four-story building
FE model

BP-NN, WPT,
Battle–Lemarie
decomposition,

WGN

183 samples

ACC = 90%
(single sensor),
ACC = 100%

(multiple sensor)

WPRE was used to extract
damage-sensitive features
from acceleration data in

order to train an ANN
damage detection model

2011

Table 4. EMD review.

Publication Structure
Machine-Learning

Algorithm
Accuracy Purpose Year

[46]
Mass–spring system
numerical model and
instrumented bridge

MSD, RARMX Error graph
EMD method and IMF were

used to build damage
feature vectors

2020

[47] Fourteen-bay steel truss
bridge experimental model

ANN, CEEMD,
HHT, GWN RMSE = 5.156 × 10−4

A combination of CEEMDAN
and HHT was proposed to

extract four key
damage-sensitive features to

train an ANN model for
damage detection, localization

and severity estimation

2020

[48]
Simply supported steel

Warren truss
instrumented bridge

Neuro-fuzzy ANN ACC = 80%

EMD method was used to
reduce data dimensionality of

SHM system for structural
damage assessment

2020

[48] Hanxi bridge FE model FastICA Correlation = 0.84

EEMD and PCA were used to
extract independent deflection

components from structural
responses and determine the

presence of damage

2018

[49] Manavgat cable-stayed
bridge FE model SVM, THT ACC = 95.43%

HHT and THT were used to
extract damage-sensitive
features to train an SVM
damage detection model

2018
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3.4. Hilbert–Huang Transform

Hilbert–Huang transform (HHT) was designed to represent a non-stationary signal
in time and frequency. Intrinsic mode function (IMF) is used in combination with the
Hilbert algorithm to locate signal frequency information over a specific time of a given
signal. Like EMD, HHT is adaptive for a given signal, and it does not require a prior
selection of a function or parameter to compute it. The amplitude and instantaneous phase
of a signal at a specific time can be obtained by applying HHT for system identification
(e.g., estimating natural frequencies and damping) and damage identification purposes by
detecting structural response changes.

Several applications of HHT in damage identification, anomaly detection and system
identification in different structures can be found in [50]. Despite the effectivity shown
in HHT-proposed SHM systems, better performance can be achieved when HHT is com-
bined with ML algorithms and data fusion techniques. Moreover, some drawbacks of
applying HHT in SHM systems can be mitigated by combining other signal decomposition
techniques and data-based models, such as ML models. Table 5 shows some proposals
found in the literature that combine HHT and ML algorithms in the damage identification
applications of structures.

Table 5. HHT review.

Publication Structure
Machine-Learning

Algorithm
Accuracy Purpose Year

[51]

IASC–ASCE SHM
benchmark four-story

steel structure
FE model

CNN ACC = 92.36% (25 db
SNR)

HHT was applied to structural
response data to obtain

time–frequency graphs and the
marginal spectrums for CNN

model training

2021

[52]
Five-story

offshore platform
experimental model

HHT, MEEMD, SVM ACC = 62.5%,
MSE = 0.90

HHT and EMD were applied to
obtain damage-sensitive features
from vibration signals and then
used to train an SVM damage

detection model

2021

[47]
Fourteen-bay steel

truss bridge
experimental model

CEEMD, HHT,
WGN, FFMLP MSE = 2.65 × 10−7

A combination of CEEMDAN and
HHT was proposed to extract four
key damage-sensitive features to
train an ANN model for damage

detection, localization and
severity estimation

2020

[53]
Three-story steel
moment-resisting
frame FE model

EMD, ANN ACC = 98.8%

A combination of CEEMDAN and
HHT was proposed to estimate first
mode shapes and structural natural

frequencies and compare them
against reference values to

determine the presence of damage

2019

[54]
12-story-reinforced

concrete frame
experimental model

RBFNN ACC = 100%
HHT was studied for structural

modal parameter identification and
damage diagnosis

2014

4. SHM System Models

4.1. Physics-Based SHM Systems

In the case of physical asset monitoring, there are two main branches of modeling:
physics-based modeling, also known as physical-law modeling, and data-driven modeling.
Physics-based modeling aims to describe phenomena by formulating mathematical models
that integrate interdisciplinary knowledge to generate models that replicate observed
behavior. Models are commonly presented in differential equations whose complexity
increases as more factors become involved. Several terms and parameters must be defined
to fully describe the system phenomena. Initial and boundary conditions must be identified

210



Appl. Sci. 2022, 12, 10754

to obtain physics equation solutions, and the computational cost associated with this
operation can be very time-consuming for complex phenomena.

In SHM systems, these models are implemented to assess the condition of an asset
under operating conditions to monitor changes that may indicate the presence of damage
and shorten the remaining useful life of the asset. Finite element modeling (FEM) software
implements well-known analyses, such as modal analysis, and allows the simulation of
different structures and initial and boundary conditions straightforwardly. FEM software
includes physical law models integrated into software libraries to perform damage analysis
on a virtualized model of structures efficiently.

The complexity of modeling building structures under seismic excitation is caused by
the intervening factors that can modify the behavior of these structures and by the difficulty
of correctly defining their physical properties. Several works focus on estimating model
parameters and uncertainties to improve the model of the structure. For example, Xu
et al. [55] estimated the parameters of the structures based on linear and nonlinear regres-
sion analyses. These structures’ linear and nonlinear parameters, such as elastic stiffness
and yield displacement, are obtained for a three-story structure. Gomes et al. [56] addressed
an inverse identification problem using numerical models and a genetic algorithm.

Model parameters obtained from experimental and recorded data can increase the
model’s accuracy compared to the actual measured results. However, environmental
and operating conditions do not remain constant throughout the life of the structure. In
addition, physical law models have drawbacks that limit their applications in some SHM
systems. The time to solve the equations in a real-time SHM system impacts the response
time to ensure safety and the reduction of economic losses in response systems for seismic
protocols and evacuation procedures. In order to reduce the time costs of performing
calculations, optimization algorithms applied to the problem of SHM are encouraged and
proposed in the literature [57].

Table 6 lists physics-based proposals for SHM systems in buildings under vibration
excitation for multi-story structures. In this table, two types of proposal contributions
are shown: the identification of system parameters and damage. According to Farrar’s
classification, the level of damage identification for the practical proposals is also presented.

Table 6. N-story building structure health monitoring systems based on physical model techniques.

Publication Structure Damage Indicator
Algorithm or

Analysis Method
Damage Identification and Level Year

[58]
An eight-story physical

building model in
FEM software

Stiffness
reduction

Vibration-based
damage methods

Damage detection
and localization II 2018

[59]
A 14-story physical building

prototype under
vibration table

Modal
frequencies

Operational modal
analysis Modal identification N/A 2017

[60]
A five-story physical building

prototype under vibration
table

Stiffness
reduction

Novel damage
localization algorithm based

on wave
propagation

Damage detection and
localization II 2020

[61]
A 51-story building with

accelerometers and
tilt sensors

Modal
frequencies

Modal parameters
estimation through Bayesian
algorithm combined with FFT

Modal identification N/A 2019

[62] A 12-story frame
structure

Stiffness
reduction

Hysteresis loop
analysis method Damage detection I 2017

[63] An 86-story physical building
in FEM software

Modal
frequencies

Wave-based damage
detection based on

propagation analysis
Modal identification N/A 2018

[64] A three-story frame structure Inter-story displacement
Two novel damage indices

based on the
displacement of the structure

Damage detection
and localization II 2015

4.2. Data-Based SHM Systems

Machine-learning techniques are a subset of the field of artificial intelligence. Due to
their statistical nature, their vision is to address problems of interest in pattern recognition
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identification and classification tasks. SHM from the ML point of view is a classifica-
tion problem in which at least two states are compared in SHM systems employing ML
techniques: damaged and undamaged states.

A machine-learning model extracts information in the form of features from a given
data set and classifies those data features. These data-driven models require large amounts
of information to train the model and avoid the overfitting problem. The generalization
problem depends on the amount of available data and significant diversity of this training
data to avoid overfitting and ensure a reasonable level of generalization. In an idealized
situation, the data set should include the samples of the possible range of excitation that can
be applied to the structure. In addition, data quality improvement using signal processing
techniques, such as normalization and noise filtering, is desirable for the generation of the
data set. ML algorithms are applied in the damage identification process and in analyzing
the anomalous data obtained from the sensors [8,65], thereby improving data quality. In
addition, signal processing techniques, such as WT and HHT also improve data quality
and are applied in SHM systems [9,66].

ML techniques can be divided into supervised learning (for regression and classi-
fication tasks), unsupervised learning (anomaly detection and clustering) and reinforce-
ment learning. The most popular ML techniques implemented in the construction of
SHM solutions are support vector machines (SVMs) and convolutional neural networks
(CNNs) [10,67]. In the case of neural network techniques, damage-sensitive feature selec-
tion plays a crucial role in the performance of the SHM system. SVM optimally classifies
features in linear and nonlinear problems. CNN, a subset of neural network (NN) methods,
include convolution operations in the hidden layer of neural networks to classify data,
usually in image format. Other techniques, such as PCA, improve the features of the
training data set by making them uncorrelated.

The selection of a ML technique is guided by the limitations of each technique and
the requirements of SHM in terms of damage identification level and operating conditions.
Identifying the modal systems of building structures can also be performed using deep
neuronal networks (DNNs) [11,68]. Table 7 summarizes the ML-based proposals for SHM
systems in buildings under vibration excitation for multi-story structures.

Table 7. N-story building structure health monitoring systems based on machine-learning techniques.

Publication Structure
Data

Type Used for Training
Machine-Learning

Technique
Damage Identification and Level Year

[69] A four-story physical building
prototype under vibration table

Acceleration response data from a
physical prototype ANN Damage existence

and localization II 2016

[70] An eight-story physical building
mathematical model

Artificially generated dataset from an
algorithm FCN Damage existence

and localization II 2020

[71] A three-story physical building
simulated model

Simulation-generated dataset from
OpenSeesMD software ANN Damage detection

and localization II 2017

[72]
30 buildings including 3, 5 and

7 stories with different
structural parameters

Simulation-generated dataset from
Raumoko3D software ANN Damage detection

and localization II 2017

[73] An instrumented main steel frame
Experimental simulation from a
physical prototype with modal

shaker excitation
CNN Damage detection

and localization II 2016

[74] A three-story physical
building-simulated model

Simulation-generated dataset from
OpenSeesMD software SVM Damage existence,

localization and severity III 2019

[75] A three-story steel frame structure Intensity-based features SVM Damage detection I 2019

[76] A seven-story steel structure Simulation-generated dataset ANN Damage existence,
localization and severity III 2018

[77] A five-story steel structure Simulation-generated dataset ANN Damage detection
and localization II 2008

4.2.1. Artificial Neural Networks (ANNs)

Inspired by the working of brain neurons, artificial neural networks are the most well-
known ML algorithm applied for classification and regression problems. ANN architectures
consist of an input layer, several hidden layers and an output layer. Several hidden layers
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can be stacked between the input and output layer according to the complexity of the
ANN. Figure 2 shows a typical architecture of a forward neural network, showing input
neurons, successive hidden layers and output neurons. In general, ANN power resides in
the interconnection of its neurons and a set of weights associated with each interconnection.
ANN learning algorithms update network weights to minimize an error function. BP-
ANN is a widely used ANN where the backpropagation algorithm (BP) performs the
network’s training.

Figure 2. Multi-layer hidden layer feedforward ANN [78].

In many SHM systems, FE structural models generate training datasets for ANN
weight calculation. In these datasets, damaged and undamaged training examples are
provided. Natural frequencies and changes in the structural properties are associated
with structural damage. Table 8 groups several SHM proposed systems using ANN and
signal processing techniques and modal analysis for damage detection, localization and
severity estimation.

Tan et al. [79] proposed a method in which the modal strain energy was used as a
damage-sensitive feature and an ANN to locate and quantify structural damage in a series
of damaged scenarios. A structural damage identification method using RFR functions
in combination with PCA was described by Padil et al. [20] to reduce the input data size
and minimize the effects of measurement uncertainties and interferences to reduce the
model error. Mousavi et al. [47] proposed a damage identification methodology using
the CEEDAM technique to extract damage-sensitive features from the measured data
and employing an ANN to perform the classification task in various damage scenarios.
The bridge damage presence, severity and location were obtained using the methodology
mentioned above.

In [80], Finotti et al. presented a comparison between ANN and SVM techniques in
damage identification capability using data from ten statistical indicators from acceleration
measurements. These indicators were proposed to avoid manual selection and calculation
of modal structural parameters that may introduce undesirable inaccuracies or errors in
damage identification performance. Chang et al. [76] proposed a post-seismic evaluation
method based on an ANN. This ANN was trained with simulation-generated data from a
previously constructed FE model with structural parameters identified by the stochastic
identification of the system subspace. Although the accuracy of damage identification
was based on the identification of system parameters, it was possible to efficiently locate
damage scenarios in one or several elements of the structure.

In the study conducted by Morfidis and Kostinakis [72], combinations of 14 seismic
parameters together with an MLP were explored for structural damage prediction. Their
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analysis observed that with at least five seismic parameters combined with an MLP network,
the seismic damage state for an R/C building can be accurately predicted. Correlations
between seismic parameters and MLP network training algorithms were also observed
and analyzed. Using natural frequencies and modal shapes as input to the network,
Padil et al. [81] defined a damage identification system using an ANN. A relationship
between input and output parameters was established by defining a probability of damage
existence to classify damage states. Numerical and experimental samples were used to
validate the proposed method regarding modeling errors and noise interference.

Jin et al. [82] proposed an artificial neural network with an extended Kalman filter to
remove temperature effects in SHM systems. This EKF was also used to establish confidence
variation intervals and thresholds for structural changes that were suggestive of damage.
It was shown that temperature changes induced changes in natural frequencies that can
lead to incorrect damage identification if these temperature effects are not considered in
the training samples. Smarsly et al. [69] provided a decentralized sensor fault detection
system consisting of a set of ANNs that perform anomaly detection in an SHM wireless
sensor network. An anomaly detection ANN was incorporated at each sensor node to
perform local anomaly detection. Each ANN utilized sensor data redundancy throughout
the sensor network using the correlation of sensor measurements in structural response.

Kourehli [83] designed an ANN-based SHM system using incomplete FEM modal
data and natural frequencies for damage location and damage severity estimation using
only the first two natural frequencies. Using stiffness reduction as a damage indicator,
damage identification was successfully achieved in an 8-DOF spring–mass system, a
supported beam, and a three-story flat frame. Natural frequencies are commonly used as
damage-sensitive features in SHM systems, and the importance of eliminating or reducing
interference from temperature changes was noted by Gu et al. [29]. Using a multilayer
ANN, they discriminated between changes in natural frequencies due to structural damage
and changes in these natural frequencies due to temperature effects. A damage index based
on Euclidean distance was employed to quantify the difference between an undamaged
structural state under temperature variations and a possible structurally damaged state.

Ng [78] proposed an ANN for structural damage localization and severity estima-
tion using a Bayesian class selection method, improving the selection of optimal ANN
hyperparameters (optimal transfer function and the number of neurons). Validation tests
were performed using the Phase II IASC-ASCE SHM reference structure data, where ANN
estimates stiffness reduction values as an indicator of damage location and severity for
six damage cases. Xie et al. [84] presented a bridge damage management system using
a BP-ANN algorithm that utilizes four hundred sensors randomly distributed over the
bridge. A comparative study was performed employing the proposed BP-ANN algorithm,
an SVM, a decision tree (DT) and a logistic regression model, showing that ANN achieves
the highest accuracy in damage identification for the proposed SHM system, even under
noisy operating conditions. Goh et al. [85] designed a two-step damage identification
method. In the first step, a prediction of the modal shape of the unmeasured structure
was performed using an ANN. The predicted modal shape was compared with a cubic
spline interpolation prediction method to verify the prediction accuracy. Next, a second
ANN trained with limited structural response measurement points was used to perform
structural damage localization and damage severity. Shu et al. [86] proposed another
ANN-BP for bridge damage identification using the statistical parameters of displacement
and acceleration measurements as training input for ANN. This proposal showed that
measurement noise negatively impacts damage identification performance and should be
eliminated or minimized. For this approach, single and multiple damage cases were used
for validation testing.
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Using a combination of PCA and FRF frequency–response functions, Bandara et al. [35]
extracted damage-sensitive features from the structural response data to train an ANN-
based damage identification system. The damage location and severity of the structure were
represented by damage index classes in the output of the proposed ANN. Several noise levels
were added to the acceleration measurements to show the denoising capabilities of PCA on the
ANN training data and the reduction of data size to improve training time and computational
cost. Mardiyono et al. [90] presented a BP-ANN architecture as part of a post-earthquake
SHM response system using the FEMA damage index framework to classify the structural
condition of buildings. A complete building SHM framework was developed, including a
warning system module, an intelligent module, a monitoring module, and a data acquisition
module. The complete function of the framework included accelerometer data collection, data
processing and feeding to ANN, damage index prediction and alert notification in case of
structural compromise. Wang et al. [91] presented a building damage identification method
using a BP-ANN and a probabilistic neural network (PNN). In this method, the damage
location process consists of three stages in which the damage location is refined at each stage.
In the three stages, the damage was detected in each history, the extent of damage in the
history was predicted and the compromised structural members were identified, respectively.
Accuracy results indicated that the BP-ANN performed better in estimating the severity of
structural damage, and the PNN suggested the damage location more accurately. Liu et al. [45]
proposed structural damage identification where energy components were extracted from
acceleration measurements and fused with data fusion techniques. An ANN classifier was
used to identify, locate and estimate structural damage. The combination of WTERP and data
fusion techniques improved the accuracy of ANN damage identification, and WPT-based
component energies were shown to be an effective damage-sensitive feature.

4.2.2. Convolutional Neural Networks (CNNs)

Convolutional neural networks (CNNs) are maybe the most representative deep algo-
rithm and have been adopted in several application fields of data-based classification and
regression problems. A CNN is composed, essentially, of three types of layers according to
its function: convolutional layers, pooling layers and fully connected layers. Convolutional
layers automatically extract features from the input data through a convolution between
input data and a user-defined matrix named filter. Pooling layers reduce the data size,
and fully connected layers perform data classification tasks. Several layers can be stacked
in the network design architecture, thereby increasing network complexity at the cost of
incrementing computation training time and the amount of resources used.

CNN networks’ inputs consist of n-dimensional training samples, where n can be
from 1 to N. Figure 3 shows a convolutional network with an input vector of dimension
1D (128 × 1) for a multiclass classification task. These inputs are, in most cases, images
according to the classification or regression problem. In structural damage identification,
proposals using CNN architectures use 1D acceleration records or 2D data that consist of
images or matrices using reshaping methods, signal processing techniques or feature extrac-
tion methods. One advantage of using CNN models in SHM systems is that convolutional
layers perform the selection of damage-sensitive features automatically.

Figure 3. A CNN network example using raw acceleration input data [92]. Input data can be reshaped
in 1D or higher dimension vector fashion.
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Table 9 lists several proposals for SHM applications that employ CNNs. In these
proposals, structural responses are captured as acceleration measurements are used. A
complete and exhaustive review of SHM systems using CNN and mainly image data can
be consulted in [93].

Some relevant limitations of the applications of CNN arise in SHM systems for struc-
tural assessment. A large amount of training data are usually required in CNN training
to achieve the generalization property of the model, and the structural data of damage
states are unavailable in most cases. Moreover, the structural data of damage states in large
civil structures are uncommon. A possible solution is to generate damage structural state
data from FE models, which is the usual approach in several SHM proposals, as shown in
Table 6 However, FE-generated data rely on the accuracy of the FE models, and this also
depends on the correct value of the structural parameters that are used for the model. Some
of these parameter values are unknown or change over time, so they should be estimated
or calculated from experimental data.

Wang et al. [51] proposed a structural damage identification method using a
time–frequency plot of the acceleration signal. The marginal spectrum was used as the
input to a CNN, and the hyperparameters of this network were optimized using PSO,
thereby achieving 10% better accuracy than a CNN without PSO. Oh and Kim [94] ex-
plored the application of two objective function techniques for the optimal hyperparameter
selection of a structural damage identification system using CNN. Their results showed
a computational cost reduction of 40%. Sony et al. [95] designed a 1D-CNN to perform
multiclass damage identification using bridge vibration data. The random search technique
performed hyperparameter tuning to obtain the optimal network architecture. Oh and
Kim [96] also proposed a hyperparameter search technique in CNN. These hyperparam-
eters included the subsampling size and the number and size of kernels using a genetic
algorithm and a multi-objective optimization technique.

Damage-sensitive features were extracted from the automatic signal using a CNN
architecture in the damage identification strategy presented by Rosafalco et al. [70], which
obtained good performance in damage identification and localization. In [97] Zhang et al.
proposed a physics-guided CNN architecture for structural response modeling. Structural
physics provide a set of constraints for CNN training, which avoid overfitting problems
and reduce the size of the training dataset. de Rezende et al. [98] presented a 1D-CNN
network with an electromechanical impedance-based methodology to achieve damage
identification under various environmental temperature conditions, proposing a robust
structural damage identification scheme against temperature effects. Sarawgi et al. [99]
designed a distributed SHM damage identification system using 1D-CNN and a four-step
methodology. In the first step, a multiclass classification of the vibration data is performed,
and the second step consists of training the CNN with patterns of damaged and undamaged
data. The damage location is identified in the third step. The first three steps are performed
on each node, and in the final step, a combined data set from all nodes are used to train a
global damage identification model.

Focusing on joint damage identification, Sharma and Sen [100] proposed a joint
damage identification method based on using a 1D-CNN with robustness to signal noise.
Single and multiple damage cases were successfully classified. Using the modal shapes
and curvature differences as input to the CNN, Zhong et al. [101] proposed a damage
identification system based on CNN, detecting that the modal shapes contain damage-
sensitive features, which are sensitive to all degrees of damage, thereby allowing high
detection accuracy. Additionally, it was shown that the parameters of the first-order modal
signal have helpful information for the localization of structural damage. Seventekidis
et al. [102] presented the idea of building an optimal FE model to generate training data
for a CNN. A comparative case was analyzed comparing this generated optimal data set
against a FE data set, showing that the latter is unreliable for CNN training given model
uncertainties. This optimal FE model was obtained by initial structure measurements and,
subsequently, the use of the covariance matrix adaptation evolution strategy.
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Ibrahim et al. [2] evaluated several machine-learning approaches using low-cost
accelerometers and noise filtering techniques for structural evaluation after excitation
events, including SVM, k-nearest neighbors and CNN. This work demonstrated that the
CNN-based detection method in this structure outperformed both SVM and the k-nearest
neighbors’ method using noise-contaminated raw measurements.

In a study by Duan and Zhu [103], the Fourier amplitude spectrum was used with
a CNN to perform damage state structure identification. This work showed that the
use of FAS outperforms traditional CNN proposals using time–history acceleration re-
sponses and that the proposed FAS-CNN SHM system was robust against noise effects.
Gulgec et al. [104] proposed a damage identification and location method that used a CNN
architecture and was trained by analytical simulations. The presented method consisted of
two steps for damage identification: the first to detect the presence of damage as a binary
classification problem and the second as a regression problem to estimate the damage loca-
tion by predicting the damage boundaries in the structure. Using the stiffness histogram
of the measured structural response and stiffness degradation as an indicator of damage,
Zhou et al. [105] proposed a deep learning network to provide a real-time alarm in case
of structure compromise. Zhang and Wang [106] proposed a 1D-CNN for structural state
identification using raw time-domain data. GANs were used to generate training data and
improve the robustness and effectiveness of structural damage identification.

To avoid the manual selection and elaboration of damage-sensitive features from the
raw measurements, Yu et al. [107] proposed a CNN architecture to identify and localize
structural damage. The input to the proposed network consisted of frequency-domain
features obtained by FFT on the raw measurement signals. Compared with other ML
techniques, including general regression neural network (GRNN) and ANFIS, the proposed
network outperformed these in error classification. Tang et al. [108] proposed a structural
damage identification system where real-world anomaly detection acceleration data are
transformed into dual-channel time–frequency images. The anomaly detection patterns
were correctly identified with an overall average accuracy of 93.5%. They highlight the im-
portance and effect of balancing on the training dataset. Wu and Jahanshahi [109] presented
a structural response prediction method using a DCNN in three structures: a linear SDOF,
a nonlinear SDOF, and a three-story MDOF steel frame. This approach was compared with
an MLP network regarding noise signal robustness, and the convolutional kernel analysis
showed a frequency signature feature extraction conducted by the convolutional layers.

Khodabandehlou et al. [110] presented a novel approach using 2D convolutional
networks from the raw measurements of a scaled bridge model. This network was able
to classify the bridge’s structural condition into four severe damage states, achieving
100% accuracy for the validation test. Avci et al. [111] presented a decentralized 1D-
CNN architecture for structural damage identification. In this SHM system, each sensor
performs damage identification locally using a 1D-CNN per sensor. Damage identification
and localization were achieved through the classification network of each sensor, and
the need for data transmission and aggregation is reduced because each sensor analyzes
its local measurement data. Azimi and Pekcan [112] designed a CNN SHM system for
damage identification and localization using compressed acceleration response histograms
as network input. Deep transfer learning techniques were applied to this structural damage
classification problem and proved feasible for damage identification in similar structures
using discrete acceleration histograms.
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4.2.3. Support Vector Machines (SVMs)

A support vector machine (SVM) is a popular machine-learning algorithm used for
classification and regression problems. Its working principle is essential to maximize the
distance value between a set of vectors, named support vectors, and a defined hyper-
plane. The maximizing goal in SVM can be seen as an optimization problem, and several
approaches can be used to solve this problem. An exciting feature of the SVM decision
boundary is that this boundary is the best possible boundary between a set of data classes
for a given set of data and an SVM formulation. Table 10 shows that several SVM structural
approaches for damage identification have high accuracy. However, SVM models’ training
stage is usually computationally expensive and unsuitable for real-time SHM systems that
rely on post-training updates and ML model improvement. A common practice to reduce
this computational cost is to combine SVM models with signal processing techniques
such as PCA, WT and HHT, or damage-sensitive feature extraction methods such as RFR.
Figure 4 shows an example of an SVM-based structural damage identification system.

Figure 4. An example of an SVM-based structural damage identification system [114].

Cuong-Le et al. [115] proposed a combination of PSO and SVM for structural damage
identification, location and severity. Four ML algorithms, including ANN, DNN, ANFIS
and SVM, were trained and compared to predict damaged elements and damage severity.
The proposed PSO-SVM combination achieved the highest accuracy among the compared
techniques and correctly predicted all damage locations in the validation test. In a proposal
by Agrawal and Chakraborty [116], Bayesian optimization (BO) was used in the hyperpa-
rameter search of an SVM, in which the SVM was used to perform damage identification.
A comparison between BO and PSO in hyperparameter optimization search showed that
BO was an efficient method that accelerated the optimization problem. Diao et al. [52]
designed an SHM damage identification system, in which MEEMD and HHT were applied
to acceleration measurements to extract damage characteristics through Hilbert spectrum
energy. The SVM trained with Hilbert energy identified, located and estimated the severity
of the damage in the structure, and the theoretical and experimental validation of the
proposed method was provided.
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Seyedpoor and Nopour [117] proposed a two-step method using a differential evolu-
tion algorithm (DEA) and an SVM for damage identification in a steel structure. In the first
step, the location of the potential damage is determined using an SVM, and in the second
step, the severity of the damage and a more accurate location is obtained using the DEA.
The results obtained showed high accuracy in the capabilities of the damage identification
system. Kohiyama et al. [118] proposed the integration of a DNN and SVMs for the SHM
damage identification framework. SVMs were used in the output layer of the DNN to
detect data associated with an unlearned structural damage pattern. The added value of
the proposed framework is the correct classification of unlearned damage patterns that may
lead to misclassification, thereby improving the generalization feature of the classification
model for damage identification.

Sajedi and Liang [75] proposed a damage identification SVM system to determine
the presence and location of damage using intensity-based features as damage-sensitive
features. This SHM system achieved over 83% accuracy in damage classification.

Intensity-based damage features were also used in a system proposed by Sajedi and
Liang [74], in which an SVM classifier performed the classification task. The optimal
damage-sensitive features and hyperparameters of the SVM were obtained using Bayesian
optimization techniques. The proposed system showed robustness against signal distortion
and reliability in detecting damage to building structures.

Ghiasi et al. [119] presented a comprehensive comparative study among several ML
algorithms, including BP-NN, LS-SVMs, ANFIS, RBFN, LMNN, ELM, GP, multivariate
adaptive regression spline (MARS), random forests and Kriging, for damage identification
classification, location and severity estimation tasks. The results obtained indicate that the
Kriging and LS-SVM models better predict damage location and severity than the other
ML models.

Kourehli [120] presented a two-step unmeasured mode prediction method using two
LS-SVMs and limited sensor measurements. The first step estimates missing modal shapes
through an LS-SVM. In the second step, when complete modal system information is
available, a second LS-SVM performs structural damage identification. The effects of noise
and modeling error interference were analyzed, showing that the proposed system is robust
against these effects. In the damage identification proposal presented by Diao et al. [41],
transmissibility functions, WPEV and PCA were calculated on the acceleration response
data and fed into an SVM damage classification model. WPEV and PCA were used as
damage-sensitive feature extractors to construct the training samples of the ML model.
As an improvement of the proposed damage identification scheme, the training data size
was greatly reduced with the proposed strategy. The SVM classifier performed damage
localization, and damage severity was obtained from the SVM regression result.

Gui et al. [121] presented a comparative study of optimization techniques combined
with SVM models. Grid-search, PSO, and GA were used to optimize the SVM hyperpa-
rameters in structural damage identification, and the selected damage features included
selected autoregressive and residual error features. The application of the above techniques
showed improved SVM prediction performance, and the GA with AR features shows the
best classification results. Ghiasi and Noori [122] proposed a new method for structural
damage identification using an SVM with a newly proposed kernel. A Littlewood–Paley
wavelet kernel was presented to improve the accuracy of the SVM for the SHM damage
classification task, and the social harmony search algorithm was used to optimize the
hyperparameters of the SVM. The results improved damage identification accuracy with
the proposed kernel compared to other kernels combined.

An LS-SVM-based damage identification method was proposed by Kourehli [123]
using incomplete modal data and natural frequencies as training samples and an iterated
improved reduction system method. Coupled simulated annealing (CSA) was used to
determine the optimal LS-SVM fitting parameters combined with a 10-fold cross-validation
method. The experimental validation of the method was performed by applying it to three
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different structures, and the results showed an acceptable performance of the LS-SVM in
damage identification.

Santos et al. [27] conducted a study in which four kernel-based ML models for damage
identification tasks under various noise conditions were compared to analyze their perfor-
mance. Among the kernel-based ML models, one-class support vector machine, support
vector data description, kernel principal component analysis and greedy kernel principal
component analysis were selected and used for damage identification. Compared with
the previous studies performed by other ML models, kernel-based damage identification
showed better accuracy results and better generalization ability.

Zhou et al. [42] presented an a posteriori probability support vector machine based
on Dempster–Shafer evidence theory combined with a multi-sensor data fusion strategy.
Signal energy features were extracted from vibration data using WPT and then processed
by a posteriori probability support vector machine (PPSVM). The experimental results
demonstrated that the proposed method was a robust structural damage identification
method due to the fusion of information sensors and the application of the Dempster–
Shafer evidence theory. Yan et al. [124] proposed a beam structural damage identification
method for crack detection using a BP-ANN model and an SVM. The training data were
generated through a FE beam model, and the strain differences between the models were
considered damage indicators. The two ML models were used and compared, and the
results indicated that both ML models performed well in crack identification for single and
two-crack damage cases.

In the SHM damage identification approach presented by Khoa et al. [32], random
projection (RP) was used to reduce the size of the vibration data, thereby reducing the
computational processing time in structural monitoring. Data anomalies or structural
damage were detected through one-class SVM and SVM models using the reduced bridge
data. The results showed that the combination of SVM and RP improves the computational
speed without affecting the detection accuracy.

Ghiasi et al. [43] presented a comparative study between ANN and LS-SVM for struc-
tural damage identification. The wavelet power spectrum was used for feature extraction,
and the particle swarm harmony search (PSHS) algorithm was used for the hyperparameter
selection of LS-SVM and ANN. The increased model performance of both ML techniques
was achieved with the PSHS optimization method in terms of accuracy, and the combination
of PSHS and LS-SVM was better than ANN with PSHS.

HoThu and Mita [125] designed an SVM-based method using only the first natural
frequencies for damage identification and localization in shear structures as input data.
The experimental results showed that the proposed system performed damage localization
in a five-story laboratory model with response data from two accelerometers: one for the
basement and the other from the roof of the structure. Kim et al. [126] presented a novel
SHM framework for damage identification in smart structures. DWT, autoregressive mod-
els, and SVM were combined in this proposal, in which damage-sensitive feature extraction
is performed from wavelet-based AR time series models. The detection results showed
that the proposed system effectively detected structural damage in a three-story structure.
Liu and Jiao [114] proposed a genetic algorithm to select the optimal hyperparameters
of the SVM. Figure 4 shows the diagram with the proposed structural damage detection
methodology based on the combination of a SVM and a GA.Mode shape and frequency
ratios were used as input data for the SVM model. In the results, the combination of the
GA-SVM damage identification method showed an accuracy of 98.16% for the case of
single, double and triple damage elements, outperforming other methods, such as RBF
networks and GA-BP networks.
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4.2.4. Unsupervised Learning Algorithms

Unlike the supervised machine-learning methods discussed in the previous sections,
unsupervised learning-based methods use training data samples without the need for
class labels. Intuitively, these types of methods avoid the problem of defining possible
multiple structural damage cases, including multiple structural damage scenarios. By
applying unsupervised methods, two types of detections can be performed from the data
obtained by the sensor network measurements of SHM systems: novelty detection and
anomaly detection.

To address the drawbacks of supervised machine-learning approaches applied to
structural damage identification, including sample labeling and the need for data from
multiple damage scenarios, Wang and Cha [51] presented an unsupervised ML approach
that uses an autoencoder to extract features from the raw measurement data. An SVM
was trained with the extracted features, allowing it to detect even small damages (<10%
stiffness reduction) in a structural member of a steel bridge.

Entezami and Shariatmadar [127] proposed two new damage indices for damage
localization and quantification from time series modeling using an AR model. In this
approach, thresholds are defined to detect possible structural damage without establishing
damage patterns. Daneshvar and Sarmadi [128] explored an unsupervised anomaly-based
method for short- and long-term SHM using an anomaly score and also setting an alarm
threshold to establish damage. The core of the method implemented unsupervised feature
selection through a one-class nearest neighbor rule.

de Almeida Cardoso et al. [129] proposed a damage detection framework based on
outlier detection in the acquired data. The data descriptors used in this proposal included
expected data value, data variability, data symmetry, and data flatness. In this proposal, a
k-medoid clustering technique was used to detect outlier data using a proposed symbolic
distance-voting scheme. Eltouny and Liang [130] developed a post-earthquake damage
detection and localization approach that combines intensive cumulative measurements
with an unsupervised learning algorithm. This approach consists of two stages: in the first
stage, a feature extraction process is performed to extract the cumulative measures and in
the second stage, joint probabilities are used as damage indicators obtained through the
kernel multivariate maximum entropy method.

This review will emphasize supervised learning methods such as ANN, CNN and
SVM in combination with preprocessing techniques such as WT, EMD, HHT and PCA.
Despite the advantages of using unsupervised techniques in the problem of structural
damage identification, the use of supervised techniques is the most adopted branch in
the literature.

4.3. Model Type Comparative in Building SHM Systems

Table 11 analyzes the advantages and disadvantages of applying the physics-based
model and the data-based model based on reviewing the proposals mentioned above.

Recent proposals implement hybrid approaches that improve SHM damage identifi-
cation models and integrate physics-based and data-driven modeling solutions. One of
the most common strategies is to build artificial datasets used to train ML models from
FEM-generated data. Conversely, FEM parameters can be estimated from the output of an
ML regression model and improve a structural virtual model.
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Table 11. Advantages and disadvantages of a physics-based model and data-based models in SHM
building applications.

Model Approach Advantages Disadvantages

Physics-based SHM

• The model parameters have a
straightforward physical interpretation.
Stiffness changes and displacements are
consistent as damage-sensitive features.

• It can reach all the levels of damage
identification if the parameters are defined
or estimated in the building structure.

• The effect of the variation of the parameters
can be estimated in the final result of the
model. Parameter variation allows the
simulation of different scenarios, and the
structural safety thresholds can
be established.

• The calculations of the solution of the
model equations may not be feasible for
real-time SHM applications, where the
complexity of the structure requires long
processing times.

• The uncertainties and changing parameters
may reduce the accuracy of the output
model. Therefore, an estimation using other
methods, such as model-based techniques,
is encouraged.

Data-based SHM

• Noise and environmental effects on the
data collected by the sensors can be
minimized for the classification performed
by the ML model.

• Damage identification can be performed
even if the parameters of the structure are
unknown or cannot be estimated.

• The solution process is hidden from the
user, so the rationale for successful damage
classification is not explicit.

• The training data set must be large enough
to avoid overfitting, especially in
algorithms such as CNN. In addition,
obtaining the training samples of damage
states is in most cases limited to an
artificially generated dataset
from simulations.

• Computational training times can be costly
for some ML algorithms (SVM, for
example). Real-time SHM monitoring
systems require faster methods such as
NN solutions.

5. Uncertainties Effect Minimization in SHM Systems

Within the training and operation process of SHM systems, model uncertainties and
monitoring system anomalies adversely affect the performance and the damage detection
system capability. These uncertainties can be found in the data that are used for training
and in the data that are processed during system operation.

In the training phase of the machine-learning model, it is common to use synthetic
training data generated from FEM models of the structure of interest. The simulation of
the structural response facilitates the task of generating data under different operating and
structural damage conditions. The initial model of the structure of interest must accurately
reflect the structural behavior and response, as it is the starting point for comparison with
future states to determine the presence of structural damage. To minimize the uncertainties
of the structural FEM model, several solutions have been proposed in recent years to obtain
a model with reliable parameters and several solutions have been proposed for the optimal
way to update FEM models in the SHM area.

Lee and Cho [131] proposed a direct FEM update strategy based on the identification
of modal parameters and their comparison with the predicted structural response from
measurements on a bridge structure. Jafarkhani [132] presented an evolutionary strategy in
combination with a preliminary damage detection update triggering process and an ARMA
model. An iterative FEM model updating process is used in Pachon’s approach [133],
where a sensitivity analysis determines the most significant structural parameters that
have influence on the overall behavior of the structure. A survey of different FEM model
updating methods in the area of SHM can be found in [134]. In the case of bridge-type
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structures, an analysis of the different model updating techniques can be found in Sharry’s
work in [135].

On the other hand, during SHM systems operation it is necessary to identify the
impact of environmental and operational effects on structural parameters to minimize their
effects on damage-sensitive features, especially in these structures under harsh or extreme
conditions. For example, high sensor sensitivity measurements without noise removal
techniques may only be permissible when environmental and operational conditions remain
unchanged and this scenario is very uncommon in the implementations of SHM systems.

Yuen and Kuok [136] conducted a study to analyze the environmental effects (tem-
perature and humidity) on the modal frequencies of the structure. Through one year of
measurements in a 22-story building, Yuen identifies a correlation between the mentioned
environmental conditions and the modal frequencies of the structure. The normalization of
the sensing system data can reduce the effects of environmental noise and sensor failures.
Some of these effects may be correlated with damage and should be eliminated to avoid a
false-positive error in damage identification.

Cross et al. [137] employed cointegration and (PCA) techniques to remove operational
and environmental effects and extract damage-sensitive features. Damikoukas et al. [138]
proposed an identification method based on sensor measurements with noise to obtain the
stiffness and damping matrices of a structure model. A final model including these parameters
obtained from the noise measurements predicts building response to seismic excitation. Using
SVM, relevant vector machines (RVM) and cointegration techniques, Coletta [139] imple-
mented an SHM to monitor the structural condition of a historic building. This SHM system
only considers the identified frequencies of the given structure and not the environmental
effects of performing structural monitoring. Temperature variation is another environmental
factor that can impact the performance of an SHM system and its ability to accurately detect
damage, as the sensors can be affected by these variations. Huang et al. [140] proposed a
new damage identification system that employs a new algorithm, which includes the effect of
temperature variations and their correlation with structural properties. A genetic algorithm
(GA) is also used to solve the optimization of the process.

Other approaches in the area of unsupervised learning that consider the effect of
uncertainties in measured data have been proposed for anomaly detection systems that
are resistant to uncertainty in sensor data. Yan et al. [141] studied the use of symmet-
ric Kullback–Leibler (SKL) distance and transmissibility function to perform structural
anomaly detection by comparing a baseline state and potential damage scenarios. Bayesian
inference and a Monte Carlo discordance test are used as a statistical screening scheme to
deal with measurement uncertainties. To improve the probabilistic function of the anomaly
detection model, Mei et al. [142]. used the Bhattacharyya distance of TF. The performance of
this proposal outperforms other proposals using Mahalanobis distance-based methods and
have better resistance against the effects of uncertainties. Sarmadi and Karamodin [143]
presented a Mahalanobis-squared distance-based method that combines the one-class kNN
rule and an adaptive distance measure. In this study, the clustering process eliminates the
effects of varying environmental conditions on the anomaly detection process.

6. Discussion and Summary

Within the advantages and limitations of physics-based SHM systems, we summarize
the following highlights when choosing this approach in the design of a structural damage
identification or anomaly detection system.

6.1. Physics-Based SHM Highlights

• Physics-based SHM systems produce a high level of accuracy of structural response
prediction; however, they require domain expertise to define an FEM model with
correct boundary conditions, constraints and structural properties.

• For long-term monitoring systems and in operation, a strategy for updating the FEM
model should be defined in order to have a model that reflects and simulates the
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current state of the structure. This strategy should define the update method, which
parameters to update and when to update the structural parameters.

• To define the initial FEM model of the structure of interest, a stage of identification of the
structural parameters must be considered, using estimation algorithms that include wear
effects, operating conditions, the uncertainty of material properties, as well as the possibility
of underlying structural damage. Using a data-driven method for the identification of these
parameters, through a regression task by a machine-learning algorithm is recommended.

• For real-time SHM applications based on physical models, optimization algorithms
in the solution of the numerical computation problem of an FEM model must be
implemented to guarantee the responsiveness and availability of the SHM system to
an event or in the continuous monitoring task.

Derived from the analysis of the works shown above in Tables 8–10, the most relevant
observations of the application of ML techniques are presented below.

6.2. ANN SHM Highlights

• The ANN-based SHM systems showed good damage identification results using the
modal information extracted from the structural acceleration responses with less train-
ing time compared to the proposed CNN and SVM, and simplicity in implementation.

• The selection of damage-sensitive features include the use of natural frequencies,
modal shapes, damage index based on modal strain energy, FRF estimation, IMF or a
combination of them.

• The removal of environmental effects and noise is also encouraged by signal processing
techniques, such as filters (Kalman filter), and transforms, such as WT, EMD and HHT.
Indeed, natural frequencies are susceptible to effects by temperature changes [23].

• The need for a large number of sensors is a drawback for ANN-based SHM system
implementations. Analytical or data-driven estimation of unmeasured locations in
the structure can enrich the input data to improve structural damage identification,
as shown in [76]. The use of a sensor network allows the application of data fusion
techniques that mitigate redundant signal information and anomalous sensor data.

6.3. CNN SHM Highlights

• The optimization techniques for the design of CNN architectures for SHM systems should
be considered. Some popular proposals include optimization algorithms such as PSO and
HSA. The design of the CNN architecture in SHM applications is the focus of attention
since there is no method to select the hyperparameters of the CNN architecture.

• Two main dimension variants are used in the proposed CNN-based SHM systems:
1D-CNN and 2D-CNN. In the proposals with 1D input in SHM CNN, marginal HHT
spectra, raw response time series windows, mode curvature differences, first-order
mode shapes and Fourier amplitude spectra (FAS) have been used as input vectors.
For 2D input matrices in SHM CNN, time–frequency plots, time series data rearranged
into square matrices, multi-sensor matrix series data, heat map matrices and discrete
response histograms have been used.

• A large amount of training data are needed to train CNN architectures. FE-generated
data can be used, but this generated data can be unreliable if the FE model has
uncertainties. Data enrichment can be performed to make the data reliable for training
purposes, as shown in [92]. Data augmentation techniques and GAN-generated data
can also be used and it is also necessary to balance the training datasets.

• CNN shows reliable performance, especially on noisy datasets [94] using raw measure-
ments, compared to SVM [2] and MLP models [99]. In addition, CNN pre-preserves
dominant frequency signal features, eliminating high-frequency noise components [99].

6.4. SVM SHM Highlights

• To ensure a good level of generality in structural damage identification capabilities,
sufficient examples of damage scenarios should be provided in the model training
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step. The data generated by the FEM could be useful in scenarios where the damage
state of the building is not available. Classification errors may occur when unlearned
pattern scenarios are fed to the SVM model.

• It is essential to keep the number of SVM features to a computationally feasible number
due to the computational processing cost. To reduce this cost, dimensionality reduction
techniques such as PCA, random projection and boosting techniques are encouraged.

• The performance of the final SVM depends critically on the damage-sensitive features
selected in the model input. Popular selected damage features include ARM features,
wavelet-based energy features, and statistical features. If denoising techniques are not
applied, the final performance may also be affected [45].

• There is a high dependence between the selected hyperparameters of the SVM and its
performance, so the use of optimization techniques for hyperparameter tuning, such
as PSO, PSH, CSA and GA, is recommended. More recent optimization techniques
include sunflower optimization [144].

• The model training time using SVM approaches might be inadequate for model update
stages in dynamic SHM building models and real-time building monitoring systems.

• SVM approaches show high capability for small structural damage identification [104]
in combination with feature selection techniques.

7. Conclusions

This study presented a review of recent solutions in the field of SHM systems for
multi-story buildings and bridges, addressing areas of improvement, limitations and op-
portunities. The limitations of physics-based and data-driven models in SHM in buildings
and bridges were also discussed. This review showed the popularity of SHM systems
based on the ML techniques of SVM, NN, and CNN due to the benefits of these algorithms
in classification capabilities. The advantages and disadvantages of applying these ML
techniques were also discussed in order to provide valuable insight for researchers.

In general, a fair comparison between ML models and feature extraction techniques
implies a similar definition of damage scenarios (i.e., loss of stiffness, bolt loosening or
mass addition) to provide a reasonable comparison. The occurrence of multiple damage
locations within the structure is also an underexplored area in damage scenarios.

Real-time monitoring with in-service structure systems also needs to be developed.
In addition, anomalous sensor data must be taken into account in real-time applications.
Real-world structures are more complex than some idealized FE models and must involve a
higher degree of uncertainty than those idealized models, so more damage scenarios must
be studied to verify damage identification. FE model updating techniques and ML model
retraining techniques should be explored for long-term SHM systems in the construction
stages of the operational phase. Sensor placement plays a crucial role in the performance of
ML-based SHM systems, so more studies should be conducted analyzing this fact.

The implications due to constraints imposed by the operational and environmental
effects on the model need to be explored in implementation scenarios. For example, the
periodicity, in which data should be collected from the monitored system to adjust or update
the model due to the degradation of physical properties or operational conditions. Signal
processing techniques, such as data fusion, normalization and compression, could improve
data quality. In addition, with the development of increasingly powerful devices with higher
computing power, signal processing can be performed in the fog computing paradigm. Fog
devices can speed up the process of noise filtering, data compression and data fusion in
SHM systems to assess the state of the structure after a seismic event. Hybrid approaches
that integrate physics-based and data-based models are encouraged to address some of the
drawbacks of stand-alone modeling, and this is the approach taken by some of the most
recent developments in the SHM field. The need for an SHM system that synergistically
integrates the advances reported in the literature in data generation, sensing, processing,
model parameter updating and real-time monitoring, including the rapid assessment of
post-seismic event response, is envisioned.
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Abbreviations

Definition Abbreviation Definition Abbreviation

Added random noise ARN Linear discriminant analysis LDA
Auto-associative neural network AANN Mahalanobis-squared distance MSD
Autoregressive model ARM Mean absolute error MAE
Back-propagation BP Mean-squared error MSE
Back-propagation neural network BP-NN Modal assurance criterion MAC
Camage classification rates DCR Modified ensemble empirical mode MEEMD

decomposition
Complete ensemble empirical mode CEEMD Naïve bayes NB
decomposition
Contribution damage localization methods CDLM Nonlinear time–history analysis NTHA
Convolutional neural network CNN Particle swarm optimization PSO
Coupled simulated annealing CSA Piecewise aggregate approximation PAA
Cross-correlation coefficient CC Poly-reference least-square complex p-LSCF

frequency domain
Damage-sensitive energy feature DEF Power spectral densities PSD
Decision tree DT Principal component analysis PCA
Deep convolutional neural network DCNN Principal component pursuit PCP
Deep neural network DNN Probabilistic neural network PNN
Differential evolution algorithm DEA Quadratic discriminant analysis QDA
Electromechanical impedance EMI Radial basis function neural network RBFNN
Extended Kalman filter EKF Random projection RP
Factor analysis FA Recursive algorithm autoregressive-moving RARMX

average with the exogenous inputs
Fast Fourier transform FFT Residual error RE
Feed-forward multilayered perceptron FFMLP Scaled conjugate gradient algorithm SCG
Fourier transform FT Self-organizing maps SOM
Frequency-domain decomposition FDD Signal statistical indicators SSaI
Frequency response functions FRF Singular value decomposition SVD
Gaussian radial basis function GRBF Statistical features SF
Gaussian white noise GWN Stiffness reduction factor SRF
Generative adversarial network GAN Stochastic subspace identification SSI
Gradient descent momentum GDM Support vector data description SVDD
Harmony memory HM Support vector machine SVM
Harmony search algorithm HSA Teager–Huang transform THT
High-pass filter HPF Trainable look-up tables LUT
Hilbert–Huang transform HHT Transmissibility function analysis TFA
Imperial competitive algorithm ICA Unsupervised image transformation model UITM
Improved reduction system IRS Wavelet package relative energy WPRE
Kernel principal component analysis KPCA Wavelet packet decomposition WPD
Least-square support vector machine LS-SVM Wavelet packet transform WPT
Levenberg–Marquardt back-propagation LMBP Wavelet-based autoregressive model WARM
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Abstract: This work aims to achieve real-time monitoring of strains and structural displacements
for the target Joined-Wing aircraft. To this end, a Fiber Optic Sensing System (FOSS) is designed
and deployed in the aircraft. The classical modal method, which is used for Strain-to-Displacement
Transformation (SDT), is improved to adapt to different boundary conditions by introducing extra
constraint equations. The method is first verified by numerical studies on a cantilever beam model
and the high-fidelity finite element model of the Joined-Wing aircraft. Ground static tests are then
carried out to further demonstrate the capability of the developed FOSS and SDT algorithm in
practical application. The results have shown that the improved modal method is able to predict
structural deformation under different boundary conditions by using only free–free modes. In
addition, the errors between the predicted displacement and the reference in the ground test are
within 10%, which proves the FOSS has reasonable accuracy and the potential for future flight tests.

Keywords: joined-wing; fiber optic sensing; deformation measurement; modal method

1. Introduction

The Joined-Wing configuration is usually considered to have a substantial increase
in design space and be able to provide more options in aerodynamics, flight dynamics,
aeroelasticity, propulsions, etc. [1]. In the 2000s, the U.S. Air Force proposed the new
generation of the Intelligence, Surveillance and Reconnaissance (ISR) platform, which is
called “SensorCraft” [2]. The Joined-Wing configuration is one of the three basic platform
shapes that was considered. The large overall size of “SensorCraft” makes flexibility
of great significance. Previous studies have investigated and highlighted the effects of
structural deformation or structural geometric nonlinearity on the aeroelastic features of
the Joined-Wing aircraft [3,4]. Real-time measurement of structural deformation is of great
significance in Structural Health Monitoring (SHM), structural control, safety assessment
and methodology validation.

In the past few years, the Chinese Academy of Sciences has started up a project to
design and manufacture a Joined-Wing platform for civil applications. This work aims to
provide an onboard strain and displacement measurement technique for the platform. Ben-
efiting from numerous advantages such as light weight, small size, multiplexing capability
and resistance to electromagnetic disturbance, fiber optic sensors have become the first
choice for Structural Health Monitoring (SHM) in aeronautical applications [5]. Compared
to the existing shape-sensing techniques of using electrical strain sensors, accelerometers,
cameras, inclinometers or laser scanners, fiber optic sensing offers an extremely promising
alternative with the capability to track the shape continuously and dynamically [6]. Among
various strain-sensing technologies in fiber optic sensing, Fiber Bragg Gratings (FBG) are
the most widely used optical fiber sensors and have extensive applications. Despite of the
limitation in distributed sensing capability, FBG sensors have prominent advantages such
as a large sensing length, a low cost, high strain sensing accuracy, high reliability and so on.
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Compared with the distributed sensing based on Rayleigh or Brillouin scattering [7], FBG
sensors are still the first choice in engineering applications at this stage. After the famous
mishap of the “Helios” [8], shape-sensing methodology as well as the Fiber Optic Sensing
System (FOSS) have been investigated at NASA Dryden Flight Research Center (DFRC). In
present work, a FOSS including both software and hardware is designed to be adaptive to
the target Joined-Wing platform. FBG sensors are used for strain measurement.

Three main methods for Strain-to-Displacement Transformation (SDT) have been
investigated. The first one is called the Ko displacement theory [9,10], which computes the
displacement by double integration of measured strains based on linear Euler beam model.
The method was then verified by tests on a swept plate [11], Ikahana wing [12], a composite
aircraft wing [13], the business jet Global 7500 wing [14], etc. Meng [15] extended the Ko
displacement theory to nonlinear two-dimensional problems. The major advantage of this
method is that it does not require any additional modeling, which means the only required
physical information of the structure is the geometric parameter. Another method is called
the inverse Finite Element Method (iFEM), which is proposed and developed by Tessler and
Gherlone et al. [16–20]. The iFEM depends on a least-squares variational principle to predict
the three-dimensional deformation field using strain measurements. Comparative studies
on a composite wing box conducted by Ghelone have shown that the iFEM is more accurate
than the Ko theory and the classical modal method [21,22]. However, a barrier of the iFEM
in practical applications is that the element library should be enriched to satisfy the accurate
modeling requirements [18]. Many other researchers utilize the modal method to construct
the relationship between the measured strains and the structural displacements. FOSS
and Haugse [23] first used modal test results to develop SDT. For simple structures, the
strain and displacement modes can be computed analytically [24,25]. In practical problems,
high-fidelity finite element models are usually used to calculate modal results numerically.
The modal method has been verified and applied to wind turbine blades [26] and aerospace
structures [27,28]. The major advantage of the modal method is that it can reconstruct the
accurate three-dimensional displacement field with few strain sensors, which makes it
applicable to complex structures. As mentioned in [11], the main drawback of the modal
method is that it requires prior knowledge of a numerically structural model that matches
the real structures, which can be very challenging. Nevertheless, the modal method can be
a promising method for SDT if the high-fidelity finite element model is available.

To the best of the authors’ knowledge, few studies associated with the shape-sensing
problem have dealt with the Joined-Wing aircraft. Different from the single main wing
in the traditional configuration, the Joined-Wing aircraft usually has the front wing and
aft wing, which makes the deformation more complicated. In addition, previous studies
usually considered fixed boundary conditions. Nevertheless, the aircraft can experience
different boundary conditions during the whole flight process. It is troublesome to switch
modal shapes according to boundary conditions. An intuitive way is to compute the
structural displacement by using the modal information obtained by one calculation. To
this end, this work will extend the classical modal approach to adapt to various boundary
conditions by introducing extra constraint equations. Only free–free modes are needed in
the improved modal method. This paper is organized as follows. In Section 2, the theoretical
background including the main principle of Fiber Optic Sensing Technology, and a detailed
description of the improved modal method is provided. In Section 3, the Joined-Wing
aircraft is first introduced, followed by the description of the FOSS and sensor arrangement.
In Section 4, a cantilever beam model is first investigated to validate the ability of the
proposed method in dealing with problems under different boundary conditions. Then, the
FOSS on the Joined-Wing aircraft is numerically and experimentally studied, respectively.
Finally, several concluding remarks are highlighted in Section 5.
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2. Theoretical Background

2.1. Principle of Fiber Optic Sensing

Fiber Bragg Grating (FBG) sensors are created by exposing an optical fiber to an
ultraviolet interference pattern, which produces a periodic change in the core index of
refraction. The periodic changes further cause a reflection when the light in the waveguide is
of a wavelength while other wavelengths are transmitted in the optic fiber. This wavelength
is called Bragg wavelength, λB, which is determined by the period of core index modulation,
Λ, and the effective core index of refraction, n0:

λB = 2n0Λ (1)

Both strain and temperature can change Λ and n0, which further cause a variation in
λB. Assuming the fiber is optically isotropic, the variation of the Bragg wavelength, δλB,
can be expressed by

δλB
λB

= αεε + αTΔT (2)

where αε is the strain-optic coefficient, αT is the temperature-optic coefficient, ε is the strain
along the fiber-grating-axis direction, ΔT is the variation of temperature. For common
silicon fibers, αε and αT equal to 0.78 × 10−6 and 6.67 × 10−6, respectively. However, these
two coefficients need to be recalibrated due to the uncertainties in the installation process.
According to Equation (2), the strain and temperature can be obtained by identification of
the variation of Bragg wavelength as follows:

ε =
λstrain

B − λstrain
B,0

αελstrain
B,0

− αTΔT
αε

ΔT =
λ

temp
B − λ

temp
B,0

αTλ
temp
B,0

(3)

In Equation (3), FBG sensors are divided into two types, one of which can reflect both
temperature variations, and the other one can only reflect temperature variations. The
former one is denoted by the superscript “strain”. Sensors directly attached to the structure
surface naturally fall into this category. The second one is denoted by the superscript
“temp”. In this work, we first put the FBG sensor into a tube, which contains a short steel
needle that is quite rigid. Then, the tube is bonded to the structure surface. As the steel
needle is quite rigid compared to the tested structure, the wavelength variation of the FBG
sensor in the tube can be approximately considered to be only affected by the temperature,
thereby realizing temperature compensation.

2.2. Strain-to-Displacement Transformation (SDT)

Following the classical modal method, several primary strain modes and displacement
modes are firstly calculated from modal analysis of high-fidelity Finite Element Models
(FEM). The measured strain is then used to solve the least-square solutions of the coefficients
of the best linear combination of strain shape functions. The same coefficients are used to
determine the deformed shape by a linear combination of the displacement shape functions.
Here, we denote the strain shape function of the ith mode as ϕi, the displacement shape
function of the ith mode as Φi. The structural displacement in the physical degrees of
freedom, u, can be written as a linear combination of m displacement modes:

u =
m

∑
i=1

Φiqi = Φq (4)
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where Φ =
[
Φ1 Φ2 · · · Φm

]
is the matrix of displacement mode, q =

[
q1 q2 · · · qm

]T
is the column vector of generalized coordinates. In the same way, the strain vector, ε, can be
written as a combination of strain modes

ε =
m

∑
i=1

ϕiqi = ϕq (5)

where ϕ =
[
ϕ1 ϕ2 · · · ϕm

]
is the matrix of strain mode. The generalized coordinates

can be solved from a set of measured strains by least squares as

q =
(

ϕTϕ
)−1

ϕTε (6)

Substituting Equation (6) into Equation (4), a strain-to-displacement (STD) transfor-
mation is obtained and we have

u = Φ
(

ϕTϕ
)−1

ϕTε (7)

With appropriate mode selection and strain measurement, Equation (7) can provide
relatively accurate prediction of structural deformation in the majority of test cases.

From the above equations, one may find a major deficiency of the classical modal
method is that the boundary condition, which is important for the modal results, has not
been deliberately considered. If the 6 rigid-body degrees of freedom (DOFs) are not fully
constrained, there must be zero strain modes, which causes a singular solution of Equation
(6). In another words, a strain state does not uniquely correspond to a displacement state
due to rigid-body motions. This is why previous studies usually used constrained structural
modes for deformation reconstruction. In practical problems, an undesirable phenomenon
is that the aircraft is often in the situation of moving boundaries. Different boundary
conditions may lead to different modal results, which further make the shape-sensing
problem difficult for the whole process of flight, including sliding, flying and landing.
Specifically, the boundary conditions of an aircraft in flight are usually considered to be
free–free, while to be supported at the landing gear when sliding or parking on the ground.

In this work, we propose a more generalized SDT algorithm by introducing extra
boundary degrees of freedom, in which only the free–free modes are needed for various
situations. To this end, the matrices of displacement modes Φ and strain modes ϕ with free
boundary condition are divided into two parts:

Φ =
[
Φr Φe

]
(8)

ϕ =
[
ϕr ϕe

]
(9)

Here, the subscripts r and e represent the rigid-body modes and the elastic modes,
respectively. Accordingly, the generalized coordinates can be written as q =

[
qr qe

]T. It is
apparent that the strain modes ϕr are comprised of zero vectors. The generalized coordinates
corresponding to elastic modes can be estimated in manner the same as Equation (6):

qe =
(

ϕT
e ϕe

)−1
ϕT

e ε (10)

Consider (1) that some nodes are constrained, and (2) that its DOFs are part of a set
denoted as A-set; (3) that the remaining DOFs are part of a set denoted as B-set; and (4)
that all DOFs are a set denoted as N-set. In addition, if ΞNA is the Boolean matrix that
locates the a-set DOFs in the n-set and ΞNB is the equivalent for the b-set, then the desired
qr should satisfy the following constraint equations:

uA = ΞNAΦrqr + ΞNAΦeqe = 0 (11)
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It should be noted that the number of r is equal to the number of A-set, which means
the number of equations should be equal to the number of unknowns. Therefore, we have

qr = −(ΞNAΦr)
−1ΞNAΦeqe (12)

Combining Equations (10) and (12), the generalized coordinates can be calculated by

q =

[
−(ΞNAΦr)

−1ΞNAΦe
(
ϕT

e ϕe
)−1

ϕT
e ε(

ϕT
e ϕe
)−1

ϕT
e ε

]
(13)

Then, the displacement can be obtained by Equation (4). Using the above equations,
we do not need to calculate the modes corresponding to each boundary condition. Instead,
only the free–free modes are used to determine structural deformation under arbitrary
essential boundary conditions.

3. System Development

In this section, we will firstly present a brief introduction of the tested model, i.e.,
a Joined-Wing aircraft. Then, the components and workflow of the Fiber Optic Sensing
System (FOSS) for collecting and storing Bragg wavelengths are introduced.

3.1. Model Description: A Joined-Wing Aircraft

As shown in Figure 1, a Joined-Wing aircraft with diamond wings is designed and
manufactured. The aircraft has a span length of approximately 60 m and a fuselage length of
approximately 25 m. The main wing can be divided into front wing, aft wing and outboard
wing. The front wing and the outboard wing are connected by two nacelles, which are further
connected with the aft wing. The main structure of the aircraft is made of composite materials.
The FOSS to be introduced next is mainly used to collect the strain information on the wing
spar and predict the three-dimensional deformation of the entire wing.

Figure 1. Top view of the Joined-Wing aircraft.

3.2. FOSS Design

The overall scheme of the FOSS, including the hardware system and software system,
is shown in Figure 2. The hardware system is divided into two independent systems for
collecting and storing sensor data of the left and right wings. Each of the system consists of
a FBG interrogation module, an onboard computer, a GPS and a memory module. The re-
quirement of such an interrogation module would depend on the strain measurement along
the front and aft wings of the 60-m wingspan. Figure 3a shows the interrogation system,
the main parameters of which include an overall size of 234 mm × 172 mm × 28 mm, a
sampling rate of 1000 Hz, 16 fiber channels, 1.04 kg weight and Ethernet interface. The envi-
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ronmental requirements were to meet a maximum wavelength shift of 5 pm under −10 ◦C
to 50 ◦C operating temperature range, and a sine wave vibration in a range of 10–150 Hz
with overload of 2 g. The characteristic wavelengths obtained by the interrogation system
are transmitted to the onboard computer through UDP protocol. Meanwhile, the time
series from GPS along with the fiber sensor data will be reorganized and stored in the
memory module. The time consistency of test data from difference devices is guaranteed
by the time series provided by GPS. Figure 3b shows the onboard computer, which has a
1.5 GHz 4-core CPU, a maximum RAM of 8 GB and multi-type interfaces including USB,
HDMI, LAN, etc. The operating system is based on LINUX. A 64 GB Micro SD Card is
used to store the sensor data. The onboard computer and a cooling fan are enclosed in an
aluminum box with a size of 89 mm × 74 mm × 31 mm. The total weight is approximately
0.156 kg. Additionally, the main parameters of the used FBG sensor are listed in Table 1.

Figure 2. Overall design of FOSS.

172mm

234mm 28mm

16 Fiber 
Channels

  
(a) (b) 

Figure 3. (a) FBG Interrogation System; (b) onboard computer.
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Table 1. The main parameters of FBG sensor.

Parameter Value

3 dB bandwidth ≤0.3 nm
Reflectivity ≥90%

Side Lobe Suppression (SLS) ≥15 dB
Grating length 10 mm

Temperature sensitivity (temperature-optic coefficient) 6.67 K−1·10−6

Strain sensitivity (strain-optic coefficient) 7.8 με−1·10−7

The software system was designed to transform the preprocessed sensing data into the
structural deformation and display the final results. In general, the raw data are not directly
used because of high-frequency noise and abnormal data. Therefore, the raw data need to
be filtered, and the abnormal data need to be removed. After that, the desired structural
deformations can be reconstructed by the STD transformation. Finally, the displacement
response of arbitrary point on the structure or the whole structure configuration can be
plotted by the visualization module.

In this work, the simplest and most effective filtering strategy was adopted, i.e., mean
filtering. Denote the raw wavelength data as λ(τ), then the filtered time series λ(t) can be
expressed as:

λ(t) =
1
N ∑

t∈S
λ(τ) (14)

in which S is the filter window with the size of N and the center at t. As mentioned before,
interrogation system has a sampling rate of 1000 Hz, which is usually 5 Hz for GPS. By
default, the window size N is set to 200.

The criterion for judging the abnormal data depends on the wavelength bandwidth
and the strain range. The total wavelength bandwidth of a fiber channel is approximately
40 nm. To be specific, the interrogator is limited to identify Bragg wavelength within a
range of 1529 nm to 1569 nm. The maximum number of FBGs multiplexed within an optic
fiber is designed to be eight, which means the bandwidth occupied by one FBG sensor is at
least 5nm. Therefore, the variation of the Bragg wavelength, δλB, is ±2.5 nm. Assuming
the original Bragg wavelength λB is approximately 1550 nm, the observed one can be
(1550 ± 2.5) nm. According to Equation (2), the strain range can cover approximately
±2000 με without consideration of temperature change. The strain range can basically
meet the requirements of this work. Based on the above considerations, the wavelength
variation exceeding 2.5 nm is considered as abnormal, i.e.,

|λB − λB0| > 2.5 (15)

and needs to be removed.

3.3. Sensor Arrangement

In this section, we will take the half model of the Joined-Wing aircraft as an example
to illustrate the sensor layout and installation. Figure 4 shows the sensor layout of the right
wing. As shown in Figure 4a, there are 16 fiber channels, each of which is multiplexed with
different numbers of FBG sensors. For example, the optical fibers numbered 1–4 are used
for strain and temperature measurements of the inner section of the front wing, as shown
in Figure 4b. Each fiber contains six FBG sensors, which are represented by rectangular
blocks, and the blocks with black border are used for temperature compensation. The solid
ones are attached to the upper edge of the wing spar, while the hollow ones are attached to
the lower edge. Figure 4c shows a detail view of FBG sensor installation on the surface of
the spar. Due to the breakdown interfaces, the right wing is further divided into the six
sections as shown in Figure 4a. The front wing and the aft wing consist of two sections and
three sections, respectively.
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Figure 4. Sensor layout. (a) The overall sensor arrangement of the half model; (b) sensor arrangement of
the inner section of the front wing; (c) detail view of FBG sensor installation on the surface of the spar.

Figure 5 is a snapshot of the wing interior. Both the electric cables and the optical
fibers are bundled with the skeleton inside the wing. The FBG sensors are attached to the
spar surfaces using epoxy adhesive. The temperature compensation is realized by the FBG
sensor in a tube with a rigid steel needle inside.
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Figure 5. Wing interior and sensor attachment on the wing spar.

4. Results and Discussion

4.1. Validation on a Cantilever Beam Model

A cantilever beam supported at the midpoint was first investigated to demonstrate
the improved modal method. The beam has a rectangular cross-section with a width of
0.035 m and a height of 0.0015 m. The elastic modulus is 210 GPa. The material density
is 7750 kg/m3

. As shown in Figure 6, a concentrated force is applied at the beam tip,
with its vertical components being 0.1 N. The beam is solved in MSC NASTRAN with the
discretization of 50 elements.

F

x

y

L
L/2

Figure 6. Cantilever beam model with a tip force.

Four types of boundary conditions are considered for linear modal analysis. The first
one is consistent with Figure 6, in which the beam is fixed at the root and supported at the
midpoint. The second and third ones retain fixed and supported constraints, respectively.
The fourth one is totally free without any constraint. The mathematical expressions of the
boundary conditions are given in Equation (16).⎧⎪⎪⎨⎪⎪⎩

BC1 : y(0) = y′(0) = 0, y(L/2) = 0
BC2 : y(0) = y′(0) = 0
BC3 : y(L/2) = 0
BC4 : f ree − f ree

(16)

Mode shapes obtained through the modal analysis can be found in Appendix A.
As expected, a rigid-body rotational mode around the support point occurs in the third
case. In the last case, one may find an axial mode and two rigid-body modes, which are
superpositions of y-direction motion and rotational motion around z-axis.
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Figure 7 presents the comparisons of displacement directly computed from FEM and
those obtained from SDT under different conditions. In all cases, the first 20 modes with
no distinction between rigid-body modes and elastic modes are used for SDT. Under BC1
and BC2, the displacements are computed by Equation (7) consistent with the classical
modal approach. Under BC3 and BC4, the displacements are computed by the improved
modal method due to the existence of rigid-body modes. Additionally, the predicted
displacements show differences when only elastic modes are considered under BC3 and
BC4. The differences are perfectly compensated by superposition of rigid-body motions.
Finally, one can observe that the predicted displacements are highly consistent with the
FEM results, no matter what boundary conditions are adopted.

Figure 7. Comparisons of calculated displacements from FEM and those obtained from SDT.

4.2. Numerical Studies on the Joined-Wing Aircraft

The FE model was constructed from the original CAD model in MSC NASTRAN,
as shown in Figure 8a. Most of the structures including the wing spars and skin were
modeled using composite plate elements. The fuselage skeleton uses a large number of
bar elements. The FE model has approximately 370,000 nodes and 340,000 elements. A
number of 64 massless rod elements with negligible stiffness were attached to the spar
surface of both right and left wing, respectively. These elements do not change the stiffness
and inertial properties of the original aircraft model. They are distributed at the positions
in accordance with the sensor layout in Figure 4, serving as virtual strain sensors to provide
strain information at these locations. Figure 8b shows a schematic view of a rod element.
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Figure 8. (a) FE model and (b) zoom on the front spar of the front wing and a rod element to simulate
strain sensor.

Modal analysis was then conducted to obtain mode frequencies and mode shapes of
both displacement modes and strain modes. The strain modes are provided by the virtual
strain sensor elements. The boundary condition is set to free–free without constraints. The
first 30 modes are used for SDT. The first six modes are rigid-body modes. Several primary
elastic mode shapes are plotted in Figure 9. The first symmetric vertical bending mode
has a very low frequency of 0.354 Hz. Different from the common-configuration aircraft, a
distinctive modal feature of the joined-wing configuration is the coupling of the front wing
and the aft wing, which can be found in Figure 9b,c.

 

 

(a) (b) (c) 

Figure 9. Several primary elastic mode shapes: (a) 7th mode—symmetric vertical bending, f1 = 0.354 Hz;
(b) 13th mode—anti-symmetric vertical bending coupled with torsion, f7 = 1.101 Hz; (c) 30th
mode—symmetric vertical bending coupled with torsion, f30 = 3.234 Hz.

In the linear static solver of MSC NASTRAN, the six degrees of freedom (DOFs) of
the grid point coincident with the mass center are constrained. One times gravity loads
along the anti-gravity direction are applied to make the wing bend upward. The free–free
modes were used for SDT. Figure 10 shows the comparison of an undeformed and deformed
configuration under such loading conditions. The displacements calculated directly by FEM
are in very good agreement with those reconstructed by SDT. The maximum displacement
in z-axis direction is up to 4.71 m, which is approximately 14.1% of the half wingspan. Due
to the complexity of the FE model with up to two million DOFs, it is too time-consuming
to reconstruct the deformation using the modal information of all nodes. Here, we select
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1188 grid points on the wing structure for SDT. Three rotational DOFs in the displacement
modal vector are ignored. In this way, the matrix of displacement mode Φ in Equation (4)
has 3564 rows and 30 columns. The matrix of strain mode ϕ in Equation (5) has 196 rows
and 30 columns. Although only the deformation of the selected grid points is shown here,
the position of any other point inside the whole aircraft can be conveniently calculated by
surface spline interpolation [29]. Figure 11 presents the interpolated lifting surface, which
is used to conveniently and efficiently evaluate the overall deformation of the aircraft.

Figure 10. Positions of selected grid points in undeformed configuration and deformed configuration
under gravity loads along the anti-gravity direction.

Figure 11. Interpolated lifting surfaces for evaluation of overall deformation.

To quantitatively investigate the deformation reconstruction accuracy, the following
two kinds of Root Mean Square Errors (RMSE) are used,

RMSE1 =

√√√√ N

∑
i=1

(zi − ẑi)
2

/
N

∑
i=1

z2
i (17)

RMSE2 =

√√√√(zimax − ẑimax)
2

/
z2

imax
(18)

In Equation (17), z is the displacement in z-axis direction calculated by FEM, and ẑ
is the displacement calculated by SDT. The subscript i is the index number of the grid
point, and N is the total number of grid points. In Equation (18), imax represents the node
number with the maximum displacement. These two equations provide a global and local
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evaluation of deformation reconstruction accuracy, respectively. Finally, the global error
RMSE1 is 2.86%, and the local error RMSE2 is 4.47%. The results further show the accuracy
of SDT in reconstructing the wing deformation.

4.3. Ground Test on the Joined-Wing Aircraft

The system’s performance was then evaluated in a ground quasi-static test in which
the wing was lifted by two lifting platforms under the nacelles at the joint. Figure 12 shows
the schematic of the ground test. The lifting attitude z can be accurately controlled by the
lifting platform. Before the test, the Joined-Wing aircraft was on the ground supported by
two front main landing gears, two auxiliary landing gears and a rear landing gear. The
optical fiber sensing data in this state were recorded as the initial reference value. At the
beginning of the test, the lifting attitudes of both right and left side were set to 785 mm.
After holding on for a certain time, the lifting altitude may drop by approximately 100 mm
within approximately 10 s. The above maintenance and decent operations will be repeated
several times until the altitude drops to zero, which means the aircraft returns to its initial
reference state. Table 2 lists the lifting altitudes over time and the specific operations, which
are recorded as H and D (Hold and Drop). The ground test lasted nearly 2000 s. The
altitudes were reduced from 785 mm to 0 mm in 7 operations.

Figure 12. A schematic of ground test.

Table 2. Lifting altitudes of the lifting platform and operations at different time.

Time (s) Lifting Altitude z Operation (H-Hold/D-Drop)

0 785 H
265 785 D
275 690 H
375 690 D
385 590 H
468 590 D
478 490 H
578 490 D
588 390 H
645 390 D
655 290 H
763 290 D
773 190 H

1294 190 D
1304 90 H
1854 90 D
1864 0 H
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Figure 13 plots the temperature curve recorded by FBG sensors. Since the test is in a
relatively closed indoor environment, we assume that the temperature is independent of
the location. Therefore, the temperature curve reflects the average of collected data from
all FBG sensors for temperature compensation. According to the records of the onboard
temperature sensor with limited precision, the temperature increased from 22 ◦C to 23 ◦C
during the test. The test was conducted from 2:00 pm to 3:00 pm, during which time the
temperature rose slowly. The results of temperature sensor and FBG sensor show that the
temperature change during the test is less than 1 ◦C, which means the temperature effect
on the following strain data acquisition is almost negligible.
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Figure 13. Temperature during the ground test recorded by FBG sensors.

Figure 14a plots the displacement responses at the support point during the ground
test. The deformations on both sides of the wing are approximately considered symmetrical,
specifically synchronous and of the same size. Thus, the displacement plotted in this figure
is the average of the z-direction deformation at the left and right support points. The test
results are consistent with those listed in Table 2. As a comparison, wing displacements
were also obtained from FEM. To simulate the ground test, we constrained the translational
DOFs of four nodes at the front of fuselage and one node at the rear of the fuselage. These
nodes are consistent with the positions of landing gears. As for the nodes corresponding to
the support point, translational DOFs except the vertical motion are constrained. Nodal
forces are applied to the support point towards positive z-direction to simulate the defor-
mation during the test. The results show that the numerical simulation accurately reflects
the displacement response in the test. The difference between SDT and TEST results is
plotted in Figure 14b. The absolute displacement error is within ±100 mm. One can also
calculate the relative error in the manner similar to Equation (17) by replacing i and N with
time variables corresponding to the horizontal axis in the figure. The calculated error is
6.6%. The error mainly comes from two aspects. One is the model-related error. For such
a complex engineering model, the deviation between the FE model and the realistic one
is inevitable. Additionally, the sensor placement and the mode selection will affect the
reconstruction accuracy. Future efforts can be made to improve the accuracy by optimizing
the sensor positions and selected mode as in Ref. [22]. The second one is the test-related
error. In the test, the strain measured by the FBG sensor is affected by the adhesive layer and
cannot exactly reflect the strain on the structural surface. It is challenging to analyze and
predict the strain transfer to the fiber core reliably, which is beyond the scope of this work.
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A practical way is to consider the error caused by strain transfer as uncertainties satisfying
normal distribution, and then to achieve more reliable results by filtering methods.
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Figure 14. (a) Displacement responses at the support point; (b) difference between SDT and TEST results.

Figure 15 shows the deformed configuration obtained from FEM and SDT at the
beginning of the test. The overall deformation obtained by direct numerical simulation is
in good agreement with that reconstructed by measured strains. Taking FEM results as
reference, the global error RMSE1 at each moment was calculated and plotted in Figure 16.
The maximum error is approximately 7%. The average error is 2.62%. The results show
that the FOSS and SDT algorithm in this work can accurately measure the deformation of
the Joined-Wing aircraft during the ground test.

Figure 15. Deformed configuration obtained from FEM and SDT at the beginning of the test.
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Figure 16. Global error response of SDT.

5. Conclusions

This work presents a complete framework for predicting structural displacement of a
Joined-Wing aircraft by using Fiber Optic Sensing techniques. Several concluding remarks
can be drawn as follows:

(1) A FOSS with hardware and software subsystems is designed and installed on the
target Joined-Wing aircraft. The system was then verified by the ground test.

(2) The classical modal method is modified to adapt to various boundary conditions,
which is common in practical applications. The improved SDT algorithm was then
verified by numerical studies on a cantilever beam model and the Joined-Wing aircraft.

(3) Both the numerical and experimental results show that the proposed SDT algorithm
can accurately predict the overall configuration of the aircraft or deformations of
a particular point. In the ground test, the relative error of the displacement at the
support point is 6.6%. The global error of the overall deformation is less than 7%, and
the average error is only 2.62%.

In general, the FOSS was proved to have reasonable accuracy and the potential for
future flight tests.
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Appendix A. Mode Shapes of the Cantilever Beam Model with Different

Boundary Conditions
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Mode 4 Mode 5  

Figure A1. First five elastic modes with BC1: y(0) = y′(0) = y(L/2) = 0.

   
Mode 1 Mode 2 Mode 3 

  
 

Mode 4 Mode 5  

Figure A2. First five elastic modes with BC2: y(0) = y′(0) = 0.

   
Mode 1 Mode 2 Mode 3 

   
Mode 4 Mode 5 Mode 6 

Figure A3. Rigid-body mode and first five elastic modes with BC3: y(L/2) = 0.
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Figure A4. Rigid-body modes and first five elastic modes with BC4: free–free.
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Abstract: Traffic−induced vibration is increasingly affecting people’s lives, which necessitates
scrutiny of the environmental vibrations caused by traffic. This paper proposed a vibration prediction
method suitable for the ancient wooden structures subjected to traffic−induced vibrations based
on the multi−point response transfer ratio function. The accuracy of the proposed approach was
also checked by comparing the predicted results with the measured results in the context of both the
time domain and frequency domain. Subsequently, the environmental vibrations due to heavy−duty
trucks passing at various speeds were measured, and the measurements were utilized as the input
vibration excitation to assess the structural vibration of the Feiyun Pavilion. The structural safety
was evaluated according to the “Technical specifications for protecting historic buildings against
man−made vibration”. In order to meet the structural safety requirements of the Feiyun Pavilion, it
is strongly recommended to limit the type and speed of vehicles in the nearby area.

Keywords: environmental vibrations; traffic−induced vibration; vibration prediction; response
transfer ratio (RTR); ancient wooden structures

1. Introduction

With the development of cities, environmental vibrations and noises produced by
traffic are attracting more and more attention within the international scientific commu-
nity [1]. The environmental vibrations caused by traffic will not only affect people’s lives
and works, but also the usage of some precision instruments [2,3]. Additionally, the
structural performance of buildings will deteriorate under the action of long−term traffic
vibration, particularly for ancient buildings with wooden structures [4,5]. Consequently,
environmental vibrations due to traffic should be further examined in the near future.

The prediction of environmental vibrations generated by traffic loading is one of the leading
research directions of the understudied problem. The commonly used prediction methods
for examining traffic−induced vibration mainly include theoretical analyses [6–8], numerical
simulations [9–12], field tests [13–18], and empirical prediction formulas [19,20]. Although the
theoretical analysis method leads to the exact solution in most cases, numerous assumptions
and simplifications are made to the solution process; therefore, it cannot wholly reflect the
actual situations of the induced vibration process. On the other hand, numerical methods
have been extensively employed with the progress of computer technology; however, it
is challenging to determine various parameters and complex structural modeling of a
complex system problem. Commonly, the empirical prediction formula method requires a
large number of measured data as the premise, and the accuracy of the prediction results
will be affected by the judgment of factors.

Field tests have essentially focused on the dynamic performance analysis of several
typical high−rise ancient wooden structures, while ancient wooden structures with differ-
ent structural features have not been properly investigated. At the same time, most of the
vibration sources are strong but short−lasting dynamic loadings such as earthquakes, while
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there is still a lack of research on long−lasting but micro−amplitude vibrations loadings
such as traffic−induced vibration.

Therefore, this paper aimed to utilize field tests to propose a response−to−transfer
ratio (RTR) vibration prediction method for ancient wooden structures under traffic loads
based on the transfer function. The RTR function is the ratio of the output responses
between systems. For a complex system with multiple subsystems, the overall RTR function
of the system can be obtained through the RTR of each subsystem.

Similar to the transfer function vibration prediction method, the RTR vibration pre-
diction method proposed in this paper does not need to establish the finite element model
and has high calculation accuracy. At the same time, it is different from the vibration
attenuation prediction method, which can only predict the magnitude of vibration energy
but cannot obtain the spectral characteristics at the predicted point. The RTR vibration
prediction method operates in the frequency domain. Therefore, it can accurately predict
the frequency component of the vibration at the prediction point. For ancient wooden
structures, the vibration of some frequencies (such as natural frequency) will cause more
serious damage to the structure, so it is necessary to predict the vibration within a specific
frequency band.

We took Feiyun Pavilion as the case study to verify the properties of the RTR. Then, the
correctness of the RTR vibration prediction method was verified based on the field−measured
data. Considering that the vibration system is a complex one with multiple subsystems,
in order to reduce interference from noise vibration, the multi−point RTR was used for
vibration prediction. In addition, the structural safety under the action of extreme traffic
loads according to relevant codes was also evaluated.

2. Prediction Method of the Response Transfer Ratio Function

2.1. The Transfer Function and the Response Transfer Ratio Function

The transfer function is defined as the ratio of the Laplace transform of the linear
system response (output) to the Laplace transform of the excitation (input) under the rest
initial conditions [21]:

T(s) =
Y(s)
X(s)

=
L{y(t)}
L{x(t)} (1)

where T(s) denotes the transfer function of the linear system, Y(s) and L{y(t)} in order
are the response of the system and the Laplace transform of the output, X(s) and L{x(t)}
represent the excitation of the system and the Laplace transform of the input, respectively.
Generally, the transfer function requires that the system can be represented by a linear
time−invariant system and must be applied in the presence of the rest initial condition. It
describes the differential relationships between the input and output of the system.

For complex systems with multiple subsystems, the existing interactions between the
subsystems make it difficult to get the excitation of each subsystem; Therefore, it is difficult
to solve the transfer function of each subsystem by exploiting the output and input. In
contrast, the response of each subsystem is usually easy to get. To distinguish from the
traditional transfer function, the output ratio between each pair subsystems is defined as
the response transfer ratio (RTR) function:

Hn =
Rn

Rm
(2)

In Equation (2), Hn represents the RTR function between the n−th subsystem and the
m−th subsystem. As shown in Figure 1, Rn and Rm in order denote the output response
of the n−th and m−th subsystems. Similar to the transfer function, the RTR function can
describe the dynamic performance of the linear system.
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Figure 1. The complex systems with multiple subsystems.

For the multi−degrees−of−freedom system, the external excitation load of the system
is assumed to be a simple harmonic load, that is:

M
..
X + C

.
X + KX = Psin(ωt) (3)

where M, C, and K in order are the mass, damping, and stiffness matrices of the system. The
parameters

..
X,

.
X, and X represent the acceleration vector, velocity vector, and displacement

vector of the system, respectively, P denotes the vector of the external force applied to the
system, ω is the circular frequency of the external force, and t is the time factor.

By employing the orthogonality properties of vibration modes, it is obtainable:

Mn
..
Xn + Cn

.
Xn + KnXn = Pnsin(ωt) (4)

A harmonic solution to Equation (4) can be sought in the following form:

Xn = Ansin(ωnt − ϕn) (5)

where: An = Pn
Kn

1√
(1− ω

ωn )
2
+
(

2ξnω
ωn

)2
, ϕn = tan−1 2ξn

ω
ωn

1− ω2

ω2
n

, and ωn =
√

Kn
Mn

; Pn and ωn in

order are the generalized load and natural frequency associated with the n−th vibration
mode; Mn and Kn represent the generalized mass and stiffness corresponding to the n−th
mode, respectively, and ξn denotes the generalized damping ratio. By employing the
superposition of modes in view of Equation (5), we can arrive at:

X =
N

∑
n=1

φT
n Xn =

N

∑
n=1

[
φT

n Ansin(ωt − ϕn)
]

(6)

where φn denotes the vector pertinent to the n−th vibration mode, Xn represents the gen-
eralized mode participation coefficient, while An and ϕn are their corresponding constants.

According to Equation (6), in the multi−degrees−of−freedom system under the action of
single frequency vibration excitation, the steady−state response of each degree−of−freedom
is still evaluated based on a single frequency, and the vibration frequency is the same as the
excitation one.

When the input load in Equation (4) varies in constant λ times, the resulting solution
is readily resulted by:

Xn = λAnsin(ωt − ϕn) (7)

X =
N

∑
n=1

φT
n Xn =

N

∑
n=1

[
φT

n λAnsin(ωt − ϕn)
]

(8)
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According to Equation (8), when the ratio of the input load remains unchanged in
various frequency bands, the ratio of the output acceleration also remains unchanged in
the corresponding frequency band.

Therefore, for the multi−point RTR, input a simple harmonic force P = A sin ωt at the
loading point, the RTR function between the points Pn−1 and Pn is represented by Hn−1.
As a result, the RTR function between the vibration source replacement point P1 and the
vibration prediction point Pn can be expressed by:

H(ω) =
n−1

∏
m

Hm(ω) (9)

where Hm denotes the RTR between point Pm+1 and point Pm, n represents the number of
transfer points on the transfer path. The calculation diagram of the multipoint RTR has
been demonstrated in Figure 2.

Figure 2. Schematic representation of the main procedure of the multipoint RTR.

2.2. Vibration Prediction Based on the RTR

For the environmental vibration caused by traffic, when a vehicle passes the road, the
roadside vibration acceleration, x(t), and the acceleration at the prediction point, y(t), can
be recorded simultaneously. Considering the calculation efficiency and accuracy, we then
proceed in dividing the accelerations x(t) and y(t) according to the frequency bandwidth of
the one−third octave. The result X(t, f ) and Y(t, f ) of such a division is the corresponding
acceleration time−history data in each frequency band, the so−called octave time−history
data in the present study. Specific processes for octave time−history data are as follows:
1. Take the Fourier transform of the acceleration data from the time domain to the frequency
domain; 2. According to the one−third octave band, band−pass filtering is performed in
turn to select the acceleration data in each frequency band; 3. Finally, the inverse Fourier
transform is performed on the selected acceleration data in each frequency band to obtain
the acceleration time−history data in the corresponding frequency band, which is called
octave time−history data.

Subsequently, the ratio of maximum value of the octave time−history data, obtainable
from the corresponding frequency band MAX(X(t, f )) and MAX(Y(t, f )), are defined as
the amplitude−RTR. Mathematically, it is stated by:

H( f )MAX =
MAX(X(t, f ))
MAX(Y(t, f ))

(10)

Further, the ratio of the acceleration root−mean−square (RMS) of the octave time−history
data RMS(X(t, f )) and RMS(Y(t, f )) in the corresponding frequency band is defined as
the RMS−RTR, which is calculated by:

H( f )RMS =
RMS(X(t, f ))
RMS(Y(t, f ))

(11)

Using hammer excitation at the same excitation point, the roadside vibration acceleration
time−history x′(t) and the acceleration time−history y′(t) at the prediction point can be
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simultaneously recorded. According to the one−third octave calculation method, the octave
time−history data X′(t, f ) and Y′(t, f ) are computed, and similar to Equations (10) and (11),
the RTR function of the roadside−prediction point acted upon by the hammering excitation
is evaluated according to Equations (12) and (13):

H′( f )MAX =
MAX(X′(t, f ))
MAX(Y′(t, f ))

(12)

H′( f )RMS =
RMS(X′(t, f ))
RMS(Y′(t, f ))

(13)

It is assumed that the RTR function calculated by the hammer excitation test can be
exploited to replace the transfer ratio function of the roadside−prediction point under the
action of the traffic excitation. Thereby,

H( f )MAX ≈ H′( f )MAX (14)

H( f )RMS ≈ H′( f )RMS (15)

The roadside−prediction point RTR functions H′( f )RMS and H′( f )MAX can be mea-
sured by the hammer excitation and then combined with the traffic−induced roadside accel-
eration octave time−history data Xpre(t, f ). Subsequently, the output octave time−history
data at the prediction point can be calculated through the following relations:

Ypre(t, f ) = Xpre(t, f )/H( f )MAX ≈ Xpre(t, f )/H′( f )MAX (16)

Ypre(t, f ) = Xpre(t, f )/H( f )RMS ≈ Xpre(t, f )/H′( f )RMS (17)

Finally, by superimposing the octave time−history data Ypre(t, f ) associated with each
frequency band, the acceleration time−history data ypre(t) at the predicted point can be
evaluated as follows:

ypre(t) = ∑
f

Ypre(t, f ) (18)

The proposed traffic−induced vibration prediction method has been flowcharted in
Figure 3.

Figure 3. The flowchart of traffic environmental vibration prediction based on the measured RTR.
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The vibration prediction method based on the RTR is as follows: Firstly, the response
transfer ratio between the roadside and the prediction point is obtained through the
artificial excitation vibration test; Then, collect the roadside environmental vibration caused
by traffic load; Finally, the measured traffic−induced vibration is used as the excitation to
calculate the vibration response of the prediction point by calculated RTR.

2.3. Field Test of the RTR Function

Theoretically, the transfer function is only related to the tested object, representing its
inherent attribute, and it does not change with different external incentives. In order to
verify whether the proposed RTR function also satisfies this characteristic, we designed two
groups of hammer excitation experiments with a hammer weight of 30 kg. One group was
oriented to control the hammer to fall from different heights, and only the change of the
excitation energy was allowed without altering the excitation frequency. The other group
dropped the hammer at the same height, and placed rubber, wood, and steel blocks at the
landing point of the hammer. Therefore, the latter group was aimed at changing the input
load spectrum characteristics, without altering the excitation energy. The test conditions
are also presented in Table 1.

Table 1. Working conditions of the drop weight test: (a) Different excitation heights, (b) Different
cushion blocks.

(a)

Test Name

Working Condition Measuring Point Location

Condition 1 Condition 2 Condition 3 Condition 4 Condition 5
Vibration Source

Replacement Point R
First Floor

Measuring Point

Drop weight
height (cm) 50 55 60 65 70 R A−P1 B−P1

C−P1 D−P1

(b)

Test Name

Working Condition Measuring Point Location

Condition 1 Condition 2 Condition 3 Condition 4
Vibration Source

Replacement Point R
First Floor

Measuring Point

Cushion block − Wood block Rubber
block Steel block R A−P1 B−P1

C−P1 D−P1

As part of research series, this paper takes the Feiyun Pavilion as the case study. The
Feiyun Pavilion (see Figure 4) is a purely wooden building in the Yuan (1271–1368 AD)
and Ming Dynasty (1368–1683 AD) styles. It is located within the Dongyue temple in
Wanrong County, Yuncheng City, Shanxi Province, China. The entire building is mainly
made of wood, and the structural connection uses mortise and tenon joints without any
metal components. The pavilion has three floors on the outside and five floors inside. The
total height of the building is about 23 m.

The layout of the measurement points is demonstrated in Figures 5 and 6. The
excitation point of the drop weight is on the road, which is ten meters away from the
south side of the Feiyun Pavilion. The vibration source replacement point (R) is arranged
at 1m perpendicular to the road, which is to collect the output response of road traffic
subsystem. On the first floor of the Feiyun Pavilion near the four through columns, first
floor measuring points (A−P1, B−P1, C−P1, D−P1) are set up and employed to measure
the output acceleration of the system under the action of hammering excitation. In order
to measure the RTR in three directions, all measuring points should be equipped with
acceleration sensors in horizontal east−west, horizontal north−south direction, and vertical
direction. The sampling frequency is set equal to 512 Hz.
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Figure 4. The Feiyun Pavilion.

Figure 5. The horizontal layout of the measurement points. (Field Test of the RTR Function).

Figure 6. The vertical layout of the measurement points. (Field Test of the RTR Function).
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The equipment utilized in the test includes an INV3020C synchronous data acquisition
system with 28 channels, and 15 uniaxial (10 horizontal and 5 vertical) 941b acceleration
sensors. Before the test, the acceleration sensors are appropriately calibrated for consistency
and sensitivity.

2.3.1. Variation of the RTR Function with Excitation Vibration Energy

The artificial excitation vibration was applied to the system by using a free−falling
weight. By controlling the hammer falling from heights of 50–70 cm with an increment of
5 cm, we examined whether the RTR of the system would change due to the same spectral
characteristics but with various vibrational energies. Considering that the environmental
vibration caused by traffic is mainly low−frequency vibration, we mainly analyzed the
vibration below 80 Hz.

According to Equations (12) and (13), the RTRs of the system subjected to different
levels of the input energy were calculated. For this purpose, at least five sets of valid
hammer vibration data were collected for each working condition, and the RTR from the
vibration source replacement point (R) to the first floor measuring point (A−P1, B−P1,
C−P1, D−P1) was calculated due to each hammering excitation. Subsequently, the average
value of five groups of RTRs in the same direction under the same working condition was
taken as the RTR in this direction under this working condition. Taking the horizontal
east−west direction (X direction) as an example, the amplitude−RTR and the RMS−RTR
under different hammering excitations were evaluated, and the obtained results are graphed
in Figures 7 and 8.

Figure 7. Amplitude−RTR. (Different excitation heights).

Figure 8. RMS−RTR. (Different excitation heights).
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Firstly, the RTR functions calculated by the two distinct methods were compared. It
can be seen that although their calculation bases are completely different, the discreteness
of the two approaches is small for frequencies below 80 Hz, and the variation laws in terms
of the frequency are the same. The RTR functions, which are calculated by the same method,
are also compared. The RTR varies slightly when the input vibration energy is significantly
different, and the consistency is satisfactory in the frequency range of 5–63 Hz. Therefore,
both methods can appropriately calculate the RTR function of the system, and its value is
independent of the input vibration energy.

2.3.2. Variation of the RTR Function with Excitation Vibration Frequency

In order to input the same vibration energy to the system, we let the hammer have a
free fall from 60 cm. In addition, steel plate, wood plate, and rubber plate are placed at the
hammering point in order to apply vibrations with the same excitation energy but different
spectral characteristics to the system. The RTR function between vibration source replacement
point to the first floor measuring point was calculated according to Equations (12) and (13).
Taking the X direction as an example, the calculation results for this case are illustrated in
Figures 9 and 10.

Figure 9. Amplitude−RTR. (Different cushion blocks).

Figure 10. RMS−RTR. (Different cushion blocks).
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By comparing the RTR acted upon by the excitation with different spectrum charac-
teristics, it can be seen that the calculation results of the RTR in the presence of various
working conditions are relatively consistent. Therefore, the different input excitation spec-
trum has little influence on the RTR of the same system, and this characteristic is more
prominent for frequencies in the range of 5–63 Hz. The RTR is independent of the input
vibration spectral characteristics.

Through the calculation and analysis of the RTR under various working conditions, it
can be inferred that the RTR is only affected by the dynamic characteristics of the structural
system. It is the inherent attribute of the structural system, and it will not change for
different input excitations. It implies that the application of the hammering excitation to
calculate the RTR of the system can be utilized as an appropriate replacement of the RTR
under the action of the traffic excitation. This indicates that the Equations (14) and (15)
are reasonable.

3. Vibration Prediction Based on the Measured RTR Function

3.1. Introduction to the On−Site Dynamic Test

As demonstrated in Figure 11, Feiyun Pavilion is only 10 m away from Houtu road in
the south and close to Feiyun Bei road in the east. The long−term wind, rain erosion, and
the impact of traffic vibration have made damages to Feiyun Pavilion up to a certain extent.
Therefore, it is necessary to predict the vibration of the Feiyun Pavilion under the action of
traffic loading.

Figure 11. Schematic representation of the traffic environment around the Feiyun Pavilion.

Considering the whole media of the vibration transmission is composed of the road,
soil, foundation, and superstructure. The measuring points of such a media are particularly
arranged as presented in Figures 12 and 13. This is somehow similar to the measurement
point arrangement in the “Field test of the RTR function”. In addition to arranging the
vibration source replacement point (R) and the first floor measuring points (A−P1, B−P1,
C−P1, and D−P1), it is also necessary to arrange the third floor measuring points (A−P2,
B−P2, C−P2, and D−P2) at the top of the four corner columns. The third floor measuring
points are also exploited to collect the vibration at the highest point of the structure. At
the same time, the vibration data of the third floor measuring point can also evaluate the
structural safety of the Feiyun Pavilion according to the relevant specifications.
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Figure 12. The layout plan of the measurement points.

Figure 13. The vertical layout of the measurement points.

Due to the increase of the measuring points, we choose the following equipment to
collect vibration data: INV3020C synchronous data acquisition system with 28 channels
and 27 uniaxial (18 horizontal and 9 vertical) 941b acceleration sensors.

3.2. The On−Site Test of the Multi−Point RTR

Let us take the measuring point in column D as an example. Firstly, the free−fall
hammer is utilized to input excitation vibration to the system from a height of 60 cm,
on the Houtu road. Then, the multi−point RTR function between the vibration source
replacement point (R), the first floor measuring point (D−P1), and the third floor measuring
point (D−P2) were calculated according to the acceleration data. After that, under the
action of the traffic−induced vibration, the measured environmental vibration at point R
was employed as the excitation, and the multi−point RTR calculated by the hammering
test was employed to predict the traffic−induced vibration at the third floor measuring
point (D−P2). Finally, the effectiveness of the proposed vibration prediction method was
verified by comparing the measured vibration of the third floor measuring point (D−P2)
with the predicted vibration.

According to Equation (9), the collected acceleration data were calculated to obtain
the multi−point (R to D−P2) RTR. The plotted results are demonstrated in Figure 14.
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Figure 14. The measured RTR: (a) vertical direction; (b) east−west direction; and (c) south−west direction.

3.3. Structural Vibration Prediction due to Traffic−Induced Vibration

In order to ensure that a sufficient amount of traffic vibration data were collected,
the sampling duration and frequency in order were set to 1200 s and 512 Hz. Due to the
traffic−induced vibration, the partial acceleration data of the third floor measuring point
(D−P2) in the horizontal east−west direction (X direction) has been presented in Figure 15.

Figure 15. The time−history of acceleration of the third floor measuring point (D−P2) in the
east−west direction.

A representative traffic−induced vibration data segment (520s−570s) was selected for
fast Fourier transform (FFT) analysis. The vibration data in the frequency−domain were
then analyzed, as shown in Figure 16.

The vibration at the vibration source replacement point (R) is mainly low−frequency
vibration below 80 Hz, of which 5 Hz−60 Hz represents its excellent frequency band.
When the vibration is transmitted from the vibration source replacement point (R) to the
third floor measuring point (D−P2), its spectrum characteristics have considerably altered:
the vibration with a frequency above 40 Hz is greatly attenuated, and the vibration is
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mainly low−frequency vibration with frequencies in the range of 5−40 Hz. Therefore, this
frequency interval is defined as the prediction and analysis frequency band. In the vibration
prediction, the acceleration for the frequency interval 5–40 Hz will be mainly calculated.

Figure 16. Acceleration spectrums: (a) spectrum of the vibration source replacement point (R); and
(b) spectrum of the third floor measuring point (D−P2).

According to the RTR, the traffic−induced vibration data at the third floor measur-
ing point (D−P2) can be predicted. The time−history data of the prediction results are
presented in Figure 17:

Figure 17. Acceleration time−history of the third floor measuring point (D−P2): (a) traffic−induced
acceleration in third floor measuring point (D−P2); (b) third floor measuring point (D−P2) accel-
eration time−history prediction based on the amplitude−RTR, and (c) third floor measuring point
(D−P2) acceleration time−history prediction based on the RMS−RTR.
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3.4. Evaluate Prediction Accuracy

Because the phase difference between the measuring points is ignored in the prediction
process, the prediction accuracy is generally evaluated by statistical indicators.

The square of the root−mean−square (RMS) can be employed to quantify the average
vibration energy at each measurement point [22]. Hence, this factor is capable of evaluating
the vibration response produced by traffic vibrations. The RMS value of a discrete−time
signal is defined by:

aRMS =

√√√√√ N
∑

i=1
a2(i)

N
(19)

where a denotes the measured acceleration, and N represents the number of data
points analyzed.

The computed results of the maximum and RMS at the third floor measuring point
(D−P2) during the analysis period have been presented in Table 2.

Table 2. Comparison between the predicted and measured acceleration data at the third floor
measuring point (D−P2).

Maximum Acceleration in
Time−Domain (mm/s2)

RMS of Acceleration in
Time−Domain (mm/s2)

Measured value 10.47 0.97
Predicted value of
amplitude−RTR 10.28 0.91

Predicted value of RMS−RTR 10.89 0.94

By comparing the measured data and the predicted one, it can be seen that the
amplitude−RTR can be utilized to predict the vibration of the third floor measuring point
(D−P2) subjected to traffic−induced vibration. The difference between the maximum
acceleration and the real value is reported as 1.8%, and the relative discrepancy between the
predicted acceleration RMS and the real value is about 6.1%. Employing the RMS−RTR to
predict the vibration of the third floor measuring point, the generated relative error between
the maximum acceleration and the real value is 4.5%, and the resulting error between the
RMS and the real value is about 3.1%. The main reasons for the produced error are as
follows: (1) The signal−to−noise ratio of the acceleration data due to the traffic−induced
vibration is poor; (2) The environment of the on−site test is complex, so the measured
signal can be easily disturbed; (3) Only the excellent frequency band is predicted, while the
vibration energy in other frequency bands is overlooked.

The accuracy of the prediction results was also evaluated in the frequency−domain.
The spectrum, 1/3−octave of the measured data, and predicted data of the third floor
measuring point are calculated. The predicted results have been now illustrated in Figure 18.
The frequency−domain analysis revealed that both the predicted and measured results can
have good consistency in the predicted analysis frequency band.

In both the time−domain and frequency−domain, the application of the measured
RTR function for examining the vibration of ancient wooden structures exhibited a high
prediction accuracy due to the traffic−induced vibration.
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Figure 18. The frequency−domain calculation results of the measured and predicted values: (a) Power
spectra density, (b) 1/3−octave.

4. Prediction and Evaluation of Structural Safety of the Feiyun Pavilion due to Extreme
Traffic Loading

In order to explore the vibration of the Feiyun Pavilion under the action of extreme
traffic loading and evaluate its structural safety according to the prediction results, we
performed the excitation test of heavy−duty trucks (the vehicle’s weight is 40 tons) on a
road similar to the Houtu road. The acceleration data (horizontal north−south, horizontal
east−west, and vertical components) were collected at the vibration source replacement
point when the vehicle speeds are 30, 40, and 50 km/h. The sampling frequency is 512 Hz
and the recording time period is 30 s. The horizontal east−west acceleration data at the
vibration source replacement point have been plotted in Figure 19.

Figure 19. The acceleration of the vibration source replacement point (horizontal east−west direction).

According to the “Technical specifications for protection of historic buildings against
man−made vibration” [23], the allowable vibration of ancient structures should be con-
trolled by the horizontal vibration velocity at the highest point of the structure. Therefore,
the limit of horizontal vibration velocity at the highest point of the Feiyun Pavilion is
0.18 mm/s.

According to the proposed vibration prediction method, the vibration acceleration of
third floor measuring point (D−P2) caused by a heavy−duty truck can be obtained, based
on the amplitude−RTR and RMS−RTR (Figure 20). The predicted vibration velocity of third
floor measuring point (Figure 21) was obtained by integrating the predicted acceleration
data in the frequency−domain. The maximum predicted vibration velocity of the third
floor measuring point have been provided in Table 3.
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Figure 20. Predicted acceleration time−history of the third floor measuring point (D−P2) under
the heavy−duty truck (horizontal east−west direction): (a) third floor measuring point (D−P2)
acceleration time−history prediction based on the amplitude−RTR; and (b) third floor measuring
point (D−P2) acceleration time−history prediction based on the RMS−RTR.

Figure 21. Predicted velocity time−history of the third floor measuring point (D−P2) under the
heavy−duty truck (horizontal east−west direction): (a) third floor measuring point (D−P2) vibration
velocity time−history prediction based on the amplitude−RTR; and (b) third floor measuring point
(D−P2) vibration velocity time−history prediction based on the RMS−RTR.

Table 3. The maximum predicted vibration velocity of the third floor measuring point (D−P2) under
the action of heavy−duty trucks.

Vehicle Speed (km/h)

The Maximum of Vibration Velocity Based on
Amplitude−RTR

The Maximum of Vibration Velocity Based on
RMS−RTR

East−West Direction
(mm/s)

North−South
Direction (mm/s)

East−West Direction
(mm/s)

North−South
Direction (mm/s)

30 0.12 0.30 0.14 0.31
40 0.23 0.69 0.27 0.75
50 0.24 2.03 0.28 2.13

The calculation results revealed in Table 3 show that even when the heavy−duty truck
passes through the Feiyun pavilion at a minimum test speed of 30 km/h, the structural
vibration has exceeded the specification limit, which will pose a threat to its structural
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safety. Therefore, it is suggested to limit the type and speed of vehicles in the Feiyun
Pavilion areas for protecting the ancient wooden structures.

5. Conclusions

(1) The multipoint RTR was derived, and showed that the RTR function is the inherent
property of the structure and does not alter with excitation load energy and frequency;

(2) Based on the RTR function, a vibration prediction method suitable for the ancient
wooden structures subjected to traffic−induced vibration was proposed. By compar-
ing with the measured data, the prediction results represented a good accuracy in
both the time and frequency domains;

(3) The structural vibration of the Feiyun Pavilion due to extreme traffic loads was
predicted, and the corresponding structural safety was evaluated according to the
“Technical specifications for protection of historic buildings against man−made vibra-
tion”. The calculation results reveal that in the Feiyun Pavilion area, it is necessary to
restrict the type and speed of vehicles to protect the ancient wooden structures from
traffic−induced vibrations.
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Featured Application: The review presented in this work has practical application to the concep-

tion, development and refinement of new technologies and visualisation frameworks pertaining

to railway tunnel subsurface inspection. Subsequent application to the development of prototype

self-sustaining digital twin tunnels also presents opportunity. In both cases, practical end user

benefit would be improvement to the clarity and comprehensiveness of subsurface inspection

datasets, better informing targeted maintenance strategy planning.

Abstract: Railway Tunnel SubSurface Inspection (RTSSI) is essential for targeted structural mainte-
nance. ‘Effective’ detection, localisation and characterisation of fully concealed features (i.e., assets,
defects) is the primary challenge faced by RTSSI engineers, particularly in historic masonry tunnels.
Clear conveyance and communication of gathered information to end-users poses the less frequently
considered secondary challenge. The purpose of this review is to establish the current state of the
art in RTSSI data acquisition and information conveyance schemes, in turn formalising exactly what
constitutes an ‘effective’ RTSSI visualisation framework. From this knowledge gaps, trends in leading
RTSSI research and opportunities for future development are explored. Literary analysis of over
300 resources (identified using the 360-degree search method) informs data acquisition system op-
eration principles, common strengths and limitations, alongside leading studies and commercial
tools. Similar rigor is adopted to appraise leading information conveyance schemes. This provides
a comprehensive whilst critical review of present research and future development opportunities
within the field. This review highlights common shortcomings shared by multiple methods for RTSSI,
which are used to formulate robust criteria for a contextually ‘effective’ visualisation framework.
Although no current process is deemed fully effective; a feasible hybridised framework capable
of meeting all stipulated criteria is proposed based on identified future research avenues. Scope
for novel analysis of helical point cloud subsurface datasets obtained by a new rotating ground
penetrating radar antenna is of notable interest.

Keywords: railways; tunnel; subsurface; inspection; visualisation; ground penetrating radar; 360GPR;
structural health monitoring; building information modelling; extended reality

1. Introduction

Railway tunnels provide critical transport links for passengers and freight through
terrain otherwise impassable to trains, facilitating time-efficient navigation through moun-
tains, under waterbodies and bypassing human-made obstructions (e.g., buildings, utilities,
mass-transit routes). As confined high-traffic subterranean infrastructure, tunnels are
inherently hostile and dangerous environments, suffering perpetual degradation from
both environmental and human factors (e.g., shifting landmass, extreme weather, above-
ground construction) [1–5] which seed discernible damage to the intrados—the innermost
surface of the tunnel arch [6]—surface and subsurface. In the UK, unlike comparatively
modern highway and metro tunnels, railway tunnels frequently date back to the Victorian
era. These historic masonry structures are inherently weaker than their modern concrete
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counterparts, meaning complex degradation can rapidly develop in the vicinity of seeded
damage. Therefore, detection and hazard-level evaluation of all structural features (assets,
defects) during Railway Tunnel Inspection (RTI) surveys is essential to inform targeted
maintenance, ensuring continued safe and efficient operation. Use of Non-Destructive
Inspection/Evaluation (NDI/E) techniques for Rail Tunnel SubSurface Inspection (RTSSI)
is of paramount importance in modern surveys; however, they are not infallible due to ac-
curacy and clarity limitations. Consequently, undetected seeding and growth of concealed
subsurface defects can complicate or even scrub maintenance attempts, irrespectively
posing serious safety risks that can endanger life. Timely reminders include undetected
microfracture growth which caused catastrophic failure of the Gerrards Cross Tunnel (UK,
2005) [7,8] and two violent crown failures which partially collapsed 18 m of the Yangshang
Tunnel (China, 2017) [9].

Collectively these dangers highlight urgent need for a comprehensive, reliable, repeat-
able, time-efficient and clear RTSSI visualisation framework, based on NDI techniques, for
accurate intrados subsurface feature detection and evaluation. In this work, we review the
effectiveness of current RTSSI-relatable visualisation frameworks, focusing on the increas-
ing capabilities of realistic 3D surveys and discussion of future research opportunities. Our
aims are to highlight common critical limitations of current strategies and propose viable,
pertinent improvements. Following an overview of research methodology (Section 2) we
explore leading NDI methods in RTI for RTSSI (Section 3), before deliberating the issues of
applying heuristic comparisons (Section 4). From this, we formulate criteria for effective
RTSSI visualisation frameworks (Section 5), then appraise the scope of current connected re-
search efforts (Section 6). A discussion of trends and identified findings is finally presented
(Section 7).

2. Materials and Methods

We analyse journal references, practical studies and commercial systems pertaining to
RTSSI-relatable visualisation frameworks. For this purpose, we partition notion of an RTSSI
visualisation framework into two sequential phases: (1) Data Acquisition Approaches;
(2) Information Conveyance Schemes. A subtle remark, note that information is not itself
raw data but the meaning from raw data. ‘The tree holds 5 apples’ is raw data, but knowing
we expect it to hold 20 gives meaning to the data (i.e., the harvest is poor). Context and
analysis turn raw data into useful information.

No prior review work encountered considers both described phases in detail. In
fact, we found only two literary reviews directly related to RTSSI [10,11]. Both principally
analyse literature concerning phase (1), of which [10] is the only dedicated review article.
However, being published in 2015, it now lacks current relevance due to technological
advancements. Discussions of ROBO-SPECT (RS) are the only RTSSI-specific scheme we
do not consider outdated, but consideration will only be paid its most recent publica-
tions. The 2015 review provides a comparative ‘baseline’ for discerning small updates
on already established methods from genuinely novel RTSSI innovations. Our review
focuses on the latter as this provides greater benefit to current researchers and practitioners,
with [10] providing historic reference. By contrast, we note although [11] is the more recent
publication, it relies on many references previously provided in [10]. Our observations
clearly necessitate creation of a novel review addressing both phases of RTSSI visualisation
framework development, spanning research projects and commercial systems documented
between 2015 and 2021.

Our review procedure is illustrated in Figure 1 and draws upon knowledge from over
300 information resources. We formally cite 255 primary resources (e.g., reviews, articles,
proceedings, etc.). Upwards of 60 secondary resources (e.g., internal reports, cooperate
multimedia, web-resources, etc.) provide further insight, however are not formally ref-
erenceable Owing to the fundamental dependency phase (2) has on phase (1), materials
considered have frequently contributed to discussion of both areas. As a conservative
estimate, the distribution of total literature is approximately 67% across phase (1) and
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55% across phase (2), with 33% providing contextualisation. Maximal crossover is ap-
proximately 69%. Academic publications are obtained by 360-degree searches of journal
articles and conference proceedings through databases including IEEE Xplore, Springer,
MDPI and Google Scholar. Materials concerning commercial technology solutions are
primarily sourced from the relevant corporate organisations’ website, system manuals
and any associated technical papers. Keywords recurringly searched include: “Railway
Tunnels”, “Structural Health Monitoring”, “Subsurface”, “Defects”, “Computer Vision”,
“Visualisation”, “Human Computer Interaction”, “LiDAR”, “Photogrammetry”, “Ground
Penetrating Radar” and “Extended Reality”. For a detailed breakdown of key references,
see Appendix A.

Figure 1. Flowchart of reviewing procedure prescribes handling, analysis and management of
resources, alongside providing a rigorous procedure for appraising the effectiveness and scope of
frameworks considered.
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3. RTI Data Acquisition Methods

To gauge current state of the art in RTSSI-relatable visualisation frameworks, we
first consider current leading subsurface data acquisition methods. Note that data acqui-
sition must logically precede information conveyance in all conceivable frameworks by
chronological reasoning.

3.1. Visual Methods

Visual assessment is the longest-established NDI method for RTI and is still widely
adopted today, particularly across the UK and Chinese rail networks [12,13]. We subdivide
methods into two classes: (i) Traditional and (ii) Modernised. Traditional evaluation is
exclusively based on engineers’ learnt association between visual indicators (e.g., work-
manship inconsistencies, material fatigue hallmarks) and fault likelihood. Problematically,
engineers infrequently share similar extents of practical experience, resulting in high sub-
jectivity. Crosschecks and multi-pass surveys can partially reduce accuracy and consistency
variations but take significantly longer to implement at increased resource cost, closure
times and rail worker risk. Handwritten notetaking ambiguity, incompleteness and in-
herent susceptibility to human error also present issues for later analysis. They entice
misinterpretation, causing unnecessary delays and disruption. However, being low ex-
pense and reasonably accurate (if performed by more experienced engineers), coupled with
human-aptitude at informed predications from non-structural information (e.g., history of
construction practices); traditional methods can time-efficiently localise visibly degraded
quadrants requiring repair.

Modernised methods mostly utilise Close-Range Photogrammetry (CRP) to provide
referenceable intrados imagery. Units commonly employ RGB optical cameras mounted on
moving platforms for stability and time-efficiency. These include: Pushcarts/Rail-Trolley
(RT), Road-Rail Vehicle (RRV) and Robotic Traction Unit (RTU). Merging resultant over-
lapping orthophotos via mosaicing [14,15] allows tunnels to be ‘unwrapped’—permitting
analysis in 2D—although we more frequently find studies adopt 3D CRP topography
model reconstruction via ‘Structure from Motion’ (SfM) algorithms [16–19].

A noteworthy recent innovation includes ‘Digital Imaging for Condition Asset Mon-
itoring System’ (DIFCAM) [20]; an RRV-mounted optical array deigned to reduce crew
sizes and inspection durations. Although 2014 marks DIFCAM’s last major study [21],
scope of its successor project DIFCAM Evolution [22] discusses subsurface imaging and
automated defect recognition technology integration. However, due Visual assessment is
the longest-established NDI method for RTI and is still widely a lack of available details or
recent publication activity, we reside this to speculation only. Of comparable interest, [23]
presents a ‘Moving Tunnel Profile Measurement’ system (MTPM-1) which deploys a novel
rotating camera for CRP that tracks a translating laser target to achieve swift 3D capture
of a 100 m tunnel in 3 min. Use of a more lightweight camera is necessary for smoother
rotation and reduction of prevalent lens-distortion.

Overall, visual methods provide extensive surface inspection prospects but are im-
practical for subsurface inspection since tunnel intrados’ are opaque, except where defects
have already exposed the subsurface. For a summary of defect types see Section 6.1.2
and consult ‘Ring Separation and Debonding’. We believe proposed revisions of MTPM-1
show promise and would further benefit from fusion with automatous RTU locomotion
described in [24] to facilitate 24/7 remote deployment.

3.2. Acoustic Methods

Subsurface features modify the characteristics of propagating soundwaves. Acous-
tic methods pulse predefined waveforms into the tunnel intrados and analyse resultant
distortion and delay to identify audible indicators of defects. Acoustic methods can be
subdivided into Ultrasonic Testing (UST) and Infrasonic Testing (IST). In UST, reductions
in travelling pulse velocity correspond to elastic deformation of defected regions [25,26];
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contrastingly for IST, defects are indicated by high resonant frequency components in
returning pulses [27].

We only encountered two research groups directly applying UST to tunnel subsurface
inspection. In [28], UST is extremely time-inefficient, requiring 9–25 min to scan 1m
of tunnel wall and necessitating use of a preliminary GPR scan (Section 3.6) to localise
suspected features. Likewise, despite robotic automation, UST scans performed by tunnel
profiler ROBOSPECT achieve comparably inefficient durations of one hour to scan 6m [29]
and are optimised for surface level crack and spall detection only [30,31]. Evidently, UST
can be considered ill-suited for RTSSI, where surveys must be swift to minimise periods of
tunnel closure.

IST proves more useful for RTSSI. Traditionally, hammer-strike emissions are per-
formed by experienced human operatives who detect audible defect indicators ‘by ear’
alone, but those remaining are few, approaching retirement and are not being replaced.
Faster robotic schemes are now preferential, boasting improved high level access achieved by
mounting hammers to robotic arms [32–35] on Variable Guide Frames [36] and UAVs [37,38].
We notably uncovered a unique non-contact infrasonic UAV system [39] successfully induc-
ing hammer-strike reminiscent flexural vibrations in infrastructure at distances of up to
5 m, for which application to remote-RTSSI presents an interesting research venture.

Detrimentally, inherent reliance on human interpretation of audio-spectra (which
do not physically resemble subsurface features they convey) critically limits the insight
non-specialist end-users can draw from IST without costly training or additional contextual
metadata (e.g., maps of striking locations).

3.3. Laser Methods

Terrestrial Laser Scanning (TLS), also termed LiDAR (Light Detection And Ranging),
utilises directed lasers to scan the visible tunnel intrados, generating dense 3D point clouds
(Figure 2a) at up to 1 × 106 datapoints per second [40–43]. Visible light impulses reflect
with variable intensity informing relative distances. However, datapoints lack classification
labels and do not penetrate the subsurface. This makes segmentation of tunnel features
challenging [44], but does permit direct insight into subsurface condition (e.g., profile
distortions indicate abnormal strains) [45]. Pursuit of TLS integration with counterpart
penetrating NDI methods marks an emerging avenue of long-term research. We note that
the development of a standardised, efficient and reliable method to perform the essential
alignment of multiple point cloud datasets—to form a unified digital environments—will be
a key milestone for innovators to achieve before practical deployment becomes mainstream
RTSSI practice.

Returning to standalone laser methods, we found TLS-RTI studies and commercial
contractors most commonly deploy FARO® FOCUS scanning modules [46–49] (Figure 2b)
or the Z+F Profiler® 9012 [50–52] to assimilate RGB optical photography for improved
end-user navigational ease in recovered point clouds. Noteworthy innovations include
an automated deformation detection assembly [11], which utilises a novel Circular Laser
Scanning System (CLSS), highlighting the practicality of adopting circular sensing arrays
that complement natural tunnel curvature.

Notable innovation is showcased in the Tunnel Monitoring and Measurement Sys-
tem (TMMS) developed by [52]. The prototype visualisation framework utilises a Z+F
Profiler® 9012 mounted on a bespoke rail trolley (Figure 2c) to pass RGB LiDAR tunnel
point clouds and a ‘roaming video’ feed of intrados condition to an engineer’s tablet PC.
The developed hardware bares strong similarities with a similar mobile TLS apparatus
used in [49] employing a FARO X330 scanner. Validation trials in China’s Zhengzhou Metro
network demonstrate practical deployment capability but also relay that primary functions
of ingress and cross-sectional deformation detection suffer noteworthy accuracy and stabil-
ity reduction when applied to non-circular tunnel profiles (e.g., horseshoe, elliptical, etc.).
TMMS therefore flags the importance adaptability in the design of new RTSSI solutions for
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wide-scale deployment, particularly on older rail networks (e.g., UK) which adopt multiple
‘standard’ tunnel cross-section variants.

Figure 2. TLS for tunnel inspection. (a) 3D point cloud returned from a TLS metro tunnel sur-
vey [52]; (b) A FARO® FOCUS 350 scanning module, commonly deployed for infrastructure surveys;
(c) TMMS rail-trolley transports a Z+F9012 to capture a TLS point cloud of a Zhengzhou metro tunnel.

3.4. Thermographic Methods

Subsurface faults modify thermal emission patterns of nearby interior tunnel surfaces,
causing abnormal variations. Visualising temperature distribution profiles (Thermom-
etry) facilitates localisation of suspected near-surface features (Thermography) [53,54],
but recovery of specific attributes defers to higher quality UST or localised GPR imaging.
Active Thermography (ACT) heats surfaces using halogen lamps [55], air guns [56] or
inductive-heating elements [57] to induce exaggerated thermal responses. Abandoned
testing by [58] and remarks of [59] affirm that heating element operation for RTSSI would
incur impractical cost and could debond masonry, explaining its literary absence. We find
use of infrared camera arrays for passive Infrared Thermography (IRT) more commonplace,
owing to swifter and less costly implementation. Leading systems identify both air and
water filled voids, with individual scans displayable as 2D panoramic imagery [53] or
pioneering 3D mesh overlays on digital structural models rendered using TOSCA-FI [60]
(Figure 3) or Augmented Reality [61] (Section 6.2). Despite recent work, Thermography
still exhibits persistent limitations [54] undermining direct application to RTSSI:

• Results are highly sensitive to ambient temperature conditions which diminishes
anomaly contrast (e.g., daily and seasonal variation);

• Thermal insulation and heat-resistant coatings used for tunnel temperate regulation
and fire resilience can skew results. High thermal dissipation can easily restrict
penetration d < 30 mm [62];
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• Subsurface water content variation (e.g., increased permeation following rainfall or
snow) can mask or exaggerate thermal profiles of faults;

• Enclosed, curved tunnel geometry restricts available viewing angles and confine
results to 2D, even in a 3D mesh overlay, making inference of feature depth and
physical form very challenging even for experienced operatives.

Figure 3. TOSCA-FI Software Platform: 2D heatmap overlays on a 3D digital bridge model [60].

3.5. Gravity Methods

Gravity Surveys (GS) use portable gravimeters [63], placed at regularly spaced sam-
pling locations, to measure subtle variation in gravity surrounding railway tunnels [64].
Anomalies observed in returned Complete Bouguer Anomaly (CBA) curves inform subsur-
face material composition [65] and indirectly, structural health assessment. Regional trends
in subsurface density conveyed by CBA curves can vary across scales comparable to the
tunnel itself, granting extensive inspection coverage. Likewise, localised negative field dis-
placements can indicate the presence of irregular low density regions, strong indicators of
voids and deformation zones [66–68]. However, few common defects exhibit substantially
large density variations (compared to their surrounding landmass) that would noticeably
influence a CBA curve, which despite informing the general nature of the subsurface,
does not comprehensively nor clearly visualise subsurface features themselves. Moreover,
localising large features relative to the tunnel (i.e., in front, behind, left, right) is further
complicated by the structure’s cylindrical profile. This makes modelling the corresponding
gravity field a multi-solution problem, introducing significant uncertainty and greatly
increasing involved computation efforts [69].

3.6. Radar Methods

Ground Penetrating Radar (GPR) directs radio pulse emissions at the tunnel intrados,
which penetrate and partially backscatter off strong dielectric gradients in the subsurface
associated with features of interest [10,70–73]. Pulsed Radar (PR) samples consecutively
emit wideband waveforms to measure backscatter in the time domain. Step-Frequency
Continuous Wave (SFCW) radar incrementally sweeps an emission sinusoid through a pre-
defined frequency band; the Fourier Spectrum of the returning signal is directly ascertained
in the frequency domain by frequency-wise inspection of return signal strength [74]. In RTI,
systems fall under three categories:
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• Trolley-Mounted [75–77] (Figure 4a)—Units commonly feature interchangeable air-
coupled antenna of differing frequencies to facilitate trade-off between penetration
depth and output image resolution [28]. However, motorisation is infrequent, scans
are unidirectional (typically railbed only) and offer no protection to operatives;

• Handheld [78–81]—Compact ground-coupled scanners guided by hand can achieve
real-time scanning of curved tunnel sidewalls and crown. Typically restricted by
limited penetrative depth (d < 50 cm), coverage speed (under m2 h−1) and gantry
requirement to reach high surfaces make units impractical for full RTI;

• Vehicle-Mounted [82–86] (Figure 4b)—Multidirectional fixed antenna units attached
to locomotives, rolling stock or RRVs. Although capable of data capture at speeds
ranging from to 50–30 km h−1, fixed directionality guarantees blind spot and air-
coupling reduces achievable penetrative depth.

Figure 4. A selection of leading GPR systems. (a) Ballast fouling inspection trolley with selectable-
frequency GPR antenna module [77]. (b) Loco-mounted fixed directional air-coupled GPR antennas.

Radargrams (B-scans) traditionally convey survey output, which although encoding
multiple feature characteristics (e.g., depth, extent, orientation, heterogeneity, etc.) [70,73],
demand extensive digital filtering [87–91] and may still contain abundant false-artifacts
(e.g., ringing effects from rails, airwaves from overhead surfaces) [92–94], making them
notoriously unintuitive. Increasing clarity via orthogonal intersection [95,96] (Figure 5a)
and parallel stacking [97,98] (Figure 5b) of B-scans to form C-scans is now well-established
practice in many commercially available GPR processing software packages [99–103]. Col-
lectively, we denote this pseudo-3DGPR. We stipulate ‘pseudo’ to emphasise the inherent
information loss resulting from 2D projections of 3D tomography. Beneficially, C-scan
datasets can exploit time-slicing [104–106] (Figure 6a,b), in situ transparency filtering [107]
and false-colouration [108] to improve conveyance of 3D forms. More recent investigations
into true-3D volumetric reconstruction [98,109–117] (Figure 6c) show promise for advances
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towards practically viable fully immersive GPR-based subsurface inspection surveys (un-
dertaken in fully digitised virtual survey environments) [80,118–122]. Whilst conceivable
and under trial, achieving mainstream commercial deployment will require blind spot
alleviation through adoption of rotary scan motion complementary to tunnel curvature,
possibly similar to the superposition of concentric cylindrical ‘look-ahead’ radargrams
pioneered by the TULIPS system [123] for tunnel excavation monitoring. Pursuit of blind
spot elevation is therefore of critical importance if comprehensive RTSSI profiles are to
be captured.

Figure 5. Principal methodology for combining planar radargrams to form pseudo-3DGPR visuals. (a)
Orthogonal Intersection: B-scans meet at 90◦ helps focus attention on the central region. (b) Parallel
Stacking: Aligning B-scans as slices of a cuboidal volume helps identify reoccurring targets [97].

Figure 6. Mechanisms for improved contextualisation of 3D GPR datasets. Time-slicing performed
(a) horizontally [100] or (b) vertically [102] can improve perception of relative depths and 3D feature
shape. (c) Volumetric reconstruction increases feature faithfulness to reality, reducing human memory
dependency, but processing remains highly involved [103].

3.7. Robotic Methods

Robotic systems reduce necessary human involvement in RTI, thereby beneficially
reducing human error during data acquisition (e.g., mis-recordings due to subjectivity or
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lapses in concentration). Scope for varying degrees of autonomy further reduces depen-
dency on onsite human presence, thereby increasing crew safety and cutting overhead costs.
However, we must remember robotic methods share the limitations of their constituent sen-
sors and also exhibit their own unique set of challenges (e.g., collision avoidance, recovery,
stabilisation, power management, miniaturisation).

3.7.1. Unmanned Aerial Vehicles

Unmanned Aerial Vehicles (UAVs) have become increasingly popular for tunnel in-
spection owing to their low cost designs, programmability and exceptional manoeuvrability,
which has motivated in excess of $4 billion global investment in UAV technology devel-
opment for infrastructure inspection [124]. However, practical performance of current
UAVs remains limited by poor onboard charge retention [125]; stabilisation challenges
from near-wall turbulence and common dependency on GPS. Note that being subterranean,
Global Positioning Systems (GPS) typically struggle to operate reliably in tunnels. [126,127].
Although, we did find considerable recent research applying collision-aversion proto-
col [128,129] and ‘smart pathfinding’ [130–132] (e.g., PLUTO [133]) to develop autonomous
UAVs [134–137]. However, backup pilots remain necessary which add costs and safety-
risks [137]. Furthermore, no commercially available autonomous UAV has yet to be de-
veloped specifically for RTSSI, despite similar systems existing for hydroelectric penstock
surface level inspection [138].

Being airborne, UAVs could quickly transport RTSSI sensors where articulated booms
cannot reach, for instance UAV-SWIRL hovers inside vertical ventilation shafts [125,139].
However, most systems still favour Optical Photometry and LiDAR sensing [140–142],
permitting only implicit subsurface measurements. Of novel importance, we discuss
several significant exceptions developed since 2015. These include development of new
UAV-mounted GPR prototypes [143–145]; we found one commercial system [146] capable
of 10 m penetration, however it is unclear if this incorporates UAV altitude.

In addition, hybrid locomotion UAVs now encompass:

• Fixed Anchor-Point Docking [147–150]—Sustains surface contact for IST and UST but
requires highly involved pre-installation of anchors;

• Pivoting RTUs [151] (Figure 7)—Tracks enable uninterrupted contact and continuous
one-way surface coverage but increase weight and power drain, limiting survey
completeness;

• Negative Pressure Wall-Climbers [152,153]—Faster than track-based RTUs but require
large flat contact surfaces, hence curved tunnel geometry risks UAV slip and hazardous
control loss;

• Fully Actuated Configurations [154,155]—Provides best all-round solution, providing
unrestricted multidirectional movement even on curved surfaces, but is liable to
near-surface turbulence.

Figure 7. A recent novel innovation in hybrid locomotion UAVs. The pivoting traction crawler UAV
performs IST on angled infrastructure surfaces inaccessible to engineers without gantries [151].
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3.7.2. Adaptive Robots

We consider adaptive tunnel inspection robots to be devices capable of automatic
geometry, operation or locomotion mechanism modification that combats demanding envi-
ronmental conditions. As developments found were primarily proof-of-concept prototypes,
current systems lack direct applicability to RTSSI without significant refinement efforts.

Nonetheless, we shall consider how such systems could be of practical future benefit
in RTSSI. Foremost, adaption permits infiltration of inaccessible survey areas (e.g., drainage
pipe interiors, capped shafts), increasing survey coverage. Moreover, units can swiftly
traverse complex terrain (e.g., steps, rail tracks, damaged surfaces, angled walls) without
human interaction, inviting remote inspection innovation potential.

Reconfigurable UAVs [156,157] fold (Figure 8a) to pass though narrow channels before
unfolding (Figure 8b) to survey unknown void-like environments, which could be applied
to preliminary surveys of hidden shafts via small diameter drill holes in capping facades.
However, with more moving parts, damage likelihood during transit or execution is
increased, potentially trapping systems behind walls incurring excess repair, replacement
or recovery costs. Self-disassembly [158] could provide an easier route towards recovery.

Figure 8. Folding UAV PROMETHEUS for subterranean inspection [156] can enter boreholes (a) to
explore inaccessible voids (b) of potential benefit for probing hidden shafts in RTSSI.

Burrowing inspection devices [159] could create subsurface channels, then deploy
‘snake robots’ [160,161] fitted with endoscopes or fibrous sensing elements to directly
image subsurface condition, detect ground movement [162] or moisture content [163].
However, burrowing is destructive and could exacerbate damage to already defective
quadrants of intrados. Alternate use of modular configurations [164,165], compact step-
climbers [111,166,167] or deformable ‘soft robots’ [3,168,169] fitted with NDI sensors could
traverse small but pre-existing subsurface channels (e.g., pipes, vents, data cables) avoiding
destructive burrowing. Soft robots uniquely could contort to bypass obstructions for
multidirectional inspection of clogged drainage pipes. However, extensive development
remains necessary to form a coherent self-arrangement of modular robots [170–174] capable
of emulating established NDI techniques.

3.8. BIM-Integration

Building Information Modelling (BIM)represents a new paradigm for large structure
lifecycle information management [175,176]. Current survey outputs represent one-way
information exchanges between the physical tunnel environment and reconstructed digital
models. By contrast, Digital Twin Tunnel (DTT) BIMs would facilitate two-way information
exchange from any point in time during its perpetual update cycle. In two-way exchange,
state changes in physical tunnel prompt reactive changes in the digital tunnel informing
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future maintenance, which cause further state changes in the physical tunnel and so on and
so forth [177].

We find multiple recent experimental rail tunnel-BIM studies exist [178–182], typically
deploying laser methods to profile and categorise trackside assets (Figure 9) but only [183]
directly approaches RTSSI, developing a prototype AI-assisted BIM for ingress detection
(developed on the Amber Inspection Could). Problematically, none currently exhibit ad-
equate automation to be considered idealised DTTs. By inference, visualisation quality
and overheads would clearly benefit from the significantly increased data pools and opti-
mised network architectures anticipated [184]. However, challenges remain. Existing BIM
architectures frequently lack specialisation to account for unique RTSSI challenges, such as
complex terrain deformations and changeable subsurface geological conditions [182,185].
Reoccurring incompleteness of feeder data from NDI methods further limit BIM efficacy
for RTSSI, despite recent improvements in multi-label datasets recovery [186–189].

Evidently, BIM integration for RTSSI will be essential for developing the first self-
sustaining DTT [188], but insufficient without complimentary improvements to survey
completeness.

Figure 9. BIM for RTI. ‘As-is’ BIMs [181] frequently adopt LiDAR point cloud segmentation (via
RANSAC and Supported Vector Machine methods) to label trackside assets both (a) outside and
(b) within the tunnel environment [41].

3.9. Other Methods

Aforementioned NDI methods are most commonly deployed in routine RTSSI surveys
based on encountered literature, motivating distinction from (i) more antiquated methods
(e.g., invasive, inefficient, overly localised), (ii) less established experimental practices
and (iii) schemes for real-time subsurface monitoring. In (i), we group: Borehole/Drill
Core Sampling [190,191], Electrical Resistivity Tomography (ERT) [192–195], Endoscopic
Probing [196,197] and Schmidt Hammer Strength Testing [53,198]. In group (ii), we gather:
Radiography/Muon Tomography [199,200] and multiple additional prototype robotic
RTSSI systems [14,166,201–204]. Group (iii) accounts for Time Domain Reflectometry
schemes [205,206] and other Embedded Sensors [207].

4. Heuristic Comparisons of RTI Methods

Having discussed key attributes of leading RTI methods for RTSSI in isolation, we
now direct the reader to our more comprehensive summary provided in Appendix A. It is
tempting to directly compare advantages and disadvantages, ‘ranking’ methods to find an
‘optimal’ choice—a process we’ll term ‘heuristic comparison’. Noting that railway networks
must balance inspection funding, duration and result quality, whilst researchers similarly
prefer to invest effort in developments that return greatest impact, both for practical surveys
and advances to the research field. This optimisation problem initially appears well-posed
but this is not the case.
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We find heuristic comparisons lack natural scaling. We may regard ‘scaling’ as a fixed-
reference, quantifiable metric for comparing the importance of two characteristics. We draw
parallels with use of numbered scales on questionnaires gauging attitudes (e.g., perceived
risk between different dangers) [208]), therefore frequently suffer from:

1. Ambiguity maintaining a consistent comparative ground throughout;
2. Contextual variation between significance of comparative grounds.

Consistency ambiguity typically arises during first evolution of an argument (e.g.,
spoken discussion in planning meetings):

“Let’s compare the accuracy of subsurface 3D visuals produced by LiDAR and pseudo-
3DGPR. The latter are clearly more accurate because LiDAR can only indirectly visualise
the subsurface (cross-sectional deformation). But the former is more accurate because
deformation appears as point cloud deformation, whereas physical features are not actually
hyperbolae-shaped as they’re shown in pseudo-3DGPR”.

Note that both comparisons are valid and concern accuracy, but lack a definitive
conclusion. The comparison ground for ‘accuracy’ subtly shifts from data-type to data-
faithfulness. We argue the origin is vague definition of what constitutes an ‘accurate’ visual
in the comparison posed. By contrast, contextual variation is more obvious:

“The spatial resolution of gravitational surveys would be inferior to Thermography for
detecting small voids in an operating tunnel, but superior for strata mapping during
construction”.

Evidently, a more robust rationale is required.

5. Criteria for an ‘Effective’ RTSSI Visualisation Framework

So far, we have found heuristic arguments unsatisfactory for appraisal of RTI methods
in a RTSSI context. Significant disparity exists between respective operating principles,
deployment methodologies and output conveyance; not least in the inherent multifaceted
and context-dependant grounds for suitability and performance comparison. Two specific
examples would include: (i) the nature/variety of detectable features and (ii) assessment
timescale.

The basis for our criteria is twofold.
First, we recognise each RTI method discussed exhibits at least one critical limitation

(Table 1). Logically, an effective RTSSI visualisation framework would not share any,
meaning an innovation directly addressing either would have significant impact on the
current RTI hardware market. This motivates our novel formulation of well-defined but
sufficiently general criteria for an ‘effective’ RTSSI visualisation framework. We illustrate
the benefits visually using a conceptual network diagram (Figure 10).

Table 1. Main current issues facing NDI methods.

Method Critical Limitations for RTSSI

Visual Lack necessary penetrative capability to directly visualise subsurface.
Laser

Therm.
Information loss (2D projections of 3D
features) limits survey faithfulness.

Skew from ambient temperature variations.
Acoustic Inefficient implementation.

Radar
Curvature induces blind spots.
Visuals lack interpretive clarity.

Gravity Struggles to resolve localised features.

Robotic
Systems share the limits of their ancillary
sensors.

Onsite supervision still required.
Majority of systems are still concepts or early prototypes.

BIM-Int. Architectures frequently lack
sufficient optimisation to react to RTSSI data dynamically.
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Figure 10. Using criteria greatly simplifies comparison networks. (a) Heuristic comparisons are
irregular and multi-directional networks. (b) Criteria inclusion collapses the network to be regularised
and unidirectional.

Second, our creation of a Category Connection Matrix (CCM) from encountered liter-
ature (Table 2)—inspired by the hybrid workflow matrix presented in [209])—highlights
emerging research trends, which we use to infer future research avenues in RTSSI. The
categories extracted inform where research attention is currently most directed. Further-
more, collectively, motivation for all relevant studies is to contribute to producing the most
effective RTSSI visualisation framework possible. Thus, each identified research category
must align with at least one criterion.

From this, we formulate our proposed criteria for an ‘effective’ RTSSI visualisation
framework, which considers:
Data Acquisition:

1. Completeness—Uninterrupted scan coverage should be achieved to record the full
extent of the influential regions of the tunnel subsurface. Current methods either lack
deep penetrative capability or exhibit bind spots due high localisation of scans or
geometry curvature.

2. Duration—Survey execution should balance acquisition speeds with recovered data
quality (i.e., resolution, distortions) ensuring inspections and repairs cause minimal
network disruption. A rapid low-quality scan limits inspection closure, but misin-
formed repairs take longer to fix and vice versa.

Information Conveyance:
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1. Accessibility/Interpretive Clarity—A railway network end-user who is not a spe-
cialist in the utilised RTSSI technique(s) (e.g., planner) should independently be able
to understand and make informed decisions based on visualisation output (consider
radargrams the antithesis to this, containing considerable but mostly incomprehensi-
ble information).

2. Faithfulness—Inconsistency between the physical subsurface geometry undergo-
ing inspection and corresponding representation within the visualisation medium
should be kept to a minimum. An example of unfaithful conveyance is how overhead
structures can confusingly appear as below-ground features (airwaves) in radar-
grams [93,210].

3. Interactivity—Visualisations should react intuitively to end-user engagement in ways
that make surveys more ergonomic, efficient and versatile. Again consider radargrams;
time-slicing in pseudo-3DGPR conveys depth more ergonomically than viewing am
isolated B-scan.

Understandably, developing fully effective frameworks will take time, but we can
make informed predictions. In consulting phase (1) literature; current GPR technology
offers greatest versatility for RTSSI. Hence, we anticipate earliest industrial impact will
likely stem from its unification with pre-existing conveyance innovations such as interpola-
tive [111,116] and AI-assisted 3D feature recovery (e.g., DepthNet [114]).

Table 2. Category Connection Matrix (CCM).

Categories Identified Research Avenues

Method A B C D E F G H
Visual • �� �� �� �� �� �� •

Acoustic ◦ ◦ ◦ • �� ◦ ◦ ◦
Laser �� �� �� • ◦ �� �� ��

Therm. ◦ ◦ �� • �� ◦ ◦ ◦
Gravity ◦ ◦ �� ◦ ◦ ◦ ◦ ◦
Radar ◦ �� �� ◦ �� �� ◦ ��

Robotic • �� ◦ • ◦ ◦ ◦ ◦
BIM-Int. ◦ ◦ ◦ ◦ �� ◦ �� ��

Avenue Codes: A: Autonomous Tunnel Surveys; B: Alternatives to Fixed-Direction Sensor Arrays; C: Surface-
Subsurface Tunnel Survey Fusion; D: Automated Tunnel Feature Detection; E: Tunnel Subsurface Feature Severity
Ranking; F: Volumetric Tunnel Feature Reconstruction; G: BIM/DDT Development; H: XR/RTI Integration.
Icons: (◦): Indicates a literature gap due to critical method limitations or a currently unexplored research avenue.
(��): Indicates works connected to an RTSSI research avenue exist but are indirectly related, signifying opportunity
for new research via novel idea synthesis either amalgamated from or inspired by present literature. (•): Indicates
works connected to a RTSSI research avenue exist and are directly related, signifying relevant practical research is
proposed, presently underway or considered surplus to requirement.

6. Steps towards Criteria Fulfilment

Relevant research is already underway targeted at fulfilling our outlined criteria for
an effective RTSSI visualisation framework.

Regarding the completeness criterion, we draw attention to the significant recent devel-
opment of rotating, air-launched GPR antenna by Railview Ltd. (UK) [211] (Figure 11). Com-
pared to fixed array GPR systems, including the Zetica Advanced Rail Radar (ZARR) [83,212]
and the IDS SafeRailSystem (SRS) [84], the helical scanning trajectory of rotating antenna
more closely mirrors naturally curved tunnel geometry, facilitating more comprehensive
360-degree RTSSI imaging, at competitive depths.
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Figure 11. Unlike conventional fixed direction antenna (a) which typically only image the railbed;
rotating GPR antenna capture 360-degree subsurface profiles including tunnel sidewalls, haunch and
crown (b).

Lastly, we consider the conveyance criteria. Helical scans directly capture 3D RTSSI
geometry in situ as 360GPR datasets, more akin to laser-methods than pseudo-3DGPR
(requiring B-scan stacking or intersection). Ergo, forthcoming analysis of 360GPR presents
an interesting opportunity for new research into volumetric feature reconstruction for
RTSSI.

Thus, 360GPR has scope to form a visualisation framework meeting at least three of
our five effectiveness criteria, feasibly disrupting the current RTSSI hardware market. At
this point, owing to the larger proportion of relevant literature focused on addressing our
conveyance criteria, we discuss the main innovations this review encountered into feature
identification within subsurface datasets (Section 6.1) and dynamic interaction between
visualisations and end-users (Section 6.2).

6.1. Automated Feature Detection and Evaluation

If an end-user cannot clearly interpret subsurface data, the inspection yields little
useful insight into tunnel structural health or targeted maintenance. Detecting degradation
indicators is critical for localising damage, whilst characteristic evaluation (e.g., location,
extent, maximal depth, etc.) informs repair urgency. Searching RTSSI visuals manually
is impractical: tunnel datasets are cumbersome; defect types are wide-ranging through
a tunnel’s operational lifespan; human cognition speeds are slow and our evaluation is
subjective. Unintuitive data visualisations only compound the issue (e.g., radargrams),
explaining why research tackling Automated Feature Detection/Evaluation (AFD/E) ac-
counts for over 1/3 of CCM-featured research connections and encompasses Convolutional
Neural Network (CNN) [213,214] and Deep Learning (DL) [49,215,216] detectors, alongside
severity ranking schemes [217,218]. Scope of feature variety and complexity current AFD
can simultaneously identify with accuracy drew our attention. Restricting our consider-
ation to subsurface studies, a DL image grid workflow flags four distinct features [96]
(manhole, cavity, pipe, heterogeneous soil background), yielding widest feature detection
scope, albeit not concurrently. Studies successfully achieving simultaneous detection of
realistically complex defect configurations [219,220] likewise favoured 2D GPR imagery
but discriminated two types maximum [81]. However, with exception to [96], test environ-
ments featured only assets or defects. This implies GPR-based research is currently leading
developments in AFD and seemingly the upper limits of DL feature detector capability
have yet to be fully explored. Thus, any study classifying over four mixed type (assets,
defects), variety (shaft, void, pipes) or complexity of features would mark a significant
advance in RTSSI-AFD.
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AFE, namely defect severity ranking, proves less researched. Contrary to our initial
expectations of exclusively dictionary-based schemes, of studies found, most now adopt
contextual evaluation via fuzzy logic devices [221,222] and probabilistic analysis [33,223].
We infer more complex evaluation grounds are being considered in parallel when grading
repair urgency, if not yet for RTSSI. For example, many nearby cracks in close proximity
can be of greater concern than one occurring in isolation. Collectively, this suggests devel-
opment of a robust contextual severity ranking scheme for RTSSI would be of worthwhile
pursuit in future research.

ADF/E is clearly transitioning from proof-of-concept simulations to practical deploy-
ment tests. In RTSSI, schemes will need to discriminate tunnel assets from more hazardous
defects, therefore training demands programmer knowledge of common features. For
already aged masonry tunnels, we found no consolidated summary, concerning given
a forecast 30–50% increase in rail-traffic demand by 2050 [224]. We therefore now present
our own bespoke consolidated summary.

6.1.1. Common Assets in Masonry Railway Tunnels

An ‘asset’ denotes any useful or valuable item associated with railway network opera-
tion, encompassing employees, track, signalling, buildings, utilities and civils (structures,
earthworks) [225]. Tunnel assets fall under civils, with any unprotected structurally signifi-
cant entity designated a critical element.

Hidden Critical Element (HCE) is unobservable from at least one side [226]. Locating
HCEs has presented considerable challenges for Network Rail (UK) in RTSSI. We identify
that for current inspection methods, greatest challenge is presented by detection of blind
(concealed but disenable) and hidden (concealed and indiscernible) shafts:

a. Ventilation Shafts—Hollow columns extending from tunnel crown to the surface.
They facilitate air circulation and were originally used to remove material during
construction [227].

b. Maintenance Shafts—To allow simultaneous excavation of multiple faces, many
shafts would be sunk along proposed tunnel routes [228]. Typically infilled or
converted to ventilation shafts, capping frequently conceals them for aesthetics
(processes rarely recorded in writing). Being unreinforced, many have deformed or
partially collapsed.

This is most true for Wales and Western Regions of the UK, following Network Rail’s
failure ‘to deliver on a commitment to identify all hidden tunnel shafts by the end of
2016–2017’ [229] and more recent delays tackling HCE examination schedules in 2019–2020
due to pandemic impacts [230].

As cavities are prime sources of water infiltration, failure to identify hidden shafts
significantly increases risk of accelerated compromise to surrounding structure. Therefore,
innovations towards hidden shaft detection present opportunity for highest new research
impact in RTSSI.

Training detectors to discriminate hidden shafts from other features motivates contin-
ued summary of other common masonry railway tunnel assets:

c Overhead Line Equipment (OLE)—Furthermore, dubbed ‘traction wires’ or the
‘catenary’, these high voltage electrical pickup lines power electric locomotives via
onboard pantograph connectors. Systems can be integrated into older tunnels during
electrification works. Forms include tensioned metallic cables mounted to the crown
and the Rigid Overhead Conductor Rail System (ROCS) [231], which provide more
efficient operation in low-clearance tunnels. Structural weakening can result from
necessary drilling during install, whilst strong electromagnetic fields generated by
the power feed can interfere with data acquisition systems and present line of sight
obstruction during haunch or crown inspections.

d Portals—Reinforced surfaces surrounding tunnel entrances combating outward de-
formation induced by shear stresses from continuous shifting of landmass encircling
the tunnel [232]. Exposed to the elements, portal rigidity deteriorates, risking collapse
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if cracks and displacement are not detected early. Reinforcement schemes include
buttresses, ground anchors, and steel mesh coverage fixed with soil nails [233].

e Refuges—Small arched recesses within the tunnel lining to protect railway workers
from locomotives.

f Buried Utilities—These can include both metallic and plastic water drainage pipes [234],
electrical wiring and telecom cables.

g Trackside Objects—These include signage, signals, electrical junction boxes and
CCTV units.

h Culverts—Small passages allowing watercourses to pass under railway tracks, includ-
ing underground rivers [235]. Old masonry culverts particularly can be weakened
by solution and hydraulic action resulting in partial section collapse, deforming the
railbed above and causing water backlog which floods tunnels.

6.1.2. Common Defects in Masonry Railway Tunnels

Defects constitute any imperfections in the material or form of a structure. Indicative
of degradation and increased failure likelihood under strain. Swift detection in an enclosed
tunnel environment is critical. We provide a brief overview of causes and hallmarks for
common defects in masonry railway tunnels, then reflect on the efficacy of their detection
in modern surveys, highlighting any opportunities for future research:

a. Arch Barrel and Cross Sectional Deformations (Figure 12a)—Shifting tunnel land-
mass induces changeable tensile and compressive forces within arch barrels. This
can trigger sidewall bulging and buckling; haunch distortion; tunnel floor bowing or
side-offset of the crown.

b. Cracks and Fracturing (Figure 12b)—Localised shear forces and vibrations from
rolling stock can split and displace masonry. Damage ranges from hairline cracks
lacking obvious signs of displacement, to large open fractures exhibiting significant
displacement.

c. Water Ingress (Figure 12c)—Rain infiltrates tunnels through shafts and groundwater
propagates through dissolved subsurface joints and fissures (karsts) [236]. Leaching
of mortar begins as water percolates between masonry before flowing down the
sidewall. Lubrication of masonry joints leads to movement of the structure, resulting
in lining deformation. Owing to joint length, significant quantities of ingress can
accumulate, scouring supports and flooding tunnels without proper drainage or
saturated catchpits, as ingress often carries dissolved ochre (acquired during subsur-
face percolation) which forms crystalised limonite deposits [197] that block drains.
Out-flow down sidewalls forms noticeable white streaks emanating from the region
of breech, therefore can be used as indicators of ingress source. However, establishing
subsurface mortar leaching extent is reliant on NDI methods for RTSSI.

d. Open Joints and Perished Mortar (Figure 12d)—Characterised by the deterioration
and eventual absence of mortar between brickwork. As brick tunnels can date back
over 150 years, mortar naturally begins to deteriorate from reactions with moisture
in the bricks, air and subsurface [227,231,237]. This process is accelerated by wash
from nearby ingress, vibrations induced by both rolling stock and air-pressure waves
from passing locomotives.

e. Loose and Missing Brickwork (Figure 12e)—Early onset of spalling and failed
patching repairs can result in loosened or missing brickwork, indicated by brickwork
rubble on the railbed. Individually, gaps pose no substantial loss of structural
rigidity, but can provide opportunity for larger defect growth if not addressed quickly.
Furthermore, if present in tunnel haunch or crown, falling rubble can damage rolling
stock, or cause serious injury to ground crews working below.
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Figure 12. Common defects in masonry railway tunnels: (a) Haunch Deformation; (b) Cracks;
(c) Water Ingress; (d) Perished Mortar; (e) Missing/Loose Brickwork; (f) Spalling; (g) Ring Separation
and Debonded Wall-Section; (h) Frost Heave [238].

f Spalling (Figure 12f)—Perishing masonry on the tunnel intrados in vicinity of the
haunch or crown can be dislodged by gravity, leaving the next layer of brickwork
exposed. Repetition gradually creates rough-profiled recessed quadrants. Bricks in
newly exposed layers lack tarnishing from exposure to soot and locomotive exhaust
fumes, thus a second hallmark is more vibrant brickwork colouration.

g Ring Separation and Debonding (Figure 12g)—Arch barrels contain multiple layers
of concentric brickwork rings. Literature encountered discussed brick tunnels ranging
from 3–15 layers [237,239,240], evidencing significant possible contextual variation.
Ingress, deterioration of intrados mortar and poor quality workmanship can all cause
neighbouring rings to separate within the wall. Gravity pulls innermost layers down-
ward, causing debonding from layers behind forming slit voids (subsurface hairline
fractures). Over time, large voids begin to grow. If near-surface, separating rings
may briefly cause visible cracking of intrados mortar, allowing detection. However,
separations deeper than a single ring are completely invisible to an in-tunnel observer.
With time, large sections of rings can debond, causing arcs of brickwork to fall away
as slabs. Such ‘delamination’ events can deform rails or damage the railbed presenting
a derailment risk. Depending on size, debonding can significantly weaken substantial
volumes of surrounding masonry.

h Railbed Faults (Figure 12i)—Subgrade layers of ballast facilitate even distribution of
rail-traffic weight, ensuring rails remains level on uneven ground to prevents derail-
ments. Displacement induced by ballast fouling [75–77] and frost heave [238,241,242]
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can damage rails and offsets train weight distribution, increasing in-tunnel derailment
risk and subsequent likelihood of major network disruptions.

i Drainage Faults—Tunnels contain integrated pipework and catchment pits to safely
remove excess water and silt. Flooding may occur if pipes become blocked, rup-
ture due to freezing and expansion, or become overwhelmed by intense weather
events [243]. Improvement works can also fail. For example, 18 bolts supporting
a water catchment tray in Balcombe Tunnel (2011) decoupled due to resin failure [244].
Sag reduced tunnel clearance from 0.87 m to 0.3 m posing a dangerous obstruction to
rail-traffic.

Upon reflection, we first note recent studies focus primarily on (and achieve) detection
of three main defects: (i) surface-visible cracks via CRP; (ii) voids via Acoustics, Thermog-
raphy or GPR; (iii) water ingress via Thermography and GPR. By extension, with suitable
modification to enable multi-directional scanning, similar hardware could reasonably de-
tect (i) open joints and perished mortar, spalling, missing brickwork; (ii) ring separation
and debonding and (iii) drainage faults in future applications.

Secondly, we observe that currently cross-sectional deformation can only be directly
imaged by laser methods as they boast 3D point cloud data capture. We note that traditional
visual inspection also detects deformation, but notetaking is inherently far less accurate
than imaging. Although no encountered literature directly utilised laser methods to detect
railbed faults, we may reasonably assume cross-sectional imaging would also provide
usable insight with relative ease.

Finally, we report that no data acquisition method is single-handedly able to detect
each identified common RTSSI defect. This agrees with our findings in Section 3. Discount-
ing Thermography since it cannot directly measure target depth, we remark that GPR has
capability to detect the widest range of defect types (five of nine). Note that direct arrival
waveforms are liable to mask small surface level defects, hence are not included in this
statistic.

To improve this ratio, we believe future research into multi-sensory data acquisition
systems presents high potential impact. A unit amalgamating RGB-CRP (surface imaging),
LiDAR (cross-sectional profiling) and 360GPR (subsurface imaging) could feasibly detect
all defects listed.

6.2. Extended Reality for Dynamic Survey Interaction

We define Dynamic Survey Interaction (DSI) to encompass any information con-
veyance technique that intuitively responds to end-user triggers (e.g., gestures, camera
proximity, movement speed, metadata, field-of-view) [245–247], thereby increasing clarity
of information within a survey and ergonomics of use. DSI attributes fundamentally reduce
application complexity, boosting data usage efficiency and its accessibility to non-specialists,
which had made them common features in Extended Reality (XR) interfaces.

Here, for clarity, we restrict our consideration of XR to just two subsets: Augmented/
Mixed Reality (AR/MR) and Virtual Reality (VR). Note there is a distinction between AR
and MR, AR is effectively passive information overlay, whereas MR is active, allowing the
physical-environment to influence the digital environment and vice versa. In both cases
survey data is conveyed through a head-mounted-display, which in AR/MR superimposes
assistive digital information over the users’ view-field, whereas in VR it provides full
immersion in a digitally rendered environment [247,248]. As an emerging exploratory
medium, academics and industry are now exploring practical applications of XR for DSI,
including use for infrastructure inspections.

We encountered multiple noteworthy AR/MR visualisation developments outside
phase (1). In [117], a rendering pipeline utilising back-projection of air-coupled 3D mul-
tistatic GPR data and Jerman Enhancement Filtering is presented but lacks an interface.
Contrastingly, [249] demonstrates a prototype Unity3D-built AR pavement-subsurface
visualiser for IOS based on ‘Reality-Capture’ modelling. However, performance of all sub-
surface AR inspection tools found appears unstudied in real railway tunnels. We anticipate
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large volumes of subsurface data necessary for practical surveys will forgo local storage
on commonly utilised tablets, requiring wireless relay from remote data-hubs. Herein we
speculate the frequent absence of underground wireless communication networks in older
railway tunnels may be responsible for research stagnation.

By comparison, several synchronisation schemes have been developed for real-time
VR-BIM data exchange (e.g., BVRS [250]) and trailed in real tunnel construction projects
(e.g., The Shenzhen-Zhongshan Immersed Tunnel [251]). For operating tunnels, literature
concerning disaster situation training [252,253] dominates, whilst we found inspection
studies to be scarce.

All but one VR visualisation framework was encountered (across [218,254]) tailored
for RTI. The Enhanced Photorealistic Immersive (EPI) Survey Platform is developed in UE4
from SfM. Processed CRP data feeds a novel interactive dashboard to provide an extensive
range of DSI attributes.

Techniques include: (i) defect highlighting filter toggles; (ii) a mini-map of in-model
user location and (iii) proximity-triggered defect information modules detailing TCMI grad-
ing. The TCMI (Tunnel Condition Marking Index) ranges from 0 to 100, where 100 denotes
a defect free aspect of the tunnel. Sadly dependency on visual CPR data does not facilitate
subsurface inspection, undermining direct application to RTSSI.

Applying recent innovations in XR for DSI to RTSSI presents a promising direction for
future research, which could significantly increase the clarity and accessibility to non-RTSSI
specialist roles in tunnel management (e.g., asset engineers, environmental managers,
operations risk advisors, etc.) [255–257].

The next key milestone facing AR/MR-RTSSI system deployment will be development
of a dedicated wireless subterranean communication network supporting real-time infor-
mation exchange with rail network data-hubs. We believe use of IoT/WSN Wireless Mesh
mine communication nodes [257–259] could present a feasible solution and interesting
research opportunity. For VR systems, we believe the lack of comprehensive subsurface
datasets discussed in Section 5 explains the absence of research into a dedicated RTSSI
application, whilst the visualisation framework presented in [218] showcases current state
of the art in DSI for tunnels. We theorise future successes in 360GPR visualisation would
open a practical research avenue into VR-based RTSSI.

7. Discussion

Method-centred subdivision of state of the art literature, spanning both data acqui-
sition approaches and conveyance schemes (circa 2015–2021) reveals considerable recent
advances in the capabilities of RTSSI-linked visualisation frameworks. Our review ad-
dresses two key knowledge gaps and presents three promising considerations for future
research.

Appendix A summarises our deconstruction of leading NDI techniques for RTSSI,
establishing that a multitude of valid comparative grounds exist between methods. Their
variable importance subject to survey context undermines heuristic direct comparisons of
method performance, suitability or efficacy by balancing advantages against disadvantages,
resulting in ambiguity and inconclusiveness. This justifies need for a robust definition of an
‘effective’ RTSSI visualisation framework to address the knowledge gap. Our formulation
of explicit criteria from five key research gaps was based on common shortcomings identi-
fied between considered methods. Respective criterions consider the (i) completeness and
(ii) duration of survey data acquisition; alongside the (iii) interpretive clarity, (iv) faithful-
ness and (v) interactivity of information conveyance.

We overall find that despite recent innovations, a fully effective RTSSI visualisation
framework has yet to be developed.

Creation of our CCM facilitated inference of eight key avenues for future research.
Grading connected developments by relevance drew distinction between emerging and
established trends within the literature. Initial thoughts towards achieving complete, time-
efficient RTSSI surveys highlights pioneering analysis of 360GPR datasets from a novel ro-
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tary, air-launched GPR antenna. Already meeting three criteria, we anticipate development
of a suitable information conveyance scheme will present a prime research opportunity,
with feasible scope for creating the first fully effective RTSSI visualisation framework within
the next decade. This would establish 360GPR as a mainstream and potentially preferential
technique amongst current RTSSI methods.

We note over 1/3 of research categories concerning information conveyance are aligned
to automated target detection and defect severity ranking. However, their practical applica-
tion on 3D datasets containing realistic quantities, varieties and complexities of subsurface
features remains largely unexplored. We believe successful trails on authentic RTSSI
datasets present an upcoming milestone for future research efforts to achieve if devised
methods are to eventually aid real surveys.

Thoughts on detection scheme training for recognition of subsurface features in ma-
sonry tunnels flagged a further knowledge gap. Namely, this review was unable to find
a combined nor comprehensive list of common masonry-related assets and defects within
recent literature. Focus primarily centred on modern concrete tunnels. To address this, we
presented our own bespoke consolidated summary for masonry tunnels.

Our exploration of emerging trends in dynamic interaction with current visualisation
frameworks found studies addressing dataset interfacing with XR hardware featured 63%
more prevalently than BIM/DTT system design. Most notable interaction potential was
demonstrated by a VR tunnel surface survey platform presented in [218], which justified
by end-user trails, quantifiably evidences the high levels of intuitiveness both 3D rendered
environments and contextual dashboard modules can achieve. As with most encountered
schemes, optimisation is for surface surveys only and no preview facility is provided during
data acquisition. Arguably, this could also be beneficial; encouraging off site analysis of
survey data in safer environments reduces crew risk.

Nonetheless, based on this review we believe VR presents the most versatile and
intuitive tunnel survey interaction medium presently available, therefore would provide
an ideal basis for future RTSSI visualisation framework developments. Application to a hy-
bridisation of CRP, LiDAR and 360GPR datasets poses an interesting research opportunity
and potential industrial solution for simultaneous surface and subsurface RTSSI surveys.
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Abbreviations

(ACT) Active Thermography; (AD) Adaptive; (AFD/E) Automated Feature Detection/Evaluation;
(AR/MR) Augmented Reality/Mixed Reality; (BIM) Building Information Modelling; (CBA) Com-
plete Bouguer Anomaly; (CCM) Category Connection Matrix; (CLSS) Circular Laser Scanning System;
(CNN) Convolutional Neural Network; (CRP) Close-Range Photogrammetry; (DIFCAM) Digital
Imaging for Condition Asset Monitoring System; (DL) Deep Learning; (DSI) Dynamic Survey In-
teraction; (DTT) Digital Twin Tunnel; (EPI) Enhanced Photorealistic Immersive; (ERT) Electrical
Resistivity Tomography; (FA) Fully Autonomous; (GPR) Ground Penetrating Radar; (GPS) Global
Positioning System; (GS) Gravity Surveys; (HCE) Hidden Critical Element; (IRT) Infrared Thermog-
raphy; (IST) Infrasonic Testing; (LiDAR) Light Detection And Ranging; (MTPM) Moving Tunnel
Profile Measurement; (NDI/E) Non-Destructive Inspection/Evaluation; (OLE) Overhead Line Equip-
ment; (PR) Pulsed Radar; (ROCS) Rigid Overhead Conductor Rail System; (RRV) Road-Rail Vehicle;
(RS) ROBO-SPECT; (RT) Rail-Trolley; (RTI) Railway Tunnel Inspection; (RTSSI) Railway Tunnel
Subsurface Inspection; (RTU) Robotic Traction Unit; (SA) Semi-Autonomous; (SFCW) Step-Frequency
Continuous Wave; (SfM) Structure From Motion; (SRS) SafeRailSystem; (TLS) Terrestrial Laser Scan-
ning; (UAV) Unmanned Aerial Vehicle; (UST) Ultrasonic Testing; (VR) Virtual Reality; (XR) Extended
Reality; (ZARR) Zetica Advanced Rail Radar.

Appendix A

For NDI methods discussed in Sections 3.1–3.8, we provide comprehensive summary
tables of key literature analysed in this review, both for completeness and to evidence the
multitude of valid comparative grounds on which heuristic comparisons may be based.
The Literature Summary Tables are included as Supplementary Material.

Abbreviations adopted in the tables carry over from each section of the review. Below
we define an additional visual scale to rank the interpretive clarity of systems presented,
alongside a global legend of additional shorthand notation used exclusively in the Literature
Summary Tables.

Table A1. Literature Summary Tables: Interpretive clarity scale.

Symbol Clarity Necessary Training

��� High Training Not Required.

��� Mid-High Some Require Light Training.

��� Low-Mid Most Require Moderate Training.

��� Low Extensive Training Essential.

Table A2. Literature Summary Tables: Shorthand notation.

Column Field Type Shorthand

Status
Concept C

Prototype P
Commercial System CS

Motion

Static ST
Handheld HH

On-Rail OR
Airborne AB

Crawler-Unit CU
Robotic Arm RA

Adaptive Traction Unit ATU
Pneumatic Suction Feet PSF
Tunnel Boring Machine TBM
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Table A2. Cont.

Column Field Type Shorthand

Duration

Seconds S
Minutes M
Hours H
Days D

Weeks W

Key Target Types

Cross Sectional Deformation CSD
Hot/Cold Spots H/C

Groundwater Flow GF
Buried Utilities BU
Ballast Fouling BF

Trackside Assets TA
Power Distribution PD
Voids/Debonding V/D

Ore-Deposits OD

Additional Symbols
Not Applicable N/A

Information Unavailable -
Important Note *
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Abstract: Lamb wave-based damage detection technology shows great potential for structural
integrity assessment. However, conventional damage features based damage detection methods and
data-driven intelligent damage detection methods highly rely on expert knowledge and sufficient
labeled data for training, for which collecting is usually expensive and time-consuming. Therefore,
this paper proposes an automated fatigue crack detection method using Lamb wave based on finite
element method (FEM) and adversarial domain adaptation. FEM-simulation was used to obtain
simulated response signals under various conditions to solve the problem of the insufficient labeled
data in practice. Due to the distribution discrepancy between simulated signals and experimental
signals, the detection performance of classifier just trained with simulated signals will drop sharply on
the experimental signals. Then, Domain-adversarial neural network (DANN) with maximum mean
discrepancy (MMD) was used to achieve discriminative and domain-invariant feature extraction
between simulation source domain and experiment target domain, and the unlabeled experimental
signals samples will be accurately classified. The proposed method is validated by fatigue tests
on center-hole metal specimens. The results show that the proposed method presents superior
detection ability compared to other methods and can be used as an effective tool for cross-domain
damage detection.

Keywords: fatigue crack detection; lamb waves; finite element method; domain-adversarial neural
network; maximum mean discrepancy; metal structures

1. Introduction

As a unique non-destructive evaluation (NDE) system, structural health monitoring
(SHM) has shown great potential in reducing maintenance cost, extending service life, and
ensuring structural integrity [1,2]. Several SHM techniques have been implemented for
damage detection in the past few years, such as strain-based SHM [3], electromechanical
impedance-based SHM [4], smart coating-based SHM [5], Lamb waves-based SHM [6], etc.
Due to the long-distance propagation and small attenuation of Lamb waves in structures,
Lamb waves-based damage detection technology has received extensive concerns.

However, the complexities involved with Lamb wave due to its multi-modal and
dispersive nature make the signals analysis quite strenuous [7], and its physics modeling
to predict the output and identifying the damage [8,9] is a difficult and prohibitive task.
Conventional Lamb wave-based damage detection methods are to extract predesigned
damage features of Lamb wave in time and frequency domain and identify structural
damages by comparing damage features with their thresholds [10,11]. Due to the effect of
structures geometry on Lamb wave, the damage feature threshold needs to be adjusted
according to different structures, which often presents a less robustness and poor knowl-
edge generalization performance in real life structures with complicated geometry. These
methods also need a reasonable selection of damage features, which highly rely on expert
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experience. To circumvent these limitations, many damage detection methods based on
machine learning have been developed for automatic damage detection without a specific
threshold. Atashipour et al. [12] proposed an automatic damage identification approach for
steel beams based on Lamb wave and artificial neural network (ANN). Damage character
points based on continuous wavelet transform were extracted first, then a multilayer ANN
supervised by error-back propagation algorithm was trained to automatic detect damage.
Li et al. [13] used Hilbert transform, power spectral density, fast Fourier transform, and
wavelet fractal dimension to extract multi-features from time domain, frequency domain,
and fractal dimension of Lamb wave. Following that, a machine learning method based
on support vector machine (SVM) was used to fuse multi-features and further identify
damage. Yang et al. [14] developed an integrated damage identification method based on
least margin, which integrates multiple machine-learning models and outputs the fused
damage identification result by polling all models’ decisions. Twelve damage features
and seven machine learning methods, including k-nearest neighbor (KNN), radial basis
function support vector machine (RBF-SVM), Gaussian process (GP), decision tree (DTree),
neural network (NN), Gaussian naive Bayes (GNB) and quadratic discriminant analysis
(QDA), were applied to predict the damage identification results.

Instead of manual feature extraction for machine learning, various damage detection
methods based on deep learning have been developed to automatically feature extraction
and damage detection. Lee et al. [15] adopted a deep autoencoder (DAE) to capture hidden
representation and effective tracking of signal variations, and the reconstruction error was
used to diagnosis fatigue damage in composites structures. Chen et al. [16] and Wu et al. [17]
converted the Lamb wave signals into a two-dimensional time-frequency spectrogram
with the continuous wavelet transform, then input them into a 2D convolutional neural
network (CNN) to classify damage. To minimize loss of information in conversion of time
signals to image, Pandey et al. [7] used 1D CNN to detect damage directly using original
Lamb wave signals of an aluminum plate, in which Lamb wave response signals obtained
with FEM simulations were used as training samples and experimental data were used
for testing. Sampath et al. [18] incorporated the long short-term memory (LSTM) with
trispectrum-based higher-order spectral analysis to propose a novel hybrid method for
reliable fatigue crack detection under noisy environments. The DL model based on LSTM
was used to eliminate the random noise by reconstructing the original Lamb wave signals,
and trispectrum-based higher-order spectral analysis method was adopted to extract the
nonlinear components considered as an indication of fatigue cracks. Yang et al. [19] used
the temporal distributed conventional neural network (TDCNN) to extract less expertise-
dependent features, in which the long short-term memory (LSTM) was used to associate
features of data fragments.

However, these data-driven intelligent damage detection methods require sufficient
labeled data to train the intelligent model for good performance, and the training and
testing data must follow the same distribution. In industrial scenarios, collecting sufficient
labeled data for training is usually expensive and impractical, and usually just a large
amount of unlabeled data can be obtained. Meanwhile, many available training data are
obtained by simulations or from simple structure forms, which may not follow the same
distribution with data from the practical complex conditions. When the training data are
non-labeled or the distributions are mismatched, the performance of data-driven intelligent
damage detection methods may drop sharply.

Transfer learning is an effective knowledge generalization tool and can transfer the
knowledge learned from an abundant labeled source domain into a new but related tar-
get domain [20]. By combining the hidden features of learning ability and deep learn-
ing and knowledge transfer ability of transfer learning, deep transfer learning has been
widely studied. Nowadays, deep domain adaptation has a dominant position in deep
transfer learning, which can be summarized into three categories: discrepancy-based, ad-
versarial discrimination-based, and adversarial generation-based deep domain adaptation
methods [21]. The main idea of discrepancy-based deep domain adaptation methods
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is to minimize the distribution discrepancy between source domain and target domain
to get domain-invariant features, in which MMD [22–24], Kullback–Leibler (KL) diver-
gence [25–27], and Wasserstein distance [28,29], et al., can be used as the metrics of inter-
domain distribution divergence. Deep domain confusion (DDC) [23] and deep adaptation
network (DAN) [24] are the classical discrepancy-based deep domain adaptation meth-
ods. Adversarial discrimination-based deep domain adaptation methods aim to extract
fault-discriminative and domain-invariant features through adversarial training with the
gradient reversal layer (GRL) [30]. DANN [31] is a classical adversarial discrimination-
based deep domain adaptation method of feed-forward architectures, combining domain
adaptation and deep feature learning within one training process. Adversarial generation-
based deep domain adaptation methods aim to minimize the discrepancy between the
source data and target data with the adversarial training. The widely used adversarial
generation-based deep domain adaptation models include generation adversarial network
(GAN) [32], Wasserstein-GAN (WGAN) [33], Wasserstein-GAN with gradient penalty
(WGAN-GP) [34], et al. Many deep domain adaptation models for structural health mon-
itoring using Lamb wave have been developed. Alguri et al. [35] proposed a transfer
learning framework for Lamb waves’ full wave field reconstruction, in which autoencoder
was used to learn the general propagation of signals, then the learned knowledge was
combined with sparse spatial measurements to reconstruct full wavefield. Zhang et al. [36]
applied the joint distribution adaptation (JDA) to adapt both the marginal distribution and
conditional distribution of the Lamb waves from aluminum plate and composite plate,
then used the LSTM network to learn the damage indexes for damage probability imaging.
Zhang et al. [37] proposed a muti-task deep transfer learning methods by transferring
the high-level shared features of damage level detection task to damage location task.
Wang et al. [38] used the MMD-based deep adaptation network for learning transferable
features to make the classifier trained on the labeled source data achieve comparable perfor-
mance on the unlabeled target data. Even though several deep transfer learning methods
have been developed for Lamb wave-based damage monitoring, fatigue crack detection
with deep transfer learning model for Lamb wave has not yet been fully studied.

In order to automatically detect fatigue crack and further improve the detection
accuracy, in this paper, a deep domain adaptation method based on FEM simulation and
MMD-DANN was proposed for damage detection using Lamb wave. FEM simulations are
employed to obtain the simulated response signals under different conditions. Therefore,
the insufficient labeled data of real-world can be possibly solved. However, the variabilities
of real response signals during the fatigue crack growth have not been represented in the
simulated response signals. For engineering structures, the real response signals are affected
by complex uncertainties, like structure manufacturing procedure, environmental variables,
crack geometries, multi-sensors performance, and the sensor installation process. Thus,
the classifier model of simulated signals cannot be directly applied to the real structures.
By fusing the distribution discrepancy metric and the adversarial discrimination training
to minimize the domain disparity of the simulated source data and experimental target
data, the MMD-DANN model was developed to learn damage-discriminative and domain-
invariant feature representations. Then, the classifier model of simulated signals can be
directly transferred to experimental signals with comparative ability.

The outline of this paper is as follows. The details of the proposed fatigue crack
detection method are specified in Section 2, including the network architecture of MMD-
DANN model, training of MMD-DANN model, and detection procedure of target domain.
In Section 3, the proposed method is demonstrated through fatigue test data of center-hole
metal specimens. Conclusions are drawn in Section 4.

2. Proposed MMD-DANN-Based Fatigue Crack Detection Method

By combining the distribution discrepancy metric of MMD and the adversarial dis-
crimination training of DANN model, an unsupervised deep domain adaption method
based on MMD-DANN model was proposed to detect fatigue crack in this paper, which
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bridges the source and target domains in an isomorphic latent feature space and performs
a superior diagnosis performance on the unlabeled target data.

In the proposed method, the simulated Lamb wave response signals obtained from the
undamaged case and multiple damaged cases are assigned as the labeled source domain
data. The experimental Lamb wave response signals obtained from the fatigue test are
assigned as unlabeled target domain data. Assume that the source and target domain data
are Ds = {xi

s, yi
s}m

i=1 and Dt ={xj
t}n

j=1, in which Ds are the m labeled source samples and Dt

are the n unlabeled target samples. xs, ys ∈ {1, . . . , K} are the simulated response signals
and the corresponding labels for K types of damage categories in the source domain.xt are
the unlabeled experimental response signals in the target domain.

2.1. Network Architecture of MMD-DANN Model

The architecture of the proposed MMD-DANN model is illustrated in Figure 1, with
all hyperparameters used in the paper given besides the layers. It consists of a deep feature
extractor Gf, a deep label predictor Gy, and a domain classifier Gd. As shown in Figure 1,
the labeled source and unlabeled target Lamb wave signals are first input into the feature
extractor Gf to extract the multi-dimensional features vector. The label predictor Gy takes
the extracted features of the labeled source data as input and predicts the class labels. The
domain classifier Gd takes the extracted features of the source and target data as input
and predicts the domain labels. The distribution discrepancy of the extracted features is
reduced by multi-layer domain adaptation and the adversarial training between the feature
extractor and domain classifier.

 

Figure 1. The architecture of the proposed MMD-DNN model.

The feature extractor Gf is composed of three 1-D convolutional layers (CLs) and
one flattened layer. The features of the input response signals are extracted through three
layers of convolutional computation, and the resulted features map is compressed down to
multi-dimensional features vector through a flattened layer. The rectified linear unit (ReLU)
was used as an activation function of every CL to improve computational efficiency [39],
and a batch normalization (BN) layer was used after every CL to normalize the data and
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reduce the internal covariate shift [40]. The weights of Gf of the source and target domain
are shared.

The label predictor Gy is made up of three fully connected layers (FCLs). The high-
dimensional features vector of the source domain extracted by Gf is input to Gy and further
compressed through two FCLs with ReLU activation function. The sigmoid activation
function is used in the third FCL to predict the class label. The weights of Gy of the source
and target domain are also shared.

The domain classifier Gd is composed of two FCLs. The high-dimensional features
vector of the source and target domain extracted by Gf are used as input and further
compressed through one FCL with ReLU activation function. The softmax function is used
in the second FCL to predict the domain label. The weights of Gd of the source and target
domain are also shared.

2.2. Training of MMD-DANN Model

According to the three outputs of MMD-DANN model, three losses are constructed,
including the label prediction loss Ly based on the outputs of the label predictor Gy, the
domain classification loss Ld based on the outputs of domain classifier Gd, and the domain
adaptation loss LMMD based on the outputs of the feature extractor Gf, as illustrated in
Figure 1. Three losses are detailed as follows:

The label predictor Gy takes the extracted features of the labeled source data as input
and outputs the predicted labels. During the training stage, for the good performance
of the label predictor, the label predictor Gy aims to minimize the label prediction loss
between the predicted label and the actual label for the training source data in a supervised
way. The parameters θf, θy of both the feature extractor Gf and the label predictor Gy are
optimized at the same time. The label prediction loss Ly of the label predictor Gy based on
the cross-entropy loss function is defined as:

Ly(Ds) = −E(xs ,ys)∼Ds

K

∑
k=1

1[k=ys ] log
(

Gy

(
G f (xs)

))
(1)

where E(xs, ys)~Ds means calculates the expectation of the samples from Ds. 1[K = ys] is an
indicator function, if K = ys, its value equals 1, else it equals 0.

Simultaneously, the domain classifier Gd takes the extracted features of the source
and target domain data as input and outputs the predicted domain labels. During the
training stage, for the good performance of the domain classifier, the domain classifier Gd
aims to minimize the domain classification loss of two domains in a supervised way. The
domain label of the source domain data is assigned as 0, and the domain label of the target
domain data is assigned as 1. The parameters θf, θd of both the feature extractor Gf and the
domain classifier Gd are optimized at the same time. The domain classification loss Ld of
the domain classifier Gd based on the cross-entropy loss function is defined as:

Ld(Ds,Dt) = −Exs∼Ds

[
log
(

Gd

(
G f (xs)

))]
− Ext∼Dt

[
log
(

1 − Gd

(
G f (xt)

))]
(2)

To further reduce the distribution discrepancy between the two domains and improve
the domain adaptation of the feature extractor, the distribution discrepancy of the output
features vector between two domains is measured and incorporated into the model training,
which is defined as the domain adaptation loss LMMD. MMD is a common distance metric
in deep domain adaptation to measure the distribution discrepancy between two datasets.
MMD of Ds and Dt after the feature extractor Gf can be expressed as:

LMMD(Ds,Dt) = sup
G f ∈F

(EDs [G f (xs)]− EDt [G f (xt)]) (3)
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where F represents the reproducing kernel Hilbert space (RKHS). sup(·) is the supremum
of the input. By replacing the population expectations with empirical expectations, a biased
empirical estimate of MMD can be obtained and written as:

LMMD(Ds,Dt) = sup
Gf ∈F

(
1
m

m

∑
i=1

G f

(
xi

s

)
− 1

n

n

∑
j=1

G f

(
xj

t

))
(4)

By means of the kernel mean embedding of distribution, RKHS is induced by the
characteristic kernels, such as Gaussian and Laplace kernels [38]. The empirical estimate of
the squared MMD is defined as:

LMMD
2(Ds,Dt) =

1
m2

m

∑
i,j=1

k
(

xi
s, xj

s

)
− 2

mn

m,n

∑
i,j=1

k
(

xi
s, xj

t

)
+

1
n2

n

∑
i,j=1

k
(

xi
t, xj

t

)
(5)

where k(.,.) is the characteristic kernel. In order to avoid the difficulty of selecting the kernel
function, MK-MMD assumes that the optimal kernel can be obtained linearly from multiple
kernels. The characteristic kernel associated with the feature map f, k(xi

s, xj
t) = <f (xi

s), f (xj
t)>,

is defined as the convex combination of N kernels {ku}:

K �
{

k =
N

∑
u=1

βuku :
N

∑
u=1

βu = 1, βu ≥ 0, ∀u

}
(6)

where {βu} are the constraints on coefficients and are imposed to guarantee that the derived
multi-kernel k is characteristic [39]. Multiple Gaussian kernels with different radial basis
function (RBF) bandwidths are widely used as a nonparametric method.

In the forward-training process, the training of Gf can make the features discriminative.
However, in order to make the extracted features domain-invariant, Gf should furthermore
maximize the domain classification loss, which is run in the opposite direction to the
training of Gd. In order to implement the adversarial training between Gf and Gd, GRL is
inserted between the feature extractor and the domain classifier. In the forward propagation-
based training, GRL acts as an identity transformer. However, during the back propagation-
based training, the GRL multiplies the gradient by a certain negative constant −λ, leading
the domain classification loss negative feedback to Gf. A detailed discussion of GRL can be
found in Ref. [30].

Therefore, by incorporating the MK-MMD loss into the adversarial training, the
discriminative and domain-invariant features can be learned by the feature extractor. The
total loss function of the feature extractor Gf is expressed as:

L f (Ds,Dt) = Ly(Ds)− λLd(Ds,Dt) + αLMMD(Ds,Dt) (7)

where α is the trade-off hyperparameter of MK-MMD loss.
Based on the above loss function of Gf, Gy, and Gd, the training is performed. The

corresponding parameters θf, θy, θd of Gf, Gy, and Gd are updated as follows:

θ f ← θ f − μ
∂L f

∂θ f
(8)

θy ← θy − μ
∂Ly

∂θy
(9)

θd ← θd − μ
∂Ld
∂θd

(10)

where μ is the learning rate. In this paper, the stochastic gradient descent (SGD) algo-
rithm with 0.9 momentum and an annealing learning rate is used to optimize the model
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parameters [30]. The pseudo code of the proposed MMD-DANN model is presented in
Appendix A.

2.3. Detection Procedure of Target Domain

When the training is complete, the unlabeled target domain data can be classified using
the trained feature extractor and the trained label predictor. The target data are first input
into the feature extractor to extract features vector, then fed forward into the label predictor,
and the sigmoid activation function predicts the class labels. The detection procedure of
the proposed MMD-DANN model is presented in Figure 2 and can be described as follows:

Figure 2. Flowchart of the proposed fatigue crack detection method based on MMD-DANN model.

First, the Lamb wave response signals of center-hole metal structures are obtained
by FEM simulations and fatigue tests. The simulated response signals under different
conditions are considered as the labeled source domain data, and the experimental response
signals are considered as the unlabeled target domain data.

Then, in the step of model training, the labeled source domain data and unlabeled
target domain data are fed forward into the MMD-DANN model. The extracted features
vector, the predicted class labels, and the predicted domain labels are obtained. Three loss
functions are calculated and propagated backward to update the model parameters until
the training of the proposed MMD-DANN model is finished.

Finally, the unlabeled target domain data are used as testing samples to input to the
trained model, and the damage detection results are obtained.

3. Experimental Validation

The proposed unsupervised domain adaptation method is validated on the fatigue
crack detections of a center-hole metal structure. We aimed to detect the fatigue crack of the
metal structures by transferring the learning knowledge from the abundant labeled source
domain into an unlabeled target domain, in which the source domain data are assumed as
the simulated response signals under different conditions and the target domain data are
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assumed as the experimental response signals under uncertain conditions. The simulated
and experimental dataset are used to demonstrate the transfer results of the proposed
MMD-DANN model and the detection accuracy of the experimental dataset.

3.1. Simulated Dataset and Data Preprocessing

The dataset consists of Lamb wave response signals of metal structures manufactured
using 7050 aluminum of 3 mm thickness with a center-hole 25 mm diameter from simulation
and experiment. Material properties of the center-hole metal specimen are shown in Table 1.
Four PZT sensors P51 were installed on every specimen to monitor the healthy conditions
of both sides of the center-hole. Two sensing paths, A1-S1 and A2-S2, were formed, in
which A1 and A2 serve as actuators and S1 and S2 serve as sensors. The dimensions of
PZT sensors are 8 mm in diameter and 0.45 mm in thickness. In order to demonstrate
the detection performance on small fatigue cracks of the proposed method, only fatigue
cracks under 8 mm are studied. Specimen geometry and PZT sensors placement are shown
in Figure 3. The material and structure form considered as specimen are common in the
aircraft. The FE model and the physical fatigue test are built with the same specimen
geometrical dimensions and PZT sensors placement.

Table 1. Material properties of center-hole metal specimens.

ρ/(kg/m3) E/GPa ν

2700 70 0.33

Figure 3. Specimen geometry and PZT sensors placement.

Considering the symmetries of structure geometry and sensors placement, FEM simu-
lations are performed to acquire the response Lamb wave signals of only A1-S1 sensing
path. The PZT sensor is modeled by an electromechanical coupling plate element, and the
positive and negative piezo-conductive effects of actuators and sensors can be realized [41].
In order to simulate the uncertainty of the actual crack morphology, fatigue crack is mod-
eled with a notch of 0.05 mm width, different length, and different orientations. Hanning
window tone burst signals with a five-cycle frequency of 230 kHz is used as excitation
signals. The central frequency is referred to the experiment. A fixed time increment of
0.1 μs is consistent with sampling rate of the experiment, which is sufficient to capture the
interested time period of signals. The output time of field results for sensors is set as 4 ms
to ensure that the number of the output data point is consistent with the experiment. The
global element size is 1 mm, and the local encrypted element size of crack and hole are
0.5 mm.

The availability of the FE model is validated by comparing the simulated group
velocity and the analytical group velocity for the same frequency. The simulated group
velocity of S0 mode is estimated as 5381 m/s, and the simulated group velocity of A0
mode is estimated as 2955 m/s. The respective errors for group velocity of S0 and A0
mode are about 1.93% and 2.96%. In this paper, the response signals of S0 mode are
used to analyze. A two-dimensional FE model of the center-hole specimen with 5 mm
fatigue crack and 90◦ orientation is created in ABAQUS/Explicit with one edge fixed and
another edge loaded with 3 kN, as shown in Figure 4. The holding load is the same as the
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experiment. To illustrate the effect of crack on the wave propagation process, a screenshot
of the simulated wave propagation of the center-hole specimen with 5 mm fatigue crack
and 90◦ orientation is shown in Figure 5. The displacement at 85 μs can indicates the
wave reflections by the damage and the top boundary, which further demonstrates the
availability of the simulations.

Figure 4. FE model of center-hole metal specimen using ABAQUS/Explicit.

Figure 5. Total displacement nephogram of simulated wave propagation at 85 μs.

Simulation was performed for an undamaged case followed by multiple damaged
cases. Damaged cases are induced at sixteen different crack lengths (from 0.5 mm to 8 mm
at a step of 0.5 mm) with five different orientations (80◦, 85◦, 90◦, 95◦, 100◦). Simulation
was performed for one damage case at a time. Considering that direct wave packet
contains the most effective structural information in the response signals, a fixed-length
rectangular window [60 μs 105 μs] was employed to extract a direct wave packet for S0
mode. Consequently, 81 simulated samples were 80 samples from damaged cases and the
remaining 1 sample is undamaged, with each sample consisting of 451 data points which
corresponded to the time instances of the extracted direct wave packet. Figure 6 shows
the simulated Lamb wave response signals of different crack lengths for the A1-S1 sensing
path. Significant phase right-shifting and amplitude decreasing can be observed with the
undamaged and damaged conditions, which means that the simulated signals can reflect
the variations of structural conditions.

In order to consider the effect of dispersions of specimens and sensors performance
on the signals, data augment technology was used to introduce the fluctuations of am-
plitude and phase into the signals to expand the simulated samples. Firstly, the signals
are converted into the analytical signals with Hilbert transform. Then, the amplitude and
phase of the analytical signals are multiplied by a scaling coefficient to generate the virtual
simulated samples. For the undamaged sample, the scaling coefficient for the amplitude
varies from 0.82 to 1.20 at a step of 0.02, and the scaling coefficient for the phase varies
from 0.82 to 1.21 at a step of 0.03. The scaling of the amplitude and phase are cyclic pre-
ceded. For the damaged samples, the scaling coefficient for the amplitude varies from
0.80 to 1.25 at a step of 0.15, and the scaling coefficient for the phase varies from 0.80 to
1.25 at a step of 0.15. The scaling of the amplitude and phase are meanwhile preceded.
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That is, a total of 600 simulated samples are obtained with 280 undamaged samples and
320 damaged samples.

Figure 6. Simulated Lamb wave response signals of different crack length.

3.2. Experimental Dataset and Data Preprocessing

Fatigue tests on eight center-hole metal specimens were performed to obtain the
experimental response signals, labeled from T1–T8. The experimental setup is shown in
Figure 7. For a constant amplitude axial tensile cyclic load with load ratio R = 0.1, the
maximum load of 40 kN and loading frequency of 8 Hz was applied to the specimens
using a hydraulic MTS machine to introduce fatigue cracks in the specimens. The initiation
and growth of fatigue cracks were measured offline with a charge-coupled device (CCD)
camera. Crack lengths are measured from optical microscopic images of CCD camera.
Representative examples of actual fatigue crack through the microscopic are shown in
Figure 8. At the early stages of the fatigue test, only one crack initialized and grew. At the
medium stage of the fatigue test, two cracks grew simultaneously.

Figure 7. Experimental setup for center-hole metal specimens.

An integrated structural health monitoring system was utilized to generate and acquire
online Lamb waves. During the fatigue test, Lamb waves were periodically acquired when
the load was held at 3 kN. The load holding was to ensure the identical boundary condition
for every signal acquisition. The temperature variation at the laboratory was maintained
below 1 ◦C to minimize temperature effects on acquired Lamb waves [42]. The excitation
signal is a five-cycle tone burst modulated by a Hanning window with the sampling rate
set to 10 MHz and the sampling length set to 4000.
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Figure 8. Cracks observed from the microscope of specimen T1 at: (a) 59,673 load cycles and
(b) 70,766 load cycles.

By analyzing the waveform envelope and the arrival wave packet overlap under
150 kHz: 20 kHz: 270 kHz excitation frequencies, typical response signals of A1-S1 sensing
path under 230 kHz are given in Figure 9. The separated first arrival wave packet can be
observed without overlapping with the crosstalk signals and boundary refection signals,
and the experimental group velocity of S0 mode is approximately estimated as 5106 m/s.
Therefore, the central frequency of excitation signal was confirmed as 230 kHz to obtain
separated direct wave packet. A fixed-length rectangular window [82 μs 127 μs] was
employed to extract the direct wave packet. The non-coupling of A1-S1 and A2-S2 sensing
paths is demonstrated by comparing the response signals of A2-S2 sensing path only with
one side crack and that with two sides cracks. Thus, the response signals of each sensing
path are regarded as one independent sample. Figure 10 plots the experimental Lamb
wave response signals of different length for specimens T1–T3. Due to the dispersions of
specimens, sensor performance, and installation process, the response signals amplitude
and damage sensitivities for different specimens are different, and are manifested as
different changes in amplitude and phases under the same crack length growth. Further
comparison of the simulated and experimental response signals shows that the direct wave
packet can be extracted earlier in simulated data, and the simulated data have higher
damage sensitivity.

Figure 9. Typical response signals of A1-S1 sensing path under 230 kHz excitation frequency.
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Figure 10. Experimental Lamb wave response signals of different crack lengths for specimens T1–T3.

The experimental dataset of eight center-hole metal specimens consists of one hundred
and forty undamaged samples and eighty damaged samples, with each sample consisting of
451 data points, in which the undamaged and damaged samples are extremely unbalanced.
In order to balance the undamaged and damaged samples to further improve the model
performance, data augment technology is also applied to introduce the fluctuations of
amplitude and phase into the response signals to expand the experimental samples. For
the undamaged samples, the scaling coefficient for the amplitude varies at (0.90, 1.20), and
the scaling coefficient for the phase varies at (0.90, 1.20). Meanwhile, the scaling of the
amplitude and phase are preceded. For the damaged samples, the scaling coefficient for
the amplitude varies from 0.80 to 1.25 at a step of 0.15, and the scaling coefficient for the
phase varies from 0.80 to 1.25 at a step of 0.15. The scaling of the amplitude and phase
are meanwhile preceded. That is, a total of 600 experimental samples are obtained with
280 undamaged samples and 320 damaged samples.

Descriptions of the simulated and experimental dataset are shown in Table 2. The
dataset is randomly divided as training and testing datasets at a ratio of 4:3. Out of 600 cases
of simulated data and experimental data, 210 undamaged cases and 240 damaged cases
are used for training while 70 undamaged cases and 80 damage cases are used for testing.
In addition, max-min normalization is a necessary step to convert the different scales of
the simulated and experimental dataset into a common scale, which enables the unbiased
contribution from the output of every response signal.

Table 2. Introduction to datasets.

Dataset Healthy Conditions Number of Samples

Simulation
Undamaged 280

Damaged 320

Experiment Undamaged 320
Damaged 280

3.3. Transfer Results of MMD-DANN Model

In the proposed MMD-DANN model, λ, and α are important trade-off parameters
which seriously affect the transfer performance of the model. Thus, the studies of the trade-
off parameters are implemented first. The classification accuracy is related to distribution
divergence between two domains. Thus, MMD of the extracted features output by the sec-
ond fully connected layer of the label predictor is used to evaluate the transfer performance
with different trade-off parameters, which is the highest-level feature before classification.
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In order to suppress noisy signals from the domain classifier at the early stages of the
training procedure [31], the parameter λ gradually changed from 0 to 1 using the formula
2/(1 + e−10p) − 1 instead of a fixed value, in which p is the training progress linearly
changing from 0 to 1. With the training process progressing, the trade-off parameter λ
gradually increases. The parameter α is selected from {0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50}. In
order to improve the optimization of SGD during the training, an annealing learning rate is
adopted using the formula μ = η0/(1 + 10p)0.75, in which η0 is the initialized learning rate.
The SGD method with an initialized learning rate 1 × 10−3 and mini-batch 64 was used to
train the model. Every training is carried out for five trails and the average us obtained to
reduce the effect of randomness. All training is performed using python on the Inter(R)
Xeon(R) Gold 6462R CPU.

Figure 11a shows MMD of the extracted features with different trade-off parameter α.
The classification accuracy of different parameter α on the experimental dataset is given
in Figure 11b. It can be seen that MMD of the extracted features and the corresponding
classification accuracy have a nonmonotonic trend with the parameter α, but the smaller
MMD corresponds to the higher classification accuracy. MMD takes the minimum value
when α is set as 5 and 50, and the classification accuracy takes the maximum value when
α is set as 5, and the corresponding classification accuracy of the experimental dataset is
98.12%. Therefore, MMD-DANN model with the trade-off parameter α of 5 is trained to
detect fatigue cracks.

 
(a) (b) 

Figure 11. Transfer results of MMD-DANN model with different trade-off parameter α: (a) MMD of
the extracted features and (b) classification accuracy.

To further demonstrate the superiority of the progressing strategy for trade-off pa-
rameter λ, the transfer results of the model with a fixed parameter λ are compared. The
parameter λ is selected from {0.1, 0.5, 1, 5, 10}. Figure 12 shows MMD of the extracted
features and classification accuracy with different parameter λ when α is set to 5. The
parameter λ has an obvious effect on the transfer results of the model. Once the parameter
λ is set as a large value, such as being larger than 1, the classification accuracy of the model
sharply drops to a poor level. A safe way is to select a small parameter λ to balance the
domain classification loss and the domain adaptation loss in the loss function. Especially,
the classification accuracy takes the maximum value when λ is set as 1 and α is set as 5,
and the corresponding classification accuracy of the experimental dataset is 94.33%, which
is still lower than when λ is set as a changing value and α is set as 5. The progressive
training strategy of the trade-off parameter λ significantly improves the classification per-
formance and simplifies the parameter-selecting. Finally, the MMD-DANN model, with a
changing trade-off parameter λ and a fixed trade-off parameter α of 5, was trained to detect
fatigue cracks.
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(a) (b) 

Figure 12. Transfer results of MMD-DANN model with different trade-off parameter λ: (a) MMD of
the extracted features and (b) classification accuracy.

3.4. Comparisons with Other Methods

To further validate the transfer results and transfer performances of the proposed
method, we compared our method with other methods, including 1D-CNN, WGAN-GP,
DDC, DAN, and DANN.

For comparison, 1D-CNN consists of a feature extractor and a label predictor, in which
the architectures of the feature extractor and the label predictor are the same as MMD-
DANN model. A 1D-CNN model trained on the labeled simulated data was used to classify
the unlabeled domain data without domain adaptation knowledge. The architecture of
CNN classifier in WGAN-GP model is the same as the 1D-CNN model. WGAN-GP is
a classical adversarial generation-based deep domain adaptation method made up of a
generator, a discriminator, and the gradient penalty. By the adversarial training between
the generator and the discriminator, a CNN classifier trained on the synthetic domain
can be directly transferred to the target domain. The architecture of CNN classifier in
WGAN-GP model is the same as a 1D-CNN model. DDC is a common unsupervised
domain adaptation method made up of a fixed CNN, an adaptation layer, and MMD,
whose architecture analogous MMD-DANN model is without a domain classifier. The
position to place the adaptation layer in is decided by comparing every condition. By
introducing more adaptation layers and MK-MMD, DAN is developed, which is made
up of a feature extractor, a label predictor, and MK-MMD. The trade-off parameter α of
MK-MMD in the loss function for DAN model is searched from {0.1, 0.5, 1, 5, 10, 50}. The
optimal transfer result of DAN model is calculated as 0.5. DANN model is the simplified
version of MMD-DANN model, without MK-MMD in the loss function. The training
dataset of 1D-CNN, WGAN-GP, DDC, DAN, DANN, and the proposed model are 70%
of the labeled simulated domain data and 70% of the unlabeled target domain data. The
testing dataset of 1D-CNN, WGAN-GP, DDC, DAN, DANN, and the proposed model
are the experimental domain data. Every model carried out six trainings. The network
architecture of 1D-CNN, WGAN-GP, DDC, DAN, and DANN with all hyperparameters
used in the paper is shown in Appendix B.

To observe the transfer results specifically, Table 3 denotes MMD for six models,
in which MMD for CNN model is calculated from the source and target data, equal to
initial MMD without domain adaptation. Based on the domain adaptation mechanisms
of other five models, the transfer result for WGAN-GP model can be expressed as MMD
of the synthetic and target data, and the transfer results for DDC, DAN, DANN, and the
proposed model can be expressed as MMD of the extracted features vector output by the
feature extractor. Compared with six models, the MMD of raw data is the highest, and the
MMD of five deep domain adaptation methods is smaller, indicating that the deep domain
adaptation methods are effective tools to reduce the distribution discrepancy. The proposed
method has the smallest MMD, implying that the proposed method has the best learning
ability of domain adaptation.
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Table 3. Transfer results of six models.

Models Data MMD

1D-CNN Raw source data and target data 0.008052
WGAN-GP Synthetic data and target data 0.003773

DDC Extracted features vector of source data and target data 0.003083
DAN Extracted features vector of source data and target data 0.002932

DANN Extracted features vector of source data and target data 0.001397
Proposed Extracted features vector of source data and target data 0.0001998

To evaluate the performance of models comprehensively, false alarm rate and missing
alarm rate were introduced to enrich the evaluation of the classification accuracy of the
proposed MMD-DANN and other methods. The false alarm rate is defined as the propor-
tion of undamaged samples predicted as damaged samples in total predicted damaged
samples. The missing alarm rate is defined as the proportion of damaged samples predicted
as undamaged samples in total damaged samples.

The average classification accuracy, false alarm rate, and missing alarm rate on the
experimental dataset are detailed in Table 4. The classification accuracy of five trails in
every method is shown in Figure 13. The average classification accuracy of the proposed
MMD-DANN model on the experimental dataset is 98.12%, which is the highest among
six methods. The average false alarm rate and missing alarm rate of the proposed MMD-
DANN model are 3.08% and 1.56%, which are also the smallest among the six methods.

Table 4. Detection results for experimental dataset with multiple methods.

Methods Accuracy (%) False Alarm Rate (%) Missing Alarm Rate (%)

1D-CNN 58.53 30.69 33.33

WGAN-GP 66.93 23.88 30.28

DDC 75.62 28.34 15.87

DAN 80.00 26.83 6.25

DANN 84.73 15.14 13.96

Proposed 98.12 3.08 1.56

Figure 13. The classification accuracy comparison of multiple methods.

From the results shown in Table 4, due to the lack of domain adaptation procedure,
the average classification accuracy of 1D-CNN model is just 58.53%, which is the smallest
among all the methods. The average false alarm rate and missing alarm rate of 1D-CNN
model are 30.69% and 33.33%, which are the highest among six methods. The detection
results of 1D-CNN model further demonstrate that the mismatched distributions of the
source and target domain data cause reduced performance in the target domain.
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As shown in Table 4, the average classification accuracy of WGAN-GP model is
66.93%, which is the smallest in five deep domain adaptation methods but only higher than
1D-CNN. The average false alarm rate and missing alarm rate of WGAN-GP model are
23.88% and 30.28%, which is the highest among five deep domain adaptation methods.
Due to the dispersions of specimens, sensor performance, and the installation process, the
experimental signals of different specimens still have an obvious distinction (as shown in
Figure 10), which deteriorates the synthetic data quality. Therefore, the large distribution
discrepancy between the synthetic data and the target data leads the classifier trained on the
synthetic data to show a poor classification performance on the target data. It can be inferred
that the complexity of the target domain data has an important effect on the adversarial
generation results of WGAN-GP model. Further, by comparing the detection results of
1D-CNN with WGAN-GP model, the classifier of WGAN-GP model presents a better
classification performance because of the smaller distribution discrepancy between the
synthetic and target data compared to that between the simulated and experimental data.

According to the detection results in Table 4, the average classification accuracy of
DDC model and DAN model are 75.62% and 80.00%, which identifies the better domain
adaptation performance of multiple adaptation layers and MK-MMD for the DAN model
than that of the single adaptation layer and MMD for the DDC model. Based on the
comparison results in Table 4, the average classification accuracy of DAN model and
DANN model are 80.00% and 84.73%, which are close to each other, meaning that for
the fatigue crack detection scenarios, the domain adaptation performance of minimizing
MMD is equal to the adversarial training. The average classification accuracy of DAN
model and DANN model are higher than WGAN-GP model, because the distribution
discrepancy between the high-dimensional features vector for DAN and DANN model
are much smaller than that between the synthetic and target data. Specially, the average
classification accuracy of DAN and DANN model are smaller than MMD-DANN model,
because DAN model reduces the distribution discrepancy just by minimizing MMD and
DANN model reduces the distribution discrepancy just by adversarial training, but MMD-
DANN model reduces the distribution discrepancy by combing MMD and adversarial
training. The comparison results further verify the effectiveness of domain adaptation and
adversarial training of the proposed MMD-DANN model.

A confusion matrix for the first training trail of the proposed model on the experi-
mental dataset is shown in Figure 14. For 280 undamaged and 320 damaged experimental
data, 3.57% of undamaged samples were misclassified as damaged conditions. All dam-
aged samples are all classified accurately. It can be inferred that the proposed model can
accurately classify undamaged and damaged conditions.

Figure 14. The confusion matrix of the proposed method on the experimental dataset.

In order to visually validate the transfer learning effectiveness of the proposed method,
the t-distributed stochastic neighbor embedding (t-SNE) [43] technique was used to map the
high-dimensional features vector into a two-dimensional space. The mapped transferrable
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features for six models are shown in Figure 15. From the result shown in Figure 15, the
transferable learning features of the undamaged source data have an obvious gathering
cluster because the undamaged source data are obtained with one undamaged model, and
the transferable learning features of the damaged source data have multiple gathering
clusters because of the damaged source data corresponding to different crack lengths. For
the experimental target data, the undamaged and damaged data are scatter-distributed
because of the dispersions among specimens.

  
(a)                        (b) 

  
(c)                        (d) 

 
(e)                        (f) 

Figure 15. The visualization of the mapped features on the source and target domain: (a) 1D-CNN,
(b) WGAN-GP, (c) DDC, (d) DAN, (e) DANN, and (f) MMD-DANN.

From Figure 15a, the transferable features extracted by 1D-CNN model suffer from
poor distribution discrepancy. With the dash line plotted in Figure 15a, the source data
can be accurately classified, while many undamaged and damaged target domain data
are misclassified. Thus, 1D-CNN model trained on the source data cannot accurately
classify the unlabeled target data. From Figure 15b, the transferable features of the target
domain extracted by WGAN-GP model have a small among-class distance. The transferable
features cannot be effectively obtained using the WGAN-GP model. In addition, compared
with 1D-CNN model, with the dash line plotted in Figure 15b, less damaged source data
are misclassified. Consequently, the classification accuracy of WGAN-GP model is higher
than the 1D-CNN model. From Figure 15c–e, the transferable features learned by DAC,
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DAN, and DANN model have a smaller cross-domain discrepancy. As a result, DAC, DAN,
and DANN models showed higher classification accuracy on the unlabeled target data than
1D-CNN and WGAN-GP models. However, with the dash line plotted in Figure 15c–e,
some undamaged samples are falsely alerted, and some damaged experimental samples
are missing alerted. As shown in Figure 15f, the transferable features of two domains
under the same class are projected into the same region, and the different conditions data
are separated well. The result shows that the proposed MMD-DANN model not only
effectively reduces the inter-domain distance but also enlarges the among-class distance.
With the dash line plotted in Figure 15f, only a few damaged target data are misclassified.
The corresponding crack length of the misclassified damaged target samples are all 3 mm,
because the response signals with 3 mm crack length have a small variation compared to
the undamaged signals. Consequently, the classification accuracy of the proposed model
is the highest. The visualization results prove that the proposed MMD-DANN model
outperforms the other methods and presents the best transfer performance. The proposed
MMD-DANN model can be used as an effective domain adaptation tool to accurately detect
fatigue crack for the unlabeled experimental samples.

4. Conclusions

In this paper, an automated fatigue crack detection method based on MMD-DANN
model was proposed to accurately detect structural conditions for metal structures. To
overcome the difficulty of time-consuming acquisitions of the labeled data in practice, FEM
simulations were adopted to obtain simulated response Lamb wave signals with different
healthy conditions, which are assigned as the labeled source domain data. Due to the
distribution discrepancy between the simulated and experimental signals, the classifier
model trained on the simulated data cannot be directly applicable to the experimental
data. A novel unsupervised domain adaptation method based on MMD-DANN model
was developed. By integrating MMD with the adversarial training of DANN model, the
discriminative and domain-invariant features of the simulated source domain and the
experimental target domain can be extracted. Following that, the classification knowledge
of the labeled source domain can be generalized to the unlabeled target domain. Fatigue
tests on center-hole metal specimens are implemented to validate the proposed method.
Comparing with the data-driven intelligent method and other deep domain adaptation
methods, the detection results on the experimental data show that the proposed MMD-
DANN model presents higher classification accuracy and better transfer performance. The
average classification accuracy on the experimental data for MMD-DANN model is 98.12%,
and the false alarm rate and missing alarm rate are 3.08% and 1.56%, showing the domain
adaptation effectiveness of the proposed MMD-DANN model.

The proposed method is a regular binary classification method which only classifies
the undamaged and damaged conditions, and is unable to further classify damaged cases
with different crack length. Therefore, in our future research, an automated damage
quantification detection method for fatigue crack based on unsupervised deep domain
adaptation will be studied. Moreover, unsupervised domain adaptation detection methods
for complex multi-bolt joint specimens and lap specimens also need to be established.
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Appendix A

The pseudo code of the proposed MMD-DANN model is presented in the Algorithm A1.

Algorithm A1: MMD-DANN

Initialization: feature extractor G f , label predictor Gy, and domain classifier Gy with parameters of θ f , θy, θd; mini - batch

size M = 64; training step N = 20, 000; training progress p; learning rate; μ = η0/(1 + 10p)0.75, η0 = 1 × 10−3;
trade − off parameter α = 5; trade − off parameter λ = 2/

(
1 + e−10p)− 1

for l = 1, . . . , N do

Input a batch from the labeled source data Ds =
{

xi
s, yi

s

}m

i=1
, unlabeled target data Dt =

{
xj

t

}n

j=1
Compute training progress : p = l/N
Compute learning rate μ, trade-off parameters α, λ

Calculate label prediction loss : Ly(Ds) = −E(xs ,ys)∼Ds

K
∑

k=1
1[k=ys ] log

(
Gy

(
G f (xs)

))
Calculate domain classification loss : Ld(Ds,Dt) = −Exs∼Ds

[
log
(

Gd

(
G f (xs)

))]
− Ext∼Dt

[
log
(

1−Gd

(
G f (xt)

))]
Calculate distribution discrepancy metric : LMMD(Ds,Dt) =

√
1

m2

m
∑

i,j=1
k
(

xi
s, xj

s

)
− 2

mn

m,n
∑

i,j=1
k
(

xi
s, xj

t

)
+ 1

n2

n
∑

i,j=1
k
(

xi
t, xj

t

)
Calculate loss function of feature extractor : L f (Ds,Dt) = Ly(Ds)− λLd(Ds,Dt) + αLMMD(Ds,Dt)

Update parameters: θ f ← θ f − μ
∂L f
∂θ f

, θy ← θy − μ
∂Ly
∂θy

, θd ← θd − μ ∂Ld
∂θd

End for

Output: Predicted class label for target domain data Gy

(
G f (xt)

)
Appendix B

The architectures of the 1D-CNN, WGAN-GP, DAC, DAN, and DANN model used in
this paper are shown in Figure A1.

 
(a) 

 
(b) 

Figure A1. Cont.
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(c) 

 
(d) 

 
(e) 

Figure A1. The architectures of (a) 1D-CNN, (b) WGAN-GP, (c) DAC, (d) DAN, and (e) DANN model
used in the experiments.
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Abstract: Carbon fiber-reinforced polymers (CFRP) are extensively used in aerospace applications.
Out-of-plane wrinkles frequently occur in aerospace CFRP parts that are commonly large and complex.
Wrinkles acting as failure initiators severely damage the mechanical performance of CFRP parts.
Wrinkles have no significant acoustic impedance mismatch, reflecting weak echoes. The total focusing
method (TFM) using weak reflection signals is vulnerable to noise, so our primary work is to design
discrete-time filters to relieve the noise interference. Wrinkles in CFRP composites are geometric
defects, and their direct detection requires high spatial precision. The TFM method is a time-domain
delay-and-sum algorithm, and it requires that the time information of filtered signals has no change
or can be corrected. A linear phase filter can avoid phase distortion, and its filtered signal can be
corrected by shifting a constant time. We first propose a wrinkle detection method using linear phase
FIR-filtered ultrasonic array data. Linear phase filters almost do not affect the wrinkle geometry of
detection results and can relieve noise-induced dislocation. Four filters with different bandwidths
have been designed and applied for wrinkle detection. The 2 MHz bandwidth filter is recommended
as an optimum choice.

Keywords: ultrasonic array nondestructive testing; CFRP; out-of-plane wrinkle; full matrix; total
focusing method; instantaneous phase; linear phase FIR filter

1. Introduction

Carbon fiber-reinforced polymers (CFRP) are extensively used lightweight materials
in aerospace applications as they exhibit rather high specific strength and good corrosion
resistance [1]. CFRP parts used in the aerospace field are always complex curved surface
products, such as aircraft engine fan blades, aircraft wings, and satellites’ motor cases [2].
Out-of-plane wrinkles are common defects in these complex parts, with the carbon fiber
plies deviating from the anticipated direction. Wrinkles act as failure initiators in CFRP
parts, severely damaging the mechanical performance (like tensile [3], compressive [4],
flexural, and fatigue strength [5]). Wrinkles frequently occur inside the CFRP laminated
parts, almost impossibly inspected from the surface. A wide variety of non-destructive
testing (NDT) methods is established for detecting and evaluating out-of-plane wrinkles.
These methods include visual inspection [6], eddy current method [7], infrared thermogra-
phy [8], X-ray micro-computed tomography [9], and ultrasonic testing (UT) [10,11]. Visual
inspection can only examine the surface or cross-section wrinkles by optical microscopy or
the naked eye. The eddy current method is mainly limited by its detection depth, and only
near-surface waviness can be detected [12]. Infrared thermography detects out-of-plane
wrinkles by stress analysis with cyclic loading. This method is cumbersome to evaluate
large complex parts, and its result is non-intuitive and susceptible to other stress concentra-
tion points [8]. X-ray micro-computed tomography can provide an accurate 3D geometrical
image of a detected part. However, the low X-ray absorption contrast between the carbon
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fibers and epoxy polymers limits the sample size. X-ray micro-computed tomography
is unsuitable for aerospace CFRP parts which are large complex parts. The ultrasonic
technique is the most powerful method to detect wrinkles for aerospace CFRP parts.

The ultrasonic technique is already used in the aerospace industry to detect delamina-
tion [13], barely visible impact damage (BVID) [14,15], and debonding [16]. Lamb waves
are commonly used for the structural health monitoring (SHM) [17,18] of large structures
because they can propagate long distances along the component curvature to achieve a
quick inspection. However, the signal of lamb waves is complicated to analyze and inter-
pret, and the result is non-intuitive for geometrical defects, namely wrinkles. Bulk waves,
especially longitudinal waves, are usually used to detect and size flaws in CFRP parts. Our
work only considers using longitudinal waves to detect out-of-plane wrinkles in this paper.

Unlike delamination and transverse cracks, wrinkles do not break material continuity,
so they do not generate significant acoustic impedance mismatch. It is challenging to detect
wrinkles because there is no strong reflection response when the ultrasound wave encoun-
ters wrinkles [19]. Researchers have tried to exploit the slight impedance mismatch between
the carbon fiber plies and resin-rich interplies. The slight impedance mismatch generates
weak reflection echoes that contain faint spatial information of resin-rich interplies. The
most classical method is the instantaneous phase method using pulse-echo ultrasonic in-
spection, extracting the phase information from the multi-layered structure echoes [20,21].
The pulse-echo ultrasonic inspection has a convenient, inexpensive advantage, and its
signals are easy to analyze and interpret. However, this pulse-echo method utilizes only
one-dimensional information, namely the normal incidence reflection response of the CFRP
parts. Other pulse-echo methods, such as the instantaneous amplitude method with low-
pass (LP) filtering and the Wiener deconvolution method with spectral extrapolation [22],
require a higher center frequency. High-frequency ultrasounds suffer severe attenuation
in CFRP materials limiting the detection depth. Theoretically, the normal interplies can
be correctly located by these one-dimensional ultrasonic signals, but the inter-ply incline
caused by wrinkles induces estimation error or even failure. The lateral resolution of a
spherically focused immersion transducer is limited by the ultrasonic beam width. The
ultrasonic beam width cannot be fully optimal throughout a thick CFRP part.

Linear array probes with multiple elements at distinct positions in the space can pro-
vide multi-dimensional and multi-angle signals that can theoretically correctly estimate the
inclined interplies’ location. Phase array technology with the ultrasonic beam electronically
steering at different angles is employed to detect and characterize wrinkles [23]. One
steered angle can only inspect one side of wrinkles. A thorough wrinkle inspection using
phase array technology requires repeat scans at different angles, which is time-consuming.
The analysis and interpretation of scan data acquired by phased array technology with
different inspection angles are also cumbersome for wrinkle characterization. The scatter-
ing matrix contains all the far-field scattered amplitudes of discontinuity defects from the
given combination of incident and scattered direction. It is considered to carry information
about the shape, orientation, and size of discontinuity defects (such as cracks or voids). The
scattering matrix has been extracted to detect and characterize wrinkles [24], but this is an
indirect detection method that allows statistically distinguishing wrinkles with different
severity. A convolutional neural network (CNN) is the most common image recognition and
analysis tool. It can achieve accurate classification without feature analysis and extraction
manually. A CNN model with a short-time Fourier transform has been applied to analyzing
ultrasonic data acquired by a linear array probe under full matrix capture (FMC) mode,
and it achieves superior accuracy for wrinkle detection [19]. However, the CNN method
is also indirect, and its results are statistical indicators without clear physical meaning.
The scattering matrix and CNN methods cannot directly measure the maximum wrinkle
angle. The maximum wrinkle angle is the crucial indicator of mechanical performance
damage and the primary parameter to be estimated necessarily [25]. The total focusing
method (TFM) is a post-processing imaging algorithm using data acquired by linear array
probes under FMC mode [26]. The TFM method can achieve optimal focusing and provide
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a high lateral resolution. The instantaneous phase method can eliminate the amplitude
information, highlighting the phase information related to the spatial information of the
resin-rich interplies. Therefore, researchers [27] have proposed a TFM instantaneous phase
method which is a direct method for wrinkle detection. A Fourier domain approach, the
wavenumber algorithm, is also used to detect wrinkles [28]. Its primary advantage is
superior computational performance. However, the advantage of the TFM method is its
flexibility and versatility for arbitrary imaging geometries [29]. The TFM method is more
suitable for complex geometrical parts in the aerospace industry. This study adopts the
TFM instantaneous phase method to detect wrinkles in CFRP composites.

The wrinkle detection using weak reflection echoes is vulnerable to noise. However,
the signals acquired by the ultrasonic phased array system on CFRP composites are con-
taminated by various noises, for example, electrical noise from the ultrasonic inspection
system and structural noise from the heterogeneity in CFRP composites (such as voids, the
fiber–matrix heterogeneity). In this study, discrete-time filters are designed to relieve noise
interference. These designed filters filter the noise in the A-scan data acquired under FMC
mode. The wrinkle detection using the TFM instantaneous phase method requires high
spatial accuracy, so the filters must preserve the phase information of the A-scan data. The
TFM method is a time-domain delay-and-sum algorithm, and its result highly depends on
the time information of A-scan signals. A finite impulse response (FIR) filter can easily be
designed as a linear phase filter that can avoid phase distortion [30]. The phase component
of the frequency response is linear to frequency for a linear phase filter, and all frequency
components of the filtered signal are shifted for a constant time. The linear phase filter can
preserve the phase information, and the time information change in filtered signals can also
be corrected by shifting a constant time. Bandpass filters are designed to allow through
frequency components in a specified band, and their parameters are determined by the
time-frequency analysis of the A-scans in FMC datasets. We first apply linear phase FIR
filters to the TFM instantaneous phase method for wrinkle detection in this paper.

2. Testing Sample and Experimental Setup

2.1. Testing Samples

A CFRP sample with an induced wrinkle is prepared. Its size is 195 mm × 100 mm ×
5.92 mm. This CFRP sample consists of 32 unidirectional plies in the non-wrinkle section.
The average thickness of each ply is 0.165 mm. The fiber volume fraction (FVF) of this
sample is approximatively estimated to be 60%. The longitudinal velocity is assumed to be
3000 m/s, so the resonant frequency of the ply is about 9 MHz. The stacking sequence is
[0/45/90/−45]4s. The wrinkle defect is induced by inserting three additional narrow strips
between the 30th and 31st ply. The narrow strips’ angle is 90 degrees. The cure condition
is one hour at 130 ◦C. The cross-section micrograph of the wrinkle and partially enlarged
images of voids are shown in Figure 1. Many voids are randomly distributed in the resin-
rich interplies, and a few are in the carbon fiber plies. The voids in the interplies seem a
little larger than those in the carbon fiber plies. These voids induce material heterogeneity
in CFRP composites, causing predominant structural noise.

2.2. Experimental Setup

The experimental system (Figure 2a) consists of a computer workstation, an ultrasonic
array controller (AOS OEM-PA 128/128), a 10 MHz linear array probe (Doppler 10L64-
0.3×5-D77 EJA557), and a flat wedge. The main features of the flat wedge are listed in
Table 1. The flat wedge is used to avoid the near-surface dead zones of the probes. The
10 MHz linear array probe is chosen because its center frequency, close to the resonant
frequency (9 MHz), can enhance the inter-ply reflection [19]. The whole 64 elements of
the linear array probe are used to acquire FMC datasets with the same sampling rate of
100 MS/s. The pulser pulse width values are set at 50 ns for the 10 MHz probe. The pulser
pulse voltage is set at 100 V, and the A-scan resolution is chosen 8 bits during the FMC
datasets acquirement. The dataset acquirement process is shown in Figure 2b.
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Figure 1. (a) A cross-section micrograph of the wrinkle sample; (b) a shortened length image to
highlight the wrinkle defect; (c) partially enlarged images of voids.

Figure 2. (a) Experimental system and (b) the system sketch used to acquire datasets under
FMC mode.

Table 1. The main features of the used flat wedge.

Length Width Height Ultrasonic Velocity

65 mm 40 mm 20 mm 2337 m/s

3. Methods

The TFM instantaneous phase method using weak reflection signals is vulnerable
to noise, especially structural noise from voids. The noise contaminates weak inter-ply
reflection signals and induces dislocation in the TFM instantaneous phase results. Our
primary work is to design bandpass filters to relieve the noise interference in this paper.
The center of the passband frequencies is determined by the frequency components of the
inter-ply echoes. The energy of the front-face and back-wall echoes dominates the acquired
A-scan signals, so a time-frequency analysis is used to analyze the frequency components
of the inter-ply echoes. The designed filters should have no influence on the TFM method
and avoid inducing phase distortion, so linear phase filters are designed to filter A-scan
signals in FMC datasets.
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3.1. Total Focusing Method

The total focusing method applies heuristic delay-and-sum beamforming on the FMC
dataset, achieving focus in the target region and generating a detection image. The intensity
of the detection image I(x, z) at every point is calculated by [31]

I(x, z) =
N

∑
t=1

N

∑
r=1

St,r

⎛⎝
√
(xt − x)2 + z2 +

√
(xr − x)2 + z2

c

⎞⎠ (1)

where t and r are the serial numbers of the transmission and reception element, respectively;
N is the number of elements; c is the longitudinal velocity here; xt and xr are the positions
of the transmission and reception elements, respectively; (x, z) is the position of every point
in the target region; St,r is the A-scan signal in FMC datasets, received by element r (the
transmission element t is firing). It should be noted that St,r is not the Hilbert transform,
or instantaneous amplitude, of the A-scan signal in this paper. The phase information in
A-scan signals is crucial for wrinkle detection.

The delay-and-sum beamforming is implemented in the time domain, permitting
flexibility and versatility, which makes the TFM method suitable for aerospace CFRP parts
with complex curved surfaces [32]. The TFM method can focus and steer the ultrasonic
beam at every point in the target region, achieving a high imaging resolution, which is vital
for the continuously varying geometric defects, namely wrinkles. The TFM method makes
good use of the multi-dimensional and multi-angle information in FMC datasets, making it
capable of handling the inclined interplies.

3.2. Phase Extraction

The TFM result using A-scan signals contains the intensity and spatial information.
The wrinkle detection only needs spatial information to map the wrinkle geometry. The
lateral spatial information along the upper surface of the sample does not require additional
process, but in the depth direction, the intensity information should be removed. The
intensity fluctuation in the depth direction can be treated as a modulated signal [20].

Sdepth(t) = a(t) cos φ(t) (2)

where the amplitude a(t) is mainly the intensity information related to the material attenua-
tion and the reflection intensity; the phase φ(t) mainly contains the spatial information of
the resin-rich interplies.

This section aims to extract the phase information from the intensity fluctuation in
the depth direction. The Hilbert transform is a standard tool for extracting the phase
information, but it requires that the amplitude a(t) variation is sufficiently slow to ensure
spectral disjointness [33]. The reflection intensity of the interplies is similar everywhere in
the sample. The intensity variation due to the material attenuation is smooth. As a result,
the amplitude a(t) variation is mainly slow, except for the front-face and back-wall echoes.
The Hilbert transform can be used as an effective tool to extract spatial information, just
like the instantaneous phase method using pulse-echo ultrasonic inspection.

The real signal Sdepth(t) can be transformed into an analytic signal by

Zdepth(t) = Sdepth(t) + iH
{

Sdepth(t)
}

(3)

where H is the Hilbert transform [33],

H
{

Sdepth(t)
}
=

1
π

p.v.

⎧⎨⎩
+∞∫

−∞

Sdepth(τ)

t − τ
dτ

⎫⎬⎭
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The analytic associate of the real signal Sdepth(t) can be represented as

Zdepth(t) = a(t)eiφ(t) (4)

where φ(t) is also called as the instantaneous phase. The cosine of the instantaneous
phase, like the wrapped phase, contains the main spatial information. The cosine of the
instantaneous phase is used to map the wrinkle geometry in this paper, and the cosine
results are still referred to as the instantaneous phase images.

3.3. Time-Frequency Analysis

The filter should be designed according to the frequency components of the inter-ply
echoes. However, the front-face and back-wall echoes are the main energy components in
the acquired A-scan signals. The Fourier transform is not suitable because its result is the
frequency components of a full A-scan signal. The time-frequency analysis, analyzing a
signal in both the time and frequency domains, is appropriate in this case.

The short-time Fourier transform (STFT) is a classical method for time-frequency
signal analysis [34]. It can provide a proper resolution in the time or frequency domains
depending on the parameter setting. The “Spectrogram” function in MATLAB R2021b is
used to analyze A-scan signals.

The uncertainty principle, also called the Gabor limit, states that the time-frequency
analysis of signals cannot achieve a high resolution in both the time and frequency domains.
A too short time window (high time resolution) will lead to a poor frequency resolution,
while a too long time window (poor time resolution) results in a good frequency resolution.
The frequency components of the inter-ply echoes are concerned, so a relatively long
window (ten times the duration corresponding to the center frequency) is chosen for
the STFT.

3.4. FIR Filter Design

The TFM method is a delay-and-sum algorithm in the time domain, and the time
information of filtered signals should not change or can be corrected. Wrinkles in CFRP
composites are geometric defects with the carbon fiber plies deviating from the anticipated
direction. The deviating plies are continuously and gradually changed. The essence
of direct wrinkle detection is locating carbon fiber plies and disclosing the deviating
plies. Direct detection requires high spatial precision. The phase information is related
to spatial information, so filters must avoid phase distortion. A linear phase filter can
avoid phase distortion, and the filtered signal’s frequency components are shifted for
a constant time. The time information change induced by a linear phase filter can be
corrected by shifting the resulting signal. An FIR filter can become a linear phase filter by
making coefficients symmetric. The Parks–McClellan algorithm [35] is used to implement
linear phase FIR bandpass filters whose normalized stopband frequencies and normalized
passband frequencies are determined by the frequency components of the inter-ply echoes.
In this paper, the passband frequencies are set as the values within which the desired
frequencies are allowed to pass, and the stopband frequencies are set to be 1.11 times wider
than the passband frequencies.

4. Results and Discussion

4.1. Frequency Components of the Inter-Ply Echoes

Figure 3a is the acquired A-scan signals with the 32nd element firing and all 64 ele-
ments receiving, and the partial signals related to the CFRP sample are shown in Figure 3b.
The back-wall echoes’ amplitude reduces when the reception element drifts away from the
transmission element. The A-scan signals are almost symmetric about the transmission ele-
ment (the 32nd element). The A-scan signals with the 1st element firing and all 64 elements
receiving are shown in Figure 3c, and the partial signals related to the sample are shown
in Figure 3c. The inspected CFRP sample can be assumed to be the same everywhere for
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analyzing the frequency components of the inter-ply echoes. Some A-scan signals with
the 1st element firing are analyzed using the “Spectrogram” function with a relatively
long window. Figure 4 shows the spectrograms of the sample-related signals with the
1st element firing and the 1st, 8th, 16th, 24th, 32nd, 40th, 48th, 56th, and 64th elements
receiving. The signal with the ith element firing and the jth element receiving is expressed
as the (i, j) signal for short from here on. The black lines in Figure 4 are the Time-frequency
ridges representing the maximum energy frequency component at each time. It can be seen
that the main frequency components of inter-ply signals are distributed around 9 MHz (red
rectangular boxes in Figure 4).

Figure 3. (a) Signals with the 32nd element firing and all 64 elements receiving, and (b) the partial
signals related to the CFRP sample; (c) signals with the 1st element firing and all 64 elements receiving,
and (d) the partial signals related to the CFRP sample.

4.2. The TFM Instantaneous Phase Method with Linear Phase FIR Filter

Using the Parks–McClellan algorithm, a linear phase FIR bandpass filter with a coef-
ficient sequence symmetric has been designed. Its passband frequencies are set between
7 MHz~11 MHz, and its stopband frequencies are set between 6.78 MHz~11.22 MHz. The
stopband frequencies are 1.11 times wider than the passband frequencies. The center of the
passband frequencies is set at 9 MHz. The magnitude and phase responses of the designed
filter are shown in Figure 5. The phase response is a linear function of frequency within
the passband frequencies. The time information change caused by the designed linear
phase filter can be corrected by shifting the filtered signals (Figure 6). The comparison
between the raw and the corrected A-scans of the (1,1) and (1,16) signals is shown in
Figure 6. As expected, although the amplitude changes, the phase and time information
are almost unchanged. The spectrograms of the (1,1) and (1,16) filtered signals related
to the sample show that the frequency components of the inter-ply echoes are relatively
more concentrated around 9 MHz (Figure 7). The TFM and its related instantaneous phase
images of the unfiltered signals are shown in Figure 8a,b, respectively, and The TFM and its
related instantaneous phase results of filtered signals are shown in Figure 8c,d, respectively.
The back-wall information almost disappears in the filtered result. This phenomenon is
mainly attributed to the amplitude reduction of the back-wall echoes after filtering. The
high-frequency components have a high inter-ply reflection coefficient and high CFRP
attenuation [36], so the frequency components of back-wall echoes contain substantial low-
frequency components. The low-frequency components are filtered out by the designed
filter. As a result, the back-wall echoes’ amplitude decreases, and the back-wall information
becomes invisible in Figure 8c,d. In fact, the back-wall information is inessential, but
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the maximum wrinkle angle mainly affecting the mechanical performance is the primary
parameter to be measured necessarily [25]. The instantaneous phase images can be used to
map the wrinkle geometry. The dislocation in the instantaneous phase images is mainly
induced by noise, so the TFM instantaneous phase image of the filtered signals has less
dislocation than that of the unfiltered. The peaks (φ = π/2) in the filtered TFM instanta-
neous phase image are extracted and indicated by red points, and those in the unfiltered
are green points (Figure 9). Most peaks in the filtered and unfiltered are coincident, and
these coincident points appear with yellow ones. As shown in Figure 9, the designed linear
phase filter almost does not affect the wrinkle geometry of the detection result and relieves
some noise-induced dislocation.

 

Figure 4. Spectrograms of the sample-related signals. Note: the signal with the ith element firing and
the jth element receiving is expressed as the (i, j) signal for short, and the symbol (i, j) is labeled in the
top right-hand corner of each spectrogram.
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Figure 5. The magnitude and phase responses of the designed filter.

Figure 6. The comparison between the raw and the corrected filtered A-scans of the (a) (1,1) and
(b) (1,16) signals.

 

Figure 7. Spectrograms of the (1,1) and (1,16) filtered signals.
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Figure 8. (a) The TFM and (b) its related instantaneous phase images of the unfiltered signals; (c) the
TFM and (d) its related instantaneous phase images of the filtered signals.

 

Figure 9. The comparison between the unfiltered and the filtered results.

4.3. The Filter Bandwidth

The filter bandwidth denotes the passband frequencies’ range in this paper. In
Section 3.2, the filter passband frequencies have been set between 7 MHz~11 MHz; the
filter bandwidth is 4 MHz. In this section, linear phase FIR filters with different bandwidths
have been designed, and their parameters are mainly listed in Table 2. The bandwidths
of designed filters are 8 MHz, 4MHz, 2MHz, and 1 MHz, and their corresponding TFM
instantaneous phase results are shown in Figure 10a–d, respectively. It can be seen that the
result corresponding to a narrower bandwidth filter has less dislocation in Figure 10. A
narrower bandwidth filter can filter out more noise. The comparison between the unfiltered
and the 1MHz bandwidth-filtered results is shown in Figure 11. Although the wrinkle
geometry of the detection result remains nearly unchanged, the back-wall information
suffers further loss for the 1 MHz bandwidth filter. The result of the 1 MHz bandwidth
filter is not better than that of the 2 MHz bandwidth filter. The 2 MHz bandwidth filter
is recommended as an optimum choice for the TFM instantaneous phase method. The
peaks (φ = π/2) of the detection result from the 2 MHz bandwidth filter are overlaid on the
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micrograph of the wrinkle sample (Figure 12), and these peaks can excellently track the
deviating plies (wrinkle defects).

Table 2. The parameters of FIR filters with different bandwidths.

Filter Name
Passband

Frequencies
Stopband

Frequencies
Filter

Bandwidth

a 5 MHz~13 MHz 4.56 MHz~13.44 MHz 8 MHz
b 7 MHz~11 MHz 6.78 MHz~11.22 MHz 4 MHz
c 8 MHz~10 MHz 7.89 MHz~10.11 MHz 2 MHz
d 8.5 MHz~9.5MHz 8.45 MHz~9.55 MHz 1 MHz

Figure 10. The TFM instantaneous phase results filtered by the (a) 8 MHz, (b) 4 MHz, (c) 2 MHz, and
(d) 1 MHz bandwidth linear phase filters.

 
Figure 11. The comparison between the unfiltered and the filtered results.
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Figure 12. (a) The overlaid view of peaks (φ = π/2) from the 2 MHz bandwidth linear phase filter,
and (b) its shortened length image.

5. Conclusions

The TFM instantaneous phase method using weak reflection signals is vulnerable
to noise, especially structural noise from voids. The noise contaminates weak inter-ply
re-flection signals and induces dislocation in the TFM instantaneous phase results. The
aim of this paper is to use suitable filters to relieve noise-induced dislocation for the TFM
instantaneous phase method. Due to the character of the total focusing method (TFM)
and the high spatial precision requirements of direct wrinkle detection, we have chosen
to design linear phase filters. Linear phase filters can avoid phase distortion and preserve
spatial information.

The linear phase filter almost has no effect on the wrinkle geometry of the detection
results and relieves some noise-induced dislocation. The 2 MHz bandwidth filter is an
optimum choice for the TFM instantaneous phase method. The filtered detection result can
excellently track the deviating plies (namely wrinkle defects).
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Abstract: Cointegration theory has been recently proposed for condition monitoring and fault
detection of wind turbines. However, the existing cointegration-based methods and results presented
in the literature are limited and not encouraging enough for the broader deployment of the technique.
To close this research gap, this paper presents a new investigation on cointegration for wind turbine
monitoring using a four-year SCADA data set acquired from a commercial wind turbine. A gearbox
fault is used as a testing case to validate the analysis. A cointegration-based wind turbine monitoring
model is established using five process parameters, including the wind speed, generator speed,
generator temperature, gearbox temperature, and generated power. Two different sets of SCADA data
were used to train the cointegration-based model and calculate the normalized cointegrating vectors.
The first training data set involves 12,000 samples recorded before the occurrence of the gearbox fault,
whereas the second one includes 6000 samples acquired after the fault occurrence. Cointegration
residuals—obtained from projecting the testing data (2000 samples including the gearbox fault event)
on the normalized cointegrating vectors—are used in control charts for operational state monitoring
and automated fault detection. The results demonstrate that regardless of which training data set
was used, the cointegration residuals can effectively monitor the wind turbine and reliably detect
the fault at the early stage. Interestingly, despite using different training data sets, the cointegration
analysis creates two residuals which are almost identical in their shapes and trends. In addition, the
gearbox fault can be detected by these two residuals at the same moment. These interesting findings
have never been reported in the literature.

Keywords: wind turbine; condition monitoring; fault detection; cointegration; SCADA data

1. Introduction

Due to the high demand of global energy consumption and the aggravation of envi-
ronmental problems, wind energy has kept a progressively important role among other
renewable energy sources and accordingly contributed an indispensable solution to solving
world energy problems. The total installed capacity of the wind power sector in the world
was reported to reach 837 GW by the end of 2021 [1]. In Poland, the total capacity of
onshore wind power installations was up to 6.35 GW by the end of 2020, and it is expected
to continue growing and reach between 8 GW to 10 GW by 2030 [2]. However, because
wind turbines are typically situated in remote locations, operate under severe environ-
ments, and have load conditions varying over time, their failure rate and downtime are
relatively high [3]. Hence, the sector faces many challenges related to high operations and
maintenance (O&M) costs and downtime losses. These circumstances bring huge economic
loss to the asset owners and also cause a negative influence on the sustainable development
of the wind energy industry [4]. Therefore, it is important to develop condition monitoring
solutions for wind turbines that can predict or detect incipient failures at the early stage [5].

Condition-based maintenance has been extensively deployed as an effective strategy to
reduce O&M costs and improve the availability and efficiency of wind farms [3]. Vibration
analysis and oil monitoring are two commonly used techniques which use large volumes
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of high-frequency data, including vibration signals and oil debris measurements collected
from main turbine components [6–8]. Nevertheless, both techniques are sophisticated
and expensive, since they require additional sensors and data acquisition systems being
installed on the operating wind turbines [4]. Alternatively, wind turbine monitoring using
data collected by the supervisory control and data acquisition (SCADA) systems has been
considered as a cost-effective approach, as these systems are widely pre-installed in the
majority of commercial wind turbines [4,5]. SCADA systems record the operation state in-
formation and environmental conditions from wind turbines on a regular basis. Compared
with the vibration analysis and oil monitoring methods, the SCADA-based monitoring
solutions offer users large amounts of data readily available for analysis without additional
cost. As a result, much research has made use of SCADA data to develop reliable and cost-
effective monitoring systems in recent years, as reported in [4,5,9–11]. However, because
each wind farm often consists of a great number of wind turbines which are required to
be monitored concomitantly, the operator has to deal with large volumes and diversity
of SCADA data. To cope with this difficulty, most recently developed solutions have
been based on the competences of artificial intelligence (AI) and machine learning (ML)
techniques such as learning, classification, and adaptation [12]. Many advanced AI/ML
methods, such as self-supervised health representation learning [13], anomaly decomposi-
tion based on multi-variable correlation extraction [14], and hierarchical hyper-parameter
searching algorithm [15], have been recently developed. However, AI-based and ML-based
algorithms are known to be sophisticated, require a lot of data to train algorithms, need exten-
sive training time, and incur heavy computational cost [12,16,17]. Hence, more simple and
computationally efficient solutions have been explored in recent years. Amongst these, the
statistical approaches have been effectively exploited for wind turbine health monitoring
and fault assessment, such as multivariate statistical hypothesis testing [9], nonparametric
regression analysis [18], and the cointegration-based approach [19–26]. Recently, change-
point detection methods [27,28], cumulative sum (CUSUM)-based methods [29,30], and the
Wilcoxon rank sum test based method [31] have been proposed for SCADA-based wind
turbine condition monitoring.

Cointegration, a technique originally developed in the field of econometrics [32,33],
has been adopted for structural health monitoring (SHM) as a potential data-driven method
to remove or compensate for common long-term trends instigated by effects of environ-
mental and operational variability (EOV) in the measured data. Some selected examples
of cointegration-based methods developed for SHM applications can be found in [34–41].
The main idea in applying cointegration for SHM is based on the analysis of nonstationary
time series. When nonstationary data collected from a structure or process are cointegrated,
it is possible to obtain one or several stationary cointegration residuals, which represent
the undamaged (or normal operating) condition. Then, during the monitoring or testing
process, if the residuals become nonstationary then one can infer that the current data are no
longer representing the normal condition [34–36]. In addition, cointegration can effectively
remove the common trends, induced by EOV effects, from the original data, leaving the
residuals independent of EOV that still maintain their sensitivity to damage. To understand
how common trends, induced by EOV effects, can be purged from the measured data by
cointegration procedure and how a fault or damage can be detected using cointegration
residuals, potential readers are referred to the work [42].

Recently, the cointegration technique has been proposed for the purpose of condition
monitoring and fault detection of wind turbines, as reported in [19–26]. A cointegration-
based method was developed in [19–21] to analyse a benchmark SCADA data set recorded
from a 2 MW wind turbine drivetrain during 30 days under environmental and operational
variations. A human-made gearbox fault was progressively created during the experimental
and data acquisition process. The results proved that the proposed method can effectively
analyse nonlinear data trends, continuously monitor the wind turbine and reliably detect
abnormal problems. In [22], a cointegration-based method was reported to effectively
monitor the abnormal state of generator and gearbox such that early warning of faults was
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possible. In [23,26], SCADA data acquired from a 1.5 MW wind turbine under varying
environmental and operational conditions were used to establish a cointegration model
for identifying a set of known gearbox fault data. The cointegration analysis was applied
for vibration-based damage detection of a wind turbine blade under the influence of
EOV [24]. The results demonstrated that cointegration could be used to detect the presence
of damages under conditions not allowing for direct discrimination between damage and
EOV. In [25], a Bayesian multivariate cointegration method was developed for vibration-
based damage detection of wind turbine blades. The results showed that the method could
effectively eliminate the influence of EOV and detect the progressive damage of the wind
turbine blade. A common point of these previous works is that the operating condition of a
given wind turbine can be monitored by means of observing the cointegration residuals,
obtained from the cointegration process of SCADA data, in control charts. However, the
existing cointegration-based methods and results presented in [19–26] are not sufficient and
encouraging enough for the broader deployment of the technique in practical applications.
This work aims to close this research gap through performing a new investigation on
cointegration for wind turbine monitoring using a four-year SCADA data set acquired from
a commercial wind turbine. A gearbox fault is used as a testing case to validate the analysis.
A cointegration-based computation procedure, consisting of three stages, was developed
for this purpose. In the first stage, a cointegration model of the monitored wind turbine is
established using a set of process parameters. This model has the role of a wind turbine
monitoring model. In the second stage, the Johansen’s cointegration procedure [33] is
deployed to train the cointegration-based monitoring model and calculate the normalized
cointegrating vectors. In the third stage, SCADA data—acquired from the monitored wind
turbine during the regular operating period for producing electricity—are projected on the
normalized cointegrating vectors found in the second stage to form cointegration residuals
used for on-line monitoring of the wind turbine. The monitoring scheme is based on the
residual-based control chart technique, which is one of the most popular tools used for
statistical process control.

Using this computation procedure, a cointegration-based wind turbine monitoring
model has been established using five operational parameters, i.e., the wind speed, gen-
erator speed, generator temperature, gearbox temperature, and generated power. Two
different sets of SCADA data, recorded before and after the occurrence of the gearbox
fault, were used to train the cointegration-based model and calculate the normalized coin-
tegrating vectors. The results demonstrate that regardless of which training data set was
used, the cointegration residuals monitored the wind turbine accurately and detected the
fault reliably at the early stage. Interestingly, despite using different training data sets,
the cointegration analysis created two residuals which are almost identical in their shapes
and trends. In addition, the gearbox fault was detected by these two residuals at the same
moment. These interesting findings have never been reported in the literature.

The remaining parts of this paper are planned as follows. Section 2 gives a brief
introduction of the cointegration theory. Section 3 presents a three-stage cointegration-
based computation procedure for on-line wind turbine monitoring and fault detection.
SCADA data used for validating the proposed cointegration-based monitoring method are
described in Section 4. Section 5 presents the validation results and discussions. Finally, the
paper is closed with conclusions and future work suggestions in Section 6.

2. A Brief Introduction of Cointegration Theory

In the previous studies [34,35], the basic theory of cointegration analysis and other
relevant topics, such as stationarity of time series, cointegration, and common stochastic
trends, were described and explained in detail. Hence, these concepts are not presented in
depth in this paper. Potential readers are referred to those materials for detailed descriptions
of the cointegration theory. Furthermore, to know and be familiar with how cointegration
was previously applied for condition monitoring and fault detection of wind turbines,
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the readers are referred to some previous works [19–21]. In the following, only a brief
introduction of nonstationarity and cointegration is presented and explained.

A nonstationary time series has its mean, variance, and covariance parameters gen-
erally change over time [43]. For example, a time series exhibiting a shift in its mean is a
nonstationary process because it is a variable with a heteroscedastic variance over time. It
is well known that a common way to transform a nonstationary time series into a stationary
time series is by means of differencing. The number of differences required to make a
given nonstationary time series become stationary is called the order of integration. A time
series of order d is denoted as I(d). Therefore, a nonstationary I(1) time series becomes a
stationary I(0) time series by first-order differencing. In the case of a nonstationary I(2)
time series, a second-order differencing would be required to make it stationary. Gener-
ally, cointegration is characterized by two or more nonstationary I(1) variables sharing
a common long-run development, i.e., they do not drift away from each other except for
transitory fluctuations. In other words, if a group of nonstationary time series variables
have the propensity to establish and maintain a long-run equilibrium relationship, the
cointegration analysis can be used to find this relationship.

Let Yt = (y1t, y2t, . . . , ynt)
T denote an (n × 1) vector of I(1) time series. This n-dimension

vector is said to be linearly cointegrated if there exists a vector β = (β1, β2, . . . , βn)
T such that

βTYt = β1y1t + β2y2t + · · ·+ βnynt ∼ I(0) (1)

Equation (1) infers that the nonstationary time series in Yt are cointegrated if there is
(at least) a linear combination of those series that is stationary or has the I(0) status. This
linear combination, denoted as ut = βTYt + c, where c is a constant value, is referred to as
a cointegration residual that represents a long-run equilibrium relationship between the
cointegrated time series [43]. The vector β is referred to as a cointegrating vector. However,
the cointegrating vector β is not unique, since for any scalar k, we have

k · βTYt = (β∗)TYt ∼ I(0) (2)

A normalization assumption can be used to uniquely identify β. A typical normaliza-
tion is [43]

β = (1,−β2, . . . ,−βn)
T (3)

Using this normalization, the cointegrating relationship in Equation (1) can be rewritten as

βTYt = y1t − β2y2t − · · · − βnynt ∼ I(0) (4)

or
y1t = β2y2t + β3y3t + · · ·+ βnynt + βTYt (5)

The cointegration residual (ut = βTYt + c) is formed by projecting n vectors of a
time series in Yt on the normalized cointegrating vector β. This projection is equivalent
to multiplying Yt by βT . The single cointegration relationship in Equation (1) can be
extended to multiple cointegrations. In this case, Yt is said to be cointegrated with r
linearly independent cointegrating vectors (where 0 < r < n) if there is an (n × r) matrix B
such that

BTYt =

⎛⎜⎝βT
1 Yt
...

βT
r Yt

⎞⎟⎠ =

⎛⎜⎝u1t
...

urt

⎞⎟⎠ ∼ I(0) (6)

The stationary linear combinations urt = BTYt + cr, where cr is a constant vector, are
known as the r cointegration residuals, which are formed by projecting n vectors of time
series in Yt on the cointegrating matrix B, or equivalently, by multiplying Yt by BT . When
using the cointegration method, one of the most important points is to estimate (or calculate)
suitable normalized cointegrating vectors so as to create stationary cointegration residuals
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together with common trends removed. The Johansen’s cointegration method [33]—a
sequential procedure based on the maximum likelihood estimation (MLE)—has been
generally used for this purpose. The theory behind this method is sophisticated and
thus not presented here. For more theoretical details of the Johansen’s cointegration
method, potential readers are referred to the original work [33]; a simpler description
version can be found in [35]. The Johansen’s cointegration procedure has been employed
in this work, through applying the Econometrics Toolbox [44], to estimate the normalized
cointegrating vectors.

3. On Cointegration for Condition Monitoring and Fault Detection of Wind Turbines

In the present work, the cointegration technique has been exploited for on-line con-
dition monitoring and fault detection of wind turbines using SCADA data. The entire
cointegration-based computation procedure, consisting of three stages, is shown in Figure 1.
In the following, these stages are described and discussed.

 

Figure 1. Flowchart of the cointegration-based computation procedure for wind turbine monitoring
and fault detection.

3.1. Establishing a Cointegration-Based Wind Turbine Monitoring Model

The purpose of the first stage is to establish a cointegration model for a given wind
turbine. Specifically, a number of key process parameters of the wind turbine are required
to be selected to form the model. A cointegration model is described by Equation (4), where
variables y1t, y2t, . . . , ynt represent the wind turbine parameters. In general, important op-
erational parameters, such as the wind speed, generator speed, generated power, generator
temperature, generator voltage, generator current, gearbox temperature, gearbox oil sump
temperature, rotor bearing temperature, and rotor speed, can be chosen for this purpose.
In this study, a cointegration model of the monitored wind turbine, formed with a set of
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process parameters, has the role of a wind turbine monitoring model. It is noted that at least
two parameters must be selected such that a cointegration-based wind turbine monitoring
model can be established.

The cointegration-based wind turbine monitoring model does not require all impor-
tant operational parameters, as named above, to be included in the model. However,
it is suggested that the wind speed and generated power should be employed in the
cointegration-based monitoring model. The reason is because the relationship between
wind speed and turbine power output represents the wind turbine power curve, which is
one of the most important characteristics commonly used for wind turbine selection, capac-
ity factor estimation, wind energy assessment and forecasting, and turbine performance
and health monitoring [45]. In addition, temperature parameters of the generator and
gearbox should be included in the model because a fault or an abnormal event, associated
with the generator or gearbox component, is substantially a progressive phenomenon, that
is, the initial sign of a gearbox or generator fault could appear several days or weeks before
the fault event occurred in reality and it might be manifested by the increase in the gearbox
bearing and/or generator temperature [28,31].

3.2. Training the Cointegration-Based Model and Calculating Normalized Cointegrating Vectors

In the second stage, the Johansen’s cointegration procedure [33] is deployed to train
the cointegration-based monitoring model and calculate the normalized cointegrating
vectors. The computation uses only SCADA data of several process parameters acquired
from the monitored wind turbine under normal operating condition or a “healthy” state.
In a simple description, the estimation of cointegrating vectors is executed in three steps.
First is evaluating eigenvalues from the characteristic equation of a cointegration model.
Next is sorting the eigenvalues from the largest to the smallest one. Then, the normalized
cointegrating vectors are calculated from the sorted eigenvalues. Hence, the first and
the last cointegrating vector are corresponding to the largest and the smallest eigenvalue,
respectively. As reported in the previous works [19,34,35,41], the first cointegrating vector
is said to create the most stationary cointegration residual. In other words, when projecting
SCADA series stored in different process parameters on the first cointegrating vector, we obtain
the first cointegration residual which is the most stationary combination of the cointegrated
data. This cointegration residual has been considered as the best (or the most suitable)
indicator used for fault and/or damage detection, as discussed in [19,34–36,40,41]. In this
study, we also consider the first cointegration residual as the best feature and therefore use
only this residual to monitor the health state of the wind turbine.

It is supposed that the training data set—selected for calculating the normalized
cointegrating vectors—has a significant influence on the wind turbine health monitoring
and fault detection results. As mentioned above, only the SCADA data recorded from a
wind turbine operating in healthy condition should be used for this purpose. However,
this requirement faces some challenges. First, model training and cointegrating vector
calculation require sufficient amounts of normal operation data collected over a long period
covering a representative range of wind turbine operating conditions. Certainly, when
these data are scarce or when they are not representative for the turbine’s current normal
operation state, fault detection may not feasible because the cointegration-based monitoring
model cannot be trained properly. This is the case for newly installed wind turbines at the
initial stage of their operation life when the amount of normal operation data accumulated is
small, which cannot provide sufficient information for training cointegration-based models.
Moreover, due to many unavoidable reasons, such as wind turbine ageing, subsystem
replacements, software updates, or sensor recalibration, the normal operation data collected
months or years before might be outdated and so they are no longer representative of the
turbine’s current normal operation behaviour.

An alternative solution has been suggested by this work to deal with these challenges,
that is, one may consider using several training data sets, which represent different normal
operating modes of the wind turbine, to obtain different sets of normalized cointegrating
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vectors. Given that, more than one set of cointegration residuals can be employed to
monitor the turbine and detect abnormal problems. This idea has been validated in this
paper and the obtained results are presented in Section 5.

3.3. On-Line Condition Monitoring and Fault Detection of Wind Turbines

In the third stage, SCADA data—acquired from the monitored wind turbine during
the regular operating period for producing electricity—are projected on the normalized
cointegrating vectors found in the second stage to produce cointegration residuals used
for monitoring the wind turbine. As explained in Section 2, this projection is simply
equivalent to the multiplication of data vectors. Since SCADA data stored in each process
parameter can be considered as a vector of time series, a cointegration residual (given by
ut = βTYt + c) can be formed by multiplying vectors of SCADA series stored in different
process parameters by one cointegrating vector. This implies that a cointegration residual
also has the form of a sequence of time series. To obtain multiple cointegration residuals
(denoted by urt = BTYt + cr), one can multiply vectors of SCADA series stored in different
process parameters by r cointegrating vectors. This computation can be executed in
a real-time manner on a computer-based monitoring system, which provides a simple
on-line condition monitoring solution for wind turbines. As discussed in Section 3.2,
only the first cointegration residual is used in this study to monitor the health condition
of wind turbines. The creation of this residual is achieved by multiplying vectors of
SCADA series, corresponding to the selected process parameters, by the first normalized
cointegrating vector.

The possibility of using a cointegration-based monitoring model, in particular, the first
cointegration residual, for on-line condition monitoring of wind turbines is explained here.
When a new set of monitoring samples collected by the SCADA system are made available
for analysis, these data are instantly projected on the first normalized cointegrating vector
to create a new value of the first cointegration residual. This value is then compared with
the critical limits, calculated as statistical confidence levels, of the control chart to determine
whether the wind turbine is still operating under its normal condition. To present the
monitoring process in an illustrative manner, the first cointegration residual is plotted
against the critical region; if the residual crosses the upper or lower critical line, then it
means that a fault would occur in the turbine.

4. Wind Turbine SCADA Data

The long-term monitoring campaign of the La Houte Bourne onshore wind farm in
Villeneuve-d’Ascq, France, over eight years (from 1 January 2013 to 31 December 2020)
has provided for public a plentiful open-access SCADA data source [46]. The wind farm
has four wind turbines of the MM82 model, manufactured by Senvion. The technical
details of the wind turbines are given in Table 1. There were 34 process parameters
measured at an interval of 10 min for each wind turbine and in total 1,057,868 samples were
recorded. The data acquired for the wind turbine (labelled as R80721) over four years (from
1 January 2013 to 31 December 2016) were selected for the analysis in this study. There
were 210,095 data samples recorded for each parameter. Before analysing the data using
the cointegration-based method, data pre-processing and outlier cleaning procedures were
performed to remove all samples associated with unphysical, corrupted, or missing values.
As a result, we attained 142,613 data samples for each parameter. This four-year data
collection of the wind turbine R80721 was recently used to validate a new wind turbine
health monitoring method which is based on the Wilcoxon rank sum test [31]. SCADA data
of this wind turbine, including the wind speed, generator speed, generator temperature,
gearbox bearing temperature, and generated power, are plotted in Figure 2. These five
process parameters are used in this study to create a cointegration-based monitoring model
for the selected wind turbine. The validation results of the developed model are presented
in the following section.
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Table 1. Technical information of wind turbines in the wind farm.

Technical Parameters Value

Rated power 2050 kW

Cut-in wind speed 4 m/s

Cut-out wind speed 22 m/s

Rated wind speed 14.5 m/s

Operating temperature range −20 ◦C to +35 ◦C

Rotor diameter 82 m

Rotor area 5281 m2

Rotor blade length 40 m

Hub height 80 m

Figure 2. SCADA data plotted for the five wind turbine parameters used in this study to form a
cointegration-based monitoring model.

It is important to mention that during the four-year monitoring period of interest, the
gearbox bearing temperature of the wind turbine R80721 was raised up to a peak value of
84.12 ◦C at the data sample 70,994, as marked in Figure 2. It is assumed that a fault in the
gearbox is substantially a progressive phenomenon and that the initial signs of the anomaly,
mostly indicated by a sudden increase in the gearbox bearing temperature, could appear
at least several hours before its actual occurrence. Hence, it is crucial that this gearbox
fault can be accurately predicted or detected early before the temperature of the gearbox
bearing goes up. The wind turbine power curve, formed by plotting the generated power
against the wind speed measured at the hub height for all data, is shown in Figure 3. The
power curve describes how much electrical power output is produced by a wind turbine at
different wind speeds.
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Figure 3. Wind turbine power curve.

5. Results and Discussion

This section presents the validation of the cointegration-based monitoring method,
introduced in Section 3, using the wind turbine SCADA data, described in Section 4. A
cointegration-based monitoring model for the wind turbine (R80721) was established
using five process parameters, including the wind speed (y1t), generator speed (y2t), gen-
erator temperature (y3t), gearbox temperature (y4t), and generated power (y5t), where
y1t, y2t, y3t, y4t, y5t are variables representing the wind turbine parameters. Two differ-
ent sets of SCADA data were used to train the cointegration-based model and calculate
the normalized cointegrating vectors. The first training data set involves 12,000 samples
recorded before the occurrence of the gearbox fault (case 1), whereas the second one in-
cludes 6000 samples acquired after the fault occurrence (case 2). It is noted that these two
training data sets represent the periods when the given wind turbine was operating in
normal condition or healthy state. Cointegration residuals—obtained from projecting the
testing data (2000 samples including the gearbox fault event) on the normalized cointegrat-
ing vectors—are used in control charts for operational condition monitoring and automated
fault/abnormal detection.

5.1. Results Obtained by Using the First Training Data Set (Case 1)

The three-stage cointegration-based computation procedure (presented in Section 3)
was deployed for the case study. Following Equation (4), we first established a cointegration-
based monitoring model for the wind turbine (R80721). This model has the form

βTYt = y1t − β2y2t − β3y3t − β4y4t − β5y5t (7)

In the next stage, the cointegration-based wind turbine monitoring model was trained,
and then the normalized cointegrating vectors were estimated using the Johansen’s cointe-
gration method [33]. SCADA data within the sample points [17,000–29,000], corresponding
to 12,000 samples recorded before the gearbox fault occurrence, were used for this purpose.
These data are plotted in Figure 4 for the five process parameters. The wind turbine power
curve in this case is shown in Figure 5. The minimum and maximum values of each process
parameter used for training the cointegrating vectors are provided in Table 2. As a result,
we obtained four normalized cointegrating vectors (in the form of four column vectors),
which are given as follows:
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⎡⎢⎢⎢⎢⎣
1 1

−2.5869 −5.7813
−0.0031 −0.0034

1 1
−2.9252 −0.9384
0.0119 0.0065

0.8893 −0.0300
−0.5507 0.6266

−0.0700 0.0433
−0.4709 0.1699

⎤⎥⎥⎥⎥⎦
where the first normalized cointegrating vector is specified by the first column, the second
cointegrating vector is specified by the second column, and so on.

Figure 4. Wind turbine SCADA data corresponding to the first training data set (case 1).

Figure 5. Wind turbine power curve corresponding to the first training data set (case 1).
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Table 2. Parameters used for training the cointegrating vectors (case 1) and their limited values.

Parameters Min Value Max Value

Wind speed 2.18 mps 15.01 mps

Generator speed 969.83 rpm 1801.21 rpm

Generator temperature 22.76 ◦C 51.71 ◦C

Gearbox temperature 42.04 ◦C 78.85 ◦C

Generated power 6.82 kW 2038.92 kW

It is noted that in this case the constant vector cr, where r = 1, . . . , 4, is found as[
0.0229 0.0211 0.0090 −0.0013

]
. As mentioned in Section 3.2, only the first cointe-

gration residual is used in this study to monitor the health condition of wind turbines.
This cointegration residual is created by multiplying five vectors of the SCADA series
(i.e., testing data), corresponding to the five selected process parameters, by the first normalized
cointegrating vector. Therefore, the first cointegration residual (u1t) can be written as

u1t = βTYt + c1 = y1t − β2y2t − β3y3t − β4y4t − β5y5t + c1 =
y1t + 2.5869y2t + 0.0031y3t − 0.8893y4t + 0.5507y5t + 0.0229

(8)

As mentioned in Section 4, the abnormal temperature and fault in the gearbox bearing
occurred at the data sample 70,994. Hence, we selected 2000 data samples consisting of the
sample points from 70,000 to 72,000, i.e., covering the gearbox fault event, as the testing
data for each process parameter. Next, 2000 data samples of five process parameters are
inserted into variables y1t, y2t, y3t, y4t, y5t in Equation (8). This creates the first cointegration
residual in the form of a time series with 2000 samples. The obtained cointegration residual
is plotted together with the gearbox temperature in Figure 6 for the comparison. In addition,
the residual is plotted against the 99.9% statistical confidence intervals. The confidence
interval—with respect to the average of the residual—was calculated as ν ± 3σ, where ν
and σ are the mean and standard deviation. The first 900 sample points of the residual were
used for calculating the confidence interval. The two red dotted horizontal lines specify the
critical limits of the confidence interval. During the monitoring, if the cointegration residual
stays within these two lines, this means that the monitored wind turbine is operating in the
healthy state. On the contrary, a fault would appear whenever the residual goes beyond the
confidence levels. We can observe that the gearbox fault could be detected at data sample
922 in the residual timescale (or 70,922 in the SCADA data timescale). This implies that
the anomaly was detected about 720 min (or 12 h) before its actual occurrence at the data
sample 70,994.

5.2. Results Obtained by Using the Second Training Data Set (Case 2)

The computation procedure in Section 3 was applied for this case study. Regarding the
first stage, we used the same cointegration-based monitoring model for the wind turbine
(R80721), which was previously established for case 1 and given by Equation (7). However,
in the second stage the cointegration-based wind turbine monitoring model was trained
and then the normalized cointegrating vectors were estimated using SCADA data within
the sample points [130,000–136,000], corresponding to 6000 samples recorded after the
occurrence of the gearbox fault. These data are plotted in Figure 7 for the five process
parameters. The wind turbine power curve in this case is shown in Figure 8. The minimum
and maximum values of process parameters used for training the cointegrating vectors are
given in Table 3. As a result, we obtained four normalized cointegrating vectors (in the
form of four column vectors), which are listed below:
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⎡⎢⎢⎢⎢⎣
1 1

1.2623 −5.1429
0.0044 −0.0013

1 1
−2.3078 0.1297
0.0140 −0.0071

−0.6261 0.0060
0.3217 0.5332

−0.0197 −0.0092
−0.6486 −0.1704

⎤⎥⎥⎥⎥⎦

Figure 6. Early detection of the abnormal temperature in the gearbox bearing by monitoring the first
cointegration residual.

Figure 7. Wind turbine SCADA data corresponding to the second training data set (case 2).
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Figure 8. Wind turbine power curve corresponding to the second training data set (case 2).

Table 3. Parameters used for training the cointegrating vectors (case 2) and their limited values.

Parameters Min Value Max Value

Wind speed 3.47 mps 14.88 mps

Generator speed 969.83 rpm 1801.34 rpm

Generator temperature 20.89 ◦C 52.39 ◦C

Gearbox temperature 42.32 ◦C 77.09 ◦C

Generated power 10.41 kW 2042.91 kW

The constant vector cr is equal to
[−0.0148 0.0166 0.0063 0.0062

]
in this case.

Again, the first cointegration residual is created by multiplying five vectors of the SCADA
series (i.e., testing data), corresponding to the five selected process parameters, by the first
normalized cointegrating vector. Therefore, the first cointegration residual (u1t) can be
formed as

u1t = βTYt + c1 = y1t − β2y2t − β3y3t − β4y4t − β5y5t + c1 =
y1t − 1.2623y2t − 0.0044y3t + 0.6261y4t − 0.3217y5t − 0.0148

(9)

The same set of the testing data, i.e., 2000 data samples used for case 1 in Section 5.1,
was also used in this case. After the testing data of five process parameters were inserted
into variables y1t, y2t, y3t, y4t, y5t in Equation (9), we obtained the first cointegration residual
in the form of a time series with 2000 samples. The residual is also plotted together with
the gearbox temperature in Figure 9 to illustrate the fault detection. The same confidence
interval was applied in this case. Interestingly, the abnormal temperature in the gearbox
bearing was detected at the same moment as reported in case 1, that is, at the data sample
922 in the residual timescale (or 70,922 in the SCADA data timescale). Therefore, the
anomaly was detected about 720 min (or 12 h) before its actual occurrence at the data
sample 70,994.

5.3. Discussion

The first important point to be discussed here is that for both cases investigated where
different sets of SCADA data were used to estimate the cointegrating vectors, the first
cointegration residuals obtained in Figure 6 (case 1) and Figure 9 (case 2) exhibit the same
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behaviour. To ease the observation and comparison, these two residuals are plotted together
in Figure 10. We can observe that their amplitudes, shapes, and trends are almost identical.
In particular, the moment of fault detection (at the data sample 922 in the residual timescale)
and the peak (at the data sample 994) are the same in both cases. Interestingly, the peak is
at the same moment as the fault occurrence.

Figure 9. Early detection of the abnormal temperature in the gearbox bearing by monitoring the first
cointegration residual.

Figure 10. Comparison of the first cointegration residuals obtained from two cases: (top) case 1;
(bottom) case 2.

Moreover, it is well known that a certain cointegration residual usually represents a
long-run equilibrium relationship between the cointegrated time series [43]. In Figure 10,
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we can observe that for both cases the wind turbine exhibited a long-run equilibrium
relationship until the moment (at the data sample 922) when the fault was detected. Af-
ter passing the fault-related period, we can observe in both cases that the wind turbine
established a new long-run equilibrium relationship approximately after data sample 1200.

6. Conclusions

This study has reported a new investigation on cointegration for wind turbine moni-
toring using a four-year SCADA data set acquired from a commercial wind turbine. We
investigated for the first time what can be expected if two different sets of SCADA data,
representing different normal operating modes of the given wind turbine, are used to
train the cointegration-based monitoring model and calculate the normalized cointegrating
vectors. The experimental results demonstrated that although different training data sets
were used, the cointegration analysis created two residuals, having identical shapes and
trends, which could detect the gearbox fault at the same moment. These findings have
never been reported in the literature and would be helpful for the potential users of the
method in the future.

In comparison with well-trained ML-based methods, the cointegration-based wind
turbine monitoring solution may not provide very early warning signs about the fault
occurrence. However, the simplicity of the proposed method is an essential factor in practi-
cal condition monitoring applications. Instead of analysing and interpreting many wind
turbine parameters at the same time, by using this method, the wind turbine monitoring
and fault detection process is as simple as observing the stability of a single cointegration
residual in a control chart. This constitutes a simple and effective way to monitor the
operating state and detect incipient failures of wind turbines in a wind farm. In addition,
the use of multiple data sets to train the cointegration-based wind turbine monitoring
model and calculate the normalized cointegrating vectors could improve the reliability of
the condition monitoring and fault detection process.

In this study, the gearbox anomaly was detected about 12 h before its actual occurrence.
However, it is expected in practice that the early fault detection should be at least some
days or even weeks in advance for preventing wind turbine damages. Therefore, future
study on adapting the cointegration-based monitoring method to make it possible for early
fault prognosis in wind turbines has been planned. In addition, the training data sets
were analysed without cleaning so that the wind turbine power curves contained a lot of
outliers. The early fault detection would have improved if we had performed the power
curve cleaning.

This study presents some promising results. However, some works can be suggested
for the further development and validation of the method. First, the cointegration-based
monitoring method should be validated using other SCADA data sets which involve differ-
ent fault types associated with main turbine components. Second, it would be interesting
to investigate if the normalized cointegrating vectors calculated for a wind turbine with
sufficient training data can be reused for other wind turbines with scarce or limited opera-
tion data, especially for newly installed wind turbines. In other words, this future work
will involve the transfer learning of cointegration-based normal behaviour models between
wind turbines.
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1. Introduction

In recent years, the scope of structural health monitoring in wind turbines has broad-
ened due to the development of innovative data-driven methodologies. These methodolo-
gies enable the execution of condition monitoring and fault detection, which can provide
support for predictive maintenance across the various components of a wind turbine.

In this Editorial, we present a selection of 10 papers published in Energies that con-
tribute to the ongoing research on wind turbine condition monitoring. The papers were
divided into three categories: wind fault detection and diagnosis, wind turbine condition
monitoring, and wind turbine maintenance. The first category includes papers that focus
on the detection and diagnosis of faults in wind turbines, such as those related to bearings,
pitch actuator systems, and gearboxes. The second category comprises papers that dis-
cuss various aspects of wind turbine condition monitoring, including literature reviews,
comparative studies on anomaly detection techniques, and methodologies that predict the
remaining useful life of wind turbine components. The third category includes papers
that aim to reduce the cost of wind turbine maintenance by developing new maintenance
strategies. These papers contribute to the ongoing effort to develop reliable, efficient, and
cost-effective techniques for monitoring the condition of wind turbines, with the ultimate
goal of increasing their reliability, lifetime, and performance.

2. Wind Turbine Fault Detection and Diagnosis

The study conducted by Castellani et al. [1] presents an analysis of the failures in the
bearings of a wind turbine. The novelty of this research lies in its focus on monitoring the
vibrations in the wind turbine tower without the need for human interaction, while also
ensuring that the developed procedure does not interfere with the normal operation of the
wind turbine. The validation of this procedure was carried out on a set of five wind turbines,
comprising three healthy structures, one damaged structure, and a recently repaired speci-
men. The methodology employed in the study involved processing accelerometer signals
acquired in the tower of the wind turbines, which underwent several stages, including
univariate data cleaning, feature extraction, multivariate data cleaning, statistical analysis,
and damage detection based on the Mahalanobis distance. The results of the study indicate
that the detectability of damage was successful, as demonstrated by the low number of
false alarms in the predictions.

An investigation on the fault detection of a wind turbine pitch actuator system was
conducted in [2]. The study employed an algorithm based on the interval observer theory
and included three fault stages to authenticate the developed fault detection approach.
These fault stages assessed the impact of hydraulic leakage, high air oil content, and pump
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wear. The study resulted in the development of a fault detection algorithm and a fault
classification algorithm. To authenticate these algorithms, 500 experiments were performed,
each with a random input. The accuracy values of the detection algorithm exceeded 62%,
whereas the classification algorithm had an accuracy value higher than 83%.

In the study conducted by Santolamazza et al. [3], artificial neural networks (ANN)
were utilized to detect faults in wind turbines, and SCADA data were used for modeling.
The developed methodology consisted of several stages. Firstly, a preprocessing stage
was carried out for the removal of abnormal samples, followed by the removal of outliers
through the use of a clustering method which evaluated the Mahalanobis distance. Secondly,
a model processing stage was carried out, in which the data were split into training,
validation, and test sets. Feature selection and tuning of the hyper-parameters of the feed-
forward neural network (FFNN) model was also conducted. Finally, a post-processing stage
involving an alarm system was implemented to identify any anomalies in the deviations
from the real-time baseline value of the output variable. The developed methodology was
applied to two critical components of the wind turbine, the generator and the gearbox,
with the generator showing the best fault-detection results. The paper also includes Table
A1, which summarizes relevant fault detection studies in wind turbines, obtained from
the literature. These studies are classified based on their components, methods, real case
studies, and approach data type.

In [4], a fault diagnosis methodology of a wind turbine gearbox was developed
using both time and frequency domain analysis. The methodology used data collected
from accelerometers attached to the gearbox housing. An adaptive Variational Mode
Decomposition (VMD) algorithm was optimized with the fast gray wolf optimizer (GWO) to
decompose the signal obtained by the accelerometers. Next, a principal component analysis
was performed in each domain to obtain a new feature vector. An ELM classifier was trained
and tested with classification accuracies greater than 90%. The developed methodology
was compared with other classifiers such as SVM, deep convolutional neural networks,
a genetic algorithm back propagation neural network, and the ensemble empirical mode
decomposition (EEMD) method for signal decomposition. Results indicated that the
developed methodology outperformed all compared methods.

In the study by Liu et al. [5], fault indicators were investigated in three components
of wind turbines: the converter, the generator, and the pitch system. The study utilized
SCADA data obtained from 24 wind turbines of 1.5 MW. The developed methodology
involved creating radar charts that varied depending on whether the system was healthy
or unhealthy. Three different machine learning classification methods were compared,
including the support vector machine (SVM), support vector regression (SVR), and a
convolutional neural network (CNN) using ResNet50 structure as the backbone network.
The results showed that the CNN achieved the best classification results in all cases, with
accuracy values of 97.87% for the generator, 98.03% for the converter, and 98.41% for the
pitch system.

3. Wind Turbine Condition Monitoring

In the publication by Maldonado et al. [6], the authors conducted a systematic litera-
ture review regarding the use of Supervisory Control and Data Acquisition (SCADA) data
for wind turbine condition monitoring (CM). The authors emphasize the economic benefits
of utilizing data obtained from the SCADA system, which eliminates the need to install
additional sensors or equipment on the wind turbines. The literature review revealed that,
among the 102 articles analyzed, 26% were focused on the gearbox failure of wind turbines.
The gearbox is considered one of the most critical components, as it contributes to 20% of
total downtime in wind turbines. Additionally, the review highlighted other components of
wind turbines that have been the subject of different condition monitoring methodologies,
including blades, tower, drive train and bearing, yaw system, and various electrical and
electronic components. The authors also noted some of the challenges associated with wind
turbine condition monitoring, such as the development of non-intrusive and sensorless CM
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systems, online and real-time CM, standardization of SCADA data, public availability of
SCADA data, and the development of an assessment method for monitoring the overall
condition of a wind turbine. Furthermore, the SCADA variables utilized for wind turbine
condition monitoring include, but are not limited to, environment temperature, wind speed,
active power, pitch angle, gearbox temperature, and rotor speed.

In the study by McKinnon et al. [7], a number of anomaly detection techniques were
developed based on gearbox SCADA data for wind turbine condition monitoring. The data
utilized in the study were obtained from 21 wind turbines, with each turbine providing two
months of data. The first month was considered to represent the healthy state, occurring one
year prior to the failure, while the second month represented the unhealthy state, occurring
one month prior to the failure. The models were trained using various variables, including
the temperature and pressure of gearbox components, as well as the generator, rotor, and
ambient wind speed. Three different models were compared: the Isolation Forest (IF),
One-Class Support Vector Machine (OCSVM), and Elliptical Envelope (EE). OCSVM and IF
exhibited an average accuracy of 82%, whereas EE presented a lower accuracy of 77%.

In the study by Velandia et al. [8], the authors investigated the detection of faults
in wind turbines. They employed three data preprocessing techniques to improve the
performance of a classification task on a highly imbalanced dataset obtained from SCADA
data over a period of seven months in a wind turbine. Principal component analysis was
used as a dimensionality reduction method, data reshaping served as a data augmentation
technique, and random oversampling was applied to deal with the imbalanced character-
istic of the dataset. Three different classifiers were compared: RUSBoost, Support Vector
Machines (SVM), and k-Nearest Neighbors (k-NN). The results of the research show that
the F1 scores of at least 95% were achieved.

4. Wind Turbine Maintenance

In [9] a data-centric methodology is described. This methodology is designed to
enhance the prediction accuracy of the remaining useful life (RUL) of different parts of
a wind turbine. This approach contrasts with the conventional model-centric approach,
in which the hyperparameters of a machine learning model are adjusted by assessing
various feature selection and data preprocessing techniques within a machine learning
pipeline. The methodology was validated and trained with data collected from a wind farm
between 2016 and 2017. The study focused on diagnosing and analyzing five wind turbine
components: the generator, hydraulic group, generator bearing, transformer, and gearbox.
Given the skewed nature of the wind turbine dataset, with a significant amount of healthy
data and limited fault data, precision and recall metrics were used to assess the classification
task. The data-centric methodology outperformed the model-centric approach.

The research described in [10] successfully accomplished the objective of reducing
repair costs and the number of repairs in four distinct components of a wind turbine
using a support vector machine (SVM) algorithm for condition-based maintenance. The
components studied were the rotor, pitch system, gearbox, and generator. The research
showed that the generator component incurred the highest maintenance costs. The rotor,
on the other hand, presents the best opportunity for cost savings, as its single maintenance
cost is relatively higher. One notable contribution of this research is that it includes a
comparative scenario analysis versus separate periodic maintenance, demonstrating an
improvement in cost savings of 32.5%.

5. Concluding Remarks and Perspectives

The 10 papers described in this Editorial provide a comprehensive overview of cur-
rent research trends in wind turbine condition monitoring, fault diagnosis, and mainte-
nance. Future research in these areas should focus on the development of more advanced
methodologies and the integration of multiple data sources for more accurate and reliable
predictions. The integration of machine learning and artificial intelligence techniques can
help identify patterns and hidden correlations within the data, leading to more accurate
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fault detection and condition monitoring of wind turbines. In addition, future research will
focus on the development of techniques that address the challenges associated with wind
turbine condition monitoring, such as the development of non-intrusive and sensorless
condition monitoring systems, the standardization of SCADA data, and the assessment of
the overall condition of a wind turbine. With the increasing demand for renewable energy,
the need for reliable and efficient wind turbines is paramount, and research in these areas
can help further the development of more effective wind turbine systems, improving their
performance, extending their lifespan, and reducing downtime and maintenance costs.
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Abstract: The nonlinear ultrasonic evaluation technique is useful for assessing micro-defects and
microstructure changes caused by fatigue or bending damage. In particular, the guided wave is
advantageous for long-distance testing such as piping and plate. Despite these advantages, the
study of nonlinear guided wave propagation has received relatively less attention compared to
bulk wave techniques. Furthermore, there is a lack of research on the correlation between nonlinear
parameters and material properties. In this study, the relationship between nonlinear parameters
and plastic deformation resulting from bending damage was experimentally investigated using
Lamb waves. The findings indicated an increase in the nonlinear parameter for the specimen, which
was loaded within the elastic limit. Inversely, regions of maximum deflection in specimens with
plastic deformation exhibited a decrease in the nonlinear parameter. This research is expected to be
helpful for maintenance technology in the nuclear power plant and aerospace fields that require high
reliability and accuracy.

Keywords: non-destructive testing; ultrasonic; nonlinearity; lamb wave; bending damage

1. Introduction

In technology-intensive industries such as aerospace, nuclear power, and petrochemi-
cal plants, the precision and reliability of equipment and mechanical systems are of utmost
importance. Micro-defects in these structures grow rapidly, often surpassing the stage
where they can be easily visualized. Current ultrasonic non-destructive testing methods are
unable to diagnose defects prior to the formation of macro-cracks [1]. Recent research shows
nonlinear ultrasonic techniques have higher sensitivity in detecting corrosion, microdefects,
and changes in microstructure [2,3]. Conventional local inspection methods using bulk
waves face limitations when it comes to inspecting large structures such as ships, aircraft,
containment liner plates, and bridges. Recognizing this challenge, extensive research is
being conducted to develop wide-range testing techniques utilizing induced ultrasonic
waves [4–6]. In particular, nonlinear Lamb waves are advantageous for long-distance test-
ing due to their unique characteristics and the ability to achieve higher sensitivity through
various mode selections.

High-tech industries require materials with high reliability and stability. Nonlinear
ultrasonic inspection techniques offer the potential to detect microstructural defects re-
sulting from various factors such as micro-defects, corrosion, and plastic deformation due
to fatigue or external loads. However, research on the impact of nonlinearity caused by
changes in material properties remains insufficient. To bridge this gap, an experimental
investigation utilizing Lamb wave-based inspection methods was conducted. The focus of
the study was to explore the relationship between bending damage and the manifestation
of nonlinearity in aluminum alloy materials. This research contributes to the understanding
of material behavior and holds implications for improving the reliability and performance
of materials in high-tech industries.

Materials 2023, 16, 4241. https://doi.org/10.3390/ma16124241 https://www.mdpi.com/journal/materials
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There has been continuous research and development in the field of nonlinear ultra-
sonic testing techniques, with a particular focus on studying and comparing the fatigue
behavior and nonlinearity trends in various materials [7,8]. In particular, Jacobs L.J. and Qu
J. studied the nonlinearity of nickel alloy steels using Rayleigh surface waves [9], and the
nonlinearity of aluminum alloys was also investigated using a Lamb wave [10]. Deng et al.
employed the second method of perturbation theory to investigate the second harmonics of
the shear-horizontal (SH) mode in an isotropic plate featuring two free boundaries [11,12].
In addition, they studied the effects of nonlinearity on the cumulative effect, mode analysis,
and phase matching, which are important experimental bases for nonlinear ultrasonic
techniques. [13,14]. Li Weibin conducted experiments to characterize the thermal fatigue
damage of composite laminates using second harmonic Lamb waves [15] and investi-
gated the effect of material microstructure evolution on the acoustic nonlinear response
of ultrasound in rolled copper and brass [16]. In addition, Li W. and Park J. conducted
a study to detect micro-cracks in materials using non-contact electromagnetic ultrasonic
transducers [17,18]. Lissenden presented a method for detecting local fatigue damage on
an aluminum plate by utilizing a PVDF (polyvinylidene difluorine) sensor to simultane-
ously receive shear-horizontal waves and the secondary Lamb waves they generate. The
experimental findings were further validated through finite element simulation [19,20]. Fur-
thermore, there is an active research effort among many scholars to diagnose micro-damage
through the utilization of second and third harmonics [21–23]. Additionally, researchers are
exploring methods to enhance sensitivity by mitigating system nonlinearity [24], as well as
investigating the effects of thermal aging on sensitivity [24]. However, it is important to
note that these studies primarily focus on micro-damage assessment during the material’s
initial manufacturing process and intrinsic properties [25–27]. Currently, there is a lack of
experimental verification regarding material deformation under conditions such as tension
or compression due to bending.

Guided ultrasound has traditionally been employed for non-destructive testing of
large areas, primarily focusing on diagnosing defects larger than the macro stage. However,
limited research has been conducted on the application of nonlinear ultrasound beyond
micro-scale defect detection, fatigue analysis, and nonlinearity studies under uniaxial
tensile and compressive loads [28,29]. Plates are extensively utilized in various structures,
and while some curved plates are manufactured using molds, many products are formed
through bending to achieve the desired curvature. Unfortunately, there is a dearth of
research exploring material damage resulting from such bending processes. To address
this gap, this study experimentally investigates the relationship between bending damage
and nonlinearity in aluminum alloy materials using Lamb waves. The study also employs
simulations and theoretical analyses to establish a correlation between yield strength and
bending, providing comprehensive verification of these findings. To enhance the reliability
of the experiment, various experimental conditions were employed, and the key findings
can be summarized as follows:

1. It was experimentally verified that the superimposition effect of nonlinear Lamb
waves applied to an aluminum plate;

2. A comparative assessment of induced nonlinearities was conducted when subjecting
the aluminum plate to bending loads within both the elastic and plastic regions;

3. The experimental investigation further examined nonlinearity tendencies specific to
each mode of the Lamb wave on the aluminum plate subjected to bending loads in
the plastic region;

4. A comparative analysis was performed to assess and analyze the induced nonlinearity
due to compression plasticity and tensile plasticity in the aluminum plate subjected
to bending.

2. Nonlinear Ultrasonic Theory

Nonlinear ultrasonic waves have the characteristics of generating high harmonics due
to the deterioration of material and the change in plasticity due to fatigue and external
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forces when an acoustic wave passes through the material. The reason for this harmonic
generation is that as the high-order elastic constants increase due to material defects, the
stress–strain relationship changes into a nonlinear rather than a linear relationship. In other
words, it is difficult to explain the plasticity of the stress–strain curve or materials that
do not follow the elastic behavior with the linear ultrasonic theory, and a more accurate
behavior can be obtained by applying the nonlinear ultrasonic theory.

Nonlinearity can be categorized into two main types: material nonlinearity and
geometric nonlinearity. Material nonlinearity arises from the variations in the states of the
constituent crystals within the material, deviating from ideal uniformity. This introduces
nonlinearity into the material’s behavior. On the other hand, geometric nonlinearity refers
to the nonlinearity that arises due to significant deformations or displacements of the
material, where the strain-displacement relationship becomes nonlinear.

The nonlinear ultrasonic equation can be expressed as Equation (1) [30].

utt − c2
l uaa =

(
3c2

l + C111/ρ
)
uauaa +

(
c2

l + C166/ρ
)
(vavaa + wawaa)

vtt − c2
s vaa =

(
c2

l + C166/ρ
)
(uavaa + vauaa)

wtt − c2
s waa =

(
c2

l + C166/ρ
)
(uawaa + wauaa)

(1)

In contrast to the linear wave equation, the cubic elastic modulus is introduced as
C111, C166 and the solution of the nonlinear ultrasonic equation can be derived by the
perturbation method. If this solution is expanded by the sum of the solution of the first
fundamental frequency and the solution of the second harmonic frequency, it can be
expressed as Equation (2).
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Considering only the longitudinal component,
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Equations (4) and (5) are derived by using the perturbation method to obtain the
solution of the first fundamental frequency and the second harmonic frequency, respectively.
Here, u(1) represents the primary wave solution, and u(2) represents the second-order
wave solution.

u(1) = A1 exp j(kla − wt) (4)

u(2) = A2 exp j(2kla − 2wt) (5)
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, where βl is the longitudinal second

harmonic nonlinear parameter. A1 and A2 are the fundamental and second harmonic
amplitudes, respectively. The nonlinear parameter is expressed as the ratio of the second
harmonic amplitude divided by the square of the fundamental amplitude.

3. Experimental Setup

In order to investigate the nonlinearity of Lamb waves in response to bending stress,
an experimental study was conducted on an aluminum plate (Al5052). The test specimens
consisted of three specimens: one with no load applied to the same specimen, one with
stresses in the elastic region below yield strength, and one with stresses in the plastic region
above yield strength.

Figure 1 illustrates the fixation of the specimen to the equipment, and the relationship
between maximum deflection and corresponding stress at the mid-span of the specimen
was determined using a strain gauge. In order to fabricate the specimen, the aluminum
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material properties are referenced as shown in Table 1. The schematic representation of the
application of load and corresponding deflected shape is depicted in Figure 2.

Figure 1. Bending device.

Table 1. Aluminum properties (Al5052).

Yield Stress (σY) 81.0 MPa (0.2% Offset)

Modulus of Elasticity (E) 70.3 GPa

Density (ρ) 2.68 g/cc

Poission’s ratio (ν) 0.33

Shear Modulus (G) 25.9 GPa

Figure 2. Application of load and corresponding deflected shape.

Prior to conducting the experiment as shown in Figure 3, the deflection of the specimen
was determined using the Structural Analysis Tool (ABAQUS 2021 ver., Dassault Systèmes,
Vélizy-Villacoublay, France). This analysis aimed to ascertain the deflection value at the
mid-span for both loading conditions: within the elastic limit and beyond the yield strength
(plastic region). The structural analysis revealed that the plate remained in the elastic range
until the maximum stress reached 40.5 MPa, with a corresponding maximum deflection of
9.45 mm. Based on these findings, experimental tests were conducted on the specimens.
For the plate loaded within the elastic limit, a stress equal to half of the yield strength was
applied. In contrast, for the plate loaded beyond the yield strength, a stress of 0.2% offset
beyond the yield strength was applied. The stresses and their corresponding deflections
in the elastic and plastic regions are presented in Table 2. Figure 4 visually represents
the specimens before and after the bending test, capturing the bending damage incurred.
Following the bending test, the specimens were utilized for nonlinearity measurements.

A schematic representation of the nonlinear measurement system can be observed in
Figure 5. The excitation signal is generated at a distance of 100 mm from the end of the
specimen, and the signal was received at 10 mm intervals within a distance of 60 mm. The
tone burst equipment (RAM-5000, RITEC Inc., Warwick, RI, USA) was employed for this
purpose. The objective of this investigation was to explore the nonlinearity associated with
bending stress. Therefore, particular attention was given to the region near the maximum
deflection, where the signal reception was focused. Figure 6a,b show the phase matching
of the antisymmetric mode, which was employed for frequency selection. Based on the
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velocity matching criteria of antisymmetric modes, the selected frequencies and their
corresponding wave velocities are presented in Tables 3 and 4.

Figure 3. Displacement contour of the plate loaded beyond the elastic limit.

Table 2. Specimens information.

Stress Maximum Deflection Thickness

Unstressed - - 1 mm

Elastic Region 40.5 MPa 9.45 mm 1 mm

Plastic region 89.6 MPa 12.13 mm 1 mm

Figure 4. Aluminum specimens (Al5052).

Figure 5. Schematic of experimental set up.
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(a)

(b)

Figure 6. Mode selection: (a) Phase matching of antisymmetric mode (A1); (b) Group velocity of
antisymmetric mode (A1).

Table 3. Frequency and velocity parameter in antisymmetric mode.

Mode Antisymmetric

A1 (Fundamental frequency) 4.45 MHz

A2 (Second harmonic) 8.9 MHz

CP (Phase velocity) 4.689 mm/μs

CS (Group velocity) 2.323 mm/μs

Table 4. Frequency and velocity parameter in symmetric mode.

Mode Antisymmetric

S1 (Fundamental frequency) 4.45 MHz

S1 (Second harmonic) 8.9 MHz

CP (Phase velocity) 6.035 mm/μs

CS (Group velocity) 4.510 mm/μs

When stress is applied to the center of the plate, as illustrated in Figure 7, the upper
surface of the plate experiences compressive forces while the lower surface undergoes
tensile forces. It is well known that the tensile strength of materials is typically lower
than their compressive strength. Consequently, it is expected that the lower surface,
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subjected to tensile forces, may exhibit a relatively higher occurrence of micro-defects or
microstructure changes.

Figure 7. Compression and tensile force in specimen.

4. Experimental Result

In order to evaluate the presence of intrinsic material nonlinearity, initial nonlinear
measurements were performed on an unstressed plate. To accomplish this, the nonlinearity
of the specimen was measured in the antisymmetric mode, employing the same distance as
described in the previous section (Figure 5).

Figure 8 illustrates the received signal of the A1 mode Lamb wave, and the comparison
of nonlinearity was conducted through the application of a fast Fourier transform to the
signal. Figure 9 presents the variation of nonlinear parameters with respect to distance.
The nonlinear parameter obtained for this stress-free state was set as the control, and the
cumulative effect was also observed. Although considerable variations in the degree of
nonlinearity were observed across different locations, these differences were not deemed
statistically significant. Furthermore, it should be noted that the values depicted in the
graph represent the relative size of the parameter. Thus, it is important to examine the
trend within each interval rather than focusing solely on the absolute values.

Figure 10 presents the variation of the nonlinear parameter of the Lamb wave after
elastic recovery, where a stress of 40.5 MPa was applied to the center of the specimen, as well
as after plastic deformation at a stress of 89.6 MPa. The nonlinear characteristics exhibited
distinct behaviors. Significant variations in the degree of nonlinearity were observed at
different locations for the unstressed plate (Figure 9). In contrast, after elastic recovery, the
variation in nonlinearity was comparatively reduced. However, nonlinear tendencies are
dominantly influenced by the overlap effect, and it is difficult to find a tendency different
from the previous one. For the specimen with plastic deformation, the nonlinear parameter
exhibits a slight increase up to 70 mm, followed by a subsequent decrease. Beyond 90 mm,
the parameter remains relatively constant.

Figure 8. Source signal of A1 mode (4.45 MHz) Lamb wave.
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Figure 9. Nonlinear Lamb wave A1 mode (4.45 MHz) applied to cumulative effect in Al5052
before stressed.

Figure 10. Comparison of nonlinear parameters for specimens after elastic recovery and plastic
deformation (4.45 MHz).

The plate underwent bending, resulting in compressive stress on the upper surface
and tensile stress on the bottom surface. To examine the influence of these stresses on
nonlinearity, measurements were conducted at both the top and bottom surfaces. Figure 11
illustrates a graph comparing the nonlinear parameters attributed to compression and
tensile stress.

Next, we investigated the dependences of nonlinearity for different Lamb wave modes
on the specimen with plastic deformation. The upper surface (compression region) of the
plate was scanned using the generated antisymmetric A1 mode and symmetric S1 mode.

Figure 12 depicts a comparison between the antisymmetric mode and the symmetric
mode. In both cases, the nonlinearities show an initial increase followed by a decrease
beyond 70 mm, with a subsequent decrease up to 90 mm. The trend in the variation of
the nonlinear parameter is similar for both modes, indicating no significant difference in
in-plane or out-of-plane displacements. Figure 13 illustrates the comparison between the
symmetric and antisymmetric modes for the bottom surface (tension region) of the plate.
The trend in variation is similar to that shown in Figure 12. However, it can be observed
that the nonlinear amplitude is relatively higher for the antisymmetric mode compared to
the symmetric mode.
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Figure 11. Comparison of nonlinear parameters due to compression and tensile stress (4.45 MHz).

Figure 12. Comparison of nonlinearity between S1 and A1 modes for the upper surface of the
plate (3.4 MHz).

Figure 13. Comparison of nonlinearity between S1 and A1 modes for the bottom surface of the
plate (3.4 MHz).

To precisely identify the location of plastic deformation, measurements were con-
ducted at 2 mm intervals within the distance range of 70 mm to 80 mm. The measurements
were performed using the antisymmetric Lamb wave mode. This approach aimed to cap-
ture the exact position of the plastic deformation, which exhibited a decreasing trend in
nonlinearity between the 70 mm and 80 mm sections in the previous experiments.
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Figure 14 reveals that the nonlinearity exhibits an increasing trend up to 76 mm,
followed by a subsequent decrease. This suggests that plastic deformation likely occurred
in the 76 mm section. The decrease in nonlinearity can be attributed to signal scattering
caused by the presence of plastic deformation.

Figure 14. Variation of nonlinearity with distance, indicating maximum plastic deformation at 76 mm.

5. Conclusions

In previous studies, nonlinear ultrasonic techniques have been employed to investigate
the detection of micro-defects in materials and the correlation between nonlinearity and
tensile/compressive loads. However, limited research has been conducted on the behavior
of materials subjected to bending stress during the manufacturing stage, particularly for
products with curvature created through bending rather than molds. This study aimed to
examine the response of nonlinear Lamb waves to bending stress in aluminum plates.

Experimental investigations were conducted on specimens with both compressive
and tensile stresses, representing the plastic deformation state. The nonlinear tendencies
of Lamb waves were analyzed and compared, considering the dominant influence of the
symmetric mode on in-plane displacement as a control group against the antisymmetric
mode, which predominantly affects out-of-plane displacement. Through these experimental
verifications, the following findings were obtained:

1. The nonlinearity of the specimens showed distinct behavior depending on the stress
applied. Specimens subjected to stress within the elastic region exhibited increased
nonlinearity, while specimens under stress within the plastic region displayed a
decrease in nonlinearity. This indicates that the material’s response to bending stress
varies depending on its elastic or plastic state;

2. When analyzing the specimens with plastic deformation, it was observed that the
nonlinearity tended to decrease in sections experiencing both tensile and compressive
forces. This suggests that the plastic deformation resulted in a reduction of the
nonlinearity of the material, possibly due to signal scattering caused by the plastic
deformation itself;

3. Both the symmetric and antisymmetric modes of Lamb waves exhibited similar
nonlinear characteristics when subjected to compressive and tensile forces. This
similarity suggests that the influence of stress on the nonlinearity of the material is
consistent based on the chosen Lamb wave modes.

6. Discussion

Based on the aforementioned findings, the following deductions can be made. The
nonlinearity of a material generally increases with the propagation distance of the ultrasonic
waves. However, in the plastic deformation section, there is a decrease in nonlinearity
followed by an increase in nonlinearity after the deformation. This decrease in nonlinearity
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can be attributed to amplitude attenuation or scattering caused by the deformation of
the specimen’s shape. Additionally, microscopic changes in the structure of the specimen
resulting from plastic deformation are likely to have an impact. The nonlinearity of
specimens with plastic deformation, regardless of whether they experienced tensile or
compressive stresses, showed a decrease. This consistent behavior across different modes
indicates a high level of reliability in the test results.

Based on the aforementioned observations, it can be concluded that the utilization
of the wave mixing technique, which offers superior sensitivity and scanning electron
microscopy (SEM), can yield more accurate and meaningful results. Further experimental
investigations are required to explore the changes in nonlinearity due to varying physical
properties. This study provides valuable insights into the behavior of Lamb waves in
response to bending stress.
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Abstract: This study proposes a low-cost and reliable smart fire alarm system that utilizes ultraviolet
(UV) detection technology with an aspherical lens to detect fires emitting photons in the 185–260 nm
range. The system integrates the aspherical lens with an accelerator and a digital compass to de-
termine the fire source’s direction, allowing for safe evacuation and effective firefighting. Artificial
intelligence is employed to reduce false alarms and achieve a low false alarm rate. The system’s
wide detection range and direction verification make it an effective fire detection solution. Upon
detecting a fire, the system sends a warning signal via Wi-Fi or smartphone to the user. The proposed
system’s advantages include early warning, a low false alarm rate, and detection of a wide range of
fires. Experimental results validate the system’s design and demonstrate high accuracy, reliability,
and practicality, making it a valuable addition to fire management and prevention. The proposed
system utilizes a parabolic mirror to collect UV radiation into the detector and a simple classification
model that uses Fourier transform algorithm to reduce false alarms. The results showed accuracies
of approximately 95.45% and 93.65% for the flame and UVB lamp, respectively. The system demon-
strated its effectiveness in detecting flames in the range of up to 50 m, making it suitable for various
applications, including small and medium-sized buildings, homes, and vehicles.

Keywords: smart fire alarm system; ultraviolet detection technology; direction detection; low false
alarm rate; fourier transform algorithm

1. Introduction

Fire alarm systems are essential safety requirements in various settings, such as
factories, companies, seaports, and houses. The need for early fire warning has spurred the
development of smart and sensitive alert systems. Currently, commercial flame detectors
in use operate based on either heat measurement or smoke detection principles. Smoke
sensors available in the market operate within a thermal band of −10 ◦C to 50 ◦C and
have a slow response time of 10–30 s [1–4]. These sensors are triggered when the smoke’s
dimming falls within the range of 5%–20%. Heat sensors use heat resistance to obtain
accurate heat measurements, but their response speed is low, ranging from 15 to 90 s.
Additionally, they require contact with the heat source, and their operating temperature
is between −10 ◦C and 50 ◦C. Although smoke and thermal sensors are widely used and
low-cost, their response speed, sensitivity, and working range are limited. Smoke sensors
only detect smoke and not the fire source itself, which can be dangerous when the fire
grows on a large scale. These sensors work best in closed spaces [1–4]. However, in open
spaces, they may fail to detect fires accurately due to air currents and other factors. As a
result, new fire detection systems that utilize novel techniques and technologies, such as
ultraviolet detection and Fourier spectrum analysis, have been developed to address these
limitations and enhance fire safety.
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Fire alarm systems are essential in various settings, such as factories, warehouses,
seaports, and homes. The development of smart and sensitive alert systems that can detect
fires at an early stage is crucial for the safety of people and property. While conventional
fire detection systems use heat or smoke sensors, recent advancements have led to the
development of more sophisticated systems that employ different techniques, such as
image processing and infrared/ultraviolet sensors. Infrared (IR) sensors are commonly
used in fire detection systems and can detect heat sources with temperatures of 200 ◦C
to 300 ◦C above the base temperature. However, the limitation of IR and IR/UV sensors
is that they may not be able to detect fires with low temperatures, and their sensitivity is
affected by noise from heat sources in the ambient environment and solar radiation [5–8].
Despite these limitations, these sensors are widely used in many fire alarm systems due to
their cost-effectiveness and relative reliability. Recently, fire detection systems based on
image processing techniques have gained traction [9–12]. These systems use cameras and
sophisticated algorithms to analyze the captured images and identify fires. For instance,
an integrated long-wave IR and mid-wave IR bolometer camera with a dual-band filter
has been reported to detect flames from 30 to 200 feet outdoors, depending on the fire
source. However, this detector cannot detect flames in all directions [13–16]. Another fire
monitoring system uses both IR sensing and color videos and can detect the burning of
smokeless liquids, gas fires, and fires of materials that contain carbon and produce a lot
of smoke. The cameras used to localize the fire can be integrated into the security system,
but this device is difficult to install in hidden areas and is rather short-lived [17–23]. In
summary, while traditional fire detection systems using heat and smoke sensors have their
limitations, recent advancements in image processing and infrared/ultraviolet sensors have
shown promising results in early fire detection. However, each system has its advantages
and disadvantages, and the selection of a fire alarm system depends on various factors
such as the size of the building, the type of materials stored, and the location of the fire
detection system.

Uncooled IR detectors have become a popular choice for industrial applications due to
their ability to detect gases of interest, whose strongest bands are found in the 1–5 micron
range. Compared to other commercial IR sensors, uncooled IR detectors offer better re-
sponse time, making them highly sensitive and able to provide both spatial and temporal
information. However, their area of detection is often narrow, which can limit their effec-
tiveness [24,25]. In recent years, Internet of Things (IoT) sensors have played a critical role
in primary flame detection. A camera-based system that utilizes multiband IR imagery
and thermal analysis has been developed for wildfire detection. This system incorporates
LoRa-based wireless communication for long-distance monitoring. Researchers have used
the Dempster-Shafer theory and Linear Discriminant Analysis for data analysis and detec-
tion of false positives. Despite its effectiveness, the mathematical prediction model for this
system is quite complicated and can be difficult to compute [26].

In recent years, fire detection technology has advanced rapidly, with the development
of new systems that offer improved accuracy and speed in fire detection. One such system
is a Low-Earth Orbit system that utilizes long- and shortwave IR sensors to detect and
measure actively burning fires on the Earth’s surface [27]. This system is particularly useful
for monitoring large areas, such as forests, where traditional ground-based fire detection
systems may not be sufficient. In addition to satellite-based systems, smart fire warning
and alarm systems are also becoming more sophisticated. These systems typically use
multiple sensors, such as flame detectors, humidity, heat, and smoke sensors, among others,
to detect fires. To process the data from these sensors and generate a fire alert, Adaptive
Neuro-Fuzzy Inference System is commonly employed [28,29]. Despite the benefits of
multi-sensor and IoT-based fire detection systems, these technologies also have some
drawbacks. For example, they may suffer from slow response times, low sensitivity, high
cost, and high system complexity, which can make them difficult to install and maintain.

This paper introduces a new approach to fire detection and warning systems that
offers a smart, compact, and cost-effective solution. The system incorporates a UV detector
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that operates in the range of 185–260 nm to detect the signal from the fire source, making
it suitable for identifying the burning of different materials at various rates. To eliminate
background noise, the signal processing circuits have been designed to cancel out any
sporadic noise that may arise due to the background. The system also determines the
direction of the fire source, allowing for more precise and efficient fire extinguishing. The
alarm signal can be generated in a high-frequency pulse shape (100 Hz) and transmitted to
a computer via Wi-Fi or sent to the user’s smartphone. Experimental results demonstrate
that the system can detect a fire source within a range of 50 m. Furthermore, an artificial
intelligence (AI) system has been developed to prevent false alarms. The proposed system
is well-suited for use in warehouses, seaports, and factories, and can be integrated into
a monitoring network. The innovative approach presented in this paper offers a new,
effective solution for fire detection and warning systems that can enhance safety and reduce
property damage.

2. System Design

The fire detection system proposed in Figure 1 comprises several essential compo-
nents. A UV detector, specifically the Hamamatsu UVtron R12257 (Hamamatsu Photonics,
Shizuoka, Japan), is utilized in the system. This detector demonstrates high sensitivity and
boasts a rapid response time of just a few milliseconds, enabling it to effectively detect
UV radiation emitted by flames. The sensor operates within a selective spectral range of
185–280 nm, eliminating the need for optical filters to block out visible light. Its output
consists of a series of pulses that persist for a duration sufficient to identify genuine flames.
While this pulse-based output helps filter out background noise within the sensor’s field of
view, it is important to consider potential interference sources. Heat-emitting devices, such
as automobiles or processing machines, may emit minimal amounts of UV radiation, which
can serve as a possible source of interference. The UV radiation is focused onto the sensor
using a parabolic mirror, the Sigmakoki Inc. (Tokyo, Japan) TCPA-105C-15-SH18, mounted
on a precise rotation stage, which scans the entire monitoring area. The scanning direction
of the mirror is determined by a digital compass and an accelerometer that are integrated
into the stage, and the output signal from the sensor and the position of the mirror are
used to determine the fire’s location. To eliminate sporadic noise that may occur due to the
background, the signal processing circuits have been designed to cancel out any such noise.
Additionally, the system determines the direction of the fire source, allowing for more
accurate and effective fire extinguishing. The alarm signal generated by the system can be
transferred to a computer via Wi-Fi or sent to the user’s smartphone in a high-frequency
pulse shape (100 Hz).

 

Figure 1. Fire detection system.

In the case of a fire, the proposed fire detection system immediately generates a
warning signal. This signal can be transmitted to an alarm system, which can be accessed
on a smartphone or via Wi-Fi. The warning signal can alert the user to the presence of
a fire, allowing them to take immediate action. Additionally, the system’s operation can
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be monitored in real-time from a monitoring center. This monitoring center can be set up
to monitor the system’s performance and status, ensuring that the system is functioning
properly and that any problems or malfunctions are quickly detected and resolved. The
monitoring center can also provide valuable data and information about the fire, such as its
location, intensity, and spread, which can be used to help first responders and firefighters
effectively combat the blaze. Furthermore, the real-time monitoring capability of the system
can help prevent false alarms and provide a high level of accuracy in detecting fires, thus
minimizing the risk of property damage and ensuring the safety of occupants.

The control circuit for the fire detection system is an essential component of the system,
and it plays a significant role in ensuring the system’s accuracy and effectiveness. As shown
in Figure 2, the circuit consists of several key components that work together to provide
a reliable and efficient solution for detecting fires. The UVtron control unit supplies high
voltage to the sensor and produces short pulses warning signals when the sensor is exposed
to UV radiation. The output pulses, which last for 10 ms, are sent to a microprocessor
(Arduino Uno R3), which is responsible for processing the signals and controlling the
system’s operation.

 

Figure 2. Control circuit for the fire detection system.

Since the effective area of the UV sensor is small, and the sensing field is limited to an
angle of 70◦–120◦, photons radiate from various directions, making it challenging for them
to hit the sensor’s focal point. To overcome this issue, a stepper motor (MSK 4240-400) is
attached to the microprocessor, which rotates the parabolic mirror, enhancing the system’s
sensitivity and effective working range. The direction of the mirror is determined using
digital compass, gyroscope, and accelerometer signals, which allow for accurate detection
and localization of the fire.

The microcontroller is linked to a SIM block (SIM900A Mlab, Hanoi, Vietnam) to send
alarms to a mobile phone that is already installed. Additionally, the microcontroller has a Wi-Fi
module (RF 433 MHz Transmitter/Receiver) that enables it to communicate with a smartphone
through the internet. This allows for remote monitoring of the system’s operation, providing
real-time data on the fire’s location and intensity. The integration of these components into
a single circuit provides a compact and cost-effective solution for fire detection, making it
suitable for use in various settings, such as warehouses, factories, and seaports.

3. Experiment

The fire detection system’s effectiveness in detecting fires was evaluated through
comprehensive testing under varying experimental conditions, considering both short-
range and long-range capabilities. Table 1 provides an overview of the experimental
conditions, while Figure 3 illustrates the system employed for the fire detection test. The
experiments were conducted during daylight hours, acknowledging that environmental
factors can influence the test results. Specifically, the presence of sunlight could emit UV
radiation within the sensor’s targeted range of 185–280 nm. To mitigate this, our fire
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detection system implementation ensures that the sensor is not directly exposed to sunlight.
In practical applications, the device is installed overhead, facing downwards. For assessing
the system’s short-range capabilities, a candle was utilized as the test fire, positioned at
distances ranging from 1 to 10 m. The distance between the fire sensor and the candle was
accurately measured using a laser distance meter (Leica Disto D2, Leica Geosystems AG,
St. Gallen, Switzerland), which provides a measurement range of up to 100 m. To identify
the fire’s location, the fire detection system was rotated around the test area, comparing
the density of generated pulses. The outcomes of the experiment, specifically the results
obtained at the fire’s location, are presented in Figure 4.

To evaluate the system’s long-range detection capability, a fire with a size of
300 mm × 300 mm was used as the test object. The experimental setup and results for
the long-range test are shown in Figure 5, which includes the experiment setup in (a) and
the stable warning signal in (b). The experiment demonstrated that the system can detect
fires at distances of up to 50 m. It is worth noting that the warning signal remained stable
throughout the long-range detection experiment, which demonstrates the system’s ability
to effectively detect fires even at extended distances.

The experimental results indicate that the proposed fire detection system is highly
effective in detecting fires, both at short and long distances. The system’s use of a UV
detector with a rapid response time and the ability to cancel out background noise, coupled
with the rotation of the parabolic mirror to enhance its sensitivity, enables it to accurately
detect fires and provide timely warnings to prevent property damage and protect lives. The
system’s ability to send warning signals to a smartphone or via Wi-Fi and to be monitored
in real-time from a monitoring center further enhances its capabilities and makes it suitable
for use in warehouses, seaports, and factories.

Table 1. Condition of the fire detection experiment.

Measurement target size Short range: 5 mm × 10 mm
Long range: 300 mm × 300 mm

Testing distance Short range: 1.5, 3.0, 5.0, 10.0 m
Long range: 50 m

Detected wavelength range 185–280 nm
Power supply 12 V

Current supply 2 mA

   
(a) (b) (c) 

Figure 3. Experimental fire detection system and setup used to verify its measurement range and
sensitivity: (a,b) experimental system in detail; (c) test of the fire detection experiment using a candle.
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(a) (b) 

 
(c) (d) 

Figure 4. Experimental results for short-range detection: (a) 1.5 m; (b) 3 m; (c) 5 m; (d) 10 m.

The experimental results indicate that the fire detection system is capable of accurately
detecting the presence of a fire source within a maximum distance of 50 m. The system’s
detection capability is optimized for specific dimensions of 300 mm × 300 mm, ensuring
reliable and precise identification of fire sources within this defined area. The reliable and
accurate detection of fires is critical for ensuring safety in various industries, including
chemical, petroleum, and electrical power. False alarms can lead to costly disruptions,
reduce efficiency, and cause unnecessary evacuations. Therefore, it is essential to develop
techniques that can accurately distinguish between UV radiation emitted from flames and
other sources.

 
(a) 

Figure 5. Cont.
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(b) (c) 

Figure 5. Diagram for experimental setup for fire detection at various distances (a); real look of
experimental setup (b); illustration of output signal (c).

One approach to minimizing false alarms is to exploit the chaotic nature of radiation
from an uncontrolled flame. Unlike other sources such as UV lamps, heaters, and sunlight,
combustion involves nonlinear instabilities that result in chaotic emission. This characteris-
tic can be used to distinguish flame signals from other signals that tend to be regular. This
study used the Naïve Bayes classification algorithm with the signal spectral characteristics
in the frequency domain to distinguish between signals from a flame and a controlled UV
source (UVB lamp). The proposed approach was evaluated using a dataset obtained from a
fire detection system equipped with a UV detector, and the results, presented in Figure 6,
demonstrate the algorithm’s robust accuracy and efficiency. These findings provide strong
evidence for the potential of this technique in effectively reducing false alarms in fire
detection systems.

Figure 6. Naïve Bayes classifier model applied to the UVtron fire detection system. Distributions of
two classes are represented by black and red line.
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The study aimed to distinguish signals from a flame and a controlled UV source using
Fourier spectrum analysis as the classification algorithm. The UVB lamp was modified
by limiting the surface area of the radiation source with a pinhole of 10 mm × 10 mm
in front of it. The resulting signal data obtained from the UVtron sensor appeared as a
time series consisting of pulses lasting 10 ms, as shown in Figure 7. The sensor’s output
signal in response to the UV source consists of a series of fixed-width (10 ms) pulses,
exhibiting varying amplitudes (between 4 VDC and 5 VDC) due to conditioning circuit
operations. The pulse signals depicted in Figures 6 and 7 represent random selections from
the overall output signal obtained during the measurements. The signal pulses from the
flame were found to be more discrete than those from the UVB lamp, indicating that the
sensor responds to the flame in a more chaotic manner. Fourier spectrum analysis was
applied to obtain information on the signal’s amplitude at different frequencies, where
larger amplitude at any frequency indicated more signal pulses at that frequency and vice
versa. Therefore, the Fourier spectrum analysis result for the signal output over a specific
period of time was used as the data feature for classification in this study. It is important
to note that in the case of the flame, the pulse duration steps for each distance were not
uniform at different moments in time, and the time-step magnitude distribution was also
non-uniform. Thus, Fourier spectrum analysis was chosen as a robust algorithm that could
handle such non-uniformity in the pulse duration and magnitude distribution.

  
(a) (b) 

 
(c) (d) 

Figure 7. Output signals of the sensor responding to the UV lamp placed at different distances.
(a) 1.5 m; (b) 3 m; (c) 5 m; (d) 10 m.

The signal pulses from the flame (Figure 7) were found to be more discrete than those
from the UVB lamp, indicating that the sensor responds to the flame in a more chaotic
manner. Fourier spectrum analysis was applied to obtain information on the signal’s
amplitude at different frequencies, where a larger the amplitude at any frequency indicating
more signal pulses at that frequency, and vice versa. The data feature for classification was
therefore the Fourier spectrum analysis result for the signal output over a specific period
of time.
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To extract the features, the time series of the output signal was divided into win-
dows of duration 250 ms, corresponding to N = 100 samples each, and denoted as
x = [x1, x2, . . . , xN ]. Fast Fourier Transform was then applied to each window, result-
ing in a vector of power of spectrum X =

[
X1, X2, . . . , X N

2

]
with a dimension of N/2 = 50.

Here, each Xk represents the spectrum power at a frequency of k × F1, with F1 = 4 Hz as the
fundamental frequency. Figure 8 provides examples of the normalized Fourier spectrum
analysis of the signals obtained from the flame and UVB lamp.

(a) (b) 

Figure 8. Normalized Fourier spectrum analysis results for the output signals of a flame (a) and UV
lamp (b).

The Fourier spectrum analysis results of the flame, as observed in this study, were
observed to exhibit significant variability over time, indicating that the signal feature space
may be difficult to model using standard techniques. To address this challenge, constructing
distributions for the vector of spectrum power X was considered as a viable solution to
the classification problem. Specifically, the Fourier spectrum amplitude values for each
frequency over time were treated as random variables, and the joint probability distribution
for these values was constructed. In this case, the input features were the Fourier spectrum
amplitude values for each frequency, and the classification models were used to classify
new signals as either coming from the flame or the UVB lamp.

Due to the fact that the data that needs to be classified currently has exactly two classes,
it is implied that the classification can be done with the Support Vector Machine (SVM)
method, which is suitable for edge devices [12]. The advantages of this method can be
listed as follows: it is effective in high-dimensional spaces, even in the cases where number
of dimensions is greater than the number of samples; it is memory efficient due to the fact
that it uses a subset of training points in the decision function; it offers flexibility in various
kernel selection. In this work, the idea comes with using SVM for binary classification in
which the data is labeled with y = 1 for the flame and y = −1 for the UBV lamp. The aim of
this method is to find the function of a hyperplane over the feature vector X, which is the
vector of spectrum power in this work:

f (X) = XT β + b (1)

Hence, it is necessary to specify the parameters β, b that must meet certain criteria.
In practical, our data appears to not allow for a separating hyperplane. Therefore, the
objective function to estimate β, b in this work presents the L1-norm problem, which is
constructed by adding slack variables ξ j and a penalty parameter C, as follows:

min
β,b,ξ

(
1
2

βT β + C∑
j

ξ1
j

)
(2)
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subjected to the constraints:

yj f
(
Xj
) ≥ 1 − ξ j and ξ j ≥ 0∀j (3)

On the other hand, it was possible to capture the inherent variability of the flame
signal over time and encode this information into a probabilistic model. This approach
allowed for the development of a Naïve Bayes model, which is a type of probabilistic
classifier that assumes the independence of the input features. Overall, this approach
proved to be effective at accurately distinguishing between these two types of signals and
may be useful in other applications where signal variability poses a challenge to traditional
classification techniques.

The Naïve Bayes classifier is typically used when predictors are independent of each
other within each class. However, it has been shown to perform well in practice even when
the independence assumption is not valid. Specifically, the Naïve Bayes model estimated
the probability density of predictor X (the vector of spectrum power) given class y-(flame
or UVB lamp), denoted by P(X|y). Therefore, the Naïve Bayes model resulted in parameter
vectors μ, σ, μ′ , σ′ with dimensions of 50 for the following probability densities:

P(X|y = f lame ) =
50

∏
k=1

1
σi
√

2π
× exp

(
− (xi − μi)

2

2σ2
i

)
(4)

P(X | y = UV lamp) =
50

∏
k=1

1
σ′

i
√

2π
× exp

(
− (xi − μ′

i)
2

2σ′2
i

)
(5)

The present study utilized the parameter vectors obtained from assuming a Gaussian
distribution for P(X|y) to classify signals into either flame or UVB lamp classes based on
the probability of the spectrum power vector X belonging to each class, utilizing Bayes’
theorem. The Naïve Bayes model was found to be an effective approach for classifying
signals based on their Fourier spectrum analysis results.

The results of this study demonstrate the potential of using the SVM classifier and
Naïve Bayes classifier based on Fourier spectrum analysis to distinguish between signals
from a flame and a UVB lamp. The classifiers were trained using 1000 samples of both the
flame and UVB lamp and were evaluated with 500 samples of each. By using the SVM
classifier with the penalty parameter C = 10, the accuracies obtained in the testing phase
were 95.15% and 91.25% for flame and UVB lamp classification, respectively. Meanwhile,
the results of performing the Naïve Bayes classifier were 95.45% and 93.65% for flame and
UVB lamp classification, respectively. These findings suggest that the SVM classifier and
Naïve Bayes classifier are reliable methods for accurately differentiating between signals
from a flame and a UVB lamp based on their Fourier spectrum analysis results.

The high accuracies achieved in this study offer a promising solution to the problem
of false alarms in fire detection systems. By minimizing false alarms, the proposed system
has the potential to save lives and minimize property damage. Additionally, the use of
Fourier spectrum analysis to extract features of the flame and UVB lamp signals offers a
robust and effective method for fire detection.

Future research could further investigate the effectiveness of this approach in more
complex environments, such as those with multiple sources of UV radiation or in the
presence of smoke. Additionally, exploring the potential for integrating this system
with other fire detection methods could lead to even greater accuracy and reliability in
fire detection.

4. Conclusions

In this study, we presented a low-cost and efficient fire detection system that utilized
UV radiation detection and Fourier spectrum analysis. By utilizing a parabolic mirror and
digital sensors, we were able to detect the position of the fire accurately. Furthermore, the
proposed classification models, based on the Fourier transform algorithm, successfully
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extracted features of a fire and a UV source, which enabled us to minimize the occurrence
of false alarms. The experimental results showed that the proposed system achieved high
accuracies of 95.15% and 91.25% using the SVM classifier, and approximately 95.45% and
93.65% using the Naïve Bayes classifier for the flame and UVB lamp, respectively.

Our proposed system offers several benefits compared to existing fire detection sys-
tems. It is cost-effective, making it a viable option for small and medium-sized buildings,
homes, and vehicles. Moreover, the system’s simple design and high accuracy make it
attractive for use in areas where expensive systems are not feasible. Our system has been
shown to be effective in detecting flames up to 50 m away, making it suitable for a wide
range of applications.

In conclusion, the proposed system has demonstrated the effectiveness of using UV
radiation detection and Fourier spectrum analysis as an efficient method for fire detection.
Future studies could explore ways to improve the system’s performance in challenging
environments and investigate its potential for integration with other fire detection systems.
This study provides valuable insights into the development of low-cost and efficient fire
detection systems that can contribute to the safety of individuals and properties.
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Abstract: Cracks are one of the safety-evaluation indicators for structures, providing a maintenance
basis for the health and safety of structures in service. Most structural inspections rely on visual
observation, while bridges rely on traditional methods such as bridge inspection vehicles, which
are inefficient and pose safety risks. To alleviate the problem of low efficiency and the high cost of
structural health monitoring, deep learning, as a new technology, is increasingly being applied to
crack detection and recognition. Focusing on this, the current paper proposes an improved model
based on the attention mechanism and the U-Net network for crack-identification research. First, the
training results of the two original models, U-Net and lrassp, were compared in the experiment. The
results showed that U-Net performed better than lrassp according to various indicators. Therefore, we
improved the U-Net network with the attention mechanism. After experimenting with the improved
network, we found that the proposed ECA-UNet network increased the Intersection over Union
(IOU) and recall indicators compared to the original U-Net network by 0.016 and 0.131, respectively.
In practical large-scale structural crack recognition, the proposed model had better recognition
performance than the other two models, with almost no errors in identifying noise under the premise
of accurately identifying cracks, demonstrating a stronger capacity for crack recognition.

Keywords: structural crack; deep learning; attention mechanism; structural health monitoring

1. Introduction

With the development of China’s economy and the continuously expanding invest-
ment in infrastructure, the number of large structures such as bridges and buildings has
increased [1–3]. Some buildings are in a long-term state of overload, corrosion, etc., and
are susceptible to functional barriers under the overlapping impact of natural disasters,
resulting in serious accidents [4,5]. Cracks in the structure are some of the most important
indicators of structural damage or destruction caused by aging and other reasons [6,7]. As
time goes by, the width and number of cracks will gradually increase, affecting the safety,
practicality, and durability of the structure [8]. If reliable inspections are conducted on
cracks, this can effectively prevent serious damage to buildings and prolong the life of
facilities through appropriate maintenance [9–13]. Traditional inspection methods mainly
rely on visual inspection and bridge inspection vehicles. Among them, the efficiency and
accuracy of manual visual inspection [14–16] are greatly affected by the experience of the
inspectors, and the human eye has many limitations, which can easily cause omissions;
bridge inspection vehicles have many safety hazards during operation, and they are prone
to high costs, slow efficiency, and traffic congestion. Therefore, to speed up the inspec-
tion process and achieve reliable and consistent inspections, deep-learning networks have
developed rapidly in the field of structural health, and the crack recognition ability for
complex situations continues to improve [17,18].

Deep learning [19,20] has greatly improved the latest technological level in fields
such as visual object recognition and object detection, providing precise analysis for crack
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detection in structures. Semantic segmentation networks such as DeepLab [21], SegNet [22],
and FCN [23] have also been widely used in crack recognition and detection. To overcome
the limitations of human resources for visual inspections and provide accurate detection
of multiple types of crack damage, Cha et al. [24] introduced a detection method based
on faster convolutional neural networks. Researchers developed a database containing
2366 images and used it for modification, training, validation, and testing to develop
multiple types of damage detection. Due to its fast speed and high accuracy, a video-based
near real-time damage-detection framework based on trained networks was proposed.
Li et al. [25] established a database of 2750 images of concrete structure cracks, spalling,
weathering, etc., which was manually annotated. They tested and compared the fully
convolutional network (FCN) architecture using this database and used the SegNet-based
method to demonstrate that this method can accurately detect multiple concrete damage
areas at the pixel level. Cardellicchio et al. [26] collected an existing image database of
defects in reinforced concrete bridges, and domain experts classified the most common
types of defects. Several convolutional neural network (CNN) algorithms were applied to
the dataset for automatic identification of all defects. Zhang et al. [27] developed a context-
aware deep convolutional semantic-segmentation method, leveraging local cross-state and
cross-space constraints for image block fusion. Yamane et al. [28] proposed a deep learning-
based semantic segmentation method that accurately detects concrete crack regions and
removes other artifacts in photographs of concrete structures under adverse conditions. Lee
et al. [29] proposed a crack-detection network and crack image generation algorithm based
on image-segmentation networks. The training and validation results demonstrate that this
method possesses high robustness and accuracy. Li et al. [30] proposed a semi-supervised
method for road-crack detection that uses unlabeled road images for training and employs
adversarial learning and fully convolutional discriminators to improve accuracy.

U-Net [31], as the most classic representative network of the U-shaped network
structure, can extract the input image features. In addition, U-Net’s accuracy is often
higher than that of other models, and its structure is simple, mainly divided into three
parts: feature extraction, clipping, and upsampling. It is widely used in industrial defect
detection and has achieved good results in image segmentation [32,33]. Although U-Net
has achieved high segmentation accuracy and speed, traditional convolutional and pooling
layers generally suffer from information loss during information transmission, which is
affected by the background environment, resulting in blurred boundaries of the segmented
target area and a lot of noise. Based on the above shortcomings, we are focusing on
increasing the attention of the network on small target features, specifically for crack-
detection problems. We propose to embed an attention mechanism into the existing model
to improve the ability to recognize cracks [34,35].

Attention mechanisms in deep learning [36,37] are very similar to human visual at-
tention mechanisms, which select more important information for the current target and
remove redundant information. This allows the network to adaptively focus on the neces-
sary information and can be achieved by using importance weight vectors to approximate
the final target value through weighted vector summation. Attention mechanisms mainly
include the SE (Squeeze-and-Excitation) attention mechanism [38,39], the CBAM (Convo-
lutional Block Attention Module) attention mechanism [40], the CA (Channel Attention)
attention mechanism [41], etc. The introduction of attention mechanisms can improve
crack-image detection accuracy with a small increase in computational cost. This effectively
extracts multi-scale features of cracks while capturing local features and the edge details
of small cracks. Attention mechanisms can focus on key areas and reconstruct semantics,
significantly improving the crack-segmentation ability of the U-Net model [42–45].

In this article, research on the improvement of model-recognition performance through
the addition of attention mechanisms was conducted. A modification has been made to
the U-Net using an ECA (Efficient Channel Attention) mechanism, and a performance
comparison has been conducted with the original network. The improvements were
supported by the indicators and image testing. Large image-recognition experiments
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were conducted on actual structural cracks, and the recognition results were compared
and evaluated.

2. Method of Attention-Based Structural Crack Detection

The attention mechanism is similar to our eyes as we use them to focus on the data
we want to pay attention to. Similarly, the attention mechanism acts like the eyes of a
deep-learning network, which can inform the network about the specific image features
that we want to focus on and thus, enable more accurate acquisition of image information.
This article focuses on the scientific problem of extracting the semantic segmentation
of structural cracks. It mainly compares different deep-learning network models and
improves recognition performance by adding attention mechanisms. The ECA attention
mechanism proposed by Wang et al. [46] can achieve significant accuracy with a small
number of parameters. This module is an efficient attention-channeling module, which
can avoid feature loss caused by dimensionality reduction in other attention mechanisms
and efficiently capture information interaction between different channels. In terms of
its structural characteristics, the ECA attention mechanism is more suitable for network
models with simpler structures such as U-Net due to its lightweight structure. The structure
of ECA is shown in Figure 1:

 
Figure 1. Diagram of the ECA structure.

The feature map is transformed from a matrix to a 1 × 1 × C vector through average
pooling. The formula for the adaptive one-dimensional convolution kernel size k is shown
in Formula (1). By adjusting the kernel size, the weight of each channel in the feature map
is obtained. Then, the obtained weights are multiplied with each channel of the original
input image to obtain the feature map with attention added.

k = |log2(C)/γ + b/γ|; γ = 2, b = 1 (1)

Based on the research content of this article, the technical roadmap is shown in Figure 2
below. We trained three networks, lraspp, U-Net, and ECA-UNet, with existing public
datasets. The performance of the three networks was analyzed based on the data obtained
from the network training, and the effects before and after adding attention mechanisms
were compared. Finally, actual cracks were used for image-segmentation and recognition–
visualization comparison analysis in the real structure.
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Figure 2. Technical roadmap.

3. Evaluation of Attention-Modified DNN

In this section, we conducted training and testing on three different deep-learning
network models under the same conditions of batch size, learning rate, and iteration
number. The study aimed to investigate the testing performance of different models based
on their training results.

3.1. Evaluation Metrics

To verify the training effect of different models, we used precision, recall, and inter-
section over union (IOU) as evaluation metrics. Recall is the proportion of true positive
samples in the model-predicted positive samples, usually indicating the model’s recall
performance, as shown in Formula (2); precision represents the proportion of true positive
samples predicted by the model to be positive, as shown in Formula (3); IOU represents
the degree of overlap between different class samples and labels, as shown in Formula (4).

recall = TP/(TP + FP) (2)

precision = FP/(TP + FP) (3)

IOU = TP/(TP + FN + FP) (4)

In the formulas, TP denotes the number of true positive samples that were predicted
correctly, and FP is the number of false positive samples that were predicted incorrectly.
TN is the number of true negative samples that predicted correctly, and FN is the number
of false negative samples that were predicted incorrectly.

3.2. Training and Analysis of the Original Model

This section first compares the performance of the U-Net network and the lraspp
network. The training set used 5000 images with and without cracks from the bridge-crack
library [47], with a crack-to-non-crack image ratio of 4:1. A validation set of 1000 crack
images was used. The training dataset for the crack images included cracks in vertical,
horizontal, and diagonal orientations. Part of the dataset is shown in Figure 3. Each crack
image had a size of 256 × 256 pixels. After fine annotation with annotation tools, each crack
image was paired with a PNG data label corresponding to the JPG format original image.
All three models were iterated 200 times, and the training results are shown in Table 1.
The lraspp model did not perform better overall than U-Net on the test set. In terms of
precision, the value for lraspp was 0.810 and for U-Net was 0.921, indicating that lraspp
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was 0.111 less precise than U-Net. In terms of IOU, lraspp was 0.097 less than U-Net, and
in terms of recall, lraspp was 0.051 less than U-Net, with lraspp having a value of 0.588 and
U-Net having a value of 0.639.

  

Figure 3. Example of the crack dataset.

Table 1. Model part of the training data.

Model Name Precision IOU Recall

U-Net 0.921 0.676 0.639
lraspp 0.810 0.579 0.588

Based on the above data, U-Net performs better than lraspp in all three indicators.
Therefore, we use the U-Net network with attention mechanism in the following text.

3.3. Improved U-Net Model Based on Attention Mechanism

The ECA-UNet after adding the attention mechanism is shown in Figure 4. On the
original U-Net structure, we added the attention mechanism ECA to the sampling part
of each layer. Because the downsampling part is the main feature-extraction network,
adding the attention mechanism to the trunk-extraction part of the downsampling
part will interfere with the weight of the original network on image–feature extraction;
furthermore, it will cause the model to be unable to accurately judge and distribute the
features. Therefore, we added the ECA attention mechanism to enhance the feature
pick-up network; that is, by up-sampling each layer, a total of 4 points was added.
The feature graph optimized by the attention mechanism was then fused with the five
effective feature layers obtained by the backbone network, and finally the classification
output was obtained through 1 × 1 convolution.

The training results are displayed in Figures 5–7 below, where Figures 5–7 show the
precision, recall, and IOU curves of the three models after training. From the precision
curve, it can be observed that lraspp oscillates around 65% without showing a significant
upward trend. While ECA-UNet and U-Net overlap in the early stages, ECA-UNet has
a tendency to oscillate downwards compared to U-Net after about 140 epochs, although
both maintain around 80%. From the recall curve, it can be seen that lraspp performed well
in terms of recall, but with more spikes in the curve than the other two models. A clear
restrict relationship between recall and precision is noticeable, meaning that the model
did not balance the relationship between these two indicators well. However, ECA-UNet
performed better than U-Net after about 150 epochs, showing a gradual upward trend.
From the IOU curve, it can be seen that lraspp performed poorly, not as well as the other
two networks. The ECA-UNet curve overlaps with the U-Net curve to a high degree, and
the upward trend is similar. Based on the above analysis, lraspp performed poorly in both
metrics and did not balance the relative relationship between precision and recall well. On
the other hand, ECA-UNet performed well in terms of recall and IOU, especially surpassing
U-Net in terms of recall.
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Figure 4. The schematic diagram of the improved ECA-UNet structure is shown as above.

 
Figure 5. Precision metric result graph.

 
Figure 6. Recall metric result graph.
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Figure 7. IOU metric result graph.

The improved ECA-UNet was trained with the same parameters as the above model,
and the performance comparison with U-Net is shown in Table 2 as follows:

Table 2. U-Net and ECA-UNet result comparison.

Model Name Precision IOU Recall

U-Net 0.921 0.676 0.639
ecaUNet 0.872 0.692 0.770

According to the table, the ECA-UNet scores 0.692 in the IOU metric, which is
0.016 higher than U-Net, and scores 0.770 in the recall metric, which is 0.131 higher than
U-Net. The improved recall rate has been increased, improving the comprehensiveness of
crack identification. The improved model shows a decrease in precision compared to the
original model. This is because recall and precision have a constraining relationship, where
an increase in one can lead to a decrease in the other. Therefore, we needed to balance these
two indicators under existing conditions and ensure an improvement in the indicators
while maintaining a relatively balanced state. Due to the large and diverse training dataset,
as well as the unfamiliarity of the model with the features required by our needs during
the process of learning-feature extraction, the model tended to have a higher error rate
in recognition. On the other hand, the testing dataset had fewer images, and the model
had already completed the learning process, gaining a better understanding of the desired
features. Therefore, there could be cases where the metrics in the testing results are higher
than the training output metrics. However, the training and testing data do not overlap,
and the numerical relationship between the two does not have a significant correlation.
When evaluating the performance of the model, it is insufficient to compare the testing
results alone, as the training data do not affect the assessment of the model’s recognition
effectiveness. In terms of model running speed, under the same conditions, the testing time
for a single image in both U-Net and ECA-U-Net is 0.058 s, while the testing time for lrassp
is 0.062 s. This further highlights the advantages of ECA-U-Net, which has high accuracy
and fast running speed.

4. Field Test of Raw Structural Crack Images

To more intuitively demonstrate the performance of each model in recognizing cracks,
we used real-life structural cracks for crack recognition, which contained noise motifs other
than cracks. The crack in Figure 8a is slightly inclined, with a physical width of 1.5 mm.
The crack in Figure 8b is almost horizontal, with a physical width of 2.1 mm, and the crack
in Figure 8c is vertical, with a physical width of 1.7 mm. Furthermore, the three cracks have
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disconnected points along the paths themselves, respectively. The raw structural images
contain multiple noise motifs including water stains, spots, joint lines, concrete stripes,
scratches, pits, etc., as marked with blue boxes. These images came from an on-site bridge
structural inspection and were not contained in the bridge-crack library [47]. The results of
recognition are shown in Figure 8.

 

Figure 8. Recognition results of actual crack images by the model.

It can be seen that although the lraspp network was not cheated by all kinds of noise
motifs in the raw images, it recognized very few parts of the crack regions. It missed the
majority of the crack regions in Figure 8b,c, and it missed all the crack regions in Figure 8a.
As for the U-Net, it almost successfully detected all the crack regions in all three of the
testing images. Nonetheless, U-Net’s recognition results contained a small number of
non-crack noise motifs. Part of the joint line in Figure 8a was misidentified as cracks,
and the concrete strips and the pitted area in Figure 8b were also misidentified as cracks.
Moreover, part of the water stains and the concrete strip in Figure 8c were mistakenly
recognized as cracks. This indicated that U-Net could achieve satisfactory performance in
detecting the cracks but the robustness against noise motifs was not enough. When it came
to the ECA-UNet, which was based on the U-Net and modified by adding the attention
mechanism, a better performance was achieved. It accurately recognized the crack areas in
the raw crack images. Yet, part of the concrete strip in Figure 8c still caused error detection.

Seen from the result, the recognition performance of lraspp on the feature of cracks
is unsatisfactory, and the ability to capture features is weak. The U-Net network can
successfully identify cracks, but it is still affected by some false crack noise interference
with crack-like characteristics, such as the concrete strips and some of the water stains.
The improved ECA-UNet based on the attention mechanism can accurately identify the
crack area and is more robust against all kinds of noise motifs, although errors can still be
detected.

5. Conclusions

This article investigated the performance of the ECA attention mechanism in im-
proving the crack-detection capacity of the deep neural network. Three trained models
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were evaluated for their recognition performance on crack images of actual bridges. The
following conclusions were drawn:

(i) Training of existing network public datasets: This article discusses training we con-
ducted on two primary models, lraspp and U-Net, using a publicly available dataset
of bridge cracks. The trained models were then tested for their generalization perfor-
mance, and the results showed that the U-Net model performed better than the lraspp
model in terms of data metrics. The precision, recall, and IOU values of the U-Net
model were 0.111, 0.051, and 0.097 higher than those of the lraspp model, respectively.

(ii) Improvement of the U-Net network based on the ECA attention mechanism: U-Net
performed well on the crack dataset, and based on this, an ECA attention mechanism
was added to the upsampling part of the U-Net network to enhance the model’s
crack-detection performance. By keeping the original training parameters unchanged,
the results of the training showed an increase of 0.131 in the recall rate and an im-
provement of 0.016 in the IOU compared to the original U-Net network, achieving
improvements in both performance metrics.

(iii) Recognition of real structural cracks in raw images: In the recognition of actual struc-
tural crack images, it was observed that the lraspp network was almost insensitive
to the crack feature and recognized hardly any cracks. Although the U-Net network
was able to identify cracks, it also misjudged some false crack noise. The improved
ECA-UNet network proposed in this paper showed better recognition performance
than the other two networks and accurately identified cracks without minor mistakes.

(iv) This paper proposed a method to improve the crack-detection performance of the
original U-Net model by integrating the ECA attention mechanism. Although the
ECA-UNet achieved comparatively satisfactory results, more efforts are still required
to improve the crack-detection performance. As for the improvement of detection
performance, it can be seen from the testing results that the ECA-UNet can be cheated
by noise motifs with linear geometry. Thus, the proposed network needs to be trained
for robustness to exclude images with crack-like linear noise motifs. Furthermore, the
network is quite large in terms of training parameters; therefore, how to reduce the
size of the network and keep the crack detection performance is also an important
aspect waiting for investigation. Moreover, attempts to embed the existing models
into mobile devices for real-time crack identification are also pertinent to bringing
this method into practical application.
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Abstract: Stress concentration often occurs around bolt holes in load-bearing joint structures of large
complex equipment, ships, aerospace and other complex machinery fields, which is an important
mechanical factor leading to the failure of joint structures. It is of great engineering significance to
study the phenomenon of stress concentration on connected structures for the safety of large and
complex equipment; meanwhile, the layout of bolts seriously affects the stress around holes. Many
scholars have studied the layout optimization of multi-bolted structures through experiments and
simulations, but few algorithms have been applied to the layout optimization of bolted structures.
And most of the studied types of multi-bolt structures are symmetrical. Therefore, in this paper, the
gray wolf algorithm is used to optimize the layout of nickel steel plate connectors with a bolt layout
in triangular position, and the optimal objective function is found based on the hole circumferential
stress of the nickel steel plate, maximum shear stress of the bolt and bending stress of the nickel
steel plate. Comparing the optimal values obtained by the fruit fly optimization algorithm, particle
swarm optimization algorithm, gray wolf optimization algorithm, multiverse optimization algorithm
and wind driven optimization algorithm, the accuracy of selecting the gray wolf algorithm for
optimization is verified. A multi-bolt connection structure model was established in ABAQUS, and
the surface stress before and after optimization was compared to verify the correctness of the gray
wolf algorithm applied to the structure layout optimization of the nickel steel flat bolt connection.
The results show that under the force of 15 KN, compared with the original bolt structure layout,
the optimized upper side nickel steel plate bore peripheral stress is reduced by 73.1 MPa, and the
optimization rate is 24%; bolt stress is reduced by 47.7 MPa, and the optimization rate is 12.5%; when
the load is less than 18 KN, the optimization effect of both the upper nickel steel plate and bolt group
is more than 10%. When the load is greater than 18 KN, the optimization effect is reduced, and when
the load is greater than 21 KN, the nickel steel plate has exceeded the yield limit. Due to the existence
of fixed constraints, the optimization of the lower nickel steel plate is not obvious. The results of this
study can provide data and theoretical support for the layout optimization of the nickel steel flat
bolt connection structure, and help to improve reliability analysis and health monitoring in complex
assembly fields such as large complex equipment and aerospace.

Keywords: bolted connection; layout optimization; algorithm; ABAQUS

1. Introduction

A bolted connection is an important connection method in large complex equipment,
aerospace and other mechanical structures [1–3]. The service life of the bolt and normal
operation of the mechanical structure are directly affected by the change in the preload
force of the connection mode. The stress around the hole of the bolted connection is the
key point that affects the construction life. In order to make the structure more stable and
reduce the stress on the bearing structure, it is necessary to optimize the layout of the
multi-bolt connection structure to achieve a better connection effect. Many scholars have
carried out a lot of research on the optimization of bolt layout.

The stress distribution of the bolt-connected structure is affected by the thickness of the
cover plate, aperture, nut diameter and other factors. When the value of the aperture and
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nut diameter is small, the stability of the bolt-connected structure can be improved [4]. Liu
et al. [5] tested the mechanical properties of asymmetrical bolts and came to the conclusion
that the performance of the copper gasket is stable and bearing capacity is higher than
that of an aluminum gasket. Moreover, under the action of a copper gasket, the coefficient
of friction imbalance is between 0.919 and 1.050, which can show good slip and energy
dissipation under earthquake conditions.

It takes time and effort to study the effect of bolt layout on the mechanical properties
of the connected structure by experiment, so many researchers optimize and analyze
the performance of the bolted structure by the simulation method. Wu et al. [6] used a
parametric model to adjust the layout of the bolt connection plate by changing the radius
and angle of the bolt connection, and then analyzed its influence on the modal frequency.
The results show that there are some order mode frequencies that affect the bolt layout,
and these frequencies should be avoided. Pedersen [7] optimized the shape of the starting
point and root of the thread, and also optimized the bolt rod and thread, which reduced the
stress by 34%, reduced the stiffness of the bolt, increased the stiffness of the bolt connection
and greatly extended the fatigue life.

In order to simulate the bolted structure more accurately, more and more scholars
apply artificial intelligence to the simulation. Shen et al. [8] improved the genetic algorithm,
applied the improved objective function to the connection structure, took the average
acceleration at the corner of the component as the objective function of the algorithm,
adopted the idea of parametric modeling, realized the interaction between MATLAB and
NASTRAN, and reduced the stress value at the corner of the component. The layout of the
bolt on the edge of the component is optimized and the safety of the component is improved.
Han et al. [9] used the gray wolf algorithm to optimize the motion trajectory of each joint of
the robotic arm, which takes time efficiency and smoothness as the objective function, and
the results show that the gray wolf algorithm can effectively perform trajectory optimization.
Liang et al. [10] improved the thresholds and weights of an Elman neural network by
particle swarm algorithm and applied the method to clock difference forecasting, which
can improve the stability and forecasting accuracy of a satellite clock. Wang et al. [11]
carried out layout optimization experiments on bolt sets based on the firefly algorithm,
and carried out simulation analysis on double-row bolts and three-row bolts, and the
optimized bolt layout reduced the perimeter stress of the holes and improved the safety
of the structure. However, the optimization of multi-bolt joint structures in the existing
literature is limited to symmetric bolt structures [12–16], while there are few studies on
asymmetric bolt structures, especially the optimization of a multi-bolt layout in a triangular
position. In addition, researchers rarely apply the gray wolf optimization algorithm to the
layout optimization of the connection structure of large complex equipment. Therefore,
based on the gray wolf algorithm, this paper optimizes the bolt group of the triangular
multi-bolt layout structure, seeks the optimal bolt margin and spacing, and reduces the
surface stress of the connection structure and maximum stress on the surface of the bolt
group; to prevent excessive stress around the bolt hole, resulting in fatigue damage of the
bolt hole or plastic deformation of the connector, thus affecting the stability and reliability of
the connection. Nickel steel has the advantages of strong compressive resistance, corrosion
resistance, low temperature toughness and so on, and is widely used in aerospace and other
large complex important equipment, and there is little research on nickel steel. Therefore,
the connection structure of this paper chooses nickel steel.

Based on the above background, this paper analyzes the hole surrounding stress,
maximum shear stress of the bolt and bending stress of the nickel steel plate; and adopts the
gray wolf algorithm to optimize the bolt spacing and bolt diameter, which can accurately
find the optimal bolt spacing and bolt radius. The results of the fruit fly optimization
algorithm [17], particle swarm optimization algorithm [18], gray wolf optimization algo-
rithm [19], multiverse optimization algorithm [20] and wind driven optimization algo-
rithm [21] for triangular multi-bolt layout structure optimization were compared, and the
accuracy of the gray wolf optimization algorithm was verified. The optimized bolts still
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met the requirements of the design specification, and the efficiency of the joint design is
improved. ABAQUS-2022 software was used to establish the finite element model of the
optimal solution, and the stress conditions of the nickel steel plate and bolts before and after
optimization were compared to verify the correctness of the algorithm, objective function
and constraint conditions. Based on the gray wolf algorithm, this paper selects the optimal
triangular multi-bolt layout structure and corresponding bolt diameter, and reduces the
hole stress and maximum stress on the surface of the nickel steel plate, which provides a
new idea for the layout optimization of the asymmetric bolt-connected structure, improves
the strength and stiffness of the structure, and extends the service life and reliability of the
bolt-connected structure. When engineering design bolts and connecting structures, the
optimal solution of the gray wolf algorithm can select a reasonable range of bolt diameters
and bolt spacing, so that the stress around bolt holes is within a reasonable range, avoiding
excessive use of materials and reducing material costs. It is helpful to improve the safety
and reliability of load-bearing connection structures in complex machinery fields such as
large complex equipment, ship sailing and aerospace.

2. Materials and Methods

2.1. Principles of the Grey Wolf Algorithm
2.1.1. Algorithm Introduction

The gray wolf algorithm is designed based on the hunting system and leadership level
of the gray wolf [22]. The pyramid level of the algorithm is divided into four layers. The
top gray wolf is responsible for decision-making events such as hunting and distribution
of goods, called α. The second layer is the top gray wolf’s think tank team, called β. It is
mainly responsible for assisting in decision-making, and when the top position is vacant,
the second layer of workers will take over the top position. The third layer of workers,
called δ, listens to the transfer orders of the first two layers and is mainly responsible for
tasks such as nursing and sentinel. The bottom worker, known as ω, mainly works to
balance internal relationships.

The gray wolf algorithm has fast convergence speed, has high global search ability,
can be applied in different problem domains, does not require complex computer models,
and can automatically adapt to the characteristics of the problem and change of search
space. To sum up, the gray wolf algorithm is selected in this paper to optimize the layout
of the multi-bolt connection structure.

2.1.2. Round up Prey

The prey catching behavior of the gray wolf group is defined as [19]:

→
D =

∣∣∣∣→C→
Xp(t)−

→
X(t)

∣∣∣∣ (1)

→
X(t + 1) =

→
Xp(t)−

→
A
→
D (2)

Formula (1) is the distance between the gray wolf and its prey, and Formula (2) is the
formula for updating the position of the gray wolf. Where, t represents the current number

of iterations,
→
A and

→
C are the position vector of the prey and the position vector of the gray

wolf, respectively.
→
Xp and

→
X are the coefficient vector. The formula for calculating

→
A and

→
C

are as follows [19]: →
A = 2

→
a
→
r 1 −→

a (3)
→
C = 2

→
r 2 (4)

where,
→
a is the convergence factor, rß1 and rß2 are the random number between the

interval [0–1].
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2.1.3. Hunt

Grey wolves can identify the specific location of prey by themselves [23], and under
the leadership of the gray wolves at the top of the pyramid, gradually surround the prey, so
that each gray wolf can reach the best position. Therefore, in order to simulate the behavior
of the gray wolf, we selected three optimal positions around the prey, used these three
positions to judge the specific position of the prey, and forced other gray wolves to update
their own positions according to the position of the optimal gray wolf. By closing in on the
prey, they round it up. The principle of gray wolf individual location renewal is shown in
Figure 1.

Figure 1. Schematic diagram of individual renewal position of a gray wolf.

Its mathematical model is described as follows [19]:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

→
Dα =

∣∣∣∣→C1
→
Xα −

→
X
∣∣∣∣

→
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∣∣∣∣→C2
→
Xβ −

→
X
∣∣∣∣

→
Dδ =
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→
Xδ −

→
X
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(5)

→
Dα,

→
Dβ,

→
Dδ are the distance vector between α, β, δ and other gray wolves,

→
Xα,

→
Xβ,

→
Xδ are

the vector of the former position of α, β, δ,
→
C1,

→
C2,

→
C3 are the random vector,

→
X represents

the current position vector. ⎧⎪⎪⎨⎪⎪⎩
→
X1 =

→
Xα − A1

→
Dα→

X2 =
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→
Dβ→
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→
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→
Dδ
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Formula (6) shows the direction and step length of an individual gray wolf ω moving
toward α, β, δ respectively.

→
X(t + 1) =

→
X1 +

→
X2 +

→
X3

3
(7)

Formula (7) is the optimal position of the bottom gray wolf ω.

2.1.4. Attack Prey

To simulate the movement of gray wolves as they approach prey, as
→
a decreases, the

range of
→
A decreases, the value interval of

→
A is [−α, α]. When

→
A is located in this interval,

the gray wolf can switch between its own position and the position of prey at will. When

|
→
A| < 1, the gray wolf pack attacks and captures its prey.
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2.2. Construct Objective Function
2.2.1. Bolt Mechanical Model

Apply a pull in the positive direction of X and a pull in the negative direction of Y at
point K, both of which are 15 KN. Among them, the bolts are arranged in the position of
an equilateral triangle, whose side length is a and centroid is O. The structural diagram is
shown in Figure 2.

Figure 2. Schematic diagram of bolt structure.

By simplifying the force at point K to point O, the torque at point O is formed. Carrying
out force analysis on bolts A, B and C:

FA =

(
5 − 2250

√
3 × sin 30o

a

)
→
i + (−5 − 2250

√
3 × cos 30o

a
)
→
j (8)

FB =

(
5 − 2250

√
3 × cos 30o

a

)
→
i + (−5 +

2250
√

3 × sin 30o

a
)
→
j (9)

FC =

(
5 +

2250
√

3
a

)
→
i + (−5)

→
j (10)

According to Equations (8)–(10), from FA, FB and FC, it can be seen that the maximum
force is bolt C:

Fmax = FC (11)

At this time, the maximum shear stress on the bolt is:

τmax =
Fmax

πd2/4
(12)

It can be seen from the analysis that bolt B receives the maximum torque. Bolt B is cut
along the Y-axis to obtain the profile as shown in Figure 3a and the torque diagram of the
plate as shown in Figure 3b.
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Figure 3. Bolt profile and torque diagram. (a) Profile of the nickel steel plate; (b) Torque diagram of
nickel steel plate.

The torque and moment of inertia at bolt B are:

M = FB

[
300 + (150 − a

2
)
]

(13)

I = Imax −
[

Ihole + Io f f set

]
=

10 × 3003

12
−
[

10d3

12
+

(
a

2
√

3

)2
×25d

]
(14)

Then the critical bending stress of the nickel steel plate is:

σmax =
M
I

(15)

Formulas (11), (12) and (15) can be used to calculate the maximum stress on bolts,
maximum shear stress and critical bending stress of the nickel steel plate, which lays a
prerequisite for the selection of the objective function in the following algorithm.

2.2.2. Objective Function

In this paper, the simulation software ABAQUS was used to simulate the working
condition of bolts [24], and the maximum stress, maximum shear stress and critical bending
stress of bolts were considered at the same time [25]. In order to fit the three objective
functions into one objective function, their superposition was processed:

Fitness = Fmax +
4 × Fmax

πx22 +
6 × FB × (450 − x1

2 )

1.35 × 108 − (5 x23+45x1
2x2)

+ k(x1, x2) (16)

where, x1 is the distance variable a between bolts; x2 is the diameter d of the bolt; k(x1, x2)
is the fitting factor added when fitting Fmax, τmax, σmax.

2.3. Selection Constraint

Before the algorithm is solved, the population number pop is set to 50, variable
dimension dim is 2, maximum number of iterations maxIter is 500, upper boundary
velocity is [2, 2] and lower boundary velocity is [−2, −2]. For M8-type bolts, the distance
between the bolts and nickel steel plate, and distance between the bolts cannot be too small;
according to the steel design code [26], the distance between its bolts is not less than 3d and
the end distance of the bolts is not less than 1.5d. Also considering the diameter of small
bolts, the variation range of the bolt diameter d is [1.4~36]. Therefore, the range of spacing
a and bolt diameter d selected in this paper is:

2.8 mm < a < 142.5 mm

1.4 mm < d <3 6 mm

2.4. Finite Element Modeling and Boundary Conditions

The bolt specifications in this paper refer to GB/T191-197-2003 [27], and M8 bolts with
a pitch of 1.25 mm and a screw length of 50 mm are selected. Nickel steel has important
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properties such as formability, weldability and ductility, and has good corrosion resistance.
It is an important material, and widely used in large equipment, aerospace and other
complex assemblies in the field of connection structures. At present, there is little research
in the field of nickel steel plates, so the bolt role of the plate in this paper is selected from
nickel steel material. The modulus of elasticity of both the bolt and nickel steel plate is
210,000 MPa, the Poisson’s ratio is 0.283 and the density is 7999 kg·m−3; the maximum
stress limit of the bolt is 640 MPa and maximum stress limit of the nickel steel plate is
340 MPa.

To verify the accuracy of the objective function as well as the algorithm, parametric
modeling of the bolt and nickel steel flat plate was carried out based on ABAQUS with
Python-3.90 software. Due to the difficulty of meshing the threads in ABAQUS and non-
convergence of the calculations, the paper uses a simplified modeling of the bolts without
threads [28] and makes the multi-bolt structure act on the bearing surface by applying a
preload [29]. The load-bearing structure is two thin nickel steel plates, both of which are
elastoplastic flat plates. The two fast nickel steel flat plates were superimposed to simulate
the connecting action of complex equipment, as shown in Figure 4. The nickel steel plate is
meshed using a hexahedral structured mesh with a cell type of C3D8R cells. In order to
make the simulation easier to converge and more precise, the area around the bolt holes
and nut of the nickel steel plate is divided to obtain a more precise mesh, as shown in
Figure 5 below.

Figure 4. Bolted connection model.

Figure 5. Stress of multiple bolts.

In this paper, a high quality mesh with 45,430 meshes is divided and partitioned at
different locations to ensure the accuracy of the calculation results. At the same time, the
finite element analysis method has been widely used in the simulation analysis of the
model, and the reliability of its analysis results can be effectively guaranteed under the
condition of ensuring high quality meshes.
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In the solution stage, this paper sets four analysis steps, the first and second steps in
the bolt’s middle surface, gradually add the bolt load, that is, the preload. In the third and
fourth steps, the current length is fixed in order to meet the actual engineering requirements,
so that the bolt load changes with the deformation of the structure.

The contact properties are set to finite slip and the junction-surface discretization
method is used. For contact, the harder nickel steel plate is used as the master surface and
the bolt surface as the slave surface, defaulting to contact when the distance between the
two is less than 0.03. The tangential contact is set with a friction coefficient of 0.3, and the
normal contact is a hard contact to prevent penetration.

If a force of 15 KN is applied in the X and Y directions, the bolt will be severely
deformed, thus affecting the simulation results, and the simulation mainly compares the
stresses on the nickel steel plate and bolt before and after optimization, independent of the
force direction of the plate. Therefore, in Step 3, the tension and pressure are applied to the
upper nickel plate in the positive X-axis and negative Z-axis directions. The leftmost side
of the lower nickel steel board applies a fixed restraint.

3. Results

3.1. Algorithm Solution

Based on the MATLAB(2020) software for the multi-bolt connection structure of the
spacing a and diameter d of the bolt to find the best calculation, from Figure 6, it can be seen
that the objective function and constraints are fully applicable to the gray wolf algorithm
program, the iterative effect is good, and finally stable convergence to a fixed value is
observed. Its convergence to a stable fitness value is not used as a criterion for judging
bolts and nickel steel plates. As can be seen from Figure 7, through different iterations, the
particles gradually converge to the best particle, whose best particle is the result sought.
The algorithm results in a pitch a = 108.5629 mm and a diameter d = 9.0233 mm. The results
optimized by firefly algorithm for the spacing of double-row bolts and triple-row bolts
in previous studies [11] are not much different from the optimized bolt spacing in this
paper, and are also consistent with the results optimized by Xiao et al. [30] for the layout
optimization of bolt groups for flameproof boxes used in mines.

Figure 6. Results of algorithm operation.
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Figure 7. Different iteration times of the algorithm.

In this paper, the objective function as well as the boundary conditions are applied
to the fruit fly optimization algorithm, particle swarm optimization algorithm, gray wolf
optimization algorithm, multiverse optimization algorithm and wind driven optimiza-
tion algorithm, the results of which are shown in Figure 8, with approximately the same
algorithmic optimization curves. There is only a slight difference at the initial iteration,
which is explained by the fact that the different algorithms contain different principles.
As shown in Table 1, the final fitness values were all stable at −42.8195, with the gray
wolf algorithm having the highest number of iterations, but none of them exceeded
500 iterations.

Figure 8. Optimization effects of different algorithms.
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Table 1. The number of fastest iterations.

Algorithm
Fastest Iteration

(Generation)
Stable Value

Fruit Fly Optimization Algorithm 70 −42.8195
Particle Swarm Optimization 77 −42.8195

Gray Wolf Optimization Algorithm 342 −42.8195
Multiverse Optimization Algorithm 315 −42.8195

Wind Driven Optimization Algorithm 150 −42.8195

Figure 9 shows the optimal result values calculated by various algorithms, and the
results calculated by the particle swarm optimization algorithm, multiverse algorithm and
gray wolf algorithm are roughly the same. The bolt spacing and bolt diameter calculated by
the fruit fly optimization algorithm are both larger, while the bolt spacing and bolt diameter
calculated by the wind driven optimization algorithm are larger and smaller. Because the
core functions of various algorithms are different, there is a certain deviation, which is also
a limitation of artificial intelligence. In this simulation, the maximum deviation of the bolt
diameter is 0.59% and maximum deviation rate of bolt spacing is 0.12%, both of which have
small deviations and can be ignored. The results show that the optimal solutions of the five
algorithms selected in this paper are roughly the same, and the deviation rate is low, which
will not cause certain impact on the subsequent simulation analysis. Therefore, this paper
can choose the optimal solution calculated by the gray wolf optimization algorithm as the
focus of the subsequent analysis and discussion.

Figure 9. Algorithm optimization results.

3.2. Optimized Stress Comparison between Front and Rear Bolts

The ABAQUS-based simulation design can verify the correctness of the optimal
solution selection of the gray wolf algorithm to reduce the stress concentration phenomenon
in the structure and thus improve the safety performance of the aerostructure. The stress
clouds of the upper nickel steel plate, lower nickel steel plate and bolts before and after
optimization are shown in Figures 10–12.
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(a)  (b)  

Figure 10. Upper nickel steel plate stress cloud. (a) Optimized pre-stress nephogram; (b) Optimized
stress nephogram.

  
(a)  (b)  

Figure 11. Lower nickel steel plate stress cloud. (a) Optimized pre-stress nephogram; (b) Optimized
stress nephogram.

 
 

(a)  (b)  

Figure 12. Stress clouds for bolt sets in triangular positions. (a) Optimized pre-stress nephogram;
(b) Optimized stress nephogram.

The stress cloud diagram of the nickel steel plate above is shown in Figure 10. In order
to make the stress nephogram visually compare the stress change and stress concentration
through images, this paper takes the stress extreme value before optimization as the
standard and changes the mechanism of the optimized nephogram. Before and after
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optimization, the maximum stress of the nickel steel plate is 304.0 MPa and 230.9 MPa,
respectively, and the maximum stress is reduced by 73.1 MPa, with an optimization rate of
24%. A previous study [8] optimized the layout of the bolts on the connection structure
based on the improved genetic algorithm, and the results showed that the optimized bolt
layout reduces the maximum equivalent stress at corners constructed by 20.4%. In another
study [11], the firefly algorithm was used to optimize bolts with double and triple rows,
and the results showed that after optimization, the stress around the hole of the plate
structure with triple rows of bolts was reduced by about 20%, and the stress reduction
effect in this paper was better. Xiao et al. [31] adopted the improved genetic algorithm to
optimize the equivalent stress of the aviation connection structure under the position of
three rows of bolts under severe working conditions. The results showed that the maximum
pore circumference stress was reduced by 31.03% under a static pressure load of 30 MPa,
while the optimization efficiency only reached 23.36% under severe working conditions.
Under the conditions of 15 KN tension and pressure studied in this paper, it is already
a serious condition, and the optimization effect of both is the same, which proves the
reliability and accuracy of the analysis in this paper. Among them, the stress around bolt
hole B decreased significantly after optimization, and the maximum stress value around
bolt hole B decreased from 304.0 MPa to 112.1 MPa, with a decrease rate of 63.1%, which
greatly reduced the stress around bolt hole B. The stress around bolt hole C before and after
optimization is 309.2 MPa and 302.8 MPa, respectively. Bolt hole C was originally the most
stressed bolt, and its optimization effect is not obvious. The stress around bolt hole A is
increased by 27.9 MPa, mainly because after optimization, the position of bolt hole A is
closer to the edge of the nickel steel plate, and the position of concentrated force is closer to
the vicinity of bolt A.

Figure 11 shows the stress cloud map of the lower nickel steel plate. Before and after
optimization, the maximum stress of the nickel steel plate is 311.5 MPa and 302.8 MPa,
respectively, and the maximum stress is reduced by 8.7 MPa, with an optimization rate
of 2.8%. The maximum stress at bolt hole B decreased from 307.1 MPa to 177.5 MPa, and
the optimization rate was 42.2%, which significantly improved the stress concentration
phenomenon at bolt hole B. The maximum stress at bolt holes A and C decreased less,
8.9 MPa and 6.4 MPa, respectively, but the equivalent stress around them decreased
significantly. According to the stress nephogram, the stress concentration around the three
bolt holes has been significantly improved after the optimization of the triangular multi-bolt
connection structure, and the bolt hole B has been greatly improved.

Figure 12 shows that before and after the optimization, the stresses on bolt A were
381.4 MPa and 333.7 MPa, respectively, both of which were the maximum values of the
bolt stresses before and after the optimization, and the maximum stress was reduced by
47.7 MPa, and its optimization rate was 12.5%. The literature [31] applied the improved
genetic algorithm to the layout optimization of an actual aerospace bolt connection structure,
and the results showed that the maximum equivalent stress of the bolt was reduced by
10.14%, which is not much different from the results of this paper. The main reason for the
highest stress value in bolt A is the left-hand fixation of the nickel steel plate below, which
affects the forces in the connection structure. Bolt B has the most obvious optimization effect,
with its maximum equivalent force dropping by 177.5 MPa and optimization rate of 57.2%,
effectively extending the service life and reliability of bolt B. The maximum stress value
at bolt C was reduced from 345.5 MPa to 301.0 MPa, with an optimization rate of 12.9%.
In summary, the bolts in the triangular position were improved by the optimal solution
calculated by the gray wolf algorithm, which improved the overall safety and stability. In
the literature [32], the layout of the beam-column extended end-plate connection structure
was optimized based on the firefly algorithm, and the maximum hole perimeter equivalent
force of the connection structure was reduced by 41.2 MPa after optimization, with an
optimization rate of 10.9%; however, the maximum equivalent force on its bolt surface was
reduced by only 3.8%. Compared with this paper, which uses the gray wolf algorithm to
optimize the multi-bolt layout in triangular positions, this method is more efficient and
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can provide an effective reference for engineers when designing multi-bolt connection
structures for nickel steel flat plates.

Before and after the optimization, the stress concentration around the hole of the nickel
steel plate is improved, especially the maximum stress at the bolt hole B, which reaches
40–60% of the optimized value. The overall optimization rate for the upper nickel steel
plate is 24% and the overall optimization rate for the lower nickel steel plate is 2.8%, mainly
due to the fixed restraint applied on the left side. The overall optimization rate for the bolt
set was 12.5%.

In order to study the optimization under different force conditions, this paper changed
the pressure and tension and added comparative analysis, respectively, 3 KN, 9 KN, 15 KN
and 21 KN, as shown in Figure 13. The results show that under the 18 KN load, the
nickel steel plate and bolt set above can achieve better optimization efficiency, and their
optimization rates are above 10%. At 15 KN, the optimization effect is better. However,
when the load is greater than 18 KN, the optimization efficiency is lower. When the load is
greater than 21 KN, the nickel steel plate has exceeded the yield limit and presents a large
deformation condition, which is not suitable for calculating its optimization efficiency. The
optimization efficiency of the lower nickel steel plate is always lower, mainly because of the
fixed constraints on the lower nickel steel plate. Overall, the analysis of this paper proves
that the gray wolf algorithm is suitable for structural optimization of multi-bolt layouts
in triangular positions, which helps to reduce the stress concentration phenomenon and
contributes to the effective structural optimization design of large and complex equipment
and aeronautical structures.

Figure 13. Comparison chart for optimisation of different force cases.

4. Conclusions

This paper applies the gray wolf algorithm to optimize the structural layout of multi-
bolt positioning in triangular configurations. By analyzing the forces, the objective function
is formulated based on the fitted functions of hole perimeter stress for nickel steel plates,
maximum shear stress for bolts and bending stress for nickel steel plates. The value range
for bolt diameter and spacing is determined according to design specifications. The optimal
solutions calculated using the fruit fly optimization algorithm, particle swarm optimization
algorithm, gray wolf optimization algorithm, multi-verse optimization algorithm and wind
driven optimization algorithm are compared. ABAQUS simulation software is used to
model and compare the stress on nickel steel plates and bolts before and after optimization,
thereby verifying the correctness of the algorithm application. Through analysis, the
following conclusions can be drawn:

(1) Before optimization, a traditional design method was used with a bolt spacing of
60 mm and a bolt diameter of 8 mm. After optimization, the bolt spacing is chosen
as 108.5629 mm and bolt diameter is 9.0233 mm. The stress distribution of the newly
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arranged nickel steel plate is more uniform, and the local stress values have also been
reduced, resulting in a more stable overall stress state.

(2) Through this layout optimization, under pressures and tensions of 15 KN, the hole
perimeter stress on the upper nickel steel plate decreased by 73.1 MPa, with an
optimization rate of 24%. The hole perimeter stress on the lower nickel steel plate
decreased by 8.7 MPa, with an optimization rate of 2.8%. The maximum equivalent
stress on the bolts decreased by 47.7 MPa, with an optimization rate of 12.5%.

(3) When the load is less than 18 KN, the optimization effect of both the upper nickel steel
plate and bolt assembly is above 10%. However, when the load exceeds 18 KN, the
optimization effect decreases. When the load exceeds 21 KN, the nickel steel plate has
exceeded its yield limit. The upper nickel steel plate shows significant optimization,
but the optimization effect on the lower nickel steel plate is not obvious due to the
existence of fixed constraints that restrict pressure.

(4) The chosen material for the connecting structure in this article is nickel steel plates,
which are widely used in the load-bearing connection structures of large and complex
equipment and aerospace and other complex mechanical fields. By optimizing the
structural layout, fatigue damage of bolt holes or plastic deformation of connectors
caused by excessive hole perimeter stress can be effectively prevented. This enhances
the safety, reliability and stability of load-bearing connection structures.

(5) This article studied the non-symmetrical triangular structure of bolt connections, pro-
viding an effective method and ideas for the layout optimization of non-symmetrical
bolt configurations, enriching the research achievements in related fields.

This paper proves the correctness of applying algorithms to optimize bolt layouts.
However, it only focuses on a specific equilateral triangular multi-bolt structure. In future
studies, the layout optimization of randomly positioned multi-bolt structures should be
further analyzed. Moreover, this article only conducts simulations on nickel steel plates,
and subsequent experiments and simulations should cover different metal materials to
enhance the applicability of this article.
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