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Preface

Structural health monitoring (SHM) and non-destructive testing (NDT) have gained significant
importance for civil, mechanical, aerospace, and offshore structures. Nowadays, we can find SHM and
NDT applications being used on various structures with very different requirements. The SHM-NDT
field involves a wide range of transdisciplinary areas, including smart materials, embedded sensors
and actuators, damage diagnosis and prognosis, signal and image processing, wireless sensor networks,
data interpretation, machine learning, data fusion, energy harvesting, etc.

Since the 1970s, there has been a large and increasing volume of research on SHM and NDT;
a great deal of this effort has focused on developing cost-effective, automatic, and reliable damage
detection technologies. However, few industrial and commercial applications can be found in the
literature. The practical implementation of strategies for the detection of structural damage to real
structures outside of laboratory conditions is always one of the most demanding tasks for engineers.
One reason for the rare transfer of research into industrial practice is that most of the methods that
have been developed have been tested on simple beam and plate structures in the laboratory, while
many practical problems only manifest themselves in complex structures. Another reason is the
influence of environmental and operational variations (EOVs) on damage-sensitive features. Thus, for
the successful development of SHM and NDT for large structures, techniques should be enhanced
to have the capability of dealing with the influence of EOVs. In addition, signal/data processing
plays an important role in the implementation of SHM and NDT technologies. The processing and
interpretation of the massive amount of data generated through the long-term monitoring of large and
complex structures (e.g., bridges, buildings, ships, aircrafts, wind turbines, pipes, etc.) has become an
emerging challenge that needs to be addressed by the community.

This Topic brings together the most established as well as newly emerging SHM and NDT
approaches that can be used for the detection and evaluation of defects and damage development
in large-scale or full-scale structures. After a strict peer-review process, 44 papers were published,
which represent the most recent progress in SHM and NDT methods/techniques for aerospace, civil,

mechanical, and offshore infrastructures.

Phong B. Dao, Lei Qiu, Liang Yu, Tadeusz Uhl, and Minh-Quy Le
Editors
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Abstract: We propose a simplified partitioned Brillouin gain spectrum (BGS) analysis method to
enhance the spatial resolution and measurement accuracy of a Brillouin optical time-domain reflec-
tometer (BOTDR) assisted by a first-order Raman pump. We theoretically derive the mathematical
model of the partitioned BGS and analyze the superposition process of sub-Brillouin signals within a
theoretical spatial resolution range. We unified all the unknown constant parameters of the calculation
process to simplify the partitioned BGS analysis method and the value of the uniform parameter is
attained through the system test data and numerical analysis. Moreover, to automate data processing,
the starting point of the temperature/strain change is determined by the first occurrence of the
maximum Brillouin frequency shift (BFS), then the position where the partitioned BGS analysis
method calculation begins is obtained. Using a 100 ns probe pulse and partitioned BGS analysis
method, we obtain a spatial resolution of 0.4 m in the 78.45-km-long Raman-assisted BOTDR system,
and the measurement accuracy is significantly improved. In addition, we achieve a strain accuracy of
5.6 pe and a spatial resolution of 0.4 m in the 28.5-km-long BOTDR without Raman amplification.

Keywords: BOTDR; spatial resolution; Brillouin gain spectrum analysis; Raman amplification;
optical fiber

1. Introduction

Distributed optical fiber sensing has attracted the attention of researchers in recent
years due to its unique advantage in realizing multi-point temperature, strain, and other
physical measurements. The Brillouin optical time-domain reflectometer (BOTDR) with
probe pulse and signal processing equipment connected at the same end has favorable
flexibility [1,2], and thus has been widely applied in power cables, oil and gas pipelines,
large-scale structure health monitoring [3-6], etc. However, the performance of the dis-
tributed optical fiber sensing system in terms of spatial resolution (SR), measurement
accuracy, measurement speed, and maximum sensing distance are mutually restricted.
Increasing the width of the probe pulse can attain a better signal-to-noise ratio (SNR),
sensing distance, and measurement accuracy of the system, but this method will reduce
the SR [7].

To solve the tradeoff between these performance indicators, researchers have proposed
various methods. Adopting appropriate pulse coding technology can increase the average
power of the probe light and enhance the SR, which is a special practical method to
improve the system performance [8-11]. The advanced data processing method can raise
the SNR and SR without increasing the system cost [12-15]. The iterative subdivision
method [14] has been used to improve the SR, where the author exploited the probe
pulse with a width of 100 ns to achieve SR of 1.5 m in a 50 km BOTDR. However, this
method needs to be combined with energy density distribution (EDD), and thus the

Sensors 2022, 22, 116. https:/ /doi.org/10.3390/522010116
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complexity of the algorithm is increased. A spatial resolution of 0.3 m was obtained in a
5 m BOTDR using 20 ns probe pulse by analyzing the Brillouin gain spectrum [15], but like
the iterative subdivision, the position where the data processing method calculations begin
is not given. Raman amplification is an effective approach to prolong sensing distance
and realize quasi-transparent transmission [16,17]. The ultra-long sensing distance of
150 km can be accomplished by using coherent detection and Raman amplification [18],
but the temperature resolution and SR of the system are 5.2 °C and 50 m, respectively.
Meanwhile, by adjusting parameters such as Raman pump power and Erbium-doped
optical fiber amplifier (EDFA) gain, the sensing distance of 100 km can be achieved [19],
but the temperature accuracy and SR are 3 °C and 40 m, respectively.

SR is one of the most important performance parameters of the BOTDR, indicating
the minimum optical fiber length accurately measured by the system. The experimental
spatial resolution is defined as the fiber length of the temperature transition region between
10% and 90% of the peak amplitude [20]. We propose a simplified partitioned analysis
method through decomposition of BGS, combined with Raman-assisted amplification,
which extends the sensing distance and improves the measurement accuracy and SR of
the system. To automate data processing, the beginning calculation point of the proposed
method is obtained by analyzing the superposition characteristics of the BGS. We experi-
mentally demonstrate a temperature accuracy of 5.7 °C and a spatial resolution of 0.4 m
in the 78.45-km-long Raman-assisted BOTDR system through the partitioned BGS analy-
sis; the sub-meter level SR is thus achieved in the long-distance optical fiber distributed
sensing system. Moreover, we verify the effectiveness of a simplified partitioned BGS in a
28.5-km-long BOTDR without the Raman pump.

2. Fundamentals of the System
2.1. First-Order Raman Assisted BOTDR Theory

We mainly analyze first-order co-directional Raman pumping which maintains the
advantage of BOTDR single-ended access. When the incident power exceeds the stimu-
lated Raman scattering (SRS) threshold, stimulated inelastic scattering will occur in some
nonlinear medium, which will lead to the pump energy transfer to Raman scattering light.
First-order Raman-assisted BOTDR utilizes this nonlinear effect to amplify the probe light
and Stokes light (Brillouin scattering light) at ~1550 nm with a higher Raman pump at
~1455 nm, then enhances the SNR of the system and increases the measurement accuracy.
In the case of the continuous pump, the coupling equation describing the first-order Raman
process is written as follows [21]:

dp, v

TZR = —agrPg — SRTSPR(PS + Pg) 1)
dP.
T;:_“sps +gRPRPs (2)
dP,
TZB = asPp — grPrRPp 3)

where Pg, Ps and Pp are the power of Raman pump, probe light and Stokes light, respec-
tively. vg and v; are the corresponding frequencies of Raman pump and probe signal. ag
and w; are the optical fiber attenuation coefficients corresponding to the wavelengths of the
Raman pump and probe pulse, respectively. gr is the gain coefficient of the Raman pump
to the probe and Stokes.

2.2. Simplified Partitioned BGS Analysis Method

To boost the spatial resolution of the system, we divide the optical fiber into m segments
within L, as shown in Figure 1; the length of each segment is
L
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where L represents the theoretical spatial resolution of the BOTDR system, which is given
by [14]

L= c(t+1) 5)

21’Ze ff

where ¢ is the light speed in vacuum; 1,y is the fiber-core effective refractive index; 7 is
the width of probe pulse; T’ is the response time of the BOTDR detection system, which
is determined by the bandwidth of photoelectric devices, such as detectors, filters, and
amplifiers [22]. Although the narrow pulse width can improve the spatial resolution of the
BOTDR system, it will reduce the frequency resolution and measurement accuracy, which
is limited by the phonon lifetime (~10 ns).

. Sub-Brillouin |
A ' signal generatedg Etemperature/gtram;
by each segment; | _change point |

Foer A AT
7|<_AZ' L (m=1DL

“0 20 T— o z, ! 2y +L
m m

Figure 1. Superposition of sub-Brillouin signal, black section represents the temperature/strain
change area. z is an arbitrary position of optical fiber.

As shown in Figure 1, the probe pulse width is set to 100 ns in this experiment, which
is greater than the phonon lifetime; the sub-Brillouin signals generated by each segment
can thus be approximated by the Lorentzian shape [23]. Hence, the sub-Brillouin signal
generated by the ith segment is

2
Gi(v,vg) = gi(Avg;/2) o

(v —vp)* + (Avg/2)

where v is the frequency detuning round the BFS; g;, vg; and Avg; are the Brillouin peak
gain coefficient, BFS, and the full width at half maximum (FWHM) in the ith segment,
respectively.

The BGS measured by the system is the overlapping result of sub-Brillouin signals
within L, thus the BGS at the point z is obtained as

m m 2
i(Avpi/2)
G(v,29) =Y a;Gi(v,vgi) =) a
i; o 1:21 (v —vp)? + (Avgi/2)?

@)

where G(v,zp) is the BGS at point zy measured by the BOTDR system; 4; represents the
constant of proportionality.

Assuming that the temperature/strain change occurs in the mth section, as shown in
Figure 1, the sub-Brillouin signal of the mth can be obtained from (7), which is given by

1 1 7] gi(Avgi/2)?
Gm(v,vgm) = —G(v,29) — — Y a; ! ! 8
m( Bm) am ( O) A 1; I(V — VB,‘)Z T (AVBi/2)2 (8)

G(v,z9) is known, thus the BGS of the mth segment can be attained by solving the
sub-Brillouin signal from 1st to (m — 1)th segment. The sub-Brillouin signal generated by
each segment from position zg to zg + (m — 1)L/m is approximately equal to that from
zg — (m +1)L/m to zg — 2L/ m because the temperature/strain of these sections have not
changed, as shown in Figure 2.



Sensors 2022, 22,116

|
z,—L|
|
I
|

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 2. Distribution of sub-Brillouin signal. (a) Sub-Brillouin signal within L length before zj point.
(b) Sub-Brillouin signal within L length after z; point.

We analyze the sub-Brillouin signal generated within an L length before the z point;
the sub-Brillouin signal from zg — (m + 1)L/m to zg — 2L/m and zy to zy + (m — 1)L/ m
have the same vg; and Avg;, which satisfies (9).

+1)L 1 m A 2)2
G(v,zog — M) — Z 1,Gn (v, vgy) = Z . Sn( 2VBn/ ) .
m n=1 n=1 (V - VBn) =+ (AUBn/Z)

©)

where a,, represents the constant of proportionality.

Using the scan data detected by the BOTDR system from zp — (m +1)L/mtozg— L/m
point and performing Lorentzian curve fitting, the BFS and FWHM of the BGS at each
point can be obtained. Thus, the sub-Brillouin gain spectrum of the mth segment can be
calculated if we can attain the gain peak coefficient g,. Assuming that g, is equal to 1, the
two intermediate variables A and B can then be expressed as

- (AVBn /2)2
10
; (v—vpa)* + (A4 /2)? o
B:G(V,Zo—W)/A (11)
From (8), (10), and (11), we can get:

1 FB"=! (Avgi/2)*
Gm s VBm) = —G ’ - i 12
(v2¥5m) am (v:20) am 1:21 ! (v—vgi)* + (Bvgi/2) 2

where F is a constant. We unify all the constants to k without affecting the final fitting
results of BFS to simplify the calculation, then (12) becomes

m—1 2
(Avg;/2)

Gm s VBm) = G y — kB
(V- Vm) (v-20) ) z; (v—vpi)* + (Avgi/2)?

(13)

As shown in Figure 3, the BGS generated in the (1 + 1)th segment can be calculated
by (14). By analogy, we can get the sub-Brillouin signal of the following multiple segments.

L = (Avgi/2)®
G v,V =G(v,z0+ —) — kB x !
ma (v V() = Gz +0) 12 (v —vei)® + (bvgi/2)?

= Gum(v,vpm) (14)
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Figure 3. Multi-segment temperature/strain change area. Black indicates the unknown sub-Brillouin
signal.

Now, the key problem is to find zj in Equation (13), and then the signal processing
algorithm can be automated. Assuming that there are three continuous sections where
temperature/strain changes, Figure 4 depicts the process of sub-Brillouin signal generation
and superposition. In Figure 4b, the sub-Brillouin signal generated in the (m — 1)th and mth
segments after the probe pulse propagates forward for a distance of L/m. Since the probe
pulse and the Brillouin scattering light propagation are opposite the optical fiber normally,
the sub-Brillouin signal generated in the mth segment in the previous stage overlaps with
the generated in the (in — 1)th segment this time, which is shown in Figure 4c. The sub-
Brillouin signal completely generated by the temperature/strain sections is superimposed
on the mth segment (point zg+(m — 1)L/m) for the first time with the propagation of
the light, that is, the BFS appeared as the maximum value. According to the distance
between the first BFS maximum point fitted by the system measurement data and the actual
temperature/strain starting point L, then the following relationship can be obtained:

zrsc =20+ % = zmprs — L (15)
where z7gc is actual the temperature/strain starting point. zpsprg is the first maximum
value point of BFS fitted by the system measurement data. The start change point of
temperature/strain and zj can thus be obtained using Equation (15).
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Figure 4. Brillouin gain spectrum superposition process. The black indicates the temperature/strain
change area. (a) The head of the probe pulse generates a sub-Brillouin signal in the (m — 1)th section.
(b—e) is the generation and superposition process of the sub-Brillouin signal of each segment for each
L/m long distance of the probe pulse propagation, respectively.
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Combining (15), (13), (14) and its deformations, we can solve the sub-Brillouin signals
generated in each segment. Only addition and subtraction are involved in the process of
these calculations, thus the partitioned BGS analysis method has no significant effect on
the measurement time of the system compared with the process of the data fitting and
frequency scanning.

3. Experimental Setup and Results

To verify the correctness of the simplified partitioned BGS analysis method, we design
the experimental test scheme as shown in Figure 5. The total length of the optical fiber
under test (FUT) is 78.45 km, which is composed of two spools with different parameters,
with its 36 m section heated and the remaining section kept under room temperature and
slack. A distributed feedback (DFB) laser emits continuous-wave light with a wavelength of
1550.074 nm, which is split into the probe and reference light by the 3 dB optical coupler. The
probe light passes through the polarization controller (PC), electric-optic modulator (EOM1
bandwidth: 2.5 GHz, extinction ratio >25 dB), Erbium-doped fiber amplifier (EDFA1),
filter, circulator, and wavelength division multiplexer (WDM), and then enters the FUT.
After transiting the EOM2 (bandwidth: 40 GHz, extinction ratio >30 dB), EDFA2, and the
polarization scrambler (PS) with the 700 MHz scrambling frequency, the reference light
beats with backward Brillouin scattering light in the balanced photodetector (BPD) with
the 800 MHz bandwidth. A Raman fiber laser (RFL) launches a ~1455 nm Raman pump
through a tunable attenuator (TA) and isolator to enter the WDM, then amplifies the probe
and scattered light simultaneously. The sampling rate of the data acquisition and processor
(DAP) is fs = 250 MSa/s, and the average times is 1000. The output power of the DFB laser
is set to 5 dBm, and the pump power of the RFL after passing the tunable attenuator is
26.43 dBm. Meanwhile, the arbitrary waveform generator (AWG) generates a square wave
with a frequency of 1 kHz and a pulse width of 100 ns to modulate the probe light. The
ambient temperature is 23 °C, corresponding to the BFS of 11.245 GHz. The temperature
of the oven is heated to 80 °C, which corresponds to the BFS of 11.302 GHz according to
the temperature correlation coefficient of 1 MHz/°C; in this experiment, and other system
parameters such as EDFA pump current are set to the optimal value. The microwave source
(MS) frequency scan range is 11.15-11.36 GHz with 10 MHz intervals, and the normalized
Brillouin scattering Power-BFS-Distance three-dimensional map is shown in Figure 6 after
a five-layer wavelet transforms denoising. In Figure 6, the abrupt drop in power at 50 km
is caused by the inconsistent parameters of the two optical fiber spools.

Direct Lorentzian curve fitting is performed for the measured Brillouin power and the
BFS distribution curve along the optical fiber is then obtained, as shown in Figure 7. The
fluctuations of the BFS profile are mainly caused by the coiling strain in the fiber, inducing
BFS oscillations along the entire sensing range.

It can be seen from the illustration in Figure 7 that the distance from the temperature
starting change point (78.3508 km) to the first maximum value of BFS point (78.362 km)
equates to the L (11.2 m), which is consistent with the result calculated by (15). Moreover,
the measured BGS at the heated front end is generated by the superposition of the sub-
Brillouin signals from both the unheated and the heated segments, resulting in rather low
BFS fitting accuracy.

Since the sampling interval of DAP is s = ¢/2fsngg = 0.4 m, we set Az = s to maintain the
continuity of calculation. The optical fiber can then be divided into m = L/Az = 28 segments,
thus (13) can be transformed into:

(16)

27 (AVB'/Z)Z
Gos(v, vBag) = G(v,z9) — kB x Z !
i (v— 1/31')2 + (AVB,-/2)2
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Figure 5. Schematic depiction of Raman-assisted BOTDR system. EOM: electro-optical modulator;
WDM: wavelength division multiplexer; TA: tunable attenuator; DFB: distributed feedback; ISO: iso-
lator; PC: polarization controller; BPD: balanced photodetector; EDFA: erbium-doped fiber amplifier;
FUT: fiber under test; SMF: single-mode fiber; RFL: Raman fiber laser; PS: polarization scrambler;
DAP: data acquisition and processing; AWG: arbitrary waveform generator; MS: microwave source.
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Figure 7. Directly fitting BFS distribution curve.

The constant k = 0.17 is attained by numerical analysis using known short-distance
BOTDR system experimental data. The partitioned BGS analysis method is exploited to
calculate the sub-Brillouin signal within the L length range (from 78.3508 km to 78.362 km)
at the heated front end, and then the BFS distribution in this range is obtained by Lorentzian
fitting. Additionally, the BFS distribution beyond this range is obtained by direct fitting to
avoid the accumulation of errors and to reduce the calculation time. Finally, the total BFS
distribution curve is shown in Figure 8. It can be seen from the illustration in Figure 8 that
the spatial resolution and measurement accuracy of the system are improved.
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Figure 8. Lorentzian fitting BFS distribution curve after partitioned BGS analysis.

Table 1 shows the comparison between the direct fitting and the fitting result after
simplified partitioned spectrum analysis within the L length range at the heated front end.
As can be seen from Table 1, the temperature accuracy of the direct fitting is 24.2 °C in this
experiment, obtained from the difference between the measured mean temperature from
78.3508 km to 78.362 km and heating temperature 80 °C, which is reduced to 5.7 °C after
partitioned BGS analysis, and the spatial resolution is improved to 0.4 m.
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Table 1. Comparison of test results.

Results Direct Lorentzian Curve Lorentzian Fitting after
Fitting Partitioned BGS Analysis
Mean BFS amplitude (GHz) 11.2778 11.2963
Corresponding temperature (°C) 55.8 74.3
Accuracy (°C) 242 5.7
Spatial resolution (m) 11.2 0.4

To validate the robustness of the simplified partitioned BGS analysis method in the
BOTDR system without the Raman pump and strain sensing, we set up an experimental
scheme as shown in Figure 9. A total of 28.5 km length SMF is connected in the BOTDR, and
the 3 m section is coiled on two micro-positioners, with one fixed and the other movable
for applying uniform strain.

Strain Test Fiber

[ |
28.3 km L im | ! 0.2 km
|

Fixed Movable

Figure 9. Test scheme of the BOTDR system without Raman pump.

The EDFA pump current and the EOM bias voltage are adjusted to the optimal state,
while other system parameters remain unchanged. The axial strain of 1400 e is applied
to the 3 m length fiber by moving the precision displacement platform. Then, the BFS
distribution curve is obtained by fitting the experimental data shown in Figure 10. Since
the measured BGS is a superposed spectrum of the strain and the unstrained section within
the spatial resolution and the strained optical fiber length is much less than L, the shape
of BGS deforms that of the Lorentzian shape. It is obvious in Figure 10 that the results
of direct Lorentzian fitting have a significant error and do not reflect the true axial strain
in the strain test region. After processing by the partitioned BGS analysis method and
then fitting, the mean BFS amplitude of the strain test region is 11.3098 GHz, which is
equivalent to the strain of 1405.6 e according to the strain correlation coefficient of the BFS
is 4.61 MHz/100ye in this experiment. The strain measurement accuracy is 5.6 e, and the
rising edge of the BFS distribution curve is 0.4 m, that is, the spatial resolution is 0.4 m. In
addition, it can be seen from the blue curve that the applied strain area is 2.8 m, which is
close to the actual value of 3 m.
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Figure 10. BFS distribution curve of the BOTDR system without Raman pump.

4. Conclusions

In summary, we propose an analysis method based on simplified partitioned Brillouin
gain spectrum to improve the spatial resolution and the measurement accuracy of the
BOTDR system. According to the superposition characteristics of the sub-Brillouin signals,
the position where the partitioned BGS analysis method begins to calculate is determined
to automate data processing. Moreover, the method of the partitioned BGS analysis is
simplified by unifying all the constants to the parameter k, which is obtained by the
short-distance BOTDR system experiment data and numerical calculation. We set up the
first-order co-directional assisted Raman amplification BOTDR system with a 78.45 km
length optical fiber to demonstrate the correctness of the proposed method. We utilize
the simplified partitioned BGS analysis method to deal with the experimentally obtained
Brillouin scattering power in the heated area. The experimental results show that we
have achieved a temperature accuracy of 5.7 °C and a spatial resolution of 0.4 m, that is,
the sub-meter spatial resolution of the long-distance distributed fiber sensing is realized.
Meanwhile, we also designed the strain test scheme of a 28.5-km-long BOTDR system
without Raman amplification, in which a 1400 pe is applied to strain test fiber with 3 m
length. We obtain the spatial resolution of 0.4 m and the strain accuracy of 5.6 ue at the far-
end fiber by exploiting the proposed method, which is not limited to BOTDR but can also
be applied to other fiber optical distribution sensing systems based on Brillouin scattering.
Hence, distributed optical fiber temperature/strain sensing based on the method of the
partitioned BGS analysis, which has obvious practical application significance, can realize
more effective health monitoring for large-scale structures such as pipelines, bridges and
power lines.
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Abstract: This paper provides a comprehensive review on the use of infrared thermography to detect
delamination on infrastructures and buildings. Approximately 200 pieces of relevant literature were
evaluated, and their findings were summarized. The factors affecting the accuracy and detectability of
infrared thermography were consolidated and discussed. Necessary measures to effectively capture
latent defects at the early stage of delamination before crack formation were investigated. The results
of this study could be used as the benchmarks for setting standardized testing criteria as well as
for comparison of results for future works on the use of infrared thermography for detection of
delamination on infrastructures and buildings.

Keywords: infrared thermography; delamination; building; infrastructure; time window; environ-
ment; infrared camera; target object; thermal property

1. Introduction

With the aging of civil infrastructures and buildings, those deterioration has become an
important social issue that can threaten public safety. The American Road & Transportation
Builders Association reported in 2020 that 36% of bridges in the US need replacement or
rehabilitation due to their aging [1]. Similarly, in Singapore, the age of 74% of high-rise
residences exceeds 20 years old, and more than 90 incidents of falling parts of facades
from high places occurred in recent three years [2]. To ensure public safety, governments
introduced mandatory periodic inspection schemes of infrastructures and buildings. For
civil infrastructures, long highway bridges in the US are required to be inspected every
24 months [3]. For buildings, Singapore [2], Japan [4], Hong Kong [5], and 13 cities in
the US and Canada [6] enacted periodic inspection laws to prevent falling objects from
building facades.

Defects in infrastructures can be diverse and include delamination, cracks, stain-
ing, and spalling, caused mainly by water penetration, reinforcement corrosion, ther-
mal/moisture movements, differential settlement/loading, poor construction practices,
etc. [7,8]. Among them, delamination, the condition in which the surface and inside are
unbonded or unintegrated properly, are crucial because they lead to further deterioration,
such as crack formation and element falling [9]. In concrete infrastructures, delamination
arises in concrete cover near the surface because of the expansion of corroded embedded
rebars as well as cyclical traffic load stress and environmental changes [10]. In building
facades, delamination generally occurs at the interface between a finish layer, such as tiles
or render, and a substrate, such as concrete or bricks [8,11-13]. Delamination constitutes a
significant part of defects occurring on tile facades, accounting for 27% of facade defects in
Singapore [8] and 71% in Brazil [14]. Since delamination arises under the surface, it is to be
detected via nondestructive testings (NDTs).

In recent decades, various NDTs were developed to detect defects in multiple fields
since they can evaluate object characteristics [15-17]. Each NDT has different principles
and features, so that it is necessary to select appropriate NDTs according to the purpose
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and conditions of inspection [18]. Several NDTs can identify delamination, e.g., tapping
tests, chain drag tests, hammer sounding tests, ground-penetrating radar, and infrared
thermography (IRT) [19,20]. Among them, IRT especially drew increasing attention due to
its advantages of real-time [21], contactless [22], and wide-area measurements [23]. Another
advantage is that the price of an infrared (IR) camera has recently become affordable [21].
Therefore, IRT can serve as a suitable NDT for civil infrastructures and buildings.

IRT is defined as a process of measuring surface temperature distribution using IR
cameras and processing and interpreting the data of IR images [24]. For infrastructures and
buildings, IRT is used not only for delamination detection but also a wide range of inspec-
tions: moisture [25-31], thermal insulation [7,32-35], internal structure [36], cracks [37-39],
air leakage [40,41], and cultural heritage [42—46]. In terms of delamination on infras-
tructures and buildings, IRT generally employs a passive analysis scheme, which uses
surrounding environments as heat sources to stimulate temperature distribution [7,47,48].
However, passive IRT has some limitations at the step of data acquisition. The most critical
limitation is that the detectability of passive IRT depends on uncontrollable environmental
conditions, such as solar irradiation, ambient temperature, and wind [49-52]. Even in
the same infrastructure, microclimates around surfaces differ depending on surface direc-
tions [53]. Other factors that may affect the detectability include delamination properties,
target object [54], and IR camera [52]. If IR images are measured without due consideration
of these conditions, delamination may be overlooked or misinterpreted. Understanding
the mentioned conditions is hence crucial for planning and conducting passive IRT. Thus,
many studies were conducted on the effects of environmental conditions, delamination
properties, target objects, and IR cameras [55]. However, inconsistent results were often
observed because of different conditions of experiments [56].

This paper focuses on the use of IRT to detect delamination on infrastructures and
buildings to prevent falling objects from heights that endanger public safety. It provides
a comprehensive review of the use of IRT by providing backgrounds, principles, and
state-of-the-art knowledge on affecting factors and desirable conditions. This paper will
contribute to increasing the reliability of IRT and facilitating further research.

Section 2 of this paper presents related review papers of IRT inspection on infrastruc-
tures and buildings. Section 3 explains the theory of temperature measurement and classi-
fications of IRT. In Section 4, the principle and analysis methods of IRT for delamination
detection and existing standards and guidelines are described. Additionally, the perfor-
mance of IRT in detecting delamination is compared with that of other NDTs. Section 5
compiles and discusses some of the latest case studies on the impact of the various factors
and investigates the different methodologies adopted. Section 6 compares and synthesizes
relevant literature on factors affecting detectability. Lastly, Section 7 states conclusions.

2. Related Review Works on IRT

This section investigates review papers on IRT within the last decade. Recent review
papers on IRT were conducted from perspectives of applications, methodologies, and
research trends.

The first perspective is IRT applications, which are commonly used in reviews. Appli-
cation reviews range from the level of introducing case studies in industrial fields to the
level of in-depth investigation of a specific application. IRT applications were developed in
many fields, including medical [57], aerospace [58], plant [59], electronic component [52,60],
gas [61], machine [57,62], metal corrosion [63], photovoltaic panels [64], composite materi-
als [65-67], and cultural heritage [68,69]. Similarly, various IRT applications were proposed
for infrastructure and building inspection. Garrido et al. [22] introduced past studies in
terms of inspected subjects: buildings, civil infrastructures, and heritage sites. Among
these types, applications for civil infrastructures and buildings are the main subject of
review papers.

Several review papers focused on the energy audit of building envelopes using IRT
to evaluate building energy performances [7,33,48,50,70]. Lucchi [70] reviewed detailed
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applications of energy audit: detection of thermal bridge, insulation defects, air leakage,
and moisture; indoor temperature and U-value measurements; and human comfort as-
sessment. Among those applications, Nardi et al. [71] focused on quantitative IRT for the
U-value measurement of building walls, representing building energy efficiency. Similarly,
Bienvenido-Huertas et al. [72] focused on IRT as one of the in-site methods for assessing
U-value. Apart from energy audits, another important application of IRT in civil infras-
tructures and buildings is the detection of delamination, void, and high moisture content.
Lourengo et al. [9] investigated state-of-the-art techniques of IRT to detect delamination and
moisture beneath ceramic claddings facades to reveal efficient quantitative and qualitative
survey methods. Meanwhile, Sirca Jr. & Adeli [73] focused on experiment conditions and
examined previous studies on IRT for concrete defect detection in laboratory tests and in
field surveys. These reviews indicate the effectiveness of IRT to detect delamination on
infrastructures and buildings.

The second perspective is the methodologies of conducting IRT. A wide variety of
methodologies was developed and is classified based on their features and principles [63].
One classification of IRT is an analysis scheme including passive IRT, active pulsed IRT,
and active lock-in IR [21]. Among them, Milovanovi¢ & Pecur [51] focused on active IRT
for concrete infrastructures and described physical backgrounds, equipment, and postpro-
cessing methods. Furthermore, Garrido and coauthors reviewed IRT methodologies for
infrastructures during data acquisition [55] and postprocessing [74], respectively. During
the data acquisition step, the authors introduced the IRT approaches for data collection and
compared the latest studies regarding experimental setups, target materials, IRT modes,
and analysis schemes in each defect type and application [55]. At the postprocessing step,
the authors introduced the theories and representative studies on analysis algorithms
and discussed those advantages and disadvantages. These reviews provide overviews of
traditional and latest IRT methodologies.

The final perspective is the analysis of research trends based on statistical data of the
number of past studies. For example, Fox et al. [75] analyzed research trends about IRT
of energy-related building defects detection and discussed the correlation between the
types of methodologies. Similarly, Kylili et al. [21] statistically analyzed research trends of
IRT in building facades regarding measurement methods, analysis schemes, and analysis
types. These statistical reviews objectively indicate the increase of literature on IRT for
infrastructures and buildings.

As mentioned above, previous reviews about IRT were conducted from various per-
spectives. However, no review focuses on the characteristics of detectable delamination and
measurement conditions affecting reliabilities and detectability of IRT for infrastructures
and buildings.

3. Infrared Thermography
3.1. Theory of Temperature Measurement

This section explains the principle of temperature measurement by IR cameras. Heat
energy can be transferred in three ways: conduction, convection, and radiation. Tempera-
ture measurement by IR cameras utilizes radiation transfer. All objects with an absolute
temperature greater than 0 K emit electromagnetic waves, mainly in infrared spectra.
According to Stefan-Boltzmann’s law, radiant energy from a black body is as follows:

Wy, = 0Tgi* (W/m?), (1)

where Wj, is the total radiant flux emitted per unit area (W/m?), ¢ is the Stephan-Boltzmann
constant, and T,y is the absolute temperature of the object (K). The black body is defined
as an ideal object that absorbs all the radiation that collides with it at any wavelength.
However, an actual object, called a grey body, is not a black body because objects have some
reflection and transmission. The radiant energy emitted by a grey body (W) is as follows:

Wy = €W, = e0 Ty (W/m?), )
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where ¢ is emissivity, defined as the ratio of the radiant energy emitted from the object to
the energy emitted from the black body at the same temperature.

IR cameras capture radiant energy in a specific infrared spectrum region emitted from
an object and convert the energy into a temperature value. Figure 1 shows the elements
of thermal radiation captured by an IR camera when measuring the surface temperature
of an opaque object. Infrared radiation received by an IR sensor consists of three sources:
emission from the target object (W), assuming the object as the black body, emission from
surroundings reflected on the object (W), and emission from the atmosphere (Wam). The
following formula expresses the total heat radiation detected by the IR camera (W)

Wiotal = STWﬂbj +(1- S)Twreﬂ + (1 — T)Watm, 3)

where 7 is the transmittance of the atmosphere. The reflected radiation assumes that
reflection temperature T, is the same for all reflections from surroundings, and the
emissivity of surrounding surfaces ¢,y is assumed to be one. Radiation from the object
and reflected radiation are absorbed by the atmosphere during traveling. Atmospheric
radiation is emission from the atmosphere between the object and the camera at ambient
temperature Ty, “1 — 77 indicates the atmosphere’s emissivity, and T depends on Tpy,
relative humidity, and measurement distance between the target object and the IR camera.
Therefore, accurate surface temperature measurements need to be compensated for the
effects of emissivity e, ambient temperature T, relative humidity, reflection temperature
Tyen, and distance [76].

Target Atmosphere IR camera
object

Swobj Tatml T fTwobj

Ty (LWt ( A (-0 Woeg
8 (1-T)Waim

Wmﬂ

Surrounding
Trcﬂl Erefl

Figure 1. Diagram of temperature measurement by infrared (IR) camera.

In particular, the emissivity of target objects has a significant influence on temperature
measurement [77]. The emissivity is a value from 0 to 1 and varies depending on materials,
surface texture, angle, wavelength, and surface temperature [78]. Materials generally
used in infrastructure, such as concrete, plaster, and general paint, have a high emissivity
of 0.70-0.95 [78,79]. Thus, qualitative evaluation of defects can use emissivity values
listed in emissivity libraries, whereas accurate temperature measurements for quantitative
evaluation require the measurement of emissivity of target materials [50].

16



Sensors 2022, 22, 423

3.2. Classification of IRT

There are various methodologies of conducting IRT. They are classified from several
viewpoints: analysis scheme, mode, and measurement method [50]. When assessing defects
or thermal performances on infrastructures and buildings, it is crucial to select appropriate
methodologies based on the purpose of the survey and conditions.

3.2.1. Analysis Scheme

An analysis scheme is a classification criterion based on the origin of the energy input
to a target object to generate temperature distribution on the surface. There are passive and
active IRT.

Passive IRT utilizes natural heat sources as stimuli to generate a thermal gradient
inside an object, causing thermal contrast on the object’s surface between sound and
defect area [50]. The primary heat sources are generally solar irradiation and ambient
temperature [22]. The natural heat sources heat large areas uniformly, so that passive IRT
can inspect an extensive infrastructure at one time. Additionally, passive IRT does not
require artificial heat sources, resulting in low cost. However, the detectability and accuracy
of passive IRT significantly rely on various factors such as weather, surface orientation, and
sunlight direction [50], so that the detectability of passive IRT may be limited. Additionally,
passive IRT is not suitable for quantitative evaluation because the natural heat sources
cannot be controlled. Therefore, passive IRT is mainly applicable for identifying defect
locations before conducting advanced NDTs and is often used to inspect civil infrastructures
and building facades [50,51,75].

Active IRT uses artificial heat sources to heat a target object to generate a thermal gra-
dient [51]. Active IRT typically captures clear visualization of thermal anomalies compared
to passive IRT [80] and can survey under conditions difficult for passive IRT. Traditional
artificial heat sources are heat guns and hot water jets and bags [55]. Advanced thermal
excitations include thermal induction, laser, ultrasonic, and microwave [22,81]. The main-
stream for infrastructure inspection is optical excitation, such as halogen lamps and xenon
lamps. Furthermore, controlled energy input allows quantitative assessment of defects,
for example, defect depth [21]. Thus, active IRT is suitable for investigating specific areas
in detail, such as heritage sites [75]. However, artificial heat sources are difficult to heat
large areas uniformly, so that active IRT is not suitable for surveying large areas, such as
buildings and infrastructures.

Active IRT is further classified according to heating processes: pulsed IRT (PT), step
heating thermography (SH), and lock-in IRT (LT) [9]. PT provides a short pulse thermal
stimulus of milliseconds and analyzes decreasing temperature curves [22]. SH is a method
of applying a long-term thermal excitation pulse, called long-pulsed IRT, square-pulse
IRT, or conventional IRT [9,55,82]. LT supplies a modulated sinusoidal wave energy,
synchronizes an IR camera with energy input, and measures its thermal response’s phase
difference and amplitude [55]. Laboratory tests or field surveys for infrastructures by active
IRT usually adapt SH. This is probably because common construction materials, such as
concrete, have lower thermal diffusivity than metals, hence a long heating time is required
to cause thermal response [82].

3.2.2. Mode

IRT is also classified into two modes according to the relative position of an IR camera
and a heat source: transmission mode and reflection mode [55,66]. These modes require
different environmental conditions for measurement.

The transmission mode places a heat source on one side and an IR camera on the
opposite side of a target object [66]. The temperature difference between both surfaces
generates heat flow passing through the target object. Defect areas have different thermal
properties from sound areas and disturb the heat flow, leading to nonuniform thermal
distribution on the opposite surface. Thus, this mode can detect deep defects and internal
structure differences, so that it is commonly used for energy audits to diagnose insulation
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defects, moisture, and air leakage [48,55]. Additionally, this mode can quantitatively
evaluate the U-value based on heat flux and the temperature difference between both
surfaces [83]. However, The transmission mode needs to access both sides of the object.
Moreover, as heat flow may take a long time to pass through an object, transmission mode
requires keeping the difference between the inside and outside temperature for a long
period to achieve a thermal equilibrium state in walls [7,33,48,83]. For instance, the British
standard [7] states test requirements of a stable ambient temperature for at least 24 h before
the measurement and no exposure to direct sunlight for at least 12 h. Therefore, thin
building walls are appropriate for this mode.

The reflection mode places a heat source and an IR camera on the same side of a target
object [66]. In this mode, radiation detected by the camera comes from heat flow reflected
by defects [55]. Thus, this mode is suitable for detecting subsurface delamination at shallow
places [55]. The advantage of the mode is that IRT can be conducted with access to only one
side of the object. Therefore, the reflection mode is often applied to delamination inspection
for infrastructures and buildings. However, it demands dynamic energy input into the
surface from the outside by radiation or convection [51].

3.2.3. Measurement Method

IRT has two measurement methods: qualitative and quantitative IRT [50]. Qualita-
tive IRT evaluates defects from color patterns indicating temperature in IR images [75].
Qualitative IRT does not require measuring accurate temperature values [22]. The primary
aim of the survey for infrastructures is generally the investigation of the presence and
location of defects. Thus, qualitative IRT is commonly employed as standards and guide-
lines [7,26,33,47,48,79] due to its simplicity. However, it is not easy to provide information
on defect properties or severity levels [50].

Quantitative IRT is a numerical evaluation method by comparing temperature values
on IR image pixels between identical items or baselines [50]. The quantitative method can
assess defect properties or levels of severity. Various quantitative methods were studied,
for example, the thermal resistance of walls [84], depth of delamination [85], and moisture
content in lightweight concrete [86]. The challenge of this IRT is the requirement to measure
accurate temperature. Hence, IR images need to be compensated for emissivity, atmospheric
attenuation, and reflected temperature [22], in addition to the thermal properties of the
tested object [50].

4. Delamination Detection
4.1. Principle of Delamination Detection

IRT for detecting subsurface delamination on infrastructures and buildings generally
adopts passive IRT of the reflection mode [47]. The principle of passive IRT is capturing
thermal contrast between delamination area and sound area due to nonuniform heat
flow [87]. Figure 2 shows the heat transfer in a target object with delamination during (a) a
heating cycle and (b) a cooling cycle. Figure 2c illustrates typical daily changes of surface
temperature and thermal contrast on a sunny day.

From early morning to noon, solar radiation increases, and the ambient temperature
rises. Solar irradiation and warm ambient temperature heat the surface of a target object,
creating heat flow to the inside of the object. The thermal conductivity of concrete is
approximately 1.6 W/mK, while that of air, filling delamination, is significantly low at
0.024 W/mK [88]. Thus, delamination acts as insulation and disturbs heat flow. As a result,
the surface temperature above delamination becomes higher than the temperature of the
surrounding area. Delamination areas appear as positive thermal contrast or hot spots in
IR images, as shown in Figure 3. This period during daytime is called a heating cycle [89].

On the other hand, during nighttime, the surface temperature declines due to radiative
cooling and low ambient temperature [90]. The heat energy stored in a target object during
daytime transmits toward the surface, while this heat flow is obstructed by delamination.
As a result, the surface temperature above delamination becomes lower than that of the
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surroundings. Delamination appears as negative thermal contrast or a cold spot. This
period during nighttime is called a cooling cycle [89].

IRT survey can be conducted during both the heating cycle and the cooling cycle.
However, the periods when the two cycles exchange in the early morning and the evening,
called interchange times [90], are not recommended for IRT surveys. The reason is that
interchange time has lower thermal contrast than the two cycles, as shown in Figure 2c.

Warm ambient temperature

)~ & ¥ Solar irradiation
<
Vs v QA

Interchange time Interchange time

Hot spot ) R «——> o |
Surface temperature Q | | Delamination : |
4 4 /IR radiation > l l area : i
T gl |
& | | ! |
1) | | |
= | |
= Heat flow E l I -8
SRR o from surface 8 | ..
g : I l Tm:e
Target object A IMommg Noon E’Irvenj.ng : Night
i | I |
A I ' | f
(a) | :I’osiﬁve contrast : |
| | (Hotspot) | |
o) L L
Radiative cooling < : i i :
Cold ambient temperature § : 4 I : Time
E0 I >
Surface temperature § -/ : l
Cold spot /IR radiation = | | : |
- ] g | ! | | Negative contrast
T I g ! ! : | (Cold spot)
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Heat flow (Daytime) (Nighttime)
from inside
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Figure 2. Principle of thermal contrast generation due to delamination: (a) diagram of heat flow
during the heating cycle (daytime); (b) diagram of heat flow during the cooling cycle (nighttime);

(c) daily changes of surface temperatures and thermal contrast.
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(a) (b)

Figure 3. An example showing images of delamination on a building wall during heating cycle:
(a) visual image; (b) IR image. Arrows indicate delamination areas.

4.2. Analysis Method

Analysis methods for delamination detection from IR images were developed as
postprocessing procedures [74]. The analysis methods are divided into two groups based
on the number of IR images used for analysis: one-time data analysis and time-series
data analysis.

4.2.1. One-Time Data Analysis

One-time data analysis, called single-frame image processing [91], processes a single
IR image at a specific moment. This analysis requires only one captured IR image of target
objects, so that an inspector can survey large areas efficiently with one IR camera. Thus, the
analysis is widely used for infrastructure and building surveys [47,92,93]. However, the
analysis tends to be subject to noise due to surroundings and nonuniform heatings [94].
The one-time data analysis includes (a) visual evaluation, (b) thermal contrast, and (c)
image processing.

(a) Visual Evaluation

Visual evaluation is a method that an inspector interprets temperature distribution
patterns in an IR image by comparing surroundings and assesses the presence and loca-
tion of delamination [95-97]. This evaluation is practical and has also been adopted in
surveys [7,48]. One problem is that its accuracy and detectability depend on the inspector’s
experience, intuition, and judgment [98]. Therefore, interpretation should be conducted
by a qualified inspector of IRT [99] to ensure inspection qualities. Another problem is that
color scales representing temperature values need to be set in proper temperature ranges to
avoid overlooking delamination [95,100-102]. For example, Washer et al. [100] suggested
the range of 2.2—4.4 °C for shaded areas.

(b) Thermal Contrast

Thermal contrast, called AT, is referred to the surface temperature difference between
the delamination area and the sound area [88,100]. Thermal contrast is a primary quantita-
tive indicator to evaluate delamination in previous studies [10,88,103]. Thermal contrast
may be due to causes other than delamination, such as surface conditions, subsurface
materials, or object shape.
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(c) Image Processing

Image processing was developed to extract temperature abnormalities automatically,
quantitatively, accurately, and sensitively. The processing mainly utilizes threshold temper-
ature values and temperature gradients.

Threshold temperature values are generally used for image processing. This image
processing sets a threshold temperature value to judge areas as delamination and converts
an IR image into a binary image based on the value. The processing has the advantages of
simple evaluation; however, this processing primarily has two challenges.

The first challenge is determining threshold values because the values are affected by
environmental conditions. Therefore, various methods to decide threshold values were pro-
posed. The primitive method is that an inspector decides a threshold value that gives clear
contrasts between sound and delamination areas by changing the value. The disadvantages
of this method are subjective and time-consuming [104]. Japanese guideline of tile facade
inspection [96] proposed that a delamination area is confirmed by the tapping method in
advance, and the temperature difference between the delamination area and surrounding
area is used as the value. Another approach is analyzing the temperature histogram of
an IR image to determine the threshold value objectively. Garrido et al. [105] assumed
that the histogram was a bimodal distribution composed of sound and delamination area.
They acquired the temperature of the modal overlapping point by the Otus method as the
threshold value. Meanwhile, Omar et al. [106] employed a k-means clustering method,
an unsupervised machine learning method, to divide temperature values in an IR image
into multiple clusters. They considered the boundary temperature values of clusters as the
threshold values.

The second challenge of threshold values is difficult to evaluate the entire target object
by one global threshold value. The reason may be that the entire surfaces of infrastructures
or buildings are not under the same conditions, and each local area has a different average
temperature and gradient [104]. Thus, methods for detecting temperature anomalies in
local areas rather than in a global area were proposed. For example, Oh et al. [104] simply
divided the IR image of a bridge deck into 16 local areas and used different threshold
values for each area. Park et al. [107] extracted wall areas from building facades in visual
images using a convolutional neural network (CNN) and analyzed the threshold values
within wall areas. Cheng et al. [108] developed a delamination segmentation technique
that extracts regional maximum temperature by a weight decay function. In these ways, it
is necessary to limit the region of interest by some methods.

Temperature gradients are also employed for image processing. The processing identi-
fies the areas of thermal anomalies based on the significant temperature changes at the edge
of delamination. The advantages of the gradient are that measuring accurate temperature
values is not required [109], and a slight temperature gradient over the entire surface may
not be judged as delamination. For example, Lia et al. [109] identified delamination areas
precisely by a spatial pixel differentiation algorithm even under unfavorable measurement
conditions. In addition, Cheng & Shen [110] proposed temperature gradient-based level
set method (LSM) and showed that LSM was more accurate and stable detection than the
k-means method.

Overall, A substantial number of image processing methods using one IR image were
developed. However, they may be designed to be optimized under specific conditions. To
improve the accuracy of detectability and applicability for field inspection, further research
is needed.

4.2.2. Time-Series Data Analysis

Time-series data analysis collects courteous IR images over time and analyses time-
series temperature data. It is also called time-lapsed thermography [36,75], time-dependent
IRT [9], or continuous multiframe image processing [91]. The advantages of this analysis
are robust to noise by nonuniform environment conditions [94] and high detectability [82].
It also allows conducting the quantitative assessment of delamination depth [85]. Thus,
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various image processing methods using multi-IR images were developed [22,74,91]. For
example, simple image subtraction (SIS), also known as the computation of image dif-
ferences, subtracts temperatures between two IR images at the same pixel location [111].
Principal component thermography (PCT), advanced processing based on principal com-
ponent analysis (PCA) to summarize high-dimensional data [22], transforms a temperature
3D matrix in a combination of space and time into a 2D matrix by singular value decom-
position to extract features and reduce noise [112,113]. Pulsed phase thermography (PPT),
a method based on active IRT with one-dimension discrete Fourier transform, converts
time-domain temperature data into frequency-domain data [112]. PPT has the advantage
of suppressing the effects of spatially nonuniform heating and emissivity distribution [114].
Additionally, Coti¢ et al. [82] stated that PPT increased the maximum detectable depth
by 50% over thermal contrast of one-time data analysis. In addition to the above, other
methods were proposed including nonnegative matrix factorization (NMF) [111,115] and
wavelet transformation [116]. Although time-series data analysis tends to be superior to
one-time data analysis about detectability, the analysis requires fixing IR cameras and
measuring the same object for a long duration. Therefore, time-series analysis is suitable for
detailed inspection of a specific area, such as heritage sites, rather than the overall survey
of infrastructures and buildings.

4.3. Standards and Guidelines

Table 1 shows existing standards and guidelines of IRT for delamination detec-
tion for infrastructures and buildings. These documents employ the passive analysis
scheme and the reflection mode. Target objects include bridge decks [47], concrete struc-
tures [79,117,118], and tile and render finish facades [96,118]. The documents describe
recommendations or requirements for environmental conditions and IR cameras.

Table 1. Existing standards and guidelines of infrared thermography (IRT) for delamination detection
and recommended /required environmental conditions.

Recommended/Required Environmental Conditions

D t Target Object
ocumen & ) Solar Irradiation Ambient Temperature Wind Weather
An air temperature rise of
A minimum direct 117C with 4.h Of. sun for Wind speed of Dry for at least
ASTM D47888-03 . . L. concrete in winter less than
Bridge deck solar irradiation R R 24 h before the
[47] for3h An air temperature rise of 15 mph surve
11 °C with 6 h of sun for (6.7m/s) y
asphalt in winter
Daily temperature change
of more than 10 °C in
Japan Public Work Concrete A minimum direct shaded areas Wind speed of
Research Institute infrastructure solar irradiation of ~ Not suitable for 3-4 h after less thaﬁ 5m/s Fine weather
[117] 350 Wh/h for2-3h the maximum or

minimum air
temperatures

British Instiute of
Non-Destructive
Testing [79]

Structural finishes

Strong solar
exposure

Low wind
speed

Fine weather
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Table 1. Cont.

Recommended/Required Environmental Conditions

Document Target Object — - -
Solar Irradiation Ambient Temperature Wind Weather
Japanese Society Concrete A minimum direct .
for . . Fine or partly
Non-Destructive infrastructure, Tile  solar exposure for cloudy weather
fagade, Shotcrete 2h y

Inspection [118]

Japan Building and
Equipment
Long-Life Cycle
Association [96]

Tile fagade, Render
fagade

Around the period
of maximum solar ~ Daily temperature change
irradiation on each of more than 10 °C for
elevation shaded elevations
2-4 h after sunset

Wind speed of No rain from
lessthan5m/s  one day before

Regarding environmental conditions, four factors are generally stipulated: solar irra-
diation, ambient temperature, wind, and weather. All documents recommend the survey
with direct sunlight exposure because solar irradiation has significant energy input and
generates high thermal contrast. ASTM [47] for bridge decks and the Japanese IRT stan-
dard [118] for tile or plaster finishes require continuous solar irradiation for 2-3 h before and
during the measurement. Additionally, the Japanese Public Work Research Institute [91]
defines the minimum intensity of solar irradiation. Regarding nighttime inspection, Japan
Society for Non-Destructive Inspection [118] recommends the time window for the survey
of 9 p.m. to 5 am, while Japan Building & Equipment Long-Life Cycle Association [70]
recommends 2—4 h after sunset. The daily change of ambient temperature is considered as
another stimulus. Thus, some documents mentioned recommended values, for example,
a daily change of at least 10 °C for shaded areas [96,117]. In terms of wind, low wind
speed is considered a suitable condition because wind removes heat from the surface. Thus,
several documents stipulate that wind speed is less than 5 or 6.7 m/s [47,96,117]. These
wind speeds correspond to 3 “Gentle Breeze” or 4 “Moderate Breeze” in the Beaufort wind
force scale [119], respectively. Regarding weather, a fine day is recommended in all the
documents since it provides direct sunlight and high daily ambient temperature change.
Additionally, some documents [47,96] require no rain for one day and dried surfaces. In
summary, long-duration solar irradiation, high daily ambient temperature change, low
wind speed, and fine weather are commonly recommended conditions.

IR camera specifications, distance from a target object to an IR camera, and observation
angle are also mentioned in the documents. One of the specifications is temperature
resolution, represented as noise equivalent temperature difference (NETD) [120]. The
NETD indicates a temperature difference that can be distinguished from noise. ASTM [47]
requests an IR camera with the NETD of 0.2 °C or less, and other guidelines [117,118]
demand that of 0.1 °C or less. With the recent development of IR camera technologies,
even affordable cameras can commonly satisfy NETD of 0.1 °C or less [60,121]. Regarding
distance, a short distance is preferable due to less infrared attenuation by the atmosphere.
However, documents set a wide range of distances, such as 5-20 m [118] and 5-50 m [117].
Concerning angle, the limitations of observation angle vary depending on the documents,
such as 30° [96] and 60° [117,118]. Large tolerances about distance and angle may be due
to limitations of accessibility and surroundings of infrastructures and buildings.

4.4. Comparison with Other NDTs

In addition to IRT, several NDTs were developed to detect delamination on infras-
tructures and buildings: audio methods, stress wave methods, and electromagnetic meth-
ods [17-19,122,123].

Audio methods are based on a feature that when a mechanical impact is applied on
a target object from outside, delamination areas produce impact sound with a frequency
significantly different from intact areas (hollow sound); an inspector listens to the impact
sound and evaluates delamination areas. The suitable method of giving mechanical impact
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relies on target objects. For vertical surfaces such as buildings or tunnel linings, coin tapping
testing, which uses coins, steel rods, or lightweight hammers, is widespread [96,122]. For
bridge decks, chain dragging testing was standardized by ASTM [124]. The disadvantage
of these audio methods is that interpretation depends on inspectors. Thus, a method
of analyzing sound with fast Fourier transformation (FFT) to evaluate objectively was
proposed [125].

Stress wave methods utilize characteristics of stress-wave propagation in a target
object. Among the methods, impact-echo testing (IE) and ultrasonic testing (UT) can
detect delamination. IE is a method that a mechanical impact is applied to a target object,
then the frequency of the wave reflected on delamination is analyzed with FFT [126,127].
UT is a method in which a transducer emits ultrasonic pulses into a target object. An
adjacent transducer receives the pulses reflected on delamination, rebar, or the object’s
boundary (pitch-catch method). The travel time of the pulses determines path length [123].
Additionally, a synthetic aperture focusing technique (SAFT) using multiple transducers
can image the position and depth of delamination in 3D [126]. Although the stress wave
methods require contact with an object, they can measure delamination depth.

Ground penetration radar (GPR) employs electromagnetic pulses [128]. Electromag-
netic pulses propagate through a target object from an antenna. A receiver captures the
pulses reflected on the boundary between media having different dielectric constants. GPR
is widely used to inspect the inside of structures or bridge decks because it can detect
delamination, voids, rebars, and buried objects [129,130].

IRT was compared with these NDTs about delamination detection: coin tapping
testing [126], chain dragging testing [19,131], IE [19,126,132-134], UT [19,126,135], and
GPR [19,126,128,129,132,135]. In the case of bridge deck inspection, IRT is as accurate
as or slightly less accurate than IE [19,135] and more than as accurate as GPR [19,129].
Additionally, IRT is more suitable for detecting shallow delamination than GPR and UT,
while IRT cannot detect deep delamination [126,132,135]. The advantages of IRT are that it
can collect data without contact, inspection speed is the fastest among these NDTs, and the
inspection cost is relatively low [19,135]. The disadvantage is that IRT is more sensitive to
environmental conditions than other NDTs, so that the reliability of IRT is not high [132,135].
Therefore, a method that combines IRT with other NDTs to enhance accuracy, reliability,
and measurable depth was investigated [89,128,131,133,134,136].

5. Recent Studies of Affecting Factors on IRT for Infrastructures and Buildings

The detectability of IRT is affected by many factors, including environmental con-
ditions, delamination properties, target objects, and IR cameras [52]. Thus, the existing
standards and guidelines of IRT state recommended conditions as mentioned in Section 4.3.
However, these recommendations are not sufficiently quantitative and explicit. Further-
more, it is not practical for all the surfaces of an infrastructure to meet these recommen-
dations, such as solar irradiation for a long duration. In addition, environments differ
depending on the survey region. Therefore, affecting factors and these impacts on de-
tectability were studied. Table 2 covers studies over the last 20 years on these factors using
different environmental conditions, delamination properties, target object, and IR camera.
This section compiles and discusses experimental methodologies adopted.
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5.1. Test Method

Test methods used in the previous studies are classified into four categories: laboratory
test, outdoor test, field survey, and numerical simulation. Figure 4a indicates the frequencies
of test methods employed by 66 studies. Laboratory tests and outdoor tests were mainly
used by 41% and 48% of the literature, respectively. In contrast, the frequencies of field
surveys and numerical simulations were low at approximately 30%. Thus, laboratory tests
and outdoor tests predominated in previous studies.

In one laboratory test, specimens are prepared with polystyrene foam plates or other
Insulation materials embedded to imitate delamination. Figure 5 shows a typical thermal
contrast transition in a laboratory test. Artificial lamps heat the surface of a specimen
during a heating period of 5-120 min [82,154]; thus, thermal contrast rises. After the lamps
are turned off, thermal contrast continues to rise and reaches a peak. Then, thermal contrast
decreases. The advantage of laboratory tests is that study factors can be controlled. The
tests can investigate each factor independently and IRT detectability in ideal conditions
with less noise. Many studies examined the impacts of delamination size and depth on
detectability under laboratory conditions [54,82,167]. However, as it is not easy to simulate
complex and dynamic outdoor conditions in a laboratory, the test is not appropriate to
examine suitable time windows for the survey.

An outdoor test places specimens with simulated delamination in an outdoor location
and observes the specimens for several days [159]. Thermal contrast generally behaves the
curve shown in Figure 2c. The tests can examine detectability considering the combined
effects of environmental factors [103,145,146]. Hence, the tests can investigate suitable time
windows for the survey. However, environmental conditions around the specimens greatly
depend on test region, climate, surface direction, etc. Thus, the results of outdoor tests are
limited to a specific region and are not easy to be generalized.

A field survey is a method of inspecting existing infrastructures or buildings. The
survey is often used to verify the results of laboratory tests and outdoor tests [101,148]. The
difference from outdoor tests is that a field survey cannot control delamination properties;
thus, some studies have compared the results using other NDTs [20,131,160]. Another
disadvantage is the influence of noise, for example, reflections from surroundings [175,176],
emissivity variation on the surface [27], subsurface material differences [97], and uneven
solar heat gain [97]. In addition, thermal contrast can be caused by other subsurface defects,
such as water penetration and high moisture content [20,176,177].

Numerical simulation or modeling may provide useful information on the impact of
factors such as irradiation [20,170], defect size, and depth [82]. The accuracy of simulation
results greatly relies on boundary settings; thus, validation according to laboratory tests
or outdoor tests is essential. When modeling outdoor conditions, there are two types of
input environmental data: meteorological observatory data [49] and standard environment
data [20]. Software packages used in previous studies are general-purpose FEM software
(e.g., COMSOL) [88] and transient thermal and humidity movement analysis programs for
building envelopes (e.g., WUFI) [148].
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Figure 4. Statistics about methodologies in previous studies: (a) distribution of test methods;
(b) distribution of target objects; (c) distribution of study factors.
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> Peak >

Thermal contrast (°C)

Time (minute)
Figure 5. Typical thermal contrast transition in a laboratory test.

5.2. Target Object

Figure 4b shows that concrete was used as the target object in 76% of the previous
studies because concrete is a fundamental and prevailing material in infrastructures and
building structures. On the other hand, the substrate with finishes, the main materials in
building facades, was at a low frequency of 26%. Substrates were mainly concrete, but few
studies have examined the effects of bricks [162] or stones [54]. Finishes were tiles and
mortar renders attached to substrates [109].

5.3. Test Location

The results of outdoor tests and field surveys may rely on the test region and surface
direction. Most research was conducted under temperate climates, with high daily temper-
ature changes and stable weather, for example, in the US [88] and Europe [20]. In contrast,
there are few studies in the tropics [137].
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Surface direction is also an important test condition because it relates to the magnitude
and time of solar irradiation. In outdoor tests and field surveys, surface directions were
mainly horizon or south elevation in the Northern Hemisphere. The horizontal direction
assumed bridge decks, and the south elevation is considered ideal conditions with solar
irradiation in buildings.

5.4. Metric and Criterion

Although metrics and criteria of detectable delamination are critical to identifying
delamination and evaluating the impact of factors, there are no unified metrics and criteria.
The metrics commonly used in previous studies are thermal contrast and signal-to-noise
ratio (SNR).

Thermal contrast or AT, the temperature difference between sound and delamination
area, is the most commonly used matric because it is simple and easy to analyze. However,
the criterion of AT to be judged as delamination significantly differ depending on the
studies, ranging from 0.2 to 1.2 °C. For example, Hiasa et al. [88,159] and Watase et al. [152]
have defined a probable range for detectability as +0.2 °C or larger and a certain range for
detectability as +-0.4 °C or larger in outdoor tests for the concrete specimens. The reason was
that Clark et al. [95] reported delamination on concrete bridges and masonry bridges was
recognized when AT was more than £0.2-0.3 °C. Additionally, Hiasa et al. [159] stated that
AT of at least 10-20 times camera’s NETD allowed inspectors to distinguish delamination
from thermal noise. On the other hand, several studies [24,56,89,157,168] adopted AT of
0.5 °C as the criterion according to ASTM [47] for bridge deck inspection. Moreover, higher
AT was used as the criterion. Farrag et al. [102] used AT of £0.8 °C due to a more confident
assessment. Another value of AT was +1 °C. Washer et al. [100,145,146] mentioned that
1 °C was an order of magnitude larger than the thermal sensitivity of general IR cameras
and was twice of ASTM [47]. Similarly, Raja et al. [170] employed AT of 1 °C in numerical
simulations because the wind effect reduced AT to half. Chiang & Guo [158] also suggested
AT of 1 °C as the criterion according to field surveys for tiled facades.

Meanwhile, some studies proposed multiple criteria of AT depending on test methods.
For example, Zheng et al. [174] mentioned that it was difficult to identify temperature
anomalies correctly by naked eyes when AT was less than 0.3 °C in the laboratory test
and 1.2 °C in the outdoor test. Moreover, Sultan & Washer [163] examined the criteria
quantitatively using receiver operating characteristics (ROC) analysis. As a result, 0.8 °C
in the outdoor test and 0.6 °C in the field survey were optimum AT to balance true-
positive and false-positive rates of delamination areas. As described above, the problem of
thermal contrast is that the criterion is not established adequately. The reason may be that
environmental conditions change thermal contrast and background noise.

The SNR is utilized as the metric to evaluate the detectability of delamination [10,67,
83,85,161] objectively. The SNR, which is used in engineering, compares single levels of a
target area to signal levels of background noise, calculated by the following equation [85]:

SNR (dB) =20 10g10(|5ﬂrea - Na‘rea‘/‘%oise)r 4)

where S, is the average temperature value in the delamination area, Ny, is the average
value in the surrounding area, and 0,5, is the standard deviation in the surrounding area.
Positive SNR means detectable delamination, and negative SNR means undetectable. The
advantage of the SNR is that because of signal level evaluation, the metric and criterion
can be applied not only to raw IR images but also processed images, such as PPT or
PCT [10,169].
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6. Affecting Factors of Detectability

This section compares and synthesizes previous studies on factors affecting delamina-
tion detectability. Figure 4c shows the frequency of study factors in the previous studies.
Respectively, 43% and 40% of the studies examined the effects of time windows and irradi-
ation. Meanwhile, only 20% and 15% of the studies dealt with ambient temperature and
wind, respectively. This is probably because radiant heat transfer by sunlight is considered
larger than convection heat transfer by the air. Regarding delamination properties, 78% and
48% of the studies investigated the effect of delamination depth and size, respectively. On
the other hand, the effects of target objects and IR cameras were studied by approximately
20% of the literature. Therefore, time windows, irradiation, size, and depth are the main
factors that attract attention among researchers.

6.1. Environmental Conditions
6.1.1. Time Window

Suitable time windows to conduct passive IRT are critical information for getting
proper IR images to analyze. Multiple environmental factors, such as irradiation and
ambient temperature change, can affect thermal contrast intricately. Thus, time windows
are generally examined by outdoor tests and numerical simulations. Table 3 shows suitable
time windows and interchange times in each direction under fine weather proposed by
the literature.

Table 3. Suitable time windows and interchange times proposed by previous studies.

Direction Author Year Time Windows
Defects of up to 3.8 cm deep can be detected between 10 a.m.
Yehia et al. [132] 2007 and 3 p.m.
Any defects cannot be detected during cooling cycle.
Gucunski et al. [19] 2012 Defects at 40 min after sunrise are more apparent than at noon.
IR images obtained during cooling cycle are more evident than
those obtained during heating cycle.
Kee etal. [89] 2012 Defects cannot be detected 3:45 h after sunrise. Shallow defects
of 6.4 cm can be detected 7 h after sunrise.
Watase et al. [152] 2015 Any time of day is suitable for 1 cm deep delamination, and 6

Horizontal surface

a.m. is best time.

Defects can be detected between 10 a.m. and 3 p.m.
Defects can be detected between 5 p.m. and 8 am, and

Hiasa et al. [90] 2018 maximum contrast appears at 7 p.m.
Cooling cycle is more suitable than the heating cycle for the
inspection.
Giiray et al. [166] 2018 Favorable time window is between 3 p.m. and 7 p.m.
Optimal time windows for up to 4 cm deep defects are between
Mac etal. [56] 2019 10 a.m. and 3 p.m. and between 7:30 p.m. and 2:00 a.m.
Interchange times for asphalt unbonded by sand are between 8
Vyas etal. [168] 2019 a.m. and 10 a.m. and between 2:30 p.m. and 3:30 p.m.
Pozzer et al. [24] 2020 Ideal time window is between 12 p.m. and 3 p.m.
Washer et al. [144] 2009 Optimum time is from 5-9 h after sunrise.
Optimum time is after 5:40 h after sunrise for 2.5 cm deep
Washer etal. [145] 2010 delamination and 9 h after for 12.7 cm.
South elevatior‘\ (ir;l the Northern Scott et al. [147] 2012 Recommended time window is between 12 a.m. and 3 p.m. for
Hemisphere) cottetal under 6.5 cm deep delamination.
Scott & Kruger [149] 2014 Optimum time window is between 11 a.m. and 1 p.m. for

under 5 cm deep defects.
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Table 3. Cont.

Direction

Author Year Time Windows

Interchange times occur between 5:30 a.m. and 6:50 a.m. and

Edis etal. [20] 2015 between 4:30 p.m. and 5:50 p.m.

Chiang & Guo [158] 2017 Available time window is between 10 a.m. and 12 p.m.

Best time is around noon.

Janki etal. [101] 2017 Interchange time occurs at 4 p.m.

Best time window is during hours of exposure to sunlight.

Freitas et al. [148] 2018 Defects are less evident during cooling cycle than heating cycle.

East elevation

Defects are better visualized in early morning and late
Bauer et al. [153] 2016 afternoon.
Interchange time is around 12:30 p.m.

Chiang & Guo [158] 2017 Available time window is between 9 a.m. and 11 a.m.

West elevation

Chiang & Guo [158] 2017 Available time window is between 12 p.m. and 2 p.m.

Desirable time during heating cycle is first 1:30 h after
beginning of irradiation exposure.

Lourengo etal. [162] 2017 Desirable time during cooling cycle is beginning of cycle or 1 h
after beginning of shadowing.
Watase et al. [152] 2015 Favorable time window is midnight.
Chiang & Guo [158] 2017 Available time window time is between 11 a.m. and 1 p.m.
Jank et al. [101] 2017 Best conditions occur around noon.
Shaded area/Soffit/North Rocha et al. [103] 2018 Best time window is between 10 a.m. 2 pm, specifically at noon.
elevation (in the Northern : Interchange times are around 7 a.m. and 5 p.m.
Hemisphere) First optimal time window is 7 h after decks are exposed to
sunlight until 0.5 h after decks are not exposed.
Mac et al. [172] 2021 Second one is from 1.5 h to 3.5 h after decks are exposed to

sunlight.
Third one is 8 h after decks are not exposed to sunlight until 1 h
after decks are exposed.

Regarding horizontal surface and south elevation, available time windows proposed
by the literature are generally around 10 am. to 3 p.m. due to the presence of solar
irradiation [56,90,101,132,147]. However, suitable or optimum time windows vary. Chiang
& Guo [158] mentioned recommended time window of 10 a.m. to 12 p.m. according to
the field survey for tile fagades in Taiwan. Meanwhile, Scott et al. [147] suggested that the
recommended time window was 12 p.m. to 3 p.m. for up to 6.5 cm deep delamination
because of a time lag between the maximum solar loading at noon and thermal contrast
responses. Pozzer et al. [24] statistically analyzed meteorological data and thermal contrast.
They predicted favorable time windows from 12 p.m. to 3 p.m. due to high solar radiation,
high ambient temperature, and low pressure.

Furthermore, several studies proposed that suitable time windows relied on delam-
ination depth. The reason is that the deeper delamination is, the longer it takes for heat
flow to reach delamination. Washer et al. [145] showed that the optimum time for 2.5 cm
deep delamination was 5:40 h after sunrise and that for deep delamination of 12.7 cm
was 9 h after sunrise. Similarly, Kee et al. [89] reported that 6.4 cm deep delamination
could not be detected 3:45 h after sunrise even though it satisfied 3 h of solar irradiation
required by ASTM [47]. In contrast, Watase et al. [152] argued that any time was suitable
for shallow delamination of 1 cm. Additionally, delamination size can affect time windows.
For example, Scott & Kruger [149] stated that the small delamination of 25 cm diameter
generated the maximum contrast 4:30 h after sunrise, whereas the large delamination of
50 cm did 6:30 h after sunrise.

Meanwhile, several studies have focused on interchange times, which can not detect
delamination due to low thermal contrast. Edis et al. [20] calculated that the interchange
times happened on tile facades from 5:30 a.m. to 6:50 a.m. and from 4:30 p.m. to 5:50 p.m.
Similarly, Jank et al. [101] confirmed that the times occurred at 8 a.m. and 4 p.m. in the
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outdoor test. Hiasa et al. [90] also reported that the interchange time windows were 1 h in
the morning and 2 h in the evening.

Overall, many studies examined suitable time windows for horizontal surface and
south elevation during daytime. Although it is affected by delamination properties, the
suitable time window is generally noon to early afternoon when delamination depth is
under 6 cm.

Regarding east and west elevation, time windows with solar irradiation on the eleva-
tion should be optimal. It means that the suitable time for east elevation is in the morning
and that for the west elevation is in the afternoon. For example, Buare et al. [153] observed
in the field survey that the maximum contrast appeared at 8:30 a.m. on the east elevation,
and thermal contrast declined toward 12:30 p.m. Thus, they proposed that the beginning
of sun exposure was the optimal time window. Similarly, Lourenco et al. [162] pointed
out that the desirable time was the first 1:30 h after the beginning of solar irradiation
on the west elevation. Chiang & Guo [158] also mentioned that the recommended time
windows were 9 a.m. to 11 a.m. on the east elevation and 12 p.m. to 2 p.m. on the west
elevation. Therefore, suitable time windows for east or west elevation can be after direct
sunlight exposure.

Nighttime or the cooling period is a candidate for suitable time windows; however,
this is still being debated. One opinion is that nighttime is not appropriate or impossible
to conduct IRT. Yehia et al. [132] failed to detect delamination in the outdoor test at night.
Additionally, Freitas et al. [148] argued that nighttime inspection was available, while
delamination during nighttime was less evident than those during daytime. The opposite
opinion is that nighttime is more optimum than daytime because of less noise on IR
images [19,90,161] or a long measurable duration [56,90]. Hiasa et al. [90] observed that
IR images captured during daytime had much noise caused by nonuniform heating and
shadows from surroundings. Moreover, Mac et al. [56] stated that the available time
window during nighttime was from 7:30 p.m. to 2 a.m., which was longer than the window
during daytime from 10 a.m. to 3 p.m. The difference in the literature on detectability
during nighttime is considered due to environmental conditions.

Furthermore, there are still two opinions about suitable time windows during night-
time: early night or early morning. Hiasa et al. [153] mentioned that the maximum negative
thermal contrast of 2.5 cm deep delamination occurred at around 7 pm, and the delami-
nation was well recognized. Lourengo et al. [162] also insisted the optimum time was 1 h
after the surface was covered in shades for tile facades. On the other hand, Kee et al. [89]
suggested that even deep delamination, which was undetectable during daytime, could
be detected 45 min after sunrise because of a long cooling duration until early morning.
Hence, these studies indicate that optimum time windows during nighttime are dependent
on delamination depth.

Shaded areas, soffit, or north elevation, which has no solar irradiation on the inspected
surface, may exist on infrastructures and buildings. In these areas, suitable time windows
during daytime are generally around noon due to the peak of ambient temperature; how-
ever, these time windows are shorter than those of sunny areas [101,103,158]. Regarding
daytime and nighttime, previous studies do not agree with which time window is suitable.
Rocha et al. [103] argued that thermal contrast during nighttime was smaller than that
during daytime. In contrast, Watase et al. [152] proposed that midnight was the favorable
time window for deck soffit rather than noon because of a high probability of days when
thermal contrast exceeded the criterion of detectability. Thus, further studies are needed on
suitable time windows for shaded areas.

As explained above, suitable time windows for IRT proposed by previous studies are
not consistent. The reason is that the windows are affected not only by surface direction
but also by environmental conditions and delamination properties. Therefore, investigat-
ing suitable time windows for each region and the target object is required to conduct
IRT properly.
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6.1.2. Irradiation

Solar irradiation is a primary stimulus producing heat flow [20,145]. It reaches
700 W /m? on a south elevation and 1300 W/m? on a horizontal surface at noon [88,148,159].
Previous studies have demonstrated that the larger the energy input is, the higher ther-
mal contrast and SNR are generated in laboratory tests [10,85,139,157,169,170]. In con-
trast, delamination is difficult to be detected under low or no solar irradiation condi-
tions [20,148,162]. In addition, detectable delamination depth is proportional to the heating
time in the laboratory test [85,167]. Meanwhile, excessive energy input could decline the
thermal contrast of shallow delamination [82,91]. Overall, a large amount of irradiation is
generally a preferable condition for IRT.

Few studies quantitatively investigated the relationship between irradiation and
thermal contrast. Washer et al. [145] conducted the outdoor tests for three months and
argued that the daily total solar loading, not the maximum solar loading, had a high
correlation with the maximum thermal contrast. The authors suggested that the total
daily solar roading of at least 700 Wh/m? was required for 5.1 cm deep delamination to
generate the detectable thermal contrast of 1 °C based on statistical analysis. Likewise, Raja
et al. [170] proposed that the total irradiation of 680 Wh/m? produced the thermal contrast
of 1 °C for 6.3 cm deep delamination based on the numerical simulations. In addition, the
authors stated that a heat flux rate greatly influenced thermal contrast, especially for shallow
and small delamination. These studies indicate that total irradiation of approximately
700 Wh/m? could be required to conduct passive IRT.

6.1.3. Ambient Temperature

Daily ambient temperature change is one of the drivers to generate thermal contrast
due to convection heat transfer. The daily change is a primary heat source in shaded areas
or under cloudy weather [20]. Multiple studies concluded that significant daily ambient
temperature change increases thermal contrast and is preferred for IRT based on outdoor
test results [100,101,103,137,146,152]. However, the amount of daily change required in
shaded areas is not consistent among previous studies. For example, Janku et al. [101]
confirmed that the daily change of more than 10 °C was necessary, while Rocha et al. [103]
also insisted at least 5.4 °C. Likewise, Washer et al. [100] suggested a daily change of at
least 8 °C for 5.1 cm deep delamination. Additionally, the authors proposed that the rate of
ambient temperature change of at least 1.5 and —1.7 °C/h was favorable for daytime and
nighttime inspection, respectively. Overall, the high daily ambient temperature change is
favorable for passive IRT in shaded areas, although the requirement is still debated.

Ambient temperature values might influence thermal contrast. Tran et al. [164] men-
tioned that high ambient temperature increased thermal contrast, especially for large
and shallow delamination, although the effect of temperature was significantly smaller
than irradiation.

For buildings, an ambient temperature difference between indoor and outdoor can
also affect thermal contrast. Edis et al. [20] conducted parametric studies on the effect of
the difference using numerical simulation. The difference enhanced thermal contrast on
the surface during daytime when the outdoor temperature was hotter than the indoor
temperature. Thus, the effect of the ambient temperature difference should be considered
when the difference is more than 10 °C.

6.1.4. Wind

Wind velocity is an environmental factor to be considered when performing passive
IRT, as it relates to convection heat transfer [49]. High wind velocity increases heat transfer
between the surface and the air [178]. Thus, the wind has different effects on thermal
contrast depending on the presence of solar irradiation.

Under the condition of solar irradiation or during the heating cycle, high wind velocity
decreases thermal contrast. The reason is that the surface temperature of a target object is
generally higher than ambient temperature, so that the wind removes heat energy from the
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surface. For example, Washer et al. [144] statistically analyzed the relationship between
the maximum thermal contrast and average wind velocities in the outdoor tests. As a
result, average wind velocity tended to be low when thermal contrast was high. Moreover,
Raja et al. [170] quantitatively investigated the effect in the laboratory tests and stated that
thermal contrast decreased as the wind velocity increased, especially for deep delamination.
For example, the wind velocity of 7 m/s reduced thermal contrast by half for 6.3 cm deep
delamination. Furthermore, the authors stated that the slight wind velocity of 1.4 m/s also
decreased thermal contrast by 20%. Therefore, low wind velocity is preferable in sunny
areas when solar irradiation is used as thermal stimulation.

In contrast, in shaded areas, high wind velocity could increase thermal contrast. The
reason is that the surface temperature is generally lower than ambient temperature, and
high wind velocity increases energy input from the air to the object’s surface. Washer
et al. [100] pointed out that high wind velocity improved thermal contrast based on the
outdoor tests. Although high wind velocity is preferable in shaded areas, Washer et al. [146]
suggested a guideline that average velocity during 6 h is limited to 4.4 m/s (16 km/h)
because high wind velocity might indicate unstable weather conditions. Overall, wind
positively affects thermal contrast in shaded areas, as opposed to sunny areas.

6.1.5. Relative Humidity

Relative humidity (RH) is considered to affect thermal contrast due to two theories.
One theory is that high RH increases convection heat transfer between the object surface and
atmosphere [179]. Thus, in shaded areas or soffit, high RH increases the effect of ambient
temperature change on thermal contrast during the heating and cooling cycle [87,172]. The
other theory is that high RH increases water adsorption on the surface. Rocha et al. [103]
suggested that high RH during nighttime enhanced negative thermal contrast because water
adsorption increases moisture content and thermal conductivity near surfaces. Therefore,
high RH is typically a preferable condition for IRT.

However, the effect of RH may be limited and not significant. For example, Tran
et al. [164] argued that thermal contrast under high RH was more evident than that under
low RH for shallow delamination of 1 cm in the laboratory test. In comparison, there was
no difference in thermal contrast for 2-3 cm deep delamination. Additionally, Washer
et al. [87] mentioned that the effect of RH was not significant in sunny areas because the
effect of solar irradiation is dominant. These studies indicate that the positive effects of
high RH are less significant than other factors.

6.1.6. Others

Weather is closely related to other environmental factors. A sunny day is optimal
for IRT regardless of sunny or shaded areas due to high solar radiation and high daily
ambient temperature change [56,101,147,162]. A cloudy day is not recommended because
of the small energy input from irradiation and ambient temperature change [148,162]. A
partially cloudy day should also be avoided as rapid irradiation changes might make
delamination identification difficult [162]. Regarding nighttime, a clear sky is also optimum
because radiative cooling removes heat energy from the surface and enhances thermal
contrast [90,103]. Overall, fine weather is desirable at all times. However, IRT cannot
always be performed under fine weather, so that identifying acceptable weather conditions
for IRT is necessary in practice.

A method to predict thermal contrast from meteorological data was proposed. Watase
et al. [152] proposed multilinear regression formulas to estimate thermal contrast on bridge
deck and soffit under Florida climate conditions. The variables of the formulas were ambi-
ent temperature at a bridge and ambient temperature and atmospheric pressure at a nearby
meteorological observatory. Furthermore, Washer & Fuchs [180] developed a web-based
application to predict whether passive IRT can be carried out based on meteorology records
and weather forecasts. Likewise, Pozzer et al. [24] performed multivariate regression
analysis under Brazilian climate conditions, considering interactions of meteorological
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variables. They mentioned that significant dependent variables were ambient temperature,
atmospheric pressure, solar radiation, and survey time. In contrast, the size and depth
of delamination and wind velocity were not significantly related to thermal contrast. Al-
though these predictions are useful in practice, these formulas are limited to specific regions
and are not general.

Seasons are related to the amount of solar irradiation and daily ambient temperature
change. Hence, the effects of seasons were examined using numerical simulation, but the
results are not consistent. Hiasa et al. [159] concluded that seasonal effects were minor
on the horizontal plane in Florida. In contrast, Pozzer [173] mentioned that spring and
summer were desirable for IRT in Brazil because of high daily ambient temperature change.
Therefore, preferred seasons for IRT depend on the region.

6.2. Delamination Properties
6.2.1. Size

Detecting small delamination at the early stage of deterioration leads to ensuring
public safety. As shown in Figure 4c, half of the studies have examined the effect of
the delamination size. Regarding the relationship between size and thermal contrast,
Hiasa et al. [159] showed that size had a much more substantial effect on thermal contrast
than thickness and volume of delamination by numerical simulation about outdoor tests.
Moreover, Raja et al. [170] argued that the total heat input to create the contrast of 1 °C was
inversely proportional to the area; thus, large delamination needed less input heat to be
detected. However, Hiasa et al. [88] stated the size effects converged at approximately 40 cm.
Additionally, the authors examined the impact of an aspect ratio of the delamination area.
The thermal contrast of delamination with an aspect ratio of 25% or more was comparable
to the contrast equal to the area of square or circle. In general, large-size delamination with
a high aspect ratio has significant thermal contrast and is easily detected.

Delamination size is also related to the response time of the maximum thermal contrast.
Maierhofer et al. [139] confirmed that observation time, shown in Figure 5, became longer
as the area increased. Similarly, Scott & Kruger [149] mentioned that the delay of the
maximum thermal contrast from peak irradiation increased as the size was large in the
outdoor test. Thus, delamination size may change optimum time windows for inspection.

6.2.2. Depth

Depth from delamination to the surface significantly affects thermal contrast. Thus,
detectable depth is an essential indicator of IRT abilities. Approximately 78% of the
studies include depth as study parameters, as shown in Figure 4c. The range of depth
examined is wide and depends on target objects assumed in the literature. For build-
ings, delamination was generally set to a depth of 0.5-3 cm [109,133,137,141,154,162].
For concrete civil infrastructures, the delamination depth was set to a depth of approxi-
mately 2-8 cm [82,85,101-103,139,157,159,163,166], which are standard concrete cover thick-
ness [181]. Moreover, some studies examined 10 cm or more deep delamination to evaluate
IRT limitations [19,82,88,89,102,132,139,145].

It is not easy to detect deep delamination as deep delamination has low thermal
contrast. Table 4 lists the maximum detectable depth in previous studies by one-time data
analysis. An overall trend is that maximum detectable depth depends on conditions. The
detectable depth in (b) and (c) outdoor tests with solar irradiation tends to be deeper than
that in (a) laboratory tests. The reason can be the difference in the total amount and time of
energy input to test objects.
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Table 4. Maximum detectable depth in literature.

Conditions Maximum Detectable Depth in Literature
(a) Laboratory test 6 cm [143], 7 cm [10,85,167], 7.5 cm [82], 10 cm [138]
(b) Outdoor test with solar irradiation measured during heating 3 cm [159], 3.2 cm [174], 4 cm [56,101], 5.1 cm [88,132],
cycle (daytime) 6.5 cm [147], 7.5cm [150],10 cm [102], 12.7 cm [87,144]
(c) Outdoor test with solar irradiation measured during cooling 3 cm [159], 4 cm [56,101] 10.2 cm [88], 12.5 cm [102], 12.7 cm
cycle (nighttime) [87], 15.2 cm [89]
(d) Outdoor test in shaded areas 4 cm [101] 5 cm [103], 7.6 cm [87], 19.5 cm [172]

Furthermore, detectable depth was a controversial and much-disputed subject even
under the same test condition. In (b) and (c) outdoor tests with solar irradiation, Washer
et al. [87] mentioned that 12.7 cm and 7.6 cm deep delamination were detectable during
the heating and cooling cycles, respectively. In contrast, Kee et al. [89] argued that 6.4 cm
and 15.2 cm were the maximum detectable depths during the heating and cooling cycles,
respectively. Besides, Hiasa et al. [159] reported that 5.1 cm deep delamination was not
detectable at any time, and approximately 3 cm was the maximum depth in Florida.
Similarly, Mac et al. [56] stated that delamination of up to 4 cm depth could be detected
in South Korea. These differences in the detectable depth could be due to differences in
environmental conditions, delamination properties, target objects, and metrics.

Depth estimation was also of great interest to researchers because depth is essential
information to evaluate severity. For example, AASHTO Guide Manual for Bridge Ele-
ment Inspection [182] assesses the severity of delamination based on its size and depth.
Currently, two approaches to estimate depth were proposed: response time and thermal
contrast magnitude.

The estimation method based on response time utilizes that delamination depth corre-
lates with the time from energy input to the generation of thermal distribution on the sur-
face [183]. In laboratory tests, this response time is defined as observation time, a difference
from the end of the heating period to the peak [167], as shown in Figure 5. Many studies esti-
mated delamination depth accurately using the observation time [10,82,85,139,157,164,167].
However, the coefficient of estimation formulas changes depending on environmental
conditions and the thermal diffusivity of target objects [157,167]. Moreover, delamination
size also influences response time and the observation time [139,149]. Thus, the estimation
method based on response time is possible only under a specific controlled environmental
condition, such as laboratory tests.

The estimation method based on thermal contrast magnitude uses the correlation
between thermal contrast and depth. Tran et al. [164] showed in the laboratory test that the
inverse of the cube of depth was proportional to the loss of contrast with relatively high
accuracy. The authors insisted that this method was practical because it can quickly estimate
depth without time-consuming analysis of observation time. Similarly, Raja et al. [170]
demonstrated a linear correlation between the square of the depth and the total energy
input to generate thermal contrast of 1 °C. However, these methods are difficult to be
applied to outdoor tests because environmental conditions are not constant and change
dynamically. Hence, Hiasa et al. [88] proposed a method of comparing actual thermal
contrast to calculated thermal contrast at each depth by numerical simulation. Although
it can estimate depth in outdoor tests, the method requires obtaining time-series data of
irradiation and ambient temperature and the thermal properties of the target object. In
addition, numerical simulation must be conducted for each depth based on those data.

As described above, depth estimation methods using response time or thermal contrast
magnitude are possible under constant or controlled conditions such as laboratory tests.
However, since environmental conditions fluctuate, further research is needed to estimate
depth under outdoor conditions.

39



Sensors 2022, 22, 423

6.2.3. Width to Depth Ratio

Delamination width and depth are closely related to detectability while interacting. It
is generally considered that the minimum detectable width is at least 1-2 times the depth
or more [184]. Thus, many studies have investigated the width-to-depth ratio (WTDR)
criterion of detectable delamination in laboratory tests [10,82,85,157,167] and outdoor
tests [56,102,174]. Figure 6 shows the syntheses of the previous results of detectability with
respect to the width and depth of delamination in concrete specimens. The data were
categorized according to test conditions. The WTDR criteria proposed by the literature are
also displayed in Figure 6. A WTDR corresponds to the slope of the straight line through
the origin of figures. The overall tendency is that the upper left region of each graph, high
WTDR, clearly has a high probability of delamination detection. The reason can be that the
larger WTDR delamination is, the higher the thermal contrast is and the easier it is to detect
by IRT [56,174,185]. Furthermore, the results of the same width and depth delamination
are not consistent enough, especially for delamination near the proposed WTDR criteria.
This inconsistency can be due to the difference in environmental conditions, delamination
properties, and detection metrics.

More specifically, each condition has a different tendency for detectable delamination
distribution and WTDR criteria. In (a) laboratory tests, the distribution results are almost
consistent among the literature compared to outdoor tests. This is probably because
such laboratory tests can optimize energy input and remove unintended noise from the
surroundings. Additionally, the detectable and undetectable regions are relatively separated
by a straight line. Thus, the WTDR criteria proposed by the literature are relatively low
values of 1.11-1.43 [82,85]. This means that laboratory tests can detect small and deep
delamination. In (b) outdoor tests with solar irradiation measured during the heating cycle,
the WTDR criteria of 1.8-2.25 were proposed [56,174], which are higher than those in (a)
laboratory tests. In (c) outdoor tests with solar irradiation measured during the cooling
cycle, the distribution of detectable delamination and the proposed WTDR criteria differ
significantly depending on the studies. Mac et al. [56] suggested that the WTDR criterion
was 2.5 in Korea, whereas Farrag et al. [102] proposed the that of 0.4-0.5 in the UAE.
This difference can be attributed to intense solar irradiation during daytime in the UAE.
Figure 6¢ indicates that the proposed WTDR of 2.5 [56] relatively agrees with the results
of other studies. In (d) outdoor tests in shaded areas, WTDR criteria were not proposed
by previous studies to our knowledge. Although the number of results is not adequate,
Figure 6d suggests that the distribution is not significantly different from (c) outdoor tests
with solar irradiation measured during the cooling cycle.

As described above, the WTDR criteria of detectable delamination are influenced
by test methods, the presence of solar irradiation, measurement cycle, and test regions.
As a result of integrating previous studies, WTDR criteria are approximately 1.25 in (a)
laboratory test, 2.0 in (b) outdoor test with irradiation during the heating cycle, and 2.5 in (c)
outdoor test with irradiation during the cooling cycle and (d) outdoor test in shaded areas.
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Figure 6. Synthesises of literature about detectability with respect to depth and size of delam-
ination in concrete: (a) laboratory test; (b) outdoor test with solar irradiation measured during
heating cycle (daytime); (c) outdoor test with solar irradiation measured during cooling cycle;
(d) outdoor test in shaded areas. Legends are that blue circles indicate detectable delamination,
while red crosses indicate undetectable delamination. Synthesized data have following terms: target
object is ordinary concrete; analysis method is one-time data analysis; width represents diame-
ter or shortest side of delamination; detectability is determined according to each study. Sources
are [10,56,82,85,87,89,100-103,132,133,143,145-147,149,157,159,164,167,170,174,186].

6.2.4. Thickness

Delamination thickness is also a factor to consider for its impact on detectability.
Previous studies have generally set the thickness of 0.1-2 cm by adjusting the thickness
of embedded materials. Thick delamination has a low overall heat transfer coefficient;
thus, it generates significant thermal contrast regardless of environmental conditions or
measurement cycles [20,88,89,102,103,141,146,159]. For example, Kee et al. [89] reported
that delamination of 0.1-0.2 cm thickness at 6.4 cm depth was detectable, while thin
delamination of 0.03 cm thickness was undetectable. However, the effect of thickness may
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converge at a certain value. Hiasa et al. [88] showed convergence at 1 cm thickness by the
numerical simulation.

Meanwhile, thickness is considered the minor effect on thermal contrast among the
geometric factors of delamination [91]. Hiasa et al. [159] demonstrated that the most influen-
tial factor was the area of delamination, followed by thickness. Similarly, Farrag et al. [102]
showed that thickness was the geometric aspect with the least effect on thermal contrast.
These results indicate that IRT is relatively robust to the effect of delamination thickness.

6.2.5. Material

Delamination is usually filled with air; thus, the thermal properties of delamination
are considered to resemble the air. However, making air-filled delamination in a con-
crete specimen with a predetermined size and depth is not easy, except for delamination
beneath tiles. To simulate delamination, materials with low thermal conductivity are
embedded in specimens. Thus, several studies have examined the effect of embedded
materials [54,82,102,132,141,168]. For example, Yehia et al. [132] maintained that air-filled
delamination was more visible than delamination simulated with polyethylene foam. Con-
trary to this, Coti¢ et al. [82] mentioned no significant difference between thermal contrasts
above polystyrene foam and air-filled void. Although the results of these studies are
not consistent enough, polyethylene foam is generally used as the material to simulate
delamination. The reason may be that the difference between the thermal conductivity of
polyethylene foam (0.033-0.045 W/mK [187]) and air (0.022 W/mK) is negligible for that
of concrete (1.6-2.1 W/mK [139,157]). Therefore, the results of IRT by polyethylene foam
could be applied to the actual delamination.

6.3. Target Object
6.3.1. Thermal Property

The materials of the target object affect thermal contrast because heat flow is de-
termined by thermophysical properties of the materials: thermal conductivity, specific
heat capacity, and density. The properties of concrete change depending on compression
strength and mix proportions. For example, Rocha et al. [103] and Farrag et al. [102] stated
that concrete with a low water-to-cement ratio or high strength concrete generated high
thermal contrast in outdoor tests because of high thermal conductivity and high density. On
the other hand, Maierhofer et al. [143] mentioned that thermal contrast decreased slightly
along with the concrete strength increase. Additionally, the authors showed that density
significantly affected thermal contrast, while thermal conductivity had minor effects. As
mentioned above, there are some debates about the effects of materials on thermal contrast.

Building walls are generally layered with different materials rather than the single
material of concrete. When finish materials are the same, substrate materials can also affect
thermal contrast. Lourengo et al. [162] examined an external thermal insulating composite
system (ETICS) and brick masonry with tile finish. In addition, Meola [141] investigated
marble, brick, and tuff with render finish. These studies indicate that subsurface materials
with high thermal conductivity generate high thermal contrast. The reason can be that
substrate material with high conductivity increase the ratio of the difference in thermal
transmission coefficients between sound area and delamination area. This means that
delamination becomes difficult to be detected in the order of concrete, bricks and insulation
in substrates.

6.3.2. Others

Other factors related to target objects investigated by the previous studies include
rebars, water penetration, and surface conditions. The effects of these factors might be
inevitable when inspecting existing infrastructures and buildings.

Rebars are usually embedded in concrete parallel to the surface to reinforce concrete
structures. Rebars have a high thermal conductivity of 12.5 W/mK, much higher than
concrete of 1.8 W/mK. Therefore, rebars may diffuse heat flow parallel to the surface,
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resulting in low thermal contrast. According to laboratory tests and outdoor tests, the
effect of rebars is different depending on the relative position of rebars and delamina-
tion [85,102,143,147,167]. When delamination occurs between rebars and the surface, rebars
have little impact on thermal contrast and detectability [85,167]. On the other hand, when
delamination occurs deeper than rebars, the effect is not consistent enough between previ-
ous studies. Scott et al. [147] stated no differences in thermal contrast between the presence
and absence of rebars. In contrast, Huh et al. [85] argued that delamination indicated
significantly lower SNR than delamination above rebars; thus, the delamination under
rebars was not easy to be detected. Moreover, rebar density also affects thermal contrast.
Maierhofer et al. [143] pointed out that high rebar density slightly decreased thermal con-
trast. In addition, rebars can influence response time. Tran et al. [167] revealed that rebars
above delamination shortened observation time; thus, the depth of delamination may be
estimated to be shallower than the actual depth. Overall, the effects of rebars on thermal
contrast rely on the relative position between delamination and rebars.

Water penetration or high moisture content in a target object generates nonuniform
temperature distribution on a surface due to three physical phenomena: evaporative
cooling [25,162,177], the increase in specific heat capacity of the object [175,188], and the
increase in thermal conductivity of the object [7,26]. Water penetration may occur at the
same time as delamination in target objects. Edis et al. [188] surveyed glazed tile facade
buildings and stated that both delamination and high moisture content areas had positive
thermal contrast in midafternoon (e.g., 4:30 pm) under sunlight exposure conditions.
However, water penetration into a delamination cavity may cause negative effects on
thermal contrast and detectability. Lourenco et al. [162] conducted the outdoor tests in
which water was poured into the back of nonadhesive tiles. Water penetration created
opposite thermal behavior to delamination and decreased thermal contrast. Similarly,
Gliray et al. [166] stated that water-filled delamination could not be detected at any time.
To address the issue caused by water penetration, Lourenco et al. [162] proposed inspecting
target objects in different conditions: after rainy days and under dry conditions. Therefore,
since water penetration could generate thermal contrast or reduce detectability, IRT surveys
after rain or under wet conditions should be avoided.

Surface conditions, such as color and obstacles on the surface, affect IR images. Build-
ing facades are generally colored with paint or colorful materials. Lourenco et al. [162]
studied the effects of surface color using white and black tiles. Black color, which absorbs a
large amount of solar irradiation, contributed to high thermal contrast during the heating
and cooling cycle. Thus, surface color affects detectability in sunny areas, and dark colors
are advantageous for IRT.

The surfaces of infrastructures and buildings are not always clean and may have small
obstacles. Hiasa et al. [90] stated that the obstacles could be discriminated on IR images
because obstacles were smaller than a deck surface and quickly heated up and cooled down.
The authors also suggested that visual images could help to distinguish obstacles certainly.
To complement the information of IR images with visual images, simultaneously capturing
IR and visual images is recommended.

6.4. IR Camera
6.4.1. IR Camera Type

Two types of IR cameras are generally used for IRT: a short-wavelength (SW) camera
and a long-wavelength (LW) camera [79]. Table 5 indicates the characteristics of types of IR
cameras. SW and LW cameras can detect infrared rays in the high atmospheric transmission
band of 3-5 pm and 8-14 pm, respectively, known as atmospheric windows [189]. This
difference in the band creates the characteristics of these cameras.
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Table 5. Characteristics of types of IR camera.

Items Short-Wavelength (SW) Camera Long-Wavelength (LW) Camera
Spectral range 3-5 um 8-14 um
Detector type InSb, Quantum detector Microbolometer, Thermal detector
Cooling Cooling Uncooling
Thermal sensitivity, NETD Fine Middle
Shutter speed Fast (e.g., 10 us—-10 ms) Slow (e.g., 10 ms)
Camera cost High Low-middle

SW cameras use a cooled quantum detector sensitive to high-energy emissions from
hot objects [79]. Thus, the quality of IR images is high when a target object is at a high tem-
perature. In contrast, SW cameras are not suitable for measurements at a low temperature
below 10 °C [96]. Additionally, the cameras are less affected by reflections of surrounding
buildings or the sky on glazed facades [96]. The disadvantage is that the cameras are
susceptible to solar reflections on the surface. Therefore, SW cameras tend to be used at
night [156].

LW cameras use an uncooled microbolometer detector sensitive to low-energy emis-
sions. Thus, the quality of IR images is relatively high when a target is at a low temperature.
In addition, LW cameras are less subject to solar reflections on surfaces. In contrast, the
cameras are susceptible to reflections of surrounding buildings and the sky on glazed tiles
or smooth surfaces [14,96,97,160]. Hence, LW cameras are often used for daytime mea-
surements [156]. Currently, many LW cameras are being developed, including affordable
models [160] and lightweight models for unmanned aerial vehicles [56,190].

Regarding the influence of IR camera type and model, Hiasa et al. [156,159,160] com-
pared two LW cameras and an SW camera, and Bauer et al. [14] examined two LW cameras
of different manufacturers. Although different IR cameras output different temperature
values even for the same object, there were no significant differences in thermal contrast
and detectability. Therefore, selecting the type of IR camera is advisable according to the
type of surrounding noise.

6.4.2. Distance and Spatial Resolution

A short distance from the IR camera to the target object is considered ideal [27,137,160,162];
however, surveys at short distances are not always possible due to the limited accessibility
of existing infrastructures. The distance can affect detectability in three aspects: atmospheric
attenuation, captured area, and spatial resolution.

Atmospheric attenuation is a phenomenon in which water vapor and carbon dioxide
in the atmosphere absorb IR [191]. Due to the low impact of atmospheric attenuation,
short distance measurements can provide accurate temperature values with few errors [27].
Furthermore, the effect of distance on detectability depends on the camera types because
the atmospheric attenuation relies on spectral ranges [191]. For example, Hiasa et al. [160]
mentioned that LW cameras were relatively affected by distance, while SW cameras were
less affected. However, both cameras appropriately captured thermal contrasts, which are
important to detect delamination. Overall, it is considered that distances within 10 m have
little impact on detectability [137,177,192].

The size of a captured area may influence the efficiency of IRT surveys and detectability.
The area captured is determined by an IR camera’s field of view (FOV) and distance. FOV
indicates the largest area that an IR camera can capture, described in horizontal and vertical
degrees, and is determined by the focal length and the detector size of the IR camera.
A long-distance measurement can capture a large area at once and improve efficiency.
However, this IR image tends to include surroundings or nontarget objects with high or
low temperatures. IR cameras automatically adjust the span of the temperature color scale
based on the maximum and minimum temperature in an IR image. Therefore, Lourengo
et al. [162] stated that the surroundings and nontarget objects widened the scale of the
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image, making it difficult to emphasize the slight thermal contrast of delamination in visual
analysis. Thus, short-distance measurement is recommended.

To measure the temperature value of a small area accurately, at least a smaller spatial
resolution than the area is required [79]. Spatial resolution refers to the physical size of
a target object per pixel and is determined by the multiplication of instantaneous field
of view (IFOV) and distance. IFOV is determined by FOV and sensor resolution (the
number of pixels). Therefore, spatial resolution becomes large as the distance increases
and the sensor resolution decreases. Hiasa et al. [160] mentioned that the IR camera with
a small spatial resolution (sensor resolution is 640 x 512 pixels) had higher sensitivity
for detecting delamination than that with a large spatial resolution (sensor resolution
is 320 x 240 pixels) at the same distance. Thus, using the IR camera with high sensor
resolution is one way to keep detectability for long-distance measurements. However,
the sensor resolution of IR cameras is lower than that of visual cameras and is commonly
limited to 640 x 512 pixels [55]. Hence, Scott et al. [147] suggested using a telescope lens
of small IFOV for long-distance measurements to keep the spatial resolution. Selecting
an appropriate distance, FOV, and sensor resolution is important for detecting small
delamination.

As described above, distance is related to detectability from the aspects of atmospheric
attenuation, captured area, and spatial resolution. It is desirable to capture IR images as
close as possible while balancing productivity and limitation of accessibility.

6.4.3. Angle

An observation angle could affect temperature values measured by IR cameras and
detectability. This is because the emissivity of objects relies on the angle with respect to
the surface. In general, the emissivity of nonmetallic materials is stable from the angles of
0° to 45° and decreases at higher angles [193,194]. Several studies suggested that thermal
contrast is stable when angles are within 45°, and delamination can be detected although
measured temperature values might change [147,156,190]. Additionally, Ortiz et al. [190]
noted that the angle of 0° should be avoided for glazed surfaces because an IR camera may
capture the reflection of the inspector or the IR camera on the surface.

At angles above 45°, the detectability of IRT may decline because of thermal contrast
reduction or reflection noise. Scott et al. [147] reported that only shallow delamination,
which was high thermal contrast, could be detected at the angle of 80° in the outdoor
test. Moreover, Ortiz et al. [190] argued that measurement errors increased sharply due
to reflections from the sky and the sun. Although the survey with angles above 45° may
detect delamination, the angle within 45° is desirable to keep the reliability of IRT.

6.4.4. Platform

When surveying a wide area, mounting an IR camera on a platform can enhance the
IRT survey’s efficiency compared to by hand. For example, in the bridge deck inspection,
an IR camera fixed to the top of a car continuously captures a road lane [195]. However,
IR images captured on vehicles may be blurry or low quality due to the effects of moving
speed or vibration. Thus, ASTM [47] limits the speed to 16 km/h or less. To survey with
normal car speed without closing road lanes, Hiasa et al. [160,161] have examined the
effects of speed on IR images using the two types of IR cameras. As a result, the SW camera
with fast shutter speed could acquire IR images with high quality at 48 or 64 km/h, whereas
the LW cameras with slow shutter speed captured blur IR images. Hence, measurement at
high-speed movement requires SW cameras.

Recent developments in robotics allow inspectors to use unmanned aerial vehicles
(UAVs) as a platform to inspect infrastructures and buildings [64,196,197]. UAVs with
IR cameras can access any location without scaffolds and efficiently capture IR images at
appropriate distances and angles [165,198,199]. Some studies have compared UAVs with
traditional platforms, a tripod or cart, in outdoor tests using LW cameras [56,155]. As a
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result, mounting the camera on UAVs has little effect on the quality of IR images at a resting
state or slow speeds.

7. Conclusions

Capturing latent defects at the early stage of delamination even before delaminated
objects falling is essential for integral components of infrastructures and buildings. With this
in mind, a comprehensive review on the use of IRT to detect delamination on infrastructures
and buildings was presented.

Three classifications of IRT for assessing defects were explained to clarify the method-
ologies used in delamination detection. Regarding delamination detection, the principle,
evaluation protocols with one-time and time-series data analysis, and standards and guide-
lines were consolidated. Additionally, the performance of IRT in detecting delamination
was compared with that of other NDTs.

Experimental methodologies employed by studies over the last 20 years on factors
affecting delamination detection were discussed. Furthermore, the impact of factors on
detectability was also investigated. Factors studied include environmental conditions,
delamination properties, target objects, and IR cameras. Although the results of the studies
were not always consistent due to the differences in experimental conditions, general
desirable conditions for IRT are summarized below:

e  Suitable time windows for the inspection depend on the direction of the inspection
surface and delamination depth. For shallow delamination on a horizontal surface
or south elevation, the windows are noon to early afternoon and late evening to
early night.

e  Alarge amount of total solar irradiation is desirable because irradiation is the primary
heat source to generate thermal contrast.

e  High daily ambient temperature change allows IRT even in shaded areas.

o A low wind velocity is preferable in sunny areas.

e  Fine weather is optimum for the heating and cooling cycles because of solar irradiation,
high daily ambient temperature changes, and radiative cooling.

e  Delamination of large size has high thermal contrast and is easy to detect.

o  The detectable depth of delamination is greatly affected by environmental conditions.
Delamination of at least 3-5 cm or less could be detected in outdoor conditions.

e The width to depth ratio (WDTR) of delamination also affects detectability. The
WTDR criteria of detectable delamination are 1.25 under laboratory conditions and
2-2.5 under outdoor conditions.

o  The target object with high thermal conductivity has high thermal contrast, and the
detectability is low on the insulation walls or low-strength concrete.

e  Water penetration into delamination causes the opposite behavior of the thermal
contrast of delamination.

e Dark color surfaces in sunny areas are advantageous for inspection.

e The influence of obstacles on the surface can be removed by complementing IR images
with visual images.

e  Both types of SW cameras and LW cameras can be used for inspection. An appropriate
type should be selected according to the noise of the surrounding environment.

e  The close distance from an IR camera to a target object is desirable in terms of atmo-
spheric attenuation, captured area, and spatial resolution while balancing productivity
and limitation of accessibility.

o  When IR camera platforms, such as vehicles or UAVs, move quickly, SW cameras can
collect clear IR images compared with LW cameras.

The results of this study could be used as the benchmarks for setting standardized
testing criteria, as well as for comparison of results for future works on the use of infrared
thermography for detection of delamination on infrastructures and buildings.
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Abstract: The coefficient of thermal expansion (CTE) is an important property of ultra-low expansion
(ULE) glass, and the ultrasonic velocity method has shown excellent performance for the nonde-
structive measurement of CTE in large ULE glass. In this method, the accurate acquisition of the
ultrasonic velocity in ULE glass is necessary. Herein, we present a correlation method to determine
the ultrasonic TOF in ULE glass and to further obtain the ultrasonic longitudinal wave velocity (cr)
indirectly. The performance of this method was verified by simulations. Considering the dependence
of ¢y, on temperature (T), we carried out the derivation of the analytical model between ¢y, and T.
Based on reasonable constant assumptions in the physical sense, a c; T exponential model was
produced, and some experimental results support this model. Additional experiments were carried
out to validate the accuracy of the ¢y ~T exponential model. The studies we conducted indicate that
the ¢y ~T exponential model can reliably predict the ultrasonic velocity in ULE glass at different
temperatures, providing a means for the nondestructive CTE measurement of large ULE glass at a
specified temperature.

Keywords: ultra-low expansion glass; ultrasonic velocity; correlation method; temperature coefficient;
exponential model

1. Introduction

Ultra-low expansion (ULE) glass is a SiO,-TiO, glass formed by flame hydrolysis and
vapor deposition (nominal composition: 93 wt% SiO, and 7 wt% TiO,) that has found
applications in large telescope mirror blanks because of its near-zero coefficient of thermal
expansion (CTE) over the 5~35 °C temperature range [1,2]. However, the uniformity of
glass material has a significant impact on the CTE homogeneity of the final ULE glass
products, which results in figure distortion and in the degradation of the optics. It is
therefore necessary to know the CTE characteristics of ULE glass to better understand—
and thus better control—the fabrication process for manufacturing the highest quality
ULE boules.

Commonly used methods for measuring the CTE of ULE glass include the pushing-
rod dilatometer [3], interferometric [4,5], and photoelastic analysis [6-8] methods. All
involve destructive measurements, and the procedures are time-consuming and expensive,
so they are not suitable for the detection of the CTE uniformity of large ULE glass. The
ultrasonic velocity in ULE glass is proportional to its CTE, a fact that can be utilized to
nondestructively assess the absolute and relative CTE of large ULE glass, and its feasibility
has been demonstrated by researchers [9,10]. In the process of using ultrasonic velocity
to nondestructively detedmine CTE, there are two key points to focus on. One is how to
guarantee high accuracy in the ultrasonic velocity measurements, and the second is the
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correspondence between CTE and ultrasonic velocity at certain given temperatures, mainly
because both ultrasonic velocity and CTE are temperature-dependent characteristics.

For the first point, the ultrasonic velocity can be measured by various effective meth-
ods, including the threshold method [11,12], the zero-crossing method [13], the peak
method [14,15], and the correlation approach [16,17]. The first three methods are based on
using the local signal characteristics to measure physical quantities, and the measurement
findings are strongly reliant on local signal characteristics and are easily influenced by hu-
man factors (such as subjectively selected thresholds) or noise. By contrast, the correlation
method considers global signals, which contribute to its excellent noise robustness, and
it is free of subjective effects. In this study, we use the correlation method to accurately
measure the ultrasonic velocity in ULE glass.

We now turn to the dependence of ultrasonic velocity on temperature. The use of
ultrasonic velocity measurements to characterize the CTE of ULE glass was first discovered
by researchers at Corning. In their research, some troublesome operations and correction
models were used to achieve nondestructive CTE testing [10]. On the one hand, the in-
ternal physical mechanism is not very clear. On the other hand, the various cumbersome
practical steps (including ensuring the constant temperature of the sample to reach thermal
equilibrium, removal of the water bath, quick-drying, and ultrasonic velocity measure-
ment [9]) can introduce uncertainty regarding the sample temperature, which, in turn,
affects the accuracy of the CTE measurement results. In later research, the tested sample is
not forcefully separated from the constant temperature water bath during ultrasonic CTE
measurement [18], which reduces the CTE measurement error, but this also increases the
time cost of the entire measurement. Herein, we have analytically modeled the influencing
mechanisms, which will help to simplify the practical procedures.

The paper is organized as follows. The principle and method of ultrasonic velocity
measurement are mathematically stated in the following section. Section 3 summarizes the
derivation of the dependence of ultrasonic velocity on temperature. Section 4 describes
the composition of an ultrasonic velocity measurement system and the preparation of the
tested samples in detail. In Section 5, the uncertainty and stability of the ultrasonic velocity
measurement are discussed, the experimental establishment of the ultrasonic velocity—
temperature exponential model is presented, and a comparison of the predicted ultrasonic
velocity with the actual measured ultrasonic velocity is listed. Finally, the conclusions are
presented in Section 6.

2. Principle and Method of Ultrasonic Velocity Measurement
2.1. Principle of the Ultrasonic Velocity Measurement

Many instruments are now employed to measure ultrasonic velocity, most of which use
the pulse reflection method [19-21]. This method usually involves time-domain analysis
based on the ultrasonic time of flight (TOF). In this analysis, the ultrasonic velocity is
obtained by the ratio of the material thickness to the ultrasonic TOF [13,22]. On this basis,
we built a fully integrated high-precision system to measure the ultrasonic velocity in ULE
glass using the immersion pulse reflection method.

Figure 1 depicts the schematic diagram of the immersion pulse reflection method. The
time of S relative to the time base “0” point is called t;. The time interval between B; and
Sg is recorded as Aty, and the time interval between B, and By is recorded as Af,, which
have the following relationship:

t = 2H/cater,

1
Aty = Aty = 2d/™P". @
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Figure 1. Schematic diagram of the immersion pulse reflection method: (a) the transmission process
of ultrasonic waves; (b) the transmission time of ultrasonic waves.

The ultrasonic longitudinal wave velocity (c1) of a sample can be calculated from
Equation (1):
P _ 0/ Aty = 2d/ Aty @)
Using Equation (2), we can determine the cy, of the tested sample by first determining
Aty or At of the ultrasonic waveform and the known thickness d.

2.2. Correlation Method for Measuring the TOF
2.2.1. The Correlation Calculation Principle

As the By and B; signals of the ULE samples were readily available and were highly
similar, the correlation method was used to determine the time interval between B; and B,
as the ultrasonic TOF in the samples. In detail, the ultrasonic signal that was sampled and
saved in the PC is designated as x(f). By separating the B; and B, signals and noting them
as x1(t) and x,(t), respectively, the correlation coefficient (R) can be represented as

Joo x()xa(t)dt
\/[ BRNE (31U I x%(t)dt]
The ultrasonic signals that were collected by the data acquisition card and the PC, on

the other hand, were two discrete signal arrays. As a result, for the discrete signals, the
normalized R can be given as

Y (i)x(i) —Ex () x(i)/n
V(£330 - €002 /0] [£300) - (£200/1])

R= (IRl <1). ®)

R= i=12,...,n (4

where 7 is the computed length of the signal array, and i is the location inside the
signal array.

In the time domain of signal x(t), there is a time interval between the signals x1(f) and
x2(t). The time interval between x1(f) and x,(f) is the round trip time of the ultrasonic wave
propagated in the thickness direction, i.e., the TOF. Equation (4) is used to generate the
correlation array, with the position having the largest correlation coefficient corresponding
to the temporal position of m. The corresponding TOF (At) is equal to m/fs if the sampling
frequency is noted as fs. Finally, the following equation can be used to calculate the
ultrasonic velocity:

_2d-fs
L— -

m

)
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2.2.2. Simulation of the Correlation Method

First, the reliability of the proposed algorithm needed to be validated by simulations
in which the simulated ultrasonic signal is a declining sinusoidal function.

x(t) = B - exp(—ast) - sin(27fct) (6)

where «; is the declining coefficient of the sinusoidal function set as 9 x 100 Np/m; f.is
the center frequency of the ultrasonic transducer set as 5 MHz; B is the amplitude of the
signal; and the amplitudes of the initial and echo signals are set to 1 and 0.3 V, respectively.

The sampling frequency of the signal was set as 2.5 GHz, and the TOF between the
initial and echo signals was set as 17.36 us. To come closer to the actual measurement
signal, Gaussian noise with +15 dB SNR (Signal-to-Noise Ratio) was added to the ideal
declining sinusoidal signal. The simulated signal waveform and the correlation distribution
calculation results are shown in Figure 2a,b, respectively.

0.8 T T T 1 T
X:17.36
0.6 Y:0.9832
. initial signal
2 04 0.5
)
=
g 0.2 B
= echo signal [
E 0 0
I
0.2
—0.4 -0.5
0 4 8 12 16 20 0 4 8 12 16 20
Time [ps] Time [ps]

(a) (b)

Figure 2. The correlation calculation result of a simulated signal: (a) the waveform of the simulated
signal; (b) the correlation coefficient distribution.

Where the X value is the time corresponding to the largest correlation coefficient, and
the Y value is the largest correlation coefficient.

In Figure 2, the calculated correlation coefficient has a clear peak on the time axis,
with a TOF of 17.36 us corresponding to the peak. The calculated results were in good
agreement with the theoretical settings, so the algorithm is suitable for ultrasonic signal
processing in ultrasonic velocity measurements.

3. Theoretical Model between Ultrasonic Velocity and Temperature

Ultrasound is defined as an elastic wave of high frequency that propagates in a
medium. Therefore, when an elastic wave propagates in an isotropic medium without
being affected by volume stress, the ultrasonic longitudinal wave velocity, denoted as ¢y,
can be found from the following equation:

E(1-v)

p(1+v)(1—2v)’ @

L =

where p is density, v is Poisson’s ratio, and E is Young’s modulus.

Equation (7) indicates that the ¢y, in the material is mainly related to Young’s modulus,
density, and Poisson’s ratio. For ULE glass, within the upper limit of 11.5 wt%, slight
changes in the TiO, content will not change the density or Poisson’s ratio but will cause
changes to Young’s modulus [23]. Therefore, the difference in cy, is mainly determined
by the difference in Young’s modulus. Then, the effect of temperature on the ultrasonic
velocity essentially reflects its effect on Young’s modulus. The microscopic analysis of
Young’s modulus shows that the reaction of a solid to all forces comes from the potential
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energy of the interaction between atoms. The interaction potential U(r) of a pair of two
atoms separated by r can be expressed as:

un=-5+2 ®)

where A, B, n, and m are all positive constants. The first term represents the energy of
attraction, and the second term represents the energy of repulsion.

Assuming that the solid is stretched along the crystal axis when the tensile force
changes df, the interatomic distance r changes to dr. At this time, the cross-sectional
area 2 of a unit cell is regarded as inconvenient. Then, Young’s elastic modulus can be
expressed as:

p_o_ i _df )
T d T

where ¢ and ¢ represent the stress and strain, respectively.
Since the binding force f of the tensioned solid is only related to the first term of
Equation (8), its magnitude is:

fin= -0 _nd (10)

Equation (10) is then substituted into Equation (9) by deriving the derivative for r
to obtain

n(n+1)A
E=—m— 1D
Assume K = (n + 1) A and Q = n + 3. Equation (11) can be changed to:
nkK
E= pox (12)

Equation (12) takes the derivative of T and divides both sides by Er< at the same time,
shifting the term to obtain:
dE dr
FdT = Qm. (13)
It is assumed that the distance between atoms still obeys the following rules when a
solid is heated and expanded:
r=ro(l+aT), (14)

where 1 is the atomic distance when the absolute temperature Ty = 0; « is the linear
expansion coefficient of the solid, and its differential definition is:

{D_ldr _ 1dE as)

= ar" = Ear

The 7 in Equation (15) is the temperature coefficient of the elastic modulus. Relevant
studies have demonstrated that the elastic modulus of ULE glass increases with the increase
in temperature, and the increment dE of E has a positive value [23]. When both sides of
Equation (13) are multiplied by dT, Equation (14) is then substituted in and integrated, and
we obtain:

EdE T'd(1+aT
= = / M. (16)
Ey E To (1+IXT)
From Equation (16) and considering Ty = 0, we obtain:
E= (0% © Byt + QuT) (17)
-0 1+ aTy TR0 ’
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From Equations (13) and (15), we see that:
Q=n/a. (18)
Therefore, Equation (17) is changed to:
E=Ey(1+4T). (19)

Equation (19) shows that the elastic modulus of ULE glass increases as the temperature
increases, where 7 is the temperature coefficient of the elastic modulus. Therefore, it can be
inferred that the cy, in ULE glass also increases as T increases. A review of the data reveals
that when considering the effects of thermal expansion, there is a specific equation relating
the ¢y and T, which is as follows [24]:

ol =1+ ar(T - To)], (20)

where a7, is the temperature coefficient of the ultrasonic longitudinal wave velocity, a
positive value of about 10~* orders of magnitude, and cf, c{“ indicate the ultrasonic
longitudinal wave velocity of the material at temperatures T and T, respectively.

Although there are certain differences in ay, at different temperature points, we can
use the ¢ T data in a small temperature range to fit and solve the average «p, in this
temperature range. The method of a differential equation is introduced here to obtain
the mathematical relationship between c, and T in a small temperature range. Writing
Equation (20) in a differential form, we obtain

dCL
=— T1<T<Th 21
=g h <T<T (21)
Solving this equation yields
o, =c el (22)

Equation (22) shows that the relationship between c, and T is theoretically exponential
within a certain temperature range.

4. Tested Material and Experimental Setup
4.1. Materials and Sample Preparation

The selected ULE glass was Corning Code 7972 glass. Considering the boundary effect
of ultrasonic wave propagation, the experimental samples were prepared in a cylindrical
shape with a cross-sectional area that was larger than that of the ultrasonic transducer.
To avoid the adverse effects of the scattering attenuation of ultrasound at the interface
of the sample, the two end faces of the tested sample should be flat and parallel to each
other. As shown in Figure 3, six cylindrical glass samples were cut with an equal thickness
(50-0.1 mm) along the radial position of the ULE 7972 boule (No. 82714) using an abrasive
water jet; then, these samples were finely ground and polished to achieve a flatness of 0.5A
and parallelism of 20 um. The six samples were numbered 1#~6# from the inside to the
outside of the boule according to the increasing CTE. The details of the ULE samples are
summarized in Table 1.

4.2. Ultrasonic Measurement System

The schematic diagram of the cj. measurement experimental system is illustrated
in Figure 4. A 75 MHz ultrasonic pulser/receiver (Olympus, Waltham, MA, USA, model
5073PR) was used, which was connected to a 400 MHz data acquisition card (Spectrum
Instrumentation GmbH, Grosshansdorf, Germany, model M4i.2220-x8) that transmits
the ultrasonic signals to a computer to be processed. All signals were captured with
2,500,000 points at a sampling rate of 2.5 GHz. After the acquisition, the data were properly
processed to determine the involved ultrasonic velocities. The temperature of the tested

60



Appl. Sci. 2022, 12,577

sample was controlled by a thermostatic water tank (Hangzhou Qiwei, Hangzhou, China,
model DHC-05-B) with a temperature control precision of 4-0.05 °C.

Figure 3. The prepared ULE glass samples: (a) source of samples; (b) photograph of samples.

Table 1. The important parameters of the ULE samples.

No Thickness CTE (5~35°Q)
. (mm) (ppb/°C)

1# 49.936 -1

2# 49.932 0

3# 49.937 1

4# 49.940 2

5# 49.941 2

6# 49.927 3

Note: No.—sample number; thickness—measured thickness of the ULE samples; CTE (5~35 °C)—average CTE
over the temperature range 5~35 °C; ppb/°C—unit of CTE (1 ppb/°C =1 x 10~7/°C).

5073 Pulser/receiver

Analog signal

A
| Echo
| signal

Actuated
signal

L

Immersion transducer
M4i.2220-x8 card

Digital signal

:<—Thermostatic water tank

Sample

Figure 4. Schematic diagram of the experimental system for measuring ultrasonic velocity.
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The self-generating and self-receiving transducer model was utilized to transmit
and receive the ultrasonic waves. Considering the diameter and thickness of the tested
sample, wideband focusing 19.05 mm diameter longitudinal wave immersion transducers
(Olympus, Waltham MA, USA) with 3.5 and 5 MHz nominal center frequencies were
employed in this investigation. Figure 5 illustrates the ultrasonic velocity measurement
results for the samples 1#~6# at 20 °C using two different ultrasonic frequencies: 3.5 and
5 MHz. Each sample was subjected to five replicate measurements by each transducer. The
ultrasonic frequency had little effect on the ultrasonic velocity of the sample, as the cf, in
the sample only depends on its inherent physical parameters, including its bulk modulus
and density [25]. In addition, the repeatability of the cj, measurement was essentially the
same for both frequency transducers, both within 0.1 m/s. This suggests that any frequency
could be used to characterize the CTE of ULE glass in engineering applications when using
ultrasonic velocity measurement methods.

5800

B 3.5 MHz 5MHz

5770 ¢

— 5740¢
@
g
TS0}
5680
5650
1# 21 3 4 s# ot

Sample number

Figure 5. c;, measurement results of the ULE samples 1#~6# at frequencies of 3.5 and 5 MHz.

5. Results and Discussion
5.1. cp Measurement at a Single Temperature
5.1.1. Uncertainty Analysis

In this work, an ultrasonic transducer with a 5 MHz center frequency was employed
to measure the ultrasonic velocities in all of the prepared ULE samples. Figure 6 gives an
example of the received ultrasonic signals, which formed a series of ultrasonic longitudinal
waves with a sampling rate of 2.5 GHz. High-frequency noise was found to be present in
the actual ultrasonic signals. However, since the correlation of the noisy signal was very
small, the effect of such noise was removed via the correlation calculation. The results of the
TOF calculations obtained using this method are depicted in Figure 6. Again, there is a peak
in the correlation coefficient distribution plot corresponding to a TOF of At = 17.3383 ps.

The uncertainty in measuring ultrasonic velocity was also investigated, and the ex-
pression is shown in Equation (23).

2\ (2 )

Ue = (Eud> + <(At)2uAt> (23)
where 1., uy, and up; are the uncertainties regarding the cr, d, and TOF in the ULE
glass, respectively.

As illustrated in the first item of Equation (23), the uncertainty related to the d was
ue, (d) = (2/At)Auy. A typical value of At is 17.3562 ps. When measuring the d of the ULE
sample, u; was evaluated by the measurement precision of a micrometer (0.001 mm), thus
Uep (d) = 0.12m/s. After substituting the measured values into the second item of Equation
(23), the uncertainty introduced by the TOF (At) was obtained: i, (At) = 0.332 x 1071,
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Since u,; was evaluated by the sampling period of the data acquisition card (0.4 ns), the
typical uc, (At) was 0.13 m/s. Therefore, when measuring the ULE glass using the proposed
experimental setup, the calculated total uncertainty was u,, = 0.2 m/s, ensuring that the
ultrasonic velocity measurements at a single temperature had high reliability.
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Figure 6. The correlation calculation result of an actual received ultrasonic signal: (a) the ultrasonic
echo signal; (b) the correlation coefficient distribution.

5.1.2. Stability of c;, Measurement

To determine whether the proposed measurement system could provide reliable
c1, measurements over long periods of time, the stability of the measured cp, value also
needs to be considered when the tested samples reach thermal equilibrium. Long-term
measurement of the ultrasonic velocity in samples 1#~6# with a high CTE was taken at the
same temperature (20 °C), and the ¢y, data were recorded at 1 h intervals, for a total of seven
measurements in one day. Figure 7 depicts the variation in ¢;, with the measurement time.
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Figure 7. The change in ¢, with time for samples 1#~6#.

The ¢, measured in the same sample was almost constant at the different times while
maintaining a constant temperature, and the RMSE (Root Mean Squared Error) of the cf,
changes were all within 0.10 m/s, which indicate that the measurement system that was
built in this paper has stable performance. This also provides a strong guarantee for the cf,
measurement of a large batch of ULE glass samples.

5.2. Measurement and Analysis of c;—T Data
5.2.1. Acquisition of ¢; -T Data

The tested sample and an ultrasonic transducer fixed above the sample were placed
into a thermostatic water tank, and the temperature in the tank was steadily increased
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R=0977

y=5739.1exp(0.000127x)

RMSE=0.7118

in the range of 10~30 °C. Here, the temperature range of 10~30 °C was chosen for two
reasons: (1) this corresponds to the real temperature range that ULE glass is likely to
experience when undergoing ultrasonic measurements, i.e., the range of room temperature
throughout the year, and (2) it corresponds to the temperature range of the ultrasonic
transducer in use. We were utilizing a standard immersion transducer, whose normal
operating temperature range is 10~60 °C, beyond which the piezoelectric action of the
transducer would be weakened, making high-amplitude data acquisition difficult. The
ultrasonic echo signals were manually sampled and stored by the PC at a temperature
interval of 1 °C, which was chosen to account for the maximum number of temperature
points to be sampled and the required modeling time. The temperature was held constant
within £0.05 °C, as measured using a digital thermometer probe in the bath.

To ensure that the glass sample was in thermal equilibrium during the TOF measure-
ment, the sample was immersed in a controlled water bath for at least 94 min, which was
calculated according to the time f (hours) to reach equilibrium for a given glass thickness
d (cm), which could be expressed as t = d%/16 in [26]. To reduce measurement errors, the
echo signals were acquired three times at each temperature point. By using the described
correlation algorithm method, the ultrasonic TOF was obtained, and the average values
were used to calculate the cp. of the tested ULE samples. Nevertheless, the experiment did
not consider the change in the d and p of the tested samples.

The obtained ultrasonic velocities of samples 1#~6# are presented in Figure 8 in
terms of temperature. The ultrasonic velocities are observed to increase as the temperature
increases. Changes in ¢y, are correlated with temperature changes, regardless of the absolute
value of the CTE. Comparing Figure 8a—f, we can also observe that the ultrasonic velocity
differs at the same temperature and that the ¢y, increases with the CTE of ULE glass.
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Figure 8. Changes in cp (m-s~ 1) with temperature for all measured samples: (a) sample 1#; (b) sample
2#; (c) sample 3#; (d) sample 4#; (e) sample 5#; (f) sample 6#.

5.2.2. Analysis of the Change in the ¢, with T

The data from Figure 8 were used to directly plot the changes in cj, as a function
of T according to the exponential fitting in Equation (22). Table 2 displays the results of
all six samples, with excellent exponential fits given for each case and with ay, mostly
ranging from 0.000127 to 0.000129, which shows that for ULE materials with very small
CTE differences, their ay, is almost constant. This means that the temperature effect pattern
on ultrasonic velocity was essentially the same in ULE glasses with different CTE values.
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Therefore, the average value of these ay, coefficients could be taken as the temperature
correction coefficient of ultrasonic velocity in ULE glass. Of course, because of the small
difference in the CTE, the ¢’ in Equation (22) showed relatively large fluctuations. In the
physical sense, the ¢’ indicates that ¢, correpsonds to 0 °C. It was found that as the CTE
of the ULE sample increased, ¢’ increased correspondingly, which is consistent with the
mechanism of the linear positive correlation between ¢y, and the CTE.

Table 2. Data from the six samples shown in Figure 8 were taken to exponentially fit the relationship
between ¢y and T.

No. ap/x107° R? RMSE
1# 127 0.977 0.7118
2# 127 0.985 0.5718
3# 129 0.970 0.8330
44 127 0.966 0.8734
5# 128 0.974 0.7718
6# 128 0.984 0.5944

Note: No.—sample number; a; —temperature coefficient of ultrasonic longitudinal wave velocity; R>—R-square
(a measure of goodness of fit).

To represent the more pronounced difference in the ultrasonic velocity with increasing
temperature for the ULE samples with different CTE values, a new coefficient is defined

as follows:
ACL

BL = (AT (24)

Here, we take the ¢y, corresponding to 10 °C of the samples as the basis cr, and
calculate the By, via Equation (24) with temperature increments of 5 °C, i.e., at 15 °C, 20 °C,
25 °C, and 30 °C. The By, for samples 1#, 2#, and 3# is shown in Figure 9. We noted that
for the different temperature ranges, the speed of the ultrasonic velocity changes with
the temperature was inconsistent. This is possibly because the elastic modulus also has a
temperature coefficient fg, which varies in different temperature ranges. The PV value
of By, for the three samples was 0.000098, 0.000056, and 0.000101. Considering that the
difference was minor, we conclude that the multi-data point fitting method that was used
to obtain ay, in a given temperature range in this paper is a more feasible equivalent to an
average function and has wider temperature applicability.
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Figure 9. The relationship between fj, and temperature for ULE samples with different CTEs.

Samples 4# and 5#, which had the same CTE, were also analyzed for differences in
the cr, as the temperature increased, and the results are shown in Figure 10. We found that
the two samples had similar patterns of variation in B;. This implies that the changing
trends in the ultrasonic velocity with temperature was, to some extent, consistent with the
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changing trend of the CTE with temperature; however, this assumes that the thickness of
the ULE glass sample did not change over a wide temperature range.
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Figure 10. The relationship between B; and temperature for ULE samples with the same CTE.

The correlation between ¢, and T in ULE glass over a wide range of CTE values
from —1 ppb/°C to +3 ppb/°C was investigated and discussed. We will next validate
the accuracy of the ¢ —T exponential model for ULE samples with different CTE values

through a series of experiments.

5.3. Accuracy Validation of cr—T Model

The accuracy of the c; —T model was decisive for its application in engineering. Sam-
ples 1#, 3#, and 5# were randomly selected, and their ultrasonic velocities were measured
at ten random temperature points in the range of 10~30 °C. The measured values were
compared with the model predictions in this paper, and the results are shown in Table 3.

Table 3. Experimental data from the model validation and their error analysis.

No. Tem?)ecr;lture cm(m/s) cp(m/s) cm—Ccp(m/s) ! Ol/i !
10.2 5745.5 5746.3 -0.8 0.014
12.7 5748.1 5748.2 —0.1 0.002
14.3 5749.6 5749.3 0.3 0.005
15.2 5749.4 5750.0 —0.6 0.010
17.6 5750.3 5751.7 —1.4 0.024

1# 21.8 5754.4 5754.8 —0.4 0.007
23.5 5754.9 5756.1 —-1.2 0.021
25.6 5457.1 5757.6 -05 0.009
26.0 5757.5 5757.9 —04 0.007
27.9 5759.4 5759.3 0.1 0.002

0. =0.75

10.8 5747.5 5746.8 0.7 0.012
124 5747.9 5748.0 —0.1 0.002
15.2 5751.7 5750.1 1.6 0.028
16.5 5751.5 5751.0 0.5 0.009
16.9 5751.4 5751.3 0.1 0.002

3# 18.4 5751.5 5752.4 -0.9 0.016
23.3 5757.3 5756.1 1.2 0.021
243 5757.2 5756.8 0.4 0.007
25.6 5757.5 5757.8 -0.3 0.005
29.0 5761.1 5760.3 0.8 0.014

o =0.85
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Table 3. Cont.

Temperature 151

No. €0 cm(m/s) cp(m/s) cm—cp(m/s) 9%
10.6 5750.4 5749.7 0.7 0.012
13 5750.2 5750.2 0.0 0.000
135 5752.1 5751.8 03 0.005
141 5753.1 5752.3 0.8 0.014
15.1 5754.4 5753.0 14 0.024

St 175 5754.2 5754.8 ~06 0.010
203 5756.8 5756.8 0.0 0.000
252 5760.3 5760.5 —02 0.003
25.9 5760.4 5761.0 —06 0.010
29.9 5764.8 5763.9 0.9 0.016

0c =073

Note: ¢ is the actual measured ultrasonic velocity, cp is the ultrasonic velocity predicted by the fitting model,
and J denotes the relative error. The deviation o is a measure of the inaccuracy.

Considering that the measurement locations of the three samples in the model val-
idation procedure may vary, it was reasonable to use a recalculation of ¢ based on the
standard ultrasonic velocity at 20 °C to determine the ¢ -T exponential model, which may
differ slightly from the ¢’ obtained by modeling the above ¢; ~T data. The ¢ values in the
tested glasses at an average room temperature of 20 °C were substituted into the derived
exponential model based on the average temperature coefficient from the above fitting
analysis to determine a c; -T exponential model for each tested glass. As seen in Table 3,
the standard deviation of the predicted values for three samples were all within 0.90 m/s,
and the relative errors between measured and model-predicted values were mostly within
0.020%, which suggests that the models fitted in this work exhibit high precision.

Of course, it should be noted that increasing the sample thickness may further reduce
the errors in c;, measurement, but it also imposes more stringent requirements on the
frequency of the transducer and time required for the sample to reach thermal equilibrium.

6. Conclusions

In this investigation, the aim was to theoretically analyze and validate the dependence
of the ultrasonic velocity in ULE glass on temperature. Based on the simulation and
experimental investigations, we can draw the following conclusions:

1. The proposed pulse reflection immersion method provides reliable and stable mea-
surements of the ultrasonic echo signal of ULE glass, and the calculation of the signal
based on the correlation method can be used to conveniently and accurately extract
the ultrasonic TOF of the tested sample and then obtain the ultrasonic velocity.

2. The application of the proposed method for six ULE samples with different CTE
values indicates that ultrasonic velocity increases as the experimental temperature
is increased. Furthermore, the ¢;—T exponential model was theoretically analyzed
and experimentally fitted. The predicted cy, using the exponential model at ten ran-
dom temperature points shows good agreement with the actual measured ultrasonic
velocities at the same temperature.

These findings indicate the promising potential of the ¢ —T exponential model to
determine the ultrasonic velocity at a specified temperature for ultrasonic nondestructive
CTE measurement in large ULE glass, which will be critical for reliably evaluating the CTE
homogeneity of large ULE glass at a specified temperature.

There are some comments that can be made about the general applicability of our
method. In this paper, the derivation and verification of the c -T relationship are only for
isotropic ULE glass, but the method for deriving exponential model can also be applied
to anisotropic materials, such as anisotropic crystals, and for obtaining the longitudinal
wave velocity, transverse wave velocity, and then the Poisson’s ratio. The only distinction is
.. As for the experimental verification method for the exponential model, the correlation
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method, it is also applicable for the measurement of the TOF, regardless of whether the
material is isotropic.
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Abstract: A pavement structural survey plays a vital role in road maintenance and management. This
study was intended to explore the feasibility of a non-stop pavement structure assessment method by
analyzing the vibration data from a vehicle sensor. In this study, three falling weight deflectometer
(FWD) tests and four vehicle vibration tests were conducted on five pavement structures. The
FWD test results show that the continuously reinforced composite pavement has a higher structural
stiffness than the semi-rigid base asphalt pavement. According to the statistical distribution of
vehicle acceleration, a distribution parameter, the peak probability density (PPD), was proposed. The
correlation coefficient (—0.722) of the center deflection (D1) and PPD indicates a strong correlation
between the two variables. Therefore, PPD is strongly correlated with pavement structural stiffness.
This study proposed a novel characterization method for pavement structural conditions based on
the distribution parameter of the vehicle vibration signal.

Keywords: pavement; structural condition; vibration signal; probability density distribution; correlation
coefficient; falling weight deflectometer test

1. Introduction

The good structural condition of infrastructure is the basis for ensuring its safe oper-
ation and providing the corresponding services. Therefore, structural health monitoring
(SHM) has always been a hot spot in the engineering industry. Among SHM methods,
vibration-based SHM uses the dynamic response of structures such as acceleration to re-
flect the structural condition [1]. This method has the merit of remote testing, while the
drawbacks are that it requires an installation cost, and the power should be more accessible.

During the operation of a pavement, its structural stiffness is weakening year by year.
Obtaining the structural condition of the pavement is an essential part of a pavement
condition survey and evaluation, which is the basis for the transport agencies to make
maintenance decisions, ensure the pavement’s structural security, and maintain its level
of service.

The assessment methods of pavement structure conditions mainly include the core-
drilling method, dynamic deflection method, and some innovative methods using dis-
tributed fiber and ground-penetrating radar, etc. [2,3]. The core-drilling sampling method
is inconvenient to use because it destroys the pavement structure and interrupts traffic.
Therefore, it is often adopted for verification rather than testing. In contrast, the dynamic
deflection method has a broader application. Researchers have mainly studied the per-
formance evaluation of pavement structure based on the modulus back-calculation and
deflection basin parameters [4—6]. The former has received more attention.
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In 1977, Hou [7] proposed a method in his doctoral dissertation to compare the error
between the two deflections was minimal. Later, many researchers adopted a similar idea to
invert the structural layer modulus based on the falling weight deflectometer (FWD) deflec-
tion basin data. As time went by, some scholars employed advanced analytical techniques
such as neural networks, genetic algorithms to solve the non-uniqueness of the solution in
modulus inversion. Li and Wang [8] developed an artificial neural network and genetic
algorithm (ANN-GA) method to back-calculate the layer moduli of flexible pavement from
the falling weight deflectometer (FWD) test. The back-calculated parameters can be directly
applied to the mechanistic-empirical design for pavement overlays.

Deflection data analysis can effectively evaluate the performance of pavement struc-
ture, but this kind of method requires parking before testing. Closing roads will affect
traffic flow; therefore, it is difficult to apply on roads with heavy traffic. This study explores
the feasibility of a non-stop pavement structure assessment method by analyzing vehicle
vibration data.

Pavement condition includes structural condition and surface condition. Pavement
condition surveys based on vehicle vibration primarily focus on surface performance [9,10],
including pavement roughness [11], surface stresses such as potholes and transverse
cracks, etc. [12-14]. Still, there are very few studies on pavement structures. In fact, the
vibration of a vehicle running on the pavement can reflect structural conditions to a certain
extent, and only this relationship may be implicit.

Inspired by vibration-based structural health monitoring, Yang and co-workers demon-
strated for the first time the feasibility of analyzing a bridge structure through the vibration
signals of the driven vehicle [15]. Over the past years, they still focused on this issue
and have conducted a series of analyses, from the initial extraction of the first-order
frequency to the determination of modal parameters such as multi-order frequencies,
damping, and mode shapes, then to damage identification and location, and expansion
joint detection, etc. [16-19]. Unlike traditional SHM, these methods are called indirect
SHM (ISHM) because the sensors are installed on a moving vehicle rather than on the
structure itself [20]. ISHM has the merits of being mobile, economic, and efficient [19].
In response to the problem that the manually extracted features are not very sensitive to
damage, Liu, et al. [21] proposed a physics-guided algorithm to extract an effective feature
to determine the damage in a bridge.

With the rapid development of smartphones, in recent years, there has been some
research on ISHM, based on the data obtained by the built-in sensors of smartphones [22,23].
These data are mainly derived from a triaxial accelerometer, a global positioning system
(GPS), and an inertial measurement unit (IMU). This kind of method has an even lower
cost and can collect more data. By using a smartphone, Quqa, et al. [1] explored the
feasibility of using bicycles to extract common modal parameters of structures, namely the
natural frequency modal shape and the operating deflection shape (ODS), which has been
demonstrated on a footbridge in Italy.

From the above analysis, it can be seen that the research objects of the vehicle-vibration-
based method mainly focus on the bridge structure or the pavement surface condition.
However, the analysis of the pavement structure condition through indirect vehicle vibra-
tion needs more research. Therefore, this study intends to analyze this aspect, aiming to
provide a method of characterizing pavement structural conditions based on characteristic
parameters of vibration signal distribution. The result may provide a basic methodological
framework for studying the pavement structural performance evolution in the long-term
operation process.

This paper is organized as follows. Section 2 introduces the test conditions, including
the pavement conditions and experiment conditions; Section 3 analyzes the results of the
dynamic deflection test and the vehicle vibration test and then establishes a link between
the two; Section 4 presents some discussion about the proposed method and Section 5
states the conclusion of this study.
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2. Test Introduction
2.1. Pavement Condition

The authors conducted four vehicle vibration tests and three dynamic deflection tests
on five pavement structures in Shanghai from 2018 to 2021. Five test sections were selected,
including three continuously reinforced composite pavements with different structures, one
semi-rigid base asphalt pavement, and one pavement that was the junction of a composite
section and a semi-rigid base section. The basic parameters of the test section are shown in
Table 1.

Table 1. Basic parameters of the test section.

Section Length

Structure Cross-Section

1 200 m Continuously reinforced composite pavement A Two-way 4-lane

2 200 m Continuously reinforced composite pavement B Two-way 6-lane

3 200 m Continuously reinforced composite pavement B + semi-rigid base pavement Two-way 6-lane

4 200 m Continuously reinforced composite pavement C Two-way 6-lane

5 200 m Semi-rigid base pavement Two-way 6-lane

It can be seen from Table 2 that the surface layer of the five test sections had the same
structure, that is, 4 cm SMA-13 + 6 cm AC-20C. The base, subbase, and subgrade structures
were quite different.

Table 2. Schematic diagram of the pavement structures.
Section 1 Section 2 Section 3 Section 4 Section 5
4 cm SMA-13 4 cm SMA-13 4 cm SMA-13 4 cm SMA-13 4 cm SMA-13 4 cm SMA-13
(SBS modified) (SBS modified) (SBS modified) (SBS modified) (SBS modified) (SBS modified)

6 cm AC-20C 6 cm AC-20C 6 cm AC-20C 6 cm AC-20C 6 cm AC-20C 6 cm AC-20C
(anti-rutting agent)  (anti-rutting agent) (anti-rutting agent) (anti-rutting agent) (anti-rutting agent) (anti-rutting agent)
26 cm continuously 26 cm continuously § em AC-25C 26 cm continuously 26 cm continuously § cm AC-25C

. . (rock asphalt . . (rock asphalt
reinforced concrete  reinforced concrete P reinforced concrete  reinforced concrete I
modification) modification)

0.6 cm slurry seal

0.6 cm slurry seal

0.6 cm slurry seal

20 cm cold 40 cm cement
. . 40 cm cement . e 40 cm cement
regeneration 20 cm plain stabilized 20 cm plain stabilized crushed stabilized
(three-slag base concrete concrete stone leveling
regeneration) macadam layer macadam
20 cm graded
gravel

2.2. Test Condition

This study carried out three FWD tests and four vibration tests on the test sections in
2018, 2019, 2020, and 2021. To avoid the interference of temperature, the temperature of
these tests were close, as shown in Table 3.

Table 3. Date and temperature.

Test 1st 2nd 3rd 4th
Date 23 September 2018 9 September 2019 20 September 2020 21 May 2021
Temperature 22~27°C 23~28 °C 21~27°C 22~27°C

2.2.1. Deflection Test

Evaluating the pavement structure based on the collected pavement surface deflection
derived from the falling weight deflectometer (FWD) is common. The multipoint vehicle-
mounted falling weight deflectometer (SHN-FWD-MV) was used in this study, as displayed
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in Figure 1a. The test was conducted every 20 m along the longitudinal direction. The
schematic diagram of the field test is shown in Figure 1b.

Driving direction

[ >

20m 20m
Lane 1
Test vehicle Lane 2
Lane 3
Emergency
parking strip
(b)

Figure 1. FWD field test and the schematic diagram. (a) FWD field test. (b) The schematic diagram of
FWD test.

The deflection basin data were obtained through the test results of nine displacement
sensors. The distances between the nine sensors and the center point of the load were 0,
200, 300, 450, 600, 900, 1200, 1500, and 1800 mm, numbered d1~d9, and the corresponding
sensor values were D1~D9. The load size was 50 kN, and the load plate radius was 15 cm.

2.2.2. Vehicle Vibration Test

The test equipment included a test car, a vibration sensor, a constant current adapter, a
data acquisition card, and a laptop computer. For the placement position, some studies
simply place the sensors on the vehicle floor, seat, or center console for ease of installation.
Still, these locations are far away from where the tires and the pavement are in contact
and have passed the vibration damping system; therefore, the vibration is relatively small
and less sensitive. In this study, the vibration sensor was installed on the knuckle of the
right front wheel, which is not subjected to the vibration damping system and thus is more
sensitive to pavement conditions. The sensor position is shown in Figure 2. A motion
camera was used to record the surface condition of the testing pavement, which was
installed on the hood, as shown in Figure 3.

Increasing the sampling frequency generally can obtain more information, which
is conducive to identifying pavement conditions. However, meanwhile, high sampling
frequency leads to a large amount of data storage and lower computation efficiency. The
sampling frequency of the vehicle vibration test was 1280 Hz.
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Figure 3. The motion camera.

After installing the vibration test equipment and adjusting the test parameters, we
drove the test vehicle at a uniform speed on the five test sections. When a vehicle is
traveling at a high speed, the tire may jump off the ground at certain positions, which is
contrary to the assumption that the distance between the tire and the pavement surface is
zero [24]. Therefore, the driving speed should not be too high, and the vehicle speed was
maintained at 70 km/h during the test. The traffic volume of the test sections is large, and
there may be congestion during the weekday, therefore, the tests were implemented on
weekend afternoons.

3. Test Result Analysis
3.1. Deflection Test

Each measuring point was hammered three times during the pavement surface de-
flection test. The first stroke is for trial and the average deflection value of the second and
third strokes was used for analysis. There were 11 measuring points in each section when
the length of the test section was 200 m, and the interval was 20 m. The average value of
the 11 measuring points was taken to draw the deflection basin diagram, which is shown
in Figure 4. The central deflection of the five sections in the three tests is shown in Figure 5.

The central deflection (D1) is generally used to evaluate the overall structural stiffness
of the pavement. The larger the D1 is, the lower the structural stiffness is. According to
Figures 4 and 5:

e  The structural stiffness of the continuously reinforced composite pavement

(Sections 2 and 4) is better than the semi-rigid base asphalt pavement (Section 5);

o  The structural stiffness of the junction (Section 3) of the two pavement structures is in
the middle;
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e  Although Section 1 is a composite pavement, its structural stiffness is worse than that
of Sections 2 and 4 because the subbase of Section 1 is weak among the five pavements
(see Table 2);

e With the extension of the operating time, D1 has increased, indicating that the pave-
ment structural stiffness has decreased.

Sensors Sensors
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
15 15
5 35 235 M‘
S = .
8 855 4
= 55 =
j53 53
[a)] a]
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Figure 4. Deflection basin of each test. (a) The first test. (b) The second test. (c) The third test.
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Figure 5. D1 of five sections in three tests.
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3.2. Vehicle Acceleration Analysis
3.2.1. Accelerogram Analysis

The vehicle acceleration mainly comes from the road excitation while driving, and
the inertia force of the engine. The vehicle acceleration when only the engine was running
and that when the vehicle was driving on a road pavement is shown in Figure 6. Figure 6
shows that the acceleration induced by the engine was quite small compared with that
induced by the road. It also means that the placement of the vibration sensor was rational.

Only the engme is runnmg

T W |
%M | \W ‘\JW w“ I U/M
b Ay

50 100 150 200 250 300 350 400 450 500
Data point

Figure 6. The vehicle acceleration when only the engine is running and when driving on a pavement.

Noises were inevitably introduced during the vibration test, including the engine
noise and the instrument noise, etc. Wavelet denoising is considered to be one of the best
tools in engineering signal analysis [25]. Therefore, we used the wavelet transform to
denoise the raw data. The wavelet basis we used was Symlet 3 and the decomposition
level was 3. These parameters are not fixed and should be determined according to the
signal itself (such as signal sampling frequency, etc.) and the actual situation of engineering
applications. The vibration data below were all processed after the denoising.

The time-domain waveforms of the first vehicle vibration test on the five sections are
shown in Figure 7. It appears that the vehicle acceleration of Sections 3 and 5 are relatively
large. Apart from that, the difference in the vehicle acceleration in each section is not
obvious, and further analysis is needed.

Section 1
T

0 20 40 60 80 100 120 140 160 180 200
Section 2
T

N

‘Vehicle acclerations (m/s )

0 20 40 60 80 100 120 140 160 180 200
ection 3

0 20 40 60 80 100 120 140 160 180 200
Section 4

0 20 40 60 80 100 120 140 160 180 200
Section 5

0 20 40 60 80 100 120 140 160 180 200
Distance (m)

Figure 7. The time-domain diagram of the acceleration at the first test.
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Probability density

3.2.2. Acceleration Statistical Analysis

In order to make a statistical analysis of the vehicle vibration acceleration of 5 sections,
the probability density distribution histogram of the acceleration at the first test is drawn
in Figure 8. Through the Kolmogorov-Smirnov test, the vehicle acceleration data are found
to be normally distributed since the p-value is larger than 0.05. The acceleration probability

density fitting graphs of the four tests are drawn in Figure 9.
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Figure 8. The probability density histogram of vehicle acceleration.

0.18 . . : : . : . :
== == «Section |
016 1 == Section 2 | |
At = — Section 3
Ir Section 4
014 N L Section 5 | |
012 F
01
0.08 |
0.06
0.04 -
0.02 F

0 L

=25 -20 -15 -10 -5 0 5

Acceleration (m/s°)

(a)

Figure 9. Cont.

15 20 25

78

10

0.18 T T T T
== == :Section 1
0.16 === Section 2
== == :Section 3
o1al Section 4
--------- Section 5
2002 F
g
S o1l
£
£ 008
=
e
=006
0.04
0.02 |
0
20 20

Acceleration (m/s”)

(b)




Appl. Sci. 2022,12, 683

e o o o
5 B > =

Probability density
e

0.06

0.04

0.02 -

0.08 -

T T T 0.18 ; : T T i
= = :Section | = = :Scction |
et | T T
S = = 'Section3
Section 4 Section 4
--------- Section 5 | - 0.14 sreeneens Section 5 | 4
F 1 S 012 F
Z
£
S 01
B3
< 0.08 -
S
2
L J & 0.06
0.04
0.02 -
0
20 20 20 B 20
. 2
Acceleration (m/s?) Acceleration (m/s”)
(0 (d)

Figure 9. The normal fitting diagram of the probability density of vehicle acceleration. (a) The first
test. (b) The second test. (c) The third test. (d) The fourth test.

According to Figure 9, for the continuously reinforced composite pavement
(Sections 1, 2 and 4), the probability density distribution is relatively concentrated, and
the curve is steeper. The probability density distribution is more scattered, and the curve is
gentler for the semi-rigid base asphalt pavement (Section 5). For the junction of the two
pavements (Section 3), the probability density distribution map is located between the
two. From the perspective of the longitudinal time series, compared with the previous
test, the probability density distribution curve of the latter test has a lower height and a
larger width.

To quantify the above description, we calculated the width and height of the proba-
bility density distribution curve. The height is easy to understand, that is, the maximum
probability density. Suppose the width is defined as the width of the abscissa axis, that is,
the difference between the maximum acceleration and the minimum acceleration. In that
case, it is easily affected by some abnormal values. Therefore, the width here is defined as
the width of two inflection points on both sides of the probability density distribution curve.
The point of inflection is the point where the second derivative of the function is zero.

Acceleration datum x obeys normal distribution; y is the mean, and ¢ is the standard
deviation. The probability density distribution function is as follows:

_ 1 _(=p?
f) = —— eXP( o0z @
Find the second derivative of f(x) as follows:
1" _ 1 _(xfy)z X— ¢ 2_i
£1(x) = <= exp( — ) -5 @

Let f/(x) =0, and we can find that the function has two solutions:
X1=U+0, X0=Uu—0 3)

In this study, the mean value of the vibration acceleration is calculated as 0; therefore,
the two solutions of the function are as follows:

X1=0, X =—0 4)
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Therefore, on both sides of the probability density distribution curve, there are two
symmetrical inflection points, that is, the width of the curve is 2¢.
By substituting x = y into Equation (1), the peak probability density (PPD) can be
computed as follows:
1

V2o

It can be seen that the height and width of the probability density distribution curve
are only related to o; hence we only need one parameter. The height is more evident in the
figure than the width, and the final parameter selected is the peak height of the probability
density distribution curve, that is, PPD.

PPD =

)

3.3. Correlation Analysis of Vehicle Acceleration and Pavement Surface Deflection

Table 2 shows that the surface layer of the five test sections has the same structure,
namely 4 cm SMA-13 and 6 cm AC-20C. Moreover, the surface condition is quite similar
according to the video recorded by the motion camera. Therefore, it is reasonable to
compare the vehicle acceleration and pavement surface deflection.

Pearson’s correlation coefficient is commonly used to measure the correlation between
two variables (the peak probability density of acceleration and central deflection). In
statistics [26], Pearson’s correlation coefficient (r) can measure the correlation between
two variables, —1 < r < 1. If r is positive, there is a positive correlation between the two
variables, and the larger the value of r is, the stronger the correlation is. A negative r value
means the two variables have a negative correlation; the smaller the value, the stronger the
correlation. There is no correlation between the two variables if 7 is 0.

The relationship between the correlation degree of the variable and || is shown in
Table 4.

Table 4. Correlation degree of the variable.

Irl 0.8~1.0 0.6~0.8 0.4~0.6 0.2~0.4 0~0.2

Correlation degree ~ Very strong ~ Strong ~ Middle  Weak  Very weak or no correlation

For the peak probability density (PPD) and the center deflection (D1), their scatter
diagram is shown in Figure 10. The greater the acceleration probability density is, the
smaller the center deflection is. There is a linear correlation between the two variables so
that the Pearson correlation coefficient can be used for evaluation.

0.15 0.20 0.25 0.30
PPD

Figure 10. Relationship between PPD and D1.

The Pearson correlation coefficient (r) between PPD and D1 is calculated to be —0.722.
According to Table 4, there is a strong negative correlation between them. D1 is negatively
correlated with pavement structural stiffness. Therefore, it can be concluded that a strong
positive correlation exists between PPD and the pavement structural stiffness. The greater
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the PPD is, the higher the stiffness of the pavement structure is. The reason may be that the
stronger pavement causes the vehicle to vibrate more frequently. Frequent vibrations will
cause the vehicle acceleration to cross zero more frequently, which means that the proba-
bility of a vehicle acceleration value being zero is greater. When the abscissas are equally
spaced, greater probability means higher probability density. This result preliminarily
proves that the vehicle acceleration can reflect the pavement’s structural stiffness.

4. Discussions

A pavement structural survey is a complex issue that requires either laborious work or
advanced equipment. Assessing a pavement’s structural stiffness through vehicle vibration
signals has the merits of convenience, low cost, and being non-destructive. However, it
is a relatively novel approach that lacks sufficient research. A vibration-based pavement
structural survey is challenging, and this study analyzed its feasibility.

According to the result of this study, the structural difference between the continuously
reinforced composite pavement and semi-rigid base asphalt pavement is easy to distinguish.
However, classifying three types of continuously reinforced composite pavement (A, B and
C) is still arduous because their pavement structure is similar. In our future research, we
need to improve the proposed method by adjusting the testing vehicle (such as increasing
the weight) and developing thorough data analysis methods.

The road surface is paved with a temperature-influenced material, the asphalt mixture.
Temperature changes would lead to changes in the pavement structural stiffness. Therefore,
the surface deflection obtained by the FWD test usually requires temperature correction.
The vehicle vibration test obtains the vehicle acceleration through the contact between the
tire and the road, so the data would also be affected by the temperature. In this study,
each vehicle vibration test and the corresponding deflection test were carried out on the
same day. The temperatures were relatively similar, avoiding the influence of ambient
temperature. However, in future research, the impact of temperature changes on the test
data and results should be considered for a more detailed analysis.

5. Conclusions

In this study, a preliminary exploration was made on the evaluation of pavement
structure conditions based on vehicle vibration. For the five pavement structures, four
vehicle vibration tests and three pavement surface deflection tests were conductedfrom
2018 to 2021. According to the results of the FWD test, the pavement structure stiffness
is relatively high for the continuously reinforced composite pavement. The structural
stiffness of the semi-rigid base asphalt pavement is poor. For the junction of the composite
pavement and the semi-rigid base pavement, the structural stiffness is middling. With the
increase in the operating time, the pavement structural stiffness decreased.

According to the vehicle vibration test result, the peak probability density (PPD) of
vehicle vibration acceleration was relatively large for the pavement section with high struc-
tural stiffness; the value was relatively small for the pavement with poor structural stiffness.
However, for the three types of continuously reinforced composite pavements with slight
differences in structural stiffness, it is difficult to describe the structural differences using
this indicator.

The correlation analysis between the PPD of vehicle vibration acceleration and the
center deflection (D1) shows that the correlation coefficient is —0.722, which is a strong
positive correlation. Therefore, it can be inferred that the vehicle vibration acceleration can
reflect the stiffness of the pavement structure to a certain extent, but the exact relationship
between the two needs further research and analysis. This may be due to the lightweight of
the test car and the insufficient sensitivity of the structure. Subsequent tests can be carried
out with heavier vehicles in order to have a higher sensitivity to structural performance.
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Abstract: Frozen soils are encountered on construction sites in the polar regions or regions where
artificial frozen ground (AFG) methods are used. Thus, efficient ways to monitor the behavior
and potential failure of frozen soils are currently in demand. The advancement of thermographic
technology presents an alternative solution as deformation occurring in frozen soils generate heat
via inter-particle friction, and thus a subsequent increase in temperature. In this research, uniaxial
compression tests were conducted on cylindrical frozen soil specimens of three types, namely clay,
sand, and gravel. During the tests, surface temperature profiles of the specimens were recorded
through an infrared video camera. The thermographic videos were analyzed, and subsequent results
showed that temperature increases caused by frictional heat could be observed in all three frozen
soil specimens. Therefore, increases in temperature can be deemed as an indicator for the potential
failure of frozen soils and this method is applicable for monitoring purposes.

Keywords: frozen soil; infrared camera; crack

1. Introduction

Historically, humans lived and built structures on frozen ground among Arctic areas
where annual average temperatures were below the freezing point of water. Artificial
frozen ground (AFG) methods have recently gained popularity as a technique to stabilize
soil during excavation. Due to the bonding effects of ice, frozen soil is stronger and more
rigid than regular soil and may demonstrate mechanical behavior similar to concrete. The
crack initiation and propagation of concrete has been studied by numerous researchers, but
few studies have focused on cracks in frozen soil.

As cracking occurs, there is a relative movement of soil particles around the crack,
and hence frictional heat. The frictional heat may cause temperature increases, which
can be observed using a thermographic device such as an infrared camera. Researchers
successfully used an infrared camera to detect various phenomena with temperature
changes, such as oil products spreading on water surfaces [1], wild fires [2], and wind
flow [3]. Specifically, the thermographic technique was applied to structural defects. The
behavior of rock and soil was determined through monitoring with infrared thermal
cameras [4,5]. Liu, et al. [6] applied infrared monitoring in an experimental study of a
tunnel. Seo, et al. [7], Seo [8] detected crack formation in pillars using an infrared camera.
Moreover, an infrared thermographic camera was applied in ice detection on wind turbine
blades [9] and aircraft air foils [10].

Though in some cases, the defects fail to generate temperature changes when the
structure is at rest. However, when heated by an external source, defects will display
different temperature compared with the rest of the structure. Broberg [11] used an infrared
camera to detect welding defects based on the temperature difference between defects and
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surrounding surfaces while the weld was heated by a flash lamp as an external IR source.
Starman and Matz [12] observed the propagation of artificially generated thermal pulses
in steel bars using an infrared camera to locate the presence of cracks. Afshani, et al. [13]
conducted a study to detect defects in the lining of a tunnel with an infrared thermal
camera. Recently, deep learning and machine learning analyses were applied to find a
crack in infrastructures [14,15]. Moreover, the three-dimensional monitoring system was
applied for monitoring the displacement and tilt of infrastructure using laser scanning [16].
In this paper, an experimental study was conducted by simulating frozen soils. The cracks
of different frozen soils were identified through infrared topography.

2. Methods
2.1. Specimen Preparation

Three cases of soil category were considered in this study, namely clay, sand, and
gravel. For the clay specimen, an undisturbed clay sample extracted from a depth of 3 m
was cut into a cylinder of 100 mm (diameter) by 150 mm (height). Next, the sample was
submerged in a water tank for 24 h until reaching saturation. Afterward, it was placed in a
freezer for at least 24 h. For the sand and gravel specimens, soil particles and water were
poured into molds iteratively to ensure the specimen was fully saturated and composition
was relatively uniform across the height. Then, they were frozen in a freezer before being
removed from the mold. Subsequently, the specimen was again stored in the freezer for
24 h before the test. Figure 1 shows the process of forming the frozen sand specimen. Due
to mechanical disturbances during the removal of the specimen, the height of the sand and
gravel specimen was not strictly controlled. The properties of the specimens is shown in
Table 1 and photos of specimens were taken before uniaxial compression tests as shown
in Figure 2.

Figure 1. Preparation of sand specimen.

Table 1. Properties of specimens (N.M. represents no measurement).

. Height Diameter Weight Density Specific .
Material (mm) (mm) (kg) (kg/m®)  Gravity ~ LorositY
clay 150 100 N.M. N.M. N.M. N.M.
sand 171 100 2.62 1948.76 2.25 0.24
gravel 179 100 2.75 1952.96 2.51 0.37
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Figure 2. Frozen soil specimens before uniaxial compression tests (clay, sand, and gravel from left
to right).

2.2. Thermal Graphic Imaging

Temperature changes can be detected remotely and non-intrusively. Additionally, the
thermograph provides 2D geometric information. Therefore, an infrared camera was used
in this research to detect crack formation in frozen soils. The infrared camera used was the
FLIR E60. The exported results file consisted of sequences of thermographic photos taken
at a frequency of 30 Hz and resolution of 320 * 240 pixels. Each pixel in a frame had its
temperature measured. The exported thermographic files were analyzed using the software
FLIR Research IR. The thermal sensitivity was 0.05 °C and the accuracy was +2 °C.

All bodies above 0 K (Kelvins) emit electromagnetic radiation. The characteristic of
the radiation depends on the temperature of the body, thus the temperature of the body can
be determined by the measured radiance. Infrared is a section of electromagnetic radiation
with wave length ranging from 780 nm to 1 mm [17]. At room temperature, the majority of
radiation energy lies within the range of infrared, which makes an infrared sensor the ideal
selection for the purpose of temperature measurement. When an object is photographed
using an infrared camera, the reflected infrared radiation emitted by the object is received
by the infrared camera’s sensor and simultaneously converted to an electronic signal. Then,
the electronic signal is processed by the controlling software to generate a thermal graphic
image or, in short, a thermograph.

The governing equation for the relationship between thermal radiation intensity and
temperature is shown by Stefan-Boltzmann’s law (1)

W = eoT? (1)

where W is radiance intensity (W/ m?) measured by the infrared sensor, Stefan-Boltzmann
constant o = 5.67 x 1078 % , T is the temperature of the object (K), € is emissivity. In
this research, software FLIR Research and Design [18] was used to process the infrared
measurement and the back-calculation from the measured radiance intensity to temperature
based on Equation (1).

Ideally, to obtain the precise relationship of values W and T, it is necessary that we
quantify the values of e precisely at any given time and location, which requires robust and
sophisticated calibration and strict control over atmospheric conditions. Such requirements
are practically difficult and unnecessary if the sole purpose concerns the occurrence of
abnormal changes in temperature rather than measuring the exact value of the temperature.
In this research, € = 0.95 is assumed.
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2.3. Test Procedures

In this research, uniaxial compression tests were conducted on frozen soil specimens
while the specimens were subjected to an infrared camera. The arrangement of the experi-
mental apparatus is shown in Figure 3.

Load
controller
Upper platen @ ?
Frozen soil
specimen
—
Compression
machine Laptop2
Lower

platen /™|

Laptopl

Infrared
camera

Figure 3. Experimental apparatus setup.

The infrared camera was placed approximately 1 m in front of the compression
machine. The load was recorded at a frequency of 10 Hz. The T-load curve was visible
simultaneously on laptop 2 controlling the compression machine. The uniaxial compression
test was terminated when the specimen failed or the lift of the piston reached its capacity.

3. Result and Analysis

Tests were conducted on 6 samples for each soil type where multiple samples for
each soil type can be seen in Figure 1. However, we were unable to observe the cracking
behaviors on all of the tests using an infrared camera due to the following three conditions:
(a) cracks occurred on the backsides of the samples, (b) samples disintegrated without
cracking due to melting (see Figure 4a,b), and (c) samples yielded without cracking (see
Figure 4c). Cracking occurred on either one or both sides of the specimen by chance, which
cannot be practically controlled. Yielding and disintegrating of specimens occurred as the
specimens were partially melted. The authors indeed attempted to repeat the tests under a
lower room temperature (around 15 °C) in the winter, however, satisfactory improvements
on avoiding the melting of specimens were not achieved. To avoid the melting of specimens,
the compression tests on specimens should be conducted under temperatures below the
freezing point of water [19-21]. In the previous research [19-21], the low temperature
of specimens during testing was maintained by immersing the specimens in liquid cool
materials. Unfortunately, such cooling systems were not available to the authors and
restricted the direct observation of specimens using the infrared thermographic camera
during compression tests. Therefore, specimens were not guaranteed to be completely
frozen during our tests. One sample of each soil type was analyzed as they demonstrated
evident cracking behavior.
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(a)

(b)

Figure 4. Failure of specimens without cracking behavior: (a) gravel; (b) sand; and (c) clay.

Due to a lack of pre-existing knowledge of conditions under which a crack would
appear in thermograph of frozen soils, the thermographs were carefully examined frame
by frame. The qualification of a crack can be qualitatively described as follows:

(a) Significant temporal temperature variation, compared to the immediate surrounding
area (baseline), occurring at certain spots of a relatively small area.

(b) The temperature variation initiates within the specimen surface and is not transmitted
from the interface between the specimen and the ambient environment.

(¢) The temperature variation is sustained for more than 1 frame, which disqualifies false
positives caused by random flocculation in the measured value of temperature.

(d) The temperature variation is not caused by mass transportation i.e., movement of
disintegrated soil particles or water flow thawed from ice.

According to the above description, two types of curves are plotted to demonstrate
the temperature change at a crack point. The T-t curve shows how the temperature at
the crack point varies temporally. The T-d curve shows how the temperature at the crack
point varies spatially. Moreover, the load-time curve is used to qualitatively determine
the strain-stress status of the specimen. It was assumed that the frozen soil specimens
displayed elastic-plastic behavior. The period before the load peaks is defined as the
elastic stage and the period after as the plastic stage. To convert the unit of distance
measured in the thermograph from pixel to mm, the thickness of the lower platen of
the compression machine was used to calculate the conversion ratio from pixel to mm.
The calculated conversion ratios for frozen clay, sand and gravel were 0.60, 0.62, and
0.65 mm/ pixel, respectively.

3.1. Crack in Frozen Clay

As shown in the load-time curve in Figure 5, the load peaked at 96.30 s after the test
commenced. After 96.30 s, the temperature of certain points on the specimen’s surface
appears to increase at a slightly higher rate than the rest. One example is indicated in
Figure 6 as the crack point. A baseline point about 4 mm downwards of the crack point
was selected to mitigate the effect of measurement errors and the effect of heating from
the ambient atmosphere on the variation of temperature. The AT (temperature change)-t
(time) curve for the crack point and baseline points are plotted in Figure 7. The temperature
profile was set relative to temperature changes, with 0 chosen as the initial temperature
at the reference point. The temperature changes were filtered by implementation of a
Savitzky—Golay filter.
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Figure 5. Uniaxial load-time curve of clay specimen.
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Figure 6. Temperature profile of clay specimen (unit of scale bar is in °C).
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Figure 7. Temperature—time curve of crack point and baseline for clay specimen.
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Disregarding the random flocculation, from 105 s to 123 s, the temperature increases
from —3.02 °C to —2.41 °C.

The temperature increase at the crack point was further verified by the temperature
profile along a line approximately perpendicular to the crack as shown in Figure 8. The
temperature profile at the start of the test (0 s), immediately before the crack occurs (105 s),
and after the crack forms (125 s), are plotted. Before the crack occurs, there is no significant
difference in temperature between the potential crack point and the rest. After the crack is
formed, the temperature at the crack point is 0.57 °C higher than those at the points not
influenced by the crack.

— +— Start of test (0 s)
---a--- Innitiation (105 s)
—a— Formation (125 s)

~w T
-4.50 -3.50 \.-/2‘50

~ - T T T
050 150 250 Wso

-0.20 -
Distance from crack point (mm)

Figure 8. Temperature profile along a measurement line approximately perpendicular to the crack
(the position of the measurement line is marked on the temperature profile attached on the top left).

3.2. Bulge Effect in Frozen Sand

Although there was no individual crack observed in the sand case, as the frozen
sand specimen was compressed, the expansion in the radial direction, which we termed
bulge, became significantly visible after yield and the observation can also be correlated
to temperature variations. The temperature of three representative points located at the
upper part (U.), lower left part (L.L), lower right part (L.R), and the average temperature of
a square area (S.) were selected to demonstrate the effect of the bulge on temperature. The
locations are indicated in Figure 9. In Figure 9, temperatures are mostly above 0 °C as the
surface of the specimen was covered by water instead of ice. The ambient air temperature
was around 30 °C. The ice on the top of the specimen melted immediately after contact
between the specimen and upper platen of the compression machine. Due to gravitational
effects, the water subsequently ran off downwards onto the specimen surface. Although
the specimen was completely frozen initially, certain parts melted during the compression
test. The same observation was made for the clay specimen and gravel specimen.

The temperature and load curves are plotted together in Figure 10. As the bulge of the
specimen becomes evident after yield (64.9 s), the temperature of each single point of the
specimen surface demonstrated 4 simultaneous impulsive increases initiating at 66.80 s,
88.30's,99.53 s, and 110.30 s, respectively. Impulses were not observed at points outside of
the specimen surface, which signifies these impulses were not measurement errors. The
magnitude of AT for the impulses ranged from 0.37 to 0.95 °C.
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Figure 9. Temperature profile of frozen sand specimen at the start (right) and end (left) of the
compression test (unit of scale bar is in °C).
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Figure 10. Load curve and temperature-time curve of sand specimen.

3.3. Cracks in Frozen Gravel

Two types of cracks were observed during the compression test of the gravel specimen.
The cracks, which occurred in-between gravel particles, caused increases of temperature at
the crack point. Such cracks were denoted as I1, 12 I3, and I4 for ‘increase’. Temperature
decreases at the crack point were observed for cracks which occurred within the ice block.
Such cracks were denoted as D1, D2, D3, D4, D5, and D6 following the capitalized initial
of the word ‘decrease’. The ideal temperature variation for cracks of types I (increase)
and D (decrease) are illustrated in Figure 11. When cracks occur between gravel particles,
the inter-particle friction generates heat. However, those frictional forces were relatively
negligible between ice surfaces due to their smoothness. Although there was heat generated
around ice particles, the heat would probably be consumed by the melting of ice as opposed
to an increase in temperature. The temperature decrease is due to a temperature gradient
travelling from the surface to the inner core of the specimen. As the crack widens, the inner
surface of the specimen, the temperature of which is lower compared to the outside, is
exposed to the camera. The location of these two types of cracks is indicated in Figure 12.
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Figure 11. Ideal temperature-time curves of crack type I and type D.
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Figure 12. Locations of cracks before plastic deformation (a) and after plastic deformation (b).

Temporal variations for cracks I1, D2 and D5 are shown in Figures 13a, 13b and 13c,
respectively. Crack I1 occurs at the time of yield. Before the crack initiates, the temperature
of the crack point is relatively constant and approximately equal to the baseline temperature.
The AT-t curve of the crack point deviates from that of the baseline since t = 126.33 s. From
t=126.33 to t = 128.80 s, the temperature at the crack point increases by 0.6 °C while that
at the baseline remains relatively stable. After the crack is formed, the temperature at the
crack remains relatively steady from 128.90 to 135.33 s but subsequently decreases due to
the decrease in load, as shown in Figure 14.
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Figure 14. Variation of load and temperature with time at crack point I1.

Crack D2 forms at the transitional point between stress softening and plastic defor-
mation, which takes less time than the formation of crack I1. This is compatible with the
explanation that there is minimal friction and ice is extremely brittle The magnitude of the
temperature decrease is less important than the temperature increase for the crack between
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gravel particles as the decrease only demonstrates the depth of the crack that develops into
the specimen. Crack I5 occurs along the global failure surface during plastic deformation.
The crack occurred at 265 s with a temperature increase of 0.51 °C. Following the relative
movement between two parts of the specimen on each side of the failure, the surface starts
at a 280 s to display a temperature increase that takes 3 steps, which corresponds to the
steps of relative movement along the failure surface observed in the video. The load, and
hence the stress within the specimen, is less than those observed previously during the
elastic stage when I1 occurs. However, the relative movement along the global failure
surface is more intense. Thus, both the rate of increase and the total amount of increase
in temperature is larger. From the 280 s to 315 s, the temperature increase due to friction
along the global failure surface is 2.66 °C. The spatial temperature distribution across I1,
D2, and I5 are also plotted to demonstrate the increase during the formation of the crack in
Figure 15. ATy is defined as

ATI] = Tll - Taverage (2)

where Tj; is the temperature at crack I1 at formation and Taperqge is the average at the
immediate surrounding area of crack I1.
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Figure 15. Temperature profile during crack formation: (a) crack I1; (b) crack D2, and (c) crack I5.

In the same manner, the time, t;, represents when the crack is fully developed and
AT; is recorded for cracks 12, I3, 15, D1, D3, D4, and D6. After a crack has formed, the
temperature may still vary, subject to the change in stress-strain conditions. Thus, the AT
for crack I1 at the stress-softening stage (denoted by the initial ‘s” as subscript in I15) and
plastic stage (denoted by the initial “p” as subscript in 1) and AT for Crack 12 at the plastic
stage were also calculated.

The series of (¢;, AT;) are plotted together with the load-time curve in Figure 16. During
the elastic stage, only two cracks, I1 and D1, occur slightly before yield (128.9 s). As the load
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25

decreases during the stress-softening period, the AT at crack I1 also decreases. A series of
cracks consisting of 4 types D and 1 type I occur immediately before the transition to plastic
deformation at 162.0 s. Afterward, the load remains relatively constant as the compression
reaches its plastic stage and no crack occurs until t = 265 s when the cracks later form the
initiating global failure line. From t = 265 s to t 300 s, the global failure surface gradually
grows by connecting the individual cracks and the temperature along with it generally
increases. The total increase in temperature at these series of cracks are all above 2.1 °C.
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Figure 16. Load-time curve with magnitudes of temperature change at cracks.

Figure 17 shows the temperature profile and normalized temperature profile around
I1 at yield, stress softening and failure. AT is a result of frictional heat but its magnitude
also depends on the thermal properties. It is assumed that the thermal properties and
conditions of crack I1 remain constant during the test.
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Figure 17. Temperature profile and normalized AT at crack Il at yield, stress softening, and
plastic stage.

For the crack I1, values p and C can be assumed constant during the test. Although the
stress at the crack was not measured, it can be inferred that the stress is proportional to the
load. Before the plastic stage, the deformation of the entire specimen was relatively uniform
and there was little inter-particle movement. There, the AT is mostly determined by the
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load. The load is the highest at yield and subsequently decreases during the stress-softening
stage while the rate of displacement shows no significant change throughout the period.
Thus, ATy is higher than AT;. After the plastic stage was reached, although the stress
is lower than before, the rate of displacement is significantly higher. The AT, continues
increasing and, when the specimen eventually fails, AT, is much higher than ATy and AT;.

With the normalized profile, the propagation of frictional heat can be examined. The
dimension affected by the frictional heat expands during the test but is ultimately limited
by the dimensions of the gravel particle directly subjected to frictional forces. It seems the
temperature of ice within the void of particles remains unaffected by the frictional heat.
There are two possible explanations:

1. Theice has a much higher heat capacity than the gravel.
2. The heat transferred to the ice will be consumed by the melting of ice rather than
causing an increase in temperature.

3.4. Comparison of Behavior of Plastic Stage

In Figure 18 the spatial temperature profile of cracks from all 3 cases are plotted
together. The maximum value of AT is observed in Figure 17 also plotted together with
the load curve in Figure 19a. The strain is estimated from the deformation of specimen
in the videos. However, the magnitude of AT cannot provide an undistorted view of
the magnitude of friction as the AT also depends on thermal parameters such as the
specific heat capacity besides the frictional heat. Thus, the frictional heat is back-calculated
from AT.
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———
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Figure 18. Comparison of temperature profiles across cracks during plastic deformation.

A body of unit amount of mass is considered for each specimen and the body is
assumed as an isolated system. Regarding the clay and gravel specimens, the body is
located in the pixel referred to as the crack point. For the sand specimen, the body is located
in an arbitrary position within rectangle S. Thus, the amount of frictional heat that occurred
in those bodies of unit weight can be calculated as:

AH = Cpy x AT 3)

where C;;, is the specific heat capacity of unit mass, AT is the temporal temperature change
resulting from crack or bulge. The value of C;, is obtained from the literature as shown
in Table 2.
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Figure 19. Inter-particle friction in frozen soils: (a) comparison of AT with stain and load; and (b)
comparison of AH with stain and load.

Table 2. Values of C;; from the literature.

Material Cu(J-gK~1.°C™1)  Source Description
Clay 1.750 [22] Saturated and frozen, measured at 0 °C
sand 0770 [23] Dry, measured at 0 °C
Gravel 0.810 ¥

As the spatial resolution was about 0.4mm/ pixel in this study, for the calculation of
the gravel specimen, pixels of the crack point observed were within the gravel particle, thus
the ¢, for dry gravel was directly used. For the clay and sand specimens, the c;, for the
soil-water mixture should be used. The c;, for sand is very much dependent on the void
ratio of the sand specimen. The c;, for the sand—ice mixture is assumed to be the weighted
average of specific heat capacity for ice and dry sand and calculated as

7C5><ms+C,v><m,'

C
" Mg + m;

(4)
where C; is the specific heat capacity per unit mass of sand, Cy, is the specific heat capacity
per unit of ice, m; and 11, are the mass of sand and ice(water) constituting the specimen,
Cs = 0.770]/(gK) is cited in Table 2, mg; = 2257 g and m,, = 370 g are measured when the
specimens are prepared. C; is estimated according to an empirical equation proposed by
Dickinson and Osborne [24] as follows:

Ci = 2.114 4 0.007789T (5)

The value of T (temperature) should be assigned to the unit of K. To be consistent with
the heat capacity for gravel and clay measured at 0 °C, T = 273.15 K is used in Equation (4),
Ci =2.116 ] /(gK). With all the values on the right-hand side in Equation (3) obtained, Cy,
can be calculated. The values of C,;, adopted for all three cases are listed in Table 3 and
these values were used in Equation (4) to calculate the AH for each case.

Table 3. Values Cy,; of adopted in this research.

Material Cin (J/(gK))
Frozen Clay 1.750
Frozen Sand 1.116

Frozen Gravel 0.810
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Figure 19b shows the AH in unit mass resulting from inter-particle friction and load—
strain curve for all 3 cases altogether. As shown in Table 3, the equivalent unit weight
specific heat capacity C;, of frozen gravel is the lowest among the three different specimens.
It is assumed the frictional heat generated is proportional to the work done by the compres-
sion. The work done by compression is approximately proportional to the product of load
and axial strain in Figure 19. Before the maximum load points of the specimens, the gravel
specimen experienced the most frictional heat AH. Therefore, according to Equation (4),
AT = AH/Cy,, the temperature change of gravel is higher than that of sand and clay.

For the clay specimen, during the plastic deform, there was significant radial defor-
mation at the top and bottom of the specimen, which occurred immediately contact of the
platen of the compression machine. Moreover, the rest of specimen deformed similar to
an extremely viscous fluid. The friction results from the differential displacement rates
between neighboring clay particles. For the sand specimen, as the specimen bulges, the
sand particle layers must rearrange. Particles are squeezed into neighboring layers in an
axial direction and hence friction occurs. As the friction is distributed among the entire
specimen, thus AH in unit mass is the least among the 3 cases during plastic deformation.
For the gravel specimen, the AH is more than 2 times that of the other two cases, because
the friction concentrates on the global failure surface where two parts of the specimen slide
against each other. The same set of curves except for that of the sand case are also replotted
in Figure 20 with normalized AT. This shows that the affected distance of the crack in the
clay case is less than that of the gravel case. This might be related to the particle size of the
soil. As can be seen in the case of gravel, the surface of the temperature rise propagates
through the ice in the voids of the soil particle skeleton. Moreover, the estimated specific
heat of gravel was less than half of that of frozen clay. This reveals that it took less amount
of heat for the frozen gravel to increase a unit of temperature than for the frozen clay. Thus,
the temperature increase due to frictional heat occurred in a smaller spatial dimension in
frozen clay than in frozen gravel.

—=—Clay

—a—Gravel-I1p

Normalised AT (° C)

W

Figure 20. Comparison of AT normalised AT between clay and gravel cases.

Distance to crack (mm)

4. Discussion

The identification of the change in thermographic profile was labor intensive and
difficult to manage in real time. Thus, the application of this method for monitoring
purpose on-site requires significant improvements in efficiency in the future. For example,
deep-learning image pattern recognition methods could be applied to automate the process
of identification of cracking patterns in thermography.

In this research, tests were conducted at summer room temperature conditions (be-
tween 25 °C and 32 °C) and thermodynamic processes occurred, such as heat transmission
between specimens and platens of compression machine occurred. It was assumed that
temperature changes were not affected by thermodynamic processes. Emissivity of speci-
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mens were assumed constant and uniform among all samples. Both assumptions may not
agree with real-life conditions upon application of this method in the field.

5. Conclusions

In this research, the thermographic profile of frozen soil specimens under uniaxial
compression test was studied. For all 3 cases, abnormal temperature variations on specimen
surfaces due to inter-particle friction occurred were observed.

a. In frozen clay specimens, the temperature increases at cracks were identified only
after plastic deformation occurred.

b. For frozen sand, simultaneous temperature increases were observed along the entire
specimen as it bulged at the plastic stage.

c. In frozen gravel, temperature changes were observed for before cracks appeared

in addition to a yield. For cracks in ice particles, there were temperature decreases
due to changes in geometry. For cracks in gravel particles, there were temperature
increases due to inter-particle friction.

d. Compared in terms of AH in unit mass it was shown that the friction in gravel was
the strongest and that in sand was the least.
e. The propagation of temperature increases from cracks were also examined in frozen

clay and gravel cases. Subsequently, it was shown that the temperature rise propa-
gates further in gravel than in sand.
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Abstract: The free cantilever method (FCM) is a bridge construction method in which the left and
right segments are joined in sequence from a pier without using a bottom strut. To support the
imbalance of the left and right moments during construction, temporary steel rods, upon which
tensile force is applied that cannot be managed after construction, are embedded in the pier. If there
is an excessive loss of tensile force applied to the steel rods, the segments can collapse owing to the
unbalanced moment, which may cause personal and property damage. Therefore, it is essential
to monitor the tensile force in the temporary steel rods to prevent such accidents. In this study, a
tensile force estimation method for the temporary steel rods of an FCM bridge using embedded
Elasto-Magnetic (EM) sensors was proposed. After the tensile force was applied to the steel rods, the
change in tensile force was monitored according to the changing area of a magnetic hysteresis curve,
as measured by the embedded EM sensors. To verify the field applicability of the proposed method,
the EM sensors were installed in an FCM bridge pier under construction. The three sensors were
installed in conjunction with a sheath tube, and the magnetic hysteresis curve was measured over
nine months. Temperature data from the measurement period were used to compensate for the error
due to daily temperature fluctuations. The estimated tensile force was consistent with an error range
of +4% when compared with the reference value measured by the load cell. Based on the results of
this experiment, the applicability of the proposed method was demonstrated.

Keywords: free cantilever method (FCM); temporary steel rod; tensile force; embedded Elasto-
Magnetic (EM) sensor; magnetic hysteresis curve; temperature compensation

1. Introduction

As the construction industry develops, the importance of effective and efficient main-
tenance techniques for the structures is increasingly emphasized. In the case of bridges, the
need for more advanced maintenance technology is gradually increasing as construction
methods progress [1,2]. Prestressed Concrete (PSC) has been used in numerous bridges
since the late 1960s [3] when the post-tension method was first used in bridge construction.
PSC is characterized by a higher tensile strength than plain concrete because the initial
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stress is pre-applied to the concrete. In addition, PSC offers the advantage that the con-
struction can be performed at a low cost, which is increasingly demanded in the bridge
construction industry [4].

The free cantilever method (FCM) is a construction method for PSC bridges that
does not install scaffolding systems under the bridge and completes the superstructure
of the bridge by sequentially joining the segments to form a span by post-tensioning and
balancing them left and right from each pier using special erection equipment. The FCM
has advantages in terms of construction conditions and its period. As it does not use a
shore or a scaffold, the bridge can be constructed under extreme conditions, such as in
deep valleys or at sea. Furthermore, the construction period can be shortened in the case
of using the precast concrete method, where manufactured girders are assembled at the
construction site, rather than the in situ concrete method. Thus, the FCM is consistently
used for bridge construction. However, considering the characteristics of the FCM, which
joins segments from side to side, an unbalanced moment may occur owing to the load
generated during construction, as shown in Figure 1.

Resultant moment

7 N l
//

Segents Temporary steel rods || pie| Pier table /:izisg:ﬁl
ins =

Figure 1. Illustration of unbalanced moment occurrence during construction of FCM bridges.

To prevent such a problem, temporary steel rods are embedded in the pier table. Then,
calculated tensile forces are introduced to withstand the loads and their resulting moments
during the construction stage. However, because the temporary steel rods are embedded in
the pier table, it is almost impossible to visually observe and determine whether the tensile
forces introduced to the rods are being maintained properly. If the signs of destruction or
loss of tension are not recognized at the early stages, and consequential actions are not
taken in a timely manner, accidents, such as sudden collapses and falls, may occur during
construction. Therefore, a Non-Destructive Test (NDT) technique, which can be applied to
the temporary steel rods during construction, is necessary to reduce the potential accidents.

Recently, a great deal of research has been conducted on measuring steel tension,
such as the tensile force estimation method of a PS tendon using a Fiber Bragg Grating
(FBG) sensor [5,6] or an Elasto-Magnetic (EM) sensor [7-9] and a tensile force measurement
method of steel wire using a natural frequency measurement [10]. In addition, tensile force
measurements of unbonded steel wires using longitudinal guided ultrasonic measurement
techniques [11,12] and magnetic flux transmission monitoring techniques using magnetic
circuits [13] have been studied. A method that uses an acoustoelastic theory was proposed
to evaluate the prestress levels in post-tensioned steel strands employing changes in
longitudinal stress wave velocity [14,15]. The aforementioned studies showed the estimated
tensile force from the sensor response according to the introduced tensile force. However,
the changes in the measured value due to environmental changes, such as temperature,
were not taken into consideration with a sufficiently long observation period. A study
that considered the temperature condition of the target structure was also proposed using
various sensors. An SHM system for a long-span, cable-membrane structure was also
proposed by Tang et al. [16]. It was applied to monitor the structural static responses,
structural vibration, and environmental effects of the structure using various types of
sensors, including a magnetic flux sensor, an FBG strain gauge, an FGB thermometer,
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an accelerometer, and so on. A study to estimate the girder deflection under thermal
actions was conducted for a cable-stayed bridge [17]. Although those studies showed the
correlation between the temperature distribution on the members of the bridge and the
deflection of the girder by thermal actions, this study focuses on the change in the signal
of the sensor, which measures the tension force as the change in temperature of the target
member leads to the change in the obtained signals. Therefore, in this study, a technique
was proposed for estimating the tensile force during the construction of an FCM bridge
using embedded EM sensors to monitor the magnetic hysteresis of the temporary steel
rods, considering the temperature effect on the sensors continually. The embedded EM
sensor consists of two coils and a bobbin. The primary coil generates a magnetic field
after magnetizing the steel rods, and the secondary coil serves to measure the magnetic
flux generated in the magnetized steel rods. The magnetic hysteresis curve generated
from the measured magnetic flux varies depending on the change in the magnetic field
according to the change in the tension of the steel rods [18,19]. It leads to the change of the
area of the hysteresis curve. The tensile force was estimated by calculating the changing
area. However, the sensor coil, being made of copper, is very sensitive to the change of
temperature [20] and, thus, affects the sensor response. The signals from the sensors may
not be interpreted accurately without reflecting on this phenomenon. Therefore, in this
study, a temperature compensation method was applied for the correction of the errors
caused by the temperature change.

2. Theoretical Background and Methods
2.1. EM Sensor

The EM sensor used in this paper is composed of a part for inducing voltage to
generate magnetic fields and a part for measuring it, as shown in Figure 2. The coils are
wound on the outer surface of the bobbin, and insulation covers are wrapped between
each coil. The coils pulled out of the bobbin are connected to the data-acquisition device
through connectors. A protection cover is on the outermost surface of the EM sensor, and it
protects the sensors from the concrete pouring. For the attachment of the EM sensor to the
sheath around the temporary steel rod, conchoids are on the inner surface of both ends of
the bobbin.

Primary coil Secondary coil
Protection cover
\ l Connector

Temporary steel rod

|
Sheath 1

Bobbin Insulation cover Conchoids to connect
with the sheath

Figure 2. Schematic diagram of embedded EM sensors.

2.2. Prestress Loss in PSC Bridge

Prestress is introduced to the PSC bridge at each major construction stage of the bridge
superstructure. The loss of prestress introduced to the structure has various causes, and the
type of the loss is usually classified into immediate loss and long-term loss [21]. Immediate
loss occurs when the prestress is introduced, and it includes the loss due to friction between
the PS steel and the sheath pipe, the anchorage slip, and the elastic deformation of the
concrete. Long-term loss refers to the loss that occurs over time after the introduction of
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the prestress, and it is related to the creep and drying shrinkage of the concrete and the
relaxation of the PS steel.

2.3. Tensile Force Estimation through Measuring Area of Magnetic Hysteresis Curve

In this study, the magnetic hysteresis curves were measured using embedded EM
sensors to monitor the change in the tensile force of the temporary steel rods during the
construction of an FCM bridge. Three embedded EM sensors were installed with a sheath
pipe outside the steel rod used for the construction. As shown in Figure 3, when a voltage
is applied to the primary coil of the installed EM sensor, the magnetic field of the steel rod
becomes saturated. On the other hand, when a reverse voltage is applied, the direction
of magnetic field in the steel rod is reversed, creating a magnetic hysteresis curve (B-H
Loop) [22]. However, the shape of the hysteresis curve begins to change when some amount
of force is applied to induce stresses inside the steel rod [23]. The letter A in Figure 3 shows
a state of magnetization generated in the absence of stress, while the letter B indicates a
magnetization state after stress is applied [24].

B

Brod- = “Reversing .
A voltage directigr

Br

H

0 H; Hy
Figure 3. Change of magnetic hysteresis curve according to the effect of tensile force.

The magnetic hysteresis curve measured by this principle represents the relationship
between the strength of the magnetic field and the magnetic flux density of a ferromagnetic
material, which is used to indicate the magnetic property of the ferromagnetic material. In
addition, when the tensile force introduced to the steel rod changes, the magnetic properties
change by the inverse magnetostriction effect, leading to the consequential change of the
magnetic hysteresis curve. When the tensile force increases, the magnetic flux density
increases, leading to an increase in the magnetic flux leakage. As the magnetic flux leakage
increases, the area of the magnetic hysteresis curve increases. Therefore, it is possible
to estimate the state of the introduced tensile force by measuring the area increase and
decrease of the magnetic hysteresis curve for the temporary steel rods.

2.4. Temperature Compensation Method

A temperature compensation technique was adopted to correct the measurement errors
due to the temperature changes during the measurement. Temperature compensation is
essential because steel materials, including the temporary steel rods used in this study, are
greatly affected by external forces and temperature changes [25-27]. Such compensation
techniques are broadly divided into software-based methods and hardware design methods.
However, the methods through hardware compensation have a limitation in their use in the
field because they suffer from poor reliability due to their inability to cope with design errors
that may occur during production [28]. Therefore, in this study, a software compensation
technique using a quadratic polynomial was applied. The polynomial compensation
technique is widely used as a temperature compensation technique for measurement data.
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The quadratic polynomial employed in this study is represented by the following regression
equation [27]:
Fp = ago + a10Vr + ann T + ax V# + a1 Ve T + app T?, 1)

where F), is the tensile force predicted by the quadratic polynomial fitting; V7 is the applied
voltage; T is the on-site temperature; and aq, 410, ag1, 420, 411, and ap, are the second-order
fitting coefficients. The change in the area of the graph of the measured magnetic hysteresis
curve, using embedded EM sensors, was approximated to the second order through regression
analysis. The temperature dependence was compensated for by substituting the temperature
data measured in the field into the equation with their respective measurement times.

3. Field Experimental Results and Discussion
3.1. Experimental Setup

To apply the embedded EM sensors to the site, a tensile force monitoring experiment
was conducted by measuring the magnetic hysteresis curve at the construction site of
a PSC bridge where the FCM was applied. The test bridge was a box-type PSC girder
bridge with a span of 640 m and a width of 24.51 m at a construction site in Asan city,
Chungcheongnam-do, Republic of Korea. The steel rods applied to the site were circular
rods with a diameter of 47 mm, an ultimate strength (F,) of 1820 kN, and a yield strength
(Fy) of 1650 kN. A load cell was installed with the application of three embedded EM
sensors to measure the accurate prestressed force. The load cell used in the experiment is a
VW type (S§]-3000), made by Sungjin Geotec in South Korea. Its specifications are shown in
Table 1. The VW type load cell uses a principle by which the vibration wire generates the
resonant frequency, and the frequency is transmitted to the output device to display the
necessary engineering unit when it is magnetized by the magnetic coil mounted due to the
load. The embedded EM sensor and its specifications are shown in Figure 4 and Table 2,
respectively. The bobbin was made of a primary coil part with a diameter of 117 mm and a
secondary coil part with a diameter of 107 mm. The primary and the secondary coils were
wound 300 times and 120 times, respectively.

Table 1. Specifications of load cell (SJ-3000).

Classification Values and Description
Capacity 1177 kN
Ultimate overload 150% of Capacity
Resolution 0.025% ES.
Accuracy +£0.1~£1% ES.
Linearity error +0.5% ES.
Material SCM alloy steel
Gauge 3 VW Strain gauge (4 Strain gauge)
Thermal expansion coefficient 10.8 x 1076/°C
Operating temp. range —40 °C~80 °C
Type NTC Thermistor (3KD-ATF)
Temp. sensor operating range —40°C~80°C
Accuracy Thermistor: +1 °C
Waterproof Fluoride O-ring, High—@ensity vacuum grease
coating
Weight 4.95kg

Table 2. Specifications of the embedded EM sensor.

Classification Primary Coil Secondary Coil
Diameter of bobbin (mm) 117 107
Diameter of coil (mm) 1.2 0.3
Number of turns 300 120
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BN
Primary coil

 Protection cover A

(@) (b)

Figure 4. Fabricated EM sensor: (a) parts of EM sensor with insulation cover; (b) EM sensor equipped
with protection cover.

Figure 5 shows the location of the temporary steel rods and the EM sensors. Forty-
eight steel rods were installed in the pier at intervals of 500 mm from each other, and they
were connected from the pier to the pier table. The EM sensors were installed on three steel
rods, two of which were connected to the steel rods with the length of 10 m; the other one
was connected to the steel rod with the length of 11 m.

C.L of road
C.L of pier s@soo , . . | =—

. !
! /%;J;_irary steel rod

/ L=10m, ®47mm

Temporary
steel rod
C.L |with EM sensor

Temporary steel rod

T
|
I

} I |/ L=11m, ®47mm

| - Temporary
steel rod

road

(@) (b)

Figure 5. Layout of pier and pier table: (a) locations of EM sensors installed on pier table.
(b) cross-section of pier and pier table.

Figure 6 shows the installation process of the EM sensors. It was decided that the
locations of the EM sensors would be at three spots on the pier head, where two of them
were eccentric sections, and the other was a midsection. The sensors were installed with an
external sheath for the temporary steel rods. The cables connected to the sensor were pulled
out of the bridge using a cable tube to prevent damage during the concrete pouring. After
the concrete was hardened, a tensile force of 900 kN was introduced to all the temporary
steel rods. The magnetic hysteresis curve was measured by installing a container for the
measurement under the pier. The measurement was continuously conducted in 30 min
intervals for approximately 10 months, from 17 March 2019 to 6 January 2020.
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(@)

(b) (0

Figure 6. Installation process of embedded EM sensors: (a) inserting the sensor after cutting the
sheath; (b) sheath tube and sensor combination; (c) electric wire protection with cable tube.

A module incorporating a voltage amplifier, a data acquisition device, and a desktop
computer equipped with the NI (National Instrument) LabVIEW software package (Version
19.0) was used for the measurement. The measurements were performed five times to
reduce the measurement error from each sensor.

3.2. Initial Value Calibration of Tensile Force

The initial value calibration results using the EM sensors are shown in Figure 7. The
tensile force was measured six times by progressively increasing the prestressing force to
180 kN, 383 kN, 628 kN, 849 kN, 900 kN, and 915 kN. The area of the magnetic hysteresis
curve was measured simultaneously with the prestressing process.
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Figure 7. Cont.
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Figure 7. Calibration results using EM sensors: (a) Sensor 1; (b) Sensor 2; (c) Sensor 3.

The area of the B-H curve corresponding to the value of the tension force introduced to each
steel rod could be obtained through the initial value calibration. The area of the curve increases
as the tension force gets developed to the designed tensile force. Therefore, it was confirmed
that the area of the B-H curve and the introduced tensile force are in positive correlation.

3.3. Measurement Results of the Field Experiment

The results of measuring the tensile force using the load cell are shown in Figure 8.
The load cell data were used as the absolute values of the force introduced to the temporary
steel rods. In addition, the results of the change in area of the magnetic hysteresis curve
measured using the embedded EM sensors and the change in field temperature are shown
in Figure 9.
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Figure 9. Changes in the area of magnetic hysteresis curves and field temperature during the
measurement.

During the measurement, the input voltage remained constant to a 0.02-Hz triangular
wave of £3 V. Although the voltage input value to the sensor remained constant, the area
decreased as summer approached and then increased again as winter approached. The
results of Figure 9 indicate that the area of the magnetic hysteresis curve measured by the
embedded EM sensor exhibits an opposite trend to that of the temperature change.

3.4. Tensile Force Estimation with Temperature-Compensated Data

The temperature compensation method was described in the former section, and the
technique was employed in the data-compensation process. The area of the measured
hysteresis curve, which showed an inverse relation to the temperature data, was corrected
through temperature compensation, and the results are shown in Figure 10.
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Figure 10. B-H loop area changes of sensors after temperature compensation: (a) Sensor 1; (b) Sensor

2; (c) Sensor 3.
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The trend of the magnetic hysteresis curve due to the temperature change was modi-
fied from each sensor. It could be identified that the area decreased consistently in accor-
dance with prestress loss during the measurement. This result agreed with the descending
tendency of the tension force introduced to the temporary rods.

The tension force was estimated using the area of the magnetic hysteresis curve from
each sensor after correcting by temperature compensation. The results of comparing the
measured force with the load cell measurements are shown in Table 3. In addition, the
sensor measurements and the load cell results are plotted in Figure 11.

Table 3. Comparison of the estimated tensile force obtained using embedded EM sensors and the
tensile force measured using a load cell.

Load Sensor 1 Sensor 2 Sensor 3
oa Estimated Error Estimated Error Estimated Error  Temperature
Date Cell . . . A
(KN) Tension Rate Tension Rate Tension Rate ()]
(kN) (%) (kN) (%) (kN) (%)
1 April 2019 7:00 891 893.89 0.32 896.06 0.57 890.64 0.04 1.1
12 April 2019 14:00 880 884.04 0.46 884.10 0.47 880.23 0.03 13.0
13 May 2019 10:00 875 874.15 0.10 882.55 0.86 880.84 0.67 23.1
30 May 2019 9:00 872 866.71 0.61 890.79 2.15 881.98 1.14 18.6
14 June 2019 8:00 869 861.24 0.89 871.08 0.24 872.91 0.45 22.8
17 July 2019 10:00 865 860.11 0.57 864.91 0.01 871.28 0.73 25.5
14 ﬁoliggHSt 11:00 861 875.60 1.70 870.31 1.08 864.30 0.38 30.0
6 September
2019 9:00 858 858.15 0.02 863.12 0.60 864.65 0.78 23.2
2 Cz)gigber 15:00 850 877.66 325 877.31 321 867.11 2.01 185
6 December
2019 14:00 852 847.68 0.51 844.30 0.90 828.37 2.77 43
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Figure 11. Estimated tension after temperature compensation and actual tension: (a) Sensor 1;
(b) Sensor 2; (c) Sensor 3.

4. Conclusions

The tensile force management of the temporary steel rods plays a key role at the phase
of attaching segments during the construction of an FCM bridge to prevent any possible
collapse and to meet the construction schedule. Therefore, a tensile force estimation method
to measure the area of the magnetic hysteresis curve of the temporary steel installed in an
FCM bridge was proposed in this study. For the measurement, the embedded EM sensors
were installed in combination with a sheath tube outside the temporary steel rod. The
magnetic field strength and the induced magnetic flux density were obtained to form the
magnetic hysteresis curve. It was possible to estimate the tension by tracking the changes
in the magnetic hysteresis of the steel rods. As a noticeable trend in the curve due to
the temperature was observed, a temperature compensation technique using quadratic
polynomial fitting was applied to offset the measurement error. Three EM sensors were
employed to increase the reliability of the measurement data. To verify the applicability of
the study, the experiment using the EM sensors was conducted at an actual FCM bridge
construction site. Three EM sensors were installed at different spots on the pier head. An
initial value compensation method was exploited as a reference by measuring the tensile
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force and the area of the magnetic hysteresis curve at the same time during the prestressing
process. In the field experiment, steel rods with a diameter of 47 mm, an ultimate strength
(Fu) of 1820 kN, and a yield strength (Fy) of 1650 kN were used; the bridge was a PSC box
girder bridge with a total length of 640 m and a width of 24.51 m. The results of the tension
estimation were compared to the tension measured using a load cell installed on a steel
rod with sensor 1. The estimated results of sensors 1, 2, and 3 showed average error rates
of 0.68%, 0.95%, and 0.82%, respectively. The field applicability of the long-term tensile
force monitoring method using embedded EM sensors was verified through experiment
and analysis. This study’s reliability would be further increased by acquiring more data
through the long-term monitoring of additional bridge construction sites and by adopting
more accurate methods to reduce the error rate. Based on this, it is expected to develop
into a method for estimating the tensile force that can be applied to all PSC bridges to be
constructed using FCM.
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Abstract: Magnetic flux leakage (MFL) detection is a common nondestructive detection method
which is usually used to detect the surface defects of steel pipes and rails. To suppress the interference
of lift-off on the detection signal of the defects in rail head surfaces, a filtering method is proposed
according to the distribution characteristics of the defect leakage magnetic field (LMF) in different
directions. The sensor array is used to confirm the reference signal according to the difference
between the signals in x and z directions. The installation mode of the sensors is deduced according
to the distribution of the defect LME. The experimental results show that this method can effectively
suppress the lift-off interference in the MFL signal of the defects in the rail head surfaces.

Keywords: rail defects; MFL detection; filtering method; array sensor

1. Introduction

Railway is an important mode of public transportation in contemporary society. With
the increase in railway running mileage and speed, the risk of the rail defects affected by
repeated extrusion, friction, and impact of train wheel sets becomes higher [1].

To keep safe, some nondestructive testing techniques, such as ultrasonic, eddy current,
and MFL, have been used in the detection of rail defects [2]. Ultrasonic detection is a widely
used and mature rail detection technology [3,4]. It is a convenient method for detection of
the internal defects of a rail, but due to the need for a coupling agent, ultrasonic detection
cannot complete noncontact detection, so the detection speed cannot be further improved,
and it is difficult to detect the surface defects by ultrasound.

The eddy current detection needs no exchange agent. It is cheap, simple, and reliable;
however, traditional eddy current testing has obvious skin effect, which makes it difficult
to detect subsurface defects and is susceptible to the specimen surface state [5].

MFL is an electromagnetic detection technique developed from magnetic particle
detection [6]. The advantages of MFL are high sensitivity, high speed, and simple operation.
It can detect the surface or subsurface defects [7], but the detection signal is easily affected
by the lift-off change, the magnetic field excitation, and others.

The principle of MFL detection is shown in Figure 1. When magnetized ferromagnetic
material has defects in its surface, such as cracks, laminations, or magnetic nonuniformities
in the manufacturing process, the refraction of the magnetic induction line changes the
magnetic circuit, which leads to the leakage of part of the magnetic flux. By detecting the
magnetic field above the rail surface with sensors, a defect in the surface can be found and
further information about it can be obtained. Multiple sensors are usually arranged along
the width of a rail to detect the defect in the entire surface.

The vertical distance from the sensor or yoke to the rail is called lift-off. The LMF of a
defect near the rail surface changes quickly in the vertical direction. During detection, the
lift-off changes affected by vibration and other factors, thus interfering with the detection
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of the defects. With the development of MFL detection [8-10], various requirements are
proposed for railway detection equipment, such as high speed, high efficiency, and high
resolution, so interferences such as lift-off interference must be suppressed.

detection direction

AN

exciting coil

yoke

BRVERVERY

sensor
magnetic lines of force

S )

defect

Figure 1. MFL detection.

The interference can be suppressed by hardware such as differential circuit [11], but as
the interference is affected by detection speed, the state of the rail surface, and other factors,
a circuit is difficult to apply to various situations. Therefore, in addition to hardware
filtering, digital filtering is needed. The rail head upper surface defect is a common early
defect, and it is usually defected by MFL. This paper presents a method to suppress the
lift-off interference in MFL detection.

2. Related Works

Researchers have worked a lot on MFL detection for defects, such as the influence
of speed on MFL signal [12], magnetization time of high-speed MFL detection [13], and
excitation and vibration interference on the signal. In view of the interference, several
methods are proposed to suppress the interference.

Karuppasamy optimized the MFL technique by finite element model to detect outer
surface defects in ferromagnetic steam generator tubes. In this method, the iron core, coil,
coil current, and position of the sensor are optimized, and the MFL signal is predicted.
The influence of length, width, and depth of defects on the MFL signal is analyzed. The
reliability of detection is improved [14].

A probe consisting of a quantum well Hall-effect sensor, an illuminating electromagnet
and sensor circuitry, is designed. This probe is used to apply magnetic fields of various
frequencies and field strengths to ascertain a frequency and field range best suited to
detecting longitudinal surface-breaking toe cracks in ground mild steel welds [15].

As for the denoising process of the MFL signals, a multilevel filtering approach based
on wavelet denoising combined with median filtering is proposed. By analyzing and
comparing the denoising properties of three wavelet families, two wavelet bases with the
best denoising performance are recognized and selected. Then, the median filtering method
is cascaded [16].

To cover the entire workpiece or obtain sufficient data, sensor arrays are used [17].
The researchers carefully set up the position of the sensors in the probe and the relative
position of the sensors [18,19]. Because the distance between the sensors is close and their
vibration is similar, the lift-off interference can be suppressed through the relationship
between the signals.
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Ding Shunyi proposes a noise reconstruction algorithm of transverse sensor array and
constructed an adaptive interference canceller to filter the multichannel MFL signal of rail
treads [20].

Ji Kailun proposed a way of building a virtual channel signal which does not contain
any defect. Multiple sensors are arranged, the sensor with the minimum absolute value
of signal is considered as having not detected any defect, and this signal is used as a
reference signal for filtering [21]. This method suppresses interference to a certain extent,
but the lift-off interference and the leakage magnetic field of a defect may be in the reversed
phase. It is unreasonable to take the minimum as the reference signal, which will cause
certain misjudgment.

A defect detection method of longitudinal array sensors is proposed according to the
characteristics of the signals detected by the magnetic sensor in x and z directions [22]. The
method reduces the misjudgment caused by lift-off interference but is only suitable for
judging whether there is a defect and cannot be used for filtering.

The sensor signal changes caused by vibration are found to suppress the lift-off
interference, but their methods to find the signal changes are unreasonable [22]. Inspired
by these references, this paper presents a method to determine the signal change caused by
vibration through the difference between the signals in x and z directions of two sensors, to
suppress the lift-off noise.

3. Filtering Method
3.1. MFL Analysis

The detection range of a single magnetic sensor is small because the LMF of a defect is
always weak and small. Two rows of magnetic sensors are arranged along the y direction
to cover the entire surface of the rail head, as shown in Figure 2. The defects and varied
lift-off both change the output of the sensors.

Figure 2. Array sensors layout.

The surface defects are generally distributed near the edge or the center of the rail head,
and usually not across the entire surface or perpendicular to the x direction. Therefore,
when the sensors in a row pass through a defect, some magnetic sensors may detect the
defect and their outputs change while other sensors do not detect the defect and their
outputs do not change by the defect. The output of a sensor that detects the defect is
affected by both the defect and the change of the lift-off, while the output of a sensor that
does not detect the defect is affected only by the change of the lift-off.

Figure 3 shows the x and z plane near a defect. The defect width and depth are
denoted as 2a and b, respectively. The distance between the front and rear sensors rows is
denoted as 1, and the lift-off is denoted as d. The magnetic field intensity of the point P(x,z)
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above the defectis H(x, z) and its x and y component are Hx(x, z) and H(x, z), respectively.
Hx(x,z) and H,(x, z) can be obtained by Equations (1) and (2), respectively [19].

o 1b+z 1b+z 1z 4z
Hx:Hx(x,z)zﬁ{tan 1a_X+tan 1a+x—tan 1ﬁ—tan 1a+x] 1)

H,(x,2) = 2 In ()’ + (240 [(x—a) +2]

n {(x—a)z—l- (z+b)2] [(X—|—a)2 —|—zz] ®

where opy,s is the magnetic charge density of the defect side, which can be calculated by
Equation (3):

®)

cms:5.3< b/at1 >

b/(ap) +1
where 1 is the magnetic permeability of the material, and H is the applied magnetic
field strength.

N e

b defect

N
k2]

Figure 3. The x and z plane near a defect.

According to Equations (1) and (2), if z=1mm, a=1mm, b =1 mm, and oms =1, the
magnetic field distribution in x and z directions of the defect is shown in Figure 4.

08 T T T T T - -
06} zdirection)
04t :

0.2r
(1] e T E—
02F

04t

06 L " L " R L .
-20 -15 -10 5 0 5 10 15 20

Figure 4. Magnetic field distribution in the x and z directions.

120



Appl. Sci. 2022, 12, 1740

3.2. Principle of Filtering Method

According to Figure 4, the maximum of an MFL in the x direction of a defect is directly
above the defect, while the maximum and minimum of the MFL in the z direction is on
both sides of it. Two sensors are installed in the front and rear: a sensor which is used to
detect the LMF in the z direction is in the front, and the other sensor, which is used to detect
the LMF in the x direction, is installed in the rear. When the rear sensor is directly above a
defect, its output is the maximum. At this time, the output of the front sensor is negative.
The absolute value of the difference between the outputs is larger than that of each output.

Without any defect, the lift-off interference in x and z directions are in the same
direction. The smaller the lift-off, the greater the output in both x and z directions. In
a no-defect area, if one sensor measures the LMF in the x direction and the other sensor
measures the LMF in the z direction, the absolute value of the difference between their
output signals is smaller than that of each output.

Two sensors which detect the x and z directions MFL, respectively, are a pair, and
several pairs of sensors are arranged in y the direction, as shown in Figure 2. If the distance
between a pair of sensors is reasonable, the smaller the absolute value, the more likely it is
that no defect is measured. As described in Section 3.1, there are always several sensors in
a row that do not detect the LMF of a defect. It can be considered that the pair of sensors
with the smallest absolute value of the difference of their outputs does not detect the LMF
of a defect, and their outputs are taken as a reference signal that does not contain the defect
signal but only the lift-off interference.

The absolute value of the difference between the outputs of the two sensors should be
as large as possible to find the reference signal accurately. If a sensor detects the maximum
in the x direction and the other sensor detects the minimum in the z direction, the absolute
value of the difference between the outputs of the two sensors is the maximum.

According to Equation (1), if the lift-off is zy, which remains unchanged, Hx(x, z¢) is
the maximum when x = 0. According to Figure 4, the minimum of H, (X, zg) occurs on the
positive half-axis of x. Due to the small defect, the magnetic dipole model can be introduced
to simplify Equation (2) [19].

(4)

- (x —a)? + 22
H,(x,z) = (171 lnw

As the sensors are close to each other and their lift-offs are similar, z = zy. The
derivative of Equation (4) is taken to x and set as equal to 0.

H, (x,z9) =0 ©)

Equation (5) is then solved, that is, H,(x, zp) is the maximum when x = —, /a2 + Z%,
and Hy(x,z9) is the minimum when x = /a2 + z3. Obviously, if the distance between

two sensors is /a2 + z%, when the rear sensor detects the maximum in the x direction, the
front sensor detects the minimum in the z direction.

In actual detection, the spacing, which is denoted as 1 between two sensors, is deter-
mined as the minimum width and depth of the defect that should be detected. Figure 5
shows the distribution of LMFs of the defects with different sizes. The distance of 10 is
calculated according to the minimum defect. For a large defect, its LMF maximum in the x
direction is larger than that of a small defect. When a sensor is direct above a larger defect
and its output is the maximum in the x direction, the other sensor with a distance of 10 from
this sensor does not measure the minimum in the z direction. Nevertheless, its output is
smaller than the minimum of the minimal defect. In other words, the absolute value of the
difference between the outputs of a pair of sensors is greater than that of a small defect.
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Therefore, the spacing of the two sensors set to a small defect is also suitable for detecting
large defects.
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Figure 5. Magnetic field distribution of defects in x and z directions of different sizes.

In Figure 5, the LMF of a defect is within a certain range. To accurately identify and
reconstruct a defect, the LMF should be measured as completely as possible. However,
at a distance from the defect, the LMF is usually weak and difficult to distinguish from
interference. The boundary of LMF in this paper is that the absolute value of LMF reduces
to 10% of the maximum in the z direction. Beyond this range, the LMF is relatively small
and negligible.

According to Formula (1), if z = zy unchanged, H,(x,z9) is the maximum when
x = —,/a?+z2. The leakage magnetic field distributes in 2L centered on the defect.
According to Equation (4), L is calculated by Equation (6).

[(-L-a+2] {(—va“zﬁ—a)z“%]

hne—————<==—"In (6)

[(-L+a?+2] 10 {(_mﬂfﬂg}

The detection speed is v m/s, and the sampling speed is s point/s. ]y is a sampling
point in the z direction. If the distance between jy and the center of a defect is less than

L+ ,/a%+ 2(2), there will be a maximum point in the x direction and a minimum point in
the z direction from sampling point j, — B to j, + B.

(L+ 1/a2+z%)s

v

B= @)
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The absolute value of the difference between the output signals of the two sensors is
large at the maximum point, so it is beneficial to find the reference signal. The absolute
value of the difference between the outputs of two sensors in sampling point j is denoted
by aj. When sampling point jg is processed, ajo — B to ajy + B are calculated first. Secondly,
the maximum in ajy — B to ajy + B is found. The maximum of ith pair of sensors is denoted
by MAXi. At last, the pair of sensors with the smallest MAXi (i=1,2, ... ,N)is found and
their output is taken as the reference signal.

3.3. Filtering Algorithm

As shown in Figure 2, two rows of sensors are arranged at intervals along the y
direction below a yoke to detect magnetic fields in the x and z directions, respectively. The

distance between the two rows of magnetic sensors is 4 /a2 + Z%. The two magnetic sensors

Sx[i] and Sz[i] (i=1, 2, ..., N) are a pair, and there are N pairs of magnetic sensors. The
filtering steps are as follows.

1. Each sensor output is sampled, and the number of sampling points is denoted by M.
The sampling results of Sx[i] and Sz[i] are array Sx[i,j] and Sz[i,j] =1, 2, ..., M).
2. The array Ry[i, k] and R, [i, k] is calculated:

Si,1]1<k<B
Refi k] = SJi,j]B<k<M+B
Sy, M| M+B < k < M+ 2B

S,i,1]1<k<B
R.[i, k] = S,[,j]B<k<M+B
S,[i, M| M+B < k <M+ 2B

q is a loop variable with an initial value of B + 1.

3.  MAXJ[, q] = MAX|R«[i,p] —R:[Lp]| (p=q9—B, q—B+1,...,q+B).

4. The minimum in MAX][...,q] (i=1,2,...,N)is found. The number of the pair that
has the minimum is denoted by i0. The sampling point of the pair sensors are taken
as the reference signal. Ry[i,q] — Ry[io, q], Rz[L, q] — Rz[ip,q] G =1, 2, ..., N): The
differences are taken as the filtering results of each sensor at this sampling point.

5. q=q+1. If g <M + B, the process returns to step 3, otherwise the filtering ends.

4. Experimental Results and Analysis
4.1. Finite Element Simulation Results and Analysis

The finite element analysis software used in this paper is Ansys Maxwell. An MFL
detection model is built as shown in Figure 6. The yoke is made of ferromagnetic material.
The excitation coil adopts 4000 turns of copper wire. The DC excitation voltage is 60 V, and
the lift-off between the rail and the yoke is 2.0 mm. Two detection points with a lift-off of
2.0 mm are set up above the rail.

The width and depth of the defect are 2.0 mm and 1.0 mm, respectively and the lift-off
is 2.0 mm, which means that a = 1.0 mm, b = 1.0 mm, and z = 2.0 mm. According to
Formula (4), when the distance between a pair of sensors is y/a? + z2, which is 2.2 mm, the
absolute value of the difference between the outputs of the two sensors is the maximum.
The distance between two sensors is set to 1.8 mm, 2.2 mm, and 2.6 mm, respectively. The
simulation results are shown in Figure 7a—c.
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Figure 6. Simulation model.
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Figure 7. The x and z direction simulation results with different distance. (a) 1.8 mm; (b) 2.2 mm;
(c) 2.6 mm.

According to the simulation results in Figure 7a—c, the phase difference of the pair of
sensors becomes increasingly significant with the increase in the distance between them.
When the distance is 2.2 mm, one sensor detects the maximum in the x direction and the
other sensor detects the minimum in the z direction, which is indicated by the red line in
Figure 7. The absolute value of the difference between them is the maximum which is in
accordance with the above conclusion.

4.2. Physical Experiment Results and Analysis
4.2.1. Experiment System

An experimental system was built and is shown in Figure 8. The system consists of a
computer, a signal conditioning circuit, a DAQ card, and a probe. The sensor is an SL-106C,
whose length and width are both 1.5 mm. The amplifier is AD620, and the magnification
is 100. The DAQ card is ADLINK DAQ2208, and the sampling frequency of each channel
is set to 4 kHz. The probe, which consists of two rows, eight sensors per row, and an
excitation device, is mounted on a detection car that is placed on the rail. The detection
speed was 2.0 m/s.

Figure 8. MFL detection system.
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4.2.2. Single Defect Experiment

The detection object is an artificial defect in the surface of a used rail, as shown in
Figure 9. The direction of detection is from left to right. A wire is tied to the rail, which will
change the lift-off of the handcart to simulate the vibration. If no vibration is encountered,
the lift-off of the sensor is 2.0 mm, and when the handcart wheel rolls over the wire, the
lift-off will fluctuate within 2.0~3.5 mm. The defect is 2.0 mm in width and 1.0 mm in depth.
Therefore, a = 1.0 mm, zy = 2.0 mm. The distance between a pair of sensors is ,/a2 + z%,
that is 2.2 mm. L is 41.4 mm and B is 87, according to Formulas (5) and (6), respectively.

Figure 9. A rail with artificial defect.

A pair of sensors which detect the defect in x and z directions, respectively, are
arranged in the probe. The distance between them is set to 1.8 mm, 2.2 mm, and 2.6 mm
respectively. The detection results are shown in Figure 10.

According to Figure 10a—c, the phase of the signal of two sensors is different near the
defect and when the sensors pass through the defect, the difference in the phase increases
with increases in the sensor distance, which is shown in the red region. As shown in the
blue region, if vibration has occurred, the phases of the two signals are basically similar.
Therefore, the phase relationship of the two signals can be used to determine whether

there is a defect. In addition, when the distance between a pair of sensors is \/a2 + z%,
which is 2.2 mm, a sensor detects the maximum in the x direction and the other detects the
minimum in the z direction, and the absolute value of the difference between the outputs
of the two sensors is the maximum.
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Figure 10. Detection results with different distances. (a) 1.8 mm; (b) 2.2 mm; (c) 2.6 mm.

4.2.3. Multiple Defects Experiment

The detection results in the x and z directions of four different defects are shown in
Figure 11a—d, respectively. The lift-off is 2.0 mm. The distance between two sensors is
2.2 mm.

As shown in Figure 11a—d, the amplitude of the signal will increase when the depth of
the defect increases. When the distance between a pair of sensors is 2.2 mm in Figure 11a,b,
one sensor detects the maximum in the x direction and the other detects the minimum in the
z direction, and the absolute value of the difference between the outputs of the two sensors
is the maximum. As shown in Figure 11c,d, the width becomes larger when a sensor is
directly above the larger defect and its output is the maximum in the x direction; the other
does not measure the minimum in the z direction, but the absolute value of the difference
between them is greater than that of a small defect. Therefore, the distance calculated
according to the minimum defect is also applicable to the detection of large defects.
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Figure 11. Detection results with different defects. (a) width =2 mm, depth =1 mm; (b) width =2 mm,
depth =2 mm; (¢) width = 3 mm, depth = 1 mm; (d) width = 3 mm, depth =2 mm.

A used rail with eight artificial defects is detected, and a wire is tied to the rail also, as
shown in Figure 12. The width and depth of each defect are shown in Table 1. The lift-off
of the sensor is also fixed at 2.0 mm. The distance between the two sensors is 2.2 mm.

Figure 12. A rail with multiple artificial defects.
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Table 1. The width and depth of each defect.

Defect 1

Defect 2 Defect 3 Defect 4 Defect 5 Defect 6 Defect 7 Defect 8

Width
Depth

2.0 mm
1.0 mm

2.2 mm 2.2 mm 2.5 mm 2.5 mm 2.5 mm 2.5 mm 2.5 mm
1.2 mm 1.2 mm 2.0 mm 2.5 mm 2.5mm 2.8 mm 3.0 mm

Signal amplitude/V

Signal amplitude/V

Sampling points/piece 500 2

Figure 13 shows a multichannel three-dimensional diagram of the sensors. The sensors
near the outer edge all detected defect signals, and all the sensors were affected by lift-off
interference and the vibration signals changed synchronously. Figure 14 shows the original
signal of the seventh sensor in blue and the reference signal in red. The vibration signals
are marked with rectangular boxes and the defect signals are marked with elliptical boxes.
Obviously, the amplitude of the signal caused by vibration is similar to that caused by a
small defect, so the detection is disturbed by vibration. The reference signal retains the
changes caused by vibration and contains no defect signal.

1500
1000

Channel number

Figure 13. Multichannel original MFL signal.

original signal
noise signal

vibration
interference

Il 1 1

500

1000 1500 2000 2500
Sampling points/piece

Figure 14. Original signal and vibration signal of the seventh sensor.

129



Appl. Sci. 2022, 12, 1740

The filtered signal is shown in Figure 15. Compared with the original signal in
Figure 14, the defect signal is basically unchanged, while the vibration signal decreases
significantly. Figure 16 shows the three-dimensional image of the multichannel filtered
signal. After filtering, the vibration interference is obviously reduced.
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Figure 15. Filtered signal of the seventh sensor.
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Figure 16. Multichannel filtered signal.

5. Conclusions

In this paper, a filtering method is proposed to suppress the lift-off interference of rail
defect MFL detection. According to the different signal characteristics of sensors in x and z
directions, the structure of the array sensor is adopted, which can effectively extract the
reference signal that contains only interference signals such as lift-off. Thus, the lift-off
interference can be suppressed, and a relatively complete waveform of defect leakage
magnetic field detection will be obtained. In the future, the natural defects detection
test will be carried out, and the identification and reconstruction methods of defects will

be studied.
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Abstract: An electromagnetic acoustic transducer (EMAT) is suitable for measuring the propagation
time more accurately without causing abrasion to the transducer during testing due to the principle
of its excitation. This work designs a flux-concentrating EMAT with a radial-flux-focusing permanent
magnet to significantly enhance static magnetic field strength. Through theoretical analysis and
finite element simulation, two kinds of coils are designed according to the concentration areas of the
horizontal and vertical components of the magnetic field. One is used to generate pure longitudinal
waves, and the other is used to generate both longitudinal waves and shear waves. The experimental
comparison shows that the amplitudes of the pure longitudinal wave and the dual-mode wave
excited by the two kinds of coils with the radial-flux-focusing magnet are more than two times higher
than those with the ordinary magnet. Therefore, the flux-concentrating EMAT with the appropriate
coil provides an insight into realizing more accurate detection where longitudinal wave detection
is required.

Keywords: electromagnetic acoustic transducer; longitudinal wave; flux-concentrating; transducer
design

1. Introduction

Electromagnetic acoustic transducers (EMATs) are widely used in the field of non-
destructive testing (NDT), and have the superiority of non-contact and no couplant with
the specimen [1]. Unlike EMATS, the couplant is needed between the piezoelectric ul-
trasonic transducer and the specimen surface, so the elastic waves propagate not only
in the specimen but also in the couplant and the transducer. Thus, the reflection echoes
received by piezoelectric transducers are accompanied by interference echoes from the
inside of the transducer and the interface of the couplant, which affects the calculation
of the ultrasonic propagation time interval in the received signal [2]. However, the ultra-
sonic wave source excited by EMATs is inside the specimen, which is more suitable for
measuring the propagation time accurately without causing abrasion to the transducer
during testing [3]. At present, shear wave excitation is mainly used in EMATSs for thickness
measurement, flaw detection and defect detection in many industrial fields [4-7]. Due to
the structural characteristics of shear wave EMATSs [8-11], shear waves are easily generated
and received. Longitudinal-wave EMATs have inefficient energy conversion because of the
low horizontal magnetic field intensity required to generate longitudinal waves and the
sizeable parasitic inductance of the coil [12,13]. However, the longitudinal-wave EMATs
have a broad application prospect. Since the velocity of longitudinal waves is nearly twice
that of shear waves, the longitudinal waves excited by electromagnetic ultrasound are more
efficient in the detection of the thickness of large aluminum plates and other similar metals.
Furthermore, the longitudinal waves combined with the shear waves excited by the EMAT

Sensors 2022, 22, 1316. https:/ /doi.org/10.3390/522041316

https:/ /www.mdpi.com/journal/sensors
133



Sensors 2022, 22,1316

probe could take advantage of contactless detection in measurements of stress and elastic
constants [14-18].

At present, there are few structures of longitudinal-wave EMATs. There are three
typical designs: Hirao and Ogi [19] pointed out that a bulk wave EMAT that consists of
a single-cylindrical permanent magnet and a spiral coil can generate longitudinal waves
and radially polarized shear waves. Da Cunha and Jordan [20] proposed a longitudinal-
wave EMAT consisting of a cylindrical permanent magnet and external magnetic rings,
with an iron coupling between the internal magnetic rod and outer magnetic rings to
provide a stronger horizontal magnetic field. Wu et al. [21] used a combination of a
large-diameter center magnet and a ring magnet to enhance the strength of the horizontal
magnetic field, and a sheet of copper was placed between the coil and the specimen to
control the eddy current distribution, which aims to suppress shear waves. Considering
the Lorentz forces as the dominant transduction mechanism, increasing the strength of the
static magnetic field plays an important role in increasing ultrasonic wave amplitude. The
optimization of the magnet arrangement has a significant effect on improving the static
magnetic field [8,9,22,23]. In particular, the Halbach structure is better than the traditional
soft iron backing for enhancing the static magnetic field and achieved good results in
dual-mode excitation [24].

In this paper, a radial-flux-focusing magnet is proposed, inspired by Halbach’s concept,
which can provide a stronger magnetic field, thus improving the efficiency of the energy
transfer of the longitudinal-wave EMAT and making the measurement signal easier to iden-
tify. This work also utilizes two kinds of spiral coils [25] by changing their size parameters
according to the location of the area where the horizontal and vertical components of the
magnetic field are concentrated. When dual modes are needed, the amplitude of shear
waves and longitudinal waves simultaneously excited by the flux-concentrating EMAT can
be increased using the large-diameter coil. When a pure longitudinal wave is needed, the
amplitude of shear waves excited by the flux-concentrating EMAT with the small-diameter
coil decreases, while the amplitude of longitudinal waves increases.

2. Configuration and Operating Principle of the Proposed Flux-Concentrating EMAT

The structure diagram of the ring-type EMAT is shown in Figure 1a. The permanent
magnets of the transducer include a cylinder magnet in the middle and a surrounding
circular magnet, and the gap between the two magnets is filled with epoxy resin. The
poles of the circular-ring permanent magnet and the cylindrical permanent magnet are
opposite at the same ends. Therefore, a horizontal radial magnetic field is distributed
between the two magnets. Figure 1a shows a typical longitudinal-wave EMAT used as a
comparison in this article since its structure is similar to the designed EMAT. Figure 1b
shows the configuration of the flux-concentrating EMAT. A radial-magnetized annular
magnet is filled between the cylinder magnet and the surrounding circular magnet, and
another radial-magnetized annular magnet is also covered outside the surrounding circular
magnet. The magnetizing directions of the magnets are all clearly illustrated in Figure 1.

The tested material used in this paper is aluminum, and in the non-ferromagnetic
material, the EMAT excitation mechanism is the Lorentz force principle [26]. Figure 2 illus-
trates the generation of the longitudinal waves and shear wave in the non-ferromagnetic
specimen. The white arrows in Figure 2 indicate the directions of Lorentz forces; the dotted
lines indicate the direction of the magnetic field.
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Figure 1. Configuration of (a) the ring-type EMAT and (b) the flux-concentrating EMAT.
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Figure 2. Schematic diagram of longitudinal wave and shear wave generation in EMAT.

A spiral coil is placed on the surface of the test piece, and an excitation current Jy
is pulsed through the spiral coil. The high-frequency dynamic magnetic field B; will be
induced in the test piece, and an eddy current ], with the same frequency as the current in
the coil is also induced in the surface skin depth. Under the action of the static magnetic
field Bs and high-frequency dynamic magnetic field By, the particles on the specimen
surface are subjected to the Lorentz forces F; and F;. F; is the Lorentz force generated by
the static magnetic field, and F; is the Lorentz force generated by the dynamic magnetic
field. As a result, high-frequency periodic vibration occurs on the surface of the specimen,
and elastic deformation is generated. Thus, an ultrasonic wave is produced, propagating in
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the specimen. The Lorentz force generated by the dynamic magnetic field B; and the static
magnetic field Bs on the specimen surface is [27]:

Fs = Je X Bs @

Fy=J]ex By (2
The total Lorentz force is:

Fr=F+ Fd (3)

In the process of ultrasonic excitation, the in-plane dynamic magnetic field of EMAT is
relatively small compared with the out-of-plane dynamic magnetic field [26]. Therefore,
an approximate calculation of F; is made, and only the Lorentz force generated by the
dynamic magnetic field in the Z-axis direction is considered. Considering that the static
magnetic field from the magnet of the flux-concentrating EMAT has radial component B,
and axial component B, into account, Equation (3) can be rewritten as:

F=F% + Y @)

Fs:]eXBsz+]€><Bsr (5)

where F,(s) and FZ(S> are Lorentz forces in the radial direction and axial direction, respectively.

Under the action of the static radial magnetic field, the Lorentz force on the charged
particles of the specimen surface is perpendicular to the specimen surface in the Z-axis
direction and parallel to the propagation direction of the ultrasonic wave, thus generating
a longitudinal wave. Under the action of the static axial magnetic field, the vibration
direction of particles on the specimen surface is in the R-axis direction. In other words, the
direction of the Lorentz force is perpendicular to the propagation direction of the ultrasonic
wave, thus generating shear waves. Lorentz forces concentrate on the specimen surface
and generate time-dependent elastic stress waves in the specimen. Consequently, the

Lorentz forces Ffs) and FZ<S) generate longitudinal waves and shear waves, respectively,
both propagating in the thickness direction at the same time [19]. The process of the EMATs
receiving the signal is the inverse process of their transmission. The reflected echo reaches
the specimen surface, making the surface particles vibrate and changing the current in the
spiral coil under the action of the static magnetic field.

3. Simulation Analysis
3.1. Dynamic Magnetic Field in Specimen

Using the finite element software, COMSOL Multiphysics, two-dimensional axisym-
metric solid simulation models are developed for the ring-type EMAT in Figure 1a and
the flux-concentrating EMAT in Figure 1b, since they are all axisymmetric. Figure 3a,b
shows the simulation model structures of the ring-type EMAT and the flux-concentrating
EMAT with the left line as the symmetry axis, respectively. The parameters of magnets of
the ring-type EMAT and flux-concentrating EMAT in finite element models are shown in
Table 1. In models, the lift-off distance between the coil and the specimen is 0.2 mm, and
the distance between the coil and the magnet is 0.3 mm. The right boundary of the 40 mm
high aluminum specimen is set as a low reflection boundary to simulate the actual plate.
The residual magnetic flux density of each permanent magnet is set as 1 T. By setting the
frequency of the alternating current as 1 MHz, according to Equation (5), the Lorentz force
is loaded into the Solid Mechanics Module to achieve the coupling of the electric, magnetic
and elastic acoustic fields, so that the transmission of ultrasonic waves in the specimen
can be observed in the time domain. Figure 4a,b shows the meshes of the two models. It
should be noted that the maximum unit of the specimen mesh is set to 1/10 of the shortest
wavelength to ensure the accuracy of the simulation.
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Figure 3. Model structure diagrams of (a) the ring-type longitudinal-wave EMAT and (b) the flux-
concentrating longitudinal-wave EMAT. The No. 1 magnet is a cylinder magnet. The No. 2, No. 3
and No.4 magnets are circular magnets of different sizes.

Table 1. Parameters of EMAT magnet used in this paper.

Magnet Number Magnet Parameters Symbol Value (mm)

1 Diameter Dy 12
Height H 30

Inner diameter Dy 32

2 Outer diameter D3 44
Height H 30

Inner diameter Dy 12

3 Outer diameter D, 32
Height H 30

Inner diameter Dy 44

4 Outer diameter Dy 52
Height H 30

The magnetic flux density distributions in the ring-type EMAT and the flux-
concentrating EMAT are shown in Figure 5, and Figure 6 shows the partially enlarged
views of the bottom of the magnets shown in Figure 5. The white arrow in Figure 6 shows
the magnetic field direction of the permanent magnet. The magnetic field direction on
the specimen surface under the No. 3 and No. 4 magnets is primarily horizontal, while
the magnetic field direction under the No. 1 and No. 2 permanent magnets is primarily
vertical.

It can be seen from Figure 7a,b that the axial component of the magnetic flux density
of the ring-type EMAT and the flux-concentrating EMAT is mainly distributed in the area
below the central cylinder magnet and No. 2 circular magnet. At these locations, the
vertical flux density is greater than the horizontal flux density. The shear wave signals
received by the coils in these locations have a higher amplitude. However, the vertical axial
magnetic flux density of the flux-concentrating EMAT is higher than that of the ring-type
EMAT so that the flux-concentrating EMAT can generate stronger shear waves. It can
be seen from Figure 7c,d that the radial component of the magnetic flux density, which
has a local maximum near the outer edge of the ring magnet, is mainly distributed in the
area between the central cylinder magnet and No. 2 circular magnet. The horizontal flux
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density is greater than the vertical flux density in this area, where the longitudinal wave
signals received by the coils have a higher amplitude. The horizontal radial magnetic flux
density provided by the flux-concentrating EMAT occupies a larger part of the specimen
surface, so that the flux-concentrating EMAT can generate stronger longitudinal waves. The
comparison diagram of horizontal radial magnetic flux density Bs, and perpendicular axial
magnetic flux density Bs, on the specimen surface is shown in Figure 8. As can be seen from
the figure, the horizontal radial magnetic flux density of the flux-concentrating EMAT in
the area from 6 mm to 16 mm from the center point on the specimen surface is significantly
higher than that of the ring-type EMAT, which is about twice that of the ring-type EMAT.
In addition, a strong vertical magnetic field is distributed in the circular region with a
diameter of 12 mm in the center of the specimen surface to generate shear waves, which is
about twice the vertical magnetic flux density of the ring-type EMAT. Therefore, the coils
can be designed in different positions to generate shear waves or longitudinal waves.

<

VAVAY VAN
@ (b)

Figure 4. Meshes of (a) the ring-type longitudinal-wave EMAT model and (b) the flux-concentrating
longitudinal-wave EMAT model.
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Figure 5. The magnetic flux density distribution in (a) the ring-type EMAT and (b) the flux-
concentrating EMAT.

Als1

18
16
14
12
1

08
0.6
04
02

¥ 1.35x10°°

138



Sensors 2022, 22,1316

SRS

— s

-0.4
¥ -042

(©

Figure 7. Magnet density distribution in a circular area with a radius of 30 mm from the center of
the specimen surface. (a) Axial flux density component and (c) radial flux density component of the
magnet in ring-type EMAT, (b) Axial flux density component and (d) radial flux density component
of the magnet in flux-concentrating EMAT. The No. 1 magnet is a cylinder magnet. The No. 2, No. 3
and No.4 magnets are circular magnets of different sizes. The magnetizing directions of the magnets
are shown.
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Figure 8. Magnetic flux profile of the ring-type EMAT and the flux-concentrating EMAT on specimen
surface: (a) horizontal magnetic flux density, (b) perpendicular magnetic flux density.

3.2. Coil Design and Simulation of EMAT Signals

According to Figures 7 and 8, we designed two kinds of coils with different sizes,
shown in Figure 9. One is the L-mode coil that generates pure longitudinal waves, and
the other is the dual-mode coil that can excite both longitudinal waves and shear waves.
The coil size parameters are shown in Table 2. A high-frequency pulse current of 1 MHz is
passed through the coil. The specimen below the coil induced eddy currents on the surface.
Figure 10 shows the eddy current distribution on the specimen surface. The L-mode coil
shown in Figure 9a, which can excite and receive relatively pure longitudinal waves, is
in the radial magnetic flux density region. The diameter of the dual-mode coil, which is
capable of exciting and receiving both longitudinal waves and shear waves, is equivalent
to the overall diameter of the magnet.
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Figure 9. Top view of (a) L-mode coil and (b) dual-mode coil. The No. 1 magnet is a cylinder magnet.
The No. 2, No. 3 and No.4 magnets are circular magnets of different sizes. The magnetizing directions

of the magnets are shown.

Table 2. Size parameters of L-mode coil and dual-mode coil.

Coil Type Size Parameters Symbol Value (mm)
Inner diameter Dy 12
Lemod 1 Outer diameter D, 32
-mode cot Wire width w, 0.2
Wire spacing dy 0.2

Inner diameter Dy 5

Dual 4 1 Outer diameter Ds 52
uai-mode cot Wire width wy 0.2
Wire spacing dp 0.4
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Figure 10. Eddy current distribution in a circular region with a radius of 30 mm from the center of
the specimen surface: (a) L-mode coil, (b) dual-mode coil.

Figure 11 shows the simulated average displacement of ring-type EMAT and flux-
concentrating EMAT on the specimen surface as it changes over time. From the figure, we
can see the simulated first bottom echo at 13.1 us, the simulated second bottom echo at
26.2 us and the simulated third bottom echo at 39.3 us. The time interval between the two
adjacent echoes is about 13 ps. The specimen in the model is aluminum with a thickness of
40 mm, in which the longitudinal wave propagation speed is 6100 m/s, and the shear wave
propagation speed is 3050 m/s. Therefore, the theoretical peak time of the first longitudinal-
wave echo is 13.1 us. The theoretical peak time of the first shear wave echo is 26.2 us and the
theoretical peak time of the third bottom echo is 39.3 pus. The peak position of the simulated
waveform is completely consistent with the theory. In Figure 11a,b, the displacement
amplitudes of the flux-concentrating EMAT are all significantly higher than those of the
ring-type EMAT no matter which coil is used. The first and third bottom echoes are mainly
longitudinal waves, while the second bottom echo contains shear and longitudinal waves.
Therefore, the flux-concentrating EMAT can generate stronger longitudinal waves than
the ring-type EMAT. In addition, it is found from the simulation that there is an echo
signal between the two adjacent echoes, which is generated by the mode conversion of
longitudinal waves reflected on the surface or underside of the specimen.

To better show the mode conversion mechanism, the snapshots of the displace-
ment with the same color scale are shown in Figure 12. Figure 12a—d refer to the flux-
concentrating EMAT and ring-type EMAT working in dual and longitudinal mode, respec-
tively. It is known that the velocity of a longitudinal wave is faster than that of a shear
wave and the wavelength of the longitudinal wave is longer. Thus, according to the relative
position and wavelength, all of the important waves related to Figure 11 in the snapshots
are annotated. The middle echo, which appears after the first longitudinal wave reaches
the bottom at 7 ps, is the shear wave according to the snapshots and propagating time.
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Figure 11. Average displacements of ring-type EMAT and flux-concentrating EMAT on the specimen
surface (a) using dual-mode coil and (b) using L-mode coil.
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Figure 12. Total displacement propagation snapshots for (a) the flux-concentrating EMAT with dual-
mode coil, (b) the flux-concentrating EMAT with L-mode coil, (c) the ring-type EMAT with dual-mode
coil and (d) the ring-type EMAT with L-mode coil. The symmetry axis is the left dotted line.

4. Experiment

To verify the optimized performance of the flux-concentrating EMAT, a comparative
experiment was conducted between the ring-type EMAT and the flux-concentrating EMAT.
The schematic diagram of the experimental setup is shown in Figure 13. The magnets,
combined with the spiral coil to simultaneously transmit and receive signals, were placed
on top of the aluminum plate. The RPR-4000 pulse generator /receiver was chosen to excite
a high-frequency pulse through the spiral coil in the experiment, whose duplex protected
the preamplifier from the influence of the excitation pulse. The relevant parameters of the
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permanent magnet of the ring-type EMAT and the flux-concentrating EMAT are shown
in Table 1, and the fabrication of the magnet and coil are shown in Figures 14 and 15,
respectively. What is worth mentioning is that the angular sector magnets of the flux-
concentrating EMAT are hard to assemble because of the repulsive forces between adjacent
magnets. The magnets need to be glued together, and the outside is secured with a metal
ring. In addition, the center frequency of the excitation pulse was set as 1 MHz and the
peak voltage of the excitation signal was up to 730 V. The test specimen was an aluminum
plate with a thickness of 40 mm.

RPR-4000
Broadband Receiver

Input
Number 1

Digital Phosphor
Oscilloscope

I

Input
Number 2

High Power Pulser

Power RF
Pulse
Output

Diplexer
Output To Plu§e
Receiver |Monitor

Y 4
-
=
| S
L N

-

@

Figure 14. The fabrication of permanent magnets of (a) the ring-type EMAT and (b) the flux-
concentrating EMAT.

W

The signal diagram, shown in Figure 16, of the dual-mode coil, which is shown in
Figure 15a, demonstrates how a 40 mm thick aluminum plate was obtained. It can be
seen that the time interval between the two bottom echoes measured by the ring-type
EMAT and the flux-concentrating EMAT is about 13 us, but the amplitude of the bottom
echoes significantly increases. Compared with the amplitude of the signal received by the
ring-type EMAT, the first bottom echo is increased by 276%, and the second bottom echo is
increased by 391%.
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Figure 15. The fabrication of (a) dual-mode coil and (b) L-mode coil.
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Figure 16. Signal diagram comparison of the ring-type EMAT and the flux-concentrating EMAT
using the dual-mode coil.

The experimental results show that the flux-concentrating EMAT with the radial-flux-
focusing magnet can simultaneously generate stronger longitudinal waves and shear waves.
Figure 16 shows that the back echo signal of the flux-concentrating EMAT is easy to identify
and has a high SNR. The first bottom echo is the longitudinal wave; the second bottom
echo is a mixture of longitudinal waves and shear waves; and the third bottom echo is the
longitudinal wave. In the signal diagram, we found a wave peak between two adjacent
bottom echoes, which was concluded from the simulation, as the shear wave signal was
generated by the wave mode transformation when the longitudinal wave reflected through
the surface or bottom.

To suppress the generation of shear waves and obtain pure longitudinal waves, the
L-mode coil shown in Figure 15b is used to measure the aluminum plate with a thickness
of 40 mm. The comparison diagram of measurement signals of the ring-type EMAT and
the flux-concentrating EMAT is shown in Figure 17.
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Figure 17. Signal diagram comparison of the ring-type EMAT and the flux-concentrating EMAT
using the L-mode coil.

From the longitudinal wave signal diagram shown in Figure 17, the L-mode coil can
suppress the generation of shear waves and stimulate purer longitudinal waves with better
signal recognition. Compared with the ring-type EMAT, the voltage amplitude of the first
bottom echo of the received signal increases by 202%.

5. Conclusions

In this paper, a flux-concentrating EMAT composed of a radial-flux-focusing magnet
is proposed. Based on the magnet of the ring-type EMAT, the radial-flux-focusing magnet
is filled with a radial-magnetized annular magnet, which can provide a strong horizontal-
radial magnetic field and a vertical axial magnetic field on the premise that the overall
volume of the magnet does not change significantly. The ring-type EMAT with a similar
structure and no magnetization is used for comparison.

Two-dimensional axisymmetric solid simulation models of the flux-concentrating
EMAT and the ring-type EMAT operating on the non-ferromagnetic aluminum specimen
were established to simulate the distribution of static magnetic flux. According to the
simulation results, the flux-concentrating EMAT can provide a stronger horizontal radial
magnetic field below the region of the No. 3 magnet and a vertical axial magnetic field in
the central area, compared to the ring-type EMAT.

Based on theoretical and finite element analysis, two kinds of spiral coils with different
sizes are designed: one is a longitudinal-wave EMAT, and the other is a dual-mode EMAT
that can excite both longitudinal waves and shear waves. According to the simulation
results, the flux-concentrating EMAT can improve the amplitude of the proposed wave
mode significantly.

Finally, the ring-type EMAT and the flux-concentrating EMAT were used to measure
the thickness of the 40 mm aluminum plate, and their received signals were compared.
When the dual-mode coil is used, the voltage amplitude of the signal received by the
flux-concentrating EMAT increases by 276% compared with the ring-type EMAT. When the
L-mode coil is used, the voltage amplitude increases by 202%. It is verified that under the
same pulse excitation, the received signal of the flux-concentrating EMAT is more accessible
to identify than that of the ring-type EMAT. The voltage amplitude increases significantly,
and the SNR is higher.
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The flux-concentrating EMAT is not easy to assemble but has a higher energy conver-
sion efficiency than the ring-type EMAT. Although the volume of the former is 63.7 cm®
and the volume of the latter is only 41.6 cm?, provided that the same static magnetic field
strength is needed, the flux-concentrating structure could be combined with more economi-
cal magnets of lower energy products, and different coils according to the distribution of
magnet direction could be used to achieve dual-mode excitation or pure longitudinal wave
excitation according to specific needs. For pure longitudinal wave excitation, the shear
wave signal is suppressed while the longitudinal wave signal is strengthened in resonant
ultrasound spectroscopy, thus the interference of shear waves to longitudinal waves is
greatly reduced. The designed EMAT could be applied to increase the detection speed in
the field of thickness measurement. For dual-mode excitation, the flux-concentrating EMAT
could have similar applications in elastic-constant extraction, which is consistent with other
similar studies [20,24]. Moreover, the cylindrical-design EMAT are fit for measuring the
axial stress of non-ferromagnetic cylinder-like aluminum bolts, and we hope to conduct
further research on this topic in the future.
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Abstract: Pipeline transportation is the main method for long-distance gas transportation; however,
ponding in the pipeline can affect transportation efficiency and even cause corrosion to the pipeline
in some cases. A non-destructive method to detect pipeline ponding using percussion acoustic
signals and a convolution neural network (CNN) is proposed in this paper. During the process
of detection, a constant energy spring impact hammer is used to apply an impact on the pipeline,
and the percussive acoustic signals are collected. A Mel spectrogram is used to extract the acoustic
feature of the percussive acoustic signal with different ponding volumes in the pipeline. The Mel
spectrogram is transferred to the input layer of the CNN and the convolutional kernel matrix of
the CNN realizes the recognition of pipeline ponding volume. The recognition results show that
the CNN can identify the amount of pipeline ponding with the percussive acoustic signals, which
use the Mel spectrogram as the acoustic feature. Compared with the support vector machine (SVM)
model and the decision tree model, the CNN model has better recognition performance. Therefore,
the percussion-based pipeline ponding detection using the convolutional neural network method
proposed in this paper has high application potential.

Keywords: pipeline ponding; percussion detection method; Mel spectrogram; convolutional neural
network (CNN)

1. Introduction

As a main method of oil and gas transportation, pipelines play an important role in
transporting supplies [1,2]. During their long-term service life, various types of pipeline
damages are related to pipeline ponding; corrosion, perforation, and leakage are not un-
common, and they usually bring about serious safety hazards to pipeline transportation [3].
Therefore, to ensure the safe and stable operation of pipelines, pipeline ponding detection
has become more important and urgent.

In pipeline ponding detection, changes in the ponding volume will cause changes in
the structural characteristics of the pipeline system composed of pipeline and ponding.
Therefore, some developed methods for the monitoring of structural characteristics may
provide an approach as the reference for pipeline ponding detection. In recent decades, sev-
eral common methods for pipeline structure characteristic detection have been introduced,
including the CCTV (closed-circuit television) inspection method [4], the ultrasonic testing
method [5] and the radiography method [6]. The CCTV inspection method presents very
rich internal information of the pipeline in the form of photos or videos [7] by a robotic
system with a camera [8]. However, the CCTV method is greatly affected by environmen-
tal factors, and its detection accuracy of the pipeline evaluation depends largely on the
quality of the hardware system and the experience of the inspectors [9]. The ultrasonic
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testing method can estimate the health state by analyzing reflection waves [10,11] in the
pipelines. It is sensitive to changes in structural state and can be related to several structural
characteristics [12]. However, the signals collected by the ultrasonic method are usually
accompanied with noise, and effective noise reduction methods are required to obtain
useful information [13,14]. The radiography method detects the pipeline by evaluating the
attenuation of the rays [15] which pass through the pipeline. This method can be used for
pipelines with complex geometric shapes [16]. However, its detection accuracy decreases
when it is employed for vertical angle defect detection [17], and the rays are harmful to
human health [18]. Therefore this method’s practical application is very limited.

Compared with the aforementioned detection approaches, the percussive detection
method [19-21] has the characteristics of deep detection and fast transmission speeds, and is
user-friendly [22]. It is used to determine the pipeline structure characteristic by the sounds
generated through impact on the pipeline under test [23]. Traditional percussive detection
method still requires engineering experience, which can be subjective and inefficient [24].
This is solved by using the powerful computing power of computers or the automatic
prediction and classification properties of machine learning. Furui Wang et al. proposed
a new percussion-based method using analytical modeling and numerical simulation,
whereby a percussion-induced sound pressure level (SPL) could be obtained via the acoustic
radiation mode approach. The corresponding numerical simulation was developed with
a focus on the acoustic—structure coupling, and the acoustic boundary conditions were
satisfied through a perfectly matched layer (PML) [25]. Ligiong Zheng et al. used Mel-
frequency cepstral coefficients (MFCCs) as the features of percussion-induced acoustics, and
support vector machine (SVM)-based machine learning was utilized to classify results [26].
Dongdong Chen et al. used power spectrum density (PSD) to process percussive sound,
and a decision tree machine (DTM) learning approach was used to classify results [27].

CNN, one of the representative algorithms of deep learning, which automatically
predicts and classifies the data [28], can overcome the drawbacks of percussive detection
methods that requires engineering experience, and can therefore obtain superior results
in visual classification tasks [29]. In the classification of audio data, as CNN cannot
process sound directly [30], the sound of digital signals is often converted into spectrogram
images [31] by a Short-time Fourier transform (STFT) or a wavelet transform. In particular,
the STFT is a low-complexity time—frequency method capable of analyzing non-stationary
signals which has a low computational burden [32]. However, the dimension of the
spectrogram after STFT is relatively high, resulting in a large amount of subsequent CNN
calculation, which increases the complexity of CNN learning. Furthermore, a nonlinear
transformation can be applied to the frequency axis after the STFT process, to obtain a Mel
spectrogram with lower dimensions, by compressing the frequency range [33]. This makes
it easier for the CNN to extract and process specific features.

This paper proposes a non-destructive detection method for pipeline ponding by refer-
ring to a pipeline structure characteristic detection method which combines the percussive
detection method and a CNN. During detection, a constant energy spring impact hammer
is first used to impact the pipeline under different ponding volumes to generate sound,
and the collected acoustic signals are converted into the Mel spectrogram. Then, the CNN
is used to perform a two-dimensional convolution operation on the Mel spectrogram and
the convolution kernel matrix, and realize the identification of pipelines with different
ponding volumes according to the output matrix. The rest of this paper is organized as
follows: Section 2 introduces the principle of percussion-based pipeline ponding detection
using CNN and network model evaluation metrics; Section 3 introduces the experimental
equipment and experimental procedures; Section 4 presents the experimental results and
comparative analysis with other recognition models; Section 5 summarizes the advantages
and disadvantages of the method proposed in this paper.
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2. Materials and Methods
2.1. Working Principle

The flowchart of the proposed method is presented in Figure 1. In general, it consists
of three steps: percussion signal acquisition, signal processing, and automatic pattern recog-
nition based on the CNN. In the first step, the acoustic signal generated by the percussion
on the pipeline with different ponding volumes was recorded by a microphone, where six
ponding volumes were considered. The signal processing step included three consecutive
processing stages: preprocessing, STFT method, and Mel filtering. Pre-processing was
applied to the percussion signal to delete any low-frequency interference components in the
sound signal, and to increase the proportion of high-frequency components. Then, using
both overlap and a Hamming window, the STFT was used to obtain the time—frequency
plane of the current signal. Finally, the Mel filtering was applied to the frequency axis
after the STFT to obtain the Mel spectrogram with lower dimensions by compressing the
frequency range, which made the CNN less computationally intensive. In the pattern recog-
nition step, a CNN is proposed to classify the ponding volume case in an automatic way:.
It is worth noting that the time—frequency plane obtained through the Mel spectrogram
was treated as an image in order to implement a conventional two-dimensional (2D) CNN.
In the 2D CNN design, learning rates, batch sizes, and dataset split ratios were analyzed.

) Mel spectrogram CNN training

: obtaining recognition |
| SE _ Recognition |

I B R Mel Filter CNN result output

processing transform Bank recognition
CNN

TEI;E] «— parameter

e optimization

Figure 1. Schematic diagram of the working principles.

2.2. Mel Spectrogram

The Mel spectrogram is obtained with the following procedures:

I: Perform pre-processing of the selected signal including pre-emphasis, framing
and windowing;

II: Perform short-time Fourier transform of the pre-processed data;

III: Perform Mel filtering of the data after step II to obtain the Mel spectrogram.

2.3. CNN

The recognition process of the convolutional model can be divided into two parts:
CNN training and CNN recognition. In the training process of CNNs, the model parameters
and training steps are preset; then, the model parameters are continuously corrected
through the data forward propagation process, and error backward propagation process,
until the convolutional model meets the requirements. In the CNN recognition, the high-
dimensional features extracted by convolution and pooling operations are matched with
the trained model to output recognition results.

The structure of the CNN model proposed in this paper is shown in Figure 2. It consists
of four nonlinear trainable convolutional layers, four nonlinear fixed convolutional layers
(Pooling Layer) and one fully connected layer.
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Figure 2. The CNN model.

Among them, the role of the convolutional layer was to perform adaptive feature
extraction on the Mel spectrogram, which was achieved by convolutional operations of the
convolutional kernel matrix [34]. The operation of the convolutional layer is as follows:
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where [ is the convolutional kernel number, C; is the /th layer feature map of CNN, a is
the input of convolutional layer, w is the weight matrix, b is the bias term of convolutional
kernel, and x, y, z are the different dimensions of the input data.

Adding a pooling layer after the convolution layer allows downsampling of the input
features while preserving the dominant features, which can reduce the model parameters
at the same time as suppressing overfitting [35]. The CNN model proposed in this paper
uses maximum value pooling, and its expression is:

G, = downsamp(H;) = maxH,(v1,v;) ()

where Hj is the pooling layer input feature, G; is the pooling layer output feature, and
(v1, v7) is the classification element that is pooled for the previous layer.

After the Mel spectrum is propagated through several convolutional and pooling
layers alternately, the fully connected layer network is relied upon to classify the extracted
features, and its expression is:

by = f(Wy*ly_1 +by) ®3)

where h;_4 is the output of the previous network layer, /1; is the output of the current fully
connected layer, W is the weight, b; is the bias, and f(*) is the activation function.

2.4. CNN Model Evaluation Metrics

The performance of the final trained CNN model needed to be evaluated by corre-
sponding metrics [36]. Common evaluation metrics for classification tasks are Precision,
Recall, and F1-Measure [37,38], which have the following equations:

TP

P= TP+ FP @
TP

R= TP+ FN ©)
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where TP indicates a positive sample is correctly identified as a positive sample, TN indicates
a negative sample is correctly identified as a negative sample, FP indicates a false positive
sample (which means a negative sample is incorrectly identified as a positive sample),
and FN indicates a false negative sample (which means a positive sample is incorrectly
identified as a negative sample).

3. Experimental Setup and Procedures

As shown in Figure 3, the pipeline was fixed by a holding device, a spring-loaded
impact hammer applied an impact on the middle position of the pipeline, and a microphone
with a frequency band of 10 Hz~20 kHz was placed about 5 cm away from the impact
position to capture the percussive acoustic signal generated by the impact. During the
experiments, the sampling rate of the data acquisition device was set to 100 kHz.

Hammer
Sound / Microphone

Ilmlm1 < \\ ’ |

Pipeline
Fixed Fixed

(@)

NIdata |
acquisition device S {Ea

(b)

Figure 3. (a) Schematic of the experimental setup; (b) experimental setup.
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In the tests, six pipelines specimens with different dimensions were fabricated; the
dimensions of these specimens are listed in Table 1.

Table 1. Dimensions of the pipeline specimens.

Pipeline Number Outer Diameter/mm  Inner Diameter/mm Length/mm
1# D32 P25 60
2# D32 D25 100
il D42 @35 60
4# D42 P35 100
5% D48 D41 60
6 D48 @41 100

During the test, to simulate different ponding states of the pipelines, the specimens
were filled with different volume percentages of water. There were a total of six experi-
mental cases, which are listed in Table 2. The energy of each impact of the spring-loaded
hammer was constant at 1J. Only the selected signal was filtered with a band-pass filter
matching the microphone frequency, and 100 experiments were performed for each case.

Table 2. Different experimental cases with different volume percentage of water.

Name Value
Case 0 1 2 3 4 5
Water as a percentage of pipeline volume (%) 0 10 20 30 40 50

4. Experimental Results
4.1. Mel-Feature Extraction
The typical percussive sound signals of the pipeline with experimental cases are shown

in Figure 4.
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Figure 4. One of the sound signals recorded by the microphone.

The filtered signals were then converted into a Mel spectrogram and the parameters [39,40]
were set, as shown in Table 3. The extracted Mel spectrogram features are shown in Figure 5.
The results show that the differences in the Mel spectrogram of the six ponding volumes of
the 1#pipeline are very small and difficult to distinguish with the naked eye.

4.2. Identification of the Amount of Ponding Volume in a Single Pipeline

Before the CNN is trained, a finer selection of other parameters such as learning rate
and batch size can be carried out. The learning rate determines the step size of adjusting
weights and error reduction in the training process. Figure 6 shows the obtained results for
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different learning rates by considering only one epoch. One epoch is a complete pass over
the entire dataset. The results demonstrate that extreme values have a negative impact on
accuracy. Therefore, in this work, a learning rate value of 0.01 was used, as it presented
a higher accuracy and accelerated the error convergence. Table 4 shows the results of
accuracy and computation time obtained using different values of batch size. The batch
size determines the size of the subset of the entire dataset used in each training iteration.
As indicated in Table 4, a small batch size value generates high accuracy, but results in a high
computation time. On the contrary, a high value of batch size reduces the computational
time, but the accuracy is negatively affected. In this regard, we chose a batch size of
30 because it provided high accuracy and a suitable computational time. Additionally,
SGDM was used as the optimizer and ReLU was used as the activation function.

Table 3. Mel spectrogram Parameters.

Name Value
Fs/Hz 100,000
Window Hamming
Window Length 2048
Overlap Length 1024
FFT Length 4096
NumBands 24
0
E F- E
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2 2 2
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Figure 5. Mel spectrogram of 1#pipeline for 6 cases: (a) 0 case; (b) 1 case; (c) 2 case; (d) 3 case;
(e) 4 case; (f) 5 case.

After we selected the above-mentioned parameters, the CNN could be completely
trained and validated. However, before using the dataset to train the model, the whole
dataset needed to be divided into a training set and a validation set. With the dataset well
partitioned, the speed of model applications can be improved. If the partitioning is not
good, it can greatly affect the deployment of the model applications. Table 5 shows the
results of accuracy and computation time obtained using different ratios of dataset split.
This table demonstrates that the CNN model has the highest accuracy and its application
speed is optimal when the dataset splitting ratio is 7:3. Therefore, in the training process
of the convolutional model, 70 sets of data obtained under each experimental case were
randomly selected and converted into the Mel spectrogram, then input into the CNN as the
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training set. The remaining 30 sets were input into the trained CNN model as validation
sets to complete the recognition of the pipeline ponding volume.
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30 1
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10 - 1

0
0 0.005 0.01 0.015 0.02

Figure 6. Obtained accuracy for different learning rate values.

Table 4. Results for different batch size values.

Name Value
Batch size 5 10 15 20 25 30
Accuracy (%) 98.57 97.14 98.32 98.57 99.32 100
Time/s 529 267 170 131 104 94
Batch size 35 40 45 50 55 60
Accuracy (%) 98.73 93.10 91.67 84.76 86.19 83.24
Time/s 84 72 67 65 59 61
Batch size 65 70 75 80 85 90
Accuracy (%) 81.36 92.38 82.14 87.14 87.62 90.00
Time/s 54 55 48 49 41 42
Batch size 95 100
Accuracy (%) 87.62 91.43
Time/s 40 41

Table 5. Results of different splitting datasets.

Name Case
Dataset split ratio 11 3:2 7:3 4:1 9:1
Accuracy (%) 98.47 97.83 100 97.50 98.70
Time/s 86 92 81 97 129

The training process of the CNN model for six ponding volume cases in the 1#pipeline
is shown in Figure 7, and the recognition results are shown in Table 6.

Figure 7a shows that, with the increase in training times, the accuracy rate increases
alternately and its fluctuation is large; after the number of training times reaches 146, the
accuracy rate reaches 98.34%. Figure 7b indicates that the value of the loss function de-
creases continuously with the increase in training times, and finally stabilizes at about 0.086.
Table 6 shows the CNN predictions for different case validation sets, and it can be calculated
that the accuracies are 96.67%, 100%, 100%, 96.67%, 100% and 96.67%, respectively. The
results show that the proposed approach can classify different ponding volume cases with
high accuracy.
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Figure 7. The CNN model training process. (a) Accuracy (%), (b) Loss.
Table 6. The CNN identification results of the 1*pipeline.
Target Class
0 1 2 3 4 5
0 29 0 0 0 0 0
1 1 30 0 0 0 0
. 2 0 0 30 1 0 0
Predicted Class 3 0 0 0 29 0 0
4 0 0 0 0 30 1
5 0 0 0 0 0 29
Total accuracy (%) 98.34

4.3. The CNN Model Evaluation of Ponding Volume in Different Pipelines

Based on the proposed method, the recognition of ponding volume for different
pipelines was also performed. The three common evaluation metrics of Precision (P), Recall
(R), and F1-Measure (F1) in the classification task were chosen to evaluate the final trained
CNN model, as shown in Table 7.

Table 7. Three common evaluation metrics results of six pipeline dimensions.

1*Pipeline 2*Pipeline 3*Pipeline
R P F1 R P F1 R P F1
0 9.7 100 983 100 968 984 100 100 100
1 100 9%.8 984 100 100 100 100 905 952
c 2 100 9%.8 984 100 100 100 90 100 947
ase 3 9.7 100 98.3 100 100 100 100 100 100
4 100 9%.8 984  96.7 100 93.3 100 100 100
5 9.7 100 983 100 100 100 100 100 100
4*Pipeline 5*Pipeline 6"Pipeline
R P F1 R P F1 R P F1
0 100 9.8 984 100 100 100 100 100 100
1 100 100 100 100 100 100 100 100 100
c 2 9.7 100 983 100 100 100 100 100 100
ase 3 100 9%.8 984 100 100 100 9%.7 9.7  96.7
4 100 100 100 9.7 100 983  96.7 100 983
5 9.7 100 983 100 968 984 100 9.8 984
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Table 7 demonstrates that the output performance of the six pipeline CNN models is an
accuracy rate of 90.9-100%, a recall rate of 90-100%, and an F1-Measure of 94.7-100%. The
results show the proposed approach is effective and the evaluation results can accurately
classify the ponding volume in different pipelines.

4.4. Comparison of Proposed CNN Model with Other Models

To compare the proposed method with the current common methods, experiments of
identical strategies but using DTM and SVM were conducted, with the Mel spectrogram
as the input image. The SVM process was performed with the LIBSVM toolbox [41], with
RBF as the kernel function and a kernel function with a parameter coefficient g of 2727,
and a penalty factor coefficient c of 2° [22]. The DTM utilized the TreeBagger function, and
NumTrees is set to 50 [42]. These recognition results are shown in Figure 8.

100 T r T T T

Accuracy/%

1" 2 3 4 5 6

88.25 94.67 85.28 94.11 93.72 90.21

93.36 96.55 90.89 95.85 96.89 94.54

98.33 99.44 98.33 98.88 99.44 98.88

Figure 8. Comparison of recognition accuracy of three models.

In Figure 8, the symbols of 1# 2* 3* 4* 5% 6* denote six different pipelines as shown
in Table 1, respectively. This figure highlights that the recognition accuracies of the DTM
with ponding volume of six pipelines are between 88.25% and 94.67%, the recognition
accuracies of the SVM between 90.89% and 96.89%, and the recognition accuracies of the
CNN between 98.33% and 99.44%. This proves that the CNN recognition model is more
stable and has a higher accuracy than the other two models.

5. Conclusions

The paper has proposed a novel approach to identifying pipeline ponding volumes,
by combining the percussive detection method and a CNN. The proposed approach is
low-cost but user-friendly and effective. The experiment was performed based on the
proposed method and the experimental results show the effectivity and high accuracy of
the proposed recognition model. The major findings of the proposed approach can be
summarized as follows:

o  The way of processing percussion-caused audio signal by converting to Mel spectro-
gram can be considered as a novel and cost-effective approach in detecting pipeline
ponding volume. It presents a simple but very effective acoustic signal processing
method;

e  The actual output of the CNN is basically consistent with the theoretical output during
the proposed approach. The results demonstrate that the CNN recognition accuracy
reaches 98.34% and can be effectively adopted to pipeline ponding detection;
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e  The proposed method is suitable for the detection of ponding volume in pipelines of
different specifications, and the output performance of the six pipelines in the CNN
models had an accuracy rate of 90.9-100%, a recall rate of 90-100%, and an F1-Measure
of 94.7-100%;

e The recognition accuracy of CNN falls between 98.33% and 99.44%, which indicates
that this recognition model has a more stable and superior performance than the DTM
recognition model and the SVM recognition model. Therefore, it can be concluded
that the method combining the percussive detection method and the CNN proposed
in this paper has better application prospects in pipeline ponding detection.

The research in this paper demonstrates the feasibility and effectiveness of the pro-
posed pipeline ponding detection method. The essence and mechanism of the proposed
method is identifying underlying dynamical characteristics of percussion-caused audio
signals of pipeline ponding. However, this paper also has its shortcomings: the length and
diameter of the six different pipelines selected were too singular to determine the effective
detection distance of the proposed percussion detection method. In follow-up research,
designing corresponding experiments to detect the effective distance of the percussive
detection method in pipeline health detection will become our research focus.
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Abstract: Fibre-reinforced composite laminates are frequently used in various engineering structures,
due to their increased weight-to-stiffness ratio, which allows to fulfil certain regulations of CO,
emissions. Limited inter-laminar strength makes composites prone to formation of various defects,
which leads to progressive degradation of residual strength and fatigue life of the structure. Using
ultrasonic guided waves is a common technique for assessing the structural integrity of composite
laminates. Phase velocity is one of the fundamental characteristics of guided waves and can be used
for defect detection, material property estimation, and evaluation of dispersion. In this paper, a
phase velocity reconstruction approach, based on the phase-shift method, was proposed, which uses
frequency sweep excitation to estimate velocity at specific frequency harmonics. In contrast to the
conventional phase spectrum technique, the proposed approach is applicable to the narrowband
piezoelectric transducers and suitable for the reconstruction of dispersion curves for direct, converted,
and multiple co-existing modes with high accuracy. The proposed technique was validated with
finite element simulations and experiments, both on isotropic and anisotropic structures, analysing
the direct, converted, and overlapped modes. The results demonstrated that, using the proposed
technique, the phase velocity dispersion can be reconstructed at —20 dB level bandwidth of the
transducer, with a relative error of +-4%, compared to the theoretical velocity predictions.

Keywords: guided waves; mechanical properties; phase velocity; non-destructive testing; composites

1. Introduction

The composites market is one of the strategic development areas of the European
Union, which aims to strengthen their competitiveness and extend the use of composites in
the sectors of aerospace, automotive, and renewable energy [1]. The current EU demand of
carbon fibre is estimated to be 35% of the global demand, and it will have an annual growth
of 10-12% [1,2], while the UK market will grow from 2.5 billion up to 10 billion pounds a
year by 2030 [3-5]. Fibre-reinforced composite laminates can offer increased strength- and
stiffness-to-weight ratios, which allow for meeting the demanding requirements of CO,
emissions. However, composites have limited interlaminar strength and are prone to forma-
tion of fibre breakage, matrix cracking, delaminations, porosity, and other structural defects.
Such defects are usually hidden and progressively degrade the residual strength and fatigue
life, eventually leading to sudden structural failure. Using ultrasonic guided waves is a
common method for periodic inspection and monitoring of structural integrity of plate-like
composite laminates, that offers large inspection areas and sensitivity to structural damage
of various kinds [6-8]. To date, many studies are available that employ guided waves for
the detection and quantification of impact damage [9-12], delaminations [13-17], and other
defects in composite laminates. Guided wave propagation in composites is determined by
many factors, including, but not limited to, multi-layered structure and anisotropy, object
boundaries, dispersion, multiple co-existing modes, and mode conversion. Phase velocity
is one of the fundamental properties of guided wave modes that depends on composi-
tion, structural integrity, elastic properties, and frequency-thickness product of composite.
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Velocity measurements can be exploited both for material characterisation and damage
detection, offering several benefits, such as validation of material properties, identification
of wave-packets in complex guided wave signals, and sizing of defects [18-20].

However, reconstruction of phase velocity from overlapped, multimodal signals, and
multi-layered anisotropic structures has been a long-standing problem. Initial phase veloc-
ity measurement approaches used threshold, zero crossing, or cross-correlation methods to
evaluate the time-of-flight (ToF) of well-isolated guided wave modes [21]. The threshold
method, in its simplest form, captures the time instance at which the signal crosses certain
amplitude level. As these methods are based on signal amplitude, they are susceptible to
noise and any other variation of the signal shape; hence, more advanced threshold-based
ToF evaluation methods, such as variable ratios or similarity-based double threshold, were
proposed [22,23]. The zero-crossing method seeks to obtain time instances at which the
amplitude of the signal is equal to zero. To improve the accuracy of ToF estimation, using
the zero-crossing technique, and avoid cycle skip problems, multiple zero-crossing points
are being estimated within the same signal [24]. It is known that zero-crossing technique
suffers from the phase uncertainty, especially at large propagation distances and under
significant dispersion, as it become impossible to follow signal phase of the elongating
wave packet and to avoid the cycle-skip. Recently, a technique based on zero-crossing and
spectrum decomposition was proposed which exploits signals measured at sufficiently
close distances and estimates the phase velocity, based on zero-crossing evaluation on
signals filtered with different bandpass filters [25]. Cross-correlation technique is based
on the measurement of correlation lag, between the received and reference signals. Such
technique is considered suitable for low signal-to-noise ratio (SNR) signals, while the ToF
accuracy mainly depends on the sampling ratio [26]. However, it is reported that cross-
correlation-based ToF estimation may become significantly biased while analysing signals
distorted due to scattering or dispersion [27].

The abovementioned ToF estimation methods can effectively be used for well-isolated
and undistorted signals; however, they usually fail in analysing the overlapped, multi-
modal, scattered, and dispersed responses. Model-based approaches can partly deal with
this problem by solving multi-dimensional and non-linear optimisation problems, while
fitting synthetic signals to a segment of ultrasonic structural response. By using matching
pursuit, chirplet transform, empirical mode decomposition or wavelet methods it is possi-
ble to decompose multimodal signals and to estimate their properties, such as frequency or
ToF [28-32]. However, model-based methods are usually computationally expensive, as
transformations are calculated in multi-dimensional space, while the selection of the mother
wavelet or atoms is non-trivial task and may lead to unexpected results. It has been demon-
strated that phase and group velocities can be reconstructed using phase-shift methods.
First proposed by Sachse [33] and used by Schumacher [34], phase-shift methods are based
on the estimation of the phase difference between transmitted and received signals, which is
proportional to propagation distance. Initially, phase-shift methods were extensively used
for bulk waves and later applied to laser-induced guided waves. In contrast to broadband
laser-based excitation, piezoelectric sensors, that are more cost effective and commonly
used in structural health monitoring applications, usually have quite narrow frequency
band, due to the type of excitation, vibration mode, and size of the transducer; hence, the
phase velocity reconstruction zone essentially becomes limited. Moreover, in order to avoid
phase ambiguity, the distance between transmitted and recorded signals is required to be
up to one wavelength, which limits spatial velocity distribution reconstruction capabilities.

In this paper, a phase velocity reconstruction approach is presented that uses phase-
shift method and excitation frequency sweep to obtain phase velocity estimations in the
entire band of transducer. Two sensors, positioned in close proximity, are used to record
signals propagated through the structure and estimate the phase-shift between the signals.
At each excitation frequency, the reconstruction of phase velocity is performed at specific
frequency components only, which correspond to the peak values of the magnitude spectra.
These peak frequencies depend on the frequency response of the excitation signal; hence,
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phase velocity values can be collected at different frequencies, allowing us to achieve a
wideband reconstruction. The validity of the approach is demonstrated through simulations
and experiments by reconstructing the phase velocities of Sy and converted Ay modes, as
well as identifying guided wave modes in complex multimodal signals.

In contrast to the classic phased spectrum method, the proposed approach allows
to reduce the relative error of the phase velocity reconstruction from +11% to +4% and
increase significantly the reconstruction bandwidth from —6 dB to —20 dB of the ultrasonic
probe. As a result, using only two signals, measured in close proximity, the proposed
phased spectrum method can achieve the reconstruction accuracy and bandwidth, which,
to date, could be achieved only with techniques that include scanning of the sensor over a
sufficiently large area.

2. Description of Proposed Phase Velocity Estimation Method

The proposed phase velocity reconstruction approach employs a classic phase-shift
method to estimate the velocity values at specific frequencies that correspond to peak
values of the magnitude spectra of received signal. By repeating this procedure at different
excitation frequencies, velocity values can be reconstructed at wide band, covering the
entire bandwidth of the transducer. Variation of the excitation frequency allow different
harmonics to be enhanced or suppressed, which is the key factor if reconstruction is
performed at peak values of magnitude spectra only. The algorithm of the proposed
method can be summarized with the following steps:

1. The transducer is driven by a burst at a central frequency of f1, and the waveforms
1171 (t) and uyo (t) are registered with receivers rq and r;, each positioned at a distances
dq and d; from the source (see Figure 1a for reference).

2. The waveforms u,¢ (t) and ¢ () are windowed using the tapered cosine window
w(t) to isolate the wave packets of particular mode (see Figure 1b):

”rlflw(t) = urlfl(t)'w(t —t), ”rzflw(t) = Upyf, (t)w(t—t) 1)

where 11,114, (t) and u,614, (f) represent the windowed versions of the waveforms w44 (f) and

1271 (t), respectively; t and t; correspond to the time instances of the maximum amplitude
of the wave packet.
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Figure 1. (a) The example of the waveform, registered with receivers ry and ry, at distances dq and dy;
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(b) the illustration of waveform windowing to isolate the wave packet of single mode.

3. Each waveform, ¢y (t) and 514, (t), is shifted in the time domain by —fy,1 and
—tmo, to avoid the uncertainties in the phase unwrapping procedure. The waveforms
can be shifted according to the centroid of signal [35] or maximum value of the Hilbert
envelope [36], in case of moderate dispersion:

“rlfls(t) = urlflw(t + tml)/ urzfls(t) = ”rzflw(t + tmz)r (2)
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tm, = arg <mtax [HT}urlflw(t)}]), tm, = arg (mtax [HT|ur2flw(t)|}>,

where HT denotes the Hilbert transform; t,,1 and t,,» are the time instances, which cor-
responds to the maximum of Hilbert envelope, in such a way that the influence of the

signal delay due to phase velocity is compensated. The shift in time domain is illustrated
in Figure 2a.
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Figure 2. (a) The illustration of the shift of waveform in time domain to the maximum value of the
Hilbert envelope; (b) the phase spectra of the waveforms, registered at distances d; and d5; (c) the
normalized magnitude spectra of the waveform, captured with receiver r; with the local maximum

frequency values (circle markers), at which the phase velocity values are estimated (square markers)
(dashed line represents the theoretical DC).

4. The complex frequency spectra of each time-shifted waveform, u,1¢5(f) and u¢14(f),
is obtained employing the Fourier transform:

urlfl (]f) =FT [urlfls(t)]r urzfl (]f) =FT [”rzfls(t)] (3)
where FT represents the Fourier transform.

5. The phase difference A¢(f) between shifted signals 11,1¢15(f) and u,0514(t), is estimated
for a given frequency band f (see Figure 2b):

A(Pﬁ (f) = (‘xr1f1 (f) - ‘szﬁ (f))' (4)
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o ) =N R T, 7)) Re[Ury, (if)]
where Im and Re represent the imaginary and real of the complex Fourier spectra.

Note that the phases a,1¢(f) and a0 (f) are calculated in a range of [—m... 7] ra-
dians. If the true phase of the particular frequency is less than —m radians, it will be
represented below the 7 radians. This means that some discontinuities will appear, in case
the phase goes beyond the £ radian limit. Therefore, the phases a1 (f) and a1 (f) have
to be unwrapped.

7Im[urlf1 (jf)}], arg (f) = arctan 7lm[llrzf1 GN] } p

6.  The phase velocity, as a function of frequency, is calculated at particular frequencies,
f1j1, using a modified version of the phase spectrum method:

co(fua) = 2t
PV A (Fuky) — 270 fug, (Emy — tmy)”

where f1 1 are the frequencies that corresponds to the peak values of the magnitude spectra
[ Uy (jf) | at excitation frequency fq; k =1 + K3, K;—is the total number of detected peaks
at excitation frequency f1, and d is the separation distance between the receivers rq and r,
(d =dy — dj). The frequency selection for phase velocity estimation is illustrated in Figure 2c.

©)

7. The intermediate values of the phase velocities at other frequencies are obtained by
changing the excitation frequency to f, and repeating the whole routine described
above. The final result is obtained by combining the calculations at different excitation
frequencies f1 ... fn:

Cp(f) = S(}rt{cp (fl,kl)r Ry Cp(fn,kn)r“'rcp (fN,kN)}r (6)

where N is the number of excitation frequencies used to drive the emitter.

The method presented above is applicable to flat structures with uniform thickness,
which can be multi-layered, anisotropic, or isotropic. In contrast to the conventional
phase spectrum method, it provides better accuracy of velocity estimation, which will be
demonstrated in the subsequent Chapter.

3. Experimental Validation on Isotropic Samples

In this section, the proposed phase velocity estimation approach is validated with the
appropriate experiments. For this purpose, the phase velocity values, extracted with the
proposed approach, are compared with the theoretical calculations, which were considered
a reference. In this study, the velocities of the Sy mode in the aluminium sample will
be analysed.

The experiments were carried out on the aluminium alloy 2024 T6 plate, which was
2 mm thick, 650 mm wide, and 1250 mm long. The well-known isotropic material was
deliberately selected for this study, in order to be able to compare the experimental results
with the theoretically estimated values. The Sy mode was launched into the structure by
attaching the thickness mode transducer to the edge of the Al plate, as is shown in Figure 3.
For the reception, two transducers, r; and r,, possessing the same characteristics, were
bonded perpendicularly to the upper surface of the specimen at distances d; = 450 mm and
dp = 550 mm from the source (see Figure 3).

In this paper, transducers with a central frequency of 240 kHz and bandwidth of
340 kHz at —6 dB level were used. The frequency response of the probe can be seen in
Figure 4a. To reconstruct the dispersion curve under the wide band, two different scenarios
employing the square pulse excitation were used, as follows: n; = 3 cycles, f1 = 150 kHz;
and ny = 3 cycles, f, = 200 kHz. Such excitation frequencies were deliberately selected,
according to the magnitude spectrum of excitation pulse, which can be seen in Figure 4b.
The results, presented in the figure, demonstrate that a minor shift of excitation frequency
from 150 to 200 kHz enables peak amplitudes of the magnitude spectra to be obtained at
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different frequencies. Moreover, the local maximum values, in case of 200 kHz excitation,
mostly correspond to the local minimum frequencies of 150 kHz excitation. Thus, excitation
under the selected frequencies enables a large variety of reconstruction frequencies to be
obtained. In this case, it was presumed that the selected excitation frequencies will provide
a sufficient amount of velocity values. In other cases, more excitation frequencies may be
used, exploiting the whole bandwidth of the transducer.
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acquisition and @ measurement |G Freamplitier

processing system Ultralab
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Transmitter

Receiver 1
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Figure 3. The schematic diagram of the experimental set-up for the validation of phase velocity
estimation method.
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Figure 4. (a) The frequency response of the thickness mode transducer used for the experiments;

(b) the magnitude spectra of three cycles (150 kHz) (solid line) and three cycles (200 kHz) (dashed
line) square excitation pulse.

The experimental waveforms of the Sy mode, at distances d; and dp, under the f1 = 150
and f, = 200 kHz excitation, are presented in Figure 5a,b, respectively. The magnitude
spectra, | U5 (jf) | and | Uppp(jf) |, of the windowed Sy mode wave packet can be seen in
Figure 5c. The frequencies at which the phase velocity values were extracted are indicated
with circle markers. Finally, the reconstructed dispersion curve of the phase velocity for
the Sy mode, along with theoretical estimation, is shown on Figure 5d. The theoretical
dispersion curve was calculated by employing the SAFE method and material properties of
aluminium 2024 T6 (the density: p = 2780 kg/ m3; Young’s modulus: E = 72 GPa; Poisson’s
ratio: v = 0.35).

The results in Figure 5d show that the phase velocities are reconstructed in the fre-
quency band up to 0.8 MHz. According to the frequency response of the transducer used
in this study (see Figure 4a), the technique enables the phase velocities in the —20 dB level
bandwidth of the actuator to be reconstructed. In this study, a total of K = 52 velocity values
were extracted at a band up to 1 MHz. This means that using two frequencies to drive the
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transducer, 52 reconstruction points were observed that correspond to peak frequencies
of the magnitude spectra. Such a number of reconstruction points is relative and depends
on the total number of excitation frequencies, N, and obtained number of peak values of
magnitude spectra, in case of each excitation frequency.

It is noteworthy that the general reliability of the phase spectrum method depends on
the proper selection of the time window to crop the wave packet of the single mode for
FFT. The proposed method implicitly assumes that only one mode is present at the selected
time window.
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Figure 5. The experimental waveforms of the Sy mode, at distances d; and d5, in case of (a) 150
(b) and 200 kHz excitation; (c) the magnitude spectra of windowed Sy mode at different excitation
frequencies; (d) the combined reconstruction of dispersion relations.

In order to estimate the agreement of the results with theoretical phase velocities, the
standard deviation (STD) was used as a measure of spread:

Ki

0= Kll_li;}(cp(fi)*ct(ﬁ)) 7]42, o
1 Kk

p= EZ(CP(ﬁ) —al(f)), .

i=1
where K is number of points in reconstructed phase velocities, cy(f;) is a vector of recon-
structed phase velocity values, and c(f;) are the corresponding reference phase velocity
values, calculated using the SAFE method. The estimated standard deviation of the cal-
culated phase velocity values is ¢ = 161 m/s. This leads to the conclusion that 40 out of
52 velocity values (77%) are within the standard deviation range, as shown in Figure 6a.
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Figure 6. (a) The graphic representation of standard deviation, showing the spread of estimated
phase velocity values and (b) reconstruction of phase velocity dispersion curves using the classic
phased spectrum method.

The experimental results, presented in this section, demonstrate that proposed ap-
proach reconstructs the phase velocity values at frequencies up to 800 kHz for the selected
probe. At frequencies above 800 kHz, the approach starts to fail at capturing the pattern of
the dispersion curve. Hence, it can be said that the phase velocity values of the Sy mode
can be reconstructed at —20 dB bandwidth or 0.1 level of the transducer, according to
its normalized magnitude spectra, presented at Figure 4a. The standard deviation of the
reconstructed phase velocities, calculated according to Equation (7), is 161 m/s, which pro-
vides relative error of phase velocity estimation equal to +3% for the Sy mode, calculated

according to:
5 <U><100/o>/ )
IlCt(f)

where picyr) is the mean theoretical phase velocity value in the selected frequency band
under analysis.

In order to emphasize the achieved improvement, the signals of the Sy mode, obtained
at 200 kHz, were processed using classic phased spectrum method, described in [33,34].
The reconstructed phase velocity curve is presented at Figure 6b. The results indicate that
highest velocity reconstruction accuracy can be obtained at frequency band 200-340 kHz,
which corresponds to —6 dB bandwidth of the sensor. The standard deviation of the
Sp mode phase velocity reconstruction is estimated to be 592 m/s for the classic phase
spectrum method, which gives +11% relative phase velocity reconstruction error. In can be
concluded that proposed approach allow to increase the reconstruction bandwidth, from
140 to 800 kHz, and reduce the relative velocity estimation error, from +11% to +3%, for
the Syp mode.

4. Identification of Converted Modes

In this section, the numerical validation of the proposed phase velocity reconstruction
method will be presented. The major focus will be given to the method performance, in
case the analysed signal is surrounded by the wave packets of other co-existing modes. To
achieve the purpose of this study, the phase velocities of the converted Ay mode will be
analysed, which convert from the Sy mode, due to the presence of notch.

To fulfil the scope of this research, the 3D linear structural mechanics finite element
model of isotropic aluminium alloy 2024 T6 plate (600 x 200 x 2 mm) is considered. The
top view of the analysed structure is presented on Figure 7. The Sy mode was initially
launched into the structure by applying the in-plane force to the shortest edge of the Al
plate. To generate the converted Ag mode, the vertical 36 mm wide (along x axis) crack-type
defect, with a depth of 66% of the plate thickness, was introduced by duplicating the
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nodes of the mesh. In such way, a complete disbond was simulated, without changing
the shape of finite element model. It was shown by the various researchers that, if a crack
is not symmetrical to the middle plane of the plate, according to the thickness, the mode
conversion takes place upon the wave interaction with the notch, and both the Sy and Ag
modes are expected as the reflected and transmitted waves [37]. The defect was centred,
with respect to the short edge of the sample, and situated at the distance of 200 mm from
source of Lamb waves (see Figure 7).
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S ———— 1, s 0
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yvooz R A luminium alloy 2024-T6

Figure 7. Illustration of the set-up of numerical aluminium plate FE model with the notch.

Throughout the simulations, the ANSYS 17.1 implicit solver and 3D structural solid
solid64 finite elements were used, which are defined by eight nodes having three de-
grees of freedom at each node and 2 x 2 x 2 integration points. The finite elements
were hexahedrons, meshed using structured grid. Once again, two different scenarios
employing the square pulse excitation were used, as it was described in the previous
section. At first, the excitation pulse consisted of 17 = 3 cycles and a central frequency of
f1=150kHz. Meanwhile, in the second case, the Lamb waves were excited with 1, = 3 cycles
at f =200 kHz. The average mesh size was equal to 0.5 mm, which corresponds to 21 nodes
per wavelength for the slowest Ag mode at f1 and 17 nodes per wavelength at f,. The
integration steps in the time domain were 0.33 and 0.25 us, respectively, which produces a
1/20 of the period, both at f1 and at f,. The variable monitored in this study was a vertical
component of particle velocity (y) along the centreline of the sample. The waveforms for
the phase velocity estimation were selected along the centreline of the sample at distances
d1 =240 mm and d, = 360 mm. The B-scan images of the longitudinal (z) and vertical com-
ponent (v) of the particle velocity, showing the Sy and converted Ay modes, are presented
in Figure 8a,b.

The simulated waveforms of the converted Ay modes, at distances d; and d», in case
of f1 =150 kHz and f, = 200 kHz excitation, are presented in Figure 9a,b. The selected time
windows to cut the wave packet of single mode are indicated with vertical dashed lines. The
magnitude spectra of windowed A mode, at frequencies f; and f,, along with indicated
reconstruction frequencies, can be seen on Figure 9c. Finally, the comparison of estimated
DC, with the theoretical calculations, is shown on Figure 9d. The results demonstrate
a good match between the estimated results and theoretical phase velocities, calculated
with the SAFE method. The standard deviation of the reconstructed velocities is equal to
o =473 m/s. Overall, the K = 32 velocity values were extracted, while 20 (63%) of them were
within the range of standard deviation. Even though the number of reconstruction points is
less than from the experiments present in previous section, Figure 9d suggests that its quite
sufficient for the reconstruction of the segment of dispersion curve. The proposed approach is
not limited with two excitation frequencies; hence, the number of reconstruction points can be
increased if the segment of dispersion curve is not represented properly.
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Figure 8. The (a) longitudinal and (b) vertical component of particle velocity along the centreline of
the sample, in case of 150 kHz excitation.
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Figure 9. The simulated waveforms of the converted Ay mode, at distances d; and d, in case of
(a) 150 and (b) 200 kHz excitation; (c) the magnitude spectra of windowed Ay mode at different
excitation frequencies; (d) the combined reconstruction of phase velocity dispersion curve along with
the theoretical estimation.

As it was mentioned previously, the time window selection ambiguity is quite essential
in the success of phase velocity reconstruction using phase-shift method, especially for
overlapped modes. Hence, the selected time window must hold the single mode only. For
complex structures, where signals undergo many reflections, the reconstruction can be
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quite uncertain. On the other hand, it will be demonstrated in the next chapter that phase
velocities can be estimated using part of the signal only. In such a case, the position of the
time window must be optimised, i.e., by solving a minimisation problem, to get reasonable
velocity reconstruction results.

5. Analysis of Multimodal Signals in Anisotropic Structures

In this section, the performance of the proposed phase velocity reconstruction ap-
proach is validated qualitatively by analysing the experimental multimodal signals in
an anisotropic structure. For this purpose, the experiments have been carried out in a
pitch-catch configuration on the 6-ply GFRP plate (biaxial: 0° and 90° /bias: +45° /biaxial:
0° and 90°), with dimensions x, = 2000, y, = 1000, and 4 mm thickness (see Figure 10).
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Figure 10. The schematic diagram of the experiments for validation of phase velocity reconstruc-
tion approach.

The Lamb waves were generated using the MFC transducer, centred at the coordinates
Xe = 500 mm, Y. = 250 mm. It was bonded to the surface of the specimen using a thin
layer of gasket maker. The emitter was excited by a three-cycle square pulse, with a central
frequency of 100 kHz, where the fundamental Ay and Sy modes exist in the structure. In
this case, the measurements were recorded at a single excitation frequency. Two waveforms
were recorded along the wave path (0° propagation), at the distances d; = 773 mm and
dp = 895 mm from the source of Lamb waves (see Figure 10). The proposed phase velocity
estimation method was used to extract velocities of the four wave packets: direct Sy, bottom
reflected Sy, left top edge reflected Sy, and direct Ag mode. The experimentally obtained
waveforms, at the distances d; and dy, are presented in Figure 11a,b. The start and stop
points of the time windows used to crop the wave packets are indicated by dashed squares.

The reconstructed phase velocities of different reflections can be seen in Figure 12a—d.
The standard deviations for each case of reconstruction are summarized in Table 1. Note
that the reconstructed velocity values below 40 kHz were not considered in the calculations
of STD.

Table 1. The standard deviation of the estimated phase velocities for different GW mode packets.

Type of Mode Velocity Standard Deviation, o (m/s)
Sy direct 97.4
Sp bottom edge 202.7
Sy left and top edge 2245
Ay direct 51.5
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Figure 11. The experimental waveforms obtained on the GFRP sample along the propagation path, at
distances (a) d; and (b) d5.
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Figure 12. The reconstructed phase velocities of the Sy and Ay modes: (a) Sy direct; (b) Sy bottom
edge reflected; (c) Sy left and top edge reflected; (d) Ay direct.

The results presented above (Figure 12) were found to be in quite good agreement
with the theoretical calculations. It suggests that the proposed technique can be used with
a certain reliability to extract the phase velocities of GW and identify modes in complex
signals. The results show that the velocities of the direct modes are closer to the theoretical
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values, in comparison to the reflected ones. The average deviation for the direct modes (Ag
and Sy) is approximately 75 m/s, while for the reflected Sy modes, it is 213 m/s. Several
factors may influence the reliability of the results, though. First of all, the selected time
windows in Figure 11a,b (dashed squares) may give an idea that this procedure is not very
straightforward, especially for the reflected modes. As it turns out, in some cases, part of
the wave packet has to be cropped to get better velocity estimation. Another important
factor is the propagation distance, which varies for modes arriving at different directions.
It means that the distance (d) has to be predefined for each wave packet separately. If
the propagation distance is not known in advance, an additional error will be obtained.
The study revealed that the proposed velocity estimation technique gives an approximate
relative experimental error of +4%, in comparison to theoretical predictions. Meanwhile,
for the incident modes, the relative error is always less than a £2.5%. For example, the 2D
FFT method gives an error of approximately of 1% [38]. However, in the study above, the
authors used a set of 64 time series, spatially sampled at 1 mm, to achieve such accuracy.

6. Conclusions

In this paper, a phase velocity reconstruction approach, based on the phased spectrum
method, was developed, which exploits several excitation frequencies of the ultrasonic
probe and estimates phase velocity values at peak frequencies of the magnitude spectra.
The proposed approach allows us to reconstruct phase velocities with high accuracy in
wide frequency bandwidth using only two waveforms measured at close proximity. In
contrast to the classic phase spectrum method, the proposed technique offers an increased
reconstruction bandwidth (from —6 to —20 dB) and reduced relative error of phase velocity
reconstruction (from £11% to +4%). The main outcomes of the research can be summarized
as follows:

e It was found that the accuracy of the classic phase spectrum method can be improved
if several frequencies are used to drive the transducer, while the phase velocities are
reconstructed at peak values of Fourier spectra only. Such an approach allows us to
avoid low energy frequency components, where the velocity estimation error is likely
to increase.

e  The initial experiments demonstrated that the proposed phased spectrum method can
increase the reconstruction bandwidth, from —6 to —20 dB, of the sensor and improve
the standard deviation of velocity reconstruction, from 592 to 161 m/s. For the
experimental Sy mode, this results in a velocity estimation relative error improvement,
from +11% to £3%.

e  The finite element simulations demonstrated the applicability of the proposed ap-
proach in detecting converted guided wave modes. It was demonstrated that the
phase velocities of converted modes can be reconstructed with a standard deviation of
47.3 m/s, even if the modes are partly overlapped with direct waves.

e  Finally, the proposed method was demonstrated to be appropriate for the analysis of
complex guided wave signals, with multiple co-existing modes. It was estimated that
average deviation for the direct modes (A( and Sp) is approximately 75 m/s, while for
the reflected Sp modes, it is 213 m/s. While analysing the overlapped complex guided
wave signals, the proper selection of time gate is the most important parameter for the
accuracy of reconstruction.

e It was estimated that the average phase velocity reconstruction error of the proposed
method, including both symmetrical and asymmetrical modes, is up to £4%. The
classic phase spectrum method provides an approximate reconstruction error of +11%.
Other techniques, reported in the literature, can achieve velocity reconstruction with
an average error of +1%; however, at least 64 signals need to be acquired to achieve
such accuracy.
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Abstract: Gearboxes are widely used in drive systems of rotating machinery. The health status of
gearboxes considerably influences the normal and reliable operation of rotating machinery. When a
gearbox experiences tooth failure, a vibration signal with impulse features is excited. However, these
impulse features tend to be relatively weak and difficult to extract. To solve this problem, a novel
approach for gearbox fault feature extraction and fault diagnosis based on improved variational
mode extraction (VME) is proposed. Since the initial value of the desired mode center frequency and
the value of the penalty parameter in VME must be assigned, a short-time Fourier transform (STFT)
was performed, and a new index, the standard deviation of differential values of envelope maxima
positions (SDE), is proposed. The feasibility and effectiveness of the proposed approach was verified
by a simulation signal and two datasets associated with a gearbox test bench. The results demonstrate
that the VME-based approach outperforms the variational mode decomposition (VMD) approach.

Keywords: gearbox; variational mode extraction; short-time Fourier transform; SDE index; fault
feature extraction

1. Introduction

Gearboxes are widely used in rotating machinery, such as wind turbines, nuclear
power units, high-speed rail, and new energy vehicles, and their performance influences
the normal and reliable operation of rotating machinery. Gearboxes usually operate under
a dynamic load or in overload conditions and are prone to suffer from various kinds of
defects, such as fatigue pitting, wear, tooth spalling, and tooth fracture [1-3]. To evalu-
ate the operating status of rotating machinery and ensure safe production and effective
maintenance, it is important to monitor the gearbox condition and diagnose faults. When
a gearbox experiences tooth failure, the contact stiffness at the damage point changes,
and the meshing movement is not smooth during operation, exciting impulsive vibration.
When rotating machinery operates at a constant speed, impulsive vibration can be demon-
strated by periodic impulse features in the sampled vibration signal [4,5]. The impulse
feature frequency is closely related to the health status of the gearbox, which suggests
that different frequencies indicate different fault states [6]. Therefore, extracting the fault
feature frequency from the sampled vibration signal is a feasible solution for gearbox fault
diagnosis [7]. However, gearboxes usually consist of multiple rotating parts. The vibrations
excited by different parts are coupled to each other. In particular, the transient impulses
caused by the damaged part attenuate along the transmission path from the source to the
sensor, which is usually located on the casing. In addition, the sampled vibration signal
often contains environmental noise [8]. Therefore, extracting the weak impulse features
from vibration signals with heavy noise becomes a challenging task in practice [9-11].
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Essentially, the process of fault feature extraction comprises the elimination of noise
and interference components in vibration signals. An effective approach to solve this
problem is signal decomposition, the variants of which include wavelet decomposition
(WT) [12-14], empirical mode decomposition (EMD) [11,15,16], local mean decomposition
(LMD) [9,10,17,18], and empirical wavelet transform [19-22]. However, WT is not a self-
adaptive signal analysis method because it is restricted by the selection of the wavelet basis
function and number of decomposition levels [17]. Although EMD can self-adaptively
decompose a multimodulated signal into a series of intrinsic mode functions (IMFs), it lacks
a theoretical basis and has some inherent defects, such as sensitivity to noise, end effects,
and mode mixing [4,5,15,16]. Like EMD, LMD adaptively decomposes a multicomponent
signal into several single-component AM-FM signals but encounters several technical
problems, such as end effects and mode mixing [17,18]. EWT decomposes a signal into
several AM-FM monocomponents that have compact support in the Fourier spectrum;
however, the boundaries of the frequency partition are difficult to set, and this aspect may
result in inaccurate and even invalid components [21,22].

In 2014, Dragomiretskiy and Zosso proposed a novel signal processing method known
as variational mode decomposition (VMD) [23]. Based on complete mathematical princi-
ples, VMD decomposes a signal into an ensemble of band-limited subsignals, i.e., modes.
The mode compact around a center frequency is estimated online in a nonrecursive manner.
VMD is highly effective when applied to machinery fault diagnosis [5,24,25]. However, the
actual performance of VMD is critically affected by the mode number and quadratic penalty
parameter. Presetting the two parameters usually requires experience and experimentation.
Moreover, it is difficult to determine optimal preset values. To address these limitations,
many optimization algorithms, such as genetic optimization [26], particle swarm opti-
mization [25,27], grasshopper optimization [24,28], gray wolf optimization [29,30], cuckoo
search algorithm [31], artificial bee colony algorithm [32], and chaotic pigeon-inspired
optimization [33], have been studied and applied to achieve the optimal values for the two
parameters. Many parameter-optimized or -enhanced VMD methods have been proposed.
However, these optimization methods require a large number of iterative operations and
are time-consuming, resulting in a low computational efficiency [1], especially given the
quadratic penalty parameter usually takes a large value, and its optimal value needs to be
searched in a large range. Therefore, the enhanced VMD method combined with several
optimization algorithms must be further studied and discussed to enhance its practicality.

In gearbox fault-diagnosis applications, the fault feature information is usually in-
cluded in a certain frequency band of the sampled vibration signal. Therefore, among the
obtained modes of VMD, only one invaluable target mode exists, and the other modes may
not