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Preface

This reprint is the first of three volumes of collected articles on the topic of Natural Hazards

and Disaster Risks Reduction. It focuses on hydro-hazards (e.g., flood, drought and tsunami)

demonstrating how endogenous and exogenous environmental processes that regulate the Earth’s

system can lead, in some cases, to the formation of sudden and violent natural occurrences, with

uneven impacts on the Earth. Climate change and human actions can worsen these phenomena.

These events can threaten human life and community safety, especially when they interact with

inhabited areas. The unregulated development of human activities has made society increasingly

vulnerable and in need of intervention. The content of these works provides a useful compendium

for supporting scientists engaged in the study of the discussed phenomena and the search for

implementing specialized solutions. Additionally, thanks to the applicative characteristics of the

content, it is useful for public administration technicians who intend to work on security in areas

subject to such natural adversities that are in pursuit of sustainable development.

Stefano Morelli, Veronica Pazzi, and Mirko Francioni

Editors
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Data-Driven Community Flood Resilience Prediction
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Abstract: Climate change and the development of urban centers within flood-prone areas have
significantly increased flood-related disasters worldwide. However, most flood risk categorization
and prediction efforts have been focused on the hydrologic features of flood hazards, often not
considering subsequent long-term losses and recovery trajectories (i.e., community’s flood resilience).
In this study, a two-stage Machine Learning (ML)-based framework is developed to accurately
categorize and predict communities’ flood resilience and their response to future flood hazards.
This framework is a step towards developing comprehensive, proactive flood disaster management
planning to further ensure functioning urban centers and mitigate the risk of future catastrophic
flood events. In this framework, resilience indices are synthesized considering resilience goals (i.e.,
robustness and rapidity) using unsupervised ML, coupled with climate information, to develop
a supervised ML prediction algorithm. To showcase the utility of the framework, it was applied
on historical flood disaster records collected by the US National Weather Services. These disaster
records were subsequently used to develop the resilience indices, which were then coupled with
the associated historical climate data, resulting in high-accuracy predictions and, thus, utility in
flood resilience management studies. To further demonstrate the utilization of the framework, a
spatial analysis was developed to quantify communities’ flood resilience and vulnerability across the
selected spatial domain. The framework presented in this study is employable in climate studies and
patio-temporal vulnerability identification. Such a framework can also empower decision makers to
develop effective data-driven climate resilience strategies.

Keywords: community resilience; data-driven methods; machine learning; resilience; flood hazard

1. Introduction

The severity of climatological and hydrological hazards has been increasing over
the past decades, with an especially higher frequency of flood hazard over the past three
decades, heavily impacting the livelihood of exposed communities [1–3]. The changing
climate has been significantly affecting the weather conditions and climatological factors
(i.e., mean temperature, humidity, and precipitation) [4,5]. Data records since 1996 show
that in North America, and similarly around the world, the rate of extreme weather
events and rainfall (i.e., more than 100 mm of rainfall in 24 h) is alarmingly increasing,
accompanied by an increased frequency of floods [6]. This is attributed to the higher rate of
urbanization into flood-prone areas, where the urban environment now hosts over 50% of
the world’s population, with an expected increase to 70% by the year 2050, boosting the
probability of flood-related disasters through the vulnerable community’s exposure [7,8].

As a direct consequence of such increase in flood exposure and related losses, flood
disaster management stakeholders have been moving to adopt a proactive risk-mitigation

Water 2022, 14, 2120. https://doi.org/10.3390/w14132120 https://www.mdpi.com/journal/water
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response, rather than a reactive post-disaster response approach [9,10]. However, flood risk
needs first to be quantified in order to efficiently develop better mitigation strategies and
eventually enhance resilience. In this respect, flood risk is identified as the expected damage
(i.e., consequence), resulting from a hazard’s probability of occurrence, coupled with the at-
risk-community’s exposure and vulnerabilities, considering different uncertainties [11–13].

With the increasing climatological disasters and flood risk, community resilience re-
search is steadily gaining more traction worldwide. While a community is defined as a
“Place designated by geographical boundaries that function under the jurisdiction of a
governance structure (e.g., town, city, or county)” [14], community resilience is the ability
of a community to adapt to, predict, and rapidly recover from future disruptions, back
to a predefined target state [14]. Flood risk is a result from the simultaneous realization
of three aspects: (i) flood hazard: the potential, or probability, of a flood event of certain
characteristics occurring at a given location, (ii) flood vulnerability: a measure of the sus-
ceptibility, and the adaptability, of the exposed community to the flood hazard, and finally
(iii) flood exposure: the assets, humans, and otherwise (i.e., infrastructure systems) that
are located in a flood-prone area [11,13,15]. This indicates that a severe flood hazard does
not necessarily yield a high-risk flood, as it can occur in an area with a low number of
exposed elements, but flood risk can be quantified only when the exposed and vulnerable
community prone to said hazard is coupled with the hazard realization [12,15]. As an ex-
tension, resilience analysis evaluates the extended functionality loss and recovery trajectory
of communities prone to flood hazards, taking into account the direct and indirect losses as
well as restoration costs [5,12].

Previously, resilience has been defined differently across different fields; however,
in the context of this study, resilience is defined as the ability to resist being affected by,
and rapidly recover from, some external disturbance [16]. Resilience is quantified through
the four attributes including: two objectives (i.e., goals) of resilience: robustness and
rapidity, enabled by two means: resourcefulness and redundancies [17,18]. Robustness
is the inherent ability of the system to retain its functionality level when exposed to
stress or extreme demand; rapidity is the time needed for the system to bounce back to a
certain predefined target functionality level; resourcefulness is the availability of adequate
resources within the system to maintain its functionality under extreme demand levels, and
finally, redundancy is the availability of alternate components to maintain functionality
during the external hazard [17,19]. It is worth noting that rapidity measures the total time
needed for the system to bounce back to its target functionality, including the downtime of
the system (i.e., the duration of the hazard itself).

Over the years, numerous researchers have embarked on flood categorization and
prediction studies [20–23]. However, most such studies focused on the hazard’s features
and, to a lesser extent, on the direct impact and losses due to the flood hazard or long-term
recovery cost and time [24–29]. In this respect, this study aims at developing a prediction
framework that classifies the long-term potential impacts, recovery, and resilience of the
exposed community, a categorization that captures the resilience of the exposed communi-
ties rather than simply the hazard’s characteristics. To achieve that, having reliable data is
imperative to accurately incorporate said damage and characteristics within an objective
data-driven resilience prediction framework [30]. The incorporation of the hazard, system
vulnerability, and exposure employed in this framework would result in a comprehensive
assessment of the short-term potential impacts, direct and otherwise, of the flood event
through robustness assessment (i.e., flood risk), as well as the long-term impact on the
exposed community through rapidity evaluation (i.e., resilience assessment). The study
presented herein is employable in vulnerability identification and flood prediction stud-
ies, providing an imperative decision support tool for stakeholders and policymakers to
allocate adequate resources and potentially save billions of dollars.
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2. Flood Resilience Prediction Framework

2.1. Framework Design and Layout

The aim of this research is to develop a flood resilience prediction framework that
captures the probable and resulting impacts of floods on respective exposed communities.
Such a framework would serve as a practical data-driven tool for quick and actionable
early-warning system. Such a system will subsequently aid policy and decisionmakers in
developing resilience-guided risk management strategies, accounting for the four attributes
of resilience. Classification and data driven models require a sufficient number of obser-
vations in a dataset to allow for meaningful classification and clustering [23]. While this
necessitates the accessibility to a large volume of high quality data, there are also alternative
ways to account for missing data within an employable dataset.

As can be seen in Figure 1, the framework presented herein is comprised of two main
parts: (a) resilience-based categorization and (b) resilience-based prediction, and each part
of the framework is comprised of different stages.

Figure 1. Multi-stage framework layout for resilience-based flood categorization and prediction.

Part (a): resilience-based categorization framework: this part is divided into three
main stages: Stage (i) Data compilation, cleaning, and visualization: the first step is to
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compile a comprehensive dataset, with enough variables to capture the resilience attributes,
as well as the features of the flood events (e.g., flood depth and duration). Following
data gathering, data preprocessing starts to ensure data suitability for a reliable analysis
and data imputation for missing values. Datasets are investigated for the identification
of any biases or skewness within the dataset, as well as the accommodation for missing
data. Missing data can induce disruptions to the ML algorithm, rendering replacing or
removing observations with missing variables. Accounting for missing variables can be
performed through multiple approaches, 1) by removing observations with missing vari-
ables altogether, 2) by averaging the readings from other nearby observations with similar
conditions to the observation with missing variables, or 3) by using unsupervised learning
to cluster the dataset and take the average of the cluster variables as the reading for the
missing variables. In this study, a combination of approaches 1 and 2 was employed [31–33].
Finally, data visualization was conducted to identify inherent characteristics and interde-
pendencies within the dataset, which is pivotal in choosing an appropriate model for the
following stage.

Stage (ii) Selection of Machine Learning (ML) model: ML models are designed to
analyze high-dimensional data. They have been utilized across different fields such as
engineering, biology, and medicine and in different applications such as banking, targeted
advertisement, social networks, and image and pattern recognition [34–37]. ML models
are used to identify pattens and discover behaviors in large datasets, while continuously
adapting to new data features to enhance model performance. ML models are expected
to handle large datasets with complex interdependent features and identify hidden pat-
terns [38]. ML models are divided into supervised and unsupervised algorithms (also
named classification and clustering algorithms, respectively) and will be discussed in
more detail in the following section. In the developed framework, the categorization in
part (a) employs unsupervised (clustering) techniques, while part (b) employs supervised
(classification) algorithms [38,39].

Stage (iii) Features and clusters analysis: the results of Stage (ii) in Part (a) are used
in developing the features of each category (cluster). By conducting a feature analysis,
the developed clusters can be used in developing a spatial analysis to identify vulnerable
communities based on the considered resilience metrics. The deployment of the clustering
algorithm results ensures the development of unbiased managerial insights, facilitating
the decision-making process for utilizing the resilience means (i.e., redundancies and
resourcefulness) to better enhance the resilience of the more vulnerable communities.
The developed clusters in Part (a) are vital in the development of the predictive analysis
in Part (b), where this categorization framework can aid decision makers in translating
predicted flood hazards and risks into actionable plans, increasing the robustness by
reducing the loss of functionality, and ensuring a quick recovery to the target state.

Part (b): Resilience-based prediction framework: similar to Part (a), Part (b) is also com-
prised of different stages; while these stages are similar in concept with their counterparts
in Part (a), the details and the nature of the algorithms differ greatly.

Stage (i) Data compilation: the first step is compiling the dependent and independent
variables of the dataset. In this stage, the study area is identified for the development of the
predictive model where the features, characteristics, and exposure are fairly similar. The
dependent variables selected for this framework are the climate information corresponding
to recorded flood events (e.g., maximum temperature, minimum temperature, precipitation,
wind speed, air pressure, humidity, etc. . . . ), whereas the independent variable would be
the resilience-based categories developed in Part (a) of the proposed framework. Similar
to most ML algorithms, the dataset should be comprehensive and of good quality and
diversity to produce actionable results. Data imputation and cleaning are conducted to
ensure the reliability of the data and avoid skewness and imbalances in the dataset.

Stage (ii) Data preprocessing and analysis: for this stage, the gathered dataset is
studied to identify the interrelationship between the different variables and thoroughly
examine which variables to be included in the analysis to reduce the noise in the data
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while ensuring that all the resilience metrics and the hazard features are comprehensively
represented. This feature selection step can be achieved through exploratory and sensitivity
data analyses, feature selection, or correlation analysis between different variables of the
available data. Following that step, data cleaning and preprocessing commences. The
performance of data-driven models is strictly tied to the quality and quantity of the dataset
involved in the development of the model, whereas finding a readily available dataset
that matches all the required criteria for analysis is typically very challenging. Therefore,
numerous methods have been developed to deal with missing data, unbalanced data,
and skewed data (e.g., data imputation, removing datapoints with missing variables, take
average readings from nearby sources, etc.) [32,33].

Stage (iii) Development and testing of the ML models: in this stage, a supervised
ML model is developed to predict flood resilience categories based on climate data corre-
sponding to the recorded flood events. Supervised ML models can be used in predicting
discreet, continuous, or categorical data. The classification required for the analysis herein
falls under the multi-class classification category, where the dependent variables are used
to predict a categorical independent variable of more than two classes (Wu et al., 2004).
For this classification, different algorithms were validated and tested to determine the
most suitable algorithm for the current dataset (e.g., Naïve Bayes classifier, Support Vector
Machine, Decision Trees, Artificial Neural Networks, Ensemble techniques, etc.), where
they were assessed based on a common performance criteria, which is to be explored
further in the Methodology section [33,40–42].

2.2. Methodology

Machine Learning is an artificial intelligence tool designed to learn autonomously from
a training dataset, mimicking the behavior of the human brain through the learning process.
By deploying ML models on appropriate datasets, the model extracts the dataset’s inherent
features and adjusts itself to better enhance its performance [43]. As mentioned, ML models
are broadly divided into two types, supervised and unsupervised learning models, where
they use labelled and unlabeled data, respectively, for training and validation. In the field of
natural hazard and community resilience, ML and data-driven models have been recently
been employed in achieving the overarching goal of increasing community resilience in
the face of natural and anthropic hazards [25,42–46]. For the framework developed herein,
both ML model types are utilized, where the unsupervised learning is utilized in the
development of the community resilience categories, and supervised ML techniques are
employed to predict the community resilience metrics under future flood hazards.

2.2.1. Unsupervised Learning: Clustering

Unsupervised ML models use partitioning algorithms to cluster observations based on
a predefined similarity measure such that observations with common features are placed
in the same cluster [47]. This is an unguided process that does not require a predefined
objective, ensuring that the clustering is based on inherent features of the dataset. This
similarity measure is assessed by measuring the distance between different observations,
where two, or more, observations are considered similar when the distance between them
is minimal. Henceforth, observations within a cluster should be closer to one another than
that of other clusters.

Choosing the similarity measure depends heavily on the type of data and objective of
the study; such measures include the Euclidean, Cosine similarity, Manhattan, and Gower
distances [48]. For this study, multiple similarity measures were explored to determine their
applicability with the available mixed-type dataset (i.e., dataset containing both categorical
and numerical data). For the Gower distance within the Partitioning Around Medoids
algorithm, the developed dissimilarity matrix from the dataset was skewed, which results
in a biased algorithm favoring seasonal clustering instead of resilience-based clustering.
Eventually, weighted Euclidean distance was adopted in this study as it measures the
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weighted proximity of the observations within a three-dimensional space [48,49]. It is
important to note that other approaches may also be employed in the current study.

For the framework presented herein, two clustering algorithms were employed to de-
velop the resilience-based flood categories, namely K-means clustering and self-organizing
Maps. The K-means clustering technique, and its variations, is the most heavily used
partitioning (clustering) algorithm [50], where observations are divided into a predefined
number of clusters (K). Prior to the partitioning algorithm, multiple values are assumed
for K, and the optimal value is that with the minimum intra-cluster variation (i.e., the total
within-cluster sum of squares (WSS)). For the current study, the WSS utilized the squared
Euclidean distance between the observations and their respective cluster’s centroid [51–53].

SOM is a type of Artificial Neural Networks (ANN) algorithm trained to cluster data
into groups in an unsupervised approach. The input space is organized according to a
predefined topology of neurons, where each neuron is assigned a number of observations.
ANN is an artificial intelligence technique by which complexinterrelationships within a
dataset are uncovered automatically based on inherent patterns in the dataset [54,55] by
mimicking the behavior of the human brain when transmitting signals through neurons,
albeit through artificial neurons. There have been numerous ANN techniques developed
to date, each of which may befit a specific application (e.g., self-organizing maps, recurrent
neural networks, and feed-forward back-propagation neural networks). However, ANN
is more commonly employed in predictive algorithms [54,56,57] and pattern recognition
applications [23,36,55,58]. For the study presented herein, SOM was utilized using the
Deep Learning Toolbox in MATLAB, where the Kohonen rule was adopted [55,59].

2.2.2. Supervised Machine Learning: Classification

Classification is a supervised ML technique that learns and utilizes features of a
dataset to derive patterns and classify new input data. Supervised ML models learn
from a training dataset, which is comprised of dependent (i.e., predictor variables) and
independent variables (i.e., predictand variable) and applies the identified patterns on a
testing dataset, while applying optimization techniques to increase the model’s perfor-
mance [41,60,61]. Numerous classification techniques have been developed to date (e.g.,
continuous, discreet, numerical, or categorical). In the present study, the independent
variable is class-based; therefore, multiclass classification techniques will be employed in
the current study (e.g., Naïve Bayes classifier, Classification Trees, Support Vector Machine,
ANN, etc.). To improve the performance of said models, classification models employ
ensemble techniques—bagging, random forest, or boosting [62–64].

Naïve Bayes Classification

The Naïve Bayes classifier algorithm employs Bayes’ theorem with the assumption
that the variables are conditionally independent given the value of the class variable (i.e.,
Naïve). The algorithm employs joint conditional probabilities of the dependent variable
of the training dataset given their respective independent variable [65–67]. The output of
said model is the conditional probabilities of the class labels assigned based on the highest
class-label’s joint probability for each observation in the dataset. The theorem employed in
this algorithm calculates the conditional probability for class variable y using Equation (1),
where (x1, . . . , xn) are the n dependent variables.

P(y|x1, . . . , xn) =
P(y)P(x1, . . . , xn|y)

P(x1, . . . , xn)
(1)

By applying the naïve assumption for all i, and substituting with P(x1, . . . , xn) as a
constant, the resulting conditional probabilities can be expressed as Equation (2):

P(y|x1, . . . , xn) ∝ P(y)Πn
i=1P(xi |y) (2)
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This theorem can be interpreted such that a data record belongs to a certain class (M) when
the conditional probability P( Mi|x1, . . . , xn) returns the highest value of all classes. The
reader is referred to the studies by McCallum and Nigam (1998) [68] and Zhang (2004) [69]
for further details on Naïve Bayes classification.

Decision Trees

Within the Classification and Regression Trees (CART) algorithm, classification trees
are utilized to predict categorical (discriminate) data, unlike regression trees which deal
with predicting continuous independent variables [41].

Decision Trees utilize a binary recursive partitioning algorithm, since each split (i.e.,
rule or partitioning step) depends on the prior splitting step. The data is partitioned
into homogenous subgroups (i.e., nodes) using binary Yes-or-No questions about each
feature of the sub-group, where this process is repeated until a suitable stoppage criterion
is reached (e.g., maximum number of splits). For each split, the objective is to identify
the optimum feature upon which the data can be split, where the overall error between
the actual response and the predicted response is minimal. The analysis presented herein
is concerned with classification trees, where the partitioning is set to maximize the cross-
entropy or the Gini index [38,70]. The Gini index is a measure of purity (or lack thereof) in
the classification model, where a small value indicates that a subgroup (i.e., node) contains
predominantly observations from a similar class. High values of mean decrease in the
Gini index correspond to a more important variable (i.e., feature) within the classification
model [38]. The Gini index is relied upon herein given the type of data utilized in the
demonstration application presented later in this study.

For model accuracy and performance enhancement, there exist numerous employable
ensemble techniques (e.g., bagging, boosting, and random forest) [63,64]. Bagging is a
bootstrap aggregating technique used for fitting multiple versions of the model drawn from
the training dataset. Bootstrapping is a random sampling technique of the data, taken by
replacement, such that a datapoint can still be available for selection in subsequent models
while using all the predictors for the sampling technique [71]. Each model is then used to
generate training for the DT model, and the averaging of all the predictions is subsequently
used, resulting in a more robust model than a single tree [63,70,72].

Random forest further improves bagging techniques to enhance model performance,
where the selection of the predictors is also randomized at each split at the node within the
tree rather than using all the predictors. The size of the tree is maximized by repeating the
aforementioned process iteratively, and the prediction is based on the aggregation of the
prediction from the total number of trees [63,73–76].

Prediction Model Performance

For classification models, the overall model accuracy and misclassification errors are
widely used. However, this criterion is not always suitable for asymmetrical or skewed
datasets where the majority of the data falls within a single category. To introduce a more
accurate measure of the predictive performance, the precision, recall, and F1-score for each
category in the testing and training datasets were calculated. In this respect, precision
is the number of correct predictions per class within multiclass classification, which is a
measure of how accurate each class prediction is. Recall (i.e., sensitivity) on the other hand
is the number of correct class predictions out of all correct examples in the dataset, and it
captures the ratio between the correct classifications and the actual classification for the
dataset. Finally, the F1-score is considered an integration between the precision and recall
of the model, where it balances the concerns of both performance measures [77]. Precision,
recall, and the F1-score are evaluated according to Equations (3)–(5), respectively, where
the information can be extracted from the confusion matrix of each model.

Precision =
TP

TP + FP
(3)
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Recall =
TP

TP + FN
(4)

F1–score = 2 ∗ Precision ∗ Recall
Precision + Recall

(5)

In the equations above, TP refers to True Positive, which is the number of correctly
predicted observations, and FP refers to False Positive, which is the number of predictions
incorrectly assigned to a class, whereas FN refers to False Negative, which is the number of
observations incorrectly assigned to a wrong class [60].

3. Framework Application Demonstration

To showcase the employability of the developed framework, the data from the Na-
tional Weather Service (NWS) were adopted for the derivation of the resilience-based
categories. Subsequently, these categories were then coupled with climate data extracted
from the National Oceanic and Atmospheric Administration’s (NOAA) National Centers
for Environmental Information. The framework was thus applied to: (i) identify the fea-
tures of the exposed communities along with their vulnerability using descriptive data
analysis, (ii) identify interdependence between different features of the adopted dataset to
appropriately choose a suitable ML model, (iii) categorize the communities’ flood resilience
by combining flood features with resilience metrics within the dataset (i.e., robustness
and rapidity), and (iv) test the model performance in terms of accurately predicting the
communities’ resilience when exposed to flood hazard, using climate data as predictand.

The earlier work presented in the study by Abdel-Mooty et a. (2021) [59] serves as a
foundation for the categorization stage of the prediction framework developed herein. In
their study, Abdel-Mooty et al. (2021) developed a flood resilience categorization, resulting
in five community flood resilience categories. These categories are thus employed through
the second stage of the framework developed in the current study. In the following section,
a brief summary of their findings is presented, followed by a description of the flood
prediction demonstration.

3.1. Part (a): Resilience-Based Categorization

In the first stage, the dataset compiled by the NWS was employed. This dataset is one
of the longest-run annual flood damage recorded in the United States [78]. The data were
gathered through third party organizations and directly reported to the NWS database
according to the predefined guidelines. As such, the quantity and quality of the gathered
data is governed by the available resources (e.g., time and funding availability) of said
agencies [78]. The dataset contains records of flood events occurring across the United
States between 1996 and 2019. The related damages, time, geographical center, month, and
year for each recorded flood event are compiled within this database [78,79]. Within the
dataset, the recorded damage was divided into property and crop damages, which were
subsequently combined into a single variable within the analysis named Monetary Damages.
It is worth noting that the damages recorded in this dataset pertain to only the direct
damage resulting from the flooding water on the exposed assets and does not consider
the indirect (cascade) damages (e.g., opportunity loss). Within the present dataset, the
term “flood event” refers to only the flooding aspect of any natural disaster. Despite the
aforementioned limitations, this dataset is still considered one of the best resources for
flood damage records in the United States [30,79]. Figure 2a shows a temporal analysis,
while Figure 2b shows a spatial analysis of the flood events occurring within the same
period, where the numbers on each state are the number of recorded floods, and the colors
are used to indicate the relative total monetary damage of each state. This analysis shows
that the largest number of records and the largest monetary damage are within the state of
Texas. This is attributed to the increased heat content over the western Gulf of Mexico, as
it produces higher humidity and temperatures. This heat content is directly proportional
to the precipitation resulting from different storms [80] and can also be attributed to the
tropical weather region that Texas falls within, given that this region is susceptible to a
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large number of devastating hurricanes and extreme rainfall, coupled with the increased
exposure caused by the increased urbanization rate [21].

 

Figure 2. Descriptive spatio-temporal analysis of the employed dataset where (a) the annual number
of floods between 1996 and 2019 indicated by season and (b) a multilayer spatial analysis of the
dataset with the total number of records and the total damage in USD per state indicated by color.

Considering the objective of the current study, incorporating resilience metrics is key
in identifying resilience-based categories. As such: (i) flood records that did not cause any
monetary damage, injuries, or fatalities were excluded from the dataset, as they will not
produce any resilience metrics to measure and will induce bias within the categorization
model, and (ii) property and crop damage were summed up into a total monetary damage,
and as mentioned earlier was adjusted to accommodate the inflation rate over the years
using the Customer Price Index from the Bureau of Labor Statistics [81]. This monetary
damage, along with the injured people and fatalities, represent the robustness of the
exposed community, while the duration of the flood event represents downtime of the
exposed community, which is a component of the rapidity metric.

The analysis showed that: (i) flood events that occurred during the spring were split
into two categories based on their impacts, (ii) flood events causing longer disruptions
were separated in a separate cluster, identifying a correlation between event duration and
the impact of the flood event on the exposed community (i.e., relating robustness with
rapidity and overall resilience), and (iii) flood events that resulted in the loss of human lives
were clustered together. Events falling in Categories 1, 2, and 4 are more common than
Categories 3 and 5 in terms of annual number of events. Given the multidimensional nature
of resilience, more emphasis in the analysis was placed on the value of human injuries
and fatalities than monetary loss. As such, although events in Category 3 follow those of
Category 5 in terms of average damage per event, events falling in Category 4 follow those
of Category 5 in terms of average affected people per event; hence, it was assigned a higher
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category than Category 3. It should be recalled that the event duration mentioned herein
is the hazard’s duration, which represents the down time of the community before the
initiation of recovery efforts, representing a part of the total rapidity of the community. It is
also worth noting that a longer flood duration corresponds to a less robust infrastructure
system (e.g., drainage networks) to accommodate the hazard’s capacity effectively, resulting
in a lower overall resilience of the exposed community. The results were analyzed for
the inherent features of each cluster, and each category was assigned a Flood Resilience
Index (FRI) that increases gradually as the robustness decreases (i.e., functionality loss
increases). As such, communities that are exposed to flood disasters with impacts falling
in Category  are more resilient than those of Category  + 1, with  having values
between one and four. A detailed description of the categories can be found in Table 1.
It is worth noting that a community can be placed in a different category each time it is
exposed to a flood disaster; however, by averaging all the resilience indices subsequent
to the corresponding recorded flood disasters, an average index can be assigned to that
community, comprehensively representing its overall resilience while accounting for all
the previous disasters. The reader is referred to the study by Abdel-Mooty et al. (2021) for
more details on the resilience-based categories employed herein.

Table 1. The community flood resilience-based categories.

Community Flood
Resilience Category

Title 2

1
Communities exposed to events that occur in the summer, causing

disturbance less than 264 h (11 days) and/or causes up to 250 injuries
and damage less than $2.5B without fatalities

2
Communities exposed to events that occur in the spring, causing any

disturbance duration, causes up to 20 injuries and damage up to
$1.5B without fatalities

3
Communities exposed to events occurring in any season, causing

disturbance more than 264 h (11 days), and causing up to 250 injuries
with any damage value and without fatalities

4
Communities exposed to events that occur in winter or fall, causing
disturbance less than 264 h (11 days) causes up to 250 injuries and

damage up to $2.5B without fatalities

5

Communities exposed to events occurring in any season, causing any
disturbance duration that results in more than 250 injuries, causing
damage more than $2.5B, with fatalities, and Communities exposed

to events occurring in the spring that are not under class 2

3.2. Part (b): Resilience-Based Prediction

For this stage of the framework, a smaller geographical location needed to be identified
such that the meteorological features of the dataset would be comparable, comprehensively
representing the seasons and their respective hazard for said communities. This was
also needed such that the built environment would match its respective hazard, given
that different seasons (and subsequently the characteristics of the natural hazard) differ
drastically across the United States (e.g., the winter in Michigan is drastically different than
that of Florida and Texas). However, the framework is applicable on any location within
the United States mainland as long as it is included in the development of the indices in
part (a) of the framework. By inspecting Figure 2, as mentioned earlier, the state of Texas
had the most recorded number of flood disasters between 1996 and 2019, and the most
recorded damage as well. The high number of records is suitable for the development of
the prediction model, as the model will need a large dataset for development, training,
and testing. As such, the state of Texas was selected for the development of the prediction
stage of the framework. The disaster database that recorded between 1996 and 2019 in
the state of Texas was paired with the developed categories in Table 1 on a county level,
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where each event was assigned an index across the different counties, and the average
index was calculated and assigned for each county. Figure 3 shows the spatial distribution
of the total number of recorded disasters and average FRI across the counties. The spatial
analysis shows a low correlation between the number of events and the FRI of a community,
given that the more common flood events are those of low severity [11]. It is also worth
mentioning that the spatial analysis shows a concentration of high FRI across the coastal
area around the Gulf of Mexico. This can be attributed to high-tide flooding, which is
becoming increasingly common in recent years as a result of relative increase in sea level [82].
According to NOAA, coastal communities are witnessing an increase in high-tide flooding,
with some areas reporting a rapidly increasing rate [82,83]. This can also be attributed to
the nature of the natural hazards affecting the area, where a damage of $6B was recorded in
2018, and the devastating Hurricane Harvey, which affected the entire state in 2017, causing
an extreme rainfall event resulting in widespread devastation across different counties. The
total damage from Hurricane Harvey reached $128.8B, leading to one of the most expensive
natural disasters in modern history [82–84]. The spatial analysis presented in Figure 3 is
also in line with the Cartographic Maps of Precipitation Frequency Estimates published
by NOAA in Atlas 14 Volume 11 of Texas in 2018, showing an increased precipitation
frequency and magnitude over the coastal area with the Gulf of Mexico [85].

 

Figure 3. Spatial distribution of the number of records and the average FRI over different counties in
the state of Texas.

3.3. Managerial Insights and Results

To complete the dataset for the prediction framework, climate information corre-
sponding to each recorded flood event in each county was then extracted from the Global
Historical Climatology Network (GHCN-Daily) under the National Center for Environ-
mental Information [86,87]. To draw reliable insights from the proposed methodology,
a comprehensive dataset must be present that includes all the pertinent variables with
enough observations over the years to avoid biases. However, the present dataset implicitly
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presents this information through the spatio-temporal characteristics of the flood events
when exposed to their relative communities.

The extracted climate data, as available, contained four variables for each recorded
flood event: Maximum Daily Temperature, Minimum Daily Temperature, Average Daily
Temperature, and Maximum Recorded Precipitation. These variables were then employed
as predictors (dependent variables) for the FRI resulting from the recorded flood events
(independent variable) to be used in the development of the prediction model. The dataset
is subsequently divided into two subsets—Training and Testing (70% and 30%, respectively).
The training subset was used in the development and training of the ML model, where the
FRI implicitly contains information about the resilience (i.e., robustness and rapidity) of the
exposed communities, and the climate variables contain information on the climatological
features of the location, weather extremes, and different attributes, and causes, of the flood
hazard. This comprehensive dataset was then inspected using exploratory data analysis
and correlation plots, as shown in Figure 4. This figure presents a 5 × 5 matrix, in which
the variables are labelled on the columns and rows. The matrix contains four information
groups: (i) frequency scatter plots located at the lower triangle of the matrix, excluding the
last column; (ii) smoothed frequency curves located at the diagonal of the matrix, where
the last cell at the bottom right is a histogram for the categorical variable; (iii) correlation
coefficients located at the upper triangle of the matrix, excluding the last column; and finally
(iv) box plots located at the last column of the matrix. It is worth noting that this figure
also presents statistical data analyses, as it shows the statistical distribution of the dataset
within its variable space as well as the correlation between different variables. The box
plots in Figure 4 show that the maximum, minimum, and average temperature variables are
overlapping, evenly distributed and with a low range of outliers. This indicates that these
variables are interdependent, which shows a consistency in the climatological features of
the selected geographical study area. This is also supported by the correlation coefficients
as the correlation between these variables is high across all the FRI categories. However,
the precipitation variables contain heavy-tailed distribution with a larger range for the
outliers, indicating an exceptionally large surge in the value of precipitation, which leads
to the recorded flood events. The latteris supported by the correlation coefficient values
between precipitation and other indices, especially at FRI-1, where the severity of the flood
event is low, yet the frequency of occurrence is high [59]. This analysis supports the need
to use ML models over traditional statistical learning models, as ML models are better
equipped to deal with complex interdependent data for numerous applications [59,88].

3.4. Model Performance and Discussion

For this analysis, multiple ML classification models were tested, namely, Bagged
Decision Trees (DT), and Random Forest (RF) Techniques as ensemble-type models, and
Naïve Bayes (NB) classification. The dataset was split as mentioned earlier to training and
testing datasets, where the split was chosen randomly to ensure a homogenous distribu-
tion of the data in both subsets since the dataset is not evenly distributed along all FRI
categories. In this analysis, (i) Bagged DT with 1000 bootstrap replications was used in as
an ensemble method, with a minimum split of four; (ii) RF models with a wide range of
trees up to 6000 was tested, and while all of them had similar performances, two models
were highlighted in this study—RF with 300 trees and RF with 1000 trees—both with four
variables randomly sampled at each split and a shrinkage parameter of 0.01 (referred to
herein as RF 300 and RF 1000, respectively); and finally (iii) Naïve Bayes classification, as
discussed earlier, with a 70–30% split between training and testing data subsets. Each of
the aforementioned models have their own assessment measures for model performance
(e.g., Gini impurity, entropy measure for DT, Mean Square Error, etc.). As such, other
performance evaluation indices were utilized in this analysis to objectively compare the
predictive performance in replicating the testing data subset of the employed algorithms.
To that end, the precision, recall, and F10-score have been employed per Equations (3)–(5),
respectively. The performance indices can be seen in Table 2; the accuracy and misclas-

12



Water 2022, 14, 2120

sification for all the models are compared, where it can be seen that the models perform
adequately (for training subset: 53.8%, 97.8%, 98.2%, and 98.2% for NB, RF 300, RF 1000,
and Bagged DT, respectively, and for the testing subset: 50.9%, 57.9. 57.8%, and 57.3% for
the NB, RF 300, RF 1000, and Bagged DT, respectively). It can be concluded that the DT
ensemble models are over-trained in the training dataset but perform better than the NB
classifier in the testing dataset even if the results are comparable. This proves the need for
a better performance measure for the class in each model—as seen in Table 2, the precision,
recall, and F1-score for the training and testing subsets across all the classes. Figure 5 shows
an enhanced visual inspection of the performance indices of the four models, where it can
be concluded that the performance of the NB classification model is inferior to the ensemble
techniques in terms of correctly classifying the data; this can be attributed to the fact that
NB models perform better with smaller datasets, as they follow the laws of independent
probabilities, indicating it does not perform well with correlated data [89]. In the training
subset, the precision, recall, and F1-score for the ensemble models (i.e., Bagged DT, RF
300, and RF 1000) do not fall below 85% for all classes, which indicates a very good fit for
the employed dataset. However, in the testing subset, the results vary for each category.
While the results are overall satisfactory for all the ensemble models, the Bagged DT model
had better performance when it came to Category 5 (RF models resembled 23% of the
precision of the Bagged DT), where the data points falling in this category were scarce
compared to the other categories. However, the RF models outperformed the Bagged DT
in the precision of Category 3 (65% for the RF models compared to 20% for the Bagged DT
model), indicating that random sampling for the variables in addition to the observations
in the training algorithm yielded more favorable results than the Bagged DT. The results
displayed in Table 2 and Figure 5 show that even though the models are comparable, given
the importance of correctly classifying flood events falling in Category 5 due to its severity
and impact, the Bagged DT is thus preferred over the RF models.

 

Figure 4. Exploratory and sensitivity data analysis of the climate information, and the FRI variables
used in the prediction framework.
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Figure 5. Prediction performance indices for the four utilized models where: (a) is the training subset
performance, and (b) is the testing subset performance.

Further investigation of the RF and Bagged DT models shows that the variables used
as predictors in the current study influence the behavior of the predictive analysis at
each class. This influence indicates the need for more comprehensive and climatologically
representative variables to be used as predictors. In data-driven studies, model performance
depends heavily on the available dataset; as such, the authors were constrained by the
available data to use in the validation of the developed methodology. A comprehensive
dataset would include as much observations as possible over a wider time span, with
numerous variables (e.g., atmospheric pressure, wind speed, wind direction, humidity,
topology exposure, etc.). To assess the importance of the individual variables in the analysis,
the mean decrease Gini (MDG) was employed in the RF ensemble models. Figure 6 shows
the MDG and the mean decrease accuracy for the RF with 300 and 1000 tree models, the
MDG indicates that the average temperature is the most important variable in both models,
followed by the precipitation in the RF 1000 models, and the minimum temperature in the
RF 300 model, albeit with a very small difference with the precipitation in the RF 300 model.
This supports that the Average temperature (correlated with the minimum temperature)
and the Precipitation are key variables when predicting the community-flood resilience in
exposed communities.
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Figure 6. Mean decrease Gini and mean decrease accuracy in (a) Random Forest model with 300 trees
and (b) Random Forest model with 1000 trees.

The results of the analysis displayed in the current study shows that the framework
and methodology presented herein are applicable in flood resilience prediction studies. This
framework informs decision-making process through developing an early-warning system
that can be continuously updated by including new, and more accurate, climate data. The
framework presented herein can also be coupled with global climate models to study the
temporal changes in flood resilience and the climate impact on infrastructure resilience. This
coupling would enable informed decisions and policies for a better utilization of resilience
means (i.e., resourcefulness and redundancy) to enhance the community’s climate resilience.
It is worth noting that these predictions and projections will be subject to the uncertainty
associated with the climate models; as such, a reliable ensemble from multiple models
needs to be used in order to reduce the effect of this uncertainty and reduce the variability
between these different models.

The framework presented herein can also be applicable in different data-driven studies,
where the purpose is to investigate the spatio-temporal vulnerability of a system facing an
external disruption (e.g., vulnerability-based evacuations).

4. Discussion and Conclusions

As the IPCC 2021 report stated, extreme rainfall events are expected to increase in
frequency and intensity over the next decade, with an increase of over 2.0 m in the average
sea level by the end of the current century. Numerous studies were developed to assess
community resilience, mostly considering the feature of the hazard rather than the features
of the exposed system at risk. The current work aims to: (1) identify specific variables to
represent resilience means across a specific time-span to develop an comprehensive dataset
for data-driven models, (2) develop resilience indices using unbiased data-driven methods
under different weather conditions across a specific region, (3) develop a comparative
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spatial analysis to identify at-risk communities and assess their vulnerabilities to further
enhance their resilience [59], (4) couple the indices with climate information to develop a
well synchronized dataset to be used with future climate models for accurate resilience
prediction, and finally (5) test the framework using the NWS disaster records to develop
flood resilience indices. The output of said categorization is then coupled with the historic
climate information from NOAA corresponding to the disaster records from 1996 to 2019.
The resulting dataset is used to develop, train, and test the prediction ML model.

The demonstration application of the developed framework was developed using
unsupervised ML techniques in Part (a) and supervised ML in Part (b). In Part (a), the
model was applied to the NWS’s historical disaster database, collected across the United
States from 1996 to 2019. This dataset included variables with information regarding the
damage, duration, indirect/direct injuries, and fatalities, and these variables were used to
extract the resilience information correspondence to each recorded disaster (i.e., robustness
and rapidity) so that the developed categorization would capture the resilience of the
exposed community, resulting in five categories (i.e., indices). For the second part of the
framework, the state of Texas was chosen as a test location, given the uniformity of the
meteorological conditions over the state and the uniformity of the built environment (with
few acceptable exceptions). A spatial analysis within the state of Texas was conducted
using the developed indices in Part (a), highlighting the more vulnerable counties within
the state. This spatial analysis concluded that the coastal areas around the Gulf of Mexico
are subjected to flood events that result in a higher index than other counties, resulting
in a larger impact on the robustness of said communities. This highlights the need for an
accurate methodology to predict future impact on said communities to be able to develop
proactive flood risk management strategies and enhance their overall resilience.

The second part of the application utilized numerous ensemble prediction techniques
(i.e., Random Forest (RF) with 300 and 1000 trees, Bagged Decision Trees (DT), and Naïve
Bayes (NB) classification). The output of this stage demonstrated the applicability of the
developed framework, with comparable results across the different models. While the
Bagged DT outperformed the RF models in categories where the data were scarce, they per-
formed similarly in other categories. To objectively assess the performance of all the models,
precision, recall, and F-1 Score were employed across different categories, in training and
testing datasets, resulting in a comprehensive conclusion that the prediction framework is
employable in resilience-guided studies. However, to objectively develop a data-driven
method, a comprehensive enough dataset with variable across different regions and across
the years, with enough variables should be employed. In the current framework demon-
stration study, the authors were limited by the available data; however, the prediction
performance of the framework can be improved given more climate information (i.e., wind
speed, humidity, and air pressure, etc.). These variables would increase the correlation with
the developed resilience indices, resulting in a more robust dataset for the training and
testing of the prediction model. A limitation of the work presented herein is that future
climate projections were not considered in the demonstration application. Provided the
availability of said projections, the trajectory of the resilience of the exposed community
can be determined, and the vulnerability and resilience can be evaluated ahead of projected
extreme events, giving policy makers the opportunity to develop mitigation and resilience
enhancement plans to avoid future disasters. The framework can be adapted to account for
the uncertainty induced by the climate projections’ nature and the probabilistic nature of
the hazard as well as the response of the community and the resulting resilience. This can
be carried out through accumulating probabilities resulting from Monte Carlo simulations
to determine the response to the hazard itself and include it in the prediction framework.

To that end, further research can be implemented to advance this framework through
(1) incorporating more variables within the utilized datasets, (2) combining the results of
the different ensemble ML models used in this study to further enhance the prediction
performance, and (3) applying the framework to future climate projections to predict the
expected change in the resilience of the exposed communities.
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Abstract: Accurate streamflow modeling is crucial for effective water resource management. This
study used five machine learning models (support vector regressor (SVR), random forest (RF),
M5-pruned model (M5P), multilayer perceptron (MLP), and linear regression (LR)) to simulate one-
day-ahead streamflow in the Pranhita subbasin (Godavari basin), India, from 1993 to 2014. Input
parameters were selected using correlation and pairwise correlation attribution evaluation methods,
incorporating a two-day lag of streamflow, maximum and minimum temperatures, and various
precipitation datasets (including Indian Meteorological Department (IMD), EC-Earth3, EC-Earth3-
Veg, MIROC6, MRI-ESM2-0, and GFDL-ESM4). Bias-corrected Coupled Model Intercomparison
Project Phase 6 (CMIP6) datasets were utilized in the modeling process. Model performance was
evaluated using Pearson correlation (R), Nash–Sutcliffe efficiency (NSE), root mean square error
(RMSE), and coefficient of determination (R2). IMD outperformed all CMIP6 datasets in streamflow
modeling, while RF demonstrated the best performance among the developed models for both CMIP6
and IMD datasets. During the training phase, RF exhibited NSE, R, R2, and RMSE values of 0.95,
0.979, 0.937, and 30.805 m3/s, respectively, using IMD gridded precipitation as input. In the testing
phase, the corresponding values were 0.681, 0.91, 0.828, and 41.237 m3/s. The results highlight the
significance of advanced machine learning models in streamflow modeling applications, providing
valuable insights for water resource management and decision making.

Keywords: streamflow; CMIP6; machine learning; RF; SVR; MLP; water

1. Introduction

In order to better plan and control water use, accurate predictions using streamflow
models are essential. Water availability for different uses like drinking water supply,
irrigation, and hydroelectric power generation may be predicted by studying the effects
of changes in many random variables such as land use and climate using stream and
river flow models developed by hydrologists and engineers [1]. Streamflow modeling is
also useful for predicting extreme events (e.g., floods and droughts) for better planning
and evaluating the effectiveness of flood protection and water management systems [2].
Precipitation, topography, evapotranspiration, and human activities are only a few of the
many random elements that can affect streamflow, making it difficult to precisely predict
future streamflow. Thus, it is a highly nonlinear and complex hydrologic cycle that has
always attracted serious research attention. The three main types of streamflow models are
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the physical model, the conceptual model, and the black-box model. However, to provide
accurate estimates of hydrologic variables, like runoff, physical models need a great deal of
physical data and a detailed mathematical description of the hydrologic structure.

Unlike physical hydrological models, data-driven models may accurately anticipate
streamflow without describing the actual mechanics of many hydrological processes. AI
methods have been developed to deal with non-stationary and nonlinear streamflow
discharge data. More importantly, models based on artificial neural networks (ANNs) were
proven to accurately predict streamflow discharge. ANNs or “black-box models” could
provide results approximating the desired ones by tweaking their internal settings smartly.
Consequently, ANN has the capability to make predictions based on novel and unfamiliar
inputs due to the parameterization of the connection between input and output within
the structural framework of the model [3]. ANN models could identify the complicated
pattern with only a few inputs, such as rainfall and streamflow. The catchments’ spatial
and temporal variability makes monitoring these variables exceptionally challenging [4,5].
Rainfall–runoff modeling, streamflow prediction, reservoir inflow forecasting, rainfall
forecasting, river sediment modeling, and hydraulic energy estimates have all benefited
from the use of ANNs in hydrological research [6–11]. Several studies (e.g., [12–14])
have investigated the effectiveness of using ANNs for streamflow estimation and have
concluded that they yield acceptable outcomes. Ninety percent of hydrological applications
have employed a traditional feedforward neural network, such as MLP trained using
the backpropagation technique [15,16]. Similarly, support vector machines (SVM) are
commonly utilized for hydrological prediction and management [17]. For example, the
SVM model predicted China Huaxi station’s monthly river flow accurately, according
to [18]. Sedighi et al. [19] used the ANN model and SVM built on MODIS image data
from 2003–2005 to forecast streamflow in the Roodak region northeast of Tehran. Ghorbani
et al. [20] used SVM and ANN to estimate the daily water flow in Cypress, Texas, to
evaluate their ability in terms of river flow prediction. They came to the conclusion that
the SVM provided more accurate results than the ANN. Ghorbani et al. [21] tested hybrid
artificial intelligence models to estimate the monthly flow in Turkey’s Igdir river and found
that the firefly algorithm combo model performed best. Also, [21,22] compared SVM and
ANN models to predict the Zarineh-rood river’s discharge in Iran and found that the
former was more accurate. Alizadeh et al. [23] tested the hybrid wavelet SVM model’s
capacity to estimate daily US streamflow and found it to be very accurate. Several instances
of SVM’s use in streamflow modeling could be found in the works of Ghorbani et al. [24],
Lin et al. [25], and Seyam et al. [26]. Recently, many machine learning models have been
adopted to simulate streamflow across the globe, e.g., RF [27,28], MLP [29,30], SVM [25,31],
M5P [32,33], LR [34,35], and much more. A comprehensive examination of the applications
of data-driven models in hydrologic processes can be found in the following publications:
Fahimi et al. [36]; Hadi and Tombul [16].

According to Quinlan et al. [37], the M5 algorithm is categorized as a type of tree-
based structure that incorporates multiple linear regression models within its components.
Consequently, these model trees can be likened to piecewise linear functions. Although the
M5 model tree is a recent development in water resources, its usage in actual occurrences
has shown it to be fairly reliable. For instance, when it was applied to the water level–
discharge relationship by Bhattacharya and Solomatine [38], it was noticed that M5 had a
similar degree of prediction accuracy to an ANN created using the same data. M5 handles
jobs with very high dimensions and learns effectively [39]. Sihag et al. [40] examined
the optimum sediment estimation model utilizing M5P and RF regression and indicated
that the M5P-based model showed the best performance. In the Koyna River basin in
India, Bajirao et al. [32] evaluated the viability of many data-driven strategies for runoff
forecasting, including ANN, SVM, RF, and M5P models. Machine learning algorithms
were used by Reddy et al. [41] to forecast monthly surface runoff in the tropical Kallada
River Basin. They discovered that machine learning algorithms can effectively simulate the
rainfall–runoff process. Singh et al. [42] investigated the accuracy of the empirical Kostiakov
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model and the ANN, MLR, RF, and M5P prediction models to investigate the infiltration
process. They discovered that the ANN, MLR, RF, and M5P models outperformed the
empirical Kostiakov model in terms of performance. In their assessment of the RF model’s
potential for daily streamflow forecasting in several watersheds, Pham et al. [43] found that
RF can generate precise short-term streamflow forecasts for all examined watersheds.

Climate extremes are projected to increase in frequency and severity as global tem-
peratures rise, posing significant challenges for vulnerable communities, particularly in
developing economies with limited capacity for adaptation [44]. Streamflow modeling
plays a crucial role in mitigating the impacts of climate change on water resources. To
address uncertainties in weather and climate systems, the use of global circulation models
(GCMs) is essential for collecting large-scale geographical and temporal data [45]. GCMs
offer valuable insights into the climate system, complementing observational data for
streamflow modeling and enhancing the applicability of strategies for mitigation and
adaptation to changing climatic conditions [46].

Water resource management is of paramount importance for sustaining life, ecosys-
tems, and various human activities. Accurate streamflow forecasting plays a crucial role in
effective water resource planning, enabling stakeholders to make informed decisions and
mitigate risks associated with water availability and flood control, especially considering
the increasing impact of climate change and anthropogenic activities on hydrological pro-
cesses. In this study, our focus is on forecasting one-day-ahead streamflow in the Pranhita
subbasin (Wairagarh station), a vital part of the Godavari basin in India. To achieve this,
the application of several advanced machine learning models, namely SVR, RF, M5P, MLP,
and LR, as traditional hydrological models may have limitations in capturing the complex
and nonlinear relationships between hydrological variables. Leveraging various precipi-
tation datasets, including the IMD and bias-corrected CMIP6 (EC-Earth3, EC-Earth3-Veg,
MIROC6, MRI-ESM2-0, and GFDL-ESM4) datasets, and incorporating lag in streamflow,
to estimate streamflow one day in advance using maximum and minimum temperatures.
The delay in rainfall and streamflow is assessed through correlation attribute evaluation
and pairwise correlation attribute evaluation, utilizing a dataset spanning 7064 days from
1993 to 2014 for modeling. The study’s innovative approach employs bias-corrected CMIP6
precipitation and IMD gridded data, providing a more accurate streamflow forecast with
fewer inputs compared to traditional methods. These findings can offer valuable insights
for water resource management and informed decision making, benefiting policymakers
and stakeholders in coping with water-related challenges while ensuring the sustainable
use of water resources in the Godavari basin and similar hydrological contexts worldwide.

2. Study Area

The present research was performed in the Pranhita subbasin of the Godavari River basin
in the Indian state of Maharashtra. The research region has a total drainage area of 2600 km2

and is located between the longitudes 80◦5′ E–80◦40′ E and latitudes 20◦20′ N–20◦47′ N in
Maharashtra and a small area in Chhattisgarh. According to the digital elevation models
(DEM) produced by the Shuttle Radar Topography Mission (SRTM), the elevation of the
research region varies from its highest point, which is 660 m, to its lowest position, which
is 208 m. Figure 1 shows the map of the research region, along with the IMD gridded
stations, the Wairagarh Streamflow station, the stream network, and the DEM. The average
annual rainfall in the study area is 1421 mm, while temperatures range from 20.75 ◦C to
33.33 ◦C. Geology in the study area is dominated by Dongargarh Granite and little traces
of Wairagarh metasediments [47]. This study area comprises 76.01% deciduous broadleaf
forest, 22.72% cropland, and less than 1% shrubland and mixed forest [48]. Since the city of
Gadchiroli is located downstream of this research region, accurate streamflow modeling of
this study area will assist in managing water resources and developing policies to reduce
the risk of flooding.
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Figure 1. Location map of the study area.

3. Materials and Methods

This study aims to forecast the streamflow of the Indian Godavari River. To achieve
this objective, the required data were collected and standardized. The scientific time series
data for discharge, temperature, and precipitation were gathered on a daily basis. After
organizing the data, the University of Waikato models were implemented using the Weka
3.8.6 application [49]. The software was utilized for two rounds of training and testing to
determine the optimal combination for each model. The best model for predicting was
chosen from among four machine learning models and linear regression developed in this
work, utilizing the IMD and CMIP6 datasets as training data. This procedure aimed to
choose the best model for machine learning to use for forecasting purposes using the IMD
and CMIP6 datasets. The optimal AI model architecture was chosen by calculating the
least value of RMSE while simultaneously maximizing the values of R2, NSE, and R. The
entire methodology and procedures of this investigation are presented in Figure 2 in a
flowchart format.
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Figure 2. Flowchart of the methodology adopted in this study.

3.1. IMD Data

The gridded IMD dataset for precipitation and temperature, available from 1901
to 2021, was used in this study. This dataset provides spatial resolutions of 0.25◦ for
precipitation and 1◦ for temperature. To create the dataset, IMD employed Shepard’s
interpolation method, utilizing data from 6695 gauges. It has been widely employed in

26



Sustainability 2023, 15, 12295

India as a reference for precipitation data to rectify biases in CMIP6 models. IMD generated
a gridded precipitation dataset established on gauge observations [50,51].

3.2. CMIP6 Model Data

The five CMIP6 models that were employed in this study to assess the streamflow
prediction are shown in Table 1. The Earth System Grid Federation (ESGF) archives,
available for review at https://esgf-node.llnl.gov/search/cmip6, accessed on 15 July
2022, provide access to GCMs data. To ensure consistency, all GCMs data were spatially
remapped to a standardized latitude and longitude grid of 0.25◦ × 0.25◦ using a bilinear
interpolation [52]. The selected datasets in this study, namely EC-Earth3, EC-Earth3-
Veg, MRI-ESM2-0, GFDL-ESM4, and MIROC6, are renowned for their representation
of extreme precipitation patterns in India [53]. EC-Earth3, EC-Earth3-Veg, MRI-ESM2-
0, and GFDL-ESM4 are advanced Earth System Models from ECMWF, MRI, and GFDL,
respectively, providing comprehensive representations of land–atmosphere interactions and
atmospheric, oceanic, and land components. MIROC6, with high-resolution atmospheric
and oceanic processes, is ideal for detailed regional climate simulations. These datasets
enable a comprehensive assessment of their performance in streamflow forecasting and
their relevance to water resource management in India.

Table 1. CMIP6 models used in the study.

Model Atmospheric Resolution Institution

EC-Earth3 0.7◦ × 0.7◦ EC-EARTH consortium
EC-Earth3-Veg 0.7◦ × 0.7◦ EC-EARTH consortium
GFDL-ESM4 1.3◦ × 1◦ Geophysical Fluid Dynamics Laboratory

MIROC6 1.41◦ × 1.41◦ JAMSTEC, AORI, NIES, and R-CCS
MRI-ESM2-0 1.1◦ × 1.1◦ Meteorological Research Institute

3.3. Streamflow Data

Daily streamflow data for the Wairagarh station were sourced from the India Water
Resources Information System portal (https://indiawris.gov.in/wris/#/ accessed on 10
April 2022) for the period spanning 1993 to 2014 [54].

3.4. Data Processing

The IMD provided gridded precipitation and temperature in NetCDF format. Data in
NetCDF format were processed and extracted using Climate Data Operators (CDO) [55]
and ArcGIS 10.3. When working with ArcGIS 10.3, the “make NetCDF table view” tool can
be found in the “multi-dimension tools” section of the “Arc Toolbox”. This tool is used to
extract grid-based data from NetCDF files [56]. After data extraction, there were 8 points of
gridded precipitation data from an IMD in the research region. The average rainfall across
the research region was estimated using the Thiessen polygon technique. Forecasting future
streamflow is a dynamically evolving natural process, where the current response of any
hydrologic process is shaped by the memory of past reactions stored within the hydrologic
system. The CMIP6 precipitation datasets were downscaled using the distribution mapping
method and the IMD dataset was used as a reference. To gain additional insights into the
distribution mapping approach, the following literature may be helpful [57,58].

The current and past reactions to various hydrologic parameters, such as precipitation,
runoff, and temperature, would determine the present and past streamflow response.
Consequently, the selection of data inputs for forecasting streamflow is performed using a
correlation attribute evaluation and pairwise correlation attribute evaluation; as seen in
Table 2, the top 5 influencing factors were considered in this study, where St represents
the current streamflow and St-1 indicates the precipitation from one day prior, similar to
how Pt indicates present-day precipitation and Pt-1, Pt-2 reflects precipitation from the
previous day, respectively. Of the data from 1993 to 2014, 70% (4944 days) were utilized
for training, and 30% (2120 days) were used for testing, after the deletion of the missing
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data. All inputs were normalized to a certain range between 0 and 1 for input data training
purposes. In this study, input parameters were normalized using Equation (1) to eliminate
their dimensionality and guarantee that all input variables were assigned sufficient weight
during the training phase. It facilitates the construction of models by enabling the quick
convergence of learning. It makes the model development more interpretable [59].

Snorm_i =
Si − Smin

Smax − Smin
, i = 1, 2, 3, 4 . . . . . . , n (1)

where Snorm_i is the normalized value of any parameter, Smin and Smax are the minimum
and maximum values of the datasets, and n is the total number of datasets used for training
and testing.

Table 2. Correlation and pairwise correlation attribute evaluation.

Correlation Attribute Evaluation Pairwise Correlation Attribute Evaluation

Parameter Score Parameter Score

Pt 0.678 St-1 9.6452
Pt-1 0.615 P 8.8522
St-1 0.611 Pt-1 8.3758
St-2 0.391 Pt-2 6.8578
Pt-2 0.371 St-2 6.8182
St-5 0.341 Pt-7 6.3642
St-4 0.34 Pt-4 6.3135
St-3 0.325 Pt-3 6.3092
St-6 0.323 Pt-6 6.3069
St-7 0.321 Pt-5 6.2276

3.5. SVR

SVR is a subclass of SVM designed specifically for tackling regression problems; it
was developed by [60]. SVR is used to forecast continuous values as opposed to class
labels, like SVM is used for classification [61]. The key to SVR’s success is identifying the
optimal border (or “hyperplane”) that divides the data into distinct groups. The objective
of SVR is to identify a boundary that keeps the data points within a specified distance of
the hyperplane while maximizing the margin between the data points and the hyperplane
(called the “epsilon-tube”). Because of this, SVR can better understand data with higher
noise. It is effective in dealing with large dimensional datasets and may be utilized for both
linear and nonlinear regression issues, making SVR a versatile tool. The SVM approach is
described in great length in a number of different published works [62,63]. A schematic
diagram of SVR can be seen in Figure S1. An SVR carries out two main tasks: (1) estimating
training-time prediction errors and (2) calculating output values from weight, bias, and
input data [64].

y =
n

∑
l=1

(αl − α∗l ).Kr(xl , xm) + c (2)

where c represents the bias, αl and α∗l represent Lagrange multipliers, and Kr(xl , xm)
represents the kernel function, which is shown in Equations (3) and (4).

Polynomial Kernel:
Kr(xl , xm) = (xl .xm)

d (3)

Gaussian Radial Basis function:

Kr(xl , xm) = exp
(
−‖ xl − xm ‖2

2σ2

)
(4)

3.6. RF

RF is a type of ensemble learning method first presented by [65]. It is a slight mod-
ification of bagged decision trees that are created from a wide collection of uncorrelated
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trees and requires the adjustment of only a few variables [66]. As a “supervised learning
method”, RF draws conclusions about a given dataset by employing a collection of “deci-
sion trees” to draw such conclusions. By lowering precision, it creates trees whose growth
is dependent on that of their neighbors. In a manner analogous to that of a “Decision
Tree,” it is compatible with “classification” as well as “regression” models. A schematic
representation is shown in Figure S2.

The training process for the random forest is accomplished by constructing a large
number of decision tree models that are unconnected to one another [h(X, θk); k = 1, . . .].
The modes of the data are the final result of the classification process, and each of these
unique decision trees makes its own prediction on the classification of the sample. The
efficacy of the random forest model is improved by the inclusion of additional training
sets that are unrelated to one another. The output of the random forest based on the many
classifications learned from training sets is decided by following Equation (5)

H(x) = argmax
z ∑k

i=1 I(hi(x) = Z)I(.) (5)

where Z is the outcome variable and I(.) is the indicative function. Here, H(x) is the
RF model, and hi is the single decision tree model. Random forests enhance accuracy in
classification and regression issues while also reducing the likelihood of decisions being
overly tailored to their context. In addition, data normalization is not required because
the model is governed by a set of rules. However, in order to construct a large number of
decision trees and obtain the output, a larger amount of processing power and training
time is required. It is impossible to assess each variable’s relevance using the random forest
classifier, and its interpretability is also compromised.

3.7. MLP

Inspired by the neurons in our brains, neural networks are a sort of algorithm. Its
primary purpose is to find regularities in huge datasets. In the last several decades, ANNs
have been more popular for dealing with hydrology-related issues due to their flexibility
and effectiveness in simulating nonlinear and complex hydrologic processes [67–70]. The
ANN technique differs from previous computing approaches because it operates in parallel.
An ANN consists of many neurons organized into input, output, and hidden layers. The
data signals are received and processed by the artificial input neurons, which then send the
output to the remaining neurons in the system. Multilayer feedforward refers to the method
of organizing layers and processing forward. The weighted linkages feed activations in the
forward path from input to output. Adjusting the “weights” of the various connections
between nodes trains a neural network to carry out a predetermined task [71]. The basic
operation of an MLP neural network is shown in a simplified form in Figure S3. The
neurons in MLP’s input, hidden, and output layers reveal the basic layout of the network.
To generate an output, a transfer function is applied to the weighted sum of the inputs from
outer space or the outputs of the preceding layer at each node in the hidden and output
layers. Neuronal function is developed using Equation (6)

Yj =
n

∑
i=1

f (wijxi + bj) (6)

Here, Yj represents the output at node “j”, wij is the weight connecting node “i” and
node “j” of the previous and current layer, xi represents the sequence of inputs, and bj
represents bias at node “j”.

3.8. M5P

M5P is a decision tree technique that can perform both classification and regression;
it was proposed by [37]. The “P” in M5P refers to “piecewise,” indicating that this is a
variant of the M5 decision tree method. To provide more precise predictions, M5P employs
linear regression models rather than a single constant value at the branch nodes of the
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decision tree. The technique can also work with category variables and missing data. The
splitting criteria are used to decide upon a characteristic by which to partition the training
data into subsets T, of which each ultimately approaches a distinct node. Each feature
is evaluated by computing the predicted reduction in error at a certain node, where the
standard deviation of the class in T represents the error. At each node, the predicted
error reduction is maximized by selecting the characteristic for a split that maximizes that
reduction. For an estimate of the predicted error reduction, use Equation (7) to obtain the
standard deviation reduction (SDR) [39].

SDR = sd(T)− ∑
|Ti|
|T| ∗ sd(Ti) (7)

where Ti is the collection of attributes along which the node was divided when it was
initially created. Continuous quantitative characteristics are predicted via linear regression
models at the leaf level. They are like piecewise linear functions, but when you put them
all together, you obtain a nonlinear function [38]. The goal is to build a model that predicts
an output value based on the input attribute values of the training examples. In most
circumstances, a model’s quality will be determined by how well it can predict the values
of unknown cases. When the remaining number of instances is small, or the standard
deviation is just slightly smaller than the standard deviation of the original set, the splitting
procedure ends.

3.9. LR

One of the fundamental challenges in statistical analysis is developing a model that
accurately describes the connection between a dependent variable and a group of inde-
pendent variables [72]. Simply put, it is a statistical method for examining the interplay
between a number of predictor variables (or features) and a single dependent variable (also
known as the response variable or outcome). MLR seeks to identify the optimal linear
combination of predictor factors for a given response. It is similar to linear regression
but uses several factors to draw conclusions. Fitting a linear function as a model for a
quantitative connection is what linear regression is all about, and we see it in Equation (8):

y = γ0 + γ1x1 + γ2x2 + γ3x3 + . . . . . . . . . + γnxn (8)

where y is the streamflow at Wairagarh, and x1 to xn are the independent variables such as
lag in precipitation, streamflow, and temperature [73–75].

Tables 3–6 display the hyperparameters of the various methods employed in this
original study model creation. Weka 3.8.6 was used to create many SVM, RF, MLP, and
M5P models for this research.

Table 3. Hyperparameters used for SVR.

Parameter Value

batchSize 100
C 1.0

filterType Normalize training data
kernel PolyKernel

numDecimalPlaces 2
cacheSize 250,007
exponent 1.0

regOptimizer RegSMOImproved
epsilon 1 × 10−12

epsilonParameter 0.001
seed 1

tolerance 0.001
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Table 4. Hyperparameters used for RF.

Parameter Value

bagSizePercent 100
batchSize 100
maxDepth 0

numDecimalPlaces 2
numExecutionSlots 1

numFeatures 0
numiterations 100

seed 1

Table 5. Hyperparameters used for MLP.

Parameter Value

batchSize 100
hiddenLayers 5
learningRate 0.3
momentum 0.2

numDecimalPlaces 2
seed 0

trainingTime 500
validationSetSize 0

validationThreshold 20

Table 6. Hyperparameters used for M5P.

Parameter Value

batchSize 100
minNumInstances 4.0
numDecimalPlaces 4

3.10. Model Evaluation Metrics

The Wairagarh station employs four commonly used evaluation metrics, namely R2,
NSE, RMSE, and R, to analyze the daily streamflow measurements. NSE is a widely used
statistical measure that quantifies the ratio of the residual variance to the variance of
the observed data [51,54,76]. The NSE metric quantifies the level of agreement between
observed streamflow and modeled streamflow data, as indicated by their alignment with
the 1:1 line. The NSE ranges are explicitly specified in Table 7, accompanied by the
corresponding formula [77]. The variable R serves as a measure of the degree of similarity
between simulated data and observed data. RMSE is a commonly utilized statistical metric
that is employed to quantify the disparity between the predicted values generated by
a product and the corresponding actual values. R2 quantifies the extent to which the
observed data exhibits variability. Table 7 displays the expressions, parameter range,
and performance value for evaluation metrics. In this table, Si

O denotes the observed
streamflow data, Si

S denotes the simulated streamflow, and SO denotes the mean of the
observed streamflow data.
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Table 7. Model evaluation metrics.

Parameter Expression Range Performance

Nash–Sutcliffe efficiency
NSE = 1 −

n
∑

i=1
(Si

O−Si
S)

2

n
∑

i=1
(Si

O−SO)
2

0.75 < NSE ≤ 1.00
0.65 < NSE ≤ 0.75
0.50 < NSE ≤ 0.65
0.4 <NSE ≤ 0.50

NSE ≤ 0.4

Very good
Good

Satisfactory
Acceptable

Unsatisfactory

Pearson correlation
R =⎛

⎜⎜⎝ n
n
∑

i=1
(Si

OSi
S)−(

n
∑

i=1
Si

O)(
n
∑

i=1
Si

S)√
(n

n
∑

i=1
(Si

O)
2−(

n
∑

i=1
Si

O)
2
)

√
(n

n
∑

i=1
(Si

S)
2−(

n
∑

i=1
Si

S)
2
)

⎞
⎟⎟⎠

−1 to 1 -

Root means square error
RMSE =

√
n
∑

i=1
(Si

O−Si
S)

2

n
0 to ∞ -

Coefficient of
determination

R2 =⎛
⎜⎜⎝ n

n
∑

i=1
(Si

OSi
S)−(

n
∑

i=1
Si

O)(
n
∑

i=1
Si

S)√
(n

n
∑

i=1
(Si

O)
2−(

n
∑

i=1
Si

O)
2
)

√
(n

n
∑

i=1
(Si

S)
2−(

n
∑

i=1
Si

S)
2
)

⎞
⎟⎟⎠

2
0.7 < R2 ≤ 1

0.6 ≤ R2 < 0.7
0.5≤ R2 < 0.6
0.0≤ R2 < 0.5

Very good
Good

Satisfactory
Unsatisfactory

4. Results

In this current study, five models, namely SVR, RF, MLP, M5P, and LR, were used to
predict one-day-ahead streamflow with two-day streamflow lag, maximum temperature,
minimum temperature, and numerous precipitation datasets (such as IMD, EC-Earth3,
EC-Earth3-Veg, MRI-ESM2-0, MIROC6, and GFDL-ESM4) with two-day lag. The models
were also used to predict one-day-ahead streamflow; Table 8 presents the statistical char-
acteristics of the information that was used. The generated models are simulated from
the years 1993 to 2014. Table 8 demonstrates the data for streamflow, Tmin, Tmax, and
different precipitation datasets. Streamflow and all precipitation datasets have considerably
skewed distributions (in the range of 3.94 to 13.43). However, the data for Tmax and Tmin
are symmetrical.

Table 8. Statistics of streamflow, IMD precipitation, maximum temperature, minimum temperature,
and CMIP6 datasets.

Statistic
Streamflow

(m3/s)
IMD
(mm)

Tmin
(◦C)

Tmax
(◦C)

EC-
Earth3
(mm)

EC-
Earth3-

Veg
(mm)

MIROC6
(mm)

MRI-
ESM2-0

(mm)

GFDL-
ESM4
(mm)

Training

Mean 40.91 4.15 20.57 33.12 3.67 3.68 3.88 2.91 2.73
Median 0.31 0.00 22.45 31.88 0.00 0.00 0.00 0.00 0.00

Minimum 0.00 0.00 6.58 21.70 0.00 0.00 0.00 0.00 0.00
Maximum 2732.00 312.60 32.89 46.57 147.38 121.56 221.50 481.70 261.80
Standard
Deviation 138.74 13.22 5.16 4.77 11.04 11.06 12.42 13.74 12.33

Skew 8.31 7.51 −0.46 0.76 4.79 4.42 5.70 13.43 9.28

Testing

Mean 24.56 4.06 21.27 33.29 3.43 3.86 3.16 2.53 2.83
Median 0.46 0.00 22.94 31.90 0.00 0.00 0.00 0.00 0.00

Minimum 0.00 0.00 7.66 20.66 0.00 0.00 0.00 0.00 0.00
Maximum 1405.00 305.15 32.14 46.24 81.10 118.40 166.06 157.75 155.64
Standard
Deviation 73.06 12.74 5.01 4.94 10.07 11.40 10.31 9.50 11.93

Skew 7.38 9.45 −0.48 0.73 3.94 4.26 5.89 5.74 7.21
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Tables 9–14 illustrate the predictive performance of the five chosen models for stream-
flow forecasting one day in advance.

Table 9. NSE, R, R2, and RMSE for SVR, RF, MLP, M5P, and LR models using EC-Earth3 dataset.

EC-Earth3 Training Testing

Method NSE R R2 RMSE NSE R R2 RMSE

SVR 0.356 0.604 0.365 111.327 0.539 0.749 0.562 49.572
RF 0.916 0.969 0.938 40.192 0.496 0.777 0.604 53.878

MLP 0.467 0.686 0.470 101.306 0.500 0.751 0.563 51.669
M5P 0.452 0.673 0.452 102.646 0.502 0.756 0.572 51.556
LR 0.400 0.633 0.400 107.426 0.484 0.722 0.521 52.478

Table 10. NSE, R, R2, and RMSE for SVR, RF, MLP, M5P, and LR models using EC-Earth3-Veg dataset.

EC-Earth3-
Veg

Training Testing

Method NSE R R2 RMSE NSE R R2 RMSE

SVR 0.357 0.605 0.366 111.228 0.543 0.751 0.564 49.398
RF 0.917 0.967 0.936 39.988 0.406 0.748 0.560 56.278

MLP 0.405 0.698 0.488 107.021 0.108 0.783 0.612 69.001
M5P 0.453 0.673 0.453 102.604 0.493 0.754 0.568 52.019
LR 0.403 0.634 0.403 107.224 0.482 0.722 0.522 52.599

Table 11. NSE, R, R2, and RMSE for SVR, RF, MLP, M5P, and LR models using GFDL-ESM4 dataset.

GFDL-
ESM4

Training Testing

Method NSE R R2 RMSE NSE R R2 RMSE

SVR 0.354 0.602 0.362 111.529 0.539 0.747 0.558 49.571
RF 0.917 0.970 0.940 39.859 0.441 0.754 0.568 54.594

MLP 0.470 0.693 0.481 100.943 0.579 0.779 0.607 47.390
M5P 0.452 0.672 0.452 102.698 0.493 0.752 0.565 51.991
LR 0.400 0.632 0.400 107.466 0.479 0.719 0.517 52.724

Table 12. NSE, R, R2, and RMSE for SVR, RF, MLP, M5P, and LR models using IMD dataset.

IMD Training Testing

Method NSE R R2 RMSE NSE R R2 RMSE

SVR 0.604 0.787 0.619 87.321 0.796 0.892 0.796 33.027
RF 0.951 0.979 0.959 30.805 0.681 0.910 0.829 41.238

MLP 0.716 0.850 0.723 73.972 0.652 0.862 0.743 52.514
M5P 0.748 0.865 0.748 69.597 0.483 0.882 0.778 52.542
LR 0.692 0.832 0.692 76.938 0.491 0.851 0.725 52.098

Table 13. NSE, R, R2, and RMSE for SVR, RF, MLP, M5P, and LR models using MIROC6 dataset.

MIROC6 Training Testing

Method NSE R R2 RMSE NSE R R2 RMSE

SVR 0.354 0.602 0.363 111.484 0.539 0.747 0.559 49.603
RF 0.917 0.968 0.938 39.931 0.512 0.766 0.586 51.975

MLP 0.419 0.700 0.490 105.693 0.202 0.788 0.622 65.235
M5P 0.451 0.672 0.451 102.775 0.496 0.753 0.567 51.839
LR 0.399 0.632 0.399 107.528 0.480 0.720 0.518 52.674
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Table 14. NSE, R, R2, and RMSE for SVR, RF, MLP, M5P, and LR models using MRI-ESM2-0 dataset.

MRI-
ESM2-0

Training Testing

Method NSE R R2 RMSE NSE R R2 RMSE

SVR 0.353 0.602 0.362 111.547 0.539 0.747 0.558 49.603
RF 0.918 0.969 0.939 39.693 0.430 0.755 0.569 55.144

MLP 0.385 0.701 0.491 108.814 0.137 0.768 0.589 67.874
M5P 0.581 0.764 0.584 89.746 0.467 0.755 0.570 53.323
LR 0.399 0.632 0.399 107.503 0.482 0.720 0.519 52.567

Table 9 represents the performance evaluation indices using the EC-Earth3 dataset;
NSE, R, R2, and RMSE values of the selected finest model RF were observed to be 0.916,
0.969, 0.938, and 40.192 m3/s, correspondingly, during training and 0.496, 0.777, 0.604,
and 53.878 m3/s, correspondingly, during testing. Similar to the EC-Earth3 dataset, the
EC-Earth3-Veg dataset was used as input in the place of precipitation, in which the NSE, R,
R2, and RMSE values of the selected best model RF were observed to be 0.917, 0.967, 0.936,
and 39.988 m3/s during training and 0.406, 0.748, 0.560, and 56.278 m3/s during testing, as
shown in Table 10. As shown in Table 11, EC-Earth3-Veg precipitation was replaced with
GFDL-ESM4 to run all five models, and model evaluation metrics such as NSE, R, R2, and
RMSE for the RF model were seen to be 0.917, 0.970, 0.940, and 39.859 m3/s, respectively,
during training and 0.44, 0.754, 0.568 and 54.594 m3/s, correspondingly, during testing.
Table 13 shows MIROC6 as the input precipitation used where the evaluation metrics NSE,
R, R2, and RMSE were observed to be 0.917, 0.968, 0.938, and 39.931 m3/s while training
and 0.512, 0.766, 0.586, and 51.975 m3/s while testing for the RF model. Table 14 indicates
that the MRI-ESM2-0 was used as the input dataset, in which the evaluation metrics were
NSE, R, Rˆ2, and RMSE, which are 0.918, 0.969, 0.939, and 39.693 m3/s during training and
0.430, 0.755, 0.569, and 55.144 m3/s during testing.

The IMD gridded precipitation used by the five models is shown in Table 12. The
values of the NSE, R, R2, and RMSE of the chosen SVR model were found to be 0.604, 0.787,
0.619, and 87.321 m3/s during training, and 0.796, 0.892, 0.796, and 33.027 m3/s during
testing. The best RF model was picked in the same way as SVR, utilizing quantitative
statistical performance evaluation criteria. The results for the chosen RF model’s NSE, R,
R2, and RMSE were found to be 0.951, 0.979, 0.959, and 30.805 m3/s during training, and
0.681, 0.910, 0.829, and 41.238 m3/s during testing. Statistical performance indicators were
used to choose the optimal MLP model from among the several that had been built. The
chosen MLP model was found to have NSE, R, R2, and RMSE training values of 0.716, 0.850,
and 73.972 m3/s and testing values of 0.652, 0.862, 0.743, and 52.514 m3/s. The optimum
M5P model was also chosen through an iterative process of trial and error. The chosen M5P
model had training-time NSE, R, R2, and RMSE values of 0.748, 0.865, and 69.597 m3/s,
and test-time values of 0.483, 0.882, and 52.542 m3/s. To the same effect, a process of trial
and error was used to determine which LR model performed the best. It was found that the
training NSE, R, R2, and RMSE values of the chosen M5P model were 0.692, 0.832, 0.692,
and 76.938 m3/s, whereas the testing values were 0.491, 0.851, 0.725, and 52.098 m3/s.
Based on training and testing performance using IMD gridded precipitation, the RF model
was shown to be better capable of simulating one-day-ahead runoff time series compared
to SVR, RF, MLP, M5P, and LR. Training and testing results showed that RF models had the
best prediction performance, followed by SVR, MLP, M5P, and LR models. IMD gridded
precipitation performed exceptionally well in terms of model assessment criteria compared
to other climate datasets.

Time series and scatter plots of predicted vs. actual streamflow were used to qualita-
tively compare the performance of various models’ predictions. Here, the assessment was
carried out visually by comparing the predicted and actual hydrographs. Figures 3 and 4
represent the time series plots of all five models during training and testing using IMD
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gridded precipitation as input. Figures 5 and 6 represent the scatterplot of all the models
during training and testing using IMD gridded precipitation as input.

 

Figure 3. Line plot for observed vs. simulated streamflow for (a) SVR, (b) RF, (c) MLP, (d) M5P, and
(e) LR during training.
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Figure 4. Line plot for observed vs. simulated streamflow for (a) SVR, (b) RF, (c) MLP, (d) M5P, and
(e) LR during testing.
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Figure 5. Scatter plot for observed vs. simulated streamflow for (a) SVR, (b) RF, (c) MLP, (d) M5P,
and (e) LR during training.

Figure 6. Scatter plot for observed vs. simulated streamflow for (a) SVR, (b) RF, (c) MLP, (d) M5P,
and (e) LR during testing.
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As seen in Figures 3 and 4, RF performed the best in matching the hydrograph pattern,
especially in the remaining testing models, i.e., SVR underestimated peak flows, and MLP,
M5P, and LR overestimated the peak flows. Still, RF captures all the peak flows similarly to
the observed hydrograph. Similarly, Figures 5 and 6 represent RF performing outstandingly
in capturing the streamflow with an R2 of 0.959 and 0.829 during training and testing. In
training, RF is the best model, followed by M5P, MLP, LR, and SVR, with an R2 of 0.748,
0.723, 0.692, and 0.619. Even during testing, RF is best-performing model in terms of R2

followed by SVR, M5P, MLP, and LR, with values of 0.796, 0.778, 0.743, and 0.725.
Figures 7 and 8 represent the radar chart during training and testing using IMD

gridded precipitation as input data. In Figures 7a and 8a, both NSE and R are mapped;
in Figures 7b and 8b, RMSE is plotted in a radar chart. Figure 7a clearly demonstrates RF
performing best, with a maximum value of NSE and R compared to other models. Figure 7b
shows that a minimum RMSE was observed in the RF model, with a value of 30.805 m3/s.
Similarly, during testing, Figure 8a,b exhibit both RF and SVR performing better in terms
of NSE, R, and RMSE. RMSE is 41.237 m3/s in RF and 33.027 m3/s in SVR in testing.

 

Figure 7. Radar plot during training (a) NSE and R, (b) RMSE.

 

Figure 8. Radar plot during testing (a) NSE and R, (b) RMSE.

The violin plots seen in Figure 9a,b were designed for both training and testing using
IMD gridded precipitation as input. For each model, violin plots were created for the
interquartile range that was less than 95%, with the higher extreme flow values left out. RF
was the best model in which the simulated streamflow displayed flow behavior that was
more similar to the flow data of the actual streamflow than the other four models.
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Figure 9. Violin plots during (a) training and (b) testing periods.

Figures 10–15 represent the Taylor diagrams of all five models using different precip-
itation datasets, i.e., EC-Earth3, EC-Earth3-Veg, GFDL-ESM4, IMD, MIROC6, and MRI-
ESM2-0. It is abundantly evident in the Taylor diagrams that the results mentioned before
are validated. The training and testing results indicate that RF is the model that performs
the best in all scenarios. IMD is the best-performing precipitation dataset compared to the
other CMIP6 datasets, making it the ideal choice for modeling streamflow.

Figure 10. Taylor diagrams during (a) training and (b) testing using EC-Earth3 dataset.
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Figure 11. Taylor diagrams during (a) training and (b) testing using EC-Earth3-Veg dataset.

 

Figure 12. Taylor diagrams during (a) training and (b) testing using GFDL-ESM4 dataset.

Figure 13. Taylor diagrams during (a) training and (b) testing using IMD dataset.
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Figure 14. Taylor diagrams during (a) training and (b) testing using MIROC6 dataset.

 

Figure 15. Taylor diagrams during (a) training and (b) testing using MRI-ESM2-0 dataset.

5. Discussion

In this study, the applicability of CMIP6 precipitation datasets for simulating stream-
flow were assessed with the IMD using five different models, i.e., SVR, RF, MLP, M5P,
and LR. During the training and testing phases, time-lagged streamflow observations,
lagged precipitation datasets, minimum temperature, and maximum temperature were
used as model inputs, and each method was analyzed for its efficiency. In most cases,
the error variance between the observed and simulated values was used to evaluate the
correctness of the model using metrics like R2, NSE, RMSE, R, MAE, MBE, and so on, as
utilized in earlier research [68,69,71,78]. From previous studies, only precipitation data
as input are insufficient to simulate streamflow. Therefore, the present study included a
lag in the streamflow and temperature [68,79,80]. Compared to all the CMIP6 datasets,
IMD performs best in terms of all evaluation metrics. When considering models, RF best
predicted 1-day streamflow simulation in both CMIP6 and IMD datasets. Metrics such as
NSE, R, R2, and RMSE were observed to be 0.95, 0.979, 0.937, and 30.805 m3/s and 0.681,
0.91, 0.828, and 41.237 m3/s during training and testing using IMD gridded precipitation
dataset as input for RF model development. These findings agree with many other studies
found: In general, RF has superior performance. [28,32]. A similar type of was result
obtained in previous studies on Indian river basins by Kumar et al. [81], concluding that
RT and RF outperform other models, such as MLP and ANN, in simulating river discharge
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prediction. Hussain and Khan [78] conducted a study in Pakistan to simulate monthly
streamflow forecasts and concluded that RF outperformed SVR and MLP. A study carried
out by Essam et al. [82] over various river basins in Malaysia identified that ANN performs
best in predicting daily streamflow values when compared to SVM and LSTM. One more
study conducted in Malaysia by Muhammed et al. [83] concluded that RF-based models
performed the best compared to LS-SVM and other M5P models, which supports the
results obtained in this study. As part of their investigation on streamflow forecasting,
Gianni Vesuviano et al. [84] conducted a study in the Wairagarh catchment using a lumped
sub-catchment modeling approach with a single parameter set, which resulted in an NSE
value of 0.172 and an R of 0.472. In contrast, our study implemented five machine learning
models (SVR, RF, M5P, MLP, and LR) for one-day-ahead streamflow forecasting, with the
RF model utilizing IMD gridded precipitation data as input. Our developed RF model
demonstrated significantly improved performance, with an NSE value of 0.95 and R of
0.979. These results highlight the superiority of our machine learning models over the
lumped sub-catchment modeling approach, offering more accurate and reliable streamflow
predictions for the Wairagarh station.

Even for long-term datasets, RF performs far better than ANN, SVM, and boosted
tree regression (BTR) [85]. At the same time, compared to conceptual hydrological models
(AWBM and Sacramento), AI models perform best in predicting daily streamflow [54].
In addition, Contreras et al. [86] employed RF for 4, 12, and 24 h, and they said that the
proposed RF models achieved an excellent result in discharge forecasting with minimal
statistical errors. Their discoveries have the potential to be helpful in the development
of fully operational early warning devices. Also, the results of this study correlate with
those found by Peng et al. [87], who revealed that RF outperformed the BP neural network
and the SVM in terms of accurate prediction and computation time while working with
complicated and nonlinear hydrological models. Our results, supported by Li et al. [27],
explain that RF captures peak flows better than other machine learning models such as
ELM-kernel, BPNN, and SVR.

This is supported by the fact that the RF performed better in both of these methods.
The model assessment results reveal that the RF performs significantly better in basins
controlled by snowmelt than in basins driven by rainfall [88]. One more study by Singh
et al. [89] supported that RF exhibits strong potential for simulating streamflow over the
Himalayan catchment in India compared to MLR, MARS, and SVM. Even for medium-
and long-term runoff forecasting, RF performs best compared to SVM and IARMA [90].
Compared to neural networks and SVM, the RF model offers greater prediction accuracy
and requires less computation when working with highly nonlinear hydrological time
series, when considering monthly streamflow simulations [87]. Not only for streamflow
modeling, but RF has also been applied in various studies like predicting total nitrogen
(TN), total suspended solids (TSS), total phosphorus (TP), and ortho-phosphorus (Ortho-P)
EMCs in urban runoff [91].

There are several limitations attached to machine learning models. The location is a
limitation of the above optimal model (the RF model). Since the RF model was trained
using data from the Wairagarh catchment, it is more likely to produce correct findings
when applied to other catchments. The significant degree of randomness in the streamflow
pattern has necessitated the application of several machine learning algorithms in a variety
of geographic areas to locate appropriate models for reliable forecasting. It is, therefore,
a continuous challenge to investigate and build an expert model for use in hydrological
modeling. If it is used for other catchments, it will need to be retrained on the past data of
the concerning catchments.

6. Conclusions

In this study, five models, i.e., SVR, RF, MLP, M5P, and LR, were developed to simulate
1-day-ahead streamflow at Wairagarh station in the Pranhita subbasin (Godavari basin) of
India. For this analysis, different precipitation datasets were considered. CMIP6 precipi-
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tation datasets were downscaled using the distribution mapping method. Models were
developed for 1993–2014, in which 70% of data were used for training, and the remain-
ing 30% were used for testing, after excluding any missing data. The input parameters
were chosen using correlation and pairwise correlation attribution evaluation methods.
Important takeaways are outlined here:

Both CMIP6 and IMD performed better in streamflow forecasting using lagged
data (precipitation and streamflow), minimum temperature, and maximum temperature
as input.

Using CMIP6 datasets as input, RF and M5P performed very well according to different
evaluation metrics. RF showed very good (0.75 < NSE < 1 and 0.7 < R2 < 1) performance
in training and acceptable (0.4 < NSE < 0.50 and 0.5 < R2 < 0.6) performance in testing.
Similarly, M5P represented a satisfactory (0.4 < NSE < 0.50 and 0.5 < R2 < 0.6) performance
in both training and testing. For CMIP6 input precipitation dataset is found to be MRI-
ESM2-0 for the M5P model and MIROC6 for the RF model.

Compared to downscaled CMIP6 precipitation datasets, IMD outperformed all the
models in evaluation metrics. In comparison with all five models, RF outperformed the
others, with NSE, R, R2, and RMSE values of 0.95, 0.979, 0.937, and 30.805 m3/s and 0.681,
0.91, 0.828, and 41.237 m3/s during training and testing, respectively. RF showed the best
performance in evaluation metrics and in capturing peak flow events and hydrograph
patterns in both training and testing.

Overall, the best-performing models in forecasting streamflow one day in advance
when using IMD gridded precipitation as input are ranked in the following order: RF, SVR,
M5P, MLP, and finally LR. However, the last two methods exhibited very poor performance
for the chosen study area.

The findings of this study hold crucial implications for water resource management
and hydrological research. The accurate streamflow forecasting models developed using
advanced machine learning algorithms can empower decisionmakers with better water
planning strategies, flood control, and drought management. Incorporating multiple
gridded satellite precipitation datasets and bias-corrected CMIP6 data enhances the under-
standing of climate change impacts on hydrological processes. However, limitations exist,
such as data availability, model generalization, and uncertainties in climate models. Future
research can explore ensemble machine learning modeling, real-time streamflow predic-
tions, and risk assessment studies. Additionally, efforts can be directed toward addressing
hydrological complexities and refining model validation techniques. By overcoming these
limitations and pursuing further research, the field of streamflow forecasting can advance,
contributing to sustainable water management and preparedness for water-related chal-
lenges worldwide.
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73. Özbayoğlu, G.; Evren Özbayoğlu, M. A new approach for the prediction of ash fusion temperatures: A case study using Turkish

lignites. Fuel 2006, 85, 545–552. [CrossRef]
74. Khazaee Poul, A.; Shourian, M.; Ebrahimi, H. A Comparative Study of MLR, KNN, ANN and ANFIS Models with Wavelet

Transform in Monthly Stream Flow Prediction. Water Resour. Manag. 2019, 33, 2907–2923. [CrossRef]
75. Li, P.-H.; Kwon, H.-H.; Sun, L.; Lall, U.; Kao, J.-J. A modified support vector machine based prediction model on streamflow at

the Shihmen Reservoir, Taiwan. Int. J. Climatol. 2010, 30, 1256–1268. [CrossRef]
76. Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10,

282–290. [CrossRef]
77. Faizollahzadeh Ardabili, S.; Najafi, B.; Alizamir, M.; Mosavi, A.; Shamshirband, S.; Rabczuk, T. Using SVM-RSM and ELM-RSM

Approaches for Optimizing the Production Process of Methyl and Ethyl Esters. Energies 2018, 11, 2889. [CrossRef]
78. Hussain, D.; Khan, A.A. Machine learning techniques for monthly river flow forecasting of Hunza River, Pakistan. Earth Sci.

Inform. 2020, 13, 939–949. [CrossRef]
79. Almazroui, M.; Ashfaq, M.; Islam, M.N.; Rashid, I.U.; Kamil, S.; Abid, M.A.; O’Brien, E.; Ismail, M.; Reboita, M.S.; Sörensson,

A.A.; et al. Assessment of CMIP6 Performance and Projected Temperature and Precipitation Changes Over South America. Earth
Syst. Environ. 2021, 5, 155–183. [CrossRef]

80. Mutlu, E.; Chaubey, I.; Hexmoor, H.; Bajwa, S.G. Comparison of artificial neural network models for hydrologic predictions at
multiple gauging stations in an agricultural watershed. Hydrol. Process. Int. J. 2008, 22, 5097–5106. [CrossRef]

81. Kumar, M.; Elbeltagi, A.; Pande, C.B.; Ahmed, A.N.; Chow, M.F.; Pham, Q.B.; Kumari, A.; Kumar, D. Applications of Data-driven
Models for Daily Discharge Estimation Based on Different Input Combinations. Water Resour. Manag. 2022, 36, 2201–2221.
[CrossRef]

82. Essam, Y.; Huang, Y.F.; Ng, J.L.; Birima, A.H.; Ahmed, A.N.; El-Shafie, A. Predicting streamflow in Peninsular Malaysia using
support vector machine and deep learning algorithms. Sci. Rep. 2022, 12, 3883. [CrossRef] [PubMed]

46



Sustainability 2023, 15, 12295

83. Muhammed, P.S.; Parveen, S.; Bin, S.A.; Balraj, S.; Bao, P.Q. Time-Series Prediction of Streamflows of Malaysian Rivers Using
Data-Driven Techniques. J. Irrig. Drain. Eng. 2020, 146, 4020013.

84. Vesuviano, G.; Griffin, A.; Stewart, E. Flood Frequency Estimation in Data-Sparse Wainganga Basin, India, Using Continuous
Simulation. Water 2022, 14, 2887. [CrossRef]

85. Tofiq, Y.M.; Latif, S.D.; Ahmed, A.N.; Kumar, P.; El-Shafie, A. Optimized Model Inputs Selections for Enhancing River Streamflow
Forecasting Accuracy Using Different Artificial Intelligence Techniques. Water Resour. Manag. 2022, 36, 5999–6016. [CrossRef]

86. Contreras, P.; Orellana-Alvear, J.; Muñoz, P.; Bendix, J.; Célleri, R. Influence of Random Forest Hyperparameterization on
Short-Term Runoff Forecasting in an Andean Mountain Catchment. Atmosphere 2021, 12, 238. [CrossRef]

87. Peng, F.; Wen, J.; Zhang, Y.; Jin, J. Monthly streamflow prediction based on random forest algorithm and phase space reconstruction
theory. J. Phys. Conf. Ser. 2020, 1637, 12091. [CrossRef]

88. Pham, Q.B.; Pal, S.C.; Chakrabortty, R.; Norouzi, A.; Golshan, M.; Ogunrinde, A.T.; Janizadeh, S.; Khedher, K.M.; Anh, D.T.
Evaluation of various boosting ensemble algorithms for predicting flood hazard susceptibility areas. Geomat. Nat. Hazards Risk
2021, 12, 2607–2628. [CrossRef]

89. Singh, A.K.; Kumar, P.; Ali, R.; Al-Ansari, N.; Vishwakarma, D.K.; Kushwaha, K.S.; Panda, K.C.; Sagar, A.; Mirzania, E.; Elbeltagi,
A.; et al. An Integrated Statistical-Machine Learning Approach for Runoff Prediction. Sustainability 2022, 14, 8209. [CrossRef]

90. Shijun, C.; Qin, W.; Yanmei, Z.; Guangwen, M.; Xiaoyan, H.; Liang, W. Medium- and long-term runoff forecasting based on a
random forest regression model. Water Supply 2020, 20, 3658–3664. [CrossRef]

91. Behrouz, M.S.; Yazdi, M.N.; Sample, D.J. Using Random Forest, a machine learning approach to predict nitrogen, phosphorus,
and sediment event mean concentrations in urban runoff. J. Environ. Manag. 2022, 317, 115412. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

47



Citation: Chang, M.-J.; Huang, I.-H.;

Hsu, C.-T.; Wu, S.-J.; Lai, J.-S.; Lin,

G.-F. Long-Term Flooding Maps

Forecasting System Using Series

Machine Learning and Numerical

Weather Prediction System. Water

2022, 14, 3346. https://doi.org/

10.3390/w14203346

Academic Editors: Stefano Morelli,

Veronica Pazzi and Mirko Francioni

Received: 29 August 2022

Accepted: 14 October 2022

Published: 21 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Long-Term Flooding Maps Forecasting System Using Series
Machine Learning and Numerical Weather Prediction System

Ming-Jui Chang 1, I-Hang Huang 2, Chih-Tsung Hsu 3, Shiang-Jen Wu 4, Jihn-Sung Lai 5,6 and Gwo-Fong Lin 1,*

1 Department of Civil Engineering, National Taiwan University, Taipei 10617, Taiwan
2 Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan
3 National Center for High-Performance Computing, National Applied Research Laboratories,

Hsinchu 30076, Taiwan
4 Department of Civil and Disaster Prevention Engineering, National United University,

Miaoli City 36003, Taiwan
5 Hydrotech Research Institute, National Taiwan University, Taipei, 10617, Taiwan
6 Research Center of Climate Change and Sustainable Development, National Taiwan University,

Taipei 10617, Taiwan
* Correspondence: gflin@ntu.edu.tw; Tel.: +886-2-33664368; Fax: +886-2-23631558

Abstract: Accurate real-time forecasts of inundation depth and area during typhoon flooding is
crucial to disaster emergency response. The development of an inundation forecasting model has
been recognized as essential to manage disaster risk. In the past, most researchers used multiple
single-point forecasts to obtain surface flooding depth forecasts with spatial interpolation. In this
study, a forecasting model (QPF-RIF) integrating a hydrodynamic model (SOBEK), support vector
machine–multi-step forecast (SVM-MSF), and a self-organizing map (SOM) were proposed. The task
of this model was divided into four parts: hydrodynamic simulation, point forecasting, inundation
database clustering, and spatial expansion. First, the SOBEK model was used in simulating inundation
hydrodynamics to construct the flooding maps database. Second, the SVM-MSF yields water level
(inundation volume) forecasted with a 1 to 72 h lead time. Third, the SOM clustered the previous
flooding maps database into several groups representing different flooding characteristics. Finally,
a spatial expansion module produced inundation maps based on forecasting information from
forecasting flood volume and flood causative factors. To demonstrate the effectiveness of the proposed
forecasting model, we presented an application to the Yilan River basin in Taiwan. Our forecasting
results indicated that the proposed model yields accurate flood inundation maps (less than 1 cm
error) for a 1 h lead time. For long-term forecasting (46 h to 72 h ahead), the model controlled the
error of the forecast results within 7 cm. In the testing events, the model forecasted an average of
83% of the flooding area in the long term. This flood inundation forecasting model is expected to be
useful in providing early flood warning information for disaster emergency response.

Keywords: early flood warning; disaster risk; self-organizing map; support vector machine; flood
inundation forecasting; flood inundation map

1. Introduction

In recent years, the issue of climate change has received much attention due to global
warming, which leads to rising sea levels and a higher frequency of extreme climate.
Due to the location and climate of Taiwan, there are an average of 3.6 typhoons that
would annually cross Taiwan. The hourly precipitation during typhoon events can exceed
100 millimeters per hour, the equivalent of one-tenth of the average annual precipitation of
the world. The strong wind and heavy precipitation sometimes result in serious disasters
such as debris flow or flood inundation. To prevent the loss of citizen life and property, a
sophisticated early warning system and comprehensive urban inundation management
system are necessary.

Water 2022, 14, 3346. https://doi.org/10.3390/w14203346 https://www.mdpi.com/journal/water
48



Water 2022, 14, 3346

Flood depth forecasting is the most crucial technique for constructing the inundation
early warning system. According to the processing principle, the model for flooding sim-
ulation can be divided into physical-based or data-driven models. The physical-based
models tend to reproduce the local hydrological process underlying physical equations,
such as continuous or conservation of momentum equations, and several empirical formu-
las. Given its versatility and convenience, there is much research and practical applications
that employ the physical-based rainfall-runoff model to simulate discharge and flooding.
Beven et al. [1] developed the TOPMODEL and tested it on three U.K. catchments, Crimple
Beck, Hodge Beck, and Wye headwater. As a result of the comparisons in their study,
TOPMODEL can be seen as a useful approach for ungauged catchments of up to 500 km2

in humid-temperature climates. Ji et al. [2] applied the SOBEK model in the Yellow River
estuary. Their analyzed results indicated that the SOBEK has strong adaptability and can
be applied in an estuary. Santhi et al. [3] employed Soil Water Assessment Tool (SWAT) to
initiate the development of a total maximum daily load program in the Bosque River Wa-
tershed, Texas. This study showed that SWAT could effectively predict the flow, sediment,
and nutrients. Besides single physical-based model simulation, Betrie et al. [4] linked SWAT
and SOBEK for sediment transport simulation. The results showed that the coupled models
could simulate the observed hydrodynamics and sediment deposition due to backwater
effects, which cannot be simulated with the SWAT model alone.

Though physical-based models seem to more intuitively simulate the regional flooding
situation, the accuracy of the simulation highly relies on local survey accuracy and exact
determination. Moreover, the computing time of physical-based models might be too long
to achieve the early warning requirement. Therefore, more and more researchers turned to
data-driven ways to enhance the effect of real-time forecasting. In the past few years, most
of the researchers concentrated on the accuracy of discharge forecasting on a single section,
with little attention to local and large-scale flooding forecasting. Han et al. [5] used the
support vector machine (SVM) to forecast the flood level of a single point and focus on how
to optimize the parameters of the model to overcome under- and over-fitting problems.
Chang et al. [6] presented a two-stage procedure underlying the clustering-based hybrid
inundation model to construct the regional flood inundation forecasting model. The results
showed that the model proposed in their study could generate flood inundation maps 1 h
ahead, which well matched the simulated flood inundation results and reduced computing
time. Pyayt et al. [7] introduced how to import data-driven models and artificial intelligence
techniques into an early warning system. Aggarwal et al. [8] forecasted the stage and
discharge in the Mahanadi River, India, with three models, which were the persistence
model, feed-forward neural network, and SVM. The results showed that forecasting of stage
and discharge over a longer time by the SVM was more accurate than those by the other
two models. In addition, SVM has been proven to have an advantage in groundwater level
forecasting [9,10], water quality [11,12], flood susceptibility [13], and flood detection [14].
However, the data-driven model has certain requirements for the amount of data and
data quality, which results in the data-driven models being hard to use in a novel study
area since they lack observed information. To overcome the previous dilemma, more and
more researchers have adopted remote sensing (RS) technology or rainfall-runoff models
to increase the amount of data. RS technology has become indispensable in monitoring
changes in water bodies due to its high spatio-temporal coverage [15]. Flooding maps were
analyzed by combining RS and geographic information systems with rainfall-runoff models,
machine learning, and deep learning [16]. Examples of such rainfall-runoff models include
the SOBEK model [17,18], 2D-DOFM (2D diffusive overland flow model) [19], 2D zero-
inertia inundation model [20], FLO-2D [21], and WASH123D [22]. Wu et al. [22] indicated
that the simulated results from WASH123D were corrected using a physical real-time
correction technique and compared with direct simulation without correction in Fengshan
River Basin, Taiwan. In these approaches, the SOBEK model was a powerful modeling suite
with an integrated modeling framework for the river, estuary, and stormwater systems,
capable of simulating hydrodynamics of flood inundation phenomena.
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In view of this, several studies selected remote sensing, reproductive, and real-time
estimating data as the database of the data-driven model. Wu et al. [23] developed an
ANN-based model for the two-dimensional (2D) inundation simulation with real-time
measurements at the roadside IoT (Internet of Things) sensors. The proposed model could
estimate the inundation depths with an acceptable accuracy at the ungauged locations in
time and space. Chang et al. [6] proposed a hybrid short-term urban flooding forecasting
system which was named SOM-R-NARX. In their studies, investigative data of the study
area consisted of 31 historical rainfall events, and 24 designed rainfall events were employed
to forecast the average flooding depth and cluster in different flooding distributions.

In this study, to construct a mid- to long-term flooding forecasting model without
data from local flooding monitoring stations, we reproduced 3000 sets of simulated rainfall
events and 15 historical rainfall events from 2005 to 2018 as a standard. These reproductive
rainfall events were put into the SOBEK model and built into the flooding events database to
establish the following mid- and long-term flooding forecasting model. The environmental
factors and terrestrial information the SOBEK needed to simulate the flooding were the most
novel information, which was updated in 2019, to ensure the model could simulate current
flooding situations. This is not the same as most researchers who tend to use multiple single-
point forecasts to obtain surface flooding depth forecasts with spatial interpolation [18].
This study proposed a quantitative precipitation forecast mapping regional-inundation
forecasting model (QPF-RIF), which integrated support vector machine-multi-step forecast
(SVM-MSF) and self-organizing map (SOM) to generate 2D inundation maps without
spatial interpolation. The steps could be simplified as follows. Firstly, the SVM-MSF was
used to forecast the total flooding volume in the study area with reproductive rainfall events
and the simulated flooding database mentioned in the previous paragraph. Secondly, SOM
was used to cluster the flooding events into 25 to 81 different categories of inundation maps
through their flooding properties. Finally, the forecasted total flooding volume was used to
select the closest inundation properties and disperse the total flooding volume across the
grids. To demonstrate the effectiveness of the proposed forecasting model (QPF-RIF), we
presented an application to Yilan County, Taiwan. More details about the study area and
methodologies can be found in Sections 2 and 3.

2. Study Area and Data

2.1. Study Area

Taiwan is located in the western Pacific Ocean and is affected by the Pacific subtropical
high and the Siberia cold air masses. Besides monsoons, typhoons, which always attack
Taiwan in the summer and autumn, are not only the major resources of water supply but
contribute to several disasters such as property destruction and flooding. Yilan County,
located in the northeast of Taiwan, is one of the areas that suffers the most from flooding. For
effective disaster prevention and property damage reduction, the real-time flood forecasting
system for Yilan County is a prerequisite. Therefore, Yilan County was adopted as the
study area to develop a real-time flooding map forecasting system. Due to the monsoon
season and typhoons, the average annual precipitation for Yilan County is over 2700 mm,
which is three times of world’s average annual precipitation. The topography and river
system of Yilan County is shown in Figure 1. The elevation of Yilan County decreases from
west to east, and the terrain includes mountains, valleys, piedmont alluvial plains, swamps,
and dune and coastal zones. The major river system of Yilan County is divided into five
partitions, from north to south are Detzukou River, Yilan River, Langyang River, Donshan
River, and Suao River. The total length and catchment area of these rivers are 150.13 km
and 1368.17 km2, respectively.

50



Water 2022, 14, 3346

Figure 1. Study area.

2.2. Rainfall and Flooding Data

Owing to the lack of historical flooding events for constructing a flooding forecasting
model, we used 15 historical rainfall events to reproduce 3000 sets of simulated rainfall
events. These historical rainfall events included 14 typhoons and a single heavy rainfall.
They are listed in Table 1. Besides the rainfall events used to reproduce data, to verify the
model with independent heavy rainstorm and typhoon events, the heavy rainfall on 11
October 2017, and Typhoon Migta (not included in training data) were also used in this
study as the control events. To more effectively forecast the long-term flooding maps, the
rainfall data used in this study were quantitative precipitation forecasts (QPF) predicted by
the Central Weather Bureau of Taiwan. The resolution of QPF is 0.0125 degrees of latitude
and longitude. The total forecasting length of QPF is 72 h.

Furthermore, these simulated rainfall events were used to build a database of the
flooding map with SOBEK. Unlike the simulated rainfall that used the historical rainfall
events from 2005 to 2018 as raw data, the terrestrial and environmental factors that were
used in the SOBEK model to build the flooding database were updated in 2019 in order to
ensure the model could effectively forecast the flooding maps in line with local conditions.
These flooding maps and simulated rainfalls were used to construct the QPF-RIF proposed
in this study.
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Table 1. Description of typhoons and storms used in this study.

Number Name
Alert Time (Date Month Year

hh:mm)
Duration Time (h)

1 Haitang 16 July 20056 14:30 84
2 Matsa 3 August 2005 08:30 72
3 Talm 30 August 2005 08:30 63
4 Sepat 16 August 2007 08:30 78
5 Krosa 4 October 2007 17:30 78
6 Fung-Wong 26 July 2008 11:30 72
7 Sinlaku 11 September 2008 08:30 102
8 Jangmi 26 September 2008 23:30 72
9 Morakot 5 August 2009 20:30 105

10 Parma 3 October 2009 05:30 84
11 Megi 21 October 2010 02:30 69
12 Saola 30 July 2012 20:30 100
13 Souldelor 6 August 2015 11:30 69
14 Dujuan 27 September 2015 08:30 57
15 Storm 11 October 2017 22:00 103
16 Storm 8 September 2018 00:00 72
17 Migta 29 September 2019 08:00 52

Note 1: The bold event names represent the events used to demonstrate the results of flooding forecasts.
Note 2: Events 15 and 17 were not used to reproduce the simulated rainfall events.

In addition, Emergency Management Information Cloud (EMIC) data were also
adopted in this study as the standards to compare the accuracy of flooding maps forecasted
by QPF-RIF. EMIC data, including flooding depths at specific locations and flooding range
during events, were collected from reporting by citizens and inspection by public officials.
Of note, the flooding range reported in the EMIC data showed that the grid was flooded
during the event, and the time of flooding was not taken into account. The remaining area,
which was unreported, might be unflooded or flooded but not reported.

3. Methodology

In order to effectively and immediately forecast the flooding maps of Yilan, we pro-
posed a real-time flooding forecasting model based on SVM-MSF and SOM, which is
named QPF-RIF. In this section, we introduce the methodologies used in this study. In
Section 3.1, we describe the research progress. SVM-MSF and SOM are illustrated in
Sections 3.2 and 3.3, respectively. Finally, the performance measures and determination
process are introduced in Section 3.4.

3.1. Research Progress

For a clear understanding of the entire research, the research progress is detailed and
illustrated in this section. The research progress was divided into model construction and
verifying the performance of model two partitions.

In the first partition, model construction contained five steps, as shown in Figure 2.
In the first step, the 15 historical rainfall events were collected and used to reproduce
3000 sets of rainfall events under different scenarios. Afterward, these simulated rainfall
events were put into SOBEK and simulated 3000 sets of flooding events. These simulated
rainfall events and flooding databases were used as the basis for subsequent modeling. In
the second step, we filtered the severe events in the pattern as the standard for the study
area zoning. Combing watershed features and flooding characteristics, flood-prone areas
in Yilan County were divided into 9 sub-regions. At the same time, gridding ensemble
rainfall data in Yilan County were divided and used to create 19 virtual rainfall stations.
Thirdly, we established the corresponding total flooding volume forecasting model for
the 9 sub-regions with SVM-MSF. These forecasted flooding volumes were the basis for
subsequent gridding flooding depth forecasting. In the fourth step, we used SOM to
classify 3000 sets of simulated flooding events into 25 to 81 categories of flooding species.
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We calculated the weights represented by each grid (a portion of each grid) in each category.
These weights were used to divide the total flooding volume into the separated gridding
flooding depth. Finally, we used the total flooding volume forecasted by SVM-MSF to
select the corresponding flooding category classified by SOM. Then, we used the weights
of this category to convert the total flooding volume to the flooding depth in each grid.

 

Figure 2. Flowchart of research.

In the second partition, the model performance was evaluated under specific events
with performance measures. When it came to evaluating the model performances of SVM-
MSF, the most severe flooding events were picked, one each from training and testing events
as the determined events. The performance measures adopted in this procedure were the
root mean square error (RMSE), mean absolute error (MAE), and correlation coefficient
(CC), which is described in Section 3.4. As for the performance of SOM, performance
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measures RMSE and MAE were employed. Finally, the adjusted and combined results
were verified using the most severe testing flooding event and two historical rainfall
events. The performance measure used in this section is the true positive value that was
imported from the confusion matrix, which was often used to indicate the performance of
the classified model.

3.2. Support Vector Machine–Multi-Step Forecast

The support vector machine (SVM) was published by Vapnik in 1990, and the initial
main purpose of SVM was to resolve classified problems. In 1995, the SVM evolved to
regressive uses and was also known as support vector regression [24]. By introducing
structural risk minimization, the SV was enabled to reduce the error of the target function
without over-amplifying the construction of the model. Additionally, the solving process
of SVM can be transformed into a quadratic programming problem and be quickly solved
by standardized processes.

As Figure 3a shows the SVM construction, the input vectors of SVM were mapped to
the high dimensional feature space through different kernel functions. The most commonly
used kernel functions are listed below, such as linear function (LN), polynomial function
(PN), radial basis function (RBF), and sigmoid function (SG). Besides kernel functions, there
was a degree of freedom (degree), tolerance (epsilon, and penalty parameter (cost), which
would significantly affect model accuracy and should be determined. The details of SVM
principles can be found in Vapnik (1995, 1998) [24,25]. The program used in this study was
Python (=3.6) with the scikit-learn package (=0.22.1).

To enhance the performance of the model to forecast severe flooding events, during
the training and testing phases 1000 sets of severe events were selected from 3000 sets
of simulated events as the database. The ratio of training to testing data was 3:1; that is,
training and testing events were 750 and 250, respectively. The sampling method was
simple random sampling.

To ensure the model was capable enough for mid- and long-term forecasting, the
multi-steps forecasting (MSF) technique was adopted in this study. The main principle of
MSF is using the t-n hour forecasted results as inputs for the next round of forecasting at
t-n+1 h. The technique might effectively increase the amount of information received from
previous forecasting iterations in long-term forecasts.

Figure 3. Cont.
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Figure 3. The structures of (a) SVM and (b) SOM.

3.3. Self-Organizing Map

A self-organizing map (SOM) is a feed-forward and unsupervised artificial neural
network and was proposed by Kohonen in 1982 [26]. In training processes, SOM can
effectively classify complex data only through the distribution and characteristics of input
data without target value.

The schematic diagram of SOM is drawn below in Figure 3b. SOM maps high-
dimensional data to low-dimensional data through the characteristic mapping method.
In order to facilitate the visualization of the training results, we usually selected two
dimensions as the output dimension of SOM. Due to the introduction of the concept
of competitive learning, topological neurons competed with each other to find winning
neurons based on each input vector. The winning neurons and their neighbor neurons
had the chance to adjust the weights and biases. Finally, the neurons in the output layer
generated the data feature map according to the characteristics of input vectors.

The construction process of SOM is divided into six steps. Firstly, the data preprocess-
ing should be strictly enforced, and the training dataset used in SOM should be normalized
to avoid training bias due to inconsistent data scales. Secondly, the size of the topological
graph settled in SOM should be determined. Proper topological size causes the trained
data feature map to be more representative. Thirdly, setting reasonable stop-training condi-
tions not only saves training resources but avoids training bias. There are two commonly
used stop-training conditions, one is fixed iterations of training, and the other is the early
stopping technique. Both stopping methods were used in this study; once one of these
conditions was met, the training process stopped. Fourthly, the shape of the neighborhood,
distance function, and learning rate should be determined. The neighborhoods are centered
on the winning neuron, and the shape of it can be user-defined, such as a circle, rectangle,
hexagon, and so on. Both the learning rate and distance function are functions of the
number of training iterations. Namely, the learning rate and distance function decay as
the number of training iterations increases. The equations of learning rate and distance
function can be formed as below Equations (1) and (2), respectively.

a(t) = a0 exp
(
− t

τ

)
(1)
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In Equation (1), a0 and a(t) are the initial learning rate and current learning rate,
respectively. The τ and t are the total number of training iterations and the current training
iteration, respectively.

R(t) = R0 exp
(
− t

ε

)
(2)

In this equation, R0 is the initial neighborhood radius, and R(t) is the neighborhood
radius in this training iteration.

Fifthly, find the winning neuron by calculating the Euclidean distances between each
neuron and input vectors. The neuron with the smallest Euclidean distance from the input
vectors is the winning neuron. Finally, modify the weights of all selected neurons according
to the winner neuron, neighborhood radius, and learning rate. More details about the
principles of SOM can be found in Kohonen (1990) [27]. In order to realize the above SOM
algorithm, in this study, we used Python (=3.6) with the miniSOM package to classify the
simulated inundation maps.

3.4. Determination and Performance Measures

In order to optimize the performance of the model, determining the user-defined
hyper-parameters and input combinations are indispensable processes. For more rigorous
optimization of the parameters and inputs, were adopted the grid search method. The
concept of a grid search is to evaluate all parameter combinations in a feasible solution
space. The operation of the grid search method is divided into the following three partitions.
Firstly, set the upper and lower limits (boundaries) according to the reasonable range of
each parameter. Secondly, set the grid size between the upper and lower limits based on the
computing resources and influence rate of the parameters. Finally, determine all parameter
combination sets by the conditions of the previous two partitions.

In addition to evaluating the performance of the method, rational performance mea-
sures could help us objectively compare the pros and cons of each model. The perfor-
mance measures used in this study are Root Mean Square Error (RMSE), Mean Abso-
lute Error (MAE), Correlation Coefficient (CC), and True Positive Rate (TPR) used in the
confusion matrix.

4. Results and Discussion

The results of the five steps mentioned in Section 3.1 are presented in this section.
In Section 4.1, the flooding and virtual rainfall station sub-regions, which were divided
by previous simulated flooding events, are shown. In Section 4.2, the results of the total
flooding volume forecasted by SVM-MSF are illustrated. How SOM was used to classify
the 3000 simulated flooding events into several categories results are shown in Section 4.3.
Finally, the SVM-MSF and SOM merger results are presented in Section 4.4.

4.1. Sub-Region and Virtual Rainfall Station

The most severe flooding event among the 3000 simulated flooding events was selected
as the standard for dividing the flooding sub-regions in order to contain severe flooding
characteristics. Figure 4 shows the order of the flood sequence; the colored labels in
the figure represent the time when the grid began to flood. The grids closer to the dark
red indicate earlier flooding and are regarded as the starting position for the flooding.
Otherwise, the areas closer to the blue indicate the later flooding region. The interconnected
red areas will be considered as the same starting position. By examining flooding sequences
and watershed features, we judged which areas had the same flooding characteristics and
divided them into nine sub-regions, as Figure 5 shows. From south to north, we named
these sub-regions S1 to S9, respectively.
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Figure 4. The order in which flooding occurred.

The ensemble gridded rainfall data used to construct the total flooding volume fore-
casting models in this study and the control area of each rainfall station are shown in
Figure 6. Each spot on the figure represents the cumulative rainfall for an hour on the
20 × 20 m2 grid. However, even though we had such detailed rainfall information, there
were still two predicaments to be overcome. Too many adjacent rainfall inputs caused a
high dependency and led the model to overfit. In addition, the huge number of inputs
might lead to determination difficulties and long computational times, which cannot be
applied in real time. For the above reasons, we simplified the rainfall inputs from orig-
inal grids scaling to 19 virtual rainfall station data according to the catchments, control
areas, and Thiessens’s polygon method. Given that mountainous rainfall cannot cause
an immediate threat to urban flooding, a virtual rainfall station located in a mountainous
area could cover a larger control area, such as virtual rainfall stations 15 to 19 on the
left-hand side of the figure. On the contrary, the heavy rainfall in the urban area might lead
to flood inundation caused by inner water rapidly rising. Hence, the control area of the
virtual rainfall station, which was located in the metropolis, was smaller than those in the
mountainous area.
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Figure 5. Nine sub-regions in Yilan County divided by flooding characteristics.

4.2. Performance of SVM

As mentioned in Section 3.2, different parameter combinations for SVM would greatly
affect model performance. The optimal parameters (kernel function, cost, ε, and γ) and
input combinations determined by the grid search method are listed in Table 2. We could
summarize from the table that rainfall information upstream would take longer than
rainfall information downstream. This pattern can be found most clearly in S6. For the
downstream data (R5), there is only one hour of data required, and as the data areas move
upstream, two hours (R6) and three hours (R7) of data are required. The pattern was in line
with our assumptions on time of flow concentration that the early rainfall in mountainous
areas would cause urban external water flooding. On the other hand, urban rainfall might
directly cause accumulated flooding, so only short-term rainfall information was required.
It is worth noting that rainfall data in mountainous areas (R15–R19) were not needed by the
model for flood forecasting in urban areas. The determined results showed that rainfall in
the mountainous areas of the study did not significantly flood the urban area, and the water
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source was mainly handled by the existing drainage system. For heavy rainfall events,
urban floods were still dominated by local rainfall and near-regional rainfall.

 

Figure 6. The mesh of ensemble rainfall and virtual rainfall stations settle in this study.

Table 2. The optimal parameters of SVM-MSF in nine sub-regions.

Sub-Region Input
Kernel
Function

Cost ε γ

S1 R1(t), R2(t) RBF 2−1 2−7 2−3

S2 R1(t), R1(t − 1), R1(t − 2), R2(t), R2(t − 1), R2(t − 2) RBF 23 2−7 2−3

S3 R3(t), R3(t − 1), R3(t − 2), R4(t) RBF 2−3 2−7 23

S4 R12(t), R12(t − 1), R13(t), R13(t − 1), R13(t − 2), R14(t), R14(t − 1), R14(t − 2) RBF 21 2−7 21

S5 R6(t), R6(t − 1), R6(t − 2) RBF 2−3 2−7 2−3

S6 R5(t), R6(t), R6(t − 1), R6(t − 2), R7(t), R7(t − 1), R7(t − 2), R7(t − 3) RBF 21 2−7 21

S7 R6(t), R7(t), R8(t), R8(t − 1), R8(t − 2) RBF 21 2−7 23

S8 R9(t), R9(t − 1), R10(t), R10(t − 1), R10(t − 2) RBF 2−1 2−7 23

S9 R11(t) RBF 23 2−7 2−1

Due to the limited contexts, the performances of the model were presented with the
most severe flooding events in training and testing events. That is, the following discussions
focus on sub-region S3 (Donshan river) which had the maximum area, and sub-region S5
(Meifu drainage) which was the most prone to flooding and tended to flood most severely.
The total flooding volume hydrographs were presented under two different conditions,
short-term (t + 1) and long-term (t + 72) forecasting results. The results of the short-term
forecast are shown in Figure 7. Figure 7a,c present the 1 h ahead forecasting results with
the most severe flooding event in the training stage in the S3 and S5 sub-regions. The red
curve represents the forecasting total flooding volume from the SVM-MSF model, and the
blue curve was simulated by SOBEK. Each point of data in the red curve is the flooded
volume predicted by the SVM-MSF using the input data available one hour before. As
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the figure shows, the results forecasted by SVM-MSF almost ideally fitted the SOBEK
results, which were considered target values no matter the rising limb, falling limb, and
even peak value. For the peak value timing forecasting, the lag time of the peak value
was less than 0.5 h in the training phase. That is, there was no hysteresis effect when
showing the training phase. In addition, according to the distance between the red and
blue lines, the forecasting performance of sub-region S5 was slightly worse than that of
S3. Nonetheless, the SVM-MSF forecasts are fairly close to the flooding simulations by
SOBEK. The forecasting results in the testing phase, as Figure 7b,d shows, were slightly
overestimated in the foremost flat period and falling limbs. For the rising limbs, it was
slightly underestimated. These over- and underestimates were mainly caused by slight
hysteresis forecasts, with the curve moving overall to the right. The lag time was also a
trifle longer than the results in the training phases but could still last than an hour for
the peak value forecasting. In sub-region S3, the model tended to underestimate the peak
value. On the contrary, it accurately forecasted the peak value in sub-region S5 in spite
of being overestimated in other segments. It was speculated that sub-region S3 faced
more uncertainty due to the larger control area, which led to worse performance on peak
value forecasting.

The performance measures of all sub-regions are listed in Table 3. The RMSE and
MAE listed in the table have been averaged by the gridded number of each sub-region
and presented the mean of all grids. We derived from the performance measures that the
RMSEs were less than 7.72 m3 and the MAEs were less than 6.03 m3 in all sub-regions
except S5. Namely, the error of peak value and average flooding depth forecasting were
both less than 5 mm. Even though the RMSE and MAE in sub-region S5 were higher than
in other sub-regions, the average error of forecasting flood depth was still less than 1 cm.
The rationale that the error of forecasting the flooding depth in sub-region S5 was higher
than in the other sub-regions was that the uncertainty and scope of S5 were larger than
the remaining eight sub-regions. In terms of CC, except for sub-region S1, the other eight
sub-regions achieved excellent performance with a CC value higher than 0.9, no matter
the training or testing scenarios. The CC value of sub-region S1 was 0.7. The reason that
S1 had a worse performance was that fewer flooding events could be referred to, and the
circumstances of each flood that could have occurred in S1 were very different, further
increasing the difficulty of forecasting.

Figure 8 shows the long-term forecasting flooding volume hydrographs. The MSF
results from forecasting 1 to 72 h ahead (t + 1 to t + 72) were shown in these figures. We
also chose sub-regions S3 and S5 as representative analyses due to the space limitation.
In sub-region S3, the SVM-MSF can accurately forecast the rising limbs and the timing of
flooding peak (about 46 h lead time) both in the training and testing phases. Regarding the
peak value and value of falling limbs, the model tended to slightly overestimate. On the
other hand, in sub-region S5, no matter what phases tended to overestimate rising limbs
and falling limbs. However, for peak value forecasting, the model effectively forecasted
timing and value. It is worth noting that in the two sub-regions, there was no serious lag
time hysteresis in the training or testing phases, mainly because our rainfall data contained
more upstream rainfall data, which can contain future information. The existing lag time
may come from the uncertainty of future on-site rainfall.

In summary, the SVM-MSF caught the trend of the total flooding volume no matter
short-, mid-, or long-term forecasting, especially for characteristics of the peak value. The
possible sources for errors in mid- and long-term forecasting were mainly the accumulative
errors generated by recursive forecasting and the uncertainties from the numerical weather
prediction system.
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Table 3. RMSE, MAE, CC, and CE of SVM-MSF in training and testing sections.

Sub-Region RMSE (m) MAE (m) CC CE

Training
1 6.65 5.38 0.70 0.81
2 5.10 3.56 0.99 0.82
3 6.12 4.52 0.99 0.98
4 1.20 0.76 0.90 0.90
5 16.75 12.03 0.98 0.90
6 7.72 6.03 0.99 0.96
7 3.33 2.62 0.91 0.91
8 6.41 5.12 0.99 0.99
9 2.83 2.15 0.98 0.98

Testing
1 6.02 5.21 0.67 0.82
2 4.86 3.48 0.99 0.98
3 5.82 4.45 0.99 0.98
4 1.16 0.74 0.90 0.92
5 16.13 11.73 0.99 0.95
6 7.52 5.86 0.99 0.98
7 3.31 2.60 0.94 0.92
8 6.20 4.99 0.99 0.99
9 2.61 2.01 0.98 0.96

4.3. Performance of SOM

In this section, we are going to discuss the parameters used by the SOM and the
topologies clustered by the SOM. First of all, the optimal parameters (determined by the
grid search method) used in the SOM to classify several different types of inundation
distribution are listed. In addition, the classified results are presented as average flooding
depth maps. As in the previous sections, due to the space limitation of the article, in this
section, we used sub-region S3 to discuss the determination process and the final training
results of topology.

According to the principle of SOM, a reasonable topology size would highly affect
the representativeness of the groups. Thus, we focused on the determination of topology
size in this section. Table 4 shows the classified results in sub-region S3 with different
topology sizes. To quantify the model performance, RMSE and MAE were also employed
as a benchmark for the forecasting error of the maximum flooding and average depths. As
the table shows, the model had the best RMSE and second place MAE, while the topology
size was settled as 5 × 5. When using the topology size 5 × 5, the RMSE improved by
5% compared with the suboptimal solution of 9 × 9, while the MAE part only increased
by 3% compared with the suboptimal solution of 6 × 6. Given that disaster researchers
often concentrate more on situations with severe disasters, RMSE optimized by 5% should
be considered a critical factor. In view of this, the optimal topology size for sub-region
S3 was 5 × 5. Other sub-regions were determined by the topology size with the same
standards. The other optimal sizes of topologies are listed in Table 5. As shown in the
table, the RMSEs and MAEs of sub-regions S3, S5, and S8 were higher than those of the
others. The reason was that these three sub-regions were the areas with the most severe
flooding conditions (located downstream of major rivers), which was consistent with the
actual situation of flooding.
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Table 4. Determination of SOM in sub-region S3.

Topo Size RMSE (m) MAE (m)

5 × 5 0.079 0.034
6 × 6 0.084 0.033
7 × 7 0.091 0.039
8 × 8 0.093 0.039
9 × 9 0.083 0.034

Table 5. The optimal parameters of SOM.

Sub-Region Topo Size RMSE (m) MAE (m)

S1 9 × 9 0.0135 0.0009
S2 8 × 8 0.0458 0.0034
S3 5 × 5 0.0790 0.0099
S4 9 × 9 0.0242 0.0011
S5 7 × 7 0.1199 0.0264
S6 9 × 9 0.0411 0.0035
S7 9 × 9 0.0721 0.0086
S8 7 × 7 0.0890 0.0165
S9 5 × 5 0.0367 0.0029

According to the determination previously mentioned, 3000 sets of simulated flooding
events in sub-region S3 were divided into 25 categories with SOM. The clustering results by
SOM, without artificial ranking, are shown in Figure 9. The values in the lower left corner
of sub-figures indicate the proportion of this category in all training data, and the lower
right corner shows the average flooding depth of all the grids in each category. With these
values, we analyzed the probability of floods in this category and how severe the flooding
was. As shown in the lower-left corner of the graph, although in the flooding database,
there were still 73.4% flooding maps, the average flooding depth was less than 1 cm. As the
average flooding depth of the grid increased, the probability of its occurrence significantly
decreased. However, when the average depth of flooding was higher than 0.1 m, the odds
for all groups were fairly close. This phenomenon reflected the climate characteristics in
the study area. When moderate rainfall or long-term weak rainfall occurred, there were
very few floods in the area, and most floods were caused by extreme weather events. From
flood depth and distribution analysis, each adjacent flooding map had high correlations,
and the average flood depth gradually increased from the bottom right category to the top
left category. To be more specific, each category had its own unique characteristics; from
the right category to the left, it was found that the categories tended to gradually increase
the flooding range. On the other hand, from the bottom category to the top, it tended to
deepen the flooded area.

4.4. Adjusted and Combined Results

The Yilan County-wide flooding depth forecasting maps were generated by combining
the results of SVM-MSF and SOM clustering and were named QPF-RIF. For the demonstra-
tion event, the most severe training and testing events in the database were selected, and
the timing was the time when the flooding depth was the deepest (approximately 51 h).
The results of flooding depth forecasting maps are shown in Figure 10. On the left-hand
side, Figure 10a shows the flooding depth map simulated by SOBEK, Figure 10b is the fore-
casting result from QPF-RIF in the most severe training event, and Figure 10c,d is from the
testing event. As mentioned in the previous section, the most severely flooded sub-regions
during historical events were S3, S5, and S8, which is in line with the situation in this event.
As the figure shows, the flooding depth map can accurately be forecasted by the QPF-RIF
proposed in this study. A flooding area shallower than 0.15 m is shown as light blue in
this figure. The range of the inundation zone exceeding 0.15 to 3 m is marked in sequence
from light blue to purple, as the labels show. From Figure 10, regardless of the events of the
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training or testing groups, the results of the SOBEK simulated severe flooding area (deeper
than 0.15 m) are quite close to that of the long-term QPF-RIF forecasts, both in terms of
inundation range and depth indication. The obvious disadvantage of QPF-RIF was that
the forecast in the light blue area was larger than that simulated by the SOBEK model. The
main reason was that the group average mentioned in Section 4.3 contained information
from multiple events. The shallow flooding areas may have occurred at some points in the
remaining events, which were taken into account by the model. Although shallow flooding
areas may be overestimated, it is enough to confirm that QPF-RIF proposed in this study is
able to effectively simulate the flooding depths close to those resulting from SOBEK, which
are considered actual values in this study.

Figure 9. The results of SOM classification.
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Figure 10. Comparing the flooding maps simulated by SOBEK and forecasted by QPF-RIF in the
training and testing phases.

Besides the simulated events, the model was also calibrated by recent heavy rainfall
and typhoon events. There must be sufficient rainfall intensity and flooding-related data
collected for the selected events. Thus, during the heavy rainfall event on 11 October 2017,
Typhoons Saola, Megi, and Migta were adopted.

Figure 11 shows the comparisons between the flooding depth forecasted by QPF-RIF
and the EMIC report information mentioned in Section 2. In Figure 11a, the forecasted
flooding depth and EMIC of Typhoon Saola are shown. The color of each grid represents
the depth of flooding forecasted by QPF-RIF, and the area marked by the red line is the
actual flooding area framed according to the EMIC. Compared with EMIC data, in the
S3, S5, and S8 sub-regions, models accurately forecasted the flooding area, especially in
areas with severe inundation (both sides of the riverbanks and low-lying urban areas). As
forecasts from the model, the local flooding depth in these three areas was deeper than 0.5
m, which was also close to the actual flooding depth of the most serious flooding position
in the reported data.
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Figure 11. Comparing the flooding maps forecasted by QPF-RIF and flooding area reported by EMIC
in 4 historical events.

The forecasting result of Typhoon Megi is plotted in Figure 11b. As shown in the figure,
the floods in this event were milder than those in Typhoon Saola, and the flooding areas
of Typhoon Megi were more dispersed, such as in sub-region S1 and the upper reaches of
the Yilan River. In general, except for some underestimations downstream of sub-regions
S3 and S8, other flooding areas and levels were effectively forecasted. Figure 11c shows
the comparison between the flooding depth forecasted by the QPF-RIF and the EMIC
using the heavy rainfall event data on 11 October 2017. According to the EMIC report,
flooding occurred in sub-region S3 with a depth ranging from 0 to 90 cm. The model
forecasted flooding area was indeed highly similar to the grids from EMIC. The partial
grids forecasted flooding depths greater than 15 cm and, even rarer, deeper than 1 m,
which was similar to the reported information. There were also some small flooding areas
reported in sub-regions S6, S9, and the right bank of S5. The depths forecasted in these
areas were also similar to the EMIC data. In general, most areas with severe flooding can
be pre-warned by QPF-RIF forecasting in this heavy rainfall case. Finally, the comparison
between the forecasted results and the range of EMIC in Typhoon Migta is shown in
Figure 11d. According to the EMIC report, flooding that occurred in sub-regions S3 and
S5 was lesser than that in Typhoon Megi. Only small-scale shallow water was reported in
sub-region S3. In the sub-region S5, the flooding depth of the EMIC report was about 0.5 to
1 m, which was similar to the forecasting value.

The EMIC-reported information did not perfectly represent all the flooded locations
in the study area during the historical events and was based on the results of surveys from
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residents and public officials. The full confusion matrix cannot be used in this study due
to data limitations. Hence, in the following, the TPR (used in the confusion matrix) will
be adopted to calculate the forecast accuracy in the EMIC flooding range to quantify the
model performance. The TPRs of five historical storm events are listed below in Table 6
under three different flooding standards (0, 0.15, and 0.30 m). Standard 0 represents the
area where the water level was over 0 cm, as seen as a flooding area, the standard 15 and
standard 30 represent the same. As Table 6 shows, QPF-RIF forecasted about 83% of the
flooding area of the EMIC reports in Typhoons Saola, Migta, and the storm in 2017 under
standard 0. That is, the model forecasted over 80% of the inundation area no matter how
shallow the water or severe the inundation. Limited by the contents of EMIC reports, the
information cannot correctly reflect the real depth of floods. However, we still can use
standards 15 and 30 to evaluate the proportion of the area suffering from the disaster in
this event. As standard 15 shows, in the last three events, the ratio of the flooding area over
15 cm to the total EMIC-reported area was about 60%. For standard 30, the proportions
of each event were quite different. In Typhoons Saola and Migta, the area that flooded
deeper than 30 cm was over half of the total EMIC-reported area. On the other hand, in
other events, the flooding area over 30 cm was less than 30%. We can use these thresholds
to determine whether the flooding in this rainfall event was a shallow and harmless event
or a situation that will actually cause economic losses.

Table 6. TPR of adjusted and combined results with different flooding standards.

Event
TPR (%)

Threshold 0 * Threshold 0.15 * Threshold 0.30 *

Parma 64 26 17
Megi 54 20 12

Saola 83 63 54
Storm 2017 77 63 26

Migta 89 61 49
* Thresholds 0, 0.15, and 0.30 represent that only the water depth over 0, 0.15, and 0.3 m were considered
as inundation.

In addition, the TPRs in Typhoons Parma and Megi were obviously smaller than the
other three events. The rationale was that large-scale hydraulic structures were built in
the study area in 2012, which led to quite different flooding characteristics after 2012. As
mentioned in Section 2, the study area and data used to construct the SOBEK model were
updated in 2019. Thus, the model was reasonable to underestimate the inundation severity
for typhoon events that happened before 2012. The TPRs of standard 0 showed the accuracy
of events after 2012 at an average of 24% higher than those before 2012. Also, the TPRs of
standards 15 and 30 have substantial differences. The proof model does have the ability to
catch flood protection by hydraulic structures.

In sum, the results of this research proved that QPF-RIF has sufficient ability to
forecast the medium- and long-term flooding range and depth, especially in severely
flooded areas. It can effectively assist in policy formulation, pump scheduling, and disaster
prevention operations.

5. Conclusions

In this study, we proposed QPF-RIF, which can forecast the future (72 h lead time)
flooding depth maps without setting up urban flood monitoring stations and was con-
structed by the simulated flooding database.

The results can be consolidated into the following points. Firstly, the 1 h ahead
forecasting results of SVM-MSF can almost perfectly fit the total flooding volume simulated
by SOBEK, and the average error of flooding depth can be controlled by less than 1 cm. It
can effectively provide, more than 46 h ahead, advance forecasts under the condition that
the forecasting ensemble rainfall data is credible. Secondly, we could obviously discover
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that the clustering algorithm used in this study can effectively distinguish severe flooding
in various types of flooding areas or large-scale shallow areas. Also, it can accurately map
the total flooding volume to each grid, and the average error of all the grids is within 7 cm.
Thirdly, the flooding depth maps forecasted by QPF-RIF, which was fused by SVM-MSF
and SOM, could be highly analogous to the maps simulated by SOBEK seen as the target
value in this study, especially for areas with severe flooding and has a more accurate
performance. There might be slight overestimations for slight water accumulative grids,
and this does not affect the accuracy of the overall availability. Finally, verification results
for three typhoons and one single heavy rainfall event demonstrate that the QPF-RIF has
highly flooding depth and range forecasting capabilities (83% of flooding area). Except for
a few areas where flooding has not been simulated in the flooding database and cannot be
accurately forecasted, QPF-RIF can effectively and accurately forecast flood-prone areas
and deeper flooding areas several hours ahead.

In conclusion, the QPF-RIF proposed in this study can accurately forecast the long-term
flooding distribution and depth and provide more reliable real-time and future information.
In the future, reducing the uncertainty caused by the forecasting ensemble rainfall data
and incorporating real-time monitoring data, such as applying machine learning methods,
statistical methods, and mobile pumping station information to achieve the purpose of
real-time correction of the inundation maps, might be feasibility challenged.
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Abstract: Improving our skills to monitor flooding events is crucial for protecting populations and
infrastructures and for planning mitigation and adaptation strategies. Despite recent advancements,
hydrological models and remote sensing tools are not always useful for mapping flooding at the
required spatial and temporal resolutions because of intrinsic model limitations and remote sensing
data. In this regard, images collected by web cameras can be used to provide estimates of water levels
during flooding or the presence/absence of water within a scene. Here, we report the results of an
assessment of an algorithm which uses web camera images to estimate water levels and detect the
presence of water during flooding events. The core of the algorithm is based on a combination of
deep convolutional neural networks (D-CNNs) and image segmentation. We assessed the outputs of
the algorithm in two ways: first, we compared estimates of time series of water levels obtained from
the algorithm with those measured by collocated tide gauges and second, we performed a qualitative
assessment of the algorithm to detect the presence of flooding from images obtained from the web
under different illumination and weather conditions and with low spatial or spectral resolutions.
The comparison between measured and camera-estimated water levels pointed to a coefficient of
determination R2 of 0.84–0.87, a maximum absolute bias of 2.44–3.04 cm and a slope ranging between
1.089 and 1.103 in the two cases here considered. Our analysis of the histogram of the differences
between gauge-measured and camera-estimated water levels indicated mean differences of −1.18 cm
and 5.35 cm for the two gauges, respectively, with standard deviations ranging between 4.94 and
12.03 cm. Our analysis of the performances of the algorithm to detect water from images obtained
from the web and containing scenes of areas before and after a flooding event shows that the accuracy
of the algorithm exceeded ~90%, with the Intersection over Union (IoU) and the boundary F1 score
(both used to assess the output of segmentation analysis) exceeding ~80% (IoU) and 70% (BF1).

Keywords: flooding; machine learning; web cameras

1. Introduction

Among all disasters, damages associated with flooding represent the largest portion
of insured losses in the world, accounting for 71 percent of the global natural hazard costs
and having impacted the lives of 3 billion people between 1995 and 2015 [1]. Monitoring
flooding extent, intensity and water levels is also crucial for saving peoples’ lives, protecting
infrastructures as well as for estimating losses associated with or following the occurrence
of the extreme event, especially in urban areas. From this point of view, improved flood
mapping at high spatial scales (e.g., sub-meter) and high temporal resolution (e.g., hour or
less) would be tremendously beneficial not only to reduce human, economic, financial and
infrastructure damages but also to support the development of an early warning system
and promptly alert the population as well as informing hydrological models on where
improvements could be made and to compensate the limitations of such models.

Despite hydrological models having recently made great progress in mapping water
pathways during flood events [2–4], accurately modeling the evolution of floods on the
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ground in urban areas at the temporal and spatial scales, requiring resolving single-home
or finer spatial scale issues, is still problematic. The discharge of water depends, indeed, on
many endogenous (e.g., fluid properties) and exogenous (e.g., street material, roughness,
slope, etc.) variables that are not always available or accurately predicted during the
modeling effort. Moreover, the required spatial vertical and horizontal resolutions of
current digital elevation models is still a limiting factor for many areas or cities when such
information is not available at the required resolution and uncertainty.

Remote sensing has also been used to map flooding [5]. However, despite the re-
cent improvement in the spatial coverage and horizontal resolution of spaceborne data
which can be used for mapping floods from space—such as the sensors of the Sentinel
ESA constellation—limitations still exist. Indeed, the frequency of acquisition—coarsened
by the presence of obstructing obstacles such as clouds in the case of optical data, for
example—might not allow for the collection of data when the flood is occurring. For exam-
ple, notwithstanding Sentinel-2 data which was collected during the flooding by Hurricane
Florence in 2018, the satellite missed the maximum flood extent [6], hence making the data
impractical for flood mapping purposes. Moreover, remote sensing methods used for flood
mapping have considerable problems in detecting the presence of water on the surface [7],
where tall buildings and manmade constructions can obscure the view of the sensors in
the case of optical data or make the radar sensors “blind” through multiple scattering and
other factors [6].

In order to address some of these limitations, we focused our attention on recent
tools proposed in the literature which combine data acquired by web cameras used in
conjunction with machine learning techniques, such as deep convolutional neural networks
(D-CNNs) and image segmentation techniques. For example, ref. [8] proposed the use of a
fully automated end-to-end image detection system to predict flood stage data using deep
neural networks across two US Geological Survey (USGS) gauging stations. The authors
made use of a U-Net convolutional neural network (CNN) on top of a segmentation model
for noise and feature reduction to detect the water levels. In another study, ref. [9] made
use of a vision transformer for detecting and classifying inundation levels in Ho Chi Minh
City. Further, ref. [10] integrated crowd intelligence and machine learning tools to provide
flood warning from tweets and tested their outcome during Hurricane Dorian and after
Hurricane Florence in 2018. Lastly, ref. [11] combined video and segmentation technologies
to estimate water levels from images and use the objects identified within images to provide
spatial scale references.

The core of the algorithm used in this study builds upon [12] and [13] and was
trained using the DeepLab (v3, [13]) network, pre-trained on the COCO-Stuff dataset
(https://github.com/nightrome/cocostuff, accessed on 29 October 2023) and fine-tuned
using the LAGO dataset of RGB images with binary semantic segmentation of water/non-
water masks [14], using a strategy of initializing the last output layer with random values
and the rest of the network with values obtained from the pre-trained model. We compare
water levels estimated from the web camera/machine learning algorithm with those
obtained from gauge measurements for two sites. We also provide an assessment of
the algorithm when applied to images downloaded from the web to test its skills to detect
the presence of water (and estimate water levels) for post-disaster applications, such as
insurance purposes or damage assessment. We point out that for all cases discussed
in the following sections, no training on the data used to evaluate the outputs of the
algorithm was performed but the algorithm was applied to the images having been trained
on independent datasets.

2. Materials and Methods

2.1. Machine Learning Algorithm

Several algorithms have been proposed in the literature that make use of deep con-
volutional networks or semantic approaches [15–29]. For example, algorithms have been
proposed to combine machine learning tools with data from surveillance cameras [15], time-
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lapse photography [21,25], cameras using multiple poses [22], photogrammetric approaches
(e.g., [29]) and automated character recognition using YOLOv5s [17]. Several studies have
also focused on direct stream flow measurements [19,23], using online systems [23] either in
small-sized [26] or large rivers [27], in cities [24] as well as in mountainous areas [28]. In [30],
the authors applied a method based on DeepLab (v3) in Wuyuan City, Jiangxi Province,
China, to detect water gauge areas and number areas from complex and changeable scenes,
detect the water level line from various water gauges, and finally, obtain the accurate water
level value. Moreover, the authors in [31] propose a water level recognition method based
on digital image processing technology and CNNs. Here, the water level was obtained
from image processing algorithms such as grayscale processing, edge detection and the
tilt correction method based on Hough transform and morphological operations applied
to the rulers within the camera view, and a CNN was then used to identify the value of
digital characters.

In this paper, we focus on a water detection algorithm published in [12], in which the
authors evaluated two architectures of convolutional neural networks (CNNs) for semantic
image segmentation: ResNet50-UpperNet and DeepLab (v3). The models were trained on
a subset of images containing water objects selected from publicly available datasets of se-
mantically annotated images and fine-tuned on images obtained from cameras overlooking
rivers. Such application of the transfer learning technique allows for a relatively easy adjust-
ment of the model to local conditions, using only a small set of images specific to the target
application. The authors in [12] evaluated several models trained using combinations of
network architectures, fine-tuning datasets and strategies. The evaluation of the published
fine-tuned models showed that the best performing one was trained using the DeepLab (v3)
network pre-trained on the COCO-Stuff dataset (https://github.com/nightrome/cocostuff,
accessed on 29 October 2023) and fine-tuned using the LAGO dataset of RGB images with
binary semantic segmentation of water/non-water masks [14], using a strategy of initial-
izing the last output layer with random values and the rest of the network with values
obtained from the pre-trained model. This DeepLab (v3) + COCO-Stuff + FINE-TUNING
approach described above represents the core of the algorithm architecture and whose
configuration was assessed in this paper (Figure 1).

Figure 1. Architecture of the algorithm adopted in this study.
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The images used for detecting water levels were first tested to evaluate whether they
contained enough information to perform the analysis. The test was based on the overall
brightness of the picture and how blurry it was. The image brightness test rejects images
taken at night, and the blurriness test rejects images in which the view of the scene is
obscured by water droplets. After this preliminary filtering, the image was transformed to
conform to the model requirements. This included shifting the pixel values by adding a
constant and may have included stretching the histogram.

The inference step extracted the water mask from the input image. The output of this
stage was a mask, containing a “flooded/not flooded” status for each pixel. In the presence
of noise in the input image, the result of the water detection algorithm can generate irregular,
small, detached regions. Processing the mask through a dense conditional random field
(DenseCRF) algorithm [32] helps reduce issues connected to this aspect. The algorithm
uses both low-level and high-level information about an image to refine the segmentation
results, using the relationships between neighboring pixels and their labels to enforce
spatial coherence and improve the boundaries between different regions. The architecture
of the algorithm used here is reported in Figure 1.

Digital gauges are defined in the configuration file as line segments, with water level
breaks defined along them. Each gauge must contain one or more of such segments, and
water level values are assigned to each end. Figure 2 shows an example of a gauge using
one line segment, and four water level breakpoints. Calculated water level depth is also
marked on the image as an example. The depth on a gauge is defined by the intersection
point of the mask and the gauge line. Coordinates of the point were used to calculate the
depth as a linear interpolation between depth values of two adjacent breaks. Water level
was calculated for each gauge defined in the system configuration. To avoid parallax errors,
we defined the gauges on permanent features, like walls or bridges, for example.

Once the algorithm finishes processing the input image, it provides the option to
render an output image, with water mask and level gauge images overlaid on the original
input image (blue area in Figure 2). The output metadata contain the exit status of the
processing pipeline (success or error code), summarized information about the measured
water levels and the location of the output image. System configuration is obtained from a
configuration file which, in turn, is split into two main sections: general configuration of the
system and configuration of camera-specific sections. The general section contains system
settings, which are common for all cameras. The camera-specific sections concern factors
that are specific to each camera, like information on water level gauges, their positions, etc.
The camera section was selected based on the metadata associated with the input image,
and its configuration was merged with the configuration defined by the general section,
overriding the defaults. Such structure eliminates duplication of configuration sections
common for all cameras (like colors, the location of the file containing model weights, etc.),
while allowing for the full customization of camera-specific parameters, including the use
of fine-tuned models.

2.2. USGS Datasets

In order to assess the skills of the flood detection algorithm to estimate water levels,
we used data provided by the United States Geological Survey (USGS) collected within the
framework of the USGS National Water Information System (https://waterdata.usgs.gov/
nwis, accessed on 29 October 2023). Specifically, we used images acquired by web cameras
at two selected locations in concurrence with gauge measurements of the water levels. The
first site (USGS #0204295505, Figure 3a) was located at Little Neck Creek on Pinewood
Road, Virginia Beach, VA (Latitude 36.859278◦ N, Longitude 75.984472◦ W, NAD83). Data
were obtained for the period 15 April 2016–1 June 2023 on an hourly basis (for a total
of ~62,000 h). The total number of photos after removing night values and outliers (95th
percentile) was 21,456. We selected this site because the web camera was pointing at a
metered water level, where the gauge was located. This could also be used to perform
optimal geometric calibration which allowed for the conversion of the pixel size into water
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height for the digital water gauge. The second site was located at the Ottawa River near
Kalida, Ohio (Latitude 40.9903287◦ N, Longitude 84.2266132◦ W). In this case, the images
pointed to a bridge over a river. Also in this case, we selected the period 15 April 2016–
1 June 2023, still at an hourly resolution. The total number of photos after removing night
values and outliers was 24,372. We chose this image because, differently from the previous
one, it showed many features (e.g., bridge, street, river, vegetation) and we wanted to test
the skills of the algorithm not to detect false positives (e.g., misidentifying areas where
water was not present as flooded). In this case, the water levels on the digital gauges were
obtained by calibrating the relationship between pixel size and vertical resolution using the
images and data collected at the minimum, maximum and middle water level values.

  

(a) (b) 

(c) (d) 
Figure 2. Examples of outputs of the web camera images for gauge #0204295505 collected on
(a) 29 April 2023, 6:30 AM, (b) 30 April 2023, 3:30 PM, (c) 1 May 2023, 21:30 and (d) 2 May 2023, 00:25.
Blue shaded regions indicate where the algorithm identified the presence of water. The digital gauge
used by the algorithm to estimate the water level is also reported together with the value estimated
by the algorithm. Original image resolution: 300 dpi. Original image size: 700 × 700.
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(a) 

 

(b) 
Figure 3. Cont.
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(c) 
Figure 3. (a) Time series of water levels (in cm) estimated from tide gauge measurements (blue
line) and the algorithm using webcam images (orange squares) for the USGS gauge #0204295505
between 29 April 2023 and 5 May 2023. (b) Scatterplot of the water level (in cm) obtained from gauge
(x-axis) and webcam images (y-axis) for the same period as (a). The 1:1 line is also reported as a
continuous black line. The shaded line represents the linear fitting with its equation reported in
the inset of (b) together with the coefficient of determination (R2). (c) Histogram of the difference
between the gauge-measured and the camera-estimated water levels for all available images between
29 April 2023 and 5 May 2023. The mean and standard deviation of the normal distribution fitting
the data are also reported within the plot.

3. Results

3.1. Comparison between Web Camera-Estimated and Gauge Data

In Figure 2, we show examples of outputs of the web camera images for gauge
#0204295505 for the time series of images here considered. Blue shaded regions indicate
those areas where the algorithm suggests the presence of water. The digital gauge used by
the algorithm to estimate the water level is also reported together with the value estimated
by the algorithm for that specific frame. For visualization purposes, in Figure 3, we show
the time series of water levels (in cm) estimated from tide gauge measurements (blue line)
and by the machine learning algorithm using webcam images (orange squares) for the
USGS gauge #0204295505 only for the period between 29 April 2023 and 5 May 2023, at
hourly intervals. Gray triangles indicate nighttime acquisitions, when the images from
the web camera were not used for water level detection because of the poor illumination.
The skills of the algorithm to replicate gauge data are indicated by the high coefficient of
determination (R2 = 0.94) and by the value of the slope (1.060) and bias (−2.98 cm, Figure 3b).
When applied to the total number of images, we obtained the following statistics: R2 = 0.87,
slope = 1.089 and bias = 2.44 cm. In Figure 3c, we also show the histogram of the difference
between the gauge-measured and the camera-estimated water levels for all available
images between 29 April 2023 and 5 May 2023. The mean and standard deviation obtained
from the fitting of a normal distribution indicate a mean error of −1.18 cm and a standard
deviation of 4.94 cm. Moreover, to better understand the potential role of illumination on the
algorithm performance and in the absence of quantitative data concerning clouds and other
information, we computed the mean and standard deviation for the data at two different
periods of a day: 08:00–16:00 and 16:00–24:00. We did not consider the period 00:00–08:00
because we did not obtain camera images at night. We found that the lowest error and
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standard deviation were achieved for the morning period (1.12 ± 3.73 cm). The data from
the afternoon period showed a mean error of −2.14 cm and a standard deviation of 5.25 cm.
From Figure 2c,d, we note how, despite poor illumination conditions, the algorithm can still
properly estimate water levels, though underestimation can occur. This is not unexpected,
as mentioned, in view of the poor illumination conditions. Improvements in this regard
could be obtained through the processing of the original image (e.g., histogram stretching)
or the training of the algorithm with images acquired at night. As a reminder, indeed, the
images used as the input to the algorithm were not used to train the model.

In Figure 4, we show the images obtained from the algorithm for the second selected
site under two distinct illumination conditions; in the first case (Figure 4a), the image
was collected under cloudy skies conditions and when rain was falling. In the other case
(Figure 4b), the image was acquired under sunny conditions. Our results show that our
algorithm can provide accurate estimates of water levels under both conditions. The skills of
the algorithm to replicate gauge data are indicated by the high coefficient of determination
(R2 = 0.95) and by the value of the slope (0.980) and bias (−0.113 cm, Figure 5b). When
applied to the total number of images, we obtained the following statistics: R2 = 0.84,
slope = 1.103 and bias = 3.04 cm. In the case of this gauge, images from web cameras were
not available at all so it was not possible to assess the potential skills of the algorithm at
night. As performed with the previous gauge, we also computed the histogram of the
difference between the gauge-measured and camera-estimated water levels (Figure 5c) and
found a mean difference of 5.35 cm and a standard deviation of 12.03 cm. Moreover, we
computed the mean and standard deviation of the differences for the morning, afternoon
and night and obtained 4.32 ± 11.76 cm (00:00–08:00), 3.78 ± 9.64 cm (08:00–16:00) and
7.28 ± 13.08 cm (16:00–24:00), respectively. These results, consistent with the ones obtained
for the other gauge, indicate that the performance of the algorithm degrades during
nighttime and is best in the afternoon period.

  

(a) 

  

(b) 

Figure 4. Examples of outputs of the web camera images for gauge #04188100. Blue shaded regions
indicate where the algorithm identified the presence of water. The digital gauge used by the algorithm
to estimate the water level is also reported together with the value estimated by the algorithm.
(a) the image was collected under cloudy skies conditions and when rain was falling; (b), the image
was acquired under sunny conditions. Original image resolution: 300 dpi. Original image size:
1200 × 700.
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(a) 

(b) 

(c) 

Figure 5. (a) Time series of water levels (in cm) estimated from tide gauge measurements (blue
line) and the algorithm using webcam images (orange squares) for the USGS gauge #04188100
between 29 April 2023 and 5 May 2023. (b) Scatterplot of the water level (in cm) obtained from gauge
(x-axis) and webcam images (y-axis) for the same period as (a). The 1:1 line is also reported as a
continuous black line. The shaded line represents the linear fitting with its equation reported in
the inset of (b) together with the coefficient of determination (R2). (c) Histogram of the difference
between the gauge-measured and the camera-estimated water levels for all available images between
29 April 2023 and 5 May 2023. The mean and standard deviation of the normal distribution fitting
the data are also reported within the plot.
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3.2. Assessment of Water Detection Skills of the Algorithm

After reporting the skills of the proposed approach to quantify water levels, we hereby
discuss the potential role of the algorithm in detecting the presence of flooded regions. As
already mentioned in the introduction, this can be helpful for decision and policy making,
for estimates of damages or following the exposure of infrastructure to floods. For example,
insurance companies might be interested in developing a system that uses images of floods
collected by people or volunteers to quantitatively assess the extent and depth of water
and use this to develop parametric insurance tools. Another application consists of the
assessment or tuning of flood models. In this case, indeed, the data provided by our
algorithm can be used to assess the skills or some of the assumptions of the algorithm. To
this aim, we searched and downloaded images from the web that were collected before and
during flooding over several scenes. Many of the images were available from newspapers
or media outlets reporting on the specific flood event. We fed such images to the algorithm
as downloaded from the web, with no alteration or manipulation. As expected, the spatial
and spectral resolutions of the images can be poor. Moreover, we were only able to obtain
single images rather than a sequence, hence increasing the possibility of noise or of the
presence of artifacts in front of the camera (e.g., rain drops over the lens, objects covering
the scene, etc.). The images used as a test offer, therefore, the most extreme, unfavorable
conditions for testing the skills of the algorithm to detect water. Moreover, illumination
conditions were not optimal for several images and were often different in the cases of the
two images (before and after the flood) used for the testing.

We quantified the accuracy of the model in detecting the presence of water following
the metrics used in [14]. For each image, we compared true positives (TPs), false positives
(FPs), true negatives (TNs) and false negatives (FNs). TPs were image pixels that were
correctly classified as belonging to the water region, while TNs were the numbers of
pixels that were correctly classified to the non-water (background) class. For our “truth”
parameter, we manually delineated the water bodies from the original images and used
the corresponding masks to evaluate the outputs of the algorithm. An FP is defined as
the number of pixels that did not belong to the water region but was wrongly classified
as water and FNs were the pixels that were supposed to be in the water class but were
incorrectly associated with the background region. We refer here to overall accuracy as the
ratio between the number of pixels that were correctly identified to the total number of
pixels without concerning to which class the pixels belonged.

Accuracy = (TP + TN)/(TP + TN + FP + FN) (1)

Intersection over Union (IoU), or also known as the Jaccard coefficient, is also a
standard measure used in evaluating segmentation results [4]. The IoU was computed
by measuring the overlapping area between the predicted segmentation and the ground
truth region.

IoU = TP/(TP + FP + FN) (2)

The boundary F1 score (BF score) was also used to obtain detailed information on
the accuracy of the segmented boundaries as the two above-mentioned metrics provided
more region-based accuracies [5]. The BF score measured how close the boundary of the
predicted segmentation and the ground truth segmentation was.

BF score = 2 × (Precision × Recall)/(Precision + Recall) (3)

where precision refers to the number of correctly classified positive results divided by all
positive results and recall is the number of correctly classified positive results divided
by the number of samples that should have been classified as positive. We report the
above-mentioned values within each caption of the images discussed below for each image
for which the flood algorithm was used.
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Figure 6 shows the impact of Hurricane Harvey on Houston, with the panels reporting
the comparison between the original images (a,b) and those obtained as the output to
the flood detection algorithm (c,d). Water is marked with the blue layer overlaying the
original images. As expected, no water was detected (Figure 6c) in the image with no water
(Figure 6a). Contrarily, in the case of flooding (Figure 6b), the algorithm could identify the
presence of water over most of the flooded regions. The area on the mid-left of the image is
not detected as flooded, likely because of the resolution of the image. In this case, the cars
present in the image without flooding (Figure 6a) could be used to position a digital gauge
to provide estimates of the water levels for damage assessment.

Figure 6. Comparison between the original images (a,b) and those obtained as the output to the
flood detection algorithm (c,d). Water is marked with the blue layer overlaying the original images.
Image source adapted from https://www.theguardian.com/us-news/2017/aug/29/before-and-
after-images-show-how-hurricane-harvey-swamped-houston, accessed on 29 October 2023. Original
image resolution: 72 dpi. Original image size: 1000 × 1200. (d) Accuracy: 93.5%; IoU = 89.3%;
BF = 73.2%.

In Figure 7, we show the results obtained regarding a flood that occurred in Houston
in the summer of 2018 because of Hurricane Harvey. The top left image (Figure 7a) shows
the area before the flood whereas Figure 7b shows the same region after the flood occurred.
Figure 7c,d show the images provided as the output by the algorithm. Despite the poor
illumination of Figure 7a, the flooding algorithm properly identified the water within
the river, without suggesting the presence of water where it was not. When the image
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containing the flooded areas was given as input to the algorithm (Figure 7b), the algorithm
could properly detect flooded regions (Figure 7d), with the exception of a few patches
in proximity with the pixels between the flooded region and vegetation on the right of
the image.

Figure 7. Comparison between the original images (a,b) and those obtained as the output to the flood
detection algorithm (c,d). Water is marked with the blue layer overlaying the original images. Original
images obtained ftom https://www.nbc4i.com/news/before-and-after-photos-illustrate-massive-
houston-flooding/, accessed on 29 October 2023. Original image resolution: 72 dpi. Original image
size: 864 × 486. (c) Accuracy: 94.1%; IoU = 86.1%; BF = 74.8%.; (d) Accuracy: 90.1%; IoU = 84.3%;
BF = 69.2%.

Another set of images we considered concerned flooding that occurred in the UK
(York) in February 2020 (Figure 8). In Figure 8a, we show the King’s Arms, known as “the
pub that floods” in York, before the flood, whereas in Figure 8b, we show an of image when
flooding occurred. As in the previous cases, the algorithm properly detected the presence
of the river in the close field as shown in Figure 8a. The lack of the detection of water in the
far field (symbol A in Figure 8c) could be connected to the poor spatial resolution and to
the distance of this area from the camera. In the case of the images containing the flooded
areas (Figure 8d), we note that the algorithm could properly detect the inundated areas,
though false positives existed for wet bricks and walls (see symbol B in Figure 8d). We
point out that the water level for this image could be estimated once the size of the bricks
was known. Similarly to Figure 8, Figure 9 shows images of West End, Hebden Bridge, West
Yorkshire, on a day with no flooding (Figure 9a) versus one collected on 9 February 2020,
during flooding (Figure 9b). As in the previous case, also for these images, the algorithm
did not detect water when there was no flood (Figure 9c), but it was capable of properly
identifying the flooded regions during the event (Figure 9d).
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Figure 8. Comparison between the original images (a,b) and those obtained as the output to the
flood detection algorithm (c,d). Water is marked with the blue layer overlaying the original images.
Original images obtained from https://www.huffingtonpost.co.uk/entry/before-and-after-pictures-
february-uk-floods_uk_5e539ebbc5b6b82aa655ab2b, accessed on 29 October 2023. Original image
resolution: 72 dpi. Original image size: 410 × 312. (c) Accuracy: 98.2%; IoU = 90%; BF = 78.2%;
(d) Accuracy: 96.1%; IoU = 81.6%; BF = 70.9%.

Figure 9. Comparison between the original images (a,b) and those obtained as the output to the flood
detection algorithm (c,d). Water is marked with the blue layer overlaying the original images. for
West End, Hebden Bridge, West Yorkshire. Images adapted from https://www.huffingtonpost.co.
uk/entry/before-and-after-pictures-february-uk-floods_uk_5e539ebbc5b6b82aa655ab2, accessed on
29 October 2023. Original image resolution: 72 dpi. Original image size: 410 × 312. (d) Accuracy:
98.2%; IoU = 86.7%; BF = 77.4%.
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4. Discussion and Conclusions

We assessed the quantitative skills of a machine learning algorithm to estimate water
levels within images acquired by web cameras. To this purpose, we compared the water
level obtained with the machine learning algorithm with concurrent gauge measurements
available for the two selected sites. Our results indicated a coefficient of determination of
R2 of 0.94–0.95, a maximum absolute bias of −2.98 cm and a slope ranging between 0.980
and 1.06 in the two cases here considered, highlighting the skills of the algorithm used to
estimate water levels from the web cameras images. We note again that the model was not
trained with any of the images provided to the algorithm, pointing to the potential general
nature of the machine learning algorithm here used [12]. Our analysis of the histogram of
the differences between gauge-measured and camera-estimated water levels indicated a
mean difference of −1.18 cm (gauge #0204295505) and 5.35 cm (gauge #04188100). Moreover,
when sub-setting the data in the morning and afternoon observations, we found that the best
(worst) performance was obtained in the case of the observations collected in the morning
(at night). This suggests that illumination might be a driving factor of the deterioration of
the algorithm’s performance. However, we cannot at this stage rule out other factors and
we plan to assess this aspect in our future work.

Our analysis of the performance of the algorithm to detect water from images obtained
from the web and containing scenes of areas before and after a flooding event showed that
the accuracy of the algorithm exceeded ~90%, with the Intersection over Union (IoU) and
the boundary F1 score (both used to assess the output of segmentation analysis) exceeding
~80% (IoU) and 70% (BF1).

Improvements can, of course, always be made via the re-training of the model using
specific, tailored datasets, such as those collected at nighttime or during extreme conditions
in specific locations where the algorithm is applied, for example. Nevertheless, our results
here indicate that the proposed algorithm can be used for several applications “as is”, such
as in parametric insurance, post-disaster estimates and model validation, catalyzing our
skills to monitor flooding via the merging of the ubiquitous nature of web camera images
with the robustness of the machine learning model results and the agile architecture built
around the model, which allow for its deployment in any environment in a seamless way.
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Abstract: This paper deals with the identification of extreme multiscale flooding events in the
Alpine conurbation of Grenoble, France. During such events, typically over one to several days,
the organization in space and time of the generating hydrometeorological situation triggers the
concurrent reaction of varied sets of torrents and main rivers and creates diverse socioeconomic
damages and disruptions. Given the limits of instrumental data over the long run, in particular at
the torrent scale, we explore the potential of a database of reported extreme flood events to study
multiscale flooding over a Metropolitan domain. The definition of Metropolitan events is mainly
based on the database built by the RTM (Restauration des Terrains de Montagne, a technical service
of the French Forest Administration). Relying on expert reports, the RTM database covers the long
lifetime of this French national service for the management of mountainous areas (1850–2019). It
provides quantitative information about the time and place of inundation events as well as qualitative
information about the generating phenomena and the consequent damages. The selection process
to define Metropolitan events simply chronologically explores the RTM database and complements
it with historical research data. It looks for concurrence between site events at the same date under
a chosen set of criteria. All scales together, we selected 104 Metropolitan events between 1850 and
2019. Exploring the list of dates, we examine the homogeneity of the Metropolitan events over
1850–2019 and their space–time characteristics. We evidence the existence of multiscale flooding at
the Metropolitan scale, and we discuss some implications for flood risk management.

Keywords: multiscale flooding; conurbation; Alps; reported events

1. Introduction

Many conurbations in the Alps, Grenoble (France), have experienced numerous disas-
trous floods throughout history [1]. Orography favors the combination of abundant atmo-
spheric precipitation and fast hydrologic concentration, driven by steep upper-watersheds
with flashflood streams—called torrents in the Alps—and flat glacial valleys with mean-
dering rivers. Urban areas situated in valleys are prone to combinations of torrential and
riverine floods covering a range of vulnerable basin areas, say, from 1 to 10,000 km2 in the
case of Grenoble.

A myriad of available studies deal with point estimates of flood occurrence in support
of specific projects of urban development and water management. Most refined studies
concern riverine flooding at the instrumented scale of basins over several hundreds of km2.
At the torrent scale, available studies are most of the time a list of ‘reported’ site events
for which historical information is available from a variety of possible sources. Torrential
flooding is still a research issue pertaining to the “Problem of Ungauged Basins” [2],
meaning scarce data conditions that prevent understanding runoff production [3,4].
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Dealing with rare values, extreme flood occurrence studies need a long series of data.
Should they be on rivers or torrents, they often face a certain paucity of instrumental data
and are rarely based on runoff data alone. They follow different ways to “augment” the
dataset size using either complementary instrumental data or proxies.

Quantitative hydrology extended instrumental data collection in space with the re-
gional frequency analysis, which assumes statistical homogeneity of flood characteristics
over a region and which allows flood frequency assessment over a set of basins [5]. The
instrumental data extension may also consist of moving from discharge to other variables
that are easier to collect. We find here, for instance, the ‘Gradex’ idea that integrates rain-
fall information into flood frequency analysis [6] also known as the derived distribution
approach of [7,8].

Over recent decades, Palaeoflood hydrology explored different ways to extend flood
data series over pre-instrumental periods using a variety of historical, botanical, and
geological archives [9] (for a review). In the study region, historical [10], biological and
historical [11], and paleographic studies [12] span over space scales ranging from small
altitude torrents to main river streams. Both historical and paleographic data have been
theoretically shown to improve extreme flood assessment [13,14]. Regional analyses may
also merge space and time extensions, mixing reported historical peak flows at ungauged
sites, reputed to be the maximum flood over the study period and introducing scaling
properties to cover a variety of watershed surfaces [15]. Beyond palaeoflood hydrology,
a variety of socioeconomic proxies are also used, such as insurance claims ([16]) or press
releases [17].

In this important body of work, only a few studies explicitly tackled the question of
multiscale flooding. During a generating hydrometeorological event, typically over one to
several days, the storm organization in space and time triggers the concurrent reaction of a
set of torrents and rivers. The multi-facets nature of multiscale flooding controls the extent
of direct damages, in particular in the sensitive areas of confluence between torrents [18] or
urban drainage and rivers ([19]). It also critically governs systemic disruptions, combining
failures on networks such as transport [20–22] and energy [23] and impacting emergency
response [24], businesses, and more generally the daily life of individuals [25].

The interest in multiscale flooding and the idea to look for their hydrometeorological
causal events at the scale of the Alpine Bow appeared in pioneering works in the 1970s [26].
They provided archetypes of large-scale rainfall accumulation patterns associated with
mesoscale atmospheric circulations and with combined responses of large Alpine rivers—
typically the Danube, Po, Rhine, and Rhone Rivers and tributaries such as Adige, Durance,
or Inn Rivers. Improved datasets allowed us to investigate in more details and at finer
scales the meteorological and hydrological characteristics of some recent multiscale floods.
This is the case of the interaction of rainfall patterns, with the basin morphology governing
the contribution of the Inn River to the Upper Danube flood in 2013 compared with
previous historical floods [27]. More theoretical approaches based on Extreme Value Theory
analyzed extreme discharge co-occurrences over instrumented watersheds or extreme
rainfall co-occurrences at gauged sites [28,29]. All of these work apply to scales that are one
or two orders of magnitude larger than Metropolitan scales, which for instance in Grenoble
represents a collection of 600 torrents over ca. 1400 km2 embedded in a 9000 km2 riverine
basin. Moving down to Metropolitan scales is then less a problem of lack of theory and
methodology than a problem of lack of data.

To our best knowledge, there is no work devoted to the question of multiscale flooding
over a Metropolitan domain. This paper explores the potential of a database of reported
torrential and riverine flood events to document this question. This database (i) covers a
long historic period and relies on expert reports, (ii) provides quantitative information about
the time and place of the floods and hence of the space scale, and (iii) brings qualitative
information about the phenomena and the damages.

Moving out of the field of quantitative hydrology and its analysis of the rareness
of flood causes, here, we mainly consider the rareness of the effects. The events of the
dataset used are reported because they generated damages and our hypothesis is that
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the rareness of these effects points to the rareness of flood causes. In a framework of
inadequate quantitative dataset, this paper evidences the existence of multiscale flooding
at Metropolitan scale and discusses some implications for hydrological research and flood
risk management.

The paper is set out as follows. Section 2 describes the observational issue, showing
the limitations of the instrumental datasets at hand and the availability of more qualitative
information from the historical monitoring of the RTM (Restauration des Terrains de Mon-
tagne), a technical service of the French Forest Administration. We analyze in Section 3 the
part of the RTM database that covers the Metropolitan area of Grenoble over the period
1850–2019. We fundamentally illustrate the homogeneity, consistency, and completeness
of the RTM database for torrential and riverine flooding. We explore in Sections 4 and 5
the potential of the RTM database to describe Metropolitan flood events. Section 4 ex-
plains the method used to identify the co-occurrence of floods from expert reports, and
Section 5 shows the homogeneity of the list of Metropolitan events and its basic proper-
ties. In Section 6, we examine the first outcomes and the potential of the Metropolitan
event database.

2. The Observational Issue and the Datasets Used

2.1. Hydrometeorological Data Fail to Cover Small Scales over the Long Run

In the case of Grenoble, assessing the co-occurrence of extreme floods at Metropolitan
scales embraces a set of natural and urbanized watersheds over 1 to 10,000 km2 (Figure 1).
The torrential units interfering with urbanized areas can be as small as a few kilometer
squared such as the Aiguille, the Corbonne, or the Manival Torrents, which cross densely
urbanized and industrialized areas along the Chartreuse cliff. Their response times are
typically of one hour for 30 km2, such as that found for the Sonnant Torrent in the Belle-
donne foothills, which is also densely urbanized in its lower part [30]. The main rivers
crossing the agglomeration, the Isère and the Drac Rivers forming the Y shaped valley of
the agglomeration, have basins of 5720 and 3550 km2, respectively, and times to their peaks
of typically 1 to 2 days, respectively, at their confluence in Grenoble [31].

Figure 1. Map (left) of the RTM torrential units of the Grenoble conurbation colored according to the
number of events observed over the 1850–2019 period. Map (right) showing the Metropolitan area
nested in the Isère and Drac watersheds.

The question of multiscale flood co-occurrence is very demanding in terms of resolu-
tion of observations in time and space and in terms of time span of data series. We briefly
sketch the data availability across scales in the study region using in Figure 2 a logarithmic
window to show the instrumental resolution and to recall, as well, the time and space
characteristics of some processes of interest [32].
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Figure 2. Logarithmic (base 10) window showing the instrumental time and space resolution and their
period of availability in the study area of Grenoble agglomeration, France (dotted grey rectangles—
the upper time-limit of the rectangles is not meaningful). The time and space characteristics of
four atmospheric processes controlling rainfall formation at different scales are shaded in light blue
after [33]. The relationship established by [34] from extreme flash floods in Europe between the
response time of a basin and its size is represented in bold dotted green. From the cited literature, we
also show the response times of three rivers (blue crosses—after hydrographs shown in [31]) and one
torrent (red cross—after [30]) of the agglomeration. The size of the Metropolitan torrential units of
the RTM database are represented in orange (the bold part of the line represents the inter-quantiles
10% to 90% and the thin part the min–max interval—the response time is taken from the relationship
of [34]). The two continuous grey rectangles summarize the datasets used in this study.

Continuous discharge measurements are only available on large watersheds. The Isère
River and its main tributaries are controlled by a set of gauging sites that appeared with
the creation in France of the first Flood Warning Services in the 1850s [35]. For instance, the
water level scale of the Isère River in Grenoble was installed in 1840, and the profile of the
river is thought to be stable since the last major flood in 1859 [36]. A series of daily readings
of limnimetric scales started more than one century ago (Isère River at Grenoble since 1877
and Drac River since 1904), but they present interruptions (1897–1906 for the Isère River at
Grenoble for instance). These sites were automated in the late 1950s. Over their available
time span, the gauging sites were highly influenced by the installation (1935–1988) and
operation of upstream reservoirs for hydroelectricity production. Various studies used
historical archives as a complement of instrumental data for past significant floods [35].

At smaller scale, the intricacy of torrents and urban drainage is not sufficiently moni-
tored to analyze co-occurrences. The drainage system (over 1200 km of pipes) collects rain
waters coming from 35% of the Metropolitan area, equally shared between natural and
urbanized surfaces. The remaining 65% of the area consists in natural surfaces drained by
torrents. Measurements in the urban sewage system are occasional (measurement cam-
paigns) or consist in observation reports on overflows during storms. Only a few torrents
over roughly six hundred are instrumented.

Rainfall measurement is also limited in resolution and series duration. The operational
rain gauge network provides daily measurements over the past 60 years, with a typical
resolution of 150 km2 (61 stations over the Isère Basin—ca. 9000 km2). The Metropolitan
network of automatic rain gauges was developed for real-time control of urban drainage
systems during the late 1990s (1 h resolution) and the 2000s (6 min resolution), with a
typical inter-distance of 8 km, quite over the recommendations for urban settings [37,38].
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In France, the operational radar product COMEPHORE opens in 1997 and starts to be
considered for climatological studies [39]. Its coverage of the Alps is less than 10 years
old [40]. The Grenoble region waited 2015 to see the nearby installation of an X-band
dual-polarization radar, which is not of straightforward use in a mountain setting [41].
Radar data proved that high-resolution rainfall measurement is essential to explaining local
effects of extreme rainfall events, such as that shown for instance in studies of small-scale
watershed flooding [42] or debris flow triggering [43].

In summary, given our first interest in the multi-scale co-occurrence of extremes over a
range of scales going below 100 km2—i.e., requiring long-term and distributed data at these
scales, available hydrometeorological datasets fail to provide the necessary information to
direct statistical analysis or to indirect approaches to “extend” the data [44]. This motivates
our present attempt to consider another source of data, which is able to inform extreme
flood co-occurrence over the long run and below a few hundreds of km2.

2.2. The Content of the RTM Database

Torrential floods have the peculiarity of triggering active sediment transport, an ag-
gravating factor of risk that was conceptualized as soon as the 19th century with, in France,
the creation in 1860 of a national service for the management of the Alpine and Pyrenean
mountainous areas—RTM [45]. As part of the forest administration (Office National des
Forêts), this national service had the central objective of curtailing sediment production
in torrent headwaters through the active protection of tree planting (3800 km2) and civil
engineering works (ca. 19,000 followed structures). With daily involvement in terrain
surveillance and management, RTM capitalized over time a considerable knowledge of
natural risks in mountainous areas (roughly 25% of the French territory). For instance,
in Savoy (Northern French Alps), Paul Mougin, a RTM pioneer of “torrent correction”,
published at the beginning of the 20th Century a book associating theoretical develop-
ments about the causes of torrential floods to the description of the torrents of the region,
including a detailed list of historical flash-flood and debris flow events [46]. The RTM
mission of management of altitude watersheds in state-owned forests made the service
engineers the natural interlocutors of connected municipalities and authorities. Even small
villages, because they were suffering flood damages from well identified torrents, had
to make municipal-level economic and regulatory decisions that are well described in
council minutes. The merit of RTM engineers over such “municipal chronicles” was to
regularly produce, under a common framework of analysis, written reports, and advice
relying on their own observations, witness interviews, press releases, as well as official
municipal documents. Asserting their expertise, they broadened through time their field of
investigation from its initial focus on small tributaries and hill slopes up to the larger scale
of riverine inundations in close connection with the Roads and Bridges Service. All of this
activity was carefully archived.

Since the 1980s, RTM extended its mission in response to the Law of 1982 on the
compensation of victims of natural disasters [47]. This new mission of risk mapping in
mountainous areas motivated both a systematic reporting for recent torrential site events
and a substantial effort to make use of RTM archives for past site events.

As a result, throughout RTM existence, trained personnel systematically archived
information about torrential risk events, constituting a pioneering and long-standing
effort of climate impact observation. This archive was systematically organized in data
sheets during the 1980s, digitized during the 1990s, and made publicly available via
Internet during the 2010s (over 30,000 site events reported to date are available at https:
//rtm-onf.ign.fr accessed on 30 December 2021). The same history of torrent surveillance
and management is shared by other Alpine countries, for instance, Austria, with the
Forest technical Service of the Austrian Torrent and Avalanche Control, which initiated a
systematic collection of torrential “flood reports” with the Austrian Forest Act in 1975 [48].

The RTM database contains information about the social and material impacts of
varied phenomena—namely, at decreasing scales, from riverine and torrential floods to
debris flows, landslides, or avalanches. Here, we focus on floods.
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Torrential floods are distinguished from riverine inundations by the size (<100 km2)
and the response time (<12 h) of the watersheds—they pertain to headwater streams of
Strahler order 1 to at most 3. The Metropolitan area is paved by 139 RTM torrential units
(Figure 1)—watersheds and sub-watersheds, such as the distinction between right and left
tributaries or upper and lower basins for instance—with surfaces distributed log normally
with a median around 4 km2 (see Figure 3). The agglomeration is concerned by 5 RTM
riverine units. Three sites concern the Isère River—upstream Grenoble, in Grenoble at
its confluence with the Drac River and downstream from Grenoble. The two other sites
concern the Drac River and its tributary, the Romanche River, upstream from Grenoble.
The sizes of the drained watersheds span between 0.16 and 172 km2 for the torrents and
between roughly 1200 and 5800 km2 for the rivers.

Figure 3. Cumulative distribution function (CDF) of the size of the 139 Metropolitan RTM units in a
semi-logarithmic graph. The red curve shows the most likely log-normal CDF.

Each event occurring at a site is characterized in the RTM database by a number of
qualitative and quantitative elements of information summarized in Table 1. The name of
the site and date of the event quantitatively determine the coordinate of each site event in
time and space. It is fundamental for co-occurrence studies to have dates to the day, which
is the cases of 68% and 88% of torrential and riverine flood events, respectively, over the
period 1850–2019. The database also graduates semi-quantitatively torrential and riverine
events into 4 and 3 intensity levels, respectively (see Table 2). The absence of the 1-very-
weak class for rivers may be related to flood protection that is more developed on rivers
and cuts damages below a certain level of flooding. In both cases, the intensity depends
on physical factors and impact levels. This graduation is recent (2004–2006) and results
from a long reanalysis work of the quantitative and qualitative information contained in
RTM archives. For the Isère district, it took 18 months full time for an engineer of the
service to cover the period post-1950. This reanalysis guarantees some homogeneity and
extensiveness to the torrential information with less than 7% of the events being categorized
into “unknown intensity”. Not at the core of the service missions, the riverine information
has not been reanalyzed and has almost 70% of “unknown intensity”.
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Table 1. Content of the RTM database for the description of an event at a site.

Nature Variable Description

General

Phenomenon Torrential floods and inundations in our case
Name of the site Name of the watershed or sub-watershed (Quantitative)
Date of event Date of the day (sometimes only the month or the year) (Quantitative)
Municipalities List of affected municipalities (Quantitative)

Hazard

General description Narrative of typically 50 words (Qualitative)

Causes Meteorological and hydrological conditions (Qualitative and Quantita-
tive elements on storm duration for instance)

Space organization Up-/downstream details (Qualitative and Quantitative elements on
volumes of transported material for instance)

Link with other sites Often missing (Qualitative)
Intensity (Semi-quantitative) (see Table 2)
Duration Often about the storm duration (Quantitative)

Vulnerability

Victims Yes/no
Damages or disruptions Yes/no
Information on victims Location and number of victims, nature (injury, death) (Semi- quantitative)

Information on damages Location, time, water levels and sediment volumes, type (road, houses),
sometime costs (Semi-quantitative)

Table 2. Description of the four classes of torrential flood intensity and of the three levels of riverine
flooding defined for the RTM database as well as river flooding classes defined for the Historisque
database [35,49].

Torrents 1-Very-Weak 2-Weak 3-Medium 4-Strong

Physical parameters
Water rising rate (m/h) <1 m/12 h 1–2 m/2–12 h 1 m/1–2 h >1 m/1 h
Volume of deposit (m3) <1000 1000–10,000 10,000–100,000 >100,000
Alluvial fan coverage (%) minor bed <10% 10–50% 50–100%
Biggest blocks (cm) 10 10–50 50–100 >100

Impacts
Buildings none destruction of cabins local damages in building

structures
ruined buildings basement
erosion

Roads none temporary cuts local road damages damaged dikes, roads or
bridges

Geomorphic minor bank damages local breaches in banks
and dikes

local bed transformations generalized change of mor-
phology

Rivers RTM 1 2 3

Physical parameters
Submersion level (m) <0.50 0.50 to 1–2 >1–2
Submersion duration (d) 1 few week

Impacts
Buildings damages in damages in first basements ruined buildings floors
Roads temporary cuts local road damages damaged dikes, roads or

bridges
Natural and agricultural space limited impact noticeable impact consequential damages

Rivers “Historisque”
Ordinary rise or small
flood—Cl. 1

Extraordinary or interme-
diate flood—Cl. 2

Catastrophic flooding or
large flood—Cl. 3

Physical parameters
Submersion extension No river channel overflow-

ing except restricted areas
River channel
overflowing—Water
in streets or sectors

Overflowing of zones
away from channels—
Destructive effects

Morphology Overflows depend on bed
obstruction and state of
dikes

Very large flood perimeter
and heavy sediment trans-
port

Large morphological
changes to the river
(meander captures)
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Table 2. Cont.

Torrents 1-Very-Weak 2-Weak 3-Medium 4-Strong

Impacts
Linear damage extension Micro damages (in Meso damages (in Macro damages (in

decameters) hectometers) kilometers)
Roads, bridges, crops No serious damage or

destruction
Destabilized bridges Destroyed bridges and

sections of roadways,
lost crops

Hydraulic infrastructures Minor damage to
hydraulic installa-
tions (mills, irrigation
channels)

Severe damage to hy-
draulic installations or
partial destruction

Severe damage or com-
plete destruction of in-
frastructures close to
the river

The database is rich in detailed narratives describing, event by event, the hazard and
the vulnerability. In the case of torrential and river flooding, associated phenomena such
as the precipitations and the atmospheric conditions, or the sediment transport and its
morphologic consequences are often described. The vulnerability is about persons and
goods. Associated quantitative information about locations, water levels, or sediment
volumes are often included in the narratives.

In spite of its central mission toward engineering and land management studies and
despite its confidential diffusion, the RTM database is used in academic studies, mostly
about torrential flooding [50,51]. To our best knowledge, all of the application and research
studies are focused on point studies and none are on flood co-occurrence.

3. Torrential and Riverine Flood Activity Reported by the RTM Database

3.1. RTM Database Covering the Metropolitan Area

We analyze in this section the part of the RTM database that covers the Metropolitan
area of Grenoble over the period 1850–2019. The study domain is related to the practical
aim of this work devoted to Metropolitan flooding risk. This restriction to a limited
sample of 5 riverine units, and ca. 130 torrential units is a limitation of sorts with regard to
the sampling of flood activity. On the other hand, this restriction allows for assuming a
reasonable homogeneity of hydro-climatic conditions as well as the best level of observation
quality—the RTM headquarters were installed in Grenoble at the beginning of the study
period and they always had close and easy access to the observed torrents and rivers. We
restricted our selection to the period 1850–2019 for two main reasons. First, it roughly
covers the lifetime of the RTM Service and we expect a more homogeneous archiving
work. The database covers a much larger period including historical data from other
non-contemporary sources that have been collected by the Service over time. Second, this
period fits with long climate reanalyzes (e.g., 1850–2014 for 20CR, [52]), and it opens the
opportunity to document the atmospheric conditions of the selected multiscale flooding
events. In addition, 170 years is the minimum appropriate amount of time for extreme
studies, although the period looks much less fertile in major riverine floods than previous
200 years [1].

The part of the RTM database that covers the Metropolitan area of Grenoble counts
282 events on torrential units and 41 events on riverine units (Table 3). As the RTM data
results from the expertise of an engineering service more than from a measurement network,
our concerns go to the homogeneity and the exhaustiveness of the series of dates of these
events as well as to the consistency between qualitative and quantitative information. Our
aim is to show the possibilities and to understand the limits of the RTM database to help the
study of the occurrence of extreme hydrometeorological events that we treat in Section 4.
We successively examine the torrential and riverine datasets.

94



Water 2022, 14, 548

Table 3. Number of flood events that occurred on the 139 torrential sites of the Metropolitan area
over three different periods of time (first sets of rows) and for five flood intensity levels (columns—
“Unknown” means that the intensity is not qualified). The shares represent the percentage of qualified
events for each intensity (1- to 4-) and the percentage of not qualified events (Unknown). The rates
represent the number of events per year over the period or slope of the cumulative curve. Separate
counts are given for the events dated to the day and for the different intensities. The last set of rows
gives the ratios of shares and rates between the two periods.

1850–2019 1-Very-Weak 2-Weak 3-Medium 4-High Unknown Total

Number of events 92 133 36 1 20 282
Share 35% 51% 14% 0% 7%
Rate 0.54 0.78 0.21 0.01 0.12 1.66

1850–1979

Number of events 22 64 21 1 13 121
Share 8% 24% 8% 0% 5%
Rate 0.17 0.49 0.16 0.01 0.10 0.93

1980–2019

Number of events 70 69 15 0 7 161
Share 27% 26% 6% 0% 2%
Rate 1.75 1.73 0.38 0.18 4.03

Jump between periods

Share jump 3.2 1.1 0.7 0.0 0.5
Rate jump 10.3 3.5 2.3 1.8 4.3

3.2. Jump of Torrential Flood Occurrence at the Turn of the 1980s

An elementary way to consider the overall homogeneity of sampling is to look at the
cumulative count of site events throughout time (Figure 4). If we concentrate on torrential
floods without distinction of the intensity, it seems that we have two homogeneous periods
in terms of rate of occurrence—say before and after the 1980—over which the cumulative
curve reasonably follows the theoretical line suggested by a Poisson assumption. The
slopes λ of the fitted lines are the ratio of the total number of events over the number
of years T of the considered period: λ = ∑t n(t)/T, where n(t) is the number of events
during the year t. This quite abrupt change moves from a pace of 0.9 event per year over
the agglomeration to 4—a jump factor of more than 4. Given the number of considered
torrential entities (139) it is easy to see that we moved in terms of return periods of the
reported site events for each entity from ca. 150 years to ca. 35 years. Looking closer, it
seems that the change operates more like a transition during the 1970s. A more rigorous
analysis aimed at looking for a breaking date that provides the best Poisson fit over the
two periods would be interesting [48], but it is not critical for our illustrative purpose here.

The jump displayed by our torrential dataset may originate from changes in the risk
(hazard and/or vulnerability) and/or in the observation practice. It is shared by other
Alpine studies presenting the same shape of cumulative curves. In Northeastern Italy [53],
a collection of 127 debris flows from historical archives over two areas displays a jump at
the same period as in France with a multiplicative factor over 15. This jump is attributed by
the authors to an increased reporting effort and a better access to information that both led
to a larger share of small events, which is confirmed by a decrease in the average value of
debris-flow volumes by a factor of three. In Austria [48], a richer sample of 8579 torrential
flood events covering all the country shows a smoother break in the cumulative curve.
Using objective methods to find the date beyond which the slope stabilizes, the authors
diagnose a jump occurring between 1920 and 1940 with a rate of ca. 3. This statistical
diagnosis is apparently in contrast with an historical reasoning that would attribute the
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jump to the early 1970s with the advent a flood reports catalog (1972) and the Austrian
Forest Act of 1975.

Figure 4. Cumulative count of torrential flood events reported in the RTM database over the period
1850–2019. In total, 282 torrential events (light grey curve) have been reported over the period. The
represented slopes (dark grey lines) are computed after a Poisson hypothesis (ratio between the
total counts and the duration of the considered periods—1850–1970 and 1980–2019). The cumulative
counts for three classes of flood intensity are displayed in green (1-very-weak), yellow (2-weak) and
red (3-medium). The cumulative counts for the Summer season and the other three seasons pulled
together are displayed in dotted blue and dotted red, respectively.

In our case, the jump looks consistent with the past of the RTM Service. As described
in the previous section, broadly, two key dates articulate this history: the creation of the
service in the 1860s and the extension of its missions to risk mapping at the beginning of the
1980s. The jump seen in the studied series fits with the second key date. As speculated in
Italy and Austria, the evolutions toward risk mapping and the advent of data digitization
influenced the RTM monitoring practice, increasing the needs for data completeness in
time and space, and easing data management.

In France, similar to Italy, the jump looks to be related to a change in the share of
monitoring in which we may distinguish three aspects (Table 3). First, the general break
of rates marks an increased “density” of monitoring—the process collects globally four
times more events after than before 1980. However, second, there is also a change in the
“sensitivity” of the monitoring—the share of low-intensity events (1-very-weak) jumps by a
factor 3 while the two higher intensities remain quite stable in proportion. In other words,
the repartition of the intensities looks pretty stable over the complete monitoring period
except for the lowest 1-very-weak. A third aspect is the change in the share of “unknown”
intensity that is divided by two and the number of events dated to the day that grows by
60% (not shown), showing an improvement of the “quality” of observation in the sense
that, more often since 1980, the site event reports contain enough information to qualify the
intensity at precise dates.

At this point we have, on one side, elements showing a good stability of the moni-
toring process over the two considered periods (stable rates and shares) and, on the other
side, elements that changed significantly at the turn of the 1980s such as the density, the
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sensitivity, and the quality of “sampling”. We may conclude that these observations are too
largely influenced by the monitoring process to allow for detecting changes in risk except
inside an homogeneous period. If, for instance, we take a close look to the last two decades,
which can be considered homogeneous in terms of monitoring process, Figure 4 shows a
quite significant break in the seasonality of the events—the occurrence of summer events
look quite steady while the occurrence during other seasons marks a decay by a factor of 4.
This decay coincides with the decay or a pause in the rate of highest intensities (2-weak
and 3-medium). A minimal interpretation is that this change is related to hazards and not
to vulnerability, which has no reason to change with seasons.

3.3. Consistency between Quantitative Information and Qualitative Narratives: Intensity versus
Causes of Torrential Floods

After the above analysis of the jump in the monitoring density and quality in 1980,
we illustrate now an element of homogeneity that seems to cover the whole period of
existence of the RTM service—the consistency between the quantification of intensities and
the content of qualitative narratives.

The definitions of torrential and riverine intensities rely on implicit relationships
between all atmospheric, hydrologic, and morphologic processes. For torrents, the grid of
lecture of the flood intensity given in Table 2 summarizes an expert vision of the “flashiness”
of the flood (water level rising rate) and of its sediment transport capacity (volume and block
sizes). This gradation rightly forgets to mention rainfall intensities that are “almost always”
difficult to assess since they are measured too far or at the wrong time scale [51,54,55].
Nevertheless, the database contains a qualitative description of the causes (Table 1). This
short expert summary is quite well structured around five types of causes: the rainfall, the
snowmelt, the hydrological and morphological antecedent state of soils, logjams blocking
the torrent, and the defective effect of structures and constructions. For example, in
December 1991, the Montavie Torrent flood was caused by “Exceptional rainfall following a
temperature rise (6°) on snowy soils. Rapid melt of the snow cover (15 h) and concomitant
floods of all streams below 2500 m altitude”, while for the same flooding period, the
Vernon Torrent flood was caused by “Abundant rainfall after a snow fall. Obstruction of a
hydraulic screen at the road bend of Mutte”. This description is unfortunately missing in
ca. 50% of the site events. We analyzed the 133 provided summaries (50, 70, and 13 events
of intensities 1-very-weak, 2-weak, and 3-medium, respectively) after coding their contents
in the above mentioned five types. Figure 5 shows that rainfall is definitely the major
cause cited by the reports. Rainfall is mentioned in ca. 90% of the site events, followed
by hydrology/morphology (20%), and structures and protections (15%). To make things
clearer, Figure 5 only reports the cases when rainfall is the single mentioned cause. The
figure shows a clear gradation with 1-very-weak events combining causes in a balanced
way and 3-medium being exclusively attributed to a rainfall cause alone. This observation
illustrates the consistency between the intensities and the narratives of causes given by
operators. It confirms a typology of floods where snow is present but plays a minor role,
structures are important factors of minor flood aggravation, and hydrology/morphology
explanations fade when consequences aggravate and rainfall becomes dominant. This
observation confirms in a sense the interest for relating flood occurrence to generating
hydrometeorological events.
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Figure 5. Distribution of the torrential flooding causes for 133 reported RTM events for which a
narrative of causes is proposed. We distinguish five types of causes: rainfall as the single cause of the
flood (blue), snow melt (green), soil moisture and river morphology (yellow), logjams blocking the
torrent (orange), and counter-efficient structure protection (red). The proportions are given for the
three RTM classes of intensity that are attributed to the considered basins over the study period (the
single 4-high intensity event that occurred in 1867 has no narrative about causes).

3.4. Historical Completeness of Torrential Information

The notion of completeness, developed in the fields of earthquakes and volcanic
eruptions, is presented and applied to the Austrian torrential flood database in [48]. This
notion is a priori well suited to historical datasets such as the RTM database that are non-
exhaustive by “design”. We can hypothesize various levels of failure in the witnessing
process that may lead to miss event records, and we saw in the paragraphs before that a
change in the monitoring process is clearly visible. The question of the data completeness
is not specific to historical data. Missing data is also a problem of instrumental series that
may experience instrument malfunctions, with the additional drawback that missing data
may be related to extreme situations [56].

In the absence of quantitative or qualitative reference datasets, the appreciation of
the completeness of the RTM database can only be driven on a few watersheds that have
been studied in depth by historians. This is the case of two watersheds that belong to the
Metropolitan area: the Manival Torrent (7.3 km2—[35]) and the Rif Talon Torrent (upper
basin of 1.3 km2—[57]). We also mention, out of the conurbation area and out of the range
of size of the conurbation torrential basins, a larger watershed—the Guiers River (617 km2),
which was also a research focus [10]. For each watershed, we have three counts: the
number nC of common events cited by RTM and the control study, and the numbers of
events nM and nN missed by the control study and by RTM, respectively. The completeness
is the mere ratio (nC + nM)/(nC + nN + nM) between the number of events reported by
the RTM archive and the total number of known events. This ratio is computed over the
period between 1850 and 2019. This crude way to assess the completeness is far from the
asymptotic property used by [48]. It is simply illustrative of the improvement awaited from
deeper historical investigations.

For the two torrential watersheds, the completeness is 67% and 93% for the Rif Talon
and the Manival, respectively. It stabilizes to 87% when considering the two torrents
together. The completeness of the Manival is constant before and after 1980, while the
completeness of the Rif Talon increases from 50% to 83%. Belonging to the heart missions
of RTM since its creation and constituting RTM units, the two watersheds benefit of a close
surveillance and, in terms of completeness, they are probably representative of the other
torrential units of the conurbation. For the Guiers River the completeness over the study
period is only 29%. With a size two orders of magnitude larger and a dramatic jump in
completeness from 19% to 83% before and after 1980, this watershed is probably more
representative of the performance of the service for a river that entered in their mission
after the 1980 (see below the completeness for river data).
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The RTM archive is undoubtedly non-exhaustive and the arduous but rewarding
historical work on torrents claimed by [10] is certainly necessary to do in the future. The
problem is its cost when looking at hundreds of units. Conversely, this problem shows the
value of RTM archives.

3.5. Homogeneity and Completeness of Reported Riverine Event Occurrence Until It Pauses in
the 1970s

For rivers, the striking result is that the 1970s marked the end of a rather homogeneous
120-year series of damaging events reported by RTM, with the three last reported events
occurring in 1968, 1970 and 1992, which leads to respectively 40 and 1 events before and
after 1980 (Figure 6). The occurrence rate of 32 site events per century corresponding to
the Poisson assumption slope over the period 1850–1979 is quite representative of the
curve in spite of quite large sampling fluctuations—we consider only two rivers instead of
over one hundred torrents. The effect of reservoirs and protection work programs looks
plausible in explaining the pause of the flooding activity, as far as it produces damages.
As indicated in Figure 6, the program of dam constructions on the Isère and Drac Rivers
upstream Grenoble started in the 1930s and ended with the 1980s, with the essential of
capacity being reached in 1960. As also shown schematically in Figure 6, a quite sustained
50-year series of 25 floods from 1910 to 1960 triggered different projects of protection that
certainly contributed to alleviate damages and hence the number of reported damaging
floods. The pause does not mean the end of catastrophic floods. An artificial change in the
river regime, despite the rule of “transparency” to floods followed by the dam management
as well as a sensible shift of the vulnerability level, together modified the “damage regime”.

Figure 6. Cumulative counts of riverine flood events reported in the RTM database over the period
1850–2019. In total, over the period, 41 events have been reported for the 5 RTM riverine sites
(continuous thin grey curve). Taking into account the multiple-site events—i.e., events concerning
several sites of either the Isère or the Drac Rivers—these 41 events reduce to 28 events (continuous
bold grey curve), among which 18 events concern the Isère River (yellow bold curve) and 10 events
concern the Drac River (orange bold curve). These last two curves are compared with the series of
51 events of the “Historisque” research dataset for the Isère (dashed yellow curve) and Drac Rivers
(dashed orange curve). The represented slopes (dotted grey lines) are the ratios between the total
counts and the duration of the considered period (Poisson hypothesis). The time evolution of the
storage capacity of the reservoirs built on the Isère an Drac Rivers (dotted black curve graduated in
percent of the final capacity reached in the 1990’s—right hand y-axis) as well as the temporality of
the main post-World-War-II protection programs (three dotted grey bars representing successively
the so-called Schneider Project, the update of Grenoble dikes, and the rising of the Isère Left Bank
dike) are also sketched on the graph (arbitrary y-coordinate).
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The comparison with the research historical database “Historisque” (named after the
research project described in [35] and used in [1]) is useful to appreciate the completeness
of the RTM series. The comparison is not straightforward for three reasons—the research
data series stops in 1970; the detection criteria are a little different; and most important, the
considered hydrological units are not strictly the same.

The first point is easy to solve since there is a consensus to consider that the recent
series of outflows overgrowing the decadal level had no significant impact, except marginal
overflows that interrupted the traffic on a submersible express way designed in the Isère
River bed. The second point is also minor since the definition of the three levels of flood
intensity of “Historisque” data is based on the appreciation of submersions and damages
to protection works, bridges, and roads [35], and thus, it is quite close to the RTM defini-
tions given in Table 2. The major difference is the consideration of changes in the river
bed morphology mentioned in “Historisque”. The third point—the difference in terms
of hydrological units—comes from the fact that the RTM database distinguishes in the
agglomeration territory five sites (river reaches of quite precise extension in the conurba-
tion, as seen in Section 2), while the research database considers only two “sites”—the
two main rivers and, more vaguely, the first kilometers of their upstream valleys touching
Grenoble. Hence, the RTM series may count up to five sites for the same flood event
when the “Historisque” dataset counts at most two sites. In order to make the two series
comparable, we simply pooled together the three RTM sites of the Isère River and the two
RTM sites of the Drac and Romanche Rivers.

As a result and as expected from the results shown above for the Guiers River, the per-
formance of the RTM database in terms of exhaustiveness for the largest rivers of our study
is quite low. The research database looks both more substantial and more homogeneous.

In terms of rate of occurrence, the research database provides ca. 170% more events
per year than the RTM database after “reduction” to two sites (20 and 54 event per century).
Over the period 1850–1970 covered by the “Historisque” dataset, the completeness is 36%
and is equal for the two rivers. As suggested by the cumulative curves displayed for the
Isère River for instance (yellow curves in Figure 6), the completeness is not homogeneous
throughout the period 1850–1970. While the cumulative curve of counts for the research
database follows the Poisson line reasonably well, the curve of RTM counts shows two
periods, say, before and after 1910. The completeness triples from 20% to 60%. We have no
specific explanation for this change, but the heterogeneity of the RTM archive—riverss have
long been outside the missions of the Service—is more plausible than any methodological
change in the constitution of the Historisque dataset.

The rate of dating to the day in the RTM database is higher for rivers than for torrents
(36 over 41 site events, i.e., almost 90%), and it is surprisingly stable with time if we look
for instance before and after 1910 (roughly 80 to 90%), which is perhaps due to the capacity
of the service to follow events in real time. The availability of dates to the day is low in the
“Historisque” data available in publications (24 over 64, i.e., less than 40%).

After the above illustrations of the content of the RTM database, we move now to
the identification of multiscale flooding events that mainly rely on the RTM database
complemented for rivers essentially by research data.

4. Processing the RTM Database to Define Metropolitan Flooding Events

By a Metropolitan event, we understand the occurrence of one or several damaging
floods on rivers and/or torrents of the conurbation of Grenoble within a short period of
time—typically one or two calendar days. This definition implicitly assumes the occurrence
of a hydrometeorological event that organizes storms in space and time and triggers the
concurrent reaction of one to several torrents and rivers. We establish our database by align-
ing on a common list of Metropolitan event dates the 323 RTM site events complemented
by 80 site events coming from narrative sources from National to Municipal annals and
expert archives such as those of the Roads and Bridges Administration or of RTM itself, as
well as from historical data published about the Isère and Drac Rivers and a few torrents,
such as the Manival or the Vorz Torrents, in the Grenoble agglomeration [35,36,58].
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4.1. Expert Selection from an Expert Database

The selection process of Metropolitan events is in a sense simplistic: (a) explore
chronologically a core database, and discard the events not dated to the day; (b) select the
site events of minimum intensity, and complement this list using information available
from other databases; and (c) for each site event, look for coincidence with other site events
at the same date and decide to define a set of concurrent site events occurring during
neighboring days as a Metropolitan event.

As explained in the previous section, the RTM database offers by far the best assets
to be the core dataset of our selection—in first place, the space resolution of the dataset is
outstanding. Furthermore, we also saw that the richness of this database is, to some extent,
hidden behind the digitization of expert reports merging quantitative and qualitative
elements of information. Then, applying the above selection process becomes in turn an
expert problem. The solution is in a manual processing of the core and complementary
datasets that allows for a critical analysis of the narratives in terms of consistency check
and hierarchizing and, hence, allows for the ongoing construction of the processing rules
regarding, for instance, the event dating and intensity thresholds.

We can elaborate more about the processing of event intensities (step b). Being
interested in Metropolitan events, we thought about taking a minimum level of gravity
for the selected events. Putting side by side the definitions of the torrential and riverine
intensities, looking in particular to impact information, and considering the change in rate
of the different intensities in 1980, we suggest to give a lesser role to the lowest torrential
intensity 1-very-weak and to consider all riverine intensities (including Unknown). We
thus discarded the isolated torrential events of the categories 1-very-weak and Unknown.
We nevertheless kept the nonisolated torrential events of 1-very-weak and Unknown
intensities. The reasoning is open to discussion but essentially focuses on our central
interest for co-occurring floods.

To be more specific about event dates and duration, we can explain why we can select
under the same Metropolitan event different site events that occurred over neighboring
days (step c). The reasons are all together (i) practical and linked to the construction of
the source database, and (ii) methodological and linked to the aim of the constructed
database. In practice, for the experts that feed the source database, the dating to the day
poses a difficulty in choosing between two successive calendar days for both short and long
fuse events. For torrential flooding, it is common that neighboring watersheds touched
during the same night by a storm are dated on two successive days, simply because the
event runs over the midnight boundary. For riverine flooding, the same occurs with the
additional difficulty that high waters may last more than one day. Beyond this practical
difficulty of dating site events, the decision to group a set of such events into a Metropolitan
event also depends on the aim of the study. As our interest is about the co-occurrence of
floods at different scales and, ultimately, weather conditions, we found quite often that the
conurbation is touched by a series of flooding events over more than two consecutive days.
These series of events may concern the reaction of torrents and/or rivers, in summer similar
to in winter, under the influence of a long-lasting weather perturbation. For instance,
on the 1st of July 1987, the area of Grenoble experienced 6 days of stormy weather with
damaging torrential floods in the agglomeration on the first and fifth days and damaging
floods in neighboring areas on the other 4 days. The decision to build such long-lasting
Metropolitan events may be backed-up by information contained in the narratives and by
the examination of site events that may have occurred in the vicinity of the Metropolitan
area—in particular to gain elements of meteorological description that confirm the unity of a
generating weather system. This “reconstruction” of the circumstances of the Metropolitan
event may sometimes lead to the certainty that site events not dated to the day may be
attributed to the event.

At the end, the ongoing construction of the rules led to replication of the above se-
lection loop twice, selecting the Metropolitan events based on dates and discarding the
individual very weak events. The first loop identified the various practical and methodolog-
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ical difficulties and helped the construction of the rule set, and the second one stabilized
and verified a final list of events. At the end, each Metropolitan event is described through
a mix of quantitative and qualitative information that compiles the information about site
events (Table 4).

Table 4. Summary description of the content of the Metropolitan database.

Quantitative information

Date of the event
Duration
Type coding (torrential, riverine, multi-scales)
Source coding (RTM, complementary)
Number of torrential sites
Number of riverine sites
RTM Intensity at sites
Coeur 2008’s Intensity
River outflows
Name of sites
List of municipalities with damages

Qualitative information—summary narrative

Description of the phenomenon
Description of the damages

4.2. Global Characteristics of the Selection Process

The selection process aggregated 323 RTM site events as well as 80 site events coming
from complementary sources into 104 Metropolitan events (see Table 5). This aggregation
results from the co-occurrence analysis in three ways: the basic need of co-occurrence
detection—we only used events dated to the day; the definition of Metropolitan events
with regard to a minimal intensity at sites—we discarded some isolated low intensity
site events; and the co-occurrence effect itself—many Metropolitan events involve more
than one site event. Below, we examine the respective weights of torrents and rivers
that are given step by step in Table 5. For each step, we present rates R of reduction
that are percentages of discarded events: R = 1 − n/N, where N is the initial number of
events at the current step and n is the final number. For the final step where coincidence
events are merged, this rate takes into account that multiscale events contain torrential
and riverine site events: Rtorrent = 1 − (ntorrent + nmultiscale)/Ntorrent where ntorrent and
nmultiscale represent the number of torrential and multiscale Metropolitan events.

For torrents, the elimination of the events not dated to the day reduced the information
of the RTM database by 32% (Table 5), with a large unbalance between the periods before
and after 1980 (49% and 19%, respectively). Overall, the intensity selection is marginal—it
discarded in total 20 isolated events (10%) of very low or unknown intensity (2% before
1980 and 15% after 1980). The use of complementary information at the torrential scale is
also marginal (16% addition, mixing 34% addition before 1980 and 6% after 1980). This
step brought back six RTM site events not dated to the day before 1980. The co-occurrence
effect further reduces the number of events by 65% in a way that is not very sensitive to the
period (56% and 71% before and after 1980, respectively).
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Table 5. The number of flood events over different periods of time (columns) and through different
steps of selection (rows) to constitute the Metropolitan flood database. The five main sets of rows
are (i) counts of RTM site events, (ii) number of RTM site events dated to the day, (iii) number of
RTM site events selected according to a minimum intensity, (iv) counts of flood events aggregated
from complementary sources such as the “Historisque” dataset, and (v) counts of Metropolitan flood
events. For the RTM database (four first sets), we indicate the percentage of events discarded from
one processing step to the next on the RTM database. For Metropolitan events (last set), the given
percentages are the ratios between the number of site events and the number of Metropolitan events,
taking multiscale events, torrential, and riverine, into account.

1850–2019 1850–1979 1980–2019

RTM database 323 161 162
Torrential 282 121 161
Riverine 41 40 1

Dated to the day 229 98 131
Torrential 193 32% 62 49% 131 19%
Riverine 36 12% 36 10% 0 100%

Intensity selection 219 106 113
Torrential 173 10% 61 2% 112 15%
Riverine 37 −3% 36 0% 0

With complementary sources 299 169 130
Torrential 201 −16% 82 −34% 119 −6%
Riverine 98 −165% 88 −144% 10

Metropolitan flood events 104 65% 62 63% 42 68%
Torrential 53 65% 21 56% 32 71%
Riverine 34 48% 26 53% 8 0%
Multiscale (torrent-river) 17 15 2

For rivers, the selection process works much differently. Most RTM site events are
dated to the day (88%), and the use of complementary information is massive (165%) and
highly unbalanced between periods since the RTM database is almost empty for rivers after
1980. The co-occurrence effect reduces the number of events by 48% in a way that is very
sensitive to the period (53% and 0% before and after 1980, respectively).

The final step in the selection that yields Metropolitan events and its co-occurrence
effect deserves some additional comments. This step is central we regard to the question
of multiscale flooding. The rates of reduction that we present above for torrents and
rivers appear to be high in general, to be higher for torrents than rivers (65% and 48%,
respectively), and to be more stable through time for torrents than for rivers.

The rates of reduction are close to the probability that a flood site event co-occurs with
at least another site event. Hence, for all scales together, almost two flood events over a
score of three co-occurs with at least one other flood. The stability of the rate through time
means that the assessment of the co-occurrence is not sensitive to the observation rate that
shows a jump in the 1980s (Figure 4).

5. Basic Properties of the 104 Resulting Metropolitan Events

To appreciate the result of the above described selection process, below, we exam-
ine the homogeneity of the Metropolitan events over the 1850–2019 period and their
space–time characteristics.

5.1. Homogeneity of the List of Metropolitan Events

As performed above about RTM data at sites, an elementary way to consider the
homogeneity of the selected list of Metropolitan events is to look at cumulative counts of
events over the observation period (Figure 7).
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Figure 7. Cumulative count of Metropolitan flood events over the period 1850–2019. In total 104,
Metropolitan events (light grey curve) have been selected over the period. The cumulative counts
for events that occurred on rivers only (blue curve); on torrents only (red curve); and the multiscale
events, i.e., co-occurrence of torrential and riverine flooding (dotted orange curve), are also plotted in
the same coordinate systems, with the years (x-Axis) and the event counts (y-Axis).

The cumulative function for purely torrential events shows at the turn of the 1980s the
same jump in the occurrence rate as the RTM torrential flood occurrence. The amplitude of
the jump is quite comparable—while for the RTM torrential floods dated to the day, the
rate jumps by a factor of 7, the rate of purely torrential Metropolitan floods increases by a
factor of 5. In terms of return period, torrential Metropolitan events drop from ca. 6 years
before 1980 to 1.2 years after. The explanation of the moderation of the jump is chiefly in a
higher number of discarded isolated RTM low intensity events (1-very-weak) after the turn
of the 1980s (14% after 1980 instead of 5% before). Another singularity of this cumulative
function is to present two empty periods of about 20 years—17 years at the beginning of
the archive and 21 years between 1930 and 1951. Sampling effects are possible but other
explanations such as the period during the second world war may also be considered.

The cumulative function of purely riverine Metropolitan events closely follows the
Poisson assumption over all periods, displaying a global return period of 5 years. The
pause in damaging river floods seen after 1992 in the RTM database is obliterated by the
introduction of complementary information about a recent series of seven decadal flow
peaks between 1999 and 2015 that caused few disorders—we can only mention a breach
in a dike under works in May 2015. The cumulative function of multiscale events (co-
occurrence of torrential and riverine flooding) looks also quite homogeneous although its
roughly decadal occurrence brings sampling effects that may explain marked steps with
three events in the 1850s or five events in 8 years in 1954–1961 and long plateaus with
almost empty 40-year periods over 1856–1899 and 1961–2002. The current pause after a
last event in November 2002 evokes the same type of plateau. We must finally keep in
mind that, with regard to riverine flooding, the study period matches the significant gap in
extremes that followed the middle of the 19th century mentioned on the Isère River [1] and
on other Alpine rivers such as the Rhine [59].

The cumulative function embracing all types of events displays a moderate jump after
1980—the rate is multiplied by a factor of 2.2, dropping from a return period of 2 to 1 year.
It shows a period of deficit before 1900 that is related to the deficit of purely torrential
events mentioned above. There is not much to add in terms of completeness compared with

104



Water 2022, 14, 548

what is said in Section 3 and in the previous section devoted to the effect of completeness
on the co-occurrence characteristics.

5.2. Time and Space Characteristics of Metropolitan Events

The selection process ends with a vast majority of events lasting one or two calendar
days (52% and 25%). Long-lasting Metropolitan events are thus rather an exception. If
we make the distinction between purely torrential Metropolitan events (53 events over
104, i.e., 51%), purely riverine events (33%), and multiscale events (16%), the distribution
of event durations slightly evolves (see Figure 8). The events lasting three days or more
represent less than 10% of the purely torrential Metropolitan events, 30% of purely riverine
events, and 53% of multiscale events. Looking to the space extent of Metropolitan events
through the crude measure of the number of touched RTM watershed units, the selection
process leads to a majority of events involving multiple sites (Figure 9). Obviously 100% of
the multiscale events are multisites. The Metropolitan events involving several torrents
represent 57% of purely torrential events, while those involving several rivers only make
30% of purely riverine events. Another way to examine the same counts is to integrate the
multiscale events. For instance, when a torrential flood occurs at a torrent site, other torrents
or rivers experience flooding at the same time in 70% of cases, and when a riverine flood
occurs at a river site, other rivers or torrents experience flooding in 53% of cases. There is no
correlation between the time and space extents of the Metropolitan events—the percentages
of explained variance are below 10% for both torrential and riverine (not shown).

Figure 8. Distribution of the duration of Metropolitan events in days. The number of events (y-
Axis) is given as a function of the duration (x-Axis) for events involving only torrents (green curve,
53 events in total) and only rivers (orange curve, 34 events), for multiscale events (yellow dotted
curve, 17 events), and for all the events (blue dotted curve, 104 events).
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Figure 9. Distribution of the number of RTM watershed units touched by Metropolitan events. The
number of events (y-Axis) is given as a function of the number of units (x-Axis) for events involving
only torrents (green curve, 53 events in total) and only rivers (orange curve, 34 events), for multiscale
events (yellow dotted curve, 17 events), and for all the events (blue dotted curve, 104 events).

These results are, to some degree, expected from general considerations about basin
response times and generating weather. Torrents react promptly to local rainstorms while
rivers take more time to react to extended rainfall patterns. The governing mechanisms
are nonetheless a complex mixture of geometrical and hydrometeorological considerations,
and the interpretation of Figures 8 and 9 deserve a detailed analysis that is beyond the
scope of this paper.

6. Conclusive Comments on the Created Metropolitan Dataset

This paper explores the potential of a database of reported damaging flood events at
torrential and riverine sites to document the question of multiscale flooding over an Alpine
Metropolitan domain—the conurbation of Grenoble (France)—over the period 1850–2019.

The study shows the importance of the notion of “Metropolitan flood events” with, in
a majority of cases, a concomitance of damaging floods at several sites of the Metropolitan
domain. The consequence for risk management is twofold. The co-occurrence effect de-
creases by a factor of three for the frequency of Metropolitan flood damages and disruptions
compared with the case of independent site events. Symmetrically, during Metropolitan
events, damages and disruptions are often at multiple scales, potentially creating more
complex situations to manage. Methodologically, the application of the notion of concomi-
tance helped to criticize the semi-qualitative RTM dataset. For instance, we have been able
to check the consistency between dates and the consistency of the narratives about the
phenomena at stake and the gradation of their intensity. This test looks original with regard
to available monographs on torrents or rivers.

The study faces a number of limitations linked to the daring bet we made in front of a
patent lack of data. Our bet is to use reported flood damaging as a sensor of flood rareness.
This “human sensor” suffers from various limitations with regard to exhaustiveness and
homogeneity. Compared with deeper historical research conducted on a few torrents and on
the main rivers, the exhaustiveness of the database varies from ca. 80% for torrents and 30%
for rivers in accordance with the historical mission of the RTM service essentially linked
to upper-watersheds and erosion. While the homogeneity of the database in space, with
the same tessellation of torrential and riverine units over the study period, is doubtlessly
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an asset, the homogeneity in time is more a limitation. A visible change of torrential
event frequency around 1980 looks to be related to a change in the RTM service mission,
and a pause in damaging river flooding after 1970 seems to be explained by improved
river bank protection and upstream reservoir regulation. These limitations invite more
precise investigations on the RTM database production process throughour time and to
complement historians with the digitization of the RTM archive—a project currently under
work. Overall, our bet looks acceptable for pointing to extreme weather events over the
study area but not to assess their frequency.

The main potential of the presented dataset is to open the analysis of the causative
effects of multiscale flooding in the study region [60]. Ongoing studies already follow
two different perspectives. First, from an hydrometeorological point of view, we study
the atmospheric conditions prevailing during Metropolitan events. This includes explor-
ing synoptic circulation patterns represented by weather classification as well as finer
characteristics represented by atmospheric indicators such as in [61]. The goal here is to
define whether these variables are “unusual” at the dates leading to Metropolitan events
compared with the climatology. Second, from an hydrological point of view, we study the
space–time properties of precipitation and runoff patterns, and concomitancy at catchment
scale during Metropolitan events. This requires using a distributed hydrological model fed
by reanalyzed precipitation fields, leading us de facto to restrict to recent events. In both
cases, a difficulty is the lack of models and data at the scale of torrential watersheds—the
most resolved precipitation and atmospheric data represent scales larger than a few tens
of kilometers squared.
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Abstract: A unique approach has been developed for explaining and forecasting the processes of
flood and/or mudflow (debris) formation and their spread along riverbeds in mountainous areas,
caused by flash increases in the water masses involved (considerably increasing in their expected level
because of precipitation intensity) due to groundwater contributions. Three-dimensional crack-nets
within the confines of unified rivershed basins in mountain massifs are a natural transportation
system (as determined by some dynamic external stress factors) for groundwater, owing to hy-
drostatic/hydrodynamic pressure distribution, varied due to different reasons (e.g., earthquakes).
This process reveals a wave nature characterized by signs of obvious self-organization, and can be
described via the soliton model in nonlinear hydrodynamics on the surface propagation after a local
exit of groundwater as the trigger type. This approach (and related concepts) might result in a more
reliable forecasting and early warning system in case of natural water hazards/disasters, taking into
account a groundwater-dominant role in some cases.

Keywords: catastrophic floods; rivershed basin; surface and groundwater interaction; statistical
analysis; 3D crack-net structure; seismic processes impact

1. Introduction

The backgrounds and basic principles of catastrophic floods are usually reduced to a
standard view about heavy rainfall [1,2] but without real forecasting or preliminary mea-
suring and monitoring of key factors. Thus, many problems still exist, and the knowledge
level concerning catastrophic mudflows/debris and floods in mountainous conditions is
still insufficient (see, e.g., [3–5]).

Indeed, as a presentation example of [6], flood causes in Europe (2013) are tradition-
ally quite obvious, although disastrous flooding is usually caused by a set of reasons.
The leading factor for such periodically rising water events is heavy rainstorms (up to
4–6 inch/day) being far too heavy in Europe for the considered areas [7]. In fact, the
two-month precipitation rate fell in a day (15 July 2021). However, today we do not have
simple models that would allow us to analyze (see also [4]) and, moreover, predict such
extreme events, especially for fairly rapid flooding/debris in mountainous conditions in
rough terrain. After all, the standard position is associated with heavy rains, even without
taking into account the specific terrain of the territory and the high probability of extra
water flow through the river basin system in general.

However, our main idea, as discussed in this paper, deals with floods occurring as
a result of several factors of influence. Namely, the interaction between the surface (here
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meaning all water objects of any type in the considered areas—lakes, artificial reservoirs
and river networks) and groundwater (from different water horizons) is the vital factor
in certain cases of disastrous floods, especially in major river basins, even during heavy
precipitation periods lasting several days.

Moreover, some strange indicators appear when we try to analyze the flooding process.
Here, those uncertainties are presented in the form of four questions as a background and
basis for the article’s motives (perhaps this is not quite a standard presentation, but it is
reasonable for a better understanding of the problem). Such problematic issues can be
listed as follows:

Question 1. Is there an obvious data discrepancy between the estimation of rainfall
levels in an area and an observable increase in water discharge in a riverbed, and/or is this
due to the difficulty of making calculations and measurements in a selected territory with a
complex landscape?

In fact, we have assessed the water balance of floods (see Figures 1 and 2) based on
available official data (summarized through the region) [7] in two examples (the percentage
differences in the discrepancy were calculated arbitrarily based on the maximums of the
water masses observed). First, the 2015 Louisiana flood (USA), near the City of Shreveport:
the accumulated water volume mass was ~3.3·109 m3, but the observed water volume
mass was ~11.0·109 m3. Thus, the relative difference between the maximal values of the
accumulated and observed water masses was more than three times. Second, the same
issue can be found in the example of the 2015 Assam flood (India): the accumulated water
volume mass was ~26.5·109 m3, but the observed water volume mass was ~31.4·109 m3.
Thus, the relative difference between the maximal values of accumulated and observed
water masses was about ≈15% (cf. [8]).

Figure 1. Water balance estimation for the example of the 2015 Louisiana flood. Blue bars refer to the
whole volume of daily precipitation in the whole basin (summarized through regions) in units 109 m3;
red bars–the whole volume of daily evaporation + permeation in the whole basin (summarized
throughout the region), 109 m3; black line–the whole volume of accumulated water mass in the
whole basin (summarized through regions), 109 m3; red line–the maximum of observed water mass,
109 m3. On the vertical axis–the water level (109 m3). On the horizontal axis–measurement days
(date). Positive values–excess water mass compared to normal conditions, negative values–decrease
compared to normal conditions.
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Figure 2. Water balance estimation for the example of the 2015 Assam flood. Blue bars refer to
the whole volume of daily precipitation in the whole basin (summarized through regions), in units
109 m3; red bars–the whole volume of daily evaporation + permeation in the whole basin (summarized
throughout the region), 109 m3; black line–the whole volume of accumulated water mass in the whole
basin (summarized through regions), 109 m3; red line–the maximum of observed water mass, 109 m3.
On the vertical axis–the water level (109 m3). On the horizontal axis–measurement days (date).

All detailed databases on the subject can be introduced by event analysis using [7,9,10].
Question 2. In the previous question (1) we indicated discrepancies by estimations

only as fact. However, we now suggest a possible reason for such discrepancies, caused
by the release of groundwater upon the surface. Indeed, why does extra water mass
appear during such events? Is it an accumulation effect observed due to the complex
specificity of landscape, with accumulation somehow taking place in only one river bed
and, moreover, water stagnating over a long time? Highly likely, this happens due to
groundwater contribution in localized areas. This fact can result in long distances and
durations in these events, e.g., the catastrophic floods in Louisiana (USA), 2015.

In this aspect, we can compare two databases [10,11].
In 2015, in the Red River basin near Lawton, catastrophic flooding occurred: 16 June:

2.0 inch/day; 18 June: 3.33 inch/day; 20 June: 3.0 inch/day.
However, in 2016 in Baton Rouge, flooding did not occur: 12 August: 11.24 inch/day;

Lafayette, 12 August: 10.39 inch/day; 13 August: 10.40 inch/day.
In addition, during flooding in late May and June 2013 in Western Europe (in the river

basins of the Danube, Elbe, Rhine, etc.) the water level rose by 7–13 m, and two-month
rainfall fell over only two or four days: 4 June 2013: Austria, 170–220 mm; 6 June 2013:
Germany, 150–180 mm, the water volume was 23 km3 [6,10,12]. However, in contrast, in
Moscow and the Moscow region (e.g., the town of Kashira), practically at the same time
and for a similar landscape, in September 2013, more than 180 mm (exceeding the average
level by three times), and 277 mm (exceeding the average level by five times) fell daily,
respectively, but no catastrophic flooding occurred [12]. This means that, under the concept
that special conditions are required for groundwater to release to the surface, catastrophic
flooding will result.

To support this idea, we simulated the instant collapse (explosion) of an artificial
reservoir dam with a water mass parameter of 4.5 million m3, square: 5 km × 0.5 km,
discharge from 80 km2 of the small river of Sodyshka, near the city of Vladimir (Russia) [13].
The process of water flow for the event was very fast (a few hours) and resulted in local
flood areas around the river bed (practically, the water level is not above the river bed table
over the river channel due to historic natural development).
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Thus, torrential rain is probably an obligatory but not sufficient condition. Moreover,
sometimes a strange phenomenon is observed in areas (especially in wooded areas) after
catastrophic flooding: fires burst there within several months/the next year. This fact
might be explained by the depletion of groundwater resources in the area. The impact of
early flooding on accidental fires in the near future can be demonstrated with the event at
the Amur River (Russia): catastrophic flooding from August–September 2013, and then
powerful fires in April 2014 [13,14].

In addition, we have noted that incessant heavy rain in 22 July 2021 caused the collapse
of a Trans-Siberian Railway bridge, Russia [15]. Judging by the footage from the scene, it
can be concluded that bridge supports were washed away as a result of strong currents.
Due to this fact, it is hard to believe that only surface flow is to blame. Instead, it is probably
due to the impact of the groundwater table, in which the powerful bridge supports, located
in the depths, were damaged, and a strong variation in the groundwater state might also
result in such destruction.

Question 3. What are groundwater’s transport routes up to the surface? Are natural,
permanent water sources from underground horizons (springs, geysers, grottos, etc.)
providing the directions?

The answer lies in the fact that 3D fractures in geological structures and rocks within
underlying surfaces, including dry riverbeds, have crack topology infrastructures that go
in many directions, including in deep layers. [2,5,13,16,17].

Indicative in this regard, we turn to the long-term, catastrophic flooding of 2013 (July–
September) on the Amur River (Russia) [14]. Despite heavy rains (about 50 mm per day)
that covered large areas, including both the main channel and its numerous tributaries, the
flooding itself spread only around the main channel (see Figure 3). In this case, the increase
in water consumption started at a level of ~20·103 m3/s and reached a level of ~46·103 m3/s.
A possible explanation for such a smooth, long-term process is: generally, groundwater
self-discharging to the surface can take place only in a fixed area in a main channel for a
spatially distributed system like a river basin (e.g., this major river), delocalized over a
large region. Indeed, traditionally, flooding should spread both along the main channel and
along tributaries (usually embracing large areas where it rains heavily; see Figure 3c), and
it also should not last long throughout the territory. However, this was not the case for the
considered event: even along geographically close tributaries, the situation was different,
even when taking into account dry river beds—see Figure 3a,b. To support this point of
view, we can predict many events when a small river’s discharge becomes comparable to
the discharge of major world rivers due to the fantastic localization of its water mass in a
small, isolated channel, and even with strongly dissected relief (see, e.g., [18,19]).

A discussion of the universal concept of the groundwater’s role in catastrophic floods
should also include a statement dealing with the total global groundwater resources unified
in the river basins of different/neighboring rivers, especially those lying close to the Earth’s
surface [11].In the considered case, a principal consequence of the common groundwater
resources of different major rivers is the Lena riverbed (Russia) shallowing, caused by
catastrophic flooding on the Amur River [10,14,19]. Apparently, this phenomenon was
associated with the temporary depletion of the river’s total groundwater resources before
a subsequent restoration over time by various mechanism. Here, we are talking about
the connection of the groundwater basins of different rivers, even major ones; i.e., in
this case, they have different surface discharge systems, isolated by topography, but do
not necessarily have different underground resources; they might be unified as a shared
underground network.
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Figure 3. Collection of space images (NASA). Flood inundation areas versus the hydrological situation
during calm times: (a) before the flood; (b) during the flood; (c) in the Komsomolsk-on-Amur city
area (Russia). The pictures were simultaneously obtained for some surface water states, but show
irregular distribution for opening the transport waterways for groundwater over a large area along
the “activated” parts of the 3D river-drainage system.

Question 4. Why does the preliminary, stable, steady-state process of the unified
water system of the rivershed basin become unstable in its dynamics regarding surface
water mass flow? Is this the naturally and externally induced lifecycle of the water system,
and/or is a variation in the soil moisture taking place [4,5,17,20]?

Obviously, no one doubts the connection between groundwater and rivers on the
surface due to the important, ordinary groundwater contribution of the well-known hy-
drological processes [5,20]. However, we are talking about the fact that equilibrium in the
dynamic state is disturbed with the extreme access of groundwater on the surface under
certain conditions during catastrophic floods. The search for these reasons is the subject of
consideration in our article.

In this case, instability variation in a 3D river network system might occur due to
changes in the 3D map of both crack-nest topology and pressure distribution in under-
ground horizons, as objects associated with water tables, due to subsurface, external causes.
This happens not only because of rain but also due to openings forming new, underground
channels (previously blocked) due to increased pressure on depth channels from surface
water objects, like lakes and artificial reservoirs (both up and down a river’s flood-area
localization) caused by extra rainwater mass. However, the principal point concerns the
impact of microseismic events and earthquakes on the development of trigger processes.

Thus, the traditional approach implies that surface runoff is only the endpoint of flood
development (see, e.g., [1,2,5]):

(1) All water is formed from precipitation according to the local terrain;
(2) Surface water is considered separately from groundwater during any event.
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However, according to our approach, all water systems are closely interconnected
and varied, especially during catastrophic floods, so none of them are the endpoint. In
this aspect, surface water, groundwater and geological structure function as a unified
system under the dynamic processes of their lifecycles, especially due to the impact of the
external factors.

In this paper, an approach for pre-forecasting is discussed for explaining and fore-
casting the flood and/or mudflow (debris) formation processes, as well as the nonlinear
hydrodynamic phenomenon of spreading out water mass over river beds in mountain
conditions. The fact is that, usually, when it comes to the floods, only the precipitation
level is analyzed as a universal, key parameter. Our entire article questions this thesis
concerning certain, specific cases and the processes caused by flash increases in the water
masses due to groundwater (considerably increasing the expected level thanks solely to the
precipitation’s intensity).

In this case, a 3D crack-net, within the confines of a unified rivershed basin in a moun-
tain massif [2,5,16,20,21], is a natural transportation system for groundwater, varied by
dynamic stress from external factors. Thus, a map of hydrostatic/hydrodynamic pressure
distribution is a key point in understanding groundwater horizons in different states and
flow, including the impact of earthquakes of any magnitude [13,21].

At the end of the introduction, we consider it reasonable to pre-summarize the princi-
pal aspects of our concept, developed in the next sections of the presented article.

According to our approach, a riverbed is not just a surface formation but a part of
a 3D water structure. The basic principle of this concept is that river/stream fractures
are laid down and propagate in the rock as a result of accumulated stress relaxation. The
cracks formed in the rock extend not only along the surface, but also into great depths
(several hundred meters and/or even more). Groundwater is pulled into the crack zone;
the mechanism of this 3D process is connected to the action of internal (deep) pressure and
capillary forces (in the latter case, the water flow may spread at extremely high velocity
(see, e.g., [2])).

As a result, in the zone of such deeply fractured riverbeds, a directional rise of ground-
water up to the surface occurs. These waters are essential for river basin formation and
permanently (year-round) influence the functionality of river water systems [8,13,16].

As to surface flow, this is another, non-permanent component of the water balance,
which mainly depends on climatic conditions.

The paper is organized as follows:
In Section 2, we discuss the methods behind our basic concept, as well as both the

database involved and dynamic models for earthquake impact on floods due to 3D crack
network reconstruction.

The results of our study are presented in Section 3. We consider a short statistical
analysis for some localized 3D river basin areas using several parameters: river discharge,
precipitation level a artesian water level in wells. The study indicates the groundwater
state and proposes the required frequency of parameters measured in time. Additionally,
possible schemes of earthquake impact on several real floods are discussed.

In Section 4 (Discussion), the complex analysis results are considered, taking into ac-
count the basic principles of the possible influence of tectonics on groundwater-transportation-
system function.

In conclusion (Section 5), we briefly discuss the practical verification of the risks for
catastrophic flood development according to the proposed approach.

Appendix A includes several additional, objective databases useful for understanding
the basic concepts of our approach.

2. Methods

Several objective databases and their possible interpretations are discussed below,
helping to understand our approach. This is a non-standard concept, and in our opinion,
is a plausible hypothesis with a number of simple, preliminary demonstrations of several

115



Water 2022, 14, 1405

specific examples, taking into account the fundamental question of why the state of ground-
water and its transportation routes to the surface suddenly change dramatically at certain
times, even though, up until then, everything was in a dynamic equilibrium state. It is
difficult to demand a complete, general proof across all the available, numerous databases
on the problem from an initial, accentuated statement, but we are trying to demonstrate
reasonable tendencies. In addition, in our conclusion (Section 5) and in Appendix A, we
have provided some useful data on the subject.

2.1. Basic Concept of General Approach

Now we discuss the basic principles of the three phenomena in competition, varied in
different time and space scales:

(1) Precipitation in a specific, selected area and its level estimation in quantitative parameters;
(2) Discharge and water flow processes along the river bed, and related measurements

that were carried out;
(3) Groundwater distribution with regard to its volume and lifecycle by monitoring their

state at the time.

The key point of the problem is water-balance estimation during the event. How-
ever, with regard to the standard estimation procedure within the general model of the
water accumulation process (see Figure 4—cf. [1,2,4,5]), many questions and uncertainties
are discussed.

Figure 4. General schematic model of water accumulation and water-balance estimation.

At any rate, we are aware of certain fundamental information about rock mechanics
and river modeling [20,22], but, nevertheless, we can simplify the analysis procedure.

In general, it is difficult to describe such rapid dynamic processes embracing so many
factors, developing in real-time in fixed, stationary intervals (analogue to the well-known
problem of Zeno’s paradox [23]).

We have used a more fundamental point in our research methods, including an
approach stating that, to analyze a flood’s development, it is necessary to take into account
the influence of various factors dealing with the sudden change in the state of the 3D
system of the river basin in dynamic regime, primarily caused by earthquakes. Figure 5
schematically demonstrates this; i.e., the standard (a) and proposed procedure (b).
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Figure 5. The key parts of a river basin system’s functions: (a) traditional view; (b) our pro-
posed model.

Water flow variations under conditions of reconstruction in a 3D crack-net are schemat-
ically illustrated in Figures 6 and 7.

Figure 6. River functioning in a “normal” state.

Figure 7. Reconstruction of the mountain’s massive fracturing and the river’s underground
water supply.

As to the possible impacts on groundwater exits to the surface due to the configura-
tion/reconstruction of crack-nets (cf. [17,21]), the following earthquakes occurred in Russia
with a natural time delay that could have affected the above-discussed Amur River event
(see Figure 3):
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5.0, 4.4, 2.9 magnitudes, Sakhalin Island (4, 7, 9 July, respectively, 2013);
5.9 magnitude, Kamchatka (17–18 July 2013);
Volcanic activity in Kamchatka, Klyuchevskaya Sopka, Shiveluch (Summer, 2013);

Japan: 6.9 magnitude, Pacific coast of Japan (4 September 2013).
Further, after groundwater releases to the surface, localized in a certain place, the

process is characterized by a wave type with obvious signs of self-organization, and it can
be described (see, e.g., [24]) within the soliton model of nonlinear hydrodynamics when
the groundwater propagates over the surface after the local discharge exit as a trigger unit.

This approach (and the corresponding concept) may result in a more reasonable
preforecast and early warning system for natural water hazards/disasters, taking into
account groundwater’s dominant role in specific areas (see Section 3: Results and
Section 5: Conclusions).

2.2. Database and Complex Analysis

Now we take into account a reasonable factor within the confines of the basic principles
of tectonic impact on groundwater functionality.

First, we highlight the data collection undertaken for the subject under consideration;
i.e., we collected data concerning earthquakes and floods.

Second, during this data collection and analysis, it was necessary to solve a kind of
clustering task, which was determined by several factors of different types of information:

(1) Only disastrous/historical events (for observing the extremes of considered parameters);
(2) No coastal regions (excluding tsunamis);
(3) No seasonal events (excluding freshets);
(4) Acceptable spatial and temporal lags—not more than a month.

As an example of the summarized results, we display the data in Table 1 (according
to [21,25–27]).

Table 1. Data on several earthquakes and floods.

Earthquake
Location

Geographical Coordinates
of Epicenter

Date Magnitude
Depth of

Hypocenter
Flood Location

Flooding
Period

River Basin

Montenegro 43.15◦ N 18.86◦ E 21 May 2013 22:55 4.5 10 km

Germany
Czech Republic

Austria

May–June
2013

Danube
Elbe

Bosnia and
Herzegovina 43.81◦ N 17.05◦ E 20 May 2013 9:24 4.0 10 km

Algeria 36.85◦ N 5.10◦ E 19 May 2013 9:07 5.1 10 km

Muğla Province,
Turkey 36.96◦ N 28.49◦ E 16 May 2013 3:02 5.0 10 km

Texas, USA 32.03◦ N 94.42◦ W 2 September 2013 23:51 4.5 10 km

Colorado, USA September
2013 BoulderMexico 27.77◦ N 105.68◦ W 28 August 2013 20:29 4.3 10 km

California, USA 39.80◦ N 120.13◦ W 27 August 2013 0:51 4.2 10 km

Kansas, USA 37.52◦ N 98.74◦ W 23 May 2015 18:44 4.0 10 km Louisiana, USA June 2015 Red River

Kyrgyzstan 41.93◦ N 76.80◦ E 28 April 2017 5:01 4.7 10 km

Kazakhstan
Tyumen oblast,

Russia

April–May
2017 Ishim

Xinjiang, China 37.88◦ N 78.13◦ E 20 April 2017 3:39 4.6 10 km

Afghanistan
36.51◦ N 70.93◦ E
36.70◦ N 71.51◦ E
36.42◦ N 69.17◦ E

17 April 2017 23:04
4 April 2017 4:48
2 April 2017 2:48

5.0
4.8
4.8

184 km
167 km
46 km

Tajikistan 37.76◦ N 72.19◦ E 10 April 2017 6:57 4.8 110 km

Iran 35.73◦ N 60.42◦ E
31.23◦ N 60.43◦ E

5 April 2017 6:09
4 April 2017 0:12

6.1
4.5

15 km
10 km

Kazakhstan 47.19◦ N 85.06◦ E 4 April 2017 15:07 5.1 10 km

Mexico

19.62◦ N 95.90◦ W
17.21◦ N 99.54◦ W

17.60◦ N 100.97◦ W
17.87◦ N 94.40◦ W
16.79◦ N 98.26◦ W
16.26◦ N 98.75◦ W

15 February 2017 9:56
13 February 2017 7:29
2 February 2017 0:52
25 January 2017 20:54
12 January 2017 10:26

7 January 2017 6:16

4.4
4.7
4.7
4.9
5.0
4.6

32 km
34 km
23 km

179 km
39 km
10 km

California, USA February–June
2017 Sacramento

Vancouver
Island, Canada

49.38◦ N 129.30◦ W
49.92◦ N 127.60◦ W
50.22◦ N 129.95◦ W

12 February 2017 3:47
31 January 2017 1:38
6 January 2017 15:49

4.7
4.1
5.3

10 km
10 km
10 km
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Our preliminary analysis from different sources (cf. [13,17,21,26]), based on data
according to the International Seismological Centre, 1990–2019, with an average of every
4 years for many events (more than two dozen, 2010–2017), allowed us to determine the
likeliest parameters of the greatest risks for an earthquake’s impact on catastrophic floods
(see Figure 8): depth of hypocenter, ~10 km; point of epicenter on the Earth’s surface, ~VII;
magnitude ~5, i.e., by energy, ~1012 Joules.

Figure 8. Highest probability for catastrophic water events (by analysis from different sources):
magnitudes, intensity (in points/earth scores), and focal depth (hypocenters) that cause catastrophic
floods when an earthquake occurs. The data shown as a scheme is the max-risk for the event (all the
above 3 factors come together).

2.3. Dynamic Models and Reconstruction of 3D-Crack-Net under External Factors

A more complicated and universal dynamic model, i.e., the propagation effect of
seismic waves (from their different sources) in rock fracturing, may be established by
the SIR (Susceptible Infected Removed) model (cf. [27]): agents interacting in various
physical states. In this process, the model implies 3 possible agent states: “Vulnerable”—
S(t) (Susceptible), ready to accept the sign/state; “Unresponsive”—R(t) (Removed), will not
perceive the sign; “Infected”—I(t) (Infected), the agent has already successfully accepted
the sign and is ready to spread it. This approach also uses two parameters characterizing
the model process—the propagation rate of the trait (β) and the rate of “Immunization” (γ),
which can be interpreted as the saturation rate of the trait.

The equations for this case are [28,29]:

dS(t)
dt

= −βS(t)I(t),

dI(t)
dt

= βS(t)I(t)− γI(t),

dR(t)
dt

= γI(t),
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with initial conditions S(0) = S0 > 0, I(0) = I0 > 0, R(0) = R0 > 0.
The analysis results are shown in arbitrary units in Figures 9a–j and 10a–f—the expla-

nations are given in Figures.

Figure 9. SIR model for seismic wave propagation from sources: S(t) + I(t) + R(t) = const = N (from
the number of objects N). Solutions (in arbitrary units) of the trait propagation model by cellular
automaton method for β = 0.029, γ = 0.01, T = 100: (a) N = 100, S(0) = 10; (b) N = 10000, S(0) = 10.
Different colors indicate the cell states—from 0 to 2; for β = 0.029, γ = 0.01, N = 10000: (c) T = 100,
lower-right corner; (d) T = 500, lower-right corner; (e) T = 100, upper-left corner; (f) T = 500, upper-left
corner; for β = 0.029, γ = 0.01, N = 10,000: (g) T = 100, the upper limit of the computation domain;
(h) T = 500, the lower limit; (i) T = 100, the left border; (j) T = 100, the right border. Here, T stands for
the relative number of steps in time and specifies the distribution in the uniform grid with step h.

Figure 10. Seismic process propagation from a single isolated source (radius r). Initial conditions
and solution–image for the propagation region of the studied state (in arbitrary units): (a) initial
conditions r = 2, T = 4; (b) corresponding solution, but already for T = 100; (c) initial conditions r = 10,
T = 4; (d) decision, but for T = 100; (e) initial conditions r = 20; T = 4; (f) decision, but for T = 100,
where T is also the relative number of steps in time and specifies the partition on the uniform grid
with step h.

The integration of the obtained images helps systemize flood risk areas under the
influence of tectonic processes for both boundary propagating events and singular iso-
lated sources.
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Interpretation of the obtained images helps us to systemize the risk areas for flood-
ing under the influence of tectonic processes for both boundary propagating events and
singular sources.

Since groundwater transport routes are very sensitive to external influence, it is
necessary to analyze the reconstruction of the 3D crack-net due to external factors [13,16,21],
cf. Figures 6 and 7.

However, now the propagation anisotropy (due to inhomogeneous medium) should
be taken into account. We carried out a simulation modeling for that using a computer
program for modeling pressure maps in groundwater within fractured rocks. The main
points for this procedure included the following items (cf. [30]):

(1) The basis was crack fractal modeling in the rock structure;
(2) Cracks were superimposed on the earth surface profile where points of crack emer-

gence on the surface were formed.
(3) It was assumed that the entire crack network was filled with water;
(4) The pressure in the head fracture was set, and the computer algorithm calculated

what pressures would be at the emergence points of different surface exits;
(5) Excluded cracks not coming to the surface and could create a tension zone inside

the rocks.

The results obtained by this procedure are schematically shown in Figure 11. A model
was selected to calculate the pressure in groundwater, and the pressure in the starting
fracture was entered. Then, pressures were obtained at the point where the cracks emerged
on the surface.

Figure 11. Computer simulation program for modeling groundwater pressure maps in fractured
rocks: (a) dilution procedure; cracks that do not go out are excluded; (b) all cracks come to the surface.

The parameters set the coefficients for constructing the fractal tree. The numbers show
the pressure quantities on the land surface when the initial source marked by a red star
shows 120 atm as an induced pressure in the underground horizon. Pressure distribution
data (marked by letter T with a digit), but only for the 7 outlet cracks that came to the
surface, are presented below:

Initial pressure: 102000000 Pa.
T0: 2255009,15121366 Pa
T1: 2403699,590101134 Pa
T2: 2318031,00487013 Pa
T3: 2547345,0097631 Pa
T4: 5482358,92737351 Pa
T5: 5496730,73606538 Pa
T6: 5559331,83642009 Pa
T7: 5579804,96799125 Pa
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Thus, a model was selected to calculate the pressure in the groundwater basin using
the pressure in the starting fracture being entered—in practice, it should be measured
by some instrumentation. Then, pressures were obtained at the points where the cracks
emerged on the surface (vs. the 3D crack topology): ~dozens atm on the land surface
(Figure 11).

This is a huge value. In fact, only about ten atms is enough for the destruction of artifi-
cial coating in concrete and asphalt on coated reinforced roads, caused by breakthroughs
from underground waterpipes (cf. [14,22]).

We can recall a similar natural event, e.g., a geological phenomenon that was witnessed
in the Indian state of Haryana (21 July 2021) in the north of the country, when the flooded
land suddenly began to rise above the lake-water level. It became covered with cracks and
swells (dynamic video is presented in [31]) caused by the sudden change in groundwater
pressure. The situation is typical for mud-volcano eruptions [1,2,17,32].

All these processes can be analyzed in the simple hydrological models of the pneumo-
hydraulic system (cf. [2,5,13,22]).

3. Results

As to the results of the considered approach first, we discuss a short statistical analysis
“by measurements” of several parameters for some localized 3D river basin areas using
groundwater state indication, with a proposal for how frequently it is necessary for the
parameters to be measured in time: river discharge, precipitation level, and artesian
water level in wells. First, we talk about key parameters in the database concerning these
problems, obtained with different measurement procedures, without which, it is impossible
to carry out any statistical analysis.

Second, within the confines of the general approach, we account for the basic conse-
quences of possible tectonic influence on groundwater-transportation-system functionality.

Resulting from the reconstruction of the 3D crack-net under external factors, we also
briefly discuss the practical verification of the risks of catastrophic flood development,
applying the proposed approach.

All necessary parameters used for our consideration were obtained through official
database analysis (see [7,10,11,25,26,33–35]).

3.1. Statistical Analysis

The key items for this study are:

• Independence/coherence/steady state of each process development according to its
internal laws, as determined by autocorrelation function;

• The processes of correlation and mutual interaction being demonstrated in pair/crossed
combinations;

• The same correlations but with different time shifts due to obvious and reasonable
delays between different processes by selecting optimal time-shift as an adjustable
parameter;

• Forecasting procedure with predictable parameters in time for the studied processes
based on known/measured initial/fixed values.

We have carried out such procedures within the frame of the basic approach via general
numerical statistical analysis concerning over 30 water events, but only 3 catastrophic
floods in the USA river basin are presented as examples (Mississippi/Missouri (2011,
Louisiana State), Boulder Creek (2013, Boulder County, Colorado State) and Santee (2015,
South Carolina State)) because of the available/necessary data that were used for them
(cf. [11,13,19,21]).

The subjects under consideration:

(i) Discharge and precipitation—are under season variations;
(ii) Groundwater—relatively speaking, is not directly correlated to season specifies;
(iii) Correlations/anticorrelations—do exist for such parameters as discharge mass, ground-

water state and precipitation level.
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As a result, we have made local conclusions over the data analysis in both different
areas and time intervals for the observed water events in the form of obtained correlations.
The objects and procedures of statistical correlation analysis are well known from textbooks;
therefore, only the obtained final results for the four specific events are presented in Figures.
displayed in Figures 12–14 and in Table 2 (database used from [7,10,11,25]). They are
as follows:

(1) During catastrophic floods: the peak correlation of both precipitation (the Missis-
sippi/Missouri region (no flooding simultaneously)) and discharge (on July 2011)
were observed, but, as for groundwater level, the process of downfall occurs only in a
single month (August 2011), and it has not recovered even in 2 years.

(2) As to autocorrelations for each unit: Strong for groundwater but weak for both
precipitation and discharge take place.

(3) For mutual/pair correlations in a more detailed analysis we received:

• Negative correlation/anticorrelation coupling for groundwater and discharge in
general, but it did not couple directly during the flood;

• Positive correlation coupling for precipitation and discharge but with some
variations in time;

• No direct correlation coupling for groundwater and precipitation at the same
time interval.

(4) We recognized a pair correlation of the processes with a temporal shift (±over several
months) and did optimization by searching for the maximal correlation for the river
basins: 1 month for the Mississippi and the Missouri, but 3 months for Santee.

(5) Regressive multifactor analysis was carried out with 0.33% accuracy for local data in
comparison with averaging all data.

Figure 12. Cont.
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Figure 12. The Mississippi River, near New Orleans, Louisiana. (a) Monthly statistics graph based
on water flow rate data in the Mississippi River. Water discharge behavior in the Mississippi River
during the period from 1 January 2008 to 31 December 2016. (b) Monthly statistics graph based on
the water table data of the Mississippi River. The groundwater level behavior in the Mississippi River
from 1 January 2008 to 31 December 2016 (positive correlations). (c) Monthly statistics graph based on
Mississippi basin rainfall data. Precipitation amount behavior in the Mississippi basin from 1 January
2008 to 31 December 2016. We received positive pair correlations for (a,c) and negative correlations for
(a,b); the facts probably demonstrate a tendency to flooding. On the horizontal axis–the breakdown
of data by year/month. On vertical axes–(a) water discharge (in feet/sec); (b) groundwater level (in
feet); (c) precipitation level (in cubic feet).

Figure 13. Statistics for the Santee River, South Carolina (“up/down” correlation for water consump-
tion and groundwater showing the local reduction of underground reserves due to flooding). On
the horizontal axis–the data by year/month. On vertical axes–volumes of water for precipitation
(in cubic feet), water consumption (in cubic feet per second) and groundwater level (in feet). Red
diamonds mean a noticeable anticorrelation of groundwater level with water masses in the form of
precipitation and water consumption.
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Figure 14. The results of mathematical modeling for flood forecasting based on statistical data for the
entire research period (i–number of months): (a) for the Mississippi river; (b) for the Santee river;
(c) for the Missouri river; (d) more detailed scale fragment for the Santee river (see text above the
figures). Here, Q–real water flow (feet/s) (red) and predicted dependence (blue).

Table 2. Calculation results of the visibility coefficient γ (showing the process of correlation in time
for the units) based on the data for water consumption/discharge, ground water level, and the
amount of precipitation in the study areas.

River
γ for Water Flow

(Discharge)
γ for the

Ground Water Level
γ for Precipitation

Mississippi (May 2011) 0.89118678 0.271321887 0.857674013

Boulder Creek
(September 2013) 0.996339325 0.220981998 -

Santee (October 2015) 0.959963899 0.547425876 0.900993342

Missouri
(2011) 0.901901813 0.653395031 0.857674013

The corresponding graphs are shown in Figures 12–14.
A graphical analysis for the Mississippi River shows that, in the 9-year observation

interval within database, for each year, with the exception of 2012, its activity correlation
peaks were tracked. In the case of flooding in 2011, these correlation peaks occurred in May,
being the month of flooding (Figure 12).

The results of data processing for the Santee River are presented in Figure 13.
The water consumption forecast at future points in time (t) was carried out based

on dependence on the current database—water consumption, groundwater level and
precipitation intensity—by the formula:

Q(t + Δt) = f(Q(t),h(t),P(t))

where Q(t + Δt)–forecast of water flow through Δt time periods; Q(t): current consumption;
h(t): the current groundwater level; P(t): the amount of precipitation at the current moment.
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We carried out an adjustable procedure for fitting the correlations of different types
for the 3 mentioned above rivers (Figure 14). On the vertical axis—the solid red line QSi ,
marks the statistical by real maximal flow of the rivers in the flood years. On the vertical
axis—the italic blue line Qt+Δt , marks the predicted maximal water flow rate. As to the
i-index, it indicates the number of months for the analysis made.

The generalized correlation data for the time-dependent oscillations of the processes
are presented in Table 2. The analysis is carried out by the visibility γ-coefficient for
maximal (Imax) and minimal (Imin) water level: γ = (Imax − Imin)/(Imax + Imin) = [0,1]. In
the dynamic oscillatory process, we received γ → 0 for dip variations and/or γ → 1 for
stable/steady-state (~constant level).

Finally, let us briefly discuss the analysis procedure, i.e., for the Mississippi river, 2011.
First, let us compare two factors: discharge and the precipitation level from 1 January

2011 to 31 December 2011. For correlation coefficient K (“day by day”) we received an
unexpectedly very small value of K ∼ 0.011 (maximal discharge period was during May
and exceeded the usual level, e.g., in February, 7 times).

Second, as to correlation coefficient K between precipitation and groundwater level,
its value was small as well (K ≈ 0.060), but the groundwater level did not sufficiently vary
during the whole of 2011 in contrast to the precipitation intensity for the same area of
approximation. This means that precipitation does not directly impact immediately (we
forget here about different the localization of stations in the areas under measurement).
To adjust the day shift parameter for the maximal value of the correlation coefficient, we
increased it and attained the values for two discussed cases, though not more than K ∼ 0.7.

The correlation between discharge and groundwater levels during the flood, with
several days’ shift, is shown in Figure 15. The results are the following.

Figure 15. Correlations (vertical axis) between river discharge and groundwater level vs. selected
days’ shift (horizontal axis).

In quiet seasons (before the flood) the correlation coefficient K between these two
factors (discharge and groundwater level) is K = −0.74 (anticorrelation events), which
means that an increase/decrease in river discharge depends on a decrease/increase in the
artesian water level. These natural cycles in time are typical for a river basin area in an
equilibrium state.

When the flood occurred (May 2011) we had K ∼ −0.50 for the measurements made
“day by day”.

However, with the day shift over 13 days (pre-event days were fixed for different
events), we received practically absolute correlation: K13 ∼ −0.994 for a distance of ∼200
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km (according to station sourced for database collection), i.e., artesian water obviously
resulted in surface-water discharge increase (see Figure 15).

However, all these conclusions are relatively problematic and show trends because,
first, they strongly depend on the averaging scale for available data. The procedure of the
averaging scale for available data means that these data were taken at fixed points in time
and localized areas for different spatial locations where the monitoring stations are located.
Second, the discharge parameter was determined not only by water mass itself but flow
velocity in general. Third, the correlations between different processes strongly depend
on the temporal shift in days (both natural and modeling) for the events—observable and
calculated. Fourth, the dislocation of the stations, being the resources of the database,
cannot be controlled absolutely in the same studied areas.

3.2. Earthquake Impact

Systematized results in possible schemes of earthquake impact by the wave propaga-
tion process are shown in Figure 16 (according to database [26,33–35], cf. [13,21,27]).

Figure 16. Relative positions of groups of earthquake epicenters regarding the flooding area: (a,b)—
one-directional arrangement; (c,d)—two-directional arrangement; (e,f)—multi-directional arrange-
ment. White hexagons—the earthquakes epicenters; black ovals–the flooding areas.

A special case is the 2013 (12–15 September) Boulder Creek, Colorado, catastrophic
flood (Boulder County) [18,25]. In fact, in this case, long-lasting heavy rains (430 mm
of precipitation) resulted in a water discharge increase in Boulder Creek, from 5 m3/s
to 140 m3/s, which was unexpected due to both the great value and large area of the
water accumulation for localization, that is, in such a small riverbed without taking into
account coupling with the flash process of the groundwater exit. In addition, if we take
into account preceding earthquakes (4.2 magnitude, North California (27 August 2013);
4.3 magnitude, North Mexico (28 August 2013) and 4.5 magnitude, East Texas (2 September
2013)), then the event becomes understandable due to a reconfiguration of the crack-net for
groundwater exit.
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Previous research concerning the interconnection of floods and preceding earthquakes
has an even brighter example of such a manifestation for a similar case because of the
constructive interference of three different seismic waves which were probably focused on
one point of location (for simplicity, we have presented the circular seismic wave fronts)—
see Figure 17 and the associated Table in the right upper corner. If the hypothesis of
interconnection between floods and preceding earthquakes is true, the 2013 Colorado flood
was obviously predictable [18,36].

Figure 17. The Boulder County (Colorado, USA, purple circle on the map) event, located exactly
where three wave circles cross, with centers in the earthquakes’ epicenters (yellow circles on the map);
i.e., this region has experienced a great conflict of seismic waves.

4. Discussion

A significant increase in runoff volume causes the depletion of groundwater resources
at the end of a flood when this resource has been depleted for some period. The duration of
this period is defined by the groundwater recharge rate in specific geological, geographical
and climatic conditions.

One more important aspect of such depletion of groundwater resources is connected to
the strange factor of increased wildfire risk in the future. In fact, for example, the flooding
in California, USA, in February–June 2017 lasted for half a year, and afterwards, large
wildfires occupied the state and lasted for two following months (see Figure 18) [36]. This is
possibly connected to insufficient soil moisturizing after the flood as water goes to balance
the recovery of deeper aquifers.
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Figure 18. Unexpected consequences of disastrous floods in the USA (2017). (a)—white hexagons–the
earthquakes epicenters; black oval–the flooding area; (b)—the wildfires seats.

Another feature concerns the hydrostatic pressures map in the 3D crack-net of the
river basins, similar to the system for communicating vessels. In fact, for example, when
the flood in the Amur River basin (2013, Russia/China) is analyzed [14], the neighboring
surface river basins of the Amur and Lena (Russia) rivers can be considered to be connected
because of a possible common source in an underground basin. Moreover, simultaneous to
the disastrous Amur flood, the phenomenon of water level falloff in the Lena River below
the navigable level was observed [37].

Indeed, our analysis provided similar results concerning floods in Kazakhstan and the
Tyumen region (Russia) in spring 2017 [38]. The same phenomenon occurred in the surface
basins of the Ob River (Russia), where the flood developed, and the Yenisei River (Russia),
which abut to each other. Thus, large wildfires along the Yenisei River basin are more
likely to occur because of the simultaneously development of a flood on the Ob River. It is,
evidently, natural for us to take into account the depletion of the common groundwater
basin of these rivers (see Figure 19).

Figure 19. The river basins’ interconnection. (a)—the Amur and the Lena Rivers, (b)—the Ob and
the Yenisei Rivers. White hexagons—the earthquakes epicenters; black ovals (1)—the flooding areas;
black ovals (2)—the areas of wildfires propagation.
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This is why connections between underground basins of different (great) rivers may be
a global phenomenon on a geological scale [39], but the process is dynamic, and earthquakes
may play a universal role in coupling phenomena over great distances (see Figure 20).

Figure 20. A groundwater map of both the Amur River channel and the upper reaches of the
Yenisei River (marked by closed areas), which lie close to the earth’s surface and are characterized by
instability in the hydrological regime: (a) at the junction of the Baikal and Caledonian folding; (b) at
the junction of Baikal, Herzian and Mesozoic folding (according to the World-Wide Hydrogeological
Mapping and Assessment Program).

Detailed and possibly quantitative analysis is a matter of future study.
In addition, we carried out a computer simulation of the trigger water discharge/

mudflow process from underground up to the surface using the soliton nonlinear hydro-
dynamic model (see, e.g., [24]), being a multi-developed structure in dynamics, caused
by propagation along the inclined surface (cf. [13]). The process from the very beginning
was under the thixotropic effect, reducing the liquid mixture viscosity under vibration for
various reasons (cf. [2,22]), e.g., due to microseismic effects—Figure 21. This is a natural
dynamic consequence for the debris event occurring due to the sudden reconstruction of
the 3D crack-net near the surface, and local flash discharge of groundwater.

Our analysis shows that the mudflow process can be represented by four-stage devel-
opment and propagation for a mudflow soliton: (1) the main mudflow discharge occurs
there; (2) the process falls into separate soliton satellites; (3) it is the stage of self-organization
for these satellites according to the values of their amplitudes in the propagation process;
(4) the soliton is breaking, i.e., turning over (great nonlinearity) or a decay (great dissipation)
process takes place.

The model is probably applicable to the Crymsk City debris event (Russia, the Cau-
caseus region), 2012, (cf. [8,13]), and may be reasonably applied to any debris event in a
mountainous landscape under stochastic processes of a different nature [40,41].
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Figure 21. Computer simulation of trigger water discharge/mudflow process—soliton nonlinear
hydrodynamic model. The multiple solitonic variation regime propagation is shown and developed
from a single soliton from the very beginning due to pressure variation over the induced stable
channels in the void cavity system (the discharge/mudflow exit on the surface is indicated by the
red star, 1). BB–collecting funnel; CB–mudflow soliton wave; Δh–hydrostatic thrust/pressure head;
1.–mudflow gate; 2.–surface water with drainage process contribution; 3.–multisoluton movement;
4.–final surface flows.

5. Conclusions

According to our study, we summarize the obtained results in the following aspects as
a practical verification for the proposed approach based on an objective database of the
events (e.g., presented in [7,10,11,25,26,33–35,42–45]).

1. Based on the discussed model, forecasts with vital information about both ground-
water hydrostatic/hydrodynamic pressure distribution and water flows, carried out
by a water crack 3D map in mountain massifs, should be introduced into theory
and analysis.

2. A necessary condition for the dramatic development of the phenomena is the breaking
down of impermeable rock caused by sudden openings in crack-ways (previously
blocked), that become active for some reason; e.g., due to shower runoff impact,
geo-thermal stream influence, or earthquakes.

3. The water from the top hill-lake/reservoir and/or down-lake/reservoir (local base
level) can reach the below and/or upper river area (the base level) via the activated
groundwater transportation routes due to connecting vessels affected by the develop-
ment of a backwater process because of intrinsic pressure variation.

4. Traditional and artesian wells, being preliminary and artificially made by a certain
topology strategy, bring up an opportunity to formulate water cracks with hydro-
static/hydrodynamic pressures in the 3D map of the mountain massif; i.e., a recogni-
tion of the water flow physical state for modeling. This approach results in knowledge
of real parameters for modeling and, finally, for a forecast map design taking into
account the necessary databases by satisfying the greatest challenges for acceptable
risk estimation and early warning systems.
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Additionally, within the framework of this concept, graphic illustrations of floods
in Europe (2013) are shown in Figure 22 (see also Figure A1 in Appendix A below), and
the corresponding explanations are presented. Thus, based on our proposed approach, it
is possible to assess potentially dangerous areas for preliminary predictions of possible
catastrophic floods.

Figure 22. Flooding in Europe–05-06, 2013 (both without and with designation): yellow circles–
earthquake epicenters; purple circles–fixed location of the flood areas; transparent red circles–
schematic representation of seismic wave propagation; gray curves–lithospheric plate boundaries;
areas with cranial border–potentially dangerous zones (marked by red color areas) for catastrophic
floods based on seismic factor analysis in association with the river basin landscape.

As to a global reason for instability in 3D river basin states, this aspect may be ex-
plained by solar–terrestrial relations being a typical process with regard to the subject
under consideration (see Figure 23 for statistical analysis of seasonal changes in M ≥ 7
frequency earthquakes from 1900–2004, presented as a percentage of the average value for
2659 events, by Prof. A. Yu. Reteum from Lomonosov Moscow State University—private
report, according to, e.g., [33,35,46], and based on the data from the International Seismo-
logical Centre, 1990–2019, with an average of every 4 years). The discussion of the problem
in different aspects is presented in [4,46]. However, practically, catastrophic water events
often occurring simultaneously in different regions of the Earth supports this global thesis
(cf. [7,10,11,26,33,35,45]).

Our analysis shows that the mudflow process can be represented by four-stage devel-
opment and propagation for a mudflow soliton: (1) the main mudflow discharge occurs
there; (2) the process falls into separate soliton satellites; (3) it is the stage of self-organization
for these satellites according to the values of their amplitudes in the propagation process; (4)
the soliton is breaking, i.e., turning over (great nonlinearity) or a decay (great dissipation)
process takes place.

The model is probably applicable to the Crymsk City debris event (Russia, the Cau-
caseus region), 2012, (cf. [8,13]), and may be reasonably applied to any debris event in a
mountainous landscape under stochastic processes of a different nature [40,41].
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Figure 23. Analysis results for solar–terrestrial relations with regard to earthquakes occurring.
Seasonal changes in earthquake frequencies of more than magnitude 7 for 1900–2004, in comparison
to the average value percentage (%) over 2659 events for each 20-yr period. Months 6–7 and 10–11 of
the year are usually the most dangerous for the occurrence of catastrophic floods.

Figure 24. Natural time-scale dependence for the warming and cooling periods over the last
2000 years.

Thus, it seems to be reasonable to conclude that all global processes in the Earth
lifecycle are determined by solar–terrestrial relations. However, such a fundamental
approach requires more detailed study based on lots of reliable data and adequate modeling
for different regions.

Finally, we note that, to consider the subject in progress, we have to overcome the
problem of not having enough databases containing observable events to make adequate
analysis, and thus, we need a better, new knowledge base concerning the development of
events in different times and areas. Then, we can carry out simulation modeling within
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the confines of methods for stochastic, nonlinear, dynamic processes by the manipulation
of key uncertainty parameters involved in model (induced by many factors: precipita-
tion, temperature, solar radiation, soil state, rock composition and structure, landscape
relief and rivershed basin characteristics, crack-net structure, groundwater debit timing
and mapping).

This will allow you to perform, firstly, a search for big fluctuation occurrences, resulting
in the development a complex processes under the required conditions in a nonlinear
stochastic wave system and also to study stability levels under external perturbations
and/or the principal variations of vital parameters in such a system. Secondly, it will
allow you to carry out predictive modeling using achievements in the quantum uncertainty
physics approach and technologies for forecast procedures of complex processes based on
many competive parameters.

In conclusion, we can formulate preliminary recommendations for the identification
of earthquake influence on disastrous floods in a 3D river basin. Within the framework of
presumably connected preceding earthquakes and historical/disastrous subsequent floods,
the possible classification of probable conditions for these subjects may be grouped in the
following ways.

Firstly, to make the analysis with regard to the relative positions of preceding earth-
quake epicenters:

(1) One-directional arrangement: it can be both a single earthquake and a group
of earthquakes.

(2) Two-directional arrangement: the general case is the arrangement of epicenter groups
at different distances and directions from the risk zone; in this case, an additional
analysis of local geological structures and groundwater recharge rates is necessary
(the example of a special case is the arrangement of epicenter groups at equal distances
from the risk zone).

(3) Multi-directional arrangement from any earthquake source.

Secondly, to consider the factors influencing groundwater 3D-transport-net topology:

(1) Blockage of some parts with dramatic pressure rises in the net with a water-hammer
manifestation on the surface.

(2) Connection/disconnection of groundwater basins (smoother development of flood;
longer effect of flow).

Thirdly, to take into account the spatial scale of manifesting consequences:

(1) Local restructuring of 3D-transport-net topology that does not break the stable regime
of river basin functionality.

(2) Significant restructuring of the 3D-transport-net topology that breaks the stable regime
of the river basin’s functionality and causing the water level to rise in the river,
resulting in the flood.

(3) Significant restructuring of the river’s 3D-transport-net topology that affects the
common, unified groundwater basin, e.g., for two rivers, and causing a catastrophic
rise in the water level in the river (for one surface river basin) and a fall in water level
in the river (for another neighboring surface river basin).

These recommendations are preliminary but not exhaustive, as there are plenty of
specific territory features that are outside of the considered classification, but which may
play a key role in the emergence and development of disastrous floods. However, these
recommendations are useful in the case of pre-forecasting probable disastrous water events
as a recognition of the tendency and trends of their arising.

Finally, let us use the database for both volcanic activity and possible earthquake
impacts on flood development as a preliminary hypothetical/speculated demonstration,
summarized in Table 3 (for database, see [19,26,33–35].
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Table 3. Tectonic processes, flood locations and probable coupling.

Items
Selected Collection of Seismic

Events/
and Data/and Magnitude

Proposed Related
Flood/

and Data

Time Factor/
Time Delay for

Coupling

Distance between
Two Events

(Coupling Scale)
Note

I. Basic events/test events for establishment of the coupling

1. Nord Japan/
26 April 2001/5.96

Lensk (Yakutiya,
Russia)/

14 May 2001
18 days 2.2·103 km (1) artesian cracknet with spatial

distance of groundwater
coupling—about few thousand km

(2) sudden modification of the
3D-crack topology and resistance

against the fluid flows

2. Nord Taiwan/
14 June 2001/5.87

Kultuki (Irkutsk region,
Russia)/7 July 2001 23 days 3.4·103 km

3 Afghanistan/
3 January 2002/6.05

Temruke (Krasnodar
region, Russia)/
10 January 2002

7 days 2.9·103 km

II. Verification of the proposed coupling (events at present)

4.
Popocatepetl Volcanic eruption

(Mexico)/
5 July 2013

Ruyaya State
(Mexico)/20 July 2013 15 days 1.3·103 km

Should be the flashy flow process due
to the ground pressure sudden

enhancement ~1000 atm
5.

(a) Instability Land Cluster in time:
Sakuradzima Volcanic eruption

(Kyushu island, Japan)/
10 July 2013/ emission of ash from the

volcano up to
3 km height;

(b) Izu Archipelago (Japan)/
11 July 2013/ 5.3;

(c) Nord-East Honshu island (Japan)/
13 July 2013/ 4.5

Nord Honshu (Japan)/
18 July 2013 5–8 days

1.9·103 km
0.9·103 km
0.2·103 km

6.

Kamchatka (Russia)/
17–18 July 2013;

Volcanic Shiveluch/
on July 2013

Ivanovka (Amur region,
Russia)/

20 July 2013
Kamchatka (Russia)/

29 July 2013

3 days
1–3 days from last

eruption

5.5·103 km
0.4·103 km

Continuous Earth-quake vibrations
result in 3D-reconstruction of

crack-net in continuous dynamics

III. Neural-Net training

In progress Needs a reasonable database

V. Forecast for acceptable risk

In progress Final goal: The risk mapping design
in both space and time

These kinds of selected events, under the analysis of the possible coupling in tectonic
processes and floods, may be presented as an adjustable preliminary catalogue for future
study. In fact, our analysis shows that the strategy for such correlation between the
localization of earthquake/volcanic eruption and ongoing floods on river basins may be
affected in the latitude of 30–50◦, with no more than 180 days delay in time and in a fixed,
minimally estimated distance between these two phenomena in space.
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Appendix A

Now we present several objective databases and illustrations helpful to understanding
the basic concepts of our approach. The principal background database platform can be
found in [40,41,49–56], and is useful for initial analyses.

The demonstration according to our model:

1. In the enclosed figures, we show the water reach/risk area for accidents with regard to
groundwater and surface lakes interacting with pressure variation in the 3D crack-net
of a river basin caused by both heavy rains and seismic activity [10–12,25,26] (see
also [35,42]).

2. If we talk about liquid/groundwater movement in cracks with a small cross-section,
the speed of such movement strongly depends on fractured rock composition,
which leads to a paradoxical result where a more viscous mixture has higher
velocity (see [53–55]). This issue with hydrodynamics and related phenomena
(see [1–3,17,34,56]) requires separate consideration for each specific underlying surface
case, in association with the discharge and debris processes.

Figure A1. Due to heavy rains since 12 July 2021, the tributaries of the Rhine Ar and Moselle, as well
as several smaller rivers, have overflowed their banks in the west and southwest of Germany. The
main impact of these elements fell on the lands of North Rhine-Westphalia and Rhineland-Palatinate.

Finally, it is interesting to note that groundwater-state monitoring is possible by
reaching depths of 10–20 km using novel drilling technology [57].

Some practical approaches to optimize control policies for reducing urban drainage
flow generated by some methods outperform in both peak flow reduction and rainwater
availability, as considered in [58].

This approach (and the related concept) may result in more accurate forecasting and
early warning systems for catastrophic water events in the form of Emercom Agency
activity (cf. [59,60]).

Finally, to study both the dynamics of the groundwater lifecycle and the natural
background processes of water horizons, it is reasonable to use a database and different
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protocols and approaches for the measurement of the movement of potentially toxic com-
pounds as a possible instrument of monitoring a water way’s distribution in a system in
order to make a forecast.

These methods are very well developed for the subject of groundwater management
in a practical sense (see, e.g., [61]).
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Abstract: As a levee failure and the consequent flooding cause significant financial losses and some-
times human casualties, they have led to considerable concern among city officials. Therefore,
researchers have devoted considerable effort to investigating the hydraulic characteristics of sudden
transient flow in the form of propagated waves to inundation areas during a levee and/or dam failure.
A large number of studies, however, have mostly focused on simple one-dimensional cases investi-
gated numerically and/or experimentally, and thus, important hydraulic characteristics, particularly
near the failure zone, have not been adequately captured because of three-dimensional complexities.
Taking these complexities into consideration, this study conducts a large-scale experiment to examine
the characteristics of wave propagation in an open area caused by a gradual levee failure. From the
experimental observations, this study provides the propagation speed of a wave front and suggests a
formula for the maximum flood depth corresponding to the peak flood wave in the inundation area.
We expect the findings to provide hydraulic engineers and scientists with fundamental insights into
transient flow during a gradual levee failure. By contributing to our theoretical understanding, the
measurements can also be used as validation tools for future numerical simulation and are likely
to contribute to the establishment of emergency action plans that can help city officials cope with
flood inundation.

Keywords: flood risk; large scale experiment; levee failure; wave propagation

1. Introduction

A levee is an elongated, naturally occurring ridge or artificially constructed fill or
wall that regulates water levels to prevent the overflow of a river [1]. It is often parallel
to the course of a river in its floodplains or along low-lying coastlines. As they allow
easier access to water resources and benefit transportation along the levee, many large
cities have historically been located near levees, and this trend continues. As a result
of population growth and industry demand, cities have constructed a number of levees
since the late 1970′s. Nevertheless, despite their importance to the greater benefit of
humans and as a viable solution to reducing flooding, if levees are the last line of defense
against floods [2], unexpected rising water levels by heavy rain and ensuing flood danger
caused by levee failure can lead to a catastrophic impact on people, infrastructures and
the economy [3]. Several examples of such events have been alarming and disastrous.
In 2005, Hurricane Katrina in New Orleans, Louisiana, in the U.S. caused $135 billion
dollars in damages and 1500 fatalities [3]. More recently, in May 2020, a series of dam
and levee failures by flooding in mid-Michigan caused over $200 million in damages, and
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approximately 11,000 residents were hurriedly evacuated ahead of the flooding [4]. In 2003,
in Korea, Typhoon Maemi damaged over 3000 hydraulic infrastructures, including levees
and bridges, where the repair cost exceeded $4 billion. Recently, the National Disaster
Management Research Institute of Korea [5] classified levees as among the most vulnerable
hydraulic infrastructure during flooding. Even more worthy to note is that, in the face of
recent climate change and aging infrastructures, together with growing, densely populated
areas next to levees, the importance of the hydraulic and hydrologic behavior of water in
case of levee failures accompanied by their reinforcement techniques have captured the
spotlight in hydraulic, geotechnical, and water resources’ research communities.

When a levee fails, large volumes of water enter through the opening at a very high
speed within a very short time, and the momentum of the water transforms into flood
waves that pour into inundation areas. Therefore, to identify areas at risk of flooding due
to a levee failure and to establish an emergency action plan in response, risk management
teams must understand the characteristics of flood wave propagation. Representing the
physical characteristics of the flood waves by using simple kinematic wave equation,
however, is challenging. After all, large scale geometric factors [6–9] as well as small scale
local flow factors (i.e., non-hydrostatic pressure distribution and local turbulence effect
close to the levee opening [10–12]) are required factors with which researchers are able to
more accurately estimate wave propagation.

To determine the physical mechanisms of the development of flood waves caused
by a levee failure and the resulting impact on inundation areas, researchers have devoted
significant effort to the study of the phenomena. Because of the rapid development of math-
ematical power, the application of computational fluid dynamics (CFD) has become more
widespread. Studies have applied one dimensional [13–15] and two-dimensional [16–18]
numerical models whose overall effectiveness and reliability have shown acceptable re-
sults [7,19]. As the numerical models, however, are based on shallow water (or Saint-
Venant) equations, they are not able to detect some important hydraulic characteristics,
particularly those close to the opening area, because sudden transient flow near a structure
leads to a unique flow field that cannot be reproduced under hydrostatic assumption, as
the assumption is in a shallow water equation. Furthermore, the variation in the flow
components caused by a levee failure are complex and three-dimensional. Recently, with
the help of advanced computing technology, a number of researchers and engineers have
focused their attention on three-dimensional dam/levee break(failure) flow simulation.
Larocque et al. [11] used large-eddy simulation, coupled with k-Ɛ models, to simulate abrupt
dam break flow. Zhang et al. [12] applied a three-dimensional, unstructured mesh finite
element model and successfully reproduced the flow field along an L-shaped open channel
after a dam-break. Upon closer investigation, however, recent studies have revealed that
numerical uncertainty, arising from time and spatial discretization errors, erroneous con-
ditioning, and convergence and accuracy issues, continues to be a principal shortcoming
related to CFD, leading to inconsistent results from computations and reality [20–22].

In laboratory experiments, Lauber and Hager [23], using a 14-m long, 0.5-m side
rectangular flume, found significant features of dam-break flow propagating into a hori-
zontal dry bed. In their experiments, they initiated the dam-break flow from an upstream
reservoir of the flume by removing a vertical gate quickly and then measured the depths
of local flow and the velocities of a wave front transferred into the downstream dry bed
through the flume. From their measurements, they introduced a dimensionless coordinate
in flow direction (y∗) that accounted for a combined effect of the upstream reservoir length
in flow direction (L0) and the distance from the gate along flow direction (y), suggesting
the relationship between maximum wave height (hmax) and the dimensionless coordinate,
y∗, as in the equation below.

hmax

h0
=

4
9

(
1 + y∗−1

)−5/4
(1)
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y∗ = λ0

(
y
h0

)−2/3
(2)

where h0 is the initial water depth in the reservoir before the dam-break and λ0 is the non-
dimensional value for relative reservoir length (= L0/h0). As shown in Equation (1) and (2),
the maximum wave height during the course of propagation is directly related to the rela-
tive length of the reservoir (λ0) and the relative location in flow direction (y/h0). Lauber
and Hager [23] also found that the maximum value of the wave height approached asymp-
totically to the value of 4/9, which is consistent with the findings of the analytical solution in
Ritter [24]. Later, other studies conducted laboratory experiments to find the effect of varied
roughness in the inundation areas with and without scaled buildings within the inundation
area [8,19,25,26]. Their results were used for the validation of numerical models. In more
recent dam-break experiments, Issakhov and Zhandaulet [27], Khoshkonesh et al. [28],
Kocaman et al. [29], and Fent et al. [30] showed the initial wave water height to be an
important factor in the impact pressure induced by a wave, using digital image processing
techniques and ultrasonic transducers devices to measure the hydraulic parameters. Their
results showed that the wave front velocity declines as the bed friction increases, but is also
significantly affected by the channel evolution and bed mobility.

As shown in the previous paragraphs, numerical models have been executed continu-
ously, but, as explained in the previous paragraph, uncertainty issues should be addressed.
Furthermore, existing empirical research was performed mainly in a small scale straight
rectangular channel that can be used only as a validation tool of a numerical simulation
developed based on the shallow water equation. Akanbi and Katopodes [31], Castro-Orgaz
and Chanson [10], and Han et al. [32] mentioned that the front positions and velocities of
a wave propagated into an open area without any flow restrictions and the peak water
depths corresponding to various amounts of discharge are the key variables explaining
the wave characteristics caused by a levee failure. In addition, Cunge and Holly [33] and
Lai et al. [25] suggested that the speed of the peak propagation and the shape of the stage
hydrograph are important factors for the calibration of the wave propagation numerical
model. Thus, in this study, we conducted experiments in a large outdoor test basin and
generated waves through various sizes of opening caused by levee failures. During the
experiment, we measured the speed/shape of the wave and the depth of the water propa-
gating into a large open area. To overcome possible flaws stemming from the scale effects
under various sizes of openings of the (failure) area, we used a 30-m long by 30-m wide
large outdoor test basin. From the measurements, we quantified the characteristics of
wave propagation near the failure zone and derived a presumptive equation to forecast
the maximum water depth over time in order to use the equation as a validation tool for
numerical models of flood hazard maps [34], used for establishing risk management and
evacuation plans. Furthermore, the compiled dataset in this study can be used to validate
future numerical models.

2. Methods

2.1. Experimental Setup

As Figure 1a shows, we designed an entire experimental basin on a 30-m long by
30-m wide rectangular outdoor space. We constructed an inundation area, a channel for
the water supply, and a levee structure within a large basin at the Korea Institute of Civil
Engineering and Building Technology (KICT) in Goyang, Korea [2]. The 25-m long, 30-m
wide horizontal inundation area had open boundaries on all sides in which the transitional
flow generated by the gradual levee failure could freely propagate without any interference.
A 30-m long, 5-m wide channel was aligned with one end of the inundation area. The
channel bottom elevation was 0.4 m lower than the invert of the inundation area to store
enough volume of water for the experiment, and two centrifugal pumps supplied water
from large underground sumps to the channel. To reproduce a levee in the experiments,
we installed a 0.6-m high and, 30-m long vertical seclusion wall along the channel and
determined the height of the wall based on field measurements in Korea, which showed an
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average levee height of about 10% of the channel width [35]. In the middle of the seclusion
wall, we installed sliding, opening gates to simulate a gradual levee break. Lee and Han [35]
found that the width of an opening during a levee failure in Korea varies around one to
three times as high as the levee, or 1/8 to one time as high as the channel width. Singh
and Snorrason [36] and MacDonald and Langridge-Monopolis [37] also suggested that an
average width of the failure zone in case of a dam-break varies from two to five times large
as the height of the dam. Thus, using a variable motor attached to the sliding opening gates
to the levee, we adjusted the values of the opening width, with maximum bottom width of
the opening (failure) of 3 m. The shape of the opening (failure) area also varied depending
on the geotechnical properties of the levee and the flow conditions of the failure. The
opening is generally classified into a rectangular or trapezoidal shape. The term ‘failure’ is
defined as the inability to achieve a defined performance threshold [2]. In the case of levees,
failure is initiated by the deterioration-process over time during large flooding, such as
overtopping and/or erosion by hydraulic loading, and then total breach by geotechnical
instability. Geotechnical instability of a levee is outside the scope of this paper, but we used
the trapezoidal (1V:0.3H) shape of an opening, assuming that the deterioration process is
initiated from the overtopping and leads to a total trapezoidal shape breach in the end. The
trapezoidal-shaped opening area used in the experiment appears in Figure 1b.

Figure 1. Experimental basin (a) and shape (b) of the opening (failure) area.

2.2. Experimental Conditions

We suggest the following variables, also shown in Figure 2, are important to an
understanding of the characteristics of wave propagation: wave position (y); wave front
speed (v f ); bottom opening (failure) width (B); inflow channel width (L0); the water depth
during the course of wave propagation (h); and the initial water depth over the opening
(failure) area (h0). Because the transitional flow into the inundation area is fast moving
and unsteady, a conventional technique, such as use of a point gauge, cannot be used
for measuring chronological changes in the water depth during propagation. Thus, we
installed capacitive wave height meters, which are popularly used for ocean engineering,
to measure the water depth continuously over time and to detect the arrival time of the
leading edge of ocean waves within the inundation area. To illustrate the wave propagation
phenomenon, Figure 2 displays the locations of the wave height meters in the basin (along
a line perpendicular to the opening (θ = 90◦) and along two diagonals (θ = 45◦ and 135◦)).
We measured additional water depths close to the opening area to determine the elevation
of the water surface during the failure within the channel.
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Figure 2. A schematic diagram of levee failure experiment.

At the beginning of each experiment, we raised the position of the tail gate to its
maximum height and then slowly filled the channel with water until it reached the target
water depth over the opening (failure) (h0). Once the h0 had stabilized with the target value,
we did not supply the flow in the channel and initiated each experiment by gradually
sliding the opening gate laterally. We tested six different sizes of bottom opening widths
(B: varying from 0.5 m to 3.0 m in the interval of 0.5 m) and set the overflow depth (h0) at
intervals of 0.05 m that varied from 0.3 m to 0.55 m. In general, the levee failure flow is
assumed to be instantaneous if the gate openings are within 0 ≤ tr ≤ 1.25

√
z/g (where tr is

the removal time, z the upstream water-depth, and g gravitational acceleration) [38]. Based
on the experimental conditions, the determination of the gate opening time of 0 ≤ tr ≤ 0.3
was instantaneous. Thus, to ensure a gradual levee failure, we determined that the speed of
the gate opening controlled by the attached motors was 0.18 m/s. The range of experimental
parameters are summarized in Table 1. The chosen minimum value of h0 is satisfied by
the recommendation of Bos [39], who showed that to eliminate surface tension as well as
viscous effects, the minimum value of the water depth over a model structure should be
0.07 m. In addition, Lauber and Hager [23] found that the effects of scale are insignificant
when h0 > 300 mm. Flow depths in the model are generally greater than 0.07 m, which is
another criterion for avoiding the effects of surface tension manifested by capillary waves
in free-surface flow models [40].
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Table 1. Ranges of experimental parameters.

Width of the Bottom
Opening, B (m)

Shape of the Failure *
Initial Head over the

Opening, h0 (m)
Width of the Channel,

L0 (m)
Speed of the
Failure, (m/s)

0.5, 1.0, 1.5, 2.0, 2.5,
3.0

Trapezoidal
1V:0.3H

0.30, 0.35, 0.40, 0.45,
0.50, 0.55 5 0.18

* V indicates vertical and H indicates horizontal.

3. Results

3.1. Speed of the Wave Front

To find the hydraulic characteristics of the wave front generated by a gradual levee
failure, we observed the chronological locations of the leading edge of the flood wave in
the course of propagation and their extension phenomena. Figure 3a illustrates the location
of wave front (y) from an opening over time, measured along the perpendicular (open
symbol) and diagonal (θ = 45◦; closed symbol) directions with respect to different values of
initial head (h0) in the case of B = 1.0 m. As the acceleration of the flow was strong through
the levee failure due to gravity and then decelerated in the open area and faster moving
over the failure adjacent to the slower moving flow in the channel, it induced a complex
interaction that included the strong transverse transfer of the longitudinal momentum from
the levee to the open area. We observed this phenomenon in the gradual decrease of the
slope of wave front position vs time curve, shown in Figure 3a, because the relative effect
of momentum transfers according to the speed of the wave front, which is the maximum
proximity to the failure zone and then becomes smaller over time as a result of the friction
induced by bed roughness within the dry open area. Furthermore, as shown in Figure 3a, in
the case of higher h0, the wave front propagates further along the perpendicular direction
than in the diagonal direction. Thus, the speed at the leading edge of flood wave (v f )
along the perpendicular direction shown in Figure 3b was estimated using the data shown
in Figure 3a. As the “golden time”, which is the minimum time required for people to
evacuate from a natural disaster, following an evacuation order immediately after a levee
failure, is related to the speed of the flood wave in the inundation area, the speed of the
wave front during a levee failure is a critical variable that signals the need for preparing a
safety zone within the lowland. As shown in Figure 3b, the v f increases close to the failure
because of higher momentum/energy transfer from the vertical gravity-dominant deep
water (potential energy) to shallow water (kinetic energy), flowing in a pan shape in the
radial direction. Then, the speed decreases as the wave propagates further from the failure.

(a) (b)

Figure 3. Propagation of the wave front over time (a) and the wave front speed (b) with respect to
different values of the initial head over opening (h0) for B = 1.0 m case.
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3.2. Morphological Characteristics of the Flood Wave

To analyze changes in the flood waveform during propagation, we plotted the chrono-
logical changes in the waveform measured along θ = 90◦ in terms of non-dimensional
variables in the case of h0 = 0.55 m and B = 1.0 m over non-dimensional time T (=t×√

g/h0)
expressed in initial water depth over the opening area (h0), gravitational acceleration (g)
and time after levee starts to fail (t), depicted in Figure 4. The dimensionless time T = 0
refers to the initiation of the levee failure. As shown in the Figure, as soon as the levee starts
to fail, the wave height quickly begins to increase, reaching a maximum within a short
period of time; then it begins to decrease slowly over time in each wave form at different
locations. It is interesting to note that the peak value of the height of each form decreases
quickly as the distance from failure y increases, the result of friction induced by the dry bed,
different from the wave propagation along a one-dimensional channel [23,41]. Analogous
to wave propagation initiated by a dam-break within a horizontal rectangular channel bed,
the rapid propagation of a wave is accompanied by severe elongation of the air and water
interface along a constrained channel in one direction and the rapid conversion of potential
energy into kinetic energy [42]. In the current experiment, however, the wave propagated
into the open space in all radial directions, leading to a more rapid decrease in the height of
the peak wave.

Figure 4. Chronological changes in the flood waveform with respect to various locations, y, meaured
along θ = 90◦ (cases with h0 = 0.55 m and B = 1.0 m).

In addition to the chronological changes in flood waveform during the course of
wave propagation, Figure 5 shows the effect of the failure width on the morphological
characteristics of a flood wave measured at two different locations with respect to different
values of B. As shown in Figure 5a, the wave height quickly increases and then decreases
gradually after a short period of time for the cases measured at y = 0.03 m along θ = 90◦.
The peak value of the non-dimensional wave height (h/h0) in each waveform appears to
have a corresponding value in Figure 5a (about 83% of h0), even in cases with different
failure widths because the wave height close to the failure area reached a maximum before
the gates were fully opened under the assumption of a gradual levee failure. We found,
however, that the peak value of h/h0 decreased as B decreased further away from the
failure zone, and the reduction rate became higher as the B decreased as they propagated,
as shown in Figure 5b. Depending on the failure width, the amount of inflow into the
inundation area varied. In addition, as the failure width increased, the smaller reduction in
the peak wave height resulted in a higher “flood intensity” in the inundation area. Thus, in

146



Water 2022, 14, 1446

the case of a levee failure, minimizing the bottom width of the failure is critical in order to
reduce the intensity of the inundation.

Figure 5. Morphological characteristics of a flood wave with respect to different failure widths, B, at
two locations: (a) y = 0.03 m and (b) y = 1.0 m along θ = 90◦.

To find the effect of initial head h0 over opening on the wave form, we analyzed the
morphological characteristics of flood wave, shown in Figure 6, with respect to different
initial heads measured with B = 1.0 m along θ = 90◦. As shown in Figure 6a, as the h0
decreases, the peak value of h/h0 also slightly decreases close to the failure zone, but the
effect of h0 is not significant to the peak value of h/h0 as the wave propagates, as shown in
Figure 6b. Furthermore, as shown in Figure 6, based on the findings that the shapes of the
morphological characteristics of a flood wave are similar, the effect of h0 on the shape of
wave formation is insignificant during a gradual levee failure.

Figure 6. Morphological characteristics of the flood wave with respect to the initial head h0 over
the opening at two different locations: (a) y = 0.03 m and (b) y = 1.0 m with B = 1.0 m measured
along θ = 90◦.

4. Discussion

As shown in Figure 3, the propagation of a wave is transient and non-uniform with
a large spatial and temporal gradient. Thus, to understand the evolution of the speed of
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a wave front in more depth, we normalized the speed of the leading edge (v f ) accord-
ing to the reference wave speed, (

√
gh0), and calculated the non-dimensional time as T

(=t ×√
g/h0) [24,42]. Figure 7 shows the evolution of the wave front speed during its

propagation in terms of the non-dimensional parameters, Vf and T. As shown in Figure 7,
Vf rapidly increases during the initial stage. The Figure also shows that as T increases, how-
ever, a transition point at a certain dimensionless time (T is about 20 at that point) occurs. In
addition, the velocity of the wave front, which is sub-critical, is smaller than the reference
wave speed,

√
gh0. In all cases, because of propagation into the three-dimensional open dry

space, the velocity of the wave front was smaller than that found by the analytical solution
in Ritter [24], who identified propagation in a one-dimensional space. From the data shown
in Figure 7, we used least-squares regression to analyze the measured distribution of the
dimensionless velocity over time and found that it is closely agreed with the following
best-fit equations, in which the dimensionless velocity has a unique power function of the
dimensionless time.

Vf = 0.221 T0.314 when T < 20 (3)

Vf = 0.730 T−0.087 when T > 20 (4)

Figure 7. Evolution of the dimensionless wave front speed Vf over dimensionless time T.

As explained in the Introduction, in a laboratory flume experiment, Lauber and
Hager [23] found a relationship between the wave height propagated into a horizontal
dry bed during a dam-break and the dimensionless coordinate in flow direction, y∗. Thus,
in this section, we compare results from the current experiments to those conducted by
Lauber and Hager [23]. Figure 8a shows the tracking propagation of the relative maximum
wave height conducted under different failure widths, but with h0 = 0.55 m. Figure 8a
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shows that the non-dimensional value of the maximum wave height increased quickly
when y∗ < ~5.0 and then gradually increased over the course of propagation instead of
approaching to the value of 4/9 as in Equation (1). Furthermore, the magnitude of hmax/h0
was less than the magnitudes suggested by Lauber and Hager [23] when 0 < y∗ < ~5.0.
A possible explanation for this finding is that the dam-break scenarios in which Lauber
and Hager [23] simulated vertical dam-breaks but gradual lateral levee failures along a
river, similar to those in our experiments, led to a formation of the initial shape of a flood
wave that differed from ours. Furthermore, the power relationship between hmax/h0 and
y∗ was not unique because the water depth travelling radially to an open space decreased
more quickly than a flood wave travelling in a one-dimensional waterway, as found by
Lauber and Hager [23]. Referring to the experimental results conducted with an identical
failure bottom width (B = 1.0 m), we explored the effect of overflow depth (h0) on the
propagation of hmax/h0, shown in Figure 8b. In the Figure, the maximum wave height
shows trends similar to those in Figure 8a. It is interesting, however, to note that within
the lower range of y∗ (y∗ < 10), the effect of h0 on hmax/h0 is negligible. After all, the
morphological characteristics of a flood wave are nearly independent of the value of h0
close to the failure, as explained in the previous paragraph. Further away from the failure
zone, however, hmax/h0 increases as h0 increases.

Figure 8. Comparison between the experimental results in this paper and those in Lauber and
Hager [23] with respect to the different failure widths (a) and the initial head over the failure (b).

In the case of an inundation caused by a levee failure along a river, as the flow moves in
a radial direction toward an inundation area, application of the non-dimensional variable,
y∗, developed in a one-dimensional waterway [23] was not appropriate. Furthermore,
unlike the flow from a dam-break, the flow from a levee failure is supplied to the inundation
area continuously from a river after the failure, so the effect of the relative reservoir length
cannot be determined. Accordingly, in this experiment, we set the bottom width of the levee
failure as the governing length variable, which affected the maximum wave height in the
inundation area. Figure 9 illustrates the relationship between non-dimensional variables
hmax/h0 and y/B by reflecting the characteristics of the maximum wave height; that is,
it is proportional to the bottom width of the levee failure, and in inverse proportion to
the distance from the levee failure area. The measured distribution of the dimensionless
maximum wave height shows the unique power function of the y/B and closely agrees
with the best-fit equations, Equation (5) (R2 = 0.87):

hmax

h0
=

4
25

( y
B

)−2/5
(5)
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Figure 9. Relationship between relative propagation distance (y/B) and maximum wave height
(hmax/h0).

The results that appear in Figure 9 show the phenomena of the abrupt reduction of
the maximum water depth when the wave travels from the levee failure area. Although
the effect of boundary roughness was small during the initial wave propagation, it had
a significant effect for large times. Moreover, the equations suggested in this study show
that the maximum water depth can be predicted by reflecting physical properties using
simple variables.

5. Conclusions

This paper presented the results of a large-scale experiment that sought to explain
the characteristics of a flood wave within a dry inundation area generated by a gradual
levee failure. Because of higher momentum/energy transfer during the levee failure, the
velocity of the wave front increased to a certain non-dimensional time and then gradually
decreased over the remaining course of the propagation. The findings showed that the
speed of the leading edge, normalized by the reference wave speed, had a unique power
relationship with the non-dimensional time suggested by Ritter [24]. With regard to the
morphological characteristics of the wave, the height of the wave increased quickly and
reached a similar value of hmax/h0 regardless of the bottom width (B) during the gradual
failure; further away from the levee, however, hmax/h0 increased as B increased, and the
influence of the overflow water depth (h0) on hmax/h0 decreased as the distance from levee
failure area increased. From these findings, we concluded that B is a strong control variable
with respect to risk management, therefore, minimizing the failure’s bottom width (B)
in order to reduce inundation intensity is necessary. Finally, to forecast changes in the
maximum water depth of the inundation, we derived an empirical equation that helps
to clarify the inundation range and chronological changes in a space-time dimension.
Although the empirical equation is derived based on the laboratory experiment using an
artificial levee failure having the highest initial water depth of 0.55 m, the equation can
serve as a validation tool for numerical models of flood hazard maps used for establishing
evacuation plan in the event of a possible levee failure. The study also showed that the first
moments during the failure of a levee involved severe transient flow of high velocity and a
considerable impact of waves on structures within the inundation area. The type of flow,
however, will differ depending on a number of conditions. Thus, if additional experiments
on the characteristics of a flood wave are conducted under different geotechnical properties
of levees and various roughness elements within an inundation area, such experiments
should help clarify the characteristics of a flood wave caused by a levee failure. In such
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a case, useful data will enhance the ability of city officials to establish emergency action
plans and prepare flood inundation maps.
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Abstract: Gauge stations have uneven lengths of discharge records owing to the historical hydrologic
data collection efforts. For watersheds with limited water data length, the flood frequency model,
such as the Log-Pearson Type III, will have large uncertainties. To improve the flood frequency
prediction for these watersheds, we propose a Bayesian Log-Pearson Type III model with spatial
priors (BLP3-SP), which uses a spatial regression model to estimate the prior distribution of the
parameters from nearby stations with longer data records and environmental factors. A Markov
chain Monte Carlo (MCMC) algorithm is used to estimate the posterior distribution and associated
flood quantiles. The method is validated using a case study watershed with 15 streamflow gauge
stations located in the San Jacinto River Basin in Texas, US. The result shows that the BLP3-SP
outperforms other choices of the priors for the Bayesian Log-Pearson Type III model by significantly
reducing the uncertainty in the flood frequency estimation for the station with short data length. The
results have confirmed that the spatial prior knowledge can improve the Bayesian inference of the
Log-Pearson Type III flood frequency model for watersheds with short gauge period.

Keywords: BLP3-SP; flood frequency analyses; Log-Pearson Type III distribution; Bayesian; spatial
prior; uncertainty

1. Introduction

A design flood is a hypothetical peak discharge graph representation of previous
knowledge of precipitation frequency in an area, which is commonly used to evaluate
the construction of dams, bridges, canals, and flood damage desistance systems. Flood
records do not fit any specific known statistical distributions. Nevertheless, to make
the determination of flood frequency trackable, it is convenient to select a reasonable
distribution. Bulletin 17C recommends the Log-Pearson Type III (LP3) distribution for
design-flood prediction in the United States [1]. Several algorithms can be used to estimate
the LP3 distribution parameters. The methods of moments and the maximum likelihood
are the most commonly used methods in flood frequency analysis [2]. The limited length
of gauged data is one of the major sources of the uncertainties of the predicted design
floods. For example, the 100-year flood is an international default design flood. The longer
the gauge records, the more accurately predicted design flood. However, most areas are
ungauged or recently gauged, leading to large uncertainty in flood frequency models.
Spatial information expansion (SIE) is a technique used to employ the knowledge learned
from nearby sites or sites from similar environments to substitute space from time [2–5],
in order to improve the accuracy of the flood frequency estimate at the site of interest.
The assumption is that the hydrological regime of nearby watersheds is similar, therefore
resulting in similar flood frequency distribution.

Meanwhile, Bayesian methods have also been applied to flood frequency analysis
using instrumental data when it is possible to use conjugate priors or semi-conjugate
priors [2,6–9]. The Markov chain Monte Carlo (MCMC) algorithm has been used to esti-
mate the parameters of the Bayesian inference if conjugate or semi-conjugate priors are
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absent [10,11]. Several flood frequency studies have applied Bayesian approaches with
priors obtained from regional information [7,12–16]. Merz et al. and Viglione et al. made
the spatial expansion in flood frequency hydrology with a geostatistical regionalization
method called top-kriging [17–19]. Nguyen et al. took advantage of the index flood princi-
ple, assuming that the average annual peak discharges are scaled to the drainage area in
a statistically homogeneous region [20]. Lima et al. applied a hierarchical Bayesian GEV
model to improve the estimation of local and regional flood quantiles, which assumed that
both the location and scale parameters for all sites were identical except a scale factor based
on the watershed area [21]. These studies considered either spatial proximity or catchment
attributes for the spatial extension. However, Merz and Blöschl compared four flood
regionalization methods and concluded that spatial proximity, together with catchment
attributes, outperformed spatial proximity only and then catchment attributes only [22].

This paper proposes a Bayesian Log-Pearson Type III model with spatial priors
(BLP3-SP) that considers both spatial proximity and catchment attributes as the prior
information to reduce the uncertainty in estimated flood frequency. The hyperparameters
of the prior distribution is calculated from regional sites with longer systematic data series
than the target site, using the spatial lagged model and the spatial error model. The research
question is whether the BLP3-SP model can produce accurate flood prediction without
using long-time series observation data. In the following sections, the question is answered
by analyzing the data of the 15 streamflow gauge stations located in the San Jacinto River
Basin in Texas, US.

2. Methods

To improve the parameter estimation for the LP3 distribution, we incorporate spa-
tial information as the prior of a Bayesian inference framework (Figure 1). The prior
distributions are estimated from the parameters of nearby sites using spatial regression
models. The posterior distribution is inferred by an ensemble MCMC algorithm as well a
Metropolis and Metropolis–Hastings algorithm within a Gibbs sampler. The estimations
and uncertainties of the parameters and quantiles are calculated by sampling directly from
the posterior distribution.

Figure 1. Flowchart of the BLP3-SP processing.

2.1. Log-Pearson Type III Distribution

The Log-Pearson Type III (LP3) distribution is recommended by the United States
Water Resources Committee for the flood frequency estimation [1,2,23,24]. When the flood
peak discharge time series {Q1, Q2, . . . , QN} are distributed as a Log-Pearson Type III
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distribution, X = log(Q) distributes as a Pearson Type III distribution, with a probability
density function (pdf):

fX(x) =
|β|

Γ(α)
[β(x − τ)]α−1e−β(x−τ) (1)

where α, β, and τ are the shape, scale, and location parameters, respectively; and Γ(α) is the
gamma function.

Another parameterizing of LP3 distribution is usually used to calculate the pth quantile,
which is based on the mean (μ), standard deviation (σ), and skewness (γ) [2]. First, the
Pearson variate X (log Q) is transferred to the standard normal variable z for modest skews
γ by applying the Wilson–Hilferty transformation [25]:

fX(x) = φ(z)
dz
dX

=
φ(z)

σ[ γ
2

(
x−μ)

σ

)
+ 1]

2
3

(2)

where φ(z) is the standard normal probability density function for z. The cumulative
distribution function (cdf) is:

FX(x) =
∫ x

0
fX(t)dt (3)

Meanwhile, the pth quantile can be calculated as:

xp = μ + σKp(γ) (4)

where Kp(γ) is the pth quantile of the LP3 distribution with mean 0, standard deviation 1,
and skewness γ, named as the frequency factor. It can also be approximated by the
Wilson–Hilferty transformation for |γ| < 2 [25]:

Kp(γ) =
2
γ
(1 +

γzp

6
− γ2

36
)

3

− 2
γ

(5)

where zp is the pth quantile of the standard normal distribution.

2.2. Bayesian Theorem for LP3 Distribution

According to the Bayes theorem, the probability of parameter θ given the observed
dataset X = {x1, x2, x3, . . . , xs} (posterior) is proportional to the product of the probability
of θ (prior) and the probability of X given θ (likelihood). Assuming the independence
between the observations, the posterior can be calculated as below:

p(θ|X) ∝ p(θ)l(X|θ) =
s

∏
i=1

p(θ)× fX(xi) (6)

where p(θ|X) is the posterior distribution, p(θ) is the prior distribution, l(X|θ) is the
likelihood, and f X( ) is the pdf for X. In this study, θ comprises mean μ, standard deviation
σ, and skewness γ in Equation (2).

2.3. Prior Distribution

The posterior belief of the parameter’s distribution is based on a prior belief. In
this study, we assume normal distributions for the mean μ and skewness γ, while a log-
normal distribution for the standard deviation σ is based on the previously suggested
distributions [2,18,26].

μ ∼ N
(

μμ, σ2
μ

)
(7)

log(σ) ∼ N
(

μlog (σ), σ2
log (σ)

)
(8)
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γ ∼ N
(

μγ, σ2
γ

)
(9)

where
{

μμ, σ2
μ, μlog (σ), σ2

log (σ), μγ, σ2
γ

}
are the are the hyperparameters for the prior distributions.

The prior distribution of the main model is calculated from the data of nearby stations
using spatial regression models. A spatial regression model takes both the catchment
characteristics and the spatial proximity into consideration at the same time. It deals with
the spatial autocorrelation in two ways: the spatial lagged model (SLM) and the spatial
error model (SEM). SLM assumes that the magnitudes of the dependent variable depend
on the magnitude of its neighbors [27], which is expressed as follow:

y = ρWy + Xβ + ε (10)

where y is a vector of the variable of interest (the flood distribution parameters in this
study), r is the spatial coefficient, W is the spatial weight that defines the strength of the
spatial autoregressive process, X is a matric of the catchment characteristics, β is a vector
of regression coefficients, and ε is a vector of uncorrelated error assumed to be of normal
distribution with zero mean and constant variance.

SEM handles the spatial dependencies among the error term after applying the ordi-
nary least squares (OLS) model to spatial variables, which is given in the following equations:

y = Xβ + υ (11)

υ = λWυ + ε (12)

where υ is a vector of error with spatial dependencies and λ is the spatial error coefficient.
Five independent variables—size, elevation, vegetation cover, imperviousness, and

slope—were considered; however, not every variable was used to estimate all the three
parameters. Before we performed the spatial regression, a multiple linear regression was
used to select the important variables for each parameter using the stepwise selection
method based on the Akaike information criterion (AIC). We tested both SLM and SEM
with several types of weights in this study and selected the ones with the smallest spatial
coefficient p-value for each parameter.

A non-informative prior, namely the prior with minimal effect on the posterior distri-
bution compared to the experiment, was also applied to full-length data series to generate
a baseline flood frequency estimation based only on the information from data records [28].
Specifically, the non-informative priors for μ, log (σ), and γ are set to a mean of 0 and a
variance of 10,000.

2.4. Parameter Estimation

To estimate the parameters and flood quantiles from the posterior distribution, a
Markov chain Monte Carlo (MCMC) algorithm was used in this study. MCMC is a type of
algorithm for sampling from probability distributions, which formulates a Markov chain
that has the desired distribution as its equilibrium distribution [18,29,30]. A Markov chain
is a sequence of random variables θ(1), θ(2), . . . , for which, for any t, the distribution of
θ(t)given all previous θ’ depends only on the most recent value, θ(t−1),

p
(

θ(t)
∣∣∣θ(1), . . . , θ(t−1)

)
= p(θ(t)|θ(t−1)) (13)

Based on drawing values of θ from approximate distributions and then comparing the
probability of proposed location and current location to accept or reject the drawing, the
chain with a large number of steps was treated as a sample of the desired distribution.

We applied the Gibbs sampler to sample the three parameters one by one within each
iteration [31,32]. Since the proposal distributions for μ and γ are symmetric, we used the
Metropolis algorithm to simulate them [33]. For σ, we applied the Metropolis–Hastings
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algorithm because its proposal distribution is not symmetric, which will be discussed in
the next section [34].

2.5. Proposal Distribution

A proper proposal distribution Jθ is key to effective implementation of the Metropolis
and Metropolis–Hastings algorithms. Based on the study of Reis and Steginger [2], we
generated the proposed values of the three parameters independently based only on their
values at the previous step.

The proposal distribution for the mean μ is a normal with mean μ(t−1) and variance
σ2(t−1)/s,

μ∗ ∼ N

(
μ(t−1),

σ2(t−1)

s

)
(14)

The proposal distribution for σ is a gamma distribution with mean σ(t−1) and variance
modeled as a function of σ(t−1) and γ(t−1) [35],

σ∗ ∼ γ(a, b) (15)

a =
σ2(t−1)

Var
(
σ(t−1)

) , b =
Var

(
σ(t−1)

)
σ(t−1)

(16)

Var
(

σ(t−1)
)
=

σ2(t−1)
(

1 + 0.75γ2(t−1)
)

2s
(17)

The proposal distribution for γ is a normal distribution with mean γ(t−1) and variance
modeled as a function of γ(t−1) and s [1],

γ∗ ∼ N
[
γ(t−1), Var(γ)

]
(18)

Var(γ) = [1 +
6
s
]
2
10−blog( s

10 ) (19)

a =

⎧⎨
⎩

−0.33 + 0.08
∣∣∣γ(t−1)

∣∣∣ i f
∣∣∣γ(t−1)

∣∣∣ < 0.90

−0.52 + 0.30
∣∣∣γ(t−1)

∣∣∣ i f
∣∣∣γ(t−1)

∣∣∣ > 0.90
(20)

b =

⎧⎨
⎩

0.94 − 0.26
∣∣∣γ(t−1)

∣∣∣ i f
∣∣∣γ(t−1)

∣∣∣ < 1.50

0.55 i f
∣∣∣γ(t−1)

∣∣∣ > 1.50
(21)

After sampling the parameters, we estimated the marginal density distributions,
computed means and standard errors, and estimated credible intervals of the parameters
and some desired quantiles.

3. Case Study Area and Data

3.1. Study Area and Gauge Station Data

We applied the proposed model to a series of annual peak discharges for 15 streamflow
gauges (Table 1) located in the hydrologic accounting unit 120,401, San Jacinto, which
covers the San Jacinto River Basin above Galveston Bay, Texas (Figure 2). This area is to the
northwest of the city of Houston, with a total area of 10,308 km2. Flood frequency can be
estimated using the annual maximum series (AMS) or partial duration series (PDS). The
AMS consists of records of the annual peak discharge, while the PDS is based on all floods
exceeding a predefined base line [1]. If minor floods are considered (AEP > 0.10), PDS is
more appropriate than AMS. However, for floods with an annual exceedance probability
(AEP) less than 0.10, there is no significant difference between the AEP estimation using
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AMS or PDS [36]. Meanwhile, due to its wide availability and longer data length, AMS has
also been used in many studies [16,20,37]. Therefore, AMS was used in this study.

Table 1. Summary of the 15 watersheds with more than 50 records.

Site ID Site No. Latitude Longitude
Watershed Area

(km2)
Series Length

(year)

1 08075780 29.95 N 95.52 W 18.76 55
2 08074150 29.85 N 95.49 W 15.90 53
3 08068000 30.24 N 95.46 W 2158.28 85
4 08075400 29.62 N 95.45 W 48.36 55
5 08068500 30.11 N 95.44 W 1052.12 82
6 08069000 30.04 N 95.43 W 737.34 77
7 08075900 29.96 N 95.42 W 86.42 54
8 08074500 29.78 N 95.40 W 227.43 85
9 08076500 29.86 N 95.33 W 69.14 67
10 08076000 29.92 N 95.31 W 166.20 67
11 08070500 30.26 N 95.30 W 271.47 76
12 08075500 29.67 N 95.29 W 150.76 67
13 08075770 29.79 N 95.27 W 47.79 56
14 08071000 30.23 N 95.17 W 307.53 56
15 08070000 30.34 N 95.10 W 859.51 81

Figure 2. Study area, locations of the 15 gauge stations, and associated watersheds.

The annual peak discharge time series data were obtained from the USGS National
Water Information System. Among the 95 sites in the San Jacinto accounting unit, there are
76 sites with records longer than 5 years. Using the 1/3 arc-second seamless DEM dataset
of the 3D Elevation Program, we generated 76 watersheds from the gauge stations. 29 of
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the 76 generated watersheds had areas different to the drainage area for the same site in
the USGS National Water Information System; thus, they were removed from the dataset,
which left 47 stations. 15 of the 47 stations have more than 50 years of data (Figure 3).
The site number 08074150 (ID: 2) was used for testing and validation, revealing 53 peak
discharge records since 1964 with missing data for 1987, 1988, and 1989. A baseline Bayesian
model was built using the full length of the records from this site with non-informative
prior. The baseline model is used for evaluating the BLP3-SP models calibrated using 10,
20, and 30 years of records with spatial prior computed from other 14 stations.

Figure 3. Data availability of the entire set of streamflow gauges used in this study (the gray row is
the site for testing and validation and the red dots are the 10-year time series used in the model).

3.2. Spatial Data for Prior Estimation

To use spatial regression, LP3 parameters for the nearby stations were estimated from
the gauge station data. The independent environmental factors include the area, elevation,
slope, tree canopy cover, and the urban impervious surface for each watershed. The USGS
National Water Information System provides the watershed area associated with each
gauge station. The elevation and slope were obtained from the 1/3 arc-second seamless
DEM, with a spatial resolution of ~10 m. The tree canopy and urban imperviousness were
downloaded from the National Land Cover Database (NLCD) with a spatial resolution
of 30 m. The mean of the factors and the local LP3 parameters for each watershed are
summarized in Table 2.
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Table 2. Summary of the variables for the 15 watersheds.

ID
Area
(km2)

Elevation (m) Slope (%)
Tree Canopy

(%)
Imperviousness (%)

1 18.76 37.64 24.22 8.79 39.94
2 15.90 28.61 24.37 3.36 52.30
3 2158.28 87.00 59.96 52.58 2.18
4 48.36 19.90 27.95 5.00 30.34
5 1052.12 69.91 40.04 47.49 5.88
6 737.34 54.79 20.71 11.92 9.41
7 86.42 33.75 23.95 13.54 34.05
8 227.43 29.25 27.29 6.29 44.21
9 69.14 24.25 18.84 9.90 35.42
10 166.20 29.42 25.31 12.73 33.59
11 271.47 88.01 56.58 52.83 1.94
12 150.76 16.02 29.34 6.83 28.67
13 47.79 14.90 19.38 4.66 51.31
14 307.53 69.16 46.66 69.56 1.04
15 859.51 88.35 61.48 71.02 0.60

4. Results

4.1. Estimated Prior Information from Spatial Regression

The Bayesian prior distributions of the three LP3 parameters were estimated using
spatial regression models. Before running the spatial regression models, we applied
multiple linear regression and selected the important independent variables for each LP3
parameter by the information index, AIC. Based on the results of the multiple regression
models, we selected Area as the independent variable for μ, Tree canopy for σ, and Area and
Elevation for γ.

Both the spatial error model and the spatial lag model were tested in this study with
eight weight types, which are (1) first-order Queen, (2) second-order Queen, (3) 4-NN (make
symmetric), (4) distance band (max–min distance), (5) distance (15,240 m), (6) distance
(60,960 m), (7) distance (45,720 m), and (8) triangular kernel with 3-NN adaptive bandwidth.
The p-value of each model is summarized in Table 3. Three models have a p-value less
than 0.05 for estimating μ, which are (1) SEM with first-order Queen weight (1st Queen
SEM), (2) SEM with triangular kernel with 3-NN adaptive bandwidth (triangular kernel
SEM), and (3) SLM with 4-NN (4-NN SLM). There are two potential models for estimating
σ, which are (1) SEM with second-order Queen weight (2nd Queen SEM) and (2) SLM with
a triangular kernel with a 3-NN adaptive bandwidth (triangular kernel SLM). Only one
model has a p-value less than 0.05 for the estimation of γ, which is SLM with a second-order
Queen weight (2nd Queen SLM).

Table 3. Summary of the p-values for each spatial regression model (the significant ones are bolded).

Weight Type
μ σ γ

SEM SLM SEM SLM SEM SLM

First-order Queen weight 0.024 0.646 0.110 0.563 0.974 0.555
Second-order Queen weight
(including the lower order) 0.618 0.497 0.008 0.646 0.187 0.039

4-NN 0.126 0.023 0.237 0.244 0.057 0.280
Distance band

(Max-Min distance) 0.187 0.117 0.058 0.073 0.706 0.645

Distance band (15,240 m) 0.359 0.669 0.775 0.908 0.994 0.085
Distance band (60,960 m) 0.389 0.273 0.799 0.144 0.526 0.589
Distance band (45,720 m) 0.137 0.068 0.536 0.142 0.196 0.223

Triangular kernel
with 3-NN adaptive bandwidth 0.001 0.428 0.071 0.001 0.385 0.239

The R2 and standard deviation for each potential model are summarized in Table 4.
For the models to estimate μ and σ, the one with the greatest R2 and the smallest standard
deviation was selected. Therefore, the model for estimating the prior μ distribution is the
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4-NN SLM, the model for estimating the prior σ distribution is the 2nd Queen SEM, and
the model for estimating the prior γ distribution is the 2nd Queen SLM.

Table 4. Summary of the R2 and standard deviation of models with significant spatial coefficient
(p-value < 0.05).

Model R2 STD

μ
1st Queen SEM 56.18% 0.20

4-NN SLM 60.57% 0.18
Triangular kernel SEM 33.20% 0.30

σ
2nd Queen SEM 78.03% 0.01

Triangular kernel SLM 47.69% 0.03

γ 2nd Queen SLM 59.02% 0.06

These spatial regression models provide the mean and variance for the distributions of
μ, σ, and γ, which represent the prior information used in the Bayesian model. The values
are summarized in Table 5.

Table 5. Mean and variance for the LP3 parameters estimated from the spatial regression models.

μ σ γ

mean 7.8957 0.6993 −0.3969
variance 0.1778 0.0143 0.0635

4.2. Posterior Distribution and Flood Quantiles

The prior information obtained in the previous section was applied to the test gauge
site using only the last 10 years of records. For comparison, a baseline model with no prior
information applied to the Bayes inference was trained with 54 years of data. The posterior
means and variances of the three parameters are listed in Table 6.

Table 6. Means and variances of the posterior distributions.

μ σ γ
Mean Variance Mean Variance Mean Variance

Spatial regression prior
with 10-year data 7.5338 0.0278 0.5264 0.0183 −0.3133 0.2516

Non-informative prior
with 54-year data 7.0798 0.0093 0.6624 0.0098 −0.2349 0.3011

Figure 4 shows the means and 95% confidence limits of the predicted design floods
from the three scenarios: the Bayesian LP3 model calibrated with 54-year data and non-
informative prior, the Bayesian LP3 model calibrated with 10-year data and non-informative
prior, and the BPL-SP model calibrated with 10-year data and spatial prior. The means and
the lower boundaries of the three scenarios are similar. The upper boundaries, however,
show large differences. The baseline model returned the lowest uncertainty for large flood
magnitudes. The non-informative prior model with only 10-year records has the largest
uncertainty. By using the spatial prior, the uncertainty of the large floods is reduced to
the level similar with the baseline model. The test confirms that the Bayesian estimation
can use the prior knowledge learned from the nearby stations and environment factors to
reduce the uncertainty caused by short data length.
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Figure 4. The means and 95% confidence limits for the three scenarios: non-informative prior and
54-year data, non-informative prior and the last 10-year data, and spatial regression prior and the last
10-year data.

Table 7 displays the discharge for certain design floods with a 95% confidence interval
and a reduction in confidence intervals for each design flood. With an increase in the return
period, the reduction in the confidence interval is more drastic. For floods with a return
period more than 50 years, the prior knowledge from spatial regression could reduce almost
half of the uncertainty.

Table 7. Estimation of the discharge (m3/s) for certain design floods with 95% confidence interval.

Return
Period

10 Year 25 Year 50 Year 100 Year 200 Year

Non-info prior and
10-year data

82.9
(63.3–175.6)

96.1
(71.8–307.0)

106.1
(75.9–475.4)

115.5
(78.1–744.3)

125.2
(79.2–1027.6)

Spatial regression and
10-year data

97.5
(70.0–176.2)

118.9
(79.3–248.8)

134.5
(84.1–312.0)

149.6
(87.8–390.1)

164.7
(90.6–482.6)

Reduction in confidence
interval 5.35% 27.93% 42.95% 54.62% 65.26%

5. Discussion

5.1. Compared with Other Spatial Prior Methods

Spatial regression considers both the catchment characteristics and the spatial proxim-
ity at the same time. To demonstrate the superiority of spatial regression, we compared it
with two other types of spatial priors: mean prior and areal interpolation prior. The first
method uses the arithmetic mean and variance calculated from the nearby site records [38],
and the other uses the areal interpolation technique that is similar to the top-kriging
algorithm [19].

The priors and associated posteriors are summarized in Table 8. Compared with
areal interpolation prior, the posterior generated by mean prior is similar with the one
generated by spatial regression. Figure 5 shows that the mean prior can also reduce the
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uncertainty in the quantile estimation, but much less than the spatial regression prior.
However, the areal interpolation prior generates a larger confidence interval compared
to the non-informative prior result, even with small return periods. It shows that spatial
interpolation may not be applicable to watersheds because of the hierarchical structure of
the watershed system. Overall, within the prior types tested in this study, spatial regression
provides the best results.

Table 8. Different prior types and associated posterior distributions.

μ σ γ
Mean Variance Mean Variance Mean Variance

Mean Prior
Prior 8.2205 0.4291 0.9052 0.0690 −0.2822 0.1627

Posterior 7.5374 0.0309 0.4848 0.0374 −0.2190 0.3650

Areal Interpolation Prior Prior 9.1225 0.2963 0.8840 0.0136 −0.8983 0.1506
Posterior 7.6258 0.0670 0.7340 0.0220 −0.6832 0.8131

Spatial Regression Prior Prior 7.8957 0.1778 0.6993 0.0143 −0.3969 0.0635
Posterior 7.5338 0.0278 0.5264 0.0183 −0.3133 0.2516

Figure 5. The 95% confidence interval for four scenarios: non-informative prior, mean prior, areal
interpolation priors, and spatial regression prior.

5.2. Effects of Length of Observations

The results have shown that the BLP-SP algorithm can largely reduce the uncertainty
of the flood frequency analysis based on 10-year observations. To further evaluate the
improvement of the BLP-SP algorithm with other data lengths, we tested two more scenar-
ios with 20 and 30 years of data length. Figure 6 shows that the 95% confidence interval
generated using the last 30 years of systematic records without prior information is similar
with the one generated using the entire 54-year records.
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Figure 6. Applying spatial regression prior to (a) 20-year and (b) 30-year data series.

In Figure 6, both the 20-year model and the 30-year model have similar upper bounds.
It indicates that with sufficient data length (e.g., 20 years), the spatial regression based model
would produce consistent prediction regardless the data length. Even that the 30-year
model with a non-informative prior can achieve a comparable prediction interval as the
54-year baseline model, introducing the spatial prior has increased it prediction accuracy.

The 20-year scenario shows an interesting outcome: the non-informative Bayesian
inference has a smaller confidence interval than the model using the spatial prior. In
fact, the small confidence interval of the non-informative model might be biased because
theoretically longer data should produce smaller confidence interval, not the other way.
One of the assumptions for flood frequency analyses is that the records are independent of
each other. We suspect that there were strong temporal autocorrelation and seasonal trends
in the records over the last 20 years introduced by multidecadal trends or wet and dry
cycles [1]. Our model using the spatial prior in the Bayes inference has corrected the bias.

With the spatial regression prior information, the confidence interval of the 30-year
result decreased significantly. For example, for the 100-year floods, the confidence interval
decreased by 36.88%. In this way, by using both 20- and 30-year records, the results with
the prior spatial regression knowledge are more realistic than those using information from
the systematic data only. In other words, with the help of the spatial regression prior, the
Bayesian estimation can generate a comparable prediction result as the baseline model
even the data length is much shorter.

6. Conclusions

Our data analysis confirmed that with only 10 years of records, the flood prediction
model would have a much larger uncertainty than the baseline model using 54 years of
records. Therefore, we proposed the new model BLP3-SP that can incorporate the prior
information from other nearby watersheds with long data series using a spatial regression
model. With the spatial prior information, the BLP3-SP model can predict future floods
with a similar mean and confidence interval as the baseline model. Specifically, the BLP3-SP
model can reduce half of the uncertainty in the predicted discharge rate of a 100-year
flood using only 10 years of records. In addition, spatial regression prior can reduce the
bias caused by seasonal trends and generate a more accurate representation of the future
flood probability.

We also evaluated three spatial models to generate the prior distributions: spatial
regression, arithmetic mean, and areal interpolation. The spatial regression model out-
performed the other two because the model considered both spatial contiguity and local
environmental characteristics. The areal interpolation model did not work at all in our
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case study. This result indicates that the Log Pearson Type III distribution parameters have
some spatial contiguity and are associated with local environmental characteristics.

Overall, BLP3-SP is a useful and robust algorithm for decreasing the uncertainty in
the flood frequency estimation, especially for the sites with a short systematic data series.
This method can be applied to areas with an uneven length of discharge gauge records to
improve the accuracy of predicted flood quantiles.
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Abstract: Disaster crisis management is the last defensive line in the face of extreme rainstorm
disasters. However, fragmentation undermines the effectiveness of disaster crisis management,
and the “7-20” extreme rainfall flooding disaster in Zhengzhou, Henan province, China in 2021
revealed a series of fragmentation problems. The effectiveness of China’s emergency storm flooding
management must be seriously considered. We used the “7-20” extreme rainfall event in Zhengzhou,
Henan province in China as a case study to perform an inductive, qualitative investigation to
understand what fragmentation is and how fragmentation reduces efficacy. Most of the data used
for this research were gathered from Chinese official records and online news articles. This study
first highlights pertinent studies that have been performed and then presents a comprehensive
theoretical framework of fragmentation in catastrophe crisis management, which consists of five
aspects: fragmented emergency legislation, emergency organization, information, perception, and
services. Second, we have deduced which human responses in the “7-20” event represent the
fragmentation issues, and we have examined the detrimental effects of fragmentation in flood crisis
management. Finally, suggestions are made for China to increase the effectiveness of disaster crisis
management, including encouraging regulatory convergence, matching emergency responsibility
and authority, establishing an information-sharing platform, bolstering emergency education and
raising risk perception, and changing the dualistic system in disaster crisis management.

Keywords: fragmentation in disaster crisis management; disaster crisis management effectiveness;
the “7-20” extreme rainfall event in Zhengzhou; disaster management; China

1. Introduction

The world is now entering the era of “risk society” and “Anthropocene”: the proba-
bility of emergencies has increased greatly, and more and more countries are concerned
about the potential threat of crises and disasters [1]. Effective and timely disaster crisis
management can mitigate damage to people, communities, infrastructure, and the envi-
ronment, and there is an urgent need to improve disaster crisis management capabilities.
However, the ubiquitous fragmentation problem in disaster crisis management undermines
its effectiveness. This fragmentation is rooted in the division of labor-based hierarchy
and generally describes the situation of lacking coordination between various govern-
ment departments and agencies, as well as decision-making entities involved in disaster
crisis management when facing wicked problems, which are cross-administrative levels,
cross-sectoral boundary, and cross-policy areas [2]. Fragmentation problems have led to
conflicting and offsetting disaster crisis management operations [3], wasteful duplication
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of emergency resources, delayed rescue response, and inadequate support for emergency
decision-making. Therefore, it is necessary to examine how to optimize disaster crisis
management strategies from a fragmentation perspective by using management tools to
achieve an integrated model and maximize the effectiveness of disaster crisis management.

Extreme weather events that surpass preparedness criteria and have a greater impact
than anticipated provide a challenge to the capability of disaster crisis management in light
of global warming and the growing likelihood of extreme weather [4]. On a worldwide
scale, China has experienced the most cumulative total flood frequency over the past ten
years, and the frequency of heavy precipitation there exhibits an upward tendency [5,6].
While fast-growing urban areas have high population density and high-risk exposure and
rural areas have poor flood-proof infrastructures and high vulnerability [7,8], the predicted
economic losses and damage to communities caused by heavy rainfall and flooding in-
crease [9,10], the Chinese government is thus expected to strengthen its capacity for disaster
crisis management in the event of major rainfall catastrophes.

Most of the current research on rainfall and flooding management focuses on flood
modeling analyses, such as the use of big data and optimal algorithms to provide de-
cision support for emergency escape routes and emergency infrastructure siting [11,12],
the potential of unmanned aerial systems for emergency information collection [13], and
the technology of two-dimensional hydrodynamic modeling for stimulating flood behavior
and predicting inundation depths and areas [14–16]. These studies show the potential of
state-of-the-art technological research to be theoretically applied for improving emergency
decision support systems. Emerging socio-hydrological research focuses on the interre-
lationship between social systems and hydrological systems, with particular attention
paid to the factors influencing government and household perceptions of flood risk and
their impact on disaster crisis management [17–20]. However, there is a lack of empirical
research on social systems, especially governmental disaster crisis management capaci-
ties, so the next step should be to focus on how to put risk mitigation into practice and
analyze how to optimize disaster crisis management, increasing its efficacy in light of
governmental administration of reliable emergency methods, institutional structures, and
legal frameworks.

The disaster crisis management of extreme rainfall involves various government
departments and agencies, administrative levels, and decision-making entities. The number
of emergency response entities is large, and the lack of coordination mechanisms makes
the fragmentation problem obvious.

In July 2021, the city of Zhengzhou in China’s Henan Province, a relatively dry inland
city in northern China, experienced extreme rainfall (called the “7-20” event), which in-
evitably caused damage by exceeding the rainfall standards, but the failure of disaster crisis
management artificially led to avoidable deaths and injuries. The problem of fragmented
disaster crisis management is prevalent in the emergency operations of decision-making
entities. The research question in this paper is: How does fragmentation profoundly affect
the effectiveness of disaster crisis management in Henan’s rainstorm disaster? Fragmented
management led to fragmented rescue responses, such as a lack of collaboration and infor-
mation sharing among emergency response entities, which further caused conflicting and
offsetting actions, missing the golden time for prevention and pre-control, and so on. In
this paper, we will identify the dimension of fragmentation shown in the “7-20” event and
analyze its negative impact.

The following logical structure was created in this study to address the problems
raised above (Figure 1). This article examines the fragmentation in disaster crisis man-
agement in this catastrophe and the detrimental effects it resulted in using the case of the
“7-20” excessive rainfall event in Zhengzhou, Henan Province, as a case study. Firstly, this
paper uses an inductive approach to propose a systematic and universal theoretical frame-
work of fragmentation in disaster crisis management based on the analysis of previously
conducted research on fragmentation. Secondly, this framework is then used to analyze
the fragmentation and negative consequences of disaster crisis management in the “7-20”
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case from a deductive approach. Finally, recommendations are provided for government
practitioners and emergency decision-makers to integrate fragmented dimensions and
improve the efficiency and effectiveness of disaster crisis management in China.

 

Figure 1. The logical framework of this paper.

The theoretical framework of fragmentation in disaster crisis management proposed
in this paper is all-embracing and adds value for conducted fragmentation-related studies.
Aside from application in rainfall disasters, the framework is transferable to the analysis
of other emergencies. In addition, this paper supplements the empirical research on
disaster crisis management of extreme rainfall disasters from the perspective of government
management, providing lessons for other cities in China.

2. Literature Review on Fragmentation

Fragmentation is an institutional problem that affects the effectiveness of govern-
ment [2]. Western scholars’ reflections on the shortcomings of New Public Management
(NPM) reforms have brought fragmentation research to a climax. By focusing on per-
formance management and single-purpose organizations, NPM ignores the problem of
horizontal coordination and may have produced too much fragmentation, hence hamper-
ing efficiency and effectiveness [21]. It has been argued that fragmented governments
are formed when different departments work in isolation, lacking communication and
coordination when faced with a common social problem, which finally leads to the failure
to achieve overall policy goals [3]. The polar position of fragmentation is defined as the
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situation in which policies which undermine each other can be eliminated, better use can
be made of scarce resources, synergies may be created through the bringing together of
different key stakeholders in a particular policy field, and citizens can receive seamless
rather than fragmented access to a set of related services [22]. Studies have examined
the manifestations, causes, and governance measures of fragmentation, suggesting that
government fragmentation is manifested by structural devolution, i.e., excessive division
of labor leading to a large number of agencies, and excessive separation of powers lead-
ing to a loss of central authority to intervene. For instance, fire services, transportation
agencies, emergency management departments, hospitals, etc. are typically involved in
crisis management in emergencies such as fires, explosions, floods, etc. According to their
tasks, various departments are involved in crisis management. This division of labor
results in mutual ignorance and hinders coordination and communication between organi-
zations [21]. Blurred boundaries of responsibility and performance management systems
that encourage competition rather than collaboration are the reasons for the hindrance of
departmental collaboration. According to Chen Kelin, China had a significant epidemic
spread in the first half of 2020 as a result of local governments’ lack of incentives to work
together to avoid disease in the context of their rivalry. Local governments did, however,
quickly collaborate after the central government got involved [1,22–24]. Solutions include
structural reorganization, hierarchical coordination, i.e., pressure from senior leadership on
sectoral agencies to break down organizational boundaries to coordinate [21]; creating an
institutional environment and resources that support collaboration [22,24]; and focusing on
synergistic goals as much as departmental goals [25].

Disaster crisis management continues the logic of fragmentation, and the problem of
fragmentation has become more pronounced as the uncertainty and complexity of emer-
gencies have increased significantly and conventional administrative systems have become
ineffective in emergencies. Related studies have enriched the connotation of fragmentation
in disaster crisis management, expanding from the shortcomings of collaboration within
government to the lack of collaboration in the governance networks between government,
society, and the market. Many scholars have discussed the government-dominated char-
acter of emergency management in China, arguing against the lack of roles for social
organizations and the public in emergency management. In addition, the fragmentation
of emergency information and facilities refers to the lack of sharing mechanisms [26–30],
for an illustrative example, emergency rescue forces are built according to the type of
disaster and there is a lack of cooperation between rescue teams [31]. Among emergency
decision-making entities, there is a lack of a holistic picture of danger [32–34]. There is also
fragmentation in the emergency process, such as a mismatch between rescue reaction and
warning [35–37]. Chinese scholars have investigated the deficiency of Emergency Contin-
gency Plans (ECPs), which are the core emergency guidelines for every administrative level,
department, and agency in China, suggesting the implementation of ECPs is defective for
the lack of rehearsals, risk assessments, and practical responsibility arrangements, resulting
in poor operability [38].

While conducted research has provided a more comprehensive analytical perspective
for understanding the issue of fragmentation in disaster crisis management, most of the
current research has remained at the stage of analogical research, with conclusions being
repetitive and biased depending on the purpose of the research and the individual’s knowl-
edge structure, and generally lacking in theoretical research to systematically understand
fragmentation, and in practical gains for research progress. Therefore, based on the anal-
ysis of existing perspectives, this paper aims to propose a systematic and all-embracing
theoretical framework of fragmentation in disaster crisis management from the perspective
of management and organizational disciplines, which is applicable to analyze most of
the fragmentation in disaster crisis management fragmentation, in the hope of adding
theoretical gains to fragmentation research.
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3. The Theoretical Framework of Fragmentation in Disaster Crisis Management

3.1. Components and Interrelationships of Fragmentation in Disaster Crisis Management

Fragmentation in disaster crisis management refers to a situation in which the mecha-
nisms, institutions, and legal frameworks for disaster crisis management are not systematic,
the emergency decision-maker’s perception and operations are not holistic, and there is
an unequal supply of emergency services, all of which ultimately prevents the overall
objective from being met. According to the definition, this paper argues that fragmentation
in disaster crisis management consists of five aspects: fragmented emergency regulations,
fragmented emergency organization, fragmented emergency information, fragmented
emergency perception, and fragmented emergency services.

This paper argues that the organizational environment, rather than individual char-
acteristics, determines organizational behavior, and that the organizational environment
mainly includes regulations and organization. Therefore, organizational and institutional
fragmentation is the root cause of the fragmented emergency information and services,
for example, the fragmented emergency information is formed due to various departments
holding scattered information as a result of organizational sectionalization, and the weak
participation of other subjects, such as communities and markets in emergency manage-
ment, may derive from the monolithic governance of China’s government, which led to the
lack of collaboration between subjects. Meanwhile, fragmented emergency perception is a
cultural environment subtly affecting government, society, community, and individuals,
whose formation is related to historical tradition and path dependence, not determined by
institutional and organizational factors. However, the integration of emergency perception
can be promoted through management tools such as proactive emergency education poli-
cies, as emergency decision-makers at many levels, from government officials to families,
will be impacted by perception. While institutional and organizational systems can deter-
mine the behaviors of an organization, the public perception from the cultural dimension
has an incalculable influence on social behaviors.

3.2. Fragmented Emergency Regulations

The emergency regulation system is the basis and guideline for the organization
to decide what to do when emergencies erupt. China’s emergency regulation system
mainly includes emergency laws, management rules, and Emergency Contingency Plans
(ECPs), which provide the responsibility arrangements and coordination mechanisms for
governmental response to various types of natural and social crises. The fragmented
emergency regulations include the following situations: (1) The incoherence of internal
logic of the emergency regulations, i.e., goal A is defined but not supported by the correct
means. (2) The disconnections of the work process shaped by emergency regulations.
Theoretically, policies and institutions must operate through a process of formulation,
rehearsal or experimentation, implementation, and evaluation. The absence of any link
in the process results in fragmentation. (3) The missing part of crucial arrangements
such as practical responsibility lists, and collaboration mechanisms to support integrated
emergency response. (4) The lack of articulation in terms of emergency response standards
and conditions.

3.3. Fragmented Emergency Organization

The arrangement of authority and responsibility of disaster crisis management form
the organization, which defines “who is responsible for what emergency response” and
“who oversees emergency authority”. The fragmented emergency organization includes
the following situations: (1) Excessive distribution of emergency responsibilities led to a
fragmented number of departments. (2) Multiple leaders oversee emergency authority
resulting in conflicting decisions. (3) Mismatched emergency authority and responsibility
led to the inability of some departments or hierarchies to carry out their due duties in a
holistic manner and to accomplish overall objectives.
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3.4. Fragmented Emergency Information

Fragmented emergency information refers to the lack of overall information on emer-
gencies. The causes of it include both management deficiency, i.e., lack of information-
sharing mechanisms between government, enterprises, and the public on the disaster spot
who have access to disaster information, and the complexity of collecting real-time crisis
information and predicting the crisis trends, which makes it difficult to obtain the overall
information.

3.5. Fragmented Emergency Perception

Fragmented emergency perception refers to the different interpretations of the impor-
tance of disaster crisis management and the urgency of emergencies by decision-making
entities such as government officials and household individuals, in addition to the mis-
match between risk perception and risk reality. Emergency perception influences the
decisions and actions of emergency subjects, for example, a disaster prevention-active
government will pursue proactive mitigation policies, while disaster-aware rational house-
holds (individuals) will take the initiative to avoid risks and cooperate with pre-disaster
relocation, etc. Factors such as disaster experience, level of emergency education, and socio-
demographic characteristics are closely related to emergency perception status [18]. Some
studies have shown that government and household mitigation actions significantly influ-
ence flood risk and vulnerability trends [19], so it is important to study the fragmentation
of emergency perception.

3.6. Fragmented Emergency Services

Fragmented emergency services are reflected in the unequal quality and quantity of
emergency services received by different regions and groups. This paper regards disaster
crisis management as a type of public service provided by the government, the market,
the third sector, and the communities. While the goal of realizing equalization in public
services is widely acknowledged by China’s government, disaster crisis management
service is far away from equalization as this paper points out, for example, rural areas have
received less disaster crisis management services than urban areas in China, as most of
the emergency resources are gathered in cities. This kind of relationship between rural
and urban is also transferable to other dualistic counterparts such as capital cities and
non-capital cities, middle-aged groups and childhood and elder groups.

4. Methodology

4.1. Case Study

From 17 to 23 July 2021, Henan Province was hit by a historically extreme rainstorm,
which was long-lasting and extensive. The worst-hit areas of this disaster event were
the Zhengzhou metropolitan area and the northern part of Henan Province [39]. The
cumulative process rainfall in Zhengzhou was 543 mm, with a maximum process point
rainfall of 993.1 mm and 24-h precipitation of 552.5 mm, exceeding 80% of the local annual
precipitation. The highest rainfall amount reached 201.9 mm at 16–17 h, and this round of
rainfall amounted to nearly 4 billion m3 of water, which is the widest range and strongest
rainstorm in the history of meteorological observation in Zhengzhou. The waterlogging
situation in the urban areas of Zhengzhou was severe, with most areas (479.0 km2, ac-
counting for 45.3% of the total area) having a maximum inundation depth exceeding the
requirements for urban flood control (0.25 m), and some areas (116.0 km2) even having
a maximum inundation depth of 2.00 m or more, with an area of 272.4 km2, or 25.8%,
having an inundation depth of 0.50 to 2.00 m [16]. The city’s 2607 underground spaces
and important facilities were flooded, several areas were cut off from water, electricity,
and the Internet, and communication and access facilities were damaged. The extreme
rainstorm event caused 14,786,000 people to be affected in 150 counties (cities and dis-
tricts) across Henan Province, with 398 people killed and missing because of the disaster,
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of which in Zhengzhou accounted for 95.5% of the number; the direct economic loss was
120.06 billion yuan.

The storm disaster exceeded the preparedness standards and impact expectations, but
the fragmentation problems in disaster crisis management in Zhengzhou worsened disaster
losses. At 21:59 on 19 July, the Zhengzhou Meteorological Department issued a red warning
signal representing the highest level of heavy rainfall disaster, and a second red warning
signal was issued at 06:00 on 20 July, but Zhengzhou City’s Flood Control and Drought
Relief Headquarters (FCDRHs), which is the commanding authority in Zhengzhou city,
did not activate the highest-level emergency response as required. During the period from
10:30 to 18:00 on 20 July, the Changzhuang Reservoir experienced a dangerous situation
of pipe surge, flooding eruption, and serious waterlogging in the Jingguang Expressway
North Tunnel and Zhengzhou Metro Line 5 Train occurred, with most of the casualties
concentrated in this period; on the 21st, the Guojiazui Reservoir was flooded due to the
occupied floodway. Inadequate emergency actions by the relevant authorities during this
period led to tragedies that could have been avoided.

Reflecting on the failed disaster crisis management behind this extreme rainstorm,
the issue of fragmentation has surfaced. The division of jurisdiction among several depart-
ments and a lack of coordination are both significant contributors to the fragmentation of
urban flood control emergency management. The general command of flood control and
drought control at all levels should be fully utilized, and the system of forecasting, warning,
and planning should be improved. The emergency administrative department should take
the initiative to establish and improve the inter-departmental coordination mechanism
of urban flood control. Using the “7-20” event as a case study, this paper analyses the
reflections and negative consequences of fragmentation in this extreme rainfall disaster
crisis management.

4.2. Data Collection

The data for this paper were collected mainly from Chinese government documents
and online news reports, including the “Investigation Report on the “7-20” Extreme Rainfall
Event in Zhengzhou, Henan Province” issued by the State Council Disaster Investigation
Team, and the national-level and municipal-level laws, regulations, and ECPs related to
emergency management and flood control. The data collection is mainly from secondary
sources, lacking in field research and interviews, and the collectors of secondary data may
have reservations or exaggerations due to their preferences, so the data sources are inade-
quate. This paper will try to select objective data sources and analyze the fragmentation
problems of this rainstorm event.

5. Case Study: Introducing a Fragmentation Perspective to Interrogate the
Effectiveness of Disaster Crisis Management of the “7-20” Extreme Rainfall Event

5.1. Fragmented Emergency Regulations Led to the Lack of Synergies and Experience in
Emergency Operations
5.1.1. Disconnections between Regulations Led to the Lack of Synergies in Response

The flood control disaster crisis management system in Zhengzhou City is cross-
boundary, with governments at all levels, different functional departments, and related
agencies having to prepare their flood control Emergency Contingency Plans (ECPs) and
set the workflow and response conditions within their departments. As a result, many
flood-control regulations lack connections with each other, leading to the lack of synergies
in response. The following are specific reflections on this case:

(1) The disconnection between the early warning system and the response system led to a
disconnection between the meteorological department’s warning actions and those of
other departments. The Zhengzhou Meteorological Department issued a total of five
red warnings, the highest disaster level, from 21:59 on 19 July until 16:01 on 20 July.
Although the Zhengzhou Flood Control Emergency Plan clearly states that receiving
a red warning issued by the meteorological department is one of the conditions for
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activating the highest level of emergency response, Zhengzhou City’s Flood Control
and Drought Relief Headquarter (FCDRH), as the flood control command agency, did
not activate the highest-level emergency response as required until 16:30 on the 20th,
by which time 18.5 h had passed since the first red warning, and most of the disasters
had already occurred, with emergency rescue responses seriously lagging. Besides
the FCDRH, functional departments such as the Zhengzhou Transport Department,
the district and county governments, and government agencies such as the Zhengzhou
Metro Enterprise did not respond to the meteorological department’s warning signals
in a pre-controlled manner. After the FCDRH launched the highest-level emergency
response, the Subway Line 5 Train flooded, but the Zhengzhou government and the
Metro Enterprise lacked a linkage mechanism, and the Metro Enterprise was late in
launching the emergency response, resulting in the underground drowning accident.

(2) Discrepancies between response conditions led to inconsistent emergency operations.
Disaster crisis management entities set different response conditions according to
the characteristics of their management targets (Table 1). For example, the condition
for Zhengzhou City’s FCDRH to activate the highest-level response is “water may
accumulate to a depth of more than 50 cm on most sections of major roads and low-
lying areas in urban areas, and water may accumulate to a depth of more than 100 cm
under most of the overpasses, and the meteorological department has issued a red
warning of heavy rain”, the Zhengzhou City’s Tunnel Maintenance Center should close
the tunnel when the water on ordinary roads exceeds 40 cm, and the Metro Enterprise
should stop running and evacuate passengers after the water surface has flooded
the tracks. The lack of a common standard of conditions to alert all relevant disaster
crisis management subjects to prepare at the same time has led to a serious problem of
lagging rescue response, lack of synergies, and fragmented emergency operation.

Table 1. Related Emergency Regulations and Its Formulation Subject in “7-20” Extreme Rainfall
Event in Zhengzhou, Henan Province.

The Entities Setting Regulations Document of Related Regulations

National level laws and regulations

Law of the People’s Republic of China on Emergency
Response, Law of the People’s Republic of China on

Flood Control, Water Law of the People’s Republic of
China, Regulations on the Safety Management of

Reservoirs and Dams, Interim Provisions on Reporting
of Flood Emergencies and Disasters

Provincial-level regulations Regulations on the Management of Water Resources
Projects in Henan Province

Zhengzhou City’s FCDRH

Zhengzhou Flood Control and Drought Relief
Command Notice on Strengthening Discipline in Flood

Control Work, Zhengzhou Flood Control Emergency
Contingency Plan, Duties of Members of the Zhengzhou

Flood Control and Drought Relief Command

District, county, township-level
regulations

Flood Control Emergency Plan and Flash Flood Disaster
Prevention Plan of each district, county, and township

Transport Department Measures for the Organization and Management of
Urban Rail Transit Traffic

Urban Management Department Zhengzhou Urban Flood Control Emergency Plan

Zhengzhou City’s Tunnel
Maintenance Center

Zhengzhou City Tunnels Integrated Management and
Maintenance Centre Flood Prevention and Emergency

Plan for 2021

Zhengzhou Metro Enterprise Rules for the Organization of Traffic
(Subway Line 5 train)
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5.1.2. Absences of Formulation, Rehearsal, and Assessment of Emergency
Contingency Plans

Emergency Contingency Plans (ECPs) are supposed to go through the process of
formulation, rehearsal, and assessment, and the absence of any link results in fragmentation.
The “7-20” case has reflected a significant fragmentation problem in terms of the absence of
the ECPs process. First, the absence of formulation means some disaster crisis management
entities do not even prepare their ECPs as required by law, so when the “7-20” extreme
rainfall event occurred those subjects had no plan to follow and responded messily or had
no response at all. Second, the absence of ECPs’ rehearsal contributed to the poor disaster
crisis management experiences of decision-makers, which further caused them to neglect
the working procedures set out by ECPs. During the “7-20” rainfall event, many subjects
did not take timely and appropriate measures as required by ECPs (Table 2), even though
the conditions for activating are clear, resulting in a serious lag in emergency response.

Table 2. The inappropriate and untimely measures of disaster crisis management subjects in the
“7-20” case.

Disaster Crisis Management
Subjects

Inappropriate and Untimely Measures

Water Department

1. Warning information was not issued to the community as
stipulated in the plan, but only sent to the district and county

defense committees or relevant departmental units.
2. Failed to collect and report the dangerous situation of

Changzhuang Reservoir and Guojiazui Reservoir in a timely
manner as required by the Flood Control Emergency Plan.

Urban Management
Department

Failure to issue early warning information to the community
by the “Flood Control Emergency Plan of Zhengzhou City”
and “Urban Flood Control Emergency Plan of Zhengzhou

City”, to activate the emergency response of the city’s FCDRH,
and to send the early warning information to the members of

the Metro enterprise.

Zhengzhou Metro Enterprise
Failure to investigate potential hazards, activate emergency

response, and implement a hazard reporting system as
required by the plan

Zhengzhou City’s Tunnel
Maintenance Center

Failure to implement its ECP which states that “the tunnel
should be closed when water exceeds 40 cm on

ordinary roads”.

Emergency Management
Department

Failure to activate the emergency response in accordance with
the “Zhengzhou Flood Control Emergency Plan” Level I

response activation conditions “major danger in Jiangang and
Changzhuang reservoirs, or dam collapse in small and

medium-sized reservoirs in important locations” in the event
of a tube surge in Changzhuang reservoir.

Traffic Control Department Failure to direct traffic jams in the event of obvious traffic jams
as specified in the plan

Water administration
authorities, reservoir authorities

Failure to take effective measures to stop reservoir
encroachment, reduction of reservoir capacity, and other

illegal and irregular acts as required.

Districts, cities, and towns
(street offices)

Failure to activate flood control, flash flood emergency
response, organize evacuation of people, report disaster
damage information in accordance with the provisions

of the ECPs.

Finally, the absence of assessing the early warning efficiency shaped the action of the
Zhengzhou Meteorological Department, which only focused on issuing warning signals,
rather than considering how other departments and the public will react to the warning
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signals [37]. In this case, the Zhengzhou Meteorological Department issued a red warning
signal with only rainfall forecasts and no defense guides for the public, enterprises, and
governments. This makes it difficult for the public who has no weather expertise to judge
the disaster consequences only according to the rainfall. The fact that people continued
to go to work and school and other sectors continued to operate reflects that they did
not take the Meteorological Department’s red warning seriously or did not know the red
warning at all.

5.1.3. The Missing Responsibility Arrangement and Coordination Mechanisms Led to
Inadequate Duty Performance

The content of Zhengzhou’s flood-control ECPs is fragmented because of the missing
responsibility arrangement and coordination mechanism. The State Council requires that
local government ECPs should “clarify the responsibility for predicting, warning, alerting,
receiving, response, rehabilitating and rebuilding; clarify the leading organization, com-
manding organization, daily duty organization, collaborating departments, participating
units, responsibilities and authority for emergency response in the administrative region”,
however, Zhengzhou flood-control ECPs only clarified commanding bodies and participat-
ing units, and the emergency responsibility arrangement is largely duplicated with regular
responsibilities, which is not useful in the face of extreme rainstorm emergencies. Besides,
the ECPs did not include enough emergency participating member units, or enough respon-
sibility lists, for example, the ECP designed by Zhengzhou Urban Management Department
did not clarify the flood-control responsibility of Metro Enterprise, which was proved to be
an important member in the “7-20” case, and the responsibility list of Zhengzhou Trans-
port Department only contains safeguarding emergency transport, without road condition
management under rainstorms. In addition, Zhengzhou flood-control ECPs did not clarify
practical emergency coordination mechanisms, which cannot guide the emergency subjects
to collaborate.

The blurred, incomplete emergency responsibility arrangement for Zhengzhou city’s
FCDRH contributed to the absence of effective leadership. When the extreme rainfall
continued, with some reservoirs surging and areas flooded, most of the leaders went to
the disaster site. Some of them were stuck in traffic, and some of them could not acquire
the latest disaster information as the communication facilities were damaged by flooding.
No one could study the overall disaster situation and collect news from all sides, so the
leadership is ineffective.

5.2. Fragmented Emergency Organization: Mismatch between Emergency Authority
and Responsibility

The mismatch between emergency authority and responsibility describes a situation
in which “Those who should not be in charge are blindly in charge, those who should be in
charge have no responsibility, and those who want to be in charge have no authority.” In
the “7-20” case, the fragmentation of emergency organization is reflected as follows:

(1) Administrative authority interferes with professional warning efforts. The profes-
sionalism of functional departments leads to mutual ignorance, so certain translative
mechanisms are needed for the professional information to be correctly understood by
other departments. The graded warning system of the Meteorological Department
(blue, yellow, orange, and red, from lowest to highest level) is this kind of translative
mechanism, making it easier for others to understand the severity of rainstorms. How-
ever, the meteorological sector suffers from a fragmentation problem of mismatched
authority and responsibility, with administrative powers interfering with the perfor-
mance of professional meteorological duties. To respond to higher-level assessments,
the meteorological sector issues around three hundred warnings per year, the vast
majority of which are non-essential [40], weakening the credibility of warning signals.

(2) Important authorities are absent from flood-control responsibility, and managers
with responsibility have no authority to carry out duties. In this case, the Guojiazui
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Reservoir was at major risk of roiling due to the spillway being blocked by a temporary
construction road, and the construction unit, Henan Wujian Construction Group
(referred to as Wujian), built a construction road within the spillway in 2018, which
seriously affected the safety of the reservoir’s flood discharge. In 2021, the Zhengzhou
Erqi District Government requested Wujian to restore the spillway to its original state
and clean up the abandoned soil and slag before the flood, but Wujian rejected it with
the excuse that their construction was not under the control of the district government
but the Zhengzhou Municipal government as a key project [41]. The Zhengzhou
Municipal Government has the power to manage infrastructure planning but not the
responsibility for local flood control. The construction of infrastructure has caused
negative flooding effects in the short and long term. Yet, the district government,
responsible for local flood control, has no power to interfere with municipal projects.
The fragmented emergency organization has resulted in a lack of flood prevention
considerations in infrastructure development and the overall goal of building a flood-
resilient city cannot be achieved.

5.3. Fragmented Emergency Information Exacerbates the Complexity of Decision-Making and
Post-Disaster Learning

Emergency decision-makers are faced with the conflicting emergency ethics of eco-
nomic operation and safety assurance, and therefore need sufficient information to support
emergency decisions, yet the fragmentation of emergency information has led to insuffi-
cient support for that. Functional departments have access to information on rain-storm
disasters, for example, the meteorological department monitors rainfall, the emergency
management department has risk assessment data, and the water resources department
monitors water conditions such as water level and flow rate in rivers, lakes, and reser-
voirs, etc. The lack of information sharing between departments and the fragmentation of
information sources exacerbates the complexity of emergency decision-making.

The post-disaster investigation was difficult, complex, and professional, based on
the scattered responsibilities of disaster crisis management subjects, the large number of
regulations and documents, and the wide scope of the disaster. The State Council Disaster
Investigation Team conducted a comprehensive and detailed investigation into the extreme
rainfall event in Zhengzhou, Henan Province, and published an investigation report. This
is the first region-wide survey of natural disasters in China and is of special significance.
The investigation team reviewed more than 90,000 pieces of information, explored the
site more than 100 times, conducted nearly 200 discussions and research, and interviewed
more than 450 people, which entails a huge workload; and the investigation team was
composed of academicians and authoritative experts in various professional fields, and the
investigation team was divided into several special working groups according to different
investigation themes. The fragmentation of storm emergency information has increased
the difficulty of post-disaster investigation and learning.

5.4. Fragmented Emergency Perception Reduces Risk Awareness

The government and the public are prone to underestimate the probability and severity
of extreme rainstorms, thus, there is a mismatch between risk reality and risk perception,
forming the fragmentation of perception. Perception will further determine decision
making, for example, a government with low-risk perception will produce a passive
disaster prevention policy, demolishing the environment with no restraint for development
until a crisis erupts; the officials with bounded-rational perception may make a wrong
judgment about disaster reality and misdirect disaster crisis management; the households
and individuals with low awareness about risk may not be inclined to take prevention
measures. In the “7-20” case, the Zhengzhou leading officials from the commanding
department subjectively judged that the inland northern areas in China will not suffer from
rainstorms, even with the red warning signals from the Meteorological Department, which
directly led to the lagging emergency response of all sectors. In addition, the public is
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reliant on official measures and the majority will continue to work and go to school if the
notice for closing classes and business is not issued officially.

5.5. Fragmented Emergency Services Result in the High Vulnerability of Vulnerable Regions
and Groups

(1) Zhengzhou, as the provincial capital city, received extensive public attention and
government attention, thus, social donations from celebrities and corporations were
tilted towards Zhengzhou, while non-capital cities such as Xinxiang and Hebi in
northern Henan suffered relatively more severely from the disaster [39], but received
less public attention and had more difficulty in accessing emergency relief resources.

(2) Compared to urban areas, rural areas are weaker in disaster prevention, mitigation,
and relief due to a lack of emergency infrastructure and the isolation of transportation,
and the prevalence of low preparedness in rural areas. In the post-disaster recovery
segment, there is a large gap between the level of emergency services received by
the cities and the villages. In Zhengzhou, urban areas recovered quickly after the
storm, with the city functioning normally again, while a rural area in Xinxiang was
still muddy four months after the storm, with abandoned vehicles and scouring debris
still uncleared.

(3) Vulnerable groups such as the elderly and the disabled are in weaker physical condi-
tion, so they are more dependent on rescue services. Besides, the elderly groups have
a large digital gap, so it is difficult for them to receive warning information through
the internet and mobile channels.

6. Lessons and Key Points for Improving Disaster Crisis Management in China from
the “7-20” Case

6.1. Promoting the Convergency between Regulations

Emergency-related regulations are the guidebook for governments and institutions to
take emergency actions in the face of extreme rainfall events. Holistic regulations shape
a comprehensive emergency response, while fragmented regulations shape fragmented
emergency operations. The fragmentation problem in the “7-20” case provides ideas for
emergency practitioners to optimize the emergency regulations system.

Firstly, a warning-led emergency response mechanism should be established, and the
commanding department should be synchronized with the warning department to keep
disaster information and emergency operations in sync, to prevent the warning department
from being siloed from others. Drawing on Beijing’s experiences, in which a holistic
emergency regulations system was developed after the 2012 rainstorm, the meteorological
department is required to obtain the consent of the commanding authority to issue a
warning above the yellow level, thus ensuring that the command authority is kept abreast
of rainfall information and keeps in touch with warning actions [42]. In addition, detailed
emergency operations of commanding agencies and members corresponding to the warning
levels are explicitly formulated to ensure that all functional departments act correctly upon
receiving the warning signals. These arrangements are designed to ensure that warning
actions are closely linked to the emergency pre-control response operations.

Secondly, the land development department should be incorporated into the flood-
control emergency system to achieve whole-process disaster crisis management. Infras-
tructure and housing construction will change the condition of the city’s subsurface, thus
affecting flood production and confluence. Reducing flood risk requires ensuring that
infrastructure is built to meet flood resilience requirements. Beijing has set up a special
sub-command for housing and urban-rural construction to manage the prevention of
storm flooding and geological hazards in housing, transport, rail, and underground space,
incorporating land development into the flood-control emergency system to achieve a
combination of prevention and rescue.

Thirdly, flood control emergency pre-drills and drills are of great significance. ECPs
are the guidelines for emergency rehearsal in China, so they should be strictly imple-
mented, and emergency coordination mechanisms should be explicitly formulated. It is
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better to practice it once than talk about it a thousand times. Therefore, the following
recommendations for flood control emergency pre-drills are made: first, creating sound
material reserves, such as medical supplies and emergency maintenance for daily necessi-
ties; second, using big data technology to analyze the best transfer routes and construction
locations for emergency facilities; third, for flood-prone areas, developing flood control
drills for the active population and key transportation sectors; fourth, to stay up to date
on flood disaster information and maintain emergency management operations in sync,
collaboration mechanisms should connect various government departments, the public,
and other government agencies like city transportation companies.

6.2. Matching the Emergency Responsibility and Authority

The fragmented emergency organization has led to a situation in which those who
should not be in charge are blindly in charge, those who should be in charge have no respon-
sibility, and those who want to be in charge have no authority. Matching the flood-control
emergency responsibility and authority requires that the departments with responsibilities
have sufficient authority and resources to intervene in the irregularities, while at the same
time compacting the flood-control responsibility of the authority departments. Besides, it is
important to promote the matching of managerial powers with professionalism to reduce
the interference of administrative disadvantages in the professional work of flood-control
emergency management.

6.3. Establishing the Emergency Information-Sharing Platform

Obtaining holistic flood disaster information can reduce information asymmetry and
uncertainty, thus providing scientific support for emergency decision-making. To tackle the
problem of fragmented information, firstly, it is necessary to establish a disaster information
sharing platform to synchronize information from all sides. For example, the Department
of Homeland Security Science and Technology Directorate (DHS-S&T) in the United States
has launched the Social Media Alert and Response to Citizen Threats (SMART-C) program
using big data technology to collect real-time disaster information from the public at
disaster sites, enabling information sharing between the government and the public [43].
Secondly, as the disaster information from the spot is hard to collect due to the flooded
transportation and damaged communication facilities, advanced technology can be used
to collect real-time information and analyze flood trends. For instance, satellite images,
wireless communications, unmanned aerial vehicles, and remote sensing technology will
help to recover real-time information on flood threats, assisting in the issuance of early
warnings and the gathering of disaster information.

6.4. Strengthening Emergency Education and Raising Risk Perception

The government should strengthen the education of emergency response knowledge
for managers of government departments, grassroots government executives, enterprises,
and institutions, as well as the public, and do a good job in emergency response publicity
and education to raise awareness of the crisis, as well as prevention and response among all
parties. For government personnel, it is important to improve their emergency sensitivity
and emergency expertise and to take timely emergency action; for the public, it is important
to improve their awareness of prevention and their ability to make judgments and to
provide emergency self-help training. Besides, the government should announce risk
sources to the public.

6.5. Changing the Dualistic System in Disaster Crisis Management

Urban and rural areas, provincial and non-provincial cities, first-tier and non-first-tier
cities, middle-aged and non-middle-aged groups, etc. These ‘pairs’ are strong on one
side and weak on the other, forming a dichotomous structure. The binary structure is not
only deeply rooted in people’s minds but is also hidden in the system to entrench further
the dichotomy, such as in the urban-rural hukou system. Emergency services are also
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influenced by the dualistic concept and system, which leads to the inequality of services.
The strong side of the dualistic structure usually has better access to emergency resources
and receives a better level of emergency services than the weak side.

To solve the problem of fragmentation of emergency services, the dualistic concept
and system of disaster crisis management should be broken down to equalize emergency
services. Previous discussions on the division between urban and rural areas, first-tier
cities, and non-first-tier cities have aggravated the recognition of the binary structure in the
social consciousness, so it is necessary to break the binary pattern in the construction of the
discourse, focus on regional integration, dilute the binary concept from the consciousness,
and balance the public attention, to promote the disadvantaged side to receive more
emergency resources, especially social donations and government attention. In terms of
institutions, the administrative boundaries of emergency services should be broken down
and emergency services should be reshaped to focus on the needs of the public; support
should be given to the construction of disaster prevention, relief, and mitigation systems
and capacities in rural areas, to improve their preparedness.

7. Conclusions

The problem of emergency fragmentation emerges from the failed emergency man-
agement in the “7-20” extreme rainfall event in Zhengzhou, Henan Province. This paper
takes this as a case study and innovatively uses the theoretical framework of emergency
fragmentation to analyze the human response to the “7-20” event, and the following is a
summary of the key content:

First, fragmentation in disaster crisis management consists of five aspects: fragmented
emergency regulations, fragmented emergency organization, fragmented emergency infor-
mation, fragmented emergency perception, and fragmented emergency services. Among
them, fragmented regulation is the key issue, which both underpins the functioning of
the organization and influences other aspects of emergency response fragmentation. This
analytical framework of fragmentation is beneficial for the academic community as it fills a
gap in the current study of emergency fragmentation and flood disasters and provides the-
oretical support for the reform of China’s disaster crisis management system, mechanism,
and legal system.

Second, the “7-20” case study revealed harmful effects of fragmentation: fragmented
emergency organization, or the mismatch between emergency authority and responsibility,
contributed to the lack of authority to carry out duties and interference with professional
work; fragmented emergency information exacerbates the complexity of decision-making
and post-disaster learning; fragmented emergency perception lowers risk awareness; and
fragmented emergency regulations led to the lack of synergies and experience in emergency
operations. These findings offer emergency management expertise to other Chinese cities,
enhancing the human response to storms and floods that occur on a regular basis.

Third, measures for holistic flood-control disaster crisis management include pro-
moting the convergence between regulations, matching the emergency responsibility and
authority, establishing the emergency information-sharing platform, strengthening emer-
gency education and raising risk perception, and changing the dualistic system in disaster
crisis management. These recommendations will help policymakers encourage the de-
velopment of an intersectoral, collaborative, and whole-process approach to emergency
management, with the hopes of strengthening emergency management capabilities, en-
hancing the efficiency of disaster responses, and defending lives and property.

This paper discusses the negative impact of the fragmentation of emergency manage-
ment of heavy rainfall and floods on the effectiveness of emergency management, but is
limited by the lack of government information and does not analyze in depth the inter-
action between the various types of fragmentation and how they are manifested in the
presented case. For example, the fragmented emergency regulations and the fragmented
emergency organization, although manifested in different ways, affect each other, and an
in-depth discussion of the interactions between fragmentation issues would be useful in
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proposing more realistic governance measures. In addition, most of the case studies in
this paper were sourced from secondary sources and face-to-face interviews could not
be conducted with the relevant flood control emergency decision-makers in Zhengzhou,
Henan Province, so there is still much case-related emergency management information
yet to be explored. Future research will further explore the interrelationships and causes
of emergency fragmentation, dig deeper into the information related to the emergency
management measures in Zhengzhou, Henan Province, during the “7-20” disaster, and
propose more specific policy recommendations to provide a basis for policymakers to
reform emergency management mechanisms, institutions, and legal systems.
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Abstract: In order to avoid the risk of tailing pond failures and to minimize the post-failure losses, it is
necessary to analyze the current operation status of tailings ponds, to explore the evolution law of
their failure process, to grasp their post-failure impact range, and to propose corresponding effective
prevention and control measures. Based on a tailings pond in China, this paper establishes a 1:200
scale indoor model to explore the evolution law of post-failure tailings discharge in a tailings pond
under flooded roof conditions; secondly, the finite element difference method and smooth particle
fluid dynamics are combined to compare and analyze the post-failure impact area and to delineate the
risk prevention and control area. The results of the study show that, during the dam break, the lower
tailing sand in the breach is the first to slip, and after forming a steep can, the upper tailing sand in the
steep can is pulled to slip, so that the erosion trench mainly develops vertically first, and then laterally.
The velocity of the discharged tailing sand will quickly reach its peak value in a short period of time
and then decrease to the creeping stage; the front edge of the sand flow is the first to stop moving, and
the trailing edge of the tailing sand accumulation depth continues to increase until the end of the dam
failure, at which point the initial bottom dam area of the discharge tailing sand flow velocity is the
largest. The further the tailings are released from the initial dam, the smaller the accumulation depth
and the larger the particle size, and the larger the elevation of the foundation in the same section,
the smaller the accumulation depth and the larger the particle size; further, the presence of blocking
materials will increase the local tailings accumulation depth. Based on the maximum flow velocity of
the discharged tailings and the accumulation depth, the risk area downstream of the tailings pond
is divided, so that relocation measures can be formulated. The test results can provide an important
reference for the operation and management of similar tailings ponds.

Keywords: tailings pond; model test; dam failure process; evolutionary law

1. Introduction

As an important facility of mine engineering, tailings ponds are characterized by a
large drop and high potential energy, and their existence is a constant threat to the smooth
operation of mines and the safety of life and property of residents downstream. Since the
early 20th century, with the rapid economic development, the number of tailings ponds
has increased accordingly, and there have been numerous dam failures in tailings ponds
around the world due to earthquakes, rainfall, the deterioration of dam structure, poor
construction, and improper management [1–5]. For example, the Prestavel tailings dam
mudslide near the Tesero River in northern Italy destroyed most of the buildings along the
Tesero River and killed 268 people [6], and the Pure Pierre tailings dam accident resulted in
251 deaths [7]. The Omi tailings dam failure in Guyana killed more than 1000 Guyanese [8].
The mega-dam failure of the Pingcong tailings pond in Xianfen County, Shanxi, China,
led to 277 deaths, four missing persons, 33 injuries, and direct economic losses of CNY
96.192 million when the accident struck residential buildings in the mining area about
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500 m downstream [9]. It can be seen that when a tailings pond is breached, the degree and
scope of the damage are catastrophic, it is necessary to simulate the process of tailing pond
breaches and establish a prediction of post-breaching hazards, and the evolutionary law
of the breaching and the scope of post-breaching impact are of great significance for the
smooth operation of the mine and the safety of life and property of downstream residents.

In tailings pond dam failure research, domestic and foreign scholars usually adopt
theoretical, numerical simulation and model test methods. In terms of theoretical research,
parameters such as the sand discharge, breach width and flow curve of a dam breach
accident are usually summarized by means of theoretical derivation and statistical analysis
of the accident, and the flow characteristics of the tailings discharged from the breach are
compared and analyzed to establish a suitable empirical equation to model the accident [10].
Shakesby et al. explored the factors of a dam breach by analyzing the factors of the
Arcturus gold mine breach in Zambia, and explored the dam breach development and
characteristics [11]. Renato Eugenio de Lima et al. established a preliminary quantitative
estimation of the post-failure debris flow velocity based on a preliminary qualitative
summary of the causes of the Córrego do Feijão dam failure accident in Brumadinho,
Brazil, as well as the form of the dam failure [12]. However, due to the complexity of
the tailings dam failure mechanism and the large differences in the internal structure and
material composition of different tailings dams, the reliability of the results obtained by
purely theoretical analysis is low. Aureli, by reviewing historical dam failures, pointed
out the need for rigorous and effective numerical modeling to quantify flood hazards,
and summarized data sets for validating numerical models and providing appropriate
data for physical model testing [13]. Along with the enrichment of theoretical knowledge
and the improvement of computer technology, a large number of scholars have started
to use numerical simulation and model testing methods for dam failure studies in recent
years. Numerical simulation can play an important role in the prediction and physical
test verification of tailings dam failure hazards [14,15]. F W.L. Kho et al. simulated the
flow velocity, propagation time, post-failure impact area, and the degree of impact on the
safety of life and property of downstream residents and the environment during the dam
failure process, by establishing the Boss Dambrk dam failure model, and they used this to
delineate the risk magnitude area [16]. Muhammad Auchar Zardari et al. used the PLAXIS
finite element program to establish a UBCSAND intrinsic model to dynamically analyze
the effects of large earthquakes in the upstream tailings dam of the Aitik copper mine in
northern Sweden [17]. Tran Tho Dat et al. focused on DakDrinh, the largest dam in the
lower basin of the Tra Khuc–Song Ve River, to establish the Mike Flood’s 1D and 2D models
that simulate the inundation extent and depth after dam failure and provide a reference for
dam management [18]. Torben Dedring et al. simulated the tailings spill path after tailings
dam failures by establishing the Laharz model, and verified the high accuracy of this model
by applying it to the Brumadinho tailings dam failure model to make up for the basic gap
between the one-dimensional spill path model and the complex numerical model [19].

However, the tailings flow from a dam breach spill is a water–sand mixed slurry
composed of porous tailings particles, which is essentially a non-Newtonian fluid with
complex rheological properties (unlike water, which is a Newtonian fluid), and its mobility
is between that of debris flow and water flow [20,21]. Numerical simulations would
simplify the boundary conditions and material properties of tailings ponds, and with more
constituent elements of tailings ponds and complex dam-break mechanisms, the accuracy
of conclusions reached from a single method of numerical simulations applied to study
the evolution of tailings pond dam-break laws is low [22–24]. Wang, Guangjin et al. used
similar physical model tests to explore the deposition characteristics of tailings on the
surface of a dry beach during tailings dam stacking and the evolution of the infiltration
line in the dam body [25]. Guangzhi Yin et al. focused on a tailings pond. A 1:200 physical
geometry model was developed to analyze the stability of tailings dams of different heights
under different operating conditions, and this was used to design a prototype tailings pond.
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It can be seen that most scholars study the evolutionary law of tailings dam failure and
its effects via numerical simulation, but very few scholars use this method because physical
model tests require a lot of labor and material resources, etc. Moreover, many physical
model tests only satisfy the similarity of local boundary conditions, or use small-scale
models according to the test purpose, which inevitably gives rise to differences between
the model and the prototype post-failure evolutionary law. The accuracy of the test results
is thus affected. In this paper, we explore the process of tailings dam failure and the
evolution of discharged tailings under flooding conditions in a valley-type tailings pond in
China, using a 1:200 indoor model test and combining the numerical simulation software
of both methods to simulate and analyze the post-failure impact range, before verifying
the applicability of both types of numerical simulation software. Finally, we propose risk
prevention and control recommendations and specify the relocation range, which can
provide important references for the study and management of this type of tailings ponds.

2. Overview of the Tailings Pond

The original tailings pond is surrounded by mountains to the south, west and north,
with two ditches at the end of the pond. The overall Y-shaped ditch opens to the north and
east, which section is U-shaped, sloping from south west to north east. The elevation of
the bottom of the ditch varies from 240 to 320 m, the elevation of the top of the mountain
varies from 490 to 800 m, the maximum height difference is 400 m, the average slope of the
longitudinal slope of the bottom of the ditch is about 3.28%, and the topography undulates
minimally; this is a typical valley-type tailings pond. The initial dam bottom elevation is
240 m, the dam top elevation is 276 m, the dam height is 36 m; the initial dam upstream
slope ratio is 1:1.85, and the downstream slope ratio is 1:1.7. The tailing pond sub-dam is
of an “upstream type”, the dam top elevation is 380 m, the sub-dam outer slope ratio is
1:4, and the sub-dam road width is 8 m. The overall slope ratio of the accumulation dam
is about 1:5; the total dam height of the tailing dam is 140 m with a total storage capacity
of 260 million m3, and the tailing pond is classified as second class according to the Code
for the Design of Tailings Facilities (GB 50863-2013). Village No. 1, with a population
of 400 people, is 600 m downstream of the tailings pond, and village No. 2 is less than
1 km away. Due to the presence of important towns and industrial and mining enterprises
downstream of the tailings dam, the grade of the prototype tailings pond is increased to
first class, as shown in Figure 1.

Figure 1. Topographical map of the prototype tailings pond.
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3. Results Dam Failure Physical Model Test

3.1. Test Model

In the study of many mechanical problems, direct tests on the entity are costly and
limited, and can only be applied to some specific situations; they also do not have universal
significance, as it is difficult to use them to reveal the essence of the phenomenon and the
general relationship between the quantities. Therefore, many problems are not suitably
addressed via direct testing on the entity; similar model tests can replicate the huge scale
of the entity, save money, control the parameters and achieve good targeting, prevent the
influence of external environmental factors, have easily changeable test parameters for
comparison tests, and yield accurate data. Therefore, the similarity of the model plays a
decisive role in the test results. In the model-making process, the physical and mechanical
properties, accumulation height and accumulation process of the sand, the slope, height
and structural characteristics of the model dam, the slope, width and roughness of the
downstream trench, the location of the village, the topographic relief and other influencing
factors should be similar to the real conditions. Since the process of tailings pond breaching
is extremely complex, there are many relevant factors and incompatibility is inevitable. This
experiment aims to simulate the process of tailings pond breaching when flooding occurs,
explore the evolution of the breaching law, and predict the impact range after breaching.
Therefore, for our experimental purpose, the model’s general factors can be relaxed and we
need only focus on the similarity of the accumulation effect [26]. For this test, the similarity
of water flow hostage sand, the similarity of tailing sand settlement, and the similarity
of tailing sand initiation should be satisfied, relative to the model scale λ. The similarity
relationships between the other main physical quantities of the model are shown in Table 1.
The model simulates the area of 3000 m × 2200 m of the prototype, according to the scale
of 1:200; the height of the model tank is set to 1.2 m, and length × width is 15 m × 11 m.
The initial dam of the prototype tailings pond is built using a permeable rock dam with
a backfilter layer on the upstream slope, with a height of 36 m; above the initial dam, the
upstream-type pile construction method is used, with the natural alluvial release of ore
scattered on each level of the sub-dam in turn. The dam was built with bulldozers, with
12 levels of sub-dams at elevations of 283.30 m, 291.00 m, 297.66 m, 306.00 m, 313.50 m,
321.4 m, 331 m, 340 m, 349 m, 360 m, 370 m and 380 m. The slope ratio of the outer slope of
the sub-dam is 1:4, the width of the roadway between the sub-dams is 8 m, and the overall
slope ratio of the accumulation dam is about 1:5; the overall maximum dam height is 140 m.
According to the ratio of 1:200, the initial dam height of the test model is 18 cm, and gravel
was mainly used as the accumulation material. The ore was placed and compacted on the
initial dam of the model. Each sub-dam was constructed in turn, and the overall maximum
height of the model dam was 70 cm. the production process is shown in Figure 2. The test
device consists of water storage system, water injection system, tailing accumulation area,
dam body area, downstream river area, radar velocity measurement system, high-speed
photography system, and recovery system, as shown in Figure 3.

Table 1. Similarity scale.

Ratios
Name

Geometric
Ratios

Flow Rate
Ratios

Flow
Ratios

Time
Ratios

Roughness
Ratios

Area Ratios
Volumetric

Ratios

Formula λL = LP
LM

λv =
√
λL λQ = λL

5/2 λt =
√
λL λn = λL

1/6 λA = LP
2

LM
2 = λL

2 λV = LP
3

LM
3 = λL

3

Numerical
Values 200 14.14 565,685.4249 14.14 2.42 40,000 8,000,000
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Figure 2. Indoor test modeling. (a) Cut off panel. (b) Standing plate. (c) Fill sandy soil. (d) Conservation.
(e) Stacking of sub-dams. (f) Final model.

Figure 3. Schematic diagram of test platform.
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3.2. Test Materials

The model sand for this test was taken from the prototype tailing pond, and according
to the geotechnical test methods and standards and protocols [27], the particle composition
analysis and physical and mechanical property tests were conducted on the tailing sand.
The physical and mechanical property parameters of the tailing sand were obtained as
shown in Table 2, and the grain size gradation curves of the five groups of tailing sand
are shown in Figure 4. The median particle size d50 of tailing sand is 0.0682 mm, mainly
concentrated between 0.005 and approx. 0.075 mm, and the gradation inhomogeneity
coefficient Cu is 2.76, which indicates poorly graded, powdered tailing sand.

Table 2. Physical and mechanical property parameters of tailing sand.

Specific
Gravity

Water
Content

Gravity
Porosity

Ratio
Saturation

Peak Strength of Ring
Shear Test

Residual Strength of
Ring Shear Test

Gs ω(%) γ/(kN/m3) e0 Sr c/kPa tan ϕ c/kPa tan ϕ

2.9 16.2 16.86 0.958 49 15.9 0.2643 8.6 0.2622

Figure 4. Tailing sand particle size gradation curve.

3.3. Dam Failure Process

This test simulates the process of dam failure and the post-failure effects of the proto-
type tailings reservoir in the event of a maximum flood of 2000, due to the failure of the
tailings reservoir drainage facilities to discharge flood water properly. The total amount of
water injected into the test was 1.64 m3, according to the conversion of similar relationships.
The amount of water injected was controlled through the water storage system. At the
beginning of the test, water was supplied to the model reservoir through the water injection
system, and the water level in the reservoir rose slowly, as shown in Figure 5a. When
the water level spread over the top of the dam, the dam began to breach, and the change
process from this point can be roughly divided into:

1. With the slow rise of the water level in the reservoir, a small breach began to appear at
the weak part of the dam top under the effect of water infiltration, as shown in Figure 5b;

2. The water in the reservoir flowed from the breach to the bottom of the dam, and under
the action of water erosion, the tail sand was carried away from the outer slope of the
dam, forming an erosion trench, as shown in Figure 5c;

3. With the development of the erosion trench, the discharged tail sand gradually trans-
formed from the initial single movement to a group movement, and the tail sand in the
erosion trench at the bottom of the dam first started to slip, forming a critical surface
after slipping, and then forming a multi-level small steep bump in the lower part of the

188



Water 2023, 15, 173

erosion trench. Subsequently, the multi-level steep cans gradually fused into one large
steep can, which continuously expanded upstream until extending into the reservoir.
During the migration process, a large amount of tail sand was carried away from the
dam, and the depth of the erosion trench further increased, as shown in Figure 5d;

4. While the steep moved upwards, the flood erosion rate increased, and when the dam body
on both sides of the erosion trench was completely saturated, cracks appeared. When the
bond force is weaker than gravity, the dam body collapses along the cracks into the trench,
and the width of the erosion trench increases at a faster rate, as shown in Figure 5e;

5. When the amount of flood water in the reservoir gradually decreased, the rate of
increase in the width and depth of the erosion trench slowed down. When the flood
water in the reservoir was fully discharged, the erosion trench stopped developing
and the dam tended to a stable state, as shown in Figure 5f.

Figure 5. Dam breach process. (a) Water injection in the tailings pond. (b) Ulcer formation. (c) Erosion
trench formation. (d) Steep can formation. (e) Erosion trench horizontal development. (f) End of dam
failure.

It can be seen from the dam breaching process that the breaching pattern evolves
continuously with time during the breaching process, and the changes in breaching at the
top, middle and bottom of the dam with time can be measured during the test. After the
formation of the breach at the top of the dam, the water flowed downwards sharply, and
the width and depth of the breach at the top, middle and bottom of the dam increased
rapidly one after another. When a steep can is formed downstream of the breach, the depth
of the breach at the bottom of the dam further increases. During the movement of the steep
can upwards to the top of the dam, the depth of the breach in the middle and top of the
dam increases with corresponding speed, as shown in Figure 6a, while the width increases
relatively slowly, so it can be seen that the change in the shape of the breach at this stage
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mainly develops vertically. At the same time, the dam body on both sides was completely
saturated while the breach was undercutting, and cracks and collapses occurred in the dam
body. It can be seen that after the steep can moved up to the top of the dam, the width of
the breach increased at a faster rate, as shown in Figure 6b, while the depth of the breach
increased at a lower rate.

Figure 6. Variation in the depth of the erosion trench on the dam body with time. (a) Variation in
erosion trench depth with time. (b) Variation in erosion trench width with time.

It can be observed from the dam-break process that the breach evolves continuously
when the water volume in the reservoir is sufficient. The rate of evolution is related to the size
of the water volume in the overflow section in the breach; the higher the water flow, the faster
the evolution rate, and vice versa. It can be seen that the reservoir water storage capacity
determines the final form of the breach’s evolution. In the operation of tailings ponds, the
monitoring of the reservoir water level and the infiltration line in the tailings dam, as well as
the management of flood control and other facilities, should be strengthened.

3.4. Evolution of Dam-Break Full-Field Velocity

This test used four radar velocimeters to monitor the flow velocity in four areas during
the dam breach: the top of the dam, the bottom of the initial dam, 500 m downstream of
the initial dam and 1 km downstream of the initial dam, and the deployment locations are
shown in Figure 3. The measurement results of the variations in velocity with time during
the dam break are shown in Figure 7 below.

Figure 7. Flood topping dam breach full-field flow velocity change curve with time. (a) Instantaneous
flow rate. (b) Mean flow rate.
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By comparing and analyzing the flow velocity changes of the four measurement points,
we see a pattern of rapid increase > relatively stable > slow decrease. The maximum flow
velocity shows a pattern of shifting from measurement point two to measurement point
three. This is due to the characteristics of the high potential energy and large volume of
flood water in the reservoir, so when the breach occurs at the top of the dam, the flood
water comes down rapidly and the whole field of flood water advances rapidly, reaching
the peak flow velocity in a short time. The flow velocity in the area of measurement
point two is the largest, where the maximum average flow velocity is 26.68 m/s; this is
followed by measurement point three, measurement point one and measurement point
four. After that, as the water level in the reservoir is still high, the flood water recharge is
sufficient, so it maintains a relatively stable speed for a period of time. The flow velocity of
measurement point two decreases after reaching the peak at this stage, while measurement
point three does not decrease—the flow velocity in this area is the largest, at 26.43 m/s. This
is followed by measurement point two, measurement point one and measurement point
four. This indicates that the flow velocity at the bottom of the initial dam is the highest
at the beginning of the dam-breaching process, and the flow velocity 500 m downstream
from the initial dam is the highest at the middle of the dam breaching process (the most
relatively stable stage of the downstream flood). Since the impact of the tailing sand on the
downstream area is proportional to the square of the maximum moving velocity, the impact
of the flood water at the bottom of the initial dam is the largest during the development
of the dam failure process, and it then shifts to the area 500 m downstream. For a specific
project, prevention and control measures can be formulated by taking into account the
evolution process of post-break flood flow velocity and the downstream facilities of the
tailings pond, etc., in order to minimize the degree of post-break damage.

3.5. Post-Dam Failure Impacts

In order to more accurately determine the evolution of the tailing sand accumulation
depth and the degree of impact on the downstream, we took the bottom of the initial dam as
the starting point and set up a measurement section every 100 m from the prototype, which
points were numbered MS+1 to MS+12. After the dam-breaching process, the accumulation
width and depth of the tailing sand were measured in each section. The results are shown
in Figure 8a. From the physical model test, it can be inferred that most of the houses in
village 1 will be flooded by the tailing sand 600 m away from the prototype tailing pond
breach, and the houses on higher terrain will not be flooded by the tailing sand but will be
flooded with water. Village 2, which is within 1 km, will be flooded, as shown in Figure 8b.
The greatest distance of tailing sand siltation is about 1.19 km from the initial dam, and the
maximum siltation depth is 29 m. The volume of flood water discharged in the breach is
much larger than the volume of tailing sand carried by it, and the downstream terrain of
the tailing pond is of a gully type, so the flood inundation range is much larger than the
siltation range of tailing sand, which former is 4.76 × 105 m2. The larger the size of the
tailing sand, the larger the elevation of the foundation in the same section, the smaller the
accumulation depth, and the larger the particle size; the maximum accumulation depth of
the tailing sand is 14.5 cm.
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Figure 8. Impact of downstream tailing after dam failure. (a) Depth of tailing sand accumulation in
each section. (b) Range of tailing sand accumulation.

4. Numerical Simulation

4.1. Numerical Model

In order to more accurately study the tailings pond breaching process and post-
breaching effects, this paper uses two numerical softwares with different principles to
simulate the tailings pond breaching process and compare and analyze the results regarding
the post-breaching effects, with a view to comparing multiple methods and then reasonably
determining the evolutionary law and post-breaching effects. Massflow is a ground surface
simulation program based on the depth integral and MacCormack-TVD finite difference
method. It can simulate the dynamics process of landslides, debris flows, dam failures and
other hazards by considering complex terrain and landscapes. Chaojun Ouyang et al. used
Massflow-2D to model the 2000 Nora mudflow in the Italian Alps, and verified its accuracy
by comparing simulation predictions with field observations [28]; Alexander J. Horton et al.
applied the Massflow model to simulate the risk of mudflow after the Wenchuan earthquake
in China [29]; Wang Dongpo et al. summarized the relationship between vegetation cover
and post-fault inundation area, water depth and flow velocity based on the Massflow
model in Jiuzhaigou, Sichuan, China [30]. Smoothed Particle Hydrodynamics (SPH) is a
meshless method that has developed gradually in the last 60 years. The basic principle
of this method is to decompose a continuous fluid or solid into groups of interacting
masses, and finally sum up the mechanical behavior of the whole system by determining
the mechanical behavior on each mass group separately. It can be seen that SPH analysis is
very effective when applied to problems involving extreme deformation, and is especially
suitable for solving dynamic large deformation problems such as high-speed collisions and
fluid motion. Huang et al. used SPH to analyze the migration law of landslide and debris
flow hazards in relation to the Wenchuan earthquake [31]; Vacondio et al. applied SPH
to simulate the law of water flow caused by landslides in reservoirs, and the simulation
results effectively reproduced key parameters such as the maximum climbing distance
and height of water flow [32]; Rodrigue-Paz et al. proposed a modified friction boundary
conditions method, and introduced the improved instantonal equations into the SPH
method to simulate mudflow hazards based on the CSPH (Corrected Smooth Particle
Hydrodynamics) theory—the numerical solution matched the experimentally obtained test
results with good accuracy [33]; Dai et al. established a coupled SPH model to simulate
mountain mudflow–structure interactions [34]; V. Roubtsova et al. performed a three-
dimensional simulation of the Vaiont dam disaster that occurred in northern Italy in 1963 to
verify the applicability of the SPH technique to problems in free surface flow [35]; Mahesh
Prakash used the SPH method to simulate the 1928 Francis dam failure and studied the
distance and depth of post-failure flood impact [36]. Andreia Moreira et al. applied the SPH
method to predict the flow characteristics of the spillways and dissipaters of the Crestuma
and Caniçada dams in Portugal [37].
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Therefore, the Voellmy model and the Herschel–Bulkley model can be used to numeri-
cally simulate the tailings pond breach process using Massflow and SPH, respectively, as
shown in Figure 9. The model is 2800 m long and 2000 m wide. The shape of the breach in
the model is set with reference to the slip surface shape (range and depth), obtained from
the dam stability analysis, and the breach shape (width) obtained from the physical model
test, while the breach range is set slightly larger in order to model the most unfavorable
situation. Based on the natural density of the tailing sand in the survey report and the
residual strength parameters obtained from the ring shear test, the density parameter of
the Voellmy model can be set to 1950 kg/m3, the friction coefficient is set to 0.26, and the
Herschel–Bulkley model has five basic parameters: η0 is the shear viscosity at low shear
rate, τ0 is the yield shear stress, k is the consistency index, n is the flow characteristics index,
and C0 is the temperature. These five basic parameters and the state parameters (using
the linear three-parameter USUP equation of state) are usually determined with specific
reference to the tailings sand parameters commonly used in the literature [38–40], and in
conjunction with the field tailings sand conditions. The breaching of the dam occurred in a
relatively short period of time; the temperature change can be ignored, and so the effect
of temperature was not considered. A sensitivity analysis was performed on the relevant
parameters, and the results show that the friction coefficient is the main parameter affecting
the flow range and accumulation characteristics. The residual strength parameter obtained
from the ring shear test, i.e., 0.26, was used for this calculation, and the other parameters
are shown in Tables 1–3.

Figure 9. Calculation model. (a) Massflow calculation model; (b) SPH calculation model.

Table 3. SPH calculation parameters.

Parameters
ρ

kg/m3

Basic Parameters USUP Status Parameters

η0

MPa/s
τ0

MPa
n

k
MPa/sn

C0 s γ0 Friction Coefficient

Takes values 1950 0.2 2 0.4 2.2 1480 2.0 0.9 0.26

4.2. Analysis of Massflow Calculation Results

The process of dam-break tail sand flowing downstream can be modeled through
numerical simulation, as shown in Figure 10:

1. At 20 s, the maximum accumulation height of the tail sand was about 48.8 m, mainly
located in the reservoir area, and part of the sand flow advanced to 350 m downstream.
The overall speed of the sand flow ahead of the breach was fast—the maximum was
30.2 m/s, and the direction was northeast;

2. At 40 s, the maximum accumulation height of the sand flow was about 33.6 m, located
in the reservoir area, and the farthest reach of the sand flow was 670 m downstream.
The overall speed of sand flow in front of the breach was still fast, with a maximum of
30.0 m/s, and the direction began to shift northward due to the influence of the mountain;
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3. At 60 s, the maximum accumulation height of the sand flow was about 31.5 m, mainly
located in the reservoir area and 250 m in front of the right side of the dam, and the
sand flow reached as far as 1060 m downstream. The maximum travel speed of the
sand flow was 27.1 m/s, located directly in front of the breach, and the travel speed
of the front edge of the sand flow was reduced by ground friction and the blocking
effect of the right side of the mountain to about 16.0 m/s. The direction had turned
due north at this point;

4. At 80 s, the maximum accumulation height of the sand flow was about 26.2 m, mainly
located in the reservoir area and 340 m in front of the left side of the dam, and the
sand flow reached as far as 1290 m downstream. The maximum travel speed of sand
flow was 25.7 m/s, and the travel speed of sand flow within 150 m of the breach
exceeded 20.0 m/s. The travel speed of the front edge of the sand flow decreased to
7.0 m/s, while the flow speed in other areas decreased to 1.0 m/s or less;

5. At 300 s, the sand flow movement basically stopped. The final evolution distance
was about 1.43 km, the tail sand accumulation range reached 603,000 m2, and the
whole was distributed in strips along the downstream gully, with part of the sand
flow entering the gully on both sides. The buildings of the village within 1 km
downstream of the dam body were completely submerged—only in the area where
the accumulation height of the sand flow front edge was less than 3 m were a small
number of village buildings partially submerged. The accumulation height along the
evolution path was generally decreasing, and the maximum accumulation area was
at the left side of the mountain in front of the dam, with a maximum accumulation
height of about 31.5 m.

Figure 10. Cont.
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Figure 10. The process of tailing sand discharge from the breached dam. (a) Height distribution of
tailing sand accumulation at 20 s. (b) Tail sand flow rate distribution at 20 s. (c) Height distribution of
tailing sand accumulation at 40 s. (d) Tail sand flow rate distribution at 40 s. (e) Height distribution
of tailing sand accumulation at 60 s. (f) Tail sand flow rate distribution at 60 s. (g) Height distribution
of tailing sand accumulation at 80 s. (h) Tail sand flow rate distribution at 80 s. (i) Height distribution
of tailing sand accumulation at 300 s. (j) Tail sand flow velocity distribution at 300 s.

In order to derive a more intuitive picture of the spatial and temporal evolution of
tailing sand accumulation, four monitoring sections (MS1~MS4) and four monitoring points
(MP1~MP4) were set up downstream of the dam, the specific locations of which are shown in
Figure 11. The tailing sand accumulation pattern at each monitoring section after the end of
the dam break is shown in Figure 12, the change of tailing sand accumulation height at each
monitoring point during the dam break is shown in Figure 13a, and the change of sand flow
velocity at each monitoring point with time is shown in Figure 13b. It can be seen that:

1. The tailing sand accumulation on the left side of sections MS1 and MS2 is significantly
higher than on the right side, the accumulation at MS3 is low in the middle and high
on both sides, and the accumulation on the right side of MS4 is higher than on the left
side due to the sand flow being diverted by the mountain. The presence of village
buildings will increase the accumulation height in the area;

2. The tailing sand accumulates rapidly in the downstream channel after the breach.
Before 50 s, a large amount of tailing sand is discharged per unit of time, the potential
energy is large, the tailing sand accumulation distance is great, and the tailing sand
accumulation height at each measurement point increases rapidly. After 50 s, a small
amount of tailing sand is discharged within a unit of time, the potential energy is small,
the tailing sand accumulation distance is small, and the tailing sand accumulation
height at locations far from the initial dam no longer increases, while the accumulation
height near to the dam body continues to increase. The tailing sand accumulation
height curve at monitoring points near the dam is bimodal, and can be divided into
four stages, i.e., sharp rise–significant decline–continuing to rise–gradually stabilizing,
and the tailing sand accumulation height curve at monitoring points farther away
from the dam is largely unimodal, and can be divided into three stages, i.e., sharp
rise–small decline–gradually stabilizing;

3. The change in the velocity curve at the monitoring points near the breach is more
complicated—the sand flow is faster and the movement lasts longer. The velocity curve
at other monitoring points essentially shows a steep rising and steep falling triangular
shape—the sand flow velocity is reduced and the movement lasts for less time.
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Figure 11. Monitoring section and monitoring point layout map.

  
(a) (b) 

  
(c) (d) 

Figure 12. Tailing sand accumulation pattern at each monitoring section. (a) MS1 monitoring cross-section;
(b) MS2 monitoring cross-section; (c) MS3 monitoring cross-section; (d) MS4 monitoring cross-section.

Figure 13. Variation curves of tailing sand accumulation height and flow rate with time at each
monitoring point. (a) Height–time curve of tailing sand accumulation at each monitoring point;
(b) velocity–time curve of sand flow at each monitoring point.
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4.3. Analysis of SPH Calculation Results

The SPH was applied to simulate dam failure in the prototype tailings pond, as shown
in Figure 14.

Figure 14. Cont.
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Figure 14. Process of tailing sand discharge from the breached dam. (a) Cloud map of tailing sand
displacement distribution at 20 s. (b) Cloud plot of tailing sand velocity distribution at 20 s. (c) Cloud
map of tail sand displacement distribution at 40 s. (d) Cloud map of tailing sand velocity distribution
at 40 s. (e) Cloud map of tail sand displacement distribution at 60 s. (f) Cloud map of tailing sand
velocity distribution at 60 s. (g) Cloud map of tail sand displacement distribution at 80 s. (h) Cloud
plot of tailing sand velocity distribution at 80 s. (i) Cloud map of tail sand displacement distribution
at 300 s. (j) Cloud plot of tailing sand velocity distribution at 300 s.

1. At 20 s, the maximum displacement of the breached tailing sand was about 320 m,
and the tailing sand movement speed was fast, with a maximum of about 33.0 m/s;

2. At 40 s, the maximum displacement of the breached tailing sand was about 820 m,
and the sand flow movement speed was more evenly distributed, with a maximum of
about 29.9 m/s;

3. At 60 s, the maximum displacement of the breached tailing sand was about 1120 m,
and the sand flow front and the tailing sand movement speed in front of the breached
opening were at their maximum;

4. At 80 s, the maximum displacement of the tail sand of the breached dam was about
1250 m, and the maximum velocity of the tail sand movement was about 18.0 m/s in
front of the breached mouth and the front edge of the sand flow, while the velocity of
the tail sand movement in other areas had dropped to less than 6.0 m/s;

5. At 300 s, the maximum displacement of the tail sand of the breached dam was about
1350 m, and the tail sand movement had basically stopped. The sand accumulated in
strips along the gully, with some of the tail sand flowing downstream. At both sides
of the ditch, the accumulation range reached 527,000 m2, and village buildings within
this range were completely submerged.

Since the SPH method cannot directly give the tailing sand accumulation height, the
accumulation state of the downstream tailing sand can only be generally observed here
through the profile of the post-failure river channel, as shown in Figure 15. The downstream
river channel shows a pattern whereby at points further away from the tailings dam, the
depth of tailings accumulation is shallower.

Figure 15. Post-collapse tailing sand accumulation pattern.

In order to analyze the evolution law of the tailing sand movement during the dam-
break process, several monitoring points were selected on the breached tailing sand body
(Figure 16), and the velocity–time curves of tailing sand movement at each monitoring
point are shown in Figure 17. It can be seen that the velocity of the tailing sand can be
divided into two parts during the breaching process: In the front part of the breached body
under the action of high gravitational potential energy in the tailing sand, the velocity of
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the tailing sand increases sharply and then decreases sharply, and the velocity–time curve
is basically a triangle with a steep rise and a steep fall. The rear part only shows a small
degree of tailing sand discharge; the overall potential energy is small, and the flow velocity
of the tailing sand discharge is slow and stabilizes after a long time.

Figure 16. Location of measurement points.

Figure 17. Velocity–time curves of tail sand movement at different measurement points.

5. Results and Discussion

The two numerical simulation results are compared with the physical model test results
(see Table 4 and Figure 18). The two numerical simulations have different principles (SPH
is a particle method based on continuous medium, while Massflow is a finite difference
method), and the ontological material parameters used by the two are also different;
therefore, there is a gap between their simulation results. Compared with Massflow, the
evolution distance and accumulation range of tailing sand obtained by SPH simulation
are small, and the difference in tailing sand accumulation range is large. This is due to the
fact that SPH relatively realistically considers the fluid-like shear viscous behavior of the
tailing sand, so the greatest evolution distance and accumulation range of the tailing sand
obtained from this simulation are smaller than those from Massflow. Comparing the results
of the two methods, numerical simulation and the physical simulation test, we see that the
difference is not significant, which confirms the accuracy of the physical model test and the
feasibility of these two numerical simulation methods. However, there are also differences,
as shown below:

1. There is a lag in the physical model test when the maximum flow velocity of the
discharged tailings sand appears during the dam breach process, reaching the peak
flow velocity of 120 s after the breach appears at the top of the dam, after which it
remains relatively stable for a period of time and then starts to decrease rapidly. On the
other hand, the numerical simulation reaches the peak flow velocity of the discharged
tailings sand at the beginning of the dam breach and then rapidly decreases to close
to 0 m/s, creeping for a longer period of time before the end of the dam breach;
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2. The tailing sand flow velocity, evolution distance and depth obtained from the nu-
merical simulation are large. This is because (i) the breach pattern in the numerical
simulation is set with reference to the physical test, but in order to consider more
unfavorable conditions, the breach is set larger and deeper, and the total volume of
the breached tail sand is slightly higher, and further, (ii) the numerical simulation does
not truly reflect the model test conditions and processes. In the test, rainfall continues
to wash the breach, carrying the tail sand continuously downstream, and there is
obvious mud–water stratification in the tail sand flow, while the numerical simulation
is instantaneous. In the full-break mode, the potential energy of the tailing sand body
is released instantaneously, while the tailing sand and water are completely mixed,
and the flowability is good in all directions.

Table 4. Comparison of numerical simulation results and physical model test results.

Simulation Method
Maximum Travel

Speed/m·s−1
Final Evolution

Distance/km
Stacking Range

/10,000 m2
Maximum Accumulation

Depth/m

Model test 26.68 1.19 47.60 29.00
Numerical
simulations

Massflow 30.20 1.43 60.30 31.50
SPH 33.00 1.35 48.70 -

Figure 18. Range of tailing sand accumulation given by different methods.

Thus, Massflow and SPH can be used to quickly and easily simulate and predict
the impact range of the tailings pond after the breach, but if the purpose is to study the
evolution of the tailings dam and the downstream tailings during the breach process, the
physical model test can better reflect the real situation.

6. Risk Assessment and Recommendations

There are differences between the physical model test’s results and the numerical sim-
ulation, and the larger value should be used as a reference when carrying out engineering,
prevention and control. After a comprehensive analysis, it can be determined that the
maximum flow velocity of tailing sand occurs at the bottom of the initial dam, and the
maximum flow velocity can reach 35.01 m/s. The final evolution distance of tailing sand
after breaching can reach 1.43 km, the accumulation range can reach 60.30 m2, and the
maximum accumulation depth can reach 31.50 m. Based on the maximum flow velocity
and the accumulation depth of tailing sand, the river downstream of the tailing pond can
be divided into risk areas. In this way, relocation measures can be formulated. In high-risk
area, the flood flow velocity is fast—the maximum flow velocity is above 14.85 m/s—and
the impact force is high, the accumulation height is over 6 m, and the destructiveness is
strong. In the medium-risk area, most of the kinetic energy is consumed and the travel
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speed is greatly reduced, so the maximum flow velocity is below 14.85 m/s. The accumula-
tion height is also reduced—the accumulation height is below 6 m, and the destructiveness
is further reduced. In low-risk areas, the tailings accumulation area is outside the inhabited
area. The low-risk area is outside the tailings accumulation area; this area includes a large
amount of farmland, villages and industrial facilities. This area is not affected by the dam
failure, and the warning and personnel evacuation times will be sufficient—see Figure 19.

Figure 19. Dam failure risk prevention and control area.

7. Conclusions

This paper explores the evolutionary law of tailings pond breaching under flood
breach conditions and the post-breaching effects, using indoor model tests and numerical
simulations, as follows:

1. During the breaching process, after the tailings dam forms an erosion trench, the lower
part of the erosion trench is the first to slip, and after the formation of a steep can,
the upper part of it causes slippage in the tailings, such that the erosion trench first
develops vertically and then laterally. The final evolution of the breach is determined
by the amount of water stored in the reservoir;

2. When the top of the tailings dam is breached, the downstream tailings sand flow rate
will quickly reach a peak value of 33.00 m/s in a short period of time, after which the
downstream tailings sand flow rate reduces to a creeping state. After creeping for a
long period of time, the front edge of the sand flow is the first to stop moving, while
the trailing edge of the tailings sand accumulation depth continues moving until the
end of the breach, at which point the tailings sand flow rate of the initial downstream
dam bottom area is the largest. The impact force is the most significant factor use to
form prevention and control measures;

3. The discharged tailings eventually accumulate in the downstream channel, showing a
pattern whereby at points further away from the initial dam, the accumulation depth
will be smaller and the particle size will be larger, while the larger the elevation of
the foundation in the same section, the smaller the accumulation depth and the larger
the particle size. The maximum accumulation depth is 31.50 m, at which point the
presence of shade will cause the local tailings accumulation depth to increase;

4. There are small differences between the results of the numerical simulation and
physical model tests, and the bias value should be used as the basis when carrying out
engineering prevention and control measures. The final evolution distance of tailing
sand after the collapse can reach 1.43 km, and the maximum accumulation depth can
reach 31.50 m. Based on the flow velocity, downstream tailing sand accumulation
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distance and depth, the risk area of the river downstream of the tailing pond can be
categorized, such that relocation measures can be formulated.
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Abstract: In recent years, large-scale heavy rainfall disasters have occurred frequently in several
parts of the world. Therefore, a quantitative approach to understanding how buildings are damaged
during floods is necessary to develop appropriate flood-resistant technologies. In flood inundation
simulations for the quantitative evaluation of a building’s resistance to flooding, a subgrid model
is necessary to appropriately evaluate the resistance of buildings smaller than the grid size at a
medium grid resolution. In this study, a new subgrid (SG) 3D inundation model is constructed to
evaluate the fluid force acting on buildings and assess the damage to individual buildings during
flood inundation. The proposed method does not increase the computational load. The model is
incorporated into a 2D and 3D hybrid model with high computational efficiency to construct a 3D
river and inundation flow model. Its validity and effectiveness are evaluated through comparisons
with field observations and the conventional equivalent roughness model. Considering horizontal
and vertical velocity distributions, the proposed model showed statistically significant improvements
in performance in terms of building loss indices such as velocity and fluid force. These results suggest
that the SG model can effectively evaluate the fluid force acting on buildings, including the vertical
distribution of flow velocities.

Keywords: subgrid model; building damage; fluid force; flooding; 3D model

1. Introduction

In recent years, large-scale heavy rainfall disasters have occurred frequently in several
parts of the world, such as the disaster concerning the Yangtze River in China in 2020, which
caused severe flooding, and millions of people were evacuated [1]. In July 2021, floods hit
several river catchments in Germany and Belgium [2,3]. In 2022, floods inundated more
than one-third of Pakistan’s land area, destroying 780,000 houses [4], displacing millions of
people, and causing shortages of food, shelter, and medical care [5]. In Japan, the heavy
rainfall in western Japan in 2018 [6], Typhoon Hagibis in 2019 [7], and heavy rainfall again
in July 2020 [8] caused extensive human and building damage. The increase in rainfall and
river discharge owing to climate change is a factor that contributes to flood disasters [9–11].
For example, Typhoon Hagibis in 2019 increased the total rainfall by 11% owing to climate
change effects [12], and its impact on river discharge, water levels, and inundated water
volume was also significant [13]. Considering the possibility of further such disasters
caused by climate change, it is essential to promote appropriate mitigation and adaptation
measures from various perspectives.

Among the types of flood damage, we focused on damage to buildings. When build-
ings are washed away owing to flood inundation, the direct consequence is human casual-
ties [14]. In addition, the loss or damage to buildings and drift or inundation of household
goods cause economic losses [15,16]. Damage to buildings also causes deterioration in
the health and sanitation of the residents and damage to social infrastructure facilities
such as water, sewage, and electric power systems [17]. These consequences significantly
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impact the post-disaster recovery status [18]. However, general building design considers
only earthquakes, wind, and fire as external forces; flood inundation flows are not con-
sidered [19–22]. Land use regulations and town development are certain soft measures
that can be adopted to mitigate damage to buildings, but the realization of these mea-
sures requires significant effort, time, and cost [23,24]. Therefore, there is an urgent need
to quantitatively understand how buildings are damaged during flooding and develop
flood-resistant technologies for buildings. In addition, the mitigation measures adopted
for building damage caused by inundation could be a significant step toward adapting to
climate change.

Flood inundation simulations are useful for quantitatively understanding and evaluat-
ing the strength of buildings against inundation flows. Several flood inundation models that
incorporate buildings have been proposed so far. For example, Schubert and Sanders [25]
classified four types of models according to the treatment of buildings: building resistance
(BR), building block (BB), building hole (BH), and building porosity (BP) methods. They
compared the methods in terms of their accuracy, calculation time, and setup time. The BR
method assigns large resistance parameters (mainly equivalent roughness coefficients) to
the computational grid containing the buildings [26,27]; the BB method assigns roof height
to the ground level of the computational grid containing the buildings [28,29]; and the
BH method incorporates a slip wall boundary condition along the building wall [30,31].
In addition to the resistance of the building, the BP method considers the percentage
of nonbuilding area (porosity) from the building area in the grid [32,33]. Schubert and
Sanders [25] obtained the following results based on the analysis of an unstructured grid
using the four methods: The BR method demonstrates low calculation accuracy. The
BB and BH methods involve high computational loads, are computationally demanding,
and require a large amount of effort to set up. The BP method provides a good balance
between accuracy and computational load. These results obtained for unstructured grids
are expected to be applicable to structured grids as well. However, for validation, only the
inundation flow behavior, such as the reproducibility of the horizontal velocity distribution
through the road network, was considered, and the fluid force acting on the buildings or
the extent of damage was not considered.

To assess building damage caused by flood inundation, it is necessary to evaluate the
fluid force acting on each building, determine the damage—such as the loss or destruction
of each building based on the fluid force—and feed this information back to the flood
inundation model. To correctly determine the fluid force acting on a building, a sufficiently
fine grid resolution (<1 m) is required to calculate the surface distribution of the pressure
and shear stress around the building. Among the four models, the BB and BH models
adopt this approach and are referred to as “microscopic models” [34–36]. In contrast, for
wide-area inundation analyses, the grid resolution is coarser (for example, >30–50 m) and
“macroscopic models” are used, which involve several buildings [37–39]. The BR and BP
models are macroscopic models. However, with the recent remarkable improvements in
computational power and resources, inundation analyses with fine grid resolutions have
been conducted for wide areas, and several analyses with medium grid resolution, where
the grid resolution is of the order of 10 m, have also been conducted [40–42]. However,
because the grid resolution is of the same order as the building size, it is based on the BR
and BP models, which have the following drawbacks: the fluid force on each building is not
properly evaluated, buildings exist over several computational grids, and the calculation
becomes unstable when the entire grid is covered by buildings, that is, when porosity is
zero. To address these issues and evaluate the fluid force acting on individual buildings, a
subgrid (SG) model that can appropriately evaluate the location and height of buildings
below the grid size and their resistance forces is required; however, no appropriate SG
model is currently available. In particular, a SG model based on a three-dimensional (3D)
flow model that considers the 3D structure of a building is required to study the effects of
embankments [43] and pilotis systems [44,45]. However, no corresponding SG models are
available; even 3D flow models are not available for inundation analysis.
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The objective of this study is to develop a 3D inundation model by introducing a
new subgrid model for evaluating the fluid force acting on buildings to assess the damage
to individual buildings during flood inundation without increasing the computational
load. The SG model is based on the BR model and reflects the building effects only in the
momentum equations. The porosity of buildings is not treated here but will be the subject
of future studies. The fundamental structure of the model and fundamental equation
system are presented. As a case study of the application of the model, a reproduction
analysis of the river and inundation flows in the Kuma River, Japan, caused by the heavy
rainfall in July 2020 [8] was conducted to evaluate its validity and effectiveness through
comparisons with field observations and the conventional equivalent roughness model,
which is commonly used as the BR method. The relationship between hydraulic quantities,
such as the horizontal and vertical flow patterns, and the fluid force obtained from the
analysis was also verified.

2. Materials and Methods

2.1. Fundamental Concept of SG Model for Building Fluid Force

In this study, we constructed a SG model for the fluid force acting on buildings, which
can be introduced into a 3D inundation analysis model to appropriately evaluate the fluid
force on each building of the grid size or smaller. The fundamental concept of the SG model
is illustrated in Figure 1. When a medium grid resolution is used based on building data
(location, horizontal shape, height, and so on), it is assumed that multiple buildings are
included in the computational grid or that a single building is located across multiple grids.
In addition, the height of each building varies, such as one- or two-story buildings, and
the presence of buildings changes significantly in the vertical direction when the pilotis
system is considered (Figure 1a). To investigate the effect of these factors, Step 1 is to
divide each building into horizontal and vertical directions in each computational grid and
calculate the volume occupancy α in the grid relative to the volume of the entire building
(Figure 1b). In Step 2, the flow velocity at each grid point obtained from the numerical
analysis is interpolated to the location of the building center to calculate the fluid forces
acting on each building (Figure 1c). Finally, in Step 3, the fluid forces obtained for each
building are allocated to each grid using the volume occupancy α in each grid. The fluid
forces from multiple buildings are summed in each grid, and the result is reflected in the
momentum equations of the fluid (Figure 1d).

The advantages of the proposed SG model based on the above concepts are that it
can appropriately reflect the 3D information (shape, height, and so on) of the building
below the grid size to the extent available and calculate the fluid forces acting on each
building individually. Therefore, the model can express the fluid resistance of buildings in
more detail, considering the 3D information of the building, when compared with the BR
method, which only describes the building information through resistance parameters such
as the roughness coefficient. The computational load is lower than those of the BB and BH
methods, and less effort is required to set up the input conditions because the grid size is not
limited by the building, and there is no need to represent the building shape in grid form.
Thus, the model can accurately evaluate the fluid forces acting on buildings, including those
in the vertical direction, while maintaining computational efficiency. Furthermore, because
the model evaluates the fluid forces on each building individually, it is easy to predict
the loss of each building during a flood after the building loss conditions are established.
In densely built areas, the loss of a building upstream of a flooded area is expected to
significantly increase the fluid forces on buildings downstream of the lost building and
increase the risk of downstream building loss. The proposed SG model can be applied to
such a situation, and it can be a useful tool to consider changes in fluid forces caused by
building loss if the conditions for determining building loss are developed.
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Figure 1. Schematic of fundamental concept of subgrid model for building fluid force. (a) When
medium grid resolutions are adopted, buildings of various heights are located in several computa-
tional grids. (b) In Step 1, each building is divided horizontally and vertically for each computational
grid. (c) In Step 2, the flow velocity at each grid is interpolated at the center of each building. (d) In
Step 3, the fluid force obtained for each building is distributed to each grid.

As illustrated in Figure 2, inverse distance weighting (IDW, [46]), which is a common
spatial interpolation method incorporated into GIS software, was adopted as the interpola-
tion method for the flow velocity data used to calculate the fluid force, which is the key to
this model. In particular, because a staggered grid was used for the flow velocity definition
position in the flow analysis described below, four velocity definition points surrounding
the building center were calculated in each direction (represented by blue and red boxes in
Figure 2) and interpolated through IDW (Figure 2). In addition, the spatial pattern of the
flow velocity within the grid varied significantly based on the arrangement and porosity of
buildings within the grid. It is necessary to consider this when interpolating the spatial
pattern of the flow velocity within the grid, which will be a subject for future work.

Figure 2. Interpolation method of calculated velocities at the center of each building using IDW for
evaluation of building fluid force. Velocities in s and n directions, us and un, respectively, are defined
in staggered grids.
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2.2. Fundamental Equations of SG Model

A hybrid 2D–3D flow (Hy2-3D) model was used as the 3D flow model to introduce the
SG model [47–49]. This model enables wide-area analyses while considering computational
efficiency. In the Hy2-3D model, horizontal 2D and 3D flow calculations are performed
in parallel, with the 2D calculation performed at every time step and the 3D calculation
performed once every several to several dozen steps (Figure 3a). The Hy2-3D model is
characterized by the fact that the time interval of the 3D calculation can be set without
the impact of the Courant–Friedrichs–Lewy (CFL) condition. This enables a significant
reduction in the computational load, which is unique to 3D calculations. In particular, the
time interval for 3D calculations Δt3D is divided into Δt3D1 and Δt3D2, and within Δt3D1,
horizontal 2D and 3D calculations are performed, and the results of both calculations
are exchanged. However, within Δt3D2, only horizontal 2D calculations are performed
without 3D calculations, and the results of the 3D calculations performed within Δt3D1
are continuously reflected in the horizontal 2D calculations. Thus, Δt3D2, which does not
perform 3D calculations, is not restricted by the CFL condition and Δt3D2 can be set to
a large value, resulting in improved calculation efficiency. It should be noted that the
computation time interval Δt2D for a horizontal 2D analysis does not necessarily have to
match that of Δt3D1 (Figure 3b). To reflect the results of the 3D calculation on the horizontal
2D calculation, the difference between the depth-averaged terms in 3D equations of motion
and each term in the horizontal 2D equations of motion is calculated as a correction term
at Δt3D1. The correction term is incorporated in the horizontal 2D equations of motion.
In contrast, to reflect the results of a horizontal 2D calculation in a 3D calculation, the
depth-averaged velocity in the previous 3D calculation is replaced by the result of the
horizontal 2D calculation. In other words, the vertical velocity distribution in the previous
3D calculation is retained, but the depth-averaged velocity is updated.

Figure 3. Time interval concept in 2D and 3D calculations in Hy2-3D model. (a) Case when
Δt2D = Δt3D1 and (b) case when Δt2D > Δt3D1.

The SG model was introduced based on the concept of the Hy2-3D model. First,
we describe the fundamental equations for the 3D and horizontal 2D calculations in the
Hy2-3D model, which adopts the Cartesian curvilinear coordinate system (in the s, n
directions) in the horizontal direction and the σ coordinate system (σ = (z − η) / D, D: depth,
η: water level) as its coordinate systems, which are boundary-fitted coordinate systems [47].
With river and inundation flow analyses being the focus, 3D calculations based on these
coordinate systems consider the fluid forces on buildings and bridge girders obtained by
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the SG model using the fundamental equations [47] based on the hydrostatic pressure
approximation. The continuity equation for the 3D field is expressed by Equation (1), and
the momentum equations in the s and n directions are expressed by Equations (2) and (3),
respectively.
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where us, un, and w* are the velocities in the s, n, and σ directions, respectively; R is the
radius of curvature in the s coordinate; N = n/R; g is the acceleration owing to gravity; ρ is
the density of water; AH and AV are the horizontal and vertical eddy viscosity coefficients,
respectively; and Fbs, Fbn and Fgs, Fgn are the building and bridge girder fluid forces per unit
mass in the s and n directions, respectively. In the Hy2-3D model, the vertical eddy viscosity
coefficient AV is expressed by the zero-equation model, which is one of the turbulence
models, and the horizontal eddy viscosity coefficient AH is expressed in a simple form
proportional to AV:

AV = κU∗z′ (4)

AH = βAV (5)

where κ is Kalman’s constant (=0.40), U∗ is the friction velocity, z′ is the height from the
bottom, and β is constant (=10) [47]. The friction velocity U∗ is expressed by the results of
the horizontal 2D calculations described in Equation (15).

In formulating the building fluid forces Fbs and Fbn obtained using the SG model,
the fluid force is obtained for each building and distributed to each grid according to the
fraction α occupied by the building, as depicted in Figure 1. In particular, if the number
of buildings in each grid is Mmax, the fluid force in the s direction acting on building m
(=1 − Mmax) is fbs(m), and the volume of the building with the volume Vb(m) in the grid is
Vb

′(m), and the fluid force distributed in this grid is fbs(m)Vb
′(m)/Vb(m). When deriving the

momentum equations, both sides are divided by the mass of the control volume (= ρΔV,
ΔV: grid volume), so that Fbs is expressed as follows:
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where the volume occupancy of building m in the target grid, α(m), is the ratio of Vb
′(m) to

the grid volume ΔV. Similarly, if the fluid force in the n direction acting on building m is
fbn(m), Fbn is expressed as follows:

Fbn =
1
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fbn(m) (7)
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The fluid forces fbs, fbn in the s, n directions acting on individual buildings are expressed
using the general drag formula as follows:

fbs = ρBh′CDb
ûs
√

ûs2 + ûn2

2
(8)

fbn = ρBh′CDb
ûn
√

ûs2 + ûn2

2
(9)

where B is the average building width, h′ is the inundation height of the building, the
product of the two represents the projected area of the building, CDb is the drag coefficient
of the building, and ûs, ûn are the velocities in the s, n directions interpolated at the building
center. The available building information includes the building width and building plane
area Ab. However, because it is complicated to calculate the building width perpendicular
to the flow direction data obtained from this calculation, we assume that the building is
square and obtain the building mean width B using the following equation:

B =
√

Ab (10)

In Equation (10), the building width for evaluating the projected area is simply cal-
culated as suggested by Imai et al. [50]. We need to improve the description of building
width in future work.

The inundated building height h′ is chosen to be the smaller of the building height h
and water depth D, as given by the following equation:

h′ = min[D, hb] (11)

The building drag coefficient CDb in Equations (8) and (9) are set to 1.2 based on the
experimental results reported by Kuwahara [51]. The fluid forces on the bridge, Fgs and Fgn,
are also expressed in the same way as the fluid forces on the building but are omitted here.

Next, the continuity equation for the horizontal 2D field in the Hy2-3D model and the
equations of motion in the s and n directions are expressed by Equations (12)–(14), where
Us and Un are the depth-averaged velocities in the s and n directions, respectively:
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where AH2D is the depth-averaged horizontal eddy viscosity coefficient, Cf is the bottom
friction coefficient, and Gs and Gn are correction terms in the s and n directions, respectively,
reflecting the results of the 3D calculation in the horizontal 2D calculation. The bottom
friction coefficient Cf and friction velocity U∗ in Equation (4) are expressed as follows:

Cf =
gn2

D1/3 , U∗ =
√

Cf (Us2 + Un2) (15)

where n represents Manning’s roughness coefficient. In the momentum equations for a
horizontal 2D field (Equations (13) and (14)), as is generally the case (for example, Wu [52]),
the unsteady and advection terms are considered on the left-hand side, and the water
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surface gradient, diffusion, and bottom friction terms are considered on the right-hand
side. When compared with the momentum equations for a 3D field (Equations (2) and (3)),
neither the building and bridge girder resistance terms nor the three-dimensionality of the
flow field in the advection and diffusion terms are considered. The correction terms Gs
and Gn used to account for these effects are expressed by the following equations, which
represent the differences between the depth-averaged 3D and horizontal 2D results:
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The vertical integration of the vertical diffusion terms (Equations (2) and (3)) on the
right-hand side of the momentum equations for a 3D field yields the shear stress (Reynolds
stress) on the bottom and water surfaces. At the water surface, the shear stress is zero
owing to the slip condition, and the frictional stress at the bottom is consistent with the
bottom friction term (Equations (13) and (14)) on the right-hand side of the horizontal
2D momentum equations. Therefore, the correction terms of Gs and Gn do not include a
vertical diffusion term. For details on the calculation procedure for the Hy2-3D model,
please refer to Nihei et al. [47]. Additionally, it is noted that the density of the fluid does
not vary, and the proposed model does not apply to saline water.

2.3. Study Site

The Kuma River, the site of this study, flows through Kumamoto Prefecture in the
Kyushu region of Japan and has a channel length of 115 km, a basin area of 1880 km2, and
a population of approximately 140,000 within the basin. It is a first-class river managed by
the national government [53]. As depicted in the elevation contour (Figure 4a), the Kuma
River Basin is surrounded by steep mountains, and the river is one of the three most rapid
rivers in Japan. The topographical features of the Kuma River Basin include the Yatsushiro
Plain in the lower reaches (0–10 km point (kp)), a narrow mountain channel in the middle
reaches (10–52 kp), and the Kuma Basin in the upper reaches (52 kp). The entrance to the
middle reaches becomes constricted during floods, and the Hitoyoshi urban area, located
upstream of the constricted area, tends to become vulnerable to inundation damage [53].

In 2020, a training rainband covered the entire Kuma River basin from 3 July to 4 July,
causing heavy rainfall; the associated flooding led to extensive human and property dam-
age [54]. Referring to Figure 5a, the basin-averaged hourly precipitation exceeded 40 mm
from early morning on 4 July, and the cumulative rainfall reached approximately 400 mm,
which was much higher than the planed rainfall. The water level of the Kuma River started
to increase significantly in the early morning of 4 July, peaking at 10:00 a.m. on the same
day (Figure 5a). The peak water level significantly exceeded the height of the levee, leading
to widespread overflow flooding. Because the Kuma River is surrounded by mountainous
terrain, the river and inundation flows were integrated and flowed downward together.
The flooding caused tremendous water depths and high velocities in the inundated areas,
and the human casualties in the basin reached as high as 50 [8].
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Figure 4. (a) Location and elevation map of the Kuma River Basin; (b) computational domain from
51.8 kp to 68.6 kp along the Kuma River.

Ogata et al. investigated the flood inundation and building damage caused by the tor-
rential rainfall immediately after the disaster [55]. All the buildings within the inundation
area were visually classified as “loss”, “no loss with inundation”, or “without inundation”.
It was found that the maximum depth of inundation exceeded 7 m and that the lost houses
were concentrated along the river (Figure S1). The accuracy of this analysis was verified by
comparing these observations with the results of the inundation analysis.

Significant damage was caused to buildings in the Chaya district, located at 53 kp on
the Kuma River (Figure 4b). In this area, the maximum depth of flooding reached 7.4 m,
and 32 of the 70 buildings were lost. Figure S2a presents a building damage map with an
aerial photograph in the background. Although several buildings were lost on the eastern
side (far from the river) of Prefectural Road 325, several survived on the western side
(near the river). As depicted in Figure S2b, the building located at the upstream end of the
surviving buildings is a pilotis-style building in which the first floor dodges the flood flow,
making it resistant to the flooding. This implies that the strength of the upstream building
may have prevented damage to the buildings behind it. This case must be clarified when
considering urban development that is resistant to flood damage from the viewpoint of
building standards and layouts.
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Figure 5. (a) Temporal variations in basin-averaged precipitation and water level at Ohashi (61.5 kp)
in the Kuma River. Precipitation and water level data were obtained from http://www.jmbsc.or.jp/
en/index-e.html (accessed on 22 November 2022) and https://www.river.go.jp/index (accessed on
22 November 2022), respectively; (b) boundary conditions of inflow discharge at upstream points and
tributaries, and water level at the downstream point. River discharges in the Kuma River and 11 major
tributaries were obtained from the runoff calculation results [49]. Water level at the downstream
end was obtained from the computational results using 1D unsteady flow analysis performed by
the authors.

2.4. Computational Conditions

Using the proposed model, we conducted an integrated analysis of river and inunda-
tion flows in the Kuma River and the surrounding inundation area. The computational
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domain was 51.8–68.6 kp of the Kuma River and its surrounding flooded area, as depicted in
Figure 4b (computational domain size: 15,340 m × 1510 m). The grid spacings were approx-
imately 20 and 10 m in the streamwise (s) and spanwise (n) directions, respectively. In the
vertical direction, the water depth was divided into 10 layers using the σ coordinate system.
The topographic data were interpolated for the streamwise direction in the river channel us-
ing cross-sectional survey data (provided by the Ministry of Land, Infrastructure, Transport,
and Tourism) and in the flooded area using a digital elevation model (Geospatial Informa-
tion Authority of Japan, https://fgd.gsi.go.jp/download/menu.php (accessed on 2 Decem-
ber 2022)) with a resolution of 5 m. For the 3D calculations, Δt3D1 = 0.05 s, Δt3D = 10.0 s,
and the time interval ratio Δt3D/Δt3D1 = 200 was fixed as the computation time interval.
For the horizontal 2D calculations, Δt2D was determined for computational efficiency from
0.125–0.500 s to a maximum Courant number below 0.2, and the time-interval ratio for
the 2D and 3D calculations, Δt3D/Δt2D, was set to 20–80. The upper limit of the Courant
number was pre-decided in order to maintain the numerical stability since the numerical
solution did not converge when the Courant number was 0.3 in the preliminary calcula-
tions. The calculation period was from 1:00 a.m. to 5:00 p.m. on 4 July 2020. As boundary
conditions, the upstream boundary discharges of the Kuma River and 11 major tribu-
taries (for example, Kawabe River, Figure 4b) were obtained from the runoff calculation
results [49] using the rainfall–runoff–inundation model [56] (Figure 5b). The water level
at the downstream boundary of the computational domain was set using the results of a
preliminarily performed 1D unsteady flow calculation (Figure 5b). At the upstream and
downstream boundaries, other variables were subjected to open boundary conditions, with
the gradient of the variables in the streamwise direction being zero. A wall law and slip
condition were given at the riverbed and water surface, respectively. A no-slip condition
is added at the side boundaries of the computational domain. To trace wet/dry fronts
while maintaining high numerical stability, the flow velocity was determined by solving
a simplified equation of motion, which included only a water surface gradient term and
a bottom friction term. Manning’s roughness coefficient n was set to 0.030 m−1/3 s in
the 58–64 kp section of the river channel and to 0.035 m−1/3 s in the other sections. To
verify the fundamental performance and effectiveness of the SG model, we compared
the case of the SG model (Case 1) with the case where the roughness coefficient had an
equivalent roughness value in the flooded area, as in the BR model (Case 2) as well as
the case where the roughness coefficient was constant (Case 3-1, n = 0.06 m−1/3 s; Case
3-2, n = 0.03 m−1/3 s). The following equation was used for the equivalent roughness n in
Case 2 [50]:

n =

√
100 − θ

100
n02 +

θ

100
CDb
2gB

D4/3 (18)

where n0 is the roughness coefficient on the ground (=0.03 m−1/3 s) and θ is the occupancy
of the building in the grid. In Case 1, the roughness coefficient was required to evaluate the
bottom friction in the flooded area and was set uniformly to n = 0.030 m−1/3 s.

The computational domain includes 10,161 buildings. The ArcGIS data includes the
building plane form (width and area), with building height given in increments of 3 m
over 6 m. Because these data do not cover the downstream area, the building data from
OpenStreetMap (OpenStreetMap Foundation, https://www.openstreetmap.org/ (accessed
on 17 February 2023)) were used for the missing areas. The OSM data contain information
only on the planar geometry; they do not contain height information. Therefore, the
buildings in the OSM data are assumed to be uniformly 6 m high (equivalent to a two-
story building). The building floors in the computed area were mostly first and second
floors, with the exception of certain areas. Therefore, the number of building floors and
the presence or absence of pilotis were visually determined using Google Street View only
in Chaya village (Figure 4a), where the damage to buildings was significant, and used as
building data for this analysis. The building data were processed using GIS software to
calculate the building plane area Ab and the location of the building center. A histogram of
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building width B (Figure S3) indicated that most of the building widths measured between
8 and 12 m, which was approximately the same as the grid resolution. Some buildings were
smaller than the grid resolution, whereas others spanned several grids. In this analysis,
the CPU time was approximately 12 h when we used an Intel(R) Xeon(R) W-2245 CPU @
3.90GHz with RAM of 64.0 GB computer for numerical analysis.

3. Results and Discussion

3.1. Validation of Hy2-3D Model

To validate the results of the flood inundation flow analysis using the Hy2-3D model,
a comparison of the observed [55] and calculated values for the longitudinal distribution of
water levels along the Kuma River is presented in Figure 6. Here, because the differences
among the four cases set up as building models were small, the calculations for the temporal
variation of the longitudinal distributions of the water level (Figure 6a) and peak water
level (Figure 6b) indicate those in only the SG model (Case 1). For the peak water level, the
differences in the longitudinal distributions among Case 1 and the other three cases (Cases 2,
3-1, 3-2) are displayed (Figure 6c). First, the results of the present analysis (Case 1) indicate
that the temporal variation in the longitudinal distribution of the water level accurately
captures the observed data and that the peak water level is also generally reproduced. The
difference between Case 1 and the other three cases with respect to the peak water level is
the smallest in absolute value (0.09 m at maximum) with the Case 2 equivalent roughness
model. In contrast, even for Cases 3-1 (n = 0.06 m−1/3 s) and 3-2 (n = 0.03 m−1/3 s) with
constant roughness coefficients, the maximum absolute values of the peak water-level
difference were 0.15 and 0.45 m, respectively. This result indicates that even if n is kept
constant, the results do not change significantly from those of the equivalent roughness
model if an appropriate value (Case 3-1 in this case) is used. In Case 3-2, n = 0.03 m−1/3 s,
the peak water level difference in the river is roughly within 0.25 m except at 61 kp, and the
impact of the resistance evaluation of the flooded area on the river water level is very small
because the river and inundation flows are combined. It is concluded that the accuracy of
the Hy2-3D model is generally good, regardless of the building resistance model used.

Next, Figure 7 presents a comparison of the observed and calculated values (Case
1) for the water level hydrograph. Six water level observation stations in the computa-
tional domain were covered, from upstream: Ichibu (68.6 kp), Hitoyoshi (62.2 kp), Ohashi
(61.5 kp), Nishizebashi (59.4 kp), Gogan (57.4 kp), and Watari (52.7 kp). Note that some
of the measured data are missing at the three downstream sites owing to the large flood
magnitude. At Ichibu station, which is the upstream boundary of the computation domain,
although the discharge was considered as a boundary condition instead of the water level,
the root mean square error (RMSE) and the root relative mean square error (RRMSE) of
the difference between the observed and calculated water levels during the flood were
0.44 m and 9.3%, respectively, which are generally good for the calculation accuracy of the
analysis results. At the Hitoyoshi and Ohashi sites, for which there were no missing data,
the calculated and observed water levels generally agreed during the rising stage; however,
the difference between the two sites was larger during the falling stage. Among the three
downstream stations, for which data were missing, the accuracy of the Gogan site was
the highest (RMSE = 0.33 m and RRMSE = 5.3%); however, at the Nishizebahi and Watari
sites, there was a discrepancy between the calculated and observed water levels, even
during the rising stage, when the observed data were available. As described previously,
the calculated and observed water levels differed at each water-level station. This result
appears to be attributable to the methods used to set the roughness coefficient n in the
river channel and discharge of the tributary river as the inflow condition. The RMSE and
RRMSE of the calculated results in Case 1 ranged from 0.33 to 1.09 m and from 5.3 to
17.7%, respectively, demonstrating that the results of this analysis were generally good.
The RMSEs and RRMSEs of all the six sites in the other cases were the same as those in
Case 1, with a maximum difference of only 0.08 m and 1.9%, respectively (Figure S4).
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Figure 6. (a) Longitudinal distribution of calculated and observed water levels at various time points
in the Kuma River; (b) calculated and observed peak water levels; and (c) difference in peak water
levels between Case 1 and other cases. The calculated results for Case 1 are used in parts (a,b).

Figure 7. Temporal variation in calculated and observed water levels in the Kuma River. The
calculated results for Case 1 are shown. The results at water-level observatories Ichibu (68.6 kp),
Hitoyoshi (62.2 kp), Ohashi (61.5 kp), Nishizebashi (59.4 kp), Gogan (57.4 kp), and Watari (52.7 kp)
are depicted.
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To verify the accuracy of the calculations in the Hy2-3D model quantitatively, the
scatter plots of the calculated and observed results at the peak water level and depth are
presented in Figure 8. The high water mark levels and depths obtained from the field
observations reported by Ogata et al. [55] (165 data points) are presented along with the
calculated results for Case 1.

Figure 8. Scatter plots of (a) calculated and observed peak water levels and (b) water depth in
inundated area. The calculated results for Case 1 are used in the figure. Observed results are based
on those reported by Ogata et al. [55].

For the peak water level (Figure 8a), the RMSE of the difference between the observed
and calculated values was 0.38 m, the slope of the regression line between them was 1.021,
and R2 = 0.990, indicating that the calculated values were generally in good agreement
with the observed values. Similarly, for the peak water depth, the RMSE of the difference
between the observed and calculated values was 0.45 m, and the slope of the regression
line was 0.930 and R2 = 0.937, indicating that the calculated values were in good agreement
with the observed values. The RMSE of the peak water depth was larger than that of the
peak water level because it reflected the spatial variation in the ground height data.

Table 1 summarizes the RMSEs of the differences between the calculated and observed
values of the peak water level and depth, slope of the regression line, and R2 for all cases.
The RMSEs in Cases 2 and 3-1 were similar to those in Case 1, and the slope of the regression
line was almost unity. In Case 3-2, the RMSE was larger than those in the other three cases
for both the peak water level and depth. A significance test between Case 1 and the other
three cases for the difference between the calculated results and the observed data indicated
a statistically significant difference (p < 0.05) only in Case 3-2 but not in Case 2 or 3-1. Thus,
it is quantitatively clear that there is no statistically significant difference between Case 1 of
the SG model, Case 2 of the equivalent roughness model, and Case 3-1 of the appropriate
constant roughness coefficient (=0.06 m−1/3 s) with respect to the reproducibility of water
level and depth in the river and inundation flow analysis. It is clear that the impact of the
building resistance evaluation model is small. The validity of the Hy2-3D model, which is
the basis of the analysis, was also verified. The high reproducibility of the water level and
depth distribution in the Hy2-3D model, despite the simple and almost uncalibrated setting
of the roughness coefficient in the river channel, may be attributed to the good reproduction
of the complex flow distribution and the appropriate introduction of resistances, such as
bridge girders.
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Table 1. RMSE values, slopes, and R2 in regression lines for calculated and observed peak water
levels and depths for various cases.

Peak Water Level Peak Water Depth

RMSE [m] Slope R2 RMSE [m] Slope R2

Case 1 0.3815 1.0210 0.9898 0.4525 0.9300 0.9367

Case 2 0.3626 1.0200 0.9902 0.4421 0.9306 0.9390

Case 3-1 0.4178 1.0180 0.9875 0.4658 0.9339 0.9261

Case 3-2 0.5447 1.0060 0.9897 0.5480 0.9452 0.9343

3.2. Horizontal Map of Velocity Distribution

To compare and validate the results of the velocity field analyses, which are significant
for the assessment of building damage, horizontal velocity contours are presented in
Figure 9a for the Hitoyoshi city area (59.0–61.2 kp), where the inundated area is large and
urbanization is in progress. The depth-averaged velocity contours for all four cases are
shown for 10:00 a.m. on 4 July, when the water level and velocity peaked. A residential
map displaying the locations and sizes of the roads and buildings is used as a background
image for the contours and is superimposed on the velocity contours. In Cases 3-1 and
3-2, there is a wide area of high velocity in the inundated area. This tendency is more
pronounced in Case 3-2, in which the roughness coefficient is small. However, in Cases
1 and 2, there are generally low flow velocities in the inundated area, reflecting the fluid
resistance caused by the buildings. High flow velocities can be observed locally, and this
tendency is more pronounced in Case 1.

Figure 9. (a) Contour maps of calculated depth horizontal velocities at 10:00 a.m. on 4 July 2020, near
the Hitoyoshi city area and (b) cross-sectional distributions of calculated horizontal velocities and
water levels with locations of buildings along section A-A′. Magnitude of depth-averaged horizontal
velocities in all cases is depicted.
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To evaluate this result in detail, the horizontal velocity distribution on the A-A′
cross section indicated in Figure 9a is depicted in Figure 9b. Again, as in Figure 9a, the
calculations for all cases on 4 July, 10:00 a.m. are indicated, and the building location,
water level, and ground elevation are also depicted. First, Case 3-2 (with n = 0.03 m−1/3 s)
indicates a high flow velocity and low water depth across the entire cross-section. In Case
3-1 (with n = 0.06 m−1/3 s), the velocity levels are similar to those in Cases 1 and 2, but the
fluctuations in the velocity distribution are smaller, and there is no indication of a decrease
in velocity near the buildings or an increase in the velocity on the road without buildings.
However, in Cases 1 and 2, the contrast in velocity fluctuation was larger than those in
Cases 3-1 and 3-2, with lower velocities in the building area and higher velocities on the
road. However, a closer look reveals that the flow velocity in Case 1 is higher than that in
Case 2 on the road and in areas without buildings and that the flow velocity in the grid
where buildings exist is often larger for Case 1 than for Case 2. The RMS of the flow velocity
in the A-A′ cross section is 1.20 and 1.16 m for Cases 1 and 2, respectively, indicating that
the fluctuation of flow velocity for Case 1 is larger than that for Case 2. This reflects the fact
that the difference in flow velocity between the grids with and without buildings is larger
in Case 1, as described above. Case 1, which uses the SG model, indicates low velocities
on the building grid and high velocities on the grid without buildings, for example, on
the road, owing to low resistance, suggesting that the SG model adequately evaluates the
fluid force acting on buildings. The values of velocity on the grid with buildings were
in the order Case 1 > Case 2 because the high velocities on the nonbuilding grid, such as
roads, diffused horizontally and caused the velocities on the building grid to be relatively
large. In addition, because equivalent roughness is used in Case 2, the roughness coefficient
affects the vertical and horizontal eddy viscosity coefficients (Equations (4) and (5)) as well
as the bottom friction force in this model. Therefore, the spatial variation in the velocity
distribution is expected to be less sharp than that of the SG model (Case 1) because of the
effect of the increased roughness on the area around the building grid. It is also noted
that the water level decreased and increased near the lateral distance of 200–250 m and
250–400 m, respectively. This is because the higher ground elevation in the lateral distance
of 200–250 m results in lower water levels due to high drag and inadequate water supply
from the upstream side.

3.3. Vertical Distribution of Streamwise Velocity

To compare the changes in the vertical distribution of the flow velocity owing to the
presence or absence of buildings among the different cases, the vertical distributions of the
horizontal flow velocity at the feature points in Chaya District in Cases 1 and 2 are depicted
in Figure 10. We extracted the vertical distributions of the flow velocities at four calculation
grids (Figure 10a), which included Stn A: no buildings, Stn B: one-story buildings, Stn
C: two-story buildings, and Stn D: pilotis style buildings in which the first floor with 2 m
height dodges the flood flow, as the feature points in Chaya District. Because the flood
flow in Chaya District was dominated by the main flow direction (s), the velocity in the s
direction is depicted. The results at 11:30 a.m. on 4 July 2020, which was the peak time of
the downstream water level, are presented. Focusing on Case 1, the vertical distribution
of the flow velocity at Stn A (no buildings) has a typical logarithmic distribution. At Stn
B (one-story buildings), the distribution of the flow velocity was small below the height
of the first floor (3 m) and had an inflection point at approximately 3 m. Above that, the
velocity increased. At Stn C (two-story building), the inflection point of the flow velocity
appeared at approximately 6 m, which corresponded to the height of the second floor,
and the flow velocity was small below 6 m. Thus, when the water depth exceeded the
building height, as in Stn B and Stn C, the flow velocity distribution inside and outside the
canopy layer appeared to have an inflection point near the building height [57], leading to
a vertical velocity distribution different from a logarithmic distribution. At Stn D (pilotis),
the maximum velocity appeared at a height of 1.6 m; the velocity was high below the height
of 2.5 m and low above that height, corresponding to the building type.
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Figure 10. Vertical distribution of streamwise velocity at 11:30 a.m. on 4 July 2020 in Chaya District.
(a) Locations of four stations. (b) Equivalent roughness n in this area. Calculated velocities for (c) Case
1 and (d) Case 2 are shown.

In Case 2, Stn A, where no buildings exist, exhibits a general logarithmic distribution,
as in Case 1, whereas Stn B, C, and D, where buildings exist, exhibit the same vertical
velocity distribution, with no difference based on the building structure. One of the most
significant features was that the velocity near the bottom was negative at Stn B, C, and
D. The roughness coefficient calculated using the equivalent roughness model in Case 2
reached a maximum of 0.3 m−1/3 s, which is a significantly large value (Figure 10b). This
results in a significant roughness height ks, which is considered responsible for the negative
velocity near the bottom. This is similar to the zero-plane displacement in atmospheric
turbulence fields over urban canopies [58]. These results indicate that the equivalent
roughness model has limitations in accurately reproducing 3D flow velocity distributions
around buildings with large roughness coefficients. It was also suggested that the SG model
can reproduce the vertical velocity distribution based on the vertical structure of a building.

3.4. Hydraulic Factors of Building Damage

To understand the characteristics of the building loss indices obtained using the SG
model, the correlation plots of the calculated results for Cases 1 and 2 for the lost buildings
(160 buildings) are presented in Figure 11. The maximum values of water depth h, depth-
averaged velocity v, unit-width discharge q, moment qh, and fluid force F were selected
as the building loss indices. It should be noted that the time of the maximum value of
each index does not coincide. For each index, the approximate linear equation and the
coefficient of determination R2 are also shown. The p-values obtained by the t-test are
also depicted to check for significant differences between the results of Cases 1 and 2. In
Case 1, the fluid force F is obtained directly for each building, but not in Case 2. Therefore,
the same method used in Case 1 was applied to calculate F in Case 2. The water depth h
was plotted on y = x, and there was no significant difference between the cases (p > 0.10).
This is because, as depicted in Section 3.1., the present inundation pattern is a flood in
which the river and inundation flows are combined, and the water level of the river largely
determines the water level in the inundated area. The variation in the flow velocity between

220



Water 2023, 15, 3166

the cases increased, particularly when the velocity exceeded 2.0 m/s. It was confirmed that
the velocity in Case 1 was generally larger than that in Case 2. There was a statistically
significant difference between Cases 1 and 2 (p < 0.10) at the 10% significance level. For the
unit width discharge q and moment qh, the variation increased with v, and a significant
difference was confirmed between the two cases (p < 0.05). Furthermore, for the fluid force
F, the variation between the two cases was larger than that for the flow velocity, with the
slope of the approximate line reaching 1.07. Because fluid force F is the product of h and
v squared, the effect of the flow velocity was more pronounced. The difference between
the two cases was significant at the 10% level (p < 0.10). The fluid force is a flood index
that determines building damage, and the fact that this assessment differs significantly
between the SG model and the conventional equivalent roughness model suggests that
the assessment of building damage differs significantly depending on the difference in
the models.

Figure 11. Correlation diagram of building loss indices for Cases 1 and 2 in lost buildings (160 build-
ings). p-value showing a statistically significant difference between Cases 1 and 2 is also illustrated
(* p < 0.10).

To examine the differences between Cases 1 and 2 in terms of the building loss indices
in detail, the results of the comparison based on the inundation depth are presented in
Figure 12. Box plots for each building loss index were obtained by dividing the inundation
depth into three ranks based on the number of floors in the building: first floor (0–3 m),
second floor (3–6 m), and second floor overflow (>6 m). The p-values from the t-tests are
also indicated in the figure as a result of examining the significant differences between
Cases 1 and 2 for each inundation depth rank. For the flow velocity (Figure 12a), the
mean values for Case 1 (Case 2) were 1.36 m/s (1.19 m/s), 1.13 m/s (1.14 m/s), and
1.96 m/s (1.81 m/s) for inundation depths of 0–3 m, 3–6 m, and >6 m, respectively. The
velocities in the 0–3 m and >6 m depth ranges were in the order Case 1 > Case 2, and
a statistically significant difference was confirmed between the two cases (p < 0.05). No
significant difference in velocity was observed between the two cases in the 3–6 m depth
range. Similarly, with respect to the unit-width discharge q, moment qh, and fluid force F
(Figure 12b–d), significant differences were seen between the two cases for the 0–3 m and
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>6 m depths, with some exceptions (p < 0.05 or p < 0.10), and no significant differences
were found for the 3–6 m depth. These results may reflect the velocity results.

Figure 12. Boxplot showing flood index by flood depth level in lost buildings for Cases 1 and 2.
p-value indicating a statistically significant difference between Cases 1 and 2 is also shown (* p < 0.05).

At depths greater than 6 m, Case 1 exhibits a vertical velocity profile with an inflection
point resisted up to the second story, whereas Case 2 shows a reverse flow near the bottom
under large roughness coefficient conditions (Figure 10), suggesting that the difference in
the vertical velocity structure between the two cases is related to the difference in velocity
v. In addition, most buildings located near rivers are washed away at a small inundation
depth of 0–3 m. In Case 1, the flow velocity at the time of overtopping is evaluated using the
SG model. In Case 2, the roughness coefficient owing to the presence of the building is large
(Figure 10b), leading to excessive resistance and a decrease in the flow velocity. However,
there should be a difference in velocity between Cases 1 and 2, even at a depth of 3–6 m. In
this analysis, all buildings except those in Chaya District were assumed to be two-story
buildings; therefore, the vertical distribution of the flow velocity generated by one-story
buildings (Figure 10c) could be considered in very few buildings. Therefore, the difference
in the depth-averaged velocity owing to the difference in the vertical velocity distribution
did not appear among the cases. The results of the evaluation of the flow velocity and
fluid force indicated statistically significant differences when compared with the equivalent
roughness model used in the conventional BR model, suggesting the usefulness of the SG
model. The equivalent roughness model cannot properly evaluate fluid forces, and the
significance of the SG model is expected to increase in the future.

Meanwhile, it is important to acknowledge certain limitations that are inherent to
our research. While it is important to consider factors such as building height, structure,
and construction materials, the availability of comprehensive data pertaining to residen-
tial buildings is still lacking. The scarcity of such data poses a challenge for accurately
incorporating these elements into our analysis. The collection and organization of data
regarding residential structures should be a focal point for future endeavors. Without
an improved dataset, a comprehensive assessment of the effects of building attributes on
fluid force remains constrained. Furthermore, because field observation data generally do
not include flow velocity values or fluid force data for actual buildings, it is necessary to
verify the accuracy of the proposed model using model experiments and compare it with
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numerical results using a fine grid (grid resolution of 1 m or less). This will be taken up in
future studies.

4. Conclusions

In this study, a new subgrid model was developed for evaluating the fluid force acting
on individual buildings to assess damages during flood inundation without increasing
the computational load. The following points were clarified through a comparison with
the conventional BR method based on a simulation of the Kuma River during the heavy
rainfall in July 2020 as an example.

1. In terms of the reproducibility of water levels and depths in river and inundation
flow analyses, it was confirmed that the calculation accuracy of the Hy2-3D model
was generally good. It was also quantitatively illustrated that there were no sta-
tistically significant differences in the water levels and depths among the cases for
building resistance.

2. In terms of the horizontal distribution of the velocity field, which is significant for
building damage assessment, the contrast in the velocity difference between the
building grid and the surrounding road grid was larger in the SG model (Case 1)
than in the equivalent roughness model (Case 2). This is because, in the equivalent
roughness model (Case 2), the roughness coefficient is larger even when a small
number of buildings are included in the computational grid, and the roughness
coefficient is reflected in the horizontal eddy viscosity coefficient; thus, the building
effect is spread over a wider area.

3. The SG model could reproduce the change in the vertical velocity distribution with the
vertical structure of the building. However, the equivalent roughness model could not
reproduce the flow velocity distribution with inflection points around the building. It
also exhibited a limitation in reproducing the 3D flow velocity distribution around
the building precisely because of the backflow near the bottom owing to the large
roughness coefficient. Thus, it is clear that the SG model can accurately reproduce the
horizontal and vertical structures of the flow velocity.

4. A comparison of building loss indices, such as fluid forces acting on each building,
revealed significant differences in flow velocity between Cases 1 and 2, particularly
in the ranges of 0–3 m and >6 m inundation depths, where statistically significant
differences were confirmed. Along with the results of the velocity analysis, similar
statistically significant differences were also observed in the unit-width discharge q,
moment qh, and fluid force F. These differences were attributed to the horizontal and
vertical distribution of the flow velocity. These results suggest that the reproducibility
of the vertical velocity distribution is a key factor and that the SG model incorporated
into the 3D model can evaluate the inundation flow conditions in a manner that
accurately reflects the fluid forces acting on the building, thus demonstrating the
usefulness of the model.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w15173166/s1, Figure S1: Measured results from 52 to 63 kp
along the Kuma River after heavy rainfall in July 2020, obtained from Ogata et al. [55]. (a) Contour
map for inundation depth and (b) and map of building damage are shown. Building damages are
classified into “loss”, “no loss with inundation”, and “without inundation” in which the two formers
are depicted in part (b); Figure S2: (a) Map of building damage in Chaya district located near 53 kp
on the Kuma River and (b) photograph taken along the direction of the arrow after the flood disaster
of July 2020 heavy rainfall. A piloti structure was located at an upstream point in this district, and the
building downstream of the piloti structure was less damaged by this flooding; Figure S3: Histogram
of building width B in the computational area. Building width B was evaluated using the plane area
of building Ab and Equation (8). Figure S4: RMSE and RRMSE values for the calculated hydrograph
of the water level at six observatory stations. The data shown in Figure 7 are used here.
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Abstract: This paper describes the development and trial of a method (Quick Flood Risk Scan method)
to determine the vulnerable value of monuments for flood risk assessment. It was developed in the
context of the European Flood Directive for the Dutch Flood Risk Management Plan. The assessment
method enables differentiation of cultural heritage by cultural value and vulnerability to water from
rainfall or flooding. With this method, hazard or exposure maps can be turned into risk maps showing
the potential loss of cultural value in case of flooding with a particular probability. The Quick Flood
Risk Scan method has been tested and validated in the City of Dordrecht, the Netherlands. This
application was facilitated by an Open Lab of the SHELTER project. The trial in Dordrecht showed
the potential of a simple method to prioritize monuments without calculations. The Quick Flood
Risk Scan method enables even the non-expert assessor to make a preliminary qualitative assessment
that can be followed by further analysis of a relevant selection of assets. It is useful as a low tier that
feeds into higher tiers of a multi-level framework. The non-expert assessor may be a policy maker,
an owner of a heritage asset, or an inhabitant. Nonetheless, the trial also raised several questions,
ranging from where in a building valuable heritage is located and what the role of the building owner
is to how policy makers implement the method and its outcomes. These questions provide relevant
input for fine-tuning the method.

Keywords: cultural heritage; cultural value; flood; risk map; vulnerability

1. Introduction

Over the last decades, climate-related hazards have led to increasing impacts on
cultural heritage assets. Cultural heritage is particularly vulnerable to the actions of such
hazards [1]. Tangible losses to cultural heritage assets can be irreversible or very slow
to repair, whilst intangible losses (e.g., historical or spiritual values) can lead to indirect
economic losses that may include loss of livelihoods [2]. With the aim of reducing this
vulnerability, global heritage organisations (UNESCO, European Union (EU), ICOMOS)
have championed the integration of cultural heritage into disaster risk management [3].
UNESCO, for example, has updated the World Heritage Convention [4] to ensure its
relevance in the international climate change regime. This has resulted in a Strategy for
Action on Climate Change [5]. This strategy has increased alignment of the convention
with the Paris Agreement, Agenda 2023, and the Sendai Framework for Disaster Risk
Reduction [6]. The EU has also taken commitment to safeguard and enhance cultural
heritage through its policies and programmes. The European Framework for Action on
Cultural Heritage [7] sets out four principles and five main areas of action, including a set
of actions to protect cultural heritage against natural disasters and climate change. The
framework also proposes that cultural heritage should be addressed through many other

Water 2023, 15, 2950. https://doi.org/10.3390/w15162950 https://www.mdpi.com/journal/water
227



Water 2023, 15, 2950

EU policies beyond culture, including disaster risk management. A key policy in this
regard is the EU Floods Directive [8].

The EU Floods Directive aims to reduce and manage the risks that floods pose to
human health, the environment, cultural heritage, and economic activity. Among other
actions, it obliges EU Member States to establish flood maps that display important objects
endangered by flood, which includes cultural heritage. A couple of EU Member States
have developed detailed maps on which inventoried cultural heritage assets are displayed.
These include France (Plan de Prévention des Risques) [9], Switzerland (Swiss protection
programme) [10], Italy [10], and the Netherlands [11]. Most of the Member States have
mostly recorded asset information without data on its condition and/or value [12]. As such,
there is a need to develop robust methods for risk assessment in cultural heritage [13]. This
includes the need for improved survey and documentation practices to collect and organize
data inventories relevant to risk reduction. A particular need, even more so outside Europe,
is to also include data on its value and significance from a non-expert perspective [14].

Several authors have described methods to assess flood risk of cultural heritage at
larger areas (e.g., sites, cities, and countries). Arrighi et al. [15], for example, have assessed
the risk to heritage buildings in the City of Florence by assigning vulnerability classes to
each cultural building category. Besides that, they have assessed the risk to art works as the
annual expected number of lost artworks due to flooding. Figueiredo et al. [16] propose
a framework for semi-quantitative flood risk assessment of immovable cultural heritage
assets at country scale and Arrighi [1] examines the river flood risk of UNESCO tangible
World Heritage sites. They follow the definition of risk being a combination of hazard,
exposure, and vulnerability; however, they define these parameters slightly differently and
combine the various indicators in a different manner. Hazard contains the probability of
occurrence of a flood which Arrighi [1] combines with indicators for the severity of that
flood in terms of flood depth and area flooded. These lead to the well-known flood hazard
maps. Exposure looks at what is exposed, the assets, and their cultural value, for which
they use the national listing scheme or a set of criteria used in the description of the asset.
Vulnerability considers material and construction of the asset, age, condition or simply
type of building, sometimes including resilience factors. Figueiredo et al. [16] include
flood intensity in vulnerability to arrive at a potential impact. Exposure, including value,
and vulnerability combined provide insight into potential loss or damage. Arrighi [1]
classifies potential damage in a matrix with five classes. Figueiredo et al. [16] express loss
in a Heritage Flood Impact index. Ultimately, flood hazard maps can be turned into risk
maps indicating expected impact at a given probability of a particular severity of flood.
There are also some other methods taking a different approach to assess flood vulnerability
of cultural heritage [17–20].

A number of authors have developed models to assess vulnerability of immovable
cultural heritage to flood in more detail. Again, the concept of vulnerability differs slightly
per author. Stephenson and D’Ayala [21] look at historic buildings in the UK for which
they use five vulnerability descriptors with a rating: age, listed status, number of storeys,
construction, and condition. The sum of the scores for these ratings gives a vulnerability
index which can be used to determine priority for flood protection. Godfrey et al. [22]
describe an expert-based approach to assess the physical vulnerability of buildings to
hydro-meteorological hazards in Romania. They use 17 vulnerability indicators such as
floor height from ground level, foundation type and depth, building location, material,
and quality of construction. Experts have weighed these indicators and the sum of the
normalized weight of the indicators times their normalized scores leads to a vulnerability
index for a specific building. Combining existing vulnerability curves for reinforced
concrete, wooden, and brick masonry buildings generates a generic vulnerability curve.
This in combination with the vulnerability index is used to generate a specific vulnerability
curve representative for a particular area. Although the method was developed to allow
assessment of vulnerability for situations where there is little information available, it does
require a substantial input of data and opinions. Gandini et al. [23] assess the vulnerability
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of heritage sites towards flood events in Spain. For sites that are part of a historic city,
they consider not only sensitiveness with criteria such as construction, envelope, and
structural material but also adaptive capacity with criteria such as interventions made,
socio-economic status, and cultural value. Figueiredo et al. [16] present a component-
based flood vulnerability model for Portuguese churches. They consider components
of the building and the contents in terms of materials, their susceptibility to water, and
expected damage when wet. Combined with a value index, they derive at a relative
damage score between 0 and 1 for various water depths. Tirzio et al. [24] have developed a
method to assess the vulnerability of the earthen architecture in the City of Alzira, Spain,
attributing weighted scores to sixteen parameters. This method made it possible to identify
the constructive characteristics and material weathering which worsen the behaviour of
structures during floods.

All these methods, whether one assesses vulnerability in more detail or not, demand
a substantial amount of information about the building and its contents, additional data
such as vulnerability curves, and calculations to arrive at a final comparison or ranking of
heritage assets in a particular area. Contrary to the drive towards more and better data and
models, this research tries to go in the opposite direction. The aim of this research is twofold:
(1) refine an expert-based method for flood risk assessment in cultural heritage (termed:
Quick Flood Risk Scan), and (2) field-test it in the City of Dordrecht, the Netherlands. The
main innovation of the Quick Flood Risk Scan method is to derive a useful classification
of potential loss of cultural value with as little information and effort as possible. When
this potential loss of value of heritage assets is plotted on flood hazard maps, these maps
should show potential loss at a given water depth with corresponding probability as an
indication of risk in a meaningful manner. It is then for the owner or keeper of the cultural
heritage asset to determine the actual risk. The Quick Flood Risk Scan method can thus be
considered a preliminary risk qualification that can be used to select assets that require a
more in-depth risk assessment.

The research flow consisted of several steps. The components of the Quick Flood
Risk Scan method are refined with heritage experts and translated into criteria for their
assessment. The refined method is first applied to existing data sets in order to test its
meaningfulness in practice. Next, an actual application is conducted for a trial in Dordrecht,
facilitated by the Open Lab of the SHELTER project. The trial consisted of a sample of
19 listed buildings in Dordrecht’s historic port area. Reflections are drawn from this trial on
the applicability, reliability, and added value of the method. In a concluding step, the Quick
Flood Risk Scan method is confronted with published methods to enrich the state-of-the-art
and to identify future research needs.

2. Assessment of Vulnerable Value: Quick Flood Risk Scan

2.1. Principle behind the Method

The Quick Flood Risk Scan builds on an existing method for risk assessment in heritage
collections [25] that is used in museums. It considers three components to enable simplifi-
cation: vulnerability, value, and exposure (Figure 1). However, it defines these components
slightly differently than the methods reviewed in the Introduction. Vulnerability is factual
input which considers the physical susceptibility to water. It leaves adaptive capacity and
socio-economic aspects out of the equation. Value is the subjective input. Since for the
Netherlands the listing schemes do not imply a quantitative difference in value, value is
quantified by considering cultural value density. This takes the value per area into account
by looking at the footprint of the heritage as well as the contents of a building. Exposure
looks at how the asset is exposed, the probability of particular water depths, for which
hazard maps can be used.
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Figure 1. Principles of the (original) Quick Risk Scan method as developed for heritage collections:
an asset is at risk when it has cultural value, is susceptible to a particular hazard, and is exposed to
that hazard (left) and the equivalent in overlaying maps (right).

The (existing) Quick Scan method, developed to assess risks to heritage collections [25],
is based on the following key principle. A cultural asset can only be at risk (facing the
possibility of loss of value) when it has value, is susceptible to a hazard, and is actually
exposed to that hazard. In the context of risk management for cultural heritage, the term
‘value’ refers to cultural history values such as historic, artistic, and architectural values
as well as social-societal values associated with identity and community and usability.
Monetary value is not used in the assessment of loss of value but financial aspects appear
in the cost-benefit analysis of risk management options [26]. No value, no loss; no sus-
ceptibility or vulnerability, no loss; no exposure, no loss. Only when ‘vulnerable value’
is exposed to the hazard can there be a loss of value. The approach could be seen as a
variation to the overlaying maps of an area proposed by FEMA [27] (Figure 1). There
is also similarity (methodologically) to geosite selection and geodiversity estimates, for
which similar techniques have been proposed. An example is the conceptual framework
for estimating geodiversity values, developed by Zakharovskyi and Németh [28,29]. This
similarity provides a base for further work to provide various susceptibility maps of how
cultural assets are vulnerable for various hazards (including and beyond water).

In the original method for collection care, the value of an object or collection unit is
qualified as high, medium, or low within the context of the entire collection, its profile,
and the organisation’s mission, vision, and objectives. As with risk matrices, one can
define their own ranges for high, medium, and low. Every museum has its treasures, core
collection, and support objects. In addition, vulnerability or susceptibility is qualified as
high, medium, or low. Collection managers and conservators know this from experience
and common sense and can find information in publications such as Brokerhof et al. [30]. A
watercolour painting is highly susceptible to water; a golden ball scores low for water but
high for theft, whereas the watercolour may be less attractive and therefore score low for
theft. To solicit similar qualitative judgements for built heritage, expert knowledge was
collected.

2.2. Refinement of the Method—Using Expert Opinion

Ranking monuments by their cultural value is not straightforward. Cultural heritage
is listed because it has more than average cultural value and is worth preserving. In the
Netherlands, heritage can be listed at a national, provincial, or local level. However, that
does not mean that one level is more valuable than another. Even then one cannot say that
a prehistoric structure has more or less significance than a medieval castle. Furthermore,
not all monuments are equally vulnerable. Some are robust, constructed with concrete or
brick; others have delicate plaster finishes or a wood construction. Ultimately, a high-value
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monument with a low vulnerability to flood may face a smaller risk than a monument
with lower value but a high susceptibility to water. It is the combination of value and
vulnerability that needs to be determined.

To investigate whether the experts who are responsible for the heritage listing would
be able to rank the national monuments, by cultural value and/or vulnerability to flooding,
two workshops were organised with the Cultural Heritage Agency’s regional advisors.
They provide support to local authorities about listings, possibilities for changes or repur-
posing, and restoration and subsidy requests and are familiar with most monuments in
their region. At the workshop, they were given a set of images of a range of different types
of monuments with the task of ranking them according to ‘vulnerable value’ and provide
arguments for the ranking. One group, which incidentally contained many architecture
historians, ranked mainly according to significance and rarity. The other group, which
contained more building engineers, ranked by material, construction, and susceptibility.
Without intending to do so, the two groups provided the arguments for both value and vul-
nerability. The susceptibility was ranked according to building material and strength of the
construction. Interestingly, value was attributed not just by historic, artistic, or architectural
significance but took type, footprint, size, and content of buildings into account as well.
This was in agreement with the seven parameters of Stephenson and D’Ayala [21]. The
incorporation of these aspects allowed for a simplification of an otherwise possibly difficult
and subjective process of differentiating value. The workshops led to the conclusion that
the concentration of value on an area, or the ‘value density’, and the associated loss of value
could be used to categorize monuments.

2.3. The Refined Method: Quick Flood Risk Scan

The outcome of the workshops was a matrix describing three classes for value density
on the one hand and three classes for vulnerability on the other (Figure 2). The definition
of the criteria for value density and vulnerability was further inspired by publications on
the vulnerability of historic buildings [21] and earthquake risk in Germany [31].

Figure 2. Matrix to assess potential loss or impact (here: vulnerable value) for monuments in the
Netherlands.
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2.3.1. Value Density

The value density incorporates the concepts of footprint, height of the building, func-
tion, and significance. There are three classes:

Low: A monument that is not a building but a man-made structure above ground that
cannot be entered such as street furniture, border markers, tombstones, bridges.
A building that has lost its original function; it can be an empty
building or a building that is listed because of its original function and design
but does not function as such any longer, for example, bunkers, fortification
towers, brick factory, sheds.

Medium: A significant building with an insignificant interior or content; the building is
listed because of its architectural-historic value while the interior is no longer
original or has been adapted to a new function, for example, a historic house
that is adapted to modern living comfort, a modernised farmhouse, a repurposed
windmill.
A significant interior or content in an insignificant building; the building is listed
because of the cultural value of its interior design or the moveable heritage inside,
such as a museum in a modern building.

High: A significant building with a significant interior or content; both the building
and the interior or moveable heritage inside have cultural value, for example,
historic house museums, castles, country estates, and in the Netherlands, certainly
the Rijksmuseum.

Although rarity alone does not make something valuable, it is a value-magnifying
factor. A building with a relatively low value density can be upgraded if it is one of a kind
as long as convincing arguments are provided.

2.3.2. Vulnerability

In the context of the Quick Flood Risk Scan method, vulnerability is defined as sen-
sitivity or susceptibility, leaving adaptive capacity out of the equation. Vulnerability is
determined by construction and material. The weakest link determines the overall vulnera-
bility. The three classes are:

Low:Concrete, hard stone, robust material and construction, in reasonable to good condi-
tion, probably relatively young (for example >1900);

Medium:Softer, more porous stone, older monuments in a suboptimal condition, low-quality
masonry;

High:Plaster, adobe and wood, either used inside or outside, with finer details then the
other vulnerability classes.

Age and condition or state are magnifying factors for vulnerability. Age and proven
robustness of old buildings can be an indication of their low vulnerability. Younger build-
ings can be built with low-sensitivity materials but a highly sensitive construction. A bad
condition generally increases vulnerability. Alternatively, a recent restoration or reinforce-
ment may reduce vulnerability. Additionally, protective measures that are not described in
the original listing document can reduce vulnerability.

The combination of both dimensions results in three or four ‘vulnerable value’ groups,
indicating possible loss of value with traffic light colours ranging from small loss (green), to
medium loss (yellow), to large loss (red), leaving the possibility for a very large loss (dark
red) to prioritise further in case of many red assets (Figure 2). With this system, dots on a
hazard map can be coloured to make a first step towards a risk map which provides an
overview of the magnitude of potential losses without putting numbers or monetary costs
to it.
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3. Application of the Quick Flood Risk Scan Method

3.1. Application to Existing Data Sets

In order to test the meaningfulness of the Quick Flood Risk Scan method in practice,
it was applied to existing datasets and the outcomes were compared. In their paper on
a framework for flood risk assessment in Portugal, Figueiredo et al. [16] provide a list
of 50 heritage buildings and sites with information on type of heritage, value index, and
vulnerability class. In the supplementary material to their paper, the data of 995 assets
can be found. Using depth-damage functions to estimate the potential impact of flood on
cultural assets, they attribute a ‘heritage flood impact index’ (HFI) as a metric for their
vulnerability model. It indicates the impact per value index of an asset at a particular
return period. They present HFIs for a return period of 20, 100, and 1000 years. They
state that multiplying an asset’s HFI by its value index yields an absolute index of flood
impact for that asset. For 26 of the assets in their paper, the vulnerable value was assessed
with the matrix of Figure 2. This assessment was based on images found on the internet
from the heritage asset to estimate value density, materials, and construction. Rock art and
archaeological sites were not assessed as the Quick Flood Risk Scan is not designed for
these types of heritage. The outcome of the Quick Flood Risk Scan was then compared to
the absolute Flood Impact Index for a return period of 1000 years, calculated by multiplying
the value index with the HFI for a return period of 1000 years. In other words, the possible
loss of value in a worst-case scenario, which should be comparable to the vulnerable value.
The results of the comparison are presented in Table 1.

Table 1. Comparison of the assessment of vulnerable value by the Quick Flood Risk Scan to the
Framework presented by Figueiredo et al. [16]. Colour coding for Quick Flood Risk Scan as in
Figure 2, for Figueiredo et al. classes defined: 0–15 = dark green, 16–30 = light green, 31–45 = yellow,
46–60 = light red, 61–75 = dark red.

ID Designation Type

Figueiredo et al. Quick Flood Risk Scan

Value
Index

Vul
Class

HFI
(RP = 1000 y)

Flood
Impact

Val Den Vul Vul Val

1 Mosteiro de Ermelo Monastery 15 A 5.00 75.00 H M HM

2 Termas Medicinais
Romanas de Chaves

Bath
house 15 B 4.00 60.00 M M MM

3 Capela do Anjo da
Guarda Chapel 15 B 4.00 60.00 M M MM

4
Convento de São

Gonçalo de
Amarante

Convent 15 A 5.00 75.00 H H HH

5 Igreja de Santa Maria
sobre o Tâmega Church 10 A 5.00 50.00 H H HH

6 Igreja Paroquial de S.
Nicolau Church 10 A 5.00 50.00 H H HH

7 Capela de São Lázaro Chapel 10 A 5.00 50.00 M H MH

8
Igreja da

Misericórdia de
Constância

Church 10 A 5.00 50.00 H H HH

11
Pelourinho de São

Nicolau de
Canaveses

Pillory 15 D 3.00 45.00 L M LM

12 Castelo de Almourol Castle 15 C 3.00 45.00 M M MM
14 Casa Júlio Resende House 10 B 4.00 40.00 H M HM

15 Casa dos Arcos/Casa
de Camões

House
(ruin) 10 B 4.00 40.00 L H LH

16 Edifício da Capitania
do Porto de Aveiro Building 10 B 4.00 40.00 H M HM
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Table 1. Cont.

ID Designation Type

Figueiredo et al. Quick Flood Risk Scan

Value
Index

Vul
Class

HFI
(RP = 1000 y)

Flood
Impact

Val Den Vul Vul Val

17 Ermida de Nossa
Senhora do Ameal Chapel 15 A 4.69 70.35 M-H H MH-

HH

18
Igreja da

Misericórdia de
Ponte de Lima

Church 10 A 5.00 50.00 H H HH

19 Torres de São Paulo e
da Cadeia Tower 10 B 4.00 40.00 M L M

20 Piscina de D. Afonso
Henriques

Bath
house
(ruin)

15 E 3.00 45.00 L H LH

21 Igreja Paroquial da
Póvoa de S. Adrião Church 15 A 1.43 21.45 H H HH

22 Convento e Igreja de
Santa Iria Convent 15 A 3.69 55.35 H H HH

23 Torre de Lapela Tower 15 B 4.00 60.00 M L-M ML-
MM

24 Capela de N. S. da
Penha de França Chapel 10 A 5.00 50.00 H H HH

25
Central de Captação
de Água da Foz do

Sousa

Pumping
station 10 E 3.00 30.00 L-M L-M LL-MM

27 Cruzeiro do Senhor
da Boa Passagem Calvary 10 D 3.00 30.00 L M M

29 Cais em Abrantes Pier 10 E 3.00 30.00 L L LL

35 Pelourinho de
Constância Pillory 10 D 3.00 30.00 L M LM

47 Padrão de D.
Sebastião

Stone
pillar 10 D 3.00 30.00 L M LM

Note: Vul Class = vulnerability class; Val Den = value density; Vul = vulnerability; Vul Val = vulnerable value.

It can be seen that there are some discrepancies. In particular, pillories score low in the
Quick Flood Risk Scan because of their small footprint and low density. When having to
prioritize between buildings and pillories, that may not be unrealistic. In some instances,
houses and churches with relatively lower value but with cultural contents score higher in
vulnerable value. Robust towers are assessed as less vulnerable and score lower. Altogether,
the results of a 1 h Quick Flood Risk Scan are still meaningful when compared to the more
time-consuming method of Figueiredo et al. [16].

Similarly, a comparison was made with the assessment of Stephenson and D’Ayala [21].
Their vulnerability index combines value, based on listing and age, and vulnerability,
considering number of storeys, material, structure, and condition. Adding up scores for
five descriptive parameters, they come to a number ranging between 50 and 500. Table 2
compares their Vulnerability Index with the assessment by the Quick Flood Risk Scan for
the six buildings in the study. In the Quick Flood Risk Scan, the non-listed buildings drop
out as their value density is zero. The difference between the remaining three buildings is
in the timber frame. The Quick Flood Risk Scan would score the timber frame higher even
though it is stated to be in a better condition than the brick masonry buildings. Generally,
in the Quick Flood Risk Scan method, material and construction have more weight than
age. However, condition is an issue to be assessed more closely.
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Table 2. Comparison of the assessment of vulnerable value by the Quick Flood Risk Scan to the
flood vulnerability assessment by Stephenson and D’Ayala [21]. Colour coding for Quick Flood Risk
Scan as in Figure 2, for Stephenson and D’Ayala classes: 50–150 = dark green, 150–250 = light green,
250–350 = yellow, 350–450 = light red, 450–500 = dark red.

ID Designation Type of Building Vulnerability
Index

Quick Flood
Risk Scan

Value
Density

Vulnerability
Vulnerable

Value

1 Barton Street.
Tewkesbury

Timber frame
residential. NL 1 215/500 0 H 0H

2 Mill Bank.
Tewkesbury

Timber frame
residential. GII 2 290/500 M H MH

3 Water Lane.
Winchester

Brick masonry
residential. NL 177.5/500 0 M 0H

4 Kingsgate Street.
Winchester

Brick masonry
residential. GII 327.5/500 M M MM

5 Riverfront. York Brick masonry
commercial. NL 185/500 0 M 0M

6 Fishergate. York Brick masonry
commercial. GII 305/500 M M MM

Note: 1 NL = not listed. 2 GII = Grade II listed.

3.2. Field Test for the City of Dordrecht

The first opportunity to actually field-test the Quick Flood Risk Scan method arose
within the EU-Horizon 2020 project: Sustainable Historic Environments holistic reconstruc-
tion through Technological Enhancement and Community-based Resilience (SHELTER) [32].
The SHELTER project is organized to develop and demonstrate a highly adaptable and
replicable systemic approach toward resilient transformation and reconstruction of cultural
heritage. It uses a case-studies-based approach with three objectives: (i) to generate the
required knowledge regarding the impact of different direct and indirect impacts in diverse
typologies of heritage assets; (ii) to validate the suitability, adaptability, and replicability
of the SHELTER framework, methodologies, and ICT tools to different heritage contexts.
The case studies include: Ravenna (Italy), Seferihizar (Turkey), Dordrecht (Netherlands),
Natural Park of Baixa Limia-Serra Do Xurés (Spain), and Sava River Basin. In the five case
studies, Open Labs have been established. These labs function as participatory arenas and
spaces of transformation, validation, collaboration, and cooperation among all relevant
decision makers and community-based actors involved in the disaster risk management of
cultural heritage.

Dordrecht is located in the Rhine and Maas delta, where several rivers merge. It is
surrounded and veined with a dense network of dykes, which is termed a dyke ring in
the Netherlands. The Island also features long stretches of land outside the dykes, which
includes the historic port area. This area is a part of the historic city centre and includes
almost 800 listed buildings, of which 430 are national listed buildings. Given its cultural
heritage value, the historic port area requires extra attention for flood risk management.
As flood risk increases due to accelerating sea level rise, major adaptation of the cultural
heritage is potentially costly or socially unacceptable. This has to do with, among other
factors, the low dynamics in the buildings and in the public space. As a result, future
optimization of individual, local protection measures of buildings is limited in the historic
port area. In the context of the Dutch Delta Programme [33], the municipality, water board,
Rijkswaterstaat, Port Authority, and province (and, where necessary, national government)
are working on a strategic adaptation agenda for this vulnerable area.

The participation structure for the Dordrecht Open Lab was articulated around seven
workshops. This set-up allowed enough flexibility for co-creation and self-organisation,
while also ensuring coordination and transnational learning. The Open Lab workshops
contributed to: (i) knowledge extraction, (ii) requirements identification, and (iii) validation

235



Water 2023, 15, 2950

and fine-tuning of the methodologies. The core group for the Dordrecht Open Lab consisted
of IHE Delft Institute for Water Education (Open Lab coordinator), the City of Dordrecht,
and the Cultural Heritage Agency of the Netherlands. They validated the Quick Flood
Risk Scan method on the historic port area. The validation was directed to the following
research questions: (1) whether experts responsible for heritage listing are able to apply
the method; (2) whether the results obtained by experts are accurate and reliable; and (3)
how these results can inform policymaking for flood risk management. Answering these
research questions should inform whether heritage experts can play a role in the full-scale
application of the EU Floods Directive.

Two interns, guided by a heritage expert of the City of Dordrecht, applied the ‘vul-
nerable value’ method to assess a self-selected sample of 19 listed buildings in the historic
port area (Figure 3). The selection was made to ensure variety in the sample, for example,
with different functions. The selected buildings were subsequently coloured according
to their vulnerable value and plotted on the exposure map of Dordrecht. The exposure
map was provided by Deltares, which is an independent institute for applied research in
the field of water and subsurface in the Netherlands. It gives the expected water depth in
case of exceptional flood events with an occurrence of 1:10,000 years. Water depths were
calculated with a SOBEK 1d2d model [34]. This model simulates flooding of unprotected
areas along the main waterways. The discharge of the Rhine river was set at 16.270 m3/s at
Lobith, where the Rhine enters the Netherlands. The effect of waves was not included in
the simulation. The flooding results are given in Figure 2.

 

Figure 3. Cont.
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Figure 3. Top: map of the historic port area of Dordrecht with buildings listed at national (red)
and local (green) level [35]. Bottom: exposure map of the same area with the 19 buildings of the
self-selected sample (dots) coloured according to their vulnerable value (given in Figure 2).

The assessors considered the height of the entrance and possibility for water to enter
the building. That information is relevant to assess if vulnerable value will be exposed to
water in case of flood. However, they could not see if there was a basement or what the
situation at the back of the building was. In a country with buildings erected on dykes,
often the front door is at a higher level than the back door.

4. Discussion

4.1. Reflection on the Applicability by Responsible Experts (RQ1)

The trial showed that the interns (with expert supervision) were able to assess vul-
nerable value from just outside observations reasonably well. However, to do a proper
assessment one needs more information, amongst others about the reasons for listing,
original and current function of the building, interior of the building, specific ornamental
or monumental features, and maintenance or condition. Without more information, the
professional advisors of the city council and of the Cultural Heritage Agency were unable
to give a better-argued assessment than the interns.

An important question is who should colour the dots. In a top-down approach,
local council takes the initiative and owners can request to adjust their colour based on
the information they have on the entry level for water, exposed value, and measures
to block water and recover value after the flood. Dordrecht has experience with their
monument maps (Figure 3), where owners can add information to the file of their building.
The advantage of this approach is that the assessment will be consistent with assessors
interpreting criteria similarly. The disadvantage is that the assessors would have to put
substantial effort into retrieving lacking information to get a useful overview.

In the bottom-up approach, all dots start green and the owners are asked if this is
correct. Those that expect loss of value might be challenged to correct their colour to yellow
or red with proper arguments. This could be connected with annual council tax appraisals,
joined with a sustainability or energy transition project, or be a project on its own. The
advantage is that owners become much more aware of the vulnerable value in their care in
relation to the exposure to water. A disadvantage is the reliance on participation which
may require an incentive. In addition, the consistency of the assessments could be lower
which may require a check at council level.
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4.2. Reflection on the Results Obtained (RQ2)

The coloured dots on the risk map indicate where loss of cultural value can occur
and how big the loss can potentially be if no protective measures are taken. Showing
potential loss of value feels like a more positive approach and easier to convey to the public
and private owners of monuments than plotting vulnerable value as such on the map.
Vulnerability is factual and can be assessed objectively. Whether an owner has a high- or
low-value monument is much more subjective and more difficult to agree upon. Therefore,
differentiation is not based on whether a monument ‘has a high or low vulnerable value’
but whether a monument ‘can suffer a bigger or smaller loss of value’. Explaining to an
owner that they will not lose much value sounds more positive than saying the monument
has a low value, even though the loss of value will be the same in the end.

Thus, a green dot on the map does not mean that the heritage is not worth protecting;
instead, it means that the loss of value is expected to be smaller than the other colours
and protection could have a lower priority if choices need to be made. That red dots on
the map can suffer big losses is clear to everyone and it is easy to understand that their
protection gets priority. This is similar to maps visualising economic loss estimates due to
natural disaster, e.g., Tyagunov et al. [36] for earthquakes in Germany, Wu et al. [37] for
earthquakes in China, and Zuzak et al. [38] for multiple hazards in the United States.

The colour of the dot on the risk map is a first assessment and may need to be corrected
after further investigation. It is possible that the element responsible for listing is out of
reach of high water, for example, a historic interior on the first floor. This is a mitigating
factor due to reduced chance of exposure. This is not visible on the risk map since it only
shows water depth, not height of the exposed asset. The opposite can also happen, for
instance when the collection or archive is located in the basement and is expected to get
flooded when water enters the building even at a low flood height. In that case, the entry
point of water into the building needs to be analysed properly.

4.3. Value for Informing (Local) Policy Making (RQ3)

Most of the listed buildings in Dordrecht and the Netherlands are privately owned.
Local councils will take general measures to protect communities and property within their
responsibility. Monuments outside of the dyke ring and individual protection measures
are the responsibility of the owner. ‘The city keeps the streets dry, the owners their houses’.
Most of the monuments in the country benefit from the protection of people and economy.
This is also the case in Dordrecht, where many monuments are residential buildings that
have been strengthened in the past. For the time being, the city will not take additional
measures to protect cultural heritage in particular.

Therefore, the question arises how coloured dots on the map of Dordrecht would
inform policymaking further. The map will show which cultural heritage objects are located
outside the dykes and are not protected. The city council can raise awareness and give
advice on protective measures for those monuments. One could also imagine some form of
financial assistance at a local, regional, or national level linked to the vulnerable value.

5. Conclusions

Contrary to the academic trend to obtain better, more precise, and more detailed
insight into the vulnerability of and risks to heritage assets in flood situations, the method
presented in this paper attempts to acquire a meaningful distinction between assets based
on their potential to lose value yet with a minimum of information, knowledge, and effort.
It should be practical in the sense that it enables even the non-expert assessor to make a
preliminary qualitative assessment that can be followed by further analysis of a relevant
selection of assets. It is a low tier that feeds into higher tiers of a multi-level framework.
The non-expert assessor may be a policy maker, a non-professional owner of a heritage
asset, or inhabitants of a certain region.

To achieve this objective, risk is defined as the possibility to lose cultural value which
is expressed as the combination of value, vulnerability, and exposure. This means that
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the definition of the terminology used in this assessment methods differs slightly from
the usual approaches. Cultural value is considered separately from exposure, it is the
‘what’ that is expected to be exposed. It is expressed in terms of value density of the asset
which allows distinction between buildings with and without contents of cultural value.
An additional benefit is that the value density is less subjective than value proper. Value
and significance can change over time and perspective whereas value density remains
unchanged regardless of a changing context. Exposure is the ‘how’ the asset will be exposed
and considers water depths related to probability. Vulnerability considers the physical
susceptibility of materials, structure, and decorations. The combination of vulnerability
and value yields ‘vulnerable value’. Attributing scores in terms of high, medium, and low
provides insight without the need for arithmetic. The advantage of this tripartite approach
is that ‘vulnerable value’ maps can also be overlapped with other water hazard maps, such
as exposure to ‘water on the street’ in case of heavy rain or water leaks from the main water
supply or sewerage systems.

Comparing the Quick Flood Risk Scan with published methods shows that it produces
results that are generally in agreement with the high, medium, low pattern of more elaborate
assessments. For the speed and ease of application, that is quite good. Furthermore, more
detailed methods of assessing whether an asset gets damaged by flood seem more precise,
but some only consider whether the asset gets wet and do not look at secondary damage
such as salt efflorescence as walls dry and mold growth due to increased relative humidity.

Indicating the possibility of a smaller or larger loss of value is easier to convey to the
public and private owners of monuments than plotting vulnerable value as such on the
map. The trial in Dordrecht, the Netherlands, shows the potential of a simple method to
prioritize monuments without calculations. It has also brought up many questions about
its implementation and application by policymakers. It is hoped that additional trials and
discussions in different situations and contexts will inform further development of the
method into a useful instrument for flood risk management.
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Abstract: With extreme rainfall events and rapid urbanization, urban flood disaster events are
increasing dramatically. As a key flood control city in China, Changchun City suffers casualties
and economic losses every year due to floods. The improvement of flood resilience has become
an important means for cities to resist flood risks. Therefore, this paper constructs an assessment
model of urban flood resilience from four aspects: infrastructure, environment, society and economy.
Then, it quantifies infrastructure and environmental vulnerability based on GIS, and uses TOPSIS to
quantify social and economic recoverability. Finally, based on k-means clustering of infrastructure
and environmental vulnerability and social and economic recoverability, the flood resilience of
Changchun City was evaluated. The results show that different factors have different effects on flood
resilience, and cities with low infrastructure and environmental vulnerability and high socioeconomic
recoverability are more resilient in the face of floods. In addition, cities in the same cluster have the
same flood resilience characteristics. The proposed framework can be extended to other regions of
China or different countries by simply modifying the indicator system according to different regions,
providing experience for regional flood mitigation and improving flood resilience.

Keywords: urban flood resilience; analytic hierarchy process; remote sensing and GIS; TOPSIS;
k-means; resilience evaluation

1. Introduction

Over the past few decades, urbanization has accelerated in countries around the world.
At the same time, climate change, mainly characterized by global warming, has exacerbated
the occurrence of extreme weather events [1]. In the past 30 years, the global economic
loss caused by natural disasters was about USD 4 trillion, 75% of which were related to
major hydrometeorological extreme weather events, and urban flood disasters accounted
for 43.4% of hydrometeorological disasters [2,3]. China is one of the countries with a high
incidence of waterlogging [4,5]. In the first half of 2020 alone, floods affected 11.22 million
people and caused economic losses of USD 3.6 billion [6]. Considering the changes in
precipitation patterns and the damage they have caused in recent years, traditional safety
concepts and disaster prevention measures are no longer sufficient for China’s current and
future urban development. Therefore, in order to reduce the damage caused by floods
and achieve sustainable urban development, it is important to strengthen the flood control
capacity of urban communities [7].

Urban flood resilience is defined as the ability of a city and its constituent systems
(society, economy, environment, infrastructure, etc.) to resist, cope with, recover from
and adapt to urban flood disasters caused by rainstorms or heavy precipitation [8,9]. At
present, scholars’ research on flood disasters mainly focuses on the evaluation of flood
resilience [10,11], the evaluation of flood vulnerability [12,13] and the evaluation of flood
risk [14,15]. With the further development of flood disaster research, the study of flood
resilience becomes increasingly important [16]. Flood resilience is mainly based on the
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establishment of an index system based on the theoretical framework for evaluation [17].
For example, Siebeneck et al. assessed flood resilience in 76 Thai provinces and territories
using 25 metrics [18]. Qasim et al. identified community flood disaster resilience indicators
at four levels, i.e., social, economic, institutional, and physical, and calculated community
resilience indices for three districts in Khyber Pakhtunkhwa province using expert scor-
ing [19]. Bertilsson et al. proposed the urban spatial Flood Resistance Index (S-FRESI) to
measure the changes in flood resistance obtained by different flood control measures [20].
Huiming Zhang et al. used the entropy weight method and the TOPSIS model to evaluate
the flood resilience of flood control cities in major river basins in China [21]. Liu Gang et al.
used the analytic hierarchy process to evaluate the urban flood resilience of Suzhou, Wuxi
and Changzhou from the aspects of stimulation, sensitivity and adaptability, and concluded
that Suzhou had the strongest resilience and Changzhou had the weakest resilience [22].
Orencio P et al. constructed a system of resilience indicators for coastal communities to cope
with floods from seven aspects that affect their disaster resilience, and used the AHP to
calculate an urban resilience index [23]. Lyu, H et al. compared the flood risk in the subway
system based on AHP and evaluated the subway system in Guangzhou. In addition, they
used GIS software to verify the flood injection risk in different areas of the subway based
on the actual occurrence of a flood [24].

In addition to the above methods, recent studies have begun to consider the combina-
tion of vulnerability and resilience to consider flood resilience, which can better consider
the interaction and connection between various factors, such as Ruirui Sun based on the
quantitative model of the correlation between vulnerability and resilience, an urban flood
resilience evaluation model from pre-disaster exposure, disaster sensitivity and adaptability,
and post-disaster recovery ability to evaluate the resilience of flood disasters in Beijing [25].
However, the flood resilience evaluation index system established considering vulnerability
and resilience is limited by the influence of the database, and only limited indicators can
be considered. The data source is also single statistical data, and the accuracy of the data
also determines the usefulness of the analysis results. Most studies only ranked the flood
resilience of cities in the study area separately, unable to identify clusters of cities with
similar characteristics, and cities with similar characteristics often have the same problems.
Therefore, further research is required.

To sum up, this paper uses hierarchical analysis to determine indicator weights from
the perspective of infrastructure and environmental vulnerability and socioeconomic re-
coverability. All indicator data of infrastructure and environment are based on remote
sensing and GIS data, and GIS is used to determine the vulnerability of infrastructure
and environment. The socioeconomic indicators are all based on statistical data, and the
determination of socioeconomic recoverability is based on the TOPSIS method. Finally,
based on the k-means method, a cluster analysis of cities with similar flood resilience
in Changchun was conducted based on infrastructure and environmental vulnerability
and socioeconomic recoverability to provide a theoretical basis for improving urban flood
resilience in Changchun.

2. Materials and Methods

2.1. Data and Methodology
2.1.1. The Study Area

Changchun is located at 43◦05′–45◦15′N and 124◦18′–127◦05′E. The relief is relatively
gentle, and the height is mainly distributed around 300 m. The average annual temperature
in the study area is 4.6 ◦C. Precipitation mainly occurs from June to September, with
an uneven distribution and an increasing trend from west to east. The average annual
precipitation is between 600 and 700 mm. The river systems in the study area include the
Lalin River and the Songhua River. The main rivers are the Yitong River, the Wukai River
and the Xinkai River. Due to the lack of data for Gongzhuling City, we excluded this city
from the study area, as shown in Figure 1.
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Figure 1. Location map of the study area.

2.1.2. Selection of Evaluation Index

Selecting and establishing a scientific index system and evaluation criteria is the key
to evaluating urban flood resilience. The acquisition of indicators requires the further
comprehensive extraction of a large amount of information, which is targeted to problems
and risk-oriented. On the basis of referring to existing models, frameworks and index
systems that are influential, such as the DROP model [26], the PEOPLE framework [27] and
the urban resilience index framework [28], and following the principles of comprehensive-
ness, typicality, applicability, scientificity and feasibility, we divide urban flood resistance
capacity into four dimensions: social dimension, economic dimension, infrastructure di-
mension and environmental dimension. On the basis of these four dimensions, following
the principles of reliability, accessibility and operability, indicators that can accurately
reflect the relationship between the social dimension, economic dimension, infrastructure
dimension, environmental dimension and flood disaster are selected. Table 1 shows the
specific index system and the basis of index selection.

Table 1. Urban flood resilience evaluation index system and selection basis.

Criterion Layer Indicator Layer Index Selection Basis

Environment

Altitude Altitude will affect the pressure of urban storm flood system, and
low-lying areas are more prone to rain and flood damage [29,30].

LULC

In the event of flood, different land use types have different degrees
of flood damage and different vulnerability. Compared with green

space, impervious ground is less able to absorb water and more
prone to flooding [31,32].

Rainfall Precipitation is an important cause of flood disaster, so precipitation
as an evaluation index is important [33].
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Table 1. Cont.

Criterion Layer Indicator Layer Index Selection Basis

NDVI NDVI is an important index of vegetation coverage, and vegetation
has certain resistance to flood disaster [34].

Slope Slope determines the current flood velocity, so slope selection is also
an important evaluation index [35].

Distance to water bodies The closer an area is to rivers and lakes, the more likely it is to
flood [34].

Infrastructure

Road density Road density also affects the evacuation of people during flood
disasters, which helps improve resilience [36].

Building density The more built up an area is, the more vulnerable it is to flooding [37].

Drainage density
Drainage pipe network can remove the flood as soon as possible

when the flood disaster occurs, which is an important means of urban
drainage [36].

Economy

GDP per capita In general, economically less developed areas are more vulnerable to
flooding [36].

Flood defense investment as a
proportion of public expenditure

The higher the proportion of flood control investment, the lower the
probability of flood disaster and the loss caused by flood disaster [37].

Proportion of health expenditure Medical and health finance can provide important guarantees for
people’s safety after disaster [38].

Fiscal revenue
Fiscal revenue represents the economic strength of local governments.

The higher the fiscal revenue, the stronger the resilience to flood
disasters [38].

The number of industrial
enterprises above designated size Large companies are more resilient to flooding [38].

Society

Population density The greater the population density, the greater the damage caused by
flood disaster [39].

Proportion of talents in
higher education

Education can improve people’s awareness and knowledge of
disasters. People with higher education levels have stronger coping

abilities when flood disasters happen [40].

Proportion of water
conservancy employees

The higher the proportion of water conservancy employees, the
lower the loss caused by a flood disaster [38].

Number of beds in health
institutions per 10,000 people

Provide relief facilities during and after flood disasters. The more
beds available, the better the first aid and recovery capacity [41].

Health professionals per
10,000 population Health workers can provide relief during and after floods [41].

Unemployment rate
Unemployment rate is an important factor for social stability. The
higher the unemployment rate, the greater the loss caused by the

flood disaster [41].

Coverage of basic
medical insurance

As an important means of social security, basic medical insurance
provides important medical security for the disaster-stricken people

after the flood disaster [39].

2.1.3. Data Collection

This paper establishes an index system of flood resilience in Changchun from four
aspects: infrastructure, environment, society and economy. The data for the infrastructure
index and environment index come from remote sensing and GIS data, while the data for
the socioeconomic index come from statistical data. The data types and sources are shown
in Table 2, and the technical route is shown in Figure 2.
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Table 2. Data types and sources of urban flood resilience evaluation index.

Evaluation Index Data Type Date Details Data Source

Altitude ASTER GDEM 30 m Geospatial data cloud

LULC Raster data 30 m Data grain

Rainfall Raster data 2017–2021
National Data Center

for Meteorological
Sciences

NDVI Landsat 8 OLI/TIRS 30 m Data grain

Slope ASTER GDEM 30 m Geospatial data cloud

Distance to
water bodies Vector data 2021 Geospatial data cloud

Road density Road network shape
file 2021 Geospatial data cloud

Building density POI 2021 Planning cloud

Drainage density Vector data 2021 Planning cloud

GDP per capita Attribute data 2021 Changchun Statistical
Yearbook

Flood defense
investment as a

proportion of public
expenditure

Attribute data 2021 Changchun Statistical
Yearbook

Proportion of
health expenditure Attribute data 2021 Changchun Statistical

Yearbook

Fiscal revenue Attribute data 2021 Changchun Statistical
Yearbook

The number of
industrial enterprises
above designated size

Attribute data 2021 Changchun Statistical
Yearbook

Population density Attribute data 2021 Changchun Statistical
Yearbook

Proportion of talents
in higher education Attribute data 2021 Changchun Statistical

Yearbook

Proportion of water
conservancy
employees

Attribute data 2021 Changchun Statistical
Yearbook

Number of beds in
health institutions per

10,000 people
Attribute data 2021 Changchun Statistical

Yearbook

Health professionals
per 10,000 population Attribute data 2021 Changchun Statistical

Yearbook

Unemployment rate Attribute data 2021 Changchun Statistical
Yearbook

Coverage of basic
medical insurance Attribute data 2021 Changchun Statistical

Yearbook
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Figure 2. Flow chart of flood resilience evaluation.

2.1.4. Analytic Hierarchy Process (AHP)

The analytic hierarchy process (AHP) [42] is a subjective method to determine weight,
proposed by T.L. Satty in the late 1970s. As one of the most widely used knowledge-
driven methods, AHP is widely used to calculate the weight of the urban flood resilience
evaluation index [20]. The specific steps are as follows:

(1) Establish a hierarchical structure.

We take flood resilience as the overall target layer; infrastructure, environment, society
and economy as the first-level target layer; and specific indicators as the final target layer.

(2) Construct a pairwise comparison judgment matrix.

We gathered the opinions of five experts in disaster risk and civil engineering and
evaluated the importance of the indicators of the same level compared with the indicators
of the next level through the method of pairwise comparison. The comparison results
between the indicators are represented by numerical scales from 1 to 9 [43] (Table 3).

Table 3. KScale and significance of judgment matrix.

Scale Meaning

1 Equally important
3 Moderately more important
5 Strongly more important
7 Very strongly more important
9 Extremely more important

2, 4, 6, 8 Intermediate values
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(3) Consistency check.

In order to test whether the weight distribution is reasonable, the following formula
should be used to test the consistency of the matrix:

CI = (λmax − n)/(n − 1) (1)

CR =
CI
RI

(2)

where λmax is the largest characteristic root, n is the number of indicators and CI is the
consistency index. RI is the average randomness index, and its value is shown in Table 4.
CR is the test coefficient root. If CR < 0.1, the matrix passes the consistency test. Table 5
shows the calculation results of index weights.

Table 4. Average randomness index.

Order 1 2 3 4 5 6 7 8 9

RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45

Table 5. Weight of flood resilience index.

Target Layer Criterion Layer
Criterion Layer

Weight
Index Layer

Index Layer
Weight

Flood resilience

Infrastructure 0.205

Road density 0.051

Building density 0.051

Drainage density 0.102

Environment 0.169

Altitude 0.020

Slope 0.013

Rainfall 0.026

LULC 0.046

NDVI 0.038

Distance to water bodies 0.026

Economy 0.339

GDP per capita 0.089

Flood defense investment as a proportion of public
expenditure 0.109

Proportion of health expenditure 0.038

Fiscal revenue 0.055

The number of industrial enterprises above
designated size 0.048

Society 0.288

Population density 0.066

Proportion of talents in higher education 0.031

Proportion of water conservancy employees 0.053

Number of beds in health institutions per 10,000 people 0.030

Health professionals per 10,000 population 0.036

Unemployment rate 0.044

Coverage of basic medical insurance 0.028

2.2. Quantifying Flood Resilience
2.2.1. GIS Weighted Combination Quantitative Infrastructure and Environmental Vulnerability

On the basis of collecting the data for infrastructure and environmental indicators, this
paper uses ArcGIS 10.8 to process the evaluation indicators, makes each indicator a layer
(Figure 3), and then uses the following 9 indicator layers to estimate infrastructure and
environmental vulnerability areas: altitude, slope, rainfall, NDVI, distance from a water
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body, road density, building density and drainage density. Nine maps are combined by
weighted linear combination, in which the weighted average of the continuous standard is
standardized into a common numerical range and combined [44], as shown in Equation (3).
Finally, the results of infrastructure and environmental vulnerability are counted by region
through the ArcGIS regional mean statistical tool. The weight of the index comes from the
weight determined by the analytic hierarchy process.

S =
n

∑
i=1

WiXi (3)

where S is infrastructure and environmental vulnerability, n is the number of infrastructure
and environmental indicators, Wi is the weight of each individual factor i at the infras-
tructure and environmental level and Xi is the value of each individual indicator i at the
infrastructure and environmental level.

   

   

  

Figure 3. Spatial distribution map of infrastructure and environmental indicators: road density (a);
altitude (b); drainage density (c); LULC (d); NDVI (e); building density (f); rainfall (g); distance to
water bodies (h); slope (i).
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2.2.2. TOPSIS Quantified Socioeconomic Recoverability

The TOPSIS method is an evaluation method proposed by C.L. Wang and K. Yoon
in 1980s [45]. In this method, the target value of the evaluation object is taken as the
evaluation basis. By comparing the close degree of the actual influence degree of the
evaluation object in the criterion layer with the target impact degree, the evaluation object
is ranked. The target value here is the influence degree produced by the object with the
highest weight through the criterion layer under ideal circumstances, i.e., the best result, so
this method is also known as the good and bad distance solution method. Among them,
the evaluation is mainly based on the distance between the indicators under the criterion
layer and the “positive and negative ideal solution”. The closer the distance to the “positive
ideal solution”, the greater the importance of the evaluation index; similarly, the closer
the distance to the “negative ideal solution”, the smaller the importance of the evaluation
index. The specific calculation steps are as follows:

(1) Construct a decision matrix.

Constructing an original matrix with m objects and n indexes.

X =
[
xij
]

m×n (4)

(2) Calculate the weighted normalized matrix.

Because of the difference in the nature of different indicators, there are usually different
dimensions. In this paper, the range method is used to standardize the index value so that
it is between [0−1].

For the positive index:

x′ij =
xij − min

(
xij
)

max
(

xij
)− min

(
xij
) (5)

For the negative index:

x′ij =
max

(
xij
)− xij

max
(

xij
)− min

(
xij
) (6)

In Equations (1) and (2), xij is the value of the jth index in the ith dimension of the
original data, and xij

′ is the data after standardization.
A weighted normalized matrix is constructed by multiplying each element in each

column of the normalized matrix by the weight obtained by the analytic hierarchy process.

Z = zij = wjx′ij f or(i = 1, . . . m)(j = 1, . . . n) (7)

where wj is the weight coefficient of the jth factor in social and economic aspects.

(3) Determine positive and negative ideal solutions.

A+ =
{

z+1 , z+2 . . . , z+n
}

, where : Z+
j =

{(
maxi

(
zij
)
i f j ∈ J

)
,
(
miniziji f j ∈ J′

)}
(8)

A− =
{

z−1 , z−2 . . . , z−n
}

, where : Z−
j =

{(
mini

(
zij
)
i f j ∈ J

)
,
(
maxiziji f j ∈ J′

)}
(9)

where J is related to the positive index, and J′ is related to negative indices.

(4) Calculate the geometric distance from positive and negative ideal solutions.
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S+
i =

√√√√ n

∑
j=1

(
Z+

j − Zij

)2
(i = 1, 2, . . . m) (10)

S−
i =

√
∑n

j=1

(
Z−

j − Zij

)2
(i = 1, 2, . . . m) (11)

(5) Calculate the close degree between the evaluation object and the ideal solution.

Ci =
S−

i
S−

i + S+
i

0 ≤ Ci ≤ 1 (12)

The greater the Ci value, the smaller the distance between the index value of the ith
city and the positive ideal solution; that is, the better the flood toughness of the ith city.

2.2.3. K-Means Algorithm Clusters Flood Resilience

K-means belongs to unsupervised learning. Compared with clustering algorithms
such as Mean-Shift, K-Medians and DBSCAN, it has two advantages. First, the principle
of k-means is simpler than other clustering algorithms, and convergence is faster. Second,
k-means tuning parameters only need to adjust one parameter. Therefore, k-means is
currently a widely used clustering algorithm [46]. The principle of this algorithm is to take
the mean value of all data samples in each subcluster as the central point and cluster the
dataset by calculating the distance between each point in the class and the central point.
The logarithmic data points were classified through the iterative process, and finally the
evaluation function was optimized. This is because each subclass is independent of one
another, and the characteristics of sample points in the class are more similar.

3. Results

3.1. Infrastructure and Environmental Vulnerability

The overall infrastructure and environmental vulnerability diagram is shown in
Figure 4. It can be seen from the diagram that there are obvious differences in infrastructure
and environmental vulnerability among different regions of Changchun. Chaoyang District
has the highest infrastructure and environmental vulnerability, mainly due to its high
rainfall, high road density, gentle topography and low vegetation coverage. Moreover, as
the main urban area of Changchun, Chaoyang District has high building density, many land
types and many impervious surfaces, which makes it difficult for excessive precipitation to
pass through. Earlier sewers were not designed to meet the new demands. Nongan County
has the lowest infrastructure and environmental vulnerability due to its high terrain, low
road density and high vegetation coverage. Shuangyang District, Jiutai District, Dehui
City and Yushu City have low infrastructure and environmental vulnerability. Although
the rainfall levels in Shuangyang District, Jiutai District, Dehui City and Yushu City are
high, the drainage pipe network density, vegetation coverage and topography of these four
areas are relatively high, so they have low infrastructure and environmental vulnerability.
Nanguan District, Erdao District and Lvyuan District have high infrastructure and envi-
ronmental vulnerability due to high building density, gentle terrain and high road density.
It is worth noting that although the road density and building density are higher in the
wide urban area, the region has higher terrain and a higher drainage network density, so its
infrastructure and environmental vulnerability are lower. In conclusion, the infrastructure
and environmental vulnerability in the southern city of Changchun is higher than that in
the northern city.
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Figure 4. Infrastructure and environmental vulnerability map: vulnerability value (a); spatial distri-
bution of vulnerability (b).

3.2. Socioeconomic Recoverability

The overall socioeconomic recoverability chart is shown in Figure 5. It can be seen from
the chart that there are obvious differences in socioeconomic recoverability among different
regions of Changchun. With the highest per capita GDP, flood control investment and fiscal
revenue, Chaoyang District ranks first among the ten districts under Changchun in terms
of socioeconomic recoverability. The socioeconomic recoverability of Nongan County is the
least, because the index values of the coverage of basic medical insurance, the proportion of
higher education talents, the proportion of flood control investment in public expenditure
and the proportion of water conservancy workers in Nongan County are the smallest among
the ten subordinate districts of Changchun City. Lvyuan District, Shuangyang District,
Nanguan District and Kuancheng District have basic medical insurance coverage and flood
control investment, and the social and economic recovery level is high. Jiutai District,
Yushu City and Dehui City, due to the low proportion of water conservancy workers and
low investment in flood control, have low socioeconomic recovery. It is worth noting
that although flood control investment in Erdao District accounts for a high proportion of
public expenditure, its socioeconomic resilience is low due to high population density, a
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low GDP per capita and low investment in health care. In conclusion, the socioeconomic
recoverability of the southern city of Changchun is higher than that of the northern city.

 

Figure 5. Socioeconomic recoverability map: recoverable value (a); spatial distribution of recoverabil-
ity (b).

3.3. Flood Resilience

For the number of clustering k, the value of k needs to be set before the clustering
starts. Using the elbow method to select k values can meet the requirements, while reducing
the running time and the number of iterations. We determined from the elbow points in the
elbow diagram that k = 4 is ideal. Therefore, we divided flood resilience into four groups,
as shown in Figure 6, with each point representing a city in Changchun.
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Figure 6. Changchun flood resilience cluster: cluster classification (a); spatial distribution of clus-
ters (b).

Cluster I includes the second district, which has high infrastructure and environ-
mental vulnerability and low socioeconomic recoverability. Cluster II includes Green
Park, Chaoyang District and Nanguan District, which have high infrastructure and en-
vironmental vulnerability, and also high social and economic recoverability. Cluster III
includes Dehui City, Yushu City, Nongan County and Jiutai District, which have low in-
frastructure and environmental vulnerability and socioeconomic recoverability. Cluster IV
includes Kuancheng District and Shuangyang District, which have lower infrastructure
and environmental vulnerability, and higher socioeconomic recoverability.

When floods occur, it is expected that the communities in Cluster I will need more
recovery time than the communities in Cluster IV because their infrastructure and environ-
mental vulnerability are higher and their socioeconomic recoverability is lower. Therefore,
the flood resilience of the communities in Cluster I is lower than that in cluster IV, so Cluster
I is identified as having low flood resilience. Cluster IV is considered to have high flood
resilience. Although Cluster II has high vulnerability and resilience, Cluster II is considered
to be more resilient to flood disasters because socioeconomic recoverability is more impor-
tant than infrastructure and environmental vulnerability. Cluster III has moderate flood
resilience. The figure shows that the flood resilience of northern areas of Changchun City is
generally lower than that of southern areas of Changchun City, except for Erdao District.
Different factors have different effects on flood resilience. Cities with low infrastructure
and environmental vulnerability and high socioeconomic recoverability have higher flood
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resilience, while on the contrary, cities with high infrastructure and environmental vulnera-
bility and low socioeconomic recoverability may suffer more severely in the face of floods.
In addition, cities in the same cluster have similar flood resilience characteristics.

4. Discussion

4.1. Verification by Example Analysis

With the progress of urbanization in Changchun, the original natural underlying
surface has been gradually replaced by various impervious surfaces. In addition, the
drainage pipe network was constructed a long time ago and the diameter of most pipes
is small, and the drainage function of part of the pipe network has been lost due to aging
and serious disrepair. As a result, there are many waterlogged areas in the city after
heavy rainfall in the summer, which seriously affects the normal life of residents. The
higher the number of waterlogged spots in a city, the lower the level of flood resilience of
that city. In order to verify the reliability of the model results, 266 waterlogged points in
Changchun from 2017 to 2021 were collected in this paper. The data of waterlogged points
were obtained from field investigations and news information. The waterlogged points are
shown in Figure 7.

Figure 7. Waterlogging point verification map.

According to the results shown in Figure 7, most of the waterlogged points were
concentrated in Erdao District, and Kuancheng District and Shuangyang District had the
lowest number of waterlogged points. The calculation results of the model also showed
that the urban flood toughness in Erdao District was the lowest, while Kuancheng District
and Shuangyang District had the highest flood toughness. Therefore, it was considered
that the evaluation results of the model on flood toughness were reasonable.

4.2. Comparison with Other Evaluation Methods

The existing evaluation methods for flood resilience are mainly divided into two
categories. The first type of evaluation method is based on resilience curves, but this method
requires considerable time to conduct surveys, and the resilience curves vary greatly from
region to region. The second type of evaluation method is based on the resilience index,
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which is also the most commonly used method for flood resilience evaluation, but the gap
between the selected indicators and the existing database makes the acquisition of indicator
data mostly from statistical data, which limits the number of indicators available for
model evaluation and affects the reliability of the results. Additionally, most of the studies
did not further analyze cities with similar flood resilience. Compared with the CORC
model [47], this study is characterized by the combination of GIS data, remote sensing data
and statistical data based on the flood resilience index, taking into account the important
environmental components of the urban system and considering the dynamic relationship
between the urban systems more comprehensively, and then using mathematical methods
to process the index data to obtain urban clusters with similar flood resilience.

4.3. Measures to Improve Flood Resilience

According to the above results, there are spatial differences in flood toughness in
Changchun, and the overall flood toughness needs to be further improved. Erdao District,
Nongan County, Yushu City, Dehui City and Jiutai District are the areas that policy makers
need to focus on to improve flood resistance. Depending on the situation in each region,
policy makers should adopt appropriate policies to help the region strengthen its flood
resistance capacity.

Erdao District needs to reduce the proportion of impervious ground, strengthen the
level of urban health care and improve the per capita income level to improve the urban
flood resistance ability. Nongan needs to increase the coverage of basic medical insurance,
the proportion of flood control investment to public expenditure and the proportion of
water conservancy workers. It should also enhance education to improve flood resilience.
Yushu City, Jiutai District and Dehui City should increase their capital investment in flood
control construction and strengthen the training of talents in the water conservancy industry
to improve their flood resistance ability.

5. Conclusions

Measuring the resilience of cities to floods can help formulate flood control policies.
Because of the inherent characteristics of Changchun City and the temporal and spatial vari-
ability of floods in this region, it is important to evaluate the flood resilience of Changchun
City. To this end, we designed a set of flood control capacity evaluation processes.

By referring to relevant literature, we first determined a set of evaluation index system
composed of 21 indicators to quantify the multifaceted concepts of urban flood resilience,
including four basic dimensions: infrastructure, environment, society and economy. Con-
sidering the collection of evaluation index data, we used remote sensing and GIS data
for infrastructure and environmental indicators, and statistical data for socioeconomic
indicators. Secondly, after collecting the opinions of local experts, the AHP method was
adopted to synthesize the experts’ judgment and determine the index weight. Based on
GIS weighted quantification of infrastructure and environmental vulnerability, TOPSIS was
used to quantify social and economic recoverability. Finally, based on k-means clustering
of infrastructure and environmental vulnerability and social and economic recoverability,
the flood resilience of Changchun City was evaluated. The results show the influence of
different factors on flood resilience and the characteristics of flood resilience as reflected by
infrastructure and environmental vulnerability and socioeconomic recoverability. Further-
more, cities in the same cluster have the same flood resilience characteristics.

The proposed framework can enhance the understanding of infrastructure and envi-
ronmental vulnerability as well as socioeconomic recoverability. Cluster analysis of the two
can identify urban clusters with similar flood resilience, and provide guidance for further
upgrading and improvement of cities in the same cluster and learning from different urban
clusters. The proposed model is simple to operate and can be used to evaluate the flood
resilience of different regions by simply adjusting the indicator bodies according to different
regions. On this basis, the key points that need to be improved in urban planning at all
levels are clarified, and the strategies to improve the institutional system are proposed
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from the perspective of policy and public participation, which can provide new ideas for
improving urban flood resistance ability and help decision makers determine the key points
for improving urban flood resistance ability.

However, there are some challenges in developing composite indicators and measuring
elasticity in this study. Due to the lack of previous flood impact information, it is impossible
to build a flood scenario model to integrate the actual flood results in Changchun into the
flood resilience evaluation index model. In the future, the actual flood scenario model
and flood resilience evaluation index model can be combined to reflect the urban flood
resilience more objectively and accurately.
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Abstract: Watercourses act like a magnet for human communities and were always a deciding
factor when choosing settlements. The reverse of these services is a potential hazard in the form
of flash flooding, for which human society has various management strategies. These strategies
prove to be increasingly necessary in the context of increased anthropic pressure on the floodable
areas. One of these strategies, Strategic Flood Management (SFM), a continuous cycle of planning,
acting, monitoring, reviewing and adapting, seems to have better chances to succeed than other
previous strategies, in the context of the Digital-Era Governance (DEG). These derive, among others,
from the technological and methodological advantages of DEG. Geographic Information Systems
(GIS) and Unmanned Aerial Vehicles (UAV) stand out among the most revolutionary tools for data
acquisition and processing of data in the last decade, both in qualitative and quantitative terms. In
this context, this study presents a hybrid risk assessment methodology for buildings in case of floods.
The methodology is based on detailed information on the terrestrial surface—digital surface model
(DSM) and measurements of the last historical flash flood level (occurred on 20 June 2012)—that
enabled post-flood peak discharge estimation. Based on this methodology, two other parameters were
calculated together with water height (depth): shear stress and velocity. These calculations enabled
the modelling of the hazard and risk map, taking into account the objective value of buildings. The
two components were integrated in a portal available for the authorities and inhabitants. Both the
methodology and the portal are perfectible, but the value of this material consists of the detailing and
replicability potential of the data that can be made available to administration and local community.
Conceptually, the following are relevant (a) the framing of the SFM concept in the DEG framework
and (b) the possibility to highlight the involvement and contribution of the citizens in mapping the
risks and their adaptation to climate changes. The subsequent version of the portal is thus improved
by further contributions and the participatory approach of the citizens.

Keywords: strategic flood management (SFM); post-flood survey; UAV; hydraulic analysis; geoportal

1. Introduction

The prognosis and spatial identification of the areas prone to flash flood risk represent
the current challenges that local public authorities are facing. Solutions should be looked
for in the general context of current climate changes. One of the specific elements of climate
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change is represented by the high amount of rainfall over a short time interval, with a rapid
response in terms of hydrodynamics and processes related to negative effects on human
communities [1–4]. Each year, millions of people from all over the world are forced to
relocate their residence due to the indirect effects of climate change. Floods are responsible
for the largest part of these relocations [5].

The attention that decision-makers worldwide are paying to floods and other natural
risk phenomena is proven among others by: (a) the United Nation’s Agenda Transforming
our world: the 2030 Agenda for Sustainable Development, with its Goal 13—“Take urgent
action to combat climate change and its impacts”; (b) UNESCO’s synthesis on Flood Risk
Management: a Strategic Approach, a part of the Strategic Water Management in the 21st
Century series [6]; (c) the Disaster Resilience: A National Imperative, 2012 Report, focusing
on the need to create a resilience culture among communities in the USA; (d) the European
Directive 2007/60/EC on the assessment and management of flood risks suggesting that
the member states should assess the activities that generate the increase in flood risks based
on local and regional circumstances. Moreover, they should base their assessments, maps
and plans on the appropriate best practices and best available technologies, not entailing
excessive costs for flood risk management [7–9].

Recently, the digitalization of the flood effects management gained higher importance
in terms of the response, recovery and attenuation of their effects. The role of technology
in managing the direct and indirect effects of floods is to connect, inform and eventually
save the lives of those affected. In this regard, it is useful to create a cooperation system
with crowdsourced, spatial and historical data with scalability potential [10]. This system
could be integrated in an application that, in case of a weather warning, should inform
the user on the location of a floodable area [11]. The development of tools for behavior
modeling and simulation, as well as of the drainage network characteristics, is possible on
the GIS platform, where heterogeneous data sources can be integrated [12,13], including
those achieved by means of UAV [14,15]. This leads to the opportunity for the real-time
simulation of some flood-type events, especially with the purpose of improving the warning
procedures and enabling the local stakeholders to periodically update their risk maps [16].
These new opportunities need to be correlated with awareness campaigns, including by
encouraging the creation of some insurance policies [17] in order to reduce the financial
pressure on central and/or local authorities.

Communities’ relations to the implications of floods should be managed by a Strategic
Flood Management (SFM). A really efficient SFM may be more easily imagined in Digital-
Era Governance (DGE)—a macro-theory of public sector development and the continuation
of New Public Management, whose final stage is defined by the promotion of a ’Social
Web’ [18]. Right from the appearance of the idea, it was assumed that DEG will imply
the reintegration of functions in the governmental sphere, adoption of needs-oriented
structures and the progress in the digitalization of administrative processes [19]. Here, we
refer to the electronic dialog between the public administrations, citizens and companies,
which represents the key element for the development of the public sector [20]. This
interactive communication, capable of information and knowledge exchange, is both a tool
for action and a main responsibility of the municipalities in the digital era.

In this case, the implementation of UAV techniques and GIS spatial analysis [21] makes
it easier to acquire digital databases that can be used in spatial analysis models to identify
vulnerability and risk of flooding and to improve the accuracy of the final result. At the
same time, the spatial database resource is made available to the local public administration
for the purpose of integration in the local IT system and information to be as complete as
possible [22].

In the last decade, it was assessed that UAVs, with their capacities, were able to
revolutionize natural resource management, remote sensing and many other fields, in the
same way the emergence of GIS did three decades ago [23]. The frequency of using UAVs
in the study of extreme natural phenomena is highlighted by a series of specialized studies,
which treat the implications of this technology for the management and monitoring of
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natural hazards [24,25]. In addition, the frequent use of UAV is supported by the fact that it
can operate like a Big Data system in natural disaster management [26,27] or as a source
of images, which can be processed by means of remote sensing and GIS techniques, with
good results in water resources and flood risk management [3].

Having multiple uses for wetland mapping and hydrological modeling [28,29], UAVs
stand out among the applications dedicated to the study of floods due to the times in
which they can be used, i.e., before (prevention), during and after occurrence (e.g., damage
assessment, remapping of the affected area). UAV applications support the planning and
preparedness of flood emergency responses and the development of tools that enable the
response before, during and after the event [30].

One of the topics intensely addressed in hydrology is represented by the effect of the
digital elevation model (DEM) resolution on floodable stripes modeling [31]. At large scale,
this issue is solved. The DEM resulting from images processed through the SFM method
is a relatively rapid and detailed enough product that enables the monitoring of channel
morphology variation [32–35].

UAV is frequently used for acquiring a high accuracy DEM or digital surface model
(DSM), which can become an input database for the hydraulic models for tracing the
floodable stripes [36–38]. UAVs may be supports for the calibration and validation of the
hydraulic models conducted at small topographic scales [39–43]. In this case, their role is
indisputable, considering the importance of precision in mapping the floodable stripes. The
digital elevation models obtained based on the UAV technique were integrated as input
databases in various types of GIS models. The models implemented based on the dedicated
software, HEC-RAS, were used for the achievement of the floodable stripes [44–50] or for
flood vulnerability identification [51–53]. Many expert studies underline the usefulness of
DEM and DSM, achieved by means of a UAV with an RGB sensor, in order to conduct the
levels of hydraulic modeling for various sectors of the hydrographic networks of various
riverbed geometries [32,36,37,54].

It is difficult to imagine now the full coverage of an extended area with detailed data
and often very expensive sensors, although the evolution of the technology leads to an
increase in the quality of working tools (spatial dynamics, precision, size, etc.). The use of
UAV in assessing the various aspects related to floods represents a big evolutionary step [35].
This is due to the increase in precision in identifying the river basin parameters [2,55], flood
risk modeling [46,56–58] or damage modeling [59,60], as well as the cover of a larger area
by means of various sensors.

In the current global context, which emphasizes the digitization of spatial infor-
mation and its integration into the IT and information systems of local authorities and
the development of methodologies in order to integrate digital databases for the semi-
automation/automation identification of flood-risk areas, research in this field is justified
and of vital importance. We have developed this study in line with the current trend and
which has several objectives with practical application in the study of flood risks in small
river basins where measurements and digital spatial databases are missing:

(i) The development of an integrated GIS spatial analysis model that integrates all stages
of the flood band identification methodology and related databases needed to identify
vulnerability and risk of flooding;

(ii) The development of GIS sub-models of spatial analysis based on UAV techniques
for the acquisition of digital databases (DSM, maximum flood rate) useful in the
hydraulic modeling of floodplains;

(iii) The implementation of a hydraulic model for the delimitation of floodplains, flood
water level, shear stress and flow rate, outlined as digital databases useful for the
methodological development of the identification and digital mapping of flood risk;

(iv) The development of a complex methodology for identifying flood risk based on
information obtained as a result of the implementation of the hydraulic model.
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(v) Creating a web portal designed to inform the human component about the risk of
floods, a portal based on the integration by digital mapping of databases obtained as
a result of the implementation of the complex model of spatial analysis.

The entire set of digital databases obtained as a result of the implementation of the
proposed model and methodology can be made available to local public administrations.
The present model can be integrated into their systems and used or re-packaged for analysis
and decision making regarding flood risk management in accordance to the current context
of digital-age governance.

2. Materials and Methods

2.1. Study Area

The quality of the small river basin is highlighted in the analyzed flood due to the
previous generated flood that took place both on the slopes of the Tarlisua valley and the
minor and major riverbed, the consequences being cumulative. The studied area (Figure 1)
is included in small river basins due to the fact that it is a homogeneous basin in terms
of conditional factors of runoff, and it can be identified with a watershed [61] in which
the manifestation of flooding is possible both on the slope as well as concentrated in the
drainage channel.

Figure 1. The geographic location of the study area.

The Târlis, ua event occurred on 20 June 2006. Although there were rainfalls in a small
area, the event led to the loss of 13 lives and to EUR 1.1 million in damages [62–67]. The
relevance of selecting the event as a case study is proven by its presence in a representative
list of events at the European level (25 major flash floods occurred in Europe during the
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1994–2008 period). This was developed on the criterion of rainfall intensity and their
hydrological response [68]. The dimensions of the generated impact [69] enabled the
validation of some damage-assessment methodologies. Primary data at large topographic
scales are necessary. Without these data, any methodology will offer results with errors
beyond the tolerance limit [70]. In a comparative analysis of three flash flood disasters in
the Transylvania Depression in the 2001–2010 interval, including the event in Târlis, ua, the
material and human losses were due to the contribution of natural factors (the high amount
of rainfall, the saturated soil combined with steep slopes, etc.) and the anthropic ones (the
high occupancy of the floodable area, the disorganized logging, the quasi-lack of other risk
management measures from the authorities) [65].

The assessment reports of the County Committee for Emergency Situations present
in detail the RON 110,357,999 material damages caused by the floods in the Ilis, ua Valley
basin. Broken down, these included 248 flooded houses (32 destroyed and 52 damaged),
183 household annexes (134 destroyed and 21 damaged), 1635 ha of cultivated agricultural
land, 10 bridges, 90 foot bridges, 39.46 km of road network, 27 km of electrical power
supply network, 5 public interest buildings, silting of 462 fountains, livestock damages,
etc. [71].

The literature also mentions other events that caused damages and/or even victims in
the Ilis, ua Valley basin: 1875 (the upper basin), July 1910 (the Dobric subbasin—the lower
basin, where 23 deaths were recorded), May 1970 (the entire basin) [72] and June 2012
(the lower basin) [73]. The last event was characterized by a significant negative impact
on agricultural lands, especially on pastures. Another characteristic of this event was the
torrent flooding of the villages built on the terraces, such as Căianu Mic. All these turn the
Ilis, ua river basin into a hotspot when it comes to floods.

2.2. Methodology and Database

The major challenge raised by the post-event modeling of floods generated by rapid
flash floods in hydrometrically undeveloped and uncontrolled river basins necessitates the
pursuit of a complex methodology. Thus, a methodology was developed based on 3 stages
(Figure 2) meant to highlight the modeling of risk induced by the analyzed flash flood. At
the same time, together with the modeled spatial databases, the methodology can provide
useful information to the public administration by means of a web app.

The first stage is known in the literature as the post-flood peak discharge
estimation [39,40,42,48]. This generally means acquiring the digital databases that the
subsequent spatial analysis model is based on. It is composed of two different subsections
in terms of the database acquisition manner. It is about (a) the direct acquisition by ex-
ploring the reality in the field [39,40,42,48] and (b) the spatial analysis stage outlined as a
submodel with its own results [33,41,74]. These results (b) represent input databases in the
model that set the bases of flood risk identification.

The acquisition of spatial data that were input in the modeling process was performed
in two ways: direct data acquisition and acquisition by spatial analysis. The direct acqui-
sition implied field measurements via GNSS RTK E-Survey E600 and the processing of
images acquired by means of a UAV DJI Phantom 4 Pro. The acquisition based on spatial
analysis implied the processing of images by the specialized software Agisoft Metashape
Professional 1.7.2. This analysis resulted in two sets of data: the orthomosaic and the DSM
data. These enabled the vectoring of buildings (the first) and the subsequent modeling
(the second). The DSM, together with the levels taken on the buildings, made possible the
identification of the maximum flash flood flow. In parallel, the buildings’ footprint enabled
the calculation of the risk these were exposed to.
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Figure 2. Methodological flowchart.

The second methodological stage implied the development of a HecRAS 6.1 hydraulic
model (open-source product), which integrated the data obtained in the first stage of terri-
torial analysis [47,75–79]. The obtained data contain the vectorial information, representing
the geometry of the riverbed (banks, flow channel, cross-sectional profiles), raster informa-
tion (the digital surface model) and alphanumeric information (the Manning coefficient,
the maximum flow). The integration aimed at achieving useful raster data in the process of
risk identification and management (height/depth of water, velocity and shear stress).

The integration of these databases was conducted by the implementation of this 2D
hydraulic model based on the diffusion wave equation. The equation was applied on a
polygonal grid structure (l = 4 m) in a vectorial database that emphasizes the roughness
coefficient. The time step used was 12 s, small enough to ensure the stability of the model.
The time step was chosen after running several successive GIS hydraulic analysis models.
The model with the time step leading to the best territorial validation results was chosen.

The validation of the hydraulic analysis results was conducted in the spatial analysis
stage. The use of the direct validation method (comparing the results achieved with the
reality in the field) was applied in this study due to the fact that there were many buildings
that could be identified in the field, where the water level of the analyzed flash flood
was easy to see. Therefore, the value of the water level identified on a building was
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compared to the cross-sectional profile of the maximum flow (Figure 3). The building is
found on the river bank opposite (the right river bank) to the reference building used for
the flow calculation.

Figure 3. The geographical position of GCP and CP.

The high complexity of the spatial analysis stage was generated by the risk identifica-
tion methodology. The databases achieved as a result of running the hydraulic model, were
integrated in the spatial cognitive analysis. The aim was to identify risk associated with
each particular residential territorial infrastructure. The spatial impact of two databases
was analyzed in an integrated manner, i.e., shear stress and water height. The results of
integration were related to each polygonal structure given by the buildings inside the study
area [56,76,80].

The last methodological stage consisted of the dissemination of the final results re-
flecting the risk associated with the territory. This aims at warning the population and
developing an efficient risk mitigation management by the local public authorities, in case
of similar events. The dissemination of final results was based on webgis apps. These
enable the public to access the achieved databases via a portal, without visualization and
access interdictions on the Internet [44,81–84].

The spatial analysis model is based on a large range of spatial data in different formats
and geometries, each data set having a well-established role within the model (Table 1). The
database management has the purpose of generating new spatial data structures, resulted
by modeling.

The proposed methodology is outlined as a complex spatial analysis model, based on
submodels developed for digital data acquisition. The submodels are logically integrated
both horizontally, within the distinct methodological stages, and vertically, between stages.
Data modeling highlights the territorial impact of risk induced by the analyzed flash flood
and helps developing good practices and decision making in SFM.
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Table 1. Database used in spatial analysis.

No. Name Structure Type Attributes

1 UAV photographs Raster/.jpg primary

2 GCP Vector/point primary XYZ coordinates

3 CP Vector/point primary XYZ coordinates

4 Dense Points Cloud Vector/point modeled RGB, XYZ

5 DSM Raster/tif modeled Z

6 Orthomosaic Raster/tif modeled -

7 Maximum flow Numerical calculated m3/s

8 Cross-sectional profiles Vector primary -

9 Riverbed banks Vector/line primary -

10 Thalweg Vector/line primary -

11 The Manning coefficient Numerical calculated -

12 Slope Numerical calculated -

13 Water surface elevation Raster/tif modeled m

14 Shear stress Raster/tif modeled Pa/m2/s

15 Velocity Raster/tif modeled m/s

16 Floodable stripe Vector/line modeled surface

17 Buildings Vector primary cost EUR/m2

18 Risk area Raster/tif modeled -

3. Results

Following the proposed methodology, the applicative results were outlined and di-
vided into two distinct categories. The first category is represented by the support databases
for the development of spatial analysis models in the hydrology spectrum. The reference
is made here to: (a) DSM as support database for flood risk identification and (b) water
flow in the calculation profile, as a database that can be used within hydraulic models. The
second category is represented by the results achieved after implementing the hydraulic
model and the territorial risk identification methodology (the floodable stripe, WSE, shear
stress, velocity, areas of various risk degree). The results in the second category will be
used for quantitative and/or qualitative analyses for decision-making purposes and for the
information and awareness of the population regarding flood risk.

3.1. Acquisition of GIS and Alphanumeric Databases Based on UAV Techniques and
Hydrological Calculation

The delimitation of the floodplains and the analysis of the risk induced by floods are
stages of vital importance. Given that there are no detailed topographic measurements to
evaluate the small river basins, the main method of analysis is to reconstruct the flow for
the hazard that generated it. Flow reconstruction is a complex process that is based on the
assessment of field data measurements (cross-sectional profiling) and direct observation
of flood effects (identification of water level on housing infrastructure and its measure-
ment). In the current context of digitization and management of GIS spatial databases, the
reconstitution of the flow associated with the flood analysis can be performed faster, and a
highly correct flow value can be obtained if correct databases with high spatial resolution
are used in this process.

In order to calculate the flood flow, reliable cross-sectional profiles are required, which
can be difficult to obtain based on traditional topographic surveys. In the present case
study, modern implementations were used such as DSM and raster databases with high
resolutions and very high representation accuracies. For this purpose, and in the case of
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small river basins for which the local public administration does not have such database
and accurate measurements, the suitable solution is the UAV and geomatics techniques
that allow an efficient mapping of databases in terms of short time and at a superior quality
for further implementations in GIS models of spatial analysis.

Taking into account that the entire methodological process is based on exploiting
the digital databases, an important stage was represented by the acquisition of the digital
surface model for the entire study area. It was important that the DSM had a high resolution
and high precision.

The direct acquisition implied the identification of ground control points (GCPs) and
control points (CPs). The control points are useful in the georeferencing process of the
photographs and increase the precision of the final representations. In the entire study
area, 23 points were measured. Of these, 18 points were used in the georeferencing process
(GCP), and 5 points were used for the estimation of positional accuracies of representations
(CP) [85]. The control points were taken in the Stereographic 1970 projection system, using
a GNSS RTK E-Survey E600. In recent decades, GNSS systems became the perfect choice
for topographical surveys and precise measurements of points on the surface of the Earth
for us as geo-references. GNSS systems are conditioned to optimal field conditions such as
sufficient satellite availability, network RTK services and open fields [86]. Also in this stage,
the buildings in the analyzed area were vectorized in order to be used in the validation of
the floodable stripe and in the risk identification for the territorial infrastructures (Figure 3).

A number of 12 flights was necessary for the entire study area (0.71 Km2). The flight
plans were developed using the Pix4Dcapture software. The UAV was represented by a
DJI Phantom 4 Pro, with a 24 MP photo camera. Highly accurate final results required
the use of specific flight parameters. The flight metrics were as follows: 90 m altitude,
85% overlap, 90◦ camera angle, 4 m/s average flight speed, polygon mission and approx.
16 min flight duration.

As a result, 2542 images were acquired and processed in Agisoft Metashape Profes-
sional 1.7.2. The resulting errors were: 0.023 m E, 0.019 m N and 0.056 m altitude. The
resulting products were: dense point cloud (464,038,762 points), the DSM (4.65 cm resolu-
tion) and the orthomosaic (2.32 cm resolution). Their characteristics recommended them
for the use in the following stages.

The study area may be affected by phenomena recorded on a surface of 59 km2

(mountain and hill area with max. altitude of 1489 m a.s.l. and min. altitude of 360 m a.s.l.),
the surface of the Izvor river basin. The only hydrometric station is 36 km downstream
at the influx of the Ilis, ua river (352 km2) in the Somes, ul Mare River. In case of rainfalls
affecting the entire basin, the hydrometric station is no longer relevant for our study area.
Yet, the event in 2006 recommends it as useful, with the corresponding error margin.
However, the reconstruction of the maximum flash flood flow was chosen using the visible
water level on the buildings affected by the above-mentioned event (Figure 4).

  

Figure 4. Cross-sectional profile used for the calculation of the maximum flow in the section.
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The calculation of the maximum flood rate is based on the Manning formula, based
on the metrics obtained from the UAV-derived DSM database. The calculation section was
selected in the southeastern part of the study area, using one of the buildings on the right
bank of the river, where there are still indications of the level recorded during the 2006 flash
flood. The validation of the floodable stripe and its corresponding level was performed on
a building on the left bank, located on the profile. The tracing of the cross-sectional profile
was conducted in compliance with the technical requirements for the hydrometric studies,
perpendicularly on the river network and tangentially to the residential infrastructure
considered as reference.

For the calculation of the maximum flow of the flash flood and its insertion as an
alphanumerical database in the hydraulic simulation model, the water level related to the
altitude of the drainage channel thalweg was used. To achieve the water depth and level,
GNSS RTK measurements were conducted for the identification of the reference building’s
footprint (367.2 m) and the water height on the respective building (1.16 m). The drainage
channel thalweg’s altitude (365.051 m) was achieved based on the cross-sectional profile.
This was drawn based on the obtained DSM. Based on the altitude values presented, the
water level (3.309 m) was achieved, and it was used to calculate the maximum flow in
the section. By means of the hydraulic toolbox software, the value of the maximum flow
(333,559 m3/s) of the analyzed flash flood was acquired. The flow was calculated taking
into consideration the slope of the flow channel 0.01 m/m (the slope calculated in the field)
and a Manning coefficient of 0.060.

3.2. Hydraulic Modeling for Delimitation of Floodplains and to Support Databases for Flood
Risk Identification

The component analysis, such as the water height, shear stress and the velocity
revealed the impact on the anthropic components of the territory. The integrated analysis of
the presented components reflected various risk categories, starting from which potential
risk reduction solutions can be drawn.

As a result of implementing the GIS hydraulic analysis model, in addition to the
spatial extension of the floodable stripe, a raster database illustrating the height (depth) of
the water inside the floodable stripe was obtained.

The fact that the analysis conducted and the development of the entire complex spatial
analysis model was based on the reconstruction of an event facilitated the validity of the
entire model and supported the conclusions and the recommendations that were issued.
The results of this material become a land use planning tool. Validation also stressed
the efficiency of choosing the 12 s time step in the 2D hydraulic dynamic model. It was
conducted by directly comparing the results (water level) with the visible effects of the
flood on the buildings in the affected area, and it has the value of 5.4 cm water height/depth
(1.502 m modeled value and 1.448 m measured value). The validation of the model enabled
the component analysis of the final results. The component analysis was conducted both
for the entire area and for two representative frames in terms of flood effects.

The water height analysis at the maximum flash flood flow reflected higher values
in the thalweg areas, in the minor and major riverbed areas. Small values are specific
for the larger sectors and toward the slopes. The central-southeastern part of the study
area is characterized by high water heights in the context of smaller values of the riverbed
width. Unfortunately, the highest building density is also recorded here. This high value is
associated with the technical and urban infrastructures, with implications, as we shall see,
for the dimension of the associated risk (Figure 5 and Video S1).
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Figure 5. The water height corresponding to the floodable stripe.

The analyzed flash flood had a significant impact on the buildings (n = 225). Most of
the buildings and their associated infrastructures are located in the meadow (the major
riverbed). As the buildings are closer to the slopes and/or as the meadow becomes wider,
the impact on the buildings is lower (128 buildings for the 0–0.5 m interval and 53 buildings
for the 0.5–1 m interval). The impact considered to be very high is visible for a relatively
large number of buildings spatially overlapping the water height interval over 2 m. These
are all positioned in the sector where the meadow records smaller height values, such
as in Figure 5a. During the event, values not highlighted in the results of the modeling
might have been recorded. A possible example is presented in Figure 5b, to the right of
the watercourse, where, in the area of the three destroyed buildings, it is possible to deal
with higher values of water height while the bridge was blocked and the watercourse was
diverted to the right. The blocking of bridges, in flash flood situations, causes negative
effects in the immediate proximity. This also happened in the cases presented in Figure 5b,
on both sides of the bridge. Six persons were carried away by the flash flood here. Three of
them unfortunately did not survive, not necessarily because of the water level but due to a
combination of factors.

The impact on the residential buildings also increases because of the building materials
and techniques that were used, making them more or less resistant to flash
floods [87–89]. At the time of the event in Târlis, ua, most of the buildings were made
of wood or burned brick, with no additional protective structure. To capture the force of
the flash flood exercised on the buildings, the Shear Stress was modeled for the floodable
stripe associated to the maximum flow [77,80] (Figure 6).
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Figure 6. Shear Stress Map.

In addition, for a better territorial analysis of vulnerability and impact, the water
velocity was also modeled for the maximum flow [47,56,73,74,76–80] (Figure 7). The two
databases were analyzed correlatively to reveal the cumulated impact of the two processes
and the response provided by the affected infrastructures [77].

The analysis of the entire territory subjected to modeling reveals a high shear stress
in the minor riverbed areas and in the areas in its immediate proximity. The shear stress
is correlated to water velocity, and therefore, the latter also has high values in the minor
riverbed and in its proximity (Figure 6). The high velocity modeled on the slopes in the
immediate proximity of the riverbed has a powerful erosion effect, disrupting sedimentary
material that it transports and then deposits in the narrow parts of the riverbed forming
natural dams. These dams favor the backwater process and the increase in water level
upstream. Moreover, if these dams fail, an increase in the flow may occur, with negative
effects. Due to the high velocity and shear stress applied to the building materials and
the wood material stored near the major riverbed (but also due to the materials carried
from upstream or by the torrents not considered in the analysis), a phenomenon similar to
the debris flow develops. This carries heterogeneous elements, storing them in the bridge
area, behind the more resistant buildings or in areas with smaller flow velocities. At the
same time, the materials that are carried away increase the destruction capacity of the
infrastructure elements manifested by the flash flood wave [90].

The effects of the two flash flood parameters (shear stress and velocity) are visible,
thus suggestively validating the two case studies (Figures 6 and 7). The first parameter
overlapped a segment of a narrower meadow, where the high shear stress (over 50 Pa/s/m2)
is associated with a proportional water velocity (over 1 m/s/m2) (Figures 6a and 7a).
During the event, three houses were damaged (two of them were subsequently repaired),
as were two barn-type buildings and other household annexes of smaller value. Many
other buildings in the area were flooded. In this case, the materials swept away by the
flash flood also had an impact. These made it possible to destabilize and break the walls of
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the buildings. The second detail (Figures 6b and 7b) highlights the role a bridge can play
in a flash flood, especially if it is blocked by the carried away materials, becoming a real
dam. With values of shear stress higher than 128 Pa/s/m2 and a water velocity higher than
2 m/s, two houses and three household annexes were destroyed. Moreover, six persons
were carried away by the flash flood. Three of these were not able to save themselves (all
three were women).

Figure 7. Velocity Map.

Figure 8 reflects, once more, the negative effects generated by the cumulation of
the two factors: shear stress and velocity (Videos S2 and S3). All types of buildings
were affected (wood structures, masonry or autoclaved aerated concrete structures). The
buildings constructed subsequent to the event are more solid, with concrete foundations,
not stone, and with structural frames (beams) also made from concrete.

Even if we speak about variable segments of the meadow, in terms of width, the
values are relatively small. In case of flows such as the one recorded in 2006, the water
floods the entire meadow. We believe this fact facilitates the occurrence of a directional
influence manifested by slopes on the flash flood parameters. The change in direction
is made especially where the watercourse comes into contact with the slope, including
at average flow. This can explain why, in certain places, more buildings closer to slopes
were destroyed than those closer to water, even belonging to the same household. Beside
the implications of the meadow and slope morphometry, there are also implications at
microscale level. This is the case of bridges (as mentioned above) or more solid buildings,
which can deviate the current, leading to an increase in the parameter values sideways
and a decrease in these values in the discharge direction. We can imagine them as small
dams in the path of the flash flood, some of the materials that are carried away by water
accumulating behind them, thus increasing their resistance.

The component analysis, as well as their correlative analysis, has validated the spatial
analysis model proposed by the identification of the critical areas in the same sectors with
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the territorial elements destroyed after the occurrence of the analyzed flash flood. This fact
enabled the transition to the final step of spatial analysis, that of assessing the territorial
risk, based on the management of output data from the implemented hydraulic model. The
modeling of the floodable stripe and the associated parameters facilitated the integrated
analysis of the territory and enabled at the same time the identification of the critical areas
and the assessment of risk induced to buildings.

Figure 8. The cumulated effects of shear stress and velocity on the road infrastructure and buildings.

3.3. Risk Assessment Methodology

Risk assessment is the main stage of territory analysis, useful for local public adminis-
trations. The identification of the risk areas affected by floods in Romania is conducted by
taking into account the European Flood Directive 2007/60/EC. According to this directive,
each member state of the European Union can develop its own methodology depending
on the local specificity. In Romania, floodable stripes were drawn based on a hybrid
methodology, whose background model is the quantitative risk assessment model pro-
posed by the Flood Risk and Damage Assessment using modeling and Earth Observation
Techniques [1,91].

The methodology presented in this study takes into account the one applied in Roma-
nia and the one proposed by the Ministry of Land, Infrastructure, Transport and Tourism
in Japan, amended [73,92,93]. The majority of the flood risk identification methodologies
omit shear stress as a factor of risk. For this reason, the following situations emerge when it
comes to selecting the parameters: (a) only the height of the water is taken into considera-
tion [50]; water height and velocity are chosen [56,73,74,76]; (c) in addition water height
and velocity, there is also the stream power [47,78]; and the velocity, shear stress and stream
power are chosen [77].

The described methodology took into account the height of the water and the pressure
it exerted on the buildings and other elements in the territory, as well as the shear stress.
The need to consider this indicator derives from the fact that many of the victims of the
floods were also carried away by the flash flood from the buildings they took shelter in. In
addition to the nine victims swept away by the flash flood from their own buildings, there
were other persons in the same situation, but ultimately, they managed to save themselves
(at least two). In addition, several persons survived in the flooded houses, which can
be considered a relevant indicator for citizens’ relation to buildings as a possible defense
structure against the flash flood.

Given the lack of data to perform a probabilistic statistical analysis and the identifi-
cation of the return probability for different rainfall and flood scenarios, we propose to
make hazard maps for singular major events, events for which the databases obtained by
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post-event spatial modeling and analysis highlight both the quantitative and qualitative
impact in the territory.

Four classes of hazard were identified: small, medium, large and very large (Table 2).
We believe these four classes highlight the potential territorial impact very well.

Table 2. The hazard classes used for risk assessment.

Hazard
Water Depth

(m)
Shear Stress

(Pa/s/m2)
Explanations

Small <0.5 m

>13.74

Water depth does not induce significant damages, the drowning hazard is low
and the evacuation of people can be made on foot. The water pressure on the
residential infrastructures is medium, causing a risk of collapse in buildings
with a poor structural frame.

Medium 0.5–1 m

Water depth generates damages, and there is a drowning hazard, especially for
children and elderly people. Evacuation can be made by traditional means of
response. The water pressure on the buildings is medium, inducing the collapse
risk on the buildings with a poor structural frame.

Large 1–2 m
Water depth may induce significant damages, the drowning hazard is high for
children and adults. Evacuation is conducted with difficulty. The water pressure
on the buildings is medium, causing a risk of collapse in buildings.

Very large >2 m

Water depth exceeds the average height of a room, and the risk of drowning is
imminent. Evacuation cannot be conducted by classical means of response. The
evacuation time decreases proportionally with the water depth, and the water
pressure on the buildings is medium, causing a risk of collapse in the buildings.

The hazard map resulting from the flash flood modeling enables the analysis of the
hazard distribution in the territory and the distribution of vulnerable houses by the four
categories of hazard. The correlative hazard–vulnerable building analysis illustrates the
correlation of results (Figure 9). The largest territorial expansion in the floodable stripe
(hazard) is represented by the large hazard category (56% of the total surface), where 69%
of the buildings are found. This situation is due to the closeness of the buildings to the
minor riverbed (Figure 9). In its turn, this positioning is explained by the need to access
the watercourse and the road, which follows the river path closely. The elderly persons
remember that the houses of their childhood were positioned closer to the contact with
the slope and therefore at a greater distance from the water. This position qualifies them
in the lower hazard classes. The changing in the households’ position is explained, on
the one hand, by the changes that occurred during the last century in the economy of the
area and on the other by the increased pressure on the lands in the circumstances of the
demographic evolution.

The medium and very large hazard classes with territorial expansion of approxima-
tively 19% within the floodable stripe, correlated with a proportional extension of the
vulnerable houses (13% very large hazard and 12% medium hazard), completes the image
created by the major percentage of the large hazard class. The small hazard category is
characteristic for small areas (6% of the total areas exposed to hazard) in the northeastern
and southwestern part, where the meadow has a more generous expansion. Some of the
buildings (6%) are located in such an area, most of them are household annexes (Figure 9).

The final risk assessment was conducted based on a matrix that also considers the
relation of the mapped buildings to the hazard categories and the possible consequences. To
develop the risk matrix, the financial losses caused by floods were taken into consideration
(Table 3). Information referring to the construction costs per surface unit (m2) associated
with the Târlis, ua commune were obtained from the regulations provided by the Order of
the Public Notaries, based on the market study regarding the real-estate fund in Bistrit,a
Năsăud county, 2021. According to this study, the construction cost per m2 of the buildings
in the villages near the Beclean Municipality jurisdiction area (where Târlis, ua is also located)
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is RON 380/m2 for buildings made of wood or clay and RON 800/m2 for constructions
made of stone, masonry or autoclaved aerated concrete.

Figure 9. Hazard and risk map for study area.

Table 3. Hazard-based risk identification.

Hazard

Consequences

Exposure
Low

(<EUR 2000)
Medium

(EUR 2000–6000)
High

(EUR 6000–12,000)
Very High

(>EUR 12,000)

Very Large

Buildings
Large

Medium

Small

Low Risk Requires information and awareness sessions

Medium Risk Requires development of limiting land use planning projects for buildings in floodable areas

High Risk Requires immediate measures, the development of local risk reduction strategies

The same source provided the financial value per m2 for household annexes: RON
440/m2 for constructions with metal structure frame; RON 500/m2 for constructions with
concrete, masonry or autoclaved aerated concrete structure frame; RON 74/m2 for wood
and metal plate buildings; and RON 58/m2 for stone buildings. Subsequently, we decided
to use the average risk assessment value for houses (RON 590/m2) and for household
annexes (RON 274/m2). The final assessment was expressed in EUR, related to the surface
of each analyzed building, with a RON/EUR exchange rate of 4.99.
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As a result of applying the proposed matrix, buildings classified into the three risk
categories were identified. There were 89 buildings in the low-risk class, that is, 29% of
the total number of buildings located in the floodable stripe. For these, it is recommended
to conduct information campaigns for the population referring to risk management on
evacuation of buildings, as well as structural and non-structural measures for the miti-
gation of flood effects. In total, 69% of the number of buildings in the floodable area are
classified in the medium and high-risk classes, which reveals the high exposure degree
of the studied area to possible future hazards. More precisely, for 112 buildings (36% of
the number of buildings), information campaigns are necessary, as well as works for the
recalibration and stabilization of the riverbed and other structural protection measures. A
similar percentage, 35% (106 buildings), is classified in the medium-risk class. Considering
that these are located in the major riverbed, at the foot of the slopes, it is recommended
to inform the population on the measures needed for slope runoff mitigation and for
torrent-remedial works.

The significant reduction in risk can be achieved by its integrated management on
behalf of the local public administration. This implies the adoption of technical norms for
the new buildings, for example, encouraging the use of techniques and building materials
to increase the resistance of buildings to the pressure force of the flash flood flow. The con-
tinuous monitoring of the hazards generating maximum flows adds to all these, especially
high-intensity rainfall, the monitoring of the response of the river basin to these hazards
and the development of an integrated real-time warning system [44,82].

The local public administration is the main risk management authority at the local
level. Among other attributions, it also deals with the identification, mapping, management
and information of the population before the event regarding the potential impact of a
flood. This study also aims at emphasizing the post-event information aspects, which
increase the degree of awareness in the population regarding the effects caused by floods.
In this regard, an open access portal was created, which enables the visualization of the
floodable stripes, the hazard categories and the risk classes for buildings.

The presentation by the local public authority for the purpose of informing and raising
awareness of the flood-induced risk to the population and the main stakeholders is one
of the main stages in the integrated risk management plans. The databases generated as
a result of the implementation of the spatial analysis model and the application of the
proposed methodology can be made available for viewing and information based on maps
in classic format through web sites, as well as through mobile applications running on
various operating systems. Identifying this need for the local public administration from
Tarlisua commune, it was decided to create a geoportal to present the concrete results
with validated territorial applicability in order to add value in terms of the degree of
digitalization of the local public administration.

The portal, a webGIS app for, but not exlusive to, the local administration, can be
accessed at the following link: https://geoubb.maps.arcgis.com/apps/View/index.html?
appid=b85f1b67914a4cae881816e8b3aa60e6, accessed on 13 January 2022. The input and
update of the database available in this version need access accounts via ArcGIS Online
and the medium level in terms of managing the data in the GIS platform. The subsequent
variants of this portal may also integrate the possibility that the inhabitants propose changes
in the data, especially in terms of their property.

The modeling of the floodable stripes for extreme events represents one of the main
operations conducted by the specialized departments within the public administrations
(local and/or regional). The purpose is to inform the population in order to reduce the
risk and its effects. The freedom of the local public administration is an advantage when
it comes to developing GIS apps meant to facilitate the efficient management of the risk
phenomena, including floods.

276



Remote Sens. 2022, 14, 2481

4. Discussion

Since the turn of the century, society has welcomed digital transformation, but this
technological revolution was not experienced equally. There is a power to being able to
control data, and improving the capacity to interpret data is a fundamental step towards
global equality. Even those outside of institutions need the ability to access scientific results,
as well as training in data skills. It will serve as an advantage to society to be able to
correctly interpret digital resources and be able to contribute to science.

Flood risk assessment implies, firstly, the use of a national framework methodology
and then its development depending on the particular, regional and local conditions. In
contrast to other case studies conducted for the analyzed area [62–67] highlighting the
intensity and damages caused by the flash flood on 20 June 2006, this case study stands out
by the methodology it applies. This takes into account the interrelationships between the
components generating risk, assessing in a much more correct manner the vulnerability, the
exposure degree and the risk on buildings. The three parameters (water height, velocity and
shear stress) used in combination and modeled on a high-resolution DSM, offer information
that corresponds to reality, according to result validation. The utility of this model in large-
scale land use planning is therefore emphasized.

The calculation of the shear stress induced by the flash flood on the buildings repre-
sents a live issue, which is very useful in flood hazard and risk assessment studies. The
value of the result increases by entering, as input data the information on the building
materials and the nature of the structural frame of the buildings. The study proposes a
hybrid methodology that enables both the financial assessment of material losses to the
buildings and the assessment of the life loss occurrence probability. This can be filled in
with more detailed information regarding the characteristics of the buildings and the social
dimension of the households.

The risk assessment was conducted on buildings by taking into account the economic
value (cost/construction), considering the area corresponding to the building footprint.
The costs were obtained after analyzing the market study on the real estate found in
Bistrit,a-Năsăud County. The exploitation of this document eliminates subjectivity in terms
of risk assessment, classifying the study in the territorial quantitative risk assessment
category [94].

Improvement in the proposed methodology can be made, in the future, by excluding
subjectivity from risk assessment to the highest extent possible. Therefore, this will quantify
not only the built area as footprint, but the entire built area, including the objects inside.
The objective risk assessment methods for buildings correspond to one of the five principles
for climate-proof municipalities and cities: principal no. 4, Promote climate safety of
buildings [95].

The information and awareness policies regarding the effects of such an event, their
probable impact and the ways to evacuate the population are based either on post-event
analyses (such as in this case) or on the closest events in terms of manifesting conditions.
The availability of detailed, graphic (2D, 3D maps, virtual reality) information for the
decision-makers and for the population represents an important element. Without this
element, it is difficult to imagine an efficient risk-awareness campaign nowadays. The
initiation of a portal to enable the building level visualization of the flood risk is an
added value.

In addition to presenting the buildings with their various risk classes, the portal makes
the hazard map available to the local public administration and to the population. This
feature enables the documentation and assessment of possible losses recorded by various
technical and urban infrastructures, by the agricultural lands, etc. In perspective, this
feature is intended to be made editable also for the inhabitants. Many local administrations
adopt technical innovations such as websites, while their implementation is achieved as a
unidirectional source of information for the residents with Internet access [22].

We consider that some river basins, such as Ilis, ua, where such water-related events
took place to such an extent, may be included by the National Institute of Hydrology and
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Water Management on the list of representative or experimental basins (The Experimental
Hydrology Department). For this purpose, national funds can be accessed by the academic
institutions, but not exclusively, following the Schöttlbach creek (Switzerland) model [96].
In such an area, flood management systems can be tested [97], which can subsequently be
implemented at the national level. Combinations of UAVs and other categories of sensors
can also be tested in such a basin [74], or Innovative Tools can be implemented, such as
GOWARE—Innovative Tool for the Management of the Surface Drinking Water Resources
at European Level [98]. The existence of some scenarios based on complex and detailed
data, some of them captured with UAVs, can be essential tools for flood management in
DEGs. The scenario method is also suitable for the development of public policies [99–101].

Although the role of UAVs in remote sensing is widely known, the short time of flood
occurrence and the lack of UAV resources near the affected areas have restricted the rapid
response of these systems in emergency rescue. The creation of a UAV remote sensing
observation network on a regional scale is recommended. The drone ports should be
located at a maximum 2 h flight distance from the most affected areas, a critical position for
saving lives and mitigating losses [102]. This infrastructure can also be used for emergency
response. In periods without such situations, the infrastructure can be used to improve the
pre-disaster database.

The results obtained and established in alphanumeric (flood flow, construction costs
per surface unit) and spatial (DSM, flood band extension, water level, water flow rate,
orthophoto plan) databases will be used as a basis for new research which we will develop
for the studied area, that is, research that will highlight changes in the use of land, the
associative risk of infrastructure in relation to the inhabited area and losses due to the
destruction of the infrastructure.

Future studies in the areas will focus on the flood risk identification in technical and
urban infrastructures (by assessing the recovery/repair cost), buildings [59], agricultural
lands [103], etc. These studies will enable the diversification and detailed description of the
information available on the initiated portal. Subsequently, the responsiveness of the local
public administration and the population to such graphical forms of data presentation will
be analyzed.

One of the follow-up directions of the study focuses on the improvement in the social
vulnerability index (SoVI) [104] by increasing the analysis detailing degree (testing in the
household). The details can include the identification of families that are more susceptible to
losses and, therefore, this can lead to the increase in local community assistance [105–109].
Moreover, the risk maps should set the basis for decision making, by making the community
aware about them.

UAVs should be seen as data sampling tools, components of a wider range that
includes TLS (Terrestrial Laser Scanner) [110], sensors within the hydrometric stations,
meteorological radars, etc. Using as many sampling and processing tools as possible enables
and the spatial analysis of a basin from several points of view (hydrological, meteorological,
geomorphological, etc.) [96,111–113].

The study directions also come from the shortcomings of the study and from the
possible perspectives. The remaking of the model is performed based on information
achieved by using the LiDAR on a UAV. The higher quality of the information in vegetation
areas is already proven [114,115], with a detailed modeling of bridges and materials carried
away during the flash flood [90,116].

The development of such models and methodologies favors the implementation at
the local administration level of some best practice examples in terms of integrated flood
risk management, especially by using nature-based solutions [117,118]. At the same time,
these models support participatory efforts. In this general framework, we see so evidently
the following statement: “capacity building, digital inclusion and open infrastructure are
needed to enhance participatory citizen science and mapping tools” [119]. The transfer of
some best practice models implies not only technological changes but also a fundamental
change in culture and governance [120].
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This material makes new steps towards satisfying the need for transdisciplinary coop-
eration [121]. The following types of collaboration may be accomplished: (a) collaboration
for the study of various natural hazards (multi-hazard events) [122], (b) collaboration across
natural and social sciences and (c) collaboration between scientists and practitioners [123].
Administrations are included here, regardless of their level, together with partnerships
between universities and local communities.

5. Conclusions

This study belongs to the category of mandatory interpretative studies for flood-
adapted land use decision making. Such a study highlights areas of low adequacy in terms
of residential use. This information should document the decisions taken by the local
administration and by the population at an individual level.

The proposed methodology can also be implemented in territories where there are no
available spatial data resulting from measurements at hydrometric stations. The replicabil-
ity capacity is important. For the small river basins, the measurement points of discharge
are missing (except the experimental posts), with direct implications in the calculation
of flash flood hydrograph. This is the reason why the maximum flow was emphasized,
by using the DSM and the cross-sectional profile obtained based on the UAV platforms
with sensors. Thus, some credible working tools were provided for hydraulic modeling.
The identification of the flow value for the maximum flash flood, by exploiting the digital
surface model and the cross-sectional profile obtained from the DSM, is one of the main
stages of the current study.

The integration of the UAV techniques in the risk modeling and assessment process
is absolutely necessary when the public local administration pursues the pre-event risk
assessment. The lack of the main spatial databases setting the basis for the flood models
(DSM, Land use, buildings’ footprint) underlines exactly the need for these accessible
and increasingly available techniques. The development of the three-dimensional model
of the relief by photogrammetry or LiDAR generates results with a satisfying accuracy
(in our case: 4.65 cm/pixel for the DSM and 2.32 cm/pixel for the orthomosaic model).
Once these databases are compiled, the local public administration can use them in other
associated risk assessment projects (landslides, soil erosion, etc.), without investing time
and generating additional costs for their purchase.

It was noticed that there is also a problem in terms of data on the topography of
the river basin. Filling in this gap in the databases at a national level was possible by
the use of the UAV techniques in the DSM generation process. The model facilitated the
calculation of the flash flood flow and the generation of the cross-sectional profiles used in
hydraulic modeling.

The proposed model pointed out three important problems in risk assessment: water
height in the profile (for the identification of the possible drowning areas), shear stress
(for the identification of collateral victims) and cost per construction in order to assess the
dimensions of the economic losses. While the first two elements enabled hazard analysis,
which was modeled at the spatial level for the entire study area, the third element is the
basis for calculating the specific risk depending on the purchasing power or market value
of the inhabitants in the analyzed area.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs14102481/s1, Video S1: Water level for floodable stripe; Video S2:
Cumulative effects of shear stress and velocity for study area A.; Video S3: Cumulative effects of
shear stress and velocity for study area B.
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65. Arghiuş, V.; Ozunu, A.; Samara, I.; Roşian, G. Results of the post flash flood disaster investigations in the Transylvanian
Depression (Romania) during the last decade (2001–2010). Nat. Hazards Earth Syst. Sci. 2014, 14, 535–544. [CrossRef]
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Abstract: The frequent occurrence of urban flooding in recent years has resulted in significant damage
to ground-level infrastructure and poses a substantial threat to the metro system. As the central city’s
core transportation network for public transit, this threat can have unpredictable consequences on
travel convenience and public safety. Therefore, assessing the risk of urban flooding in the metro
system is of utmost importance. This study is the first of its kind to employ comprehensive natural
disaster risk assessment theory, establishing an assessment database with 22 indicators. We propose a
GIS-based method combined with the analytical hierarchy process (AHP) and an improved entropy
weight method to comprehensively evaluate the urban flood risk in Changchun City’s metro systems
in China. This study includes a total of nine metro lines, including those that are currently operational
as well as those that are in the planning and construction phases, situated in six urban areas of
Changchun City. In this study, we utilize the regional risk level within the 500 m buffer zone of the
metro lines to represent the flood risk of the metro system. The proposed method assesses the flood
risk of Changchun’s rail transit system. The results reveal that over 30% of Changchun’s metro lines
are located in high-risk flood areas, mainly concentrated in the densely populated and economically
prosperous western part of the central city. To validate the risk assessment, we vectorized the
inundation points and overlaid them with the regional flood risk assessment results, achieving a
model accuracy of over 90%. As no large-scale flood events have occurred in the Changchun rail
transit system, we employed receiver operating characteristic (ROC) curves to verify the accuracy of
the flood risk assessment model, resulting in an accuracy rate of 91%. These findings indicate that the
present study is highly reliable and can provide decision makers with a scientific basis for mitigating
future flood disasters.

Keywords: flood risk assessment; metro system; analytical hierarchy process (AHP); improved
entropy weight method; Changchun; China

1. Introduction

With the continuous development of urbanization, subway transportation is becoming
more and more popular as a fast and convenient transportation mode [1,2]. Nevertheless,
abrupt natural disasters pose a threat to the subway system’s safe operation [3]. Although
large-scale flooding disasters in the subway are not common, their consequences are
very serious once they occur [2,3]. Flooding is one of the more common urban natural
disasters [4]. With increasing urbanization and population expansion, a large number of
physical infrastructures and buildings inside the city block the infiltration of rainwater,
resulting in an overflow of water that cannot be quickly removed, and can easily cause
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urban flooding [5]. Such flooding often overflows subway stations, causing a great threat
to people’s travel, property, and life [6].

Against the backdrop of frequent extreme weather, urban flooding is occurring globally
and leading to the emergence of metro flooding, and the safety of the subway has been
greatly challenged [7]. New York, a modern metropolis in the United States, was affected by
Hurricane Sandy back in 2012, causing the entire metro system in New York to be crippled
by flooding, with seven metro lines submerged. And in recent years, on 1 September 2021,
cities were hit by Hurricane Ida, a 500-year rainstorm, resulting in flooding over the metro
platforms and trains and causing traffic disruption. At the end of June of the same year, the
Russian capital, Moscow, was flooded by heavy rains, and the stairs in the metro station
turned into a waterfall. In terms of foreign countries’ metro systems, their facilities are
already very old, and many of them are tens or even hundreds of years old, which leads
them to face a very high risk of metro flooding. In contrast, China’s domestic subway
system is not plagued by the “age-related” problems of foreign subways, but that does not
mean it is safe in the face of extreme rainstorm events. Serious urban flooding triggered by
an extreme rainstorm in Zhengzhou on 20 July 2021 caused severe waterlogging in Metro
Line 5, resulting in 14 people being killed; this is historically known as the 7/20 incident [8].
Due to the unpredictable and uncontrollable nature of flooding [9], the safety assessment
and risk control of subways are particularly important [10], but many issues and challenges
remain in this area. In addition, urban floods can also have significant socio-economic and
environmental impacts [8,11], so there is a need to better understand the potential risks
and take effective measures to reduce losses and improve coping capabilities [11,12].

However, previous studies have mainly focused on regional flood risk assessments
and are dominated by foreign studies. Foreign scholars have developed a series of urban
rainfall models, such as SWMM, STORM, etc., to examine and predict the risk of regional
flood events. For example, R.A. Sharifan (2010) used the SWMM model to simulate the
rainfall runoff process for Shiraz, a historical city in Iran, to reduce the possibility of
disaster occurrence [13]. Deepak Singh Bisht (2016) used the SWMM and MIKE URBAN
models to design an efficient storm water drainage system to avoid the trouble of frequent
flooding during rainy seasons [14]. Multi-criteria decision-making methods or machine
learning can be used to assess the risk of flooding for the entire region. For example,
Ekmekcioğlu et al. (2021) used the fuzzy AHP method for flood risk assessment in Istanbul,
Turkey [15]. Eini et al. (2020) used two machine learning models, maximum entropy
(MaxEnt) and genetic algorithm rule integration (GARP), to generate a flood hazard map
for the city of Kermanshah [16]. Compared with foreign scholars in China, the research and
development of storm water flooding models are late, and the developed models are not
adaptable to the complex environment of large cities, so most scholars choose to use foreign
models directly for risk assessment, such as the simulation performed by Fu et al. (2019)
of a large-scale urban Yu flooding process in the Beijing Economic Development Zone in
Yizhuang, the core area of China, to propose effective measures [17]. In addition to the
use of storm water models, Chinese scholars have been slowly improving their research
on regional flood risk in recent years, using various assessment methods or deep learning
to study regional flood risk in detail; e.g., Wu et al. (2015) used flood risk assessment
and risk level zoning to prevent flooding in watersheds and develop disaster mitigation
plans [18]. Iran. Luu et al. (2019) used the multiple linear regression method TOPSIS to
analyze the flood risk at the national level [19], and Chen et al. (2022) used random forest
models to analyze the flood risk in the Yangtze River Delta region, China [20]. However,
very few studies have focused on the flood risk assessment of metro tunnels, and the
indicators of the evaluation system have not been set for metro systems. Although we
consider the metro flood risk and regional flood risk as essentially the same, it is not
scientific to extract the flood risk of the metro system directly through the regional flood
risk assessment alone. The risk of flooding in the underground infrastructure was first
proposed by Japan [3]. Herath and Dutta (2004) described the flooding of underground
facilities in Japan and proposed a 3D modeling system designed to simulate urban flooding,
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including flooding in underground facilities [21]. Hashimoto and Park (2008) applied
mathematical theory to analyze the flood event that occurred in Fukuoka City, Japan on 29
June 1999, which resulted in the flooding of metro stations and underground spaces [22].

In recent years, there has been an increasing number of studies on flood hazard assess-
ments in metro systems, and the existing studies mainly use scenario simulation, analytical
hierarchy process (AHP), GIS and remote sensing techniques, and multi-criteria decision-
making (MCDM). For example, Aoki et al. (2016) proposed anti-flooding measures for
underground stations in the Tokyo subway [23]. Lyuet al. (2018) used GIS-based modeling
methods to study subway systems in the megacities of China [1]. Wang et al. (2021) used
the fuzzy analytical hierarchy process (FAHP) method to analyze the risk of flooding in
a large subway system in Beijing, China [2]. These studies have laid the groundwork for
metro flood hazard and risk assessment, but there are still many problems in this area. For
instance, the AHP method has too many subjective aspects because the study is determined
by the subjective decisions of experts [24], whereas the scenario simulation method requires
a large amount of data and needs to be accurate [25]. The random forest model, on the
other hand, requires a large amount of data and a high level of operation for the researcher.
And there are still gaps in our research on flood risk assessments in metro systems; the
depth of research on them is currently insufficient and the number of studies is low. The
methodologies used to assess risk are very simple and have not been further developed.
The data samples are also not sufficient; most of the current studies use a small number of
samples and lack sufficient real and timely data to support the authenticity and reliability
of the research results, so new research methods are needed to improve the metro flood
risk assessment.

To address the above-mentioned limitations, this study, for first time, uses the com-
prehensive hazard risk assessment theory of natural disasters proposed by Zhang and
Liang et al. (2009) [26], combined with AHP hierarchical analysis and the improved en-
tropy method, to analyze the risk of flooding in Changchun’s rail transit system. The
traditional comprehensive evaluation method decomposes the risk of flooding in metro
stations into the following three elements: hazard, exposure, and vulnerability. And the
comprehensive hazard risk assessment theory of natural disasters expands the risk for-
mation principle from three to four elements, including hazard, exposure, vulnerability,
and emergency response and recovery capability, through a multi-criteria decision-making
method (MCDA). Using four elements is more reliable than using the traditional three
elements. This integrated method helps to comprehensively and scientifically analyze the
risk of metro flooding, while combining AHP and the improved entropy weight method
for coupled analysis, from both subjective and objective aspects. Further, it solves both
the influence brought on by the subjective factors of the AHP method, and the errors
caused by the extremely small and unreasonable data in the survey. This coupled approach,
which solves the metro flood risk assessment problem from different levels of analysis, is
more reliable. Finally, the risk visualization using remote sensing (RS) and a geographic
information system (GIS) is combined with 22 indicators appropriate for the Changchun
rail system and the latest data to provide decision makers with a comprehensive, scientific,
standardized, and convenient aid to consider the flood risk of the Changchun rail system
in a comprehensive manner.

Changchun was the fifth city in China to open an extended subway system. The city
rail transit system includes the subway and light rail. The light rail will not only have
soaked vehicles and equipment when faced with flooding, but will also generate electrical
hazards. Given this scenario, the present paper does not only consider the subway system
when studying Changchun’s rail transit system, but also adds indicators to consider the
flood risks of the light rail and subway together. The city has been slow to develop, with
incomplete lines and a small coverage area. There are many metro lines that are under
construction and that have been planned by the Changchun government, which are also
exposed to flood risk. The objectives of this paper are as follows: (1) to comprehensively
consider flood risks in the planning and construction of metro lines and (2) to perform
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a comprehensive urban flood risk assessment of the completed rail transit systems in
Changchun City. The findings of this study can provide scientific implications for future
flood protection in the Changchun rail transit system particularly, and in other Chinese
cities generally. This paper provides a reference index and an accurate assessment method
for the Changchun rail transit system to facilitate the flood risk assessment of future lines.

2. Methodology and Data Sources

2.1. Methodology

In this study, the metro flood risk assessment is divided into four elements, including
hazard, exposure, vulnerability, and emergency response and recovery capability, on the
basis of the comprehensive risk assessment theory of natural disasters. Figures 1 and 2
show the technical steps adopted for this study. This study is divided into five steps
for the risk assessment of Changchun’s rail transit system. Step A performs data pre-
processing and collection; this paper requires a lot of non-spatial data and multi-source
spatial data support in order to generate indicator maps in GIS. And step B selects a
total of 22 indicators separately, covering hydrological and geomorphological conditions,
meteorological conditions, population facilities, and socio-economic conditions, to establish
a complete indicator system. All risk indicators are processed in the GIS system and
imported into the GIS system to form an indicator map so that each indicator can be
visually represented. Step C uses AHP technique and improved entropy weighting method
to calculate the subjective and objective weights of each indicator, respectively, and finally
carries out comprehensive weighting calculation to obtain reasonable indicator weights. In
step D, map superposition is performed in GIS using the previously calculated weights to
obtain the regional hazard, exposure, vulnerability, and emergency response and recovery
capability level maps. Based on the raster layers and weighting results in GIS, we generated
the regional flood risk level of Changchun and obtained the regional integrated flood risk
level map. Finally, we extracted the 500 m area along the metro as a buffer zone to obtain
the risk level map of Changchun’s rail transit system.

2.2. Data Sources

The elevation and slope were obtained from the geospatial data cloud with a resolution
of 30 m. The average annual rainfall, the rainfall days (DR > 50 mm), and the maximum
daily rainfall were processed as raster data in arcGIS10.8 using the kriging method, and
the data used were obtained from the China Meteorological Administration. Both NDVI
and LULC data were obtained from databox. Changchun river network and Changchun
main road network are vector data, obtained from the geospatial data cloud, which can
be accessed directly. Population density was obtained from UN world population density
for the year 2020. The road network density and river network density can be obtained by
searching the Changchun Statistical Yearbook. The type of exits and the number of exits
were obtained from the Gaode Map and the author’s fieldwork. Data on the percentage
of vulnerable population and education status were obtained from Changchun Statistical
Yearbook. Metro station density was obtained from arcGIS10.8 kernel density, with data
from Gaode Map. GDP for 2022 was obtained from Databox, and Changchun metro
lines are vector data, obtained from Gaode Map. Passenger flow was provided by the
environmental assessment book of Jilin Zhengyuan Company, and the passenger flow of
the line under construction was also predicted by the environmental assessment book of
this company. The river network proximity was obtained in arcGIS10.8 using Euclidean
distance, with data provided by Geospatial Data Cloud, and the metro line proximity was
derived in acrGIS10.8 using Euclidean distance, as raster data, using data provided by
Gaode Map. Metro line densities were obtained using line densities in arcGI10.8 with data
from Gaode Map. Table 1 summarizes the selection of indicators and data sources for
this study.
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Figure 1. Flowchart of the flood risk assessment for the Changchun rail transit system.
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Figure 2. The geographical location of the study area and the Changchun rail transit system.

Table 1. Flood risk model indicators for rail transit systems and their data sources.

Parameters Data Types Source

Elevation ASTER GDEM 30 m × 30 m www.gscloud.cn (accessed on 1 September 2022)
Slope ASTER GDEM 30 m × 30 m www.gscloud.cn (accessed on 1 September 2022)
Average annual rainfall Raster data China Meteorological Administration
Rainfall days (DR > 50 mm) Raster data China Meteorological Administration
Maximum daily rainfall Raster data China Meteorological Administration
NDVI Landsat 8 OLI/TIRS https://www.databox.store (accessed on 3 October 2022)
LULC Landsat 8 OLI/TIRS https://www.databox.store (accessed on 13 October 2022)
Changchun river network Vector data www.gscloud.cn (accessed on 5 November 2022)
Main road network Vector data www.gscloud.cn (accessed on 8 November 2022)
Population density Raster data 2020 UN world population density
Road network density Raster data Changchun Statistical Yearbook
River network density Raster data Changchun Statistical Yearbook
Type of exit Vector data Gaode Map
Number of exits Vector data Gaode Map
Percentage of vulnerable population Attribute data 2022 Changchun Statistical Yearbook
Education status Raster data 2023 Changchun Statistical Yearbook
Density of metro stations Raster data 2023 Gaode Map
GDP Raster data 2022 https://www.databox.store (accessed on 3 January 2023)
Metro line Vector data Gaode Map

Passenger flow 10,000 people Jilin Province Zhengyuan Company environmental assessment
book

River network proximity Raster data www.gscloud.cn (accessed on 14 March 2023)
Metro line proximity Raster data Gaode Map
Metro line density Raster data Gaode Map
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3. Overview of the Study Area

3.1. Physical Geography Overview

Changchun (ancient name Xi Du) is the capital of Jilin Province, under the jurisdic-
tion of seven districts, one county, and three county-level cities. The city is located at
43◦05′~45◦15′ north latitudes and 124◦18’~127◦05’ east longitudes, with a total area of
24,592 square kilometers. The city is located in the mid-latitude northern temperate zone,
in the vicinity of the Songliao Plain in Northeast China, with relatively flat terrain. Gener-
ally, the study area has dry and windy weather in spring, and rainy and wet weather in
summer, with large seasonal temperature differences and an annual rainfall of 600–700 mm.
Within the city, the areas included in the rail line are extracted for the study. These include
Chaoyang District, Kuancheng District, Erdao District, Nanguan District, Lvyuan District,
and Jiutai District.

3.2. Socio-Economic Profile

Changchun is an important economic zone in the northeastern part of China, with
annual gross domestic product (GDP) of CNY 710.312 billion. The primary industrial
sector added a value of CNY 52.374 billion, the secondary industrial sector added a value
of CNY 296.047 billion, and the tertiary industrial sector added a value of CNY 361.890
billion. The three industrial structures contribute to the city’s GDP at the ratio of 7.4:41.7:50.
Changchun City has a strong provincial capital strategy under the vested interests of the
growing economy, becoming the second largest economic city in Northeastern China. In
terms of population, the total resident population of the city at the end of the 2022 was
9,087,200. Among them, the population of the urban area was 5,837,600, and the population
of the four counties was 3,249,600.

On 30 June 2017, the Changchun rail transit opened line 1 for a trial operation, which
is the first subway line in Changchun. By 2022, Changchun City had a total of 10 subway
lines and 173 stations (including those that are under planning). Although the Changchun
subway started a bit late, a large part of the transit is completed, making full use of the
unbuilt land, reducing land costs, and feeding the city. Since subway disasters have been
numerous, preventing flood in Changchun’s rail transit, providing guidelines for flood
prevention for lines under planning and construction, and reducing people’s economic
losses are the main purposes of this paper.

4. Analysis of Indicators and Calculation of Weights

4.1. Analysis of Indicators
4.1.1. Hazard Indicators

Hazard is the probability of flooding in the metro system and the degree of risks it
may cause.

(1) Maximum daily rainfall: The maximum daily rainfall in Changchun is concentrated
in the easternmost part of the city (Figure 3a). The maximum daily rainfall is closely
related to the occurrence of flood events and the degree of impact on the metro system
and can be directly correlated with the metro system. The design and construction
process of the metro system needs to determine the maximum daily rainfall according
to the local climatic conditions, which has a significant impact on the drainage system
of the metro system. When flooding threatens the metro system, it needs to be quickly
discharged through the drainage system [27]. If the maximum daily rainfall is too
high, the drainage system of the subway system may not be able to bear the impact
due to the affected capacity of the drainage system.

(2) NDVI (normalized difference vegetation index): Changchun City has less vegetation
cover in the urban area and a higher vegetation cover in the east (Figure 3b). A
high vegetation cover reduces the runoff rate, slows down the water flow through
vegetation absorption, and reduces the impact of flooding on the subway system. The
root system of vegetation also stabilizes the soil, reduces soil erosion and sediment
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accumulation, and helps to keep the drainage system around the subway system
open, which is the reason why we selected NDVI as the hazard index [28].

(3) Average annual rainfall: Changchun City’s precipitation decreases from east to
west [10]. Rainfall is one of the main causes of flooding in the subway (Figure 3c). The
annual rainfall is a comprehensive consideration that reflects the overall rainfall in
the Changchun area and is directly correlated with the flood risk.

(4) Rainfall days (DR > 50 mm): Changchun has more rainfall days in the eastern part
of the city (Figure 3d). The selection of this threshold is based on the understanding
of the rainfall characteristics and drainage system capacity in the Changchun area,
which can accurately determine the flood risk and provide the basis for early warning
and decision making. This indicator is practical and operable. If there are too many
days in which the rainfall is greater than 50 mm, it may lead to the overloading of the
drainage system, making it unable to drain the rainwater from the metro system in
time, thus leading to waterlogging [12].

 

 

Figure 3. Hazard index: (a) maximum daily rainfall; (b) NDVI; (c) average annual rainfall; (d) rainfall
days (DR > 50 mm).

4.1.2. Exposure Indicators

In the case of metro flooding, exposure refers to the extent to which the area and
population where the metro is located, buildings, facilities, infrastructure, etc., are exposed
to the threat of flooding. In this paper, the following indicators are selected to assess the
exposure of the metro system to urban flooding:

(1) Population density: The population of Changchun is mainly concentrated in the
western part of the main urban area and is sparser elsewhere (Figure 4a). Population
density is one of the very important exposure indicators in metro flooding hazards, as
it is directly related to the number of potentially affected people and areas. A high
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population density means that more people and buildings are distributed in the same
area [29] and more people and buildings are likely to be affected in case of metro
flooding. Population density, as an expositional indicator, can guide the planning and
preventive measures of the Changchun metro system, especially in high population
density areas; priority can be given to strengthening drainage systems and flood
control facilities.

(2) Elevation: The elevation of Changchun City is mainly concentrated in the east and
south, and the rail transit system is built in the western part of the urban area, where
the elevation is lower (Figure 4b). Elevation is an important factor in assessing the
vulnerability of the metro system to flooding. The lower the elevation, the more
vulnerable the metro system is to flooding, and vice versa [30]. By knowing the
elevation information in the area where the Changchun rail transit system is located,
potential inundation areas can be identified, and a basis can be provided for devel-
oping early warning systems and emergency response plans. Elevation information
can also guide planning and improvement measures, especially in areas of high flood
risk, where enhanced flood protection measures and improved drainage systems can
be considered.

(3) Slope: The slope is extracted from the elevation in the GIS, and the slope can affect
the drainage performance of the subway platform or inter-station road (Figure 4c).
If the slope of a subway platform or inter-station road is too small or lacks drainage
facilities, it may lead to ponding and flooding when rainfall is high, thus affecting the
operation of the subway system [31]. Slope, as an indicator of exposure, can also be
used to assess the flood protection that the facility needs and to guide planning and
improvement measures.

(4) LULC (land use and land cover): Different land use types result in different runoff
conditions due to ground cover, which affects the flood risk of the metro system
(Figure 4d). If the land use type near the metro station is urban construction land and
the surface cover is mainly made of cement, asphalt, and other concrete materials,
it will lead to a large amount of runoff not being able to infiltrate into the soil after
rainfall and form ponding water, increasing the risk of flooding. The surface cover
conditions of different land use types can affect the ability of vertical infiltration [32].
In this paper, we classify artificial ground as very high exposure, water bodies as
medium exposure, and forest land as very low exposure.

(5) Main road density: The areas with a high road network density in Changchun are
concentrated in the western part of the main urban area, and the distribution of
underground transportation facilities such as the subway system is also relatively
dense (Figure 4e). This means that the population density and building density may
also be high [33], which may lead to areas around the metro system being prone to
flooding, increasing the risk of flooding in the metro system. The main road density
reflects the distribution and connectivity of urban roads, which not only provides
information on the main paths of the flood flows, but is also closely related to the
drainage system of the city.

(6) River network density: Areas with a higher river network density have a higher
likelihood of flooding (Figure 4f). When the area receives high rainfall or there
is prolonged rainfall, the rivers around the metro system may rise, increasing the
exposure of the metro system to flood risk. By analyzing the density of the river
network, potential flood accumulation areas and flow paths can be identified to help
assess the exposure of the Changchun metro system to flood events. Rivers in areas
with a high river network density may interact with each other to form river systems.
During high rainfall, the water flow in the river system may increase and be more
difficult to control, posing a flood risk to the metro system [30].

(7) Exit number: Metro stations with a large number of entrances and exits are usually
located in areas with heavy traffic, dense surrounding buildings, and complex layers
of underground pipes (Figure 4g). During rainfall, the drainage system is prone to
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failure and serious water accumulation on the ground, which directly affects the
entrance and exit channels of the subway station and increases the subway stations’
exposure to flood risk. The exit number, selected as an indicator of exposure, can
provide key information to help assess the flood risk of the Changchun rail transit
system. The number of exits reflects the degree of exposure of the rail transit system
to flood intrusion, potential inundation risk, evacuation difficulties, and the degree of
association with the urban drainage system, which can help identify potential risk
areas and improve emergency response capabilities.

 

 

 

Figure 4. Cont.
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Figure 4. Exposure index: (a) population density; (b) elevation; (c) slope; (d) LULC; (e) main road
density; (f) river network density; (g) exit number.

4.1.3. Vulnerability Indicators

In metro flooding, vulnerability refers to the degree of damage to intrinsic individuals
and facilities. In this paper, the following indicators are selected to reflect the vulnerability
of metro flooding:

(1) Type of metro stations: After the field survey, the Changchun metro stations were
divided into four categories, i.e., above ground, underground, semi-underground, and
elevated stations (Figure 5a). Elevated stations are fully exposed and have the highest
risk level, above-ground stations are second to elevated stations, and underground
stations linked to underground shopping malls, train stations, and other structures
have the lowest risk level.

(2) River network proximity: We set the proximity of the river network as 200 m, 400 m,
600 m, 800 m, and 1000 m from the nearest river (Figure 5b). Generally, the closer the
river, the higher the flood risk and vulnerability of the metro system, and vice versa.
The river network proximity reflects the degree of flood threat to the metro station,
as well as the potential inundation risk, differences in the geological conditions, and
emergency evacuation.

(3) Metro station density: The metro station density refers to the number of stations
per unit area in the metro system, which is also an important factor in the metro
flood risk assessment and has a certain influence on the outcomes of the vulnerability
assessment (Figure 5c). Changchun metro stations are densely concentrated in the
central city, and a higher metro station density means there are shorter distances
between stations in the metro system, which means passengers can quickly reach any
station in a short time. However, at the same time, a higher metro station density also
means that in the case of flood events, the affected area is larger, the area of metro
stations and the number of internal platforms inside stations are relatively high, and
the cost of flood protection measures is also higher. This can increase the vulnerability
of the metro system and lead to greater damage to the metro system [34]. We selected
metro station density as a vulnerability indicator to reflect the connectivity, evacuation
efficiency, flood resilience, and operational effectiveness of the metro system during
flood events.

(4) Passenger flow: Changchun rail transit lines 1, 2, and 5 are the backbone lines, while
the other lines are secondary lines (Figure 5d). A higher passenger flow means a
higher load on the metro system. In heavy rain, water and dirt will cause the metro
system to fail or paralyze more easily, making the metro system more susceptible to
flood risks and increasing the difficulty of coping with flooding. Moreover, changes
in the passenger flow will also affect the implementation of the emergency plan for
metro flooding, especially in the evacuation process, i.e., how to ensure the safe
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evacuation of the passengers. Under flooding circumstances, quick evacuation could
become a difficult part of the emergency plan, and the increase in passenger flow will
increase this difficulty [35]. By considering the passenger flow, the staffing pressure
and response capacity of vulnerable stations in the Changchun subway system can
be assessed, providing an important reference for the development of corresponding
emergency plans and improvement measures.

(5) Percentage of vulnerable population: The proportion of vulnerable population is
larger in Green Park and Jiutai District (Figure 5e). The vulnerable population faces
higher risks in the case of metro flooding, and it is likely to be difficult to secure
help in time. Vulnerable populations have lower incomes and lack sufficient financial
support to take safety precautions and receive timely emergency assistance. The
economic losses and impacts during floods are greater, and the financial difficulties
of recovery and reconstruction are more severe. Vulnerable people usually have
fewer health and medical resources, and their ability to help themselves and help
each other is weaker [36]. The percentage of vulnerable population was chosen as a
vulnerability indicator to consider the distribution and vulnerability of special groups
in the metro system.

(6) Metro line proximity: Areas that are closer to metro lines are generally considered to
have a higher vulnerability in metro flood risk assessments because they will be more
directly and severely affected by flooding, and the metro lines will be more easily
damaged (Figure 5f). In addition, if the areas closer to the metro lines are densely
built, it may cause the accumulation of flood water in these buildings, increasing the
risk of disaster and exacerbating vulnerability. Areas at a greater distance from the
subway lines may also be affected by flood events, but their risk level is generally
considered relatively low in the assessment due to their distance from the subway
lines. The choice of metro line proximity as a vulnerability indicator helps to assess
the vulnerability of the metro system and its surrounding areas to flood events.

(7) Metro line density: We generated the Changchun rail transit line density by using
the subway line density in GIS with a search radius of 1 km (Figure 5g). The densest
concentration of rail transit in Changchun is in the central city. Areas with a higher
metro line density are generally considered to have a higher vulnerability in the
metro flood risk assessment because when flood events occur, more metro tunnels
and stations may be inundated and damaged, and metro services may be interrupted
for longer periods of time, resulting in more significant impacts on the city and
passengers. On the other hand, cities or regions with lower metro line densities may
not be susceptible to flood risk in the metro flood risk assessment, as their vulnerability
ratings are relatively low due to the smaller size of the metro.

Figure 5. Cont.
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Figure 5. Vulnerability index: (a) type of exit; (b) river network proximity; (c) metro station density;
(d) passenger flow; (e) percentage of vulnerable population; (f) metro line proximity; (g) metro
line density.

4.1.4. Emergency Response and Recovery Capability Indicators

Emergency response and recovery capability in the context of metro flooding is de-
fined as the ability of the government and individuals to effectively predict and identify
potential risks, take appropriate preventive measures, mitigate disaster hazards, and reduce
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disaster losses in the face of metro flooding. In this paper, the following indicators are
selected to assess the emergency response and recovery capabilities of the metro system in
Changchun City.

(1) GDP: The GDP, as an important economic indicator, is good for enhancing the disaster
prevention and mitigation capacity of metro flooding [37], strengthening the con-
struction of public facilities and urban planning, and providing a good post-disaster
reconstruction capacity afterward (Figure 6a). The choice of using the GDP as an
emergency response and recovery capability indicator helps us to assess the economic
resource input, post-disaster recovery capacity, and social welfare protection level of
the area where the Changchun rail transit system is located.

(2) Distance to main road: The distance to main roads refers to the distance from a location
to the nearest major road. In the metro flood risk assessment, the distance to the
main road has a certain influence on the disaster prevention and mitigation capacity
(Figure 6b). In the event of flooding, the main road may be submerged, or traffic
disruption may occur, thus affecting rescue and evacuation. When the distance from
the main road is far, it may take longer and cost more for people to reach safety, which
may affect the efficiency and timeliness of emergency evacuation. On the contrary,
locations closer to the main roads may be more convenient and efficient for rescue and
evacuation, allowing for a faster escape from flooded areas and reducing casualties.
The choice of using the distance to main roads as an emergency response and recovery
capability indicator helps us to assess the evacuation and rescue capability, material
transportation, emergency services and support, and communication and liaison
capability of the area where the Changchun metro system is located.

(3) Education status: Education status refers to the proportion of a given population with
different levels of education (Figure 6c). In the metro flood risk assessment, the level
of education has a certain influence on the disaster prevention and mitigation ability.
Personnel with higher education or professional training may be more advantageous
in terms of disaster preparedness and response capabilities. Highly educated people
may have higher scientific literacy and skills, be more knowledgeable about disaster
warning information and response measures, and be able to take the right and effective
measures to protect themselves and others. They are also likely to be more aware
of disaster risks and be prepared to respond and mitigate possible consequences. In
contrast, people with low levels of education may lack a proper understanding and
assessment of disaster risks and lack the relevant knowledge and skills to respond to
disasters. These people may perform wrong or unsafe actions or fail to understand
or perceive risks when disasters occur, leading to increased losses [38]. In summary,
the selection of education level as an emergency response and recovery capability
indicator helps to assess the preparedness and action capacity of residents in the area
where the Changchun rail transit system is located.

(4) Density of drainage network: We define the drainage pipe network density as the
length of regional pipes compared to the area of the upper region. The drainage
pipe network density has an important impact on the metro flood risk assessment
(Figure 6d). The higher the drainage network density, the better the metro system is
able to handle and discharge the water flow in the face of flooding, and therefore, the
flood risk assessment results will be more optimistic. In summary, using the drainage
network density as an emergency response and recovery capability indicator can help
us to assess the drainage capacity of the area where the metro system is located and
its ability to cope with flood risks, and provide an important basis for flood resistance
measures and emergency planning of the metro system to ensure the safe operation
of the metro system and the safety of the passengers.
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Figure 6. Emergency response and recovery capability index: (a) GDP; (b) distance to main road;
(c) education status; (d) density of drainage network.

4.2. Calculation of Weights
4.2.1. Using the AHP Hierarchical Analysis Method to Calculate the Subjective Weights

The AHP method was first proposed by Professor T.L. Saayt at the University of
Pittsburgh in the 1970s. It is a systematic multi-objective decision-making method that
combines quantitative and qualitative analyses.

AHP is a quantitative method used for decision making and problem solving. The
following are the steps of the AHP method [39,40].

(1) Establish the hierarchy: Hierarchize the decision problem and construct a hierarchy
consisting of decision level, criterion level, indicator level, and sub-indicator level.

(2) Quantify the hierarchy: In this paper, each element in the indicator layer is ranked ac-
cording to the input provided by five experts from the disaster research team of North-
east Normal University, and their relative importance is compared using numbers
from 1 to 9, where 1 represents equal importance and 9 represents extreme importance.

(3) Calculation of weights: The weights are calculated using the mathematical model
of the hierarchical analysis method. The calculation process involves calculating the
feature vector of each level and the weight of each element.

(4) Consistency test: The maximum eigenvalue λmax of the matrix is obtained, while the
corresponding eigenvectors are obtained, and the consistency of the judgment matrix
is verified according to Equations (1) and (2), in Table 2.
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Table 2. Random consistency index test (RI) table.

n 1 2 3 4 5 6 7 8 9

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45

CI =
λmax − n

n − 1
(1)

CR =
CI
RI

(2)

(5) Comprehensive analysis: The obtained weights are used for the comprehensive
analysis to find the optimal solution or decision.

4.2.2. Improvement of Entropy Weight Method to Calculate Objective Weights

(1) Construct the original index data matrix. Assuming that there are m samples to be
evaluated and n evaluation indicators, the original indicator data matrix is formed as
follows [41]:

X =

⎡
⎢⎣

x11 · · · x1n
...

. . .
...

xm1 · · · xmn

⎤
⎥⎦ (3)

where xij denotes the value of the i-th sample and the j-th evaluation index.

(2) Data processing: In order to eliminate the influence of different levels on the evaluation
results, the indicators are normalized, and the single standardized data are calculated
using the following formula:

4x′ij =
xij − minxij

maxxij − minxij
(4)

(3) Calculate the share of the ith sample in the total value of the indicator for the jth
indicator as follows:

pij =
x′ij

∑m
i=1 x′ij

(5)

(4) Calculate the entropy value of the jth indicator as follows:

Ej = −k ∑m
i=1 pijlnpij (6)

where constants k = 1
lnm , k > 0.

(5) Calculate the improved entropy value as follows:

E′
J =

1
1 + e−Ej

(7)

(6) Calculate the coefficient of variation of the jth indicator dj. The entropy method assigns
weights to each indicator based on the degree of difference in the sign value of each
indicator so as to derive the corresponding weight of each indicator, dj. The larger it is,
the greater the importance of the indicator, as calculated using the following formula:

dj = 1 − E′
J (8)

(7) Calculate the objective weights as follows:

sj =
dj

∑n
j=1 dj

(9)
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4.2.3. Calculating the Combined Weights

Using the multiplicative integration method, the subjective weights are combined
with the objective weights to obtain the combined weights.

W∗
j =

wjdj

∑n
j=1 wjdj

(10)

The results of the calculations are shown in the following Table 3.

Table 3. Weight of indicators.

Criterion Layer Criterion Layer Weights Indicator Layer Indicator Layer Weights

Hazard 0.4668

Average annual rainfall 0.1025
Maximum daily rainfall 0.2597
Rain days (DR > 50 mm) 0.2854

NDVI 0.3523

Exposure 0.1603

Number of exits 0.2174
Elevation 0.1829

Slope 0.1683
River network density 0.0546

Population density 0.2
Road network density 0.0937

LULC 0.0831

Vulnerability 0.2776

Percentage of vulnerable population 0.0871
River network proximity 0.0763

Type of exit 0.2541
Metro station density 0.1431

Passenger flow 0.1875
Metro line density 0.1241

Metro line proximity 0.1277

Emergency responseand
recovery capability 0.0953

GDP 0.2043
Drainage pipe network density 0.2687

Education status 0.3887
Distance to main road 0.1383

5. Modeling of Flood Risk along Rail Transit Systems

5.1. Guideline Layer Modeling of Flood Risk along Rail Transit Systems

In this paper, the “H-E-V-C” assessment framework is used to construct the metro
flood risk index (R).

Further, we used a logistic regression model to calculate the flooding hazard (H) along
the subway line; the larger the value (0 ≤ H ≤ 1), the higher the risk of flooding, and the
formula uses the values calculated in Formula (3) as follows:

H =
exp(b0 + b1x1 + b2x2 · · ·+ bkxk)

1 + exp(b0 + b1x1 + b2x2 · · ·+ bkxk)
(11)

where H is the probability of occurrence of flooding hazards along the subway line, xk
is each criterion, and bk is the calculated regression probability. The equations for each
criterion layer of exposure, vulnerability, and disaster prevention and mitigation capacity
are as follows:

E = ∑n
i=1 = WeiXei (12)

V = ∑n
i=1 = WpiXpi (13)

C = ∑n
i=1 = WriWri (14)

where E, V, and C represent the values of exposure, vulnerability, and disaster preven-
tion and mitigation capacity, respectively; n is the total number of indicators; i is the ith
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indicator; Wei, Wpi, and Wri are the weights of the factors obtained; and Xei, Xpi, and Xri
are the quantitative values of the indicators corresponding to exposure, vulnerability, and
emergency response and recovery capability, respectively.

5.2. Modeling of Flood Risk Index along the Metro System

In this study, the urban flood risk index (R) and hazard (H) exposure (E) vulnerability
(V) are positively correlated and negatively correlated with the emergency response and
recovery capability (C).

R = H × E × V × (1 − C) (15)

6. Results and Analysis

6.1. Hazard, Exposure, Vulnerability, and Emergency Response and Recovery Capability
Level Maps

Based on the weights of each indicator, the calculation was made using the raster
calculator in GIS, and the results are shown in Figure 7. In this paper, four indicators
are selected to assess the hazard of five urban areas in Changchun, mainly guided by
rainfall conditions and vegetation cover. As shown in Figure 7a, the rainfall in Changchun
increases from east to west in order, and the vegetation cover is concentrated in the south of
Jiutai District; the hazard decreases from east to west in this way, but due to the excessive
impervious area in the central city, although there is little rainfall, part of the hazard is also
in a medium state.

  

  

Figure 7. Level maps of hazard (a), exposure (b), vulnerability (c), and emergency response and
recovery capability (d).
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The exposure is measured by seven indicators, such as the population density, eleva-
tion, slope, and number of entrances and exits. As shown in Figure 7b, a high exposure
is mainly concentrated in the central city of Changchun, where the terrain is low, the
population and buildings are very dense, and all of the areas consist of man-made surfaces.
Other high-exposure spaces are concentrated around the road and river networks.

The vulnerability is then evaluated by indicators, such as the river network proximity,
passenger flow, subway line density, etc. As shown in Figure 7c, the high vulnerability areas
are attributed to a higher passenger flow and a high station and line density concentrated
along the subway line. The other vulnerable areas are distributed in the Jiutai district,
where the vulnerable population is high.

The emergency response and recovery capability factor is evaluated using four indica-
tors, namely, the GDP per capita, education level, distance to main roads, and drainage
network density. Figure 7d shows that the places with a high disaster prevention and
mitigation capacity are concentrated in the central city with a higher economic level, high
education level, and high density of drainage network, and the central city is close to the
main roads, which is better for rescue and evacuation.

6.2. Regional Flood Risk and Its Validation
6.2.1. Regional Flood Risk

The regional flood risk is calculated according to Equation (15) and divided into five
levels using the natural interruption point method, as shown in Figure 8a. The high-risk
areas account for a relatively low percentage, but it is mainly concentrated in the central
urban areas in the west, where the economy is prosperous and the population is relatively
dense, which still cannot be ignored. Slow-risk areas are mainly concentrated in the east,
where the vegetation is dense, the elevation is high, and the population is sparse.

6.2.2. Validation

Changchun is rainy in the summer, which often leads to the flooding of roads and
even the formation of more than half a meter of water at lower terrains. In addition,
due to the relatively old drainage system, the drainage pipes in many places will be
flooded in the case of excessive rainfall and be unable to drain properly, making urban
flooding more serious, and forming flooding points. In this paper, we verify the accuracy
of the regional flood risk assessment based on the data of more than fifty flooding points
published by the Changchun traffic police in 2022. As shown in Figure 8b, the flooding
points in Changchun are densely concentrated in the central city, and we vectorized the
point data and superimposed them with the regional assessment results to find that 90% of
the flooding points are in high-risk areas, which indicates that the results are reliable and
can be trusted.

6.3. Flood Risk of Rail Transit Systems and Its Validation
6.3.1. Flood Risk of Rail Transit System

For the metro system, the area it is located in is part of the regional flood risk research
object, and the flood risk level along the metro system can be extracted by the regional
flood risk. We selected the area of 500 m around the line as a buffer zone for the flood risk
assessment of the Changchun City rail transit system, as shown in Figure 9. We used the
natural interruption point method to divide it into five levels, so that its risk level can be
clearly distinguished.
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Figure 8. (a) Regional flood risk level map; (b) regional flood risk level verification map.
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Figure 9. Rail transit flood risk level map.

6.3.2. Validation

Since there is no larger-scale flooding in the Changchun metro system, this paper used
the receiver operating characteristic (ROC) curve to verify it, as shown in Figures 9 and 10.
The receiver operating characteristic (ROC) curve is widely used for the accuracy validation
of binary classification models. The method plots the corresponding curves using the
true positive rate as the vertical coordinate and the false positive rate as the horizontal
coordinate, and the area under the ROC curve (AUC) value is used to evaluate the accuracy
of the flood risk assessment of the Changchun City rail transit system, as shown in Table 4.
The ROC curve shows a 91% accuracy rate.

Figure 10. Receiver operating characteristic (ROC) curve.
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Table 4. AUC values and their corresponding accuracy.

AUC Value 0.5–0.6 0.6–0.7 0.7–0.8 0.8–0.9 0.9–1.0

Accuracy Failed Different Normal Good Excellent

7. Discussion

The rail transport network in Changchun is undergoing a phase of fast expansion, with
several lines under planning to be constructed. There has not been a large-scale subway
flood event, and the experience is insufficient, but with the change in climate, extreme
weather events will become more frequent and intense, and the possibility of larger flood
disasters will increase. In such cases, this study becomes important for the assessment
of the flood risk of the rail transit system. This study mainly integrated the AHP and
improved entropy weighting methods to evaluate the rail transit system in Changchun City,
China. We selected several indicators regarding the metro system, including the passenger
flow, metro line density, metro station density, station type, and other indicators, to evaluate
the flood risk of the rail transit system. The findings of this study will provide scientific
help and guidance for subsequent metro construction planning and enable decision makers
to provide protective measures for stations with a higher risk and reduce the impact of
flooding. It is worth mentioning that previous studies have not considered the impact
of drainage systems on the metro system, and they did not choose drainage networks as
an indicator for data reasons. In this study, the drainage network density is chosen as an
indicator of the emergency response and recovery capability component, which will play a
crucial role in the flood and inundation risk assessment.

The significance of our assessment of the flood risk in Changchun’s rail transit system
is to identify possible flood risks in advance and take appropriate preventive and mitigation
measures to ensure the stable operation of the rail transit system and passenger safety. This
can effectively reduce the damage to the city and people’s lives and property caused by
flood disasters, and can improve the level of emergency management and public services of
the city. At the same time, assessing flood risks can also help to promote sustainable urban
planning and construction, improve the resilience and adaptability of the city, and protect
the line construction afterward. After a thorough review of the literature, we found that the
existing research methods mainly focus on the regional flood risk, and the methods of the
regional flood risk assessment include (1) the scenario analysis method, (2) the hydrological
analysis method, (3) the terrain analysis method, (4) the statistical analysis method, (5) the
index system method, (6) the neural network and deep learning method, etc. However, in
this paper, we analyzed the metro flooding disaster from several angles and aspects based
on the formation theory of disaster. Here, we selected and combined 22 indicators for risk
evaluation. The indicator weights were calculated using a combination of the AHP and
improved entropy weight methods, and the scientific nature of the weights was heavily
optimized to make the evaluation more reasonable and scientific.

Regarding the research methods employed, the scenario analysis method, hydrological
analysis method, and statistical analysis method require a substantial amount of accurate
data for assessment, and they do not comprehensively consider the influence of human
factors on metro system flooding. On the other hand, neural network and deep learning
models necessitate significant expertise and technical skills, as well as ensuring the quality,
quantity, and accuracy of the relevant data. Considering these limitations, we opted for the
index system method to comprehensively assess the metro flood risk, taking into account
various factors such as human factors, socio-economic conditions, and infrastructure issues.
Additionally, we considered the impact of the metro system and drainage infrastructure to
comprehensively address the problems caused by disasters.

In recent years, increased attention has been paid to the metro flood risk. Lyu et al. (2018)
employed the I-AHP modeling approach to study the flood hazard in Guangzhou’s metro
system [1], while Wang et al. (2021) used the FAHP approach to analyze the flood hazard
risk in a large metro system in Beijing. Both studies utilized improved AHP methods for
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the flood risk assessment in metro systems [2]. However, although the I-AHP and FAHP
approaches, to some extent, mitigate the influence of subjective factors, their effectiveness in
this regard is limited, insufficient, and one-sided. In this paper, we utilize the AHP method
and an improved entropy weight method to not only analyze the problem subjectively,
but also to combine subjective and objective perspectives to analyze and address the issue
from a different level. As a result, we provide practical recommendations for the rail
transit system in Changchun, offering suggestions for disaster prevention in the already
established lines as well as for lines 5, 6, 7, and 9, which are currently under construction.

When evaluating the flood risk of the entire metro system, it is crucial to consider
the influence of the subsidence environment on the flood risk. However, as Changchun is
not a resource-based city and does not heavily rely on groundwater extraction, it has not
experienced significant subsidence in recent years. Therefore, this paper does not take into
account the flood risk of the Changchun rail transit system in the subsidence environment.
It should be noted that this assessment is not absolute for the future, and future studies
should consider the flood risk of the Changchun rail transit system environment.

8. Conclusions

As a city where the rail transit system will develop rapidly in the future, this study
proposes a method based on the GIS combined with the AHP and improved entropy weight
methods to assess the flood risk of Changchun’s future rail transit system under frequent
and intense extreme weather events in current and future scenarios. The main conclusions
of this study are as follows:

(1) The flood risk of Changchun’s rail transit system is decreasing from the central urban
area to the surrounding areas, reflecting a dispersion from the center to the outside.
The rail transit located in the central urban area has a higher risk level, and the lines
that are under construction need to be prepared in advance for prevention, while
those that are already built need more human and material resources for protection.

(2) The very-high-risk and high-risk areas of the Changchun rail transit system account
for 15% and 16.2%, respectively. Both of these two risk categories account for a total
of 31.2% of the total area, most of which is located in the central urban area. A large
area of rail transit is at a higher risk of flooding and needs to be paid attention to in
order to prevent flooding in the future.

(3) In this paper, we proposed an MCDA method based on GIS combined with the AHP
and improved entropy weight methods using the following four factors of disaster for
the first time: hazard, exposure, vulnerability, and emergency response and recovery
capability. Based on this integrated approach, we established a risk assessment system
containing 22 indicators from disaster formation theory. Because the indicator system
established by this method is complete and integrates several aspects, it can be quickly
applied to different cities and facilitated for other urban researchers.

Although the assessment of the subway flood risk is essentially an assessment of the
regional flood risk, the 500 m buffer zone that we extracted does not directly reflect the
flood risk of the overall Changchun rail transit system. This method has some limitations
and uncertainty, which should be optimized in future research to select a suitable model
for its direct assessment.
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Abstract: The computational simulation of rivers is a useful tool that can be applied in a wide range
of situations from providing real time alerts to the design of future mitigation plans. However, for
all the applications, there are two important requirements when modeling river behavior: accuracy
and reasonable computational times. This target has led to recent developments in numerical models
based on the full two-dimensional (2D) shallow water equations (SWE). This work presents a GPU
accelerated 2D SW model for the simulation of flood events in real time. It is based on a well-balanced
explicit first-order finite volume scheme able to run over dry beds without the numerical instabilities
that are likely to occur when used in complex topography. The model is applied to reproduce a real
event in the reach of the Ebro River (Spain) with a downstream reservoir, in which a study of the
most appropriate boundary condition (BC) for modeling of the dam is assessed (time-dependent
level condition and weir condition). The whole creation of the model is detailed in terms of mesh
optimization and validation. The simulation results are compared with field data over the flood
duration (up to 20 days), allowing an analysis of the performance and time saved by different GPU
devices and with the different BCs. The high values of fit between observed and simulated results,
as well as the computational times achieved, are encouraging to propose the use of the model as a
forecasting system.

Keywords: river flows; numerical simulation; shallow water equations; finite volume method; boundary
conditions

1. Introduction

For centuries, natural disasters have been a source of concern for human beings
due to the damage and losses they cause. In addition, in recent years, these losses and
their frequency have been on the rise [1], leading to increased concern from governments,
institutions and society in general. Within natural disasters, floods are one of the most
destructive extreme events [2] and are the second leading cause of natural-disaster-related
deaths in Spain, with 209 deaths between 2000 and 2019 [3]. They also entail a high expense
due to damage repair, with losses in Spain amounting to EUR 12,000 million in the period
between 2016 and 2020, with Zaragoza—located at NE of Spain—being the province with
the third highest economic damage in the agricultural sector in this period. Figure 1 shows
examples of such losses, demonstrating images of the surroundings of Zaragoza during
flooding of the Ebro River, which is the largest river in terms of discharge in Spain. In view
of these numbers, governments and public institutions require tools [4–9] and plans [10–12]
to foresee and mitigate the damage caused by these events. One of these tools is the use of
predictive models based on numerical simulations which are able to provide an accurate
description of the spatial and temporal evolution of flow [13–19].
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(a) (b)

Figure 1. Damage produced by a flood event in crops around Zaragoza (Spain): flooding in Pina de
Ebro (2015) (a) (Source: EFE) and flooding in Novillas (2018) (b) (Source: Guardia Civil).

Due to the physical complexity of these phenomena, it is common to consider ap-
proximations to simplify the equations describing the flow. Although a river flood event
is naturally a 3D problem, it is common to study it by averaging the equations in the
vertical coordinate to reduce the problem to two horizontal dimensions [13,20]. Practical
applications require a trade-off between spatial accuracy and computational efficiency [21],
so approximations that reduce the dimensions of the problem are frequently used. The shal-
low water model (SWE) is a widely used approach to simulate surface geophysical flows
in situations that involve large domains and long time scales [22–24]. This approach is
based on the assumption that horizontal scales are larger than vertical scales, which leads
to the possibility of neglecting vertical accelerations and assumes a hydrostatic pressure
distribution in the vertical direction. This is the basis of the dynamic non-linear 2D SWE
formulation. In some cases, the full dynamic equations are reduced in complexity by
neglecting inertial terms. Reductions of the SWE system can be used to model floods
with zero inertia models, which maintain the 2D framework and neglect terms that do not
govern the phenomena, although special attention must be paid to their limits [25]. Further
dimensional simplifications consider the average of the equations in the cross-section to re-
duce the formulation to a 1D approximation [14,26,27]. In large and complex flow domains,
as is the case of a river in a flood event, two-dimensional models are the most frequently
used to obtain the temporal and spatial description of the flow [13,20,21,25,28–33].

When modeling hydraulic structures present in the domain, the adopted different
numerical strategies are of wide variety not only when these structures govern all the
flow [34], but also if they only affect a part of the flow. For instance, when modeling
complete reservoirs affecting a part of river, several strategies can be considered. On one
hand, as the reservoir dynamics are close to quiescent equilibrium, some aggregated
dimensionless models can be used to model their presence [35–39]. When more detail is
required, the reservoir can be discretized [40] as a river extension by incorporating it to the
computational domain and the dam presence is introduced via boundary conditions with a
different hypothesis, as applied in this study.

To represent the behavior of a dam spillways, several boundary conditions can be used.
If the main objective is to model the backwater generated by the dam, a constant water
level with the main surface elevation of the reservoir can provide good results in terms
of discharge and modeling the river. However, if the level of the reservoir is a variable to
compute, which is a requirement of many applications focused on dam regulation, other,
more sophisticated BCs must be applied. In particular, when the physical characteristics of
the dam spillway are known, the outflow provided by the general discharge law of a dam
spillway can be imposed as a boundary condition, so the backwater is still generated but
the level is allowed to vary. Both strategies are analyzed in the this study.

Therefore, the main aim of this work is to study the region of the middle reach of the
Ebro river between Zaragoza and Mequinenza, both located in Aragón (Spain), as seen in
Figure 2. This region is not only of special interest due to the significant damage caused
by large floods that occur in the meandering flood prone areas in the first half of the
river in flood events, as seen in Figure 1a, but also because it contains a long reservoir,
the Mequinenza reservoir, limited by the Mequinenza dam downstream. In this work,

311



GeoHazards 2023, 4

a 2D model is used for the discretization of both the river and the reservoir in order to
compromise between computational efficiency and accuracy of the results. Therefore,
the main objectives are to obtain an accurate computational model setup to study the Ebro
River region and to optimize it, obtaining a predictive tool to foresee and mitigate potential
damage caused by flooding events. Moreover, the presence of a reservoir allows the study
of different boundary conditions that model dam spillways in order to obtain a realistic
temporal evolution of the surface water level in the reservoir.

(a) (b) (c)

Figure 2. Location of Spain in Europe (a); location of the Ebro River basin in Spain (b) and location of
the computational domain of the study in the basin (c).

For the simulation, the PEKA2D program [16], developed at the University of Zaragoza,
is applied to the mentioned river reach. A version of this program is included as computa-
tional core of the brand name RiverFlow2D® (Hydronia LLC, https://www.hydronia.com/,
accessed on 1 March 2023).

2. Governing Equations and Numerical Model

The governing equations and the numerical aspects of the scheme used can be found
in full detail in [41,42] and it has been extended to 2D unstructured meshes in [20]. Their
most important details are outlined in the following subsections.

2.1. 2D Shallow Water Equations

The mathematical model that describes the surface flow is given by the hyperbolic 2D
shallow water system of equations based on mass and momentum conservation [43]:

∂U

∂t
+

∂F(U)

∂x
+

∂G(U)

∂y
= S(U) (1)

where the conserved variables:

U =
(
h, qx, qy

)T (2)

are the water depth, h, and the unit discharge in x and y direction, qx = hu and qy = hv,
respectively, with (u, v) being the depth averaged components of the velocity. The fluxes of
these conserved variables are

F(U) =
(
hu, hu2 + 1

2 gh2, huv
)T, G(U) =

(
hv, huv, hv2 + 1

2 gh2
)T (3)

The source term for the mass conservation equation is zero because neither precipita-
tion, infiltration nor evaporation are included, assuming their contribution is practically
negligible during a flooding event. Finally, the momentum source terms are related to the
bed slopes and friction stresses:

S(U) =
(
0, gh(Sox − S f x), gh(Soy − S f y)

)T (4)
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The bed slopes represent the variation in the x and y directions of the bottom level, zb:

Sox = −∂zb
∂x

, Soy = −∂zb
∂y

(5)

and the friction stress components are given by:

S f x =
n2u

√
u2 + v2

h4/3 , S f y =
n2v

√
u2 + v2

h4/3 (6)

where n is Manning’s roughness coefficient [44].

2.2. Numerical Scheme

The system in Equation (1) must be solved numerically due to the lack of an analyt-
ical solution. For this purpose, an explicit upwind finite volume scheme, based on the
Roe–Riemann solver [45,46], is used in this case. From (1), in compact form, this can be
expressed as:

∂U

∂t
+
−→∇ · E(U) = S(U) (7)

where E =
(
F, G

)
. Integrating (7) in a control volume or cell, Ω, and applying the

divergence theorem to the second term, we obtain:

d
dt

∫
Ω

U dΩ +
∮

∂Ω
E(U) · n̂ dl =

∫
Ω

S(U) dΩ (8)

where ∂Ω is the contour of the control volume and n̂ is the outgoing unit vector normal to
the Ω volume. By discretizing (8) in time and space, the basis of the numerical method in
finite volumes is given by:

Ωi
Un+1

i − Un
i

Δt
+

3

∑
k=1

(δE)k · n̂k lk =
3

∑
k=1

Sk (9)

where Ωi is the area of cell i, n is the current time level and the number of neighboring cells
is 3 because triangular cells are used in this work (see, for example, Figure 3). In addition,
the fluxes E are evaluated at cell boundaries:

(δE)k = Ej − Ei (10)

where Ej is the flux value at cell Ωj, and shares a wall k of length lk with cell Ωi with a flux
value of Ei.

Uj2

Uj3

Ui

Uj1

lk

nij1
nij2

nij3

Figure 3. Diagram of the cells in a two-dimensional case with triangular cells.
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Considering the hyperbolic character of system (7), the Jacobian matrix normal to the
flow direction, E, can be defined as:

Jn =
∂En

∂U
=

∂(E · n̂)

∂U
=

∂F

∂U
nx +

∂G

∂U
ny (11)

The local value of the Jacobian matrix (11), J̃n k, at wall k is

J̃n k = P̃k Λ̃k P̃−1
k (12)

where Λ̃k is the diagonal matrix whose non-zero elements are the eigenvalues of the system
λ̃m, and P̃

m is the matrix containing the eigenvectors of the system ẽm, providing a matrix
with three eigenvalues to the 2D model. The eigenvalues and eigenvectors of the Jacobian
matrix are:

λ̃1 = ũ · n̂ − c̃ , λ̃2 = ũ · n̂ , λ̃3 = ũ · n̂ + c̃ (13)

ẽ1 =

⎛
⎝ 1

ũ − c̃ nx
ṽ − c̃ ny

⎞
⎠ , ẽ2 =

⎛
⎝ 0
−c̃ ny
c̃ nx

⎞
⎠ , ẽ3 =

⎛
⎝ 1

ũ + c̃ nx
ṽ + c̃ ny

⎞
⎠ (14)

where ũ · n̂ = ũ nx + ṽ ny and c̃ is the celerity of the infinitesimal surface deformation
waves. The tilde variables represent an average state at each cell edge. Therefore, starting
from the expression (9), and using the eigenvalues and eigenvectors of the Jacobian matrix,
an updated expression at cell i is obtained:

Un+1
i = Un

i −
Δt
Ωi

3

∑
k=1

3

∑
m=1

[(
λ̃ − γ̃ẽ

)m
k lk

]n
(15)

The time step Δt is calculated dynamically throughout the simulation by:

Δt = CFL min
k,m

(
δxk

λ̃m
k

)
(16)

with 0 < CFL ≤ 1 to guarantee stability in the numerical scheme, where CFL is the
Courant–Friedrichs–Lewy number [47] and

δxk = min(χi, χj) (17)

where
χi =

Ωi
max

k
lk

(18)

Equation (15) is only solved in those cells where water is present and the flooded
boundary is not regulated but advances according to the flow dynamics. The method is
well designed to deal with this type of calculation ensuring accurate and robust results.

The time step depends, on one hand, on the dynamics of the problem to be solved
through λ̃m

k and, on the other hand, on the cell size chosen for the computational grid, given
by lk. Therefore, from (16), (17) and (18), it becomes clear that increasing the refinement of
the computational grid leads to smaller time steps, and therefore a higher computational
cost. For this reason, an unstructured mesh is used, in order not to restrict either the
accuracy of the results with a very coarse mesh over the whole domain or the time step Δt
with a very fine mesh [28].
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3. Study Case and Model Setup

3.1. Study Case

The studied reach of the Ebro River is located between the city of Zaragoza and the
Mequinenza Dam. It is more than 200 km long and covers 722 km2 of surface area. Along
the river there are a few gauging stations managed by the Ebro River Authority (CHE,
www.chebro.es, accessed on 1 March 2023), where the evolution of the flow and surface
level are continuously (fortnightly) recorded. Their locations are represented in Figure 4.

Figure 4. Representation of the 2D simulation domain of the Ebro River with the most important
cities and gauging stations of CHE. The labels correspond to the official names of the gauging stations.

The area is continuously suffering from the damage provoked by these events, which
have even flooded the A-1107 motorway and collapsed the regional highway (ARA-1) in
Villafranca de Ebro (www.heraldo.es/noticias/aragon/2018/04/12/crecidas-del-ebro-las-
ultimas-riadas-aragon-1234800-300.html, accessed on 1 March 2023) during the 2015 event
(see Figure 1). In addition, it is an area of great importance due to the presence of the
Mequinenza reservoir, which runs along about 75 km of the river, and the regulation of
its dam. The first 25 km of the studied reach is characterized by meanders and associated
with important inundation areas. The final part, on the other hand, is characterized by the
reservoir vessel where water is practically at rest.

The Mequinenza reservoir, whose satellite view can be seen in Figure 5, covers a
surface area of approximately 7540 hectares, with a maximum capacity of 1530 hm3 when
the surface level is 121 m.

The Mequinenza dam (see Figure 6) has a crest height of 124 m and a single spillway
with six gates located at an elevation of 106.5 m whose discharge limit is 11,000 m3/s. Data
on the reservoir and dam were provided by the Ebro River Authority. The gates at the
spillway are used to regulate the volume of water in the reservoir for various purposes,
but mainly to control floods and guarantee hydroelectric generation.

Figure 5. Satellite view of the final stretch of the Mequinenza reservoir. [Source: Mapquest].
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Figure 6. Front view of the Mequinenza dam. [Source: CHE].

3.2. Computational Model Setup

The configuration of the computational model is based on the following parts:

1. A digital terrain model (DTM);
2. a surface roughness map;
3. The creation of a triangular mesh;
4. Boundary conditions and initial conditions.

3.2.1. Topography: DTM

A raster digital terrain model with a resolution of 5 × 5 m provided by the IGN
(http://centrodedescargas.cnig.es/CentroDescargas/locale?request_locale=en, accessed
on 1 March 2023) and obtained by interpolating data from flights with LIDAR sensors in
2010 was used as a base. However, the used data do not contain a reliable representation of
the riverbed. Thus, this DTM is used only for floodplains, where a proper representation
of the terrain can be found, as seen Figure 7, while complementary information from
measured cross-sections is used to reconstruct the river bed, since the LIDAR provides a
uniform free surface at the river, as seen in Figure 7.

Elevation [m]

Figure 7. Raster representation with an elevation scale in meters of Galacho de la Alfranca and its
surroundings with a resolution of 5 × 5 m.

Reconstruction of the Riverbed from Sástago

To achieve a reliable riverbed, cross-sections of the river are taken at the end of the
Osera-Sástago DTM. These cross-sections, which are groups of coordinates (x, y, z), are

316



GeoHazards 2023, 4

duplicated along the riverbed up to the Chiprana area. Afterwards, the elevation of the
copied sections is corrected, since the terrain through which the river flows descends in
altitude. To do this, two points are taken, one at the beginning of the part to be reconstructed
and the other at the end. The difference between their elevations is calculated, and the
distance that separates them is a straight line. The quotient of these two values is an average
slope in the river segment, so that the elevation of each of the sections can be recalculated:

zij = z1j + m
√
(xij − x1j)2 + (yij − y1j)2 (19)

where the index i denotes the section number and the index j denotes the point within each
section. m denotes the average slope. This methodology is followed from Sástago to the
Mequinenza reservoir, where, since there are no sections to start from, it cannot be used.

Reconstruction of the Reservoir

River cross-sections cannot be used to reconstruct the bottom of the reservoir. There-
fore, to incorporate that information to the global DTM, geo-referenced historical maps prior
to the construction of the dam, also available on the IGN website (http://centrodedescargas.
cnig.es/CentroDescargas/locale?request_locale=en, accessed on 1 March 2023) were used.
Using their contour lines, new cross-sections are obtained formed by groups of five points
with coordinates (x, y, z), as shown in the example in Figure 8, which, after interpolation,
produces a DTM with the appropriate reservoir bed elevations. Figure 9 shows an image of
the historical map of part of the reservoir, comparing it with the current state. The historical
topographic map clearly shows how the Ebro riverbed ran under what is now covered by
the reservoir.

Figure 8. Examples of the sections used to interpolate the reservoir bed level.

The center points of each section, which were not placed on grade lines, were corrected
using Equation (19). The lowest elevation of the reservoir bottom, z = 60 m, was taken in
the first section next to the dam, and from there, the minimum elevation of each section
was raised. An example of the result is shown in Figure 10.
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(a) (b)

Figure 9. Comparison between two maps showing a part of the Mequinenza reservoir. (a) shows the
historical topographic map (Source: IGN) and (b) shows the same area photographed today (Source:
Google Maps).

Using the presented strategy, a channel in the reservoir region similar to the one shown
in Figure 11 is obtained, containing the information of the interpolated sections shown in
Figure 8. By doing this, a new DTM fo the bottom of the reservoir is obtained and can be
added to the global DTM.

(a) (b)

Figure 10. Comparative images of the DTM raster at the height of the Mequinenza dam. (a) shows
the IGN DTM with the reservoir at constant elevation 117.9 m. (b) shows the result of interpolating
the sections obtained from the old topographic maps.

Figure 11. Example of the result of interpolating the sections shown in Figure 8.
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3.2.2. Surface Roughness Map

Each computational grid cell is associated with a value of the Manning roughness
coefficient, n, which is assigned from a terrain roughness raster map provided by CHE.
This map covers the potential floodplain from Zaragoza to Escatrón, where the reservoir
starts and the dynamics are not as affected by roughness. Thus, the region covered by the
Mequinenza reservoir has a simpler roughness distribution reconstructed following the
criteria in the literature [44,48,49]. This distribution is shown in Table 1, and the whole
distribution map can be seen in Figure 12.

Table 1. Manning’s coefficient for different types of soil.

Type of Soil Manning’s Coefficient

Farm land 0.028
Riverbed 0.035

Urban area 0.05
River island 0.06

Figure 12. Manning coefficient distribution in the domain of the Ebro River.

3.2.3. Meshing

The numerical simulation is based on the discretization of the terrain into cells that
form the so-called computational grid. Relevant magnitudes are associated with each of
its cells during the simulation, such as bed elevation, water depth or velocity. The compu-
tational mesh has a triangular geometry and is spatially adaptive, i.e., the cell size varies
in space. The riverbed, the adjacent levees and, in general, all the areas to be represented
in detail require a much finer mesh. Less relevant areas or areas with no abrupt changes
in elevation can be discretized with larger cell sizes. Figure 13 shows an example of this,
where it can be seen that the cells close to the channel have smaller sizes than those of the
fields with more or less uniform elevation. In addition, a greater refinement of the mesh is
also observed at the levees.

3.2.4. Initial Condition

In river problems, the initial and boundary conditions are of great importance. In order
to perform a flooding event simulation, the initial condition must correspond to the steady
state state of the river flow before the flood event occurs. For this reason, the initial
condition comes from the convergence of the model to a steady flow condition, where the
entire river flows with a constant flow of the same value as the discharge at the initial
instant of the flood.
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(a) (b)

Figure 13. Real satellite view (a) (Source: Google Maps) and the meshing (b) of an area of Ebro
River domain.

3.3. Boundary Conditions

The boundary conditions provide information about how the flow enters and leaves the
domain. For the river inflow, the commonly used rating curve boundary condition is applied,
i.e., a time variation in discharge at the inlet section of the reach, provided by the gauging
station. On the other hand, for the downstream boundary conditions, river simulations
typically use a gauging curve. However, the domain under study ends at the Mequinenza
dam, so it is necessary to study the most appropriate outflow boundary conditions.

3.3.1. Upstream Boundary Conditions

In the present case, there are inlet sections: the main channel of the Ebro river and the
mouths of two tributary rivers (the Gallego River and the Huerva River). A hydrograph-
type boundary condition is imposed for all of them. The temporal evolution of the flow
imposed in each of the regions is obtained from data provided by CHE at gauging points.

3.3.2. Downstream Boundary Conditions

The boundary conditions considered to model the behavior of the dam are detailed below.

Time-Dependent Level

Considering that the flow is almost at rest when it reaches the reservoir, it can be
considered that the level in this region is practically uniform and constant [50]. The way
to use this boundary condition in our case will be to impose a constant downstream level
throughout the simulation, the value of which will depend on the dimensions of the flood
event under study.

Dam Spillway Condition

A weir boundary condition is implemented in this work as a function, Qout = f (H),
to model the dam outflow [51]. Considering certain simplifications, the outflow of a
trapezoidal weir follows the expression:

Qout =
2
3

√
2g Cd b H3/2

w +
8
15

√
2g tan(α/2) Cd H5/2

w (20)

where Hw = H − hCrest is the thickness of the sheet of water above the weir crest hCrest;
H is the level of the free surface (H = h + zb); α is twice the angle that the lateral sides
of the trapezoid make with the vertical; b is the width of the minor base of the trapezoid
(see Figure 14); and Cd = 0.611 [52]. Taking into account the shape of the gates of the
Mequinenza dam (see Figure 6), the latter case will be imposed on the output of our
problem. In this work, the spillway law is applied to the dam boundary condition as a
generic discharge law.
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b

Hw

/2 /2

(a) (b)

Figure 14. Frontal (a) and side (b) view of the weir boundary condition.

Depending on the value of Hw, different outflows through the spillway will be ob-
tained. When the level in the cross-section in contact with the weir is below the crest height,
there will be a zero outflow (Hw ≤ 0), while if the level is above (Hw > 0) the crest height,
the outflow will follow the expression (20). Thus, the flow function Qout = f (H) through
the weir is defined as follows:

Qout =

{
0 if Hw ≤ 0
2
3

√
2g Cd b H3/2

w if Hw > 0
(21)

4. Calibration and Optimization of the Computational Mesh

Although the numerical model used has been validated on numerous occasions and in
different domains [20,53], each model configuration requires a calibration process to adjust
parameters and correct data that may contain errors. Moreover, even if the model has been
calibrated and validated, this does not mean that it is optimal, leading to high computational
consumption if the discretization is excessively fine. Therefore, the configuration of the
model must be optimized to reduce computational consumption as much as possible.

4.1. Calibration of Mesh Refinement

In this work, an unstructured triangular mesh is used with the advantage of being
able to adapt to the topography. This mesh contains smaller cell sizes in those areas with
a need for detail, while coarser cells are used in areas where there are few or no relevant
terrain irregularities.

Each floodplain has its own topographical particularities that may be relevant not
only because of their geometrical characteristics, but also because of the effect they usually
have on flooding. There are always overtopped river banks in the first instants of a flood,
the modeling of which may have a lower impact than other more distant levees that retain
water for long periods of time until they are over passed by water. The detection of these
structures is crucial for a correct modeling of the terrain through refinement.

In order to choose the most appropriate mesh, satellite observations of the flood
extension are used. By comparing the flooded areas provided by the different computational
meshes, sensible zones where refinement was needed were detected. Thus, the cell size
distribution of the preliminary mesh, M1, was modified, leading to a refined mesh, M2.
The differences in resolution between the meshes are shown in Figure 15, where it can
be seen that in M1, some of the floodplain levees are not well represented. This results
in different flood extensions that can be seen in Figure 16, where the water depth for a
certain time is represented. Finally, in the same figure, those areas provided by the two
different meshes are compared to the observed flood envelope points. The preliminary
mesh does not retain the water as it should because of the coarse representation of the
floodplain irregularities.

To carry out this analysis, the 2018 discharge evolution was used as the inlet boundary
condition. As the reservoir has no influence in the flood prone area upstream, a simple
constant level is set to the reservoir as the downstream boundary condition.
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Figure 15. Comparison between the first computational mesh, M1 (left), and the refined mesh, M2
(right), in a certain area of the domain.

Figure 16. Comparison between the first computational mesh, M1 (left), and the refined mesh, M2
(right), at a certain area of the domain.

In Table 2, some data related to the meshes and their performance can be seen. In view
of these results, it can be concluded that, although M2 provides more accurate results, its
computational cost is unfeasible. For this reason, a second optimization step was carried
out and is detailed in next subsection.

Table 2. Summary of the preliminary mesh and the refined mesh.

Mesh Number of Cells Computational Cost (hours)

Preliminary mesh M1 351,799 9.52
Refined mesh M2 949,445 23.80

4.2. Optimization

When the mesh is calibrated to refine the results and provide more accurate results,
optimization should be performed to reduce the computational consumption without
reducing the accuracy of the results. In this work, the optimization of the model was
carried out by using internal boundary conditions that allow modeling some hydraulic
structures of the channel, such as dikes and motes, without the need for very fine com-
putational meshes [34,54]. In this way, a mesh with a smaller number of cells, M3 mesh,
was obtained, with a consequent reduction in computational consumption. The validation
of the optimization of the model is carried out by simulating the historical flood event of
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2018 and the comparison in the Gelsa gauging station (A263). The results of water level
and discharge temporal evolution are shown in Figures 17 and 18, where it can be seen
that M1 is much less accurate than M2 and M3, and these two are similar, although M3 is
somewhat less accurate than M2. However, this loss of accuracy is justified by the reduction
in computational consumption obtained, going from 23.80 h with mesh M2 to 12.48 h with
mesh M3, as can be seen in Table 3. Moreover, Table 4 shows the Root Mean Square Error
(RMSE) of the discharge values to demonstrate how accurate each mesh is. The Root Mean
Square Error is calculated by the following equation [55]:

RMSE =

√
∑N

n=1(x f ,n − xo,n)2

N
(22)

where x f ,n is the simulated value at time n, xo,n is the measured value at time n and N is
the number of measures at a point. Table 4 shows that the accuracy of M1 is lower than M2
and M3, and these two offer a very similar accuracy.

Figure 17. Discharge temporal evolution comparison between preliminary mesh, M1, refined mesh,
M2, and optimized mesh, M3, in Gelsa (A263).

Table 3. Summary of the calibrated mesh and the optimized mesh.

Mesh Number of Cells Computational Cost (hours)

Refined mesh M2 949,445 23.80
Optimized mesh M3 633,216 12.48

Table 4. Summary of the RMSE of the discharge for the three meshes.

Mesh RMSE

Preliminary mesh M1 164.65
Refined mesh M2 119.62

Optimized mesh M3 120.24

Finally, to provide information on the cell size distribution of the meshes, Figure 19
shows the cell area distribution for each of the analysed meshes (M1, M2 and M3). As the
three meshes share the maximum cell size, the x-axis of the figure is bound to 1000 m2,
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with the purpose of focusing on the refinement distribution. The M1 mesh contains less
refined elements than the other two, with only small cells in the river bed area. The most
refined mesh, M2, has a higher concentration of small cells, as the refinement affects not
only the river bed but also the levees in the floodplains. Finally, the figure shows how
the optimized mesh, M3, is in the middle of the two previously mentioned distributions.
The use of an internal boundary condition allows a coarser mesh in the floodplains without
loosing accuracy.

Figure 18. Water level temporal evolution comparison between preliminary mesh, M1, refined mesh,
M2, and optimized mesh, M3, in Gelsa (A263).

Figure 19. Cell size histogram for preliminary mesh, M1; refined mesh, M2; and optimized mesh, M3.

5. Numerical Results

A relevant historical event of flooding of the Ebro River which occurred in 2018 was
simulated with both analysed downstream boundary conditions: the constant level and
the dam model.
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2018 Event

The 2018 inlet hydrograph (see Figure 20), obtained from the Zaragoza gauging station
(A011), is set as the upstream boundary condition. As an initial condition, a steady flow
with a discharge value that coincides with the initial discharge of the inflow hydrograph is
established. A comparison between numerical results and real observation was performed
using data from the Gelsa gauging station (A263) (Figures 21 and 22) and the Mequinenza
gauging station (E003) (Figures 23 and 24). The results show that at the Gelsa gauging
station, both boundary conditions provide the same results since the reservoir does not
affect upstream areas such as Gelsa (see Figure 4), as the flow regime is very different from
the reservoir in the first half of the studied reach, as can be seen in Figures 21 and 22. At the
Mequinenza gauging station, the constant level boundary condition provides a discharge
temporal evolution more similar to the actual data than that given by the weir boundary
condition (see Figure 23). However, the water level temporal evolution provided by the
weir boundary condition is much more realistic than the results from the constant level
boundary condition, which cannot represent the temporal evolution of this value, as can be
seen in Figure 24.

Figure 20. Inlet hydrograph for the Ebro River flooding event in 2018 in Zaragoza (A011).

Figure 21. Discharge temporal evolution comparison between the models and observations at Gelsa
(A263) for the 2018 flooding event.
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Figure 22. Water level temporal evolution comparison between the models and observations at Gelsa
(A263) for the 2018 flooding event.

Figure 23. Discharge temporal evolution comparison between the models and observations at
Mequinenza (E003) for the 2018 flooding event.
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Figure 24. Water level temporal evolution comparison between the models and observations at
Mequinenza (E003) for the 2018 flooding event.

6. Conclusions

In this work, a finite volume numerical model, well designed for the resolution of
unsteady 2D SWE on flexible and adpatative triangular meshes, is used for the simulation
of flood events in a specific region of the Ebro River (Spain). This region, which contains a
very unique reservoir that changes the river dynamics, presents a challenge for the model
regarding dam modeling. For this reason, this work has been able not only to prove the
good performance of the model in a particular region, but also to explore new strategies for
dam simulations.

First, this study highlights the importance of the choice of computational model. This
implies the calibration and optimization of the computational mesh that is first transformed
from a coarse to a refined mesh, showing the importance of adaptive meshes and the
proper refinement at relevant topography points. From this calibration, it can be concluded
that the discretization in certain areas, such as the limits of riverbeds, is crucial to obtain
accurate results. However, this produces a very fine mesh with a high number of cells at a
high computational cost.

The application to the simulation of flood events in a reach of the Ebro river highlights
that the use of real data introduces some uncertainties related with coarse discretization of
the terrain measurements, non-detailed characterization of bed roughness, spurious points
on the discharge time series and other problems that may provoke errors in the results
regardless of the numerical scheme. Hence, a calibration processes must be carried out.
An optimal computational mesh has been generated and calibrated for the 2018 flooding
event in the Ebro River. Additionally, although real test cases introduce some errors due
to the lack of available data, the model is still able to provide very good results. Finally,
the benefits of an accurate and fast numerical method are not only desirable for flood
prediction, but also the generation of an appropriate computational mesh involving internal
boundary conditions. This strategy provides results with enough accuracy, allowing the
use of a coarser mesh where the small loss of accuracy obtained is justified by the 12 h of
computational savings. These strategies, together with an adequate representation of land
use maps, are demonstrated to be necessary in order to carry out computations leading to
accurate numerical results.
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The historical event was simulated using two different downstream boundary condi-
tions at the Mequinenza dam location. The predictions of discharge and water level at the
gauging locations improve when the outlet boundary condition is expressed as a discharge
rating curve. This work has highlighted the need for the modeling of hydraulic structures
integrated within simulation models instead of simpler boundary conditions. It is worth
noting that the downstream boundary condition has no influence on the first half of the
river reach, where the cross-sections are shallow and well connected to the floodplain;
however, in the second half of the reach, dominated by the long reservoir, a weir-type
boundary condition should be used if the temporal evolution of the level is of interest, thus
obtaining more realistic results. At this point, it should be noted that this work highlights
this need, but opens it up to improvements in terms of dam modeling, where more complex
discharge laws could be used and combined to represent bottom spillways, gates and other
hydraulic structures.

The numerical results obtained have been presented and compared with measure-
ments. It should be emphasized that the use of HPC technologies is vital when carrying
out simulations with large domains and long event durations. In this work, the results
for the Ebro River, containing a large domain and great number of computational cells,
were obtained using a GPU-parallelized well-balanced upwind numerical scheme which
simulates a hydrograph of 14.5 days in a little more than 12 h with a GPU NVIDIA GeForce
RTX 3070. Thus, it has been made feasible to reproduce such events on a real-time basis.
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Abstract: The change in land use and land cover in upstream watersheds will change the features of
drainage systems such that they will impact surface overflow and affect the infiltration capacity of a
land surface, which is one of the factors that contributes to flooding. The key objective of this study
is to identify vulnerable areas of flooding and to assess the causes of flooding using ground-based
measurement, remote sensing data, and GIS-based flood risk mapping approaches for the flood
hazard mapping of the Teunom watershed. The purposes of this investigation were to: (1) examine
the level and characteristics of land use and land cover changes that occurred in the area between
2009 and 2019; (2) determine the impact of land use and land cover changes on the water overflow
and infiltration capacity; and (3) produce flood risk maps for the Teunom sub-district. Landsat
imagery of 2009, 2013, and 2019; slope maps; and field measurement soil characteristics data were
utilized for this study. The results show a significant increase in the use of residential land, open
land, rice fields, and wetlands (water bodies) and different infiltration rates that contribute to the
variation of flood zone hazards. The Teunom watershed has a high and very high risk of ~11.98%
of the total area, a moderate risk of 56.24%, and a low and very low risk of ~31.79%. The Teunom
watershed generally has a high flood risk, with a total of ~68% of the area (moderate to very high
risk). There was a substantial reduction in forest land, agricultural land, and shrubs from 2009 to
2019. Therefore, the segmentation of flood-risk zones is essential for preparation in the region. The
study offers basic information about flood hazard areas for central governments, local governments,
NGOs, and communities to intervene in preparedness, responses, and flood mitigation and recovery
processes, respectively.

Keywords: infiltration capacity; land use–land cover; watershed; flood risk area; water runoff

1. Introduction

Frequent flood occurrence in a watershed area is not only related to upstream condi-
tions, such as land use and land cover change (LULCC) [1,2], but also to extreme climates
that lead to heavy rainfall in some areas of the Indonesia archipelago. Flood occurrence
due to environmental disturbance is becoming a concern in Indonesia and globally [3–5].
The main concern about the frequent flooding is the change in land use patterns due to the
increasing need for land for agriculture and other land uses. Therefore, information on the
hazard risk area due to LULCC is essential for Indonesia, which has recently experienced
extreme rain [6,7]. LULCC may impact flooding and riverbank damage during the rainy
season and reduce the water volume during the dry season in the area. The impact can be
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seen in the repetitive occurrence of flooding in Indonesia in the last decade [8], including in
the Teunom watershed, Aceh Province.

The Teunom watershed and surrounding areas experienced two floods in early January
of 2017 and 2016 [9], and there were four major floods, one of which was a flash flood. More
floods occurred in 2016, and then two floods occurred in 2012 and 2015 [10]. Meanwhile,
between 1999 and 2011, there was only one flood per year, on average, in the Teunom
watershed and its surroundings [11]. There was an economic value loss of IDR ~8 billion
due to the floods in 2016, where several public services did not function properly to some
extent, which impacted the economy in the area [12].

The fundamental causes of repetitive flooding in this area are the result of narrowing
river flows [11], sediment deposition [13], land use conversion [14], and microclimate due
to land use and land cover [10]. On the other hand, according to data from the Meteorology,
Climatology, and Geophysics Agency [11], there has been an increase in annual rainfall
of 0.3%, particularly in the last five years. Moreover, extreme weather due to increasing
sea surface temperatures and the confluence of Australian and Asian monsoons, together
with land use changes, are the causes of the increased rainfall in this area [15,16]; thus, the
carrying capacity of land and rivers is saturated, and water overflows cause flooding [17–19]

Floods are natural phenomena caused by natural events and human activities [20].
Floods have the potential to cause injury and environmental damage. There are several
causes of flooding due to anthropogenic activities, such as the extension of residential
areas, population growth, and land use and land cover change (LULCC), which impact
the hydrological cycle and water availability [20]. A result of these factors, there was the
increase in the level of infiltration and runoff [21,22]. Furthermore, the level of vegetation
cover affects the evaporation rate, thereby changing the humidity level and affecting cloud
formation [23]. Vegetation can have a significant effect on hydrological fluxes due to
variations in the physical characteristics of the land surface, soil, and vegetation, such as
the roughness, albedo, infiltration capacity, root depth, architectural resistance, leaf area
index (LAI), and stomatal conductance [24,25]. The nature and land cover affect the runoff,
infiltration, and groundwater recharge. The soil surface functions in the water cycle, where
rainfall is redistributed to evaporation, runoff, and soil infiltration [26].

The increase in urbanization resulting from the conversion of forest land into agricul-
tural land or settlements is a real change. The impact of increased deforestation on disposal
processes is relatively easy to identify. In the developed area, it is indicated that an increase
in the water-resistant area causes an increase in the rate of land flow [27]. This prevents the
natural holding capacity of water and changes the subsoil layer or groundwater movement,
leading to an increase in flood development and the volume of flood discharge [28].

The increase in the number of people and built-up patterns has caused alterations in
land use–land cover [29,30] and in overseeing the necessities on land in the Krueng Teunom
watershed. LULCC causes alterations in the natural drainage system [31], impacts surface
runoff [31], and affects infiltration capacity [31]. These factors are believed to contribute to
the frequent flooding in the Krueng Teunom watershed. Meanwhile, the level of available
vegetation cover and the absorption degree also change the rate of evapotranspiration [32].
These factors change the behavior and balance that occurs between water evaporation [33],
water recharge [34], and water distribution through rivers [35,36].

Vulnerability to flooding in the Krueng Teunom watershed is exacerbated by the
reduction in the extension of vegetation cover [10], including forests, which are essential in
stabilizing hydrological functions; collecting rainwater (overland runoff); and controlling
floods [37]. According to [38], more than 40% of forests have been cleared, which opens up
more space for the development of oil palm plantations and agriculture. Deforestation has
a strong relationship with changes in rainfall patterns in the area, and this has an impact
on the frequency of floods [39]. Many types of vegetation, including shrubs, have also been
utilized for agricultural extensification and the extension of housing areas [40], thereby
disrupting the balance of the regulation of runoff velocity and water interception [41].
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Some areas that were once covered by vegetation have developed into residential
areas due to the increase in the human population and the increase in infrastructure
building and roads connecting other infrastructures [29,42,43]. The problem that arises
due to urbanization and infrastructure development is creating an area or surface that is
impermeable to water [14,42]. Such a surface inhibits infiltration after it rains [43]. This
changes the water infiltration into the soil and causes an increase in surface overflow, which
often results in flooding [44–46].

Information on LULC, drainage patterns, distances from residential areas to water
surfaces, elevation, buffers, cultural practices, and attitudes is needed to identify flood-prone
areas. Reducing flood risk depends on the knowledge and understanding of the nature of
the available physical space and historical data. Therefore, modern techniques are needed in
flood mitigation. GIS-based and remote sensing data offer effective tools for processing this
information. Many studies on LULCC affect flooding [47–50]. Datasets from Landsat images
are then input into the GIS platform to create susceptibility maps. In [47], a flood vulnerability
study was conducted in Pordenone Province following major floods. The study confirmed
that flooding occurs due to increasing population growth and urbanization, reducing
the percentage of natural vegetation. In [51], a study was conducted in the Philippines,
concluding that mining with large land clearing, logging, and agricultural expansion using
the rip and burn method results in the denudation of watersheds, thereby weakening the
ability of the soil to prevent flash floods, while increased soil erosion is characterized by
the silting of the river [52]. According to [53], anthropogenic activities, such as increasing
residential areas, developing economic and supporting infrastructure in floodplains, and
decreasing water holding rates over land use changes, cause an increase in flood occurrence
and a decrease in available space.

Much of the information about frequent flooding in the Krueng Teunom watershed is
still based on assumptions. The absence of definite information based on research findings
on the sources of flooding is dependent on the accuracy and depth of available information
regarding the factors causing flooding, such as increasing LULCC and the identification of
flood-prone areas [54]. Many locations in this watershed are prone to flooding but have
not been well mapped. This study is very important because it utilizes GIS-based and
technology advances to produce data in flood hazard maps and identify all flood-prone
areas. Therefore, this study aims to examine the extent and characteristics of land cover and
land use changes, determine the infiltration capacity, and create a flood risk map for the
Krueng Teunom watershed. This information will be useful for policymakers and planners
in regional development planning. These results are also important in hazard zoning, early
warning, and flood evacuation systems

2. Study Area

The Teunom watershed is located in the Aceh Jaya regency of Aceh Province, Sumatra
Island, Indonesia, approximately ~190 km west of Banda Aceh, the capital of Aceh Province.
The Teunom watershed is the primary fluvial system in the Aceh Jaya area, with an area
of 310.62 km2 [10,55]; it is located at 4◦26′00.94′′ N to 4◦44′09.60′′ N and 95◦48′17.31′′ E to
95◦59′06.80′′ E; and its tip is near the border area of the Pidie regency (Figure 1).

The Krueng Teunom watershed is the main fluvial system in the Aceh Jaya, Aceh
Province, Sumatera Island, Indonesia (Figure 1). Krueng Teunom is a river that flows in
the Krueng Teunom watershed. The area comprises temperate tropical rainforests, with
an average annual temperature of 23 ◦C. The hottest month is February, with an average
temperature of 26 ◦C, and the coldest is January, which is approximately 22 ◦C. The average
annual rainfall is 4059 mm. The month with the highest rainfall is November, with an average
of 536 mm, and the month with the lowest rainfall is July, with an average of 205 mm [56].
The study area is located in the Teunom district, with a total area of 141 km2 and a total
population of 13,628 in 2021) [57].
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Figure 1. Map of the study area in the Krueng Teunom watershed.

3. Methods

3.1. Research Design

This research used multi-temporal images, topographic maps, soil data, and the Digital
Elevation Model (DEM) of the location to perform spatial analysis in a GIS-based mapping
tool. We selected different land use types, e.g., residential areas, agricultural land, rice fields,
forests, shrubs, and plantations, for the field infiltration sample tests to achieve the research
objectives. First, Krueng Teunom drainage data were obtained through identification using
30 m DEM using ArcGIS 10.3 spatial analysis. Furthermore, the watershed was described
and analyzed to determine the direction of flow and accumulation flow. This watershed
was further digitized and combined with satellite imagery to produce LULC maps and land
cover statistics. Thematic maps of land cover, soil type and distribution, and slope were
overlaid and analyzed to produce a flood risk map for the study area. Figure 2 provides
a summary of the methodology of data collection in the form of a flow chart, which was
used for data processing and presentation.

 
Figure 2. Flow model and research design.
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3.2. Data Types, Sources, and Analysis

The data used in this study are primary data and secondary data. The primary data
were collected from the field, such as infiltration measurements, sampling points using
the Global Positioning System (GPS), and direct field surveys to record land cover. The
secondary data were obtained from literature documents, journals, and strategic plans.

3.2.1. Data Sampling

Sampling refers to the population representative method with reference to stratified,
purposive, and simple random samples based on each characteristic or type of land cover.
The field data collection involved the incorporation of three sampling methods because
they were interdependent. The areas were grouped in reference to land cover and land use
type (Table 1). Land cover information was collected randomly, and purposive sampling
was used to identify locations for infiltration data collection.

Table 1. Description of land use types in the study area.

Land Cover Type Description

Water body Dams, pans, seasonal/permanent rivers, ponds, marshy
areas, reservoirs

Forest Primary forests, plantations, forest production areas,
mangroves, swamp forests, closed canopies

Bare lands Large tracks of uncultivated land with scattered trees used
for grazing and replanting the estate

Urban Villages, commercial/residential structures, paved
surfaces, roads

Croplands Planted crops, irrigated crops, perennial crops

Paddy field Irrigated paddy fields, seasonal paddy fields, swamp
paddy fields

Shrublands Trees/bushes with a height of five feet or less, open or
closed canopy

3.2.2. Remote Sensing Data

The 30 m spatial resolution and six-year interval of Landsat 7 Enhanced Thematic
Mapper Plus (ETM+) and Landsat 8 Operational Land Imager (OLI) contained eight
spectral bands, including a pan and thermal band of path 130, dan 131, and row 057,
which were utilized to create LULCC information for 2009, 2013, and 2019. This satellite
dataset was obtained through the United States Geological Survey (USGS) official website:
https://www.usgs.gov/ ( accessed on 20 April 2022) [58], and the rectified base map of
the study area was obtained from the Indonesian Geospatial Data Center [59]. Landsat
imagery selection was based on the cloudlessness, clarity, and availability of the selected
years of the study area.

3.2.3. DEM Data

DEM data were obtained from the Geospatial Information Board of Indonesia, BIG
DEMNAS [60]. The information extracted from DEM included the elevation, the river
pattern of the watershed, and water basins in the study area to help define the flow and
storage direction (Figure 3). The generated DEM map of the study area was then reclassified
to produce the slope angle and flow velocity, which were superimposed to create a flood
hazard map of the study area.
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Figure 3. DEM of the study area and surroundings of Teunom watershed.

3.2.4. Soil Data

The soil property information obtained from the Aceh Energy and Mineral Resources
Office included soil types, rock formation, and geology. The soil type that refers to soil
texture to identify the infiltration capacity of the Teunom watershed consists of clay, loamy
sand, sandy loam, and sand. Geologically, the Teunom area consists of tertiary sediment
and volcanoes as part of the pre-tertiary continental basement of Sumatera [61]. From the
land system point of view, the Teunom watershed consists of plains, turnways, alluvial
valleys, beaches, mountains, hills, swamps, and terraces; the land system is dominated
by alluvium of the young river, peat, and marine deposit, occupying ~62.56% of the area;
the rest consists of conglomerate, basalt, diorite, fine-grained tephra, and coarse-grained
tephra [62]. Each soil type is characterized by a different permeability, porosity, and
infiltration capacity and therefore has different effects on flooding. These properties are
essential to evaluating flood hazards in the study area.

3.2.5. Infiltration Data

Infiltrations data were collected from the field measurements using a double-ring
infiltrometer for different land cover types [63]. The calculation was based on the Horton
equation model [64]. Seven infiltration data collections were carried out in the study area
according to the type of land cover; each assessment of land cover was carried out at three
points randomly based on the availability of water and the accessibility of the study area.
The infiltration rate was calculated based on the type of land cover, which was tabulated
and analyzed using an infiltration curve based on the relationship between infiltration
capacity and time.

3.2.6. Land Use Change

The LULC area was calculated for the analysis, and outputs were compared based on
different classes. A supervised classification method with a maximum likelihood algorithm
was applied to Landsat imagery [49,65]. The overall Cohen’s Kappa classification accuracy
was 84.00%. The classified images of three other datasets were compared using cross-
tabulation to determine the qualitative and quantitative aspects of the changes in 2009,
2013, and 2019. These changes were analyzed based on changes in the area and the
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percentage, trend, and rate of change in 2009, 2013, and 2019. Statistics were tabulated and
used to calculate the percentages of trend changes using the following formula:

% of change =
difference in change × 100%

Total change

3.3. Creating Flood Risk Map

The flood risk map was created based on the information reclassified by the land cover
and land cover type, soil type, and slope of the study area to identify the spatial resolution
of land slopes and soil types [66]. A weighted overlay was employed to construct a flood
risk map. A weighted overlay is a spatial analysis method using the GIS tool. The process
is based on overlaying two or more base maps with certain weights to create a final map.
This method allows problems with many criteria to be solved to determine a location with
a particular potential using digital mapping.

3.3.1. Flood Risk Zoning Based on LULC

LULC plays a vital role in water percolation, the infiltration rate, and groundwater
recharge. The 2019 land cover map was created with seven land cover classes (Table 1). The
classes were then recategorized, weighted, and ranked based on their ability to hold water
that ultimately becomes flooded. Settlements were given the highest rating because human
intervention affects the soil structure and infiltration capacity through vegetation removal,
urbanization, and cultivation. Wetlands were rated the lowest because they act as water
absorbers during both dry and rainy seasons.

3.3.2. Flood Risk Zoning Based on Soil Type

Soil type and distribution are the main factors that control the quantity of waterlogging.
Different types of soil have the capacity to affect infiltration differently. Soil types were iden-
tified and reclassified based on their impact on flood risk. Areas with clay soil types were
rated as very risky because they have poor porosity and are less permeable, while sandy
soils were considered to have a low flood risk due to their porosity and high permeability.

3.3.3. Flood Risk Zoning Based on Slope

Slope is a significant factor in identifying flood-prone zones. The slope angle affects
the speed and frequency of runoff, as well as the rate of infiltration, in an area. On gentle
slopes, the runoff is slow; thus, accumulating large amounts of water after a precipitation
event tends to result in flooding, whereas on steep slopes, the runoff velocity is high, which
allows very little time for water to reside and thus a very small probability of flooding.

The Spatial Analyst Tool in ArcGIS was utilized to compute the slope angle of the
DEM. The slope angle was then reclassified to create five classes. The area of the 0.0–5.5%
slope was relatively flat and was considered to have the highest flood risk. Areas above
30% had the steepest slope and were considered to have the lowest flood risk. The resulting
class was then ranked depending on its effect on flooding.

4. Results and Discussion

4.1. Spatial and Temporal Land Cover Change

The results of the field data collection (Figure 4) show that the geomorphology of the
Krueng Teunom watershed is mostly a flat alluvial plain with a gentle slope. The results
show that 67% of the Krueng Teunom watershed is an area less than 100 m above sea level.
Only approximately 8% of this watershed is an area with an altitude between 250 and
400 m.
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Figure 4. Geomorphological map of the Teunom watershed (combination of field survey results and
geospatial data).

The results of the Landsat imagery of the Krueng Teunom watershed were classified
into seven main classes, namely, (1) water bodies, (2) forests, (3) open land, (4) settlements,
(5) agricultural/plantation land, (6) rice fields, and (7) shrubs. The land use map classifica-
tion was carried out for ten different years from 2009 to 2019 in three different timescales:
2009, 2013, and 2019 (Table 2). For verification, the multispectral classification was carried
out on Landsat images, Google maps, and field surveys. The result of the absolute change
in land use was obtained from the difference in the number of cells, and the percentage
change was calculated, as shown in Table 2.

Table 2. Land cover change data from 2009 to 2019.

No Land Cover
2009 2013 2019

km2 % km2 % km2 %

1. Water Body 6.61 2.13 6.46 2.08 11.01 3.54
2. Forest 57.61 18.55 63.80 20.54 54.51 17.55
3. Bare lands 0.37 0.12 0.63 0.20 2.56 0.82
4. Urban 2.59 0.83 4.04 1.30 5.55 1.79
5. Croplands 193.23 62.21 204.97 65.99 190.46 61.31
6. Paddy field 2.93 0.94 3.18 1.02 19.36 6.23
7. Shrublands 47.29 15.22 27.53 8.86 27.17 8.75

Total 310.67 100.00 310.67 100.00 310.67 100.00

The land use statistics for the Krueng Teunom watershed reveal changes in all land
uses in this area. This analysis result was achieved through the comparison of land use
between 2009 and 2019. Figure 5 shows the land use map obtained after classification.
Shrubland almost tripled after 2009, with an average increase of 0.21 km2 per year. Forests,
based on data in 2013, increased by 2%; then, in 2019, they decreased by approximately 3%,
indicating forest conversion for rice fields and residences due to population growth [67].
This also occurred in agricultural land cover, which decreased by 5% or approximately
14 km2 after 2013. The initial residential area of 2.59 km2 in 2009 increased to 5.55 km2 or
approximately 100% in 2019, with an average annual land use growth rate of 0.3 km2. Rice
fields, on the other hand, which were originally 2.93 km2 in 2009, increased to 19.36 km2 in
2019, with an average annual land use growth rate of 1.6 km2 per year. Meanwhile, the
water body, which, in 2009, was only 6.61 km2, increased by 11.01 km2, with an increase of
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0.4 km2 per year. If it is assumed that the growth rate of residential land use in the Krueng
Teunom area is constant at 0.3 km2 per year, then, in 2025, this area will occupy 4.77 km2,
which is approximately 1.5% of the total watershed area.

 

Figure 5. Spatial map of Krueng Teunom watershed land use from 2009 to 2019.

The results of the land cover analysis (Table 2) based on survey results combined
with geospatial data show that the Krueng Teunom watershed experienced significant
degradation when compared to geospatial data in 2009 and 2013 (Figure 6). The greatest
change occurred in the conversion of scrubland into rice fields due to the increase in
population. Scrubland conversion is easy to do in rice fields. Part of the forest land is
turned into water bodies in low-lying areas, while plantation land is used for settlement
expansion. As a result, the open land is expanding, causing the hydrological water capacity
to shrink. This can be seen from the increasing magnitude of water bodies due to silting as
a result of erosion from the watershed land.

Land cover characteristics changes are important to analyze the level of flood risk in
an area. This increase is linear with the increase in the residential area, which indicates an
increase in the number of residents [68]. This will indirectly increase the number of people
vulnerable to flooding. The exposure to flood risk in developing residential areas will
be accelerated by increasing spatially impermeable land and changes in natural drainage
channels [69]. This is due to the inhibition of water infiltration after a precipitation event,
which is a contributing factor to flooding.

The increase in population resulted in increased food consumption, resulting in an
increased use of agricultural land at the expense of forest land, shrubs and bare lands, most
of which function as flood plains [70]. During the flood event, most of the agricultural land
was covered by water, causing crop and economic losses. These events put the people living
in the area, which is their main source of livelihood, at risk of starvation. The continuous
plowing of agricultural land will also loosen the soil, thereby increasing the possibility
of riverbed sedimentation as the topsoil is carried away by water [71]. Sedimentation
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at the bottom of the river will raise the water level in the river, which also increases
flooding [10,71].

 

Figure 6. Results of land use analysis for the Krueng Teunom watershed in 2009, 2013, and 2019.

4.2. Impact of LULC on Runoff and Infiltration Capacity

The results of the infiltration experiments carried out in each cover class to determine
the infiltration capacity can be seen in Table 3. The infiltration experiments in each land
class were tested based on water availability and location access. Based on the experi-
mental results, the highest infiltration rate was found in sandy areas, while the lowest
infiltration rate was found in clay soil. This explains that the type of soil affects the rate of
infiltration [72].

Table 3. Results of infiltration experiments in the field.

No
Land

Classification
Water Level

Reading (cm)
Time (s)

Infiltration
Rate (cm/s)

Soil Type

1. Agriculture 0.2 240.12 0.000640 Sandy loam
2. Forest 0.2 240.12 0.000833 Clay
3. Bare lands 0.0 240.12 0.000000 Clay
4. Paddy field 0.3 360.00 0.000670 Clay
5. Urban 0.7 540.00 0.001200 Sand
6. Shrubs 0.1 420.12 0.000140 Loamy sand

In the field testing, it took approximately 4 min for water to completely infiltrate in
agricultural land, which is sandy loam soil, an average of 4 min in forest land, an average
of 7 min in bare lands, an average of 6 min in rice fields, an average of 9 min in residential
areas, and an average of 4 min in shrubs. For experiments conducted under clay, it took an
average of 5.67 min for water to seep into the soil in bare lands and 9 min in residential
areas. The results of the water absorption experiment on sandy clay soil types showed an
average of 4 min in agricultural land, 4 min in grasslands, and 9 min in residential areas,
respectively, while for sandy soil, it took an average of 9 min in residential areas.

The water level readings differed in the experiments carried out as a result of the
permeability of the material type located underground and the depth of the soil. Therefore,
there was an opportunity for increased flooding as a result of decreased soil infiltration
capacity and increased runoff. During precipitation, the absorption of water by the soil
can exceed the ability of the soil to absorb water; therefore, if soil infiltration decreases, the
possibility of flooding will occur more quickly.

In residential areas, the land is mostly paved and cemented so that it is impermeable
to surface water. The soil surface that is modified to be hard takes a lot of time to seep
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into the soil when it rains [73]. Most of the rainfall in residential zones flows in the form
of runoff, accumulates in low land areas, has an impact on water absorption, and causes
flooding [74]. According to [75], runoff velocity is highest in residential areas due to the
difficulty of water seeping into the ground; hence, most of the water uses canals to flow to
other low land, often at a high speed and in a great volume. As a result, the accumulation
of water in low land areas will cause flooding and erosion. This also occurs in rice fields,
where infiltration also has a low value due to soil compaction during land cultivation
and weeding. Generally, the paddy fields in the Krueng Teunom watershed are highly
mechanized agricultural lands with a higher soil density due to its low infiltration rate and
large runoff velocity.

Forest and scrubland areas were found to have high water infiltration rates and low
runoff rates. This is caused by the trees and leaves in this area reducing the runoff rate
of water when it rains such that the erosion effect due to the speed of erosion by water
is significantly reduced, so it has more time to absorb water [76]. On the other hand, the
level of infiltration in the shrubs was found to be moderate because the shrubs, which also
contain grass, also block water runoff and give the water time to be absorbed into the soil.

4.3. Flood Risk Zoning

Several key factors are considered to produce a flood risk zoning, especially phys-
ical parameters such as land cover characteristics; soil types that affect infiltration; and
topography (elevation and slope), hydrology (drainage), and rainfall. The following is a
description of flood hazard zoning based on the land cover distribution, elevation, and
slope of the watershed and soil type.

4.3.1. Based on Land Cover Distribution

Land cover characteristics not only affect land use but also affect soil infiltration and
soil stability [77]. Vegetation, such as forests, grasslands, shrubs, and even food crops
on agricultural land, has an impact on the capacity of the soil to reduce runoff, thereby
reducing the amount of flooding water on vacant land or land with a low infiltration rate,
i.e., impermeable land such as residential areas.

The analysis used to determine the risk of flooding due to land cover distribution used
a map of the distribution of land cover in 2019 (Table 2 and Figure 5). It was possible to
identify the inhabitation areas in residential areas, and they were least likely to be found in
swampy areas. In many cases, drainage canals and culverts in residential areas are usually
too small to accommodate rainwater, which causes water to overflow in residential areas.
This problem is exacerbated by the large amount of solid waste that is dumped in the open
by residents, clogging the drainage system. Land cover appearances and land use activities
thus only add to the flood risk posed by the infiltration capacity [78], as well as the nature
of the slopes on which the land use activities are carried out. The geology of the area under
each LULC category is due to its effect on soil infiltration and runoff [72,76]. Changes in
LULC, especially the removal of vegetation, increase the chance of the area being at risk of
flooding [79].

In accordance with the obtained results (Figure 7), it can be said that the reduction in
grassland/shrubs increases the water discharge. Therefore, grasslands/shrubs are equally
important in controlling river discharge when rainfall increases. Vegetation (forests and
shrubs) plays an important role in reducing peak water discharge loads [80]. Watersheds
with vegetation gradually restrain the speed of water discharge so that the peak load
increases gradually; on the other hand, watersheds without vegetation will increase the
discharge rate sharply and suddenly [81]. This shows that lands that have an effect on
reducing water infiltration, when precipitation occurs in the watershed, will be quickly
converted into runoff, which ends up in basins and rivers. Therefore, the accumulation
of water volume builds up quickly, while the capacity is small, causing water runoff and
flooding.
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(A) 

 

(B) 

Figure 7. Land cover characteristics in relation to flood risk occurrence: (A) land use–land cover
condition and (B) flood risk map.

4.3.2. Based on the Distribution of Elevation and Slope

The survey results explain that the Krueng Teunom watershed is geologically an allu-
vial deposition area, with the dominant sediment originating from the Miocene era (results
of a field survey). Geomorphologically (Table 4, Figures 1 and 8), the Krueng Teunom
watershed is a low-lying area with a slope of 0.0–5.5%, covering an area of approximately
~85% of the watershed area; the rest are upland and mountainous areas that have slopes
greater than 5.5%, occupying an area of ~14%. In lowland areas, ~67% of the total area is
rice fields and agriculture, and the rest is plantation areas and a small portion of forests
and water bodies.

Table 4. Classification of the slope of the Krueng Teunom watershed and its coverage area.

No Slope Angle Area (km2) % Area

1. 0.0–1.2 132.194 42.56
2. 1.2–3.0 105.944 34.11
3. 3.0–5.5 27.665 8.91
4. 5.5–10.3 33.030 10.63
5. 10.3–30.0 11.780 3.79
6. >30.0 0.001 0.00

Total 310.620 100.00

The results of the topographic map analysis show that most of the Krueng Teunom
watershed area is a sloping plain with a very high risk of flooding in the event of inundation
due to rain, while steep slopes have a small area, so they have a very small risk of flooding
because the overflow water moves at a relatively high speed. The rest are areas of moderate
steepness that have a moderate risk of flooding.

The slope map in this study was compiled from the DEM of the Krueng Teunom
watershed. The class of each slope was graded from a low-risk class to high-risk class.
Classes with steep slope values were rated as being at a low risk of flooding. Such areas do
not allow for the accumulation of water build-up, which, in turn, causes waterlogging [82].
The greatest flood risks are in areas that are flat; have soils with a low infiltration capacity,
such as clay and loam; are poorly drained; do not have vegetation; and have land use
activities within them that prevent percolation, especially in residential areas (Figure 8).
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(A) (B) 

Figure 8. Topographic map (elevation and slope) of Krueng Teunom and its relation to flood disasters:
(A) elevation and slope map and (B) flood risk map.

4.3.3. Based on Soil Type Distribution

The soil classification in this study was based on the type of surface soil in the Krueng
Teunom watershed, which is categorized into four types, namely, clay, sandy clay, loamy
sand, and sand (Table 5). Meanwhile, the distribution of the soil types can be seen in
Figure 9. The classes of soil types were classified into three main classes of flood risk levels.
A high value was assigned the number “3”, while the type of soil with the least possibility
of flooding was given a rating of “1”.

Table 5. Classification of soil types and area of cover.

No Soil Type Soil Flood Risk Area (km2) % Area

1 Clay High 20.075 42.56
2 Loamy sand High 28.167 34.11
3 Clay Low 56.515 8.91
4 Sandy loam Moderate 197.452 0.63
5 Clay Very high 2.650 3.79
6 Sand Very high 5.757 0.00

Total 310.62 100.00

 
(A) 

 
(B) 

Figure 9. Soil type map (A) and soil flood risk map (B) of Krueng Teunom watershed.

Soil texture greatly affects the level of flood risk. Sandy soil types produce high
infiltration and permit water to pass through faster than other soil types. Sandy soils have
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soil particles and large soil pores, so they are able to absorb water faster and, thus, runoff is
small, while the type of clay, besides having fine particles, is also less permeable as a result
of less soil absorption and a large runoff, so it accumulates water for a longer period of time.
This type of soil restrains the rate of water infiltration into the soil such that it retains water,
and the implication is that it is vulnerable and more likely to be at risk of flooding. Other
important factors when evaluating the impact of soil type on flooding are soil structure
and infiltration capacity. Therefore, different soil types have different infiltration capacities;
if the infiltration capacity is low, then the risk of flooding is more likely to occur [83].

4.4. Flood Risk Map

The flood risk area map was generated from a combination of thematic maps overlaid
using spatial analysis in ArcGIS. The resulting outputs were four flood risk classes from
low to very high (Table 6 and Figure 10). The results of the analysis showed that the
high-flood-risk zone covers the widest area. The very-high-risk zone is concentrated on the
south side of the area and in the coastal area. These areas are the main residential areas
according to the land use map classification (Figure 7). These areas are mostly characterized
by clay with flat elevations and gentle slopes (Table 7). This risk area is also located along
the coastline, facing the risk of coastal flooding due to its proximity to the sea. Most areas
of agricultural land and grasslands are also included in the high-risk zone of flooding.

Table 6. Classification of flood risk and area of land cover.

No Risk Classification km2 % Area

1 Very Low 29.758 9.58
2 Low 68.97 22.21
3 Moderate 174.69 56.24
4 High 21.64 6.97
5 Very High 15.56 5.01

310.62 100.00

Figure 10. Overlaid flood risk map results from the overall analysis.
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Table 7. Flood risk class based on different slopes of Krueng Teunom watershed and its coverage area.

No Flood Risk Slope (%) Area (km2) % Area

1 Very high 0.0–1.2 132.12 42.56
2 Very high 1.2–3.0 105.88 34.11
3 High 3.1–5.0 27.65 8.91
4 Moderate 5.5–10.3 33.01 10.63
5 Low 10.3–30.0 11.77 3.79
6 Very Low >30.0 0.00 0.00

Total 310.43 100.00

5. Conclusions

The expansion of residential land and changes in open land, paddy fields, and wet-
lands (bodies of water) due to unbalanced land use has led to an increase in the incidence
of flooding due to soil saturation and affects the infiltration capacity of the soil. Changes
in land use also change the water runoff and river discharge due to siltation on the river
and water body. The spatial analysis results of land use, soil type, and slope indicated
that the Teunom watershed has a high and very high risk of ~11.98% of the total area, a
moderate risk of 56.24%, and a low and very low risk of ~31.79% of the total area. Thus, the
Teunom watershed generally has a high flood risk, which makes the overall risk of flooding
in the area moderate to very high, with a total of ~68% of the total area. Therefore, the
segmentation of flood-risk zones is essential for development preparation in the study area.
This study offers necessary information about flood hazard areas for central governments,
local governments, NGOs, and communities to intervene in preparedness, responses, and
flood mitigation and recovery processes if flooding occurs.
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Abstract: The re-mobilization of volcaniclastic material poses a hazard factor which, although it
decreases with time since the last eruption, remains present in the hydrographic basins of volcanic
areas. Herein, we present the results of the numerical modelling of erosive phenomena of volcanic
deposits, as well as of flooding in the volcanic area. The proposed approach includes runoff estimation,
land use analysis, and the application of hydraulic and erosion modelling. It exploits the Iber software,
a widely used and validated model for rainfall-runoff, river flooding, and erosion and sediment
transport modelling. The methodology was applied to the Island of Vulcano (Italy), known for
the erosion phenomena that affect the slopes of one of its volcanic cones (La Fossa cone). The
rainfall excess was calculated using a 19-year dataset of hourly precipitations, and the curve number
expressed by the information on soil cover in the area, derived from the land cover and land use
analysis. The erosion and flow models were performed considering different rainfall scenarios.
Results show a particularly strong erosion, with thicknesses greater than 0.4 m. This is consistent
with field observations, in particular with some detailed data collected both after intense events and
by long-term observation. Results of the hydraulic simulations show that moderate and torrential
rainfall scenarios can lead to flood levels between 0.2 and 0.6 m, which mostly affect the harbours
located in the island’s inhabited area.

Keywords: erosion modelling; floods modelling; numerical models; Iber software; volcaniclastic
deposits; floods hazard; Island of Vulcano; Aeolian Archipelago; geomorphological hazards

1. Introduction

Erosion, transport, and re-deposition of volcaniclastic deposits depend on the persis-
tence of non-equilibrium slope conditions after environmental disturbance due to volcanic
eruption [1–3]. Volcanic activity, and in particular explosive eruptions, modifies boundary
conditions of fluvial systems by depositing large volumes of erodible fragmental material,
thus increasing erosion rate and drainage mass (water and sediment) flux [4–8]. Vol-
caniclastic remobilization depends on different factors, including topography, land cover,
and rainfall conditions, as well as grain size and thickness of the deposits, stratigraphic
architecture, and spatial distribution of source material [9–12].
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Herein, we present the results of the numerical modelling of erosive phenomena of
volcanic deposits, as well as of flooding in the volcanic area. The approach includes the
analysis of land use, in order to define the characteristics of water infiltration and runoff; a
hydrological study for the analysis of precipitation data and the generation of rain intensity
scenarios; and the implementation of 2D hydrodynamic and erosion simulations with the
Iber software [13]. This model consists of five modules, among which the hydrodynamic
and the sediment-transport ones were used in the present work. The hydrodynamic module
solves the two-dimensional depth-averaged Shallow Water Equations, and is applied for
unsteady flow computations. The sediment-transport module, which solves the 2D Exner
equation, is used here to compute the bed elevation evolution due to the erosion process.

With the aim of modelling erosive processes and flooding phenomena in volcanic areas,
the proposed methodology was applied to the Island of Vulcano, in the Aeolian Archipelago
(Italy; Figure 1), where erosion and transport of volcaniclastic material have been both
described as an ongoing process [14–16] and identified in the geological record [17]. The
island, in fact, is prone to recurrent flooding phenomena that occur mainly at the end of
summer and in early autumn, which determine the erosion and redeposition on the alluvial
plain of volcanic material coming from the cone. These floods affect the inhabited area of
the island, generating particular inconveniences to tourist activity. The hypothesis of this
work is that a comprehensive methodological approach, which combines the analysis of
land use, the geological characteristics of the material, and the hydrological and hydraulic
study, allows us to calculate the erosion rates and the flow rates in order to provide concrete
information on the most critical points of the volcanic building, and then to plan adequate
hydraulic works to minimise the damage caused by moderate and intense weather events.

 

Figure 1. Orthophotograph superimposed on the shadow model of the Island of Vulcano (data
derived from PLÉIADES-1 constellation). The main geographic and geological features of the island
are reported. In the inset, the location of the Island of Vulcano is reported, as well as the main
geographic feature cited in the text.
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Field constraints to the numerical simulations were derived from remote and field
observations, and in particular soon after the 14 September 2008 erosion event, when a
mud and debris flow from the NW flank of the La Fossa cone invaded the Vulcano Porto
village (located immediately downstream of the cone).

2. Study Area

The Island of Vulcano (38◦24′ N, 14◦58′ E), together with Stromboli and Lipari, is one
of the active volcanic islands of the Aeolian Archipelago (southern Italy), and it is composed
of several volcanic edifices that have overlapped in time and space since 120 ka [18]. The
most recent volcano, the La Fossa cone (Figure 1), is a 391 m high active composite cone
located within the La Fossa Caldera, whose initial activity is dated at 5.5 ka [19]. The
last eruption took place in 1888–1890 [20], and this is commonly taken as the prototype
of Vulcanian-type eruptions [21]. The summit area includes the present-day crater and
the older crater structures, whereas the cone flanks are dominated by sheet or in-channel
erosion, with the exception of the western and northern sectors, which are characterised by
rotational sliding [16,22]. The northern sector is characterised by steep slopes, fracturing,
intense fumarolic activity and hydrothermal rock alteration in the proximity of two eccentric
vents [18,23,24]. The Vulcano Porto plain is a flat area (slope < 5◦) just north of La Fossa cone,
bounded by the La Fossa Caldera rim to the west. The area was filled with debris resulting
from recent eruptions (11th century—1890 AD, [25]), both as a primary transport and an
erosion-transport-redeposition phenomenon [17,26]. The debris supply to the Vulcano
Porto plain derived directly from the N side of the cone, but also from the Palizzi valley,
which drains the southern and western slopes of the La Fossa cone. After observing the
erosive processes following the 1888–90 eruption, De Fiore [27] reported that about 50 m of
the slope were eroded between 1916 and 1921 [17]. The isthmus between Vulcanello and the
Vulcano Porto plain (Figure 1) began to develop after the post-12th century emplacement of
the Vulcanello lava platform [28,29]; it emerged from the sea due to both coastal processes
and volcaniclastic sediment inputs from the La Fossa cone through the Vulcano Porto plain
and the Palizzi Valley [30].

The lithology of the northern part of the Island of Vulcano comprises fine-grained
ashes, coarse-grained ashes and sands, lava flows, and minor coarse-grained lapilli and
bomb deposits, mainly related to proximal sedimentation or sporadic sub-Plinian fall
deposits (Figure 2; [17,26,31]). Among the primary deposits, the La Fossa cone emitted the
Tufi Varicolori (Varicoloured Tuffs) after the so-called eruption of the Breccia di Commenda
(1243–1304 AD; [32,33]). These are very fine ash layers, rich in alteration minerals [34],
which have a very low permeability [16]. These deposits are tens of metres thick in the
summit area of the La Fossa cone, while they are a few tens of centimetres thick in the plains
surrounding the cone [17,32]. Above these deposits, alternations of loose fine and coarse
ashes were deposited, attributed to the explosive activity that took place between the 15th
and 19th centuries [17,25]. These deposits have a higher permeability than the underlying
ones, making them more erodible and, therefore, involved in the phenomenon of material
remobilization by rainwater [14,17,34]. Transport events of volcaniclastic material from the
cone flanks to the surrounding plains are observed every year in correspondence with the
most intense/lasting rain events. These events have been described by Ferrucci et al. [14] as
erosion-dominated events, with the generation of small volume debris flows that transfer
loose material downslope, producing a denudation of the substratum upslope (made up
of Varicoloured Tuffs), on which a stable rill network develops. Recently, the works of
Baumann et al. [35] and Gattuso et al. [36] have focused on the characterization of materials
and on hazard assessment related to syn- and post-eruptive debris flows. These works take
into consideration the triggering and transport of material deriving from future eruptions,
taking into account short and long-lasting eruptive scenarios deriving from Biass et al. [37],
but do not consider the phenomena of erosion and flooding that occur during inter-eruptive
periods, such as that post-1890.
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Typical semi-arid Mediterranean conditions characterise the climate of the Island
of Vulcano. Mean annual precipitation reaches 602 mm, mostly concentrated in autumn
and winter. On average, 69 rainy days per year are recorded on the island. During
late spring and summer seasons, dry conditions prevail, although rare and short-lived
thunderstorms can occur. The mean yearly temperature is 18.3 ◦C, with the lowest and the
highest temperatures in January (mean 12.2 ◦C) and August (mean 27.2 ◦C), respectively
(Lo Cascio and Navarra 1997). The vegetation cover of the studied sector of the La Fossa
cone decreases up-slope, and above 100–120 m a.s.l., a bare surface prevails [38].

The effect of climate change on the rainfall trend and its impact on the environment
has been under study for several decades now. Signals that extreme events have had an
important influence on the modification of rainfall properties in Sicily over the last century
were investigated by Arnone et al. [39]. These authors found that, in accordance with the
trends recognised in the Mediterranean ecosystem, a significant increase in short duration
precipitation is affecting Sicily. Their results show an increase in the number of events per
year that can be classified as heavy-torrential rainfall, in spite of light precipitation, which
is decreasing in annual occurrence. These results have very important implications on the
hydraulic structure of small basins and small areas, not only in terms of the repercussions
they can have on flood phenomena, but also on the erosion processes of particularly
unstable areas covered by loose material.

 

Figure 2. Litho-technical map of the northern side of the Island of Vulcano. Lithology description
and boundaries are derived from the geological map of De Astis et al. [31], Di Traglia et al. [17],
and Fusillo et al. [29], while litho-technical characterization is derived from Madonia et al. [16] and
Tommasi et al. [22].

3. Materials and Methods

The methodology proposed for the analysis involves several phases:

1. The analysis of the land cover and land use of the northern sector of the Island
of Vulcano to identify areas with different coverage, which correspond to different
flow/infiltration coefficients;

2. Analysis of bibliographic data regarding the characterization of the material, which is
useful for defining the erosion parameters of the deposits;
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3. Analysis of rainfall data, collected at the nearest available meteorological station,
located at Leni (Salina Island, 15 km NW of Vulcano), by the Agrometeorological
Information Service of Sicily (SIAS) [40];

4. Hydrological study for rainfall excess calculation and definition of rainfall scenarios;
5. Numerical simulations of runoff and erosion scenarios with the Iber 3.2.0 software

(Figure 3).

 
Figure 3. Flow chart of the adopted method.

3.1. Land Use Analysis

PLÉIADES-1 high-resolution optical imagery (multispectral data with a resolution
of 1 m × 1 m) and Digital Surface Model (DSM, with a resolution of 1 × 1 pixel), which
was derived from stereoscopic reconstruction (tri-stereo mode; see Bagnardi et al. [41]),
was collected on 12 June 2020 and used to constrain the land use map. The optical image
is 100% cloud-free, with a coverage of 20.8 ca. km2. Classes have been mainly derived
from the second level classes of the 2018 CORINE Land Cover project (CLC, ISPRA-Istituto
Superiore per la Protezione e la Ricerca Ambientale database), with a general overview of
the third and fourth level classes, also taking into account the pre-existent Carta Tecnica
Numerica 1:2000 (CTN CART2000, Sicilia Region database) and the updated 2021 Open
Street Maps database. The land use mapping procedure was carried out manually, using
the 1:2000 scale.

The Island of Vulcano is characterised by different land uses, divided into five macro
categories based on the degree of anthropisation and type of land management: artificial
areas, agricultural areas, wooded and semi-natural vegetated areas, semi-natural not
vegetated areas, and wet areas. Artificial areas include buildings, public and private
adjacent areas, and roads (i.e., primary and secondary roads, helipads, and harbours).
Agricultural areas consist of arable crops (i.e., arable crops in irrigated or non-irrigated
areas, set-aside lands in irrigated or non-irrigated areas), agricultural woody crops (i.e.,
olive groves, vineyards, and orchards) mainly non-terraced, heterogeneous agricultural
areas (i.e., annual crops associated with permanent crops, vegetable gardens, agricultural
areas with large natural spaces), and permanent lawns (i.e., surfaces with herbaceous
vegetation, characterised by spontaneous grassing and commonly not worked). Wooded
and semi-natural vegetated areas include woods (i.e., eucalyptus and pine, for recent
reforestation; holm oak, heather, honeysuckle, manna ash, and strawberry trees for native
forests), and areas with herbaceous and shrubby vegetation (i.e., natural pastures and
grasslands, herbaceous and shrubby vegetation evolving, Mediterranean bushes). Semi-
natural non-vegetated areas include areas with poor or absent vegetation (i.e., cliffs and
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rocks with poor or absent vegetation, dunes, sands). Finally, wet areas consist of wetlands
(i.e., vegetation dominated by reeds/rushes).

3.2. Hydrological Study for Rainfall Scenarios Definition

The hydrological study was conducted to calculate the rainfall excess on the island,
and, thus, to estimate surface runoff, based on a dataset populated by 19 years of hourly
total rainfall data provided by the Agrometeorological Information Service of Sicily (SIAS).
The methodology adopted follows the Soil Conservation Service—Curve Number (SCS-CN)
approach. This method was proposed for the first time in 1956 by the U.S. Department of
Agriculture in the National Engineering Handbook of Soil Conservation Service (see [42]); it
is a conceptual method widely used in many hydrologic applications for runoff evaluation.
The Curve Number value plays a fundamental role in the runoff evaluation, since it
accounts for infiltration losses. The SCS-CN method, originally elaborated to predict runoff
volumes in small agricultural watersheds [43], was developed well beyond its original scope
and was adopted for different river basins’ characteristics and climate conditions [44–47].
This approach has been taken as a procedure by many users in numerous hydrological
applications for design flood estimation, and/or for runoff evaluation for a particular storm
event [48]. More details about the theoretical background are given in Pilgrim et al. [49].

Rainfall excess Q (Equation (1)) is computed as a function of the total rainfall p; initial
abstraction Ia, commonly assumed as in Equation (2), which includes the interception
storage, the early infiltration and the surface depression storage; and sorptivity S, which is
the maximum potential retention of the soil, given by Equation (3):

Q =
(p − Ia)

2

p − Ia + S
(1)

Ia = 0.2 S (2)

S = S0

(
100
CN

− 1
)

(3)

where S0 is a scale factor fixed to the value 254 mm, while CN depends on land use,
hydrological soil type, and antecedent soil moisture condition (AMC). Generally, the AMC
class is evaluated using the rainfall amount in the five days preceding the storm [50]; in
this study, a normal condition of AMC was adopted, which, together with the predominant
soil characteristics on the island (see Section 4.1. Land use), have provided an average CN
value of 80.

Figure 4 shows the maximum annual rainfall intensities extracted from the 19-year
(from 1 January 2003 to 28 August 2021) precipitation dataset.

 

Figure 4. Maximum annual values of rainfall intensity.

Arnone et al. [39], in their statistical analysis of changes in rainfall characteristics in
Sicily, classify daily rainfall into three categories on the basis of annual rainfall intensities
and their frequencies, i.e., light precipitation (0.1/4 mm d−1), moderate precipitation
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(4/20 mm d−1), and heavy-torrential precipitation (>20 mm d−1). Their observations
suggest that light precipitation has a greater annual occurrence, with an average frequency
of 60% over the entire time window; moderate and heavy-torrential rainfall have an average
frequency of 30% and 10%, respectively. The analysis of the data set used in this study
confirms the trend identified by Arnone et al. [39], with the average frequency of rainfall
annual occurrence distributed as follows: 55% for light precipitation, 35% for moderate
precipitation, and 10% for heavy-torrential precipitation.

To analyse the effects of precipitation on the erosion mechanism and runoff acting
on the island, moderate and heavy-torrential precipitation were simulated. The hydro-
logical inputs for the two scenarios correspond to the average precipitation values, ex-
tracted from our rainfall dataset for each of the two categories, and these are: moderate,
13.8 mm d−1, and heavy-torrential, 32.4 mm d−1. In the study of extreme rainfall carried
out by Arnone et al. [39], historical series exhibit increasing trends for short durations. In
particular, a positive trend is observed for durations between 1 and 6 h. To account for
these observations on historical data, an average duration of 3 h was chosen in this work
for the simulations of the moderate and torrential scenarios.

3.3. Hydraulic and Erosion Modelling with the Iber Software

The erosion process that intervenes on the northwestern sector of the La Fossa cone
has been simulated with the Iber software [51]. This model has been widely used and
validated in previous studies on rainfall-runoff modelling [52], numerical modelling of
river flooding [49], and calibration of estuarine hydrodynamic models [53]. It has also been
calibrated for the formulation of sediment transport processes [54], and has recently been
applied in the analysis of erosion and sediment transport on the Island of Stromboli, located
~50 km NE from the Island of Vulcano [55], as a consequence of the wildfires induced by the
3 July 2019 explosion [56]. This critical sector of the La Fossa cone is not only involved in
strong erosion processes and downstream material transport [14], but it is also crossed by a
trail towards the top of the cone, which is a fundamental infrastructure for field observation
and the maintenance of the monitoring stations located in the crater area [57].

The sediment-transport module, applied here for erosion calculation, solves the non-
cohesive sediment non-stationary transport equations that include the bedload transport
and the suspended sediment transport.

The bed level variation is calculated by applying the Exner sediment conservation
equation:

(1 − p)
δZb
δt

+
δqsb,x

δx
+

δqsb,y

δy
= D − E (4)

where p is the porosity of the sediment’s bed layer, Zb is the bed elevation, qsb,x and qsb,y
are the two sediment flux components, and D − E is the difference between the bedload
discharge and the suspended load discharge. In the first part of this work, we focused
on simulations of the bed erosion, so that the sediment-rise term of the equation was not
considered, and the term E in Equation (4) was discarded.

The bedload is calculated using the correction to the original Meyer–Peter and Müller [58]
empirical formula, proposed by Wong [59] and Wong and Parker [60]:

q∗sb = 3.97·(τ∗
bs − τ∗

c )
3
2 (5)

where q∗sb is the solid flow rate, τ∗
bs is the dimensionless grain stress, and τ∗

c is the dimen-
sionless critical bed stress. In this work, to take into account that the bed is not flat, another
correction is included to consider the effect of gravity in the case of a high slope bed. To
this end, Equation (5) is used, substituting the critical and bed stress by effective stresses
and calculating the sediment discharge as a function of the fluid’s stress and the bed slope.

In order to solve the sediment conservation equation, the Iber’s sediment-transport
module uses the velocity and depth fields calculated by the hydrodynamic module which
numerically simulates the non-steady, turbulent-free surface flow, and then solves the
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depth-averaged shallow water equation (SWE) using an explicit unstructured finite-volume
solver. The principal assumption of this module is the hypothesis that a hydrostatic pressure
distribution and a uniform depth-velocity profile will allow us to neglect the dispersion
terms in the SWE equation, since they are difficult to calculate in a depth-averaged model.
The first hypothesis is reasonably fulfilled in open channel flows, and the second one
complies in rivers and open channels, providing that there are no stratification processes.
This module is also used here for the second part of this work, to compute flood levels in
the downstream area of the volcano, generated as a consequence of different precipitation
scenarios. Within this module, the bottom friction plays a fundamental role, since it
produces a double effect on the resolution of shallow water equations: it generates a friction
force that opposes the average velocity of the flow and affects the generation of turbulence.
For this reason, the fundamental parameter to be calibrated for the application of this
module is the Manning coefficient. The assignment of the appropriate Manning coefficients
was made on the basis of the soil cover analysis described above. More details on the
methodology applied for the realisation of the hydraulic simulations can be found in the
article by Bonasia et al. [61].

In order to study the effects of erosion on the northern flank of the volcano cone, the
computational domain (shown in the supplementary material) was constructed using the
digital surface-type elevation model with 5 m resolution, derived from airborne LIDAR
data which were provided by Ministry of Environment and Protection of Land and Sea
(MATTM; [62] accessed on 22 November 2019).

The domain was discretised with an unstructured triangular mesh of 351,252 elements,
with a 2 m mesh size, assigned to the surface. Various iterative tests were implemented to
meet the optimal cell size dimension, in order to return, at the convergence of the simulation,
the lowest number of residuals, i.e., a lower deviation of the equation’s numerical solution
from its exact value.

The surface roughness was characterised by the attribution of two Manning’s coef-
ficients, corresponding to rocks (0.015) and volcanic ashes (0.023). The distribution of
these coefficients, shown in a map in the supplementary materials, was chosen mainly
on the basis of the lithological characteristics of the area, in order to make a more precise
distinction between less and more erodible areas. An initial condition of water depth equal
to zero was imposed to the domain, since there are no rivers on the island.

First of all, the intense precipitation event that occurred on 14 September 2008 was
simulated, the hyetograph of which, used as hydrological input, is shown in Figure 5.
Numerical parameters and grain properties for the bed shear stress and erosion calculation
are shown in Table 1. Since the rainfall during this event lasted 22 h, a simulation time
of 24 h (86,400 s) was chosen in order to drain all the rain from the study area. The
coarse-grained ashes and sands correspond to the volcaniclastic deposits from eruptions
between the 15th and 19th centuries [17] (Figure 5), characterised by Baumann et al. [35]
and Tommasi et al. [22].

 

Figure 5. Rainfall intensity distribution on 14 September 2008.
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Table 1. Numerical and sediment parameters for sediment transport simulations.

Parameter Value

Maximum simulation time (s) 86,400
Numerical scheme First order

Courant–Friedrichs–Lewy number 0.45
Wet–dry limit 0.01 m

Grain diameter d50 (m) 0.002
Friction angle 40◦
Bed porosity 0.47

Once the model was validated on the study area by comparing calculated and observed
erosion levels for the 2008 event (see Section 4.2), the rainfall scenarios, described in
Section 3.2, were simulated.

For these simulations, the hydrological input is represented by rainfall intensities
corresponding to the moderate and heavy-torrential scenarios, uniformly distributed over
3 h, so that the maximum simulation time is assumed to be 10,800 s.

Finally, the inundation scenarios were modelled using the computational domain
shown in the supplementary materials, which was defined in order to analyse the effects
of surface runoff due to the rainfall scenarios in the inhabited area downstream of the
volcano. For these simulations, in order to obtain different levels of spatial resolution,
the domain was discretised with an unstructured triangular mesh of 1,515,785 elements,
with the following elements dimensions: 1 m for infrastructure, 2 m for the residential
area, and 5 m for the rest of the domain. Five Manning’s coefficients have been chosen
for these simulations: 0.023 for volcanic ash, 0.015 for rock, 0.15 for the urban area, 0.020
for infrastructure, and 0.05 for areas with poor vegetation. The distribution of these
coefficients in the computation domain reflects the presence of the main land uses identified
in this work, whose area distributions and relative percentages are shown in the following
paragraph. The areas with shrub vegetation or uncovered soil of the cone were characterised
on the basis of the geological characteristics of the area, in order to attribute more specific
Manning’s coefficients for the presence of rock and volcanic ash.

4. Results

4.1. Land Use

The land use analysis shows that artificial areas represent 9.2% of the Island of Vulcano:
the most anthropised areas, characterised by recent buildings (1.4%) and mainly intended
for summer tourist activity, large public and private adjacent areas (5.1%), and minor
roads for the access to properties (2.7%), are located in the Vulcano Porto area (Figure 6).
The Vulcanello and Piano areas are also considerably anthropised, but not as much as
Vulcano Porto.

Agricultural areas represent 5.7%: arable crops (1.1%), which include both arable
lands and set-aside lands, either irrigated or non-irrigated, are distributed near the flat
(slope < 5◦). Inhabited areas of Vulcano Porto and Piano, with agricultural woody crops
(2.4%) such as olive groves, vineyards, and orchards, are distributed not only in Vulcano
Porto and Piano areas, but also on the southeastern side of the island, where the slopes are
more steep and terraces are needed. Permanent lawns (2.0%), characterised by large patches
with herbaceous vegetation as a consequence of land management changes (e.g., from
pastoralism and/or agriculture to abandonment and subsequent re-naturalization) over
time, are homogeneously distributed both in the Vulcano Porto and Piano areas. Together
with heterogeneous agricultural areas (0.2%), which mainly include vegetable gardens
and/or agricultural areas with large natural spaces, the distribution of the agricultural land
uses previously described generates very peculiar landscape patterns, which are common
to the entire Aeolian Archipelago.

Wooded and semi-natural vegetated areas represent 50.5% of the Island of Vulcano:
allochthonous eucalyptus and pine woods (10.0%) are distributed in the Vulcanello area
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and below the La Fossa cone in the north-eastern and western side of Piano area, while
native species, such as holm oak, heather, honeysuckle, manna ash, and strawberry trees,
are disseminated mainly near Gelso village, in the south (Table 2). Herbaceous and shrubby
vegetation (40.5%) consists of natural pastures and grasslands; this type of vegetation is
evolving, in addition to, of course, Mediterranean bushes, and these are homogeneously
distributed on the entire island.

 
Figure 6. Land use in 2021 of the northern part of the Island of Vulcano: (a) a view of artificial areas
in Vulcano Porto from the summit of La Fossa cone; (b) a detail of recent buildings and roads in
Vulcano Porto; (c) a view of wooded, semi-natural vegetated and semi-natural not vegetate areas
of La Fossa cone from the Vulcano Porto-Il Piano road; (d) a detail of areas with herbaceous and
shrubby vegetation in Palizzi Valley.

Table 2. Summary of the 2021 land use of the northern part of the Island of Vulcano.

Land Use Area (ha) %

Artificial areas
Buildings 29.7 1.4

Public and private
adjacent areas 105.3 5.1

Roads 56.4 2.7

Agricultural areas

Arable crops 22.1 1.1
Agricultural woody crops 49.9 2.4

Heterogeneous
agricultural areas 3.8 0.2

Permanent lawns 41.2 2.0

Wooded and semi-natural, vegetated areas Woods 208.9 10.0
Areas with herbaceous and shrubby vegetation 843.9 40.5

Semi-natural, not vegetated areas Areas with poor or
absent vegetation 719.8 34.6

Wet areas Wetlands 0.5 0.0

Total areas 2081.6 100
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Semi-natural non-vegetated areas represent 34.6% of the island, and consist of cliffs
and rock with poor or absent vegetation, dunes, and sands. They are mainly located along
the coasts and in the proximity of the La Fossa cone. Finally, between the Vulcanello and
Vulcano Porto areas, wetlands that are characterised by reeds/rushes represent less than
0.1% of the whole island (Figure 7).

 

Figure 7. 2021 land use map of the northern part of the Island of Vulcano.

4.2. Model Validation: The 14 September 2008 Event

A sudden thunderstorm hit the Island of Vulcano at ~22:00 UTC on 13 September 2008,
and it continued for the following hours. During the event, a total rain sheet of 47.4 mm
fell over 22 h, with a rainfall intensity distribution that can be seen in Figure 5, producing
erosion up to one meter in channels located on the northern flank of the La Fossa cone
(Figure 8). According to a witness report, at about 04:30 UTC, shortly after the first peak of
precipitation intensity was reached, water and debris began descending from the northern
flank of the La Fossa cone, and covered the main road connecting Vulcano Porto village to
the Piano area (Figure 9a). A significant amount of uprooted shrubbery and branches have
been observed, mainly deposited on the upstream side of cars (Figure 9b). At the same hour,
another witness reported the occurrence of mud and water inside a guest house located
just at the base of the La Fossa cone, at the toe of the Pietre Cotte lava flow (Figure 9c). At
07:00 UTC, the Vulcano Porto-Piano road was completely flooded by at least 10 cm-deep
water and mud. The road that connects Vulcano Porto to the Piano inhabited area rapidly
became the major collector of water and sediments, running down the northern flank of
the La Fossa cone.

The deposits found along the northern sector of the Vulcano Porto-Piano road and at
Porto di Levante wharf were fine-graded and thin, with rare boulders (Figure 9d). At the
end of the Vulcano Porto-Piano road, at the harbour, the wharf was totally covered by a
5–10 cm thick deposit of sand and mud, with scattered boulders and pebbles (Figure 9d).
Seawater in the harbour (at least 20 m from the wharf edge) was dirty, due to the continuous
supply of muddy water from the Vulcano Porto-Piano road (Figure 9d).
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Figure 8. Evidence of erosion in the NW sector of the La Fossa cone during the 14 September 2008
event. The location is indicated by a black box in Figure 10. (a–d) are in increasing elevation. In (c) it
is possible to see the erosion under the rockfall net positioned inside the channel.

 
Figure 9. Effects of the 14 September 2008 event: (a–c) are located at the base of the cone, whereas
(d) is located on the Vulcano Porto wharf.

Results of the simulation, for erosion on the cone flank, are shown in Figure 10. Erosion
is particularly strong within the channels, with depths greater than 0.4 m. In particular, the
observations made immediately after the erosive event showed strong evidence of erosion
in the channels located to the east of the Pietre Cotte lava flow (Figure 8). Signs of erosion
were observed, which ranged between 0.5 and 1 m, decreasing towards the valley. Up
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to 1 m of erosion can be observed in one channel (Figure 8c). In the channel where the
major erosion has been observed in the field, the models predicted ~1 m of erosion, in good
agreement with the field observation.

 

Figure 10. Map of the simulated erosion, considering an event characterised by the same rainfall
which occurred on the 14 September 2008 on the Island of Vulcano. Stronger erosion characterised
the main channel in the area. The rectangle shows the area of Figure 8, where the greatest erosion
was observed during the field survey carried out a few hours after the event. The subdivision into
classes derives from the standard deviation of the data (σ = 0.05 m).

4.3. La Fossa Cone Erosion and Floods Scenario

Erosion maps for (a) the moderate and (b) the heavy-torrential rainfall scenarios are
reported in Figure 11. The erosion induced by precipitation of moderate intensity, which
has a high frequency of occurrence on the island, is more evident in the channels adjacent to
the Pietre Cotte lava flow. A scenario of more intense precipitation determines an increase
in erodible areas, affecting other channels east of Pietre Cotte, with depths of erosion levels
exceeding 0.4 m.

To analyse the extent and degree of flooding, the moderate and heavy-torrential
precipitation scenarios were simulated again, considering only the excess rainfall flowing
to the surface and the net of rain absorbed by infiltration. From the flood maps shown
in Figure 12, it can be seen that the main water collection basin is the Palizzi valley, from
which the water is distributed mainly in the western harbour area (Porto di Ponente).
Minor flow channels are located on the north side of the volcano flank, from which runoff
reaches the eastern harbour area (Porto di Levante). It is worth noting that the main
asphalted infrastructures of the island, particularly the road running along the volcanic
edifice upstream of the inhabited centre, as well as the one leading to Porto di Ponente,
constitute important passages in which the discharge rate increases and, therefore, the
flood levels do as well.

While the moderate rainfall scenario leads to ephemeral floods on the inhabited centre,
which do not exceed 0.2 m (Figure 12a), the torrential rainfall scenario can lead to flood
levels that exceed 0.6 m (Figure 12b). In the most unfavourable scenario, the harbours
appear to be the most affected by the flooding, as occurred on 14 September 2008 in the
Vulcano Porto wharf (Figure 9d).
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Figure 11. Erosion maps for the (a) moderate and (b) heavy-torrential rainfall scenarios.
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Figure 12. Inundation maps for the (a) moderate and (b) heavy-torrential rainfall scenarios.

5. Discussion

5.1. Limits of the Erosion and Flooding Models

When modelling the erosion and sediment transport processes at the mesoscale
(<100 km2), the main factors affecting the simulation are a good knowledge of both the
spatiotemporal characteristics and the dynamics of precipitation. Of course, in-depth
knowledge of the geomorphological and sedimentological characteristics of the basin, as
well as of the change in land cover and the effect of human intervention, plays a very im-
portant role. Therefore, the modelling depends on knowledge of the correct structural and
functional connectivity of all the catchment sources. Physically based models already cap-
ture the connection between the erosion process and the sediment fingerprint data [63,64].
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However, these models focus on the long-term source contribution, and hardly work with
a high temporal resolution to capture the flow dynamics at the scale of the flood event.

On the other hand, numerical modelling allows for the analysis of the source effects at
the catchment scale, as well as understanding of travel times on the basis of the character-
istics of the rainy event. Modelling of soil erosion suffers from the absence of algorithms
which include all the factors related to the combined effects of the erosion and hydro-
logical processes [65]. Although there is no standard protocol, it is evident that results
from hydrological–sedimentary models are very sensitive to their initialization parameters,
namely spatial implementation (e.g., the selection of the DEM) discretization (attribution of
the mesh sizes), and initial input parameters [66].

Regarding spatial discretization, the definition of the flux, and, consequently, of the
erosion sources, strongly depends on the threshold and, therefore, on the DEM resolution.
In the present work, we limited the simulation area to an extent of 0.520 km2, and we used a
DEM with a resolution of 5 m, discretised with a computational mesh size of 2 m. Although
these choices allowed us to obtain an estimation of the erosion rate in correspondence with
specific alluvial events, they did not provide the erosion depths in greater detail. More
precise results would be obtained with a higher resolution DEM, corresponding to the
current morphological situation of the study area. A higher resolution of the DEM, as well
as a higher resolution of the computational mesh, would also eliminate the unrealistic
erosion that is observed on the high slope areas present at the base of the “Pietre Cotte”
casting (Figure 11). On the other hand, higher resolutions would cause excessively high
calculation times. Otherwise, the discretization of the computational domain provided
satisfactory results.

As for the flow and erosion parameterization, the Iber model uses the Shallow Water
Equations integrated in depth (St. Venant equations in 2D), which are very sensitive to
the roughness parameters [67,68]. In this work, the roughness values used for the erosion
scenarios simulations were derived from the analysis of the lithological characteristics
described in Figure 2. For the hydraulic simulations of flood levels, the attribution of
Manning’s coefficients derives from the land cover analysis described in Section 4.1. Both
choices represent a good approximation for the purpose of this work, with major limits
related to the precise updating and location of the different land uses.

In the simulation of the erosion process, the choice of the model for the formulation of
the bottom load plays a fundamental role. In this work the Meyer–Peter and Müller [57]
approximation was chosen, making the necessary corrections for the effect of gravity due to
the high slope gradients in the area. The main limitation is that the Iber version used here
only considers a uniform granulometry, with grain sizes characterised by their average
diameter. Another limitation is the vertical and horizontal positioning of rock layers (non-
erodibility condition). As for discretization of the computational domain geometry, a high
resolution and precision level is required for correctly calculating bed erosion. The presence,
in our results, of eroded levels in areas where erosive phenomena have not been observed
is due to these limitations.

5.2. Risk Implication of Erosion and Floods Models

The Island of Vulcano is known for the erosion phenomena affecting the La Fossa
cone, visible as gullies and deeper bedrock channels developing along its NW flank, facing
the Vulcano Porto area (Figure 13a). Sheet erosion is progressively dismantling and re-
depositing on the alluvial plain, and the products of the 1888–1890 eruption (grey terrains
in Figure 13a), often flood the inhabited area. These floodings do not generate serious
problems for human lives, but they can lead to inconveniences and economic damages.
This is particularly remarkable for events occurring in late summer−early autumn, where
the presence of tourists on the island is still significant. Phenomena such as the one that
occurred on 14 September 2008 can lead to the early closure of tourist accommodation
facilities, the impossibility of docking hydrofoils in the small Porto di Levante harbour, and
accumulation of debris on roads and docks.
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The results of the erosion simulations, induced by moderate and heavy rainfall sce-
narios, provide important information on the rate of erosion that can affect the volcanic
cone. In the case of moderate rainfall (Figure 11a), for precipitation lasting 3 h, the erosion
rate is generally between 20 and 30 cm, with higher levels west of the Pietre Cotte lava
flow. During heavy-torrential rainfall (Figure 11b), erosion increases, exceeding 40 cm
within multiple channels of the volcano cone. In the specific case of the erosion process
triggered by the 14 September 2008 rainfall, it is evident that there are circumscribed areas
of the volcanic cone where particularly intense precipitation phenomena can cause the
excavation of the channels, up to depths greater than 0.4 m, due to specific bed conditions
and granular material characteristics. By observing the map of flood levels for a torrential
rainfall scenario (Figure 12b), it can be seen that the eroded material can be taken over by
both the bedrock channel runoff and the one flowing along the road, running alongside the
volcanic edifice.

In general, the results of the simulations of flood scenarios (Figure 12) indicate that
the asphalted road network is the main factor responsible for increases in runoff speed and
water accumulation in the inhabited centre, as well as on the two ports. This occurs with
both heavy and moderate rainfall. The main collector is the road that leads to the eastern
port, which carries the water from the basin of the Palizzi valley. In a moderate rainfall
scenario, this road leads to water accumulation up to 40 cm. In the case of torrential rainfall,
runoff also flows along the other roads and from the bedrock channels of the north flank of
the volcano. The result is an accumulation of water in the inhabited areas, in some areas
exceeding 60 cm, and in the two ports, where it can exceed 1 m.

The fast erosion rates mentioned above are mostly controlled by the huge contrast
of hydraulic conductivity between the incoherent deposits of the 1888–1890 eruption and
the underlying, compacted and altered (hydrothermal argillic alteration) horizons, put
in place during older volcanic cycles [16]. These authors reported values of hydraulic
conductivity down to 5.4 mm h−1, constantly exceeded by the most intense yearly rainfalls
(Figure 4) in general, and during the 14 September 2008 event in particular. During intense
rainfalls, water infiltrating through the 1888–1890 deposits generated a shallow subsurface
runoff at the contact with the underlying, less permeable volcanic products. Once the
shallower deposits are saturated, water starts to flow over the ground (Figure 13b), also
triggering mudflows. This process creates a kind of “muddy conveyor belt”, which is able
to move coarser particles and volcanic bombs downhill, generating the mixed mud−debris
flows that, from the flanks of the La Fossa cone, invade the downslope areas. It is worth
noting that once the mud flow is transformed into a debris flow, its erosional force is
considerably incremented.

Erosional phenomena have experienced a significant increase since the 1980s, due to
the anthropogenic modifications of the northwestern flank of the La Fossa cone. The first
intervention consisted of the cutting of a zigzagging rough road leading to the crater rim,
visible in Figure 13a. This was originally intended to replace the old footpath, made unsafe
by erosion and landslides, and to be large enough to be travelled by off-road vehicles [15].
The new road collected the runoff from the gullies uphill and caused its diversion along a
diagonal descending the slope (Figure 13a–c). The runoff flowing along the road, due to
continuous changes of the micro-topography of its surface, was newly intercepted (every
time) by different gullies. This restored the original flow direction along maximum slope
lines, but shifted downhill with respect to the pristine. In other words, the road triggered
a process of fluvial capture, concentrating, in single channels, the runoff first distributed
in different ones, as illustrated by Di Trapani et al. [15], and incrementing the flow (and
consequently the erosion) rate inside them.

The road has been progressively incised by new gullies (Figure 13c), making it difficult
to be travelled by tourists, and fostering new and erroneous interventions such as a new
rigid and impermeable pavement. This has boosted erosion after its termination, both
along its uphill side and downhill, due to the increased velocity of the runoff driven by the
reduced roughness of the artificial pavement (Figure 13d).
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Figure 13. Erosional features in the mixed natural/anthropic environment of La Fossa cone (see main
text for the explanation of the panels). (a) sector of the La Fossa cone where most of the accelerated
erosion phenomena of the slope occur; (b) rill erosion on the ascent path to the crater, to the detriment
of the more erodible deposits (deposits referable to the Great Crater Eruptive Cluster [17]); (c) rill
erosion on less erodible deposits (Varicoloured Ash); (d) gully erosion on less erodible deposits
(Varicoloured Ash); (e–g) damage to the water management systems on the side of the La Fossa cone.

The attempts at regulating the new hydraulic regime, based on the construction of
diggings downhill of the road, which collected the runoff that crossed the rough road along
buried pipes (Figure 13e), failed because the diggings were rapidly filled by sediments
transported by the runoff. This is evidenced in Figure 13f, where it is visible that the
lower pipe is completely buried. Once the diggings were filled, the crossing pipes became
inactive, and the runoff, diverted on the sides of the dams, created new erosional channels
that progressively exhumed the hydraulic works (Figure 13g).

In simpler words, the intervention intended for the hydraulic regulation of the north-
west flank of La Fossa Cone had the opposite effect of boosting its erosion.
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6. Conclusions

A model-based methodology for re-mobilization of volcaniclastic material and floods
analysis in the volcanic environment is proposed here. The study was applied to the Island
of Vulcano, and in particular to its northern part, where the main village (Vulcano Porto) is
located. The methodology made it possible to calculate the excess rainfall, considering both
the available rainfall data and the land use data purposely derived from high-resolution
satellite images. The available rainfall data consisted of 19-year datasets of hourly total
rainfall, which did not allow us to define rain scenarios with local significance. For this
reason, scenarios deriving from works of literature and values were used in the northern
area of the Sicily Region, where the Island of Vulcano is located.

The scenarios made it possible to define the response of the material deposited on the
cone of La Fossa, the last active eruptive centre on the Island of Vulcano, to phenomena
of “moderate” or “heavy-torrential” rain. The same scenarios have been applied to the
flooding phenomena of the inhabited areas.

General considerations may be derived from this study. In particular, it is clear that:

1. Although the rainfall scenarios have regional and non-local significance, they are
able to reproduce erosion phenomena observed in the field, confirming the general
validity of the approach of calculating excess rainfall and, therefore, of choosing the
rainfall scenarios;

2. The characteristics of the material, which, therefore, depend on the stratigraphic
and sedimentological architecture (in this case, coarse-grained permeable ash lay-
ers covering a fine-grained impermeable ash layer) are a very important factor for
erosive phenomena;

3. Land use is fundamental for both erosion and runoff/flooding phenomena. In this
case, the presence of areas with vegetation vs artificial areas determines the flow of
water and, therefore, the erosive and flooding capacity;

4. By reproducing the phenomena observed during erosion/flooding events or the long-
term erosion effects, what has already been seen from other studies is confirmed;
the method proposed here is valid for the definition of accelerated erosion and /or
flooding scenarios, even in volcanic and small areas.
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.3390/su142416549/s1, Figure S1: Computational domain for the erosion simulation on the northern
flank of the volcano cone. Figure S2: Soil type distribution. Areas in red, marked by the label “rock”,
also delimit the less erodible areas of the computing domain. Figure S3: Computational domain for
the hydraulic simulations of floods scenarios..

Author Contributions: Conceptualization, R.B., F.D.T. and A.T.; methodology, R.B. and A.T.; software,
R.B.; validation, F.D.T. and P.M.; formal analysis, R.B., A.T. and A.G.; data curation, R.B., A.T., A.F.
and M.F.; writing—original draft preparation, R.B., F.D.T. and A.T.; writing—review and editing,
P.M., A.F., M.F. and A.G.; project administration, A.F. and F.D.T.; funding acquisition, A.F. and F.D.T.
All authors have read and agreed to the published version of the manuscript.

Funding: This project was partially funded by the “Fondi di Ateneo 2022 (ex 60%)” by the Università
degli Studi di Firenze (project “VOLFLANK—Use of remote sensing data for the stability analysis
of active volcanoes”; P.I.: F.D.T.). A.F. and M.F. carried out this work in the frame of INGV Progetti
Ricerca Libera 2022 (project “VOLF—VOlcaniclastic debris flows at La Fossa cone (Volcano Island):
evolution and hazard implication”).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: F.D.T. is very grateful to Corrado Cimarelli for his support during the survey
conducted in Vulcano during the 14 September 2008 event.

Conflicts of Interest: The authors declare no conflict of interest.

367



Sustainability 2022, 14, 16549

References

1. Pierson, T.C.; Scott, K.M. Downstream dilution of a lahar: Transition from debris flow to hyperconcentrated streamflow. Water
Resour. Res. 1985, 21, 1511–1524. [CrossRef]

2. Bisson, M.; Pareschi, M.T.; Zanchetta, G.; Sulpizio, R.; Santacroce, R. Volcaniclastic debris-flow occurrences in the Campania
region (Southern Italy) and their relation to Holocene–Late Pleistocene pyroclastic fall deposits: Implications for large-scale
hazard mapping. Bull. Volcanol. 2007, 70, 157–167. [CrossRef]

3. Pierson, T.C.; Major, J.J. Hydrogeomorphic effects of explosive volcanic eruptions on drainage basins. Ann. Rev. Earth Planet Sci.
2014, 42, 469–507. [CrossRef]

4. Lavigne, F.; Thouret, J.-C. Sediment transportation and deposition by rain-triggered lahars at Merapi Volcano, Central Java,
Indonesia. Geomorphology 2003, 49, 45–69. [CrossRef]

5. Gran, K.B.; Montgomery, D.R. Spatial and temporal patterns in fluvial recovery following volcanic eruptions: Channel response
to basin-wide sediment loading at Mount Pinatubo, Philippines. Geol. Soc. Am. Bull. 2005, 117, 195–211. [CrossRef]

6. Major, J.J.; Mark, L.E. Peak flow responses to landscape disturbances caused by the cataclysmic 1980 eruption of Mount St. Helens,
Washington. Geol. Soc. Am. Bull. 2006, 118, 938–958. [CrossRef]

7. Kassouk, Z.; Thouret, J.-C.; Gupta, A.; Solikhin, A.; Liew, S.C. Object-oriented classification of a high-spatial resolution SPOT5
image for mapping geology and landforms of active volcanoes: Semeru case study, Indonesia. Geomorphology 2014, 221, 18–33.
[CrossRef]

8. Thouret, J.-C.; Antoine, S.; Magill, C.; Ollier, C. Lahars and debris flows: Characteristics and impacts. Earth-Sci. Rev. 2020,
201, 103003. [CrossRef]

9. White, J.D.L.; Houghton, B.F.; Hodgson, K.A.; Wilson, C.J.N. Delayed sedimentary response to the AD 1886 eruption of Tarawera,
New Zealand. Geology 1997, 25, 459–462. [CrossRef]

10. Jones, R.; Thomas, R.E.; Peakall, J.; Manville, V. Rainfall-runoff properties of tephra: Simulated effects of grain-size and antecedent
rainfall. Geomorphology 2017, 282, 39–51. [CrossRef]

11. Di Traglia, F. Hydrogeomorphic and sedimentary response to the Late Pleistocene violent Strombolian eruption of the Croscat
volcano (Garrotxa Volcanic Field, Spain). Med. Geosci. Rev. 2020, 2, 217–231. [CrossRef]

12. Major, J.J. Subaerial volcaniclastic deposits-influences of initiation mechanisms and transport behavior on characteristics and
distributions. Geol. Soc. Lond. Sp. Pub. 2022, 520, 142.

13. Bladé, E.; Cea, L.; Corestein, G.; Escolano, E.; Puertas, J.; Vázquez-Cendón, J.; Dolz, J.; Coll, A. IBER: Herramienta de simulación
numérica de flujo en ríos. Rev. Int. Métodos Numéricos Cálculo Disen. Ing. 2014, 30, 1–10.

14. Ferrucci, M.; Pertusati, S.; Sulpizio, R.; Zanchetta, G.; Pareschi, M.; Santacroce, R. Volcaniclastic debris flows at La Fossa Volcano
(Vulcano Island, southern Italy): Insights for erosion behaviour of loose pyroclastic material on steep slopes. J. Volcanol. Geotherm.
Res. 2005, 145, 173–191. [CrossRef]

15. Di Trapani, F.P.; Di Maggio, C.; Madonia, P. The role of volcanic and anthropogenic activities in controlling the erosional processes
at Vulcano Island (Italy). Geogr. Fis. Din. Quat. 2011, 34, 89–94.

16. Madonia, P.; Cangemi, M.; Olivares, L.; Oliveri, Y.; Speziale, S.; Tommasi, P. Shallow landslide generation at La Fossa cone,
Vulcano island (Italy): A multidisciplinary perspective. Landslides 2019, 16, 921–935. [CrossRef]

17. Di Traglia, F.; Pistolesi, M.; Rosi, M.; Bonadonna, C.; Fusillo, R.; Roverato, M. Growth and erosion: The volcanic geology and
morphological evolution of La Fossa (Island of Vulcano, Southern Italy) in the last 1000 years. Geomorphology 2013, 194, 94–107.
[CrossRef]

18. Keller, J. The Island of Vulcano. Rend. Soc. Ital. Mineral. Petrol. 1980, 36, 369–414.
19. Frazzetta, G.; Gillot, P.Y.; La Volpe, L.; Sheridan, M.F. Volcanic hazards at Fossa of Vulcano: Data from the last 6000 years. Bull.

Volcanol. 1984, 47, 105–124. [CrossRef]
20. Mercalli, G.; Silvestri, O. Le eruzioni dell’Isola di Vulcano incominciate il 3 agosto 1888 e terminate il 22 marzo 1890, relazione

scientifica. Ann. Uff. Cent. Metereol. Geodin. Ital. 1891, 10, 1–213. (In Italian)
21. Clarke, A.B.; Esposti Ongaro, T.; Belousov, A. Vulcanian eruptions. In The Encyclopedia of Volcanoes, 3rd ed.; Academic Press:

Cambridge, MA, USA, 2015; pp. 505–518.
22. Tommasi, P.; Graziani, A.; Rotonda, T.; Bevivino, C. Preliminary analysis of instability phenomena at Vulcano Island, Italy. In

Volcanic Rocks; Malheiro, A.M., Nunes, J.C., Eds.; Taylor & Francis Group: London, UK, 2019.
23. Bonaccorso, A.; Bonforte, A.; Gambino, S. Thermal expansion-contraction and slope instability of a fumarole field inferred from

geodetic measurements at Vulcano. Bull. Volcanol. 2010, 72, 791–801. [CrossRef]
24. Revil, A.; Johnson, T.C.; Finizola, A. Three-dimensional resistivity tomography of Vulcan’s forge, Vulcano Island, southern Italy.

Geophys. Res. Lett. 2010, 37, 43983. [CrossRef]
25. Malaguti, A.B.; Rosi, M.; Pistolesi, M.; Speranza, F.; Menzies, M. The contribution of palaeomagnetism, tephrochronology and

radiocarbon dating to refine the last 1100 years of eruptive activity at Vulcano (Italy). Bull. Volcanol. 2022, 84, 12. [CrossRef]
26. Dellino, P.; De Astis, G.; La Volpe, L.; Mele, D.; Sulpizio, R. Quantitative hazard assessment of phreatomagmatic eruptions at

Vulcano (Aeolian Islands, Southern Italy) as obtained by combining stratigraphy, event statistics and physical modelling. J.
Volcanol. Geotherm. Res. 2011, 201, 364–384. [CrossRef]

27. De Fiore, O. Vulcano (Isole Eolie); Supplemento III alla Rivista Vulcanologica di Immanuel Friedlaender; Cozzolin: Napoli, Italy,
1922. (In Italian)

368



Sustainability 2022, 14, 16549

28. Arrighi, S.; Tanguy, J.C.; Rosi, M. Eruptions of the last 2200 years at Vulcano and Vulcanello (Aeolian Islands, Italy) dated by
high-accuracy archeomagnetism. Phys. Earth Planet Inter. 2006, 159, 225–233. [CrossRef]

29. Fusillo, R.; Di Traglia, F.; Gioncada, A.; Pistolesi, M.; Wallace, P.J.; Rosi, M. Deciphering post-caldera volcanism: Insight into the
Vulcanello (Island of Vulcano, Southern Italy) eruptive activity based on geological and petrological constraints. Bull. Volcanol.
2015, 77, 76. [CrossRef]

30. Manni, M.; Rosi, M. Origins of Vulcanello based on the re-examination of historical sources (Vulcano, Aeolian Islands). Ann.
Geophys. 2021, 64, VO548.

31. De Astis, G.; Lucchi, F.; Dellino, P.; La Volpe, L.; Tranne, C.A.; Frezzotti, M.L.; Peccerillo, A. Geology, volcanic history and
petrology of Vulcano (central Aeolian archipelago). Geol. Soc. London Mem. 2013, 37, 281–349. [CrossRef]

32. Rosi, M.; Di Traglia, F.; Pistolesi, M.; Esposti Ongaro, T.; Bonadonna, C. Dynamics of shallow hydrothermal eruptions: New
insights from Vulcano’s Breccia di Commenda eruption. Bull. Volcanol. 2018, 80, 83. [CrossRef]

33. Pistolesi, M.; Rosi, M.; Malaguti, A.B.; Lucchi, F.; Tranne, C.A.; Speranza, F.; Albert, P.G.; Smith, V.C.; Di Roberto, A.; Billotta,
E. Chrono-stratigraphy of the youngest (last 1500 years) rhyolitic eruptions of Lipari (Aeolian Islands, Southern Italy) and
implications for distal tephra correlations. J. Volcanol. Geotherm. Res. 2021, 420, 107397. [CrossRef]

34. Capaccioni, B.; Coniglio, S. Varicolored and vesiculated tuffs from La Fossa volcano, Vulcano Island (Aeolian Archipelago, Italy):
Evidence of syndepositional alteration processes. Bull. Volcanol. 1995, 57, 61–70. [CrossRef]

35. Baumann, V.; Bonadonna, C.; Cuomo, S.; Moscariello, M.; Biass, S.; Pistolesi, M.; Gattuso, A. Mapping the susceptibility of
rain-triggered lahars at Vulcano island (Italy) combining field characterization, geotechnical analysis, and numerical modelling.
Nat. Hazards Earth Syst. Sci. 2019, 19, 2421–2449. [CrossRef]

36. Gattuso, A.; Bonadonna, C.; Frischknecht, C.; Cuomo, S.; Baumann, V.; Pistolesi, M.; Biass, S.; Arrowsmith, J.R.; Moscariello, M.;
Rosi, M. Lahar risk assessment from source identification to potential impact analysis: The case of Vulcano Island, Italy. J. App.
Volcanol. 2021, 10, 9. [CrossRef]

37. Biass, S.; Bonadonna, C.; Di Traglia, F.; Pistolesi, M.; Rosi, M.; Lestuzzi, P. Probabilistic evaluation of the physical impact of future
tephra fallout events for the Island of Vulcano, Italy. Bull. Volcanol. 2016, 78, 37. [CrossRef]

38. Madonia, P.; Liotta, M. Chemical composition of precipitation at Mt. Vesuvius and Vulcano Island, Italy: Volcanological and
environmental implications. Environ. Earth Sci. 2010, 61, 159–171. [CrossRef]

39. Arnone, E.; Pumo, D.; Viola, F.; Noto, I.V.; La Loggia, G. Rainfall statistics changes in Sicily. Hydrol. Earth Syst. Sci. 2013, 17,
2449–2458. [CrossRef]

40. Agrometeorological Information Service of Sicily (SIAS). Available online: http://www.sias.regione.sicilia.it (accessed on
13 October 2022).

41. Bagnardi, M.; González, P.J.; Hooper, A. High-resolution digital elevation model from tri-stereo Pleiades-1 satellite imagery for
lava flow volume estimates at Fogo Volcano. Geophys. Res. Lett. 2016, 43, 6267–6275. [CrossRef]

42. SCS. Section 4: Hydrology. In National Engineering Handbook; Soil Conservation Service, USDA: Washington, DC, USA, 1956.
43. Soulis, K.X. Soil Conservation Service Curve Number (SCS-CN) Method: Current Applications, Remaining Challenges, and

Future Perspectives. Water 2021, 13, 192. [CrossRef]
44. Cunha, Z.A.D.; Beskow, S.; Moura, M.M.D.; Beskow, T.L.C.; Mello, C.R.D. Adequacy of methodologies for determining SCS/CN

in a watershed with characteristics of the Pampa biome. Rev. Ambiente Água 2021, 16, e2715. [CrossRef]
45. Romero, P.; Castro, G.; Gòmez, J.A.; Fereres, E. Curve number values for olive orchards under different soil management. Soil Sci.

Soc. Am. J. 2007, 71, 1758–1769. [CrossRef]
46. Lewis, M.J.; Singer, M.J.; Tate, K.W. Applicability of SCS curve number method for a California Oak Woodlands Watershed. J. Soil

Water Conserv. 2000, 55, 226–230.
47. Soulis, K.X.; Valiantzas, J.D. SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds—The

two-CN system approach. Hydrol. Earth Syst. Sci. 2012, 16, 1001–1015. [CrossRef]
48. Hoesein, A.A.; Pilgrim, D.H.; Titmarsh, G.W.; Cordery, I. Assessment of the US Conservation Service method for estimating design

floods. In New Directions for Surface Water Modeling; IAHS International Commission on Surface Water: Bochum, Germany, 1989.
49. Pilgrim, D.H.; Cordery, I. Flood runoff. In Handbook of Hydrology; Maidment, D.R., Ed.; McGraw-Hill: New York, NY, USA, 1992.
50. USDA-SCS. National Engineering Handbook, Section 4: Hydrology; Soil Conservation Service, Department of Agriculture: Washing-

ton, DC, USA, 1972; p. 762.
51. Bladé, E.; Cea, L.; Corestein, G. Modelización numérica de inundaciones fluviales. Ing. Agua 2014, 18, 68.
52. Fraga, I.; Cea, L.; Puertas, J. Effect of rainfall uncertainty on the performance of physically based rainfall–runoff models. Hydrol.

Process. 2018, 33, 160–173. [CrossRef]
53. Cea, L.; French, J.R. Bathymetric error estimation for calibration and validation of estuarine hydrodynamic models. Estuar. Coast

Shelf Sci. 2012, 100, 3317–3339. [CrossRef]
54. Cea, L.; Bladé, E.; Coristein, G.; Fraga, I.; Espinal, M.; Puertas, J. Comparative analysis of several sediment transport formu-

lations applied to dam-break flows over erodible beds. In Proceedings of the EGU General Assembly 2014, Vienna, Austria,
27 April–2 May 2014.

55. Areu-Rangel, O.S.; Bonasia, R.; Di Traglia, F.; Del Soldato, M.; Casagli, N. Flood Susceptibility and Sediment Transport Analysis
of Stromboli Island after the 3 July 2019 Paroxysmal Explosion. Sustainability 2020, 12, 3268. [CrossRef]

369



Sustainability 2022, 14, 16549

56. Turchi, A.; Di Traglia, F.; Luti, T.; Olori, D.; Zetti, I.; Fanti, R. Environmental aftermath of the 2019 Stromboli eruption. Remote Sens.
2020, 12, 994. [CrossRef]

57. Inguaggiato, S.; Vita, F.; Diliberto, I.S.; Mazot, A.; Calderone, L.; Mastrolia, A.; Corrao, M. The extensive parameters as a tool to
monitoring the volcanic activity: The case study of Vulcano Island (Italy). Remote Sens. 2022, 14, 1283. [CrossRef]

58. Meyer-Peter, E.; Müller, R. Formulas for bedload transport. In Proceedings of the 2nd Congress IAHR, Stockholm, Sweden,
7–9 June 1948; pp. 39–64.

59. Wong, M. Does the Bedload Equation of Meyer-Peter and Müller Fit Its Own Data; International Association of Hydraulic Research:
Thessaloniki, Greece, 2003; pp. 73–80.

60. Wong, M.; Parker, G. Reanalysis and Correction of Bed-Load Relation of Meyer-Peter and Müller Using Their Own Database. J.
Hydraul. Eng. 2006, 132, 1159–1168. [CrossRef]

61. Bonasia, R.; Areu-Rangel, O.S.; Tolentino, D.; Mendoza-Sanchez, I.; González-Cao, J.; Klapp, J. Flooding hazard assessment at
Tulancingo (Hidalgo, Mexico). J. Flood Risk Manag. 2018, 11, S1116–S1124. [CrossRef]

62. Ministry of Environment and Protection of Land and Sea (MATTM). Available online: http://www.pcn.minambiente.it/mattm/
progetto-pst-dati-lidar/ (accessed on 13 October 2022).

63. Mukundan, R.; Radcliffe, D.E.; Ritchie, J.C.; Risse, L.M.; McKinley, R.A. Sediment fingerprinting to determine the source of
suspended sediment in a southern piedmont stream. J. Environ. Qual. 2010, 39, 1328. [CrossRef] [PubMed]

64. Mukundan, R.B.; Radcliffe, D.; Risse, L. Spatial resolution of soil data and channel erosion effects on swat model predictions of
flow and sediment. J. Soil Water Conserv. 2010, 65, 92–104. [CrossRef]

65. Wainwright, J.; Parsons, A.J.; Müller, E.N.; Brazier, R.E.; Powell, D.M.; Fenti, B. A transport-distance approach to scaling erosion
rates: 1. Background and model development. Earth Surf. Process. Landforms 2008, 33, 813–826. [CrossRef]

66. Merritt, W.; Letcher, R.; Jakeman, A. A review of erosion and sediment transport models. Environ. Model. Softw. 2003, 18, 761–799.
[CrossRef]

67. Cea, L.; Legout, C.; Grangeon, T.; Nord, G. Impact of model simplifications on soil erosion predictions: Application of the GLUE
methodology to a distributed event-based model at the hillslope scale. Hydrol. Process 2016, 30, 1096–1113. [CrossRef]

68. Fraga, I.; Cea, L.; Puertas, J. Experimental study of the water depth and rainfall intensity effects on the bed roughness coefficient
used in distributed urban drainage models. J. Hydrol. 2013, 505, 266–275. [CrossRef]

370



Citation: Riha, J.; Petrula, L.

Experimental Research on Backward

Erosion Piping Progression. Water

2023, 15, 2749. https://doi.org/

10.3390/w15152749

Academic Editors: Stefano Morelli,

Veronica Pazzi and Mirko Francioni

Received: 16 June 2023

Revised: 26 July 2023

Accepted: 27 July 2023

Published: 29 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Experimental Research on Backward Erosion Piping Progression

Jaromir Riha * and Lubomir Petrula

Faculty of Civil Engineering, Brno University of Technology, Veveri 95, 602 00 Brno, Czech Republic;
lpetrula@centrum.cz
* Correspondence: riha.j@fce.vutbr.cz

Abstract: Internal erosion is caused by seepage body forces acting on the soil particles. One of the
most dangerous modes of internal erosion at hydraulic structures is backward erosion piping, which
usually initiates at the downstream end of a seepage path, e.g., at the downstream toe of the dam. The
progress of backward erosion and the development of erosion pipes were tested in a newly developed
laboratory device for three types of sand with grain sizes of 0/2, 0.25/2, and 0.25/1. The piezometric
head along the gradually developing seepage “pipe” was observed by seventeen piezometers and
seven pressure sensors. The seepage amount was measured by the volumetric method. The critical
hydraulic gradient was determined and related to the soil porosity. The progression of the seepage
path and relevant characteristics such as the piezometric and pressure heads and the amount of
trapped sediment were observed by two synchronous cameras. Based on the analysis of the results of
42 tests, a new empirical formula for the backward erosion rate was proposed. The characteristics of
lateral erosion were evaluated and compared with the available literature, which provided reasonably
good agreement.

Keywords: seepage; experimental research; backward erosion piping; lateral erosion; critical
hydraulic gradient

1. Introduction

A large number (about 46%) of incidents and failures of hydraulic structures may be
attributed to internal erosion [1,2]. This failure mode concerns both embankment structures
and the foundation of hydraulic schemes. The European Working Group on Internal
Erosion (EWGIE) was set up in 1993, and its work continues to this day. Until now, the
internal erosion problems have been discussed at 23 workshops [3], where experimental
research, numerical modeling, and case histories have been presented.

One of the most dangerous types of soil instability is backward erosion piping (BEP),
which initiates at the downstream toe of the scheme or downstream face of an internal
section such as a dam core. It starts with an erosion “pipe” developing below the “roof”, i.e.,
a layer composed of a plastic cohesive soil or of the concrete foundation of the hydraulic
structure. The “pipe” may proceed backwards to the upstream side of the hydraulic
structure, and in its final stage, it can burst through upstream into the reservoir. At the
same time, its diameter is increasing due to lateral erosion. It occurs mainly in loose soils
such as sands at places where the soil loses its stability due to seepage forces and soil
grains are transported downstream by the seepage flow entering the “pipe”. The particle
detachment occurs basically at the upstream tip of a privileged flow path, where the
pressure gradients are the greatest. Therefore, the mechanisms related to the development
of seepage paths have been studied by numerous researchers [4,5].

In the study of BEP, the process may be divided into two simultaneous phenomena,
namely backward and lateral erosion. Backward erosion proceeds in the upstream direction
due to instability and detachment of soil particles at the erosion “pipe” tip, which causes
an elongation of the erosion “pipe”. Until now, there has been a lack of experimental
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and reliable field data on the backward erosion progression and rate related to various
configurations and eroded materials.

Lateral erosion results in an increase in the “pipe” diameter due to instability and
erosion of the soil along the pipe walls [6–8]. The particle detachment occurs to a limited
extent during the development of the “pipe”, but more extensive lateral erosion proceeds
after the development of the continuous pipe connecting the upstream reservoir with the
downstream toe of the dam. For the investigation of lateral erosion and the quantification
of erodibility characteristics (critical shear stress, coefficient of soil erosion), experimental
methods such as hole erosion tests, slot erosion tests, and others were developed. However,
the research focused mostly on cohesive soils with relatively slow enlargement of the
erosion pipe (Wan and Fell 2002).

In the past, the criteria for global stability related to internal erosion were expressed
via the mean critical hydraulic gradient derived from an analysis of existing dams [9–13].
Some of these criteria have been applied until now.

During the last decades, the BEP has been analyzed within experimental laboratory
research and using numerical methods. In this way, valuable data have been provided
for the validation and calibration of computer models. Well known is the extensive re-
search, counting more than 70 BEP tests, carried out at the Deltares Hydro Facilities and
Geotechnical Laboratory in Delft [14–16].

The results of 37 piping experiments performed at the University of Florida from 1981
to 1995 were summarized by Schmertmann [17]. These experiments were performed on the
sand bed covered by “overburden” with a seepage length of 1524 mm and a cross section
of 305 × 305 mm. An artificial pipe was created on the upper side below the overburden;
its length measured between 152 and 762 mm.

Small-scale, two-dimensional experiments with two soils were carried out by Van
Beek et al. [18] to test the effect of lateral heterogeneity on the pipe’s development. The
length of the sand box was about 380 mm. Homogeneous samples provided that the pipe
developed in the upstream direction without reaching equilibrium in pipe formation. In
the heterogeneous samples, a pipe formed from the downstream edge in the fine sand and
stopped at the interface between soils with coarser gradation.

The tests on uniform sands were systematically analyzed by van Beek et al. [19]. An
extensive summary of BEP research completed by the author’s own research is compiled in
the PhD thesis of Van Beek [20] and in the papers published by Robbins and van Beek [21]
and Rice et al. [22].

The U.S. Army Corps of Engineers has performed a wide range of laboratory-scale
experiments on BEP carried out on various fine-grained cohesionless materials [23,24]
and extended the study to fine gravels [25]. These experiments were focused on the
determination of the critical hydraulic gradient. A novel laboratory test has been developed
to study local hydraulic characteristics, including pore pressures in the soil and eroded
pipe [26]. The rate of BEP was simulated in a small-scale flume where nine uniform sands
were analyzed [27]. The temporal progression of BEP was also studied via a small-scale
model by Pol et al. [28].

Sellmeijer [29] developed a method for the estimation of the effect of BEP by computing
the critical piezometric head in the subbase of a levee based on the experimental data
obtained by de Wit et al. [14]. The model was calibrated by Silvis (1991) and adopted for
designing levees in the Netherlands. During the following years, the model was improved
by Weijers and Sellmeijer [16] and Sellmeijer et al. [13]. The experimental data obtained
may be employed in the validation of more advanced numerical models [30,31].

Nevertheless, numerical models still frequently fail due to the complexity of the factors
involved, including the general randomness of the phenomena and different geomechanical
and seepage properties.

As mentioned above, there is still a deficiency of experimental research and field
investigation providing enough data on the backward erosion piping phenomenon. In order
to at least partially fill the knowledge gap and to provide more experimental data on BEP
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initiation and progression, a small-scale experimental device was proposed, constructed,
and tested [32]. A set of BEP tests were performed to identify the dependence between the
mean and local hydraulic gradients and their relation to soil porosity. The experimental
research aimed to find out the principal dependencies between soil characteristics, hydraulic
conditions, and BEP erosion rate, verify the proposed methodology of the testing, and
discuss related uncertainties in the results obtained. Based on the obtained data, the authors
derived a simple formula for the estimation of the backward erosion rate. Characteristics
for lateral erosion were also derived and compared with the available literature.

2. Materials and Methods

2.1. Rationale

Previous research indicates that the erosion “pipe” initiates and develops due to
soil instability at its upstream tip. At this place, due to the concentration of seepage
flow, the pressure and hydraulic gradients reach their maximum values. The backward
erosion proceeds upstream due to the local detachment of soil particles close to the “pipe”
tip [20,33].

Robbins et al. [27] indicate that the rate of tip advancement depends on the hydraulic
gradient, grain size, and void ratio of the soil. The local geometry at the “pipe” tip and
the shear strength characteristics of the soil are functions of the soil compaction (void
ratio, porosity) and the grain size and shape. As these may be regarded as independent
of the scale, a scaled model may be employed for a credible description of the process
for a given soil. The pressure and hydraulic gradient are the most important parameters
characterizing the “body load”. Therefore, the experimental device was designed in such
a way to enable identification of the development over time of the piezometric head. As
the rapid progression of backward erosion during its progression phase was expected, the
pressure measurements had to be taken continuously in the course of the tests.

2.2. Experimental Device

The testing apparatus was described in more detail by Petrula and Říha [32]. The
apparatus had a square cross section with dimensions of 120 × 120 mm and a length of
350 mm. An approx. 70 mm thick gravel layer was placed at the inlet section to homogenize
the inflow into the sample. The gravel was separated from the tested sand material by
the fine screen. Water seeping through the sample together with eroded material entered
through a hole created in the upper edge of the downstream front wall of the box and
flowed to a sedimentation cone. From the downstream side, a predefined opening with
a diameter of 12 mm was holed below the top cover of the box to preclude the random
development of an erosion pipe, as was evidenced by Van Beek [20]. The diameter of the
pipe varied from 12 mm to 30 mm according to material type and sample compaction.
17 piezometers were installed in the top cover of the device along the predefined “pipe”
and the expected path of its progression. The piezometers were attached to the vertical
board mounted behind the box to enable comfortable readings of hydraulic heads during
the tests. Seven of these piezometers were equipped with pressure cells to automate the
recording of pressure during the tests (Figure 1). Automatic sensing and recording of
the water pressure in the sand sample was necessary, namely towards the end of the
test when soil erosion proceeded very fast. The apparatus was linked to a movable tank,
which allowed variations in the upstream piezometric head (boundary condition). The
downstream boundary condition was fixed by the level of the outlet hole in the downstream
front wall of the box. Two cameras installed above and on the side of the device were
continuously recording the BEP process. The overall photograph of the testing device can
be seen in Figure 1.
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Figure 1. The experimental device.

2.3. Experimental Research

The testing procedure is described in a previous paper by Petrula and Říha [32]. Three
types of uniform sand taken from a local quarry were tested. The grain size characteristics
are shown in Table 1, along with the number of tests. To obtain better statistics on behavior
and more data indicating dependencies, the sand with a grain size of 0/2 mm was subjected
to more extensive testing, amounting to 26 tests, while the artificially prepared sands
(0.25/2 mm and 0.25/1 mm) were tested only 8 times each. In total, 42 experiments
were performed on the sands mentioned. The extent of the time-consuming testing was
limited by the capabilities of the Laboratory of Hydraulic Research and the schedule of the
research project.

Table 1. Experimental plan—numbers of experiments and sample properties.

Material Grain Size

Number of Tests
Uniformity Coefficient

Cu

Grain Density
ρd

Porosity
n

[-] [-] [kg/m3] [-]

Min. Max.

0/2 mm 26 2.98 2638 0.286 0.381
0.25/2 mm 8 2.08 2638 0.319 0.341
0.25/1 mm 8 1.84 2638 0.331 0.346
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The preparatory work started with the filling of the box with sandy material. The
filling was carried out in a vertically arranged box with variable compaction time (0 to 60 s)
in order to achieve variable sample porosity (Table 1). After placing the upstream gravel
layer with the screen and mounting the upstream front wall, the length of the sand sample
was measured to determine the porosity and bulk density of the sample. Then the box
was turned to the horizontal position, the “predefined” seepage pipe was formed, and the
box was connected to the water inlet and to piezometers and pressure sensors. Finally, the
sample was slowly saturated with water.

The porosity of the prepared samples varied due to the random compacting factor.
This allowed the influence of porosity values on critical hydraulic gradients and the erosion
rate to be investigated. It can be seen from Table 1 that the less uniform sand provided a
wider range of sample porosity.

After saturation, the soil sample was gradually subjected to seepage with a stepwise
raising upstream of a vertically movable tank attached to the testing apparatus [32]. Each
time the tank was raised, hydraulic conditions in the sample took approximately 15 min
to stabilize. In the initial phase, erosion did not occur. Random detachment of single
particles was not considered to be the beginning of erosion. These individual grains
were detached from the sample during the process of predefining the pipe. During this
phase, data on the piezometric heads and local hydraulic gradients along the sample were
recorded and evaluated. The outflow discharge was measured volumetrically. At a certain
upstream piezometric head, governed by the vertical position of the tank, erosion of the
sand initiates at the pipe tip. At this instant, both local and mean critical hydraulic gradients
were recorded.

Increases in pipe length and dimensions were recorded by the camera. During the
erosion, which became quite rapid during the final phase, pressure measurements were
performed automatically along the developing erosion pipe using pressure cells. The
sediment was captured in a sedimentation cone, and the volume of sediment was con-
tinuously monitored by a side camera. The eroded volume material was then dried and
weighted, and the resulting values were then compared with pipe volumes to verify the
experiment’s validity.

3. Results and Discussion

The analysis of the results focuses on the critical hydraulic gradient and both the
backward and lateral erosion rates.

3.1. Critical Hydraulic Gradient

The basic observed parameters were the local critical hydraulic gradient Jc at the “pipe”
tip and the mean critical hydraulic gradient Jc,mena in the sample, corresponding to the
distance between the “pipe” tip and the point of entry of water to the sand sample. It
is obvious that both the local and mean critical gradients relate to the shortest seepage
path between the upstream edge of the sample and the pipe tip, where piezometric heads
were observed.

When both the local and mean critical gradients were correlated with the sample
porosity, it was observed that with increasing porosity, the critical hydraulic gradient
considerably decreased (Figures 2 and 3). This states that the less compacted the samples
were, the less resistance there was to soil erosion initiation. This qualitative behavior is
consistent with the results of previous research [23,25,26]. For the 0/2 mm sand within the
porosity range n ∈ (0.286; 0.381), the best fit indicated the following relationship:

Jc,mean = 3.85 − 7.94 n. (1)
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Figure 2. Local critical hydraulic gradients at the pipe tip in relation to sample porosity for 0/2 mm
sand.

Figure 3. Mean critical hydraulic gradients at the pipe tip in relation to sample porosity for 0/2 mm
sand.

Equation (1) will be used. The scatter in the obtained values is due to various factors,
including the inherent uncertainty of the phenomenon, inaccuracies in the piezometric
head readings (single percents), and the measurement of soil sample length. For the 26 tests
for 0/2 mm sand, the standard deviation based on Equation (1) was determined as follows:

s =
√

1
N − 1 ∑26

N=1

(
Jc,mean − Jc,mean

)2
= 0.20. (2)
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In Equations (1) and (2), n is the porosity of the sample, Jc,mean is the mean critical
hydraulic gradient obtained from the measurements, Jc,mean is the critical hydraulic gradient
determined using Equation (1), s is the standard deviation, and N is the number of tests.

Even if the local body force due to seepage acting on the soil at the “pipe” tip is
represented by the local hydraulic gradient, in practical assessment, the mean hydraulic
gradient is frequently used as a hydraulic criterion for particle detachment and internal
erosion initiation [9–13]. Quantifying the proportion between local and mean hydraulic
gradients is therefore of considerable interest. The comparison shows a linear relation
between local and mean hydraulic gradients (Figure 4). The local gradients at the tip of the
pipe are about 2.4 times higher than the mean gradients in the soil sample. It is obvious
that the thus measured local hydraulic gradients are still “average” values coming from the
piezometers adjacent to the pipe tip. In this research, “local” gradients were determined
from the distance of 20 mm between two neighboring piezometers. It is suggested that
the ratio of 2.4 between local and mean gradients is therefore still underestimating true
conditions at the pipe tip. Even lower ratios, ranging approximately from 1.4 to 1.8 for
the distance of 100 mm between piezometers (pressure cells), are provided in the study
published by [26], who carried out their tests in 1.53 m long tubes with internal diameters
of 25.4, 76.2, and 152.4 mm.

Figure 4. Relationship between local and mean critical gradients.

In Figure 5, the obtained mean critical hydraulic gradients are compared with the
results that Robbins et al. [25] obtained from experiments on uniform gravel with grain
sizes of d10 = 4.67 mm, d30 = 6.13 mm, d60 = 7.79 mm, and Cu = 1.67. One can see that
the mean critical gradient values obtained by Robbins [25] fit the lowest envelope of our
values. The study carried out by Robbins et al. [26] on two uniform sands, the first with
d10 = 0.227 mm, d30 = 0.268 mm, d60 = 0.322 mm, and Cu = 1.42, and the second with
d10 = 0.465 mm, d30 = 0.541 mm, d60 = 0.645 mm, and Cu = 1.38, manifests similar results as
the study performed with gravels [25].
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Figure 5. Mean critical hydraulic gradients in relation to sample porosity.

Figure 5 shows only minor differences in the magnitude of critical hydraulic gradients
for the three tested sands. It seems that sand with a larger uniformity coefficient Cu provides
slightly higher resistance in terms of critical hydraulic gradient, though for a more reliable
statement, more tests are needed for materials 0.25/1 and 0.25/2.

Advanced efficiency criteria for the dependence in Figure 4 were evaluated. The mean
square error (MSE):

MSE =
1
n ∑n

i=1(ŷi − yi)
2 = 0.103, (3)

where n is the number of measurements, ŷi is the measured mean hydraulic gradient, and
yi is the predicted value of the local hydraulic gradient using the relation in Figure 4.

The Nash–Sutcliff efficiency coefficient:

NSE = 1 − ∑n
i=1(ŷi − yi)

2

∑n
i=1(ŷi − ŷm)

2 = 0.914, (4)

where ŷm is the mean of the observed value of the mean hydraulic gradient, and the
meaning of other variables is the same as in Equation (3).

The values of advanced criteria indicate good predictive ability of the relation in
Figure 4.

Comparisons were made with experimental results and predictions by Sellmeijer
et al. [13]. It was found that, as with the findings of Robbins et al. [25], Sellmeijer’s values
rather overestimated the mean critical hydraulic gradients, except in the case of 2 mm glass
beads (Figure 6). However, the comparisons obtained from experiments performed with
beads are not relevant due to the “absolute” uniformity and regular shape of glass beads
and their smooth surface.

Russian guidelines [11,12] recommend the “safe” value Jc,mean = 0.75 for fine sands
in the case of good compaction and Jc,mean = 0.30 for poor compaction. These values have
already been adjusted (reduced) by the safety factor.

3.2. Soil Erosion

During each experiment, the progression of soil erosion was observed and evaluated
(Figure 7). Backward erosion was separated from lateral erosion for further analysis. The
soil volume transported from the pipe tip was attributed to backward erosion, while the
volume corresponding to pipe widening was assigned to lateral erosion (Figure 8).
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Figure 6. Measured mean critical hydraulic gradients compared with the prediction by Sellmeijer
et al. [13].

Figure 7. Changes in the pipe shape during BEP—two instants related to Figure 6 are marked by the
red color.

The backward erosion rate at the pipe tip was derived from the records from each
experiment. As expected, the rate of backward erosion increased with the shortening of the
seepage length. The velocity of BEP progression was up to tens of mm/s.

Based on the recorded pipe shape, for each time interval Δti the volume changes
and mass Mi of the eroded soil were calculated both for backward erosion and lateral
erosion. Given the known eroded mass and pipe-wetted surface for two consecutive time
instants, the rates of backward erosion

.
εB and lateral erosion

.
εL were calculated using the

following formulae:
.
εB,i =

Mi
Δti·AB,i

, (5)

.
εL,i =

Mi
Δti·AL,i

, (6)
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where
.
εi is the erosion rate at the ith time interval Δti = tj+1 – tj, AB,I is the mean area of the

cross section at the pipe tip corresponding to the time interval Δti, and AL,i denotes the
corresponding wetted surface (Figure 8).

Figure 8. Separation of backward and lateral erosion: tj = 20,309 s; tj+1 = 20,312 s; and Δt = 3 s.

Backward erosion rates ranged from almost zero at the very beginning of the tests up
to almost 50 kg/s/m2 at the instant just before the pipe tip broke at the upstream part of
the sample (Figures 9–11). Before the erosion pipe fully developed, the lateral erosion rates
were very low, ranging from 0.25 to 2 kg/s/m2 for all tested sands. After the erosion pipe
had completely developed, lateral erosion rates increased up to 25 to 50 kg/s/m2.

Figure 9. The dependence between BEP rate and mean hydraulic gradient.
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Figure 10. The dependence between BEP rate and soil porosity.

Figure 11. The dependence between BEP rate and d50.

At the same time, it was observed that for materials with higher porosity, the erosion
rates were lower due to lower unit mass (the higher the porosity, the smaller the bulk
density of the soil).

3.2.1. Backward Erosion Piping

Based on the data obtained from the experiments, the relation between backward
erosion rate

.
εB and mean critical gradient Jc,mean, soil porosity n, and mean grain size

d50 was analyzed. A summary of all calculated erosion rates, sorted according to the
experiments from which they were obtained, was used to derive the relationships and
functional dependencies of individual variables. Using the least squares method, the
shapes of functional dependencies were derived; the criterion for the selection of the

381



Water 2023, 15, 2749

relation was the coefficient of determination R2. The following conditions were applied
when constructing the final relationship determined by the least squares approximation:

-
.
εB increases exponentially with increasing Jc,mean (Figure 9);

-
.
εB decreases with increasing n for most of the measured data (Figure 10);

-
.
εB decreases with increasing d50, according to Figure 11, and according to the theory
that with increasing grain size, larger forces must be in action to cause erosion.

Based on the trend analysis for the mean hydraulic gradient, an exponential relation
was chosen for the porosity, and for grain size, a linear dependence was used. The beginning
of the BEP was expressed by introducing the mean critical hydraulic gradient calculated
from Equation (1). The final formula for

.
εB determination holds:

.
εB = 0.94

[
−1 + e0.83(Jmean−Jc,mean)

]
·0.35

d50
·0.476

n
, for Jmean > Jc,mean, (7)

where
.
εB is the backward erosion rate [kg/s/m2], d50 is the grain size corresponding to

50% passing [mm], Jmean is the mean hydraulic gradient during the BEP, Jc,mean is the critical
mean gradient from Equation (1) [-], and n is porosity.

Equation (5) holds for uniform soils (uniformity coefficient Cu ≤ 3 with d50 ≤ 0.35 mm).
The constant 0.476 represents the maximum porosity of loose spheres with Cu = 1. Other
constants were determined using the weighted least squares method:

Sq =
w

∑
i=1

[( .
εB,i,exp − .

εB,i
)2 1

.
εB,i,exp

.
εB,i

]
= min, (8)

where Sq is the sum of squared residuals, w is the number of experimentally determined
values,

.
εB,i,exp is the backward erosion rate from experiments, and

.
εB,i denotes the backward

erosion rates calculated using Equation (7). A comparison of experimental and calculated
values is shown in Figures 12 and 13.

Figure 12. Comparison of experimentally obtained and calculated backward erosion rates.
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Figure 13. Comparison of experimentally obtained and calculated backward erosion rates—detail.

From Figures 9–13, it can be seen that the scatter of obtained values is large, resulting in
small values of R2. This is caused by the random nature of the soil erosion and additionally
by uncertainties arising during the evaluation of experimental BEP rates, i.e., the reading of
the erosion pipe dimensions from the video logs, the estimation of the pipe “depth” from
its final depth at the end of the test, and errors in the time step due to the high speed of
the erosion at the end of the test. Moreover, some soil characteristics were not taken into
account, such as grain shape and the roughness or uniformity of the sand (in a very narrow
range). Figure 11 indicates that, relatively speaking, better agreement is achieved in the
range of 0 to 5 kg/s/m2.

3.2.2. Lateral Erosion

As the erosion pipe widened during the tests, the characteristics of lateral erosion
during the BEP were evaluated using a methodology similar to that used by Wan and Fell
(2004) [7], who expressed the lateral erosion rate as follows:

.
εL = Ce(τ − τC) for τ > τc, (9)

where Ce is the coefficient of soil erosion, τ is the shear stress along the erosion pipe, and
τC is the critical shear stress.

The critical shear stress and coefficient of soil erosion were derived from the experi-
mental data. The critical shear stress was determined using values read at the instant of the
incipient movement of particles along the pipe wall using the formula:

τC = ρgRJ, (10)

where ρ is water density, g is acceleration due to gravity, R is the hydraulic radius related to
the erosion pipe (semicircle) with the diameter D when neglecting the effect of the smooth
plexiglass surface (R ≈ D/4), and J is the hydraulic gradient in the pipe at the instant of
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incipient particle movement. In Figure 14, the dependence of critical shear stress on sample
porosity is depicted. The critical shear stress drops with increasing porosity and increases
with increasing sand uniformity. The obtained values fit the critical shear stress τC < 6.4 Pa
obtained by Wan and Fell [7] for loose soils (USCS Classification SM) well.

Figure 14. Critical shear stress related to sample porosity.

The derived coefficients of soil erosion do not show any analytical dependence on
sample porosity (Figure 15). However, the values of Ce in the range from 0.022 to 1.7
(with 80% of values being less than 0.4) correspond to the range obtained by Wan and Fell
(2004) [7] for loose soils (Ce from 0.02 to 0.25).

Figure 15. Coefficient of soil erosion related to sample porosity.
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4. Conclusions

In the paper, the results of experimental research on backward erosion piping through
uniform sand with grain sizes of 0/2, 0.25/2, and 0.25/1 mm are presented. Critical
hydraulic gradients were also investigated for glass beads with diameters of 0.2 and
0.5 mm. The small-scale measuring device and measurement methodology used were
proposed in a previous study [32].

The comparison of local hydraulic gradients at the pipe tip with mean hydraulic
gradients shows that in the case of this study, the local gradients are about 2.4 times higher
than the mean ones. Analysis of both local and mean hydraulic gradients indicated an
approximately linear relation to the sample porosity. The mean hydraulic gradients range
from 0.5 to 1.8 depending on sample compaction (porosity), which in some cases exceeds
values published in previous studies [26], though the gradients from previous studies were
derived for rather higher porosities.

The rates of backward and lateral erosion were derived from experiments. The formula
Equation (5) for the estimation of backward erosion rate was derived to be applied to
uniform sand (uniformity coefficient Cu ≤ 3) with the mean grain size d50 ≤ 0.35 mm.

The characteristics of lateral erosion, namely the critical shear stress and coefficient of
soil erosion, comply with values derived by Wan and Fell (2004) [7].

The obtained results, namely predicted erodibilities, suffer from a considerably wide
scatter. The scatter may also be observed in the results of internal erosion studies [20,34],
namely concerning critical shear stress, erodibility, slope angle at slope-type experiments,
critical hydraulic gradient, etc. The wide scatter may be attributed to the randomness of
the soil erosion phenomenon and to uncertainties and inaccuracies in the evaluation of
experimental erosion rates (reading of the erosion pipe dimensions from the video logs,
determination of the pipe “depth”, and time step errors in the case of very fast erosion).
During some tests, backward erosion temporarily stopped, which resulted in an almost
zero erosion rate during the corresponding time interval. After that, erosion reinitiated,
sometimes with more intensive particle detachment, which resulted in an extremely high
erosion rate. Related inaccuracies in input and measured variables are shown in Table 2.

Table 2. Absolute and relative deviations of measured and calculated variables.

Variable
Measured (M)/
Calculated (C)

Absolute
Deviation [-]

Relative
Deviation [%]

Cross-sectional dimensions of testing box M 0.01 mm 0.008
Sample length M 1 mm 0.5
Sample weight M 0.1 g 0.004
Grain density C 10 kg/m3 0.38
Sample porosity C 0.0065 1.85
Distance of piezometers M 0.5 mm 2.5
Piezometric head M 0.5 mm 3.13
Seepage discharge C 2.16 × 10−8 m3/s 1.44
Hydraulic conductivity C 9.6 × 10−6 m/s 7.5
Critical local hydraulic gradient C 0.05 5
Width of the pipe M 0.5 mm 3.3
Depth of the pipe M/C 0.5 mm 10
Bulk density of eroded material C 10 kg/m3 0.55
Rate of erosion C 0.016 kg/s/m2 12.5
Mean hydraulic gradient during backward
erosion C 0.17 4.4

Mean hydraulic gradient during lateral erosion C 0.015 1
Cross-sectional area of the pipe C 6.97 mm2 11.8
Cross-sectional wetted length of the pipe C 1.12 mm 5.7
Shear stress C 8.6 Pa 19.7
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Some of these imperfections may be eliminated by using a longer experimental device
adapted to a longer sample and by using laser equipment for measuring pipe depth and
cross-sectional area. Further research will focus on testing more soil types with more
variable properties (e.g., grain size) with the aim of verifying the proposed formulas for less
uniform sands with a larger grain size. Glass beads are not suitable for such experiments
due to their smooth surface and spherical shape. The resulting formulae will be tested
using the BEP tests performed by other authors and field data from real dam failures. The
verification will need further extensive data sets from the experimental research and from
backward analysis of true incidents and accidents.

Author Contributions: Conceptualization, methodology and data curation: Lubomir Petrula; formal
analysis, investigation, resources, writing—original draft preparation, supervision, project adminis-
tration, funding acquisition: Jaromir Riha. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The research data can be requested primarily via e-mail communication
directly from manuscript authors. It is up to authors to consider and to accept the request.

Acknowledgments: This study is part of the project TH04030087, tools for optimization of the levee
system management and is also part of the project FAST-S-23-8233. Sensitivity analysis of selected
input parameters in water flow numerical modeling.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Saxena, K.R.; Sharma, V.M. Dams: Incidents and Accidents; A. A. Balkema Publishers: New Delhi, India, 2005; 228p.
2. Bulletin 164: Internal Erosion of Existing Dams, Levees and Dikes, and Their Foundations; Internal Erosion Processes and Engineering

Assessment; ICIL Bulletin: Paris, France, 2015; Volume 1, 342p.
3. EWGIE. European Working Group on Internal Erosion in Embankment Dams, Dikes and Levees & Their Foundations. 2023.

Available online: https://www6.inrae.fr/eucold-ewgie-ewgooe/History/EWGIE (accessed on 12 July 2023).
4. Fell, R.; Fry, J.J. Internal Erosion of Dams and Their Foundations; Taylor & Francis: New York, NY, USA, 2005; 245p.
5. Bonelli, S. (Ed.) Erosion in Geomechanics Applied to Dams and Levees; ISTE Ltd.: London, UK; John Wiley & Sons, Inc.: Hoboken, NJ,

USA, 2013; 388p.
6. Fell, R.; Wan, C.F.; Cyganiewicz, J.; Foster, M. Time for Development of Internal Erosion and Piping in Embankment Dams.

J. Geotech. Geoenvironmental Eng. 2003, 129, 307–314. [CrossRef]
7. Wan, C.F.; Fell, R. Laboratory Tests on the Rate of Piping Erosion of Soils in Embankment Dams. Geotech. Test. J. 2004, 27, 295–303.
8. Benahmed, N.; Bonelli, S. Investigating concentrated leak erosion behaviour of cohesive soils by performing hole erosion tests.

Eur. J. Environ. Civ. Eng. 2012, 16, 43–58. [CrossRef]
9. Bligh, W.G. Dams Barrages and Weirs on Porous Foundations. Eng. News 1910, 64, 708–710.
10. Lane, E.W. Security from Under-Seepage Masonry Dams on Earth Foundations. Trans. Am. Soc. Civ. Eng. 1935, 100, 1235–1272.

[CrossRef]
11. Chugayev, R.R. The Subsurface Shape of Hydraulic Structures; ENERGIA: Leningrad, Russia, 1974; 237p. (In Russian)
12. Chugayev, R.R. Hydraulic Structures; AGROPROMIZDAT: Moscow, Russia, 1985; 237p. (In Russian)
13. Sellmeijer, H.; De La Cruz, J.L.; Van Beek, V.; Knoeff, H. Fine-tuning of the backward erosion piping model through small-scale,

medium-scale and IJkdijk experiments. Eur. J. Environ. Civ. Eng. 2011, 15, 1139–1154. [CrossRef]
14. De WIT, G.N.; Sellmeijer, J.B.; Penning, A. Laboratory tests on piping. In Proceedings of the 10th International Conference Soil

Mechanics and Foundation Engineering, Stockholm, Sweden, 15–19 June 1981; Balkema: Rotterdam, The Netherlands, 1981;
pp. 517–520.

15. Silvis, F. Verificatie Piping Model; Proeven in de Deltagoot. Eval. Rapp. Grondmechanica Delft CO 317710/7 1991.
16. Weijers, J.B.A.; Sellmeijer, J.B. A new model to deal with the piping mechanism. In Filters in Geotechnical and Hydraulic Engineering;

Brauns, J., Heibaum, M., Schuler, U., Eds.; Balkema: Rotterdam, The Netherlands, 1993.
17. Schmertmann, J.H. The non-filter factor of safety against piping through sands. In Judgment and Innovation; Silva, F., Kavazanjian,

E., Eds.; ASCE Geotechnical Special Publication: Reston, VA, USA, 2000; Volume 111, pp. 65–132.
18. Van Beek, V.M.; Koelewijn, A.; Kruse, G.; Sellmeijer, H.; Barends, F. Piping phenomena in heterogeneous sands—Experiments

and simulations. In Proceedings of the 4th International Conference on Scour and Erosion, Tokyo, Japan, 5–7 November 2008;
pp. 453–459.

19. Van Beek, V.; Sellmeijer, J.B.; Barends, F.B.J.; Bezuijen, A. Initiation of backward erosion piping in uniform sands. Géotechnique
2014, 64, 927–941. [CrossRef]

386



Water 2023, 15, 2749

20. Van Beek, V. Backward Erosion Piping: Initiation and Progression. Ph.D. Thesis, Technical University of Delft, Delft, The
Netherlands, 2015; 263p.

21. Robbins, B.A.; Van Beek, V.M. Backward Erosion Piping: A Historical Review and Discussion of Influential Factors. In Proceedings
of the ASDO Dam Safety Conference, New Orleans, LA, USA, 13–17 September 2015; 20p.

22. Rice, J.; Van Beek, V.; Bezuijen, A. History and Future of Backward Erosion Research. In Proceedings of the 10th International
Conference on Scour and Erosion, Online, 18–20 October 2021; 23p.

23. Robbins, B.A.; Sharp, M.K.; Corcoran, M.K. Laboratory Tests for Backwards Piping Erosion. In Geotechnical Safety and Risk V;
Schweckendiek, T., van Tol, A.F., Staveren, D.P., van Cools, M.T.P.M.C.B.M., Eds.; IOS Press: Amsterdam, The Netherland, 2015.
[CrossRef]

24. Robbins, B.A.; Montalvo Bartolomei, A.M.; López-Soto, J.; Stephens, I.J. Laboratory Measurements of Critical Gradients of
Cohesionless Soils. In Celebrating the Value of Dams and Levees—Yesterday, Today and Tomorrow; Unites States Society on Dams
(USSD): Denver, CO, USA, 2016; pp. 927–937.

25. Robbins, B.A.; Stephens, I.J.; Leavell, D.A.; López-Soto, J.F.; Montalvo-Bartolomei, A.M. Laboratory Piping Tests on Fine Gravel.
Can. Geotech. J. 2018, 55, 1552–1563. [CrossRef]

26. Robbins, B.A.; Van Beek, V.M.; López Soto, J.F.; Montalvo Bartolomei, A.M.; Murphy, J. A novel laboratory test for backward
erosion piping. Int. J. Phys. Model. Geotech. 2018, 18, 266–279. [CrossRef]

27. Robbins, B.A.; Griffiths, D.V.; Montalvo Bartolomei, A.M. Analyses of Backward Erosion Progression Rates from Small-Scale
Flume Experiments. J. Geotech. Geoenviron. Eng. 2020, 146, 04020093. [CrossRef]

28. Pol, J.C.; Kanning, W.; Van Beek, V.M.; Robbins, B.A.; Jonkman, S.N. Temporal evolution of backward erosion piping in small-scale
experiments. Acta Geotech. 2022, 17, 4555–4576. [CrossRef]

29. Sellmeijer, J.B. On the Mechanism of Piping under Impervious Structures. Ph.D. Thesis, Technical University of Delft, Delft, The
Netherland, 1988.

30. Wang, D.; Fu, X.; Jie, Y.; Dong, W. Hu, D. Simulation of pipe progression in a levee foundation with coupled seepage and pipe
flow domains. Soils Found. 2014, 54, 974–984. [CrossRef]

31. Robbins, B.A.; Griffiths, D.V. Modelling of Backward Erosion Piping in Two- and Three- Dimensional Domains. In Internal
Erosion in Earthdams, Dikes and Levees: Proceedings of EWG-IE 26th Annual Meeting 2018; Springer Nature: Cham, Switzerland, 2019;
pp. 149–158.
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Abstract: This study investigated erosion during infiltration and overflow events and considered
different grain sizes and hydraulic conductivity properties; four experimental cases were conducted
under saturated conditions. The importance of understanding flow regimes during overflow ex-
periments including their distinct flow characteristics, shear stresses, and erosion mechanisms in
assessing the potential for levee failure are discussed. The failure mechanism of levee slopes during
infiltration experiments involves progressive collapse due to piping followed by increased lique-
faction and loss of shear stress, with the failure progression dependent on the permeability of the
foundation material and shear strength. The infiltration experiments illustrate that the rate of failure
varied based on the permeability of the foundation material. In the case of IO-E7-F5, where the levee
had No. 7 sand in the embankment and No. 5 sand in the foundation (lower permeability), the failure
was slower and limited. It took around 90 min for 65% of the downstream slope to fail, allowing
more time for response measures. On the other hand, in the case of IO-E8-F4, with No. 8 sand in the
embankment and No. 4 sand in the foundation (higher hydraulic conductivity), the failure was rapid
and extensive. The whole downstream slope failed within just 18 min, and the collapse extended
to 75% of the levee crest. These findings emphasize the need for proactive measures to strengthen
vulnerable sections of levees and reduce the risk of extensive failure.

Keywords: overflow; infiltration; hydraulic conductivity; levee erosion; seepage; shear strength

1. Introduction

River levees play a vital role in global flood protection efforts by acting as crucial bar-
riers against increasingly frequent and intense extreme weather events, safeguarding lives,
infrastructure, and valuable land from the devastating impacts of flooding [1,2]. Addition-
ally, river levees play a critical role in enhancing climate resilience by adapting to changing
hydrological patterns, safeguarding urban and agricultural areas, and promoting economic
stability [3,4]. In 2010, several countries including Pakistan, India, China, Colombia, and
Australia, faced devastating floods with significant impacts. China experienced the highest
estimated annual damage of USD 51 billion caused by river floods [5,6]. Pakistan suffered
from monsoonal flooding, resulting in a high number of immediate fatalities, totaling
two thousand. These events highlight the recurring nature and severity of large-scale
floods, underscoring the urgent need for effective flood management and preparedness
measures [7,8]. Natural disasters such as typhoons, heavy rains, and floods have caused
severe damage to Japan’s infrastructure, including its river embankment systems, resulting
in levee failures and widespread flooding [9,10]. The rising risk of river embankment
failure due to increased storm rainfall has become a significant concern for safeguarding
communities and infrastructure from flooding [11].

GeoHazards 2023, 4, 286–301. https://doi.org/10.3390/geohazards4030016 https://www.mdpi.com/journal/geohazards
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Levee failures on permeable foundation ground during floods can be attributed to two
primary factors: overtopping and seepage-induced erosion of the foundation ground [12].
Overtopping happens when floodwaters surpass the height of the levee, while seepage-
induced piping is characterized by the formation of erosion channels within the foundation
ground due to the flow of water [13]. These channels weaken the levee structure, eventually
leading to failure. An illustrative example of seepage-induced failure is the 2012 Northern
Kyushu Heavy Rain event in the Yabe River, where the levee failure occurred without
overtopping and seepage-induced piping played a significant impact in the failure [14].
The heavy rains in western Japan in July 2018 also caused widespread devastation to
riverine infrastructure, including Okayama Prefecture, resulting in numerous fatalities
and significant damage [15]. The mentioned examples highlight the susceptibility of
Japan’s river embankment systems to extreme weather events, emphasizing the importance
of enhanced design and management approaches to mitigate the risk of failure [16,17].
There are several factors that cause the collapse of an embankment system during a flood
event. These comprise overtopping, seepage, or piping of the levee body and settlement
or displacement of the foundation [18,19]. Roughly 34% of dam collapses occur due to
overtopping, 30% are attributed to foundation defects, and approximately 28% are caused
by piping [20]. Similar statistics were reported but with a higher percentage attributed to
piping failure [21].

Physical models have been extensively utilized to investigate the breaching process
of dikes caused by flow overtopping. Through washout tests, it was determined that the
rate of washout was affected by the grain size of the materials, with larger sizes result-
ing in lower washout rates with a focus on the erosion development of dams because of
overtopping and a formula has been proposed to estimate the discharge through a breach
based on breach volume [22]. They identified key factors impacting the erosion process,
including fill material, dam configuration, placement of impervious elements, and reservoir
capacity. Laboratory experiments and case studies have indicated notable differences in
the erosion mechanism of noncohesive and cohesive earthen dikes during overflow [23].
For noncohesive embankments, progressive surface erosion involving dispersed particle
transport is the typical mode, while cohesive embankments experience headcut erosion
with the development and displacement of a vertical or near vertical drop on the bed [24].
Erosion commonly initiates at the downstream gradient and progresses upward, causing a
reduction in the width of the embankment top. In cases of surface erosion, the lower slope
may undergo changes in its profile, including flattening, steepening, and erosion parallel to
the slope, depending on the characteristics of the soil [25]. Apart from overtopping and
piping, another factor that can contribute to levee failures is concentrated leak erosion.
This type of erosion is caused by the presence of pre-existing channels, cavities, or holes,
which can occur due to natural degradation processes of the materials or the activity of
wild animals. It is important to consider these additional mechanisms of levee failure to
ensure a comprehensive understanding of the potential risks [26–29]. Among the proactive
measures to strengthen vulnerable sections of levees, the implementation of a compre-
hensive monitoring system can play a crucial role in identifying and controlling erosion
mechanisms before failure occurs. Various monitoring techniques, such as piezometers,
thermal sensors, and remote sensing, along with specific and advanced experiments, are
available today to assess the health and stability of earthen levees [30–32]. By integrating
these monitoring methods, authorities can obtain real-time data and valuable insights into
the condition of levees, allowing for timely and effective interventions to mitigate potential
risks and prevent catastrophic failures.

Seepage or infiltration can be the initial stage of piping or internal erosion phenomenon.
It provides the necessary moisture and hydraulic conditions for piping to occur [33].
Collapse due to internal seepage takes place when seepage forces cause the removal of
fine particles, creating a channel between the upstream and downstream slopes of an
embankment. If not controlled, this can lead to the erosion of larger sediment particles,
resulting in the development of a pipe that carries enough water. The pipe gradually
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expands due to material removal at the walls, primarily driven by shear forces, until
the levee body collapses. Once the failure happens, the breaching behavior shifts to
overtopping, including downward erosion and widening of the breach [34]. The primary
types of damage to river levees caused by seepage are slip failure and piping failure. Slip
failure occurs when the phreatic surface within the embankment rises due to factors like
rainfall or river water infiltration. Piping failure, on the other hand, results in a rise in
pore water pressure within the foundation ground or embankment, leading to high exit
gradients or uplift of low-permeability soil layers [35]. Proper management and control
of seepage are crucial to minimize the risk of piping and subsequent structural failure.
Therefore, it is crucial to understand the characteristics and behavior of these processes to
assess the risk of failure accurately.

Therefore, the purpose of this study was to analyze the mechanisms and behaviors
of erosion in river embankments during overflow and infiltration flow simultaneously
with a focus on the hydraulic conductivity and moisture state of the levee and foundation
materials. A thorough investigation into the erosion process in levees was modeled here
and focused on the interplay between overflow and infiltration flow as well as the impact
of foundation properties such as the moisture state (saturation or unsaturation condition)
and hydraulic conductivity. Previous studies have often overlooked these crucial factors,
warranting further research in this area. In this study, we investigated how erosion occurs,
initiates, and propagates, and how long an embankment can resist water before breaking
down. The consideration of warning time prior to a breach is crucial for evacuation plans
and assessing the consequences of embankment failures, as it relates to the rate of erosion
progression and can impact design decisions and resource allocation. Overall, this study
contributes to the understanding of the mechanisms and behaviors of erosion in river
embankments, which is essential for assessing the risk of failure accurately and designing
effective and resilient levee systems.

2. Materials and Methodology

2.1. Flume Characteristics and Scaling of the Model

The experiments were conducted at Saitama University in Japan, using an open
channel flume with one side made of glass. The flume was characterized by a length of
6.25 m, a width of 0.5 m, and a depth of 1.2 m, with a completely flatbed slope. The
experimental arrangement is illustrated in Figure 1a. The water in the flume channel and
pipes was circulated using an electric pump from underground storage tanks.

2.2. Flow Conditions

The flow conditions in this study aimed to simulate medium flood or low tsunami con-
ditions. The overtopping depth on the levees was established at 0.02 m, which corresponds
to 0.4 m in the test specimen using the model scale (1/20), ensuring similarity in the Froude
number. The inflow discharge (Q) for overtopping was maintained at 2.27 × 10−3 m3/s, as
measured by a digital flow meter. This discharge rate was carefully controlled to achieve
a consistent overflow depth of 0.02 m in two experiments, namely O-E7-F5 and O-E8-F4,
both of which were conducted under overflow conditions as shown in Figure 1b,d. In two
infiltration experiments (IO-E7-F5 and IO-E8-F4, as shown in Figure 1c,e and as listed in
Table 1), the depth of water on the upstream side of the levee was maintained at a constant
depth of 0.225 m by closing the discharge control valve, while the water pump remained
operational for approximately two hours. This setup was implemented to investigate the
influence of infiltration resulting from the presence of a permeable layer. This condition
was based on previous research that studied the effects of different water levels on levee
stability [36].
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Figure 1. Schematic detail of experimental setup inside the channel. (a) A side view of experimen-
tal flume with embankment model; (b) cross section of embankment model in O-E7-F5 overflow
condition; (c) cross section of embankment model in IO-E7-F5 infiltration and overflow condition;
(d) cross section of embankment model in O-E8-F4 overflow condition; (e) cross section of embank-
ment model in IO-E8-F4 infiltration and overflow condition.

Table 1. Experimental cases of infiltration and overflow erosion tests.

Cases
Embankment Body

(Mikawa Silica Sand)
Foundation of an Embankment

(Mikawa Silica Sand)
Failure Condition

O-E7-F5 Sand No. 7 Sand No. 5 Overflow (O)
IO-E7-F5 Sand No. 7 Sand No. 5 Infiltration + Overflow (IO)
O-E8-F4 Sand No. 8 Sand No. 4 Overflow (O)
IO-E8-F4 Sand No. 8 Sand No. 4 Infiltration + Overflow (IO)

Note:(O-E7-F5) Case I overflow condition with No. 7 sand in embankment body and No. 5 sand in levee
foundation (IO-E7-F5) Case II infiltration and overflow condition (O-E8-F4) Case III overflow condition with
No. 8 sand in embankment body and No. 4 sand in levee foundation (IO-E8-F4) Case IV infiltration and
overflow condition.
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2.3. Embankment Material and Soil Characteristics

In this study, model levees made of Mikawa silica sand were utilized for overflow and
infiltration experiments. These model levees had an elevation of 0.4 m, a crest thickness
of 0.25 m, and back slopes with a ratio of 1:1. To consider the impact of scouring at the
toe of the downstream slope, the model levees were built with a foundation thickness of
0.15 m. The materials used for the levee body and foundation were changed from No. 7
to No. 8 sand and No. 5 to No. 4 sand, respectively. The grain size distributions of the
different sands are shown in Figure 2a. In addition to overflow experiments, infiltration
experiments were conducted to investigate the influence of permeable layers beneath the
levee structure. To ensure embankment strength, soil samples were collected from specific
locations on the downstream and upstream slopes of each embankment model as shown in
Figure 2b and their dry mass was determined; Figure 2c,d shows the embankment after
preparation. Various parameters such as compaction degree, dry density, water content,
hydraulic conductivity, mean grain size, and optimum water content were examined and
are listed in Table 2.

  
(a) (b) 

  
(c) (d) 

Figure 2. The Levee model preparation: (a) sieve size distribution of embankment material, (b) degree
of compaction and optimum water content check during embankment levee model preparation. The
levee model in the flume: (c) side view, (d) top view.

Table 2. Material properties used in infiltration and overflow tests.

Mikawa
Silica Sand

d50

mm

Uniformity
Coefficient

(Cu)

Degree of
Compaction

Dc (%)

Optimum Moisture
Content
(OMC)%

Porosity
(λ)
%

Dry Density
(�d)

g/cm3

Hydraulic
Conductivity

K (m/s)

No. 4 0.875 1.423 82 to 85 8 45.06 1.295 1.6 × 10−3

No. 8 0.095 1.8 82 to 85 14 43.73 1.40 5.5 × 10−6

No. 5 0.475 1.545 82 to 85 11 44.62 1.323 3.2 × 10−4

No. 7 0.16 1.7 82 to 85 13.5 44.07 1.355 2.6 × 10−5

Note: d50 (mm) median grain size.
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2.4. Embankment Model Construction

A 1/20 scale model was used in the experiment, where the dimensions of the model
levee corresponded to an average height of 5 m for a real levee in Japan. The geometry
of the levee and the depth of overtopping were key factors influencing erosion initiation
and propagation. The embankment models were constructed using Mikawa silica sands,
following a 5 cm thick layer and a compaction process. The initial embankment models
were constructed with an oversized geometry and then trimmed down to the dimensions
specified in Figure 1b–e. Discharge and flow conditions were described earlier. During the
erosion process, which lasted less than 2.5 min in overflow cases and more than two hours
in infiltration cases, visual inspection, video recording, and high-speed camera techniques
were used to monitor the dike and water surface configurations. The resulting data were
analyzed and are presented in Section 3.

3. Results

3.1. Overflow Experiments

The study conducted overflow experiments to examine the impact of levee erosion
under different foundation properties and hydraulic conductivities. A comprehensive
description is provided below.

3.1.1. Overflow Erosion Process in O-E7-F5 (Case I) and O-E8-F4 (Case III)

Overflow events due to levee damage during current experiments can be classified
into four stages as shown in Figure 3a–d. Erosion surface profiles at various elapsed
times are shown in Figure 4a,b. In the initial stage of the overflow experiments, the levee
crest was fixed at a height of 0.25 m and the overflow depth was maintained at 2 cm
by controlling the discharge at 2.27 × 10−3 m3/s. The erosion started with scouring at
the downstream toe of the levee crest, while no degradation or erosion was observed on
the upstream area of the levee. The downstream erosion was small, and the initiation
of the levee crest was smooth with a small arc surface headcut observed downstream
of the levee crest. During the second phase, the erosion rate experienced a sharp surge
as a substantial volume of water surged over the crest of the dike at a significant speed.
The erosion on the levee surface happened in the form of sediment transport, and the
overflow discharge reached its maximum within 30 s after overflow. The shear failure
happened downstream of the levee crest for large flow rates, and the water surface profiles
remained aligned to the scoured levee surfaces due to the sandy material behavior. The
erosion progressed smoothly downstream, and a submerged hydraulic jump was observed.
During the third phase, the overtopping discharge remained constant, but the erosion rate
increased due to the formation of nape flow and larger headcuts. The erosion occurred
in the form of shear blocks with a sudden drop from the levee surface. This stage took
up two-thirds of the total overflowing event duration, and the rate of deterioration was
influenced by both the quantity of water flowing over the levee crest and the resistance
offered by the levee material. As a result, the surface of the levee assumed an S-shaped
form and moved toward the upstream slope. In the fourth and final stage, the crest was
completely eroded, resulting in a critical situation due to the head difference between
upstream and downstream slope and sudden discharge rate increase due to upstream slope
failure. The foundation material also eroded due to its low hydraulic conductivity. The
water surface profiles were non-parallel with the surface erosion, and the maximum erosion
occurred in this stage. When the upstream slope was eroded, the erosion rate decreased
due to a reduced difference in head between the upstream and downstream slopes. Overall,
the four stages of erosion in the overflow experiments showed the gradual progression of
erosion, with each stage demonstrating a different type of erosion mechanism and erosion
rate. The third and fourth stages were particularly critical due to the formation of nape
flow, larger headcuts, and a sudden discharge rate increase leading to significant erosion of
the dike crest and foundation material. The overall levee erosion behavior was the same in
both overflow cases.
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Figure 3. Overflow erosion process in O-E7-F5 and O-E8-F4. (a) Stage I, arc surface headcut forma-
tion. (b) Stage II, smooth erosion of downstream slope and submerged hydraulic jump formation.
(c) Stage III, nape flow formation and S shape failure. (d) Stage IV, upstream slope failure and high
erosion rate.

 

Figure 4. Levee component erosion and surface profiles at various elapsed times. (a) Erosion profiles
for overflow O-E7-F5; (b) for overflow O-E8-F4. (c) Levee components (downstream slope, crest, and
upstream slope) erosion percentage vs. elapsed time in O-E7-F5 and O-E8-F4.

3.1.2. Degradation (Percentage Erosion) of Levee Components over Time during Overflow

When a levee overflows, its components are subjected to erosion at different rates. The
rate of erosion is influenced by the stage of damage and several other parameters such as
the downstream gradient of the levee, the inflow rate, and the configuration of the levee.

394



GeoHazards 2023, 4

To investigate this phenomenon further, the current study studied two overflow cases with
different compositions of the levee body and foundation. The relationship between the
percentage of levee component erosion and the elapsed time for both cases was plotted
in a graph which is presented in Figure 4c. It was observed that during the initial stage
of damage, the erosion percentage of the levee components gradually increased, with
primarily 100% erosion of the downstream slope along with a small amount of the levee
crest in about 30 s. Subsequently, during the second stage, the downstream slope already
eroded, and levee crest erosion continued at a constant rate for 60 s. During the third
stage of damage, which lasted until 90 s, the rate of degradation rapidly increased, with
complete erosion of the downstream slope and crest failure propagating to the upstream
slope. This stage was followed by the final stage of deterioration, where the deterioration
became slower as all three components of the levee had already eroded. Interestingly, the
percentage of erosion for both overflow cases was found to be almost the same, with only
slight differences observed. This phenomenon can be attributed to the minor difference in
embankment materials, specifically the properties of Mikawa Sand No. 7 and No. 8.

3.2. Infiltration Experiments

The study included infiltration experiments to examine the effects of different hy-
draulic conductivities and foundation properties on levee erosion, with a detailed descrip-
tion provided below.

3.2.1. Seepage Erosion Process in IO-E7-F5 (Case II)

The seepage erosion process is shown in Figure 5a–f. The pictures depict top and
side views at different time intervals for the destruction process, with lines indicating
gridlines and the initial position of the levee slopes. Similarly, in Figure 6a,b, levee surface
profiles showed erosion mechanisms at various elapsed times. The discharge was kept
constant for both cases, and the water took about 10 min to reach a height of 0.225 m on the
embankment. When the water reached the desired height, the stopwatch was started, and
all times correspond to that point. In this case, a leak was seen near the bottom of the slope
after 9 min and 20 s, which occurred about 9 min and 10 s later than in Case IV, reflecting
the length of the high permeability region in the foundation. After that, the slope became
muddy, and the bottom began to collapse uniformly at about 17 min. Water appeared
on the whole downstream toe in the form of a sand boil, and cracks started propagating
from the toe of the downstream slope to the top in a uniform pattern as shown in Figure 5.
At 16 min and 45 s, a uniform crack on the whole downstream toe occurred, and a slip
failure started. After that, slip failures progressed one after another toward the crest, with
the maximum slope failure observed during the first 25 min. After that, the slope failure
gradually slowed down. About 55 to 60% of the slope failed in about 70 min. After that,
only 5% of the slope failure occurred within 90 min, after which a sort of equilibrium
was observed, and no further slope failure was observed due to the lower head difference
between the upstream and downstream slopes; the experiment was continued until almost
no deformation of the levee body was observed. When the muddy material from the levee
accumulates near the bottom of the slope, the collapse slows down or even stops as in the
present case. After about 110 min, the crest overflowed and levee failure occurred in about
one minute.

3.2.2. Seepage Erosion Process in IO-E8-F4 (Case IV)

The seepage erosion process for Case IV is shown in Figure 7a–f and the erosion
profiles at different elapsed times are shown in Figure 8a,b. A leak appeared at the bottom
of the slope just 10 s after the start of the experiment. The high hydraulic conductivity
of the sand in the foundation made it more permeable, and it became saturated when
the water level reached the upstream slope at 0.225 m. This leakage occurred about
9 min and 10 s earlier than in Case II. Due to leakage in the embankment’s foundation,
the slope became muddy, and a sand boil appeared. After that, a shear crack occurred on
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the slope at 5 min and 56 s, which became larger until 10 min and 55 s when a slip failure
occurred. The slip failures progressed one after another toward the crest, and by 18 min,
the whole downstream slope failure was observed. After 18 min, the cracks reached the
crest area. Until 30 min, about 30% of the crest failed, after which the crest erosion slowed
down and progressed slowly until 90 min when about 70% of the crest was ruptured. After
90 min, there was again some sort of equilibrium, and no further erosion occurred. At about
110 min, the crest was overtopped, and levee failure occurred in just 35 s. Overall, the
sand in the foundation’s high hydraulic conductivity played a significant role in the
seepage erosion process, causing the slope to become muddy and eventually leading to the
levee’s failure.

Figure 5. Erosion process in IO-E7-F5; top and side views at different elapsed times (m for minutes,
s for seconds).
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Figure 6. Levee surface profiles at various elapsed times: (a) for infiltration case IO-E7-F5; (b) for
overflow after 110 min.

Figure 7. Erosion process in IO-E8-F4; top and sides views at different elapsed times (m for minutes,
s for seconds).
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Figure 8. Levee surface profiles at various elapsed times: (a) for infiltration case IO-E8-F4 (b), for
overflow after 110 min.

3.2.3. Degradation (Percentage Erosion) of Levee Components over Time during
Infiltration Followed by Overflow

The degradation of levee components during infiltration events can have a significant
impact on the safety and functionality of these structures. To better understand this process,
experiments were conducted to investigate the relationship between the percentage of
levee component erosion and the elapsed time for both infiltration cases. The results are
presented in Figure 9a,b as a graphical representation. Interestingly, there were notable
differences observed between the two cases. Specifically, in Case II, the percentage of
erosion of levee components was found to be relatively small, with only downstream slope
failure accounting for 65% of the total damage. This suggests that the rate of erosion was
relatively slow, likely due to the lower permeability of the foundation materials in this case.
On the other hand, Case IV exhibited a more severe erosion pattern, with the downstream
slope failure progressing rapidly up to 70% of levee crest failure. This could be attributed
to the higher permeability of the foundation sand in this case, which enabled the water to
infiltrate more easily and quickly, resulting in a more rapid erosion process.

  (a) (b) 

Figure 9. Levee components erosion percentage vs. elapsed time in (a) IO-E7-F5 and (b) IO-E8-F4.

It is important to note that, in both cases, there was no further erosion observed after
90 min of elapsed time. This indicates that the hydraulic gradient had reached a point
where the phreatic line had penetrated the foundation materials up to the failure point,
resulting in a cessation of the erosion process. Overall, these findings suggest that the
permeability of the foundation materials can have a sufficient impact on the deterioration
process of levee components during overflow events.
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4. Discussion

4.1. Flow Characteristics and Erosion Mechanism Followed during Levee Overflow Experiments

The erosion process of levees during overflow can be categorized into four stages
as shown in Figure 10: subcritical flow on the upstream crown, critical flow on the levee
crown, supercritical flow on the downstream slope, and subcritical flow on the tailwater.
These flow regimes exhibit different characteristics and shear stresses, leading to varying
erosion rates. The study by Chinnarasri et al. [37] supports these findings, with minor
differences observed in stage III. Understanding these flow structures is crucial for assessing
levee erosion and failure during overtopping events. In the subcritical flow zone on the
upstream levee crest, the water stresses are relatively lower, and the flow velocities and
energy slope are minor. This results in low shear stress, which leads to less scouring in
this region. At the beginning of the overflow event, the flow velocity and scouring are
also relatively low. The critical depth is located at the center of the levee crest, and swift
scouring initiates at the downstream boundary of the crest because of elevated shear forces.
In the supercritical flow region along the sharp slope of the levee surface downstream,
the flow velocities experience a significant increase due to the steep energy gradient. This
creates very large shear forces, consequently causing substantial scouring. Additionally,
a hydraulic jump occurs near the toe of the levee, creating turbulent flow and mixing of
water and sediment. As the jet submerges beneath the tailwater surface, a submerged
hydraulic jump is formed on the downstream surface of the levee. On the other hand,
in the subcritical flow area of the downstream toe of the levee, the hydraulic stresses are
relatively low, and the energy gradient is low, resulting in small flow velocities. The low
shear stress, despite the possibility of large flow depth, also results in a smaller erosion rate
in this region.

Figure 10. Flow characteristics during levee overflow: (a) O-E7-F5 and (b) O-E8-F4.
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4.2. Levee Failure Mechanism in Model Experiments during Infiltration

The infiltration experiments examined the erosion of levee components and the oc-
currence of slope failures considering the seepage of water from the upstream slope. The
progressive collapse pattern initiating from the downstream slope due to sand boiling was
followed and can be roughly classified into two stages as described in Figure 11a. In stage
I, progressive collapse due to narrowly defined piping occurred and in stage II, an increase
in liquefaction area and loss of effective shear stress occurred. Stage I occurs when there is
a ground structure with extremely different permeability or hydraulic conductivity, which
is followed by stage II when there is no extreme difference in permeability between the
foundation ground and the embankment due to the collapse of the slope. In stage II, a large
upward hydrodynamic gradient occurred near the toe of the slope, causing the foundation
ground to liquefy, and the eroded area gradually expanded toward the river surface. A
higher difference in permeability ratio between infiltration cases resulted in an increased
degree of collapse. As infiltration progressed, the embankment slope became fluid-like due
to the decreased shear resistance of the embankment material. However, the accumulation
of muddy levee material near the slope toe slowed down and eventually stopped the
collapse. This occurred because the sandy material making up the embankment body
experienced a decrease in shear strength under the influence of a high hydraulic gradient,
leading to slip failure. This was the whole mechanism followed by all cases in the current
study. The findings from Saito et al. [38], combined with the experiments conducted by
Orense et al. [36] using various materials, provide support for the results. Additionally,
subsequent studies have also emphasized the significance of further research in this area.
Jia et al. [39] highlighted the significance of material permeability during prolonged high
water events, emphasizing its role in facilitating seepage through the foundation. The hy-
draulic conductivity of levee and foundation materials significantly influenced the behavior
of the system addressed by Van Beek et al. [40].

y g y

Figure 11. Erosion or collapse mechanism and permeability chart. (a) Stage I and Stage II collapse
pattern during infiltration experiments IO-E7-F5 and IO-E8-F4. (b) Hydraulic conductivities vs.
different grain sizes.

The failure pattern differs depending on the soil properties such as hydraulic conduc-
tivity and shear strength of the embankment body.

4.3. Role of Hydraulic Conductivity in Failure Progression

The extent of collapse was influenced by the permeability ratio difference with
higher ratios leading to increased degrees of failure (e.g., kE/kF = 10 for IO-E7-F5 and
kE/kF = 400 for IO-E8-F4). The failure progressed more slowly in Case II (IO-E7-F5), with
only 60% of the downstream slope failing in about 70 min, while in Case IV (IO-E8-F4), the
failure progressed more rapidly, with the whole downstream slope failing in just 18 min,
and about 70% of the crest being ruptured by 90 min. This difference in the progress of
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failure can be attributed to the difference in the permeability of the sand in the foundation;
the hydraulic conductivity with respect to mean grain size is shown in Figure 11b. In Case
II, the foundation had a lower permeability, which resulted in a slower failure progression,
whereas in Case IV, the higher permeability of the sand in the foundation led to a more
rapid failure progression. Furthermore, the failure progression in Case IV was more rapid
and extensive compared to Case II. Notably, the failure in Case IV extended beyond the
downstream slope and affected the crest. This can be ascribed to the greater hydraulic
conductivity of the sand in the foundation, which allowed water to flow more quickly
through the soil, resulting in a more significant and rapid failure. Additionally, the higher
permeability of the sand in the foundation in Case IV also led to a more rapid saturation
line, or phreatic line, compared to Case II. This further contributed to the faster failure
progression in Case IV.

5. Conclusions

In conclusion, this study investigated levee erosion during overflow and infiltration
flow, with a focus on how the hydraulic conductivity and moisture condition of the levee
and foundation materials affects erosion resistance. The following key findings emerged
from the study.

• Levee erosion during overflow events involves four stages with varying flow char-
acteristics and shear stresses, influencing erosion rates. Understanding the different
flow regions on levees is crucial for assessing erosion risks and preventing failure.
Identifying areas prone to rapid erosion such as the downstream edge of the crest
and supercritical flow region allows for targeted reinforcement. Similarly, recognizing
regions with minimal erosion like the upstream crest and subcritical flow region of the
downstream toe helps prioritize maintenance efforts. This knowledge enhances the
design and management of levee systems, improving their effectiveness in protecting
against floods and minimizing the risk of catastrophic failure.

• During infiltration experiments, the failure mechanism of levee slopes involves pro-
gressive collapse due to piping, leading to increased liquefaction and loss of shear
stress. The progression of failure is influenced by the permeability of the founda-
tion material and shear strength. It was observed that the degree of collapse in-
creases as the difference in permeability ratio becomes higher in the infiltration cases
(e.g., kE/kF = 10 for IO-E7-F5 and kE/kF = 400 for IO-E8-F4). As infiltration pro-
gresses, the embankment slope undergoes a collapse and becomes fluid-like due to
the decreasing shear strength of the embankment material, but the accumulation of
muddy levee material near the slope toe slows down and eventually halts the collapse.
This is because the sandy material (Mikawa Sand No. 7 and No. 8) comprising the
embankment body experiences a decrease in shear strength under the influence of a
high hydraulic gradient, leading to slip failure.

• The study found that the failure progression in Case II (IO-E7-F5) was slower due
to the lower permeability of the sand in the foundation, resulting in a delayed and
limited failure of the downstream slope (only 60 to 65% of downstream slope failure
in about 90 min), which allows for more time to implement response and mitigation
measures. In contrast, Case IV(IO-E8-F4) exhibited a more rapid and extensive fail-
ure, attributed to the greater hydraulic conductivity of the sand in the foundation
(100% downstream slope in first 18 min and 70 to 75% crest failure in about 70 min), al-
lowing for quicker water flow and a more significant impact on the downstream slope
and the crest. These findings highlight the importance of taking proactive measures to
strengthen vulnerable sections of the levee and minimize the risk of extensive failure.

This study serves as a foundation for future numerical simulations on infiltration and
piping studies. Our study on levee erosion using a scaled-down model (1:20) provides
valuable insights into failure mechanisms and proactive measures, enhancing levee re-
silience and risk reduction strategies. For future studies, conducting comparative analyses
between scaled-down models and full-scale scenarios could further validate the findings
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and broaden the understanding of levee behavior under different conditions. Additional
investigation is needed to investigate the effects of other factors, such as flow rate and
sediment characteristics, on levee erosion during overflow and infiltration flow.
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Abstract: Social media texts spontaneously produced and uploaded by the public contain a wealth
of disaster information. As a supplementary data source for remote sensing, they have played
an important role in disaster reduction and emergency response in recent years. However, social
media also has certain flaws, such as insufficient location information, etc. This affects the efficiency
of combining these data with remote sensing data. For flood disasters in particular, extensively
flooded areas limit the distribution of social media data, which makes it difficult for these data to
function as they should. In this paper, we propose a disaster reduction framework to solve these
problems. We first used an approach that was based on search engine and lexical rules to automatically
extract disaster-related location information from social media texts. Then, we combined the extracted
information with the upload location of social media itself to construct location-pointing relationships.
These relationships were used to build a new social network, which can be used in combination
with remote sensing images for disaster analysis. The analysis integrated the advantages of social
media and remote sensing. It can not only provide macro disaster information in the study area but
can also assist in evaluating the disaster situation in different flooded areas from the perspective of
public observation. In addition, the timeliness of social media data also improved the continuity and
situational awareness of flood monitoring. A case study of the flood disaster in the Yangtze River
Basin in China in 2020 was used to verify the effectiveness of the method described in this paper.

Keywords: social media; remote sensing; information mining; flood disaster; disaster reduction

1. Introduction

With the intensification of global climate change, meteorological disasters such as
heavy rains and floods frequently occur [1,2]. This has caused a large number of casualties
and property losses, which seriously affect the sustainable development of society [3].
Due to the development of science and technology, Earth observation methods represented
by remote sensing have played an important role in disaster reduction [4,5]. They provide
detailed snapshots of conditions that cover a wide range of disaster areas, which are
convenient for disaster assessment and auxiliary rescue [6]. However, remote sensing
also has some limitations. The revisit period of satellites is long, which makes it difficult
to continuously monitor disaster-stricken areas [7]. Conversely, remote sensing is used
more to describe the macro situation in the disaster-stricken area, such as the scope of
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the flooded area. It is difficult to learn the specific situation in these areas, and it is also
difficult to assess which areas are most affected by a disaster. With the popularity of
the internet and smart mobile devices [8], social media, as a kind of crowd-sourced data,
has brought new opportunities for disaster reduction. Compared with traditional remote
sensing, social media data from the public have the advantages of high timeliness and
rich disaster information and can be used as an effective supplementary data source for
remote sensing.

Social media has rich attribute features (e.g., space, time, content, and network),
which have been well applied to disaster reduction [9]. Combining these attribute fea-
tures with remote sensing data can effectively improve the effect of disaster reduction [10].
Many scholars have carried out research on this. For example, Denis et al. [11] developed
a comprehensive system integrating remote sensing and social media data for decision
making and rapid information dissemination. The system can help guide and evacuate
people at risk in disasters in a timely manner. Qunying Huang et al. [12] proposed a
framework that integrates multi-source data (e.g., social media, remote sensing, etc.) to
help in the disaster analysis of historical and future events. Jun Li et al. [13] systemati-
cally discussed the key technologies used for integrating content and spatial information
contained in social media with remote sensing data and showed the application effects
of multi-source data integration in different fields with different examples. For the flood
disaster mentioned in this paper, the fusion of multi-source data also showed great applica-
tion potential. By introducing the spatiotemporal information contained on social media,
the efficiency of flood inundation mapping can be improved [14–17]. The combination of
location-marked pictures and remote sensing data can better judge the traffic conditions
of urban roads under floods [18]. In [19], real-time data collected from social media were
fused with remote sensing data for transportation damage assessment. Related studies
have mostly relied on the tags of upload location on social media, which was also the
basis for combining social media with remote sensing images. However, due to user habits
(most users do not want to upload their location information to social media platforms),
most social media data does not contain location tags [20]. Moreover, some disasters,
especially floods, limit the spatial distribution of social media data (it is hard for people
to upload social media in heavily flooded areas), which makes it difficult for us to keep
abreast of detailed disaster information in hard-hit areas. This information is particularly
important for disaster reduction. In this paper, we propose a framework that aims to
improve the efficiency of combining social media data with remote sensing data in order to
mine more disaster information from disaster-affected areas. We wanted to compensate
for the insufficient location information of these data by extracting location information
involving flooded areas from social media texts. On this basis, we constructed a new
social network based on the relationship between different location information (uploading
location information from social media and location information contained in text) in social
media data to explore how to use multi-source data to assess and monitor disasters in
severely affected areas.

1.1. Rapid Extraction of Disaster-Related Location Information Contained in Social Media Data

There are some studies [21,22] that have found that social media text contained a large
number of locational words, which can effectively make up for the insufficient location
information of the data. When an area was flooded, it usually attracted the attention of
many people in the surrounding areas (these areas might not have been affected or might
have been less affected by the flood), and these people would upload social media texts
containing the location of the flooded area. We can then understand the disaster situation
in the flooded area through this data. In addition, if an area was mentioned by more people,
it might also mean that the area was more severely affected by disaster. There are three
kinds of methods for extracting words with spatial attributes from Chinese texts, including
dictionary-based [23,24], rule-based [25,26] and machine learning methods [27,28] (as
well as deep learning [29]). These methods have their own advantages but all require
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certain labor costs. For example, the dictionary-based method is the most convenient,
but the maintenance and update costs of dictionaries are high; the rule-based method
has high accuracy, but it is difficult to apply to different scenarios, and the formulation
of rules requires the participation of expert knowledge; machine learning methods have
good flexibility, but the model requires a large amount of annotated corpus. Fortunately,
there are some natural language processing tools available that integrate some existing
methods to help identify locational words in text, such as “Stanford NLP (https://nlp.
stanford.edu/ accessed on 15 January 2022)”, “NLPIR (http://ictclas.nlpir.org/ accessed on
15 January 2022)” and “Hanlp (https://www.hanlp.com/, accessed on 15 January 2022)”,
etc. This saves a lot of labor for our work. However, through experiments, we found that
some words were not well recognized, and they were often fragmented due to incorrect
word segmentation. For example, the locational word “同马大堤 (Tongma Dyke)” was
wrongly divided into “同 (Tong)”, “马 (Ma)”, “大堤 (Dyke)”. Therefore, we used a method
that combined the Internet search engines and Chinese lexical rules to effectively recall
those locational words, which were not correctly recognized by natural language processing
tools. It improved the recognition efficiency of locational words in social media texts and
satisfied the requirements of subsequent experiments.

1.2. Flood Disaster Assessment and Monitoring Combined with Multi-Source Data

We dealt with remote sensing and social media data separately. For remote sensing
data, we obtained SAR images related to the study area before and after the disaster, and
mapped the flooded areas based on these data. For social media, based on the different
location information of social media (uploaded location information of social media and
location information contained in the text), we constructed a new social network that can
describe pointing relationships between spatial locations. These relationships can reflect
the distribution of victims and their attention. Then, the social network and processed
remote sensing images were comprehensively considered to mine disaster information.
These multi-source data can not only provide the macro disaster situation in a study area
but can also assess the disaster in different areas through public concern. Conversely, we
used the continuous theme change information of social media data to dynamically monitor
the severely flooded area, which effectively provided situational awareness to emergency
responders, as well as assistance to disaster reduction. The flood disaster in the Yangtze
River Basin in China in 2020 was used as a case study to verify the effectiveness of the
method in this paper.

2. Study Area and Data

2.1. Study Area

Every year from mid-June, the Yangtze River Basin in China enters the “Meiyu” period,
and there is continuous rainfall in this area. In 2020, the accumulated rainfall and duration
days in the area exceeded the level in the same period over the years. In the southern
Anhui Province in particular, due to the continuous torrential rain, many estuaries reached
the upper limit of water volume on July 21, resulting in serious floods. In this paper, we
took the central and southern regions of the Anhui Province as the study area, and the
relevant scope is shown in Figure 1.

2.2. Data Collection

We collected multi-source data related to the disaster, including remote sensing data
and social media data.

2.2.1. Remote Sensing Data

Unlike optical systems, SAR is an active sensor that utilizes microwaves, which
can penetrate clouds and generate ground information regardless of atmospheric condi-
tions [30]. Therefore, the “Sentinel-1” SAR was selected in this paper. We obtained the
post-flood (on 27 July) images from the website “USGS” (https://earthexplorer.usgs.gov/
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accessed on 15 January 2022). The study area is shown in Figure 1b. We also obtained
pre-flood images (on 10 April) for the same area from this website.

Figure 1. The study area shown in this paper. Among them, (a) depicts the cities involved in the
study area; (b) shows the SAR remote sensing image covering the study area.

2.2.2. Social Media Data

The social media data used in this paper came from Sina microblog, which is the largest
social media platform in China. We developed a crawler tool based on the advanced search
platform of Sina microblog, which can obtain data related to this disaster in a specified
area and a specified time period by setting search conditions. Through web page parsing,
these data are stored in the database in a structured form, including fields such as time,
location tags and content, etc. After de-duplication, the corresponding data totaled 10,839.
The relevant data involved nine cities, including Hefei, Liuan, Ma’anshan, Wuhu, Tongling,
Anqing, Chizhou, Xuancheng and Huangshan, as shown in Figure 1a. The time span of the
data is from 21 to 30 July.

3. Methods

In this paper, we proposed a framework that integrated algorithms, including natural
language processing, network analysis, etc., to extract locational words from social media
texts and construct a new social network based on different kinds of locational information
on social media. Then, we combined the network with processed remote sensing data to
serve as disaster reduction. The structure of the proposed framework is shown in Figure 2.

3.1. Location Information Extraction Based on Social Media Text

Existing natural language processing tools have a certain ability to identify locational
words contained in text. However, due to the limitation of Chinese word segmentation
accuracy, some locational words are often destroyed such that they cannot be recognized by
tools. In this paper, we introduce a method based on Chinese lexical rules and search engine
knowledge discovery to recall the locational word form fragmented words. The method
flow is shown in Figure 3.

3.1.1. Text Processing

We used the commonly used Chinese natural language processing tool “HanLP” to
process social media text. The main processing flow included word segmentation, which
is part of speech tagging and stop word removal. Among them, stopping word removal
means discarding those words that have no practical meaning in the text, such as “的 (of)”,
“是 (is)” and so on. They contributed little to the semantics and affected the efficiency of
the subsequent processing of the text.
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Figure 2. The structure of the proposed framework in this paper.

3.1.2. Part of Speech Selection and Word Set Construction

After word segmentation and part of speech tagging, we obtained those words with
location tags. These tags were provided by the “HanLP” tool, such as “ns (place name
label)”, “nt (institution name label)”, “ntcf (factory name label)”, etc. Some common
locational words were identified by filtering these tags. However, there were some potential
words with spatial attributes that had not been correctly identified due to incorrect word
segmentation. For example, after text processing, the sentence “暴雨使的附近同马大堤有
崩溃的风险！ (the torrential rainstorm may break the nearby “Tongma dike”!)” can be
converted into “( 暴雨/n, 附近 /f, 同 /p, 马 /n, 大堤 /n, 有/vyou, 崩溃 /vg, 风险/n)”.
In the original text, “同马大堤 (Tongma dike)” was a locational word, which showed the
area where the disaster occurred. However, it was broken into three words, including “同
(Tong)/p”, “马 (Ma)/n” and “大堤 (Dyke)/n”. We needed to restore these fragmented
words correctly. In this paper, a suffix word vocabulary related to locational words was
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summarized based on the named entity library provided by “HanLP”, such as “堤 (dyke)”,
“路 (road)”, etc. These suffix words can help us locate potential locational words in the
fragmented words. When a word was matched successfully, we traced back from the
position of the matched word. Each time an index position was traversed forward, the
related words would be combined in order. For example, based on the processed sentence
“(暴雨 /n, 附近/f, 同/p, 马 /n, 大堤 /n, 有 /vyou, 崩溃/vg, 风险/n)”, we can match
the word “大堤 (dyke)” and obtain the combined word set (大堤 (dyke), 马大堤 (ma
dyke),同马大堤 (tong ma dyke),附近同马大堤 (near Tong ma dyke), and暴雨附近同马
大堤 (rainstorm near Tong ma dyke)) according to the rule. These combined words were
regarded as potential locational words.

 

Figure 3. The process of extracting locational words in social media text.

3.1.3. Recalling the Locational Words

When using Internet search engines to retrieve words, we can obtain a lot of infor-
mation related to them. This information will help us understand the attributes of these
words, including judging whether the words have spatial attributes. This benefits from
the explosive growth of information and even knowledge, and they are interconnected
through the network. Due to using Chinese text, the Baidu search engine was selected in
this paper. The related method was as follows.

(1) The construction of candidate locational word set

When the searched words have entity features, content such as Baidu Encyclopedia
and Baidu Map may be fed back by the search engine. Baidu Encyclopedia and Baidu
Map are two important applications that are closely related to the Baidu search engine.
They have the ability to discover the attribute of the searched words, especially the spatial
attribute. Then, we added those words with spatial attributes to the candidate locational
word set.

• Spatial attribute judgment based on Baidu Encyclopedia
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Similarly to Wikipedia, Baidu Encyclopedia is a Chinese information collection plat-
form covering different fields of knowledge. As of October 2020, this platform contained
more than 21 million entries [31]. When a word was included in Baidu Encyclopedia, and
there were some attribute fields related to location information in the basic attribute list
of the word, we considered that the word was a locational word. For example, by retriev-
ing, we can obtain encyclopedic information (https://baike.baidu.com/item/%E4%B8
%AD%E5%BA%99/24544? accessed on 15 January 2022) about the combined word “中庙寺
(Zhongmiao Temple)”. The basic attribute list about it contained the “地理位置 (location)”
field, which proved that the word had spatial attributes. In addition, Baidu Encyclopedia
provides a list of categories for different entities, and each category contains specific entity
attribute fields (https://baike.baidu.com/editor/load/createload?lemmaTitle=baimasi,
accessed on 15 January 2022). We obtained all of these entity categories and their attribute
fields, and filtered out the attribute fields with spatial features, such as “地理位置 (loca-
tion)”, “发源地 (birthplace)”, etc., to construct a spatial attribute list. When the attribute
field in the basic attribute list of the searched word can match the attribute in the spatial
attribute list, the word can be regarded as a candidate locational word.

• Spatial attribute judgment based on Baidu Map

Baidu Encyclopedia can confirm the spatial attribute of many commonly used words.
However, the recognition effect of it on some ordinary POI (points of interest), such as a
designated building or square, etc., and even some abbreviations of locational words were
not positive. Therefore, Baidu Map, which is an electronic map that provides queries and
positioning functions for geographical entities, was used to help identify the words with
spatial attributes. When a word had spatial attributes, the retrieved results of the search
engine would include the Baidu Map tag. For example, the word “石大圩 (Shi da wei)”
was not included in Baidu Encyclopedia, but it was marked with a tag “百度地图 (Baidu
Map)” when we retrieved it by search engine (https://www.baidu.com/s?wd=%E7%9F%
B3%E5%A4%A7%E5%9C%A9, accessed on 15 January 2022).

(2) Recall of locational words

By using the search engine to link Baidu Encyclopedia and Baidu Map, we judged
whether the combined word had spatial attributes. We proposed that there can only be, at
most, one word in each combined word set as a recalled locational word. Some compound
word sets also have multiple recognized locational words. For example, each word in the
combined word sets “(石大圩 (shi da wei),大圩 (da wei))” and “(大堤 (dyke),同马大堤
(Tongma dyke))” had spatial attributes. We stated that the word with the longest byte was
the final locational word, such as “石大圩”, “同马大堤 ”, etc., because the word with a
shorter byte may be a sub word of the word with a longer byte.

3.2. The Social Network Construction Based on Location Information

In this paper, we combined the locational words extracted from social media text and
the tags of upload location of social media to construct the location-pointing relationship.
The relationships can help us find the areas that were most concerned by people. These areas
might be severely affected by disasters.

We removed the social media data that did not carry location tags and did not contain
locational words in their texts. Then, we divided the other data into three categories, including:

• C1: social media data themselves contained a location tag, but its text did not contain
locational words.

• C2: social media data themselves did not contain a location tag, but its text contained
locational words.

• C3: social media data themselves contained a location tag, and its text also contained
locational words.

We used Gc to represent the locational words extracted from the text and Go to
represent the location tag of social media. The spatial scales of this location information
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were not the same. In this paper, the locations with large spatial scale, such as provinces
and cities, were not considered.

We regarded the location information as nodes. Among them, Gc corresponded
to the node Vc, and Go corresponded to the node Vo. These nodes involved at least
one piece of microblog, and the relationship between nodes was shown through these
microblogs. We defined the location-pointing relationship between nodes pointed from Vo
to Vc. Based on the nodes and the relationship between nodes defined in this paper, we
constructed a new social network. For example, there were three pieces of social media
data, as shown in Table 1. The structure of the network can be described as shown in
Figure 4. Among them, the circle represented Go and the square represented Gc. For the
microblog M1, Go was “石头镇 (Shitou Town)” and Gc was “中庙寺 (Zhongmiao Temple)”.
It showed that the disaster in “中庙寺 (Zhongmiao Temple)” attracted the attention of the
residents from “石头镇 (Shitou Town)”. The same was true of microblog M2. For microblog
M3, it did not have G0, only Gc. This meant that there was an implicit location-pointing
relationship, pointing to Vc from an unknown node Vo. This still indicated that the disaster
in “十字镇 (Shizi Town)” might be serious.

Table 1. Relationship between location information related to social media.

Microblog Text Go Gc

M1

拥有700多年历史的中庙寺中庙寺中庙寺被大水淹
了。 (the Zhongmiao Temple with a
history of more than 700 years was

flooded by floods)

石头镇 (Shitou Town) 中庙寺 (Zhongmiao Temple)

M2
据说同大镇同大镇同大镇水淹严重。 (it is said that

Tongda Town is seriously flooded)
石头镇 (Shitou Town) 同大镇 (Tongda Town)

M3
十字镇十字镇十字镇也受灾了。(Shizi town was

also affected by the disaster)
十字镇 (Shizi Town)

Figure 4. The structure of the reconstructed social network.

Furthermore, we set two indicators to quantify the network constructed in this paper,
including node degree D and edge weight W. The calculation formulas of related indicators
are shown below:

Do =
No

N
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Woc =
No_c

N

Dc = ∑Ne
i=0 Woic

Among them, Do was the node degree of Vo. It was related to the number of social
media texts uploaded from node Vo, and we used No to represent the number of these
social media texts. In addition, there were some data in these social media texts, which
contained location information Gc. We used No_c to represent the number of such social
media. The edge weight Woc between nodes Vo and Vc was related to No_c. In order to
better express indicators Do and Woc, we normalized them, and N was the number of all
social media. Dc was the node degree of Vc. It was the sum of the edge weights of all edges
(Ne) pointing to node Vc.

The larger the Do, the more social media texts were uploaded in the area where Vo
was located. The larger the Dc, the more people paid attention to the area where node
Vc was located. Edge weight reflected the strength of the connection between two nodes.
It showed the spatial distribution of people who paid attention to the disaster in the area
where node Vc was located.

3.3. Flooded Area Extraction Based on Multi-Temporal Remote Sensing Images

There are two main commonly used strategies for extracting flooded areas based on
remote sensing images [32], including directly classifying multi-temporal remote sensing
images [15] and post-classification comparison (PCC) [33]. The former regards multi-
temporal remote sensing images as a whole, and directly uses methods including machine
learning, deep learning, etc., to extract a flooded area. The latter first identifies water
bodies from multi-temporal remote sensing images, and then obtains the flooded area by
comparing the differences between these processed images. In comparison, PCC is more
intuitive and convenient. Therefore, PCC was selected to extract the flooded area. The flow
is shown in Figure 5.

The Sentinel-1 GRD images involving the study area were used in this paper, including
pre-flood images and post-flood images. These multi-temporal images were first prepro-
cessed, and the process included co-registration, filtering and geocoding. In this paper,
we used the pre-flood image as the main image for co-registration. “De Grandi spatio-
temporal filtering” was selected to filter the noise of the images. The DEM data related to
the study area from the Geospatial data cloud (http://www.gscloud.cn/#page1/2 accessed
on 15 January 2022) was used to geocode the images, which facilitated spatial integration
of remote sensing imagery with social media data. After the preprocessing operation, we
performed an image mosaic on the images such that the images completely covered the
study area.

There are many methods for extracting a water body from a remote sensing image,
including classification [34,35], setting thresholds [18,36] and object-based image analy-
sis [37,38], etc. In this paper, we selected the maximum likelihood method [39], which
is a type of supervised classification and is one of the most commonly used methods.
According to the Bayesian information criterion, this method assumes that the spectral
characteristics of each object in the remote sensing image obey the orthonormal distribution.
Then, the method evaluates the similarity between other pixels and the pixels in the training
area by calculating the mean and variance of the pixels in the training area. The optimal
parameters are obtained by learning and calculating the pixel features of the water body in
the image by the classifier. Finally, the trained model can be directly used to calculate the
category of specified pixels, so as to extract the water body in the image.
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Figure 5. Process of flooded area extraction in this work using remotely sensed data.

Furthermore, we performed change detection on processed (water body extraction)
pre- and post-disaster images. Among them, the pre-disaster image was used as the main
image. We first kept only the water body part in the two images and then determined the
area of change by taking the difference between the two images. Finally, based on the OSTU
threshold segmentation method [40], we can extract the flooded area in the area of change.

3.4. Comprehensive Analysis

In order to combine social media data with remote sensing data, we need to convert
the tags of upload location of social media and the extracted locational words into latitude
and longitude coordinates. The API interface from AMAP (https://lbs.amap.com/api/
javascript-api/guide/services/geocoder, accessed on 10 December 2021) was used in this
paper to accomplish this purpose. Then, we performed a comprehensive analysis of the
two types of data, which included disaster assessment and continuous disaster monitoring.
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3.4.1. Disaster Assessment Combined with Multi-Source Data

We regarded the processed remote sensing images and the constructed social network
as different spatial layers. These layers were then superimposed under one space to help
assess disasters in different areas. Among them, the remote sensing image described
the disaster situation in the study area from the macro perspective, including the extent
and spatial distribution of the flooded area. Based on the relevant indicators of social
networks, we can understand which flooded areas in the remote sensing image received
more public attention. Generally speaking, the larger the flooded area and the more public
attention it receives, the more severely affected the area is. Furthermore, the corresponding
location-pointing relationship reflected the spatial distribution of people who paid attention
to those flooded areas, and we can also learn about the situation in the flooded area
through social media texts uploaded by those people. This is an effective illustration for
disaster assessment.

3.4.2. Continuous Monitoring of Disaster in Flooded Areas Combined with Social Media Data

The long revisit cycle of satellites makes it difficult to provide continuous disaster
monitoring. Moreover, it is difficult to perceive the specific disaster information in the
flooded area simply by using remote sensing images. Therefore, we supplemented this
information with social media data. We first selected the flooded area to be monitored and
collected social media data related to this area based on the constructed social network.
Then, we extracted keywords from these social media texts. These keywords reflected the
disaster themes in the area that people were concerned about. By analyzing the change
characteristics of these themes over time, the disaster reduction department can monitor
and understand the disaster situation in the flooded area in detail. At the same time, it also
improved the situational awareness of the disaster. The method of extracting keywords
from social media texts used in this paper is “TF-IDF” [41], and its formulas are as follows:

TF − IDF = TF × IDF

TF(w) =
ni,j

∑k nk,j

IDF(w) = log
(

|D|
1+|{j:wεdj}|

)

Among them, TF(w) is word frequency, which is a measure of the local importance of
the word w; ni,j is the number of times the word w appears in the document (social media
text) dj; ∑k nk,j is the sum of occurrences of all words in document dj; IDF is the inverse
document frequency, which represents the distribution of words in the entire corpus; |D|
is the total number of documents in the corpus;

∣∣{j : wεdj
}∣∣ is the number of documents

containing the word w.

4. Results

4.1. Locational Words Extraction

In this paper, we used three indicators, including P (precision), R (recall) and F-1 (com-
prehensive indicator), to evaluate the effect of the proposed method on extracting locational
words from the social media text. The relevant calculation formulas are as follows:

P =
N_Correct

N_Correct + N_False

R =
N_Correct

Num

F − 1 =
2 × P × R

P + R

Among them, N_Correct represented the number of locational words that were cor-
rectly recognized, N_False represented the number of locational words that were not
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recognized correctly, and Num represented the number of locational words contained in
the text.

We randomly selected 500 texts to evaluate the accuracy of the method in this paper
(approximately 1000 locational words were contained in these texts). The experimental
results showed that the indicators P, R and F-1 reached 89.32%, 83.64% and 86.39%, re-
spectively. The relevant results met the requirements of subsequent disaster analysis in
this paper.

4.2. Disaster Analysis Combined with Multi-Source Information

Based on the remote sensing data, we used the algorithm described above to extract
the flooded area, as shown in Figure 6a. Among them, the blue area was the water body,
and the red area was the flooded area. We superimposed the social media data with the
remote sensing image, as shown in Figure 6b. We can see that there was little social media
data in the flooded area. When the areas were being severely affected by floods, it was
difficult for people in these areas to upload social media data. Conversely, the regional
population distribution and the degree of economic development were also factors that
caused the uneven distribution of social media data. Therefore, it was difficult to effectively
assist remote sensing data to further mine disaster information by only using social media
data with uploaded location information.

Figure 6. The spatial distribution relationship between social media data and flooded areas. Among them,
(a) shows the flooded area based on remote sensing images; (b) overlays social media data, which
have location tags, on a remote sensing image.

4.2.1. Disaster Assessment Combined with Multi-Source Data

Based on social networks constructed in this paper and remote sensing data, we
superimposed them to carry out disaster assessments for different disaster-affected areas.
The analysis results are shown in Figure 7. In this figure, the yellow circular node represents
the upload location of the social media data, and the green square node represents the
location of the disaster mentioned in the social media text. We can see that most of the
green square nodes are located in the flooded area, such as area 1, area 2 and area 3, etc.
The larger the green square node, the more attention the area it was in received, which
meant that the disaster in these areas was serious. Based on the remote sensing image, it
can be seen that there are some areas which were less affected by floods. However, these
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areas still received more attention, such as area 4. This area is “Zhongmiao Temple”, which
is a famous scenic spot. Combined with social media data related to this area, we found
that this area was greatly affected by the disaster, and the base under the temple had been
flooded. The relevant disaster situation had attracted the attention of people in many other
areas. We checked the official news reports and confirmed the information mined by social
media (https://www.thepaper.cn/newsDetail_forward_8404872, accessed on 15 January
2022). Perhaps due to factors such as resolution or ground occlusion, the remote sensing
images failed to reflect this disaster information.

 
Figure 7. Superposition analysis of multi-source disaster information.

In addition, the edges between nodes described the spatial distribution characteristics
of people who were concerned about those affected areas. Combined with the correspond-
ing social media data, we can understand why people paid attention to these affected areas
and even what requirements people wanted. Using area 1 in Figure 7 as an example, this
area is “Tongda Town”, which had been seriously affected by a flood. We marked two
yellow circular nodes (node 1 and node 2) that were linked to area 1. Among them, node 1
was closer to area 1. The two nodes were less affected by the disaster according to remote
sensing images. We checked some social media data at node 1 and found that some people
were worried about the disaster in area 1 and even felt nervous and anxious. Because their
property (such as houses, farmland, etc.) and relatives were located in area 1, they were
curious to know how the disaster was progressing in this area. Although these people
were not directly affected by the flood, their bad emotions (nerves and anxiety) might have
triggered some other disaster losses [42,43]. For example, anxious people are more sensitive
to negative information about disaster, and are more likely to be induced and deceived
by bad information such as rumors [44]. Therefore, the disaster reduction department can
take some measures, such as pushing more disaster information in the flooded area to the
people in a timely manner, etc. In contrast, people at node 2 were only concerned about
the disaster situation in area 1. It indicated that more disaster reduction measures may
not be required for this area. Therefore, understanding the themes that people in differ-
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ent areas pay attention to in flooded areas is conducive to reasonably allocating disaster
relief resources.

Compared with some existing studies, including flood disaster assessments based
solely on social media [45,46] or remote sensing [47,48], and flood disaster analysis com-
bined with multi-source data such as that shown in the literature [14–17], the method in this
paper fully considered disaster-related location information contained in social media texts,
constructing the relationship between them and uploading location tags of social media.
This not only improves the fusion efficiency of the two kinds of data but also effectively
integrates the respective advantages of multi-source data. Remote sensing images show
the macroscopic disaster situation in the study area; conversely, social media (especially
the constructed social network) further assess the disaster situation in different flooded
areas. In addition, through the method in this paper, more disaster information, such as
the spatial distribution of people who pay attention to the disaster area and the detailed
disaster situation of the flooded areas, are also effectively excavated.

4.2.2. Continuous Monitoring of Disaster in Flooded Areas Combined with Social Media Data

Figure 7 not only showed the spatial distribution and extent of flooded areas but
also reflected the degree to which these areas were affected by disasters from the public
perspective. Among them, areas 1, 2 and 3 were severely affected by the disaster, especially
area 1. Therefore, we took area 1 as an example and combined social media texts to
continuously monitor this area. The analysis results are shown in Figure 8.

Figure 8. Monitoring the disaster in “Tongda Town” based on social media data. Among them,
(a) depicts how the themes of social media data related to “Tongda Town” changed over time; (b)
depicts how the amount of social media data related to “Tongda Town” changed over time.

In Figure 8, it can be seen that “Tongda Town” received more attention from 22 to
24 July. Among them, the keyword “22” indicated the specific date when the disaster
occurred. Keywords such as “burst”, “overflow”, “collapse” and “danger” described the
main causes of the flood disaster. It was reported that due to heavy rains over the past
few days, a section of the dam in the area broke, causing several villages to be submerged.
Almost at the same time as the disaster occurred, the disaster reduction departments had
already started rescue operations, and the keywords “flood fighting”, “rescue”, etc., could
explain it. With the progress of disasters and rescue, more and more people began to pay
attention to this area, especially on 23 and 24 July. During this period, related disaster
themes were abundant, and we could learn about the specific progress of the disaster,
including property damage (through the keywords “home”, “houses”, “sad”, etc.), rescue
casualties (through the keywords “wounded”, “coma”, “sign”, etc.) and effectiveness
of disaster reduction (through the keywords “rescued”, “evacuate”, “transfer”, etc.), etc.
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Since 25 July, although the disaster in “Tongda Town” still existed, the attention of people
to this area had dropped significantly. This might show that the disaster in the area
was no longer serious. Keywords such as “transfer” and “get better” accounted for a
relatively large proportion, indicating that the public had received better assistance during
this period. On 26 and 27 July, people once again focused their attention on “Tongda
Town”. By combining keywords such as “search”, “sacrifice”, etc., we could learn that some
rescuers were sacrificed in this disaster, and their remains were not found until 26 July.
This information attracted widespread attention. Keywords such as “heroic” and “hero”,
etc., showed how grateful people were to rescuers. The same method can be used for
disaster monitoring in other areas.

Social media data enhance temporal continuity of flood monitoring, which is an
important complement to remote sensing data. Moreover, based on the social network
constructed in this paper, we can obtain more social media data about the flooded area (only
a small amount of these data were from the local flooded area, and more were from other
areas). The information mined from social media effectively reflected the entire disaster
process and improved the situational awareness of disasters.

5. Conclusions

Social media and remote sensing data serve disaster reduction from different per-
spectives. They complement each other and enrich the expression of disaster-related
information. However, the limitations of social media data, such as insufficient geotags and
uneven spatial distribution, make it difficult to efficiently combine them with remote sens-
ing data. Thus, in this paper, we tried to solve this problem by extracting disaster-related
location information in social media texts and constructing a social network based on the
pointing relationship between different types of location information (uploaded location
information of social media and location information contained in the text). We combined
the processed social media data with remote sensing image data to verify the advantages
of our method in disaster analysis. We found that: (1) It is difficult to dig out more disaster
information in the flooded area by simply using the social media data with only uploaded
location tags because some hard-hit areas may exist little or no social media. (2) The social
network constructed in this paper can be effectively combined with remote sensing image
data and can help us to mine more disaster information, such as assessing the disaster situa-
tion in different areas and analyzing the spatial distribution of people who pay attention to
flooded areas. (3) The effective combination of multi-source data can make better use of the
advantages of different data sources, helping to fully describe the progress of the disaster.

The method in this paper still has some aspects that need to be improved in the future:
(1) We will consider optimizing the location information extraction method proposed in
this paper. Although this method had low labor costs and high automation, it depended
on the suffix words of the locational word. It is difficult for us to list all the suffix words
exhaustively. Therefore, we can consider introducing the semantic similarity calculation
of words to try to automatically identify these suffix words in the future. (2) More data
sources will be introduced, including population distribution data, land use data, and road
network data. These data can feed back disaster information from different aspects. In a
word, this paper has made an effective attempt to improve the efficiency of multi-source
data combinations to enhance disaster information mining and proved the great potential
of multi-source data combination in disaster reduction.
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Abstract: In recent decades, floods have caused significant loss of human life as well as interruptions
in economic and social activities in affected areas. In order to identify effective flood mitigation
measures and to suggest actions to be taken before and during flooding, microscale risk estimation
methods are increasingly applied. In this context, an implemented methodology for microscale
flood risk evaluation is presented, which considers direct and tangible damage as a function of
hydrometric height and allows for quick estimates of the damage level caused by alluvial events. The
method has been applied and tested on businesses and residential buildings of the town of Benevento
(southern Italy), which has been hit by destructive floods several times in the past; the most recent
flooding occurred in October 2015. The simplified methodology tries to overcome the limitation of the
original method—the huge amounts of input data—by applying a simplified procedure in defining
the data of the physical features of buildings (e.g., the number of floors, typology, and presence of a
basement). Data collection for each building feature was initially carried out through careful field
surveys (FAM, field analysis method) and subsequently obtained through generalization of data
(DGM, data generalization method). The basic method (FAM) allows for estimating in great detail
the potential losses for representative building categories in an urban context and involves a higher
degree of resolution, but it is time-consuming; the simplified method (DGM) produces a damage
value in a shorter time. By comparison, the two criteria show very similar results and minimal
differences, making generalized data acquisition most efficient.

Keywords: damage; urban areas; flood risk; GIS; southern Italy

1. Introduction

It is well known that, in the Anthropocene epoch, human activities have affected
geological forces in ways that disrupt the usual human–nature relationship [1,2]. For
example, the risk associated with flooding events is often increased by the disproportionate
and irrational use of highly hazardous areas [3]. It is also true that climate change is playing
a significant role in intensifying the extreme hydrological events responsible for severe
flooding (e.g., [4–7]). Therefore, the combined action of climate change and human activity
increases the fragility of the whole anthropized system (e.g., [8–10]).

As a matter of the fact, the most extreme alluvial events that occurred in recent years
were caused by intense and short- to mid-term rainfall (e.g., [11–13]) and were characterized
by water flows higher than those generally safely disposed of by the collection systems [14].
It must also be emphasized that these events often require substantial funding for the
reconstruction of damaged structures and assets [15–17].
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According to the 2007/60/EC directive, correct environmental and territorial planning
and a careful evaluation of the hydrogeological risk are needed to guarantee a high level of
environmental protection. Accurate land planning also reduces problems connected with
the physical transformations of the territory [18–20].

Flood risk assessments are often arranged at a macroscale (e.g., regional level with
common detail; see [21]) or at a mesoscale (e.g., municipal level with large mesh raster
mapping; see [22,23]), with a resolution of detail that could be too generic to be suitable for
local analyses [24]. Conversely, studies focused on microscale methodologies (e.g., [8,25–28]),
which consider flood damage as a function of the hydrometric height, can be used to evaluate
the risk level of every building in a town.

However, a major limitation of microscale approach methodologies is the collection
of data on urban asset characteristics (building and commercial activities), which is the
basis for the evaluation of the economic value of the structures at risk. Despite the large
amount of data provided by online databases, microscale approaches imply the need for
time-consuming on-site inspections to obtain full information on the features of assets that
can be damaged.

This paper analyzes the direct and tangible effects of flooding in the town of Benevento,
in southern Italy, for all types of assets at risk, and provides a quantitative value for the
economic damage through the application of microscale methods existing in the literature.
At the same time, it proposes a more simplified and rapid data acquisition method, based
on data generalizations that allow the damage level caused by alluvial events to be quickly
estimated. This overcomes the limitations to which microscale risk analyses are subject.
The results obtained are compared to evaluate whether the data simplification method
may return comparable outcomes in terms of risk quantification to those obtained using
traditional methods.

With the final aim of providing exploitable flood risk maps, this study uses data
related to the historical flooding that occurred in the province of Benevento from previous
studies [29–32]; furthermore, hazard levels are deduced from alluvial hazard maps of the
Benevento province [33,34], designed to provide easy-to-understand information on the
annual probability of flooding on the major river segments. The analysis provides new and
useful perspectives on current flood risk assessment across Benevento.

2. Materials and Methods

2.1. Study Area

The urban and suburban areas of Benevento are located at the confluence of the Calore
and Sabato Rivers, which are the main morphogenetic agents of the area (Figure 1). Peculiar
landforms detectable in the historical downtown consist of terraced surfaces that connect
with the two large alluvial plains of the aforementioned waterways.

Due to this morphological configuration, Benevento and the surrounding area suffered
significantly from flooding. The most recent overflow of the Calore River and some of its
tributaries occurred on 14–15 October 2015, hitting Benevento and the central part of its
province. The intense meteorological event (maximum intensity of 27.4 mm/10 min and
maximum cumulative rainfall of 415.6 mm recorded in 19 h at the rain gauge at Paupisi,
about 12 km from Benevento) caused two casualties and multiple ground effects, such as
flooding, soil erosion, and landslides over wide areas [31,32,35,36]. Estimates of the Cam-
pania Region Authority and Italian Farmer Confederation computed damage to buildings,
infrastructure, and local agriculture at 700 million and 1 billion Euros, respectively.

As reported in several studies (e.g., [37–40]), this event had dozens of historical
precedents in the area. About 15 overflows of the Calore and Sabato Rivers are documented
from the last 100 years (Figure 2), some of them with disastrous consequences, including
the destructive flooding that occurred in October 1949, when the Calore River caused huge
damage to properties and 20 fatalities [32,33,41].
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Figure 1. Administrative boundaries of the municipality of Benevento. Black rectangles demarcate
the study areas: (1) Industrial area, (2) “Rione Ferrovia” area, and (3) “Rione Libertà” area. The
buildings investigated are in red. Overflow of October 2015 of the Calore River is shown in light blue.

 
(a) (b) 

Figure 2. “Rione Ferrovia” area (part of sector 2, Figure 1) flooded in October 1949 (available at https:
//napoli.repubblica.it/cronaca/2015/10/15/foto/benevento_l_alluvione_del_1949-125118463/1/
(accessed on 12 May 2022) (a), overflow of October 2015 of the Calore River (photo: P. Revellino) (b).

From this historical evidence, it is clear that alluvial phenomena recur in the town of
Benevento, which makes a highly accurate assessment of the connected risk essential.
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In order to perform flood risk assessment across Benevento, the study area was divided
into three sectors (Figure 1), (1) Industrial area, (2) Rione Ferrovia area, and (3) Rione Libertà
area. The three sectors are quite different in terms of the building types, as the Industrial
area is mainly characterized by industrial warehouses, the Rione Libertà area is a popular
neighborhood characterized by residential settlements, and the Rione Ferrovia area has a
prevalence of buildings used for commercial purposes.

2.2. Methods

As is well known, the disaster risk connected to the occurrence of natural events is
generally defined by the following equation [42,43]:

R = H × V × E, (1)

which expresses the adverse effects suffered by vulnerable people and structures (V = the
vulnerability of the exposed elements) and exposed (E = exposure of the elements at risk)
as a consequence of the impact of a hazardous event (H = hazard of a natural event).

In the case of flood risk, spatially distributed flood levels and probabilistic time
recurrences for events of a given magnitude are usually used for estimate exposure and
flood hazard [28,44], whereas vulnerability is assessed by evaluating the potential degree
of damage to the exposed elements as a function of the flood water depth estimations.

For the study area, flood risk assessment is based on a step-by-step procedure that
uses (i) flood hazard maps from statistical analysis of available hydrometric time series [33];
(ii) two different microscale methods of data collection for the analysis of the features of
exposed elements, i.e., buildings; (iii) a model to quantitatively estimate direct and tangible
damage; and (iv) an economic analysis.

As regards data collection on features of exposed elements, two different datasets were
created using the same type of data (e.g., number of floors, typology, etc.), resulting from a
different acquisition method: (1) data derived from scrupulous field analysis, FAM (field
analysis method) and, (2) data extracted from the generalization of asset’s features, DGM
(data generalization method). The two acquisition methods—the first time-consuming and
the second more expeditious—should produce two different risk evaluations, which differ
in terms of the degree of accuracy and depend on the detail level of the dataset.

Figure 3 is a flowchart of the methodological procedure, whose key steps can be
summarized as follows:

• Definition and mapping of flood hazards (hazard, H);
• Definition of elements at risk from both FAM and DGM (exposure, E);
• Definition of the stage–damage curves (vulnerability, V);
• Definition of the building’s economic damage;
• Risk estimation (risk, R).

2.3. Hazards

Flood hazard data for the expected damage estimation are (1) the extent of the floodable
areas in relation to the main river courses and (2) the value of the relative flood depth [33,34].
Historical data on hydrometric height along the rivers, together with information related
to the morphology and topography of the territory, can be used to predict the extent of
potentially floodable areas [45–49].

In this study, flood data and hazard maps already available from [33] were used.
The authors used high-resolution LiDAR-derived topography and the record of available
hydrometric stations along the Calore and Sabato Rivers, from 1924 until 2016, to obtain
the annual probability of exceedance for each specific river stage and the return periods. A
type III generalized extreme value distribution function (GEV, ξ < 0; e.g., [50]) was used to
fit the statistical behavior of the annual maximums.
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Figure 3. Flowchart of the methodological procedure for microscale flood risk assessments using
FAM and DGM building datasets.

The GEV function has the following form:

F(x) = exp

{
−
[

1 + ξ

(
x − μ

σ

)]− 1
ξ

}
for ξ �= 0, (2)

where ξ, σ, and μ are the shape, scale, and location parameters, respectively.
However, as this function could underestimate the intensity of events with very high

return periods, a gamma distribution function [51] was coupled to overcome this limitation,
with the form:

F(x) =
βαxα−1e−βx

Γ(α)
, (3)

where α is the shape parameter, β is the scale parameter, and Γ (α) is the gamma function,
which is calculated as follows:

Γ(α) =
∫ x

0
xα−1e−xdx (4)

The combined functions were used to derive the flood hazard map as an annual
probability of exceedance map and hazard zonation map.

Subsequently, a generic hazard curve for the municipality of Benevento, which can
define the hazard level of each human structure located within the floodplains on an annual
basis, was derived with respect to the hydrometric zero. The hazard curve was obtained
by interpolating the flood depth from the hydrometric zero (sampling step of 0.01 m) and
the probability of exceedance (range value between 1 and 0.002, corresponding to a return
time of 1 year and 500 years, respectively). For a 500-year return time, the maximum
hydrometric height of the watercourse is equal to 14.5 m.
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A generic hazard curve was used to define the flood hazard scenarios for each element
exposed to risk depending on its position with respect to the watercourse and its height.

2.4. Elements Exposed at Risk

For this study, the area potentially flooded by a 500-year return-time event was
considered for identifying and mapping the elements at risk. This choice is consistent with
the Italian Ministry of Environment’s guidance, which suggests a 300–500-year event be
considered as the reference scenario in flood hazard and risk assessment.

Urban buildings of different types and their contents are the elements exposed at
risk taken into account for the analysis. For each of them, the following parameters were
considered: (1) Type of building; (2) building height from the hydrometric zero (m);
(3) building area (m2); (4) number of floors; (5) presence or absence of a cellar; and
(6) market value.

Information on the building characteristics were collected by both FAM and DGM
methods, resulting in two different datasets. Table 1 summarizes the acquisition criterion
for each type of data and method; while building height (2), building area (3), and market
value (6) were obtained by the same method, different criteria were used to obtain the type
of building (1), number of floors (4), and presence or absence of a cellar (5). Moreover, nine
field campaigns for the identification of building characteristics were carried out in the city
of Benevento between September and December 2018.

Table 1. Data acquisition criteria.

Type of Data FAM (1) DGM (2)

1 Type of building Field survey CTR (3)

2 Building height (m) PST (4) surveys PST (4) surveys

3 Building area (m2) CTR (3) + OSM (5) CTR (3) + OSM (5)

4 Number of floors Field survey Building height vs. floor height by
category from PST (4) surveys

5 Presence of cellar Field survey Not considered

6 Market Value
(EURm2) OMI (6) OMI (6)

(1) Field analysis method. (2) Data generalization method. (3) Regional technical map. (4) Not-ordinary plan of
remote sensing. (5) Open Street Map. (6) Real Estate Market Observatory.

(1) The 1:5000 regional technical map (CTR) was used as a topographic basis for
preliminary building identification and selection. According to FAM, on-site inspections
were performed in order to categorize the building type as residential or commercial. At the
same time, all buildings were automatically categorized according to the classification given
in the CTR for the DGM dataset. Churches, hospitals, municipalities, and schools were not
evaluated in the risk analysis as they can be considered centers for disaster management.
During emergencies, these buildings provide temporary accommodation to the affected
population; they are locations for strategic, health, and production functions of primary
necessity when calamitous events occur [52]. Therefore, being physical assets that fall within
the emergency plans, they are not suitable for evaluation with the proposed methodology.

(2) For both FAM and DGM, the building’s height in meters was extracted from the
DSM (digital surface model) of the PST (Not-ordinary plan of remote sensing) surveys (http:
//www.pcn.minambiente.it/mattm/en/not-ordinary-plan-of-remote-sensing/ (accessed
on 12 May 2018)) with a 1 × 1 m mesh size. Specifically, the height of each building was
assumed to be equal to the 60th percentile of its maximum elevation measured from the
ground. This choice was made in order to reduce the effect of the presence of elements,
such as chimneys, antennas, and roof gardens, which could cause an overestimation of the
building height.
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(3) The areas of the buildings (surface in m2) were obtained from the Regional Technical
Map (CTR) at a 1:5000 scale of the Campania Region and then controlled, verified, and
sometimes integrated using OpenStreetMap (OSM).

(4) Number of floors of each analyzed building were obtained through field analysis,
for FAM. As regards DGM, the number of floors was calculated from DSM as the ratio
between the building’s height and the average height of the floors, according to the building
category. To be exact, the average height of a single floor of each building’s category was
experimentally obtained by measuring the floor height of sample buildings (at least 10 for
each category) and computing the average value.

(5) As regards FAM, the presence of a cellar in each building was checked by on-site
inspection (the presence of grates or windows near the road surface); conversely, since no
data about cellars can be extracted from CTR or OSM, this information was not considered
for DGM.

(6) The real estate quote for each building was obtained from the Italian Revenue
Agency website (https://www.agenziaentrate.gov.it/portale/ (accessed on 25 June 2018))
following the categorization provided by the Real Estate Market Observatory (OMI–[53]).
The OMI database identifies a minimum and maximum range of market values, per unit
area, differentiated for homogeneous area (OMI area) and type of property. It was chosen to
consider the average market value for each type of building belonging to the homogeneous
OMI area.

The two datasets acquired were incorporated into QGIS; an ID (identifier) was assigned
to each building which was correlated with the other information (typology, height, surface,
number of floors, cellar, and market value). The following steps were carried out for
both datasets.

2.5. Stage–Damage Curves

Damage estimation was performed by assuming a vertical distribution of the economic
value of the structure and its contents.

To determine the direct damage from flooding, stage–damage curves were developed
that relate the degree of damage to the water height during a flood event [25,54,55]. These
curves are different and are functions of the (1) type of building, (2) number of floors, and
(3) presence or absence of cellar. They are independent of individual flood events.

Although derived from a simplified analysis, a stage–damage function represents the
most suitable model for estimating the direct impact of flooding on buildings. It allows for
obtaining a percent loss as a consequence of an event characterized by a specific magnitude
and return times. Thus defined, the damage functions have the advantage of being applied
to similar urban settings even if geographically distant.

For each floor, the following equation was considered in order to evaluate the per-
centage degree of damage as a function of the hydrometric height that the building can
reach. These equations were used for the stage–damage curves in which the damage, d, is
considered as a function of the flood height, h [27]:

dki = dki(h) (5)

where k varies according to the category of building considered (for example, residential,
commercial, industrial, etc.), while the parameter i depends on the number of floors and
the heights of the floors themselves, which vary according to the category of building itself
and therefore to the “k” factor, and the presence of a cellar.

2.6. Monetary Damage Estimate

Estimation of the monetary damage was performed for all buildings in the town of Ben-
evento, taking into account representative categories, domestic contents, and
commercial activities.
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The generic formula, modified from [27], used for the calculation of the total damage
(Dtot) is:

Dtot

(
EUR
m2

)
= Ds + Dc (6)

where Ds is the economic damage to the structure only while Dc is the economic damage
suffered by the household or business. Here, Ds (the economic loss for a given building,
EUR/m2) is computed as follows:

Ds = c × dki × Vs (7)

where c is the vulnerability of the building, dki (%) is the damage percentage associated
with the flood depth for each single building, and Vs is the property price (EUR/m2)
calculated for all the floors of a building.

The estate evaluations from the revenue agency consider the conservation status of
the buildings and can be used to define a range of values within which the vulnerability
parameter c can vary.

The damage, Dc, is defined by the following relationship:

Dc = f × Ds (8)

where f is a coefficient that expresses the percentage of the value of the domestic contents
as a function of the value in EUR/m2 of the structure.

2.7. Risk Assessment

The value of the economic loss, defined for a given return time, can be interpolated
in the domain of the probability of exceedance to obtain a curve that expresses the risk
as EUR/m2y. This curve is the expected annual damage (EAD), which is the sum of
the damage caused by all the floods of any potential magnitude weighted according to
the probability of occurrence in a year. The expected annual damage can be computed
as follows:

Risk = EAD =
∫ 1

0
Dtot × prob, (9)

where “prob” is the probability of occurrence for each defined height, i.e., the frequency,
for which the total economic damage has been estimated.

Interpolating all data of probability of occurrence for each flood height (with a sam-
pling step of 0.01 m) with the corresponding degree of damage, the flood risk is calculated
for each building in EUR/

(
m2y

)
. The total risk (EUR/y) for the whole asset can be obtained

by multiplying the unitary risk value by its total surface.
To make methodologies and mathematical models replicable for different areas and

scales in an automated manner, replacing only the input data, a cross-platform software
procedure using Python as the programming language and Postgresql/Postgis as the
DBMS (database management system) was developed to store both alphanumeric and
geographical input/output data. The input multisource data (see Table 1 and Section 2.5)
were normalized, standardized, and verified (i.e., removal of corrupted or redundant data,
missing data, etc.) before loading them into the Postgresql database.

Using this software procedure in a cloud environment, it is possible to obtain the risk
values for any potentially floodable area with conditions and characteristics comparable to
the city of Benevento (10 km2—more than 1500 buildings affected) in less than 2 h (with
input data already loaded in the DBMS). During the tuning phase of the software procedure,
it was found that for an experienced operator the same nonautomated procedure requires
at least 6–8 working days.

The results are returned as vectorial data, which contain not only the monetary damage
for each single building, but all the basic information extracted and summarized from the
input data, such as the building height, number of floors, OMI zone, etc. Vectorial data
are thus ready to be imported into a GIS environment, where raster and vectorial data
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containing information on flood hazards, building characteristics, stage–damage curves,
and monetary damage are used to obtain a spatialized risk map of the study area.

Risk maps, as technologies for managing risks, are important visualization tools that
convey information, create awareness, and encourage users to take actions for managing
risk [56]. Such graphical representations not only describe the situation but open up new
vistas and lead to a new understanding of responsibility and accountability [57].

3. Results

3.1. Hazards

Figure 4 shows the flood hazard maps of the study area resulting from GIS processing
and probability analysis [33]. The annual probability of exceedance (Figure 4a) represents the
hazard level linked to the occurrence of floods of different magnitudes on an annual basis.
The zonation map (Figure 4b) consists of four zones of the study area that can be flooded by
events of a specific return period. Accordingly, using the local basin authority guidelines, the
four hazard levels chosen are: (i) very high hazard, corresponding to 1–5-year floods; (ii) high
hazard, corresponding to 5–30-year floods; (iii) medium hazard, corresponding to 30–100-year
floods; and (iv) low hazard, corresponding to 100–500-year floods.

It should be noted that large parts of the floodplain included in the three study areas
show high and very high hazard levels. In particular, most of the Industrial area (box 1
in Figure 4), the western sector of Benevento (“Rione Ferrovia” area, box 2 in Figure 4),
and the area located along the Sabato River and at the confluence of the Sabato into the
Calore River (“Rione Libertà” area, box 3 in Figure 4), are classified as high to very high
hazard zones.

3.2. Elements Exposed to Risk

During field surveys, the following information on building features, according to
the procedure explained (see Section 2.4), were recorded for a total of 1533 buildings:
(1) type of building; (2) building height from hydrometric zero (m); (3) building area (m2);
(4) number of floors; (5) presence or absence of a cellar or basement; and (6) market value.
As mentioned before, all buildings included within the boundary of a 500-year flood
were considered.

Table 2 shows the types of building surveyed and the average floor height computed
for each building category. This information was used to derive the number of floors
from the total height measured on the DSM, resulting in 1–8-floor buildings. The maps
in Figure 5 show different results for buildings’ number of floors from direct field survey
(FAM) and computational analysis (DGM).

Using the market value (EUR/m2) of the revenue agency (https://www.agenziaentrate.
gov.it/portale/, accessed on 1 May 2018), the real estate prices for each building are com-
puted as the average value for each homogeneous OMI zone (OMI zone). The results show
that the study area includes five OMI areas with different market values, named (Figure 6):
B1, the central area/historic center; B2, the central urban area; C1, the semicentral urban
area; C2, the semicentral/“Rione Libertà” area; and, D1, the suburban area/agricultural
area. Moreover, within each OMI area, buildings are differentiated by the intended use of
the property, distinguishing residential, commercial, productive, and tertiary.

3.3. Stage–Damage Curves

Figure 7 shows the generic flood hazard curve, obtained from a statistical analysis of
the hydrometric time series from [33], used to define the hazard levels for each building
considered, according to its position with respect to the watercourse and its altimetric
characteristics. The generic hazard curve compares the probability of exceedance with
the flood depth, for a maximum of 14.5 m from the hydrometric zero corresponding to a
500-year return-time flood and a probability of excess of 0.002. The building height, with
respect to the hydrometric zero of the watercourse, is superimposed on the hazard curve
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(Figure 7, the red part of the curve) in order to estimate the yearly probability of exceedance
of each structure and the portions that can be flooded and damaged.

 
(a) 

 
(b) 

Figure 4. Flood hazard map (a) and flood hazard zonation map (b) of the three selected areas of
Benevento (data from [33]).
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Table 2. Average height of the building floor for different categories.

Type of Building (FAM and DGM) Floor Height (m) (DGM)

Civil dwellings, economic housing 3.6
Parking garages, box, villas 3.2
Offices, structured offices 3.7

Industrial sheds, typical warehouses, laboratories 4.5
Shopping centers, stores, shops 4.6

Other 4.3

 

Figure 5. Example of different numbers of floors obtained by surveying (FAM) and computing (DGM)
for part of the area #2 “Rione Ferrovia.”

 

Figure 6. Map of Benevento’s buildings (black polygons) selected for the analysis and zonation of
the OMI (Real Estate Market Observatory) areas. (B1) central area/historic center area; (B2) central
urban area; (C1) semicentral urban area; (C2) semicentral/“Rione Libertà” area; (D1) suburban/
agricultural area.
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Figure 7. The generic flood hazard curve (black line) for the Benevento area compared with the
height of a generic building (red line) located at a given position with respect to the watercourse and
the hydrometric zero.

Figure 8a shows the vertical distribution of damage as a percentage of the economic
value. It is assumed that each floor and its household and commercial contents has the
same economic value but with some differences: (1) for structures with a surveyed cellar
(only FAM dataset), 10% of the total value is given to the cellar, as it may contain perishable
goods, as well as boilers, heating systems, and electrical systems; (2) for structures without
a cellar or without cellar data (both FAM and DGM datasets), 10% extra is added to the
first floor only to reduce possible underestimations.

 

(a) (b) 

Figure 8. (a) Vertical distribution of the economic value for building with and without a cellar;
(b) examples of stage–damage curves for buildings with different numbers of floors, with or without
a cellar.
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Figure 8b shows the stage–damage (%) curves created with the above assumption.
Curves are derived for each type of 1–8-floor buildings, with and without a cellar. A loss
of 70% of the economic value of each floor is assumed when water reaches the half floor;
this assumption is consistent with the fact that most of the household contents and, in
particular, electrical outlets are located in the lower part of the floors.

At this step of the analysis, the hazard curve of each single building is compared with
the corresponding stage–damage curves in order to find the damage for each building and
for each probability of exceedance (Figure 9).

  
(a) (b) 

Figure 9. Example of damage degree (%) for buildings, considering their features extracted with
FAM (a) and DGM (b) for a flood event with a return time (Tr) of 100 years.

3.4. Monetary Damage Estimate

After the application of the stage–damage function, the percentage losses are trans-
formed into economic losses using Equations (6)–(8) and data from the revenue agency
website (https://www.agenziaentrate.gov.it/portale/ (accessed on 25 June 2018)) on the
monetary value for each building category. The values for m2 are calculated for each
centimeter of height of the building; the total damage is then obtained by multiplying it by
the total surface area.

As regards the vulnerability parameter c in Equation (7), the building type and main-
tenance status can have an important influence on the damage level suffered from flooding.
For example, steel reinforced concrete buildings suffer less damage on the structural level
compared to buildings made of other construction materials. As for other case studies of
historical centers in Italy [25,27], buildings in the analyzed areas generally consist of ancient
masonry edifices in the Rione Ferrovia and Rione Libertà areas, with a small percentage
of prefabricated industrial warehouses. Therefore, during the flooding in October 2015,
losses were mainly (1) nonstructural damage, which can be solved with major renovations
(e.g., replacement of floors, painting, restoration of electrical and thermal systems, etc.)
or (2) domestic and commercial contents damage. Based on these considerations, it is
assumed that the vulnerability parameter c for nonstructural damage (1) can be defined
from real estate valuations, taking into consideration the conservation state of the buildings
and, more specifically, the relationship between the market value of a building in perfect
condition and that of another that needs a thorough renovation. It was therefore assumed
that c = 0.2 for structures as the ratio between the value of the two types of building is
between 0.15 and 0.30 (Italian Revenue Agency). Conversely, the vulnerability parameter c
for domestic and commercial contents (2) can be assumed to be 1 as their full replacement
is expected after flooding.
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Table 3 shows, instead, the correction factor (f in Equation (8)) for the estimation of the
economic damage suffered by a household or commercial furniture in relation to the type
of building. The value of the domestic contents is assessed according to a method proposed
by the U.S. Hydrologic Engineering Center [58], which defines that value as a half percent
of the value of the building for m2. Moreover, the correction factor f for commercial or
industrial activities takes into account the fact that the commercial or industrial damage or
destruction by flooding may have an economic value higher than that of the structure itself.

Table 3. Correction factor, f, for the evaluation of the economic damage suffered by a household or
commercial furniture in relation to the cadastral category.

Types of Building f (1)

Civil dwellings, economic housing, villas 0.50

Industrial sheds 3.50

Parking garages, boxes, shopping centers, stores, shops, offices,
structured offices, laboratories, typical warehouses 2.00

(1) Equation (8).

3.5. Risk Assessment

The procedure for flood risk assessment was completed in a GIS environment. Differ-
ent thematic data, organized in raster and vector information layers, are used in the QGIS
platform. The following layers are used:

• Digital elevation model (DEM) and digital surface model (DSM) containing informa-
tion about the territory;

• Water surface model and flood hazards;
• Layers of building types and characteristics: building identification number (GID),

presence of cellar, number of floors, building height, building area, and type of building;
• Layers relating to the division of the OMI zones;
• Layers relating to stage–damage curves;
• Layers relating to the risk calculation.

Figures 10 and 11 show the flood risk maps of the study areas obtained by Equation (9)
from FAM and DGM, respectively. The spatial distribution of economic losses, which is
given per unit area per year (EUR/m2y), shows the direct correlation of the damage with
the distance from the water course, even though it highlights a heterogeneity of results as a
consequence of the different building type and characteristics.

In the absence of a cellar, the risk calculation for both methods are quite similar.
In the Industrial area (sector 1, Figures 10 and 11), the economic value of the risk is
matched exactly. A slightly higher variation occurs in the Rione Ferrovia area (sector 2,
Figures 10 and 11), probably due to the fact that a large number of these buildings are
characterized by a cellar, most of them being structures used as civil dwellings or offices.
In the Rione Libertà area (sector 3, Figures 10 and 11), the risk value is visually higher than
that obtained in the other quadrants. The higher unitary risk values are due to two main
reasons: (1) the proximity to the watercourse and the high probability of being affected
by flooding with shorter return times and, therefore, a higher probability of exceedance;
(2) the morphological configuration, which is characterized by the minimum elevation
difference of the area compared to the hydrometric zero of the watercourse. All these
aspects constitute a condition of increased risk compared to the buildings located in the
other sectors.

It should also be noted that, when estimating the unitary risk, all other conditions
being equal, the number of floors influences the degree of damage: the more floors there are,
the greater the risk value. On average, buildings of the Rione Libertà area are characterized
by a higher number of floors than those of the other areas.
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Figure 10. Flood risk maps (EUR/m2y) from FAM for Industrial area (1), Rione Ferrovia area (2), and
Rione Libertà area (3).
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Figure 11. Flood risk maps (EUR/m2y) from DGM for Industrial area (1), Rione Ferrovia area (2),
and Rione Libertà area (3).
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4. Discussion

The analysis performed on flood risk evaluation at a microscale suggested that the
two methods of data collection, FAM and DGM (Figure 12), led to very similar results in
terms of loss per year, making the simplified approach the most efficient.

 

Figure 12. Conceptual model of the flood risk evaluation. See Table 1 and Figures 8, 10 and 11 for
acronyms and legends.

Table 4 summarizes and compares the risk values obtained by using FAM and
DGM. For all the analyzed buildings, the expected economic losses were about 29.35 and
28.36 million EUR/y, respectively, with a difference of 3.35% between the three sectors.
In the Industrial area (sector 1, Figures 10 and 11), the difference in value was very low,
due to the fact that the considered assets are mostly industrial storage facilities without
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cellars. The most significant difference, about 10% of the estimated damage, was observed
in the “Rione Ferrovia” area (sector 2, Figures 10 and 11), which consists mostly of dual-use
ancient buildings (commercial activities on the ground floor and residential use on the
upper floors) with cellars.

Table 4. Total damage (M EUR/y) for the study area and comparison between the different
acquisition methods.

FAM (M EUR/y) DGM (M EUR/y) Difference (%)

Total buildings ≈29.35 ≈28.36 3.35
Industrial area ≈4.06 ≈4.06 0.002

Rione Ferrovia area ≈1.97 ≈1.75 10.36
Rione Libertà area ≈23.32 ≈22.54 3.34

Table 5 shows the total damage comparison for each building category. Minor scatter-
ing of expected building damage was seen for FAM and DGM, except for civil dwellings
and offices, which showed differences of 5.54% and 6.5%, respectively. Some other building
categories exhibit null or negligible differences, thus the simplification adopted does not
particularly affect the analysis outcome.

Table 5. Total damage (M EUR/y) for each building category and a comparison between the different
acquisition methods.

Typology
Number of
Buildings

FAM
(M EUR/y)

DGM
(M EUR/y)

Difference
(%)

Total buildings 1533 ≈29.35 ≈28.36 3.35
Civil dwellings 893 ≈14.59 ≈13.78 5.54

Economic housing 94 ≈0.49 ≈0.48 0.76
Garages 12 ≈0.76 ≈0.73 2.80

Boxes 89 ≈0.26 ≈0.26 0.07
Villas 3 ≈0.0037 ≈0.0037 0.00

Shopping centers 5 ≈0.13 ≈0.12 2.72
Stores 21 ≈1.06 ≈1.06 0.00
Shops 67 ≈4.30 ≈4.29 0.15
Offices 60 ≈2.19 ≈1.98 6.50

Structured offices 4 ≈0.15 ≈0.15 0.00
Industrial sheds 149 ≈4.63 ≈4.63 0.02

Typical warehouses 125 ≈0.27 ≈0.27 0.00
Workshops 11 ≈0.60 ≈0.60 0.00

Table 6 only compares the expected economic damage between buildings with and
without a basement, in order to evaluate underestimations of the simplified procedure.
Elements without a basement, which are 1281 (about 84% of the analyzed assets), give
similar values and the difference between accurate and generalized methods can be consid-
ered negligible. On the contrary, for the 252 buildings with a basement (about 16% of the
analyzed assets), the modeled damage shows a large deviation (about 19.87%) between
FAM and DGM, resulting in the cellar being the only factor influencing loss values in the
comparative analysis between FAM and DGM. It should be noted that the 10% extra added
to the first floor of structures without a cellar or without cellar data (see Section 3.3) only
partially compensates for the absence of the data. This can be explained by taking into
account that observation in European regions confirms that cellars and ground floors are
more vulnerable and exposed to flooding than any other floor [59]. Therefore, even small
flood depth can cause flooding of the cellars that lie below the road level.
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Table 6. Total damage (M EUR/y) for buildings with and without a cellar.

Typology
Number of
Buildings

FAM DGM Difference %

Without cellar 1281 ≈22.34 ≈22.34 0.0002
With cellar 252 ≈4.94 ≈3.96 19.87

5. Conclusions

In this paper, the flood risk across three sectors of the town of Benevento in southern
Italy was evaluated, accounting for microscale risk estimation methods. The procedure,
modified from that proposed by [27], considered direct and tangible damage as a function
of the hydrometric height and allowed for quick estimates of the damage caused by
alluvial events.

Data on the physical features of damageable buildings (e.g., number of floors, typol-
ogy, presence of a basement) were analyzed by applying a simplified procedure of data
generalization, which tries to overcome the limitations of the original method connected to
the huge amounts of input data only obtainable by field surveys.

However, the two methods led to very similar results, with a difference of just 3.35%
in estimating the total economic damage of 1533 buildings. This makes the generalized
data acquisition method the most efficient as it responds to the need of reaching a reliable
risk valuation in a shorter time. The limitations of the proposed analysis are related to
the lack of information about the presence of cellars, which cannot be detected without
field inspection.

Finally, the method described allows us to quickly assess the expected risk for any
building as a result of a flood event of any specific intensity. This suggests that translating
uncertainties into risk is also a matter of dealing with kairotic time, which shields failing
economic frameworks from criticism [60]. As such, the method can represent a valid tool
for the preliminary selection of sustainable measures concerning the management of the
territory, such as limitations of use, planning and design of mitigation works, evacuation
plans, increased awareness of risk among citizens, and the provision of support tools, such
as insurance shields.
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Abstract: In this paper we investigate the economic response of rural households to the 2013 floods
in Pakistan. The case study illustrates the important roles of labor supply adjustments and income
diversification in coping with climate-related risks. Using detailed household panel data that were
collected before and after the 2013 floods, we find that the exposure to flood results in lower partici-
pation in farm activities. The overall effects are decreased diversification in the sources of income
and ambiguous reduction in inequality which is associated with overall declines in incomes. These
changes could be locked in if affected households do not have sufficient assets to resume farming. The
results suggest intervention points for public policy, related to labor mobility and access to capital.

Keywords: employment; floods; income diversification; income inequality; Pakistan

1. Introduction

Climatic factors such as rainfall patterns, temperature variations and natural disas-
ters are known to affect economic outcomes (e.g., [1–4]). In developing countries where
agriculture is the primary source of livelihoods and where welfare levels are already close
to the poverty line [5], disasters such as floods are particularly harmful to the lives and
livelihoods of rural households.

Affected households have developed a range of coping mechanisms to reduce the
impact of climate extremes, often compensating for insufficient national disaster risk
management programs and Government support schemes. Frequent options include
temporary migration [6,7], extended family support [8], the sale of livestock or other
productive assets [9,10], and adjustments to farm sizes through land rental or sale [11].

Our interest is in labor adjustments—that is, the reallocation of labor to different
income generating activities—and our case study is the 2013 floods in Pakistan. Existing
literature on adjustments in income generation activities as a risk mitigation strategy mostly
focused on labor market dynamics such as the impact on wages (e.g., [12–14]), while we
are interested in income preservation strategies. Specifically, we focus on participation in
and returns from farm and non-farm employments.

Rural Pakistan is a good case study to analyze climate-imposed changes in income
generation strategies. Pakistan is one of the 10 most affected countries by extreme flooding,
according to the long-term climate risk index [15]. Between 1999 and 2018 the country
experienced 152 extreme climate events, resulting in around USD 3.8 billion in losses [16].
The 2010 “super flood” affected most of the country, with the most severe impacts in the
provinces of Punjab, Sindh, Balochistan and Khyber Pakhtunkhwa (KPK). Subsequently, a
series of locally more concentrated floods during 2011–2013 hit some of the same regions,
affecting their recovery from the 2010 flood. Our interest is in the 2013 floods, which have
been studied less than the 2010 super flood.
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Analytically, we took advantage of a very detailed and wide-ranging household
dataset, the Pakistan Rural Household Panel Survey (PRHPS), which was collected both
before and after the 2013 floods. Two of the three survey waves (PRHPS I and II) took place
before 2013, with a third round (PRHPS III) carried out after the 2013 floods (Figure 1).
The dataset and timing of events allowed us to consider mouza-level heterogeneity in
flood exposure (i.e., affected and unaffected mouzas; a mouza is composed of several
contiguous villages) and, therefore, to identify the adverse effects of the 2013 floods using a
difference-in-difference setup. The overall context is one of recurring climate shocks: all
PRHPS regions were affected by the 2010 super flood and in 2013 many households were
still recovering from earlier flood events.

Figure 1. Timeline of 2010–2014 events.

We find that, compared to unaffected households, flood-affected households have in-
creased participation in farm activities which, however, has not been translated to increased
farm incomes. Consequently, flood affected regions experienced lower diversification in
the sources of income. Although regional inequalities have decreased, they were associated
with lower overall incomes in the affected regions.

Our findings contribute to a growing literature on the adaptation response of house-
holds to climate shock, which includes empirical work on Pakistan (e.g., [17,18]). Deen
(2015) and Kirsch et al. (2012) investigated the aftermath of the 2010 flood, documenting
widespread economic [19,20], social and health impacts. Kurosaki (2017) investigated the
speed of recovery from the 2010 floods using a panel survey conducted in KPK, where vir-
tually all households were affected [21]. In earlier work, Kurosaki (2015) used a two-period
panel dataset, which predates the recent floods, to investigate consumption smoothing and
risk sharing by flood-exposed households [5]. Mueller et al. (2014) studied the impact of
floods on long-term migration [7].

2. Recent Flooding and Adaptation Responses in Pakistan

With its diverse terrain, ranging from mountains in the north to floodplains and
deserts in the south, Pakistan is one of the world’s most vulnerable countries to climate
risks and related hazards. The floodplains of the Indus River, in the southeast of the
country, experience recurrent flooding, usually caused by excessive monsoon rainfall and
glacial melt.

The 2013 floods occurred in a particularly calamitous period. Between 2001 and
2015, Pakistan experienced 45 major flood events [16], including a series of severe floods
during 2010–2013 (Table 1). The 2010 flood was one of the biggest ever to hit the country,
impacting the Indus River basin across the provinces of KPK, Sindh, Punjab and Balochistan.
Beginning in late July 2010, the flood affected more than 20 million people across a fifth of
Pakistan’s land area (Annual Flood Report 2010). In addition to almost 2000 deaths [16], the
2010 flood damaged or destroyed more than 1.6 million houses and destroyed unharvested
crops covering 2.4 million hectares of farmlands [22,23].

The 2010 flood was followed by back-to-back floods during 2011–2013 in some parts
of the country, again affecting agricultural production and setting back recovery from the
harms of the 2010 flood. The August-September torrential monsoon rains of 2011 especially
hit the southeastern parts of Sindh province and some parts of Punjab. Consequent floods
affected about 9.3 million people from an area of about 26.3 thousand square kilometers,
claiming about 516 lives, and damaging about 1.4 million houses and 1.9 million acres of
cropped lands [23].
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Table 1. The 2010–2013 floods in Pakistan.

Event
Direct Losses

(USD Million)
No. of Deaths

No. of Affected
Villages

Flooded Area
(Sq. km)

2010 Flood 10,000 1985 17,553 160,000
2011 Flood 3730 516 38,700 27,581

2012 Flood 2640 571 14,159 4746
2013 Flood 2000 333 8297 4483

Data sources [16,24,25].

Next, heavy rainfall in late August and early September in 2012 led to flash floods
in hilly areas and ultimately caused flooding in several districts of KPK, Upper Sindh,
Southern Punjab and Northeastern Balochistan. The 2012 floods affected 4.85 million
people in over 14,000 villages, claiming 571 lives, damaging over 640,000 houses, and
inundating 1.2 million acres of cropped land [23].

Finally, the 2013 floods were triggered by heavy rainfall events in July and August,
which caused inundations in the catchment areas of rivers Kabul, Chenab, Indus, Jhelum
and Ravi. The 2013 flood primarily affected several districts from Punjab and Sindh
provinces (Table 2). The 2013 flood affected about 1.5 million people and over 1.1 million
acres of cropped land in 8297 villages, claiming 333 lives and damaging or destroying about
80,000 houses.

Table 2. Flood affected mouzas.

Province District Affected Mouzas Unaffected Mouzas

Punjab Multan • Umrana Shumali
• Chak 007/2 Thal Janubi
• Chak Sarkar Bahi Wal
• Wijhi

Punjab Bhakkar • Baryana
• Bunga Sighwal
• Chak 118 SB
• Saleem Abad

Sindh Hyderabad

• Charbatti
• Shaikh Haji Turabi
• Talli
• Uheb

Sindh Sanghar • Shori Jagir
• Andheji Kasi
• Gharo
• Khuda Abad Jagir

Sindh Jaccobabad • Kacho Khanoth
• Charo
• Narki
• Saeed Pur

No. of households 205 291

Data sources [16,24,25].

The Government response to the 2010–2013 flood events was led by the National
Disaster Management Authority (NDMA), which is responsible for mobilizing emergency
funds, coordinating between relevant departments (including the Federal Flood Commis-
sion, the Emergency Relief Cell and the Pakistan Meteorological Department as well as the
army, civils society organizations and several international NGOs. At a more local scale,
irrigation departments, district disaster management authorities, agriculture department
and district coordination offices played key roles in flood warning and evacuation services),
issuing flood warnings and planning for disaster risk management. Affected provinces
received funding under the Public Sector Development Program (PSDP). However, the
allocated funds were only about a quarter of what had been demanded [24], restricting the
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implementation of recovery programs. The long-term recovery from the harms of floods
remains a neglected phase of disaster risk management [26], forcing affected households to
rely on their own individual coping strategies.

The adaptation challenges faced by Pakistani households are shared by rural house-
holds across the developing world. Poor households in rural areas are vulnerable to natural
disasters for several interrelated reasons [27,28]. The agricultural systems, on which their
livelihood heavily depend, are inherently vulnerable to disasters. Floods directly affect
agricultural systems through contaminating waterbodies, destroying irrigation systems
and other infrastructure, causing loss of harvest or livestock and increasing susceptibility
to human and livestock diseases, ultimately resulting in losses in farm yield and affecting
local and national food security [29].

Although there are well-established, often indigenous coping strategies, low-income
farmers are often lack adaptive capacity [29], resulting in a slower recovery from any
weather risks they get exposed to. Their recovery is further affected by constraints to
important markets and support systems, such as credit markets, insurance schemes [30],
extension services and social safety nets [9].

Households faced by weather shocks try to sustain agricultural income in a first
instance by implementing on-farm mitigation measures such as crop switching, levies to
prevent flooding and supplementary irrigation to offset lack of rainfall [30]. Eskander
and Barbier (2016) found that disaster-affected rural households intensify agricultural
activities by increasing their operational farm size through increased transactions in the
land rental market [11]. The sale of livestock and other farm assets may help to smooth
income, making livestock an important indicator of household wealth [31,32]. However, a
successful return to farming will require farmers to maintain sufficient means of production,
including livestock and seed.

Income diversification and increased labor supply, the subject of interest in this paper,
are part of a suite of off-farm coping strategies, which also includes migration and informal
support from family networks. When disaster-affected people decide to migrate to less
disaster-prone regions (e.g., [33,34]), such migration is often temporary and conditional
on a household’s ability to find alternative employment [35,36]. Bohra-Mishra et al. (2014)
analyzed province-to-province movement of more than 7000 households in Indonesia
over 15 years to find that while there can be a nonlinear permanent migration response
to climatic variations, the evidence of permanent migration is minimal among disaster-
affected households [37]. In Bangladesh, Penning-Rowsell et al. (2013) found that rural
people are less likely to migrate permanently [38], even in the face of extreme disasters,
although they may temporarily move to safer places.

3. Materials and Methods

3.1. Flood Regions

In PRHPS III, a total of 113 households reported that their villages were affected by
floods in last one year (i.e., in 2013). We generalized this information to define mouza-
level exposure to the 2013 floods: we define an indicator variable as 1 if the mouza was
flood affected (i.e., when at least one household from a mouza reported that their village
was affected), and 0 if the mouza was not flood affected (i.e., no households from a
mouza reported to be flood affected). Since mouzas within the same district share similar
geographic and socioeconomic attributes, we restricted our analysis to the districts where
at least one mouza was categorized as flood affected.

There are 8 mouzas from 5 districts from Punjab and Sindh provinces from where at
least one household (out of 113) reported to be affected by the 2013 floods. The 205 house-
holds that belong to these affected mouzas are treated as affected households. On the
other hand, households from the remaining 12 unaffected mouzas are treated as unaffected
households. Altogether, we have 205 affected and 291 unaffected households over two
survey rounds (i.e., PRHPS II and III) that form our estimating sample (Table 2).
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3.2. Empirical Specifications

We first investigated household’s decision to participate in different economic activities.
A household i from mouza m participates in an economic activity in time t according to the
following linear probability model (LPM) with two-way fixed effects:

Iitm = β0 + β1 f loodm + β2 postt + β3( f loodm × postt) + Xitβ4 + Δi + ρt + εit (1)

where the binary outcome variable Iitm denotes households’ willingness to participate in
the generation of income y, and is defined as Iit = 1 if the household participates (i.e., y > 0)
and 0 if not (i.e., y = 0). We considered four economic activities: farm self-employment
(FSE), non-farm self-employment (NFSE), farm wage-employment (FWE) and non-farm
wage-employment (NFWE).

The dummy variable f loodm denotes flood exposure: 1 if mouza m is affected by the
2013 flood and 0 if not. Similarly, postt denotes post-flood year: 1 if post-flood year (i.e.,
2014) and 0 if pre-flood year (i.e., 2013). Xit are the vector of control variables. Δi and ρt are
the household and year fixed effects to control for any potential omitted variable bias.

Despite the binary nature of dependent variables, LPMs provide good estimates of
the partial effects for average values of the explanatory variables and the coefficients allow
for a straightforward interpretation of the effects [39]. In addition, LPMs suffer less from
measurement errors than discrete choice models such as logit and probit models. We report
robust standard errors since the residuals εit are heteroskedastic.

Next, a household i from mouza m generates income or wage y in time t according to
the following panel regression model with two-way fixed effects:

yitm = β0 + β1 f loodm + β2 postt + β3( f loodm × postt) + Xitβ4 + Δi + ρt + ξit (2)

where ξit ∼ (
0,σ2). All the explanatory variables follow the definition in Equation (1).

We define the outcome variables, yitd, as the income or wage from economic activities
by household i in time t. In particular, self-employed farm income from household-operated
agricultural activities includes the cash and imputed values of all harvested crops at the
local market price. Non-farm income from self-employment in non-agricultural activities
includes all the entrepreneurial profits by any member of the household from their own-
erships and operations of businesses, rental incomes, remittances receipts and any other
incomes and receipts.

Wage earnings that come from paid employment are split into farm and non-farm
wages as follows. Farm wages include cash and (imputed) kind receipts of all the house-
hold members from their paid employments in farming activities that are not owned or
operated by the household itself. Consistent with the norm in literature, we do not include
self-employment in agricultural activities in farm wage calculation, which are rather incor-
porated in their farm income. Similarly, non-farm wages include cash and (imputed) kind
receipts of all the household members from their non-farm paid employments, which do
not include labor time allocated to household-owned businesses.

In both Equations (1) and (2), β3, the coefficient of the interaction term ( f loodm × postt)
is the coefficient of interest that shows the differential effects of the 2013 flood on respective
outcome variables. That is, it identifies the change in the dependent variable attributable
to the 2013 flood in comparison to the no floods situation. We set our null and alternative
hypotheses as: H0 : β3 = 0 and HA : β3 �= 0.

Xit is the vector of controls that includes several household, farm and community-
level attributes. Household characteristics include household size and access to electricity
(1 if the household has electricity connection, 0 if not). Farm-level characteristics include
ownership of important assets such as tractors, plow–yokes, irrigation pump and other
agricultural assets (1 if a household owns at least one of these assets, 0 if not), as well as
operational farm size (hectares).

Although assumed exogenous, components of Xit are often endogenous since house-
holds may determine their optimal levels through different means. However, such adjust-
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ments can take a longer planning horizon whereas PRHPS second and third rounds were
conducted in a years’ time. Moreover, while this will remain a limitation, since appropriate
instruments for these potentially endogenous variables are either unavailable or difficult
to conceive, we follow the tradition of Skoufias (1995) and treat them to be determined
outside of the model [40].

Finally, f loodm and postt drop out from our regression as they are perfectly collinear
with fixed effects Δi and ρt. Therefore, our regression results based on Equations (1) and (2)
do not include the respective coefficients.

3.3. PRHPS Data

The USAID-funded Pakistan Rural Household Panel Survey (PRHPS) covers a rep-
resentative sample of the rural areas of Punjab, Sindh and Khyber Pakhtunkhwa (KPK).
The first round of the survey, PRHPS I, was completed in April 2012, covering 2090 house-
holds in 76 primary sampling units in the rural areas of these three provinces. PRHPS II
(conducted in April–May 2013) and PRHPS III (May–June 2014) re-interviewed 2002 and
1876 households, respectively. Each round of the survey covers data from the previous
production year (i.e., 2011, 2012 and 2013, respectively) on, among others, sources of income
and household- and farm-level attributes.

Table 3 summarizes variables used in our empirical analysis. Income variables are
expressed in USD at the rates of 93.4 Pakistani Rupees per USD 1 as in 2012. In both
survey rounds, households have highest participation in farm self-employment, followed
by non-farm wage-employment. Consistently, farm income accounts for the majority of
total income, followed by non-farm wages, whereas farm wages and non-farm income
have relatively smaller contributions. Moreover, while they have similar participations
in all other activities, participation in farm self-employment has increased considerably
between rounds. Other attributes, e.g., household size, asset ownership, electricity and
cultivated land, remain at similar levels.

Table 3. Variable description and summary statistics.

Variables Description PRHPS II PRHPS III

Pr(FSE) Farm self-employment: 1 if the household earns farm incomes, 0 if not 0.38
(0.49)

0.51
(0.50)

Pr(NFSE) Non-farm self-employment: 1 if the household earns non-farm incomes,
0 if not

0.14
(0.35)

0.18
(0.38)

Pr(FWE) Farm wage-employment: 1 if the household earns farm wages, 0 if not 0.25
(0.43)

0.24
(0.43)

Pr(NFWE) Non-farm wage-employment: 1 if the household earns non-farm wages,
0 if not

0.37
(0.48)

0.37
(0.48)

Farm income Annual household income from farm activities, last 12 months (USD) 777.82
(4340.75)

782.42
(1954.70)

Non-farm income Annual household income from non-farm activities, last 12 months (USD) 125.51
(697.41)

352.97
(2239.80)

Farm wages Wages earned from paid farm employment, last 12 months (USD) 76.97
(208.38)

58.21
(159.07)

Non-farm wages Wages earned from paid non-farm employment, last 12 months (USD) 312.02
(684.19)

410.82
(823.99)

Household size Total number of members in the household 6.47
(2.81)

6.87
(2.89)

Asset ownership 1 if the household owns one of these assets: tractor, plough-yoke,
irrigation pump, and other farming equipment; 0 if not

0.84
(0.36)

0.93
(0.25)

Electricity 1 if the household has electricity connection; 0 if not 0.70
(0.46)

0.69
(0.46)

Cultivated land Total cultivated land (hectares) 1.45
(2.64)

1.42
(2.38)

No. of households Number of households in each PRHPS round 496 496

Notes: We report mean values of each variable, with standard deviations in parentheses. Summary statistics are
restricted to the estimating sample of 496 households from PRHPS rounds II and III. All monetary values are
expressed in USD. All land measures are expressed in hectares.
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4. Results and Discussion

4.1. Base Year Profiles

Table 4 reports the base year characteristics of affected and unaffected households. Al-
though affected households have significantly higher participation in farm self-employments,
lower participation in non-farm wage employments, and lower non-farm wages than unaf-
fected households, they mostly have similar characteristics at the base year. Therefore, the
affected and unaffected households are broadly comparable.

Table 4. Base year characteristics.

Variables
Unaffected

Mouzas
Affected
Mouzas

Difference

Pr(FSE) 0.33
(0.47)

0.66
(0.47)

−0.33 ***
(0.04)

Pr(NFSE) 0.17
(0.37)

0.15
(0.35)

0.22
(0.03)

Pr(FWE) 0.24
(0.43)

0.24
(0.43)

0.00
(0.04)

Pr(NFWE) 0.65
(0.48)

0.39
(0.49)

0.26 ***
(0.04)

Farm income 1247.50
(5845.17)

860.28
(2018.59)

387.22
(425.15)

Non-farm income 230.37
(1306.58)

121.90
(413.76)

108.47
(94.45)

Farm wages 83.66
(249.17)

58.61
(137.37)

25.05
(19.18)

Non-farm wages 575.56
(691.81)

286.36
(583.24)

289.20 ***
(59.19)

Age 46.06
(14.07)

41.37
(12.01)

4.69 ***
(1.21)

Education 2.74
(3.80)

2.51
(3.29)

0.23
(0.33)

Gender 0.99
(0.10)

1.00
(0.07)

−0.01
(0.01)

Household size 6.47
(2.68)

5.61
(2.51)

0.86 ***
(0.24)

Asset ownership 0.34
(0.47)

0.25
(0.44)

0.09 **
(0.04)

Electricity 0.84
(0.37)

0.47
(0.50)

0.37 ***
(0.04)

Cultivated land 1.77
(5.45)

1.84
(2.97)

−0.07
(0.42)

No. of obs. 291 205
Notes. We report mean values of each variable, with standard deviations in parentheses. ***, ** represent statistical
significance at 1%, 5% levels, respectively. Summary statistics are restricted to 205 affected and 291 unaffected
households from PRHPS round I. All monetary values are expressed in USD. All land measures are expressed in
hectares. Differences are calculated as “Difference = mean (Unaffected)−mean (Affected)”. The four economic
activities are farm self-employment (FSE), non-farm self-employment (NFSE), farm wage-employment (FWE) and
non-farm wage-employment (NFWE).

However, some attributes had significant variations. In particular, unaffected house-
holds have significantly higher household size, asset ownership and access to electricity in
the base year. Therefore, we have controlled for them in our regression analyses.

4.2. Participation and Income

Table 5 reports LPM results on decisions to participate in economic activities. Results
show that flood affected households increase farm activities but decrease their involvements
in alternative economic activities. This is an indication of lack of non-farm economic
opportunities in rural areas of Pakistan, which is a major impediment preventing fast
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economic recovery from natural disasters such as floods. However, negative effects on
participation in alternative economic activities are statistically insignificant.

Table 5. Participation decisions.

Variables Pr(FSE) Pr(NFSE) Pr(FWE) Pr(NFWE)

Flood 2013 regions × Post-flood year 0.077 ** −0.003 −0.054 −0.062
(0.038) (0.033) (0.043) (0.047)

Household size −0.009 0.017 −0.025 −0.023
(0.035) (0.017) (0.022) (0.030)

Asset ownership 0.004 0.033 0.092 −0.017
(0.046) (0.048) (0.058) (0.065)

Electricity −0.088 * 0.054 0.163 ** 0.022
(0.053) (0.034) (0.071) (0.080)

Cultivated land 0.066 *** −0.013 −0.017 * −0.007
(0.012) (0.010) (0.010) (0.009)

Constant 0.453 * 0.001 0.254 0.543 **
(0.236) (0.128) (0.163) (0.227)

No. of Obs. 992 992 992 992
R2 0.840 0.752 0.728 0.702

Household FE YES YES YES YES
Year FE YES YES YES YES

Notes: Robust standard errors are shown in parentheses. ***, ** and * represent statistical significance at 1%,
5% and 10% levels, respectively. LPM estimations follow Equation (1). The four economic activities are farm
self-employment (FSE), non-farm self-employment (NFSE), farm wage-employment (FWE) and non-farm wage-
employment (NFWE).

In comparison to unaffected households, affected households are 7.7% more likely
to participate in farm self-employments, whereas they have lower likeliness to partici-
pate in other activities. Altogether, flood-affected households try to leverage their lost
employments during floods through increasing their post-flood farming activities.

Table 6 reports regression results for effects of 2013 floods on the components of
income. Although affected households experienced declines in their incomes, none of
those negative effects are statistically significant. However, while the other components of
income remain roughly at similar levels, affected households experience an insignificant
yet large decline in their non-farm incomes.

Table 6. Effects on incomes.

Variables Farm Incomes Non-Farm Incomes Farm Wages Non-Farm Wages

Flood 2013 regions × Post-flood year −8.460 −108.169 −9.431 −21.254
(455.411) (99.103) (18.644) (73.223)

Household size 83.695 −12.432 10.894 −48.698
(150.104) (105.670) (14.024) (40.475)

Asset ownership 7.811 123.269 52.402 −12.159
(185.540) (153.238) (34.047) (103.848)

Electricity −88.686 58.879 27.843 139.797 *
(133.025) (131.695) (29.944) (81.918)

Cultivated land 556.554 *** −656.237 * −7.116 9.807
(186.270) (382.681) (5.681) (30.977)

Constant −518.903 1134.219 −58.833 590.053 **
(1099.993) (737.077) (91.788) (278.452)

No. of Obs. 992 992 992 992
R2 0.616 0.736 0.686 0.700

Household FE YES YES YES YES
Year FE YES YES YES YES

Notes: Robust standard errors are shown in parentheses. ***, ** and * represent statistical significance at 1%, 5%
and 10% levels, respectively. Estimations follow Equation (2).
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4.3. Implications for Diversity and Inequality

Usually, farmers intensify their post-flood agricultural activities to make up for the
lost income from farming activities (Table 5). However, due to relative scarcity of necessary
resources that can enable their successful recovery, Pakistani farmers were not able to
recover their lost farm incomes through increased participation in agriculture (Table 6).
Together, these results suggest implications for post-flood income diversification and
income inequality.

To measure income diversification, we calculated Herfindahl–Hirschman index (HHI)
as the sum of squared share of each component of income. The HHI ranges between 0 and
1 where HHI = 0 denotes perfect diversification and HHI = 1 denotes no diversification.

We then calculated Theil-T index (TTI), a measure of regional inequality, according
to TTI = 1

N ∑N
i=1

yi
y ln

(
yi
y

)
where N is the number of regions, yi is the income in region i

and y is the average income across all regions. TTI ranges between 0 and ∞ where zero
represents equal distribution and higher values represent higher levels of disproportion.

Table 7 reports income diversification and income inequality by flood exposure and
survey years. While the unaffected regions experience a small decline in their HHI between
survey rounds (from 0.79 to 0.78), affected regions experienced a relatively large increase in
their HHI (from 0.74 to 0.79). That is, affected regions have decreased diversification in their
post-flood income opportunities, whereas unaffected regions have greater diversification
than before.

Table 7. Income inequality.

Unaffected Mouzas Affected Mouzas

Variables 2013 2014 2013 2014

Herfindahl–Hirschman index 0.79 0.78 0.74 0.79
Theil-T index 0.95 0.70 1.63 0.91

Notes: All monetary values are expressed in USD. Herfindahl–Hirschman index (HHI) is calculated as the sum of

squared share of each component of income. Theil-T index (TTI) is calculated as TTI = 1
N ∑N

i=1
yi
y ln

(
yi
y

)
where

N is the number of regions, yi is the per-capita income in region i and y is the average per-capita income across all
regions. We calculated HHI and TTI for flood regions over survey years.

On the other hand, both the affected and unaffected regions experience decreased
inequality between survey rounds. Affected regions experienced a larger decrease in
inequality (from 1.63 to 0.91) than the unaffected households (from 0.95 to 0.70). How-
ever, together with greater participation in farm activities but (insignificantly) lower farm
incomes than unaffected regions, such a decline in inequality is also associated with an
overall decrease in incomes.

5. Conclusions

Exposure to floods, and the coping strategies they trigger, influence the livelihood
decisions of affected households. This paper explores to what extent rural households in
Pakistan have adjusted their income portfolios in response to the 2013 floods. We found
that flood exposure resulted in an increased participation in farm activities by affected
households, but they were not able to increase their participation in alternative economic
activities. Moreover, although statistically insignificant, flood exposure resulted in income
adversities. Consequently, despite some questionable reductions in regional inequality, we
identify decreased income diversification due to the 2013 floods.

Our results imply that the success of these coping strategies is uneven, resulting in
lower income diversification especially in flooded regions. This has important poverty
implications. Agricultural yields per hectare in Pakistan are among the lowest in the world
and food insecurity is rampant. According to the World Food Program (2009), more than
48% of the population is food insecure, a situation that is made worse by the high incidence
of flooding [41].
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Our findings reinforce the case for proactive disaster risk management by government
agencies, including the promotion and co-development of climate-resilient agriculture and
non-farm employment opportunities [1,42]. These structural measures can complement
more traditional (though equally lacking) measures to aid flood recovery and risk mitiga-
tion schemes, such as insurance programs, micro-lending schemes, safety nets programs
such as cash-for-work schemes, the rebuilding of infrastructure and other measures to
reassemble village economies. Without such government support, flood exposure will
remain a constant risk to the wealth and welfare of rural communities in Pakistan.

Despite multiple contributions, this research has some limitations as well. First, we
used a relatively small sample size. Future research can use a larger dataset, if available, to
investigate similar issues for the case of Pakistan or a different country with similar context.
Next, farmers generally tend to resume agricultural activities after floods. However, as
floods become more frequent, many will not have the means to continue farming on silted
land and reinvest in seeds, livestock and fertilizers [42]. Future research can potentially
investigate the effects of disaster exposure on such essential agricultural reinvestments.
Finally, future research may also extend the analysis at a more disaggregated level and can
also distinguish between rural and urban variations in disaster risk management activities
and their impacts.

Author Contributions: Conceptualization, S.M.S.U.E. and S.F.; methodology, S.M.S.U.E. and S.F.;
software, S.M.S.U.E. and S.F.; validation, S.M.S.U.E. and S.F.; formal analysis, S.M.S.U.E. and S.F.;
investigation, S.M.S.U.E. and S.F.; resources, S.M.S.U.E. and S.F.; data curation, S.M.S.U.E. and S.F.;
writing—original draft preparation, S.M.S.U.E. and S.F; writing—review and editing, S.M.S.U.E.
and S.F.; visualization, S.M.S.U.E. and S.F.; supervision, S.M.S.U.E. and S.F.; project administration,
S.M.S.U.E. and S.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available in Harvard
Dataverse at https://doi.org/10.7910/DVN/JWMCXY. (accessed on 20 January 2019).

Acknowledgments: The authors thank, without implicating, Arlan Brucal and Kate Gannon for
useful feedback and suggestions. Eskander acknowledges support from the Faculty of Business and
Social Sciences at Kingston University London. Fankhauser acknowledges the support from the UK
Foreign and Commonwealth Office through the Climate Compatible Growth project.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hallegatte, S.; Vogt-Schilb, A.; Bangalore, M.; Rozenberg, J. Unbreakable: Building the Resilience of the Poor in the Face of Natural
Disasters; World Bank: Washington, DC, USA, 2016.

2. Noy, I. The macroeconomic consequences of disasters. J. Dev. Econ. 2009, 88, 221–231. [CrossRef]
3. Skidmore, M.; Toya, H. Do Natural Disasters Promote Long-Run Growth? Econ. Inq. 2002, 40, 664–687. [CrossRef]
4. Zhang, P.; Zhang, J.; Chen, M. Economic impacts of climate change on agriculture: The importance of additional climatic variables

other than temperature and precipitation. J. Environ. Econ. Manag. 2017, 83, 8–31. [CrossRef]
5. Kurosaki, T. Vulnerability of household consumption to floods and droughts in developing countries: Evidence from Pakistan.

Environ. Dev. Econ. 2015, 20, 209–235. [CrossRef]
6. Marchiori, L.; Maystadt, J.-F.; Schumacher, I. The impact of weather anomalies on migration in sub-Saharan Africa. J. Environ.

Econ. Manag. 2012, 63, 355–374. [CrossRef]
7. Mueller, V.; Gray, C.; Kosec, K. Heat stress increases long-term human migration in rural Pakistan. Nat. Clim. Chang. 2014, 4,

182–185. [CrossRef] [PubMed]
8. Mohapatra, S.; Joseph, G.; Ratha, D. Remittances and natural disasters: Ex-post response and contribution to ex-ante preparedness.

Environ. Dev. Sustain. 2012, 14, 365–387. [CrossRef]
9. Crick, F.; Eskander, S.M.; Fankhauser, S.; Diop, M. How do African SMEs respond to climate risks? Evidence from Kenya and

Senegal. World Dev. 2018, 108, 157–168. [CrossRef]

451



Sustainability 2022, 14, 453

10. Eskander, S.M.; Barbier, E.B.; Gilbert, B. Fishing and Nonfishing Income Decisions: The Role of Human Capital and Family
Structure. Land Econ. 2018, 94, 114–136. [CrossRef]

11. Eskander, S.; Barbier, E. Adaptation to Natural Disasters through the Agricultural Land Rental Market: Evidence from Bangladesh.
Working Paper 236. Grantham Research Institute on Climate Change and the Environment. 2016. Available online: https:
//ageconsearch.umn.edu/record/235648/ (accessed on 28 November 2021).

12. Banerjee, L. Effect of Flood on Agricultural Wages in Bangladesh: An Empirical Analysis. World Dev. 2007, 35, 1989–2009.
[CrossRef]

13. Kirchberger, M. Natural disasters and labor markets. J. Dev. Econ. 2017, 125, 40–58. [CrossRef]
14. Mueller, V.; Quisumbing, A. How Resilient are Labour Markets to Natural Disasters? The Case of the 1998 Bangladesh Flood. J.

Dev. Stud. 2011, 47, 1954–1971. [CrossRef]
15. Eckstein, D.; Künzel, V.; Schäfer, L.; Winges, M. Global Climate Risk Index 2020; Germanwatch: Bonn, Germany, 2020; Available

online: https://www.germanwatch.org/sites/germanwatch.org/files/20-2-01e%20Global%20Climate%20Risk%20Index%20
2020_13.pdf (accessed on 28 November 2021).

16. EM-DAT. The CRED/OFDA International Disaster Database; Université Catholique de Louvain: Brussels, Belgium, 2021; Available
online: https://public.emdat.be/ (accessed on 28 November 2021).

17. Eskander, S.; Fankhauser, S.; Jha, S.; Batool, S.; Qaisrani, A. Do Natural Disasters Change Savings and Employment Choices:
Evidence from Pakistan. 2018. Available online: https://idl-bnc-idrc.dspacedirect.org/handle/10625/58573 (accessed on
30 November 2021).

18. Eskander, S.M.S.U.; Sam, F.; Shikha, J. Do natural disasters change savings and employment choices? In Evidence from Bangladesh
and Pakistan. Asian Development Bank Economics Working Paper Series; Asian Development Bank: Manila, Philippines, 2016.
[CrossRef]

19. Deen, S. Pakistan 2010 floods. Policy gaps in disaster preparedness and response. Int. J. Disaster Risk Reduct. 2015, 12, 341–349.
[CrossRef]

20. Kirsch, T.D.; Wadhwani, C.; Sauer, L.; Doocy, S.; Catlett, C. Impact of the 2010 Pakistan Floods on Rural and Urban Populations at
Six Months. PLoS Curr. 2012, 4. [CrossRef] [PubMed]

21. Kurosaki, T. Household-Level Recovery after Floods in a Tribal and Conflict-Ridden Society. World Dev. 2017, 94, 51–63. [CrossRef]
22. FAO. The Impact of Disasters on Agriculture and Food Security; Food and Agriculture Organization, United Nations: Rome, Italy,

2015; Available online: https://www.fao.org/documents/card/en/c/cb3673en/ (accessed on 30 November 2021).
23. Annual Flood Report. Federal Flood Commission, Ministry of Water and Power, Government of Pakistan. 2013. Available online:

https://mowr.gov.pk/wp-content/uploads/2018/06/Annual-Flood-Report-2013.pdf (accessed on 30 November 2021).
24. Annual Flood Report. Federal Flood Commission, Ministry of Water and Power, Government of Pakistan. 2014. Available online:

https://mowr.gov.pk/wp-content/uploads/2018/06/Annual-Flood-Report-2014.pdf (accessed on 30 November 2021).
25. PRHPS. Pakistan Rural Household Panel Survey Round 3, International Food Policy Research Institute and Innovative Develop-

ment Strategies 2017. 2014. Available online: https://www.ifpri.org/publication/pakistan-rural-household-panel-survey-prhps-
2014-round-3 (accessed on 30 November 2021).

26. Ali, R.A.; Mannakkara, S.; Wilkinson, S. Factors affecting successful transition between post-disaster recovery phases: A case
study of 2010 floods in Sindh, Pakistan. Int. J. Disaster Resil. Built Environ. 2020, 11, 597–614. [CrossRef]

27. Del Ninno, C.; Dorosh, P.A.; Smith, L.C. Public Policy, Markets and Household Coping Strategies in Bangladesh: Avoiding a Food
Security Crisis Following the 1998 Floods. World Dev. 2003, 31, 1221–1238. [CrossRef]

28. Del Ninno, C.; Vecchi, G.; Hussain, N. Poverty, Risk and Vulnerability in Pakistan; World Bank: Washington, DC, USA, 2006; Available
online: https://www.researchgate.net/profile/Carlo-Del-Ninno/publication/228382329_Poverty_Risk_and_Vulnerability_in_
Pakistan/links/00b7d53a1980d12c3b000000/Poverty-Risk-and-Vulnerability-in-Pakistan.pdf (accessed on 30 November 2021).

29. Fankhauser, S.; McDermott, T.K. Understanding the adaptation deficit: Why are poor countries more vulnerable to climate events
than rich countries? Glob. Environ. Chang. 2014, 27, 9–18. [CrossRef]

30. Barnett, B.J.; Mahul, O. Weather Index Insurance for Agriculture and Rural Areas in Lower-Income Countries. Am. J. Agric. Econ.
2007, 89, 1241–1247. [CrossRef]

31. Carter, P.M.R.; Barrett, C. The economics of poverty traps and persistent poverty: An asset-based approach. J. Dev. Stud. 2006, 42,
178–199. [CrossRef]

32. Randolph, T.F.; Schelling, E.; Grace, D.; Nicholson, C.F.; Leroy, J.L.; Cole, D.; Demment, M.W.; Omore, A.; Zinsstag, J.; Ruel, M.
Invited Review: Role of livestock in human nutrition and health for poverty reduction in developing countries. J. Anim. Sci. 2007,
85, 2788–2800. [CrossRef]

33. Boustan, L.P.; Kahn, M.E.; Rhode, P.W. Moving to Higher Ground: Migration Response to Natural Disasters in the Early Twentieth
Century. Am. Econ. Rev. 2012, 102, 238–244. [CrossRef]

34. Hornbeck, R. The Enduring Impact of the American Dust Bowl: Short- and Long-Run Adjustments to Environmental Catastrophe.
Am. Econ. Rev. 2012, 102, 1477–1507. [CrossRef]

35. Bryan, G.; Chowdhury, S.; Mobarak, A.M. Underinvestment in a Profitable Technology: The Case of Seasonal Migration in
Bangladesh. Econometrica 2014, 82, 1671–1748. [CrossRef]

36. Cattaneo, C.; Peri, G. The migration response to increasing temperatures. J. Dev. Econ. 2016, 122, 127–146. [CrossRef]

452



Sustainability 2022, 14, 453

37. Bohra-Mishra, P.; Oppenheimer, M.; Hsiang, S.M. Nonlinear permanent migration response to climatic variations but minimal
response to disasters. Proc. Natl. Acad. Sci. USA 2014, 111, 9780–9785. [CrossRef]

38. Penning-Rowsell, E.C.; Sultana, P.; Thompson, P.M. The ‘last resort’? Population movement in response to climate-related hazards
in Bangladesh. Environ. Sci. Policy 2013, 27, S44–S59. [CrossRef]

39. Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; The MIT Press: Cambridge, MA, USA, 2010.
40. Skoufias, E. Household Resources, Transaction Costs, and Adjustment through Land Tenancy. Land Econ. 1995, 71, 42–56.

[CrossRef]
41. World Food Program. Food Insecurity in Pakistan, WFP-World Food Program Pakistan. 2009. Available online:

https://documents.wfp.org/stellent/groups/public/documents/ena/wfp225636.pdf?_ga=2.190331499.179610955.1539
712936-26656094.1539712936 (accessed on 30 November 2021).

42. Arai, T. Rebuilding Pakistan in the Aftermath of the Floods: Disaster Relief as Conflict Prevention. J. Peacebuilding Dev. 2012, 7,
51–65. [CrossRef]

453



Citation: Ding, Z.; Niu, F.; Li, G.; Mu,

Y.; Chai, M.; He, P. The Outburst of a

Lake and Its Impacts on

Redistribution of Surface Water

Bodies in High-Altitude Permafrost

Region. Remote Sens. 2022, 14, 2918.

https://doi.org/10.3390/rs14122918

Academic Editors: Stefano Morelli,

Veronica Pazzi and Mirko Francioni

Received: 12 May 2022

Accepted: 15 June 2022

Published: 18 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing 

Article

The Outburst of a Lake and Its Impacts on Redistribution of
Surface Water Bodies in High-Altitude Permafrost Region

Zekun Ding 1,2, Fujun Niu 1,2, Guoyu Li 1,2, Yanhu Mu 1,2,*, Mingtang Chai 3,4 and Pengfei He 5

1 State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources,
Chinese Academy of Sciences, Lanzhou 730000, China; dingzekun@nieer.ac.cn (Z.D.);
niufujun@lzb.ac.cn (F.N.); guoyuli@lzb.ac.cn (G.L.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China;

chaimingtang@nxu.edu.cn
4 Engineering Research Center for Efficient Utilization of Modern Agricultural Water Resources in Arid

Regions, Ministry of Education, Ningxia University, Yinchuan 750021, China
5 School of Science, Key Laboratory of Disaster Prevention and Mitigation in Civil Engineering of Gansu

Province, Lanzhou University of Technology, Lanzhou 730000, China; hepf@lut.cn
* Correspondence: muyanhu@lzb.ac.cn

Abstract: The lakes distributed in permafrost areas on the Tibetan Plateau (TP) have been experiencing
significant changes during the past few decades as a result of the climate warming and regional
wetting. In September 2011, an outburst occurred on an endorheic lake (Zonag Lake) in the interior
of the TP, which caused the spatial expansion of three downstream lakes (Kusai Lake, Haidingnor
Lake and Salt Lake) and modified the four independent lake catchments to one basin. In this study,
we investigate the changes in surficial areas and water volumes of the outburst lake and related
downstream water bodies 10 years after the outburst. Based on the meteorological and satellite data,
the reasons for the expansion of downstream lakes were analyzed. Additionally, the importance
of the permafrost layer in determining hydrological process on the TP and the influence of from
lake expansion on engineering infrastructures were discussed. The results in this study showed the
downstream lakes increased both in area and volume after the outburst of the headwater. Meanwhile,
we hope to provide a reference about surface water changes and permafrost degradation for the
management of lake overflow and flood on the TP in the background of climate warming and wetting.

Keywords: climate warming and wetting; lake outburst; surface water body; continuous permafrost
regions; Tibetan Plateau

1. Introduction

The IPCC AR6 showed that the climate warming in the past 50 years is unprecedented
compared to the past 2000 years [1–3]. Along with the climate warming, the globally
averaged precipitation over land increased since 1950 and has accelerated at an increasing
rate since the 1980s [4–6]. The increasing global warming also related to the occurrence of
extreme events, including extreme heat events and heavy precipitation [7–10]. In Arctic
and high-altitude regions, the effects of global climate warming on the regional climate
system are generally amplified [11–14].

The Tibetan Plateau (TP) with an average elevation exceeding 4000 m above sea level
(a.s.l) is known as the “Third Pole” on the earth. It is also called as “Asia’s Water Tower”.
Many large rivers in Asia originate here, including the Yellow River, Yangtze River, Indus
River, Ganges River, Irrawaddy River, Brahmapura River, Mekong River and Salween
River. Additionally, a great number of glaciers and lakes are distributed here [15]. The
lakes located on the TP account for 39.2% in number and 51.4% in area among all lakes
in China [16]. The TP has the largest distribution of high-altitude permafrost on Earth,

Remote Sens. 2022, 14, 2918. https://doi.org/10.3390/rs14122918 https://www.mdpi.com/journal/remotesensing
454



Remote Sens. 2022, 14, 2918

covering 1.4 × 106 km2 [17]. During the past 50 years, climate warming and wetting is
speeding up on the TP [4]. From 1961 to 2020, the increasing rate in mean annual air
temperature (MAAT) on the TP reached 0.35 ◦C/10a, which is about two times the global
average rate at the same time, and the annual precipitation had an increase rate about
7.9 mm/10a [18,19]. From 2016 to 2020, the mean annual precipitation reached 540 mm
on the TP, which is about 13% more compared to the period of 1961–1990 [19]. Because of
the warming and the wetting in regional climate, the cryosphere components, including
glaciers, permafrost and snow cover have been degrading extensively and continuously
over the past 50 years [19].

As a connection linking the atmosphere, biosphere and cryosphere in hydrological
cycle, lakes on the TP were rarely disturbed directly by anthropogenic activities, and
therefore are sensitive indicators of regional climate changes [20]. Driven by the continuous
climate and cryosphere changes, these lakes have experienced rapid changes in areas,
water levels and volumes during the past century [21–23]. The lakes on the TP showed
a slightly decrease in the total area between the 1970s and 1990, but increased rapidly
from 2000 to 2010 [24]. The variations in alpine lakes from 1986 to 2019 in the headwater
area of the Yellow River, northeastern TP, was studied, and the results indicated that lake
variations in this region are related to the increased net precipitation and the declined
aridity [25]. A rapid expansion of lakes in the endorheic basin on the TP since 2000 was
investigated, and the potential driving factors, including climate change, glacier melting
and permafrost degradation, were discussed [26]. Additionally, the impacts from lake
changes on hydrological cycles, periglacial environments, eco environments and future
climate change have been investigated [27–29]. However, few studies have focused on the
impacts of occasional extreme events on periglacial components in permafrost regions. In
the continuous permafrost area on the TP, lakes are distributed above and surrounded by
the permafrost layer, which acts as an isolation layer between the lakes and the surrounding
areas [25,30,31]. Therefore, the overflooding or the outburst of permafrost area TP lakes
upstream will cause changes in water bodies in the downstream area and create further
threats to communities and engineering infrastructure in the drainage basin.

In September 2011, an outburst of Zonag Lake occurred in the continuous permafrost
region on the TP [32]. This event was paid great attention by scientific communities and
governments because it is historically the first record of a lake outburst event outside the
glacial regions on the TP [32–37]. Because of this outburst, three downstream lakes named
Kusai Lake, Haidingnor Lake and Salt Lake experienced a series of changes hereafter, and
the hydrological connection among these four lakes was triggered. To avoid the damage
from potential overflow of Salt Lake to the engineering infrastructures nearby, a channel
was excavated for the drainage. Focusing on this event, Yao et al. [38] analyzed the area
variation of Salt Lake downstream and its overflowing condition and probability. Lu
et al. [36] presented the ground displacement around Salt Lake and concluded that the
outburst of Zonag Lake might accelerate the permafrost degradation around Salt Lake.
Xie et al. [37] pointed out that the outburst of Zonag Lake amplified the desertification
disaster around the lake and proposed that the possible outburst mode of Salt Lake would
be similar to that of the Zonag Lake. However, the surface connection among the four
lakes after the outburst has not been investigated. Additionally, few research focus on the
potential damage to transportation infrastructure in the downstream area.

Due to the high altitude and the harsh environment conditions, the data and informa-
tion from in situ investigation around the lakes are very limited. The technology of remote
sensing, however, has played an important role in obtaining the reliable information, and
has been applied in research on the process of lake changes on the TP [39–41]. In this study,
the water area of the basin and the number of small lakes and ponds (>1000 m2) were
extracted from Joint Research Centre (JRC) global surface water dataset by Google Earth
Engine (GEE) from 2000 to 2020. In addition, the hydraulic connection of the four lakes was
analyzed using Landsat TM/ETM+/OLI data based on the enhanced water index (EWI).
The results illustrated the changes in the area and the amount of surface water bodies in
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this region after the headwater lake outburst, and are hoped to provide a reference for
management of lake overflow and flood on the TP in the context of climate warming and
wetting.

2. Materials and Methods

2.1. Study Region

The study region (Figure 1a), is located in the northeastern TP. Administratively, it
belongs to Zhidoi County, Qinghai Province. The topography is high in the west and low in
the east, with an average elevation of about 4785 m a.s.l. In the region, four lakes, including
Zonag Lake, Kusai Lake, Haidingnor Lake and Salt Lake, are distributed from west to east.
The division of the catchments are shown in Figure 1b. The soil is not fully developed in
this area and is mainly composed of stone and sand. The main forms of vegetation in the
study region are alpine meadow, alpine steppe and alpine desert [35].

Figure 1. Overview of the study area: (a) the permafrost on the TP; (b) the topography and lake
distribution of the study area.

This area is part of the Hoh Xil National Nature Reserve, which is defined as one of the
world heritages by the United Nations Educational, Scientific and Cultural Organization.
Human activities in this area are very rare due to the harsh climate and very thin oxygen
conditions [42]. It is characterized by a semiarid continental and cold climate, with the
MAAT of −10~−4.1 ◦C, annual precipitation of 173~494.9 mm (mainly in warm season),
and annual average wind speed of 4.4 m/s [43,44].

Before 2011, the four lakes had their own catchments. In late August and early
September 2011, due to continuous rainfall, the water level of the Zonag Lake rose sharply
and an outburst occurred in the eastern part of the lake. After that, the flood flowed into
Kusai Lake and caused an overflow in late September 2011. Then, the overflowing water
of Kusai lake entered into Haidinuoer Lake and eventually converged to the lowest Salt
Lake of the drainage basin. Although historically, these lakes were united, the four lakes
remained independent before the outburst. The outburst in 2011 connected these lakes by
eroding the historical channels. Therefore, the catchments of Zonag Lake, Kusai Lake as
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well as Haidingnor Lake became a part of the Salt Lake catchment, referred hereinafter as
Zonag-Salt Lake Basin (ZSLB).

2.2. Climate Data

The air temperature and precipitation data since 1965 were collected from Wudaoliang
meteorological observation station (35.21◦N, 93.08◦E, 4612 m a.s.l), which is the nearest
national station to the study region. The data were downloaded from China Meteorological
Administration (CMA) (http://cdc.cma.gov.cn, accessed on 27 October 2020).

2.3. Remote Sensing Data

In order to analyze the hydraulic connection between the four lakes, a total of 42 scenes
Landsat images (http://glovis.usgs.gov, accessed on 10 October 2020) were collected,
of which 22 scenes were from Landsat-5 TM, 4 scenes were from Landsat-7 ETM+ and
16 scenes were from Landsat-8 OLI with the world reference system (WRS) path 137/138
and row 35, spanning from 2000 to 2020. Due to the sensor failure, the Landsat-5 datasets
have been missing since 2011. Additionally, the scan line corrector of Landsat-7 was broken
in May 2003, and the images were affected by striping afterwards [45]. Compared with
Landsat-5 TM and Landsat-7 ETM+, the Landsat 8-OLI has still provided high-quality
images since 2013. The main parameters of Landsat sensors are listed in Table 1.

Table 1. Main parameters of the Landsat sensors.

Landsat-5 TM Landsat-7 ETM+ Landsat-8 OLI

Bands
Wavelength

(μm)
Resolution

(m)
Bands

Wavelength
(μm)

Resolution
(m)

Bands
Wavelength

(μm)
Resolution

(m)

1-Blue 0.45–0.52 30 1-Blue 0.45–0.52 30 1-Coastal aerosol 0.43–0.45 30
2-Green 0.52–0.60 30 2-Green 0.52–0.60 30 2-Blue 0.45–0.51 30
3-Red 0.63–0.69 30 3-Red 0.63–0.69 30 3-Green 0.53–0.59 30

4-NIR 1 0.76–0.90 30 4-NIR 0.77–0.90 30 4-Red 0.64–0.67 30
5-SWIR1 2 1.55–1.75 30 5-SWIR1 1.55–1.75 30 5-NIR 0.85–0.88 30
6-Thermal 10.40–12.5 120 6-Thermal 10.40–12.5 60 6-SWIR1 1.57–1.65 30
7-SWIR2 2.08–2.35 30 7-SWIR2 2.08–2.35 30 7-SWIR2 2.11–2.29 30

8-Panchromatic 0.52–0.9 15 8-Panchromatic 0.50–0.68 15
9-Cirrus 1.36–1.38 30

1 NIR—near infrared; 2 SWIR—short-wave infrared.

To extract the annual distribution of water body in ZSLB, we used the JRC Monthly
Water History dataset from GEE platform as the source data. The dataset was generated
by using 4,453,989 scenes from Landsat 5, 7 and 8 images between 16 March 1984 and 31
December 2020 [46]. Each pixel was interpreted into either water or non-water using an
expert system and the results were collated into a monthly dataset with two epochs, from
1984 to 1999, and from 2000 to 2020. To extract the stream in ZSLB, the SRTM DEM data
were downloaded from the geospatial data cloud site (http://www.gscloud.cn, accessed
on 6 July 2021).

2.4. Lake Volume Data

The volume data of the four lakes in ZSLB were obtained from the dataset “Lake
volume changes on the Tibetan Plateau during 1976–2019 (>1 km2)”, downloaded from
National Tibetan Plateau/Third Pole Environment Data Center (https://data.tpdc.ac.cn/,
accessed on 7 October 2021) [29]. This dataset provided the water volume of 1132 lakes on
the TP between 1976 and 2019 using the Landsat images and SRTM DEMs. Lakes in the
dataset are classified into different categories and are well coded. In this study, the volume
data of Zonag Lake (Code L49), Kusai Lake (Code L47), Haidngnor Lake (Code L243 and
L476) and Salt Lake (Code L227) were used to investigate the volume change before and
after the outburst.
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2.5. Methods

The Normalized Difference Water Index (NDWI) uses the reflected near-infrared
radiation (TM band 4) and visible green light spectrum (TM band 2) to enhance the open
water feature while depressing the vegetation feature [47,48]. The Modified Normalized
Difference Water Index (MNDWI) uses TM band 5 to replace the NIR band in NDWI,
which can enhance the open water features while efficiently suppressing built-up land
noise, as well as vegetation and soil noise [49]. The enhanced water index (EWI) can clearly
distinguish the semidry watercourse from the noise by using TM band 2, band 4 and band
5 [50]. By taking advantage of the higher reflection in blue light and the higher absorption
in TM band 7 of the water body, the new water index (NWI) uses the TM band 1, band 4,
band 5 and band 7 to extract the water body [51]. The equations of water indices and the
involved spectrum sections are shown in Table 2.

Table 2. Required bands and the equation of each water indices.

TM/ETM+ Bands OLI Bands Equations

NDWI b2, b4 b3, b5 NDWI = ρGreen−ρNIR
ρGreen+ρNIR

MNDWI b2, b5 b3, b6 MNDWI = ρGreen−ρSWIR1
ρGreen+ρSWIR1

EWI b2, b4, b5 b2, b4, b6 EWI = ρGreen−(ρNIR+ρSWIR1)
ρGreen+(ρNIR+ρSWIR1)

NWI b1, b4, b5, b7 b2, b5, b6, b7 NWI = ρBlue−(ρNIR+ρSWIR1+ρSWIR2)
ρBlue+(ρNIR+ρSWIR1+ρSWIR2)

ρGreen: the reflectance of the green band; ρblue: the reflectance of the blue band; ρNIR: the reflectance of the
near-infrared radiation; ρSWIR1 and ρSWIR2: the reflectance of the blue band short wavelength infrared radiation.

In order to determine the most suitable index for this research purpose, four water
indexes were calculated based on the spectrum bands of Landsat images. Four types
of landcovers in and around the lake were selected, and five locations of each type of
landcover were interpreted (Table 3 and Figure 2). The table and figure show that the index
value of NDWI and MNDWI are quite similar and the value of NWI is the smallest in
water, river, land and wetland among the four indexes. Considering that the study area is a
semiarid region, the EWI has a better performance in suppressing the background noise
and was chosen and used to obtain the surficial water routes.

Table 3. Numerical value of different features selected.

Points NDWI MNDWI EWI NWI Points NDWI MNDWI EWI NWI

LK 11 0.832 0.893 0.742 0.672 R 31 −0.01 0.025 −0.327 −0.563
LK2 0.785 0.857 0.67 0.569 R2 0.346 0.441 0.067 −0.281
LK3 0.704 0.797 0.554 0.473 R3 0.061 −0.088 −0.35 −0.629
LK4 0.41 0.493 0.138 0.004 R4 0.077 0.062 −0.27 −0.503
LK5 0.577 0.663 0.36 0.03 R5 −0.119 −0.194 −0.467 −0.692

Average 0.662 0.741 0.493 0.35 Average 0.071 0.049 −0.269 −0.534
LD 21 −0.295 −0.345 −0.591 −0.792 W 41 −0.150 −0.185 −0.475 −0.715
LD2 −0.288 −0.361 −0.595 −0.794 W2 −0.233 −0.180 −0.506 −0.712
LD3 −0.211 −0.215 −0.510 −0.700 W3 −0.246 −0.281 −0.549 −0.767
LD4 −0.189 −0.261 −0.521 −0.729 W4 −0.161 −0.085 −0.440 −0.630
LD5 −0.167 −0.250 −0.508 −0.732 W5 −0.125 −0.199 −0.471 −0.714

Average −0.230 −0.286 −0.545 −0.749 Average −0.183 −0.186 −0.488 −0.708
1 LK—lake points; 2 LD—land points; 3 R—river points; 4 W—wetland points.

To identify the water area of the study area and analyze the distribution of the water
body, the annual water distribution of ZSLB was extracted and calculated from JRC Monthly
Water History v1.3 dataset from 2000 to 2020 using GEE. Then, with the river network of
ZSLB built by DEM, the vector data of small lakes and ponds in ZSLB between 2000 and
2020 was obtained. Considering that the resolution of the raster image was 30 m, in order
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to reduce the impact of the noise, only lakes and ponds larger than 1000 m2 were calculated.
The analysis procedure for the changes of water body and impacts of lake outburst on
adjacent lakes in ZSLB is shown in Figure 3.

 

Figure 2. Comparison of several water body indices around Zonag Lake: (a) Selection of different
features and (b) comparison of different water index.

Figure 3. Flowchart of the acquisition of water body changes and impacts of lake outburst on adjacent
lake on ZSLB.

3. Results

3.1. Changes in Total Surface Water Area in ZSLB

The total surface water area in the ZSLB increased from 786.5 km2 to 1041.6 km2 from
2000 to 2020, with an average increase rate of 12.1 km2/a, and this period can be roughly
divided into four stages: 2000–2008, 2008–2013, 2013–2018, and 2018–2020, according to
the different increase rate (Figure 4). A slow and steady increase was presented in the first
stage, with an average rate of 5.1 km2/a. A quick and sharp increase occurred from 2008
to 2013 with a rate of 22.8 km2/a, and the outburst of Zonag Lake occurred in this stage.
Afterwards, the increase in the surface water area slowed down, with a rate of 6.6 km2/a
from 2013 to 2018. In the fourth stage, however, the fastest increase in the water area in the
ZSLB was shown, with an average rate of 33.8 km2/a
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Figure 4. Total surface water area in the ZSLB from 2000 to 2020.

3.2. Changes in the Area of the Four Lakes

Figure 5 presents the changes in the four lakes in areas between 2000 and 2020. Obvi-
ously, the outburst of the Zonag Lake in 2011 was a huge change. Before 2011, the areas of
the four lakes increased slowly but steadily. Specifically, the Zonag Lake had an increase in
the area of 9.5 km2 (3.7%) from 2000 to 2011, with an annual rate of 0.9 km2 and Kusai Lake
increased in the area of 30.7 km2 (11.5%) with a rate of 2.8 km2/a. The Haidingnor Lake
increased by 20.2 km2 (55.9%) with a rate of 1.8 km2/a, while Salt Lake increased in its
area of 9.91 km2 (23.2%) with a rate of 0.9 km2. After the outburst, the area of Zonag Lake
declined from 268.3 km2 to 163.8 km2, ending in 2020, while the other three downstream
lakes experienced the areal expanding spatially as the result of the water from the Zonag
Lake flowing in. The areas of Kusai Lake and Haidingnor Lake increased by 34.9 km2 and
23.3 km2, respectively. As the tail-end lake of the watershed, Salt Lake received the most
overflowing water from the three lakes upstream, and the area spatially increased from
52.6 km2 in 2011 to 140.6 km2 in 2013. After 2013, the area changes of the four lakes returned
to normal, although Zonag Lake had an area decrease slightly after that; it decreased to
approximately 150 km2 in 2020. The area of Haidingnor Lake increased 1.12 km2 during
seven following years. Similar to Haidingnor Lake, Kusai Lake has not experienced an
obvious change in area since 2013. Salt Lake, however, experienced a considerable increase
in the area between 2013 and 2020, with an increase rate of 9.0 km2/a on average. Before
2018, the increase rate was relatively small, with a magnitude of 5.1 km2/a. Meanwhile,
between 2018 and 2019, there was a sharp increase in the area of Salt Lake. Until 2020, the
area of Salt Lake reached 204 km2, which is about 4.7 times that in 2000.

 
Figure 5. Areas of four lakes in ZSLB between 2000 and 2020.
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3.3. Changes in Shorelines of the Four Lakes in ZSLB

The shorelines and areas of the four lakes have changed with varying degrees in the
past 20 years. Figure 6 shows the shape changes in the shorelines of the four lakes in selected
years, namely 2000, 2010, 2012 and 2019. The shoreline of Zonag Lake mainly changed in
late 2011 and 2012, and along the east–west direction after the outburst occurred. After
2012, however, the shoreline of Zonag lake did not change much. Similarly, the shoreline of
Kusai Lake mainly changed in 2012, and expanded along its southeast direction as a result
of the outburst. After 2012, the shoreline of Kusai Lake did not change much.

 
Figure 6. Changes in shorelines in 2000, 2010, 2012 and 2019 of the (a) Zoang Lake; (b) Kusai Lake;
(c) Haidingnor Lake and (d) Salt Lake.

Compared with the former two, the shoreline changes of Haidingnor Lake were
complicated during the study period. Within the catchment of Haidingnor Lake, there
were two relatively large lakes in the north–south direction and a group of small lakes and
ponds or swampy wetlands in the east. After the outburst of Zonag Lake, the two large
lakes in the north–south direction connected together and expanded rapidly in both west
and east directions, merging with small lakes and ponds originally scattered in the east.
Since 2012, the shoreline of Haidingnor lake remained relatively stable.

Changes in the Salt Lake shoreline were obviously different from the former three,
and could be divided into three periods. In the first period, from 2000 to 2010, Salt Lake
expanded slightly, and its shoreline remained relatively stable. The second period is directly
related to the outburst of Zonag Lake. From 2010 to 2012, Salt Lake expanded rapidly
almost in all directions expect for its northwest part. After that, Salt Lake showed a rapid
expansion trend until 2019.
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3.4. Changes in Water Volumes of the Four Lakes in ZLSB

The water volume changes of four lakes also presented a sudden change around 2011
(Figure 7). During 1976 and 1990, the volume of four lakes showed a trend of decline
in varying degrees. From 1990 to 2010, the volume of Zonag Lake experienced a small
reduction first and then shifted to an increase between 2005 and 2010, while the water
volume change of Kusai Lake switched from negative to positive between 1995 and 2000.
The water volume of Haidingnor also showed a positive change after 2000. Meanwhile, the
volume of Salt Lake remained quite stable from 1990 to 2010.

Figure 7. Mass changes of (a) Zonag Lake; (b) Kusai Lake; (c) Haidingnor Lake; and (d) Salt Lake
between 1976 and 2019.

However, between 2010 and 2015, with the outburst of Zonag Lake, the volume of
the four lakes showed a big change. From 2010 to 2015, the water volume of Zonag Lake
decreased by 5.74 Gt, while the water volumes of Kusai Lake, Haidingnor and Salt Lake
downstream increased by 1.5 Gt, 0.12 Gt and 0.94 Gt, respectively, from 2015 to 2019. During
this period, the trend of the decreasing water volume of Zonag Lake slowed down with a
reduction of 0.23 Gt, while the increase in Kusai Lake and Haidingnor Lake slowed down
in comparison, with an increase of 0.1 Gt and 0.0073 Gt, respectively. The water volume of
Salt Lake increased by 1.03 Gt over the four-year period, surpassing the period from 2010
to 2015, making it the lake with the largest increasement in water volume after the Zonag
Lake outburst.

From the aspect of the water volume changes and the hydraulic connection between
the four lakes, it can be seen that after the outburst of Zonag Lake, Kusai Lake and Salt
Lake received most of the incoming water from upstream. Meanwhile, Haidingnor Lake,
limited by its area and topography, served more as a water passage to bring water to Salt
Lake. However, until 2015, Kusai Lake was the main intake lake of the overflowing water.
After that, with the gradual formation of a relatively stable river channel between the four
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lakes, the volume of Kusai Lake tended to stabilize, while the volume of Salt Lake still
increased at the same time.

3.5. Hydraulic Connection of the Four Lakes in ZSLB

Before the outburst of Zonag Lake, the four lakes in ZSLB had their own catchments
and there were almost no connections between each of them. After the outburst of Zonag
Lake in September 2011, a gully which was about 100 m wide and 6–7 m deep was formed
on the east side of the lake in a very short time because of the sudden and large overflowing
water from the lake. [35]. The flood water first flowed into Kusai Lake through Zonag-Kusai
River (ZKR) and triggered the overflow of Kusai Lake between September 20 and 30, 2011.
The overflowing water widened and downcut the relict river channel and formed the
Kusai–Haidingnor River (KHR). Afterwards, Haidingnor Lake, downstream of Kusai Lake,
was filled up and the overflowing water made the lake expand to the west, which occupied
the historical river channel and formed the Haidingnor–Salt River (HSR) [32] (Figure 8).

 

Figure 8. The EWI results of hydraulic connection in ZSLB (2013).

From the EWI results during 2000 and 2020, the changes in water distribution between
Kusai Lake and Haidingnor Lake, and between Haidingnor Lake and Salt Lake, were cap-
tured. In the 2000s, water distribution in the regions between Kusai Lake and Haidingnor
Lake remained quite stable. However, since 2010, the area of Kusai Lake has expanded in
the east, and some small lakes can be spotted on the map. By 2013, after KHR formed, the
eastern side of Kusai Lake experienced a significant expansion compared to 2010. In the
following years, KHR and the area of the eastern Kusai Lake and the western Haidingnor
Lake remained relatively stable (Figure 9a). As for the region between Haidingnor Lake
and Salt Lake, the expansion of water body can be observed from 2010 onwards, when
several small lakes appeared between Haidingnor Lake and Salt Lake. After HSR was
formed in late 2011 and remained stable in the following years, a significant expansion of
the inlet channel of Salt Lake can be observed. The water area both in eastern Haidingnor
and western Salt Lake had an obvious expansion, resulting in the distance between two
lakes becoming closer than ever before in 2020 (Figure 9b).
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(a) 

 
(b) 

Figure 9. The EWI results of hydraulic connection between 2000 and 2020: (a) region between Kusai
Lake and Haidingnor Lake; (b) region between Haidingnor and Salt Lake.
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3.6. Variations in the Number of Small Lakes and Ponds in ZSLB

The total number of small lakes and ponds larger than 1000 m2 in area in ZSLB did
not change too much before 2010. However, between 2010 and 2012, the total number of
lakes and ponds increased by 26% during the period in which the outburst occurred. After
2012, several rivers formed between the four lakes to carry most of the overflowing water
from the upstream lakes, and the number of lakes and ponds gradually returned to the
level before the outburst. However, after 2017, the number of lakes and ponds in the basin
once again saw an increase, rising to 2388 lakes and ponds in 2019, and reaching a 20-year
historical high.

Considering the changes of small lakes and ponds within each catchment of the four
lakes individually, the number of small lakes and ponds within each catchment of the four
lakes fluctuated and increased during the decade from 2000 to 2010. In the catchment of
Haidingnor Lake, the number of small lakes and ponds decreased by about 16% from 2000
to 2008, but nearly doubled between 2008 and 2010, reaching 237. Within two years of
the outburst of the Zonag Lake in 2011, the number of small lakes and ponds within the
catchment first jumped to 270 and then gradually decreased. However, the number of small
lakes and ponds rose again after 2016, with an increase of about 19%, reaching 290 in 2020.
The number of small lakes and ponds in the former Kusai Lake basin and Haidingnor Lake
basin underwent an increase–decrease–increase cycle after 2011, eventually reaching 1.45
and 1.67 times the number of lakes and ponds in 2010, respectively. The number of small
lakes and ponds in the Salt Lake catchment increased significantly after 2016, and finally
reached 876 lakes and ponds in 2020, which was 1.5 times the number of lakes and ponds
in 2010. This is the largest increase in the number of small lakes and ponds among the four
catchments (Figure 10).

 
Figure 10. Number of small lakes and ponds in ZSLB during the period from 2000 to 2020.

4. Discussion

4.1. Causes of Lake Expansion in the ZSLB

Observations showed that lakes on the TP have undergone obvious expansion over
the past few decades [35,52]. Between the 1970s and 2010s, the mass of lake water on the
TP increased by approximately 110 Gt [39]. From 2003 to 2018, lake water increased more
rapidly and reached a rate of 14 Gt/a in this period [39]. The possible reasons for the
increase in lake water on the TP include net precipitation onto the lake area, melting of
snow, permafrost degradation, glacier melt water and precipitation-induced runoff from
upstream catchments, of which the increase in the net precipitation on the TP was believed
to be the dominant contributor [25,31,53–55]. In detail, the proportion of net precipitation,
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glacier melt and ground ice melt due to permafrost degradation to the increase in lake
water were estimated as 74%, 13% and 12%, respectively [15]. At different regions of
the TP, however, the contributions of these drivers differed considerably. Qiao et al. [56]
divided the TP into five regions and estimated that the contributions of glacier melt water
to increasing lake water storage in these five regions varied from 20% to 100%. In the
northeast part of the TP, where the ZSLB is located, the glacier melt water was estimated to
contribute nearly 40% of the mass increase in lake water [56].

It is believed that increased precipitation, decreased evaporation, increased glacier
meltwater and ground ice meltwater, along with permafrost degradation, all attributed
to the lake expansion in the ZSLB [22,25,31,32]. Additionally, the increased precipitation
is considered the dominant contributor of the lake expansion in the basin [22,32]. From
1965 to 2019, the air temperature and precipitation data from Wudaoliang meteorological
station showed a continuous and significant increase (Figure 11). After 2000, the increase
rate of both the air temperature and precipitation accelerated. The air temperature reached
a peak of −3.68 ◦C in 2016, while the precipitation reached peak of 480.3 mm in 2018. This
indicated that before the outburst event, the air temperature and precipitation in the basin
underwent a long-term increasing period. The overflow and outburst event of Zonag Lake
was triggered directly by continuous and heavy precipitations in August and September,
2011. Data from the meteorological station showed that heavy precipitations occurred a
few days before and after the outburst event, including days from 14 August to 21 August,
31 August to 5 September, and 16 September and 17 September. On two days of 17 and 21
August, the daily precipitations reached 20.5 mm and 19.4 mm, respectively.

 
Figure 11. The mean annual air temperature and annual precipitation at Wudaoliang meteorological
station.

Due to limited in situ observations and data on glaciers and permafrost in the ZSLB,
the contributions of each driver to lake expansion in the ZLSB have not been estimated
clearly to date. In Yao et al. [32] and Liu et al. [35], glacier retreated in the catchments
of Zonag Lake, Kusai Lake and Salt Lake were introduced and its contribution to lake
expansion in the basin was confirmed. In these studies, the contributions from glacier
meltwater were qualitatively analyzed.

The contributions of the permafrost degradation and consequential ground ice melt-
water increase are more difficult to estimate. The volume of ground ice within permafrost
layer and its distribution with depth generally cannot be detected directly or indirectly [57].
At present, the ground ice volume in permafrost regions is generally estimated with water
content measurement during boreholes drilling. Zhao et al. [57] estimated the ground ice
volume of permafrost regions on the TP based on 697 boreholes along the Qinghai–Tibet
engineering corridor. Wang et al. [58] and Wang et al. [59] estimated ground ice volume
in permafrost at the source area of the Yellow River and Datong River. The number of
boreholes used in the two studies was 105 and 74. However, the distribution of ground
ice was influenced by many factors, including liquid water supply, soil texture and frost
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susceptibility, active layer history, ground thermal gradients, hydraulic conductivity, vapor
deposition and sublimations. Some factors interact in variable and site-specific ways; there-
fore, each permafrost site should be considered individually. In ZLSB, however, boreholes
of permafrost were very limited. The existing boreholes showed that the permafrost in the
basin was characterized as high temperature (>−1.0 ◦C) (Figure 12) and ice rich. Thus, the
rapid permafrost degradation and consequential melt of near-surface ground ice would
definitely contribute to the lake expansion in the basin. To quantify this contribution, more
boreholes are needed in future.

 

Figure 12. Ground temperature around (a) Zonag Lake (from Liu. et al. [35]) and (b) Salt Lake.

4.2. Roles of Permafrost Layer in Hydrology Process in Periglacial Environments

In a periglacial environment, the permafrost layer plays an important role in affecting
the surface water balance, the interaction between surface water and underground water
and the runoff regime. In a continuous permafrost region, the process of downward
infiltration and the interaction between the surface water and ground water are limited
because of the existence of the permafrost layer, which contributed to a larger surface runoff
from the precipitation and snow-melt water in the spring and summer time (Figure 13a).
In addition, melting of near-surface ground ice contributes to the expansion of lakes. By
analyzing the stable isotopes of thermokarst lakes on the TP, Yang et al. [60] suggested that
the lakes mainly recharged using rain and snowmelt/permafrost thaw in the ice-free season,
while melting of the surrounding permafrost dominated the hydrology of thermokarst
lakes in the ice covered season. Due to the climate warming and wetting accelerated
the melting of permafrost in the past few decades, rapid lake expansion in continuous
permafrost regions has been observed and reported widely [40,56].

Figure 13. Changes of lakes in (a) continuous permafrost region and (b) discontinuous permafrost.
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On the contrary, as stable aquicludes are unable to form in island or discontinuous
permafrost regions, the hydrological connectivity between surface water and groundwater
is enhanced compared to the continuous permafrost region. Based on the satellite imagery
between the 1970s and the 2000s, Smith [61] concluded the development of permafrost
lakes involves two periods: (1) initial permafrost warming leads to development of lake
expansion, (2) followed by lake drainage as the permafrost continues degrading. As
permafrost degradation accelerates, the thinning of permafrost layer and the formation
and expansion of taliks in the continuous permafrost region provides a major pathway
to connect surface water and groundwater systems. A large amount of surface water
and supra-permafrost groundwater was infiltrated, and the lake area was transformed
from expansion to continuous shrinkage (Figure 13b). In Western Siberia, Northwest
Canada, and northern Alaska, lake shrinkage and drainage events have been reported and
observed [62,63].

4.3. Influences of Lake Expansion and Outburst on Engineering

From an engineering viewpoint, the bearing capacity and deformation behavior of
permafrost subgrade are closely related to its thermal regime. As an excellent heat carrier,
the surface water can bring a large amount of heat and cause rapid deepening of the
active layer, warming of permafrost layer and even development of taliks. These processes
will lead to a decrease in the bearing capacity of permafrost subgrade and an increase in
(differential) thaw settlement of foundation built on permafrost. Based on in situ moni-
toring, Mu. et al. [64] concluded that water ponds near the foot of a railway embankment
can significantly affect the thermal regime of permafrost subgrade and cause excessive
settlement of the railway embankment. Lin et al. [65] and Wen et al. [66] investigated im-
pacts of thermokarst lakes near the roadway embankment through numerical simulations.
The simulated results showed that the thermokarst lakes can result in local permafrost
warming and thawing beneath the roadway embankment. Compared with water ponds or
a thermokarst lake, surface water flow would lead to more rapid and severe permafrost
warming and thawing due to convection heat transfer between the flowing water and
shallow ground.

Important linear infrastructures extend downstream of Salt Lake in a narrow corridor.
To prevent overflow or outburst of Salt Lake, a channel was excavated to drainage the
water from Salt Lake into Qingshui River. To solve the problem of the rising water level in
the Qingshui River caused by this drainage project, the highway reconstructed a longer
bridge across the Qingshui River (Figure 14a). The railway at this section was originally
built with a 14 km-long dry bridge to cross thermal unstable permafrost. Before the channel
was excavated, the water flow only crossed 1~2 spans of the bridge. However, after the
drainage project, the water flow covers about 10 spans of the bridge in warm seasons and
5~6 spans in cold seasons. For pile foundations of the bridge, the surface water flow and
the consequential permafrost warming and thawing can result in considerable decline in
their bearing capacity. The deepening of active layer will decrease the effective length of
pile and exert negative friction force on it. To mitigate these detrimental effects induced
by increased flowing water, thermosyphons were installed around the pile foundations
(Figure 14b). It is hoped that, with thermosyphons cooling, the increased heat gains of
permafrost foundation provided by flowing water can dissipate, and the thermal stability
of permafrost around the pile can be ensured. Before installation of the thermosyphons,
waterproof materials were placed at the riverbed to prohibit infiltration of surface water
into active layer. Meanwhile, a coupled heat transfer simulation among flowing water,
permafrost subgrade and thermosyphons is needed, which will help to determine of the
numbers of the thermosyphons used for each pile. In the simulation, factors including
the velocity, temperature and depth of the flowing water are important, as well as their
seasonal variations.
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Figure 14. Countermeasures used by the (a) highway and (b) railway downstream to cope with
flowing water drained from Salt Lake.

5. Conclusions

The outburst of Zonag Lake is an extreme event of lake expansion on the TP in the
context of climate warming and wetting. This event induced expansion of three lakes
downstream and significant changes in the surface water distribution in the ZSLB basin.
An artificial channel was constructed to drain the water of the tail-end lake of the basin,
i.e., Salt Lake, to the Qingshui River. Then, the ZSLB changed from an endorheic drainage
basin to part of the source area of the Yangze River. In this study, changes in surface water
bodies in the basin 10 years before and 10 years after the outburst of Zonag Lake were
investigated. The main conclusions are as follows:

(1) The total surface water area in the ZSLB showed a continuous and significant
increasing trend during the period from 2000 to 2020. The average increase rate in 20 years
was as much as 12.1 km2/a. Before the outburst of Zonag Lake, the areas of the four lakes in
the basin increased, with the rates ranging from 0.9 km2/a to 2.8 km2/a. After the outburst,
the area of the Zonag lake declined from 268.3 km2 to 163.8 km2.The areas of Kusai Lake,
Haidingnor Lake and Salt Lake increased by 11.8% and 41.5%, and 117% from 2011 to 2013,
respectively. In the following 7 years, the area of Zonag lake shrank slightly, and the areas
of Kusai Lake and Haidingnor Lake remained almost the same, while the area of Salt Lake
still increased considerably with a rate of approximately 9.0 km2/a.

(2) According to the changes in shoreline and water volume of the four lakes, the
outburst of Zonag Lake caused a redistribution of surface water in ZSLB. After 2011, the
Zonag Lake experienced a quick shrinkage in west and east direction. The volume of the
Zonage Lake decreased by 5.96 Gt. With the water continuously flowing into Kusai Lake,
the water volume of Kusai Lake increased around 1.60 Gt, and the shoreline expanded
mainly along the southeast direction. When the upstream water flowed into Haidingnor
lake, its shoreline expanded rapidly and a connection was built with Salt Lake in a short
time. As a tailwater lake in ZSLB, Salt Lake received the most overflowing water from
Zonag, and its water volume increased by 1.98 Gt, with the shoreline expanding in every
direction.

(3) The total number of small lakes and ponds with an area larger than 1000 m2 in
the ZSLB did not change much before 2010. However, this number increased significantly
within two years after the outburst of Zonag Lake. After 2012, as the streams and channels
formed gradually and connected the four lakes, the total number of lakes and ponds
gradually decreased to the level before the outburst. Since 2017, however, the number of
lakes and ponds in the basin once again increased and reached a peak in the past 20 years.

(4) The increase in surface water and lake expansion in the ZSLB are primarily at-
tributed to the increased precipitation, and secondly by glacier retreat and ground ice melt
from underground permafrost degradation. The contribution of each factor has not been
estimated so far because of the limited data on glacier and permafrost in the area; also, the
difficulty in the estimation of ground ice volume in permafrost region. The permafrost
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layer, acting as an impermeable layer, played an important role in affecting the surface
hydrological process.

(5) From an engineering viewpoint, flowing water could induce rapid warming and
thawing of underlying permafrost, and then could create a threat to the engineering
infrastructure above. To mitigate the thermal effects caused by flowing water to permafrost
embankment, active cooling methods such as thermosyphons were used. However, the
infiltration of surface water to the ground should be avoided by setting up the waterproof
materials above the permafrost layer. Meanwhile, a system evaluation should be carried
out to determine the numbers of thermosyphons used for permafrost foundations.
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Abstract: It is important to determine the hydraulic boundary eigenvalues of typical embankment
breaches before carrying out research on their occurrence mechanisms and assessing their repair
technology. However, it is difficult to obtain the hydraulic boundary conditions of the typical
levee breaches accurately with minor or incomplete measured data due to the complexity and
instability of the levee breach. Based on more than 100 groups of domestic and foreign test data of
embankment/earth dam failures, the correlation between the hydraulic boundary eigenvalues of
a breach was established based on the cluster analysis approach. Additionally, the missing values
were imputed after correlating and fitting. Meanwhile, the hydraulic boundary parameters and the
related equations of a generalized typical breach were obtained through the statistical analysis of
the probability density of the dimensionless eigenvalues of the breach. The analysis showed that the
width of the breach mainly ranges in 20~100 m, while the water head of the breach is 4~12 m, and the
velocity of the breach is 2~8 m/s. The distribution probabilities of all them are about 64~71%. The
probability density of the width-to-depth ratio and the Froude number of the breach are both subject
to normal distribution characteristics. The distribution frequency of the width-to-depth ratio of 3~8 is
approximately 55%, and the Froude number of 0.4~0.8 is approximately 60%. These methods and
findings might provide valuable support for the statistical research of the boundary and hydraulic
characteristics of the breach, and the closure technology of breach.

Keywords: embankment breach; hydraulic boundary eigenvalues; cluster analysis; missing values;
probability density

1. Introduction

Embankments of alluvial rivers in plain areas are mostly built by raising soil and
strengthening on the original natural bank, such as on the Yellow River in China and the
Jamuna River in Bangladesh, and most of them are based on natural sedimentary soil. The
variability of soil distribution and geotechnical parameters of embankments is relatively
large [1], which makes embankments often face risk of collapse under special hydraulic
conditions during flood season. A flood disaster caused by a dike breach not only threatens
the lives and property of residents along the river, but also seriously affects the stability of
the surrounding society and regional economic development [2]. River dikes are limited
by design conditions and are also affected by external environmental conditions that can
shorten their service life, and they can be broken by various trigger factors, especially under
extreme storm and flood conditions [3,4]. To avoid the destruction caused by accidental
levee damage to a floodplain, understanding the mechanism of a breach and seeking to
reduce the flood hazard are issues of great concern to water conservancy workers.

The occurrence of a dike collapse is a random process that is affected by river flow,
embankment soil and various sporadic factors. Different dam breaks have different hy-
draulic boundary characteristics, and these characteristics are also related to the occurrence
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and duration of a dam break; therefore, determining the shape and size of the fracture
is a very complicated river observation and research problem. In the design of scientific
research and blocking technology related to embankment collapses, it is usually necessary
to work on a specific or representative typical fracture; therefore, an analysis of the typical
hydraulic boundary feature values for a relatively common dam breach is necessary to
study a model test of a breach or to assess the risk of a breach flood.

Embankment collapse remains one of the focus topics concerned by academics and
technology engineers in worldwide. The purpose of the collapse simulation is to establish
a physical or mathematical model and to simulate the state and the movement property
of the breach so as to carry out risk assessment and to publish an early warning of flood
disaster. There are mainly two types of simulation methods on the breach:

Firstly, according to the actual hydraulic boundary conditions of an existing levee,
a dynamic or fixed bed model is established to study the hydraulic characteristics of the
development of a crater or a clogging period. For example, The US Army Engineers Re-
search and Development Center [5] established a 1:50 SacramentoRiver Delta embankment
model in 2011 to simulate the development of a breach and proposed a new rapid plugging
technology (RRLB). RRLB technology was used to simulate the process of fracture sealing
in the model test of a collapse. Tian et al. [6] carried out a hydraulic test of a moving bed
using the established Yellow River embankment collapse model and carried out research
on the shape change law of the mouth of the breach. Li and others [7] established a three-
dimensional numerical model of a river embankment breach in Jiangxi Province based
on FLOW-3D software. A numerical simulation of the blocking process of the vertical
plugging method and the flat plugging method was carried out, and the water level change
and velocity field distribution near the breach during the plugging process were obtained.

Secondly, based on experience, the typical hydraulic boundary conditions of a breach
are used to establish a generalized fracture model to carry out research. To verify the
feasibility of the new clogging technology, the US Army Engineers Research and Develop-
ment Center [5] established a 1:16 (partial and overall) generalization model (prototype
embankment with a width of 80 ft, water depth of 20 ft, and mouth water head maximum
of 18.5 ft). Xia et al. [8] established a generalized fracture model with a given fracture
width and water depth under the condition of neglecting some boundary factors (dike
soil quality, crater foot, door-to-door ratio, etc.), and carried out a simulation study on
the characteristics of the collapsed water flow, including inside and outside the dike. The
hydraulic model experiments carried out by Soares [9] and Bellos [10] revealed the char-
acteristics of flood waves under different conditions. The above two methods were used
in the study of collapse or plugging tests, and certain specific test results were obtained.
However, because the fracture model is designed according to an actual fracture design
or by empirical generalization, the representativeness and persuasiveness of the research
object are insufficient. It is necessary to obtain a representative characteristic value of the
hydraulic boundary of the breach based on a large amount of existing fracture data and
use it as a scientific basis for the study of the fracture.

Although there are many data on crater records, there are few valuable hydraulic
boundary data, and there are many missing, and these missing values are exactly what
are needed in this research. Hence, there is a need for statistical analysis principles to fill
in missing values fit through the establishment of a number of algorithms. At present,
research on breach-parametric statistical analysis is also limited, but in other areas, there are
similar studies on a random amount of missing data. For example, Mohammad et al. [11]
used the game theory rough set (GTRS) model to improve the original three-way clustering
method to address missing values in clusters. Although improved methods may yield
fairly good estimates, they usually require a longer estimation time than statistical methods.
Tsai et al. [12] used numerical, classification and mixed data types for experimental analysis.
By comparison with other missing value estimation statistical methods, a class-centre
method based on missing value estimation (CCMVI) was proposed, but this method lacks
validation of the actual dataset. Yaser et al. [13] proposed and assessed an effective multiple
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linear regression analysis algorithm for missing datasets and applied it to chemometric
analysis. Günther [14] used other non-numeric-based data analyses and proposed an
algorithm for estimating missing values, which complements missing values by statistical
methods that maximize the consistency of the dataset. This non-invasive selection technique
for missing value estimates is likely to change the original nature of the dataset during
the statistical process. The above methods have different characteristics for missing data
estimation. For different random data, we can refer to these methods when conducting
statistical analyses of the collapse parameters and missing values.

To achieve breach hydraulic boundary eigenvalue analysis and to determine the typical
breach hydraulic boundary conditions, breach basic physics research and closure work
are needed to affect these complex technical studies. Reasonable arguments in favour of
hydraulic boundary breach experimental study conclusions are necessary for a convincing
and representative model to expand the use of research results. It is beneficial to provide
relatively reliable basic parameters for the design of fracture blocking technology and
improve the scientific design of blocking technology. This paper aims to propose a method
to scientifically determine a levee breach typical characteristic value based on the results
and draw a statistical study of cluster analysis to provide the necessary technical support
for research trials and closure work for technical breaches.

2. Research Object and Analysis Methods

2.1. Research Object

(1) Embankment breach and developing characteristics

When a flood impacts a river embankment, the soil embankment is sometimes dam-
aged by a flow-washing brush, forming a collapse gap (breach), and the flood rushes out
from the breach of the embankment to cause a flood disaster. Generally, breach develop-
ment goes through three stages: pre-, mid- and post-break, as shown in Figure 1.

Figure 1. Schematic diagram of occurrence characteristics of embankment breach. Bi, Hi and vi
denotes the width, water level and velocity of the breach at moment I, respectively, while B, H, and v
denotes the maximum value of the width, water level and velocity of the breach, respectively.

Just when the breach occurs, a narrow entrance velocity gradually increases rapidly,
opening the door to gradually increasing traffic. The initial collapse port is small, the water
level difference between the inside and outside of the breach is large, the flow velocity
increases rapidly, and the breach continues to expand laterally; when the width and depth
of the breach extend to near equilibrium, the flow rate of the fracture tends to peak and
enters the second stage. The water level of the crater gate will remain stable for a certain
period of time, and the flow into the breach will also stabilize for a period of time. At
this stage, the collapse width will reach or approach the maximum. As the water level in
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the beach area increases, the water level difference between the inner and outer sides of
the dike will decrease, causing the fracture flow to begin to decrease and enter the third
stage. The water level of the river gradually decreases and falls, and the flow rate and
velocity of the fracture gradually decrease until the attenuation is near zero. Under normal
conditions, the width of the fracture remains basically unchanged. The river water level
decreases, the breach flow velocity gradually decreases until near zero attenuation, and
the width of the breach is substantially unchanged under natural conditions. To study the
hydraulic boundary characteristics of the breach, this paper mainly selects the characteristic
parameters of the middle and late stages of the fracture for analysis and study.

(2) Dike collapse characteristic value

According to the statistics of a large number of river dikes and the analysis of fracture
test results, although the forms and development of a breach are different, their hydraulic
boundary characteristics still have some commonalities. The generalization of the vertical
and horizontal sections of a general river embankment collapse is shown in Figure 2a,b.
Its main features are the hydraulic boundary breach width B, entrance head H, side slope
coefficient of collapse m, the drop between the upstream and downstream of breach ΔZ,
entrance velocity v, and breach flow rate Q. Its changing characteristics are shown in
Figure 1. Among them, the entrance head H and the drop ΔZ have a greater influence
on the fracture depth h. This paper intends to select the five characteristic values of the
fracture width B, the mouth head H, velocity v, discharge Q and the drop ΔZ as the main
characteristics of the fracture hydraulic boundary. The three direct variables of the width B
of the mouth, the head H of the mouth and the velocity v of the mouth are combined into
two dimensionless parameters: the ratio width to depth B/H and the Froude number Fr,
where B/H reflects the geometry of the fracture section. Fr is used to characterize the flow
state and flow intensity at the breach.

Figure 2. The transverse and longitudinal section of the generalizes breach. The left figure (a) shows
that the cross section of the breach is generalized as a trapezoid shape with side slope m = 1.0 and
height of the dyke as h. The right figure (b) shows that there is a water head drop Δz between two
sides of the breach along the flood direction. The meaning of other symbols in the figure are same as
above of the respective characteristic value, and the abscissa is time breach developing.

2.2. Analytical Research Methods
2.2.1. Research Ideas

Because breach data are obtained in very urgent cases, the value of each characteristic
parameter is mostly incomplete, and simple mathematical statistics cannot obtain reliable
statistical characteristic values for the flow and border of the breach. Therefore, this paper
intends to collect domestic and international actual breach data as the basic data sources,
use some model test data as the assist data to enhance the integrity of the data, and analyse
the random distribution law of the hydraulic and boundary parameters of the breach
by statistical principles such as cluster analysis. Through fitting analysis and correlation
interpolation, the hydraulic and boundary eigenvalues of the generalized fracture and its
correlation equation are determined based on the probability density statistics. The test
data set that was used in fracture model was abundant and reliable. Of course, it must be
noted that the scale effect of the breach model is too small to neglect because the patterns of
flood evolution in a breach are the same with different model scales by estimating the scale
effect of the breach model test [15,16]. Therefore, the test results data can be combined with
a statistical analysis of prototype observations.
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2.2.2. Specific Analysis Methods

The cluster analysis method is used to systematically cluster the scoping hydraulic
boundary values of the breach, and the correlation between each eigenvalue variable is
sought. The research process is shown in Figure 3. Linear or non-linear fitting analyses
are performed for two sets of variables with good correlation to interpolate the missing
parameters of the actual breach. The fitted eigenvalue parameter is compared with the
original data for relative error analysis. If the proportion of the error is large, the fitting
parameter is readjusted until the control error is within the allowable range.

Figure 3. Research logic chart by means of cluster analysis method. During the process, the feature
values are considered dimensionless, and the probability density distribution characteristics of each
dimensionless parameter are analysed. On this basis, the hydraulic-boundary feature value of the
generalized breach are determined.

Cluster analysis is a better way to find the correlation between random quantities.
From the view of structural characteristics, the methods of cluster analysis are divided
into partitioning methods and hierarchical methods [17]. Partitioning is the assignment
of samples to a fixed number of groups whose characteristics are not known clearly but
are based on a set of specified variables, which are primarily suitable for classifying
large (thousands) samples. The hierarchical approach aims to reveal natural groupings in
datasets, which are primarily suitable for classifying less data (fewer than a few hundred).
Among them, the hierarchical clustering method is mainly divided into two categories:
classification for variables (R-type clustering) and classification for individuals (Q-type
clustering) [18,19].

To avoid the influence of eigenvalues on cluster analysis and correlation research due
to dimensional characteristics, it is necessary to standardize the raw sample data of the
breach [20]. The Z score standardization method is adopted for data standardization pro-
cessing, which can make the standard deviation 1 and eliminate the influence of dimension
and magnitude. Its mathematical model is:

Zij =
Xij − Xij

Sj
(1)

where Zij is the standardized breach variable, i = 1, 2, 3, . . ., m (m is the number of samples);
j = 1, 2, 3, . . ., n (n is the number of variables); Xij is the observed data of the breach; Xij is
the average value for variable j in the breach sample; and Sj is the standard deviation for
variable samples of the breach.

To analyse the correlation between the distance-variable variables, the Pearson corre-
lation is taken as the metric standard to calculate the correlation coefficient between each
eigenvalue. The calculation method is:

r =

m
∑

i=1
(xi − x)(yi − y)√

m
∑

i=1
(xi − x)2 m

∑
i=1

(yi − y)2
(2)
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where m is the sample quantity. xi and yi are the values of the two variables, which were
standardized with Equation (1).

After determining the correlation between the eigenvalue variables, to obtain unknown
(missing) data from limited known data, it is necessary to select a variable with an intimated
correlation to perform fitting regression according to the correlation coefficient. Data fitting
is used to discover the correlated relationship between the amount that is found, and the
most common method of least squares fitting approximation is the so-called least squares
method. The principle is that given a set of observation or experimental data {(xi, yi), i = 0,
1, 2, . . ., m}, the best curve y = S*(x) can be found from a specific curve to ensure that the
curve can fit those data most reasonably.

According to the data {(xi, yi), i = 0, 1, 2, . . ., m}, let yi = f (xi) (i = 0, 1, 2, . . ., m). Let
y = S*(x) be the fitting function of the given data, and record the error δi = S*(xi) − yi(i = 0, 1,
2, . . ., m), δ = (δ0, δ1, . . ., δm)T. Let ϕ0(x), ϕ1(x), . . ., ϕn(x) be a family of linear independent
functions on the continuous function space C[a,b]. Find a function S*(x) from ϕ = span{ϕ0(x),
ϕ1(x), . . ., ϕn(x)} to minimize the sum of squared errors:

‖δ‖2
2 =

m

∑
i=0

δ2
i =

m

∑
i=0

[S∗(xi)− yi]
2 = min

S(x)∈ϕ

m

∑
i=0

[S(xi)− yi]
2 (3)

Here:
S(x) = a0 ϕ0(x) + a1 ϕ1(x) + · · ·+ an ϕn(x) (4)

Generally, ϕ = span{1, x, . . ., xn}.
When obtaining the fitting curve by the least squares method, the form of S(x) should

be determined first. This usually starts by analysing the basic characteristics of the research
problem, then graphing based on existing data collected, and finally determining the form
of S(xi) [21–23]. To find the fitted curve by the least squares method, we find a function
y = S*(x) in S(x) shown as (4), which minimizes the sum of squared errors of the samples.
This is needed to determine the minimum point of the multifunction (a0

*,a1
*,. . .,an

*). Let
the multivariate function I be:

I(a0, a1, · · · , an) =
m

∑
i=0

[
n

∑
j=0

aj ϕj(xi)− f (xi)]
2

(5)

The necessary conditions for the extremum of the multivariate function are:

∂I
∂ak

= 2
m

∑
i=0

[
n

∑
j=0

aj ϕj(xi)− f (xi)]ϕk(xi) = 0, k = 0, 1, . . . , n.

By derivation, the least squares solution of function f (x) is obtained as:

S∗(x) = a∗0 ϕ0(x) + a∗1 ϕ1(x) + · · ·+ a∗n ϕn(x) (6)

After obtaining the fitting equation, a significance test for regression equations must
be performed to verify the existence of an objective relationship between two variables
to ensure fitting reliability. In general, the one-dimensional linear regression model uses
the t test for significance testing. For the regression line ŷ = â0 + â1x, we should test the
hypothesis:

H0 : a1 = 0 ↔ H1 : a1 �= 0 (7)

If

|T| =
∣∣∣∣ â1

σ̂/
√

Sxx

∣∣∣∣ ≥ tn−2

(α

2

)
,
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then reject the null hypothesis and accept a1 �= 0; otherwise, accept the null hypothesis.

Here, σ̂ =
√

SSe
n−2 ,Sxx = ∑ (xi − x)2, where SSe is called the sum of squared residuals,

SSe =
m
∑

i=1
(yi − ŷi)

2.

The degree of correlation between the dependent variable y and the independent
variable x can also be expressed by the determination coefficient R2 [24]:

R2 =

m
∑

i=1
(ŷi − y)2

m
∑

i=1
(yi − y)2

(8)

The larger R2 means how much stronger the linear correlation between y and x is
characterized by the regression curve.

Using a relative error to quantify the fitting degree, the standard of fitting values can
be analysed more intuitively. The data value distributions are more random in each data
group of breach collected. In this paper, the absolute value of relative errors is <0.5, which
is acceptable, i.e., the relative error e calculated by Equation (9).

e =
fitted value − Original value

Original value
(9)

After the above steps, the existing sample data can be fully utilized to integrate
the complete hydraulic boundary feature value of the breach. However, to improve the
universality of the breach boundary value, the general rule occurring in the breach must
be reflected correctly. Therefore, the fitting data interpolated above will be further treated
as dimensionless, and such analyses are no longer affected by the unit of every physical
quantity selected.

Since the breach eigenvalues have strong randomness and a wide distribution, the
breach dimensionless parameter also has a random distribution. This conforms to the
distribution characteristics of continuous random variables, that is, there must be a corre-
sponding distribution probability in any range l within the conditional interval [a,b] where
the breach may occur. To more intuitively understand the distribution characteristics of
breach sample data with general features, here, the probability density function should be
used to indicate the probability distribution of the dimensionless characteristic values in
the breach. Assuming that the probability density function of the dimensionless eigenvalue
X is a nonnegative function f (x), its probability in the interval (a,b] is provided as follows in
Equation (10):

P{a < X ≤ b} =
∫ b

a
f (x)dx (10)

Based on the formula above, the probability density distribution function f (x) of breach
variable X can be obtained by mathematical statistical analysis based on the processed
dimensionless data sample set.

3. Results and Discussion (Analysis of Eigenvalues of Generalized
Hydraulic Boundary)

3.1. Cluster Analysis Results for the Eigenvalues of the Breaches

In this paper, 104 sets of breach data are collected and used for fitting analysis. These
104 sets of breach data are shown in Figure 4. Among them, the 85 sets of earth embankment
breach examples are taken as the main fitting complement value objects. The collected data
consists of 55 groups of dike break cases in China, 30 examples of earth-rock dam breaks in
the USA [25] and 19 sets of dike break model test data from related scholars [6,21,24,26],
which are plotted in Figure 4. In Figure 4, type 1© consists of 55 sets of China dike break
examples, type 2© consists 30 sets of American earth dam break examples, and types 3©~ 6©
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consist of embankment model tests and numerical simulation data, including type 3©,
which is three groups of test data from Sun [27]. Type 4© is one group of test data from Tian,
type 5© is one group of test data from Li, and type 6© consists of 14 groups of numerical
simulation data from Wang [28]. Figure 4 shows that all sample data vary over a relatively
large range due to the complexity and multivariate (changeable) nature of the real breaches.
Generally, the width of the breach is distributed in the range of 10~240 m, in which the
minimum width is 8 m and the maximum is 620 m from investigation data. However, the
width of the breach is more centred in the range of 20~100 m with an occurrence frequency
of 0.64. The water head at the entrance of the breaches is mainly in the range of 1.5~17.4 m
(dike breach), centred between 4~12 m with an occurrence frequency of 0.68. The flow
velocity at the entrance is mainly 2~8 m/s with a distribution frequency of 0.71. The drop
upstream–downstream of the breach is generally 0.3~5.66 m, and the three kinds of data
have basically the same amplitude. The discharge through the breach is related to the time
factor depending on the process of breaking up levees, and its variation range is larger,
generally ranging from 10 to 50,000 m3/s, even if the maximum value of the dike breaking
sample reaches 4200 m3/s.

Figure 4. Hydraulic boundary eigenvalues of embankment breach. Considering the similarities and
differences in hydraulic boundary conditions, these three kinds of data were classified into 6 types.

The data of the burst sample comprise 104 groups, and the five types of characteristic
values are mainly calculated, including the width B of the breach, the water head H and
velocity v at the entrance of the breaches, the flow discharge Q and the drop ΔZ through
the breach. According to the random characteristics of the sample, the correlation analysis
between the respective eigenvalues is suitable for the hierarchical clustering method. To
analyse the correlations among the breach factors, to estimate missing values, the variable
taxonomy method was chosen. With the above statistical methods, the data for all samples
were analysed, and the results are shown in Table 1.

Table 1. Correlation coefficient matrix of each eigenvalue of the breach.

Eigenvalues
B

/m
H
/m

v
/(m·s−1)

ΔZ
/m

Q
/(m3·s−1)

B/m 1.000 0.535 −0.232 0.275 0.811
H/m 1.000 −0.191 −0.093 0.865

v/(m·s−1) 1.000 −0.226 −0.068
ΔZ/m 1.000 −0.307

Q/(m3·s−1) 1.000
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Table 1 shows the correlations among breach factors based on the data analysis from
104 group samples. Taking B and H for example, the correlation of H vs. H and the
correlation of B vs. B both equal to 1, while the correlation value of B and H is 0.535. Due to
the difficulty of collection, some eigenvalues of the breach are still missing. As shown in
Table 1, at the α = 0.01 level, there are more significant correlations between discharge Q
and width B or head H, and their correlation coefficients are 0.811 and 0.865, respectively.
The correlation between the head H and breach width B is short of above with a correlation
coefficient of 0.535. The relationships between velocity v and drop �Z or other breach
factors are relatively weak, with correlation coefficients not greater than 0.3.

Using the clustering method coupled between the two groups, taking the square of
the Euclidean distance as a calculation standard, R-type clustering analysis of inter group
connections is performed on the independent variables. A tree diagram is drawn by the
analysis result above, as shown in Figure 5.

Figure 5. Cluster analysis tree.

An analysis of Figure 5 shows that the discharge Q is close to the width B and the
water head H in the association distance, and the association distance between head H
and the width B is slightly too far, but the velocity v and the drop ΔZ are far from other
variables, which is the same as the above correlation analysis.

According to the above analysis, the function of the eigenvalue variable in agreement
with regression fitting analysis is as follows:

{
Q = f (B)
H = f (Q)

(11)

For velocity v, its complement value can be calculated according to the flow continuity
equation. If the cross section of the breach is assumed to be a trapezoidal section [29], the
flow velocity can be obtained by the following formula:

v =
Q
A

=
Q

(kB − mH)H
(12)

where A is the water area of the cross section of the breach. k is the revised coefficient
of width B, and m is the side slope coefficient (see Figure 1). According to the study of
Wu [30,31], this can be approximated for the sand dam: k = 0.8, and m = 1.

According to the cluster analysis result, the fitting function expression between B and
Q can be obtained according to their correlation. Furthermore, according to the correlation
between Q and H, a functional expression for Q~H is fitted. Finally, the fitting function rela-
tionships, such as v with B, v with Q and v with H, are obtained according to Equation (12).
Therefore, the missing value estimation of each eigenvalue can be sequentially performed,
and the fitting analysis process is shown in Figure 6.
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Figure 6. Schematic diagram of calculation process of fitted and imputed value. The missing value
estimation of each eigenvalue can be sequentially performed.

3.2. Results of Fitting Regression Analysis

Combining the existing data in Table 1 with the above functional relationships, re-
gression analysis was performed on Q~B and H~Q. The fitting results are shown in
Figures 7 and 8.

Figure 7. Fitting regression curve of Q~B. According to the t test method, the standard error of the
fitting line is 3.733, and the t value is 10.098.

Figure 8. Fitting regression curve of H-Q. The intercept C of the fitting line is 5.486, and the standard
error is 0.974.
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(1) Fitting relationship between Q and B

According to the relevant characteristics of Q and B, the t test method is used to test
the significance of the slope of the fitting line, which is 37.7; the standard error is 3.733, and
the t value is 10.098. The t test value is much larger than the t value corresponding to the
significance level α, so the regression equation passes the significance test. Then, the fitting
equation is followed, as shown in Figure 7.

Q = 37.7B − 459.88 10 m ≤ B ≤ 300 m (13)

The corresponding coefficient R2 is 0.664, which is in accordance with the goodness of
fit test requirement.

(2) Fitting relationship between H and Q

According to the nonlinear relevant characteristics between H and Q, a regression
equation can be obtained by means of quadratic fitting: H = B1Q − B2Q2 + C. Figure 8
shows that intercept C is 5.486 with a standard error of 0.974, B1 is 0.00165, and B2 is
−1.069 × 10−8. Therefore, the fitting equation is

H = 0.00165Q − 1.069 × 10−8Q2 + 5.486 15 m3/s ≤ Q ≤ 15, 000 m3/s (14)

The corresponding coefficient R2 is 0.783, which is also in accordance with the good-
ness of fit test requirement.

3.3. Fitting Complement and Dimensionless Parameter Analysis

By correlation analysis, the head H, velocity v and discharge Q all conform to the
fitting complement value condition of the breach. The 76 groups conform to the fitting
complement value condition from 85 groups of embankment breach examples. According
to Equations (12)–(14), the data of the three corresponding eigenvalues from 76 groups are
fitted and complemented. All of the data from the fitting complement and the data from
the original breach sample are classified and analysed (Figures 9 and 10).

Figure 9. Comparison of breach water head before and after fitting. The fitted data of water depth is
more uniform, and is centred in about 6 m.
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Figure 10. Comparison of gate flow rate before and after fitting. The fitted data of velocity ranges
mainly in 2 m/s and 7 m/s.

Those figures show the classification analysis diagrams after fitting the complement
for water depth and velocity of the breach. As shown in Figure 9, the water depth H is
distributed mainly over 13.5~1.5 m and is more concentrated near 6 m. The velocity in
the breach is distributed mainly in the range of 1~7 m/s (Figure 10). The distribution
characteristics and scope are all substantially similar between the original value and fitting
values (Figures 9 and 10).

A fitting error analysis was carried out for two characteristic parameters (depth H
and velocity v). The fitting error distribution is shown in Figure 11. The relative error
of depth H is approximately 68.18% within the ±0.5 error line, and the relative error of
velocity v is approximately 70.37% within the ±0.5 error line, so all fitted values meet
the predetermined fitting standard. This indicates that the fitting result is better, and the
interpolation values are consistent with the basic characteristics of the hydraulic boundary
of the breach.

Figure 11. Fitting error distribution of breach rate and water head. The relative deviation e of the
data is decreased largely after fitting.

To better express the general hydraulic boundary characteristics of the breach, the
width B, depth H and velocity v are dimensionless. A width-to-depth ratio B/H is obtained,
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which can represent the basic form of the breach, and the Froude number Fr is also obtained,
which can indicate the flow state and flow intensity. The formula is as follows:

Fr =
v√
gH

(15)

where v is the average velocity, and H is the water depth. The units of all parameters are
the same as the above quantities.

4. Discussion

In order to analyse the morphological and hydraulic characteristics of the breach, two
dimensionless key parameters were adopted, and the reliability of the key parameters
was estimated by fitting interpolation. The probability distribution characteristics of the
two random quantities are further explored. The statistical results (interpolated B/H
and Fr) are listed in Table 2, and the scatter distributions are shown in Figure 12 for the
samples obtained.

Table 2. Statistics of dimensionless eigenvalues of breach after fitting and complementing.

Number B/H Fr Number B/H Fr Number B/H Fr Number B/H Fr

1 16.45 0.07 20 15.00 0.82 39 4.55 0.73 60 4.82 0.57

2 15.13 0.10 21 4.55 0.73 40 55.00 1.00 61 6.20 0.22

3 12.67 0.20 22 3.08 0.58 41 4.65 0.31 62 22.22 4.16

4 6.63 0.33 23 9.23 0.43 42 32.80 0.57 63 11.35 0.17

5 7.29 0.55 24 6.09 0.47 43 13.62 0.15 64 5.00 0.49

6 20.00 0.61 25 4.33 0.52 44 13.33 0.41 65 4.40 0.52

7 3.98 0.71 26 1.45 0.27 45 6.67 0.08 66 3.38 0.26

8 14.10 0.13 27 6.84 0.32 46 5.30 0.73 67 2.45 0.76

9 11.15 0.29 28 3.35 0.64 47 7.34 0.24 69 1.36 0.62

10 10.00 0.42 29 8.36 0.50 48 6.40 0.65 70 4.33 0.52

11 9.44 0.41 30 3.98 0.71 49 4.93 0.57 72 5.69 0.11

12 7.75 0.55 31 13.33 0.52 50 9.44 0.41 74 4.13 0.53

13 10.00 0.42 32 2.35 0.15 51 3.35 0.64 76 7.67 0.06

14 6.65 0.17 33 3.98 0.71 52 12.12 0.23 77 2.17 0.87

15 4.55 0.73 34 13.62 0.15 53 4.39 0.31 78 4.29 0.52

16 8.04 0.52 35 15.16 0.10 54 3.86 0.71 80 3.75 0.56

17 4.55 0.73 36 5.99 0.67 55 12.06 0.57 81 1.84 0.23

18 4.55 0.73 37 33.33 2.09 56 1.25 0.57 82 9.26 0.43

19 8.04 0.52 38 3.35 0.64 57 4.50 0.51 83 5.75 0.37
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Figure 12. Discrete distribution of wide-to-depth ratio (B/H).

By analysing the statistics table and scatter in Figure 12, it can be seen that all widths
are greater than the depth of the breach. The minimum width-to-depth ratio is 1.25,
corresponding to No. 56 in Table 2, which is an earth dam breach with a width of 9.45 m
and a depth of 8.23 m. Generally, the width-to-depth ratio of the breach is relatively large,
and the maximum ratio is 55.0, corresponding to sample number 40 in Table 2. This is the
river embankment section at the junction of Haifeng and Huidong in Guangdong, China.
The depth of the river dike breach is only 1.2 m, but the width of the gate is 66 m, and the
Froude number is approximately 1.0 near the critical flow state.

From the F From analysis of scatter characteristics in Figure 12, it is seen that the width–
depth ratio is mainly distributed between 2 and 16. To study the characteristics of the
width-depth ratio carefully, the probability density distribution and percentile distribution
of the B/H scatter were statistically analysed and are shown in Figure 13.

Figure 13. Probability density of width-to-depth ratio (B/H) and its percentile distribution. The prob-
ability density distribution of the width–depth ratio basically conforms to the lognormal distribution.

It can be seen in Figure 13 that the probability density distribution of the width–depth
ratio basically conforms to the lognormal distribution, i.e., ln(B/H)~N(μ,σ2). The probabil-
ity density function f (B/H) of width-to-depth can be obtained by lognormal distribution
fitting and is shown as follows with μ = 1.742 and σ = 0.633.

f (B/H) =
1

1.587(B/H)
e−

[ln (B/H)−1.742]2
0.801 1.15 ≤ B/H ≤ 55 (16)

From Equation (16), the maximum probability density is 0.137 when the ratio (B/H)
is 3.89. As shown in Figure 13, the ratio (B/H) is mainly distributed in the range of 3 to 8,
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with a corresponding probability density greater than 0.068 and a corresponding percentile
between 15 and 70. That is, the cumulative frequency of the ratio (B/H) in this interval is
approximately 55%. This indicates that most of the breaches have wide and shallow cross
sections, in which the ratio (B/H) is mainly related to the stability of dike soil, the water
drops through the breach, the inflow angle-velocity and rescue measures taken during
breach occurrence. The regression model can be used to predict the depth or width of the
breach and provide basic scientific parameters for the hydraulic model test of the breach.

In Table 2 and Figure 14, it is shown that the Froude number is mainly distributed
between 0.1 and 0.8, the flow in the breach is mostly subcritical flow, and the water depth
is generally greater than the critical depth. The minimum Fr is only 0.07, which may be
the data from the end of the breach process. The probability density distribution f (Fr) of
the Froude number is statistically calculated from 76 groups of breach samples, and the
relationship between Fr~f (Fr) is shown in Figure 15.

Figure 14. Discrete distribution of Froude number (Fr). Froude number mainly ranges in 0.1 and 0.8.

Figure 15. Probability density and percentile distribution of Froude number (Fr). The probability
density distribution of the Fr approximates the general normal distribution, i.e., Fr~N(μ, σ2).

By means of fitting analysis, the probability density function (PDF or f (Fr)) is obtained
with μ = 0.476 and σ = 0.204:

f (Fr) = 1.956e−12.015(Fr−0.476)2
, 0.07 < Fr ≤ 1.20 (17)

From Equation (17), the maximum probability density is 1.956 when the Froude
number is 0.467. It is shown in the figures of probability density and percentile distribution
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(Figure 15) that during the middle and late stages of the breach process, the flow field
belongs to subcritical flow, and the Froude numbers are mainly concentrated in the range
of 0.4 to 0.8. The corresponding probability density is above 0.554, and the corresponding
percentile is between 35–95, indicating that the cumulative frequency distributed in this
interval is approximately 60% for Fr.

In order to analyse the breach hydraulic boundary eigenvalue and to define the typical
hydraulic boundary conditions of breach, mechanism research on basic physics process of
breach was conducted. Meanwhile, closure analysis was adopted to find out the correlation
among breach factors. Experimental research conclusions of breach hydraulic boundary of
various conditions involving 104 groups data were collected and used to build a convincing
and representative model, which benefits to expand the use of research findings. The
findings of the paper provide the relatively reliable basic parameters for the design of
fracture blocking technology and critical parameters support to improve the scientific
design of blocking technology. By means of cluster analysis and statistics research, the
paper also proposed a reliable method to define the typical characteristic value of levee
breach and provide the necessary technical support for research trials and technical closure
work of breaches.

In the current research, due to the fact that the breach model is designed based on a
specific actual breach or based on empirical generalization, the hydraulic and boundary
characteristics of the breach in the papers are shortage of representativeness and persuasive-
ness. It is necessary to use statistical analysis to obtain representative hydraulic boundary
eigenvalues of breaches based on abundant reliable breach data, which supplies the basic
necessary support for breach research. There is rare research on the statistical analysis of
parametric statistics of the breach, and the estimation of missing data, which follows some
rules especially for different random data. There would be an amount of missing data in
the measurements of breaches, and this would affect figuring out the characteristics of the
breach promptly and then the closure technology of the breach. Therefore, utilizing the
estimation method for the missing data in a reliable and accurate way is important. The
methods proposed in this paper can supply reference to the statistical research of breach
parameters.

5. Conclusions

In this paper, the prototype observation data and model test data of 104 groups of
earth-rock embankments or earth dams at rivers are collected. Statistical analysis methods,
such as cluster analysis, are used to analyse the characteristic values of the hydraulic
boundary of the breach, and the following conclusions are obtained.

Herein, five characteristic breach parameters are selected for the study, and the analysis
results are applicable to hydraulic rock and soil embankment dams or boundary features
later in predicting breach occurrence, hydraulic closure work simulation tests and research
technique breaches. Further exploration of the internal relationship of statistical data,
increasing the study of parameters such as dam height and soil quality, is conducive to
a more accurate understanding of the occurrence and development mechanism of dike
breaches.

Based on the fact that the actual hydraulic parameters of a breach are fleeting, the
data obtained in an emergency situation are difficult to complete, and there are many
missing situations. Statistical tools can be used when studying the characterization of the
hydraulic boundary of a breach. Through the cluster analysis of the measured data of the
breach, the correlation between the key variables is evaluated, and the regression analysis
model of the missing parameter estimation is established to interpolate the missing value
of the hydraulic boundary parameter. Typically, the fitting error complement value can be
controlled within 40%.

Based on the measured data of 85 groups of fractures, statistical analysis shows
that the width of an earth–rock dam is generally distributed in the range of 10~240 m,
the concentration is mostly between 20~100 m, and the frequency is 0.64. The mouth is
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generally between 1.5 and 30 m, although 4 to 12 m is more common, and the frequency of
occurrence is 0.68. The flow rate of the mouth is generally 2~8 m/s, and the distribution
frequency is 0.71; the flow rate of the dike breach is large with a minimum of 10 m3/s and a
maximum of 4198 m3/s; the drop is generally not more than 5.66 m. These analytical values
make up for the shortcomings of the characteristic parameters of the hydraulic boundary
of the breach and can provide basic data for scientific research, such as dam break model
tests and plugging technology design.

Based on a cluster analysis, this paper establishes a correlation regression model of the
characteristic parameters of the hydraulic boundary of a breach. Equation (13) can be used
to estimate the flow of the fracture according to the width of the fracture. It is suitable for
the width of the fracture 10 m < B < 300 m. Equation (14) can be used to predict the water
depth of the breach according to the flow rate of the fracture and is suitable for flow rates
of 15 to 15,000 m3/s. Correlation analysis between variables shows that these models meet
the goodness of fit test requirements.

To test the reliability of the imputed value interpolation of the hydraulic boundary
parameters, probability density analysis of the parameters of the dimensionless depth-
to-depth ratio B/H and Froude number Fr of the fracture is carried out. The ratio of
the width to the depth of the fracture is in accordance with the lognormal distribution:
ln(B/H)~N(μ, σ2), μ = 1.64, σ = 0.434. The maximum probability density is 0.137; the
value of B/H is mainly in the range of 3~8, and the cumulative frequency of the interval
is approximately 55%, which has characteristics proving that the mouth width is larger
than the mouth water depth. The Froude number in the fracture zone also conforms to the
normal distribution: Fr~N(μ, σ2) μ = 0.476, σ = 0.204, the maximum probability density is
1.956; Fr is mainly in the range of 0.4~0.8, and the corresponding cumulative frequency is
approximately 60%. The upstream and downstream water head difference decreases in the
middle and late stages of the collapse, the water flow energy in the fracture zone is smaller
than the potential energy, and the flow state is mostly slow flow. Based on the above two
dimensionless parameters, B/H and Fr are selected to further determine the hydraulic
boundary conditions of the generalized breach, and a simulation test of the dike collapse is
carried out to study the hydraulic characteristics of the breach and the plugging technique.
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Abstract: Meteorological drought is one of the most serious natural disasters, and its impact in
arid and semi-arid areas is significant. In order to explore the temporal and spatial distribution
of meteorological disasters in Gansu Province, we first calculated the standardized precipitation
evapotranspiration index (SPEI) based on the monthly meteorological data from 1969 to 2018 and
extracted the drought events through the theory of runs. Then, REOF rotation orthogonal decomposi-
tion was performed to divide the study area into five climatic subregions. With each subregion as
the basic unit, the variation characteristics and evolution trends of drought events at different time
scales were compared based on the B-G segmentation algorithm (BG-algorithm). Finally, a correlation
analysis was conducted to explore the driving factors of drought events in each subregion. The
main conclusions are as follows: (1) The cumulative duration of drought in the study area showed a
slight increase trend (0.475 day/decade) and a 19-year main cycle. The drought intensity showed a
trend of first easing and then intensifying, especially after 2000; the drought intensified significantly
and showed a spatial trend of decreasing drought in the northwest and worsening drought in the
southeast. (2) The cumulative contribution rate of the first five modes of REOF decomposition was
64.46%, and the study was divided into five arid subregions: the Hexi region, middle Hedong region,
eastern Hedong region, Wushaoling region and western Hedong region. (3) The meteorological
drought in the Hexi region has eased significantly since 1988. In the eastern, central and western
parts of the Yellow River, drought intensification was observed to have occurred in different degrees
(0.12/decade, 0.129/decade, and 0.072/decade). The meteorological drought in the Wuelyaling
region has alleviated significantly with a watershed region formed between drought alleviation and
drought intensification. (4) Seasonally, the eastern Hedong region showed a significant trend of
drought in spring, but the opposite in autumn. The trend of climate drying was obvious in the spring
and summer, rather than in autumn and winter. The spring drought trend is the most obvious in
the middle of the Hedong region. (5) The meteorological drought in the study area was affected by
local climatic factors and circulation factors, but there were significant differences in the responses of
different arid subregions to these factors.

Keywords: Gansu; SPEI; REOF; drought events; temporal and spatial variation

1. Introduction

Meteorological drought, as a kind of extreme weather condition, has been widely
studied and is considered one of the most devastating meteorological disasters [1–5]. Since
global warming has been exacerbated in recent years, the intensity, duration and frequency
of droughts show an upward trend in some regions, which has negative effects on the
ecological environment, agricultural production and social activities [6]. The monsoon
climate and continental climate, which have a considerable impact on China, lead to
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significant interannual changes in precipitation and the frequent occurrence of drought
and flooding. Since 1990, an extreme drought event has happened at least once every
two years in China on average, causing substantial economic losses [7]. Therefore, it is of
practical significance to quantify the spatiotemporal characteristics of changes experienced
under drought events. Currently, there have been various indexes proposed to characterize
meteorologic drought [8–10], including the Palmer drought index (PDSI), standardized
precipitation index (SPI), surface moisture index and meteorological drought index (CI).
Although these indexes are effective at solving problems such as drought monitoring and
prediction, they are still not comprehensive. PDSI applies to characterizing the severity of
drought in a region, which is not only based on the balance of water supply and demand
but also on various climate-related factors such as precipitation, humidity and evaporation.
However, since the severity of drought is determined by subjective factors, the judgement
of extreme drought is poor in timeliness. Reflecting the state of drought at different time
scales and in various regions, SPI better represents the intensity and duration of drought.
However, the main problem with it is that it only considers precipitation-related data
while ignoring various climate-related factors that play a major role in the occurrence
of drought, such as temperature and evapotranspiration [11]. To address this problem,
Vicente Serrano [12] proposed the standardized precipitation evapotranspiration index
(SPEI) in 2010. Based on precipitation and evapotranspiration, this index incorporates
not only the advantage of the PDSI (Palmer drought severity index) in considering the
sensitivity of evapotranspiration to temperature, but also that of the SPI (standardized
precipitation index) in facilitating multi-scale and multi-spatial comparison. According to
the existing studies, this index is suitable for exploring the spatiotemporal characteristics
of drought event changes in the context of global warming and is applicable to identifying
the occurrence of extreme drought events in arid and semi-arid regions more accurately.
Compared to other drought indexes, it is more suited to the study of meteorological drought
in Western China [13–17].

Up to now, the SPEI has been commonly used both at home and abroad to conduct
studies. From 1901 to 2015, the area and intensity of drought in China showed an overall
upward trend [18]. In most parts of Northeast China, there has been a significant trend of
aridification over the past 50 years [19]. Throughout the last 55 years, the occurrence of ex-
treme drought events showed a significant trend of seasonal variations in the southwest [20].
In the studies conducted by Lu Jiayu et al., it was found that the trend of aridification
in Yunnan had reached a significant extent in the past 55 years [21]. According to the
studies carried out by Zhang Yuanyuan et al. [22], the overall SPEI in Central Asia shows
a downward trend, despite the significant seasonal differences that persist. According
to the studies of Qi Leqin et al. [23], there is a significant spatial difference shown by the
occurrence of meteorological drought in Northwest China, and aridification exhibits a
significant trend of exacerbation in central China and Southern Xinjiang, although the
extent of aridification is relatively low on the plateau and in the east. For the drought
events occurring in Northwest China, it remains necessary to perform further subdivisions
and accurate assessments.

Located in the northwest of China, Gansu Province intersects with three major deserts,
namely Badain Jilin, Tengger and Kumtag. Due to low precipitation and high evaporation,
the local ecological system is more susceptible to drought events. In the context of global
warming, it is difficult to restore the local ecological environment because of drought. In
the meantime, this region is also most prone to the occurrence of drought in China, with
the annual economic losses caused by drought being far more severe than in other parts
of China [24]. If drought worsens, it affects the distribution, yield and growth of crops,
which leads to vegetation degradation, thus accelerating regional desertification. Therefore,
this study adopted the theory of runs to extract drought events, which is based on the
meteorological data collected from Gansu Province in the past 50 years. Rotated empirical
orthogonal function (REOF) decomposition was performed to divide the study area into
multiple subregions, for exploring the spatiotemporal changes of droughts occurring in
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Gansu Province. This was expected to provide a theoretical basis for the optimal allocation
and scientific evaluation of water resources, which is essential for the early warning of
drought as well as the formulation of disaster prevention and mitigation policies in the
study area.

2. Materials and Methods

2.1. Overview of the Study Region

As a typical area of transition between the temperate monsoon climate and the con-
tinental climate (Figure 1), Gansu is located at the intersection of three natural regions in
China: the eastern monsoon region, the northwest arid region and the Qinghai–Tibet alpine
region. Meanwhile, it represents the junction of three major plateaus: the Qinghai–Tibet
Plateau, the Loess Plateau and the Inner Mongolian Plateau (Figure 1). The study area is
characterized by the complexity of physical and geographical conditions and biodiversity,
with a wide variety of vegetation distributed in a significant latitudinal and vertical zonal
form from the south to the north. In this region, the level of annual precipitation is relatively
low, the average of which is less than 400 mm. In general, it decreases from the southeast
to the northwest.

Figure 1. Overview of the study area.

2.2. Data Source

The monthly data collected by 32 meteorological stations in Gansu from 1969 to 2019
were sourced from the China Surface Climate Monthly Data Set of Chinese meteorological
data website (http://data.cma.cn/, accessed on 25 May 2023). This dataset is a monthly set
obtained from the compilation and statistics of national surface daily data from various
provinces throughout China, in accordance with the relevant provisions of the “Statistical
Methods for National Surface Climate Data (1961–1990)” and the “Ground Meteorological
Observation Specifications”, and has passed the extreme value test and time consistency test
of data. With rigorous quality control applied to the data, the univariate linear regression
method was used to recover the missing monthly data. The climatic factors concerned
in the study included precipitation (mm), average temperature (◦C), average minimum,
maximum temperature (◦C), average wind speed (m/s), relative humidity (%) and sunshine
hours (h). All atmospheric circulation factors were expressed in exponential form. As
for the monthly ENSO (El Niño–Southern Oscillation), NAO (North Atlantic Oscillation),
AO (Arctic Oscillation), PDO (Pacific Interdecadal Oscillation) and NP (North Pacific Tele
Correlation Index) circulation factor data, they were sourced from the Climate Prediction
Center of the National Weather Service of the United States (https://www.cpc.ncep.noaa.
gov/products/precip/CWlink/MJO/climwx.shtml accessed on 25 May 2023). Then, the
data of 5 atmospheric circulation factors for each season were obtained through mean
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value processing. DEM data were the ASTER GDEM 90 M resolution digital elevation data
collected from a geospatial data cloud. After the study area was divided, a DEM diagram
of the study area was generated after the projection and mask for the DEM data.

2.3. Study Method
2.3.1. Standardized Precipitation Evapotranspiration Index (SPEI)

(1) Calculate evapotranspiration through the Penman–Monteith equation.

By taking into account the effect of surface evapotranspiration changes on drought
introduced, the SPEI improved the sensitivity of this method to the aridification caused by
the rapid temperature rise, thereby making it suitable for the geographical conditions in
the study area [25]. The calculation of ET0 was performed by using the Penman–Monteith
equation recommended by FAO 56. The details are shown in Reference [26].

(2) Calculate the difference between monthly precipitation and potential evapotranspira-
tion through the following equation:

Di = Pi − (ET0)i (1)

where Pi represents the monthly precipitation and (ET0)i denotes the monthly potential
evapotranspiration.

(3) Apply the log-logic distribution with three parameters to fit Di and calculate the
cumulative function,

f(x) =
β
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α

)β−1
[
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(
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)β
]−2

(2)
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)
β
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(3)

where f(x) represents a probability density function, F(x) denotes a probability distribution
function and α, β and γ refer to three parameters obtained through fitting based on the
linear moment method (L-moment).
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(4) Normalize for the sequence to obtain the corresponding SPEI value:

SPEI = ω − c0 + c1ω + c2ω2

1 + d1ω+d2ω2 + d3ω3

Probabilistic weighted moment ω =
√−2ln p. When p ≤ 0.5, p = F(x); when p > 0.5,

p = 1 − F(x).
The drought classification by the SPEI is detailed in Table 1 [12].

Table 1. Criteria of monthly SPEI drought classification.

Grade No Drought Mild Drought Moderate Drought Severe Drought Extreme Drought

SPEI SPEI ≥ −0.5 −1 ≤ SPEI < −0.5 −1.5 ≤ SPEI < −1 −2 ≤ SPEI < −1.5 SPEI ≤ −2
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2.3.2. Drought Identification

As a means to analyze the time series of variables, the theory of runs has been widely
adopted in recent years to deal with the extraction and discrimination of drought events.

Compared to the traditional method that is applicable only for comparing drought
indexes, it achieves a higher accuracy in identifying regional drought and improves the
overall understanding of drought events. A run refers to the part that is lower or higher
than a truncation threshold in all the values of the time series. The part higher than the
truncation threshold is a positive run, while the part lower than the truncation threshold is
a negative run [21]. The SPEI sequence values were calculated to identify drought based
on the theory of runs. According to the criteria of drought classification (Table 1), only
when the SPEI value falls below −0.5 can drought happen. In this study, there are three
thresholds set for determining drought events: X0 = 0.5, X1 = −0.5, and X2= −1.5. The
rules for carrying this out are as follows (Figure 2):

Figure 2. Drought recognition based on the theory of runs.

Three cutoff levels (X represents the SPEI value) were set according to the classification
of drought severity using the SPEI (Table 1). When SPEI < X1, this month is considered
arid (a, b, c, d, e in Figure 2). If the drought lasts only one month and the corresponding
SPEI falls below X2, this month is considered a drought event (b in Figure 2); otherwise,
it is considered a minor drought event (a in Figure 2) and thus ignored. For two adjacent
drought events with an interval of 1 month, they are subordinate droughts if the interval
is X1 < SPEI < X0. In this case, these two adjacent droughts are combined into one (c and
d in Figure 2); otherwise, they are treated as two separate drought events (d and e in
Figure 2) [27].

2.3.3. REOF Rotational Orthogonal Decomposition

EOF (empirical orthogonal function) [28] and REOF [29], as two different methods of
decomposition analysis, were used to analyze the drought events extracted through the
theory of runs for determining the spatiotemporal distribution characteristics of drought
events occurring in Gansu. The EOF method was applied to decompose a field containing
the spatial points that change over time. With its spatiotemporal characteristics separated
and expanded to obtain the main eigenvectors, the variability structure of the entire climate
variable field was maximized. However, there is a limitation on EOF; that is, the spatial
distribution of eigenvectors is affected by the range of sampling and the size of samples.
REOF decomposition is a method that concentrates variance contributions on a smaller
region through variance maximum rotation transformation on the basis of EOF to reveal
the pattern of spatial distributions. The results are not only reflective of the changes and
distribution in different regions, but also applicable to dividing the arid subregions. The
process of determining EOF and REOF is detailed in References [27,28].

2.3.4. Other Methods

The B-G segmentation algorithm was used to segment the factor time series for the
factor change stage to be determined. Proposed by Bernarda Galvan et al. [30]., the B-G
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segmentation algorithm is a method suitable for detecting the abrupt change in non-
linear and non-stationary time series. Unlike the traditional methods of abrupt change
detection such as the M-K abrupt change detection method and the Pettitt method, this
algorithm divides a non-stationary sequence into multiple stationary subsequences with
different mean values based on the t-test, with each sub-sequence being used to characterize
different physical backgrounds and the scale of each mean segment being obtained to show
variability. The linear regression method was used to analyze the trend of changes in the
factors. A significance test was conducted, with the confidence level α being set to 0.01
and 0.05. A sliding t-test was performed to determine whether or not the trend of change
in the factors was significant and to locate the abrupt change, with the confidence level α
being set to 0.01 and 0.05. The symbol * indicates passing the confidence test of p < 0.05,
and the symbol ** indicates passing the confidence test of p < 0.01. The Pettitt method was
used to assist the test on abrupt changes, for further determining the year in which the
abrupt change occurred. The periodic changes of drought events were analyzed by means
of Morlet wavelet analysis. The inverse distance spatial interpolation method (IDW) was
used to interpolate climatic factors and generate a grid map.

3. Results

3.1. Spatiotemporal Change in Meteorological Drought in the Recent 50 Years in the Study Area
3.1.1. Spatiotemporal Change in Drought Duration

Drought duration can be used to effectively reflect how long drought events last,
which provides an important reference for the change in other drought events. Figure 3a
shows the trend of changes and cumulative anomaly of annual drought duration in the
study area. Over the past 50 years, the duration of drought in the study area increased
slightly (0.475 day/decade), with a minimum value of 27 (days) and a maximum value of
167 (days). The cumulative anomaly curve showed a trend of rising, then falling sharply
and, finally, rising unsteadily, with the extreme point appearing in 1989, which failed the
significance test. It is indicated that in the past 50 years, the duration of drought in the
study area was continuously extended at first, shortened in the late 1980s and gradually
extended again from the middle of the 1990s to the present. Morlet wavelet analysis shows
significant periodic changes (Figure 4).

(a) (b)

Figure 3. Trends and cumulative anomaly curve of drought duration (a) and drought intensity (b).
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(a) (b)

Figure 4. Wavelet variance (a), in semi-humid region (b) of drought duration.

The primary period of 19 years spans the entire time series, forming three high- and
low-value centers, and the period is significant. Since 2007, the oscillation has been reduced
and the fluctuations of factors has tended to stabilize. The oscillation at the sub-period of
8 years was found to be significant before 1990, and then it became insignificant. Figure 5a,b
shows the spatial distribution of the multi-year average drought duration and the trend rate
of annual drought duration change in Gansu. In general, the study area shows a distribution
pattern of a long duration in the northwest and a short duration in the southeast. Except
for Linxia and Gaolan, the average duration of annual drought is shorter than 3 months in
the east of the Yellow River. According to the spatial distribution diagram of the multi-year
trend rate of drought duration, except for the Wushaoling and Jiuquan regions at the
Western edge of the Hexi Corridor where a downward trend of drought duration was
exhibited, the duration was gradually extended in the rest of the study area.

Figure 5. Spatial distribution of drought duration and drought intensity (a,c); interannual change
rate of drought duration and drought intensity (b,d).

3.1.2. Spatiotemporal Change in Drought Intensity

Effectively reflecting the intensity of drought events, drought intensity is an important
indicator used to measure the severity of drought. Figure 3b shows the trend of change
in drought intensity in the study area over the past 50 years. Overall, drought intensity
showed an upward trend (0.12/decade) (p > 0.05), which failed the significance test because
the trend of aggravation was relatively insignificant. It can be seen from the cumulative
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anomaly curve that the intensity of drought reached a minimum in 2000, which passed the
significance test, indicating that the meteorological drought in the study area was aggra-
vated significantly after 2000. The trend of aridification was more significant. Figure 5c,d
shows the spatial distribution of multi-year average drought intensity and the annual trend
rate of drought intensity change in Gansu. Overall, the intensity was higher in the central
part and lower in the southeast and the northwest. Except for in a few stations, there was
a trend of alleviation shown in the northwest and a trend of aggravation shown in the
southeast.

3.2. Spatiotemporal Changes in Meteorological Drought in Climate Subregions Based on REOF
3.2.1. Division of Subregions

EOF and REOF decomposition were performed on the intensity of drought occurring
in Gansu and its surrounding stations to further determine the spatial differentiation
of drought events in this province. The analytical results were obtained, as shown in
Table 2. According to the North test, the first five modes decomposed via EOF passed
the significance test, and the cumulative contribution of the first five modes reached 73%.
The first five principal components were rotated. Due to the relatively complex climatic
factors affecting the study area and their low convergence rate, the cumulative variance
contribution of the first five eigenvectors of REOF was merely 64.46% (Table 2), which
contains the main information and laws of the spatial distribution of annual drought events
in the study area. The eigenvector corresponding to the maximum absolute value of the
annual time coefficient was treated as the spatial distribution pattern mode of the drought
intensity in the year. Finally, the subregions of drought intensity in the study area were
divided according to the REOF results. The calculation results of EOF and REOF are listed
in Table 2.

Table 2. The first 5 feature vectors and contributions of EOF and REOF.

Serial Number

EOF REOF

Rate of
Contribution %

Accumulating
Contribution Rate %

Rate of
Contribution %

Accumulating
Contribution Rate %

1 0.41 0.41 30.51 30.51
2 0.12 0.53 12.73 42.24
3 0.09 0.62 7.62 50.86
4 0.07 0.69 7.23 58.09
5 0.04 0.73 6.37 64.46

Figure 6 shows the spatial distribution of load values under the five spatial modes
of REOF before drought intensity, where RLV1 represents the rotating load vector field of
the first mode, and so on. Table 2 details the time coefficient characteristics and drought
spatial differentiation models under the first five spatial modes of REOF. RLV1 (Figure 6a)
was found to be the most common mode of drought intensity distribution over the last
50 years. The central load was located in the Hexi region (+0.987), and the isoline showed
the highest density, indicating that the intensity of drought was consistent across the region
for years. The variability of drought intensity in the Hexi region reached a high level, while
it was low in the southeast. It was uniformly dry in the whole region for 13 years, most
of which were concentrated from 2008 to 2019, and uniformly wet in the whole region for
8 years, most of which were concentrated from 1988 to 2005. RLV2 (Figure 6b) presents
a high distribution pattern in the southeast and a low pattern in the northwest. Except
for in the Beishan region, the load is invariably positive. The central load is located in the
central part of the central Hedong region (+0.778), and the isolines are dense in the east
and sparse in the west, indicating that there are some years in which the drought intensity
distribution shows a north–south reverse mode characteristic bounded by the “zero line”,
and the variability is more significant in the southeast, especially in the central part of the
central Hedong region. It was wetter in the north and drier in the south for 9 years, most of
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which were concentrated between 1980 and 2000, and drier in the north and wetter in the
south for 8 years, all of which were before 1985. RLV3 (Figure 6c) shows a decreasing trend
from the east to the west along the longitude lines, with negative values distributed in
Zhangye and Yongchang located in the middle east of the Hexi Corridor. A positive central
load was located in the eastern part of Hedong (+0.899), while the isoline was thick in the
east but thin in the west, indicating that drought intensity was bounded by the “zero line”
in some years. This shows a pattern of reverse distribution between the central, eastern and
western parts. The variability is more significant in the eastern part of Hedong. There was
one year in which it was arid in the central part and wetter in the eastern and western parts
(1995), and three years in which it was humid in the central part and arid in the eastern and
western parts (1981, 1990, and 1994). RLV4 (Figure 6d) showed a decreasing trend from
the east to the west in the Wushaoling region as the central part, and the negative value
was concentrated in Wudu, Tianshui and other parts in the south of the study area. The
positive central load was located in the Wushaoling region (+0.74), which was classed as a
Wushaoling type. Drought intensity exhibits a pattern of north–south reverse distribution
with a boundary of 35◦ N in a few years, and the variability in the Wushaoling region
reaches a higher level than that in other regions. The negative value of RLV5 (Figure 6e)
was mainly distributed in the eastern and western parts of the Yellow River, while the
positive central load was located in the western part of the Yellow River (+0.723). The
isoline was dense in the south but sparse in the north, indicating that the drought intensity
showed a pattern of middle-east–west reverse distribution for a few years, and that the
variability was more significant in the south than in the north.

Figure 6. REOF Mode 1 (a), REOF Mode 2 (b), REOF Mode 3 (c), REOF Mode 4 (d), REOF Mode 5 (e),
and REOF subregion (f).

The study area was divided into five arid subregions using the rotation component ma-
trix obtained from the REOF analysis, with some repetitive parts removed from the spatial
distribution of the load capacity. By taking the regions with significant absolute load capac-
ity values as the center, Gansu Province was divided into five arid subregions (Figure 6f),
namely Hexi (RLV1), central Hedong (RLV2), eastern Hedong (RLV3), Wushaoling (RLV4)
and western Hedong (RLV5).

3.2.2. Interannual Change Characteristics of Drought Intensity in the Climatic Subregions

The univariate linear trend was used to determine the trend of changes in the time
series. The significance of the changing trend was tested by means of a sliding T-test. The
Pettitt abrupt change test and sliding t-test were performed to determine the year of the
abrupt change. The B-G segmentation algorithm was applied to segment the time series by
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stages, with S1 (stage 1) representing the average value of the drought intensity in the first
stage, and so on (Figure 7).

Figure 7. Interannual variation and segmentation stage of drought intensity in Hexi region (a), central
Hedong central region (b), eastern Hedong region (c), Wushaoling region (d) and western Hedong
region (e).

The drought intensity in the Hexi region showed a significant downward trend at
−0.362/decade (|T| = 3.63 > 2.738, α = 0.01), an abrupt decrease in 1988 (|T| = 3.74 > 2.738,
α = 0.01) and then a sharp decline at −0.601/decade (p > 0.05). B-G segmentation was
performed to determine three stages: 1969–1988, 1989–1997 and 1998–2019. According to
the comparison drawn between the mean values of each stage, the intensity of S2 was 52.9%
higher than that of S1, and that of S3 was higher compared to that of S2, indicating that the
region experienced a significant change from arid to humid in the past 50 years. After 1990,
it tended to be humid (Figure 7a).

The drought intensity in the central part of Hedong showed an upward trend at
0.129/decade (p > 0.05), before an increase in 1988, which failed the significance test. B-G
segmentation was performed to determine four stages: 1969–1974, 1975–1998, 1999–2004
and 2005–2019. According to the comparison drawn between the mean values of each stage,
that of S2 was 46.4% higher than that of S1, that of S3 was 1.13 times that of S2, and that of
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S4 was 55.02% lower than that of S3. This indicates the insignificant trend of aridification
in this region over the past 50 years. However, the intensity has been in decline year on
year, showing a trend of humidification (Figure 7b).

The drought intensity in the eastern Hedong region showed an upward trend at
0.12/decade (p > 0.05), before an abrupt increase in 1996 (|T| = 2.04 > 2.037, α = 0.05). B-G
segmentation was performed to obtain three stages: 1969–1996, 1997–2003 and 2004–2019.
According to the comparison drawn between the mean values of each stage, that of S2
was 1.04 times that of S1, and that of S3 was 43.5% higher than that of S2, which indicates
an insignificant trend of aridification in this region over the past 50 years. However, the
intensity of drought has decreased unsteadily since 2002, showing an insignificant trend of
humidification (Figure 7c).

The drought intensity in the Wushaoling region showed a significant downward trend
at −0.19/decade (|T| = 2.11 > 1.67, α = 0.05), an abrupt decrease in 1975 (|T| = 4.35 > 2.738,
α = 0.01) and an unsteady decline. There were two time points of abrupt change found via
B-G segmentation, but the year 1969 (L0 = 0.99 > 0.95) was excluded due to its impracticality.
There were two time periods determined by segmentation: 1969–1980 and 1981–2019. That
of S2 was 34.7% lower than that of S1, indicating a significant trend of humidification
occurring in the region over the past 50 years, with a clear watershed formed (Figure 7d).

The drought intensity in the west of Hedong showed a slight increase at 0.072/decade
(p > 0.05), an abrupt increase in 1997 (|T| = 2.06 > 2.037, α = 0.05) and a slight increase in
the following years. B-G segmentation was performed to determine three stages: 1969–1984,
1985–1995 and 1996–2019. According to the comparison of the mean value between different
stages, that of S2 was lower than that of S1 and that of S3 was higher than that of S2, which
indicates a trend of slight aridification in the region over the past 50 years. However, it
tended to be humid between 1985–1995, showing the process of gradual aridification from
1996 to the present (Figure 7e).

3.2.3. Seasonal Change Characteristics of Drought Intensity in the Climatic Subregions

The seasonal drought intensity of each drought subregion was calculated using the
monthly data of drought intensity to explore the trend of changes and the time points of
abrupt change in the past 50 years. The results are listed in Table 3.

Table 3. Seasonal variation characteristics of drought intensity in each climatic subregion.

Spring Summer Autumn Winter

Hexi region

Trend of
change

Deepening
drought

Decreasing
drought

Deepening
drought

Deepening
drought

Significance Insignificant
(p > 0.05)

Significant
(p < 0.01)

Insignificant
(p > 0.05)

Insignificant
(p > 0.05)

Mutation
year None 2014 None None

Hedong
central region

Trend of
change

Deepening
drought

Deepening
drought

Deepening
drought

Deepening
drought

Significance Significant
(p < 0.01)

Insignificant
(p > 0.05)

Insignificant
(p > 0.05)

Insignificant
(p > 0.05)

Mutation
year 1993 None 1981 None

Hedong
eastern
region

Trend of
change

Deepening
drought

Decreasing
drought

Decreasing
drought

Decreasing
drought

Significance Significant
(p < 0.01)

Insignificant
(p > 0.05)

Significant
(p < 0.01)

Insignificant
(p > 0.05)

Mutation
year 1997 None 2002 None
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Table 3. Cont.

Spring Summer Autumn Winter

Wushaoling
region

Trend of
change

Deepening
drought

Decreasing
drought

Decreasing
drought

Decreasing
drought

Significance Insignificant
(p > 0.05)

Significant
(p < 0.01)

Insignificant
(p > 0.05)

Significant
(p < 0.01)

Mutation
year None 1990 None 1979

Hedong
western
Region

Trend of
change

Deepening
drought

Deepening
drought

Decreasing
drought

Decreasing
drought

Significance Significant (p
< 0.01)

Significant (p
< 0.05)

Significant
(p < 0.05)

Insignificant
(p > 0.05)

Mutation
year 2002 2000 2002 None

The drought intensity in the Hexi region only showed a trend of significant moderation
in summer, and there was an abrupt decrease in 2014, which made the trend of moderation
more significant. In addition, it showed a trend of slight aridification in other seasons, with
the trend of moderation starting in the spring of 2011, the autumn of 2002 and the winter of
2014. However, there was no abrupt change observed.

The changes in meteorological drought in central Hedong were significantly consistent,
showing the trend of aridification in all seasons. The rate of decrease in drought intensity
was found in the following order: spring (−0.079/decade **) > summer (−0.064/decade)
> autumn (−0.052/decade) > winter (−0.023/decade). The abrupt change to drought
occurred in the spring and autumn of 1993 and 1981, and the shift from humid to arid
occurred in 2000 and 1998, but not to a significant extent.

In the eastern Hedong region, there was a trend of significant aridification shown
only in spring, and there was an abrupt change in drought in 1997, showing a trend of
exacerbation. The trend of aridification was the most significant in autumn and it changed
abruptly in 2002. In comparison, drought intensity insignificantly reduced in the other two
seasons.

The seasonal changes in the Wushaoling region were consistent, with a trend of
moderation shown by drought at varying degrees. The rate at which drought intensity
increased was in the following order: winter (0.128/decade **) > summer (0.078/decade **)
> spring (0.03/decade) > autumn (0.021/decade). Abrupt changes occurred in the winter
and summer of 1979 and 1990, while the shift to humid was insignificant in the other two
seasons.

The seasonal differences in the western Hedong region were significant, showing a
trend of aridification in the spring and summer, with the order spring (−0.058/decade **) >
summer (−0.056/decade *). The abrupt change in drought occurred in these two seasons
of 2002 and 2000. In the autumn, drought showed a trend of significant moderation
(0.07/decade *) and abrupt change in 2002. Then, the trend of moderation became more
significant, before becoming insignificant in the winter.

3.3. Driving Factor Analysis

According to existing studies, climate change is a major contributor to the occurrence
of drought [31,32]. Drought occurs due to the combined effect of local climatic factors
and circulation factors rather than a single factor. Three local climatic factors, including
temperature, precipitation and sunshine hours, were used in this paper to analyze the
correlation with drought intensity in each subregion, for the driving factors of drought
intensity to be determined. Furthermore, five circulation factors were introduced to explore
the influencing factors of meteorological drought in different seasons across the study
area. As can be seen from Table 4, there was a significant variation in the response of
drought intensity to the climatic factors in these climatic subregions. From a regional

502



Sustainability 2023, 15, 9014

perspective, the response to the temperature reached a significant extent in the Hexi and
western Hedong regions, which passed the significance test of α = 0.01 and α = 0.05,
respectively. They exhibited a significant positive correlation, which means meteorological
drought aggravates a temperature rise. In central Hedong and eastern Hedong, there
was a significant response to precipitation, which passed the significance test of α= 0.05
and α = 0.01. Meteorological drought showed a trend of aggravation when precipitation
decreased. In the Wushaoling region, there was a significant response to sunshine hours,
which passed the significance test of α = 0.05. Meteorological drought showed a trend
of aggravation when the number of sunshine hours increased. From the perspective of
climatic factors, there was not only a positive correlation observed between temperature
and drought intensity, but also a negative correlation found between precipitation and
drought intensity. The correlation between sunshine hours and drought intensity showed
variations by region. Sunshine hours exhibited an insignificant negative correlation with
the Hexi and central Hedong regions but a positive correlation with other regions.

Table 4. The correlation coefficient between drought intensity and climate-related factors.

Temperature Precipitation Sunshine Duration

Hexi region 0.439 ** −0.095 −0.104
Hedong central region 0.205 −0.321 * −0.150
Hedong eastern region 0.260 −0.5617 ** 0.024
Wushaoling region 0.076 −0.027 0.303 *
Hedong western Region 0.321 * −0.131 0.048

Note: * indicates passing the confidence test of p < 0.05, and ** indicates passing the confidence test of p < 0.01.

According to the Pearson correlation analysis (Table 5), there was only a significant
positive correlation between drought intensity and NAO (North Atlantic Oscillation) across
the study area in summer, with a correlation coefficient of 0.35 (p < 0.05). In addition, there
was a negative correlation observed in autumn and winter (p > 0.05), and a weak positive
correlation was found in spring, which indicates a significant effect of the NAO index on
the study area during summer. Hence, the drought occurring in the study area showed a
trend of aggravation in summer with the rise in the NAO index. Drought intensity and
ENSO exhibited a significant positive correlation in spring and autumn (p < 0.01, p < 0.05),
but a negative correlation in summer and winter (p > 0.05), which indicates not only a
close correlation between the occurrence of meteorological drought and ENSO events
during spring and autumn in the study area, but also a significant effect of ENSO events
on drought events in spring. Drought intensity and AO (Arctic Oscillation) showed a
significant positive correlation in winter (p < 0.05), but showed a positive correlation in
summer and autumn (p > 0.05). This indicates a close correlation between the occurrence of
meteorological drought and AO events during winter in the study area, and the varying
degrees of the effect of events on drought events during all seasons in the study area
except summer. Drought intensity and PDO (Pacific Interdecadal Oscillation) showed a
significant negative correlation in summer (p < 0.05), indicating a trend of moderation
shown by meteorological drought during summer in the study area with the increase in
the POD event. Drought intensity and NPI (North Pacific Index) exhibited a weak positive
correlation in spring and winter, but a weak negative correlation in summer and autumn,
both of which failed the significance test. It is indicated that NPI events exerted a relatively
weak effect on meteorological drought during the four seasons in the study area.
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Table 5. Correlation coefficient between drought intensity and circulation.

Circulation Factor Spring Summer Autumn Winter

NAO 0.13 0.35 * −0.03 −0.10
ENSO 0.47 ** −0.08 0.30 * −0.16

AO 0.31 −0.06 0.27 0.41 *
PDO 0.07 −3.3 * 0.1 0.18
NP 0.16 −0.13 −0.04 0.25

Note: * indicates passing the confidence test of p < 0.05, and ** indicates passing the confidence test of p < 0.01.

4. Discussion

In the study, it is indicated that the SPEI is more appropriate for Gansu than other
drought indexes are, and is effective at reflecting the state of drought in a specific way [33].
In addition, extracting drought events for the SPEI according to the theory of runs is
conducive to quantitatively analyzing the extent of change in drought events. The spatial
structure is clarified via REOF decomposition, which improves the accuracy in reflecting the
changes in the spatial pattern of drought events over the past 50 years. In Gansu, a typical
dry farming region, meteorological drought is a significant factor causing natural disasters,
which affect agricultural production. When the overall temperature rises significantly in the
northwest, moisture is the main factor affecting local wetness. As a major natural disaster
that affects agricultural production and ecological preservation in the northwest, drought
is exacerbated continuously with the increase in its frequency and intensity.

In recent years, the precipitation in the north of China has increased to an especially
higher level than it has in previous years due to the combined effect of large-scale circulation
adjustment and temperature rise, while extreme precipitation events have increased as
well. As indicated by Yu Shuqiu, a significant climatic leap occurred in Northwest China
in 1986. Subsequently, the annual precipitation and summer precipitation increased [34].
According to the study of Wang Chenghai et al., the annual precipitation of stations in the
northwest exhibits an increasing trend, and the stations showing a decreasing trend are
concentrated in the southeast monsoon region [35]. As revealed by Cao Yanchao et al. [36],
the overall level of precipitation during summer in Gansu Hexi showed an increasing trend
since 2010. These results may exert a moderating effect on meteorological drought in the
western part of the study, which supports the argument that meteorological drought is
moderated during summer in Hexi.

On the interannual scale, the drought occurring in the study area was aggravated after
being moderated, significantly after 2000. The study area experienced noticeable spatial
and temporal differences in climate change over nearly 50 years, which can be attributed to
global warming. Since 2000, drought intensity in the southeast region of the study area has
increased [37], while in the 1990s, the area bounded by Wushaoling has exhibited opposite
precipitation trends with decreasing precipitation in the east and increasing precipitation
in the west [38]. The primary reason for the dry and wet climate changes in the study area
is the alteration of the climate system over time. The Wushaaling region demonstrates
the boundary between the East Asian monsoon system and the westerly system, and
the precipitation in these two areas has a significant correlation with the strength of the
corresponding monsoons and westerlies [39]. The westerly climate has become humid since
the 1970s, whereas the monsoon climate has become arid (Wang Pengxiang, 2007, [40]).
The strength of the westerly wind index is a significant factor influencing the intensity
of the westerly wind. For nearly 50 years, the westerly wind index in northwest China
has demonstrated obvious cycle changes, with a trend of increasing strength over time,
while both the East Asian summer and winter winds have shown a weakening trend
(Li Wanli et al., 2008, [41]). Winter wind intensity has an oscillation cycle of 30–40 years,
which reached its low-value period after 1980, and its intensity continues to decrease
(Zhang Cunjie et al., 2002, [42]). Meanwhile, since 1970, the summer wind index has
undergone rapid changes, and its intensity has continued to decrease in recent years
(Guo Qiyun et al., 2003, [43]). Furthermore, Arctic Oscillation (AO) has a considerable

504



Sustainability 2023, 15, 9014

influence on the dry and wet climate changes in the study area. The AO index is closely
associated with dry–wet variations in northwest China, with strong AO index years leading
to increased precipitation in the northwest and decreased precipitation in the east, while
the AO index was significantly strengthened before and after 1987, leading to increased
water vapor transport to the west of the study area and a significant humidity trend
(Peng-Xiang Wang, 2007b, [44]).

In terms of the spatial pattern, the drought occurring in the study area showed an
overall trend of moderation in the northwest and aggravation in the southeast, which is
consistent with the result of other studies. In terms of the division of arid subregions,
Li Liang et al. [45] also used the REOF method to analyze the annual SPEI values, dividing
the whole of Gansu into four drought-sensitive regions: the eastern, northwestern, central,
and southeastern regions. It was found that drought was exacerbated in the southeast and
moderated in the central part of the Hexi Corridor. Liu Bingxin et al. [46] divided Gansu
into six climatic regions and discovered a trend of aridification shown in two parts of the
southeast throughout the time series (1961–2014). The above results are consistent with
the finding that a trend of aggravation was shown in the Hedong region and a trend of
moderation was shown in the Wushaoling region. Although the drought occurring in Hexi
showed a general trend of moderation, it was significant only in summer, with variations
shown between different seasons. Wushaoling showed a trend of moderated aridification
from the interannual scale to the seasonal scale, reaching the most significant extent in win-
ter. In addition, the meteorological drought occurring in this region is relatively sensitive
to altitude, which makes it necessary to increase awareness via early warning of drought
events in high-altitude regions. When the climate becomes significantly warm and humid
in the central and western parts, their seasonal differences are also worthy of attention. The
intensity of drought still shows an upward trend in spring across some regions, which has
an important effect on dry farming in these regions. This is averse to the improvement
of surface water conditions and the sustainable development of the natural environment.
Longdong, the eastern part of the study area, is in the west of the Loess Plateau. As an
integral part of the Loess Plateau, there is a large area of cultivated land, which makes it
one of the regions with serious soil erosion in the middle and upper reaches of the Yellow
River. Therefore, the significant increase in drought events during spring in recent years
has not only disrupted agricultural production, but has also exacerbated the vulnerability
of the local ecological environment, thus affecting the sustainable development of regional
agriculture industries, ecological preservation and biodiversity.

5. Conclusions

(1) This research reveals that the duration of drought in the study area increased by an
average of 0.475 days per decade, with an initial extension followed by a contraction.
The intensity of drought also increased, particularly after 2000, and there was a trend of
drought reduction in the northwest and intensification in the southeast. Furthermore,
the top five modes of REOF contributed 64.46% of the variance, and the study area
was partitioned into five arid subregions: Hexi, eastern Hedong, central Hedong,
Wushaoling and western Hedong.

(2) On an interannual scale, meteorological drought in the Hexi region has significantly
decreased since 1988 (p < 0.01). Additionally, that in the central and eastern regions of
Hedong gradually eased at the beginning of this century, while the Wuling region has
seen a significant reduction in meteorological drought since 1975, forming a watershed
between drought mitigation and intensified change in space. On a seasonal scale,
summer drought in the Hexi region has eased in the Hexi region compared to spring
and autumn. However, the spring and summer seasons of the western Hedong region
saw an increase in drought intensity in 2002 and 2000, respectively. The central region
of Hedong showed a trend of drought and the most severe spring drought, and the
meteorological drought eased in all four seasons.
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(3) The meteorological drought in the study area is influenced by local climate and circu-
lation factors, with the Hexi region and western region responding to precipitation
changes in the central and eastern regions, and the Wushaling region responding to
the variations in sunshine duration and altitude. NAO has a significant influence on
summer drought in the study area, while ENSO has a major impact on spring and
autumn droughts (particularly in spring). Additionally, AO has the most significant
effects on winter drought in the study area.
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Abstract: The impact of global climate change has intensified, and the frequent occurrence of me-
teorological disasters has posed a serious challenge to crop production. This article conducts an
integrated risk assessment of agricultural drought disasters in the main grain-producing areas of Jilin
Province using the temperature and precipitation data of the study area from 1955 to 2020, the sown
area of crops, historical disaster data, regional remote sensing images, and statistical yearbook data.
The agricultural drought integrated risk assessment model was built around four factors: drought
hazards, vulnerability of hazard-bearing bodies, sensitivity of disaster-pregnant environments, and
stability of disaster mitigation capacity. The results show that the study area has shown a trend of
changing from wet to dry and then wet over the past 66 years, with the occasional occurrence of
severe drought, and a decreasing trend at a rate of −0.089. (10a)−1 overall. The integrated risk of
drought in the study area exhibits regional clustering, and the overall risk level has some relationship
spatially with the regional geological tectonic units, with the high-risk level concentrated in the
central area of Song Liao Basin and close to the geological structure of Yishu Graben and the low risk
level concentrated in the marginal area of Song Liao Basin. Based on the results of the risk factor
analysis, integrated risk prevention suggestions for drought in the main grain-producing areas of Jilin
Province were put forward from four aspects. Fine identification and evaluation of high-risk areas
of agricultural drought can provide a quantitative basis for effective drought resistance activities in
relevant areas.

Keywords: drought; integrated risk assessment; major grain-producing areas; Jilin province

1. Introduction

Global warming and urbanization have brought about changes in the intensity and
frequency of weather-causing factors and the exposure of crop-bearing bodies, which
have important implications for agricultural production’s ability to withstand natural
disasters [1,2]. The IPCC Fourth Assessment Report (AR4) and Fifth Assessment Report
(AR5) point out that global warming has led to an increase in the frequency and intensity
of droughts, and the risk of drought is expected to show an increasing trend in the future.
The Sixth Assessment Report (AR6) indicates that droughts in northern China have tended
to increase since 1960 [3]. Drought is the most serious meteorological disaster that impacts
on agricultural production. In agricultural sectors, it refers to the phenomenon of water
deficit in crops caused by the continuous lack of soil moisture during the crop reproductive
period, which affects the normal growth and development of the crop [4]. Therefore,
an objective evaluation of the risk of drought disasters and the current state of regional
disaster mitigation capacity is of great significance to ensure the sustainable development
of regional agriculture.

Agricultural production relies on the natural environment for animal and plant growth
and is more vulnerable to natural disasters than other industries. In recent years, agri-
cultural disaster risk assessment has been carried out in various regions. Villani et al.
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presented a complete drought risk assessment methodology, applied to the agricultural
systems of five Italian coastal watersheds, introducing a simple robustness evaluation
method to validate the assessment tool and archetype analysis to link the outputs with
adaptation strategies [5]. Liu et al. used an integrated multi-indicator evaluation combined
with an entropic information diffusion model to assess the risk of agricultural droughts
and floods in the middle and lower reaches of the Yangtze River, and proposed relevant
policy suggestions based on the assessment results [6]. Summarizing previous research, it
is concluded that there is a less integrated risk assessment for agricultural meteorological
catastrophes, which primarily focuses on the study of disaster risk. At the same time,
regions or nations serve as the primary assessment units for the risk assessment outcomes.
Gridding-based refined evaluations are scarce due to the extent of the available data statis-
tics, and there is insufficient advice for disaster risk assessment and work in tiny regions.
Additionally, there is limited evaluation of the regional disaster preventive and mitigation
capability and the quantified disaster-pregnant environment system, and the study on
these topics is still in the qualitative analysis stage.

China is a major grain-producing and consuming country. Natural disasters have
posed a major challenge to food security in China. The regional meteorological disasters
have obvious seasonal changes and regional differences in the western part of Jilin Province.
It is a typical climate ‘vulnerable area’ in China [7,8]. The total grain output of Jilin
Province in 2021 was 80.784 billion pounds, maintaining the fifth place in the national
ranking, and the yield continued to maintain the fourth place in the country (http://
www.moa.gov.cn/xw/qg/202112/t20211227_6385576.htm/, accessed on 20 October 2022).
All data reflect that Jilin Province’s grain security production cannot be ignored. As
China’s important commodity grain-production base distribution area, China’s top five
regions (Yushu, Nongan, Gongzhuling, Lishu, Fuyu) are located in this area. Therefore,
the agricultural development of the main grain-producing areas in central and western
Jilin Province is very important to ensure national food security. Previous studies have
shown that the recurrence period of drought disasters in the study area is short, about
1–2 years, which seriously threatens the regional economy and food security [9]. In order to
comprehensively consider the impact of drought disasters on regional agricultural systems,
the study area was finely divided into a grid, and an integrated agricultural drought risk
assessment model was constructed from four aspects: drought hazards, the vulnerability of
hazard-bearing bodies, the sensitivity of disaster-pregnant environments, and the stability
of disaster mitigation capacity. The risk of agricultural drought in the region is analyzed
and evaluated, the spatial variation of the risk level and integrated risk of agricultural
drought in different time scales is obtained, and suggestions for sustainable development
of regional agriculture are made. This article is expected to provide refined guidance for
relevant departments to scientifically formulate drought prevention and mitigation policies
and plans.

2. Materials and Methods

2.1. Study Area

Jilin province is located at mid-latitudes on the eastern side of the Eurasian con-
tinent (121◦38′ E–131◦19′ E, 40◦52′ N–46◦18′ N). It has a cultivated land area of about
749.85 million hectares. The fertile soil in the region mainly produces corn and rice.
Jilin Province has an average annual temperature of 5.2 ◦C and average yearly sunshine
hours range from 2133 to 2903 h. The distribution of temperature and sunshine in the
province decreases from west to east. The average annual precipitation in Jilin Province is
612.2 mm, and it rises from west to east. Moreover, 60% of the yearly precipitation falls dur-
ing the summer, the wettest of the four seasons, whereas just 14% of the precipitation falls
between April and May. As a result, Jilin Province has several spring droughts, particularly
in its western region, where “nine droughts in ten years” are believed to have occurred [10].
Combining the available data, the article classifies the province’s grain yield using the
natural intermittent classification method based on the grain yield data of 60 districts in
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Jilin province in 2020, and finally obtains 18 districts with high and medium–high yield
grades as the study area. The study area is mainly located in the central and western regions
of Jilin Province (Figure 1). The main grain-producing area of Jilin Province is located
in the transition zone with a semi-humid to semi-arid climate in the middle temperate
zone [11,12]. The region is flat, vast farmland, a fertile land, which is one of the worlds’
three black soil distribution centers. The grain output of 18 major grain-producing areas
in the study area is more than 800,000 tons in 2020 (Table 1). Through the integrated risk
assessment of drought in major grain-producing areas, it is expected to provide a reference
for the sustainable development of regional agriculture and the protection of regional
food security.

Figure 1. Research area map.

2.2. Data Sources and Indicator Selection

Risks do not exist in a vacuum. The motion of the Earth as a whole, as well as
changes in other systems, are thought to govern and impact natural hazard systems, which
are seen as an essential component of the Earth’s surface system. The more commonly
used disaster risk assessment models internationally are UN-DRO, NOAA, APELL, and
others. They mainly include the identification of risk events, hazard analysis of risk factors,
vulnerability or exposure analysis of disaster-bearing bodies, risk classification and impact
analysis [13–16]. Disasters caused by drought have a more difficult time developing. The
sensitivity of the environment to hazards and disasters, susceptibility of disaster-bearing
entities, and mitigation capability all play a role in the integrated risk of agricultural
drought hazards in this study. The research area’s drought integrated risk assessment
model may be constructed using the equation below:

F =
XH × XS × XV

XR
(1)

In the formula: F is the integrated risk index of agricultural drought disaster; XH ,
XS, XV , and XR represent the disaster-causing hazard, the sensitivity of the agricultural
disaster-pregnant environment, and the vulnerability of the hazard-bearing body and
drought resistance of the agricultural system, respectively. The calculation results are
reclassified to obtain the integrated risk level of agricultural drought disasters.
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Table 1. Overview of the situation in each region.

Region Name Abbreviation
Grain Production in 2020

(Million Tons)
Region Area

(Million Hectares)
Sown Area in 2020
(Million Hectares)

Nongan NA 305.0046 54 42.6

Fuyu FY 300 46.58 33.3771

Yushu YS 296.574566 47.22 38.0681

Gongzhuling GZL 250.3623 40.27 31.3891

Lishu LS 200 42.09 26.4963

Qianguo QG 194.4849 70 32.2881

Changling CL 173.68926 57.284 33.1743

Dehui DH 142.25 34.35 20.2009

Tongyu TY 138.1 84.76 28.0806

Shuangliao SHL 120.35 31.212 18.9896

Jiutai JT 119.7508 28.75 19.4158

Taonan TN 116.15196 51.03 21.9038

Zhenlai ZL 116.05043 47.37 17.4508046

Qianan QA 110.1002 36.166 16.2898

Yitong YT 104.1922 25.23 12.5333

Taobei TB 100.56755 25.25 14.98984

Shulan SL 96.003 45.5705 13.7887

Daan DA 86.5897 48.79 15.3928

2.2.1. Disaster-Causing Hazard

Drought-disaster-causing hazard refers to a water shortage due to persistently dry
weather. The analysis of precipitation level changes cannot fully reflect the degree of
drought, and the influence of evapotranspiration needs to be included to characterize
the regional risk status of disaster-causing factors. In this study, monthly data from
18 meteorological stations in the study area, including temperature, precipitation, and other
meteorological elements, were selected for the period 1955–2020, and the above data were
obtained from the National Tibetan Plateau Scientific Data (https://data.tpdc.ac.cn/zh-
hans/, accessed on 22 October 2022). The average temperature and average precipitation
data for each meteorological station in the study area for 792 months were extracted in
batches using Python software. At the same time, the standardized evapotranspiration
index (SPEI) was calculated at different time scales (monthly, seasonal, and annual scales),
i.e., SPEI-1, SPEI-3, and SPEI-12. The data from each meteorological station was classified
into drought classes, and the frequency of drought at the station was calculated based on the
classification results. In order to visualize and synthesize the danger that precipitation and
temperature may trigger in the formation of drought, the standardized evapotranspiration
index (SPEI) at SPEI-1 (monthly), SPEI-3, and SPEI-12 was selected. The standardized
evapotranspiration index (SPEI) on the SPEI-1 scale was selected as the hazard index in the
study. Based on the inverse distance weighting method in ArcGIS, the drought frequency
at the corresponding monthly scale of meteorological stations was interpolated into raster
data, and the results were assigned to a 1 km by 1 km grid in the study area.

The standardized Precipitation Evapotranspiration Index (SPEI) is an index calculated
using precipitation and air temperature data to characterize wet and dry conditions. It is
further developed from the SPI normalized precipitation index, and incorporates the effect
of evapotranspiration, making it more applicable in areas with significant temperature
trends, especially for long-time-scale studies. The article analyzes the temporal trends and
spatially significant characteristics of the SPEI index at different time scales using data from
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18 meteorological stations in the study area for the last 66 years and is used to characterize
the risk of drought-causing factors in the study area. The SPEI is obtained by normalizing
the difference between the average annual precipitation and potential evapotranspiration,
and the SPEI calculation method considers the influence of meteorological factors on the
potential evapotranspiration and is suitable for drought assessment in the study area
because of the large potential evapotranspiration [17–19]. The specific calculation steps are
as follows:

Calculating the difference (Di) between potential evapotranspiration and mon-
thly precipitation:

Di = Pi − ETi (2)

where: Pi is the accumulated precipitation in month i, mm; ETi is the potential evapotran-
spiration in month i, mm, and Di is the parameter reflecting the moisture surplus and
deficit in month i, mm.

The water profit and loss accumulation sequence were constructed, the log–logistic
probability distribution function was used, and the probability density was standardized
to calculate the corresponding SPEI value:

I =

⎧⎨
⎩

w − C0+C1w+C2w2

1+d1w+d2w2+d3w3 , p ≤ 0.5

−
(

w − C0+C1w+C2w2

1+d1w+d2w2+d3w3

)
, p > 0.5

(3)

where: I is the SPEI value; w probability weighted moments; p is the cumulative probability;
C0, C1, C2, d1, d2, d3 are constant terms, C0 = 2.515517, C1 = 0.802853, C2 = 0.010328,
d1 = 1.432788, d2 = 0.189269, d3 = 0.00130. The drought grade standard of SPEI is: I ≤ −2.0
is severe drought, −2.0 < I ≤ −1.5 is heavy drought, −1.5 < I ≤ −1.0 is medium drought,
−1.0 < I ≤ −0.5 is light drought, I > −0.5 is no drought. Because the amount of data is too
large, the drought index is calculated in batches by R language. This paper calculates the
SPEI values of three different time scales, namely, monthly scale (SPEI-1), seasonal scale
(SPEI-3) and annual scale (SPEI-12). The division standard of four seasons: March to May
is spring, June to August is summer, September to November is autumn, December to
February is winter. For SPEI-3, April is spring, July is summer, October is autumn, and
January is winter.

The times n of different time scales I ≤ −0.5 in the study area from 1955 to 2020 were
counted, and its proportion in the total number of years N (N = 66) was calculated, which
was the frequency of drought in the study area:

D =
n
N

× 100% (4)

2.2.2. Vulnerability of Hazard-Bearing Body

The vulnerability of agricultural disaster-bearing bodies is an important indicator
of the resistance of crops to the effects of disasters. Agriculture’s vulnerability and the
recurrence period of drought are two perspectives that together reflect the magnitude
of agricultural disaster-bearing bodies’ vulnerability. Exposure indicates the extent to
which a crop may be affected by a drought during a disaster. In the study, the sown
area of regional crops was obtained from the 2020 statistical yearbooks of 18 regions
in study area and the exposure of agricultural disaster-bearing bodies was calculated.
The Chinese meteorological dictionary was checked to find the area of crops affected by
drought in history, and the fuzzy risk theory was used to calculate the recurrence period
of drought disasters in each region. The weights of the above indicators were calculated
using hierarchical analysis, and the weight values were all 0.5.

2.2.3. Sensitivity of Disaster-Pregnant Environment

The sensitivity of the disaster environment refers to the sensitivity of the exter-
nal environment of agricultural drought-disaster-bearing bodies to disaster risk. The
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sensitivity analysis of the disaster-pregnant environment was carried out from four as-
pects: Topographic Position Index, river network density, vegetation coverage, and soil
type. Among them, the elevation data of the terrain and the NDVI data of vegeta-
tion are from the NASA official website (https://search.earthdata.nasa.gov/, accessed
on 30 November 2022), rivers and lakes data are from HydroSHEDS hydrological data
(https://www.hydrosheds.org/, accessed on 30 November 2022), soil data is from the FAO
soil data website (https://www.fao.org/soils-portal/en/, accessed on 30 November 2022).

As a basic element in the natural environment, topography plays an important role
in human life and social development. The digital elevation model (DEM) of the study
area extracts two basic topographic factors, namely slope and slope direction, for analysis
and research and combines the ArcGIS modeling function to process the elevation and
slope factors to obtain the topographic position index to analyze the overall characteristics
of the topography of the study area [20,21]. The topographic position index can realize
the collection of slope and elevation information to reflect the topographic conditions of a
certain area in an integrated way, which is calculated as follows [22].

T = lg
[

E
E
+ 1

]
×
[

S
S
+ 1

]
(5)

where: T is the topographic position index; E is the elevation value of any point in space;
and E is the average elevation value in the region; S is the slope value of any point in space;
S is the average slope value in the region. The higher the elevation and slope, the higher
the topographic index value, and the more vulnerable the environment is to disaster.

The distribution of water systems largely determines the disaster-pregnant conditions
for the occurrence of drought disasters in the study area. The closer the distance is to
rivers, lakes, and reservoirs, the higher the grade of the rivers, and the larger the area of
lakes and reservoirs, the greater their influence on the drought-gestation environment. In
this paper, we primarily extract rivers with grades one through five, as well as large scale
lakes and reservoirs, as river network water system factors, and we set the width of the
three levels of river and lake buffer zones to 1 km, 3 km, and 5 km, respectively. ArcGIS
software was used to calculate the buffer zones of each level of the river network water
system of rivers and lakes, and the distribution map of the river network water system
impact index was obtained after normalization and raster overlay calculation. The greater
the water system’s buffer zone index, the denser the rivers in its area, and the less sensitive
the drought disaster disaster-pregnant environment.

Vegetation cover is the percentage of the vertical projection of vegetation on the ground
to the total area of the region. Vegetation has a strong shading capacity and can play a role
in mitigating persistent drought disasters, to a certain extent [23]. The relationship between
vegetation cover and drought disaster risk is proportional; the risk of disaster is low where
vegetation density is high, and conversely, where vegetation density is low, the possibility
of disaster is increased [24]. The vegetation cover can be calculated based on an elementary
dichotomous model equation.

VFC =
NDVI − NDVImin

NDVImax − NDVImin
(6)

In the formula, VFC is vegetation coverage, NDVI is normalized vegetation index, and
the NDVI values with cumulative probabilities of 5 and 90 percent are taken as NDVImin
and NDVImax, respectively.

Soil type is also an important aspect in determining the environmental sensitivity of
the potential disaster. Based on soil type, organic matter content, soil water retention, and
local experts’ experiences, different soil types in northeast China were ranked for drought
resistance and assigned vulnerability levels, respectively.

513



Land 2023, 12, 160

2.2.4. Stability of Disaster Mitigation Capacity

Drought resilience characterizes the ability of a region to reduce the damage caused
by drought based on human measures taken before and during drought-causing disasters.
Regional drought resilience mainly includes the following three aspects: first, the manage-
ment countermeasures that can be quickly recovered before, during, or after a disaster, i.e.,
emergency management capacity. The second is the reserve of materials needed in case
of disasters, i.e., resources supporting capacity; the third is the use of modern science and
technology to manage agriculture, i.e., the level of agricultural modernization. The weights
of the three indicators in the calculation of disaster prevention and mitigation characteriza-
tion values are determined by the entropy weight method. The specific indicators are listed
in Table 2.

Table 2. Regional agricultural drought mitigation capacity indicator system.

First-Level Indicators Secondary Indicators Secondary Indicator Explanation Data Source

Emergency management
capacity

Number of expert managers Number of technical experts
and managers

Survey Data *Disaster reduction funding input Proportion of investment in disaster
reduction to GDP

Number of emergency plans Number of Regional Emergency
Management Plans

Resources supporting
capacity

Energy conservation expenses ratio

Expenditure on energy conservation,
forest protection, pollution reduction

to forests, renewable energy, and
natural ecological protection

Statistical Yearbooks *
Agriculture affairs expenses ratio Expenditure on livestock, farm

machinery, etc.
Regional GDP Regional GDP in 2020

Rural population ratio Proportion of rural population in
regional population

Agricultural
modernization level

Total power of
agricultural machinery

The total power of each power
machine used in agriculture, forestry,

and animal husbandry

Statistical Yearbooks *

Large and medium machinery
farm tools Number of agricultural machines

Effective irrigation area
The sum of the area of paddy and

watered land capable of
normal irrigation

Fertilizer load per unit area Proportion of Chemical Fertilizer
Application in Cultivated Land

* Questionnaire source (https://www.doc88.com/p-64087194059392.html/, accessed on 20 May 2022); Statistical
yearbook source (http://tjj.jl.gov.cn/tjsj/tjnj/, accessed on 24 November 2022).

2.3. Research Method

The article builds an integrated risk assessment model of agricultural drought disaster
using research findings from integrated disaster risk assessment, evaluates agricultural
drought risk in the primary grain-producing regions of Jilin Province, determines the
spatial distribution of agricultural drought risk, and offers regional integrated agricultural
risk prevention suggestions from various angles (Figure 2). Process details: (1) Determine
the drought risk scenario. The drought index was created by calculating the average
temperature and precipitation for each month over 66 years in order to determine the
regional and temporal distribution of drought risk. (2) Define vulnerable regions. A
thorough computation was done to determine the highly sensitive locations in the research
area based on four environmental indicators: topography, river network density, plant
cover, and soil type. These four environmental indicators all have an impact on crop
development. (3) Calculate agriculture vulnerability. The exposure of crops and the
duration of drought recurrence were assessed using the area of crops sown in the area and
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the historical disaster damage index of crops, and the vulnerability of crops was thoroughly
computed. (4) Measure the capability for catastrophe mitigation and prevention. To
evaluate the regional integrated disaster reduction capacity and determine the current state
of agricultural disaster reduction in each region, the three disaster reduction indicators of
emergency management capacity, resource security capacity, and degree of agricultural
modernization are used. (5) Based on the results of the risk assessment for drought disasters,
construct an integrated risk prevention model for agricultural disasters in the key grain-
producing districts of Jilin Province and offer suggestions for the sustainable development
of local agriculture.

Figure 2. Research flowchart.

2.3.1. Fuzzy Risk Assessment Model

Based on the fuzzy mathematical method, the traditional observation sample point set
is valorized to solve the problem of insufficient sample data and achieve the purpose of
improving the accuracy of information processing [25–27]. With the help of the disaster
index reflecting the degree of agricultural disaster, the single sample observation value is
converted into fuzzy by the information diffusion coefficient, and the quantitative analysis
of a regional agricultural drought disaster is carried out to calculate the probability value
and risk value of each evaluation unit under different disaster indices for multiple disaster
species [9]. The specific operation steps are as follows:

Assume that y1, y2, · · · , ym are the actual values (observations) of risk factor indicators
(hazard indicators) in year m, and the set of observation samples are:

yj = {y1, y2, · · · , ym} (7)

where: yj—sample observation points; m—total number of sample observations.
Let the universe of yj (ui), ui(i = 1, 2 . . . n) be the control point of the universe of

disaster index:
ui = {u1, u2, · · · , un} (8)

where: ui—any discrete real value obtained by discretizing at a fixed interval in the interval
[0, 1]; n—the total number of discrete points.
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The information carried by each single observation sample value yj is diffused to
each member of the indicator domain ui based on the following equation, the information
diffusion equation for yj.

f j(ui) =
1

h
√

2π
e[−

(yj−ui)
2

2h2 ] (9)

where h—the diffusion coefficient, which is determined according to the number of samples,
is given by the following equation.

h =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.8146(b − a), m = 5
0.5690(b − a), m = 6
0.4560(b − a), m = 7
0.3860(b − a), m = 8
0.3362(b − a), m = 9
0.2986(b − a), m = 10
2.6851(b−a)

(m−1) , m ≥ 11

(10)

b—the maximum value in the sample set; a—the minimum value in the sample set;
m—the number of samples.

If marked:

Cj =
n

∑
i=1

f j(ui), j = 1, 2, . . . , m (11)

Then any observation sample yj becomes a fuzzy set with μyj(ui) as the affiliation
function, and the affiliation function of the corresponding fuzzy subset is:

μyj(ui) =
f j(ui)

cj
(12)

cj is the sum of f j(ui); μyj(ui) is the normalized information distribution of sample yj.
Then, let:

Q(ui) =
m

∑
j=1

μyj(ui) (13)

From the set of observation samples {y1, y2, · · · , ym}, sample observation can only
take one of {u1, u2, · · · , un}, the number of samples with observation ui is q(ui) when all yj
are considered as sample representatives. q(ui) is usually not a positive integer, but must
be a number not less than 0.

Q =
n

∑
i=1

q(ui) (14)

Q is the sum of the number of samples at each ui point, theoretically it should be
Q = m, but with the error of numerical calculation, Q is slightly different from m.

P(ui) =
q(ui)

Q
(15)

P(ui) is the probability value of the sample falling at ui, which can be used as a prob-
ability estimate. For a single-valued observation sample indicator yj = {y1, y2, · · · , ym},
take yj as an element ui in the theoretical domain u. The probability value of exceeding ui
should be:

P(u ≥ ui) =
n

∑
k=i

P(ui) (16)
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P(ui) is the value of the frequency of the sample falling at ui which is the value of
the probability of exceeding ui ; P(u ≥ ui) is called the risk value or loss value of the
hazard factor.

2.3.2. Sen + M-K Trend Analysis

Theil–Sen Median (Sen) Trend Analysis is a robust nonparametric statistical trend
calculation method by calculating the median in the series, which can well reduce noise
interference [28]. The Mann–Kendall test (M-K) is very effective for change tests of changing
elements from one relatively stable state to another and is widely used in hydrology, climate,
chemistry, mineral composition, and other aspects. It is widely used and has many benefits
for analyzing trends in long time series [29,30]. In this research, we utilize the Sen trend to
assess the multi-scale drought changes in the study region, and use the Mann–Kendall test
to examine the trend and significance test of the temporal features of SPEI in the primary
grain producing area of Jilin Province. The specific calculation formula is as follows:

The Sen trend is calculated as:

Sen = Median
( xj − xi

j − i

)
, ∀i > j (17)

where: xi and xj are time series data, Median is the median of the series, Sen > 0 means the
time series is in an upward trend; Sen < 0 means the time series is in a downward trend.

The Mann–Kendall statistical test for drought index mutation characteristics was used
for analysis to construct the order column Sk:

Sk =
k

∑
i=2

j−1

∑
j=1

Rij (k = 2, 3, 4 . . . , n) (18)

Rij =

{
1, xi > xj
0, xi ≤ xj

(19)

Statistical variables:

UFk =
Sk − E(Sk)√

Var(Sk)
(k = 1, 2, 3 . . . , n) (20)

where: UF1 = 0, E(Sk) and Var(Sk) are the mean and variance of Sk. x1, x2... xn are
independent and have the same continuous distribution, the formulas of E(Sk) and
Var(Sk) are:

E(Sk) =
k(k + 1)

4
(k = 2, 3, . . . , n) (21)

Var(Sk) =
k(k − 1)(2k + 5)

72
(k = 2, 3, . . . , n) (22)

The M-K test calculates the positive series statistic UFk and the inverse series statistic
UBk by computing the rank of each sample, UBk = −UFk. If UFk and UBk curves intersect,
the moment corresponding to the intersection is the mutation point.

3. Results and Discussion

3.1. Drought Hazard Assessment
3.1.1. Interannual Variation Characteristics of SPEI Index

The Mann–Kendall (M-K) mutation test was used to the yearly scale SPEI in the
research region in order to examine the change and mutation of the index. From 1955 to
2020, the research area’s SPEI-12 index varied around the 0-value line, and the overall trend
was declining at a rate of −0.089 (10a)−1 (Figure 3), showing that the study area’s drought
trend has progressively been worsening over the previous 66 years. The years 1960–1965
and 1980–1990 were the wet stages, and there was little to no drought, generally. The years
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1975–1981 and 2000–2010 were the aridification stages (except 2005). Due to decreased
precipitation, rising temperatures, and increasing evapotranspiration currently, there was a
significant water loss, particularly in 1981 and 2001. From 2010 to 2020, it was back in the
wetting stage. However, there was a severe drought that was congruent with the actual
occurrence of the drought in 2014. According to the Jilin Province’s 2014 drought work
report, the province saw consistently high temperatures and minimal rain from 1 July to
17 August, with an average rainfall of 132.0 mm, 46% less than the same time in a typical
year. At its worst, the drought in the province devastated 958,000 hectares of dry land,
mostly in eight regions in the province’s center and west: Changling, Shuangliao, Qianguo,
Qianan, Tongyu, Nongan, Lishu, and Gongzhuling [31]. SPEI is therefore well suited for
use in the research area’s drought monitoring. The UF line alternatively showed increasing
and declining trends. The UF and UB curves have four mutation sites, mostly concentrated
in 1958–1963 and 2017. The drought scenario was noteworthy since the UF lines for the
neighboring years of 1982 and 2010 crossed the 0.05 crucial line. The management of
continuous agricultural drought resistance should be strengthened.

Figure 3. Characteristics of interannual variation of SPEI−12 in study area from 1955 to 2020.

3.1.2. Spatial Variation Characteristics of Drought at Different Time Scales

Seasonal variations in the SPEI-3 spatial patterns in the research region showed a
substantial difference on a seasonal scale. Drought has the greatest impact on agriculture
during the growing season. The cropping system in the study area is mainly “one crop
per year”. The whole cycle from sowing to harvesting takes place mainly from March to
September. Therefore, in order to make the analysis more effective, the SPEI-3 (seasonal
scale) is analyzed mainly in the spring and summer. The SPEI-3 index’s spring trends were
declining and growing, accounting for 88.8% and 11.2% of the total. The spring drought in
Qianan and Tongyu exhibited a growing tendency, and farmers in these two regions need
to be mindful of its effects while planting during the early stages of crop growth. However,
the declining trend was not significant in nine locations, including the eastern portion of
the research, and it is important to highlight that an intermittent spring drought can occur.
The summer decreasing tendency in the study area is also a regional trend. In the southern
portion of the research region, in places like Shuangliao, Lishu, and Gongzhuling, summer
drought is significantly on the decline (p < 0.05). The formation of an episodic persistent
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drought in the summer should be observed, and the drought reduction trend in the western
section of the research region, including Zhenlai and Daan, decreases significantly when
seasonal precipitation declines (Figure 4a,b).

  
(a) (b) 

Figure 4. Seasonal trends of SPEI−3 index in study area from 1955–2020: (a) spring; (b) summer.

The likelihood of drought-related disasters was calculated by examining the spatial
variation pattern of regional drought frequency and intensity. Based on Equation (4), the
frequency of various drought types at the regional monthly scale was calculated (Table 3).
The 1960s, the early 21st century, and 2010 were the main time periods in which the regional
special drought occurred, with Tongyu and Qianan having the highest concentration of
occurrences. The frequency of the regional special drought was 1.12%. Additionally,
the analytical hierarchy technique was used to calculate the weights of various drought
intensities (AHP). The regional drought risk rating was derived by adding the risk rating
to the weightings based on the frequency of drought. The weightings for special drought,
severe drought, medium drought, and light drought were 0.4, 0.3, 0.2, and 0.1, respectively.
After raster reclassification of the local disaster-causing hazard levels, the results were
obtained (Figure 5). The findings indicate that Qianan and Yitong, where droughts occur
frequently and intensely, are the primary locations with a high risk of drought.

Table 3. Drought frequency at monthly scale (SPEI-1) in the study area.

Drought Type SPEI Value Frequency
Drought Hazard

Grade

No drought SPEI > −0.5 66.08% 1
Light drought −1.0 < SPEI ≤ −0.5 19.63% 2

Medium drought −1.5 < SPEI ≤ −1.0 10.33% 3
Heavy drought −2.0 < SPEI ≤ −1.5 2.85% 4
Severe drought SPEI ≤ −2.0 1.12% 5

3.2. Vulnerability Assessment of Agricultural Disaster-Bearing Bodies

The vulnerability of the crop transporter is an essential measure for characterizing
crop resilience to disaster impact. The article reflects the vulnerability of the crop carrier
from two perspectives: the exposure of the carrier and the recurrence period of disasters.
The vulnerability of the disaster-bearing body in each major grain-producing region is
reflected by the sown area of crops in the region and the historical disaster exposure.

Based on the agricultural fuzzy risk analysis model to estimate the drought disas-
ter risk values of 18 major grain-producing areas in Jilin Province, the discrete domain
was constructed according to the maximum and minimum values of the disaster-causing
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range and intensity and their possible values, and the disaster risk probabilities under
different disaster indices in each major grain producing area could be obtained based on
Equations (7)–(16). The probability density responds to the probability of occurrence of
major hydrometeorological disasters under different disaster indices in the main grain-
producing areas of Jilin Province, so as to infer the magnitude of the probability of occur-
rence of different disaster levels (Figure 6); the results show that the disaster indices of
drought disasters in all districts and counties except Shulan, Tongyu, Dehui, Nongan, and
Gongzhuling almost cross 80% of the disaster index axis and all have the possibility of
occurrence of large-scale disasters.

Figure 5. Drought hazard level of the study area.

 

Figure 6. Drought probability density under different disaster index.
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The excess probability density can laterally reflect the level of agricultural vulnerability
in the study area under different disaster indices of major meteorological hazards (Figure 7);
the results show that the risk values of drought hazards all decrease with the increase of
the disaster index, and the hazard values of the main food production areas of Lishu, Fuyu,
and Qianguo are at a higher level under the same disaster index.

 
Figure 7. Drought exceedance probability density under different disaster index.

The risk recurrence period grading criterion (T = 1/P) was used to calculate the risk
levels of meteorological hazards under various disaster indices. To aid in the analysis and
evaluation of the spatial distribution characteristics of agricultural drought disaster risk in
the study area’s main grain producing areas, a disaster reoccurrence period with a disaster
index of 30% was chosen for each main grain producing area, and the vulnerability of
the disaster-bearing body was assessed and classified into five levels using the natural
interruption point method (Figure 8a). The findings revealed that the historical recurrence
periods of drought in the research area’s Yushu, Lishu, Dehui, Taonan, and Qianguo regions
were small in comparison to other regions, and the frequency of catastrophes was high.

Using the sown area data of crops in each town, the exposure of agricultural disaster-
bearing bodies in the entire study area was determined using the Kriging interpolation
analysis method of ArcGIS software. The outcomes revealed that Yushu, Dehui, Gongzhul-
ing, and Lishu had the highest exposure to agricultural disaster-bearing bodies in the
study area, which had spatial distribution features of high in the east and low in the west
(Figure 8b).

The vulnerability of regional crop disaster-bearing bodies was obtained by overlaying
the raster images with equal weights for the exposure of disaster-bearing bodies and the
recurrence period of drought disasters (Figure 9). The results show that the vulnerability
of crop disaster-bearing bodies in Yushu, Dehui, and Lishu is large, i.e., the exposure of
disaster-bearing bodies is large and the recurrence period of disaster occurrence is small.
When disasters occurred, the damage caused by drought damage was more serious than in
other places.
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(a) (b) 

Figure 8. Distribution of different disaster-bearing bodies factor: (a) distribution of agricultural
drought disaster recurrence levels; (b) distribution of exposure levels of agriculture.

Figure 9. Distribution of vulnerability levels of agricultural disaster-bearing bodies.

3.3. Sensitivity Assessment of Agricultural Disaster-Pregnant Environment

The environmental sensitivity of the potential disaster refers to the sensitivity of the
external environment of the area threatened by the disaster to the disaster or damage. In the
case of a disaster of equal intensity, the higher the sensitivity, the more severe the damage
caused by the drought, and the greater the risk of disaster. In order to quantify and ana-
lyze the indicators of a disaster-predisposing environment, several disaster-predisposing
environment indicators are superimposed on a refined grid using four evaluation factors:
topographic position index, river density, vegetation cover, and soil type.

The topographic position index is a topographic feature value describing the height
and slope, and the topographic position index is large in areas with high elevation and
slope, and the larger the topographic position index value is, the more likely it is to breed
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drought disasters. The high and medium-high risk of topographic position index in the
study area accounts for about 20%, which is sporadically distributed in the study area,
among which the western edge of the study area, the east side of Qianguo, and the southeast
side of Lishu present a concentrated distribution (Figure 10a).

 
  

(a) (b) 

 
  

(c) (d) 

Figure 10. Distribution of different disaster-pregnant environmental factors: (a) distribution of
topographic position index (TPI) levels; (b) distribution of vegetation cover levels; (c) distribution of
soil types levels; (d) distribution of river density levels.

Vegetation cover is usually defined as the ratio of forest area to total land area, which
has an important regulating role for land surface and the hydrological cycle, promoting
rainfall redistribution, influencing soil moisture movement, changing the conditions of
water production and sink flow, and playing a role in flood reduction and mitigation, con-
trolling soil erosion, and improving water quality in the watershed. Therefore, vegetation
cover has high vegetation density and high soil water storage capacity. The results showed
that the vegetation cover in the study area showed a distribution pattern of high in the east
and low in the west, which was mainly distributed near Dahei Mountain and Yishu Graben,
and the vegetation cover in Tongyu, Daan, and Qianan was low, with strong environmental
sensitivity to drought pregnancy and relatively weak drought resistance (Figure 10b).

Most of the research region lies in the zone of transition between black land and semi-
arid steppe chestnut-calcium soil. From east to west, the zone’s zonal soils are black calcium
soil, light black calcium soil, and chestnut calcium soil, according to the distribution of soil
types. Marsh soil, saline soil, meadow soil, and wind-sand soil are the non-zonal soils of
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alkali lake flat land and sandy land. While the distribution region of light black calcium soil
contains both basic and general farmland, the distribution area of black calcium soil is now
mostly a basic farming protection area [32,33]. Varied soil types include different amounts
of organic matter, which affects how well the soil retains water. The vulnerability levels of
each soil type are displayed in Table 4, and different levels are allocated to soil types based
on soil type and organic matter level, respectively. The findings indicate that the majority
of the research area’s regions are classified as high or greater risk, with only Tongyu and
Shulan having higher soil susceptibility due to their locations in salty and highly vegetated
areas (Figure 10c).

Table 4. Drought resistance of soil type in study area.

Drought Resistance Soil Type Grade Value

Strong Black soil, black calcium soil, meadow soil 5
Stronger Alluvial soils, whitish soil, paddy soil 4
Medium Dark brown soil, sandy soil, chestnut soil 3
Weaker Brown soil 2
Weak Alkaline soil, limestone soil, swamp soil, peat soil, salt soil 1

The disaster-pregnant environment for the development of drought disasters in the
research region are mostly determined by the dispersion of the river network’s water
system. The impact on the ecosystem during a drought season is greater the closer one
is to a river, the higher the river’s level, and the larger the lake’s area. To establish the
buffer zone range for rivers in the research region and gauge the extent to which the river
network affects flood dangers, ArcGIS software’s buffer zone analysis feature is employed.
The distribution of the buffer zone index of the water system was determined by raster
superposition after normalizing the buffer zones of each water system. The greater the
buffer zone index, the denser the local river network and the less vulnerable the disaster-
pregnant environment to drought hazards. The results show that the river network density
in Dehui, Yushu, and Shulan is denser than that in other areas, and the rivers are well
supplied with water so that water resources can be deployed in case of persistent drought
(Figure 10d).

Based on the assessment results of the four indicators of an agricultural disaster-
pregnant environment, the weights of the topographic position index, soil type, vegetation
cover, and river network density of the study area were determined based on the char-
acteristics of the study area using hierarchical analysis (AHP). The weights were 0.5, 0.3,
0.1, and 0.1, respectively, and the final integrated calculation was carried out to obtain
the integrated index of regional agricultural disaster-pregnant environments. The results
showed that 14.17% of the study area had medium-high or high sensitivity to the regional
disaster-pregnant environment, mainly distributed in most areas of Tongyu, the eastern
area of Qianguo, and near the Yishu Graben. All the indicators of the disaster-pregnant en-
vironment in the region were of medium or higher level, and the regional disaster-pregnant
environment was more sensitive (Figure 11).

3.4. Stability Assessment of Disaster Reduction Capacity

The evaluation of regional agricultural drought mitigation capacity is an important
part of agricultural drought disaster risk assessment, which is an estimation of regional
capacity to defend against agricultural drought and mitigate agricultural drought losses.
The evaluation is carried out in three aspects: emergency management capacity, resource
security capacity, and agricultural modernization, which can provide a basis for the formu-
lation of regional disaster mitigation planning and sustainable development of agricultural
production. After standardizing the data indicators in Table 1, the agricultural drought
mitigation model was obtained, and the weights of each indicator were calculated using the
classical entropy weight method. The three weights of emergency management capacity,
resource security capacity, and agricultural modernization level were 0.29, 0.24, and 0.47,
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respectively. Using the agricultural drought mitigation model, the agricultural drought mit-
igation capacity index was calculated for the main grain-producing areas in Jilin province.
In order to reflect the current situation and differences of disaster reduction capacity more
objectively among regions [34], the mean-standard deviation ranking method was used
to classify the agricultural drought disaster reduction capacity index in the main grain-
producing areas of Jilin Province (Table 5), and the index was plotted into a graph using
GIS software.

Figure 11. Distribution of agricultural disaster-pregnant environment integrated index.

Table 5. Mean-standard deviation method of classification.

Scope Grade Grade Value

[μ + 1.5 σ, 1] Strong 5
[μ + 0.5 σ, μ + 1.5 σ] Stronger 4
[μ − 0.5 σ, μ + 0.5 σ] Medium 3
[μ − 1.5 σ, μ − 0.5 σ] Weaker 2

[0, μ − 1.5 σ] Weak 1
μ represents the mean, σ represents the standard deviation.

The results of emergency management capacity show that the emergency management
capacity of Qianan and Yishu are at strong and stronger levels because of the high percent-
age of experts and emergency management teams and disaster reduction funds invested
in these two regions (Figure 12a); the results of resource security capacity show that the
resource security capacity of Nongan and Gongzhuling are at stronger levels because of
the high capacity of agriculture, forestry, water affairs, and total agricultural machinery
(Figure 12b); the results of agricultural modernization level show that the modernization
levels of Yushu and Yitong are at higher levels because of the neighboring provinces and
their policies (Figure 12c).
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Figure 12. Various disaster mitigation capabilities in study area: (a) distribution of emergency
management capacity levels; (b) distribution of resource security capacity levels; (c) distribution of
agricultural modernization levels; (d) distribution of integrated disaster reduction capacity levels.

The emergency management capacity, resource security capacity, and agricultural
modernization degree of the study area were overlaid and calculated according to the
weights. The evaluation results were reclassified to finally obtain the regional agricultural
drought integrated disaster reduction capacity grade (Figure 12d). The results show that
the integrated disaster reduction capacity of Yushu and Nongan is at a high level, and
all indicators for the two regions are at a medium level or above. The integrated disaster
reduction capacity of the western part of the study area is generally weak and needs to be
improved in terms of disaster preparedness, response, and relief.

3.5. Integrated Risk Assessment of Agricultural Drought

Based on the above calculation results, the regional integrated drought risk is calcu-
lated according to Formula 1, including disaster-causing hazards, vulnerability of hazard-
bearing bodies, sensitivity of disaster-pregnant environments, and stability of disaster
mitigation capacity. The risk level results are reclassified according to the method of nat-
ural discontinuity points to obtain the integrated risk assessment results of the regional
agricultural drought (Figure 13). The integrated risk level of drought in the main grain-
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producing areas of Jilin Province presents regional agglomeration, and the integrated risk
level has a certain relationship with the regional geological structure unit. The high-risk
level is concentrated in the central area of Song Liao Basin and near the geological struc-
ture of Yishu Graben, and the low risk level is concentrated in the marginal area of Song
Liao Basin.

Figure 13. Integrated risk level of agricultural drought.

In particular, the four evaluation indices in Taonan, Taobei, and Zhenlai in the western
half of the research area are all at the medium-low or below level, and the total drought risk
in these three locations is primarily of low grade. The integrated risk of agricultural drought
is medium-high or high-grade in Tongyu and Daan, in the eastern section of the western
fault line tectonics and southwest uplift area, with considerable environmental sensitivity
and limited integrated disaster mitigation ability in this area. The central arrondissement
primarily consists of Qianan, Qianguo, and Changling. The overall agricultural drought
integrated risk is medium and medium-low risk, with the Daan uplift tectonic unit being
primarily medium-high and medium-risk areas, the Changling depression tectonic unit
being primarily medium risk, and the Shuangtuozi uplift tectonic unit being primarily
medium risk [35,36]. However, there are high-risk areas close to Changchun Bulge and
Yishu Graben due to the sensitivity of agricultural disaster-inducing environments and the
vulnerability of disaster-bearing bodies in this region [37], which is the focus of agricultural
drought risk prevention. The integrated risk level of agricultural drought in the Southeast
Uplift region is primarily low, and the integrated disaster mitigation capacity in this
region is strong. In conclusion, Tongyu, Daan, and northeastern Jiutai have high levels of
integrated agricultural risk, and drought has a significant impact on regional agricultural
production, which is the focus of regional integrated agricultural risk prevention and
should be prioritized in the ensuing drought risk warning, supply deployment, etc.

4. Suggestions on Sustainable Development of Regional Agriculture from the
Perspective of Drought

Based on the results of integrated agricultural drought risk assessment, high-risk
zones with grid-level refinement are identified. A regional integrated risk prevention
model for agricultural drought is created after analyzing the shortcomings of high-risk
areas (Figure 14). Four areas are addressed in the suggestions for sustainable agricultural
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development: monitoring and early warning, institutional framework, management model,
and modernization.

Figure 14. Integrated risk prevention model for agricultural drought.

4.1. Improving Disaster Risk Perception and Strengthening Drought Monitoring Systems

The cornerstones of drought mitigation are monitoring and early warning. Based on
observed indicators, drought occurrence likelihood, timing, intensity, and other features
are evaluated, and monitoring and early warning information on the onset and progression
of drought is disseminated to the government and the general public through a variety of
channels. One of the first nations to begin work on an integrated drought monitoring and
early warning system was the United States. The United States created a national drought
classification and monitoring system at the end of the 20th century. This system integrates
numerous techniques, including geological surveys, artificial observations, remote sensors,
and aerospace remote sensing [38,39]. It also regularly summarizes and analyzes meteoro-
logical data as well as monitoring data from various localities and other related agencies.
Information on drought monitoring and warning will be made available as soon as possible.
Considering this, it is imperative to complete the building of drought sub-centers, drought
monitoring stations, soil moisture monitoring sites, as well as the installation of the drought
monitoring system in the western dry zone of the research area. A full network system
for monitoring, reporting, and summarizing drought information in the western drought
zone should be established in order to understand the dynamics of drought occurrence and
changes in the region in a timely way and to assess and anticipate the development trend.
To better comprehend the development of vegetation and crops in the area and to provide
timely and accurate information and decisions for the local government to take charge,
make decisions, and organize drought relief, evaporation monitoring stations can be built,
concentrating on drought-prone areas and areas with sparse station network density.

4.2. Formulating Drought Resistance System and Strengthening Whole Process Risk Management

The execution of command and decision-making by various management depart-
ments is based on the ideal drought resistance system. The National Drought Policy Act,
which was passed by the United States in 1998, and the drought accident and emergency
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response plan, which was released by Australia in 2002, were just two examples of the
developed nations that successively promulgated drought-resistant technical standards
and regulations at the turn of the century. However, China’s mechanism for addressing
drought was launched later. The National Flood Control and Drought Relief Emergency
Plan, which was promulgated in 2005, marked the formal start of the system’s develop-
ment in China. China’s existing flood control and drought technical standards are almost
entirely formulated by government organizations, mainly involving the Ministry of Water
Resources, the Ministry of Construction, and other departments. In the standards, there are
relevant provisions of duplication and mutual reference phenomena [40,41]. At present,
there are fewer laws and regulations in the study area, a lack of systematic basic research
and extensive publicity and training, and the overall drought mitigation management
system is not yet sound, and an effective drought protection mechanism has not yet been
formed. Firstly, strengthening the reserve of drought equipment is the most practical and
effective way to improve emergency drought resistance; secondly, we should improve
the frequent and dangerous water conservancy projects to improve their water storage
capacity, carry out the construction of farmland water conservancy infrastructure, and build
more various drought emergency facilities according to local conditions; finally, we should
vigorously develop the facilities of machine irrigation and electric irrigation to improve
the ability to resist drought in agriculture. At the same time, the government should give
farmers certain financial support and issue relevant drought facilities to farmers to improve
the emergency drought prevention capacity.

4.3. Optimizing Integrated Management Model and Establishing Drought Risk
Responsibility Mechanism

To achieve an optimized integrated management model requires promotion of re-
gionally coordinated drought disaster risk reduction plans and setting up a network for
exchanging information about drought disasters. According to the historical frequency of
drought in each location, the National Integrated Drought Information System (NIDIS),
developed in the U.S. in 2003, separates the drought level into five levels, ranging from
low to high. The NIDIS publishes weekly data on the drought situation for the previous
week, the severity of the present drought in each region, and the anticipated trends for the
drought over the following week. Its customers include federal government agencies, stock
and futures dealers, legislative representatives, and agricultural producers and business
owners. The entire disaster management process, from pre-disaster planning to disaster
response, post-disaster relief, and the cycle of recovery and reconstruction, integrates the
resources of the entire society for disaster management, and an administrative organization
for disaster risk management is formed from upper to lower levels to effectively coordinate
the strengths of all facets of society, efficiently allocate limited resources, and vigorously
pursue recovery and reconstruction [42]. To actualize an integrated system, insurance,
relief, and services with the purpose of preventing and resolving drought risks before
disasters and coping with drought risk consequences after disasters, a drought disaster
network information sharing platform needs to be established. For regional drought and
food security, improving the coherence of integrated drought disaster risk prevention
is essential.

4.4. Improving the Modernization Level of Drought Resistance and Strengthening Drought
Infrastructure Construction

Regional drought resistance is significantly influenced by the upgrading of drought-
resistant infrastructure and level. The United States started water conservation projects
earlier and compensated for the lack of surface water sources by creating reservoirs, transfer-
ring water between basins, and developing groundwater resources. such as the large-scale
water conservation initiatives in the Midwest and the California North–South Water Diver-
sion Project [43], in response to the lack of drought resistance in the study area. Firstly, we
should carry out engineering construction, and build key water conservancy projects such
as the introduction of Nen Jiang into Bai Cheng, the Hadashan Water Conservancy Project,
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Daan Irrigation District, and the water transfer of the central urban agglomeration, make
full use of the rich surface water resources such as Songhua River and Nen River, realize the
reallocation of water resources, increase the water supply of life and production, agriculture
and ecology in the western region, and improve the drought and water shortage in the
arid areas of the western region. Secondly, changing the cropping system and changing
the cultivation method reasonably is one of the effective ways to overcome the continuous
cropping obstacle. Because the natural precipitation in the western arid region cannot
meet the water demand of crop growth, we try to explore the feasibility of adjusting the
traditional cropping system in the western region from ‘one crop a year’ to ‘two crops
a year’. Finally, the construction of water-saving projects such as channel anti-seepage,
pipeline water conveyance, sprinkler irrigation, and drip irrigation should be done well. In
key water-scarce cities, necessary backup water sources should be constructed. To ensure
the introduction of water in drought years, alleviate the drought in the year, and maintain
the local ecology and environment, key areas such as nature reserves and wetlands should
undergo necessary engineering construction and certain backup water sources.

5. Conclusions

In order to evaluate the integrated agricultural drought risk in the primary grain-
producing regions of Jilin Province, this article builds an integrated agricultural drought
risk assessment model using drought hazards, vulnerability of disaster-bearing bodies,
sensitivity of disaster-pregnant environments, and disaster mitigation capacity. In order to
grow regional agriculture sustainably, guidelines for the geographical variation of drought
risk in agriculture were obtained. The conclusions showed the following:

(1) Over the previous 66 years, the study area has demonstrated a trend of slow transition
from wet to dry to wet, with occasional severe droughts, and an overall declining trend
at a rate of −0.089. (10a)−1. Except for Qianan, all other places showed significant
characteristics, and the areas with high risk of regional drought hazards were mainly
concentrated in Qianan and Yitong, with high frequencies and high intensities of
drought. Yushu, Dehui, and Lishu are agricultural disaster-prone areas because of
their high susceptibility, which is characterized by their high exposure and short
repetition time of disaster occurrence. Drought damage losses are more severe than
losses in other areas when calamities strike. The majority of Tongyu, the eastern
portion of Qianguo, and the area close to the Yishu Graben were among the regions
in the study area where 14.17% of the regional disaster-bearing environments were
medium-high or highly sensitive, and where all the indicators of disaster-pregnant
environments were at medium-level or above. All indicators in Yushu and Nongan
are at a medium-level or above, indicating that the two areas have a high degree of
capacity for integrated disaster mitigation. In terms of readiness, response, and relief
for disasters, the western portion of the research area’s overall disaster reduction
capability is typically inadequate and urgently requires development.

(2) The integrated risk of drought in the primary grain-producing areas of Jilin Province
exhibits regional clustering, and the overall risk level has some relationship spatially
with the regional geological tectonic units, with the high-risk level concentrated in
the central area of Song Liao Basin and close to the geological structure of Yishu
Graben and the low risk level concentrated in the marginal area of Song Liao Basin.
In Tongyu, Daan, and northeastern Jiutai, the integrated risk level of agricultural
drought is high. Because drought has a significant impact on regional agricultural
production, prevention of regional integrated agricultural risk should be a top priority,
as should the subsequent drought risk warning and drought supply deployment.

(3) High-risk regions with grid-level refinement are selected based on the findings of
the regional integrated agricultural drought risk assessment. In order to give more
precise instructions to the relevant departments for the scientific formulation of
drought mitigation policies and plans, a regional integrated agricultural drought risk
prevention model is established, and suggestions for the sustainable development of
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regional agriculture are put forward in four aspects: monitoring and early warning,
institutional systems, management model, and modernization construction.
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Abstract: Drought is a damaging and costly natural disaster that will become more serious in the
context of global climate change in the future. Constructing a reliable drought risk assessment
model and presenting its spatial pattern could be significant for agricultural production. However,
agricultural drought risk mapping scientifically still needs more effort. Considering the whole process
of drought occurrence, this study developed a comprehensive agricultural drought risk assessment
model that involved all risk components (exposure, hazard, vulnerability and mitigation capacity)
and their associated criteria using geospatial techniques and fuzzy logic. The comprehensive model
was applied in Songnen Plain to justify its applicability. ROC and AUC techniques were applied to
evaluate its efficiency, and the prediction rate was 88.6%. The similar spatial distribution of water
resources further verified the model’s reliability. The southwestern Songnen Plain is a very-high-
risk (14.44%) region, determined by a high vulnerability, very high hazardousness and very low
mitigation capacity, and is the region that should be paid the most attention to; the central part is a
cross-risk region of high risk (24.68%) and moderate risk (27.28%) with a serious disturbance of human
agricultural activities; the northeastern part is a dry grain production base with a relatively optimal
agricultural production condition of very low risk (22.12%) and low risk (11.48%). Different drought
mitigation strategies should be adopted in different regions due to different drought causes. The
findings suggest that the proposed model is highly effective in mapping comprehensive drought risk
for formulating strong drought mitigation strategies and could be used in other drought-prone areas.

Keywords: comprehensive agriculture drought risk assessment; fuzzy logic; spatial technique;
mitigation capacity; Songnen Plain

1. Introduction

Drought is a recurring natural disaster that can destroy agricultural production, eco-
nomic development, water resource utilization and the ecological environment, caus-
ing higher financial losses in the long run than any other meteorological disaster [1–4].
Droughts can negatively affect agricultural production and sustainable development by ex-
acerbating water scarcity through surface water and groundwater resource depletion [5,6].
The direct economic losses caused by drought-related disasters in China were approxi-
mately CNY 90.971 billion in 2014 [7], and the frequency and intensity of droughts are
constantly rising due to human activities and the variability of hydro-meteorological vari-
ables caused by climate change [8–10]. Therefore, understanding the spatial pattern of
agricultural drought risk (ADR) is essential for alleviating the adverse consequences of
agricultural drought and guaranteeing regional food security.

The formulation and implementation of effective agricultural drought mitigation mea-
sures are the prerequisites for reducing their negative consequences, and drought risk
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mapping is an effective tool for this issue [11,12]. To the best of our knowledge, drought
risk mapping has received extensive academic attention mainly from four aspects: meteorol-
ogy, hydrology, agriculture and socio-economy [13–15]. Most previous research developed
various drought indexes from the concept model accepted by the Intergovernmental Panel
on Climate Change (IPCC) and the United Nations Office for Disaster Risk Reduction
(UNDRR) [16], including the Palmer Drought Severity Index (PDSI) [17], the Standardized
Precipitation Index (SPI) [18], the Standardized Precipitation Evapotranspiration Index
(SPEI) [19], the Standardized Runoff Index (SRI) [20] and so on. For example, Ionita et al.
used the meteorological drought index, including SPI and the Reconnaissance Drought
Index (RDI), to monitor drought conditions in Australia [21]. Sein et al. used SPEI to explore
the spatial and temporal changes of drought in Myanmar [22]. Along with the development
of remote sensing and spatial analysis, new physical factors such as temperature, topog-
raphy and vegetation and socioeconomic factors such as irrigation were involved in the
evaluation to improve the mapping accuracy [12,23,24]. These findings stressed the process
and physical mechanisms of ADR and preliminarily revealed the complex drought–climate
relationship [25–27]. However, most of the previous studies focused on either the drought
hazards intensity and the vulnerability of farming areas to drought events from the meteoro-
logical or hydrological aspect [28,29] or their combination with limited criteria [12,23]. They
emphasized the long-term risk trend and ignored the spatial heterogeneity of natural factors
and the alleviation capacity of social measures [25,27], and were insufficient in supporting
a reliable ADR assessment. In fact, the risk of drought results from interactions between
exposure, hazard, vulnerability and the mitigation capacity, and its spatial pattern needs to
consider the whole process of drought occurrence. However, few research studies have paid
enough attention to this point, and the construction of a robust and comprehensive drought
risk assessment method requires an in-depth study.

It is a systematic project to address such a comprehensive ADR assessment model,
inseparable from the support of a large number of spatial and non-spatial datasets [30].
Thus, how to effectively organize and process these multi-source data is another crucial
matter in drought risk mapping. A multi-criteria mapping approach using geospatial
techniques is considered to be highly useful in coping with this detailed information [16,31],
and several relevant assessment methods have been used to map various natural disasters,
e.g., machine learning (ML) [32–34], statistical models (SMs) [35–37] and multiple-criteria
decision analysis (MCDM) (AHP, FAHP, fuzzy logic, etc.) [38–40]. The ML method is viable
for analyzing the complex relationships between topo-hydrological factors and historical
drought events [41] and has advanced the drought assessment process to some extent in
recent decades. However, it has never been used for spatially explicit ADR assessment
due to its high dependence on weather station data and it largely ignoring the spatial
heterogeneity of the predictor variables [42]. Statistical models perform well in assessing
the drought risk probability of different intensities, but it is difficult to apply them to a
large scale-evaluation because they extract information from a large number of sample
data with complex operations [43,44]. Meanwhile, they are defective in considering the
complexity of hazard factors and the influence of mitigation capacity on drought risk
mapping [45,46]. MCDM (AHP, FAHP, fuzzy logic, etc.) techniques have been proven to be
the best assessment tools among all other risk assessment models [47]. Nonetheless, it is most
prudent to use fuzzy logic to minimize subjectivity and inaccuracy in multi-criteria decision
making. Integrating fuzzy logic into spatial techniques for hazard susceptibility mapping
may provide more realistic spatial information for drought management strategies [48,49].

Songnen Plain, lying in the easternmost part of Asia’s arid and semi-arid zone, is
a region sensitive to climate warming and prone to drought disasters [6]. As an essen-
tial national commercial grain base, the water resources in Songnen Plain are scarce in
some regions, with uneven spatial distribution, making it a highly rain-fed region and
badly restricting the agricultural production there. Extreme drought events may lead to
crop reduction or even no harvest and seriously threaten regional or national food secu-
rity [50]. Therefore, clarifying regional water resources and ADR could be significant for
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agricultural drought management. This study aimed to develop a comprehensive ADR
mapping method incorporating all drought risk components with their relevant criteria
using geospatial techniques and to verify its rationality and accuracy in Songnen Plain.
The spatial pattern of ADR was analyzed to stress more applicable drought management
strategies. Taking Songnen Plain as the study area, the objectives of this paper were to:
(1) develop a comprehensive drought risk assessment approach integrating all components
of risk with their relevant criteria; (2) weight the criteria using fuzzy logic and generate the
spatial pattern of ADR using geospatial techniques; and (3) spatially overlay the ADR map
with water resources to identify actual problems and to set countermeasures.

2. Materials and Methodology

2.1. Study Area and Data Source

As one of the three significant plains in Northeast China, Songnen Plain is located
between the Great Khingan Mountains, Lesser Khingan Mountains, Changbai Mountains
and Songliao River basins. It is formed by alluvial deposits of the Songhua and Nenjiang
Rivers. The geographical coordinates are 121◦38′~128◦33′ E and 42◦49′~49◦12′ N (Figure 1).
It covers the western part of Heilongjiang Province (Harbin, Qiqihar, Daqing, Heihe
and Suihua) and the northwestern part of Jilin Province (Changchun, Siping, Songyuan
and Baicheng), with a total area of 225,000 km2. Belonging to the temperate monsoon
climate, the average annual precipitation is approximately 406–689 mm, with an uneven
spatiotemporal distribution, gradually decreasing from east to west. The evaporation
from May to September is approximately 446–732 mm, which is much more than the
precipitation, so it is prone to drought disasters. Affected by climate, the soil in Songnen
Plain is diverse and fertile. The western part is the agro-pasture ecotone, whereas the
central and eastern parts are typical agricultural cultivation areas, forming an important
national key commodity grain base in China.

Figure 1. Location of the study area.
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The data used in this study are summarized in Table 1. Considering the interaction
between exposure, hazard, vulnerability and mitigation capacity, and the whole process of
drought occurrence, we selected 18 dynamic factors to construct the comprehensive ADR
model and to exhibit the spatial pattern of risk explicitly. They were: exposure (elevation,
slope, population density, LULC), hazard (rainfall, humidity, temperature, evaporation),
vulnerability (soil depth, soil moisture, NDVI, sand content, lithology) and mitigation
capacity (distance to river, river density, distance to road, plant available water capacity
(PAWC), irrigation index). Each index was unified into Krasovsky_1940_ Albers Projected
Coordinate System and re-sampled into 30 m × 30 m raster data. Note that water resources
utilization data include total water resource, total water consumption, domestic water,
ecological water and agricultural water.

Table 1. Data sources and description.

Data Types Source Period/Year

DEM Raster (30 m) Geospatial Data Cloud (http://www.gscloud.cn/,
accessed on 6 March 2023) -

Slope Raster (30 m) Extracted from DEM -

Population density Raster (100 m)
Population density spatial distribution data set
(https://data.tpdc.ac.cn/zh-hans/, accessed on

26 March 2023)
2015

Land use/cover (LULC) Raster (30 m) Google Earth Engine cloud computing platform 2021
Mean annual rainfall, mean

annual maximum temperature,
mean annual evaporation, mean

annual humidity

Raster (30 m)
National meteorological science data center

(http://data.cma.cn/, accessed on
20 October 2022)

2000–2021

Soil depth, sand content Raster (90 m) Harmonized World Soil Database (HWSD) 2009

Soil moisture Raster (250 m)
Geographic remote sensing ecological network

platform (www.gisrs.cn/, accessed on
28 October 2022)

2000–2021

NDVI, irrigation index Raster (30 m) Google Earth Engine cloud computing platform 2021

Lithology Shapefile
Resource and Environment Science and Data

Center (http://www.igsnrr.ac.cn/, accessed on
13 January 2023)

2000

Distance to road,
distance to river, river density Shapefile

National Geomatics Center of China
(http://www.ngcc.cn/ngcc/, accessed on

16 January 2023)
2018

Plant available water capacity
(PAWC) Raster (90 m) Calculation based on HWSD [51] -

Water resources utilization - Water Resources Bulletin 2021

2.2. Methodologies

As shown in Figure 2, the research framework consisted of three parts. Firstly, a
comprehensive ADR assessment, including all risk components of exposure, hazard, vul-
nerability and mitigation capacity, was calculated using the fuzzy-logic-based geospatial
technique; secondly, water resource utilization was analyzed to verify the accuracy of the
model applied in Songnen Plain; finally, the spatial distributions of drought risk and water
resources utilization were overlaid to identify actual very-high-risk area and formulate
regional drought management strategies.

536



Land 2023, 12, 1184

Figure 2. The research framework.

2.2.1. Criteria for Risk Components Mapping

(1) Exposure

Exposure risk involves the contact surface between disaster-bearing bodies and disas-
ters, usually represented by social, economic, natural and other environmental elements
that are in close contact with or significantly affected by drought hazards [52]. The greater
the environmental exposure, the higher the risk of drought disaster. Agricultural resources
in high-altitude or steep slope areas are more susceptible to drought disasters because
of their low water-holding capacity [16]. Areas with high population density are more
vulnerable to agricultural droughts, food shortages and famine [53]. The larger the cul-
tivated land area, the higher the exposure degree to ADR. The elevation and slope were
extracted from 30 m DEM by ArcGIS and the LULC was obtained based on the GEE plat-
form (Landsat 8 OLI of 2021 using the Land Use Classification System of the CAS with
overall accuracy > 90% and kappa > 0.85) (Figure 3).
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Figure 3. Land use map.

(2) Hazard

Hazard refers to the direct cause of disasters and typically represents climatic factors
that induce agricultural droughts [54]. According to the meteorological drought grade [55],
precipitation and humidity are the main drought-monitoring indicators. Regions with higher
temperatures and evaporation are more prone to droughts [56]. Therefore, precipitation,
humidity, temperature and evaporation were selected as hazard indicators. All meteorological
data were obtained from the National Meteorological Science Data Center. Based on 54 mete-
orological stations in and around the study area, relevant rasters of 30 m spatial resolution
were generated by Kriging interpolation and resampling in ArcGIS. Precipitation, humidity
and evaporation were the average value from 2000 to 2021, evaporation was averaged from
May to September each year to eliminate the effects of lack of data during the winter freezing
period and temperature was the annual average maximum value.

(3) Vulnerability

Vulnerability describes the degree or state to which a system is sensitive to external in-
terference [57]. Areas with deeper soils and lower sand content have better water retention
capacity, which can provide sufficient water for the growth of crops with lower drought
vulnerability [58]. Therefore, five influencing factors, namely soil depth, NDVI, soil mois-
ture, sand content and lithology, were selected as drought vulnerability indicators. NDVI
was the average value of 30 m LandSat from May to September 2021 extracted by GEE, and
others were completed in ArcGIS. Lithology was classified according to mineral properties.

(4) Mitigation Capacity

Mitigation capacity represents the ability of crops to recover from drought disasters,
which is the result of the joint action of crop resistance and human participation in disaster
prevention [59]. The evaluation indicators include distance to the river, river density, distance
to road, plant available water capacity (PAWC) and irrigation index. Areas close to rivers or
with dense river networks are less susceptible to agricultural drought [9]. Major roads and
irrigation facilities are conducive to preventing and mitigating agricultural disasters. PAWC
means the amount of water stored at a certain depth in soil that plants can absorb and use. The
higher the PAWC, the stronger the drought resistance of the area [47]. The distance to rivers
and roads was generated by creating buffer zones and fishnets in ArcGIS, and the irrigation
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index was the ratio of effective irrigated area to cultivated area in the study area, identified by
integrating Landsat 8 OLI and Sentinel 2 remote sensing data in GEE.

2.2.2. Assigning Weight Using Fuzzy Membership Function

Fuzzy logic is a method of computing “truth” that improves on the absolute “true
or false” concept of Boolean logic [60]. Fuzzy logic improves the weighting method by
using different fuzzy membership functions to convert the value 0 or 1 (Boolean logic)
into a range of numbers between 0 and 1 (fuzzy logic), and includes extreme values of
0 and 1 as truth and various values between 0 and 1. In this study, LINEAR, LARGE and
SMALL membership functions were used to select appropriate membership function to
eliminate the influence of each indicator measure. LINEAR is a linear function applied
between a user-specified minimum and maximum value, with membership 0 specified
at the minimum and 1 specified at the maximum. In LARGE function (Equation (1)), the
larger the value in the input data, the higher the membership in the fuzzy set. SMALL
fuzzy membership (Equation (2)) is the opposite of LARGE: the larger the value in the
input data, the lower the membership in the fuzzy set.

μ1(x) =
1

1 + ( x
f2
)− f1

(1)

μ2(x) =
1

1 + ( x
f2
) f1

(2)

where x is the input data, μ1(x) and μ2(x) represent Fuzzy-LARGE and Fuzzy-SMALL
membership functions and f 1 and f 2 are the midpoint and range values, respectively.

Among the 18 factors selected in this study, the higher the positive index value, the
higher the drought risk, and the Fuzzy-LARGE membership function was used in this
situation. These positive indicators included elevation, slope, LULC, mean maximum
temperature, mean evaporation, sand content, lithology, distance to river and distance
to roads. In contrast, the lower the negative index value, the higher the drought risk,
and the Fuzzy-SMALL membership function was applied in this case. The negative
indicators were average annual rainfall, mean humidity, NDVI, soil depth, soil moisture,
river density, irrigation index and PAWC. The Fuzzy-LINEAR function was used for
population density [53]. The details are shown in Table 2.

Table 2. Classification and evaluation of drought exposure, hazard factors, vulnerability, and mitiga-
tion capacity.

Fuzzy Membership
Function

Criteria Very High High Moderate Low Very Low —

Fuzzy-LARGE

DEM (m) >600 450–600 300–450 150–300 <150
Slope (%) >14 10–14 6–10 2–6 <2

LULC Cropland Construction
Land Grassland Forestland Wetlands Water

Mean maximum
temperature (◦C) 13.0–14.3 11.9–12.9 10.8–11.8 9.5–10.7 8.3–9.4

Evaporation (mm) 658.0–731.7 612.2–657.9 565.3–612.1 512.8–565.2 446.8–512.7
Sand (%) >80 60–80 40–60 20–40 <20

Lithology

a—Granite
b—Basalt

c—Andesite
d—Gneiss

e—Sandstone
f—Graywacke

g—Arkose
h—Siltstone,
Mudstone
i—Glacial

facies

j—Lake
facies

k—Eolian
sandstone
l—Marine

facies

m—Fluvial
facies

n—
Weathered

layer
o—Others

Distance to river (km) >4 3–4 2–3 1–2 0–1
Distance to road (km) >4 3–4 2–3 1–2 0–1

Fuzzy-LINEAR Population density
(sq·km) >4000 3000–4000 2000–3000 1000–2000 <1000

Weights assigned 10 8 6 4 2 −100

539



Land 2023, 12, 1184

Table 2. Cont.

Fuzzy Membership
Function

Criteria Very High High Moderate Low Very Low —

Fuzzy-SMALL

Mean rainfall (mm) 406.5–467.3 467.4–513.8 513.9–555.8 555.9–610.1 610.2–688.6
Mean humidity (%) 54.8–59.9 60.0–63.8 63.9–67.2 67.3–70.1 70.2–74.4

NDVI <0.2 0.2–0.4 0.4–0.6 0.6–0.8 >0.8
Soil depth (m) 0.02–0.3 0.3–0.5 0.5–0.7 0.7–0.9 0.9–0.11

Soil moisture (%) <10 10–20 20–30 30–40 >40
River density (km/km2) 0–0.019 0.020–0.059 0.060–0.103 0.104–0.157 0.158–0.353

Irrigation index (%) 0.01–0.05 0.06–0.17 0.18–0.35 0.36–0.58 0.59–1.06
PAWC (10−2 cm3/cm−3) <15 15–17 17–19 19–21 >21

Weights assigned 2 4 6 8 10

2.2.3. Risk Assessment

The essence of fuzzy superposition is to analyze the intersection and relationship of
comprehensive effects of multiple criteria and factors in uncertain events [61]. There are
five main models of fuzzy superposition [62]: Fuzzy And, Fuzzy Or, Fuzzy Product, Fuzzy
Sum and Fuzzy Gamma, defined as:

F:[0,1]n→[0,1] (3)

Fuzzy And is the minimum membership combination in each grid; Fuzzy Or is the
maximum membership combination in each grid; Fuzzy Product is the product of the
membership of each grid and its result is usually less than the membership of a single grid
layer; Fuzzy Sum is not the sum of the membership of each grid and its result is usually
greater than or equal to the membership of a single grid layer; Fuzzy Gamma usually
integrates multiple-layer membership so that the integrated result is at a more appropriate
value between the maximum and minimum membership. In this study, we chose Fuzzy
Gamma for the superposition calculation. The formula was as follows:

μgamma =

[
1 −

n

∏
i=1

(1 − μi)

]γ

×
[

1 −
n

∏
i=1

(μi)

]1−γ

(4)

where μgamma is the formula output value; γ is a parameter chosen between 0 and 1 (it was
0.9 in this paper); n is the number of input layers; μi is the fuzzy membership value of the
input layer.

Firstly, a fuzzy overlay operation was performed for each risk component following
the weight-assigned value in Table 2. Once all risk components were prepared, the final
risk map was generated by a raster calculator in ArcGIS according to Equation (5). The
drought risk was classified into five levels using the natural breakpoint method.

Risk = exposure × hazard × vulnerability/mitigation capacity (5)

2.2.4. Efficiency Test

Operating characteristics curve (ROC) and area under curve (AUC) are widely used
to test the accuracy and sensitivity of risk models, and are suitable techniques for assessing
certainty and probabilistic rationality [63]. Soil moisture is an important indicator of
agricultural drought and can be used to plot ROC curves to validate risk maps [64]. The
soil moisture data from 2000 to 2021 were obtained from the Geographic Remote Sensing
Ecological Network Platform (http://www.gisrs.cn/, accessed on 28 October 2022). The
comprehensive drought inventory map was established according to Equation (6) and the
relative deviation of soil moisture (RDSM) was calculated [65].

RDMS =
Si −

_
Sj

_
Sj

× 100 (6)
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where Si is mean annual soil moisture for 2012 (one of the drought years in the Songnen
Plain); Sj is mean annual soil moisture between 2000 and 2021.

The RDSM was normalized from the original value to a range of 0 to 1 using fuzzy
logic and a threshold value of 0.5 (RDSM > 0.5) was set to identify the agricultural drought
locations. A total of 343 drought points were randomly selected and divided into two
groups: 70% RDSM drought points (n = 240) used as the training data, and a set of
30% RDSM drought points (n = 103) used as validation data to verify the finally generated
drought risk map.

3. Results

3.1. Risk Components Mapping

The standardized spatial pattern of 18 factors is shown in Figure 4, and the map of
exposure, hazard, vulnerability and mitigation capacity is shown in Figure 5.

Figure 4. Spatial pattern of standardized drought factor.
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Figure 5. Spatial pattern of (a) exposure, (b) hazard, (c) vulnerability and (d) mitigation capacity.

(1) Exposure mapping

As shown in Figure 5a, the exposure in Songnen Plain showed a trend of being higher
in the east and lower in the west. The areas of the very-low-exposure level and low-exposure
level were 25,215.77 km2 and 44,154.08 km2, respectively, accounting for 11.21% and
19.62% of the total area. They were concentrated in Baicheng, Daqing, southern Qiqihar
and western Songyuan. The moderate exposure level covered an area of 74,180.76 km2,
accounting for 32.97% of the total area, which was the highest and was distributed evenly
in the study area. The areas of the high-exposure level and very-high-exposure level were
71,552.73 km2 and 9896.66 km2, accounting for 31.80% and 4.40% of the total area, and were
mainly located in Heihe, Suihua, northern Qiqihar, southwestern Harbin, Changchun and
western Siping.

(2) Hazard mapping

The hazard increased in a gradient from northeast to southwest (Figure 5b). The very
low and low hazard covered 50,457.45 km2 and 40,961.32 km2, accounting for 22.43% and
18.21% of the total area, and were distributed in Heihe, eastern Qiqihar, most of Suihua and
Harbin, and northeastern Yushu. The moderate hazard covered 53,860.74 km2, accounting
for 23.94% of the total area, and was concentrated in the west of Qiqihar, the northeast
of Daqing, the southwest of Harbin and most of Anda, Zhaodong and Changchun. The
high and very-high-hazard areas covered 46,958.41 km2 and 32,762.09 km2, accounting
for 20.87% and 14.56% of the total area, and were distributed in Baicheng, Songyuan,
southwestern Daqing, western Siping and parts of Qiqihar and Changchun.

(3) Vulnerability mapping

The drought vulnerability of the study area was low, lowest in the middle and gradu-
ally increasing to the north and south ends (Figure 5c). The area of moderate and lower-
vulnerability levels was 170,149.31 km2, accounting for 75.62% of the total area. The area
of the high-vulnerability level was 47,497.43 km2, accounting for 21.11%, and was mainly
distributed in Heihe, northern Suihua, eastern Harbin and eastern Changchun, Siping and
southern Baicheng, with a small amount of distribution in Qiqihar, Daqing and Songyuan.

542



Land 2023, 12, 1184

The area of the very-high-vulnerability level was 7353.26 km2, accounting for 3.27% of
the total area, and was scattered in Heihe, Siping, western Baicheng, eastern Songyuan,
Changchun, Longjiang County and Dulbert Mongolian Autonomous County.

(4) Mitigation capacity mapping

Overall, the levels of the mitigation capacity of Songnen Plain were mostly very low
and low (Figure 5d). The area of very low mitigation capacity was 84,756.42 km2, accounting
for 37.67% of the total area, and was distributed in the southwest, central and north of
Songnen Plain. The area of low mitigation capacity was 47,732.88 km2, accounting for
24.02%, and was mainly located in the south of Suihua and Daqing, the north of Baicheng
and Changchun and the middle of Songyuan, Qiqihar and Fuyu County. The area with a
moderate and above mitigation capacity was 86,208.03 km2, accounting for 38.31% of the
total area, and was concentrated in Gannan County, Tailai County, Qing’an County and
Wuchang County.

3.2. Comprehensive Drought Risk Mapping

According to Equation (5), the comprehensive drought risk of Songnen Plain was
obtained. It was divided into five levels using the natural breakpoint method: very low risk
(0.097~0.327), low risk (0.327~0.429), moderate risk (0.429~0.523), high risk (0.523~0.622)
and very high risk (0.622~0.822). The proportion of risk levels in each city was calculated
statistically and is encapsulated in Figure 6.

Figure 6. Agricultural drought risk map of the Songnen Plain.

The drought risk level of Songnen Plain decreased gradually from southwest to
northeast, and the proportion from high to low was moderate risk (27.28%) > high risk
(24.68%) > low risk (22.12%) > very low risk (14.44%) > very high risk (11.48%). The area
of very high risk was 32,491.01 km2, and was mainly distributed in Siping, Baicheng and
Songyuan, accounting for 48.24%, 45.29% and 42.65% of the city risk level, with a small
distribution in Longjiang County and Dulbert Mongolian Autonomous County. The high
risk and moderate risk crossed over from south to north, higher in the south, with a very
high risk and high risk proportion of more than 85%. The high level proportion in these
southern cities was 49.89%, 45.10% and 42.92% for Changchun, Siping and Songyuan,
respectively. These regions with very high and high ADR should be paid more attention to.
The northern region was integrated with low risk and moderate risk, but the moderate risk
accounted for a large proportion. It concentrated in Qiqihar (51.33%), Daqing (42.77%) and
Changchun (31.50%), where the drought risk cannot be ignored. The very-low-risk area
was 25,819.67 km2, and was mainly concentrated in the Heihe, Harbin and Suihua areas,
which are the main dry grain production areas of Heilongjiang Province.
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3.3. Outcome of the Efficiency Test

The prediction rate curve is shown in Figure 7. The AUC value of the risk model
was 0.886, and the prediction rate was 88.6%. The closer the AUC value is to 1, the more
accurate the model is. Therefore, the prediction accuracy of the model in this paper met the
research needs.

Figure 7. Schemes follow the same formatting.

4. Discussion

4.1. The Spatial Pattern of Drought Risks

Analyzing the spatial pattern of ADR can effectively reduce the negative impact
of drought on agricultural production, ecological environment and regional economic
loss [66,67]. This study developed a comprehensive ADR model that combined meteoro-
logical, hydrological, agricultural and socio-economic risk components. It considered the
whole process of drought occurrence and could provide reliable decision-making support
for ADR intervention. Consistent with previous research studies [68–70], the result in this
paper also demonstrates that the ADR in Songnen Plain presented a pattern of being high
in the southwest and low in the northeast (Figure 6). The high ADR is concentrated in
Baicheng, Songyuan, Siping and Daqing, a semi-arid agro-pastoral ecotone with serious
soil degradation, a weak water-holding capacity and a high eco-environmental vulnera-
bility [71]. The temperature and evaporation were much higher than rainfall in most of
Songnen Plain [72], indicating that the water resources were in serious shortage. In fact,
during the past 10 years, the total water resources of cities in Songnen Plain fluctuated
greatly, with a changing trend consistent with local precipitation (Figure 8), and the total
water resources of cities with a high drought risk, such as Baicheng, Songyuan, Siping and
Daqing, were relatively low. In addition, the mitigation capacity in these areas was inade-
quate, reflected in underdeveloped water supply systems, low effective irrigation rates and
a low PAWC. The central part of Songnen Plain was a cross area of high risk and moderate
risk. Cultivated land in this region was constantly expanding, with most of the original
vegetation being replaced by secondary vegetation and monocropping farmland, where the
vegetation was degrading and homogenizing and the exposure risk was rising [73]. Mean-
while, agricultural water consumption accounted for the largest proportion, indicating that
agricultural activities were quite intensive there (Figure 9). Long-term tillage disturbance
and a narrow vision of “use rather than conservation” resulted in the thinning of black
soil and serious soil erosion in this region [74]. Furthermore, the mitigation capacity for
drought in this region was insufficient due to the low river density and underdeveloped
road traffic [58]. Thus, it can be concluded that a comprehensive drought risk assessment
model that integrated drought mitigation capacity was of large significance [48]. Al-Amin
et al. also confirmed this view [53]. This was not only a useful supplement to previous
ADR assessments [75–77], but also greatly improved the scientificity of the assessment
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for making drought prevention and control policies more practical [78]. The precipitation
in northeast Songnen Plain was abundant and the ADR there was low or very low [79].
Although the black soil in the high plain near Lesser Khingan Mountains was thin and
susceptible to external interference, the mostly forest surroundings (Figure 3) with a good
water and soil conservation ability guaranteed its agricultural production and development.

Figure 8. Total water resources and precipitation in Songnen Plain.

Figure 9. Main water uses and the total volume of water consumption in Songnen Plain.

4.2. Accuracy Verification of the Model

Most previous ADR assessments only considered a few risk factors and the systematic
description of the drought hazard mechanism was insufficient [80,81]. Eighteen indicators
from meteorological, hydrological, agricultural and socio-economic aspects were selected to
construct a comprehensive ADR model using geospatial techniques that integrated all risk com-
ponents of exposure, hazard, vulnerability and mitigation capacity. It considered the whole
process of drought occurrence and guaranteed the risk assessment to be more comprehensive
and reliable, making great progress in this research area. Conclusions from similar studies have
confirmed the reliability and applicability of the method [82]. The fuzzy logic algorithm can
eliminate the errors caused by the forcible separation of continuous indicators [83] and reduce
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the subjectivity and inaccuracy of risk assessment in multi-criteria decision making. The predic-
tion rate was 88.6% (Figure 7), indicating that the comprehensive ADR model developed in this
paper was effective and reliable [65]. In addition, the spatial distribution of water resources cor-
responded to the spatial pattern of ADR (Figure 10), which further confirmed the effectiveness
of the prepared model. The higher the drought risk, the lower the total water resources per unit
area (TW) and agricultural water per unit area (AW). Songyuan (TW 11.1 × 108 m3/km2 and
AW5.5 × 108 m3/km2), Daqing (TW 13.1 × 108 m3/km2 and AW 6.7 × 108 m3/km2), Baicheng
(TW 15.6 × 108 m3/km2 and AW 6.8 × 108 m3/km2) and Siping (TW 17.1 × 108 m3/km2

and AW 2.3 × 108 m3/km2) were the most serious drought risk regions in Songnen Plain
and where the ADR management needed the most attention. Therefore, the comprehensive
ADR model proposed in this paper could be applied to regional agricultural drought pol-
icy making and water resources management to ensure sustainable agricultural and socio-
economic development.

 
Figure 10. Spatial overlay of drought risk and water resources utilization.

4.3. Policy Suggestions

With the increase in greenhouse gas emissions, global warming has become an indis-
putable fact. In this context, the rainfall in China presents a trend of more in the south and
less in the north, further worsening the ADR in the northern areas [84,85]. Therefore, a
scientific assessment of ADR in major grain-producing areas in northern China is necessary
to prevent and cope with drought events. Based on the actual situation of the study area,
the following measures could be taken to alleviate the ADR and water shortage. (1) For
the western agro-pastoral ecotone: promoting the Grain for Green Project and restoring
degraded black soil to reduce the environmental vulnerability; developing diversified
managements by taking advantages of local resources and improving the income struc-
ture of local farmers to enhance the drought resistance ability; strengthening drought
risk monitoring, forecasting and early warning technology, publicizing and popularizing
drought mitigation knowledge vigorously, releasing drought disaster to the public and
deploying drought-resisting measures in a timely manner; (2) for the central cultivation
area: strengthening the construction of water conservancy facilities (such as setting up
channels, drainage ditches, etc.) to improve the drought mitigation capacity; cultivating
drought-resistant and water-saving crops and optimizing agricultural planting structure
through scientific agricultural management techniques; adopting scientific and reasonable
irrigation methods to realize the efficient utilization of water resources; (3) for the northern
high plain: strengthening the forest conservation in mountains, prohibiting deforestation
on steep slopes and constructing various biological water storage projects to prevent the
risk of agricultural drought from rising; (4) for cities: vigorously promoting water-saving
technologies, building sponge cites and improving forest and grass vegetation coverage. In
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short, a coordinated strategy of population, economy, resources and environment should
be implemented to promote sustainable development in the region.

4.4. Limitations and Outlook

There were inevitably some drawbacks in this study. Given that many criteria were
considered under the four drought categories, it was quite difficult to collect long-time
series and high-quality datasets to present the spatiotemporal evolution of drought risk,
which could result in the ineffectiveness of drought management decisions to a certain
extent. It would be much better to incorporate a few more criteria, such as accumulated
temperature, the farming system or method, crop growth or crop yield, etc. However,
it was not possible to include all these due to data access constraints, the time frame
and funding. Moreover, data resolution was another threat. The soil depth and sand
content used in this study were abstracted from the 2009 World Soil Database rather than
actual local soil sampling data, which could lead to a certain deviation in the result. The
validation of the comprehensive assessment model was conducted using soil moisture
data only, while specific field-based datasets would enhance the validation. Furthermore,
agricultural production is a dynamic and complex process, and different crop-planting
categories and growth stages would be affected by agricultural drought differently. Thus,
different drought mitigation strategies should be adopted in this case. Future research
could consider addressing the drawbacks above. Nevertheless, the proposed model in this
paper remained useful for drought management decisions. Accordingly, this validated
comprehensive model may be extended to any other drought-prone regions with local-
modified criteria and associated datasets to derive detailed spatial patterns and drought
resistance strategies.

5. Conclusions

This study developed a comprehensive agricultural drought risk assessment model
combining all risk components (exposure, hazard, vulnerability and mitigation capacity)
using fuzzy logic and geospatial techniques. It was applied in Songnen Plain to justify its
applicability. ROC and AUC techniques were applied using training and testing datasets to
evaluate the efficiency of the results, and the prediction rate was 88.6%. The similarity of
the water resources spatial distribution and the drought spatial pattern further verified the
reliability of the model. It demonstrated that the combination of geospatial techniques and
fuzzy logic was very effective in agricultural drought risk mapping. Moreover, the results
suggest that drought mitigation capacity can influence the outputs greatly and should
be involved in the model. Drought risk in Songnen Plain decreased from very high and
high risk in the southwest to low or very low risk in the northeast. The proportion of very
high risk was 11.48% and was concentrated in the southwest part, and Daqing, Baicheng,
Songyuan and Siping should pay more attention to drought management. Moderate
risk was mainly distributed in the central region, where cultivated land is expanding
continuously. The northeast region is an important dry grain production base for its low
drought risk and good ecological quality. Due to different causes of drought risk in different
regions, different drought mitigation strategies should be conducted. Coordination between
the social economy and ecological environment is essential to combat drought disasters
and promote regional sustainable development.
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Abstract: Droughts and floods have proven to be threats to food security worldwide. This research
used the standardized precipitation index (SPI) to examine the spatiotemporal characteristics of
drought and wet events from 1961 to 2020 in the Yellow River basin (YRB). Grain yield data were com-
bined to assess how drought and wet frequency have affected the agricultural system. The occurrence
frequency of drought was greater than that of wetness in time, drought frequency decreased, and
wetness increased. Spatially, the frequency of drought in all provinces except Shanxi was higher than
that of wetness. The grain yield per unit area of the YRB was generally highest in Shandong province
and lowest in Gansu province. The grain yield per unit area have shown a significant growth trend
in the nine provinces of the YRB since 1961. Drought had a negative effect on the grain yield per
unit area in each province, while wetness had a positive effect on the grain yield per unit area in
all provinces except Shandong. In general, the influence of drought on grain yield per unit area
decreased, while the influence of wetness on grain yield per unit area increased. The results indicate
that human activities are effective against preventing and controlling drought and wet disasters and
can provide a reference for other parts of the world.

Keywords: drought; wet; standardized precipitation index; agriculture; Yellow River basin

1. Introduction

In recent years, severe droughts and floods have occurred on all continents worldwide.
Some scholars have assessed the impact of global change on flood and drought risk in
Europe and proposed that the frequency of floods has increased in northern and north-
eastern Europe, while the frequency of droughts has increased significantly in southern
and south-eastern Europe [1,2]. Kourgialas et al. [3] assessed the impact of climate change
on drought or flood in the region based on the standardized precipitation index (SPI) in
northwestern Crete in Greece from 1960 to 2019, pointing out that there have been frequent
droughts and floods in the region in recent decades. The authors also predicted that drought
would become more frequent in the coming decades. Likewise, floods and droughts pose
management challenges and risks to ecosystems in western Canada, and these challenges
and risks are expected to intensify in a warmer climate [4]. Ekwezuo et al. [5] analyzed
the regional characteristics of meteorological drought and flood in West Africa and found
that the severity of drought in the region showed a decreasing trend, while the severity
of floods increased; however, droughts and floods have always been the biggest threats
to food production and security in West Africa. Scholars have evaluated the frequency
of drought/flood severity in the Luvuvhu River basin, Limpopo Province, South Africa,
and found that the frequency of moderate to severe drought increased from south to north,
with most of the basin affected by severe drought, sloping to the northeast of the basin,
and the northwestern parts of the basin experienced a high frequency of severely wet to
extremely wet conditions [6].
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Research has shown that meteorological drought in the Yellow River basin (YRB) has
been increasing, and its distribution is expanding [7–9], while drought has shown a de-
creasing trend on both seasonal and annual scales [10]. At the seasonal scale, the frequency
of drought in spring and summer was greater than that in autumn and winter [9,11], and
the drought severity in spring and winter was higher than that in summer and autumn [12].
On the spatial scale, the drought degree in the northwest was higher than that in the
southwest, and agriculture in northeast, northwest and north China was most affected by
drought [13,14]. The YRB is one of the areas in China with the most frequent drought and
flood disasters, especially drought disasters, and the drought-affected area is expanding
each year [15,16]. In recent years, the drought in the upper and middle reaches of the YRB
has intensified, while the drought in the lower reaches has eased [17]. Flood disasters in
this basin have also been increasing overall, with “slight flood, but serious disaster” and
heavy losses occurring occasionally [18]. There have been frequent floods in the middle
and lower reaches of the Yellow River [19,20]. However, the possibility of flooding in the
future is likely to be reduced [18].

Drought and flood disasters occur frequently on all continents worldwide, and
the resulting food security problems have attracted increasing international attention.
McCarthy et al. [21] analyzed the impact of drought and flood on crop production in
Malawi and found that crop production was severely affected by flood and drought, with
an average loss between 32 and 48 percent; however, bean intercropping can provide pro-
tection against flood and drought, while green belts can provide protection against floods.
Scholars assessed the flood and drought problems affecting rice cultivation in the Mun
River basin in Thailand and pointed out that floods and droughts in Thailand had adverse
effects on rice cultivation in this region [22]. Venkatappa et al. [23] analyzed the impact
of drought and floods on farmland and yields in southeast Asia and found that dryland
crops in Thailand, Cambodia, and Myanmar were strongly affected by drought, while
Indonesia, the Philippines, and Malaysia were more affected by floods during the same
period. In China, both in time and in space, the impact of drought on crops is significantly
greater than that of floods, and the impact of floods and droughts on agriculture is generally
declining [13]. However, agricultural production losses caused by floods and droughts in
most areas of China have significantly increased [24]. For example, the agricultural area
affected by drought and flood disasters in northeastern China has increased, and the main
disaster type has been drought [25]. There were some areas where the impact of floods on
agriculture was greater than that of drought, such as in the middle and lower reaches of
the Yangtze River [26]. Overall, the effects of drought and flood disasters on agriculture
vary with zone and period. In the irrigated regions of arid areas, there was a positive
correlation between flood and grain production, while in other arid areas, there was no
obvious relationship between the two [27]. The impact of drought on grain production in
northeastern China was more serious from May to July [28]. Before 2004, China’s droughts
and floods had a significant impact on food production, but afterwards, the extent of
agricultural disasters was significantly reduced [29].

The YRB is a vast area. Due to the influence of various factors, such as terrain and
altitude, the characteristics of drought and wetness in different provinces and regions
are different, and the characteristics of agricultural production affected by drought and
wetness also differ, but the relevant research is still incomplete. For example, most of
the previous studies examined only the impact of drought on agriculture, ignoring the
impact of wetness on agriculture, and considered only the impact of climate change on
agricultural production in the YRB; in contrast, they did not discuss the changing trend
of this impact. On the basis of previous studies, this paper not only discusses the impact
of drought and wetness on agriculture but also discusses the changing trend of this effect,
as this information can be used to predict the impact of drought and wetness on various
provinces and regions in the future. Specifically, the research addressed the following four
questions: (1) What are the annual and seasonal characteristics of drought and wet events in
the nine provinces of the YRB on temporal and spatial scales; (2) what is the spatiotemporal
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distribution of crop yield; (3) how do different degrees of drought and wet events affect
agriculture; and (4) what is the change trend of the impact?

The significance of this study is to provide guidance for the prevention and control of
drought and wet disasters in the YRB and the adjustment of agricultural planting structures
in various provinces. This research is of great significance for reducing food production
losses and promoting high-quality development of the YRB.

2. Materials and Methods

2.1. Study Area

The Yellow River, with a total length of 5464 km, known as China’s “mother river”, orig-
inates from the Bayan Kara Mountains, flowing through nine provinces and regions, includ-
ing Qinghai, Sichuan, Gansu, Ningxia, Inner Mongolia, Shaanxi, Shanxi, Henan, and Shan-
dong, and the river empties into Bo Bay in Shandong Province [9,16]. The nine provinces in
the Yellow River Basin are located between 95◦53′~126◦04′ E and 32◦10′~ 53◦23′ N, span-
ning the three-step landform in China. The basin includes many topographic units, such as
the Qinghai-Tibet Plateau, Inner Mongolia Plateau, Loess Plateau, Central Shaanxi Plain,
North China Plain, and Shandong Hills, and the basin topography is characterized by being
high in the west and low in the east, high in the north and low in the south [14] (Figure 1).
The YRB is located in the westerly zone of atmospheric circulation, and most of the basin is
located in arid and semiarid regions. Precipitation decreases from southeast to northwest,
with an annual average of 476 mm, and it is mostly concentrated in summer. The overall
distribution of temperature gradually decreases from south to north and from east to west,
and the annual average temperature is between −4◦C and 14◦C [18]. The cultivated land
area of the nine provinces in the YRB is vast, accounting for 18.81% of the total area of the
whole region, and the cultivated area is concentrated in the middle and southeast of the
region. Henan, Shandong, Inner Mongolia, and Sichuan Provinces are the provinces in the
basin with large grain outputs in China, and the main grain crops are wheat and rice.

Figure 1. Meteorological stations and land use distribution map in the nine provinces of the Yellow
River basin.

2.2. Materials
2.2.1. Precipitation Data

All the data related to grain yield use in the provinces are presented as statistical
units. To ensure the consistency of the data, the precipitation data used in this paper were
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expanded to the nine provinces in the YRB. The precipitation data for the nine provinces in
the YRB from 1961 to 2020 came from the “Daily Value Data Set of Surface Climate Data
in China (V3.0)” of the National Meteorological Information Center (http://data.cma.cn
accessed on 24 June 2021), which has a total of 227 meteorological stations. After removing
the meteorological stations with missing data, 190 meteorological stations were selected.
The daily value data were processed based on the site into monthly value data.

2.2.2. Grain Production Related Data

The data related to grain output for each province in the Yellow River region used in
this study were derived from the State Statistics Bureau (https://data.stats.gov.cn accessed
on 12 August 2021). The data included grain yield per unit area (1961–2018), effective
irrigation area (1978–2019), and fertilizer application amount (1979–2019). The grain crops
in the grain yield data used in this study included cereals, beans, and tubers, and the cereals
were further divided into rice, wheat, and maize.

2.3. Methods
2.3.1. Standardized Precipitation Index (SPI)

The standardized precipitation index (SPI) is simple to calculate and requires only
precipitation data [30]. The SPI is widely used to monitor drought and wetness [31,32].
The SPI of different scales can reflect the level of drought and wetness at different time
scales [33,34]. For example, the one-month scale SPI (SPI1) is based on the precipitation of
the previous month, while the three-month SPI (SPI3) considers the rainfall of the previous
three months and can characterize agricultural drought and wetness. The twelve-month
scale SPI (SPI12) can characterize long-term drought and wetness by considering the
precipitation of the previous 12 months. In this paper, SPI3 and SPI12 were used to analyze
the characteristics of drought and wetness in the nine provinces of the YRB on a seasonal
scale and annual scale, respectively.

The SPI was calculated by the visual SPI calculation program developed by the Ameri-
can National Drought Mitigation Center, which was recognized by the International Meteo-
rological Organization (https://drought.unl.edu/monitoring/SPI/SPIProgram.aspx ac-
cessed on 20 June 2021). The monthly SPI based on the site was averaged by province, which
was taken as the monthly SPI of the province. According to previous studies [23,30,32], the
SPI values were divided into different degrees of drought and wetness (Table 1).

Table 1. Standardized Precipitation Index (SPI) drought and wetness degrees classification.

SPI Value Grades of Drought and Wetness

SPI ≤ −2 Extreme drought
−2 < SPI ≤ −1.5 Heavy drought
−1.5 < SPI ≤ −1 Moderate drought
−1 < SPI ≤ −0.5 Light drought
−0.5 < SPI ≤ 0.5 Normal

0.5 < SPI ≤ 1 Light wetness
1 < SPI ≤ 1.5 Moderate wetness
1.5 < SPI ≤ 2 Heavy wetness

SPI > 2 Extreme wetness

2.3.2. Univariate Regression Trend Analysis

Univariate regression trend analysis is a regression analysis method used for a group
of variables changing with time, and it can be used to predict the changing trend of a
variable. The calculation formula is as follows:

S =
n × ∑n

i=1(i × Ai)− ∑n
i=1 i × ∑n

i=1 Ai

n × ∑n
i=1 i2 − (∑n

i=1 i)2 (1)
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where S is the trend; n represents the total number of years; i represents the time ordinals;
and Ai represents the corresponding value in time i. When S > 0, the data show an
increasing trend in n years; when S = 0, the data series does not change in n years; when
S < 0, the data series shows a decreasing trend in n years. In this paper, this method was
used to analyze the temporal variation trend of the drought and wet characteristics of the
nine provinces in the YRB from 1961 to 2020.

2.3.3. Partial Correlation Analysis

Partial correlation analysis, also known as net correlation analysis, mainly analyses
the linear correlation degree between two variables under the control of other related
variables and is committed to eliminating the transfer effect of correlation between other
variables. When the number of control variables is 1, the partial correlation coefficient is
the first-order partial correlation coefficient. When the number of control variables is 2, the
partial correlation coefficient is the second-order correlation coefficient (controlling multiple
variables and so on). When the number of control variables is 0, the partial correlation
coefficient is called the zero-order partial correlation coefficient, which is the bivariate
correlation coefficient.

2.3.4. Grey Correlation Analysis

Grey correlation analysis is a method used to measure the degree of correlation
between two factors according to the development trend between them [35]. This method
can overcome the deficiency of mathematical statistics in analyzing meteorological disaster
statistical data to a certain extent, and the grey correlation curve can be obtained to visualize
the relationship between the two factors. The closer the curve is, the greater the correlation
degree is and vice versa.

3. Results

3.1. Spatiotemporal Characteristics of Drought and Wetness
3.1.1. Intra-Annual Distribution

Based on SPI3, the frequencies of different degrees of drought and wet events in spring,
summer, autumn, and winter in the nine provinces of the YRB from 1961 to 2020 were
calculated (Figure 2). The spring seasons of 1962, 1979, 1984, 1985, 1986, 1995, 2000, and
2001 were all dry seasons, and the frequency of drought was high. Drought was the most
serious in the spring of 1962, and it had a frequency of 81.47%, among which the frequency
of extreme drought was 3.70%. The spring seasons of 1964, 1967, 1990, 1991, and 1998 were
the wet seasons, with a high frequency of wetness. In the spring of 1990, the frequency of
wetness was 88.88%, among which the frequency of extreme wetness was 14.81%. Overall,
the frequencies of drought and wetness in spring in the nine provinces of the YRB were
consistent, but the frequency of drought was decreasing (S = −0.0374), while the frequency
of wetness was increasing (S = 0.0321) (Table 2).

In the past 60 years, there were no extreme drought and wet events in the nine
provinces of the YRB in summer. Only the summer seasons of 1965, 1968, 1969, 1997, and
2001 were dry seasons, and the frequency of drought was greater than 50%. Drought was
the most serious in the summer of 2001, and it had a frequency of 66.66%, in which the
frequency of heavy drought was 3.70%. The summer seasons of 1964, 1984, 1998, 2012, 2013,
and 2018 were wet seasons, and the frequency of wetness was higher. The summer of 2018
was the most serious wet season, with a frequency of 62.96%, and the frequency of heavy
wet seasons was 3.70%. Overall, the frequency of summer wetness in the nine provinces
of the YRB was greater than that of drought, and the frequency of drought showed a
downwards trend (S = 0.0589), while the frequency of wetness showed an increasing trend
(S = 0.0544) (Table 2).
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Figure 2. Frequency of different degrees of drought and wet events in spring (a), summer (b),
autumn (c), and winter (d) in nine provinces of the Yellow River basin from 1961 to 2020.

The autumn seasons of 1965, 1972, 1986, 1991, 1997, and 2002 were dry seasons, and
the frequency of drought was relatively high. The drought in autumn of 2002 was the
most serious, with a frequency of 77.78%, among which the frequency of severe drought
was 3.70%. In 1961, 1964, 1967, 1968, 1985, 2003, 2011, and 2014, the frequency of autumn
wetness was relatively high. In the autumn of 1964, the frequency of wetness even reached
81.48%, among which the frequency of extreme wetness was 3.70%. Overall, the frequency
of wetness in autumn in the nine provinces of the YRB was greater than that of drought,
the frequencies of drought and wetness both showed a downwards trend, and the trend of
wetness (S = −0.0412) was higher than that of drought (S = −0.0013) (Table 2).

The winter seasons of 1964, 1973, 1983, and 1998 were dry seasons, and the frequency
of drought was relatively high. The drought in the winter of 1998 was the most serious,
with a frequency of 66.67%, among which the frequency of extreme drought was 7.41%. In
1961, 1963, 1968, 1971, 1989, 2011, 2015, 2016, and 2019, the frequency of winter wetness
was relatively high. In the winter of 2019, the frequency of wetness reached 66.67%,
among which the frequency of extreme wetness was 3.70%. Overall, the frequency of
winter wetness in the nine provinces of the YRB was greater than that of drought, and
the frequencies of drought and wetness both showed a downwards trend, with drought
having a decreasing trend (S = −0.0580) that was higher than that of wetness (S = −0.0008)
(Table 2).

Generally, from 1961 to 2020, the nine provinces of the YRB experienced drought
most often in spring, followed by autumn and finally summer. Wetness most frequently
occurred in winter, followed by spring and finally summer. The frequency of wetness
in summer, autumn, and winter was slightly higher than that of drought, though the
frequency of drought and wetness in spring was the same. The drought frequency in
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spring, summer, autumn, and winter all showed a downwards trend, while the wetness
frequency showed a downwards trend in autumn and winter and an upwards trend in
spring and summer. However, the number of droughts in the nine provinces of the YRB
overall showed a downwards trend, while the number of wet events showed an upwards
trend (drought: S = −0.0766, and wetness: S = −0.0661) (Table 2).

Table 2. Trends of drought and wet events in the nine provinces of the Yellow River basin from 1961
to 2020.

Spring Summer Autumn Winter Year

Gansu
Drought −0.0071 −0.0075 −0.0024 −0.0153 −0.0368
Wetness 0.0059 0.0086 −0.0111 0.0032 0.0256

Qinghai Drought −0.0153 −0.0176 −0.0056 −0.0153 −0.0775
Wetness 0.0284 0.0210 0.0103 0.0103 0.0971

Inner Mongolia Drought −0.0116 −0.0037 0.0041 −0.0080 0.0372
Wetness 0.0089 0.0104 0.0044 0.0182 0.0326

Shanxi
Drought −0.0048 −0.0021 −0.0047 0.0010 −0.0011
Wetness −0.0058 −0.0065 −0.0117 −0.0061 −0.0457

Ningxia Drought 0.0045 −0.0137 −0.0096 −0.0090 −0.0396
Wetness 0.0029 0.0051 −0.0112 −0.0025 0.0100

Shaanxi
Drought 0.0092 −0.0045 0.0007 0.0000 −0.0028
Wetness −0.0067 0.0035 −0.0060 −0.0047 −0.0171

Shandong Drought −0.0020 0.0021 0.0059 −0.0008 0.0088
Wetness −0.0074 −0.0069 −0.0046 −0.0056 −0.0645

Sichuan
Drought −0.0153 −0.0075 0.0057 0.0001 0.0216
Wetness 0.0099 0.0131 −0.0056 −0.0062 0.0243

Henan
Drought 0.0048 −0.0044 0.0046 −0.0108 0.0136
Wetness −0.0040 0.0062 −0.0057 −0.0073 0.0039

Whole
Drought −0.0374 −0.0589 −0.0013 −0.0580 −0.0766
Wetness 0.0321 0.0544 −0.0412 −0.0008 0.0661

3.1.2. Annual Distribution

Due to the diversity of climate change, the characteristics of drought and wetness
are different in different years. Based on SPI12, the frequency of different drought and
wetness grades in the nine provinces of the YRB from 1961 to 2020 was calculated (Figure 3).
The frequencies of drought and wetness in different years were obviously different. In
1966, 1973, 1981, 2000, and 2001, drought was dominant, and the frequency of drought
was higher than that of wetness and normal conditions. Drought was particularly serious
in 1966 and 2000, with the drought frequency reaching 60.19%, while extreme drought
occurred in 1966, and the frequency of light drought in 2000 was 45.37%. In 1961, 1964,
2018, 2019, and 2020, the frequency of wetness was higher than that of drought and normal
conditions. In 2018, wetness conditions were the most serious, with a frequency of 58.33%.
The remaining years were normal, and the frequency of normal conditions was highest in
2016, reaching 84.26%. Generally, the frequency of drought in the nine provinces of the
YRB was greater than that of wetness, but the frequency of drought was decreasing, while
the frequency of wetness was increasing (Table 2).

3.2. Spatial Characteristics of Drought and Wetness
3.2.1. Spatial Characteristics on a Seasonal Scale

The seasonal climate characteristics in the nine provinces of the YRB were significantly
different, and the spatial distribution of seasonal precipitation was uneven. Based on
SPI3, we calculated the frequency of drought and wetness in different seasons in the
nine provinces over the past 60 years (Figure 4). The grades of drought and wetness
in the nine provinces and regions were mainly normal. In spring, the frequencies of
drought and wetness were the highest in Shandong, with values of 28.33% and 28.89%,
respectively, while in Inner Mongolia, they were the lowest, with values of 14.44% and
16.11%, respectively. In summer, Ningxia had the highest frequency of drought and
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wetness (31.11% and 28.89%), while Sichuan had the lowest frequency of drought and
wetness (10.56% and 11.11%). In addition, there was no extreme drought or wetness in any
province or region. In autumn, the frequency of drought was highest in Shaanxi Province
(27.22%), Sichuan had the lowest frequency of drought and wetness (16.11% and 12.78%),
and Shandong and Henan had the highest frequency of wetness (27.78%). In winter,
the frequency of drought was highest in Shanxi (26.11%) and lowest in Inner Mongolia
(16.11%), while the frequency of wetness was highest in Henan (30.56%) and lowest in
Sichuan (16.67%). In summary, Gansu was prone to drought in summer; Qinghai was
prone to wetness in summer; Sichuan and Inner Mongolia had less drought and wetness
in the four seasons; Shanxi was prone to drought in winter; and Ningxia was prone to
drought in summer and winter and to wetness in spring, summer, and autumn. Drought
frequently occurred in spring and autumn in Shaanxi. Shandong was prone to drought in
spring, but it was prone to wetness in spring, autumn, and winter. Henan was prone to
drought in spring and autumn but had frequent wetness in spring, autumn, and winter.

 

Figure 3. Frequency of different degrees of drought and wetness in the nine provinces and regions of
the Yellow River basin from 1961 to 2020.

In the past 60 years, the occurrence trends of drought and wetness in different seasons
in different provinces and regions were quite different (Table 2). In spring, only Ningxia,
Shaanxi, and Henan Provinces showed an increasing trend among the nine provinces,
while the other provinces showed a decreasing trend. The frequency of wetness in Shanxi,
Shaanxi, Shandong, and Henan decreased, while that in the other provinces increased.
In summer, drought increased in Shandong, while it decreased in the other provinces.
Wet conditions decreased in Shanxi and Shandong, while wet conditions increased in the
other provinces. In autumn, drought in Gansu, Qinghai, Shanxi, and Ningxia showed
a decreasing trend, while the other provinces had an increasing trend. Wet conditions
increased in Qinghai and Inner Mongolia, while they decreased in other provinces and
regions. In winter, drought increased in Shanxi and Sichuan, and in Shaanxi, it remained ba-
sically unchanged, while that in the other provinces and regions decreased. Wet conditions
increased in Gansu, Qinghai, and Inner Mongolia but decreased in the other provinces.
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Figure 4. Characteristics of drought and wetness in spring (a), summer (b), autumn (c), and winter (d)
in the Yellow River basin.

3.2.2. Spatial Characteristics on an Annual Scale

The nine provinces and regions of the YRB had significant differences in climatic char-
acteristics, and the spatial distribution of interannual precipitation was uneven. Therefore,
based on SPI12, the frequency of different drought and wet characteristics in the nine
provinces and regions over the past 60 years was calculated (Figure 5). As seen from the
figure, in the past 60 years, the frequency of drought events in all provinces except Shanxi
was higher than that of wet events, but overall, all provinces and regions were mainly nor-
mal, though Sichuan had the highest drought frequency (74.89%) and Ningxia the lowest
drought frequency (43.02%). Shanxi had the highest frequency of extreme drought (0.56%),
followed by Ningxia (0.28%). The frequency of extreme drought in other provinces was 0.
Shandong had the highest frequency of extreme wetness (1.13%), Qinghai and Ningxia had
the same frequency of extreme wetness (0.28%), Shaanxi had only one extreme wet event,
and the other provinces and regions had no extreme wet events. There was no extreme
drought, heavy drought, extreme wetness, or heavy wetness in Sichuan. Table 2 shows that
the drought in Inner Mongolia, Shandong, Sichuan, and Henan Provinces increased over-
all, while the wetness in Gansu, Qinghai, Inner Mongolia, Ningxia, Sichuan, and Henan
Provinces increased overall. However, the change trends of the drought and wet grades
in different provinces and regions were different (Figure 6). For example, heavy drought
and light wetness in Gansu Province increased, while moderate drought, light drought,
and moderate wetness decreased. All drought grades decreased in Qinghai, and wetness
showed an increasing trend except for heavy wetness. Drought and wetness at all grades
in Inner Mongolia increased. In Shanxi, extreme drought and heavy drought decreased,
moderate drought and light drought increased, and all grades of wetness decreased.
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Figure 5. Spatial distribution of drought and wet degrees and grain output per unit area in the Yellow
River basin from 1961 to 2020.

Figure 6. Spatial distribution of drought and wetness degree trends and grain yield per unit area
trends in various provinces and regions of the Yellow River basin.
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3.3. Influence of Drought and Wetness on Grain Yield in the Yellow River Basin
3.3.1. Temporal and Spatial Distribution Characteristics of Grain Yield per Unit Area

Spatially, the grain yield per unit area of the nine provinces in the YRB were generally
highest in Shandong (394470 kg/km2) and lowest in Gansu (233976 kg/km2) (Figure 5).
Over time, the grain yield per unit area in every province of the YRB showed a significant
increasing trend (p < 0.01) since 1961, among which Shandong had the highest increasing
trend and Qinghai had the lowest increasing trend (Figure 6). The average annual growth
rate of grain yield per unit area in each province was 3%.

3.3.2. Influence of Drought and Wet Events on Grain Yield per Unit Area

Based on SPI12 and the grain yield per unit area data, we analyzed the effects of
drought and wetness on grain yield per unit area in the YRB on the annual scale. Because
grain yield was affected not only by drought and wet disasters but also by cultivated land
area, sown area, fertilizer application amount, effective irrigation area, and other factors,
the grain yield per unit area was selected to eliminate the influence of cultivated land
area and sown area on grain yield. Using the fertilizer application amount and effective
irrigation area as control variables, partial correlation analysis was carried out between
drought frequency and grain yield in each province. Using the amount of chemical fertilizer
as the control variable, partial correlation analysis was performed between the frequency
of wetness and the per unit area yield of grain in each province (Table 3). To ensure the
consistency of the data, 1979–2018 was selected as the analysis period by integrating various
data time ranges.

There were obvious regional effects of drought and wetness on grain yield per unit area
(Table 3). During the study period, drought and grain yield per unit area were negatively
correlated in all provinces, among which Inner Mongolia, Shanxi, and Shaanxi had the
higher partial correlation coefficients and passed the significance test at the 0.01 level. With
the exception of Shandong, there was a positive correlation between wetness and grain
yield per unit area, among which Shanxi, Ningxia, and Gansu had the highest partial
correlation and passed the significance test at the 0.01 level. However, in Shandong, Henan,
and Qinghai Provinces, there was little correlation between drought and wetness and grain
yield per unit area. For each province, the partial correlation between wet and grain output
per unit area in Gansu, Qinghai, and Ningxia was higher than that in drought, but the other
provinces showed the opposite trend. Generally, drought had a great influence on grain
yield per unit area, and all grades of drought were negatively correlated with grain yield
per unit area. Wetness had little influence on grain production per unit area, and most
wetness grades were positively correlated with grain yield per unit area.

The effects of different drought and wet grades on grain output per unit area in
different provinces and regions were also different (Table 3). During the study period,
heavy drought had the greatest impact on grain yield per unit area in Shandong (R = −0.401,
p < 0.05); moderate drought, light drought, and light wet all had the greatest influence on
grain yield per unit area in Shanxi (R = −0.411, −0.613 and 0.603, p < 0.01); medium wetness
had the greatest influence on grain yield per unit area in Gansu (R = 0.411, p < 0.01); and
heavy wetness had the greatest impact on grain yield per unit area in Henan (R = −0.383,
p < 0.05). In Gansu, Inner Mongolia, Shanxi, Shaanxi, and Sichuan, light drought had the
greatest impact on grain yield per unit area (R = −0.427, −0.594, −0.613, −0.539, and
−0.342). In Qinghai, moderate drought had the greatest influence on grain yield per unit
area (R = −0.310). In Ningxia and Henan Provinces, light wetness had the greatest impact
on grain yield per unit area (R = 0.414 and 0.389). In Shandong Province, heavy drought
had the greatest impact on grain yield per unit area (R = −0.401).
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3.3.3. Grey Correlation Analysis of Grain Yield per Unit Area and Related Factors

Partial correlation analysis could not sufficiently explain the impact of drought and wet
disasters on grain yield per unit area. To improve persuasiveness, based on the statistical
data on drought and wet frequency, grain yield per unit area, effective irrigation area,
and fertilizer application amount of SPI12 from 1979 to 2018, the grey correlation degree
between grain yield per unit area and each of the above factors in the nine provinces was
calculated, and the grey correlation degree table (Table 4) was obtained.

Table 4. Grey correlation degree between grain yield per unit area and related influencing factors in
Yellow River basin from 1979 to 2018.

Gansu Qinghai Inner Mongolia Shanxi Ningxia Shaanxi Shandong Sichuan Henan

Effective irrigation D 0.9496 0.9629 0.9576 0.9355 0.9542 0.9271 0.9390 0.9363 0.9412
Rank 1 1 1 1 1 1 2 2 1

Fertilizer application D 0.9126 0.9505 0.8667 0.9076 0.8591 0.8878 0.9408 0.9556 0.8431
Rank 2 2 2 2 2 2 1 1 2

Drought D 0.6743 0.6944 0.7170 0.6544 0.6320 0.6966 0.7055 0.6722 0.5964
Rank 5 5 4 5 5 4 4 5 4

Normal
D 0.8739 0.8562 0.8036 0.8401 0.7641 0.8707 0.8411 0.8922 0.7782

Rank 3 3 3 3 3 3 3 3 3

Wetness
D 0.7036 0.7179 0.6816 0.6614 0.6328 0.6739 0.7015 0.6856 0.5924

Rank 4 4 5 4 4 5 5 4 5

Note: D refers to the grey correlation degree; Rank represents the serial number of association degree.

By comparing the grey correlation degree between grades of drought and wetness and
grain yield per unit area in different provinces and regions, we found that the correlation
between drought and grain yield per unit area was highest in Inner Mongolia, and the
correlation between wetness and grain yield per unit area was highest in Qinghai, Gansu,
and Shandong. The correlation between drought and grain yield per unit area was higher in
Inner Mongolia, Shaanxi, Shandong, and Henan Provinces than that under wet conditions.
The conclusion of grey correlation analysis was roughly the same as that of the partial
correlation analysis, verifying the credibility of the conclusion.

Overall, the effective irrigation area and chemical fertilizer application rate had a great
influence on grain yield per unit area, and the effect of drought and wetness on grain
yield per unit area was relatively small. According to the ranking of the correlation degree
between grain yield per unit area and various factors, the correlation degree between the
chemical fertilizer application rate and grain per unit yield was the highest in Shandong
and Sichuan Provinces, and it was followed by the effective irrigation area. The correlation
degree between the effective irrigation area and grain yield per unit area in other provinces
was the highest, followed by the amount of chemical fertilizer (Table 4). The correlation
degree between grain yield per unit area and wetness was lowest in Inner Mongolia,
Shaanxi, Shandong, and Henan Provinces, and it was followed by drought. The correlation
degree between grain yield per unit area and drought was lowest in the other five provinces
and regions, followed by wetness (Table 4).

3.3.4. Grey Correlation Trend between Grain Yield per Unit Area and Related Factors

In 1999, China began to implement the ecological construction project of converting
farmland into forest or grassland. Considering the impact of this measure on agriculture,
the above research period was divided into two stages (1979–1998 and 1999–2018). Based
on the above two periods, the grey correlation degree between grain output per unit area
and the related factors in the nine provinces was separately calculated, and the change
trend of grey correlation degree was assessed (Tables 5 and 6).
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Table 5. Grey correlation degree between grain yield per unit area and related influencing factors in
Yellow River basin from 1979 to 1998.

Gansu Qinghai Inner Mongolia Shanxi Ningxia Shaanxi Shandong Sichuan Henan

Effective irrigation D 0.9510 0.9721 0.9668 0.9226 0.9359 0.9542 0.9138 0.9567 0.9390
Rank 1 1 1 1 1 1 1 1 1

Fertilizer application D 0.9024 0.9460 0.9305 0.8408 0.8529 0.8448 0.9066 0.9328 0.8392
Rank 2 2 2 2 2 3 2 2 2

Drought D 0.7466 0.7024 0.7129 0.5978 0.6718 0.7160 0.6907 0.6784 0.6250
Rank 4 4 5 4 4 4 4 4 4

Normal
D 0.8895 0.8721 0.9131 0.8069 0.7861 0.8550 0.7922 0.8880 0.8298

Rank 3 3 3 3 3 2 3 3 3

Wetness
D 0.7060 0.6525 0.7622 0.5734 0.6133 0.6289 0.6323 0.6696 0.5686

Rank 5 5 4 5 5 5 5 5 5

Note: D refers to the grey correlation degree; Rank represents the serial number of association degree.

Table 6. Grey correlation degree between grain yield per unit area and related influencing factors in
Yellow River basin from 1999 to 2018.

Gansu Qinghai Inner Mongolia Shanxi Ningxia Shaanxi Shandong Sichuan Henan

Effective irrigation D 0.9715 0.9665 0.9707 0.9650 0.9590 0.9393 0.9762 0.9897 0.9711
Rank 2 2 1 2 2 2 2 1 1

Fertilizer application D 0.9790 0.9730 0.9457 0.9657 0.9636 0.9469 0.9772 0.9817 0.9516
Rank 1 1 2 1 1 1 1 2 2

Drought D 0.6573 0.7515 0.8086 0.6391 0.6036 0.6496 0.6408 0.6860 0.6027
Rank 5 5 4 5 5 4 5 5 5

Normal
D 0.8906 0.8859 0.8406 0.8605 0.7948 0.8494 0.8196 0.9065 0.7810

Rank 3 3 3 3 3 3 3 3 3

Wetness
D 0.7203 0.8177 0.6989 0.6787 0.6109 0.6296 0.6611 0.7299 0.6362

Rank 4 4 5 4 4 5 4 4 4

Note: D refers to the grey correlation degree; Rank represents the serial number of association degree.

In general, in the second stage (1999–2018), compared with the first stage (1979–1998),
the influence of the effective irrigation area on grain yield per unit area decreased, and
the influence of chemical fertilizer application on grain yield per unit area increased;
furthermore, the influence of drought on grain yield per unit area decreased, while the
influence of wetness on grain yield per unit area increased.

Combining Tables 2, 3, 5 and 6, we found that drought and wetness in different
provinces and regions had different change trends in the past 40 years, their effects on
grain output per unit area in different provinces and regions could be divided into positive
and negative effects, and the change trend of influence was also different. The drought
in the central and western regions of the YRB, such as in Gansu, Qinghai, and Ningxia,
showed an overall decreasing trend, which had a negative impact on grain production
per unit area, and its influence also showed a downwards trend. However, the wetness
in this area showed an increasing trend, which had a positive impact on grain production
per unit area, and the influence was increasing. In the northern part of the YRB, such as
in Inner Mongolia, drought and wetness showed an increasing trend overall, in which
drought had a negative impact on grain production per unit area, and its influence showed
an upwards trend. Wetness had a positive impact on grain production per unit area, but its
influence showed a downwards trend. In the eastern part of the YRB, such as in Shandong
Province, drought showed an overall increasing trend, which had a negative impact on
grain production per unit area, but its influence showed a downwards trend. The wetness
in this area showed a decreasing trend, which had a negative impact on grain production
per unit area, and its influence was increasing.

4. Discussions

Previous studies have found (Table 7) that legumes are more resistant to drought
and floods [21], dryland crops are severely affected by drought and floods [23], and non-
irrigated crops are more sensitive than irrigated crops to drought. For example, soybean
and maize are most sensitive to drought [36], drought reduces maize yields [37], and
rice is also severely affected by drought and floods [22]. Drought lasted longer at high
altitudes [37]. This paper did not consider the influence of terrain and altitude on drought
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and wetness and did not discuss the response mechanism of different food crops to different
levels of drought and wetness. This represents one inadequate feature of this research and
will be improved in future research.

Affected by various factors, such as topography and climate, different regions have
different drought and flood characteristics (Table 7). For example, flooding is the most
frequent natural disaster affecting Thailand [22], while the most frequent disaster in the YRB
is drought [15,16]. Drought frequency is decreasing in the northern Wadi Cheliff Basin and
increasing in the southern [38]. The drought in southwestern Zambia is significantly worse,
and the drought in northeastern Zambia has been significantly alleviated [39]. Drought has
intensified on the North Island of New Zealand, and the rainy season has weakened [40].
The severity of drought in western Apulia has shown an upwards trend, and the eastern
region has shown a downwards trend [41]. In this paper, we found that drought events
were more common than wet events in the YRB overall, which was consistent with previous
conclusions, but the conclusions regarding the overall trend of drought and wetness and
the characteristics of drought and floods in different seasons were somewhat different from
those of previous studies [13]. For example, some scholars found that drought showed an
increasing trend [7–9], but this paper found that drought showed a decreasing trend, which
is consistent with the conclusions of Wang [10]. Predecessors found that the frequency of
drought in spring and summer was higher than that in autumn and winter [9,11,42,43].
However, this paper found that the frequency of drought in spring and autumn was greater
and that in summer was the lowest, which may be related to the difference in the drought
index used. The conclusion that the wetness in the YRB has tended to be aggravated is
consistent with that of previous studies [18].

Table 7. Research status and important conclusions of drought or flood and their impact on agriculture.

Literature Study Area Method/Index Important Conclusions

[21] Malawi household-level data

Crop production outcomes were severely hit by
both floods and droughts, with average losses

ranging between 32 and 48%. Legume
intercropping provided protection against both
floods and droughts, while green belts provided

protection against floods.

[22] Mun River Basin in Thailand SWAT and HEC-RAS

Thailand suffers from periodic floods in the
rainy season and droughts in the dry season.

Flood is the most frequent natural disaster that
has affected Thailand. Drought and flood have
adverse effects on rice planting in this region.

[23] Southeast Asia PDSI

Rainfed crops were severely affected by
droughts and floods. In The past 40 years, the
number of droughts and floods has increased.

Future climate change may lead to more serious
droughts and floods in the region.

[36] the United States SPI and SPEI

Among all crops, soybean and corn grain are
most sensitive to drought. Non-irrigated crops

are more sensitive to droughts than the irrigated
crops, particularly in severe drought conditions.

[37] Veracruz, Mexico SPI

Between 1980 and 2018, drought intensified, with
nearly 50% of the region experiencing drought.

The drought reduced the yield of corn. Droughts
are more persistent at higher elevations.
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Table 7. Cont.

Literature Study Area Method/Index Important Conclusions

[38] The Wadi Cheliff Basin SPI

The Cheliff Basin is at risk for extreme wet
events as well as dry events. The drought
frequency shows a downward trend in the

northern part of the basin and an upward trend
in the southern region.

[39] Zambia, South Africa SPI

Compared with the northern region, the drought
felt in the southern region is more severe. The

drought has obviously increased in the
southwest and decreased in the northeast. Both
annual and seasonal droughts have increased.

[40] New Zealand SPI
In the North Island, SPI showed an overall

downward trend, indicating that the drought
intensified and the rain period weakened.

[41] Apulia, Italian SPI and RDI
The drought severity in the western part of

Apulia shows an upward trend, while that in the
eastern region shows a downward trend.

[44] China Statistic
Drought and flood adversely affect crop

production. Drought, however, is affecting a
larger cropland area than flood.

[45] the Modder River basin,
South Africa PDSI

The most severe drought episodes occurred
during the period 1992–1995. The number of

extreme and moderate drought events showed
significant increasing trends during the

five decades.

[46] Poland SPI

The frequency of meteorological droughts in the
studied period amounts to 30.0%. No significant

increase in the frequency and intensity of
meteorological droughts over time

was observed.

[47] Global SPI

Yield loss risk tends to grow faster when
experiencing a shift in drought severity from

moderate to severe than that from extreme to the
exceptional category. Temperature plays an

important role in determining drought impacts,
through reducing or amplifying drought-driven

yield loss risk.

This Paper the Yellow River basin SPI

The occurrence frequency of drought was greater
than that of wetness in time, drought frequency
decreased, and wetness increased. Spatially, the

frequency of drought in all provinces except
Shanxi was higher than that of wetness. The

grain yield per unit area of the YRB was
generally highest in Shandong and lowest in

Gansu. The influence of drought on grain yield
per unit area decreased, while the influence of
wetness on grain yield per unit area increased.

According to Figure 5 and Table 3, the frequency of drought in Gansu, Qinghai, and
Ningxia Provinces is higher than that of wetness, but the impact of wetness on grain yield
per unit area is higher than that of drought. The reason for this is that the development
of irrigated agriculture in the above three provinces and regions has established complete
drought prevention and control facilities, which have reduced the impact of drought on
grain production, while lighter wetness events have a greater beneficial impact on grain
production, which is consistent with the conclusion of Chen [48]. Extreme wetness can lead
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to flooding and greater damage to agriculture, but overall, drought affects larger areas of
farmland than do floods [44].

The results of the correlation analysis between drought and wetness and grain yield
per unit area showed that drought had a weak influence on Henan and Shandong, which
indicated that the measures to address drought in these two agricultural provinces are
relatively mature. Combined with Figures 5 and 6, it can be seen that the drought in
Inner Mongolia has increased in the past 60 years, and Shanxi had the highest frequency
of extreme drought, which would have a negative impact on the grain output per unit
area of the two provinces. Under the influence of human activities, the impact of drought
and wetness on grain production per unit area will be weakened; however, the impact of
wetness on grain production will change from a negative to a positive impact, which will
alleviate the overall drought disaster situation in these provinces and regions and have
a positive impact on food production, such as in Gansu, Shanxi, and Ningxia. However,
there are many extreme wetness events in Shandong, which have a negative impact on
grain production per unit area.

With the rapid development of science and technology in China, the level of agri-
cultural modernization has improved, and a series of measures, such as building water
conservancies, flood storage irrigation, irrigation from the Yellow River, and the cultivation
of drought-resistant improved varieties, have enhanced the adaptability of food crops to
drought, but the enhancement of evapotranspiration caused by global warming has made
the drought intensity and yield loss of food crops still higher than the previous values
under the same precipitation conditions. Additionally, the effective utilization of water has
enhanced the beneficial impact on grain output, but the different planting structures in
different regions cause wetness to have different impacts. The provinces and regions should
adjust the agricultural planting structure according to the characteristics of drought and
wetness in the different regions and according to the local conditions. It is also necessary
to make overall planning in all provinces, regions and units, build reservoirs in the rainy
season, and take water for irrigation in the dry season to reduce the adverse impact of
drought on agriculture and make full use of the positive impact of wetness on agriculture.

5. Conclusions

This paper analyzed the spatiotemporal distribution of drought/wet events in the
YRB and the impact of drought/wetness on grain yield per unit area based on the SPI of
the YRB from 1961 to 2020. This information was combined with the data on grain yield per
unit area, effective irrigation area, and fertilizer application amount to draw the following
conclusions.

On the seasonal scale, the YRB experienced the most drought events in spring. The
most frequent occurrence of wetness occurred in winter. The frequency of drought in the
four seasons showed a downwards trend, and the wetness showed a decreasing trend in
autumn and winter and an increasing trend in spring and summer. On the annual scale,
the frequency of drought in the YRB was greater than that of wetness, but the frequency of
drought was decreasing, while that of wetness was increasing. On the spatial and seasonal
scales, the drought and wet characteristics of each province were different. For example,
Gansu was prone to drought in summer; Qinghai was prone to wetness in summer; Shanxi
was prone to drought in winter; and Henan was prone to drought in spring and autumn
but was wet in spring, autumn, and winter. On the spatial annual scale, the frequency of
drought was higher than that of wetness in all provinces except Shanxi in the last 60 years.
However, generally speaking, all provinces and regions were normal. Drought should
an overall increasing trend in Inner Mongolia, Shandong, Sichuan, and Henan Provinces,
while wetness showed an overall increasing trend in Gansu, Qinghai, Inner Mongolia,
Ningxia, Sichuan, and Henan Provinces.

The grain yield per unit area of the nine provinces in the YRB was highest in Shandong
and lowest in Gansu. Since 1961, the grain yield per unit area of each province in the
YRB has shown a significant growth trend (p < 0.01). There was a negative correlation
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between drought and grain yield per unit area in each province. With the exception of
Shandong, there was a positive correlation between wet and grain yield per unit area. Light
drought had the greatest impact on grain output per unit area in Gansu, Inner Mongolia,
Shanxi, Shaanxi, and Sichuan Provinces. Moderate drought had the greatest influence
on the grain output per unit area in Qinghai. Light wetness had the greatest impact on
grain yield per unit area in Ningxia and Henan Provinces. Heavy drought had the greatest
impact on the grain output per unit area in Shandong. The negative impact of drought on
grain production per unit area in Inner Mongolia showed an upwards trend, but it was
declining in other provinces. The negative impact of wet disasters on grain output per unit
area in Shandong showed a downwards trend. The positive impact of wetness on grain
production in Inner Mongolia showed a downwards trend, while other provinces showed
an upwards trend.

The above conclusion can provide guidance for the prevention and control of drought
and wet disasters in the YRB and the adjustment of agricultural planting structures in
various provinces. This research is of great significance for reducing food production
losses and promoting high-quality development of the YRB. In the future, the frequency
of drought and wetness in the YRB may continue to decrease and increase, respectively.
Based on the above research, it is suggested that the government increase investment in
scientific research while building reservoirs, support agricultural colleges and universities
in selecting good crop varieties and improving irrigation techniques in terms of policies and
funds, and publicize and popularize fine varieties and advanced technologies to farmers in
a timely manner.
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Abstract: Due to climate change, extreme floods are projected to increase in the 21st century in Europe.
As a result, flood risk and flood-related losses might increase. It is therefore essential to simulate
potential floods not only relying on historical but also future projecting data. Such simulations can
provide necessary information for the development of flood protection measures and spatial planning.
This paper analyzes the risk of compound flooding in the Danė River under different river discharge
and Klaipėda Strait water level probabilities. Additionally, we examine how a water level rise of 1 m
in the Klaipėda Strait could impact Danė River floods in Klaipėda city. Flood extent was estimated
with the Hydrologic Engineering Center’s River Analysis System (HEC-RAS) and visualized with
ArcGIS Pro. Research results show that a rise in the water level in the Klaipėda Strait has a greater
impact on the central part of Klaipėda city, while that of the maximum discharge rates of the river
affected the northern upstream part of the analyzed river section. A sea level rise of 1 m could lead to
an increase in areas affected by Danė floods by up to three times. Floods can cause significant damage
to the infrastructure of Klaipėda port city, urbanized territories in the city center, and residential
areas in the northern part of the city. Our results confirm that, in the long run, sea level rise will
significantly impact the urban areas of the Klaipėda city situated near the Baltic Sea coast.

Keywords: Baltic Sea level rise; compound flood; flood risk; climate change

1. Introduction

Flood hazards and accurate economic risk assessments for the 21st century should
not be limited to past floods or monitoring. To develop an accurate future flood risk
assessment, it is necessary to assess all factors related to flood hazards in the context of
climate change. The vulnerability of coastal river reaches is growing due to the increasing
number of extreme hydrometeorological events caused by climate change [1–5]. Thus, the
assessment of compound flooding with respect to climate change scenarios in coastal river
reaches has become more relevant.

Scientists are increasing their focus on different types of floods and their causes in
specific areas. The collision of physical oceanographic, hydrological, and meteorological
factors can cause compound floods [5]. Compound floods are one example of a combination
of compound weather and climate events caused by many climatic factors or hazards [6].
It is important to determine the influence of different components on the hydrometeoro-
logical event. Lack of consideration for all factors that can contribute to the occurrence
of compound flooding may result in hazards being underestimated [7]. A compound
flood can occur when two hydrometeorological events take place at the same time or with
offset times but maintaining joint probability. In coastal river reaches, compound flooding
occurs when high river discharge coincides with the sea level of a storm surge. During this
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combination, either the river flow becomes blocked or a back wave is formed; in both cases,
in the lower reaches, water level rises and increases the risk of a flood [3,4]. Individual
components can be non-extreme, but their general interdependency can cause extreme
situations [8]. In order to determine the anthropogenic effects on different characteristics on
compound floods, these flood types require a systematic approach [6,9]. Compound floods
are common in coastal areas, but it is difficult to analyze them on a large scale; therefore, it
is recommended to analyze such type of floods on a local scale [10], because topography
elements and flood protection factors must be included in the analysis [11]. At the regional
scale, smaller rivers are insignificant, but such rivers can cause a considerable risk at the
local scale. All studies at the regional European scale cover data only from major river
stations and are included in a database [12] that contains data on historical floods in Europe
since 1870. Akmena–Danė River floods are significant for Klaipėda city and local people,
and they are expected to increase both in size and frequency by the end of the 21st century.

Due to rising mean temperature in winter and decreasing snow cover in the major
river basins of the Baltic countries, the flow is predicted to decline [13,14]. However, smaller
local rivers are usually affected by a large amount of precipitation. Therefore, such results of
studies show the necessity of research on smaller local rivers. The probability of compound
flooding from precipitation and storm surges in the Baltic Sea is projected to increase [11].
Increases in flood events in Baltic countries was also confirmed by flood change analyses at
the regional European scale based on global warming scenarios if global temperature rise
by 1.5, 2, and 3 ◦C [15]. It was concluded that hydrological changes are affected by the level
of warming, but that there are still uncertainties about the magnitude and location of the
changes [16]. These uncertainties lead to inconsistencies in flood risk forecasts; therefore, in
order to reduce flood risk, it is recommended to focus on mapping current and future risks
and vulnerable hotspots and to improve them [17].

The hydrological regime of Lithuanian rivers is mainly changed by winters that
are becoming warmer, shorter, and less snowy; thus, winter flow increases, while in
spring, summer, and autumn, flow trends in rivers have been declining significantly
over the past 50 years [18]. The hydrological regime is also affected by heavy rainfall
(more than 30 mm per day), and in western Lithuania, the main source of river water is
precipitation [19]. The number of heavy rainfalls, with more than 20 and 30 mm of rain per
day, is projected to increase in the 21st century according the CCLM (COSMO—climate
limited-area model) [20]. Flash floods of small Lithuanian rivers are affected by extreme
meteorological phenomena such as dangerous heavy rain falls (rainfall 50–80 mm in 12 h or
less) or catastrophic rainfall (more than 80 mm in 12 h or less) [21]. They are most common
in Lithuania due to the sliding and undulating cold fronts or strong convection inside
the air mass [22]. The average precipitation until 2035 may increase by 1.6–4.0% annually,
while the highest amounts are predicted in western Lithuania [23]. The main changes in
annual precipitation and evaporation will occur in the following period, with an increase
in evaporation of 41.1% and an increase in precipitation of 15.1% [24]. Spring floods are
expected to decrease in the future, but rain-induced floods will be more frequent [25].
Extremely heavy rains were the cause of devastating floods in the summer of 2010 in
Central and Eastern Europe [26] and in Western Europe in the summer of 2021 [27].

In cities that are vulnerable to sea level rise, the flood hazard assessment should
not consist of a single river or sea flood hazard assessment but should include both [28].
Long-term changes in sea level are caused by climate change, changes in water temperature,
melting of glaciers, tectonic movements of the Earth, changes in ocean circulation, accumu-
lation of sediments, and other factors [29–31]. Due to the rising air and water temperatures,
the number of days with ice cover on the Baltic Sea coast decreases, which means that
with different synoptic barrier structures and stronger winds, water can rise freely on
the seacoast. Perennial changes in wind direction affect the fluctuations in the Baltic Sea
water level [32]. Increased perennial southwesterly winds and stronger westerly winds
lead to higher water levels on the southeast coast of the Baltic Sea [25,33,34]. Short-term
sudden rises in water level in the Klaipėda Strait is typical during the cold season due to
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the long-term prevailing solid westerly winds (more than 17 m·s−1) or raging hurricane
winds (more than 32.7 m·s−1). Such winds are characteristic of emerging cyclones between
southern Scandinavia and northwestern Russia where the study territory was located.

Changes in the water level in the Baltic Sea are affected by several composite factors:
atmospheric dynamics, rising global eustatic water level (thermal expansion), inflows
waters from rivers and the North Sea, and glacial isostatic uplift of the Scandinavian
continent and the slow sinking of the old European continental plate. In contrast to
tide-dominated basins, extreme sea levels in the Baltic Sea are mainly due to wind [35].
While long-term sea level changes are caused by glacial isostatic adjustment of tectonic
movements [36,37]. Historical glacial isostatic adjustment at Scandinavian land uplift was
perceived at the coast as a drop-in raise sea level. Sea level change was one of the main
criteria that help indicate land crust movement. Land uplift is stronger in the northern
Baltic Sea, attaining rates close to 10 mm year−1, whereas in southern Baltic Sea it is close
to equilibrium with some areas sinking by about 1 mm year−1 [35]. The same resource
states that analysis of tide gauge measurements corrected the vertical land movements
and indicate that Baltic Sea level may have risen during the 21st century at rates of around
1.5 mm year−1, which are close to the rate of global sea level rise. Still, the water level is
not evenly distributed throughout the sea, and sea level does not rise in a globally uniform
manner. The Baltic Sea is a sufficiently closed continental sea that is highly dependent on
the inflow of river waters and atmospheric circulation.

The rise in water levels in the Klaipėda Strait, which connects the Baltic Sea and the
Curonian Lagoon, is a direct cause of changes in the water level of the Danė River. The
Danė River valley is one of the priority flood risk areas. The following conclusions are
presented [34,38] from the available data based on past floods. The Akmena–Danė River,
which flows into the Curonian Lagoon, is the closest to the Baltic Sea coast, and its mouth is
located in the old town of Klaipėda city. Due to the seaport, infrastructure is located along
the coast of the Curonian Lagoon, and the Danė River divides the city into its northern and
southern parts. There are terrain depressions in the urban area that can be easily flooded
when sea levels rise. The shore areas of the Danė and Smeltė rivers are distinguished as
the most sensitive to floods in Klaipėda [39]. The risk of floods is higher in the western
part of Lithuania due to the threat posed by the Baltic Sea. Floods in estuaries lead to
extremely high water levels, which pose a greater threat to urbanized areas situated close to
shores [40]. A flash flood regime characterizes western Lithuania’s rivers and significantly
impacts the fluctuations in water levels in the Curonian Lagoon [41]. Fluctuations in the
water level of rivers flowing into the Curonian Lagoon are also determined by changes
in the water level of the Baltic Sea and the Curonian Lagoon. With prevailing cyclonic
circulation and a west wind direction [42], wave floods often also form from the side of
the Baltic Sea and Curonian Lagoon. Due to the rising seawater level and lower river
flow, according to 21st century climate change scenario (RCP8.5 scenario), it is likely that
the inflow of Baltic Sea water through the Klaipėda Strait into the Curonian Lagoon will
increase from 8.0 to 11.0 km3 in the near future [24].

According to the long-term water level data of Klaipėda Strait (1898–2002), the water
level on the Lithuanian coast has risen by approximately 14 cm in the meantime [43]. From
1961 to 2008, the water level in the Curonian Lagoon rose by 18 cm [44]. The sudden jump
in the rise was evident in the 1980s and 1990s. Since 1960, the average water level has
been rising at a rate of approximately 3.0 mm year−1 [42]. Since 1898, the water level
in the Klaipėda Strait has risen by approximately 14.7 cm; in the Curonian Lagoon, the
average water level is likely to rise by 27–63 cm [42]. The increased sea level variation of
the southeast Baltic Sea can be explained partly by global sea level rise but also by changes
in atmospheric circulation [42].

It is predicted that in the 21st century, the average water level in the eastern part of
the Baltic Sea (including the Lithuanian coast) coast during winter may increase from 40 to
100 cm [45]. The projected winter mean sea level changes for 2071 to 2100 are generally
larger than the biases of the control simulations [45], and a projected sea level rise for
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2090–2099 relative to 1990–1999 could reach from 50 to 100 cm [35]. Due to the change in
climate, in the cold period of the year, the transport of western air masses prevails more
often, the duration of storms and stronger winds increases [46], a result of which is that the
water level in the Curonian Lagoon has been rising by 3 mm year−1 since the 1960s [44].
More frequent and more intense hydrometeorological extreme events are also predicted.
The floods of the Nemunas River are also significant for this area—as a result, the flood
level can rise to 217 cm [47]. Therefore, this study aimed to assess the impact of sea level
rise on the risk of compound floods of the Danė River in the territory of Klaipėda city.
For assessment, we used the probabilities of the water level of the Klaipėda Strait and the
discharge of the Danė River, where the Baltic Sea level rose by 1 m due to climate change.
The assessment of the sea level rise impact on the future compound flood risk of the Danė
River is helpful for flood risk mitigation in Klaipėda city, the adoption and application of
infrastructure solutions, and the identification of the necessary flood protection measures.

2. Materials and Methods

2.1. Study Area Description

A flood risk assessment of the Danė River is relevant, as the river flows through
the city of Klaipėda, where the Lithuanian seaport, production, and farm infrastructure,
and residential areas are located. Extreme situations during storms form when the Danė
River discharge increases due to heavy rainfall, and the water levels in the Baltic Sea
and the Curonian Lagoon rise due to the presence of wind floods—water rushes along
the riverbanks that flood the city’s streets. Flood risk maps help to assess the extent of
inundated areas and the social or economic damage that may be caused to the city of
Klaipėda and its surroundings.

The Akmena–Danė River flows into the Klaipėda Strait, which connects the Curonian
Lagoon with the Baltic Sea (Figure 1). From the source to Klaipėda city, the river is called
Akmena, further to the Curonian Lagoon–Danė (formerly named Dangė, and renamed
only in the 1970s). The human economic activities affected by the lower reaches of the Danė
River are significant due to the long-running intensive shipping, navigation, dredging,
and berth reinforcement. The basin of the Akmena–Danė River covers 580.2 km2 [48] and
is between the rivers Sventoji and Minija. The length of the river is 64 km [49], and it is
one of the longest rivers belonging to the Lithuanian marine coastal river basin. In the
lower reaches, the Danė River spreads up to 40–50 m, the depth is approximately 1–3 m,
and in the mouth, it is up to 7 m deep. In the mouth of the Akmena–Danė River, the
average annual discharge is approximately 7.6 m3/s, the annual runoff is 0.24 km3, and
approximately 700–800 mm of precipitation falls into the basin [48]. The Akmena–Danė
River water regime and extreme floods are affected by human activities and climate change.

In the upper and middle reaches, the river flows in an erosive valley rich in boulders.
This is why it is called Akmena (in Lithuanian—a stone). The average slope of the river
is 0.88‰ (cm km−1), and downstream (20 km from the mouth) it decreases to 0.08‰.
Therefore, flooding of the Curonian Lagoon is often observed in Klaipėda. The width of
the river in the studied territory of Klaipėda is 50–70 m. The valley is filled with fine sand
(Figure 2), and the width is approximately 600 m (ranging from 340 to 1640 m). The river
flows within the landscape formed during the Baltic Stage of the Last Glacial. The glacial
loam (till), fine sand, and various clayey sand are common for surficial deposits in the
coastal lowland [49]. The Akmena–Danė River in the territory of Klaipėda, before flowing
into the Curonian Lagoon, cuts glacial sediments of the Last Glacial, glaciolacustrine
sediments of the Baltic Ice Lake, and marine sediments of the Littorina Sea (Figure 2). The
Akmena–Danė rivers were formed during the deglaciation phase of the Late Glacial and
the beginning of the Holocene. Groundwater is at a depth of 1–3 m below the surface in
the river valley and at a depth of 3–5 m in the surrounding areas [49].
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Figure 1. The study area: southeastern part (SE) of the Baltic Sea (a); the Klaipėda Strait, which con-
nects the Curonian Lagoon with the SE Baltic Sea and the Akmena–Danė River (b); Klaipėda city (c).

Figure 2. Boundary of the Last Glacial (a); Quaternary-type sediment of the Danė River shore area (b) [49].

When assessing the risk of compound floods for the city of Klaipėda, the riverbanks
located in the city by the river are considered (Figure 3). When constructing or recon-
structing river embankments, it is important to take into account their height and to assess
the possible maximum level of flooding. The artificial embankment reduces the risk of
flooding to the city, and the collapsing shores increases them. The Danė River flood impact
on Klaipėda was analyzed, taking into account two different territories: the central and
northern parts of Klaipėda city. In the central part of the city is located the Old Town
district, the area near the Old Town and the Industrial Quarter. In the northern part of the
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city, along the river, there are quarters of private residential houses. Most of the residential
houses and infrastructure in these areas are located in the lower terraces of the Danė River
near the floodplain. In the northern part of the Klaipėda city, the bank of the river is natural;
therefore, they do not have protective shoreline fortifications that protect them from higher
flooding of the river. The Industrial Quarter is also situated where embankments are
natural. Therefore, these territories are sensitive to river floods during spring, when there is
the highest probability for compound flooding and flood risk situations. In the central part
of Klaipėda city, most of the riverbanks are artificial, but the compound flood probability
is higher.

Figure 3. Danė River riverbank types in the central and northern parts of Klaipėda city.

The risk of flooding in the city also depends on the depth of the river and the speed of
the water flow. In the central part of Klaipėda city, the riverbed was artificially straightened
and deepened allowing navigation and recreation; therefore, higher water flow velocities
are formed here. The riverbed in the northern part is shallower than in the city center.
The northern part of the city is more sensitive to increasing Danė River discharge, which
results in floods in the Danė valley. The water would spill the most here, because the
river meanders in this place the most and, here, the river speeds are low—up to 0.5 m·s−1.
Therefore, heavy rains could lead to a faster rise in the water level of the Danė River. The
terrain has a significant impact on the spread of flood water. In the northern part of the city,
there is a sudden rise in the terrain behind the Danė valley and, therefore, only the valley is
flooded. The height of the terrain at the mouth of the river is low. There is an increasing risk
of tidal waves in the city center as the water rises and the height of the artificial riverbank
is exceeded.
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2.2. Sea Level Rise at the Klaipėda Strait

The long-term effects of sea level change due to ongoing climate change are being felt
on the southeast coast of the Baltic Sea and in the Curonian Lagoon. Water level data from
the Klaipėda Strait Hydrographic Station in 1902–2018 were used to determine long-term
changes in water level. Regression coefficients for mean and maximum water levels were
calculated using linear trends. The rise in water level over the same period of 30 years was
compared. The rising trends of the water level helped to confirm the predictions [35,50]
that the water level in the Klaipėda Strait may rise by approximately 1 m by the end
of the 21st century. Water level data were obtained from the Environmental Protection
Department of the Ministry of Environment of the Republic of Lithuania, which carries out
state monitoring of surface waters.

2.3. Development of Flood Scenarios

We created eighteen compound flood scenarios (Figure 4) in the study area combining
Danė River discharge with the water level in the Klaipėda Strait and climate change effect
on Baltic Sea water level rise: nine scenarios with historical water levels in the Klaipėda
Strait and nine scenarios if the water level rose 1 m due to climate change.

Figure 4. Components of the compound Akmena–Danė River flood scenarios in Klaipėda city.

For the scenarios, we used hazard data calculated during the EU Floods Directive’s
implementation [34,47]. The mean historical water level in the Klaipėda Strait is 0 m in the
Baltic Sea height system (BS), the 10% probability (10-year water level) water level was
1.4 m (above BS); the 1% probability (100-year water level) water level was 2 m (above
BS) [47]. A 10% water level probability in Curonian Lagoon is caused by severe storms in
the Baltic Sea and the inflow of seawater into the lagoon, and this is the high probability
that water levels can occur, on average, 1 time in 10 years. A 1% water level in the Curonian
Lagoon probability is equal to 2 m according to the Baltic Sea level elevation system, which
occurs in extreme situations when a strong storm forms in the Baltic Sea, westerly winds
prevail at the mouth of the Danė River, and heavy rainfall fall occurs. Then, the water of the
Danė River cannot flow into the lagoon and can rise even higher. This is a low probability
water level that can occur, on average, 1 time in 100 years.

We made the hypothesis that due to climate change, the mean sea water level in this
southeastern part of the Baltic Sea, including in Curonian Lagoon, would rise by 1 m
(Figure 2). After the addition of 1 m, the mean, 10%, and 1% probability water levels were,
respectively, 1.0, 2.4, and 3.0 m.
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A Klaipėda Strait water level rise of 1 m is likely only from a long-term perspective of
the 21st century. Based on climate change scenarios, approximately a 1 m higher mean sea
level is close to the high-end scenario simulation results at the end of the 21st century [51,52].
Global climate models project that the rise in GMSL during the 21st century (i.e., in 2100
relative to the period 1995–2014) will likely (66% confidence) be in the range of 0.28–0.55 m
for a very low emissions scenario (SSP1–1.9), 0.44–0.76 m for an intermediate emissions
scenario (SSP2–4.5), and 0.63–1.02 m for a very high emissions scenario (SSP5–8.5) [52].
Estimates for global mean sea level rise in the 21st century are 61–110 cm according to a
very high emissions scenario (RCP8.5) [53,54].

The mean annual maximum discharge of the Danė River is 59 m3/s, a 10% probability
(10-year flood) flood peak discharge of is 110 m3/s, and a 1% probability (100-year flood)
flood peak discharge of is 156 m3/s [34]. We made an assumption that river discharge in the
future will remain the same as in the past. This assumption might not reflect the baseline
real hazard changes, but we used it to highlight the effect of sea level rise on compound
flood risk.

2.4. Model Approach

We employed the well-known and widely used HEC-RAS 5.0.4 (Hydrological Centers
River Analysis System) hydraulic model to create compound flood maps for each scenario.
For each scenario, the combination of Danė River discharge and water level in the Klaipėda
Strait was used as the upper and downstream boundary conditions in the model. We used
the 2D version of HEC-RAS to more accurately estimate inundated areas in the wide valley
of the Danė River’s lower reaches.

The HEC-RAS 2D is an unsteady model; thus, we continuously increased river dis-
charge in the upper cross-section of the model over a period of 14 days from 10 m·s−1 to
the particular scenario discharge and kept it constant at this value until the flooded area
reached its maximum extent. The model was created using a Danė River valley digital
terrain model, which was created using Lidar technology for implementation of the EU
Floods Directive and provided by the Lithuanian Environmental Protection Agency [55].
The grid size of the digital surface model of the river valley was 1 × 1 m, the root mean
square error of the vertical position was not more than 0.15 m, and the point density was
approximately 6–7 per 1 m2.

Flood risk maps of the inundated areas of the Danė River were prepared using spatial
analysis methods and ArcGIS Pro 2.9.0. software to assess the possible negative impacts
related to floods on the city of Klaipėda, its environment, residential areas, and buildings.
Risk maps of short-term fluctuations in the water level of the Danė River (with and without
the impacts of climate change) and the georeferenced base cadastral spatial data set were
used for flood risk assessment. Cadastre data and information are collected and stored
by the state using the Lithuanian coordinate system, LKS-94, and in the Lithuanian state
altitude system, LAS07. According to the attribute information of this cadastre and the de-
scriptions of the values of the attribute fields, the layers of areas, streets, and buildings were
selected using the Select Features tool, and they were processed, separated, or combined to
obtain new layers for flood risk analysis in Klaipėda.

3. Results

The Baltic Sea level is connected with the continuous effect of external and internal
forces related to wind stress, atmospheric pressure, and water density changes or water
balance constituents. When the perturbing forces stop, the masses of water return to
equilibrium [56,57]; however, climate change affects the conditions of stability. For a long
time, climate change has had a significant impact on water level changes on the southeast
coast of the Baltic Sea and sea–lagoon water transitions zone conditions. Recently, the
component of water balance, which consists of the inflow of seawater into the Curonian
Lagoon, has been increasing [24,58]. The Baltic Sea’s average and extreme sea level rise
could create conditions for seawater inflow into the lagoon more frequently.
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The impact of the Klaipėda Strait’s (Figure 1) short-term sea level changes on the water
level variation of the Danė River is particularly significant, as the inflow from the strait
affects the river estuary and the lower reaches. According to existing water level data on
the Klaipėda Strait (1902–2018), three extreme water level and one catastrophic water level
events in the Klaipėda State seaport water area were identified. All cases were related to
mighty storms in the Baltic Sea that lasted for approximately 1–3 days. The highest water
level rise was recorded on 17 November 1967 and 4 December 1999, when accordingly,
storm and wind surges exceeded catastrophic water levels (reaching 186 and 165 cm above
sea level in the Baltic altitude system). Empirical calculations showed that in the Klaipėda
Strait, the rise of the water level above 110 cm is expected 2.16 times in 10 years, and a
rise of 140 cm is expected 0.52 times in 10 years. Moreover, a rise above 160 cm is likely
0.21 times in 10 years (approximately once in 50 years) [32]. Due to the rains that started in
September 2017, the Akmena–Danė River valley was flooded, and the elevated water level
lasted for 127 days [25]. At the end of the century, daily rainfall is projected to increase the
most for the seaside and Žemaičių Highlands [20,39,59]; therefore, such floods are likely to
increase in the future.

The water level in Klaipėda Strait has changed and increased during the whole
(1902–2018) observation period, increasing by 21 cm (Figure 5). Comparing the regression
coefficients of the linear trends of the water level change, we see that the rate of change in
the water level intensifies: (a) 1902–2018: 0.18 mm year−1, R2 = 0.44; (b) 1902–2000: 0.17 mm
year−1, R2 = 0.31; and (c) 1961–2000: 0.40 mm year−1, R2 = 0.32. In the period from 1961 to
2000, the water level rose by approximately 16 cm. From 1902 to 2018, higher than normal
water levels prevailed in the Klaipėda Strait. The increase in mean sea level contributed to
a fraction of the total loss due to marine-induced hazards in the river’s mouth, reaching
extreme meteorological and hydrological conditions.

Figure 5. Mean and maximal sea level change (cm, in the BS—Baltic Sea height altitude system) in
the Klaipėda Strait, 1902–2018 (maximum water level rise trend, R2 = 0.13).

With the mean water level of the Curonian Lagoon and rising spring floods or flash
floods, the water in Klaipėda will spill only in the area where there is no artificial riverbank,
at the turn of the riverbed to the north (Figure 6). Higher floods in the Danė valley would
occur at a mean water level in the Klaipėda Strait and with the intensification of the Danė
River discharge (10-year flood). There would be more areas inundated during the 10-year
or 100-year water level with mean annual maximum discharge. The city center is more
vulnerable during events when there is a 100-year water level. Flood risk in the central
part of Klaipėda city increases with the rising water level of the Curonian Lagoon and in
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Klaipėda Old Town and the Industrial Quarter when the water level rises during stronger
storms (with a 10-year flood). River flow speeds of up to 3 m·s−1 are formed, as the riverbed
in the central part of Klaipėda is equipped with an artificial embankment, straightened,
and deepened for navigation. Wind-driven floods often form at the mouth of the Danė,
especially during storms with western and southwestern winds prevailing when water
from the Baltic Sea is pushed through the Klaipėda Strait into the Curonian Lagoon. Due to
the westerly winds on the southeast coast of the sea, a wind-driven flood is also formed, so
the water of the strait floods the mouth of the Danė and forms an affluent into the river.
Water cannot flow freely and floods Klaipėda Old Town.

Figure 6. Inundated areas according to three river discharge probabilities (i.e., mean annual maxi-
mum, 10-year flood, and 100-year flood) at each water level of the Klaipėda Strait, where the mean
water level is 0 m, the 10-year water level is 1.4 m, and the 100-year water level is 2 m.

The research shows that the central part of Klaipėda city is especially sensitive to
changes in water levels of the Curonian Lagoon, and the northern part is sensitive to the
Danė River’s discharge rates. In Klaipėda city, the greatest hazard of compound floods
would occur if the water level increased by 1 m due to the climate change impact. The
maps (Figure 7) represent three river discharge probabilities (the same as in Figure 6) at
each water level of the Klaipėda Strait affected by climate change, where the mean water
level is 1 m, 10-year water level is 2.4, and 100-year water level is 3 m. If the water of
Klaipėda Strait were to rise by 1 m due to the effect of climate, a large part of the Old Town,
the Port Quay, and industrial areas would be flooded in the central part of the city. The
rising water level of the Klaipėda Strait during storms due to the wind and more rainfall
would raise the water level of the Danė River faster; then, large areas of the city with all
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the infrastructure would be inundated. According to the analyzed scenarios, it can be seen
(Figure 7) that if the water level in the Klaipėda Strait rises more than 2 m (10-year water
level), water would flow into the river valley. If the water level in the Klaipėda Strait rises
1 m, the likelihood of an extreme situation (corresponding to a 100-year water level) due
to wind gusts into the Danė River, wind-driven floods of stronger storms, or hurricanes
may increase.

Figure 7. Inundated areas with climate change impact according to three river discharge probabilities
(i.e., mean annual maximum, 10-year flood, and 100-year flood) at each water level of the Klaipėda
Strait, where the mean water level is 1 m, 10-year water level is 2.4 m, and the 100-year water level is
3 m.

At the mean annual maximum Danė River discharge, the floods of the Danė River
without climate change impact are dangerous to residential quarters in the northern part of
the city (Figure 8). Klaipėda Strait water level rise increases the risk to southern parts of the
city. Modeled scenarios with mean annual maximum Danė River discharge and climate
change impact showed flood risk increment to southern part, especially when windstorm
sea surge dominates (10-year or 100-year water level). Floods would be dangerous to the
center of Klaipėda city if the water level of the Klaipėda Strait rises. If the water level at
Klaipėda Strait reaches a 10-year and 100-year water level, the city center would be at high
risk of flooding. The most affected areas of the town would be the Old Town, the northern
Cape, the cruise ship terminal, Danė Square, and the Industrial Quarter and the factories
therein. The rise in flood surges would also cause damage to a couple of residential quarters
in the northern part of Klaipėda city.
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Figure 8. Inundated areas with and without climate change impact according to Klaipėda Strait water
level scenarios when the Danė River discharge is at the mean annual maximum (59 m3/s).

In order to assess the risk of floods in the city of Klaipėda, it is important to identify
inundated different types of areas by storm surges. Therefore, in the analysis of flood risk
in the city, two groups of territories were analyzed: built-up areas and undeveloped areas.
The group of built-up areas also includes industrial areas, stadiums, and power substations
exposed to flood risk areas. Non-built-up areas include meadows and pastures, ponds,
swamps, forests, trees, arable land, and unused land.

Table 1 shows the affected area by the different compound flood scenarios. Under
the current conditions, a recurring water level in the strait every 10 years when the Danė
River discharge is at the mean annual maximum would affect 1,403,513 m2 (more than
150,000 m2 of built-up area), which is almost 1.5% of the city’s area. Due to climate change,
if the water level rises by 1 m, the recurring water level every 10 years when the Danė
River discharge is at the mean annual maximum would affect areas of 2,412,144 m2 (more
than 710,000 m2 of built-up area), almost 2.5% of the city area (Table 2). If the Danė River’s
10-year discharge occurs at the same time as the 10-year Klaipėda Strait water level, almost
be 2% of the city would be flood affected. During the same situation with the climate
change effect, flood-affected areas would increase by 0.7%. During the 100-year Danė
River discharge and 10-year Klaipėda Strait water level, 2.3% of the city area would be
affected without the climate change effect, and with the climate change effect, 2.7%. During
this compound flood scenario, flood-affected built-up areas would increase from 0.5%
to 0.8%. The situation could become more dangerous if the water level in the Klaipėda
Strait reached the 100-year level. In this water level scenario, flood-affected areas of the
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city would increase from 2% during the mean annual maximum Danė River discharge to
almost 3% during a 100-year flood discharge without the climate change effect. During the
100-year Klaipėda Strait water level and with the three Danė River discharge combined
effect scenarios, 3.1%, 3.2%, and 3.5% of the city area would be affected by compound
floods with climate change impact.

Table 1. Inundated built-up and non-built-up areas (m2) and their share (%) of the total Klaipėda city
area according to different compound flood scenarios without climate change impact.

Danė River Discharge
Probabilities

Mean Water Level (0 m) 10-Year Water Level (1.4 m) 100-Year Water Level (2 m)

Built-Up Areas
(m2) and Their

Share of the
City (%)

Non-Built-Up
Areas (m2) and
Their Share of

the City (%)

Built-Up Areas
(m2) and Their

Share of the
City (%)

Non-Built-Up
Areas (m2) and
Their Share of

the City (%)

Built-Up Areas
(m2) and Their

Share of the
City (%)

Non-Built-Up
Areas (m2) and
Their Share of

the City (%)

Mean annual maximum
(59 m3/s)

59,050 m2

0.06%
778,876 m2

0.79%
150,266 m2

0.15%
1,253,247 m2

1.28%
460,798 m2

0.47%
1,545,648 m2

1.58%

10-year flood (110 m3/s) 120,542 m2

0.12%
1,177,366 m2

1.20%
270,219 m2

0.28%
1,554,002 m2

1.59%
564,255 m2

0.57%
1,728,977 m2

1.76%

100-year flood
(156 m3/s)

172,234 m2

0.18%
1,348,307 m2

1.38%
457,800 m2

0.48%
1,771,515 m2

1.81%
746,531 m2

0.76%
1,920,754 m2

1.96%

Table 2. Inundated built-up and non-built-up areas (m2) and their share (%) of the total Klaipėda city
area according to different compound flood scenarios with climate change impact.

Danė River Discharge
Probabilities

Mean Water Level (1 m) 10-Year Water Level (2.4 m) 100-Year Water Level (3 m)

Built-Up Areas
(m2) and Their

Share of the
City (%)

Non-Built-Up
Areas (m2) and
Their Share of

the City (%)

Built-Up Areas
(m2) and Their

Share of the
City (%)

Non-Built-Up
Areas (m2) and
Their Share of

the City (%)

Built-Up Areas
(m2) and Their

Share of the
City (%)

Non-Built-Up
Areas (m2) and
Their Share of

the City (%)

Mean annual maximum
(59 m3/s)

72,144 m2

0.07%
859,115 m2

0.88%
713,795 m2

0.72%
1,698,349 m2

1.73%
1,155,293 m2

1.18%
1,890,011 m2

1.93%

10-year flood (110 m3/s) 185,284 m2

0.19%
1,351,505 m2

1.38%
754,491 m2

0.77%
1,742,911 m2

1.78%
1,207,262 m2

1.23%
1,950,005 m2

1.99%

100-year flood
(156 m3/s)

277,191 m2

0.28%
1,599,240 m2

1.63%
798,927 m2

0.82%
1,794,667 m2

1.84%
1,369,597 m2

1.40%
2,080,402 m2

2.12%

Observations of the Klaipėda Strait water level confirmed that the long-term southeast
Baltic Sea level is rising due to climate change. However, the short-term rise in the water
level in the Klaipėda Strait is also affected by the extreme prevailing wind, which causes
sea storm surges. In this case, we can see that during extreme storms and climate change,
the river water could flood the city territory up to three times more than during extreme
situations without climate change. Areas affected by floods among the same scenarios
without and with climate change showed how areas were vulnerable to climate change.
With climate change impact, inundated areas increase more when the 10-year water level
occurs at the same time as the mean annual maximum Danė River discharge (Table 3).
Fewer differences among inundated areas prevail during the mean Klaipėda Strait water
level at all discharges, while inundated built-up areas increase when the Klaipėda Strait
water level increases. In such cases, we can see that built-up areas are more vulnerable
during extreme hydrometeorological situations. Built-up areas require important attention
and mitigation actions because inundation of these areas can cause major economic losses.
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Table 3. Difference between inundated built-up and non-built-up areas (m2) and their share of the
city (%) scenarios without and with climate change.

Danė River
Discharge

Probabilities

Mean Water Level 10-Year Water Level 100-Year Water Level

Built-Up Areas
(m2) and Their

Share of the
City (%)

Non-Built-Up
Areas (m2) and
Their Share of

the City (%)

Built-Up Areas
(m2) and Their

Share of the
City (%)

Non-Built-Up
Areas (m2) and
Their Share of

the City (%)

Built-Up Areas
(m2) and Their

Share of the
City (%)

Non-Built-Up
Areas (m2) and
Their Share of

the City (%)

Mean annual
maximum
(59 m3/s)

1309 m2

0.01%
80,239 m2

0.08%
563,529 m2

0.58%
445,102 m2

1.45%
694,495 m2

0.71%
344,363 m2

0.35%

10-year flood
(110 m3/s)

64,742 m2

0.07%
174,139 m2

0.18%
484,272 m2

0.49%
188,909 m2

0.19%
643,007 m2

0.66%
221,028 m2

0.23%

100-year flood
(156 m3/s)

104,957 m2

0.11%
250,933 m2

0.25%
341,127 m2

0.35%
23,152 m2

0.02%
623,066 m2

0.64%
159,648 m2

0.16%

The growing area of floods poses an increasing threat to the property of the population.
Table 4 shows the number of flooded buildings according to different compound flood
scenarios. Without the impact of climate change, from 60 to almost 700 buildings could be
inundated according to different compound flood scenarios. From 84 to 940 buildings could
be affected by compound floods according to different scenarios with climate change impact.
This means that with the trend of rising water levels in the Klaipėda Strait, appropriate
measures must already be taken to adapt to possible floods and reduce potential damage.

Table 4. The number of buildings in the area lower than the flood water level according to different
compound flood scenarios.

Without Climate Change Impact With Climate Change Impact

Mean Water
Level (0)

10-Year Water
Level (1.4 m)

100-Year Water
Level (2 m)

Mean Water
Level (1 m)

10-Year Water
Level (2.4 m)

100-Year Water
Level (3 m)

Mean annual
maximum river

discharge (59 m3/s)
60 178 359 85 549 767

10-year flood river
discharge (10 m3/s)

144 327 491 244 573 858

100-year flood river
discharge (156 m3/s)

209 533 668 400 616 940

The Danė River flows through the city center of Klaipėda and is crossed by several
significant streets and bridges, which allows for transport and residents to go to the northern
or southern parts of the city. During floods, the streets of the lower area can be affected
by flood and disrupt traffic. The highest risk of flooding is for trails in the recreational
area of the Danė River and roads in residential areas. However, the greatest hazard arises
when the main roads connecting individual parts of the city are affected by floods. The
whole town is at risk of traffic disruption in the event of flooding of important streets with
connections to bridges.

Under different compound flood scenarios, in addition to the effects of climate change,
between 8 and almost 32 km of roads in all categories could be flooded (Table 5). During
compound floods with climate change impact, between almost 9 and 43 km of roads would
be flooded.
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Table 5. Length of potentially affected roads according to different compound flood scenarios.

Without Climate Change Impact With Climate Change Impact

Mean Water
Level (0)

10-Year Water
Level (1.4 m)

100-Year Water
Level (2 m)

Mean Water
Level (1 m)

10-Year Water
Level (2.4 m)

100-Year Water
Level (3 m)

Mean annual
maximum river

discharge (59 m3/s)
8008 13,880 25,576 8989 31,262 37,225

10-year flood river
discharge (10 m3/s)

10,052 16,429 27,515 11,308 31,772 39,789

100-year flood river
discharge (156 m3/s)

10,621 24,530 31,968 15,811 32,146 42,753

4. Discussion

This research confirmed that extreme hydrometeorological conditions may lead to
larger floods in coastal river reaches in the 21st century. They lead to compound floods
caused not only by higher rainfall, increased river run-off, and the strong wind causing
coast sea flooding, but also by rising global water levels affected by climate change.

The research obtained in this work confirms previous research by European and Baltic
scientists that devastating coastal flooding and associated phenomena are economically
extremely damaging, and they have a distinctive regional or local character [60,61]. River
deltas, beaches, estuaries, and lagoons are considered particularly vulnerable to the adverse
effects of climate change, which should be studied at the regional/local scale [62].

These results have implications for local planners, because urban development and
seaport reconstructions in the Klaipėda city seaport are now taking place in many coastal
areas susceptible to flooding. Coastal flooding is a severe problem for low-lying urban
areas near the Danė River mouth. An increase in mean sea level contributes as a component
of the high extreme water level and, at the same time, forms part of a fraction of the total
loss due to marine-induced hazards in the mouth of the river’s reaches during extreme
meteorological and hydrological conditions.

The formation of floods in the lower reaches of the Danė River is determined by the
rising water level of the Baltic Sea in the Klaipėda Strait due to climate change, stronger
west winds forming the seawater affluent, and the discharge intensity of the Danė River.
In the lower reaches of the Danė River, the flood risk assessment is relevant because the
Danė River flows through the third-largest city in Lithuania, where the seaport is located.
The Port of Klaipėda is an important economic center and is connected to the Baltic Sea by
the water area adapted for technological navigation, the Klaipėda Strait, where intensive
water exchange of the Curonian Lagoon with the Baltic Sea takes place. To ensure optimal
seaport exploitation, a plausible assessment of port operations in light of the effects of
climate change is necessary, because port disruptions have a significant impact on the local,
regional, and global economy due to the strategic role of ports in the supply chain [63].

It is necessary to consider climate change and the probable higher maximum floods of
the Danė River when planning the development and protection of Klaipėda city infrastruc-
ture. There are residential areas in the northern part of Klaipėda along the Danė River, the
Old Town is in the city center, while production and industrial areas are in the city center.
During storms, when heavy rainfall falls, and the water level in the Baltic Sea and the
Curonian Lagoon rises due to wind floods, extreme situations form: water runs over the
riverbanks and floods the city streets. Flood risk maps allow for the identification of flood-
sensitive areas, assessment of potential economic and social damage during floods, and
management of the situation in these areas by selecting appropriate protection measures.
However, flood risk maps are based on past floods, and the climate change factor is ignored.
Long-term measures can be taken to mitigate and adapt to climate change, avoiding greater
economic and social losses in the future by combining the potential consequences of climate
change with probable flood risk data. According to the RCP4.5 scenario, if the average
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level of the Baltic Sea rises by 34–37 cm, Lithuania would suffer a loss of EUR 0.2 billion
and 42,000 thousand inhabitants would be affected, or according to the RCP8.5 scenario,
Lithuania would suffer EUR 0.4 billion and 63,000 thousand people would be affected if
the average level rises from 58 to 172 cm [64].

According to scenarios for future global climate change [25,45,61,65], the related
risks may be radically amplified in the 21st century. Coastal flooding is an example of
marine-induced hazards for near-coast communities [60]. A challenge of the EU’s Marine
Strategy Framework Directive [66] is to ensure comparable status assessments for good
environmental status in the European seas. It is recommended that these effects be better
understood, researched, and managed in all regional seas and especially in urban coastal
areas where most of the human population lives.

The importance of climate change adaptation is accepted worldwide, highlighting the
lack of preparedness for managing today’s emergencies. Areas that are already affected by
climate change must be redeveloped in order to reduce economic and social vulnerability.
The new EU Strategy for Adaptation to Climate Change [67] emphasizes the need to
consider climate change considerations and the perspective of future risks when planning
urban spatial development. In view of this, the construction of buildings near water bodies
should be suspended. However, in the general plan of Klaipėda city municipality [68] until
2030, to reduce the migration of the city population to suburban areas, part of the planned
new residential construction development territories falls into potentially sensitive flood
areas. Even without the impact of climate change, these territories fall in areas that can be
flooded. There will be an inevitable increase in economic losses in the future if these general
plan solutions are implemented. Currently, built-up territories need to be redeveloped to
mitigate their vulnerability. However, if these places are to be developed as residential
areas, in the future their redevelopment will become more complex.

Due to climate change, the 10% probability of a rise in the water level of the Curonian
Lagoon would be similar to the potential damage to the city caused by an extreme (1%
probability) increase in the water level these days. Flood risk due to sea level rise will cause
significant economic damage to these areas. Adapting to climate change is a long process
that requires complex actions and measures. It is necessary to have a long-lasting strategy
to avoid economic losses and social impact. The actions planned by the municipality to
stop population migration to the suburbs conflict with measures to adapt to climate change.
Without respect to climate change forecasts, economic losses will increase in the future and
it will be more difficult to develop flood risk areas urgently.

5. Conclusions

River modeling is a suitable tool for assessing flood risk, monitoring variability, and
predicting future factors using different scenarios. The scenarios developed with the
HEC-RAS model illustrated the water levels of the Akmena–Danė River with different
probabilities. In addition, climate change scenarios were developed showing how a 1 m
rise in the water level in the Curonian Lagoon would affect the floods of the Danė River
in Klaipėda.

The floods of the Akmena–Danė River flowing in the center of Klaipėda can be
dangerous to the city due to the changing climate and increasing sea floodplain. Scenarios
of the Klaipėda Strait water level and the discharge of the largest spring floods with the
help of various hydrodynamic models help to create cartographic maps and assess the
maximum flood risk for the city of Klaipėda and its inhabitants. The results of this work,
assessing short-term scenarios for water levels and long-term impacts of climate change on
the Danė River, could be used to make a variety of urban infrastructure decisions, assess
flood damage, and provide flood defenses.

Flood risk nowadays can occur when Danė River discharge reaches a 10-year or
100-year flood. Flood risk increases during compound events when the water level in the
Klaipėda Strait reaches 10-year and 100-year levels at the same time as increased Danė
River discharges, even when the discharge is the mean annual maximum.
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Due to climate change, 10-year flood damage would be similar to the damage of
current 100-year floods. The rising long-term water level in the Klaipėda Strait increases
the possibility of a rise in the maximum water level to 3 m. Such an increase corresponds
to a 100-year flood and can occur more often.

The storm surge of the Baltic Sea and the rise of the water level in the Klaipėda Strait
have a greater impact on the central part of Klaipėda city, and the maximum discharge
rates of the river on the northern part. If the water level increases as predicted by the end
of century, there would be more inundated areas. In the city center, the Old Town, the
northern Cape, the cruise ship terminal, Danė Square as well as the Industrial Quarter and
factories therein would be in danger. In the northern part of the city, the rise in flood waves
would cause problems for residential districts.

Long-term climate change scenarios need to be considered to reduce the impact of
climate change and adapt to ongoing processes. Taking flood risk due to climate change
into account in the development of urban infrastructure and the reorganization of areas that
are in a potential extreme flood area would help to avoid future economic and social losses.

The main theses of this study:

1. Compound floods risks and hazards in coastal Klaipėda city are influenced by external
Danė River floods, wind-caused sea storm surge, and are due to the climate change
effect on the sea level rise in the SE part of the Baltic Sea;

2. An integrated approach is needed to assess flood risks and hazards for the evaluation
of compound flooding, as when considering together the average rise of the SE Baltic
Sea and Curonian Lagoon caused by climate change, its maximum forecast is possible
according to the climate change process as well as the extreme Akmena–Danė River
floods in the mouth of the river, located in the city of Klaipėda;

3. The rising long-term water level in the Klaipėda Strait increases the possibility of a
rise in the maximum water level to 3 m. Such an increase corresponds to a 100-year
flood and could become more frequent;

4. The construction of residential houses in the inundated areas near the Danė River
should be suspended in Klaipėda (according to 10-year and 100-year probabilities).
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58. Jakimavičius, D.; Kriauciuniene, J. The climate change impact on the water balance of the Curonian Lagoon. Water Resour. 2013,
40, 120–132. [CrossRef]
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Abstract: PSI data are extremely useful for monitoring on-ground displacements. In many cases,
clustering algorithms are adopted to highlight the presence of homogeneous patterns; however,
clustering algorithms can fail to consider spatial constraints and be poorly specific in revealing
patterns at lower scales or possible anomalies. Hence, we proposed a novel framework which
combines a spatially-constrained clustering algorithm (SKATER) with a hypothesis testing procedure
which evaluates and establishes the presence of significant local spatial correlations, namely the
LISA method. The designed workflow ensures the retrieval of homogeneous clusters and a reliable
anomaly detection; to validate this workflow, we collected Sentinel-1 time series from the Sibari and
Metaponto coastal plains in Italy, ranging from 2015 to 2021. This particular study area is interesting
due to the presence of important industrial and agricultural settlements. The proposed workflow
effectively outlines the presence of both subsidence and uplifting that deserve to be focused and
continuous monitoring, both for environmental and infrastructural purposes.

Keywords: environmental monitoring; ground displacements; persistent scatterers; SKATER; LISA

1. Introduction

Since its foundations, Persistent Scatter Interferometry (PSI) has shown great potential
for several applications [1,2]; in particular, its contribution to monitoring geophysical phe-
nomena such as subsidence and uplift (driven by environmental forces or human activities)
is of paramount importance [3]. The advantages of PSI are manifest as, just to mention a
few, it allows fast and easy access to the observation of wide areas and provides measure-
ments with high spatial density based on satellite-borne Synthetic Aperture Radar (SAR).
Accordingly, in recent years, a consistent number of studies have proposed and investigated
its use. In particular, studies addressing urban subsidence [4–7], mine subsidence [8,9],
industrial-related processes [10–12], and coastal monitoring [13–16] can be mentioned.

PSI relies on a single working principle, the presence of stable reflectors, i.e., persistent
scatterers, which can be used to achieve highly accurate differential measurements [17].
Several different techniques have been proposed [18–22]. In particular, PSI techniques
are extremely helpful when dealing with slow-occurring phenomena such as subsidence,
tectonic uplifts, and ground deformation processes in civil engineering structures [23].
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Here, the SPINUA (Stable Point Interferometry over Unurbanized Areas) algorithm [24]
was used to process Sentinel-1 data and highlight occurring displacements along the line
of sight.

The main goal of PSI analyses is providing displacement maps which can be suitably
used to identify ground displacements. However, in many cases, further evaluations are
needed to identify the presence of anomalous patterns or outlier phenomena. A common
choice is to use clustering algorithms [25–28], whose underlying assumption (widely ac-
cepted by the scientific community) is that the more PS show a coherent displacement,
the more reliable the observed effect is. A popular choice for the remote sensing commu-
nity is the DBSCAN algorithm (Density-Based Spatial Clustering of Applications with
Noise) [29–31], especially for its efficiency in retrieving clusters with arbitrary shape and its
computational efficiency. Nevertheless, as DBSCAN operates in the feature space, it can ne-
glect important constraints provided by spatial proximity, which can, in principle, improve
clustering results. Hence, other strategies, which, directly or indirectly, take into account
spatial proximity have been proposed [32–35]. Among them, we proposed the adoption of
the SKATER clustering algorithm (Spatial ’K’luster Analysis by Tree Edge Removal) [36]
for two main reasons: (i) SKATER is easy to tune, as it fundamentally depends only on one
hyper-parameter, the number of classes, and (ii) it is computationally efficient. In fact, it is
based on recursive partitioning of a minimal spanning tree, which transforms an np-hard
problem in a quasi-linear one [37]; this allows the processing of data of medium–large
sample size, including ∼105 observations, faster than other algorithms [38].

However, given the wide heterogeneity of the phenomena affecting the ground surface
and the already mentioned high variability of displacements, it is not uncommon to observe
clusters that are poorly specific, often grouping together pixels which should be considered
apart. Of course, this issue is a direct consequence of clustering inherent “ill-posedness” [39].
Nevertheless, remote sensing applications have an advantage, in that spatial proximity
is not only a constraint which can be useful to support clusters’ partition, but it can be
also useful to identify anomalous behaviors. Accordingly, we proposed a procedure which
combines the SKATER clustering with a following analysis of spatial association based on
the Moran’s index, namely the Local Indicators of Spatial Association (LISA) algorithm [40].
Thus, statistics based on spatial proximity were embedded in a processing pipeline to
ensure clusters’ homogeneity at all scales and highlight the presence of possible anomalies.

The aim of this work was to demonstrate that a procedure combining both the SKATER
and LISA algorithms can effectively detect relevant surface phenomena that may need
further investigations when performing exploratory analyses on a regional scale. To test
and validate this pipeline, we considered the coastal plains of a region in Southern Italy,
namely the Sibari and Metaponto plains, which have already been studied in the recent
past, for the occurrence of several features of interest, such as the presence of important
industrial and agricultural infrastructures, archaeological remains of ancient Magna Graecia
settlements, and a not-trivial geological environment including alluvial fans and several
marine terraces [41,42]. Additionally, the presence of significant anthropogenic pressure [43]
and possible interactions of subsidence with seismic or tectonic activity [44–47] make the
continuous monitoring of this region extremely challenging and interesting.

2. Mapping the Sibari and Metaponto Coastal Plains

2.1. Geography of the Region of Interest

In this work, we considered an area of interest including the Sibari and the Metaponto
coastal plains; this area is located in Southern Italy across the Basilicata and Calabria regions.
In particular, we focused on the central-northern part of the Sibari plain, including the
coastal areas Sibari and Trebisacce-Villapiana, and the southern portion of the Metaponto
plain, including the coastal area of Policoro. The region is located in the northern Calabrian
arc. It extends for 500 square kilometers and it is confined to the west by the Calabrian
Apennines, to the north and to the south by the Pollino and Sila massifs, respectively;
finally, the region is delimited to the east by the Ionian Sea.
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Subsidence plains are mainly caused by sediment compaction under the pressure of
overlying sediments; this can also be worsened by anthropogenic pressure on the seaside
localities and groundwater withdrawal in the industrial and urban areas [48]. The region is
crossed by multiple rivers which contribute to increasing the hydro-geological risk of the
area and expose the area to floods, although embankments have considerably reduced this
risk [49]. The region also includes capable faults which were identified and georeferenced
by the ITHACA project (ITaly HAzards from CApable faulting) [50].

Concerning the Sibari plain, in the northern sector, the main geomorphological ele-
ments are the alluvial fans of Raganello River, Satanasso Fiumara, and Saraceno Fiumara.
The Metaponto floodplain, located east of the Bradanic Trough, is mainly derived from the
expansions of several rivers: Basento, Bradano, Agri, Sinni, and Cavone; it is a wide sedi-
mentary basin of Plio-Pleistocene followed by Holocene and recent alluvial deposits [51,52].
The elements of interest along with the tectonic setting of the area, capable faults and
subduction lines, are reported in Figure 1.

Figure 1. Map of the lithological units, active faults, and subduction contours of the areas of concerns.

In the north, the Lauropoli-Trebisacce fault in the SW–NE direction (visible on the
map between Villapiana and Trebisacce) is worth mentioning. According to ITHACA,
the active faults of Crati (along the river Crati) and of Timparelle, which continue in
the SW–NE direction crossing the archaeological area of the old Sybaris, can also be
observed. Despite this consolidated knowledge of the area of interest, it is worth noting
how some elements are still debated, such as for example the contributions of the faults
and subduction lines to the evolution of the Sibari coastal plain [53]. The Metaponto plain
presents an interesting diversity in terms of geological elements; four distinct regions can be
recognized: Subappennine Clays, marine terraces, alluvial deposits, and the actual coastal
region. This peculiar morphology makes the region particularly subjected to seawater
intrusion risks [54]. Hence, a continuous monitoring of the region can play a relevant role
for both environmental monitoring and management purposes.
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2.2. The SPINUA Algorithm for Ground Displacement Evaluations

We used Sentinel-1 C-band images (central frequency 5.4 GHz and wavelength 5.6 cm).
The Sentinel-1 constellation were composed of two twin satellites (Sentinel-1A and Sentinel-
1B, respectively); the first one has been active from October 2014 while the second one
stopped its activity in December 2021 after a permanent failure of the Sentinel-1B payload.
The two satellites observe the Earth from an altitude of about 693 km, at a nominal ground
resolution of about 5 × 20 m2 (range × azimuth) and with a revisit time of 6 days at the
equator. The study area is covered along three satellite tracks; for this study the ascending
geometry was used. The properties of the data sets of collected ground displacements are
outlined in Table 1.

Table 1. PSInSAR datasets used for the present study.

ROI Orbit No. of Images No. of PSs Time Span

Sibari Asc 248 38,386 2 January 2017 to 22 February 2021
Trebisacce-Villapiana Asc 190 24,574 1 April 2015 to 15 February 2019

Policoro Asc 204 38,265 1 April 2015 to 5 March 2019

Each dataset consisted of a number of 2.0 ∼ 4.0 × 104 persistent scatterers. We used
the SPINUA processing chain to evaluate terrain displacements. For each PS, additional
information about height, latitude and longitude, coherence, head angle, and incident angle
were also available. A fundamental issue for PSI analyses concerns data coherence. In
fact, as ground movements are derived by phase-shift differences, incoherent measures can
yield noisy and unreliable results; accordingly, for the present analyses, we selected the
time series whose phase coherence exceeded the 0.7 threshold value [55], which ensures in
this case a root mean square error (RMSE) below 4 mm for each displacement measurement.
Additionally, we removed from the analyses the points laying in uninhabited areas or
exceeding the altitude of 50 m, which exceeded the coastal plains. Hence, approximately
50% of the time series were held for subsequent analyses.

Finally, we computed the average velocity along the line-of-sight (LOS) of the remain-
ing observations. These LOS velocities along with the coordinates of the related PSs were
used to characterize ground displacements within the region of interest, identify specific
homogeneous patterns (such as those caused by subsidence phenomena, debris flows along
alluvial fans or seismically-induced uplifts), and provide an overall monitoring service of
the region.

3. Assessment of Homogeneous and Anomalous Ground Displacements

3.1. Methodological Overview

In this work, we presented a workflow to enforce the identification of homogeneous
PSI clusters and highlighted the presence, within these clusters, of local patterns and
possible anomalies; to this aim, we designed a two-step procedure based on the spatially
constrained clustering algorithm SKATER and the outlier/hotspot detection performed by
LISA. A schematic overview is presented in Figure 2.

PSI data were used to reconstruct time series of on-ground displacements; these data
were then used to feed the SKATER clustering. SKATER exploits spatial constraints to
retrieve homogeneous clusters; nevertheless, some clusters can include local patterns which
could deserve an independent description or anomalies can remain concealed and, in any
case, a statistical assessment of the retrieved clusters is needed; therefore, the LISA method
was finally adopted to evaluate the clusters’ spatial coherence and highlight the presence of
possible anomalies. The SKATER and LISA methods are available in the R package rgeoda
v0.0.10-2 [56].
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Figure 2. PSI analyses are carried out to reconstruct time series of on-ground displacements (a); time
series undergo then the SKATER spatially constrained cluster analysis (b); finally, the LISA method is
considered to highlight within each clusters coherent local patterns or possible anomalies as depicted
in red (c).

3.2. Spatially-Constrained Clustering Algorithm (SKATER)

One of the main aspects of the present work was the adoption of a spatially-constrained
clustering algorithm, namely the SKATER algorithm, in order to group PSs related to the
same phenomena by taking into account their spatial proximity. SKATER’s basic idea
consists in measuring the pairwise distances between all available PS locations so that a
symmetric matrix of distances is obtained: in graph theory, this matrix is usually called
an adjacency matrix and it can be used to define a connectivity graph. Let N be the set of
PS locations, also called nodes of the graph, then the weighted adjacency matrix element
wij represents the proximity between node i and j (usually the distance reciprocal or a
normalized version are considered). The matrix is symmetric as, of course, wij = wji.

Once the graph is defined, a minimum spanning tree (MST) can be determined. By
definition, an MST is a subset of the edges of the original graph allowing to reach all the
nodes, i.e., PSs in this specific case, with a minimum number of edges. Accordingly, in
this representation, there are no isolated nodes and if further edges are removed, two or
more sub-graphs or sub-trees Ti are obtained. These sub-trees can be naturally adopted to
reveal spatial clusters. Of course, removing different edges leads to different partitions of
the graph. The SKATER algorithm searches for the set of links that, if pruned, generates
a partition of sub-trees as homogeneous as possible. For each partition Π = T1, . . . , TK,
the homogeneity is measured by minimizing the sum of the intracluster square deviations
Q(Π):

Q(Π) =
K

∑
i=1

SDDi =
K

∑
i=1

(
Ni

∑
j=1

(vj − v̄)2

)
, (1)

where K is the cardinality of the partition Π and SDDi is referred to as the intracluster sum
of square deviations computed for the sub-tree Ti.

According to this procedure, the main parameter on which SKATER relies is the
cardinality K, i.e., the number of desired clusters. In fact, if K clusters are desired, K − 1
edges must be removed. Initially, all nodes belong to a single class: removing the first edge
yields two sub-trees, then removing another edge separates one of these sub-trees in two;
the procedure can be iterated until the number of desired spatial clusters is obtained. The
edges to remove are those maximizing the partition homogeneity.

It is worth noting that the exhaustive investigation of all possible partitions easily
involve extreme computational burdens. This is why SKATER adopts an heuristic approach
for fast tree pruning. For each sub-tree, a central node Vc is defined and, then, the cost
function C related to cutting each sub-tree starting from the links that connects Vc to its
neighbours is computed. Finally, SKATER searches for the optimum cut of each sub-tree
in the direction in which C increases and the search ends when the best possible solution
is achieved.
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Regarding the optimal number clusters K∗, the ratio between the between-clusters sum-
of-squares BSS and the total-sum-of-squares TSS is computed for each partition obtained
by varying the number K of clusters. While BSS measures the squared average distance
between all centroids, TSS evaluates the average distance of all points from their overall
Euclidean mean; accordingly, their ratio is a measure of clusters’ dispersion ranging from 0
(complete overlap of clusters—worst scenario) to 1 (perfect separation—best scenario). For
each dataset, we found the optimal number of cluster K∗ with the elbow method, i.e., by
visually inspecting the BSS/TSS versus K plot and, therefore, selecting the K∗ value for
which, when increasing the number of clusters, no significant improvement in the overall
quality was observed.

3.3. LISA Outlier Detection

Within a cluster, it is not uncommon to find smaller regions, even composed of few
observations, which seem to not be homogeneous with the surroundings. The reasons are
manifold. For example, especially when considering large clusters, the large dimensions
can conceal phenomena occurring at lower scales; another confounding situation can occur
at clusters’ borders where it is probable that points accounting for different phenomena
(e.g, moving upwards and downwards) can be spatially close. Hence, we adopted the LISA
method to examine the Moran’s statistics for spatial auto-correlation of the LOS velocities
measured through PSI. Moran’s statistics exploits the adjacency matrix wij previously
defined; first of all, the matrix is binarized so that matrix elements are set to 0 if their
distance exceeds a threshold, 1 otherwise. In the present study, we set a distance threshold
of 30 meters in order to obtain a sparse adjacency matrix. Sparsity is in fact an essential
condition in order to decrease the computational burden and, more importantly, to relate
this measure with a spatially limited region.

Each adjacency matrix element wij is related to a PS with (xi, yi) coordinates and
velocity vi; considering its surroundings, it is possible to introduce the the spatial lagged
velocity vi,lag:

vlag =
∑j wi,jvj

∑j wi,j
, (2)

which can be interpreted as the weighted average of LOS velocity of the neighbouring
points of the ith observation. According to this definition, the vi,lag of an (xi, yi) point
depends on the number of considered neighbor points; thus, the sparsity condition ensures
that the sum includes few terms.

Examining the scatter plot of the actual velocities and the lagged ones, important
considerations can arise; for example, if velocities are described by homogeneous patterns,
vlag and v must align and the slope of the straight line should be close to one; points that lie
far from this line are spatial outliers. Additionally, the straight line extremities define the
so-called “coldspots”, at low v and vlag values and “hotspots”, at high v and vlag values,
of ground velocities. These points correspond to spatial associations of, respectively, low
and high values of LOS average velocities. Thanks to the Moran’s index I, a quantitative
evaluation can be carried out by means of a hypothesis test. The index I is the analogous of
the Pearson’s correlation in spatial terms and it is defined as follows:

I =
1

∑N
i=1 ∑N

j=1 wi,j

∑N
i=1 ∑N

j=1 wi,j(vi − v̄)(vj − v̄)

∑N
l=1(vl − v̄)2

, (3)

where N and v̄ indicate, respectively, the total number of spatial observations and their
average velocity. The index I ranges from −1 and +1, with +1 representing the maximum
spatial correlation and −1 anti-correlation: in the first case, the neighbor points are perfectly
homogeneous and can be clusterized; in the second case, each point is different from
its neighbors.
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The index I provides a global spatial statistics, which can suitably outline the presence
of spatial patterns or anomalies. The LISA approach effectively outlines and localizes these
situations by adopting the local Moran’s index Ii of the ith observation:

Ii = (vi − v̄)
N

∑N
i=1 ∑N

j=1 wi,j

∑N
j=1 wi,j(vj − v̄)

∑l=1N(vl−v̄)2
, (4)

with the N numerator ensuring that < Ii >= I.
After computing the local Moran’s indexes Ii, the hypothesis testing can be performed

to determine whether spatial (anti-)correlations occur. The testing is performed by com-
paring the experimental values Ii with the Moran’s index values expected with a random
spatial distribution. In particular, the PSs whose local Moran’s index exceeds the average
by two standard deviations are considered homogeneous and belonging to the same cluster
while the others are spatial outliers.

4. Results

4.1. Revealing Homogeneous On-Ground Displacements with SKATER

First of all, we examined the presence of homogeneous patterns in the regions of
interest by varying the number of expected clusters and computing the corresponding
BSS/TSS metrics. By visual inspection, considerations based on the elbow method suggest,
for each region, that the optimal number of classes is two or three, see Figure 3.

Figure 3. Plots comparing the quality of the partition against the number of clusters in terms of the
BSS/TSS ratio.

The BSS/TSS ratio shows, manifestly, two distinct phases: a first steepen increase is
followed by a much slower incremental behavior (more evident for Sibari and Trebisacce-
Villapiana). The number of spatially constrained communities is two for Trebisacce-
Villapiana and three for Sibari and Policoro. The areas of Sibari and Trebisacce-Villapiana
show a good quality clustering in terms of the BSS/TSS ratio, which reaches values ∼0.8.
Conversely, the clustering obtained for the Policoro area seems to be unreliable (BSS/TSS
∼0.4). The partitions returned by SKATER for Trebisacce-Villapiana and Policoro, with the
three optimal clusters, are shown in Figure 4.
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Figure 4. On the top: SKATER optimal clustering for Sibari (a), Trebisacce-Villapiana (b) and Policoro
area (c); the violin plots on the bottom show the velocity distributions of each optimal cluster. The
color code links each spatial cluster to its velocity distribution (d–f).

Both Sibari and Trebisacce-Villapiana coastal plains are best characterized by three
clusters; violin plots allow to appreciate how stable are the clusters, in that LOS velocities
appear in general closely distributed to the average values. Nevertheless, more extreme
values are present as shown by the violins’ long tails. This result suggests the need for
a further and localized inspection of the SKATER clusters. Analogously, Policoro can be
separated in three clusters whose velocities are well separated, but the overall clustering
quality remains poor because of the limited size of the observed clusters, related only to a
bridge and a small fraction of Policoro.

Finally, for validating the clustering results by visual inspection, Figure 5 shows the
velocity distributions in the region of interest as retrieved by SPINUA.

Figure 5. SPINUA measured velocities for Sibari (a), Trebisacce-Villapiana (b) and Policoro area (c).
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It is worth noting that, choosing suitable colour maps and velocity ranges, the velocity
LOS distributions emphasise the presence of three clusters both in Sibari and Trebisacce-
Villapiana coastal plains (as suggested by SKATER), while Policoro clusterization remains
elusive. Further details about the specific patterns retrieved within each region of interest
will be provided in the following sections.

4.2. Sibari

To highlight the presence of local patterns or anomalies within the SKATER clusteri-
zation of Sibari, further analyses were carried by means of the LISA approach. Figure 6
shows LISA results for this region.

Figure 6. LISA analyses of Sibari: coldspots (red) and hotspots (green) are shown (a). SKATER
optimal clustering is shown in panel (b); the spatial distribution of the LOS velocities retrieved by the
SPINUA algorithm is shown in panel (c).

Green points are related to areas where a significant spatial aggregation of positive
LOS velocity occurs. Red points are used in the same situation but with negative LOS
velocities. Finally, points not exhibiting a significant spatial auto-correlation are white.
Within the Sibari region, while the vast majority of points were stable, some interesting
coldspots were also present, for example near Corigliano Calabro and the Sibari lakes area,
see Figure 7.

Interestingly, concerning, Corigliano Calabro, the subsidence region is located within
its industrial area; it is worth noting that the geometric center of this coldspot corresponds
to the known coordinates of a water well. Additionally, a few kilometers towards the coast,
it is possible to detect another community of coherent subsidence, corresponding to the
Selicetti fraction; in particular, this subsidence (1 ∼ 2 cm per year) occurs near the coast
where several resorts are present. Another interesting subsidence area (1 cm per year) is
the one located around the Sibari lakes. This area hosts several residential complexes and
an important port.
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Figure 7. The industrial area of Corigliano Calabro (a) and the Sibari lakes (b) are shown. These areas
are two examples of coldspots in the Sibari region.

4.3. Trebisacce-Villapiana

We considered the clusterization of Trebisacce-Villapiana and, even in this case, we
investigated the presence of possible sub-clusters or patterns missed by SKATER. Results
are presented in Figure 8.

Figure 8. LISA analyses of Trebisacce-Villapiana: coldspots (red) and hotspots (green) are shown (a);
interestingly, near the Saraceno river, debris movements are detected. SKATER optimal clustering is
shown in panel (b); the spatial distribution of the LOS velocities retrieved by the SPINUA algorithm
is shown in panel (c).
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In the Trebisacce-Villapiana coastal plain, both hotspots and coldspots were detected.
For example, particular mentions deserve the subsidence (coldspot) area inherent in the
Villapiana shore and the uplifting (hotspot) area of Trebisacce. A magnified view of these
areas is presented in Figure 9.

Figure 9. Two areas of interest in the Trebisacce-Villapiana region: the mouth of river Saraceno near
Trebisacce (a) and the Villapiana shore subsidence (b).

The figure shows two elements of interest. The mouth of the river Saraceno near
Trebisacce-Villapiana. The river shows the presence of extremely heterogeneous LOS
velocities, ranging from −10 mm to 10 mm per year, probably corresponding to superficial
debris movements. Trebisacce shows a relevant uplifting movement along the LOS. Finally,
for what concerns the shore of Villapiana, a significant subsidence (3 mm per year) is
detected. Maximum values of around 7 ∼ 13 mm per year are also observed.

4.4. Policoro

The Policoro coastal plain was considered as a unique cluster because the BSS/TSS
ratio examination suggested that the clusterization was not reliable in this case. Then,
LISA analysis was performed over the whole region; even in this case, some hotspots and
coldpots were detected. Some particular uplifting areas were found along the Cardonna,
Canna and San Nicola torrents; interestingly, portions of the SS 106 Jonica highway were
both affected by hotspots and coldspots: results are shown in Figure 10.

In particular, two elements of interest deserve further investigation: the SS 106 Jonica
highway bridge near Nova Siri Scalo beach and Policoro Lido shore, see Figure 11.

In particular, along this bridge, extremely heterogeneous LOS velocities were detected;
these regions, outlined in yellow dashed circles, showed velocities ranging from −15 mm to
15 per year. More specifically, this phenomenon occurs in proximity of a bridge. Policolouro
Lido showed a small but relevant subsidence hotspot with LOS velocities of about −16 mm
per year. Maximum values of velocities along the LOS (∼13 mm per year) were observed.
Moreover, coastal subsidence was also observed along the shorelines ([−6,−10] mm/year).
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Figure 10. LISA analyses of Policoro dataset: coldspots (red) and hotspots (green) are shown (a); the
analysis reveals three major areas of concerns, namely, two portions of the SS 106 Jonica highway and
a subsidence coldspot in Policoro Lido. SKATER optimal clustering is shown in panel (b); the spatial
distribution of the LOS velocities retrieved by the SPINUA algorithm is shown in panel (c).

Figure 11. Subsidence phenomena in the Policoro area: the SS 106 Jonica highway (a) and the Policoro
Lido settlement (b). For what concerns the highway, traits with extremely varying velocities, ranging
from −15 mm to 15 per year are highlighted (dotted circles).

5. Discussion

Here, we presented a novel workflow that combines a powerful and computationally
efficient clustering algorithm such as SKATER with a local analysis outlining homogeneous
patterns characterized by lesser scales than SKATER clusters or local anomalies. The
main feature offered by SKATER is that it is a spatially constrained algorithm, a decisive
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feature when dealing with geographical analyses. An immediate consequence is that
SKATER clusters do not yield extremely parcelled segmentations but tend to cover more
extended areas.

For example, in the Sibari region, only three clusters were detected; one includ-
ing the majority of points characterized by stable LOS velocities, the other two clusters
characterized by subsidence. Analogously, three clusters were found by SKATER in the
Trebisacce-Villapiana area; one for subsidence in the south, one uplifting region in the
north, and a stable region in the middle. Finally, according to SKATER, the whole Policoro
area was considered as a unique homogeneous cluster. However, it is reasonable to assume
that by further inspection, a more detailed characterization of local phenomena could arise.
This is where LISA analyses become useful.

In fact, LISA analysis allows us to distinguish within the Sibari region some spe-
cific subsidence areas which would have been grouped together if considering only the
SKATER results. In particular, our findings outlined the subsidence affecting the Sibari
lakes surroundings, which is particularly interesting if considering the residential areas
in the surroundings and the fact that it is located 2.5 m above the sea level. Additionally,
the subsidence affecting Corigliano Calabro was highlighted: on the one hand, we found a
subsidence induced by anthropic pressure in the industrial area, probably related to the
continuous water supply for industrial needs affecting the water well beneath; on the other
hand, the analyses revealed the subsidence of Salicetti, a coastal fraction of Corigliano
Calabro. In fact, subsidence of coastal regions, such as that of Salicetti or the Sibari port (an-
other point of interest for subsidence) should be carefully monitored, especially considering
the combined action of subsidence and sea-level increment due to climate change.

Further details were provided by LISA for Trebisacce-Villapiana, too. The mouth of
the Saraceno river showed an interesting behavior with extremely heterogeneous LOS
velocities; it is reasonable to assume this is due to debris, moreover it is a region far
from inhabited areas, nevertheless these movements need to be monitored. The uplifting
movement of Trebisacce is already known [57]; this can be considered an indirect validation
of the robustness of these findings.

Analogous considerations arise looking at the Policoro region where a general coastal
subsidence was observed. Again, this finding is confirmed by previous studies [58,59], thus
validating the proposed procedure. This general subsidence is expected to involve a coastal
loss of 1 m per year, hence suggesting a continuous monitoring. Additionally, the SS106
Jonica highway deserves a particular mention; specifically, the trait near Nova Siri (lat
40.135, lon 16.625) showed LOS velocities ranging from −15 mm to 15 mm per year. Finally,
a significant subsidence (−16 mm per year) cluster was observed within the Policoro Lido
fraction. To the best of our knowledge, this phenomenon has not been previously observed
and deserves further investigations.

It is worth mentioning that LISA analyses also revealed local anomalies; less than
1% of examined PSs consisted of isolated points. In these cases, we chose to neglect
such anomalies because we were unable to ensure their statistical robustness or to verify
with on ground observations if they were related to interesting phenomena. Accordingly,
future work could refine the proposed approach. Nevertheless, the presented findings
suggest unanimously that this pipeline can be suitably adopted for environmental and
infrastructural monitoring.

6. Conclusions

In this work, we presented a novel workflow for PSI analyses; specifically, we adopted
SKATER and LISA methods to perform spatially constrained clusterization and a sub-
sequent investigation of local patterns or anomalies. We demonstrated how SKATER
clustering represents a suitable tool for PSI in that the clusters it yields are a faithful rep-
resentation of the ground deformations returned by PSI when performing regional-scale
analyses. Nevertheless, the large clusters returned by SKATER include local patterns
that, without the subsequent LISA analysis, would be inevitably missed. In particular,
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we showed the presence of significant local subsidence and uplifting phenomena in the
examined regions. These phenomena being due to anthropic pressure such as industrial
or touristic areas, as well as being due to natural causes, it is of paramount importance
to have accurate tools with which to monitor them. This is of particular interest for both
environmental and infrastructural monitoring. To this aim, it is also worth mentioning that
the National Recovery and Resilience Plan presented by Italy, as part of the the Next Gener-
ation EU programme, has explicitly allocated huge resources for computing infrastructures
deputed to environmental monitoring; hence, the development of novel strategies and
approaches which exploit the massive informative content provided by Earth observation
is not only useful but encouraged.
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Abstract: Since the last century, global warming has been triggering sea level rise at an unprecedented
rate. In the worst case climate scenario, sea level could rise by up to 1.1 m above the current level,
causing coastal inundation and cascading effects, thus affecting about one billion people around
the world. Though widespread and threatening, the phenomenon is not well known to citizens
as it is often overshadowed by other effects of global warming. Here, we show the results of an
online survey carried out in 2020–2021 to understand the level of citizens’ knowledge on sea level
rise including causes, effects, exacerbation in response to land subsidence and best practice towards
mitigation and adaptation. The most important result of the survey is that citizens believe that it
is up to governments to take action to cope with the effects of rising sea levels or mitigate the rise
itself. This occurs despite the survey showing that they actually know what individuals can do and
that a failure to act poses a threat to society. Gaps and preconceptions need to be eradicated by
strengthening the collaboration between scientists and schools to improve knowledge, empowering
our society.

Keywords: sea level rise; survey; best practice; adaptation; mitigation; coastal inundation;
Mediterranean coasts

1. Introduction

Sea level rise (SLR) is a major consequence of global warming that is causing the
melting of global ice and the thermal expansion of the oceans.

This phenomenon is worldwide affecting low elevation coastal zones, islands and
littoral urban areas (large megacities as well as small villages), where about 1 billion people
live. Coastal sites are undergoing coastal retreat and erosion, with relevant socioeconomic
effects on human activities. Although the effects of rising sea levels can drastically change
coastal areas in the long run and affect human activities, as has already happened in past
centuries [1], the accelerated rise in sea level in the coming decades is still considered a
minor risk by most coastal populations [2].

In the Earth’s geological past, sea level changes due to astronomical phenomena-
driven climate change have occurred several times [3]. However, the increase in global
temperatures and global mean sea level (GMSL) which started about 150 years ago is un-
doubtedly due to human activities, according to the latest reports of the Intergovernmental
Group on Climate Change, IPCC ”www.ipcc.ch (accessed on 20 September 2023)”.

The GMSL is rising at unprecedented rates with expected progressive inundation of
the coastal zone [4] and with compelling consequences that are only a small part of the
public agenda or debate [5–7].

Scientific data from ground and space instrumental observations show that the mean
SLR of the oceans increased from 1.4 mm/year in the 20th century to about 3.7 (3.2–4.2)
mm/year over the period 2006–2018, and will likely reach 5.2–12.1 mm/year in the period
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2080–2100 for the lowest and highest CO2 emission scenarios, respectively. This will lead
to an expected upper limit of GSLR (global sea level rise) of about 1.1 m by the end of this
century [8], which exceeds previous estimates published in the IPCC AR5 report (Figure 1)
(updated after our survey by the publication of the AR6 report).

Figure 1. Global mean sea level rise from 2006 to 2100 relative to 1986–2005 for lowest (RCP2.6 in blue)
and highest (RCP8.5 in red) projected emissions with related uncertainties (shaded colors). Modified
from Climate Change 2014 Synthesis Report Fifth Assessment Report (AR5) Intergovernmental Panel
on Climate Change at “https://ar5-syr.ipcc.ch/topic_summary.php (accessed on 5 September 2023)”.

However, this limit may be higher due to the still unknown instabilities of the Green-
land and Antarctic ice sheets [8]. According to [9], the ongoing phenomenon in the Mediter-
ranean basin has several key components that can alter SLR estimates at a regional level.

Such an unprecedented rate of global mean sea level (GMSL) growth has compelling
consequences that are not sufficiently addressed by the public agenda or debate. SLR is
still often considered a minor risk by the coastal population, although the scientific data
obtained from multiple disciplines ranging from climate to Earth sciences and biology
agree in showing the global scale of the phenomenon. Earthquakes or volcanic eruptions
may be very destructive, but they affect only limited areas of the Earth’s surface, even
during the strongest events. Conversely, SLR is a global phenomenon that can affect in time
the coasts of each continent and island of the world, as well as populations who have been
living close to the coastline since historical times [1]. Decision-makers and individuals are
not sufficiently aware of the associated risks to take appropriate mitigation and adaptation
policies [2,10].

In order to understand the reasons why a global emergency is coupled with ineffective
actions, it is urgent to know to what extent the general public is informed about SLR, its
effects and impacts, and even more importantly, to what extent there are misconceptions.

Here, we show results from an online survey carried out in the frame of the
SAVEMEDCOASTS-2 project “www.savemedcoasts2.eu (accessed on 20 September 2023)”
to evaluate the impacts of SLR along targeted sites of the Mediterranean coasts up to the
year 2100, providing SLR projections and potential scenarios of coastal marine inundation,
also in storm surge conditions, including the contribution of land subsidence along the
coastal zone.

The aim of the survey was to support prevention and preparation actions in the
Mediterranean coastal communities, through the knowledge of the phenomenon, necessary
to deal with the effects and the socio-economic impact of sea level rise. In particular,
our survey focused on five Mediterranean zones: the Venice lagoon and the coastal plain
of Metaponto (Italy), the mouths of the Basento and Bradano rivers (Italy), the delta of
the Ebro river (Spain), the coastal plain of Chalastra (Greece), Cyprus and the coast of
Alexandria in the Nile delta (Egypt) and the Rhone delta (France).
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To this end, people were asked to fill in a specific questionnaire published for a specific
time window online at “www.savemedcoasts2.eu (accessed on 20 September 2023)”. The
questionnaire was designed and developed to understand the level of awareness of the
investigated coastal communities

2. SLR Survey

Preparing coastal communities to address and mitigate the impacts of rising sea levels
and to undertake adaptation strategies and prevention actions is an important and difficult
task to achieve.

The goal is not only to show and understand future SLR scenarios in specific localities,
but also to disseminate scientific results to the public and foster best practice. Whatever the
risk-related theories, frameworks and models one may choose for the implementation of
risk communication, the understanding of what the public knows and/or think about a
certain risk is mandatory, and yet not a common practice [11]. It allows us, for instance, to
implement effective risk communication that encourages action by the general public to
limit risks and choose preparedness.

The public—or non-experts in general—may not be well enough informed or simply
not care about a natural phenomenon. Generally speaking, it is thus of paramount impor-
tance to evaluate the knowledge of people about the causes and the effects of long-lasting
phenomena, such as SLR, to set up the level of information and dissemination so as to im-
prove prevention actions and adaptation planning. Although there are many publications
about the SLR perception of the public around the world [1,10,12–22], there are still only a
few studies of the Mediterranean area [2,9,23,24]. The phenomenon has only recently been
taken into account as a consequence of the increased awareness of climate change.

We thus designed a survey in four languages that was published online and open to
the general public. The English version of the questionnaire is shown in Figure S1 of the
Supplementary Material. The questionnaire has been published in two forms: one for those
who already know about SLR and one for those who do not. There are slight differences
between the two questionnaires: in the first case the respondents are also asked about their
source of information about the issue, while in the second case, since the respondents do
not know about the phenomenon, the questions aim to elicit an opinion based on common
sense and not on knowledge. The comparison between the answers of the two groups
of respondents can help to estimate how much the knowledge of the SLR helps to foster
best practice.

The survey is organized in three blocks: the first aims to know if the reader is at least
aware of the rise in sea levels and, in that case, where they obtain the information; the
second block asks about the causes and the consequences of SLR, who has responsibility
for mitigating the effects, how to adapt our cities to the threat and what can be done
to reduce SLR; the last block collects respondents’ personal information regarding age,
education, employment, vicinity to the coast of their home. The final field is left free for the
respondents to comment on the survey or the phenomenon.

The answers in the questionnaire were designed after a careful revision of the content
of the principal textbooks used in the schools of the countries involved in the survey and
an analysis of the citizens’ needs.

The Respondents

We spread the request to compile the survey by word of mouth, soliciting teachers and
writing a few posts on social networks. We also profited from dissemination by the press
agencies of the institutions involved in the project. Our target has been to inquire about
perceptions and knowledge of SLR to a wide population of the “generic public”, without
any restrictions of age, education or employment category.

Given that we did not impose any selection to the recruitment of the respondents, we
can consider ours as a totally random sample. Random sampling is often used in science
to conduct randomized control tests or for blinded experiments. Each individual of a
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population set has the same probability of being included in the sample. This creates, in
most cases, a balanced subset that carries the greatest potential for representing the larger
group as a whole. Conversely to other sampling methods or in reference to a specific
population (for example, all adults aged 25–60 and in higher education), we do not/can not
compute the appropriate sample size like in [25,26]. All results and relative speculations
must be then considered at a qualitative level.

The total number of respondents was 1454 from 23 countries, with particular feedback
from the Mediterranean countries. However, the collected answers go far beyond, and
give us the chance to obtain information also from countries that are not yet experiencing
the phenomenon. In the next sections, we will first describe the sample and then we will
discuss the answers and the findings.

One advantage of a random sampling approach is that we may guess that most
respondents were really willing to contribute in a frank manner since they freely agreed
to join in. However, this does not avoid vandalism. We then made a wide search for fake
completions (by will or by chance) based on the coherency between age, job position or
education level of the respondents. We assumed that a scammer does not pay attention to
the way he/she fills out the fields of the questionnaire, giving them incoherent answers. If
the respondent declares to be 17 and owns a PhD or is a teacher, we can flag this completed
survey as suspect and remove it. A more demanding search was conducted for cloned
completions by the same respondents. For example, in case of students from the same
school, living in the same town and having the same age, some of the answers in the third
block in the questionnaires were identical and, thus, suspect. Only the cross-checking of all
answers permits us to discriminate whether they are multiple completions from the same
respondent. It may of course happen, by chance, that two students input exactly the same
answers: in these cases, both questionnaires were deleted. The net number of completions
after the checking for not reliable entries is 1417, that is the 97% of total respondents.

In 7 out of 23 countries, more than 10 answers were collected. As expected and
foreseen, most of the respondents compiled the questionnaires from the Mediterranean
countries; the greatest number of completions was from Italy (992). Table 1 shows the
number of respondents from each one of the 23 countries. In most cases, the number
of answers does not allow us to check the dependency between level of knowledge and
country of residence.

One piece of information missing from our analysis is the fraction of respondents who
came across the questionnaire by chance, for example, by reading a press release about
the experiment or a post on social media. We estimate that about 30% of the answers
were compiled by people not directly solicited by friends, colleagues or teachers. As
already stated, and in the frame of a random sampling, in an experiment like ours the
optimal sample would be made only of people who were not directly invited to participate.
However, we believe that the way respondents have been involved is not biased, since it
does not imply that they are more informed. It may have some geographical influence
on the number of respondents living in coastal areas if the solicitors themselves live there.
However, it must be remarked that such a number may be high even in case of a pure-
by-chance participation, because people are more inclined to participate if they live in
places where a certain phenomenon potentially occurs, while they are less interested if
they are not affected. In conclusion, although more than 98% of the respondents already
know what SLR is, as confirmed by the answer to a specific question on the survey form
(see Supplementary S1), we believe that such a percentage is not biased due to the way
respondents have been selected. In fact, it must be remarked that even the answers provided
by people that declared to be familiar with the phenomenon were wrong, although 58%
of the respondents live close to the sea. This issue will be discussed in the last part of
the paper. Figure S2 in the Supplementary Material shows pie charts describing the age,
education and job position of the respondents. Table 2 summarizes these data. We did not
ask for gender to avoid any discrimination; however, we believe that for our study the
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information would be redundant since the attitude to mitigation and proactive actions does
not depend on sex.

Table 1. Number of respondents for each country. The four countries involved in the project are
shown in red. The total number of completions is 1417.

Country Number of Respondents

Italy 992
Spain 249

Greece 56
Cyprus 38

USA 20
Germany 19

France 11
UK 5

Norway 4
Belgium 3

India 3
Ireland 3

Netherlands 2
Portugal 2
Algeria 1

Argentina 1
Australia 1
Colombia 1
Denmark 1
Jamaica 1

Israel 1
Luxemburg 1

Malta 1
Panama 1

Table 2. Composition of the sample by age, education and employment.

Age Education Employment

16–19 9.53% Middle 8.62% Teacher 11.58%
20–35 19.90% High 23.46% Retired 9.60%
36–51 33.17% University 36.25% Student 16.38%
52–64 29.15% Post Graduate 31.62% Other 62.43%

>64 8.26% ------------- -------------

3. Analysis of the Questionnaires

The first block of the questionnaire aims at knowing how the public obtains informa-
tion about the SLR. The respondents could input any answer that applied. About 8% of the
respondents ticked only one answer; out of these, about 50% claimed that their main source
of information is school and/or university. A combined check with degree of education
and age confirmed that they are all students. It is encouraging that the topic is treated at
school and university, in particular because the analysis of some of the books adopted in the
schools of the participating countries pointed out many gaps and mistakes in knowledge
about the phenomenon and its consequences. The goal is to understand whether these
errors have been transferred to students or have been explained in classroom discussions.
In fact, while waiting for editors to update and correct the school texts, there is a need to
train teachers with initiatives to improve their knowledge of the scientific aspects of SLR,
of its consequences and of the proactive actions to be passed to their students.

The remaining respondents ticked more than one source of information. The analysis
of multiple answers about information sources is rather complicated. In fact, in this very
case, the total percentage for each information source may be greater than 100%. Thus,
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the evaluation must be performed in a qualitative way. Television and internet were the
most popular answers, followed by newspapers and magazines. Social networks (which
we expressly distinguished from the internet) also have a significant impact. Apparently,
our sample did not collect information, or at least very little, from municipalities and local
institutions. Figure 2 shows the distribution of answers.

Figure 2. How do respondents obtain information about SLR. Upper panel: respondents who input
only one answer. Lower panel: more than one choice.

As a general comment, the issue is how reliable and correct the information dissemi-
nated by the media is. This is a common problem with other natural hazards or other fields
like, for example, medicine. TV shows, internet blogs, articles on newspapers and posts on
social networks are often not directly managed by experts. The participation of researchers
in TV broadcasts is limited and their presence on social media is often denigrated by haters
and keyboard warriors. Sensitive topics are often treated by non-experts. The solution to
this issue is to have more people directly listen to experts or to increase the presence of
experts in the media. However, academics are not keen, nor do they have experience to
present themselves in a “fascinating” way to attract followers on social media. Conferences
and round tables, which are the places where scientists come into contact with the public,
are considered too complex to understand. Moreover, the presence of experts in the media
is dependent on the interest of the public: researchers and experts become popular during
or right after a natural disaster, that is, at the worst time to foster prevention, and worse,
are never requested during peace time because a particular topic is “not on the news”.

The second section is about causes, consequences, responsibilities, actions to mitigate
the risk and what each citizen can do to reduce the ongoing SLR. Questions 1, 2 and 5 accept
multiple answers, while question 3 and 4 answers use a Likert scale (scores 1 to 5) [27].

For questions 1, 2 and 5 we distinguished respondents who input only one choice (they
are, respectively, 12%, 8% and 7%) from those that ticked more options. For question 1, the
respondents who expressed only one choice input global warming (66%), ice melting (24%)
and subsidence (8%) as causes of the phenomenon. Not only do the respondents seem
to have clear ideas by ticking only one answer, but they also indicate what are generally
considered the “correct” main causes. It must be remarked that ice melting is a consequence
of global warming, so the two answers are different aspects of the same issue. Most of
the respondents (1237 out of 1417) input at least two answers. Only very few believe that
volcanoes and earthquakes may cause SLR, while the majority declare correctly that the
phenomenon originates from global warming, ice melting and subsidence. This latter cause
was ticked by fewer people, showing that it is not adequately related to sea level in the
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literature and in the media. However, about 70% of the respondents that ticked subsidence
as one of the causes (243 out of 345) also chose ice melting and global warming, showing a
good knowledge of all the causes of SLR.

For question 2, which was about the consequences of SLR, respondents who marked
a single option chose mostly to leave their homes (55%). However, a significant number
of participants chose the temperature of the Earth rises (16%), effects of tidal waves are
amplified (11%), coastal areas turn into lakes and swamps (11%) and even that thunder-
storms become bigger (4%) as being consequences of SLR. Here, the respondents show
some confusion between the causes (increase in the temperature of the Earth) and the effects
of SLR; nevertheless, they understand that the main threat is to be obliged to abandon their
homes to avoid being flooded. In the case of multiple answers, there is again a prevalence
of the answer about the abandonment of the place where one lives, followed by issues
about harbors and beaches. Surprisingly, the answer about increasing temperature was
also chosen by many people in this case.

Finally, for question 5, which had one choice, only two answers were chosen: the
majority of respondents gave credit to scientific studies, since about 87% of the respondents
stated that the best way to reduce SLR is to adopt science-based solutions; the remaining
believe that fostering sustainable mobility is necessary. Those who chose more than one
solution distributed their answers over a wide range of chances: they certainly knew that
using air conditioners, heaters and private cars is counterproductive, but do not believe
that recycling, getting zero km food and saving water could help to fight the issue of SLR.

The core of the survey comprised questions 3 and 4. The first aimed at knowing who
is more responsible, or who has more capacity, for mitigating the SLR. The respondents
had to attribute a score from 1 (more important) to 5 (less important) to 5 categories
involved, at different levels, in the issue of the SLR. The categories were scientists, engineers,
government representatives, schools and citizens.

According to our sample, citizens are the least responsible, while governments are the
most responsible. The issue here is not that central or regional governments are blamed for
major impacts to the environment and for anthropogenic climate change effects. They are
responsible for allowing the construction of homes, infrastructure and buildings near the
coastline, without securing a buffer zone against coastal floods. However, this is a striking
result as it clearly highlights perception gaps and needs. The gap is that citizens believe
they have neither the responsibility nor power to mitigate this disruptive trend. The needs
concern the empowerment of citizens to fight top-down decisions that increase rather than
mitigate such disruptive trend.

The percentage of answers that free citizens from any responsibility is high, reaching
73%. Governments were assigned the largest burden with more than 50% of answers
in position 1 (most important), followed by scientists (29%). The trend of these values
was also very similar when answers were subdivided by respondents, employment or
age. Figures 3 and 4 show histograms relative to the distribution of answer to question 4
for the whole sample (Figure 3) and for sub-groups according to employment (Figure 4).
These groups may be considered as the position held in the society. Students, who have no
experience yet, tend to equally subdivide the charge in all categories, the only exception
being the belief that citizens are powerless against SLR. It is remarkable that teachers
rated school as less important than students did. This means that students have more
expectations than what teachers believe they can do.

Finally, it is noteworthy that the respondents believe that scientists are, at the same
time, responsible for the current situation (29% of answers on the question about responsi-
bilities) and a resource to solve the issue (adopting science-based solutions).
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Figure 3. Answers to the question “who should primarily work to reduce the damage caused by
rising sea level”.

Figure 4. Answers to the question “who should primarily work to reduce the damage caused by
rising sea level” divided for sub-groups according to employment.

Question 4 asks the respondents to rate, from fundamental to useless, actions to adapt
cities to the rising sea level. The questionnaire accepts more answers for the same rating
(e.g., more than one proposal could be rated fundamental). Figure 5 shows the answers to
the questionnaire. The total number of entries is 1417 times 6, so each histogram bar may
have a size greater than the number of respondents.
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Figure 5. Answers to the question “what we need to do for our cities to adapt to the rising sea level effects”.

As a general comment, our sample believes that temporary solutions, like building
barriers, are not feasible or satisfactory. Some of the respondents consider it not necessary
(150 answers) or even useless (222). The majority believes that it is fundamental to have
more respect for the environment and to build cities that take into account a “green” view,
including avoiding construction on coastal areas. In practice, our sample bet on a better
future more than on protection of the existing infrastructures. It is remarked that about only
half of the respondents are “ready” to move away from the coast. In fact, 697 respondents
declare it is fundamental or important to leave the coast; 332 believe it is indifferent, while
379 think it is not necessary or useless. Out of these, conversely to what was expected, it
is not the older respondents who would not leave their place but the “middle aged” ones
(33% of those who chose useless or not necessary were aged 36–51). By looking at the
overlap between the two solutions (to leave the coast and build up barriers), it was found
that about 200 people believe that it is fundamental or important to build barriers and
useless or not necessary to leave the coast. In other words, they would be ready to take
a reasonable risk by carrying on living in the same place by protecting themselves with
defensive barriers. Finally, it is noteworthy that most of those who would not leave the
coast are resident there (65%).

4. Discussion

Despite the limitations due to the way the questionnaire has been administered and
the number of answers, the analysis of the results shows, for the first time ever to our knowl-
edge, a frame of the current perception of the public on SLR and its consequences along
the coasts. The random sampling scheme adopted in the collection of the questionnaires is
reflected in the diverse amount of responses for each category of participant. Generally
speaking, it would be recommended to have similar numbers in each category to make
comparisons among the answers and to speculate about the different uncertainties and
shortcomings of each age, education or employment category. However, the aim of our
survey was to investigate the general public opinion and knowledge in regard to SLR. In
fact, the categories themselves were very wide and suited to different sizes of groups of
respondents. The goal of interacting with a large audience has thus been achieved, and
the results of the survey, although not conclusive, highlight gaps and the need to calibrate
future educational activities to foster awareness and possibly proactive actions on the SLR.
The main findings from the analysis of the questionnaire are therefore discussed. In a few
cases, we also point out different attitudes of the diverse categories, but the reader should
bear in mind that these are only qualitative speculations, given what was stated above
about the size of each category.
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The problem of SLR is already known by some of the people involved in the inves-
tigation. This knowledge is shared by both coastal populations and those living in inner
regions far from the sea, for whom the issue does not represent a pressing threat. The public
is informed through traditional media, in particular through television. This concerns
especially the older part of the sample, who also read newspapers and magazines. It is
known that access to such traditional media is generally unevenly distributed among the
population: older people are generally more familiar with the printed press than young
people. Younger people get their information mainly from the internet and social me-
dia, where the spread of fake news and inaccurate or confusing information is mostly
uncontrolled. Our sample shows that local administrators and schools play a secondary
role in the communication to the public. Given that they are a reference for students and
citizens both in everyday life, but especially in emergency situations, an effort must be
made to render them a reliable source for information and dissemination. The need to make
“institutions” become a reference for information was already evident before our survey.
It must be remarked that “expert” opinion as a source of information is not limited to
traditional media, where, as discussed above, scientists are already present. The challenge
is to transfer experts to realities where they may have a larger public but in which they
have no, or not enough, experience.

As for the causes, a part of our sample is aware of the phenomena that contribute to
SLR, and a part of the respondents already know the phenomenon of land subsidence. This
is comforting because it’s a complex concept to understand, with slow and hard-to-observe
effects. The numbers suggest that insisting on the subject of land subsidence in schools and
textbooks is crucial. In fact, although there are at the same time “land lifting” on the globe
which mitigate global warming sea level rising in some areas [24], subsidence it is one of
the factors that accelerate SLR but it is still unknown to many people.

Regarding the consequences of SLR, the sample shows confusion between causes and
effects. Moreover, there are only a few cases in which the compilers have indicated all the
possible consequences and this again shows that a careful work of education is necessary
to describe the impact, both social and economic, of a phenomenon which is penalized
in terms of perception, by a relative low velocity compared to other natural disasters. In
this regard, some compilers linked the SLR to the occurrence of other phenomena, for
example, earthquakes. Although this is a small percentage of people, it indicates a tendency
to confuse natural processes by attributing to a common cause events that are profoundly
different from each other.

A weak point emerged from the analysis of the answers in the section related to
who should work to reduce damage caused by SLR. This is the tendency of a lack of
understanding of one’s own role in reducing the phenomenon. The whole sample, with
small differences between the categories (age, occupation, degree), has expectations from
local rulers and administrators on adaptation and mitigation actions. In addition, part
of the sample believes that it is up to scientists to set up prevention proposals and law
enforcement activities. Conversely, the responsibility attributed by the sample to citizens
is almost nil. In this, the citizens seem to discard their responsibility and forget that not
only individual actions by a large number of people can make the difference but also that
politicians and rulers are, or at least should be, sensitive to citizens’ requests. These aspects
highlight the need to work more and better with citizens on their awareness, an action in
which schools can carry out actions aimed at training future citizens and administrators to
become more aware and active.

A very interesting point is related to actions to adapt cities to SLR. Compilers tend to
be reluctant to move inland from coastal areas, but they are also convinced that temporary
solutions, such as the construction of artificial barriers, are of little use. They are convinced
that the only way to mitigate SLR is to adopt environmentally friendly solutions, and are
largely in favor of banning construction along the coast.

Finally, they are aware of the best practices to adopt daily to contain global warming
(cut greenhouse gasses emission, use of sustainable mobility, solutions based on scientific
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studies, encourage recycling). To this point it is worth noting there is a growing environ-
mental awareness in the population, particularly in the new generations, also thanks to
international initiatives such as the Conferences of the Parties and the Paris Agreement
that aim to a climatic neutrality by 2050 (https://climate.ec.europa.eu/index_en accessed
on 6 September 2023). Although there are denialist positions on global warming and SLR,
scientific data nevertheless agrees in showing a continuous and growing trend of rising
temperatures and sea levels at a global scale.

5. Conclusions

The analysis of 1417 responses to the questionnaire from 23 countries showed that the
investigated sample has good basic knowledge of SLR. In some cases, however, citizens who
directly experience SLR (like those living in exposed areas) have gaps and preconceptions
that must be eradicated. In addition, it is necessary to better inform and educate citizens,
points on which the whole sample reached a very small number of “correct” answers.
These concern the scientific aspects of the phenomenon, the role of land subsidence in
exacerbating the effects of SLR and the behavioral aspects of the need to foster awareness
that each citizen can play against global warming and, subsequently, SLR. In both cases, a
greater collaboration between scientists and schools must be strengthened, with projects
and educational programs that help students and teachers to see climate change in all
its nuances, of which SLR is one of the related aspects, reminding citizens that these are
interconnected phenomena. It is also necessary to collaborate with publishing houses,
because a recent analysis has highlighted strong deficiencies in the description of the causes
and effects of SLR on school textbooks for middle school level. For example, the topic
of subsidence is rarely treated, and if it is, it is not adequately described. Moreover, it is
time to include in school books description of the causes and consequences of SLR as a
separate geologic–climate topic and not as a simple secondary effect of climate change.
Finally, the sample we analyzed concerns only a part of the population that for is interested
in natural phenomena. In an attempt to involve more people in an educational program,
other actions should be considered, including adapting the technical language to an even
less experienced audience and extending the collection of data to social media networks.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/geohazards4040021/s1, Figure S1: Questionnaire on sea level
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Abstract: The 2006 tsunami, throughout the Pangandaran to Cilacap Coast, resulted in 802 deaths
and 1623 houses being destroyed. At Jetis beach, Cilacap Regency, 12 people died, and hundreds of
houses were damaged. This area is a tourism destination, visited by hundreds of people per week.
Therefore, this study aims to determine a tsunami hazard zone and the most effective evacuation
route based on multiple factors and scenarios. The method of this study includes scoring, weighting,
and overlaying the distance of the Jetis beach from the shoreline and the river, including the elevation
and topography. The study results depict five levels of tsunami hazard zone at the Jetis beach: an area
of high potential impact, moderately high, moderate, moderately low, and low. The southern Jetis
beach is the most vulnerable area with regard to tsunamis, characterized by low elevation, proximity
to the beach and rivers, and gentle slopes. The simulation results show the four fastest evacuation
routes with the distance from the high-risk zone to the safe zone of around 683–1683 m. This study
infers that the southern part of the Jetis beach, in the moderate to high impact zone, needs greater
attention as it would suffer worst impact from a tsunami.

Keywords: scoring; overlay; evacuation route; tsunami; Jetis; Cilacap; Indonesia

1. Introduction

1.1. Study Background

In 2006, a tsunami wave with a height of 5–7 m surged along the southern coast of
Java. There was a >7 Mw (moment magnitude) earthquake before the tsunami waves hit
the southern coast of Java [1,2]. As a consequence of this tragedy, 664 people died, 498 were
injured, 1623 houses were damaged, and economic loss reached 55 million US dollars [3].
Earthquakes and tsunamis are the most endangering disaster on the southern coast of Java,
because of its location close to the subduction megathrust between the Eurasian continental
plate and the Indo-Australian ocean plate [4,5]. Additionally, the Cilacap-Pamanukan-
Lematang large fault complex has the potential to induce earthquakes of a magnitude of
7–9 Mw [6,7]. Therefore, there is a need to study tsunami-prone zones throughout southern
Java so that people in this area are more alert to avoid vulnerable zones when an earthquake
occurs above 7 Mw.

Studies on tsunami wave modeling in southern Java based on 2006 earthquake data
have been conducted [8]. This study shows that the height of the tsunami wave in Cilacap
was around 3–6 m, and the inundation distance was 400–600 m from the shoreline. Another
study on active tectonic deformation in Java using GPS from 2008–2013 found a strain rate
of more than one microstrain/year, with an extensional strain of five microstrains/year
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associated with post-seismic deformation of the Java earthquake in 2006 [9]. The mapping
of potential tsunamis on the southern coast of Java has been carried out in specific areas
such as Pangandaran, Gunung Kidul, Pacitan, and Banyuwangi [10–12]. There are still
other areas on the southern coast of Java Island that have not been studied, especially
Central Java Province. The considerations of the tsunami hazard mapping study is the
availability of vital national infrastructure, such as ports and airports [13–15]. The In-
donesian government’s long-term program is to map the tsunami hazard zones across the
southern coast of Java [16–18]. Recently, tsunami research in southern Java has focused
on the recurrence interval and the height of the tsunami waves. Meanwhile, the study of
mapping the tsunami hazard zone and the simulation of the fastest evacuation route has
not been performed comprehensively. Mapping of the large-scale tsunami hazard zone in
southern Java has never been undertaken. Currently, the scale of the study area is only at
the district level. In contrast, the tsunami hazard zone from one location to another varies
depending on elevation, wave height, and tsunami distance [19–21]. As a solution to this
problem, mapping the tsunami hazard zone in this study will be conducted on a large scale
at the sub-district level. The case study in this research is Jetis beach.

1.2. Significance of the Research Location, Purpose, and Contribution of This Study

The site selection in this study took into account the history of the tsunami events,
the existence of vital national infrastructure, and population density. Jetis beach, one of
the tourism destinations on the southern coast of Cilacap, experienced the impact of the
2006 tsunami [22]. This beach lies at Jetis Village, which has an area of about 6.06 km2 and a
population of 6596 people (Figure 1) [23]. Apart from being a tourist attraction, there is also
a fish auction center and vegetable plantations [24]. A steam power plant exists around Jetis
beach. This power plant supplies electricity to the entire southern Central Java and West
Java Provinces [25]. This village is situated on the main route between Cilacap Regency
and Kebumen Regency. The condition of the road that is parallel to the coast, coupled
with a relatively high volume of traffic (more than 7000 vehicles/h; [26]), could hinder the
community’s evacuation during an earthquake or tsunami. This study aimed to define the
tsunami hazard zone at Jetis beach based on slope, the distance from the coastline and river,
and elevation parameters, using the weighing method. Furthermore, we determine the
fastest evacuation route from the high-risk location to the safe area, built upon the tsunami
hazard map and road capacity. This study will contribute to the long-term program of
the Indonesian government to map areas that have yet to be assessed. This study will
also be the first to map the tsunami hazard zone in southern Java on a large scale at the
sub-district level.

Figure 1. Jetis beach lies in Nusawungu District, Cilacap Regency, Central Java Province. This beach
is a tourism destination in Cilacap. The study area in the image is shown in pink.
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2. Literature Review

2.1. Geo-Tectonic Setting

Jetis beach is situated around 50 km from the shallow earthquake zone and 120 km
from the deep megathrust earthquake zone of South Java [27]. The recurrence period for
shallow earthquakes ranges from 10–50 years, while the recurrence period for deep earth-
quakes is not yet known [28]. There is a seismic gap in the medium earthquake zone, where
the earthquake’s potential magnitude and recurrence period are currently unknown [29]. If
we observe the megathrust zone of west Sumatra, the recurrence period for the medium
and deep earthquake zones is more extensive than the shallow earthquake zone, and the
amount of energy released is more significant and can generate tsunami waves [30,31]. In
2009, an earthquake in Tasikmalaya impacted Jetis Beach, which was 150 km away [32].
This earthquake was generated by the Cilacap-Pamanukan-Lematang active fault zone [33].
Based on USGS data, from 1900 to 2020, there were more than 203 shallow seismic activities
with a magnitude of ≥4.5 Mw [34]. Approximately 80 medium and deep earthquakes
occurred in the south of Central Java from 1900 to 2020 with a magnitude greater than
7 Mw [35]. Table 1 summarizes previous studies on the potential for earthquakes and
tsunamis in Cilacap.

Table 1. Previous studies on the potential for earthquakes and tsunamis in Cilacap. Based on the
tectonic setting, Cilacap has a medium earthquake vulnerability, which is dominated by shallow
earthquakes. The last earthquake and tsunami in Cilacap occurred in 2006.

Summary References

Based on the peak ground acceleration at the surface (PGAM) using the
probabilistic method, the entirety of Cilacap is classified as having

moderate earthquake vulnerability.
[36]

Compilation of fault mechanisms, historical seismograms, calculation of
mantle surface waves, and numerical simulations of the tsunami shows

that the 1921 earthquake in Cilacap originated from a depth of 30 km.
The earthquake mechanism configuration is strike-slip, showing the

tensional stress parallel to the direction of convergence with a moment of
5 × 1027 dyn cm.

[37,38]

The 2006 earthquake and tsunami in Java had two different rupture
stages. The first stage lasted 65 s with a rupture speed of 1.2 km/s. The
second stage lasted from 65 to 150 s with a rupture speed of 2.7 km/s.

[39]

There were three primary waves during the 2006 tsunami in West
Java–Central Java. The maximum flow depth was up to 5 m, and the
maximum run-up height was 15.7 m. Both occurred in Pangandaran,

West Java.

[40]

2.2. Tsunami Wave and Evacuation Route Simulation

In regards to the study of the potential for earthquakes and tsunamis in Cilacap,
research on the tsunami hazard was carried out by [41]. The tsunami hazard probabilistic
analysis (PTHA) provides a structured way to integrate multiple sources, including un-
certainty due to natural variability and limited knowledge. PTHA-based outcomes are
related to average return periods (ARPs). The PTHA composite map provides information
on the source of the earthquake, the travel time, and the inundation distance of the tsunami
waves on the coast. The earthquake risk map takes into account the integration method of
geographic information system (GIS) and field observation data, which have been applied
to reduce the risk of earthquakes and tsunamis in Padang and Yogyakarta, Indonesia.
The earthquake source in Padang is the Mentawai Islands megathrust. Meanwhile, the
trigger of earthquakes and tsunamis in Yogyakarta is the Sunda megathrust along the
south of Java. The use of the scoring method in determining the tsunami hazard zone
in Padang and Yogyakarta takes into account elevation, slope, and the distance from the
coastline [42,43]. The tsunami hazard zone can be determined using a weighting method of
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four parameters, namely the distance of a location from the shoreline (Table 2), the distance
of the river to the study area (Table 3), slope (Table 4), and elevation. (Table 5). In addition
to the weighting method, there are other methods to determine the tsunami hazard zone,
including the method developed by [44]. This method is based on calculating the loss of
tsunami height per 1 m of inundation distance by including the manning roughness and
slope coefficient factors.

Table 2. Weights and scores for the distance of a location from the shoreline [45].

No. Distance (m) Score Weight Total Score

1 <556 1 20 20
2 557–1400 2 20 40
3 1401–2404 3 20 60
4 2405–3528 4 20 80
5 >3528 5 20 100

Table 3. Weights and scores for the distance of a location from the river [46].

No. Distance (m) Score Weight Total Score

1 0–450 1 10 10
2 451–900 2 10 20
3 901–1350 3 10 30
4 1351–1800 4 10 40
5 1801–2250 5 10 50
6 >2250 6 10 60

Table 4. Weight, scores, and the type of slope based on the percentage of slope [45].

No. Percentage of Slope Type of Slope Score Weight Total Score

1 0–2 Flat 1 10 10
2 2–6 Flat–Gentle 2 10 20
3 6–13 Gentle–Tilt 3 10 30
4 13–20 Tilt 4 10 40
5 20–55 Tilt–Steep 5 10 50
6 >55 Steep–Very Steep 6 10 60

Table 5. Weights and scores for the elevation parameter [45,47].

No. Elevation (m) Score Weight Total Score

1 0–5 1 25 25
2 6–10 2 25 50
3 11–15 3 25 75
4 16–20 4 25 100
5 >20 5 25 125

The method used to create the fastest evacuation route is Dijkstra’s algorithm. This
algorithm requires data to be coordinates of each evacuation point, coordinates of each
intersection point, and the number of intersections to be passed. Dijkstra’s algorithm can
solve the search for the shortest path between two vertices in a weighted graph with the
most negligible total weight [48,49]. The concept of the Dijkstra algorithm is to find the
shortest distance of a path between two points. The Dijkstra method is not limited to finding
the shortest route for tsunami evacuation; it can be applied for other purposes, such as
evacuation routes out of buildings during an earthquake or fire [50]. Matlab programming
language can function to determine the shortest route for tsunami evacuation using the
Dijkstra algorithm. Other parameters besides distance can also be added to determine the
best evacuation route: road width, population density, and road conditions. The level of
preference determination can adopt the fuzzy logic method [51].
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3. Materials and Methods

In this study, we used the earthquake and tsunami history in southern Java and the
regional geology of Banyumas to determine whether our study area is earthquake and
tsunami vulnerable. We collected IFSAR DEM data with a resolution of 5 m, an Indonesian
earth map, an Indonesian administrative map, and an Indonesian shoreline map. We used
ArcGIS 10.8.1 software to define the boundary of the case study area and the shoreline of
Jetis Beach, Cilacap. Spatial data extraction was carried out to obtain a tsunami hazard map
based on the specified parameter classification. parameter selection refers to the dominant
factors that affect the distribution of tsunami waves on land. In this study, we used four
parameters: distance from the shoreline (Table 2), distance from the river (Table 3), slope
(Table 4), and elevation (Table 5). Each of these maps has tsunami hazard classes connected
to the parameters that have the highest to lowest scores: the distance from the shoreline,
elevation, slope, and the distance from the river [52]. Subsequently, we overlay all of them
to obtain the final tsunami hazard zone map (Figure 2).

Figure 2. Flowchart of tsunami hazard zone mapping at Jetis beach, Cilacap. The final result of this
process is determining tsunami hazard map multiple factors.
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The tsunami evacuation route at Jetis Beach applies the Dijkstra algorithm using
Matlab programming language. The data needed in this case are geographic location,
number of inhabitants, transportation path, and evacuation building. We observed the
study area to collect them. The starting point and ending point were determined based
on the tsunami hazard map at Jetis Beach. The starting point was in the most vulnerable
zone of the tsunami, and the endpoint was in the safest zone. The next step was to create
a road network that connects the starting and ending points. Clusters and convergence
points are represented as a vertex. Meanwhile, road segments are revealed as edges.
Then each road network is given a weight based on the fuzzy method by considering the
distance traveled, road conditions, population density, and the availability of evacuation
buildings. Afterward, we made an m-file using the MATLAB application based on the
Dijkstra algorithm. The flow chart of this research can be seen in Figures 3 and A1. The
available tsunami evacuation routes were validated built upon actual conditions in the case
study area. We conducted field observations to interview residents about whether they
were familiar with the available evacuation routes. Community knowledge on evacuation
routes will determine the success of the evacuation process [53]. In addition, we also
re-checked the road capacity and the availability of evacuation buildings to accommodate
the existing population.

Figure 3. Flowchart of establishing tsunami evacuation routes at Jetis Beach using Dijkstra algorithm.

4. Results

The level of tsunami susceptibility is based on four parameters, including elevation,
distance from shoreline, slope, and distance from rivers. The farther an area is from the
coastline; the less likely a tsunami wave can reach that area. This can be seen in Figure 4,
where the Jetis area and its surroundings are divided into four classes. The first class is an
area that is less than 1400 m from the coastline, shown in red on the map. The second class
is the area that is 1401–2404 m from the coastline, displayed in yellow on the map. The
third class is an area that has a distance of 2404–3528 m from the Jetis coastline, described
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in light green on the map. The fourth class is the area with a distance of more than 3528 m
from the coastline, illustrated in dark green on the map.

Figure 4. The tsunami hazard zone map of Jetis beach based on the distance from the coastline,
divided into four classes: less than 1400 m, 1401–2404 m, 2405–3528 m, and more than 3528 m.

The higher the elevation of an area, the lower the possibility that tsunami waves will
inundate that area. The elevation map of the Jetis area and its surroundings in Figure 5 consists
of four classes. The first class is an area that has an altitude of 0–5 m above sea level, which is
depicted in red on the map. The second class is an area that has a height of 5–10 m above sea
level, indicated in yellow on the map. The third class is an area that has a height of 10–20 m
above sea level, which is exhibited in light green on the map. The fourth class is an area that is
at an elevation of more than 20 m, represented in dark green on the map.

In Figure 6, the slopes of the Jetis area and its surroundings are divided into four
classes, namely 0–6%, 6–13%, 13–20%, and more than 20%. Based on the correlation analysis
between the slope and the level of tsunami hazard, we infer that most of the Jetis area has
a slope of 0% to 6%. This indicates that most of the Jetis area and its surroundings have
flat slopes. The flat slopes are not adequate to withstand the waves of seawater because
there are no barriers used as natural breakwaters to reduce the transportation energy of the
tsunami wave. Therefore, the tsunami waves have the potential to flood landward with
high transportation energy and strong currents.
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Figure 5. Based on elevation, the tsunami hazard zone at Jetis beach consists of four classes: 0–5 m,
5–10 m, 10–20 m, and more than 20 m.

Figure 6. Based on the slope, the tsunami hazard zone at Jetis beach is divided into four classes:
flat–gentle, gentle–tilt, tilt–steep, and steep–very steep.

Based on Jetis beach’s distance from the river, there are four levels of the tsunami
hazard zone, namely less than 900 m, 900–1800 m, 1800–2250 m, and more than 2250 m
(Figure 7). Rivers are considered a medium for spreading the inundation of tsunami waves.
When the river’s capacity is unable to accommodate the water volume, the area around
the river will be inundated. The increasing water discharge will increase the possibility of
overflowing around the riverbanks. Therefore, we can assume that the farther an area is
from the river, the less likely that area will be flooded by the tsunami waves.
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Figure 7. Based on the distance of Jetis beach to the river, the tsunami hazard zone is categorized into
four levels: less than 900 m, 900–1800 m, 1800–2250 m, and more than 2250 m.

5. Discussion

Based on the scoring and weighting of the elevation, Jetis beach’s distance to the river
and sea, and the topographic map (Figure 8), the tsunami hazard map consists of five
zones, ranging from high to low tsunami impact potential zones. The red area has the
most significant potential when a tsunami occurs. The orange area has a relatively high
potential, and the area with yellow color is classified as medium potential. The light green
color represents a low impact of tsunami waves. The darker green colored areas have the
lowest impact from tsunami waves.

The tsunami hazard map on Jetis beach comprises five levels. The southernmost area
of the beach has a high vulnerability, with typical low elevation, close to the coast and
the river, and a relatively gentle slope. Meanwhile, the northern part of Jetis beach has a
medium risk from tsunamis, characterized by a medium elevation, far distance from the
coastline, close proximity to the river, and medium slopes. The low-risk tsunami hazard
zone is in the eastern part of Jetis beach, with high elevations, close proximity to the river,
and steep slopes (Figure 8).

Jetis Village, Banjarsari Village, and Karangpakis Village have a high risk of tsunami
vulnerability. These areas are adjacent to the coastline and have a low elevation. Purwodadi
Village, Karangsembung Village, Klumprit Village, Banjareja Village, Kedungbenda Village,
Candirenggo Village, Wangunweni, and Ayah Village are at moderate-risk of tsunami
hazards. Their distance is somewhat far to the coastline, and they have a relatively high
elevation. Meanwhile, Tlogosari Village, Argopeni Village, and Kalipoh Village have a
low risk of tsunami hazard because these villages have a high elevation, a steep slope,
and are far from the coast. The high-risk to medium-risk zones need more attention
in disaster mitigation efforts to reduce the impact of tsunami waves. The solution to
mitigate the worst impact of the tsunami in these areas is undertaking an evacuation route
simulation that considers the distance from the starting point to the end point and the
public road’s capacity compared to the number of people who will be evacuated. Moreover,
the familiarization of the evacuation route for inhabitants is necessary. Breakwaters such as
sea walls and mangrove planting can be relied on to reduce the energy of tsunami waves.
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The classification of the level of tsunami vulnerability in this study supports the theory
proposed by [54], which uses coastal shape and slope parameters to determine the tsunami
hazard zone in an area. This study has mapped the tsunami hazard zone in more detail due
to a large scale and a focus on a narrow area, namely the sub-district level, which has never
been studied before. Ref. [43] mapped the tsunami vulnerability zone on the southern
coast of Java, in the Special Region of Yogyakarta Province. According to [54], each area
has its vulnerability zone due to different topographic conditions, population density, and
shoreline shape. This study succeeded in revealing the tsunami vulnerability zone in an
area that has so far been uncharted. However, this study is lacks total accuracy because
the use of reference simulations for the height and inundation distance of the tsunami
waves only considers the earthquake in 2006. In fact, according to [2], in the south of Java,
many seismic gaps could cause a larger moment magnitude of earthquakes as compared to
2006. The results of this research include a preliminary study that needs to be supported by
analysis of paleo-tsunami depositional data and simulations of tsunami waves before 2006.

Figure 8. Five groups of the tsunami hazard zone based on overlaying Jetis beach’s distance from
the river and shoreline as well as its elevation and slope: high risk, medium to high risk, medium,
medium to low risk, and low risk.

We compared the results of this study with the results of field observations after the
2006 tsunami by [40], which was then supported by simulations of the height and distance
of the tsunami wave inundation using COMCOT [8]. The two previous studies stated that
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the maximum height of the tsunami waves at Cilacap Beach was only 6 m; this was due to
a natural barrier in the form of Nusakambangan Island, so that the height and speed of the
tsunami waves were significantly reduced. The inundation distance of the 2006 tsunami
was not more than 1 km. The results of interviews with five residents conducted on 19 June
2021 also indicated that the height of the tsunami waves was no higher than a coconut tree,
which has a height of about 8–10 m, and the furthest distance from the coastline was no
more than 600 m. The five residents are living witnesses of the 2006 tsunami disaster in
Cilacap. This comparison indicates that the simulation results using the weighting method
are still reliable, especially to describe the distance of the tsunami wave inundation. The
high-risk zone in this study is about 1 km, which means it is still accurate and follows the
results of field observations by [40] and the 2006 tsunami wave simulation using COMCOT
by [8]. However, further studies are needed because the source of the earthquake in Cilacap
has not been mapped in detail. It is still possible that there are sources of earthquakes that
have the potential to generate tsunamis like the 2004 Aceh tsunami tragedy. The earthquake
and tsunami tragedy on Lombok Island and Palu City in 2018 showed that uncharted faults
release much greater energy and have high-risk seismicity.

Other methods such as calculation of the tsunami height loss, as developed by [44],
can also be used to assess the most appropriate method in describing the tsunami hazard
risk in Cilacap. The method developed by [44] uses the Manning roughness coefficient
parameter, which affects the height and speed of tsunami waves when they reach the
mainland. The higher the Manning roughness coefficient, the lower the height and speed of
the tsunami waves. The reduced speed and height of the waves will reduce the propagation
of these waves on land. The type of land cover strongly influences the Manning roughness
coefficient. For example, an area covered by plantations will have a Manning roughness
coefficient greater than that of an open area [44].

Based on the simulation of the fastest route using the MATLAB application, four paths
are available to reach the safe point from the emergency point. The four lanes were
reviewed by looking at the available road capacity. We considered the condition and the
width of the road, because if the road is in bad condition, the community evacuation
process will be hampered. The determination of the emergency gathering point considers
the maximum capacity to accommodate victims. In the study area, the starting point is
at each beach entrance. There are three entrances symbolized as point 1, point 13, and
point 16. Meanwhile, the closest emergency gathering point that can accommodate the
public and tourists is the At-Taqwa Mosque, symbolized by point 8 and a red triangle, and
the Jetis Village football court, which is symbolized by point 19 and the red triangle on
the map.

The first route is a route that starts from point 1 to point 8. Based on calculations in
the MATLAB application, the fastest route to point 8 from point 1 should go through point
1→4→5→6→7→8, with 1683 m of distance (Figures 9 and A2). The second route is the
route from point 1 to point 19. Based on calculations in the MATLAB application, the fastest
route to get to point 19 from point 1 must go through point 1→2→23→219, with a distance
of approximately 998 m (Figures 10 and A3). The third route is the route from point 13 to
point 19. Based on calculations in the MATLAB application, the fastest route to get to point
19 from point 13 must go through point 13→14→15→19, with a distance of approximately
683 m (Figures 11 and A4). The fourth route is the route from point 16 to point 19. Based
on calculations in the MATLAB application, the fastest route to get to point 19 from point
16 must go through point 16→17→14→15→19, with a distance of approximately 1125 m
(Figures 12 and A5).
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Figure 9. The first evacuation route from point 1, a vulnerable zone, to point 8, a safe zone, is 1683 m.

Figure 10. The second evacuation route from point 1, a vulnerable zone, to point 19, a safe zone, is
998 m.
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Figure 11. The third evacuation route from point 13, a vulnerable zone, to point 19, a safe zone, is 683 m.

Figure 12. The fourth evacuation route from point 16, a vulnerable zone, to point 19, a safe zone, is
1125 m.
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We made observations at the research site to validate the evacuation route that we
developed. Evacuation route validation encompasses the distance from the evacuation
center location to the temporary shelter, shelter capacity, road capacity, population density,
and residents’ knowledge of evacuation routes. The validation results show that the four
evacuation routes we developed have adequate road capacity and adequate temporary
shelters. Residents are also familiar with the evacuation route that we developed because
the route passes through the village road, which residents often use to go to work and
school. Observations were made on 20 June 2021. In the future, we need to publicize this
evacuation route to local society and tourists so that fatalities due tsunamis tragedy can be
minimized.

The results of this study can be used as an initial reference for mapping the tsunami
hazard zone along the southern coast of Central Java. Currently, the tsunami hazard
mapping in the southern coast of Central Java has not been carried out evenly. Meanwhile,
the threat of a tsunami in the future is still considerable. In the south of Java, it is relatively
more difficult to predict when a major earthquake will occur compared to the west coast
of Sumatra Island. This study also contributed significantly to assisting the government’s
program to map all tsunami hazard zones in Indonesia, including Java, due to 60% of
Indonesia’s population living on Java island.

6. Conclusions

The weighting and overlaying distance maps from coastlines and rivers, topographic
maps, and elevation maps show that the Jetis Beach area and its surroundings consist of
five tsunami hazard zones: high-risk zone, moderate to high-risk zone, moderate zone, low
to moderate zone, and low-risk zone. The most vulnerable zone is located in the southern
part of Jetis beach, while the safest zone lies in the northern and eastern parts of Jetis beach.
There are four scenarios of evacuation routes in this case. The distances of each route from
the most vulnerable zone in the southern part of Jetis beach to the safest in the north and
east of Jetis beach are 683 m, 998 m, 1125 m, and 1683 m. Publicization of tsunami hazard
zones and evacuation routes to the community is necessary to minimize casualties and
material losses. Furthermore, the construction of sea walls and planting of mangrove trees
will help reduce the energy and inundation of tsunami waves when they reach inland.
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Appendix A

Figure A1. The m-file formula of the Dijkstra algorithm was used in the evacuation route map.
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Figure A2. The first evacuation route from points 1 to 8.

Figure A3. The second evacuation route from points 13 to 19.
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Figure A4. The third evacuation route from points 16 to 19.

Figure A5. The fourth evacuation route from points 16 to 19.
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52. Titov, V.; Kânoğlu, U.; Synolakis, C. Development of MOST for real-time tsunami forecasting. J. Waterw. Port Coastal Ocean Eng.

2016, 142, 03116004. [CrossRef]
53. Kubisch, S.; Guth, J.; Keller, S.; Bull, M.T.; Keller, L.; Braun, A.C. The contribution of tsunami evacuation analysis to evacuation

planning in Chile: Applying a multi-perspective research design. Int. J. Disaster Risk Reduct. 2020, 45, 1–14. [CrossRef]
54. Mardiatno, D.; Malawani, M.N.; Annisa, D.N.; Wacano, D. Review on tsunami risk reduction in Indonesia based on coastal and

settlement typology. Indones. J. Geogr. 2017, 49, 186–194. [CrossRef]

639



Citation: Sakamoto, J. Proposal of a

Disrupted Road Detection Method in

a Tsunami Event Using Deep

Learning and Spatial Data.

Sustainability 2023, 15, 2936. https://

doi.org/10.3390/su15042936

Academic Editors: Stefano Morelli,

Veronica Pazzi and Mirko Francioni

Received: 14 January 2023

Revised: 2 February 2023

Accepted: 3 February 2023

Published: 6 February 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Proposal of a Disrupted Road Detection Method in a Tsunami
Event Using Deep Learning and Spatial Data

Jun Sakamoto

Faculty of Science and Technology, Kochi University, Kochi 780-8520, Japan; jsak@kochi-u.ac.jp;
Tel.: +81-88-844-8092

Abstract: Tsunamis generated by undersea earthquakes can cause severe damage. It is essential to
quickly assess tsunami-damaged areas to take emergency measures. In this study, I employ deep
learning and develop a model using aerial photographs and road segment data. I obtained data from
the aerial photographs taken after the Great East Japan Earthquake; the deep learning model used
was YOLOv5. The proposed method based on YOLOv5 can determine damaged roads from aerial
pictures taken after a disaster. The feature of the proposed method is to use training data from images
separated by a specific range and to distinguish the presence or absence of damage related to the
tsunami. The results show that the proposed method is more accurate than a comparable traditional
method, which is constructed by labeling and learning the damaged areas. The highest F1 score of
the traditional method was 60~78%, while the highest F1 score of the proposed method was 72~83%.
The traditional method could not detect locations where it is difficult to determine the damage status
from aerial photographs, such as where houses are not completely damaged. However, the proposed
method was able to detect them.

Keywords: aerial photograph; deep learning; disrupted section; GIS; YOLO

1. Introduction

The Great East Japan Earthquake that occurred on 11 March 2011, caused severe
damage over a wide area. The municipalities damaged by the tsunami could not assess,
report, and transmit information because of the disruption of communication systems and
the collapse of government buildings; in addition, the safety of their leaders and employees
was threatened [1]. The more severely damaged areas were, the more difficult it was to
transmit and collect information; hence, it was difficult knowing whom to contact to have
countermeasures taken. The Nankai Trough earthquake, which has a 0.7–0.8 probability of
occurring within the next 30 years, is expected to cause a massive tsunami of more than
10 m in height over a wide area along the Pacific coast from the Kanto region to the Kyushu
region [2]. Methods are required for an early warning of tsunamis and a quick assessment
of the damage caused by tsunamis.

Early tsunami warnings in coastal areas enable timely evacuation. Accurate and
rapid prediction of impending tsunamis is essential to mitigate damage to human life and
property [3,4].

Assessing the damage after a natural disaster provides essential information for
determining rescue priorities, guiding victims to safe locations, and estimating the amount
of damage [5]. Aerial photographs can provide a broader range of damage information
in a smaller sample than land photographs [6,7]. Previous studies have considered many
methods to identify damage from remote sensing images. These methods can be classified
as multi-temporal and single-temporal assessment methods.

Multi-temporal assessment methods identify damage by detecting changes. The
authors of [8] extracted earthquake damage information using high-resolution remote
sensing images before and after the 2010 Yushu earthquake in Qinghai. The results showed
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that the object-oriented change detection method could extract damage conditions with
high accuracy. The authors of [9] compared the roofs of buildings before and after the 2021
earthquake in Yangbi County, Dali Prefecture, and Yunnan Province. It was found that the
investigation time to detect damage was significantly shorter than the manual investigation.
However, it was a limited evaluation due to the angle and time constraints of capturing
images [10].

Single-time assessment methods are less data constrained because they only analyze
damage from post-earthquake remote sensing. The authors of [11] identified landslides
by integrating nighttime light, multi-seasonal, and elevation data and by using neural
networks to classify satellite imagery. However, factors such as noise and illumination in
remote sensing images seriously affect detection accuracy [12], resulting in the inability to
extract building information accurately.

Computer vision methods have been widely used to investigate the extent of disasters;
they are mainly categorized into two types: stereotype and deep learning (DL) methods [13].
Stereotype methods usually rely on manually designed models from features such as color,
texture, contours, and edges. However, these are highly subjective and often vary widely
from scene to scene, which limits their applicability. Hence, DL has been brought into the
spotlight [14]. Convolutional neural network (CNN) models can eliminate many processes
involved in determining disaster damage. CNN can process low-level characteristics
through deep structures to obtain high-level semantic information. Compared with hand-
crafted features, the high-level information is more abstract and robust. Several studies
have been conducted on post-disaster building damage detection using remote sensing
images and DL. The authors of [15] proposed a method to extract damage information from
a group of buildings in post-earthquake remote sensing images by combining CNN and
geographic information system (GIS) data. The authors of [16] proposed a method to detect
post-disaster building damage using only pre-disaster images of buildings. The authors
of [17] proposed a method to detect objects on building roofs, vehicles, debris, and flooded
areas from post-disaster aerial video footage. In addition, a building damage detection
method has been proposed and demonstrated using a ground-based imagery dataset [18].

Despite numerous trials, automatic disaster detection still needs improvement for a
number of reasons. First, methods that do not use aerial photographs can determine which
areas in the photographs are affected but cannot decide which regions on the map are
affected. Second, methods using aerial photographs cannot distinguish a road disruption
if it is covered by water because it is unknown whether a road exists on the map. Finally,
there are limited publicly available image datasets depicting structural damage from
disasters [19]; moreover, the damage caused by a tsunami is more complex than a house
collapsing, making it challenging to study.

In this study, I use aerial photographs to determine which roads were damaged by the
Great East Japan Earthquake. I apply a learning model developed using aerial photographs
of a tsunami-damaged area to aerial photographs of other sites and verify the model’s fit.
Then, I visualize the road disruption by determining the presence or absence of damage on
a mesh-by-mesh basis. In other words, the features of this study are as follows: The first is
to add road information to the disaster area by overlaying aerial photographs and road
segment data. The second is to attempt to identify tsunami damage with high accuracy by
learning and applying mesh-based learning to complex tsunami disasters.

2. Materials and Methods

The training data for a traditional object detection model comprise definitions of where
objects exist in each image. However, when there are various types of damage, such as
damage caused by a tsunami, it may be challenging to identify the presence or absence of
damage from such training data. The method proposed in this study identifies tsunami
damage by developing a learning model using data from segmented photographs classified
according to whether they were damaged by the tsunami. I demonstrated the significance
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of the proposed method by comparing its detection accuracy with that of a traditional
method.

2.1. Method Flowchart

Figure 1 shows the flowchart of this study. Both the traditional and proposed methods
use the same training and test images. After collecting aerial photographs of the study
site (Step 1), the tsunami inundation status for the training data was defined by referring
to the inundation estimation map published by the Geospatial Information Authority
of Japan [20] (Step 2). The traditional method uses training photographs to label which
areas are affected by the tsunami (Figure 2). Meanwhile, the proposed method divides the
training photographs into 100 m image units and classifies each image as having tsunami
damage.

Step5: Calculate the accuracy of 
the model

Traditional method: label an inundated area
Proposed method: divide and classify 
inundated/ non-inundated images

Step2: Make Data set: Training 
image

Test image
(without road segments)

Step1: Collect aerial Photographs of the Study Site

Training

Inputting

Road Segment

Union

Step4: Prepare Data set: Test image
(match with road segments)

Apply

Step 6: Choose best YOLO 
Training Model in each method

Evaluation of the Proposed method

Traditional method

Proposed method

Inundated image
Non-inundated 
image

Inundated area

Traditional method

Proposed methodStep3: Develop YOLO Training 
Models

(YOLOv5n, v5s, and v5m)

Figure 1. Method flowchart.

642



Sustainability 2023, 15, 2936

Figure 2. Labeling for training images in the traditional model.

Before setting the unit to 100 m, I examined the relationship between unit size and
computation time and found that a smaller range increases computation time but improves
accuracy. For example, on a Core i7 1195G7 (Tiger Lake)/2.9 GHz/4-core computer with
16 GB of memory, the computation time to handle 100 m mesh (2108 images) and 500 m
mesh (84 images) images were 14 min 40 s, and 30 s, respectively. The F1 scores of the 100 m
mesh (2108 images) and 500 m mesh (84 images) images were 85% and 50%, respectively.

The proposed method creates text files corresponding to image files to input the
classified training images into training models. Each text file has five pieces of information:
the classified flag, the x coordinate of the center, the y coordinate of the center, the width of
the bounding box, and the length of the bounding box (Figure 3) [21]. This means that each
text classifies the entire area of each image as inundated or non-inundated. This process
can determine an inundated image rather than detecting multiple objects in each image.
The traditional method also provides a text file corresponding to the image. The text file
records the rectangle of the tsunami damage location.

Figure 3. Labeling for training images in the proposed method.

Step 3 was building a model of the You Only Look Once (YOLO) framework using
the training data. Considering the computational time for training, I chose three vari-
ants: YOLOv5n, YOLOv5s, and YOLOv5m. These models were developed using Google
Colaboratory [22].
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Step 4 was preparing the test image dataset. Because I aimed to identify road damage
caused by the tsunami, I matched the test images and road segment data. The tsunami
inundation status is also defined for the test data by referring to the inundation estimation
map published by the Geospatial Information Authority of Japan.

Step 5 was the calculation of model accuracies of the three models (YOLOv5n, YOLOv5s,
and YOLOv5m) developed by each method on the test dataset. As shown in the figure in
Step 5, the traditional method labels the tsunami damage area in the aerial photographs,
whereas the proposed method indicates tsunami damage by classifying 100 m unit images.

Finally, the best YOLO model was selected based on the calculated accuracies (Step 6);
the comparison of the accuracies of both methods indicated the superiority of the proposed
method.

2.2. Outline of YOLOv5 Model

Joseph Redmon [23] proposed the YOLO target detection algorithm in 2015. It is an
end-to-end network model that directly predicts a target’s bounding box and category.
YOLO considers object detection a single regression problem, replacing image pixels with
bounding box coordinates and class probabilities. Using this, one only needs to look at an
image once to predict what object is where.

In this study, I selected YOLOv5, which was released in 2020 [24]. It is lightweight
and has good advantages for detecting small objects in terms of accuracy and speed. In
addition, because it integrates the anchor box selection process, it can learn the best anchor
box for a given dataset automatically and use it during training without considering the
dataset as input. The anchor box described here is a list of predefined boxes that best match
the desired objects. YOLOv5 network predicts bounding boxes as deviations from a list
of anchor box dimensions [25]. YOLOv5 outperforms YOLOv4 and YOLOv3 in terms of
accuracy [26].

Figure 4 shows the YOLOv5 architecture; it comprises a backbone, neck, and head [27].
The backbone extracts the essential features from the input images. The CSP1-x structure is
incorporated into DarkNet to create CSPDarknet, the backbone of YOLOv5. CSPDarknet
extracts feature from images comprising CSP1-x networks. Point Operations per Second
(FLOPS) features can develop smaller model sizes while ensuring inference speed and
accuracy. The neck is a series of network layers that mix and combine image features.
The head predicts image features, generates bounding boxes for detection, and predicts
the target object type. The CSP2-X structure used here enhances network feature fusion
capabilities; for multiscale prediction, the head generates feature maps of three different
sizes: 80 × 80 grid cells, 40 × 40 grid cells, and 20 × 20 grid cells. Detection results include
class, score, location, and size [28].

YOLOv5 delivers various types of models, e.g., YOLOv5n (nano), YOLOv5s (small),
YOLOv5m (medium), YOLOv5l (large), and YOLOv5x (large) [29]. As described later in
Chapter 3, YOLOv5m (medium) took about 8.8 h to train using the proposed method.
Prior attempts using YOLOv5l (large) and YOLOv5x (large) failed because the Google
Colaboratory session timed out during the calculation. Considering the trial, I compare
the training results of YOLOv5n, YOLOv5s, and YOLOv5m and then implement the best
model on the test data.
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Figure 4. YOLOv5 architecture.

2.3. Outline of Google Colaboratory

Google Colaboratory is a service designed to educate and promote machine learning.
Colaboratory notebooks are based on Jupyter and run as objects in Google Docs. The
notebooks can be saved to the user’s Google Drive or imported from GitHub; users can
share Colaboratory notebooks such as Google Docs or Google Spreadsheets. The runtime
stops after a particular time and all user data and settings are lost [30]. However, they can
save the notebooks and transfer the files to the user’s Google Drive.

The authors of [31] summarized the advantages and disadvantages of Google Colab-
oratory as follows. The advantages include fast computation; training a CNN is faster
with Colaboratory’s accelerated runtime than with 20 physical cores on a Linux server.
Meanwhile, the disadvantages include the lack of CPU cores.

2.4. Data
2.4.1. Training and Test Images

It is essential to select training data similar to the test data to develop suitable model
accuracy. Similarity conditions include the time of year (elapsed time since the disaster),
weather, and scale of the disaster. I selected aerial photographs considering this policy.

The aerial photographs used for the training images are of Yamada Town, Iwate
Prefecture; Miyako City, Iwate Prefecture; Minamisanriku Town, Miyagi Prefecture; and
Watari Town, Miyagi Prefecture. The test images are of Rikuzentakata City, Iwate Prefecture
and Kesennuma City, Miyagi Prefecture. The tsunami caused by the Great East Japan
Earthquake in 2011 damaged these cities. Figure 5 shows the locations of the training and
test images, and Table 1 shows the number of fatalities, etc., and damage to residential
properties in the Great East Japan Earthquake.
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Figure 5. Locations of training and test images.

Table 1. Number of fatalities, etc., and damage to residential properties in the Great East Japan
Earthquake (as of 1 September 2014) [32].

Category Muricipality
Humam Damage Housing Damage Non-Housing Damage

Death Missing Injured
Completey
Destoyed

Partially
Destoyed

Public
Building

Others

Training
data

Miyako City 473 94 33 2767 1331 70
Yamada Town 683 148 unknown 2762 405 65 unknown

Minamisanriku
Town 620 216 unknown 3143 178 14 220

Test data
Rikzentaka City 1599 207 unknown 3805 240 61 unknown
Kesermuma City 1198 230 8483 2571 9605

Source: Overview of the 2019 White P aper on Fire Serice, Fire and Disaster Management Agency.

The photographs were obtained from Google Earth [33]; they were captured a few days
after the earthquake. They were collected by selecting the area to include inundated/non-
inundated areas and divided into 100 m image units for the proposed method. Then,
as shown in Figure 6, each 100 m mesh image was classified into “inundated image”
and “non-inundated image” by referring to the inundation estimation map published by
the Geospatial Information Authority of Japan. I made this classification manually on a
100 m mesh, which can be challenging to determine. For example, if 20% of the mesh
contains inundation, it is comprehensively classified as inundated/not inundated based
on photographs and the inundation estimation map. It is a limitation of the accuracy
verification of this study.

Figure 6. Classification of the tsunami inundation area.
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Table 2 shows the number of training and test images. Figures 7 and 8 show examples
of inundated/non-inundated images in 100 m units for the proposed method. The tradi-
tional method develops a model after combing the images of the same area and predicts a
merged test image of the same place.

Table 2. Number of images.

Study Area
Number of Inundated

Images
Number of Non-Imundated

Images
Number of

Total: Images

Training
images

Yamada Town 255 (32%) 551 (68%) 806
Miyako City 153 35%) 284 (65%) 437

Minamisanriku
Town 114 (39%) 176 (61%) 290

Watari Town 897 (57%) 678 (43%) 1575
Test

images
Rikuzentakata City 958 (34%) 1870 (66%) 2828

Kesennuma City 494 (27%) 1366 (73%) 1860

Figure 7. Training images with inundation in the proposed method (n = 1419).

Figure 8. Training images with non-inundation in the proposed method (n = 1689).
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2.4.2. Road Segment

The road segment data for the test images are from the Conservation GIS-consortium
Japan [34]. The road data were constructed based on the situation as of 2006 (before the
earthquake). The road segment data ranges from small roads to arterial roads. The road
classification of these data consists of national roads, prefectural roads, municipal roads,
expressway national highways, etc.

2.5. Evaluation Indicators

In the traditional method, when the training model is input to a test image, the
locations with a certain probability of being inundated are marked. In this study, I set the
probability to 0.5.

Moreover, in the proposed method, when the training model is input to a set of test
images, the probabilities of “inundation” and “non-inundation” are output for each image.
After comparing the probabilities, the decision result chooses the image with the higher
value. For instance, if an image has a probability of 0.5 for “inundation” and 0.6 for “non-
inundation,” the decision for this image is “non-inundation.” The probability here is the
predicted probability of the target defined as intersection over union (IoU) [35], a standard
indicator in target detection. The primary function is to determine positive and negative
samples and evaluate the distance between the output box and the correct label.

In this study, I evaluate models using the following indicators: Precision, Recall,
Specificity, and F1-score [36]. Precision is the True Positive (TP) divided by the detected
objects, calculated in Equation (1). TP and True Negative (TN) are the indicators of correctly
detected objects by a model and correctly missed objects by the model, respectively. False
Positive (FP) and False Negative (FN) are the number of wrongly detected objects by the
model and the number of wrongly missed objects by the model, respectively.

Precision =
TP

TP + FP
(1)

Recall is a ratio of correctly detected objects retrieved to the quantity of all detected
objects.

Recall =
TP

TP + FN
(2)

Specificity is the percentage of true negatives correctly classified by a model.

Speci f icity =
TN

TN + FP
(3)

F1-score is a measure of a model’s overall accuracy considering Precision and Recall.
It is the harmonic mean of Precision and Recall, which have contrasting characteristics.

F1 Score = 2· Precision·Recall
Precision + Recall

(4)

In this study, the above decisions (TP, TN, FP, FN) are made on the units of 100 m
segments for both the traditional and proposed methods. Figure 9 shows an example of
distinguishment as taking a location with 25 100 m image units. The mesh numbers of the
inundation are 9, 11, and 13–24 (second from the left in the figure). The mesh numbers
predicted by the traditional method are 15, 18, 19, 20, 23, and 24 (second from the right in
the figure). The red boxes indicate the inundation zones, and the 100 m mesh overlapping
these zones is the inundation mesh. The inundation meshes predicted by the proposed
method are 2,5,7,9-12, and 14-24 (first from the right in the figure). The discriminant results
of the traditional method are TP = 6, TN = 11, FP = 0, and FN = 8. The discriminant results
of the proposed method are TP = 13, TN = 16, FP = 5, and FN = 1.

648



Sustainability 2023, 15, 2936

Figure 9. Example of distinguishment.

3. Results and Discussion

3.1. Training Result

To accurately ascertain the models’ accuracies, I evaluated the models based on the
loss function curve (train/box_loss) and average accuracy value (metrics/mAP_0.5) [37].
In the learning process, the loss function curve can intuitively reflect whether the network
model converges stably with respect to the number of iterations.

The upper graph of Figure 10 shows the specific changes in the models’ loss functions.
The horizontal axis is the number of learning epochs, 1000 for the traditional models and
200 for the proposed models. The number of training epochs differs for each model to
account for the computational time required for training. As described later, the proposed
model structure took a long time to train, and Google Colaboratory timed out in the middle
of the training. The figure shows that as the number of training cycles increases, the curves
for both model structures gradually converge and the loss values decrease. The loss values
of the proposed models are significantly smaller than those of the traditional models,
proving the high accuracy of the proposed method.

The mAP measures the quality of a defect detection model. The higher the mAP value,
the higher the average detection accuracy and the better the performance. The lower graph
of Figure 10 shows the training epoch trend with respect to mAP for all models; the mAP
increases with the number of epochs.

3.2. Comparative Analysis of Models

Model accuracy is verified by implementing the training models on the test images.
Table 3 shows the accuracy results using the three types of YOLO training models. Rikuzen-
takata City is more accurate for both methods than Kesennuma City. For the traditional
method, the highest F1-score for Rikuzentakata City is 78% (for YOLOv5s), whereas the
highest for Kesennuma City is 60% (for YOLOv5s). For the proposed method, the highest
F1-score for Rikuzentakata City is 83% (for YOLOv5m), and the highest F1-score for Ke-
sennuma City is 72% (for YOLOv5s). The accuracy of the proposed method is better than
that of the traditional method. Focusing on F1-score, the traditional models have values in
the range of 59–78%, whereas the proposed models have values in the range of 66–83%,
indicating an accuracy improvement.

649



Sustainability 2023, 15, 2936

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 100 200 300 400 500 600 700 800 900 1000

tra
in

/b
ox

_l
os

s

Training epoch versus loss function

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 100 200 300 400 500 600 700 800 900 1000

m
et

ric
s/

m
A

P_
0.

5

epoch

YOLOv5n (Traditional) YOLOv5s (Traditional) YOLOv5m (Traditional)
YOLOv5n  (Proposed) YOLOv5s  (Proposed) YOLOv5m  (Proposed)

Training epoch versus mAP

Figure 10. Training epoch versus loss function and versus mAP.

Table 3. Comparative analysis of the developed YOLO models.

Method Study Area Model TP TN FP FN Precision Recall Specificity F1 Score
Training
Time (h)

Traditional
method

Rikuzentakata
City

Yolov5n 517 1653 217 441 70% 54% 88% 61% 0.300
Yolov5s 662 1795 75 296 90% 69% 96% 78% 0.350
Yolov5m 429 1821 49 529 90% 45% 97% 60% 0.633

Kesernnuma
City

Yolov5n 270 1214 152 224 64% 55% 89% 59% 0.300
Yolov5s 237 1304 62 257 79% 48% 95% 60% 0.350
Yolov5m 236 1299 67 258 78% 48% 95% 59% 0.633

Proposed
method

RikuzentakataCity
Yolov5n 817 1603 267 141 75% 85% 86% 80% 2.867
Yolov5s 856 1548 322 102 73% 89% 83% 80% 3.867
Yolov5m 809 1681 189 149 81% 84% 90% 83% 8.800

Kesennnuma
City

Yolov5n 441 966 400 53 52% 89% 71% 66% 2.867
Yolov5s 440 1070 296 54 60% 89% 78% 72% 3.867
Yolov5m 456 928 438 38 51% 92% 68% 66% 8.800

However, the time to build a model is longer for the proposed method than for the
traditional method. As stated earlier, I developed three training models each for the
traditional and proposed methods. The model with the longest calculation time for the
traditional method was YOLOv5m at 0.633 h. Meanwhile, the model with the longest
calculation time for the proposed model was YOLOv5m at 8.800 h.

Figures 11 and 12 depict the results for Rikuzentakata City and Kesennuma City using
the traditional and proposed methods (YOLOv5s), respectively. Figure 11 shows that the
traditional method has good detection accuracy for no-damaged areas, such as inland areas
(TN), but does not detect the damaged areas in coastal locations correctly. In particular,
the FN in Kesennuma City stands out. Figure 13 shows that it can detect damaged coastal

650



Sustainability 2023, 15, 2936

areas with high accuracy. However, many wrong detections (FP) in the inland regions exist.
The coastal areas of Rikuzentakata City and Kesennuma City were devastated, and the
tsunami ran up rivers and caused extensive damage. The proposed method designated
these locations as TPs. Figure 13 shows an enlarged view of a location in Kesennuma City,
where FN is particularly abundant. The red boxes in the figure indicate the areas extracted
as disaster-stricken areas by the traditional method. It is clear from the figure that the
traditional method cannot detect most of the places as disaster-stricken areas where houses
were not completely damaged.

Figure 11. Visualization of the results of the traditional method (YOLOv5s).
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Figure 12. Visualization of the results of the proposed method (YOLOv5s).

Figure 13. Example of the detection results of the traditional method (YOLOv5s).
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3.3. Accuracy Verification Focusing on the Number of Samples

When applying the proposed method in practice, it is necessary to understand how
much training data is needed to accurately identify the disaster situation.

Table 4 shows the calculation results for validating the proposed method (YOLOv5s)
by the percentage of samples in the training images. The 100% sample rate in the table
means the total of the 3108 training images mentioned above, and the 75%, 50%, and 25%
sample rates mean the corresponding extractions, chosen at random, from the total number
of the training images.

Table 4. Relationship between the number of samples and accuracy.

Study Area
Percentage of

Sample
TP TN FP FN Precision Recall Specificity F1 Score

Training
Time (h)

Rikuzentakata City
25% 934 424 1446 24 39% 97% 23% 56% 0.883
50% 898 1173 697 60 56% 94% 63% 70% 1.733
75% 898 1429 441 60 67% 94% 76% 78% 3.467

100% 856 1548 322 102 73% 89% 83% 80% 3.867

Kesennuma City
25% 467 257 1109 27 30% 95% 19% 45% 0.883
50% 486 623 743 8 40% 98% 46% 56% 1.733
75% 450 950 416 44 52% 91% 70% 66% 3.467

100% 440 1070 296 54 60% 89% 78% 72% 3.867

A common feature of both districts is that Precision, Specificity, and F1-score improved
as the number of samples increased. Precision, Specificity, and F1-score were the highest in
both areas at 100%.

4. Conclusions

DL is a novel technique to assess damaged situations quickly. In the case of complex
damage situations such as tsunamis, it takes work to develop learning models. In this
study, I used YOLOv5 to develop a learning model based on data from subdividing images
and classifying them into tsunami-affected and tsunami-affected areas instead of labeling
tsunami-affected regions from a single image. The proposed method can quickly identify
damaged areas after a tsunami disaster. Once analyzers prepare the training model and
road sections in units of 100 m mesh in advance, all that is required is to upload aerial
photographs to Google Colaboratory for identification. In this study, 7092 aerial pictures
were uploaded, including those without road segments, and the process took only a few
seconds. In addition, it took approximately three minutes to classify inundation/non-
inundation using the training model.

In addition, the proposed method could automatically identify the damaged areas
more accurately than the traditional method. Therefore, if a road administrator develops
road sections per mesh and a learning model in preparation for disasters, it will be possible
to detect which road sections are damaged simply by applying aerial photographs taken
after the occurrence of a disaster.

Nevertheless, this study has limitations in terms of aerial photographs and detection
accuracy. Regarding the selection of aerial photographs, I set training images similar to the
test images in this study, but clouds and brightness might have reduced the accuracy. It is
necessary to examine the improvement in accuracy by eliminating such factors.

Regarding the improvement of the accuracy of the detection results, the proposed
method determines the damaged section by mesh unit. Thus, it cannot be considered sepa-
rately if the same mesh contains different types of roads: high-standard arterial highways
and local roads. It is necessary to enhance the distinguishing ability by adding elevation
data with each section, thereby improving accuracy.
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Abstract: To protect the coastal areas of the seas and oceans from the destructive force of tsunami
waves, coastal and surface barriers are usually built. However, for high waves, these barriers turn
into underwater barriers through which tsunami waves pass practically without losing their energy.
In this paper, we study a new principle of suppression of the energy of tsunami waves by underwater
barriers. The problems of experimental and numerical modeling of the processes of generation,
propagation, and interaction of gravity wave of the tsunami type with underwater barriers are
considered. It is shown that, under certain conditions near the underwater barriers, large-scale
vortex structures occur that accumulate a significant part of the energy of the incident wave. Here, if
the barriers parameter h/(H + A) = 0.84 ÷ 0.85 (h—height of the barriers, A—amplitude of incident
wave on a barrier, H—depth of the reservoir), then the vortex structures accumulate up to 50% of
the wave energy incident on the barrier. A theoretical model explaining the effect of anomalous
vortex suppression of tsunami wave energy by underwater barriers has been developed. Theoretical
calculations and results of numerical modeling based on the Navier–Stokes Equations are consistent
with experimental studies in a hydrodynamic wave flume.

Keywords: tsunami waves; wave flume; underwater barriers; experimental and numerical simulation;
reflection and transmission coefficients; theoretical models; Navier–Stokes Equations

1. Introduction

It is well known that tsunami waves are one of the most dangerous and destructive
disasters to which the coastal zone is exposed. The causes of tsunami origination are
practically unpredictable factors like earthquakes, landslides, volcanoes, etc. [1]. Far from
the coast, these waves are not dangerous because their height rarely exceeds 1 m. However,
their wavelength is almost a hundred times greater than the depth of the ocean. Thus
propagating in the ocean, as in a basin with a relatively small depth, tsunami wave sets in
motion the entire water thickness from the seafloor to surface. That is why these waves
transfer a vast amount of energy through great distances, with the speed of an airliner. The
advanced speed of tsunami waves in the ocean is quite accurately described by the linear
theory of shallow water. If the average depth of the ocean is H = 4000 m, then the tsunami
wave speed is s =

√
gH ≈ 200 m/s, where g = 9.81 m/s2 is the acceleration of gravity.

Upon entry to the zone of shallow water, the front speed of the wave decreases sharply,
and the wave height increases tens of times. Inside bays and outfalls, the amplitude of
the tsunami wave increases up to 20 m or higher because of space restriction from the
sides. The danger of tsunami waves is associated primarily with their unpredictable,
sudden, and tremendous energy. Exploring tsunami waves in natural conditions is almost
impossible. Experiments in ground facilities usually have a high cost since bringing the
wave simulation parameters to natural conditions requires the creation of large-scale (up
to 300 m or more) and costly facilities. Therefore, the study of tsunami waves makes
extensive use of analytical methods of research, as well as numerical (computer) modeling
approaches [1–3].

GeoHazards 2022, 3, 125–143. https://doi.org/10.3390/geohazards3010007 https://www.mdpi.com/journal/geohazards
656



GeoHazards 2022, 3

Different barriers are used to protect coastal settlements and industrial facilities:
dams located in the sea at a depth of 10–15 m, which rise above the water level up to
4–10 m (offshore tsunami barriers), coastal tsunami barriers, and inland tsunami barriers.
The height of such barrier is calculated from the condition of total reflection of the most
probable incident wave. [3]. However, if the wave height is greater than half the height
of the barrier, which is located above the water, then the barrier is completely under
water, and its reflectivity sharply decreases [1,4]. Therefore, studies on increasing the
efficiency of underwater barriers are always relevant and continue a wide front [4–7].
In particular, [4] shows the results of experimental studies on underwater permeable
barriers whose destructive power of the waves can be reduced not only by the reflection
of the wave but also due to the energy dissipation in the water infiltration through the
barrier. It is shown that an impermeable barrier whose height reaches the initial water
level decreases the magnitude of the tsunami wave run up by only 37%, whereas an
identical permeable barrier does so by 43%. A remarkable exception is the work of [5],
in which the effect of anomalously high absorption of energy of tsunami-type waves by
two underwater barriers installed at some optimal distance comparable to the depth of
water was experimentally discovered. This effect still has no theoretical explanation. Our
research [8,9] not only experimentally confirmed the existence of this anomalous effect
(including on single barriers) but also explained its physical nature and mechanism.

This paper presents the results of detailed studies of the effects of anomalous suppres-
sion of the energy of tsunami waves by single underwater barriers on the basis of physical
and numerical modeling of wave processes in the laboratory Нydrodynamic Channel (wave
flume) of the Institute of Applied Mechanics of the Russian Academy of Sciences.

2. Problems of Modeling Tsunami Waves in Experimental Facilities

The main cause of the most destructive tsunami waves is underwater earthquakes.
They typically evolve from the deep ocean as extremely long waves with small steepness.
By nature, the tsunami consists of a number of nonperiodic waves, and during the propa-
gation from the ocean to the nearshore area, these waves gradually modify with respect to
amplitudes and wave periods. The main amplification of the amplitude and velocity of
the flow occurs at the last stages when interacting with the shelf zone and shallow water.
Typical fault areas of major earthquakes are the width 200 km to 300 km and lengths 500 km
to 1600 km.

Madsen et al. [7], the parameters of the expected tsunami waves are calculated for
the most realistic case of vertical displacement of the water surface due to an underwater
earthquake by 2 m on a surface area having a diameter of 400 km. The paper by reference [7]
presents data on tsunami wave measurements in the coastal zone of Thailand (depth 14 m)
from the Sumatra earthquake of 2004, with a fault width of 200 km and fault length of up
to 1600 km. It was shown that an initial wave trough of −2.7 m followed by a wave crest of
+3.9 m, i.e., a wave height of 6.6 m. The second trough was only −0.5 m, followed by a crest
of 1.7 m, while the third trough was −0.6 m, followed by a crest of +4.9 m. The time span
between successive crests or troughs was approximately 13–14 min during the registration.
The results of these experiments are consistent with the data in Table 1.

Table 1. Estimated parameters of tsunami waves for the most realistic underwater earthquakes.

Zone
Water Depth,

H (km)
Wave Height

A (m)
Wave Length

L (km)
Nonlinearity

A/H
Dispersion

H/L

Ocean 4 1 400 0.00025 0.01
Continental

shelf 0.150 2.25 80 0.015 0.0019

Shallow 0.015 4 30 0.27 0.0005

Thus, the actual tsunami waves are more like a rectangular undular bore than a single
soliton-type wave, which is often used to simulate tsunami waves in experimental installa-

657



GeoHazards 2022, 3

tions and numerical calculations. Note that in studies based on detailed calculations [7,10],
it was shown that such a simulation of a tsunami wave by a single soliton wave does not
correspond to real conditions and often leads to an underestimation of the destructive
power of tsunami waves. In the most general form, the propagation of tsunami waves
in the ocean (or in a wave flume) is described by the Navier–Stokes Equations for an
incompressible fluid. After reducing these equations to a dimensionless one, we can obtain
the following dimensionless similarity criteria:

A
H

;
H
L

;
c√
gH

;

√
gH
L

t;
r
H

;
ρ

η
A
√

gH (1)

where t is time, r is a distance, and � and η are density and coefficient of dynamic viscosity,
respectively. In accordance with the law of similarity, the physical model accurately
describes the natural phenomena if all the dimensionless parameters (1) have the same
value in the model and in nature. To achieve such a simulation in real conditions is
not possible. In order to approximate simulation conditions to full-scale ones (Table 1),
even for the first two, the most important parameters, it is necessary to build large-scale
and expensive installations and structures [11] or significantly improve the accuracy of
measuring wave parameters [12]. In addition, in order to adequately transfer the results of
experiments in hydrodynamic installations to natural conditions, it is necessary to study in
detail the laws of similarity to reveal areas of self-similarity when the dependence on the
value of a particular criterion disappears.

3. Mathematic Model and Numerical Method

We consider the unsteady flow of an incompressible viscous fluid with a free surface
in a channel of a variable cross section. Reynolds numbers for the flows of liquid in the
hydrodynamic channel can reach the values of the order of 104; however, in our calculations
of the turbulence model, they are omitted. The reason for this approach is the fact that
the experiments in rectangular channels [13] show high enough Reynolds numbers of
transition to the turbulent state Re∗ = ρUH

η , where U is a fluid velocity. At that, the value
Re* increases with decreasing of the distance from the channel entrance.

Thus, at x/H = 60, the beginning of the transition into the turbulent state corresponds
to Re1* = 8 × 103 and the end of the transition to Re2* = 1.8 × 104. Furthermore, it is known
that when the initial perturbation in the flow decreases, the Reynolds of the transition
increases as well. In this case (at the wave length of L ≈ 3 m, H ≈ 0.1 m), the value
x/H ≤ 30, and the initial perturbations before the wave are close to zero.

Thus, the flow of liquid in the channel is described by Navier–Stokes Equations (2) and
(3), which are solved by the numerical method of finite volumes, with a use VOF (Volume
of Fluid) method [14] along with the Equation (4) of the scalar value γ conservation:

∇U = 0 (2)
∂(ρU)

∂t
+ U∇(ρU) = −∇p + η∇2U + ρg − ρFσ (3)

∂γ

∂t
+∇(Uγ) = 0 (4)

where p is pressure, γ is the volume concentration of the carrier fluid in the computational
cell. The value of the scalar function γ in the cell can indicate one of the three states:
γ = 0—the cell contains air only; γ = 1—the cell contains water only; 0 < γ < 1—the cell
contains an interface between liquid and gas. Thus, in this case, γ is an indicator of inter-
facial surfaces and free liquid surfaces. Physical properties of the medium are calculated
as weighted averages in accordance with the volume concentration of phases in each cell.
The average density in the cell is calculated as ρ = γρ1+ (1 − γ) ρ2, where ρ1—density of
the carrier fluid, ρ2—density of air; accordingly, the viscosity: η = γη1 + (1 − γ)η2. The
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force caused by surface tension Fσ = σk∇γ, where σ = 72.8 N/m is the surface tension of
water–air; k = ∇

( ∇γ
|∇γ|

)
= ∇n.

The computational area, according to the initial state of the water levels in the channel
and in the caisson generator (see Section 5.1), includes two subareas: the lower subarea
is filled with water that has a preset initial configuration of the interface; the upper one—
with air. In the computational area, different obstacles (mobile and fixed), submerged
breakwaters, etc., can be placed. At t = 0 under the influence of gravity, a wave motion is
generated, which should be calculated. The boundary conditions on the rigid walls of the
channel (and the walls of the rigid obstacles) are set as follows:

U = 0, n∇γ = 0 (5)

On the free surface of the liquid y = h(x,t) = H + ξ (x,t), where ξ (x,t) is the displacement
of the free surface, the kinematic and dynamic conditions are met in the traditional formu-
lation: ∂h

∂t + ux
∂h
∂t = uy and pnn = −patm, pns = 0; where pnn, pns are normal and tangential

stresses, patm is external pressure.
The initial condition at t = 0: at 0 ≤ x ≤ 1.5 m the distribution function h(x,0) = H + A;

at 1.5 m ≤ x ≤ 15 m the distribution function h(x,0) = H.
Numerical calculations were carried out using the InterFoam solver of the free software

package OpenFOAM [15].

4. Experimental Equipment and Research Methods

Hydrodynamic channel of the Institute of Applied Mechanics of Russia Academy
of Science (IPRIM RAS) has the following dimensions: length—15 m, width—0.26 m,
height—0.35 m (see Figure 1).

 
Figure 1. The hydrodynamic channel (wave flume) of the IPRIM RAS.

The author of this work showed in Reference [10] that the use of high-precision wave
amplitude measurement methods [12] combined with numerical modeling [16] allows the
simulation and investigation of many tsunamis wave problems in relatively small-sized
laboratory facilities.

Experiments and numerical simulation of wave processes were carried out in the
channel using the following parameters:

• Initial water depth in channel H varied from 100 mm to 103 mm;
• Wave length L ≈ 3 m, averaged incident wave amplitude A in a series of experiments

ranged from 0.5 mm to 15 mm.
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Thus, in our setup, we simulate the dimensionless parameters of tsunami waves close
to the parameters of Table 1: 0.005 < A/H < 0.15 and H/L ≈ 0.03.

Resistive sensors of water level, ten-channel measuring apparatuses [16,17], four-
channel digital oscilloscope, and a two-channel recorder Velleman PCS 500 were used for
registering wave processes in the channel. The water level sensor consists of two insulated
needles, the resistance between which, when immersed in water, is proportional to the
depth of immersion. Figure 2 shows equipment for precision calibration of resistive sensors
intended for measuring the water level. A tripod with a sensor and a cuvette with water
are placed on the vibration protection platform. Figure 3 shows a typical calibration graph
of the measurement channel. It can be seen that the error in measuring the water level does
not exceed 10 microns.

 
Figure 2. Calibration stand and equipment.

Figure 3. Тypical calibration curve. (a) Schematic diagram of the resistive sensor.

Resistive sensors, which were located at various distances from the wave generator,
measured the displacement of the free surface of the water at the time intervals ξ(t). It
is now possible to draw wave x-t diagrams for each experiment and to determine: the

velocity of waves and the amplitude factors of wave reflection R =
√

Wr
W ≈ Ar

A and of wave

transition T =
√

Wt
W ≈ At

A during the interaction with the underwater barriers. Here W; Wr

and Wt are the total energy of the incident, reflected, and transmitted waves, respectively.
Ar and At are averaged amplitudes of reflected and transmitted waves.
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The wave flume is equipped with a high-speed digital video camera Photron FAST-
CAM SA4500K, with a shooting speed of up to 3600 frames/s at full resolution 1024 × 1024.

5. Generation and Propagation of Waves in a Wave Flume

5.1. Wave Initiation

Unlike the common method of initiating waves with the use of various moving
mechanisms, such as vertical movement of the bottom or movement of the angled wall of
wave generator [1,5,11], the wave generator in the IPRIM RAS hydrodynamic channel has
no moving parts. The method of gravity waves initiation is based on the breakdown of an
arbitrary discontinuity of water levels in the channel and in the wave generator, which is
set in the initial time. This method is technically implemented in the caisson-type wave
generator (Figure 4), which is a compartment of the channel (length a = 1465 mm) with the
sealed top cover (1) and front wall (2) submerged during operation.

Figure 4. Schematic drawing of the caisson-type generator.

In the top cover of the wave generator, there is a tube (3) provided for pumping out
and filling with the air the upper volume of the generator, while the 90 mm high lower
part of the generator communicates with the effective volume of the channel. Before the
operation, the channel is filled with water up to the level of H0 > 90 mm. Then, the air is
evacuated via tube (3) from the upper part of the generator, thereby attaining specified
water level difference η0: the water level (H + η0) in the generator and the water level H
in the working part of the channel. After depressurization (t = 0) of the upper part of the
generator, the wave is initiated in the working part of the channel. The wave has the length
L ≈ 2a and the amplitude A ≈ η0/2 (see Appendix A).

Let us refer to the wave generator, which at the time t = 0 instantly retracts the front
wall, as an ideal one. The work of the ideal generator and the real (caisson-type) one
was compared using numerical simulation. At a distance x > a from the front wall of the
generator, calculated profiles of gravity wave ξ(t) of the ideal generator and the caisson-type
one were almost identical.

The process of tsunami-type wave generation in the hydrodynamic channel (wave
flume) of the IPRIM RAS is shown in Figure 5. At the initial moment of time t = 0, the
process of decay of a given level difference δ0 = 2A is started. Up to this point in time,
the water in the generator and the working channel was at rest. At t = 0.7 s, we see that
the initial level difference split into two waves: a negative wave (−A) moves inside the
generator (a = 1.465 m), a wave with a height (+A) moves into the working part of the
hydrodynamic channel. In each image, above the white horizontal line, we can see the
profiles of the water levels in these waves, below the longitudinal velocity. Further, at
t = 2 s and t = 3.3 s, we see that the wave (−A) reflected from the generator wall and formed
a single wave with height (+A) and length L = 2a, which moves into the working part of the
wave flume. The wave speed is c =

√
gH = 1 m/s. The velocity of liquid in the channel

before and after the wave was zero.
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Figure 5. Modeling the process of generating a tsunami-type wave in a wave flume by an ideal
generator at H = 0.103 m, A/H = 0.1.

Note that the shape of the generated wave (with damped oscillations) is very sim-
ilar to the shape of a natural tsunami wave, which is formed because of an underwater
earthquake [5].

Figure 6 shows a comparison of experimental oscillogram of wave height versus time
ξ(t), based on measurements taken by the level sensor at a distance of 1.5 m from the front
wall of wave generator, with calculated dependence for ideal generator (black line) at the
same initial conditions: H = 0.102 m; η0 = 0.015 m.

Figure 6. Comparison of experimental dependence wave height—time (green line) ξ(t) = Hξ(t) − H
with the numerical calculation for ideal generator (black line) at a distance of 1.5 m from the front
wall of wave generator. The red dashed line is the model wave profile.
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We can see that at a distance of x = a ≈ L/2, the experimental dependence is practically
the same as the calculated dependence for the ideal generator; further on (at x > a), the
coincidence is closer.

5.2. Wave Propagation

Figure 7 shows a typical x-t diagram of gravity tsunami-like waves, which propagate
in the channel. At the bottom (below the diagram) schematic drawing of the channel and
locations (1–4) of the sensors are shown in the same scale for the coordinate x. The markers
on the diagram show the time of arrival of the waves (incident and reflected), which are
registered by each of the four level sensors (see Figure A1 of the Appendix A). Parameters
of the experiment: η0 = 15 mm, H = 102 mm.

Figure 7. The diagram (x-t) of gravity tsunami-like waves, which propagate in the hydrodynamic
channel at the following initial parameters: η0 = 15 mm, H = 102 mm, A/H = 0.074. Makers—
experiments. Lines—linear theory of shallow water. The blue line is the trajectory of the incident
wave; the red lines are the reflected waves. G—wave generator; W—reflecting wall; 1–4—locations of
wave level sensors.

We can see that the velocities of the incident and reflected waves are equal, c = 1 m/s,
and are consistent with the velocity, which was calculated using the linear theory of shallow
water c =

√
gH for channel depth H = 0.102 m. The nonlinearity parameter calculated

by the average height of the incident wave is equal to A/H = 0.074. Velocities of the
waves, which propagate in the channel (solid and dashed lines), calculated by a numerical
simulation software based on full Navier—Stokes equations, practically coincided with the
measured experimental values (see dots).

Figure 8 shows a comparison of the experimental dependence of the dimensionless
wave velocity on the nonlinearity parameter A/H with numerical simulation (2) on the
basis of the complete Navier–Stokes Equations. Additionally, theoretical dependencies are
shown: dotted line (1)—dependence calculated based on the linear theory of shallow water;
and dashed line (3)—calculated by nonlinear shallow-water theory.
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Figure 8. Dependence of long gravity waves velocity in the hydrodynamic channel on the nonlinearity
parameter A/H: 1—linear theory of shallow water, 2—Navier–Stokes Equations, 3—nonlinear theory
of shallow water (4A).

It can be seen that the results of numerical simulation (red line) comply best of all with
the experimental results (markers). The nonlinear theory of shallow water (1A) provides a
qualitatively correct description of the process of wave velocity increase with the growth of
nonlinearity parameter but yields an overestimate. Figure 8 shows that the linear theory of
shallow water is valid until the nonlinearity parameter exceeds 0.1:

c√
gH

= 1 for 0 <
A
H

< 0.1 (6)

The similarity law (6) is important since, in this case, the total energy of a tsunami-
type wave can be calculated as the doubled potential wave energy [1] on the basis of the
dependence ξ(t) measured by the wave-level sensor:

W = ρg
L∫

0

ξ2(x)dx = ρg
√

gH
T∫

0

ξ2(t)dt (7)

5.3. Transformation of Highly Nonlinear Wave, Which Interacts with Shallow Water

The problem of describing the dynamics of long gravity waves, which propagate in
the shallow water of coastal strip causing the flooding of the shore, is one of the most
difficult problems concerning the tsunami waves. This is caused by the need to solve
the nonstationary problem, as well as by the need to consider nonlinear and viscous
effects; that is, in this case, it is necessary to solve the dynamics equations in the most
general formulation.

Figure 9 provides a comparison of experimental transformations of strongly nonlinear
tsunami-kind waves (1 < A/H < 2, H/L ≈ 0.03) which propagate in the coastal area having
gently sloped bottom, with numerical simulation of these processes in the hydrodynamic
channel based on the full Navier–Stokes Equations.

Figure 9a in the coordinates x-y (to scale) shows the profile of the shallow part of
the bottom (shelf) and the wave profile at the time t = 8.3 s from the beginning of wave
initiation in the hydrodynamic channel, which were obtained using numerical simulation.
Figure 9c shows a synchronous frame shot by a high-speed camera. The white rectangle
indicates the field of view of a high-speed digital camera. Figure 9b,d compare the results
of numerical calculation of the waveform with the experiment at the time t = 8.4 s. Figure 9
shows a very good coincidence of numerical simulation results with the experiment. Hence,
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the proposed mathematical model and its software implementation can be applied to the
complex experimental–numerical study of tsunami wave problems in laboratory conditions.

Figure 9. Breaking of wave interacting with shallow water. The comparison of experimental results
with numerical simulation at H = 0.135 m, A/H = 0.61, Hsh = 0.054 m, A/Hsh = 1.52: (a,c)—t = 8.3 s;
(b,d)—t = 8.4 s.

6. Interaction of Tsunami-Like Waves with Impermeable Thin Barriers

6.1. Experimental and Numerical Studies

A scientific explanation of the effect of anomalous suppression of the energy of
tsunami-like waves by two underwater barriers located at a relatively small distance
from each other (Δ << L), experimentally discovered by reference [5], was given in the
works of the author [8,9].

It turned out that the effectiveness of thin underwater barriers is caused not only by
the energy carried away by the wave reflected from the barrier but also by the energy that
accumulates near the barrier in large-scale vortex structures. Vortex energy under certain
conditions can reach 50% of the energy of the incident wave.

This section presents the results of the investigation regarding tsunami-like waves
interacting with impermeable thin barriers of two types (Figure 10).

Figure 10. Schematic diagram of the interaction of a tsunami-type wave with impenetrable barriers
No. 1 and No. 2.

The barriers have a rectangular shape with thickness 10 mm = δ � L, and are
installed at a zero angle to the front of the incident wave. Barrier No. 1 was installed at
the bottom of the flume, and barrier No. 2 was submerged in the water from above. The
height of barrier No. 1 varied in the range 0 < h < (H + A), and the depth of immersion
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of barrier No. 2 varied in the range 0 < h < H. Our numerous experiments and results of
numerical simulations have shown that if

(
h

H+A

)
No1

=
(

h
H+A

)
No2

, then barriers No. 1
and No. 2 are identical to each other, that is, they equally reduce the energy of the incident
wave W:

(
Wt
W

)
No1

=
(

Wt
W

)
No2

. However, the use of barrier No. 2 significantly increases
the productivity and convenience of experimental studies.

Figure 11 shows the dependence of the amplitude reflection coefficient R =
√

Wr/
√

W
≈ Ar/A on the dimensionless parameter h/(H + A).

Figure 11. Reflection coefficient as a function of dimensionless parameter h/(H + A): (1)—No.
1, A/H = 0.286 [4]; (2)—No. 1, A/H = 0.04–0.05; (3)—No. 2, A/H = 0.04–0.10; (4)—Navier–Stokes
Equations, A/H = 0.07 and (5)—linear theory of long waves.

It can be seen that all experimental data (with barriers No. 1 and No. 2) are generalized
by a single dependence R = f

(
h

H+A

)
in a wide range of variations of the nonlinearity

parameter 0.04 < A/H < 0.286. Calculations (dashed line) of the reflection coefficient based
on the linear theory of long waves [1] correspond to experiments only in the case when
h << (H + A). The results of numerical modeling of the reflection coefficient based on the
nonlinear Navier—Stokes Equations in a two-dimensional formulation at A/H = 0.7 (solid
line) are also shown in Figure 11. It can be seen that the results of numerical simulation
are in very good agreement with the experimental data in the range of variation of the
generalized parameter 0 < h/(H + A) < 0.95.

Thus, the linear theory of long waves (or shallow water H << L) is a fairly good
approximation for describing the process of propagation of tsunami-type waves in the
range of variation of the nonlinearity parameter 0 < A/H < 0.1 (see Figure 8). However, the
calculation of the reflection coefficient of waves using the linear theory of long waves gives
a strongly underestimated result even for weak (linear) waves at A/H ≈ 0.05 (see Figure 11).
So, for example, at a barrier height of h = 0.8 (H + A), the linear theory underestimates the
result by a factor of 4 in comparison with the experiment. On the other hand, it would seem
that the conditions for linearization of the Navier–Stokes Equations are strictly fulfilled.

We will find an even greater discrepancy with our expectations when we compare the
energy characteristics of the incident, reflected, and transmitted waves. Since the viscous
losses (from friction) on thin impenetrable barriers are negligible, it is natural to assume
that the result of the linear theory of long waves is correct, then W = Wr + Wt.

Figure 12 shows (dark markers) the experimental dependence Wr+Wt
W = f

(
h

H+A

)
for small amplitude tsunami-type waves. The experiments were carried out under the
following conditions: water depth H = 0.103 m, the nonlinearity parameter varied in the
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range 0.04 < A/H < 0.1. The wave energy was calculated by Formula (7) by integrating the
experimental dependence of the wave height on time ξ(t).

Figure 12. The sum of the relative energies of the waves reflected and transmitted through the
barrier as a function of the generalized parameter of the barrier height: 1—experiments; 2—numerical
experiment based on f Equations; 3—calculations by author’s theory at H = 0.103 m, A = 0.007 m, and
k = 0.68.

It is seen that the linear theory of long waves adequately describes the interaction
of tsunami-type waves with a thin barrier only if the relative barrier height is less than
0.3(H + A). In the range of barrier heights from 0.3(H + A) to H + 2A, all experiments
correspond to the inequality (Wr + Wt) < W. For example, at = 0.9H, experiments show that
Wr + Wt ≈ 0.5W. A legitimate question arises: “Where did 50% of the incident wave energy
go?” On the other hand, numerical simulation of the experimental conditions based on
the full Navier–Stokes Equations (white markers in Figure 12) gives the correct result that
coincides with the experiment.

The author proposed a hypothesis that the missing energy is accumulated in large-scale
vortex structures near a thin barrier. More studies that are detailed have fully confirmed
the correctness of this hypothesis. Later, the author proposed a theory (see Section 6.2),
which made it possible to obtain analytical dependences for the reflection and transmission
coefficients of tsunami-type waves when they interact with thin underwater barriers, taking
into account the vortex effects described above.

A visual picture of the velocity fields during the passage of a tsunami-type wave
through a thin barrier at different times is given in Figure 13. These velocity fields were
obtained as a result of a numerical experiment based on two-dimensional Navier–Stokes
Equations under the condition of maximum energy losses (see Figure 11): H = 0.103 m,
L ≈ 3 m, A/H = 0.07, and h/H + A = 0.9.

In Figure 13, a thin barrier No. 2 (shown in black) is installed at a distance of 7 m
from the wave generator, and the wave speed is c = 1 m/s. After 7 s from the beginning of
wave generation (t = 7 s), the leading front of the wave has already crossed the obstacle,
and we see a symmetric picture of the beginning of the interaction between the wave and
the barrier. The end of the interaction of the wave with the barrier is shown in 2 s (t = 9 s).
We see how the directed energy of the wave is pumped into a large-scale vortex structure
stationary relative to the barrier, the diameter of which exceeds the depth of the water. At
t = 11 s, the wave passed the obstacle, the trailing front of the wave is approximately 1 m
from the barrier, but two practically immobile vortices with a diameter equal to the water
depth H remained near the barrier. These vortices contain “the missing 50% of the incident
wave energy.
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Figure 13. Visualization for various instants of time of velocity fields near thin barrier No. 2
(black color) in the case of transmission through it of a tsunami type wave: A/H = 0.07, parameter
h/(H + A) = 0.9. The dashed line corresponds to the unperturbed water flow level.

Thus, after interacting with the barrier, the wave lost almost 85% of its energy: 35%
of its energy was reflected from the barrier (see Figure 11), and 50% was accumulated
in vortex structures near the obstacle. For comparison, note that permeable barriers [4],
in which the dissipation of wave energy occurs due to friction, at the same height of the
barrier, in total suppress no more than 35% (including 30% in the reflected wave).

If we assume that friction losses in thin impenetrable barriers are negligible, then the
energy conservation law will have the following form:

Wr + Wt

W
+

Wv

W
= 1 (8)

where Wv
W is the relative energy accumulated in large-scale vortex structures near an under-

water obstacle.

6.2. Theoretical Studies

Experimental and numerical studies presented in Section 6.1 have shown that, under
certain optimal conditions, the efficiency of thin and impenetrable underwater barriers can
be substantially (more than doubled) increased due to additional energy losses of tsunami
waves in large-scale vortex structures. In this section of our review, a theory is given that, in
an analytical form, makes it possible to evaluate the efficiency of such underwater barriers
with allowance for eddy losses.

Let us consider the problem of the interaction of a tsunami-type wave with a thin and
impenetrable underwater barrier in the one-dimensional (along the x-axis) formulation
of the “shallow-water theory” (see Figure 14). For this, we temporarily exclude from
consideration the region x: (−L/2 < x < +L/2), in which the flow is two-dimensional,
and the “shallow water” assumption is not met. In Figure 14, this region is between the
cross-sections B—B and C—C (of unit thickness along the coordinate axis z).

It is known that the shallow-water theory describes with sufficient accuracy the
propagation of weak tsunami-type waves (A << H) in a reservoir with a smooth change in
depth. In this case, the speed of the wave is c =

√
gH, and the total energy of the wave is

W = Wk + Wp = 2Wp. Here Wk and Wp are the kinetic and potential energy of the wave. For
example, the energy flux through the channel cross-section C—C (Figure 14) is:

qcc = ρc
(

gA2
t

2
+

v2
t

2
H
)
= ρcgA2

t (9)

where vt is the depth-averaged fluid velocity behind the front of the transmitted wave.
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Figure 14. Schematic diagram of the interaction of a tsunami-type wave with a thin impenetrable
barrier. Shallow water theory is not applicable near the barrier: −L/2 < x < +L/2.

Let us write down the conditions for the conservation of stationary flows of mass and
energy through the cross-sections B—B and C—C, see (A3):

Ac = Arc + Atc (10)

ρgA2c = ρgA2
r c + ρgA2

t c + P (11)

where P is the energy loss due to the barrier per unit time.
Since the main energy losses take place in the region from the barrier to the C—C cross

section, the energy loss P can be estimated as hydraulic losses on a sharp expansion of the
channel cross-section (“shock” decrease in the flow velocity): above the obstacle, the flow
velocity is equal to U, behind the front waves—vt. To do this, we use the Borda–Carnot
principle [17], according to which these losses are similar to the energy losses during the
inelastic impact of solid balls when one ball catches up with another, which moves at
a slower speed. In this case, “the lost kinetic energy is equal to the energy of the lost
velocities.” In our case, we have:

P =
1 − k
1 + k

ρ
(U − vt)

2

2
Hc (12)

where 0 < k < 1 is the coefficient of restitution: with k = 0, the impact is perfectly inelastic;
and with k = 1, the impact is perfectly elastic.

The velocity over the barrier U as a function of the velocity vt can be easily obtained
from the condition of conservation of the liquid flow rate U(δ + δ∗) = vt H. In our approxi-

mation, we have At
H ≤ 0.1 and v2

t
2 =

gA2
t

2 . Finally, we arrive at Equations (10) and (11) in
the form:

1 = R + T; 1 − R2 = T2

[
1 + 0.5

1 − k
1 + k

(
H

δ + δ∗ − 1
)2

]
(13)

For T �= 0, the formulas:

T =
4

4 + K
; R =

K
4 + K

; K =
1 − k
1 + k

(
h − δ∗

δ + δ∗

)2
(14)

give solutions to Equation (13).
In Equation (14), δ* and k are unknown quantities. δ* is the excess of the water level

over the initial level H directly above the barrier at the time when the reflected wave is
formed: at the full reflection of the wave from the barrier (R = 1), δ* = 2A, and at T = 1 we
have δ* = A. For weak waves of the tsunami type (A < 0.1·H), we can assume with sufficient
accuracy that δ* = A. The coefficient of restitution k characterizes the fraction of energy that
is converted into heat due to viscosity in small-scale structures of a liquid, and it must be
found from experiments.

The result of the calculation according to the proposed theory of energy losses of
tsunami-type waves during their interaction with thin impenetrable barriers (solid line)
is shown in Figure 12. It is seen that formulas (14) describe, quite accurately, the exper-
imental effect of anomalous suppression of the energy of tsunami-type waves by thin
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impenetrable barriers. It is important to note that in the range of optimal barrier heights of
0.8 < h/(H + A) < 1, the theoretical calculations almost exactly coincide (see white markers)
with the results of numerical modeling based on the full Navier–Stokes Equations.

Note that the best agreement between theory and experiments is achieved at a suf-
ficiently large recovery coefficient k = 0.68. This indicates that most of the kinetic en-
ergy of the wave is not absorbed due to viscous friction but accumulates in large-scale
vortex structures.

7. Conclusions

This paper includes some results of studies of tsunami wave problems aimed at
reducing their destructive power, which were obtained at the Institute Applied Mechanics
of the Russian Academy of Sciences in the period from 2013–2019, namely:

• Investigation of the features of modeling tsunami waves in a laboratory installation;
• Theoretical, experimental, and numerical studies of the interaction of tsunami waves

with underwater obstacles;
• It is shown that at a certain optimal height of a thin impermeable barrier, its effective-

ness in suppressing the energy of an incident tsunami wave is 70%, which is explained
by the accumulation of energy in large-scale vortex structures near the obstacle.

We note several important circumstances characteristic of our research:

• The use of precision measuring channels (sensor + equipment) for recording the water
level made it possible to simulate the main dimensionless parameters of tsunami
waves in a laboratory setup, equivalent to the parameters in large-scale wave flumes;

• The wave generator ensures the creation of gravity waves equivalent to theoretical
ones with an instantaneous jump in water level and speed at the leading edge of the
wave. In this case, the wavelength does not depend on its height and is determined
only by the length of the wave generator;

• In our studies, we studied the interaction of a stationary homogeneous water flow
ux = A

H
√

gH with underwater barriers, since the condition τs < T is always provided,
where τs is the time of the establishment of a stationary flow around.

The content of this work is limited to the study of interactions with single under-
water barriers of only weak (linear) gravity waves (A/H ≤ 0.15). At the same time, the
reliability of all conclusions increases, so it is possible to apply an integrated approach
(theory, experiment, and numerical simulation). In addition, the paper studied flows at
Re ≤ 1.5 × 104, i.e., only laminar flows behind the wave front are considered. We do not
consider the important problem of modeling the flow around underwater barriers in terms
of the dimensionless number Re.

This paper did not include less important results on studies of the interaction of
tsunami waves with an underwater barrier of finite thickness and with a complex of two
barriers, which are contained in references [8,18–20]. In our paper [20], a more detailed
review of the problem under study and a comparison of our results with experiments and
numerical calculations of other authors are given.

The paper shows that there is a unique opportunity to significantly reduce the destruc-
tive power of tsunami waves using the own energy of tsunami waves. We hope that the
results of our research can serve as a scientific basis for creating highly effective underwater
barriers for tsunami waves.
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Appendix A. Characteristics of Gravity Waves of the Tsunami Type, Modeled in the

Hydrodynamic Channel of the IPRIM RAS

Figure A1 shows a typical oscillogram obtained by recording tsunami-type waves in a
hydrodynamic flume with four water level sensors.

 

Figure A1. A typical oscillogram of tsunami-type wave registration in a hydrodynamic channel.

Label 1 shows the initial position of the measuring channel of sensor No.1 (yellow),
which measures the water level in the wave generator. An increase in the water level in
the generator before wave generation by η0 = 0.02 m corresponds to an upward shift of
the beam by 491.4 mV. The sensor registered a sharp drop in the water level by −240 mV
after the start of the wave generator. This level drop corresponds to a wave that propagates
inside the generator and has a height of A = − η0/2 with a measurement error of δ = 2.32%.
Sensors No. 2–4 (blue and cyan) register waves in the working part of the wave tray. The
distance between sensors No.2 and No.4 is 6.7 m. It can be seen from the 546 oscillogram
that the time it takes the wave to cover this distance is Δt = 6.56 s. Thus, the experimentally
measured wave speed is c = 1.03 m/s. The group velocity of such a single wave calculated
on the basis of the linear theory of shallow water is c =

√
gH = 1.001 m/s. From Figure A1,

it can be seen that the wave that propagates into the working channel of the flume has a
time extension of about T ≈ 3 s, thus: L = 2a = cT ≈ 3 m.

The shape (profile) of the waves generated by our wave generator is completely
similar to a real tsunami wave 100 km from an underwater source in the form of a vertical
displacement of an extended area of the ocean floor with a residual displacement [21]. If
we average the fluctuations that arise due to a sharp change in the water level, then the
cross section of these waves along the direction of its propagation will have the form of
a trapezoid. Such a wave profile fully corresponds to the calculations of gravity waves
arising from the vertical displacement of an extended bottom area of Δx = 2a to a height
of η0 in time τ [1]. In this case, if τ∗ = τ

T = 2a√
gH

≤ 1, then the average wave height

A = η0/2, wavelength L = a(2 + τ∗), and the potential energy of the wave is equal to its
kinetic energy Wp = Wk. The total wave energy (per meter of length along the front) was

calculated using Formula (7) and is equal to W = 2a�gη2
0

(
1
2 − τ∗

12

)
, where 2a�gη2

0 is the

potential energy of the area (2a·1 m2) of water as it rises to a height η0 above the initial level
of the liquid.
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In our case, there are no moving parts in the wave generator, so we can assume
that τ* = 0. Then the calculated profile of the generated wave in the approximation of
the linear theory of shallow water will have a rectangular shape: L = 2a, A = η0/2. In
Figure 5, the red line shows the profile of such a model wave. The potential energy of the
model wave, as expected, is equal to half of the initial potential energy of the generator:
Wp = 2ρga

( η0
2
)2

= 1
2 ρgaη2

0. The calculation of the potential energy of real waves by
integrating the experimental wave profile using the Formula Wp = 1

2 �g
√

gH
∫ T

0 ξ(t)dt
gives the same result.

Let us estimate from Figure 5 the maximum vertical velocity of the liquid, which
is given by oscillations on the crest of the wave: uz = Av

2π
Tv

= 0.0025 2π
2 = 0.008 m/s.

Horizontal flow velocity behind the wave front is ux = A
H
√

gH ≈ 0.1 m/s. Thus, in our
experiments, the oscillations that arise at the crest of the wave practically do not distort the
velocity profile uniform over the entire depth behind the wave front. Figure A2 shows the
process of generating a model wave.

Figure A2. The process of generating a model wave by a caisson-type generator.

At time t = 0, there is a given level difference in the wave generator and in the
working channel, and the fluid velocity is zero everywhere. For t > 0, the given arbitrary
discontinuity of levels splits into two waves. At t = t1, the wave A1 = −η0/2 moves inside
the generator, and the wave A2 = η0/2 moves into the working channel. At t = t2, wave A1
is reflected from the wall and, together with wave A2, forms a single wave of length L = 2a,
which moves into the working channel (see t = t3).

Thus, the model gravity wave (see Figure 5), which is used in the theoretical estimates
of Section 6.2 of this work, models our real wave in a hydrodynamic flume with high
accuracy. This wave propagates through the shallow water of the flume (L >> H) with a
constant speed c =

√
gH as a small perturbation (A << H). The trailing and leading wave

fronts are discontinuity surfaces that move in the same direction with a constant depth
velocity uv = c. Before the wave and behind the rear surface of the discontinuity, the water
velocity is zero. The fluid velocity inside the wave is u << c; it (like the velocity c) does not
depend on spatial coordinates y-z. A schematic drawing of the wave in a fixed (laboratory)
frame of reference is shown in Figure A3a.
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Figure A3. Schematic drawing of the motion of a gravitational wave in various frames of reference:
(a) in a fixed (laboratory) frame of reference; (b) in a moving (with the speed of a wave) frame
of reference.

For the mathematical description of such waves, continuous functions and differential
equations are inapplicable (for example, on the discontinuity surface div U = ∞). However,
the relationship between the wave parameters can be obtained from the conditions of
mass and momentum flux conservation on both sides of the discontinuity. Since the wave
propagates in one direction without changing its shape, then, passing into a moving (with
speed c) frame of reference, we turn the nonstationary problem into a stationary one. In
this frame of reference (Figure A3b), the conservation conditions have the form [22]:

u1h1 = u2h2 (A1)

u2
1h1 +

gh2
1

2
= u2

2h2 +
gh2

2
2

(A2)

The notation in Formulas (A1) and (A2) is clear from Figure A3. From Equation (A1),
we obtain a formula for calculating the mass flux density (referred to 1 m of the channel
width), which is carried by the model wave:

j = u(H + A) = cA (A3)

The speed of a nonlinear wave u1, with an arbitrary value of the nonlinearity parameter
ε = A/H, is also easy to obtain from relations Equations (A1) and (A2):

u2
1 = gH

(
1 +

ε

2

)
(1 + ε) (A4)

Note that, in the general case, the energy fluxes on both sides of the discontinuity are
not the same, i.e., due to the sharp expansion of the flow, there are energy losses. However,
in our case, for ε << 1, the energy fluxes are equal to within O(ε2).

Thus, long gravity waves of the tsunami type, modeled in our wave tray, as well as
natural tsunami waves, are displacement waves, in which the mass of liquid and energy is
transferred in the direction of wave movement. This is precisely why real tsunami waves
fundamentally differ from progressive oscillatory waves in which the average fluid flow
rate is zero. The second feature of natural tsunami waves is that, due to their exceptionally
large length, the interaction of tsunamis with protective barriers and coastal structures
occurs almost under stationary conditions. Noncompliance with the latter condition when
conducting studies in ground-based facilities (wave flumes) can lead to gross errors [7,14].
A distinctive feature of our waves is that we have a practically uniform and stationary
fluid flow behind the wave front for a rather long time T. The latter circumstance is very
important since the time for establishing a stationary flow around underwater barriers can
be more than 10H

√
gH seconds.
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