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Preface

This reprint is the second of three volumes that collect articles on the topic of Natural Hazards

and Disaster Risks Reduction. It focuses on slope instability and landslides hazard demonstrating

how endogenous and exogenous environmental processes that regulate the Earth’s system can lead,

in some cases, to the formation of sudden and violent natural occurrences, with uneven impacts

on the Earth. Climate change and human actions can worsen these phenomena. These events can

threaten human life and community safety, especially when they interact with inhabited areas. The

unregulated development of human activities has made society increasingly vulnerable and in need

of intervention. The content of these works provides a useful compendium for supporting scientists

engaged in the study of the discussed phenomena and the search for implementing specialized

solutions. Additionally, thanks to the applicative characteristics of the content, it is useful for public

administration technicians who intend to work on security in areas subject to such natural adversities

that are in pursuit of sustainable development.

Stefano Morelli, Veronica Pazzi, and Mirko Francioni

Editors
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Regional Landslide Hazard Assessment Using Extreme Value
Analysis and a Probabilistic Physically Based Approach

Hyuck-Jin Park 1,*, Kang-Min Kim 2, In-Tak Hwang 1 and Jung-Hyun Lee 1

1 Department of Energy Resources and Geosystem Engineering, Sejong University, Seoul 05006, Korea;
intak999@gmail.com (I.-T.H.); jhlee6086@gmail.com (J.-H.L.)

2 Department of Geography, Kyung Hee University, Seoul 02453, Korea; kmkim0208@khu.ac.kr
* Correspondence: hjpark@sejong.ac.kr; Tel.: +82-2-3408-3965

Abstract: The accurate assessment of landslide hazards is important in order to reduce the casualties
and damage caused by landslides. Landslide hazard assessment combines the evaluation of spatial
and temporal probabilities. Although various statistical approaches have been used to estimate
spatial probability, these methods only evaluate the statistical relationships between factors that have
triggered landslides in the past rather than the slope failure process. Therefore, a physically based
approach with probabilistic analysis was adopted here to estimate the spatial distribution of landslide
probability. Meanwhile, few studies have addressed temporal probability because historical records
of landslides are not available for most areas of the world. Therefore, an indirect approach based on
rainfall frequency and using extreme value analysis and the Gumbel distribution is proposed and
used in this study. In addition, to incorporate the nonstationary characteristics of rainfall data, an
expanding window approach was used to evaluate changes in the mean annual maximum rainfall
and the location and scale parameters of the Gumbel distribution. Using this approach, the temporal
probabilities of future landslides were estimated and integrated with spatial probabilities to assess
and map landslide hazards.

Keywords: temporal probability; spatial probability; landslide hazard; physically based model;
extreme value analysis

1. Introduction

Landslides occur frequently, not only in Korea but also around the world, and cause
severe damage to human lives and property. To prevent or reduce damage, injuries,
and death caused by landslides, there is a need for landslide hazard analysis, which
estimates the probability of a potential landslide occurrence within a given period of time
and over a specific area [1,2]. That is, the spatial and temporal probabilities of landslide
occurrence should be analyzed to determine landslide hazards. The spatial probability
of landslide occurrence, which is also known as landslide susceptibility, predicts where
a landslide may occur. A large number of studies have been conducted on landslide
susceptibility using a variety of approaches. Landslide susceptibility analyses are generally
either statistically or physically based [3–6]. Statistical approaches acquire knowledge of
susceptibility obtained through the statistical analysis of the relationship between landslide
occurrences and various conditioning factors [5,7–13]. However, when applied to a wide
area, statistical analysis requires considerable data on both landslide distribution and
conditioning factors. In addition, statistical analysis considers the statistical relationship
between landslides and conditioning factors exclusively without the consideration of slope
failure mechanisms [14]. Therefore, in recent years, physically based analysis, which
incorporates the physical processes and mechanisms of landscape occurrence, has been
used with a physical slope model to estimate the spatial probability of landslide occurrence
independent of its occurrence history [14–32]. This is, therefore, a very promising approach

Sustainability 2022, 14, 2628. https://doi.org/10.3390/su14052628 https://www.mdpi.com/journal/sustainability
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to shallow landslide susceptibility analysis [33]. Moreover, a grid-based analytical structure
provides a convenient framework for wide-area coverage in a geographic information
system (GIS) environment [34].

In contrast, temporal landslide probability predicts when landslides may occur. Rel-
ative to landslide susceptibility analysis, few temporal probability studies have been
conducted. In general, temporal probability has been evaluated using the statistical analy-
sis of landslide frequency through long-period multitemporal landslide inventory [35–41].
However, considerable time and effort are required to construct the necessary multitem-
poral landslide inventory and, accordingly, these data are not available in most areas. An
indirect approach based on the frequency of landslide-triggering events (i.e., earthquake
or rainfall events) is, therefore, proposed. In this approach, recognizing that landslides
are mainly caused by rainfall events, the temporal probability of such rainfall events is
adopted as the temporal probability of landslide occurrence [42–49]. A rainfall threshold
for landslide occurrence is determined and then historical rainfall data are analyzed to
derive the probability that the rainfall threshold will be exceeded by a certain rainfall
event (the exceedance probability). The rainfall exceedance probability is observed as an
effective surrogate for temporal landslide probability [37,42,43,45,46,48]. The advantages
of this approach are that a complete multitemporal inventory is not required and that
temporal probability can be estimated wherever historical rainfall records, which can be
easily obtained from rainfall gauges, are available.

In this research, temporal landslide probability was estimated using historical rainfall
records. Then, landslide hazard was calculated by combining temporal probability with the
spatial probability obtained by conducting a physically based analysis. This approach was
adopted in the Jinbu region of Gangwon-do, Korea, where many landslides occurred in
July 2006 as a result of extreme rainfall. This approach can also help to solve a global social
issue. Achour [50] noted that landslide hazard analysis is one of the significant measures
necessary for land use planning and disaster risk reduction, supporting target 15.3 (“By
2030, combat desertification, restore degraded land and soil, including land affected by
desertification, drought and floods, and strive to achieve a land degradation-neutral world”)
of the United Nations 2030 Sustainable Development Goals (SDGs). Our approach will,
therefore, contribute to the achievement of the UN’s SDGs, especially goals 13 (“Take
urgent action to combat climate change and its impacts”) and 15 (“Sustainably manage
forests, combat desertification, halt and reverse land degradation, halt biodiversity loss”).

2. Materials and Methods

2.1. Study Area

The Jinbu area was selected for testing the proposed approach because it experienced
an extreme rainfall event from 14 to 16 July 2006, with numerous landslides being re-
ported (Figure 1). The study area is at latitude 37◦33′20′′ N–37◦39′26′′ N and longitude
128◦29′49′′ E–128◦36′36′′ E and is mostly mountainous, with an average altitude of about
660 m. The predominant lithological units are Triassic Nokam formation and Imgye granite
(Figure 2). These are located on a Precambrian biotite gneiss. The Nokam formation is
mostly fine sandstone and sandy shale, and the Jurassic Imgye granite, which occurs as
batholiths, consists of granite with syenite and diorite. Ordovician limestone, with a small
amount of sandstone and shale, is also distributed across the area. The region was exten-
sively intruded by granitoids during the Daebo Orogeny, which lasted from the Jurassic to
the Cretaceous periods [14,51].

To construct a landslide inventory, landslide locations were identified by conducting
the comparison of 0.5 m resolution aerial photographs, obtained from the National Geo-
graphic Information Institute (Suwon, Korea), taken before and after the 2006 event. A total
of 1310 landslides were identified (Figure 1). This is the only landslide record for this study
area, given that no other landslide occurrence, either before or after the 2006 event, has
been reported. The identified landslides in this area were translational shallow landslides.
Their length and width ranged from 30 to 1200 m and from 4 to 20 m, respectively. Their
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depth to failure plane ranged from 0.5 to 3 m. They started as translational shallow slides
and became flow-type landslides as they moved downward. Rainfall data from 1973 to
2017 were obtained from the Sangjinbu rainfall station (latitude 37◦39′32′′ N and longitude
128◦34′41′′ E), which is the most reliable rainfall station in the area.

Figure 1. The study area and location of the landslides.

Figure 2. Geology of the study area.

2.2. Evaluation of Temporal Probability
2.2.1. Extreme Value Analysis

In this study, an indirect approach to the evaluation of the temporal landslide proba-
bility was adopted. Specifically, the temporal probability of a landslide-triggering rainfall
event was evaluated by conducting statistical analysis on historic rainfall data, and the
probability of such a rainfall event was adopted as the temporal probability of a landslide
occurring. A rainfall threshold, the minimum rainfall required to initiate landslides [48],
was first determined. Based on rainfall records and the literature, the rainfall threshold in
this area was estimated as 227 mm over a 24 h time period; in July 2006, this threshold was
reached and triggered landslides [52]. Once this threshold was determined, its exceedance
probability could be calculated. In previous studies, exceedance probabilities have been

3
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evaluated using a binomial or Poisson distribution model [37,42,45,46,53–55]. However,
the use of these models requires an estimate of the mean recurrence interval for the pe-
riods between landslide-triggering events. Where no recurrent landslide event has been
recorded, such as in this study area, it is impossible to estimate the recurrence interval [56].
Therefore, extreme value analysis, which is able to infer the probabilities of future extremes
using past records, was used to evaluate the exceedance probability. This can be applied
even in areas where no recurrent landslide-triggering rainfall has been observed. Extreme
value analysis is recognized as appropriate for the analysis of the temporal probability of
shallow landslides caused by intense rainfall [48]. Therefore, it has been widely used in the
context of extreme hydrological events. In extreme value analysis, the maximum rainfall
event in a given year, the annual maximum (AM), is considered to follow a generalized
extreme value (GEV) distribution [56,57]. Among various GEV distributions, the Gumbel
distribution (extreme value type I) has been adopted to estimate the temporal probability
of rainfall-induced landslides [39,46,48,49,58–63]. In addition, the Gumbel distribution
has been applied to determine the frequency of extreme rainfall events in Korea [64]. The
cumulative Gumbel distribution is evaluated by the following:

FGUM(x) = exp
{
−exp

(
− x − u

α

)}
,−∞ < x < ∞, (1)

where u is the location parameter and α is the scale parameter. Subsequently, the exceedance
probability of a rainfall event for a specific year is evaluated by the following.

p = 1 − FGUM(x) = 1 − exp
{
−exp

(
− x − u

α

)}
(2)

To evaluate the exceedance probability by adopting the Gumbel distribution, Gumbel
parameters (i.e., location and scale parameters) must be estimated. The method of moments,
which assumes the equality of population and sample moments, has commonly been
applied to estimate the parameters for a given probability model [39,62]. In this study, the
method of moments was used to estimate Gumbel parameters.

2.2.2. Nonstationary Approach

Previously, extreme value analysis assumed processes to be stationary, which means
that historical rainfall data are invariant over extended time periods. However, increases in
extreme rainfall frequency and intensity caused by climate change have been reported by
many recent studies. The stationary assumption, with unchanging AM values and Gumbel
parameters, is therefore not valid. A nonstationary model should respond to changes in
AM rainfall and consequent changes in Gumbel parameters. Zeng et al. [65] proposed an
expanding window approach to analyze nonstationarity in AM rainfall. The expanding
window begins with a given minimum size at a fixed starting point, but as the analysis
progresses into the time series, the window expands to include each new data value rather
than only a finite and constant widow size [66]. Initially, a 20-year window of historical data,
as suggested previously [67], was used to evaluate the mean AM and Gumbel parameters.
Next, the period window was expanded to include 21 years. This procedure was repeated
until all the data years were included. In this study, rainfall data from 1973 to 2017 were
available, and the mean AM rainfall and Gumbel parameters were initially calculated from
1973 to 1992. Using the expanding window, the means and parameters were then obtained
for 1973 to 1993, etc. This approach is able to reveal any nonstationary trend in mean and
statistical parameters.

2.3. Evaluation of Spatial Probability

Spatial probability was calculated using a physically based approach. As recent
landslides triggered by heavy rainfall are mainly shallow, the infinite slope model, which is
widely used for shallow-depth slope failure, was used as the physical model. Previously,
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the infinite slope model has mainly been used to assess the stability of individual slopes.
With the rapid development of GIS-based analysis, the infinite slope model can now be
used to analyze shallow landslide susceptibility over broad areas.

The infinite slope model evaluates a factor of safety (FS) based on the concept of limit
equilibrium. It analyzes the equilibrium of a potentially unstable mass by comparing the
driving force, the force tending to slide along the failure plane, with the resisting force,
which is the shear strength. If the groundwater height is assumed to be zw above the sliding
plane (Figure 3), the equation used for calculating FS using the infinite slope model is
as follows:

FS =
c + (γD − γwzw) cos2 α tan φ

γD sin α cos α
, (3)

where c and φ are the cohesion and effective friction of the slope materials; γ and γw are
the unit weights of the slope materials and water, respectively; D is the vertical depth to
the failure surface; zw is the groundwater level; and α is the angle of the slope.

Figure 3. The infinite slope model.

A transient hydrological model was used to estimate zw. The transient infiltration
model is a process used for estimating pore pressure changes during rainfall infiltration.
This was used in conjunction with a grid-based regional slope stability model (Transient
Rainfall Infiltration and Grid-Based Regional Slope-Stability Model, TRIGRS) [68], which
estimates shallow landslide occurrence by combining the transient pressure increases
caused by rainfall and infiltration [69]. The infiltration model was based on Iverson’s [70]
solution, which provides a theoretical background to the influence of hydrologic processes
on landslide locations and occurrence times derived using the Richards’ equation [18,27].
This evaluates transient infiltration by modeling pore water pressure. TRIGRS was coupled
with Monte Carlo simulation (MCS) for the spatial probability assessment carried out in
this study. In MCS, the values of predictive variables are randomly generated according to
their probability density functions (PDFs). This technique is widely used for probabilistic
analysis because of its robustness and conceptual simplicity. Here, FS values were calculated
from sets of these randomly generated input values. After numerous iterations, the failure
probability was evaluated from the repeated FS values. This calculation was carried out for
all pixels throughout the study area, and the results were mapped as the spatial distribution
of landslide probability.

2.3.1. Construction of a Spatial Database of Input Parameters

The physical slope model requires input parameters such as geometric characteris-
tics and strength parameters for the slope materials. Geometric input parameters can
be obtained from topographic data and strength parameters can be acquired from field
investigation and laboratory tests. A digital elevation model (DEM) was constructed to
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obtain the geomorphic attributes of the study area using digital topographic maps acquired
from the National Geographic Information Institute. Then, a thematic map for the slope
angle (Figure 4) was created using DEM. In addition, soil thickness, which is the depth to
the failure surface, was acquired from digital soil maps obtained from the National Institute
of Agricultural Science (NIAS, Jeollabuk-do, Korea). The obtained map was converted
into a grid-based (raster) layer, providing a thematic map of soil thickness with a 10 m
resolution (Figure 5).

Figure 4. Distribution of slope angle.

Figure 5. Distribution of soil thickness.

The calculation of spatial probability using a physically based method (Equation (3))
requires strength parameters (cohesion and friction angle), unit weight, and the hydraulic
conductivity of slope materials, since these are indispensable input parameters in physically
based analyses [71]. These parameters should be obtained from laboratory tests of soil
samples collected from the field. Twenty soil samples were collected from the study area.
The geotechnical parameters were obtained from direct shear tests conducted on the slope
materials. Other laboratory tests (such as permeability tests) were carried out to obtain
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the hydraulic conductivities and unit weights of the soils. These were considered as
deterministic parameters.

Slope material is composed of soils developed from underlying rocks, and soil prop-
erties such as geotechnical and hydrological parameters are strongly affected by the rock
type involved. The soil samples used for laboratory tests were, therefore, collected from
areas with different underlying rock types. The geotechnical and hydrological parameters
listed in Table 1 are linked to the underlying rock type. While the mean values of the
strength parameters were calculated using test data, there was substantial uncertainty
because the quantity of test data was limited compared with the size of the study area.
Therefore, high values for their coefficients of variation (COV) (namely, 30% for cohesion
and 15% for friction angle) were used in this analysis. To estimate the groundwater height
using the hydrological model, hourly rainfall data were acquired from Sangjinbu automatic
weather station (Figure 6). The landslides began around 10:00 on 15 July, and 227 mm (in
the previous 24 h) was considered as the landslide-triggering rainfall threshold [52].

Table 1. Input parameters for the physically based model.

Geological Formation
Friction Angle (◦) Cohesion (kPa) Unit Weight

(kN/m3)

Hydraulic
Conductivity (m/h)Mean COV (%) Mean COV (%)

Felsite 20.8 15 17.5 30 17.8 0.171

Quartzite in Sambangsan 40.6 15 8.0 30 19.3 0.096

Imgye granite 35.2 15 3.8 30 23.2 0.089

Jeongseon limestone 28.4 15 4.4 30 17.9 0.019

Sandstone in Nokam 40.2 15 10.4 30 18.4 0.090

Sandstone in Gobangsan 37.1 15 7.8 30 18.7 0.084

Figure 6. Hourly rainfall, 14–16 July 2006.

2.3.2. Monte Carlo Simulation

In probabilistic analyses, using MCS, cohesion and friction angle, the major sources of
uncertainty as a consequence of limited sampling and spatial variability, were considered
as random variables. Their statistical properties, as required for MCS, were based on a
normal PDF, as previous studies have suggested [21,72–80]. Their assigned means and
COVs are shown in Table 1. In the MCS process, uniformly distributed random numbers
between zero and one were generated, then random values for each input variable were
calculated using the generated random numbers corresponding to the cumulative normal
distribution function for each input variable. The generated parameters were used, in
combination with the deterministic input data, to calculate 5000 individual FS values for

7



Sustainability 2022, 14, 2628

each pixel. Then, the failure probability, or the proportion of cases in which FS was less
than 1, was determined. This process was conducted for all pixels in the study area to
produce a landslide probability distribution map.

3. Results

3.1. Temporal Probability of Landslide Occurrence

The Sangjinbu rainfall time series from 1973 to 2017 were used to determine the
nonstationary character of the local rainfall data using the expanding window approach.
The maximum 24 h rainfall value for each year was calculated from hourly rainfall data
and designated as the AM rainfall for that year. Then, the mean AM values and Gumbel
parameters were calculated for the first 20 years of data (1973–1992). By adding rainfall
data for each year to the initial 20 years of data, new mean AM and Gumbel parameters
were then derived. Table 2 shows the mean AM and location and scale parameters for
different time periods under this method.

Table 2. Mean AM rainfall and the parameters of the Gumbel distribution using an
expanding window.

No. Data Period Location Parameter Scale Parameter
Mean of AM

Rainfall

1 1973–1992 110.42 50.12 140.4
2 1973–1993 109.38 50.91 138.8
3 1973–1994 106.18 50.40 135.6
4 1973–1995 109.10 50.01 138.5
5 1973–1996 111.02 50.46 140.0
6 1973–1997 113.05 49.37 141.7
7 1973–1998 115.45 49.85 144.0
8 1973–1999 118.18 49.97 147.1
9 1973–2000 116.54 49.98 145.2
10 1973–2001 116.88 49.73 145.1
11 1973–2002 119.60 50.49 148.7
12 1973–2003 120.84 49.87 149.6
13 1973–2004 120.57 50.19 148.9
14 1973–2005 121.34 50.31 149.2
15 1973–2006 123.82 50.77 153.1
16 1973–2007 122.81 50.35 151.9
17 1973–2008 124.10 50.94 152.9
18 1973–2009 126.16 50.33 155.3
19 1973–2010 126.28 50.81 155.0
20 1973–2011 128.40 50.59 157.9
21 1973–2012 125.95 51.43 155.7
22 1973–2013 126.25 50.86 155.6
23 1973–2014 125.42 50.59 154.6
24 1973–2015 122.44 51.02 152.1
25 1973–2016 124.28 51.21 154.4
26 1973–2017 122.87 51.13 153.1

Linear regression was then used to check for temporal trends in the mean AM and
Gumbel parameters to estimate the AM values and Gumbel parameters for future years.
Figure 7 shows the results of the linear regression for mean AM. The linear regression
equation used was as follows:

Mt = (0.7677 × Nt)− 1390.2, (4)

where Mt is the mean AM for the year Nt. Using this equation, the mean AM for future
target years can be estimated. The Gumbel parameters were estimated, for future years,
using linear regressions between the mean AM values and the location and scale parameters
(Figures 8 and 9). Equation (5) is the linear regression equation used for estimating location
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from the mean AM, while Equation (6) is the regression equation used for the scale and
mean AM:

uT = 0.9863 × Mt − 27.077, (5)

αT = 0.0215 × Mt + 47.231, (6)

where uT is the location parameter, Mt is the mean AM, and αT is the scale parameter for
the target year. Using these equations, the mean AM and the scale and location parameters
of the Gumbel function for each of the next Ni years from the final year of rainfall data,
2017, were estimated for Ni = 10, 50, 100, and 150 (Table 3). From these values, future
exceedance probabilities can be calculated using the Gumbel distribution function, and
these values can be considered as the temporal probability of landslide occurrence. Table 4
shows the temporal landslide probabilities over the four analyzed time periods.

Figure 7. Relationship between the mean annual maximum (AM) rainfall and time using an
expanding window.

Figure 8. Relationship between the mean annual maximum (AM) rainfall and location parameters.
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Figure 9. Relationship between the mean annual maximum (AM) rainfall and scale parameters.

Table 3. Mean AM and statistical parameters of the Gumbel distribution over the next Ni years.

Period Ni (Years) Mean AM Location Parameter Scale Parameter

10 160.6 131.35 50.69
50 191.3 161.64 51.35

100 229.7 199.50 52.17
150 268.1 237.35 53.00

Table 4. Temporal probability of landslide occurrence over the next Ni years.

Period Ni (Years) Temporal Probability

10 0.2197
50 0.3659

100 0.6145
150 0.8575

3.2. Spatial Probability of Landslide Occurrence

Figure 10 maps the distribution of the spatial landslide probability. A receiver operat-
ing characteristics (ROC) graph was used to evaluate model performance. In the analysis,
true class (landslide occurrence) is compared with modeled class (landslide prediction)
using a confusion matrix [3]. Here, the analyzed grid cells (i.e., modeled class) were clas-
sified as unstable or stable for comparison with the landslide occurrence (i.e., true class).
In previous studies [27,30,33,77,81–83], a landslide probability greater than 10% has been
used as the criterion for an unstable area; hence, a grid cell with a probability greater than
10% was classified here as unstable. It was found that 71.3% of the observed landslide
locations were classified as unstable. That is, the true positive rate (TPR; the number of
correctly predicted landslide pixels over the total number of landslide occurrence pixels)
was 0.713. In addition, 27.4% of the nonlandslide pixels were mapped as unstable; that is,
the false positive rate (FPR) was 0.274. Model performance was evaluated as 71.9% on the
basis of the area under the curve (AUC) value.

3.3. Landslide Hazards

Landslide hazard was evaluated by multiplying the temporal probability of landslide,
obtained from extreme value analysis, by spatial probability, which was obtained using a
physically based model and MCS. The landslide hazards for four future time periods (10,
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50, 100, and 150 years) were calculated (Table 5) and are mapped in Figure 11. As expected,
the landslide hazard values increased as the time period increased. In the 10-year-period
landslide hazard map, no pixels had landslide hazard values of over 0.2. Moreover, for
the 10- and 50-year periods, all pixels were less than 0.5, which means that there was a
low landslide hazard area. When the landslide hazard maps for 10 and 50 years were
compared with the spatial probability map, landslide hazards were substantially lower than
the spatial probability of landslide occurrence. This is because the temporal probabilities
that were multiplied by the spatial probabilities to obtain the landslide hazards over the
10- and 50-year periods were small: 22.0% and 36.6%, respectively.

Figure 10. Spatial probability of landslide occurrence.

(a) 

(b) 

Figure 11. Cont.
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(c) 

(d) 

Figure 11. Landslide hazard maps. (a) 10 years; (b) 50 years; (c) 100 years; (d) 150 years.

Table 5. Proportion (%) of landslide hazard values.

Time Period (Years)
Landslide Hazard

0–0.1 0.1–0.2 0.2–0.3 0.3–0.4 0.4–0.5 0.5–0.6 0.6–0.7 0.7–0.8 0.8–0.9 0.9–1.0

10 85.90 9.21 4.89

50 82.02 5.76 5.31 6.91

100 78.02 5.23 3.36 2.98 3.19 5.66 1.56

150 74.47 6.26 3.01 2.37 2.14 2.11 2.30 3.22 4.12

The landslide hazard values for the 100- and 150-year periods were, as expected,
larger than those in the 10- and 50-year periods. The proportion of high-hazard pixels
(hazard value > 0.5) in the 100- and 150-year periods was greater: for 100 years, 7.22%, and
for 150 years, 11.75%. This is because of the greater temporal probabilities found for the
100- and 150-year periods: 61.5% and 85.8%, respectively.

4. Discussion and Conclusions

We proposed a process to estimate temporal landslide probability using extreme
value analysis and spatial probability using a physically based model. In previous studies,
temporal probability was estimated by using frequency analysis of historical landslide
occurrences or, indirectly, of rainfall events that triggered landslides. For this, sufficient
data on repetitive landslides or recurrent rainfall events are required. However, in many
cases it is practically impossible to obtain sufficient data on either landslide occurrence
or recurrent landslide-triggering rainfall events. Therefore, this study adopted extreme

12



Sustainability 2022, 14, 2628

value analysis to evaluate temporal probability. This approach can be applied in areas
where a multitemporal inventory is not available or where a single landslide event has
occurred. Extreme value type I distribution, also known as the Gumbel distribution, was
used to analyze time series rainfall data and estimate the triggering threshold exceedance
probability. Moreover, to accommodate the nonstationary character of rainfall records in
a time of climate change, the expanding window method was adopted, and changes in
AM rainfall and the Gumbel parameters were estimated. Rainfall data from 1973 to 2017
were used and AM rainfall and Gumbel parameters for four future periods (10, 50, 100,
and 150 years hence) were estimated using linear equations derived by the expanding
window method. The temporal probabilities of landslide occurrence for the next 10, 50,
100, and 150 years were calculated, and their values were 0.2197, 0.3659, 0.6145, and 0.8575,
respectively. Spatial probabilities were evaluated using a physically based approach and
the infinite slope model, in conjunction with probabilistic analysis. Input parameters were
obtained from laboratory tests and a DEM, with the strength parameters considered as
random variables because of their uncertainty and variability. Subsequently, MCS, known
as the most complete probabilistic method, was used to account for the uncertainty and
estimate the spatial probabilities. Finally, temporal and spatial probabilities were combined
to estimate the landslide hazard for future periods.

The proposed approach overcomes the shortcomings of previous studies that de-
termined temporal probability from the frequency analysis of recurrent events. When
a multitemporal inventory of historical landslide data is not available or no recurrent
landslide events have occurred in an area, as in our case, the existing approach cannot
estimate temporal probability. Therefore, an extreme value model (based on the Gumbel
distribution) was used to obtain temporal probabilities from available time series rainfall
data for the study area. This approach can be used when the conventional approach is
impossible. In addition, our approach estimated nonstationary temporal probability, which
previous stationary extreme value analyses could not calculate, by using an expanding
analytical window. In this manner, the temporal probabilities of landslide occurrence for
several different periods were obtained and combined with spatial probabilities, obtained
from the probabilistic physically based approach, to evaluate landslide hazard. In previous
work, spatial probabilities were estimated using statistical analysis or machine learning
methods. However, it has been argued that translating the results of statistical analysis
into spatial probabilities may not be appropriate, since the landslide susceptibility index
from statistical analysis could not be replaced directly with spatial probability [84]. There-
fore, this study used a more appropriate approach by estimating, in combination with
probabilistic analysis, physically based spatial probabilities.

However, our proposed approach has some limitations. In this study, only the strength
parameters of slope materials were considered as random variables in the MCS in order
to limit computational time and effort. However, uncertainty and variability also could
be involved in hydrological parameters and the unit weight of soil, and these could also
be considered as random variables in future research. In addition, climate change and its
influence on landslide occurrence can vary substantially, even over small distances [85].
In our experience, rainfall in this study area has a nonstationary trend, but other rainfall
gauges located some distance from the study area suggest a more stationary character.
Therefore, it is critical to carefully scrutinize stationarity in rainfall data. Finally, since
information about elements at risk and their vulnerability was not available for our study
area, it was not possible to fully assess landslide risks—that is, the accurate assessment
of threat to life and property. To reduce or prevent the damages and fatalities caused by
landslide occurrences effectively, landslide risk should be evaluated in future studies.
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Abstract: Rainfall-induced landslides bring great damage to human life in mountain areas. Landslide
susceptibility assessment (LSA) as an essential step toward landslide prevention has attacked a
considerate focus for years. However, defining a reliable or accurate susceptibility model remains a
challenge although various methods have been applied. The main purpose of this paper is to explore
a comprehensive model with high reliability, accuracy, and intelligibility in LSA by combing statistical
methods and ensemble learning techniques. Miyun country in Beijing is selected as the study area.
Firstly, the dataset containing 370 landslide locations inventories and 13 conditioning factors were
collected and non-landslide samples were prepared by clustering analysis. Secondly, random forest
(RF), gradient boosting decision tree (GBDT), and adaptive boosting decision tree (Ada-DT) were
selected as base learners for the Stacking ensemble method, and these methods were evaluated
using measures like area under the curve (AUC). Finally, the Gini index and frequent ratio (FR) were
combined to analyze the major conditioning factors. The results indicated that the performance of the
Stacking method was enhanced with an AUC value of 0.944 while the basic classifiers also performed
well with 0.906, 0.910, and 0.917 for RF, GBDT, and Ada-DT, respectively. Regions with a distance
to a stream less than 2000 m, a distance to a road less than 3000 m, and elevation less than 600 m
were susceptible to the landslide hazard. The conclusion demonstrates that the performance of LSA
desires enhancement and the reliability and intelligibility of a model can be improved by combining
binary and multivariate statistical methods.

Keywords: landslide susceptibility; statistical methods; ensemble techniques; GIS

1. Introduction

Landslides are a common natural phenomenon and may cause unpredictable damage
to human beings and property worldwide, especially in China where geohazards are
enormously occurring and widely distributed [1]. Generally, damages can be decreased or
mitigated by predicting the area prone to landslides [2,3]. Therefore, landslide susceptibility
mapping (LSM), which predicts the spatial distribution of the likelihood of a landslide
occurring, is significant and worthwhile for the reduction of hazards.

How to improve the quality of a model is always the focus of attention and discussed
by researchers although related studies have been conducted on improving the predictive
accuracy [4,5]. The effectiveness of LSM depends greatly on the models adopted [6], which
can be roughly divided into knowledge-based and data-driven methods [7]. Conventional
knowledge-based methods as a heuristic, are subjective and limited to be applied in small-
scale areas. Conventional statistical methods, like logistic regression (LR) and principal
component analysis, are popular due to their simplicity. Nevertheless, the mechanism of a
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landslide is complicated and usually involves multiple factors. Nevertheless, conventional
statistical methods fail to deal with nonlinear problems [8,9]. Geographic information
systems (GIS) and computing techniques are increasingly developing so that machine
learning techniques (MLT) translated from statistical methods have achieved promising
performance for LSM [10]. However, the inductive preference is inevitable for MLT and the
performance of different MLT fluctuates as the data change. Besides, the performance of a
model will be affected by the purity of the samples. Accordingly, controversy continues
over which method is the best and which is feasible for further improvement [11]. A single
classifier applied to form an ensemble is called the “base learner”. Base learners are not
limited to homogeneous but also can be heterogeneous. Bagging and boosting are two of
the most popular ensemble techniques of homogeneous and have been applied to LSM by
some researchers [12]. While the stacking ensemble method, which is heterogeneous, has
seldom been applied to LSM and needs more exploration [13].

Data-driven methods are binary classification processes and are sensitive to the quality
of training data, which require a data set consisting of an equal amount of both disaster
presence and absence observations in LSM [14]. In terms of landslide presence data, it
is obtained from the landslide inventory, which was achieved through historical records,
remote sensing technology, and extra field investigations. While absence samples were not
available, they are usually selected randomly or subjectively from the “safe area” based on
the acknowledgment and experience of the experts [15]. Nevertheless, it is controversial
and difficult to implement especially for a large area. We could not identify the area with
low susceptibility based on the historical records because these landslide-free areas may
contain locations prone to landslides, which have not been recorded in the past. Unreliable
sampling strategies may bring the noise to the data and eventually, a false assessment of
the models. This study applies clustering analysis to improve the quality of samples and
the performance of models [16]. Two initial landslide susceptibility maps are made by
k-means clustering and Fuzzy c-means (FCM) and the reasonability of the initial maps are
compared and finally determined the better one. Accordingly, the non-landslide samples
are selected from the very low susceptibility area.

Previous studies have emphasized the importance of accuracy and regarded it as the
only indicator for evaluating a model. However, emphasizing accuracy is not enough for
the requirement of prevention and control. Communication between theory and practice
can be improved through a better understanding of major variables. The bivariate statisti-
cal method as FR is commonly applied to explore the relationship between conditioning
factors and the occurrence of landslides by calculating the FR values of factors in a certain
interval [17]. While the bivariate statistical method fails to determine the relative impor-
tance among different factors and Gini index (the larger the value indicates the greater the
contribution to the occurrence of landslides) makes up for it [18].

The current study aims to explore a model with high reliability, accuracy, and intel-
ligibility on LSM. Three ensemble techniques were evaluated by 5-fold cross-validation
according to the Receiver Operating Characteristic (ROC) curve and statistical indexes. RF,
GBDT, and Ada-DT are selected as the candidate base learners of the stacking method and
LR as the meta-learner. The stacking method is explored as a potential application to LSM
and is compared to other ensemble methods. The purity of the samples is improved by
selecting the non-landslide samples in a more reliable way. The Gini index and FR were
combined to identify and analyze the major conditioning factors to improve intelligibility.
Miyun country, China, where shallow landslides occurred frequently, was selected as the
study area and a comparison of the ensemble methods above was made.

2. Materials

2.1. Study Area

Miyun country located in Beijing, China, extends from longitudes of 116◦39′ E to
117◦30′ E and latitudes of 40◦13′ N to 40◦47′ N (Figure 1). It has a population of more than
470,000 and occupies an area of about 2229.45 km2, which is composed of mountainous
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areas (82.9%), cultivated land (8.3%), and reservoirs, roads, and villages (collectively 9.8%).
The average annual precipitation is 663.1 mm (1981–2012) mainly concentrated in summer
(76.4%) and it is a continental monsoon semi-arid climate.

Figure 1. Location map of the study area showing landslide inventory.

The study area is part of the transition zone between the North China Plain and the
Yanshan mountains, which leads to a series of large fold and fault structures. The faults are
large in scale and widely distributed, mainly in the Northeast and north-south directions.
The elevation ranges from 45 m to 1750 m above mean sea level with a slope angle between
10–45◦. The strata are mainly composed of Archaean (Ar), Proterozoic (Pt), Mesozoic
Jurassic (J), and Quaternary (Q). Three types of lithology are usually exposed in our
investigation: gneiss from Middle Archean (ArXdgn), dolomites from Proterozoic (Pt22w),
and siltstone from Mesozoic Jurassic (J2z). Magmatic intrusive rocks are widely distributed,
accounting for nearly one-third of the total area and are exposed discontinuously in the
northeast direction.

Road traffic is developed, and human activities are intensive in the study area, involv-
ing mining, reservoir, and power station projects. The disasters are various and frequent,
mainly rain-induced landslides, which has affected the normal life of the local villagers.

2.2. Data Preparation
2.2.1. Landslide Inventory

The statistically based models follow a crucial assumption: future landslides have
more chances to occur again in the places with the conditions which cause the landslides
once and present [18,19]). Accordingly, the landslide inventory map as the initial source
is essential and was depicted according to related records (from 1970–2010), field surveys
(from 2016–2017) (Figures 2 and 3), and Google Earth satellite images interpretation (May
2018) (Figure 4). Ultimately, 620 landslide locations were identified, including soil slides
(370), rockslides (6), and falls (244) [18]. It is accepted that different type of landslides has a
different mechanism of occurrence. Soil slides were only considered in our work and were
represented as points shown in Figure 1. Landslides occurred during or after heavy rainfall.
Based on field investigation, remote sensing interpretation and relevant records, the scale
of landslides in the study area is generally small, accounting for about 80%. The area of
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landslides ranges from 3.6 km2 to 300 m2 while the depth of most landslides is less than 4
m, belonging to shallow landslides.

Figure 2. Field investigation photos. (a) shallow landslide in Lama Gate South gully; (b) falls in Lama
Gate South gully.

Figure 3. Field investigation photos. (a) early debris-flow deposits in Dawa gully; (b) Partial enlargement.

Figure 4. Stereo remote sensing map of landslides in Duitaizi county (Chen et al., 2016).
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2.2.2. Choice of Mapping Units

The selection of mapping units should be determined in advance for LSM [20]. Another
piece of literature discussed and compared the difference among mapping units, such as
grid cells and slope units [21]. To better predict or identify the locations of landslides,
slope units were applied in our work, which describes the topographic and geomorphic
conditions of landslides integrally. Finally, the area was divided into 8736 slope units using
the hydrologic analysis tool in ArcGIS and indispensable artificial corrections according to
remote sensing images. Detailed division steps and discussion can be referred to in other
literature [22].

2.2.3. Conditioning Factors

Factors responsible for a landslide are various and there is no consensus on the choice
of number and types of factors. It is commonly accepted that landslide is controlled by
topographical, geological, and triggering factors. However, data availability, reliability, and
accuracy should be given priority [23] and finally, 13 conditioning factors were selected.
Detailed information on conditioning factors is shown in Table 1 and Figure 5a–m. A brief
description of each controlling factor is given below.

Table 1. Landslide conditioning factors in this study.

Category Conditioning Factors Type Data Source Values

Topographical

Elevation (m) Continuous SRTM
(1) <200; (2) 200–400;

(3) 400–600; (4) 600–800;
(5) >800

Plan curvature Continuous SRTM
(1) <0; (2) 0–0.01;

(3) 0.01–0.02; (4) 0.02–0.03;
(5) >0.03

Profile curvature Continuous SRTM
(1) <0; (2) 0–0.01;

(3) 0.01–0.02; (4) 0.02–0.03;
(5) >0.03

Slope angle (◦) Continuous SRTM (1) <10; (2) 10–20; (3) 20–30; (4) >30

TWI Continuous SRTM
(1) <6.5; (2) 6.5–7;

(3) 7–7.5; (4) 7.5–8;
(5) 8–8.5; (6) >8.5

MED (m) Continuous SRTM
(1) <100; (2) 100–200;

(3)200–300; (4) 300–400;
(5) 400–500; (6) >500

Slope aspect Categorical SRTM
(1) north; (2) northeast; (3) east;

(4) southeast; (5) south; (6) southwest;
(7) west; (8) northwest

Geological and
Geomorphological

Distance to faults (m) Continuous Geological map (1) <1000; (2) 1000–2000; (3) 2000–3000;
(4)3000–4000; (5) >4000

Distance to streams (m) Continuous DNRB (1) <1000; (2) 1000–2000; (3) 2000–3000;
(4)3000–4000; (5) >4000

Lithology Categorical Geological map
(1) Gneiss; (2) Dolomites; (3) Siltstone

(4) Granite;(5) Limestone;
(6) Conglomerate

Triggering factors

Maximum 24 h
rainfall (mm) Continuous BHM (1) <270; (2) 270–280;

(3) 280–290; (4) >290
Maximum 7 days

rainfall (mm) Continuous BHM (1) <320; (2) 320–330;
(3) 330–340; (4) >340

Distance to roads (m) Continuous DNRB (1) <1000; (2) 1000–2000;
(3) 2000–3000; (4)3000–4000; (5) >4000
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Figure 5. Cont.
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Figure 5. Study area thematic maps: (a) Elevation; (b) Plan curvature; (c) Profile curvature; (d) TWI;
(e) MED; (f) Slope; (g) Aspect; (h) DTR; (i) DTF; (j) DTS; (k) Lithology; (l) Maximum 24 h Rainfall;
(m) Maximum seven days Rainfall.

Topographic-related factors were derived from the DEM (Digital Elevation Model)
with a resolution of 30 m (http://www.gscloud.cn, accessed on 4 April 2022) originally
sourced from the Shuttle Radar Topography Mission (SRTM) data. Elevation affects slope
instability and precipitation properties and was frequently applied to LSM [24,25]. Land-
slides are likely to occur as slopes become steep and vice versa [26]. Maximum elevation
difference (MED) reflects the potential energy of a slope and was calculated in ArcGIS [27].
Topographic wetness index (TWI) and Curvature reflect topographic relief [28]. TWI was
reclassified into six classes (Figure 5g) and the related algorithm is as follows:

TWI = ln
(

As

tanβ

)
(1)

where, As is the specific catchment area, β is the slop angle.
The plan curvature (Figure 5g) and profile curvature (Figure 5g) are both the most

extensively used predisposing factors, which reflect the changes in terrain [29]. The slope aspect
map was reclassified into eight classes according to the eight cardinal directions (Figure 5g).
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Fault information (Figure 5i) was collected from a geological map of which the ratio
was 1:50,000. Faults decrease the rock strength, which acts as potential weak planes in
slopes. It was produced by the spatial distance analysis tool in ArcGIS. Similarly, the
distance to roads (Figure 5h) and distance to rivers (Figure 5j) were both constructed based
on the data from the Department of Natural Resources of Beijing (DNRB).

Shallow landslides are mainly caused by heavy or continuous rainfall [30]. Conse-
quently, both the maximum 24 h rainfall (Figure 5l) and maximum seven days of rainfall
(Figure 5m) were selected based on the data (1981–2000) from Beijing Hydrology Manual
(BHM) using the kriging interpolation coordinated with elevation in ArcGIS and 11 precipi-
tation stations nearby were taken as reference. Rainfall was regarded as the natural trigger
while the distance to the road was the human factor.

Factors were reclassified into four to eight classes and the mean value was regarded as
the statistic value of slope units.

3. Methods

3.1. Sampling Strategy
3.1.1. K-Means Clustering

K-means comes out to be a well know clustering method due to its efficiency and
feasibility [31]. It is applied to divide n observations into k clusters, where each sample is
allocated to the cluster based on the closest Euclidean distance, thus considered as the centroid
of the cluster [32]. The procedure is then repeated until the change of the cluster seed from
one stage to the next is negligible. The main equation involved in k-means is as follows:

|un+1 − un|
un+1

≤ ε (2)

where un+1 represents the sum of squares of distances from each point to the cluster center
after the nth clustering; ε represents the precision value.

3.1.2. FCM Algorithm

The fuzzy c-means method is a soft clustering method developed by Dunn [33] and it
is different from K-means (hard clustering). It has been widely used for statistical analysis
of geological problems because of its flexibility and rationality [34]. Its core idea is to assign
the objects to the corresponding clusters according to the degree of membership. The
function of the FCM clustering is defined by the equation:

Ci =
n

∑
j=1

μm
ij xj/

n

∑
j=1

μm
ij (3)

J =
N

∑
j=1

C

∑
i=1

μm
ij d2(Xj, Vi

)
(4)

μij= 1/
C

∑
k=1

(
dij

dkj

)2/(m−1)

(5)

where Ci represents the cluster centers, C represents the number of centers, uij represents
the membership matrix; m represents the degree of fuzziness; J is the objective function
and n is the number of objects in the database; d2 is the Euclidean distance between the ith
clustering center and the jth sample [35].

Two parameters as m and C are required to determine in advance. C is determined by the
cluster validity function [36] and m is equal to 2 referred to in most applications in this study.

Machine learning methods need both positive and negative datasets. Three-hundred-
seventy positive samples (that is, landslide locations) were set as “1” and the same number
of negative samples with the value of “0”, which were selected based on the result of
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K-means and FCM in this study. As the purity of absent samples increases, it is more likely
to reflect the characteristics of non-landslide areas. Accordingly, the critical value of the
model results distinguishing landslides and non-landslides is 0.5.

3.1.3. Frequency Ratio

The equation for determining the FR value of a certain level of conditioning factor is
defined below [16]:

FRi =

landslide__cellsi
landslide__cellstot

total__cellsi
total__cellstot

(6)

where i indicates the i-th class for each variable considered.
An FRi greater than 1 manifest that there exists a close relationship between landslide

occurring and variable class, and if the values are less than 1 then a weak correlation is
reflected. Continuous variables are required to be reclassified into classes before application,
as Table 1 showed.

3.2. Modeling Landslide Susceptibility
3.2.1. LR Model

LR establishes a non-linear probability function model, trying to find appropriate
regression coefficients to express the correlation between the independent variable and the
dependent variable [37]. The LR model is constructed as the equation below:

p =
1

1 + e−y (7)

where p is the probability of a landslide occurring; y is a linear combination function as
Equation (7).

y = b0+b1x1+b2x2+b3x3+ . . . bnxn (8)

where b0 is the constant value, and b1, b2, . . . , bn refer to each significant input variable (x1,
x2,..., xn) causing the landslide.

The forward7 stepwise method was adopted to screen variables during LR modeling
in SPSS software.

3.2.2. RF

RF belongs to a family of ensemble methods based on the decision tree and Bagging
technique and it was first introduced by Breiman [17]. The bagging technique, which is also
called bootstrap aggregation, is applied to selecting variables and samples randomly as the
training data for modeling. Unused observations are applied to calculate the classification
error. Consequently, there are two powerful ideas of RF: random feature selection and
Bagging [38]. More details about RF can be found in Breiman [17]. RF was modeled in
Python 3.7 using the scikit-learn package [39]. The number of trees (k) and the number of
predictive variables (n) are required tuning before modeling [40].

3.2.3. GBDT

GBDT forms weak classifiers (DT) iteratively based on Gradient Boosting [41]. The
parameter of the weak classifier defaults to the direction of the. The GBDT was applied in
Python 3.7 using the GBDT class library of scikit-learn.

3.2.4. AdaBoost-DT

AdaBoost (known as adaptive boosting) is another boosting algorithm, which was
invented by Freund and Schapire [42]. Unlike gradient boosting, AdaBoost assigns incor-
rectly classified samples with modified weights after each iteration. The final classifier is
constructed by combining all weak classifiers. AdaBoost-DT is also applied in Python 3.7
using the AdaBoost class library of scikit-learn.
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3.2.5. Gini Index

The split method tree-based classifiers adopt is the minimum principle of Gini and
thus Gini index is applied to calculate the relative importance of conditioning factors. The
relevant formula is as follows:

Gini(T) = 1 − ∑N
j=1 P2

j (9)

where T expresses the training set, N is the number of categories, and P is the probability of
a sample that is classified into the kth class.

3.2.6. Stacking

The stacking ensemble consists of base-classifiers and meta-classifier. Stacking takes
the results predicted by the base-classifiers as the input attributes and the meta-classifier
merges the different predictions into the final prediction. It is believed that stacking
performs better than any basic classifiers [43]. Figure 6 shows the structure of the Stacking.
The basic classifiers of Stacking were three ensemble learning machines that have been
showing great performance in statistical analysis: RF, GBDT, and AdaBoost-DT. LR model
was used as the combiner. To avoid over-fitting of the meta-classifier, the dataset is divided
into two disjoint subsets: one for training base-classifiers and the other for testing. To train
the meta-level classifier, 5-fold cross-validation is applied to construct the meta-levels for
all combining methods.

Figure 6. The structure of Stacking.

3.3. Evaluating Model Performance

Models need a reliable evaluation and/or validation process [44]. The capacity of a
model to classify was evaluated by a 5-fold cross-validation procedure, where the data
is divided into five independent groups, one at a time for testing and the remaining four
groups for training [45].

Accuracy, sensitivity, and specificity were three statistical indexes evaluating the
performance [13]:

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

Sensitivity =
TP

TP + FN
(11)
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Specificity =
TN

FP + TN
(12)

where True Positive (TP) refers to the number of landslide samples with correct classifi-
cation, True Negative (TN) refers to the number of non-landslide samples with correct
classification, False Positive (FP) refers to the number of landslide samples with incorrect
classification and False Negative (FN) refers to the number of non-landslide samples with
incorrect classification.

AUC is a metric commonly used to assess the quality of the model and it varies from
0.5 to 1. The higher the AUC value shows the stronger the predictive ability [46].

Non-parametric models need to be optimized by tuning related hyperparameters
before application [47]. The involved parameters for modeling utilized in this study were
shown in Table 2 and the flowchart of methods involved was shown in Figure 7.

Table 2. The optimized parameters of methods utilized in this study.

Methods Parameters

DT Criterion = ‘gini’; max_features = None; max_depth = 20; min_samples_split = 2;
min_samples_leaf = 1; max_leaf_nodes = None; class_weight = None

RF n_estimators = 500; criterion = ‘gini’; max_depth = None; max_features = ‘sqrt’;

GBDT n_estimators = 100; learning_rate = 0.1; max_depth = 2; verbose = 1;
subsample = 0.7; max_leaf_nodes = None

AdaBoost-DT base_estimator = None; n_estimators = 100; learning_rate = 1.0;
algorithm = ‘SAMME.R’; random_state = None

Figure 7. Flowchart of the methodology followed in this study.

4. Results and Verification

4.1. Non-Landslide Samples Selected by FCM and K-Means

LSM generated based on cluster analysis does not need to identify the positive and
negative labels of the samples in advance. Based on the curve of the clustering effectiveness
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index Vcs (Figure 8), the preferred value is five. Consequently, the study area was reclassi-
fied into five areas based on the FR values, which were very low, low, moderate, high, and
very high. The proportions of each area are: very low (15.97%), low (23.25%), moderate
(19.29%), high (33.5%) and very high (8%). Among them, the very-low area accounted for
15.97% of the whole study area with only 3.24% of landslide locations and an FR value of
0.2. Besides, the high or very-high area accounted for 41.5% of the study area with more
than 55% of landslide locations and the FR values were both greater than 1.

Figure 8. Clustering validity function Vcs.

Similarly, the results constructed by K-means were shown in Table 3. The proportions
of each area are: very low (11.66%), low (22.30%), moderate (18.71%), high (39.16%), and
very high (8.17%). The very-low area accounted for only 1.62% of landslide locations with
an FR value of 0.14. The high or very-high area accounted for 47.33% of the study area with
more than 55% of landslide locations.

Table 3. Frequency ratios of five susceptibility classes assessed with FCM and K-means.

Method Class Landslide Ratio (%) Area Ratio (%) FR

FCM

Very low 3.24 15.97 0.20

Low 19.73 23.25 0.85

Moderate 21.35 19.29 1.11

High 40.00 33.50 1.19

Very high 15.68 8.00 1.96

k-means

Very low 1.62 11.66 0.14

Low 15.41 22.30 0.69

Moderate 15.57 18.71 0.83

High 48.11 39.16 1.22

Very high 17.30 8.17 2.11

Compared to the results obtained by FCM, the area with low or very low class pre-
dicted by K-means occupied a smaller area (5.26%) while a bigger area (5.83) with high
or very high class. The zoning maps should follow two rules: (1) the recorded land-
slides should appear in high-susceptibility areas as many as possible and (2) the high-
susceptibility area should occupy a small proportion (Bui et al., 2012). Therefore, the results
obtained by FCM were more reasonable. Selecting the non-landslide samples in a more
reliable area is the main purpose and it means that the bigger the very-low class area, the
easier the sampling will be. Meanwhile, 370 non-landslides samples were collected from
the area with very-low susceptibility predicted by FCM.
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4.2. Evaluation and Comparison of Different Models

To highlight the performance of the Stacking model, three basic classifiers were also ap-
plied for modeling. Analyses of the statistical measures using the training set were shown
in Table 4. The Stacking showed the best performance in terms of classifying landslides (sen-
sitivity = 91.89%), followed by the GBDT model (sensitivity = 86.97%), the Ada-DT model
(sensitivity = 85.66%) and RF model (sensitivity = 79.93%). In terms of the classification of
non-landslides zones, Stacking model also performed best (specificity = 91.84%), followed
by the GBDT model (specificity = 85.67%), the Ada-DT model (specificity = 82.26%) and
the CART model (specificity = 83.16%). Besides, the Stacking model also had the highest
accuracy (91.84%). It was noticed that the Stacking model achieved an AUC of 0.963, while
RF was 0.920, GBDT was 0.957 and Ada-DT was 0.959 (Table 5). The standard errors were
less than 0.05 and the probability estimation was negligible.

Table 4. Models’ performance using training dataset.

Metrics RF GBDT Ada-DT Stacking

TP (%) 82.46 84.88 81.29 91.22
TN (%) 76.80 87.67 86.44 92.20
FP (%) 17.54 15.12 18.71 8.78
FN (%) 23.2 12.37 13.56 7.80

Sensitivity (%) 79.93 86.97 85.66 91.89
Specificity (%) 83.16 85.67 82.26 91.78
Accuracy (%) 81.56 86.29 83.87 91.84

Table 5. ROC analysis of the four models using training data.

Models AUC Standard Error 95% Confidence Interval

RF 0.920 0.011 0.899–0.941
GBDT 0.957 0.008 0.942–0.973

Ada-DT 0.959 0.009 0.942–0.976
Stacking 0.963 0.006 0.950–0.975

The predictive capacity needs to be evaluated using validation data. The results
confirmed that the Stacking model perform the best as the values of sensitivity, specificity,
accuracy and AUC were highest (Tables 6 and 7), which was 91.78%, 90.54%, 91.16%
and 0.944, respectively, followed by Ada-DT (sensitivity = 86.96%, specificity = 82.19%,
accuracy = 85.13% and AUC = 0.917), GBDT (sensitivity = 86.11%, specificity = 84.00%,
accuracy = 85.03% and AUC = 0.910), and RF (sensitivity = 81.33%, specificity = 75.34%,
accuracy = 78.38 and AUC = 0.906) (Figure 9).

Table 6. Models’ performance using verification dataset.

Metrics RF GBDT Ada-DT Stacking

TP (%) 77.22 86.30 83.54 90.54
TN (%) 79.71 83.78 86.96 91.78
FP (%) 22.78 13.70 16.46 9.46
FN (%) 20.29 16.22 13.04 8.22

Sensitivity (%) 81.33 86.11 86.96 91.78
Specificity (%) 75.34 84.00 82.19 90.54
Accuracy (%) 78.38 85.03 85.13 91.16
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Table 7. ROC analysis of the models using validating data.

Models AUC Standard Error 95% Confidence Interval

RF 0.906 0.027 0.853–0.959
GBDT 0.910 0.026 0.859–0.962

Ada-DT 0.917 0.021 0.877–0.958
Stacking 0.944 0.018 0.908–0.980

Figure 9. Analysis of ROC curve for the landslide susceptibility map: (a) Success rate curve of
landslide using the training dataset; (b) Prediction rate curve of landslide using the validation dataset.

The Stacking model exhibited the best both in training and validation data compared
to the other three ensemble learning methods, which indicated ideal goodness-of-fit to
modeling and generalization capability. The performance of GBDT and Ada-DT was similar,
and the RF model performed the worst but was still satisfactory. The gaps in performance
between training and validation data were not obvious among the models. Compared to
the RF model, the application of the Stacking model enhanced the performance significantly
and was regarded as the most suitable model for LSM in this study.

4.3. Application of Stacking Method for LSM

The above analysis proves that the Stacking method has superior ability in LSM
compared with the other three models. Therefore, the probability of landslides occurring
was calculated for all mapping units in the whole study area. The LSM was also constructed
with five susceptible classes, which were very low (0–0.2), low (0.2–0.4), moderate (0.4–0.6),
high (0.6–0.8), and very high (0.8–1) (Figure 10). Table 3 showed the distribution ratio of
each level. The very low susceptible level occupied 26.04% of the area while low, moderate,
high, and very high susceptible levels represented 15.31%, 15.46%, 32.45%, and 10.74%,
respectively (Figure 11). It was noticed that LSM has the smallest area percentage in very
high susceptibility levels while the largest is in high. Landslide locations were mostly
distributed in the red areas. Meanwhile, most of the non-landslide samples screened by
FCM clustering appeared in blue areas.
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Figure 10. Landslide susceptibility map using the Stacking model.

Figure 11. The distribution of susceptible classes on landslide susceptibility maps.

The high or very-high susceptibility areas are mainly distributed closed to streams
or provincial highway, which runs through three townships including Fanzipai Town,
Sihetang Town, and Fengjiayu Town in the study area. These areas are densely populated.

The landslide susceptibility class ranged from very low to very high around the Miyun
reservoir. It is noteworthy that once a landslide occurs in this area, a series of disaster
chains may be induced.

4.4. Analysis of Major Conditioning Factors

The stacking method performed the best in terms of accuracy, but the results had
a poor analysis of the occurrence of landslides, which was confusing. Understanding
the major factors that have a significant contribution to landslides occurring helps in the
prevention and treatment of landslides. Based on the Gini index, ten major parameters
were selected and normalized as shown in Table 8, including DTS, DTR, elevation, slope
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angle, TWI, maximum 24 h rainfall, lithology, MED, maximum seven days of rainfall, and
profile curvature. Among them, DTS, DTR, and elevation have a significant impact on the
occurrence of landslides (Figure 12), the weight values of which were 0.37, 0.34, and 0.16,
respectively. While the weight values of lithology, MED, maximum seven days rainfall, and
profile curvature were close to 0.01, which had a limited contribution. The weight values of
slope angle, TWI, and maximum 24 h rainfall were close to 0.04, 0.03, and 0.02, respectively.

Table 8. Conditioning factors assigned by the Ada-DT.

Method DTS DTR Elevation
Slope
Angel

TWI
Maximum

24 h Rainfall
Lithology MED

Maximum
7 Days Rainfall

Profile
Curvature

GBDT 0.37 0.34 0.16 0.04 0.03 0.02 0.01 0.01 0.01 0.01

Figure 12. Parametric importance graphics obtained from Ada-DT.

Therefore, three conditioning factors, namely DTS, DTR, and elevation, were consid-
ered the major factors responsible for the landslide. Rivers are an important factor affecting
the occurrence of landslides. On the slopes closer to the river, the toe of the slope is easily
soaked by the river water, which reduces the strength of the rock and makes landslides
more likely. Road development and construction are important tasks in mountainous area
construction. However, unreasonable road excavation is a common human factor that
induces geological disasters. Road construction often produces a large number of slopes,
which destroy the stability of the slope and finally, lead to the occurrence of landslides.

The relationship between the major factors and landslides was further explored by
calculating the FRi of each parameter (Table 9). As for DTS, the percentages of landslide
area of the first two classes (<1000 m and 1000–2000 m) were 46.99% and 24.43% with the
FR values of 49.3 and 173.29, accounting for more than 70% of the landslides area. Similarly,
DTS showed a positive correlation in the first three classes (<1000 m, 1000–2000 m, and
2000–3000 m) with FR values greater than 1. Regarding elevation also a positive correlation
in the first three classes (<200m, 200–400 m, and 400–600 m) with values of FR gradually
decreasing with altitude and a negative relationship in the last two classes (>600 m).

The selection and analysis of major factors by combining basic machine learning and
bivariate methods made up for the defects of stacking, thereby ensuring the integrity of
geological hazard assessment.

33



Sustainability 2022, 14, 6110

Table 9. Spatial relationship between landslide conditioning factors and landslides using frequency ratio.

Conditioning Factor Zone Landslide (%) Non-Landslide (%) FR

DTS(m)

<1000 46.99% 0.95% 49.30
1000–2000 24.43% 0.14% 173.29
2000–3000 14.33% 6.63% 2.16
3000–4000 5.33% 15.72% 0.34

>4000 8.91% 76.69% 0.12

DTR(m)

<1000 56.06% 7.13% 7.87
1000–2000 23.02% 7.13% 3.23
2000–3000 15.59% 9.29% 1.68
3000–4000 3.95% 11.51% 0.34

>4000 1.37% 66.79% 0.02

Elevation(m)

<200 4.36% 2.08% 2.09
200–400 53.76% 12.29% 4.37
300–600 30.36% 23.70% 1.28
400–800 10.06% 34.52% 0.29

>800 1.46% 27.41% 0.05

5. Discussion

5.1. Ensuring the Reliability of Models
5.1.1. Internal and External Cross-Validation

The basic classifiers used in our work have several hyperparameters that control
the behavior and performance. In some cases, reasonable “guesses” are available (e.g.,
n tree = 500 in RF), in other cases classifiers are very sensitive to the parameters, which
means that default hyperparameter settings fail to guarantee optimal performance of
machine-learning techniques. Therefore, hyperparameters need to be tuned before applica-
tion and inner cross-validation should be used for this [48].

On the other hand, external cross-validation was also essential. One can find an
“excellent model” using the method “Leave-One-Out” because of the randomness in the
sampling scheme, the results of which are unconvincing. Only by implementing a more
rigorous k-fold (or other types) cross-validation scheme can one infer the actual capacity of
a model to learn the functional relationships between landslides and causative factors as
well as the variability that the models and the susceptibility estimates exhibit [45,48].

While various machine-learning algorithms have been recognized in recent years
due to their powerful capabilities of data processing and generalization, there are several
practical challenges related to bias-reduced assessment of a model’s predictive power
and some researchers often ignore them, which leads to an unreliable or uncertain result.
Single hold-out model performance measures were popular [49]. However, statistically
based landslide susceptibility models desire a more credible validation and assessment
before generalization.

5.1.2. The Selection of Non-Landslide Samples

A complete disaster inventory map is emphasized in a multitude of studies, which
consists of the locations and number of a certain disaster [9]. The quality of landslide
presence samples is more convincing compared to that of landslide absence because non-
landslide samples are selected randomly or subjectively although quite a few methods or
principles will be adopted. Seldom do studies consider or discuss the noise and influence
of the absence of data bring to data-driven models [50]. Non-landslide points need to
be selected from low-prone areas as far as possible, which is arduous to implement by
selecting randomly. Clustering analysis help solve the problem by combining with the
bivariate methods. FR was calculated to judge the area with low susceptibility based on the
results of FCM and K-means in this study and the non-landslide samples were generated
from it, which improved the quality of non-landslide records and the performance of
models logically.
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5.2. Increasing the Accuracy of LSM

How to achieve an accurate landslide susceptibility zoning map is always a hot topic
and the main concern of researchers. However, determining the most suitable model is
challenging because the performance varies according to the study area and methods
applied. Actually, related studies have applied various methods and compared their
performance based on the value of AUC to obtain the best method for a given region [51,52].
Yet, it is controversial that we claim a model to be better than the other according to the
decimal places down the line (AUC). Therefore, it is necessary to explore new methods for
significant improvement and ensemble techniques are considered in our study, which have
also been proven to be an excellent solution [53–55]. A detailed comparison among three
ensemble techniques in LSM, namely bagging, boosting, and stacking was implemented.
Bagging and boosting are two algorithms commonly used in LSM while stacking have
rarely been applied. The results proved that the ensemble of the GBDT-Adaboost-DT-
RF-LR had the ability to enhance the predictive performance and the improvement was
obvious. This enhancement originates from reducing both bias and variance and avoiding
over-fitting problems [56,57]. It is believed that the stacking technique and its comparison
will guarantee a better result for further studies [58].

5.3. Maintain the Integrity of Geological Hazard Assessment

An optimal model should not only focus on accuracy, especially for geological hazard
assessment [50]. An outstanding model should also require communication skills, that
is, make it easy for researchers to understand, accept and apply, especially for natural
disasters [59]. The capacity of communicating model behavior is another valuable quality
for LSA, which is arduously achieved by machine learning methods because of the “black
box” nature. Stacking performed the best in terms of accuracy while it had a low capacity
for recognizing the importance of the variables. Gini index and FR were combined to
determine the major conditioning factors and analyze the individual landslide-related
factors in each interval and the relative importance among them, which improved the
readability of the stacking model.

6. Conclusions

LSM is the basis of supplementary analyses, such as land use and hazard prevention.
Meanwhile, this field of geomorphology has become an empty shell with no research ques-
tion on whether a model can be evaluated in an unreliable sampling strategy and focus only
on accuracy. Therefore, a more reliable and accurate landslide susceptibility map is urgently
needed through further comparison and application of different methods. In the present
study, three ensemble learning machines were compared in terms of the performance of
LSM in Miyun County, Beijing, China. Non-landslide samples were determined in a more
reliable way with the use of FCM and K-means clustering. Statistical indexes and AUC
were combined to assess the accuracy performance of the models. The major conditioning
factors were determined and analyzed based on the Gini index and FR. The following
conclusions can be drawn from the present study:

1. The performance of different ensemble techniques varies, but achieved satisfactory
results as a whole. Stacking was considered the most suitable model with obvious
improvement in terms of accuracy compared to the basic classifiers.

2. The combination of the bivariate statistical method and Gini index helps better explore
the major conditioning factors and improve the integrity of ensemble techniques.

3. The non-landslide samples selected by FCM are more representative and improved
the quality of samples. Overall, improvement of sample quality and selection of
advanced methods help improve the practicability of LSM.
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Abstract: Machine learning (ML)-based methods of landslide susceptibility assessment primarily
focus on two dimensions: accuracy and complexity. The complexity is not only influenced by
specific model frameworks but also by the type and complexity of the modeling data. Therefore,
considering the impact of factor data types on the model’s decision-making mechanism holds
significant importance in assessing regional landslide characteristics and conducting landslide risk
warnings given the achievement of good predictive performance for landslide susceptibility using
excellent ML methods. The decision-making mechanism of landslide susceptibility models coupled
with different types of factor data in machine learning methods was explained in this study by
utilizing the Shapley Additive exPlanations (SHAP) method. Furthermore, a comparative analysis
was carried out to examine the differential effects of diverse data types for identical factors on model
predictions. The study area selected was Cenxi, Guangxi, where a geographic spatial database was
constructed by combining 23 landslide conditioning factors with 214 landslide samples from the
region. Initially, the factors were standardized using five conditional probability models, frequency
ratio (FR), information value (IV), certainty factor (CF), evidential belief function (EBF), and weights of
evidence (WOE), based on the spatial arrangement of landslides. This led to the formation of six types
of factor databases using the initial data. Subsequently, two ensemble-based ML methods, random
forest (RF) and XGBoost, were utilized to build models for predicting landslide susceptibility. Various
evaluation metrics were employed to compare the predictive capabilities of different models and
determined the optimal model. Simultaneously, the analysis was conducted using the interpretable
SHAP method for intrinsic decision-making mechanisms of different ensemble-based ML models,
with a specific focus on explaining and comparing the differential impacts of different types of
factor data on prediction results. The results of the study illustrated that the XGBoost-CF model
constructed with CF values of factors not only exhibited the best predictive accuracy and stability but
also yielded more reasonable results for landslide susceptibility zoning, and was thus identified as
the optimal model. The global interpretation results revealed that slope was the most crucial factor
influencing landslides, and its interaction with other factors in the study area collectively contributed
to landslide occurrences. The differences in the internal decision-making mechanisms of models
based on different data types for the same factors primarily manifested in the extent of influence
on prediction results and the dependency of factors, providing an explanation for the performance
of standardized data in ML models and the reasons behind the higher predictive performance of
coupled models based on conditional probability models and ML methods. Through comprehensive
analysis of the local interpretation results from different models analyzing the same sample with
different sample characteristics, the reasons for model prediction errors can be summarized, thereby
providing a reference framework for constructing more accurate and rational landslide susceptibility
models and facilitating landslide warning and management.
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1. Introduction

Landslides rank among the most devastating geological perils globally, characterized
by their wide distribution, frequent occurrence, and high destructiveness [1]. The eco-
logical environment incurs significant damage due to frequent geological disasters, and
there are considerable losses to agricultural and industrial production and people’s lives
and property [2]. According to data released by the China Geological Survey, there were
4810 landslides in China during 2020, marking an increase of 590 compared to 2019. These
landslides constituted 61.35% of the overall count of geological disasters [3]. Therefore, in
light of the growing occurrence of landslide catastrophes, constructing accurate and reliable
landslide susceptibility maps (LSMs) is essential for regional landslide susceptibility assess-
ment and risk analysis [4,5]. An LSM generally refers to a model that accurately predicts
the study area that determines the landslide susceptibility index (LSI) by examining the
relationship between the location of known landslide areas and the factors that contribute
to landslides. This analysis generates a probability map showing the likelihood of land-
slides occurring throughout the entire study area [6]. The LSI calculates the likelihood of
a landslide happening in a particular area by using a nonlinear combination of various
environmental factors. Thus, an LSM serves as the foundation for studying landslide
risks and finds wide applications in urban planning, early disaster prevention, and other
fields, providing a reliable theoretical basis for regional planning, disaster prevention,
and mitigation.

Due to the ongoing advancements in computer science, as well as geographic informa-
tion systems, remote sensing technology, and related disciplines, the approaches used for
studying landslide susceptibility have transitioned from qualitative and semi-quantitative
to quantitative analysis [7]. Abundant expert experience is typically required for quali-
tative and semi-quantitative analysis methods, such as expert scoring and the analytic
hierarchy process (AHP), to determine the likelihood of a landslide event occurring [8,9].
Nevertheless, these approaches heavily depend on subjective prior knowledge, and in
cases where expert opinions prove to be erroneous, the resulting calculations may diverge
from objective reality [10]. Driven by data, methods of quantitative analysis are more
practical for assessing susceptibility to landslide disasters. These methods primarily uti-
lize physical–mechanical, conditional probability, and machine learning (ML) models to
reflect the correlation between occurrences of landslides and the factors that contribute to
them [11]. Physical–mechanical models calculate and analyze the mechanism of landslide
occurrence based on geological and topographical parameters obtained through field inves-
tigations in landslide-prone areas [12]. They have the advantages of clear physical meaning
and accurate analysis results. However, they require many geological and hydrological pa-
rameters and are only suitable for analyzing specific types of landslides on a small scale [13].
Common conditional probability models include frequency ratio (FR), information value
(IV), certainty factor (CF), evidential belief function (EBF), and weights of evidence (WOE).
Statistical algorithms enable these models to effectively demonstrate the connection be-
tween landslides and various attribute intervals of individual conditioning factors. They
possess a simple computational nature but overly rely on the quality of samples and factors.
The weight and correlation of each indicator factor cannot be accurately expressed, nor
can the complex relationship between conditioning factors and landslide events be fully
conveyed [14,15]. Landslide susceptibility assessment has seen widespread application
of different machine learning models such as logistic regression, artificial neural network
(ANN), naive Bayes, support vector machine (SVM), and random forest (RF) in recent
years [16]. These models establish connections between landslide data and different condi-
tioning factors; by emphasizing the nonlinear association between landslides and factors,
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it is possible to achieve more precise predictive outcomes [17,18]. While the accuracy of
various machine learning models for predicting landslide susceptibility may differ within a
given location, it is widely recognized that ensemble-based machine learning models like
random forest (RF) and extreme gradient boosting (XGBoost) consistently offer notable
benefits over other machine learning models across all regions for landslide susceptibility
modeling: higher modeling efficiency, better predictive performance, and superior ability
to handle outliers [17,19,20].

In summary, different analysis methods have their advantages and limitations. Among
them, conditional probability models have the advantages of simplicity, strong operability,
and practicality. However, they only reflect the influence of landslides in various classifica-
tion intervals of combined conditioning factors, without taking into account the correlations
between these factors or the variations in their influence on landslide occurrence [21]. As
for ML models, although they can effectively capture the intricate nonlinear connection
between multiple conditioning factors and the occurrence of landslides, they are susceptible
to overfitting or underfitting when there is insufficient data or when the factor types are
too complex. Therefore, relying solely on a single prediction model cannot guarantee
the accuracy of the prediction [22]. To fully leverage the strengths of both conditional
probability models and ML models, many scholars have begun to adopt coupled models
combining the two approaches to study landslide susceptibility [23–25].

In recent years, research on landslide susceptibility with the help of machine learning
(ML) models has mainly focused on adopting superior algorithms or improving existing
algorithms in order to increase the precision and reliability of predicting landslide suscepti-
bility. However, such studies tend to ignore another essential characteristic of ML models:
complexity. The complexity of a model is reflected in its structural complexity, which is
affected by model characteristics and modeling data types. In landslide susceptibility stud-
ies, in addition to focusing on model prediction accuracy, it is more important to elucidate
the impact of the factors within the model on landslide events, facilitating the analysis
of causal factors and regional landslide characteristics [26]. Although some ML methods,
such as the neural-network-based connection weighting method for hidden layers [27],
average reduction accuracy in decision trees [28], and Gini index in random forests, have
been widely used to explain the importance of model factors, the evaluation methods
of different ML models are inconsistent. They can only reflect the relative influence of
the factors on the prediction results. The Shapley Additive exPlanations (SHAP) method
based on game-theoretic ideas can overcome this problem, explaining the contribution of
factors to the decision outcome in global and local dimensions and clearly explaining the
impact of complex interactions among factors on the prediction outcome. In the past few
years, there have been advancements made in landslide susceptibility modeling using ML
models, especially deep learning. However, the practical application of these models is
limited due to their opacity. To address this problem, SHAP, an interpretable ML-based
algorithm, was introduced to interpret model results. For example, Biswajeet Pradhan
et al. investigated landslide susceptibility using a convolutional neural network model,
which marked the first use of an interpretable ML model in landslide susceptibility model-
ing by demonstrating the process of elucidating the model to achieve a particular result
through SHAP plots, showing the feature interactions at both landslide and non-landslide
locations [29]. Ajaya Pyakurel et al. used a combination of ET-SHAP analysis and factor
importance analysis to reveal the critical influencing factors, emphasizing the importance
of earthquakes, terrain ruggedness, and slopes in causing landslides during earthquakes,
highlighting the significance of SHAP in explaining model results and factor importance in
geohazard research [30]. IBAN Muzaffer Can et al. utilized the SHAP method to examine
in depth how conditioning factors impact the occurrence of avalanches [31]. Deliang Sun
et al. utilized the SHAP technique to provide comprehensive explanations for the outcomes
prediction by models in landslide studies [32]. Zhang Junyi et al. constructed a model that
was developed to assess susceptibility to landslides using the SHAP-XGBoost algorithm.
Their analysis focused on examining the attributes and variations in space of the factors
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that impact landslides [33]. Ömer Ekmekcioğlu et al. applied a model agnosticism-based
game-theoretic SHAP algorithm to analyze the prediction influenced by the factors of
hazardous conditions of landslide and flood event outcomes [34]. Despite the extensive
research on ML-based models for predicting susceptibility to landslides and the preliminary
outcomes of utilizing the SHAP approach to interpret these models in terms of application,
the current research mainly focuses on exploring the decision-making mechanisms of using
the SHAP approach in explaining different ML models. It lacks the comparison and analysis
of the internal decision-making differences of models constructed based on different factor
data types. Therefore, exploring the internal decision differences of models in landslide
susceptibility built on various types of factor data can help further explain the intricacy of
models for predicting the likelihood of susceptibility to landslides.

In summary, this research is the first attempt to employ the SHAP method to explain
landslide susceptibility models constructed based on different factor data types and the
well-performing integrated ML method. Using 214 landslides in Cenxi as data samples,
the comprehensive evaluation took into account the spatial distribution of landslides and
identified 23 factors that contribute to the occurrence and mitigation of landslides. Next,
by coupling the initial factor data and the factor data transformed by five conditional
probability models (FR, IV, CF, EBF, and WOE) with two ensemble-based ML methods
(RF and XGBoost), a total of 12 models were built to assess susceptibility to landslides,
and the corresponding LSMs were generated. Then, various evaluation metrics were
used to examine and contrast the similarities and differences of the models built using
different ML methods and different types of factor data, and the best-performing model
was selected. Finally, in addition to different ML methods, this study focused on providing
comprehensive explanations using the SHAP method for landslide susceptibility models
constructed based on distinct categories of factor data. A comparison was made between
the impact of different data types on the internal decision mechanisms of the models, and
the reasons why the coupled models obtained using conditional probability models and
ML methods exhibited superior predictive performance were explored. By employing the
SHAP interpretation method, this study achieved transparency and rationality in model
interpretation, thoroughly dissecting the complexity of ML-based models.

In summary, the main contributions of this paper are presented as follows:

(1) This paper’s innovation is to focus on two critical aspects of landslide susceptibility
assessment: accuracy and complexity. The interplay between prediction accuracy and
modeling complexity is emphasized. This dual focus is rare in the existing literature
and highlights the need for highly accurate prediction and interpretable modeling.

(2) The innovation of the methodology in this paper is mainly reflected in data type and
model interpretability. Since different types of factor data may have different effects
on model predictions, different types of factor data are introduced, including initial
factor data and transformed conditional probability model data. In addition, the
SHAP method is used in this paper to explain the model predictions.

(3) The innovation of the experimental design and data analysis consists in its compre-
hensiveness and diversity. In this paper, two ensemble ML methods, random forest
(RF) and XGBoost, were chosen to construct the landslide susceptibility model. In
addition, this paper uses different data types and constructs multiple versions of the
model for each type.

(4) The innovation in error analysis and prediction error interpretation is reflected in its
in-depth analysis of prediction errors. Through local explanations and analysis, this
paper delves into the interpretation of model predictions for error samples.

The remainder of this paper is structured as follows: Section 2 provides a compre-
hensive introduction to the research field and the specific data set used for modeling.
Besides samples from landslides and non-landslides, the dataset also includes landslide
conditioning factors. Section 3 introduces the methodology in detail. Section 3.1 intro-
duces the process of assessing the independence of landslide adjustment factors, examined
thoroughly and comprehensively; five commonly used conditional probability models are
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introduced in Section 3.2. Section 3.3 provides a detailed description of the principles of two
tree-structure-based ML algorithms (RF and XGBoost). Section 3.4 presents various evalu-
ation criteria that are employed for assessing the performance of the model’s prediction.
Furthermore, the basic principle and application status of the SHAP method is explained
in Section 3.5. Section 4 analyzes the test results of the independence of landslide condition
factors, the structure and optimization results of different models, the LSMs and precision
evaluation results generated by different models, and the decision-making mechanism
of landslide susceptibility prediction results of different models using the SHAP method.
Section 5 analyzes, in turn, the following: (1) The unique features and advantages of the
SHAP method compared to traditional feature importance ranking methods; (2) the SHAP
method being utilized to locally interpret different models using several typical samples.
(3) local interpretation of samples incorrectly predicted in a model with the best prediction
performance; and (4) a discussion of how the research results of this paper complement,
confirm, and contradict the current state of SHAP research and an exploration of feature
importance assessment for fused decision tree models. Finally, the concluding remarks are
provided in Section 6.

2. Study Region and Data Overview

2.1. Study Region

The research area is Cenxi, Wuzhou City, Guangxi Zhuang Autonomous Region.
Cenxi is located in the southeastern region of the Guangxi Zhuang Autonomous Region
and shares its eastern border with Guangdong Province. The geographical coordinates
range from 110◦43′ to 111◦22′ east longitude and 22◦37′ to 23◦13′ north latitude, with a
combined surface area of approximately 2783 square kilometers (see Figure 1a,b). The
elevation in the region ranges from 29 m to 1123 m; the southeast has elevated land while the
northwest has lower land. Cenxi can be found in the Bobai–Cenxi fault zone in southeastern
Guangxi and consists mostly of hilly and mountainous regions. Being abundant in mineral
resources, it serves as a notable supplier of granite in China. The region serves as a
convergence point between the Pearl River Delta Economic Zone and the southwestern
region of China, playing a significant role in transportation and the economy. In recent
years, the rapid expansion of urban areas has accelerated the deterioration of the fragile
ecological environment. Cenxi has become more susceptible to landslide disasters due to
the rise in human mining activities and the increasing occurrence of extreme weather events.
The serious threat of landslides to people’s lives and property demands our attention.

2.2. Data Acquisition

Having precise historical data on landslides is vital when examining and evaluating
the potential for landslide catastrophes in a particular region [12]. The landslide inventory
was created in this study using various methods such as Google Earth images, optical
satellite images, and disaster news reports. Multiple data sources were utilized in this
study to construct an inventory of historical landslides. First, the approximate locations
where historical landslides occurred were identified through visual interpretation with the
help of Google Earth software. Then, the location and extent of these landslides were fur-
ther confirmed using optical remote sensing imagery, specifically, optical satellite imagery.
These images provided high-resolution surface information that enabled more accurate
identification and definition of landslide areas. In addition, disaster news reports and
relevant literature were reviewed to obtain detailed information on historical landslide
events, including the exact time, location, and number of occurrences. A total of 214 histori-
cal landslide areas were ultimately collected, providing essential data for interpreting the
characteristics of landslides in the region and predicting their occurrence.
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Figure 1. Location of the study area and landslide distribution. (a) The location of the research area
in Guangxi; (b) the location of the study area and the distribution of landslides and non-landslides.

44



Sustainability 2023, 15, 13563

Landslide occurrences are typically the result of a combination of internal geological
and topographic conditions within the slope and external environmental factors [35–37].
Therefore, the importance of choosing precise and suitable modeling data cannot be over-
stated when utilizing machine learning (ML) techniques to forecast landslide susceptibility.
In this research, the conditions for the development of landslides in Cenxi were studied,
which involved analyzing the geological and environmental information and the distri-
bution status of historical landslides. The research area encompassed various aspects,
including geological and soil information, topography, meteorological and hydrological
conditions, land cover, soil conditions, and human activities, for a total of 23 factors selected
to study the susceptibility to landslides. Table 1 provides the origins and explanations of
these conditioning factors that contribute to landslides. Due to variations in coordinate
systems and resolutions among different factors, the ArcGIS 10.2 software was used to
project all factor data onto the UTM-Zone48 coordinate area based on the WGS1984 ref-
erence surface. All factors were transformed to a uniform spatial resolution of 30 m by
generating a target raster using the Shuttle Radar Topography Mission (SRTM) data with a
resolution of 30 m by 30 m.

Table 1. Sources and scale of conditioning factors data used in this study.

Major Data Source Data Layer Scale/Resolution

SRTM DEM https://gdex.cr.usgs.gov/gdex
(accessed on 11 February 2020)

Elevation, slope, TWI, SPI,
profile curvature,
plane curvature,
slope variation,
slope direction

30 m × 30 m

Rainfall information
CHIRPS Pentad: Climate Hazards
Group InfraRed Precipitation With

Station Data

Total rainfall in 2020,
number of days with heavy rainfall

(rainfall for the day>25 in 2020)
0.05◦ × 0.05◦

Soil moisture
information

CLDAS Soil Volume
Moisture Content

Analysis Product V2.0
(http://data.cma.cn/data

(accessed on 11 February 2020))

Average daily soil moisture in 2020 0.0625◦ × 0.0625◦

Surface cover
information

Landsat-8 Operational Land Imager
(OLI) multispectral image

(https://earthexplorer.usgs.gov/
(accessed on 11 February 2020))

NDVI, MNDWI 30 m × 30 m

Ground hydrological
traffic information

National Catalogue Service For
Geographic Information (in Chinese)

(http://www.webmap.cn
(accessed on 11 February 2020))

River density, road density 1:250,000

Soil information

Harmonized World Soil Database
v 1.2 (HWSD)

(http://www.fao.org/soils-portal
(accessed on 11 February 2020))

Soil type, soil erodibility 1:5,000,000

Geological and
geomorphological

information

National Geological Archives Data
Center (in Chinese)

(http://dc.ngac.org.cn
(accessed on 11 February 2020))

Mineral point density,
fracture zone density,

hydrogeology,
thickness of weathering layer,

type of landform

1:200,000

Human activity

WordPop Open Population
Repository (WOPR)

(http://hub.worldpop.org
(accessed on 11 February 2020))

Population density 1 km × 1 km
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2.3. Construction of the Modeling Dataset

The majority of landslides in the area typically happen on a limited scale, with the size
of the slope altering before and after the occurrence of the landslide. Therefore, the landslide
sample used for modeling was taken from the center raster of the landslide surface [38,39].
In selecting the non-landslide samples used for landslide susceptibility modeling, the
following principles were fully considered in this study to ensure the reasonableness and
representativeness of the sample selection:

(1) First, to avoid sampling in areas with similar geography to known landslides, areas
beyond 100 m from historical landslides were chosen as the selection range. This
helped to maintain sample diversity and avoid introducing unnecessary bias due to
geographic similarities.

(2) Second, land areas that do not contain permanent bodies of water were extracted
as the area for non-landslide samples. The consideration behind this principle is
that landslide events do not usually involve areas of water bodies, ensuring that
non-landslide samples were carefully selected; with an emphasis on this aspect,
the selected samples were more geographically and geomorphologically similar to
landslide events.

(3) Given that landslides typically occur on steep slopes possessing higher slope values,
areas with slopes less than 30◦ were extracted as extraction areas for the non-landslide
samples. This selection helps to maintain similarity to landslide events, as steep-slope
areas are more prone to landslides. Through this principle, we pursued maintaining a
reasonable match of geomorphic features in the sample selection process.

Based on the above principles, criteria for selecting non-landslide sample areas were
delineated. A total of 214 non-landslide samples were selected at random, maintaining
a ratio of 1:1 with the number of landslide samples. This ratio was chosen to help keep
the samples balanced and to allow the modeling dataset to contain a sufficient quantity of
positive and negative samples. A total of 428 samples were created by merging the chosen
landslide samples (labeled as 1) with the non-landslide samples (labeled as 0) for modeling
purposes. Eventually, the dataset containing all the relevant data was randomly split into a
training set with 299 samples and a test set with 129 samples, maintaining a ratio of 7:3.
The dispersion of sample points in the landslide moderator layer as shown in Figure 2a–i,
Figure 3a–i, Figure 4a–e.

Kilometer Kilometer Kilometer

Figure 2. Cont.
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Kilometer Kilometer Kilometer

Kilometer Kilometer Kilometer

Figure 2. Landslide conditioning factors (I). (a) Elevation; (b) slope; (c) slope variation; (d) profile
curvature; (e) plane curvature; (f) TWI; (g) SPI; (h) MNDWI; (i) NDVI.

Kilometer Kilometer Kilometer

Kilometer Kilometer Kilometer

Figure 3. Cont.
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Kilometer Kilometer Kilometer

Figure 3. Landslide conditioning factors (II). (a) Fracture zone density; (b) mineral point density;
(c) road density; (d) river density; (e) population density; (f) number of days with heavy rainfall;
(g) soil erodibility; (h) soil moisture; (i) total rainfall.

Kilometer Kilometer Kilometer

Kilometer Kilometer

Figure 4. Landslide conditioning factors (III). (a) Slope direction; (b) soil type; (c) type of landform;
(d) thickness of weathering layer; (e) hydrogeology.

3. Methods

The main objective of this research is to examine how various types of factor data
affect the accuracy of landslide susceptibility models that rely on an ensemble machine
learning framework. Additionally, the methodology of interpretability using SHAP is used
to explain the influence of factors on data types, both globally and locally, in landslide
susceptibility models to influence the decision mechanism of predictive results. The data
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processing platform used in this study is ArcGIS 10.2, and the programming language
utilized is Python. The research procedure encompasses the subsequent stages, as outlined
in Figure 5.

 

Figure 5. Flowchart of the study.
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(1) The process involves preparing data and constructing a spatial database that includes
both samples from landslides and non-landslides, as well as conditioning factors that
contribute to landslides.

(2) Independence testing of landslide conditioning factors, including Pearson correlation
analysis and multicollinearity diagnosis, is performed.

(3) Preparation of the modeling dataset. In order to partition and standardize the at-
tribute intervals of each factor, five different conditional probability models were
employed: frequency ratio, statistical index, certainty factor, evidential belief function,
and weights of evidence. Afterward, the data of the initial and processed factors were
extracted to the sample points, resulting in the creation of six modeling datasets.

(4) Landslide susceptibility modeling. Based on the six different modeling datasets,
twelve landslide susceptibility prediction models were constructed using the random
forest and extreme gradient boosting algorithms, and landslide susceptibility maps
were generated.

(5) Evaluation of model predictive performance. The performance of the twelve models
as compared and analyzed using different statistical methods, identifying the best-
performing model.

(6) Shapley Additive exPlanations (SHAP) analysis. The influence of every factor on the
models was investigated through the creation of SHAP models for all twelve landslide
susceptibility models and the dependency relationship between the predictive results
and features in models built using different machine learning methods and types of
factor data.

3.1. Analysis of Conditioning Factors

Since landslides occur due to the combined effect of multiple adjustment factors, the
diversity and complexity of the factors need to be fully considered [40]. Based on historical
studies and expert experience, there may be statistical covariance among the initially
selected landslide adjustment factors, which can lead to the inability of the landslide
susceptibility model to accurately analyze the proper relationship between the evaluated
factors and landslides [41].

Conducting a correlation analysis on the 29 identified moderating factors is necessary
due to potential correlations among the indicator factors that may impact the accuracy
of the landslide susceptibility model. The aim of this paper is to utilize the Pearson
correlation coefficient (PCC) to evaluate the correlation between the layers of the factor.
The calculation formula is described as Equation (1). A weak correlation between the
factors is indicated if the PCC value is less than 0.6, and the opposite is also true. There
is a significant correlation [42]. In addition, to ensure the independence of the data when
building a multiple regression model, the degree of multivariate co-linearity of each factor
was measured by calculating the tolerance (TOL) and variance inflation factor (VIF). Severe
multicollinearity is indicated when the VIF value for a factor exceeds ten or the TOL value
is below 0.1 between the factor and other factors, and the factor should be removed from
the model The calculation formula is:

PCC =
∑n

i=1(xi − x)∑n
i=1(yi − y)√

∑n
i=1(xi − x)2 ∑n

i=1(yi − y)2
(1)

VIF =
1

TOL
=

1
(1 − R2)

(2)

where xi and yi denote the i-th variable between factor x and factor y; x and y are the
means of all variables in factor x and factor y, respectively, and n is the number of variables
in the factor; the coefficient of determination R2 is utilized to measure how well the
independent variable explains the variation in the dependent variable in regression analysis.
Additionally, TOL and VIF are reciprocally related to each other.
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3.2. Conditional Probability Models

When evaluating landslide susceptibility, the factors evaluated at all levels are not
only characterized by high data volume but also exhibit inconsistency in magnitude, which
may lead to overfitting or underfitting after inputting into the model. To avoid this effect,
the conditional probability model can subdivide and standardize each factor to establish a
preliminary link in the interaction between landslides and the factors that moderate them.
The connection between the pre-existing probability of landslides for each factor under
evaluation and the probability of landslides occurring in various classification states is
established based on historical landslide data [43,44]. Therefore, in this study, the frequency
ratio, statistical index, certainty factor, evidential belief function, and weights of evidence
were selected to convert the initial data of landslide adjustment factors into values reflecting
landslide susceptibility, and the ML model utilized the calculated results to generate maps
indicating the susceptibility to landslides.

3.2.1. Frequency Ratio

The method of bivariate statistics known as the frequency ratio (FR) is straightforward.
The likelihood of a landslide happening is calculated by the analytical model, which allows
for a quantitative assessment of landslide susceptibility in different secondary classification
intervals for each factor, combined with spatial data [45,46]. FR has been widely used in
hazard probability assessment involving several geographic layers [47]. The formula for
the calculation is as follows:

FRij =
Nij/N

Sij/S
(3)

where FRij is the frequency ratio of the j-th secondary classification level of the i-th mod-
erating factor. FRij > 1 means that the corresponding factor conditions are favorable for
landslide occurrence; FRij < 1 indicates that the attributes of the factor interval are weakly
related to landslide occurrence; FRij = 0 means that the factor i does not provide landslide
development information in the state j. Nij is the number of landslides occurring in the j-th
secondary classification interval of factor i; Sij is the quantity of rasters in the interval; N is
the number of landslides; and S is the number of rasters in the interval.

3.2.2. Information Value

The derivation of information value (IV) involved the creation of a blend of statistical
models and information theory. The assessment of geohazard susceptibility is performed
using a statistical method that relies on informative values. This method transforms
the distribution of landslides across various factors in the study area into quantifiable
magnitudes that provide valuable information. By examining the amount and level of detail
in the data pertaining to regions affected by landslides, we can determine the likelihood of
landslides occurring in the research region. The formula for the calculation is as follows:

IVij = ln
(Dij

D

)
= ln

[(
Nij/Sij

N/S

)]
(4)

where IVij represents the quantity of information at the j-th level of secondary classification
for the i-th adjustment factor; Dij is the landslide density in the j-th secondary classification
interval of the i-th adjustment factor; and D is the landslide density in the whole area. The
parameters of Nij, Sij, N, and S are the same as those in Section 3.2.1.

3.2.3. Certainty Factor

In 1975, Shortliffe and Buchanan proposed a segmented probability function called
the Certainty Factor (CF). In 1986, the model was further improved by Heckerman to
analytically study the sensitivity of factors affecting the occurrence of an event. The
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statistical relationship is believed to determine the probability of landslide occurrence
between known landslides and adjustment factors [48]. The representation is as follows:

CFij =

⎧⎨⎩
PPij−PPs

PPs(1−PPij)

(
PPij < PPs

)
PPij−PPs

PPij(1−PPs)

(
PPij ≥ PPs

) (5)

where CFij indicates the certainty coefficient of landslide occurrence in the j-th secondary
classification interval of the i-th factor and takes values in the range of [–1, 1]. When CF > 0,
a more significant value indicates a higher probability of landslide; when CF < 0, a smaller
value indicates a lower probability of landslide; when CF = 0, it is impossible to judge
whether a landslide will occur. PPs is the a priori probability of landslides occurring in the
entire study area, expressed as the ratio of the total number of landslides in the whole study
area to the total number of rasters in the study area. PPij is the conditional probability
of landslides occurring in the j-th secondary classification interval of the i-th adjustment
factor, which is usually expressed as the ratio between the number of landslides and the
number of rasters in the factor classification used for the study.

3.2.4. Evidential Belief Function

The Evidential belief function (EBF) is a model that incorporates spatial integration
and is rooted in the theory of the Dempster–Shafer evidence algorithm [49]. The EBF
method has been widely adopted in numerous research domains and has yielded favorable
outcomes when investigating susceptibility to landslides [50]. EBF has the benefit of being
able to effectively process diverse incomplete data, resulting in outputs that specifically
reflect belief (Bel), disbelief (Dis), uncertainty (Unc), and plausibility (Pls). There are four
parameters that comprise the EBF model, which are calculated by the following equations:

WEij =

N(L∩Eij)
N(L)

N(Eij)−N(L∩Eij)
N(A)−N(L)

(6)

Belij =
WEij

∑m
j=1 WEij

(7)

WEij =

N(L)−N(L∩Eij)
N(L)

N(A)−N(L)−[N(Eij)+N(L∩Eij)]
N(A)−N(L)

(8)

Disij =
WEij

∑m
j=1 WEij

(9)

Uncij = 1 − Disij − Belij (10)

Plsij = 1 − Disij (11)

where Belij is the degree of belief; Disij is the degree of disbelief; Uncij is the degree of
uncertainty; and Plsij is the degree of plausibility. The range of values is [0, 1]. N(L ∩ Eij)
and N(Eij) are the number of landslides and the number of rasters in the j-th secondary
classification interval of the i-th factor, and N(L) and N(A) are the number of landslides
and the number of rasters in the whole region, respectively. In this study, Bel was used as a
factor importance evaluation index. A higher Bel indicates a higher probability of landslide
occurrence, while a decrease in Bel indicates a decrease in the likelihood of landslides
occurring, and when Bel is 0, it means that no landslide data are available to prove the
probability of landslide occurrence.
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3.2.5. Weights of Evidence

An event’s likelihood of happening by combining different pieces of evidence can
be estimated using the weights of evidence (WOE) approach, which is a quantitative
method that employs a Bayesian criterion. It has been widely used by many scholars for
multivariate information synthesis and spatial decision support systems [51,52]. Nowadays,
many scholars use this model to assign weights to each landslide moderator to evaluate
and analyze the landslide susceptibility of a district [51,53]. The weights, both positive and
negative, along with the final combined weight, are calculated as follows:

Wij
+ = ln

P
(

B
D

)
P
(

B
D

) (12)

Wij
− = ln

P
(

B
D

)
P
(

B
D

) (13)

Cij = Wij
+ − Wij

− (14)

In the equation, P
(

B
D

)
and P

(
B
D

)
represent the probabilities of landslide occurrence

and non-occurrence, respectively, under the secondary classification level of a regulating
factor; P

(
B
D

)
and P

(
B
D

)
represent the probabilities of landslide occurrence and non-

occurrence, respectively, in areas except for the secondary classification level of a regulating
factor; within the second-level classification of this factor, B and D denote the count of
landslides and non-landslides, respectively, and, except for the second-level classification
of this factor, B and D correspond to the count of landslides and non-landslides; Cij stands
for comprehensive weight, the weight of the j-th secondary classification interval of the
i-th factor to the landslide. The larger the value of Cij, the more indicative the secondary
classification level of the factor is of the probability of landslide occurrence. If Cij = 0,
it means that the secondary classification level of the factor does not indicate landslide
occurrence; Cij > 0 indicates a favorable condition for landslide occurrence; and Cij < 0
indicates an unfavorable condition for landslide occurrence.

3.3. Tree-Based Machine Learning Models
3.3.1. Random Forest

An algorithm called random forest (RF) was proposed by Breiman to integrate mul-
tiple decision trees. It mainly extracts a plurality of samples from the initial dataset and
proceeds to train these gathered samples using the decision tree algorithm, then derives the
ultimate prediction outcome based on the combined decision tree results through a voting
process [30]. The RF algorithm finds its utility in both classification and regression tasks.
In contrast to conventional machine learning techniques like artificial neural networks,
logistic regression, and support vector machines, RF prevents model overfitting through
random sample selection and exhibits a level of resilience towards outliers. In addition,
it has high accuracy, facilitating comprehensive data examination of high-dimensional
feature data [19]. This research applies the RF algorithm within the Python 3.9 environment
using the ”sklearn. Encrypt” package.

3.3.2. Extreme Gradient Boosting

Chen T et al. introduced a technique called extreme gradient boosting (XGBoost) in
2016, representing a novel machine learning approach which can be used to scale up the tree
boosting algorithm, a popular method for landslide susceptibility modeling prediction in
recent years. Like RF, XGBoost is an integrated learner that uses decision trees as building
blocks. However, unlike RF, XGBoost uses boosting in its integration learning process [54].
By utilizing weak decision trees as the foundational learner during training, it amalgamates
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preferences to produce a robust collective evaluator. The algorithm effectively prevents
the occurrence of overfitting. It improves the model accuracy by improving the boosting
algorithm by adding a regularization term when addressing the loss function’s extreme
values. In addition, the convergence speed is faster and computational efficiency higher
than other algorithms. The main practical function of XGBoost is shown in Equation
(15). This research incorporates this technique within the Python 3.9 environment through
utilization of the “XGBoost” Python package.

ŷi
(t) =

t

∑
k=1

fk(xi) = ŷi
(t−1) + fk(xi) (15)

where ŷi
(t) represents the sample’s predictive outcome i after the t-th iteration; ŷi

(t−1)

signifies the preceding predictive outcome of t − 1 trees; fk(xi) denotes the function
associated with the t-th tree.

3.4. Model Evaluation Criteria
3.4.1. Receiver Operating Characteristic

The ROC curve is frequently utilized to assess the results of landslide susceptibility
experiments in a qualitative manner [55]. The horizontal axis corresponds to the false
positive rate (1-specificity), illustrating the accumulating percentage of terrain classified
from high to low susceptibility. Meanwhile, the vertical axis signifies the true positive
rate (sensitivity), indicating the accumulating percentage of landslide samples. The AUC
value reflects the probability of a randomly chosen positive sample outranking a randomly
chosen negative sample, and the model’s effectiveness in accurately predicting landslide
occurrence or absence is evaluated based on this metric [13]. In the case of AUC > 0.5,
a higher AUC value signifies a superior model fit. The formula for the calculation is
as follows:

AUC =
(∑ TP + ∑ TN)

(P + N)
(16)

where TP represents the count of accurately predicted landslide samples; TN represents the
count of correctly predicted non-landslide samples; P represents the total count of landslide
samples; and N represents the total count of non-landslide samples.

3.4.2. Confusion Matrix

When assessing the accuracy performance of a binary classification model for landslide
susceptibility, a confusion matrix is often used [56]. The true positive (TP) in the confusion
matrix indicates the number of accurately predicted landslide samples, whereas the false
negative (FN) signifies the quantity of incorrectly predicted landslide samples. Additionally,
the term “true negative” (TN) is used to describe the count of correctly predicted samples
that are not landslides. An incorrect prediction of non-landslide samples is what is known
as a false positive (FP). Using five statistical indicators, this study evaluated the accuracy of
the landslide susceptibility model in predicting future occurrences, including true positive
rate (TPR), true negative rate (TNR), accuracy (ACC), F1 score (F1), and kappa coefficient
(KC). In detail, TPR represents the proportion of correctly classified landslide samples;
TNR represents the proportion of correctly classified samples that are not landslides; Acc
represents the proportion of accurately classified samples in the entire set; and the F1
value is capable of offering a thorough evaluation of the model’s prediction performance
for landslide samples. It quantitatively represents the degree of consistency between
the predicted attributes of the samples and their actual attributes. The formula for the
calculation is as follows:

TPR(True Positive Rate) =
TP

TP + FN
(17)
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TNR(True Negative Rate) =
TN

FP + TN
(18)

Acc =
TP + TN

TP + FP + FN + TN
(19)

F1 − score =
2TP

2TP + FN + FP
(20)

KC =
P0 − Pe

1 − Pe
where P0 =

TP + TN
TP + FN + FP + TN

, Pe =
(TP + FN)(TP + FP)(TN + FN)(FP + TN)

(TP + FN + FP + TN)2 (21)

3.4.3. Root Mean Square Error between the Predicted and Actual Values of the Sample

To evaluate the precision of a model’s prediction, the commonly used approach is
to utilize the root mean square error (RMSE). A smaller RMSE value signifies that the
prediction results of the sample data are more closely aligned with the actual attributes,
and the model performs better [56]. In this research, the RMSEs for predicting the overall,
landslide, and non-landslide samples with their corresponding true values are calculated
in this paper. The results are named RMSE, RMSE-1, and RMSE-0, respectively.

RMSE =

√√√√ 1
N

N

∑
i=1

(Yi − f (Xi))
2 (22)

where N represents the number of samples within the specific category from which the
calculation will be performed; Yi represents the true value of the i-th sample; and Xi is the
predicted value of the i-th sample after model operation.

3.5. Shapley Additive ExPlanations

Shapley Additive exPlanations (SHAP) was suggested by Lundberg and Lee in 2017
as a game theory-based approach to interpret any machine learning model. In detail, the
term “Shapley” pertains to the calculation of the Shapley value for every characteristic
variable in the model, for each sample. The term “Additive” indicates that, for each sample,
the Shapley value of every characteristic variable can be combined. The term “exPlanation”
refers to the explanation of how each characteristic variable influences the predictive value
of the model for each individual sample. The Shapley value of each feature illustrates its
contribution to the final outcome forecast in order to explain the difference between the
actual and average predicted values [57,58]. The interpretability of features is provided by
SHAP both globally and locally and considers the interaction synergy between variables
while considering the impact of individual variables. Given the excellent interpretability
of SHAP for ML models, it has seen extensive use in interpreting disaster susceptibility
and ecological environment domains [59]. The purpose of this research was to develop a
landslide susceptibility model utilizing the RF and XGBoost algorithms, which was then
interpreted and analyzed using the Shapley value estimation method from the SHAP theory
of treeSHAP. The implementation of SHAP utilized the Python 3.9 library version 0.39.0 for
SHAP. The SHAP value can be calculated. The formula for the calculation is as follows:

ϕj(x) = ∑S⊆N\{j}
|S|!(|N| − |S| − 1)!

|N|!
[

f
(

xS∪{j}
)
− f (xS)

]
(23)

where ϕj(x) represents the SHAP value of the j-th feature, indicating the effect of that
feature on the sample x; N is the total number of features; S is a subset of N with feature j
removed; f (xS) represents the removal of features in j after removing the set of features
xS corresponding to the model predictions; f

(
xS∪{j}

)
represents the model predictions
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corresponding to the feature set xS∪{j} after inclusion of feature j; |S| denotes the size of
the set S; and |N| denotes the total number of features.

The average of the SHAP values is designed to measure the overall impact of the
features in the sample set on the model predictions. With the formula for calculation as
follows, we can calculate the average of the SHAP value.

Ij =
1
n ∑n

k=1

∣∣∣ϕ(k)
j

∣∣∣ (24)

where Ij represents the average SHAP value of the feature j; n is the size of the sample set;

and ϕ
(k)
j represents the SHAP value of the feature j in the sample k.

4. Results

4.1. Landslide Conditioning Factors Analysis

In this paper, correlations between 23 landslide moderation factor layers were calcu-
lated using MATLAB R2022a software. After obtaining the correlation coefficients between
the factors, we used the matplotlib.pyplot library in Python to visualize the correlation ma-
trix. According to Figure 6, the positive correlation between the factors becomes stronger as
the color gets lighter; the strength of the negative correlation between the factors increases
as the color becomes darker. The results show that, among the 23 factors, the magnitude
of the correlation coefficient between any pair of factors is below 0.6, indicating that the
correlation between the evaluation factors is small. In addition, this paper used SPSS 20.0
software to analyze the factors for multicollinearity, and the results are shown in Table 2.
All landslide adjustment factors had TOL values that were greater than 0.1; the VIF values
were less than 10. Among them, the lowest TOL was 0.31, while the highest VIF was
3.24, indicating no multicollinearity among the factors. The combined analysis of the two
indicators indicates that all factors satisfy the requirement of mutual independence and
can be involved in landslide susceptibility modeling and evaluation [60].

Table 2. Collinearity diagnostic results of landslide conditioning factors.

Factor TOL VIF Factor TOL VIF

MNDWI 0.8 1.25 Slope 0.31 3.21
NDVI 0.41 2.43 Slope variation 0.79 1.27

SPI 0.46 2.18 Slope direction 0.91 1.1
TWI 0.36 2.76 Profile curvature 0.61 1.65

Thickness of weathering layer 0.69 1.45 Number of days with heavy rainfall 0.6 1.67
Fracture zone density 0.67 1.5 Population density 0.71 1.4

Type of landform 0.55 1.82 Hydrogeology 0.66 1.52
Elevation 0.31 3.24 Soil erodibility 0.58 1.73

River density 0.74 1.36 Soil type 0.74 1.35
Mineral point density 0.45 2.2 Soil moisture 0.7 1.43

Road density 0.78 1.27 Total rainfall 0.63 1.59
Plane curvature 0.57

4.2. Model Structuring and Optimization

Before constructing a landslide susceptibility model utilizing the ML method, the
hyperparameters used for the different models need to be optimized [61]. After dividing
the sample data randomly into training and test sets in the ratio of 7:3 (295:129), to improve
the models’ ability to generalize, the training set was used to train the models with 10-fold
cross-validation. Additionally, the hyperparameters were optimized using the grid search
method [62]. The optimized hyperparameter values were also substituted into the model
for training to construct a model for determining the likelihood of a landslide. Table 3
displays the explanations and names of the hyperparameters that will be modified in the RF
and XGBoost models used in this research. Furthermore, the hyperparameters of different
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models that were optimized to obtain the optimal values using RF and XGBoost are listed
in Tables 4 and 5, respectively. The results showed that, based on the same modeling
method, the hyperparameter values varied when modeling using different factor data
types. Compared with the default parameters, when the optimized hyperparameters were
employed, the model showcased enhanced accuracy in both training and validation.

Figure 6. Correlation analyses between landslide conditioning factors. 1: MNDWI; 2: NDVI; 3: SPI;
4: TWI; 5: type of landform; 6: fracture zone density; 7: thickness of weathering layer; 8: elevation;
9: river density; 10: mineral point density; 11: road density; 12: plane curvature; 13: slope; 14:
slope variation; 15: slope direction; 16: profile curvature; 17: number of days with heavy rainfall;
18: population density; 19: hydrogeology; 20: soil erodibility; 21: soil type; 22: soil moisture; 23:
total rainfall.

Table 3. Interpretation of main hyperparameters of the RF and XGBoost models.

Methods Hyperparameter Definition and Explanation

XGBoost

n_estimators Number of sub-models
learning_rate The weights of the model generated for each iteration
max_depth Maximum depth of the tree, often used to avoid over-fitting

min_child_weight The sum of the minimum leaf node sample weights, which can effectively control overfitting

gamma Specifies the minimum loss function descent value required for node splitting. The larger the
value of this parameter, the more conservative the algorithm

subsample The proportion of subsamples used to train the model to the entire set of samples
colsample_bytree The proportion of features randomly sampled when building the tree

RF
n_estimators The number of decision trees in the forest
max_depth Maximum depth of the tree

max_features Number of features to consider when finding the optimal segmentation
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Table 4. Values of hyperparameters for XGBoost models based on different data types.

XGBoost-Initial XGBoost-FR XGBoost-IV XGBoost-CF XGBoost-EBF XGBoost-WOE

n_estimators 60 80 70 90 90 100
learning_rate 0.1 0.1 0.1 0.1 0.2 0.1
max_depth 10 10 10 10 10 10

min_child_weight 2 2 2 2 4 2
gamma 0.01 0.01 0.03 0 0.02 0.01

subsample 0.8 0.8 0.7 0.9 0.8 0.8
colsample_bytree 0.6 0.8 0.9 0.7 0.7 0.7

Table 5. Values of hyperparameters for RF models based on different data types.

RF-Initial RF-FR RF-IV RF-CF RF-EBF RF-WOE

n_estimators 70 80 80 80 80 80
max_depth 9 9 9 9 8 8
max_features 7 8 8 8 8 8

4.3. Landslide Susceptibility Maps for Different Models

This study constructed 12 landslide susceptibility prediction models using two ML
methods (RF and XGBoost) combined with six-factor data types (Initial, FR, IV, CF, EBF,
and WOE), respectively. Then, the LSIs for all raster cells in the study area were es-
timated. The estimated values cover a range of values [0, 1]. Finally, to generate the
corresponding LSMs, the LSIs of all raster cells in the study area were visualized using
ArcGIS10.2 software. In order to compare and analyze the zoning results of different
landslide susceptibility models, it is necessary to unify the classification thresholds of
susceptibility classes. Therefore, this study classified the LSMs in the study area into
five landslide susceptibility classes: very low, low, medium, high, and very high sus-
ceptibility. This classification was based on the fixed threshold method using intervals
of [0,0.20], (0.20,0.50], (0.50,0.90], (0.90,0.95], and (0.95,1.0]. As a result, six LSMs us-
ing the RF model (see Figure 7) and six LSMs using the XGBoost model (see Figure 8)
were obtained.

Overall, on the premise of the same factor data type, the LSI distributions obtained
using the RF and XGBoost models predictions are approximately the same, with significant
differences in details. In addition, LSMs generated using factor data processed by different
conditional probability models based on the same ML model have a high similarity in the
scattering of LSIs across the region. Compared with the LSMs generated using initial factor
data, there are fewer high-susceptibility areas, eliminating the spatially discontinuous
anomalous areas and effectively improving the reasonableness of the prediction results of
landslide susceptibility.

In order to conduct a quantitative analysis of the distribution of landslides across
various areas classified by their susceptibility levels, the statistical analysis tools in Ar-
cGIS10.2 were used to calculate the area, the quantity, and the frequency ratio of land-
slides in areas of distinct susceptibility grades (see Tables 6 and 7). The frequency ratios
of all models are on the rise with an increase in the susceptibility level except the sus-
ceptibility level area with the frequency value of 0 (not statistically significant). More-
over, the frequency ratio exhibited by all models within the high-risk zone significantly
surpasses that observed in the low-risk region. The LSMs generated in this study are
all reasonable.
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Figure 7. Landslide susceptibility maps based on different types of data using the RF model. (a) RF-
Initial; (b) RF-FR; (c) RF-IV; (d) RF-CF; (e) RF-EBF; (f) RF-WOE.

Figure 8. Landslide susceptibility maps based on different types of data using the XGBoost
model. (a) XGBoost-Initial; (b) XGBoost-FR; (c) XGBoost-IV; (d) XGBoost-CF; (e) XGBoost-EBF;
(f) XGBoost-WOE.
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The main objective of evaluating regional landslide susceptibility prediction outcomes
is to identify and be alert about areas at risk of landslides [63]. Therefore, in this study, the
“extremely high + high” susceptibility areas of different landslide susceptibility models is
mapped as the landslide risk area (see Figure 9). The statistical results show that, based
on the same factor data type, LSMs generated by XGBoost have marked more landslide
risk areas and have more landslide samples. However, the mapping of RF to the landslide
risk area is insignificant. For the XGBoost model, LSMs generated by different types of
factor data have different responses to landslide risk areas. With the exception of the
XGBoost-Initial model, the XGBoost-CF model, determined by the CF values of factor
data, encompasses a landslide risk region that constitutes 24.959% of the entire study
area, encompassing 91.121% of all landslide samples across the study area. The XGBoost-
CF model completely contains both landslide risk areas and those pertinent to landslide
samples and has good zoning results.

Table 6. Results of landslide susceptibility partition analysis using RF models.

Models
Landslide

Susceptibility
Partition

Number of
Rasters in
Partition

Percentage of the
Number of Rasters in

Partition (%)

Number of
Landslides in

Partition

Percentage of the
Number of

Landslides in
Partition (%)

Frequency
Ratio

RF-Initial

very low 963,793 31.072 0 0 0
low 399,163 12.869 1 0.467 0.036

medium 966,350 31.155 30 14.019 0.450
high 296,372 9.555 21 9.813 1.027

very high 476,116 15.350 162 75.701 4.932

RF-FR

very low 985,601 31.775 1 0.467 0.015
low 328,415 10.588 0 0 0

medium 1,207,486 38.929 41 19.159 0.492
high 255,378 8.233 35 16.355 1.987

very high 324,914 10.475 137 64.019 6.112

RF-IV

very low 1,007,537 32.482 0 0 0
low 306,201 9.872 2 0.935 0.095

medium 1,152,358 37.151 37 17.290 0.465
high 276,690 8.920 36 16.822 1.886

very high 359,008 11.574 139 64.953 5.612

RF-CF

very low 987,481 31.836 1 0.467 0.015
low 319,689 10.307 0 0 0

medium 1,128,281 36.375 48 22.430 0.617
high 267,800 8.634 25 11.682 1.353

very high 398,543 12.849 140 65.421 5.092

RF-EBF

very low 951,642 30.680 0 0 0
low 386,748 12.469 0 0 0

medium 1,090,413 35.154 39 18.224 0.518
high 279,600 9.014 41 19.159 2.125

very high 393,391 12.683 134 62.617 4.937

RF-WOE

very low 970,618 31.292 0 0 0
low 533,070 17.186 2 0.935 0.054

medium 855,243 27.573 38 17.757 0.644
high 305,781 9.858 27 12.617 1.280

very high 437,082 14.091 147 68.692 4.875
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Table 7. Results of landslide susceptibility partition analysis using XGBoost models.

Models
Landslide

Susceptibility
Partition

Number of
Rasters in
Partition

Percentage of the
Number of Rasters in

Partition (%)

Number of
Landslides
in Partition

Percentage of the
Number of

Landslides in
Partition (%)

Frequency
Ratio

XGBoost-Initial

very low 1,078,778 34.779 0 0 0
low 315,682 10.177 1 0.467 0.046

medium 883,914 28.497 13 6.075 0.213
high 260,888 8.411 21 9.813 1.167

very high 562,531 18.136 179 83.645 4.612

XGBoost-FR

very low 969,022 31.241 1 0.467 0.015
low 359,445 11.588 0 0 0

medium 1,050,424 33.865 18 8.411 0.248
high 211,581 6.821 20 9.346 1.370

very high 511,322 16.485 175 81.776 4.961

XGBoost-IV

very low 990,492 31.933 0 0 0
low 336,805 10.858 2 0.935 0.086

medium 968,651 31.229 28 13.084 0.419
high 231,242 7.455 29 13.551 1.818

very high 574,604 18.525 155 72.430 3.910

XGBoost-CF

very low 1,000,714 32.262 1 0.467 0.014
low 391,725 12.629 0 0 0

medium 935,183 30.150 18 8.411 0.279
high 220,239 7.100 5 2.336 0.329

very high 553,933 17.858 190 88.785 4.972

XGBoost-EBF

very low 943,278 30.411 0 0 0
low 449,747 14.500 0 0 0

medium 993,538 32.031 24 11.215 0.350
high 200,146 6.453 28 13.084 2.028

very high 515,085 16.606 162 75.701 4.559

XGBoost-WOE

very low 931,095 30.018 0 0 0
low 480,175 15.481 1 0.467 0.030

medium 900,990 29.047 18 8.411 0.290
high 214,484 6.915 23 10.748 1.554

very high 575,050 18.539 172 80.374 4.335

4.4. Model Accuracy Evaluation

The ROC curves express the correlation between the cumulative proportion of land-
slide occurrences and the landslide susceptibility index. They are used to evaluate the
models’ overall performance and generalization ability. Figure 10 displays the ROC
curves for the different models, which were derived from the testing set; Figure 11 dis-
plays the ROC curves of the various models when considering the entire sample set.
Figure 11 displays the AUC values for the RF model and the XGBoost model on the
testing set and the full sample set, considering different types of factor data. The AUC
values of both the RF and XGBoost models for the testing set and the full sample set
are nearly equal to 1. This implies that there is strong generalization ability among all
models, and there is no occurrence of overfitting or underfitting. In addition, for the
same type of factor data, the AUC values of the XGBoost model exhibited greater signif-
icance compared to those of the RF model, which proves the superiority of the XGBoost
model again.
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Figure 9. The statistical results of risk area. (a) RF models; (b) XGBoost models.

Figure 10. ROC curves of the seven models for the testing set. (a) RF models; (b) XGBoost models.
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Figure 11. ROC curves of the seven models for the full sample set. (a) RF models; (b) XGBoost models.

In this study, the prediction accuracy and feasibility of different landslide susceptibility
models were evaluated based on the confusion matrix and sensitivity, specificity, accuracy,
F1 score, and kappa coefficient with the premise of validating the overall performance of
the models. The accuracy evaluation of distinct RF models and XGBoost models, based on
the complete sample dataset, is depicted in Tables 8 and 9, respectively. Overall, all models
can provide an accurate representation of the landslide susceptibility in the study area. The
maximum number of prediction errors for landslide samples is two; a maximum of five
predictions can be made for non-landslide samples. In general, models built with XGBoost
had higher prediction accuracy than RF models when using the same type of factor data
for the samples. In addition, the LSMs generated using factor data processed by different
conditional probability models have higher prediction accuracy than the initial factor data.
Among them, RF-EBF and XGBoost-EBF models constructed based on EBF data for factors
had the highest prediction performance. They have improved TPR by 0.467, TNR by 1.869,
accuracy by 1.168, F1 score by 0.012, and kappa coefficient value by 0.023 compared to the
RF-Initial and XGBoost-Initial models. The XGBoost-CF model and XGBoost-FR model
each had a prediction error number of one for landslide and non-landslide samples, and
the prediction performance of landslide susceptibility ranked second.

Table 8. Statistics of landslide susceptibility partition results based on RF models.

TP FN TN FP TPR TNR Acc F1 KC

RF-Initial 213 1 209 5 99.533 97.664 98.598 0.986 0.972
RF-FR 213 1 212 2 99.533 99.065 99.299 0.993 0.986
RF-IV 212 2 214 0 99.065 100 99.533 0.995 0.991
RF-CF 213 1 212 2 99.533 99.065 99.299 0.993 0.986

RF-EBF 214 0 213 1 100 99.533 99.766 0.998 0.995
RF-WOE 212 2 212 2 99.065 99.065 99.065 0.991 0.981

Table 9. Statistics of landslide susceptibility partition results based on XGBoost models.

TP FN TN FP TPR TNR Acc F1 KC

XGBoost-Initial 213 1 209 5 99.533 97.664 98.598 0.986 0.972
XGBoost-FR 213 1 213 1 99.533 99.533 99.533 0.995 0.991
XGBoost-IV 212 2 214 0 99.065 100 99.533 0.995 0.991
XGBoost-CF 213 1 213 1 99.533 99.533 99.533 0.995 0.991

XGBoost-EBF 214 0 213 1 100 99.533 99.766 0.998 0.995
XGBoost-WOE 213 1 212 2 99.533 99.065 99.299 0.993 0.986
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The reliability of the model is crucial in the work of predicting landslide susceptibil-
ity. Suppose we only pay attention to the model’s prediction accuracy and disregard its
reliability and stability. Under these circumstances, the landslide susceptibility model will
lose substantial application significance [64]. Therefore, this study examined the model’s
reliability and stability in addition to assessing its prediction performance. Figures 12
and 13 show the analysis of the scatter of target and output values of the sample data set
based on different types of data types for the RF and XGBoost models, respectively. The
RMSE values for the XGBoost model were lower than those for the RF model, including
RMSE, RMSE-1, and RMSE-0, when using the same factor data, which were more stable and
reliable models. Among them, the RMSE values were reduced by 0.0151–0.0305, RMSE-1
by 0.0077–0.0276, and RMSE-0 by 0.0163–0.0367.

Figure 12. RMSE for RF models based on different data types. (a) RF-Initial; (b) RF-FR; (c) RF-IV;
(d) RF-CF; (e) RF-EBF; (f) RF-WOE.

 
Figure 13. RMSE for XGBoost models based on different data types. (a) XGBoost-Initial; (b) XGBoost-
FR; (c) XGBoost-IV; (d) XGBoost-CF; (e) XGBoost-EBF; (f) XGBoost-WOE.
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In addition, the landslide susceptibility model built using the factor data obtained after
conditional probability model processing exhibits a reduced RMSE for predictive reliability
compared to the initial factor data for the same machine learning model. The RMSE values
were reduced by 0.0074–0.0185 for the RF models except for RF-WOE. For the XGBoost
models, the RMSE values were decreased by 0.0117–0.0186 except for XGBoost-WOE. The
WOE model did not improve the performance of the other conditional probability models.
The reason that the WOE model did not improve the model performance as much as
other conditional probability models was that the weights of evidence for the secondary
classification of the factors depended on the number of pixels of the landslides during
the modeling process, and the method overestimates or underestimates the weights if
the second level of classification for a factor is minimal and the landslides are not evenly
distributed. Accordingly, instead of calculating the area of each landslide, the number of
spaces where landslides occur was chosen as a modeling sample in this paper. Therefore,
it is inevitable that the WOE model does not enhance or even reduce the performance of
the landslide susceptibility prediction model in this study. From a comprehensive analysis,
the above findings demonstrate that selecting a suitable conditional probability model has
an essential influence on developing stable and reliable landslide susceptibility models.
Moreover, among the 12 models, the XGBoost-CF model has the lowest RMSE value (RMSE
= 0.0807, RMSE-1 = 0.0929, RMSE-0 = 0.0663) and the highest stability and reliability.

In summary, the XGBoost model effectively enhances the prediction performance of
landslides compared with the RF model. Among them, the XGBoost-CF model stands out
as an effective solution for enhancing the accuracy of predictions made by the model while
ensuring the reasonableness of landslide susceptibility zoning results and has the highest
stability and reliability among all models. Therefore, the XGBoost-CF model outperforms
the other 11 models in this study, making it the most optimal choice.

4.5. Shapley Additive ExPlanations (SHAP) Analysis
4.5.1. Factor Importance Based on Shapley Value

To obtain a general understanding of which adjustment factors hold the greatest signif-
icance in relation to the landslide susceptibility model, this study uses the “summary_plot”
function to draw the Shapley value of each adjustment factor for each sample, which shows
which factors have the most critical influence on the landslide and their influence range
on the data set. As shown in Figures 14 and 15, four landslide susceptibility models based
on both Initial and CF types of factor data and using RF and XGBoost rank the factors
according to the sum of Shapley values of all sample data and use Shapley values to show
the influence distribution of each factor on the model output. The points in the figure
represent the sample data, and the color indicates whether the factor value of each sample
is high or low (red: high, blue: low). The color enables us to match how the change in factor
eigenvalue affects the change in landslide susceptibility. The position on the horizontal
axis is determined by each Shapley value. However, the overlapping points fluctuate in the
vertical axis direction so that we can know the Shapley value distribution of each factor,
and their importance sorts these features.

The outcomes showed that there was both uniformity and variability in the distribu-
tion and ranking of Shapley values across various landslide susceptibility models. The
uniformity is demonstrated by the fact that slope, SPI, TWI, mineral point density, and
elevation are all rated as the most influential factors in the different models. Among them,
the slope has the highest Shapley value due to its extensive extension in the horizontal
axis direction, so it is considered the factor with the highest importance and interaction in
landslide susceptibility prediction. As for the several factors ranked lower in the different
summary plots of SHAP, although their Shapley values are lower, they also impact the
prediction performance of the model and are indispensable for constructing excellent and
comprehensive landslide susceptibility models.
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( a ) RF - Initial ( b ) RF - CF

Figure 14. Summary plots of SHAP values derived from RF models (top 20). (a) RF-Initial; (b) RF-CF.

(a) XGBoost - Initial (b) XGBoost - CF

Figure 15. Summary plots of SHAP values derived from XGBoost models (top 20). (a) XGBoost-Initial;
(b) XGBoost-CF.
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The differences are mainly manifested in two aspects. Firstly, although different
models have good performance in predicting landslides, the chosen models could improve
the consistency of their decision-making mechanisms, causing variations in the distribution
of Shapley values for the same factor across different models. Secondly, when founded
on the initial factor data, the positive and negative correlations of different factors on
landslide susceptibility prediction are different in the model. On the contrary, in the model
constructed using the factor data obtained after the conditional probability model, almost
all factors positively correlate with landslide prediction. For example, when using the initial
data of factors, continuous factors such as TWI, NDVI, MNDWI, road density, and plane
curvature and discrete factors such as hydrogeology and the occurrence of landslides are
more favorable when the factor value is lower, indicating a negative correlation with soil
type. However, the data processed by conditional probability models such as FR, IV, and CF
positively correlate with landslide prediction. This is because the conditional probability
model based on statistical thought can standardize the factors with landslide data, as when
the factor value increases, the risk of landslide also increases. On the premise of improving
the prediction accuracy, the significant influence of factors on landslide prediction can be
expressed more clearly, and the interpretability of the model to factors and their data can
be increased.

The above analysis results show that the integrity of landslide adjustment factors, the
data types of factors, and the prediction performance of the landslide susceptibility model
will be greatly influenced by the modeling methods.

The average of the absolute Shapley values for each sample in Figures 14 and 15
was computed in order to determine the individual significance of each feature in pre-
dicting landslides, and the factor importance was plotted using the “shap.plots.bar”
function (Figures 16 and 17). The outcomes showed that the contribution and impor-
tance ranking of the main factors affecting landslide prediction (top nine) varied among
the different landslide susceptibility models. However, among all the models, the five
factors of slope, SPI, TWI, mineral point density, and elevation are in the top five po-
sitions and make the main contribution to the accurate prediction of landslides. The
sum of average SHAP absolute values of the following 14 factors are in the range of
[0.04, 0.12], which have less influence on landslide prediction. Secondly, compared
to the RF model, the XGBoost model highlights the pronounced impact of the slope
factor more.

( a ) RF - Initial ( b ) RF - CF

Figure 16. Factor importance plot derived from RF models. (a) RF-Initial; (b) RF-CF.
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( a ) XGBoost - Initial ( b ) XGBoost - CF

 

Figure 17. Factor importance plot derived from XGBoost models. (a) XGBoost-Initial; (b) XGBoost-CF.

4.5.2. Influence of Factors on Prediction Result

In order to systematically display the overall results of the sample data set in the
model and the influence degree of the main features on the predicted values of the samples,
the Shapley value matrix is transferred to the “Shapley. Plots. Heat Map” function, and
the heat maps of the RF model and XGBoost model based on different types of factor data
are drawn by this function (Figures 18 and 19). In the figure, the X axis is each sample, the
ranking of samples is based on the hierarchical clustering method, and the samples are
clustered by Shapley value. The Y axis is the influence of each factor on the sample. The
color describes the impact of the factor on the sample. Above the color matrix is a curve
formed by connecting the output values of the model. The bar chart on the right shows the
global importance of each factor in the model.

Figure 18. Heatmap plots derived from RF models. (a) RF-Initial; (b) RF-CF.

According to the analysis, the heatmap can clearly show how the landslide adjustment
factors generate the predicted value of each sample through the stacking of factors. It also
shows the direction and strength of a factors’ influence on predicting landslide susceptibility,
which achieves the interpretability and transparency of the model. In addition, for the
same type of factor data, the heatmap’s prediction curves indicate that the XGBoost model
produces highly smooth prediction results, while the RF model’s prediction results show
relatively low smoothness. Among them, the XGBoost-CF model stands out among the
others with its smooth prediction curve, as well as achieving the highest levels of prediction
accuracy and stability. The findings of this research align with the analysis findings
presented in Section 4.4, which again proves the superiority of the XGBoost-CF model.
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Figure 19. Heatmap plots derived from XGBoost models. (a) XGBoost-Initial; (b) XGBoost-CF.

4.5.3. Dependence and Interaction of Factors

Dependence plots show the marginal effect of one or two features on the predicted
outcome of a landslide susceptibility model, and they can show whether the relationship
between landslide moderators and predicted values is monotonic, non-monotonic, or more
complex. Dependency plots of factors fall into two categories. One describes how a single
factor affects the predicted outcome of landslide susceptibility across the entire dataset.
The other describes the effect of variables from two factors on the predicted development
under interaction [36,65].

Examples of models used in this study include XGBoost-Initial and XGBoost-CF,
based on different types of factor data from the whole modeling dataset. The function
“shap.dependence_plot” is utilized for plotting single-factor dependence plots and an-
alyzing the impact of the primary influential factors in each model on the prediction
outcomes. Every variable in the dataset is represented by a point on the dependence plot;
the value of a specific factor in the dataset is plotted on the horizontal axis, while the
Shapley value for each sample of that feature is plotted on the vertical axis. The Shap-
ley value indicates the extent to which that feature influences the prediction outcomes
of the model. Figure 20 shows the factor dependence plots of the top nine most impor-
tant factors in the XGBoost-Initial model. Different factors have different relationships
with the prediction results across the entire dataset. Firstly, taking the slope factor as
an example, the slope and the prediction results are monotonic. When the slope is less
than 10 or more than 20, the increase in slope does not obviously result in an increase
in the probability of a landslide, which shows that this range is conducive to landslide
detection. However, when the slope is in the range of [8,18], the model is insensitive to
detecting landslides, and most of the prediction errors are in this range. Among them,
when the slope is greater than 18, the occurrence of landslides benefits from a Shapley
value that is greater than 0. Secondly, SPI is not monotonic with the predicted results,
and Shapley’s value changes sharply with the increase in SPI value. If the SPI value falls
between 2 and 6, the Shapley value will be greater than 0 and the landslide risk will be
elevated. Finally, the total rainfall is monotonic with the predicted results. If the total
rainfall exceeds 1500 mm, then the Shapley value will be greater than 0, and landslide risk
will be increased. The above analysis results of individual factors are in high agreement
with the objective characteristics of landslides in this study area. Therefore, the dependence
plots of a single factor based on the initial data can clearly show the complexity between
factors and landslides and the interval and sensitivity of factors that affect the occurrence
of landslides.
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Figure 20. Single-factor dependence plots of the main factors based on the XGBoost-Initial model.
(a) Slope; (b) SPI; (c) TWI; (d) mineral point density; (e) elevation; (f) plane curvature; (g) MNDWI;
(h) NDVI; (i) total rainfall.

The dependence plot of the top nine factors in the importance ranking in the XGBoost-
CF model is shown in Figure 21. Compared with the XGBoost-Initial model, the most
obvious difference is that the scattering of the sample Shapley values does not have interval
continuity; the scale value of the sample present on the horizontal axis is equal to the CF
value of each secondary classification interval of the factor, and for the same factor data,
the Shapley values of the samples of the secondary classification are scattered vertically
along the vertical axis. The factor scatter’s Shapley value increases as the CF value of the
factor increases, showing a positive relationship with the prediction results.

According to the dependence relationship between the factors based on CF value and
the outcome of the prediction, the inconsistency between the influence degree of the factors
obtained by SHAP and the statistical results calculated by the CF model can be observed.
For example, as the factor CF value increases, the dispersion interval of the Shapley value
for the slope factor also increases. Additionally, when the CF value of the slope is greater
than 0, all the Shapley values of the samples are greater than 0. Thus, the factor positively
affects landslides. However, in the case where the slope’s CF value equals −0.622, the
Shapley value of certain samples exceeds 0, contradicting the statistical significance of the
CF model. Likewise, when the CF value for the elevation factor surpasses 0, the Shapley
values of all samples are greater than 0 as well. However, when the CF value is −0.034, it
implies that the Shapley value of the samples in the secondary classification range of the
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corresponding factor is positive, indicating that the factor also encourages the occurrence
of landslides.

 

Figure 21. Single-factor dependence plots of main factors based on the XGBoost-CF model. (a) Slope;
(b) SPI; (c) elevation; (d) TWI; (e) mineral point density; (f) MNDWI; (g) NDVI; (h) soil moisture;
(i) total rainfall.

The statistical significance of the CF model will not be fully considered when using
the XGBoost algorithm combined with the CF data of the factors for landslide susceptibility
prediction. Instead, the optimization aims to enhance the prediction performance of the
sample by optimizing the degree of influence of the CF values on the prediction results
in a global manner. Therefore, a priori statistical results of the influence of the factors on
landslides obtained using the conditional probability model and the impact of the factors
on the predicted results obtained using the ML method possess a notable discrepancy. The
coupled model is beyond the capabilities of a basic superposition calculation to analyze.

From the analysis results of the single-factor dependence of XGBoost-Initial and
XGBoost-CF models, the influence of individual factors on landslide susceptibility pre-
diction results can be more comprehensively explained by considering both the initial
data of factors and the factor data processed by the conditional probability model, taking
into account their characteristics together. It is evident that this approach yields a clearer
understanding of the prediction of landslide susceptibility.

Landslide phenomena arise from the combined effect of various factors. Therefore, it
is important to investigate the relationship of how a factor interacts with another factor
to influence the prediction results of landslide susceptibility once the extent of influence
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of a single factor regarding the outcome forecast has been analyzed. Figure 22 shows the
double-dependence plot of the slope factor with the remaining main influencing factors in
the XGBoost-Initial model.

Figure 22. Plots of SHAP interaction effects based on the XGBoost-Initial model. (a) Slope and SPI;
(b) slope and TWI; (c) slope and mineral point density; (d) slope and elevation; (e) slope and plane
curvature; (f) slope and NDVI; (g) slope and MNDWI; (h) slope and total rainfall.

The points in the figure indicate the Shapley values for every factor in all samples.
Except for slope, the horizontal coordinates represent the range of values for the factors that
exert the greatest impact on landslides. The vertical coordinates indicate the corresponding
Shapley values for each sample. The color analyzes the distribution of the slope factor in
the process of other factor changes. Throughout the dataset, landslide-prone samples with
higher slope values are overwhelmingly samples with larger Shapley values in the other
factors. This suggests a strong positive interaction between slope and other factors that can
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promote landslides. For example, for areas with SPI values at [2,6], the presence of larger
slope values and Shapley values greater than 0 in the samples indicates a higher likelihood
of landslides. Most sample points have larger slope values in the region where mineral
point density is greater than 0, contributing to landslides. When the amount of rainfall
surpasses 1500 mm, the majority of samples showing positive Shapley values tend to be
found in regions characterized by steeper slopes. This demonstrates that the occurrence of
landslides can either be enhanced or inhibited by the interaction between the factors and
slope, which confirms that slope is the main influence of landslides in the region.

Based on Figure 23, in the XGBoost-CF model, if a factor’s CF value is above 0, the
CF value of the slope for the sample, which has a Shapley value greater than 0, tends to be
significant rather than being 0. It can be seen that slope and other main influencing factors
also have a positive mutual effect with landslide prediction. As with the single dependence
of the XGBoost-CF model, the horizontal axis is not sorted by the order of the classification
intervals but by the CF values corresponding to the different classification intervals of
the factors from smallest to largest. After analysis, as the CF values of the main factors
affecting the slope increase, the number of samples with CF values greater than 0 for the
slope gradually increases. The findings indicate that the mutual effect of the slope and each
factor significantly affects the accuracy of prediction of landslide susceptibility. Moreover,
the efficacy of the conditional probability model in improving the model’s performance
is demonstrated.

Figure 23. Cont.
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Figure 23. Two-factor dependence plots of main factors based on the XGBoost-CF model. (a) Slope
and SPI; (b) slope and elevation; (c) slope and TWI; (d) slope and mineral point density; (e) slope and
MNDWI; (f) slope and NDVI; (g) slope and soil moisture; (h) slope and total rainfall.

5. Discussion

5.1. Features and Advantages of SHAP

When using the ML method to predict landslide susceptibility, the metrics can only
account for a portion of the outcomes that the model forecasts, such as accuracy, precision
rate, and recall rate. The model’s performance may fluctuate when various environmental
factors change in the dimensions of time and space. Therefore, it is critical to understand
how the model based on the ML method can make some decisions by modeling. To ensure
the reliability, fairness, and transparency in the landslide susceptibility prediction model,
the model’s explanation should include three aspects:

1. An understanding of whether each feature’s influence on the model’s final decision-
making result is positive or negative along with the explanations for the res-
pective influence.

2. An ability to find the feature interactions in the model and analyze how the interac-
tions between features affect the prediction results of the landslide susceptibility model.

3. A local decision evaluation of the typical sample data in the model besides the global
interpretation of the model.

The above is of great significance in explaining how the adjustment factors of the input
model affect landslide susceptibility.

The traditional feature importance-ranking method can reflect the importance of each
feature to landslide development locally and intuitively and illustrate which character-
istics exert a considerable influence on the final model. Still, it cannot clearly show how
the features affect the outcome of the forecast. One of the key benefits of the Shapley
value is its ability to accurately represent the impact of each feature on every sample.
It shows the positive and negative impact of features on the target. As shown in Fig-
ure 24, taking XGBoost-Initial and XGBoost-CF models as examples, the ranking results
of landslide susceptibility importance obtained by using three characteristic importance
calculation methods (weight, gain, and cover) attached to XGBoost are different and have
significant differences. However, using the SHAP method based on Mean (|Tree SHAP|)
can effectively avoid this phenomenon and has a high degree of attribution consistency
(see Figure 25).

It can be seen that, given the complexity of the landslide phenomenon, there are
unique advantages to analyzing the decision-making results of landslide susceptibility by
using the SHAP interpretable method of ML model: (1) In addition to addressing the issue
of multicollinearity, SHAP also takes into account the impact of individual variables and
the combined effect of variables on the prediction outcomes. (2) SHAP not only contains
more feature information than the traditional feature importance-ranking method but also
fully ensures the consistency of global features and local samples.
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Figure 24. Global feature importance calculation in XGBoost. (a) XGBoost-Initial model
(im portance_type = “weight”); (b) XGBoost-CF model (importance_type = “weight”);
(c) XGBoost-Initial model (importance_type = “cover”); (d) XGBoost- CF model
(importance_type = “cover”); (e) XGBoost-Initial model (importance_type = “gain”); (f) XGBoost-
CF model (importance_type = “gain”).

Figure 25. SHAP-based global feature importance calculation (top 20). (a) XGBoost-Initial model;
(b) XGBoost-CF model.
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It is important to note that this study exclusively utilizes SHAP to elucidate how
various RF and XGBoost models, constructed with different types of factor data, generate
predictions of landslide susceptibility. In doing so, it does not provide an objective explana-
tion based on realistic principles. The RF and XGBoost models are developed using specific
sample data, and thus any modification to the factors or samples may lead to alterations
in the final decision regarding landslide susceptibility. Consequently, SHAP cannot be
regarded as a straightforward causal model. To ensure that the explanatory results of the
landslide susceptibility model closely align with objective reality, it is crucial to select a
model with outstanding performance and ensure the accuracy of the sample data as well
as the completeness of the adjustment factors.

5.2. Local Interpretation of Typical Samples

SHAP can explain the landslide prediction by landslide adjustment factors in the
global dimension and analyze the influence of different factors in a single sample on
landslide prediction to the local extent [40,41]. SHAP can visualize the contribution of
factors to the n-th sample, find the explanation of the prediction results of a specific sample,
and expose the model’s decision-making process for this sample. This study uses the local
interpretation function of samples based on SHAP to analyze the contribution of factors to
landslide and non-landslide samples. The study area utilized the RF-Initial, XGBoost-Initial,
RF-CF, and XGBoost-CF models to interpret and analyze the locality of two representative
landslide samples and two non-landslide samples.

For Case 1 (Figure 26), the predicted values of the four models are 1.00, 1.02, 1.00, and
1.00, respectively, and the prediction results of all models are more accurate and judged to
be landslides. Topographic factors such as slope, SPI, and elevation positively contribute
to landslides, and their corresponding Shapley value sums are more significant than 0.4.
Although total rainfall, MNDWI, and soil type also contribute positively to this landslide,
the degree of contribution is more minor, and their Shapley values are all around 0.01. The
analysis results are consistent with the objective facts.

Figure 26. Cont.
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Figure 26. Local interpretation of the susceptibility of landslide Case 1. (a) Time sequence image of
landslide area (from Google Earth); (b) RF-Initial; (c) XGBoost-Initial; (d) RF-CF; (e) XGBoost-CF.

For Case 2 (Figure 27), the four models made predictions with values of 1.00, 0.96, 0.99,
and 1.00, respectively. The RF-CF and XGBoost-CF models were the most precise in assess-
ing the occurrence of landslides. Alongside topographic factors like slope, SPI, elevation,
and TWI, mineral point density also plays a notable role in causing landslides, as reflected
by Shapley values of 0.1 and 0.15. Moreover, the lower vegetation cover (NDVI = 0.117)
allows landslides to develop. The Shapley value was in the interval of [0.02, 0.05]. Thus, it
can be seen that the human mining and engineering behavior disrupts the state of equilib-
rium of the original stresses within the slope’s rock formation, destabilizing the rock and
soil and leading to the landslide phenomenon. Therefore, slope is the primary condition
factor of this landslide, and mineral point density is the main trigger factor. The analysis
results are consistent with the objective facts.

Figure 27. Cont.
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Figure 27. Local interpretation of the susceptibility of landslide Case 2. (a) Time sequence image of
landslide area (from Google Earth); (b) RF-Initial; (c) XGBoost-Initial; (d) RF-CF; (e) XGBoost-CF.

For the typical non-landslide Case 1 (Figure 28), the predicted values of the four
models were 0.23, 0.18, 0.38, and 0.01, respectively, and the XGBoost-CF model has the
most accurate judgment result, and the judgment result is non-landslide. Although slope
positively impacts landslides, TWI, SPI, MNDWI, soil texture, and road density are not
conducive to landslides. The projected outcomes align with the objective facts.

 
Figure 28. Local interpretation of the susceptibility of non-landslide Case 1. (a) Time sequence
image of non-landslide area (from Google Earth); (b) RF-Initial; (c) XGBoost-Initial; (d) RF-CF;
(e) XGBoost-CF.
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In the case of non-landslide Case 2 (as shown in Figure 29), the four models had
prediction values of 0.74, 0.64, 0.17, and 0.00, respectively. It is worth noting that the
RF-Initial and RF-CF models made incorrect predictions, indicating a landslide occurrence.
The XGBoost-CF model had the most accurate judgment result, and the judgment result
was non-landslide, which was consistent with the objective facts.

 
Figure 29. Local interpretation of the susceptibility of non-landslide Case 2. (a) Time sequence
image of non-landslide area (from Google Earth); (b) RF-Initial; (c) XGBoost-Initial; (d) RF-CF;
(e) XGBoost-CF.

According to the results of the local interpretation of typical samples using four models,
the XGBoost-CF model of landslide susceptibility has the best prediction performance. The
role of the slope factor is always of utmost importance when predicting landslides on both a
global and local scale. Its contribution to the model is significantly higher than that of other
factors. Furthermore, when compared to the RF algorithm, the landslide susceptibility
model built with the XGBoost algorithm demonstrates greater accuracy in predicting
samples. Moreover, the interpretation of factors using XGBoost is more reasonable and
aligns better with objective facts.
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5.3. Local Interpretation of Samples with Wrong Prediction

The XGBoost-CF model exhibited the highest prediction performance in this study,
with a single prediction error for both landslide and non-landslide samples. Therefore,
to analyze the prediction errors of the models, this study provides a local interpretation
and analysis of the samples with prediction errors in the XGBoost-CF model based on
four models, RF-Initial, XGBoost-Initial, RF-CF, and XGBoost-CF, in the two dimensions of
model and data type.

In Figures 30 and 31, the images of the prediction error can see for both the landslide
and non-landslide samples, as well as the local interpretation bar graphs, respectively. The
Shapley value of each feature is represented on the horizontal axis. The vertical axis shows
the factors that have the greatest influence on the prediction result of the sample, with
the top factor being the most influential and the bottom factor being the least influential.
The factor values of the sample are displayed on the left side. The color of the bar chart
in the figure indicates the direction of influence of the factors on the prediction results,
with red indicating a positive influence and blue indicating a negative influence. The
length of the bars represents the degree of influence. Different models based on different
decision mechanisms possess considerable differences in the interpretation of locality for
the same samples. Figure 30a reveals a landslide sample with inaccurate prediction. The
time series images clearly indicate that the sample exhibits evident signs of a landslide
and falls into the category of a typical landslide sample. However, as seen in Figure 30b–e,
the model mainly emphasizes the negative contribution of slope to landslide prediction.
Compared with the positive effects of individual factors, the negative effects of slope,
elevation, and other factors on landslide prediction are more significant, making the model
output deviate from reality. We try to analyze the reasons for the prediction errors and
conclude the following: Since the non-landslide samples in this study are mainly selected
in areas with lower slopes, the number of samples with slope values less than 15◦ is as high
as 197 out of 214 non-landslide samples, and the slope value of this landslide sample is
13.617◦. Considering the conclusion that slope is the most influential factor in predicting
landslides, this leads to an error in the model’s prediction of the given sample, classifying
it incorrectly as a non-landslide.

On the other hand, for non-landslide samples with incorrect predictions in the XGBoost-
CF model, as can be seen in Figure 31a, the surface environment of the area where the
sample is located has remained unchanged in the time series and does not meet the con-
ditions for landslide occurrence. It belongs to a typical non-landslide sample. From the
output of the model, the RF-Initial and XGBoost-Initial models based on the initial data
of the factor predict this sample as a non-landslide sample, and the prediction results are
correct. Based on the factorial CF data, the RF-CF and XGBoost-CF models incorrectly
predicted this sample as a landslide sample. Analysis of the local interpretation of the
different models shows that, in the RF-Initial and XGBoost-Initial models, even though
factors such as TWI may have a positive effect on the occurrence of landslides, they are
far from being able to offset the significant negative impact of SPI and slope, ensuring the
stability of the sample properties. However, in the RF-CF and XGBoost-CF models, the
influence of slope on this sample changed from negative to positive, and the number of
factors that positively influenced the occurrence of landslides became larger. The combined
effect of all factors tends to predict the landslide of this sample positively, deviating from
the actual properties of the sample, and the prediction result is a landslide. The reason
for this phenomenon is that, when converting factor data using the certainty factor model,
the interval and number of secondary classifications will determine the reasonableness
and accuracy of the factor CF values, which will positively or negatively affect the model’s
performance. For example, because the secondary slope classification in this study was
not comprehensive enough, the non-landslide sample fell in the wrong interval. Hence,
the influence of the slope factor on this sample was biased in both direction and strength,
ultimately impacting the final decision of the model. However, when the model is built
by utilizing the factor data processed by the conditional probability model, the secondary
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classification of factors is served for for landslide samples, which cannot consider the
function of displaying the classification characteristics of complex non-landslide samples.
Therefore, this kind of error is inevitable.

 

Figure 30. Local interpretation of the susceptibility of landslide sample with wrong prediction.
(a) Time sequence image of landslide area (from Google Earth); (b) RF-Initial; (c) XGBoost-Initial;
(d) RF-CF; (e) XGBoost-CF.

In summary, the landslide susceptibility model constructed by the XGBoost algorithm
based on factorial CF data has excellent prediction performance. However, it also inevitably
needs a better prediction for the sample data. After systematic analysis, to avoid the number
of prediction errors to the maximum extent, the researcher improves the pre-processing
process of data from two aspects: improving the rationality of non-landslide samples and
the precision of the secondary classification status of factors.
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Figure 31. Local interpretation of the susceptibility of non-landslide sample with wrong prediction.
(a) Time sequence image of non-landslide area (from Google Earth); (b) RF-Initial; (c) XGBoost-Initial;
(d) RF-CF; (e) XGBoost-CF.

5.4. Post-Programming
5.4.1. Exploration and Discussion

This paper specifically examines how the model’s internal decision-making process
operates using the interpretable approach of SHAP. It is found that models constructed by
different ML methods and factor data types have different decision-making mechanisms,
and the same factor contributes to varying models with different directions, strengths,
and interactions. The slope is the main factor that interacts with other factors to promote
landslide occurrence. The proposed explainable landslide susceptibility model can explain
the samples in local dimensions, which analyzes the causes of landslide occurrence and
improves the prediction errors.

The research results in this paper further explore and apply the existing SHAP (Shapley
Additive exPlanations) methodology, which adds significant value to the explanatory
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analysis of modeling susceptibility to landslides. The following is a discussion of how
the research results of this paper complement, confirm, or contradict the current state of
SHAP research:

1. Exploration of different factor data types: Current landslide susceptibility research
is mainly focused on exploring the interpretation of different ML models, whereas
this paper’s analysis introduces new dimensions in considering different factor data
types, which are different from the present condition of research. This paper presents
the initial effort to employ the SHAP method in elucidating landslide susceptibility
models utilizing various types of factor data. This investigation introduces a fresh
standpoint to clarify the impact of diverse factor data types on the decision-making
process within the model.

2. Interpretability advantage: The research in this paper confirms the advantage of the
SHAP method in interpreting landslide susceptibility models constructed based on
the ML method. The internal decision-making mechanism of the model is thoroughly
explained in this paper through the utilization of the SHAP method, which improves
the transparency and interpretability of the model. Since existing studies have empha-
sized the importance of the SHAP method in providing model explanations [35], this
is consistent with the current state of research.

3. Comparison and analysis of internal decision-making within models: The study in
this paper compared and analyzed the differences in internal decision making within
landslide susceptibility models constructed based on different types of factor data.
This point, to some extent, contradicts the status quo that current research mainly
focuses on exploring the interpretation of different ML models because the research in
this paper focusing on the effect of factor data types on the decision-making process
within the models is not limited to just selecting and interpreting the models.

In summary, this paper’s findings offer a fresh perspective on the interpretation of
landslide susceptibility models by adding to the existing body of research, confirming
the interpretability advantages of the SHAP method, and comparing and analyzing the
differences in model internal decision making across factor data types.

5.4.2. A Discussion of Feature Importance Assessment for Fused Decision Tree Models

The above study demonstrated the superior performance of five conditional probabil-
ity models for landslide susceptibility prediction. However, as another class of commonly
used machine learning methods, decision tree models have unique advantages in terms
of interpretability and feature importance assessment. Decision tree models can provide
intuitive decision paths that help us understand the prediction mechanism of the models
under different feature conditions. To deepen the understanding of the role of decision
tree models in landslide susceptibility prediction, we plan to introduce ranked feature
importance analysis in future research work. Ranked feature importance analysis is a pow-
erful tool to measure how much each feature affects the model performance. By randomly
rearranging the feature values, we can observe the extent to which the features affect the ac-
curacy of the predictions. Applying this method to our decision tree and other conditional
probability models allows for further comparison of their differences in feature importance.
This provides insights into how much attention different models pay to different features
and reveals the impact of interactions between features on prediction results.

While the primary emphasis of this investigation was on five distinct models of
conditional probability, recognizing the feature importance scores of decision tree models is
crucial for model interpretation and understanding of prediction results. In future studies,
we plan to incorporate decision tree models into the framework of the current research to
comprehensively evaluate the performance of the different models in predicting landslide
susceptibility and to further investigate the influence of feature importance on decision
tree models.

In future research, the results of comparing the decision tree model with the five
conditional probability models mentioned above, in terms of ranking feature importance
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analysis, will be explored and integrated into the explanatory framework. By combining
the feature importance scores of the different models with their decision paths, a more
comprehensive explanation of the model’s prediction mechanism for landslide suscepti-
bility can be achieved. This will further enhance the comprehensiveness and explanatory
nature of the study and provide more accurate landslide management and prevention
recommendations to the regional authorities.

6. Conclusions

The objective of this study is to examine the variations among various types of factor
data in the decision-making process of the landslide susceptibility model built using the
integrated structure ML method. In this paper, we take 214 landslide samples from Cenxi as
an example and construct 12 different models for assessing landslide susceptibility utilizing
RF and XGBoost algorithms based on the initial factor data and five types of factor data
converted by conditional probability model, and find the model with the best performance
using multiple evaluation indices. In addition, we innovatively utilize a SHAP-based
interpretable model to evaluate and analyze the internal decision-making mechanisms of
models based on different types of factor data. The principal findings are as follows:

(1) The study successfully constructed 12 landslide susceptibility models, all of which
performed exceptionally well. Among these models, the XGBoost-CF model, created
using the XGBoost algorithm based on CF values, demonstrated superior stability
and reliability in evaluating landslide susceptibility in the study area. It achieved an
AUC value of 1, an accuracy value of 99.533, a kappa coefficient value of 0.991, and an
RMSE value of 0.0807. The results from the XGBoost-CF model indicated that 91.121%
of the landslides occurred within 24.959% of the high- and very-high-susceptibility
zones, while only 0.467% of the landslides were located in 44.891% of the low- and
very-low-susceptibility zones. This suggests that the model covers landslide risk areas
comprehensively and exhibits specificity in the identification of landslide samples,
thereby producing optimal zoning results.

(2) The utilization of SHAP as an interpretable approach enables a clear explanation of
the correlation between factors and the forecasted outcomes of landslide susceptibility.
The results demonstrate that landslide susceptibility models, which are constructed
using various machine learning techniques and different types of factor data, employ
diverse decision-making processes within the same study area. Specifically, the
impact direction and strength of a particular factor vary across different models, and
the interaction of the same factor has varying effects on the forecasted outcomes.
Moreover, the type of factor data plays a significant role in shaping the decision-
making process of the models. By taking into consideration the distinct characteristics
of different types of factor data, a more comprehensive understanding of how factors
influence the forecasted outcomes of landslide susceptibility can be attained.

(3) Using the interpretable method based on SHAP to analyze the factor importance and
factor interaction in different models, it can be determined that the main factor causing
landslides in this area is the slope, and it enhances the occurrence of landslides by
interacting with other factors.

(4) The explainable landslide susceptibility model proposed in this paper can explain
individual samples in the local dimension. It can not only explain and analyze the
causes of the occurrence of typical landslides but also be used to test whether the
selection of non-landslide samples is reasonable. Most importantly, by using this
function to explain and analyze samples with incorrect predictions locally, the causes
can be summarized and used to further improve the landslide susceptibility model.

In conclusion, in addition to different ML methods, the factor data type can seriously
affect the model’s decision results for individual samples. The reason for this analysis is
that different data types of the same factor contribute to the direction and strength of the
sample differently. It is evident that utilizing the factor data transformed by the conditional
probability model effectively enhances the prediction accuracy of the model. However, it is
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equally important to pay attention to the characteristics of the original factor data in order
to provide a comprehensive and clear explanation of how these factors impact the model’s
prediction results. The interpretable landslide susceptibility model proposed in this study,
based on various types of factor data, can offer substantial theoretical and technical support
to regional authorities responsible for managing and preventing landslide hazards.
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Abstract: The eastern margin of the Qinghai-Tibet Plateau is an extreme topography transition zone,
and characterized by significant vegetation zonation, in addition to geographic features (such as
enormous topographic relief and active tectonics) that control the occurrence of debris flows, which
are rapid, surging flows of water-charged clastic sediments moving along a steep channel and are
one of the most dangerous mountain hazards in this region. There is thus an urgent need in this
region to conduct a regional-scale debris flow susceptibility assessment to determine the spatial
likelihood of a debris flow occurrence and guarantee the safety of people and property, in addition to
the smooth operation of the Sichuan-Tibet transport corridor. It is, however, a challenging task to
estimate the region’s debris flow susceptibility while taking into consideration the comprehensive
impacts of vegetation on the occurrence of debris flows, such as the positive effect of root anchoring
and the negative effect of vegetation weight loads. In this study, a novel regional-scale susceptibility
assessment method was constructed by integrating state-of-the-art machine learning algorithms (such
as support vector classification (SVC), random forest (RF), and eXtreme Gradient Boosting (XGB))
with the removing outliers (RO) algorithm and particle swarm optimization (PSO), allowing the
impacts of vegetation on debris flow initiation to be integrated with the topographical conditions,
hydrological conditions, and geotechnical conditions. This method is finally applied to assess the
regional-scale susceptibility of debris flows in the Dadu River basin on the eastern margin of the
Qinghai-Tibet Plateau. The study results show that (i) all hybrid machine learning techniques can
effectively predict the occurrence of debris flows in the extreme topography transition zone; (ii) the
hybrid machine learning technique RO-PSO-SVC has the best performance, and its accuracy (ACC) is
0.946 and the area under the ROC curve (AUC) is 0.981; (iii) the RO-PSO algorithm improves SVC, RF,
and XGB performance (according to the ACC value) by 3.84%, 2.59%, and 5.94%, respectively; and
(iv) the contribution rate of ecology-related variables is almost only one-tenth that of topography- and
hydrology-related factors, according to the factor important analysis for RO-PSO-SVC. Furthermore,
debris flow susceptibility maps for the Dadu River basin were created, which can be used to assess
and mitigate debris flow hazards.

Keywords: debris flow susceptibility prediction; machine learning; the eastern margin of Qinghai-Tibet
Plateau; ecohydrological activation

1. Introduction

The eastern margin of the Qinghai-Tibet Plateau is located at the junction of the
Chengdu Plain and the Qinghai-Tibet Plateau, and this region features significant elevation
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differences, active tectonics, and active ecological conditions [1–3], all of which contribute
to the development of debris flows that endanger human lives and property in this area.
Debris flows are rapid, surging flows of water-charged clastic sediments moving along
a steep channel [4,5], and they are one of the most dangerous mountain hazards in this
region. Examples of these events include: (1) on 25 July 2020, a debris flow broke out in
Wujia gully, Zengda Township, causing damage to the houses at the mouth of the gully;
(2) on 17 June 2020, a mountain disaster chain occurred in Meilong gully, Danba County,
in which a debris flow broke out, blocking the Xiaojinchuan River and forming a barrier
lake with a volume capacity of 100 × 104 m3; then, a landslide occurred in Aniang Village
due to intense erosion at the slope foot caused by the burst of the barrier dam, completely
interrupting National Highway G350 and causing the deaths of two people and damage to
houses; and (3) on 22 June 2019, a debris flow broke out in Shelong gully, Jinchuan County,
with a volume of approximately 17 × 104 m3, causing 300 m2 of farmland and 14 houses
to be damaged and interrupting traffic and power lines [6]. As a result, there is an urgent
need in this region to perform a debris flow susceptibility assessment to determine the
spatial likelihood of a debris flow occurring in an area depending on local conditions [7],
and to ensure the safety of people and property, in addition to the smooth operation of the
Sichuan-Tibet transport corridor.

Because of the unique environmental conditions, this region is characterized by signif-
icant vertical and horizontal vegetation zonation [8,9], and geographic features that control
debris flow formation, such as enormous topographic relief and active tectonics, making it
an ideal natural research site for investigating the relationship between eco-hydrological
conditions and debris flow occurrence [9]. Many studies have been performed to improve
the understanding of the physical mechanisms governing how the mechanics and hy-
drology of vegetation affect debris flow formation [10–12]. The comprehensive effects
of vegetation on the occurrence of the landslide flows, such as the positive effect of root
anchoring and the negative effect of vegetation weight loads, increase the complexity of
debris flow environmental conditions [13–16], presenting a challenging task for accurately
predicting the debris flow susceptibility in the extreme topography transition belt when
the regional debris flow is going to occur [17,18].

Over the past several decades, scholars have proposed several strategies for predicting
debris flow susceptibility, including the expert method, data-driven statistical methods,
and deterministic approaches [19–21]. Among these methods, the expert method [22] is
utilized early in the evaluation of the likelihood of a debris flow occurrence, in which
the relationship between the occurrence of debris flows and causal factors is established
directly based on experts’ experience and background knowledge. This approach may be
controversial since it can be difficult to objectively quantify or evaluate an outcome [23].
Data-driven statistical methods, including principal component analysis [24], logistic
regression [25], and evidence weighting methods [19], are used to predict debris flow
susceptibility by mathematically modeling the link between debris flow occurrence and
disaster-causing factors [21,26]. As opposed to the expert technique, data-driven statistical
methods are more objective [27]. Furthermore, deterministic approaches are utilized to
investigate the physical mechanisms of debris flows and develop models to simulate debris
flow susceptibility [28,29]. These physical methods are commonly restricted to the local
scale and are challenging to use in regional-scale studies due to the need for sophisticated
input data and parameter calibrations [30,31]. Overall, there are few regional debris flow
susceptibility studies that look at the effects of vegetation on debris flow formation from
the perspective of physical mechanisms [18,32].

In recent years, machine learning algorithms have been increasingly used in the pre-
diction of debris flow susceptibility using remote sensing data [20,33,34]. The susceptibility
of debris flows can be estimated using machine learning models by fitting the nonlin-
ear correlations between debris flow occurrence and disaster-causing factors [35]. Many
studies have demonstrated that common machine learning algorithms, including gradient
boosting machines (GBMs) [35], support vector machines (SVMs) [36], and random forest
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(RF) algorithms [33], can produce regional-scale susceptibility prediction results with high
reliability. In addition, scholars generally perform debris flow susceptibility research by
combining machine learning models with other parameter optimization strategies to obtain
more accurate prediction results [37–39]. Due to the capabilities of automated parameter
optimization and data pre-processing, the hybrid model generally outperforms the above
common models in terms of accuracy of predicted outcomes and application in other areas.

The purpose of this study was to assess the occurrence likelihood of debris flows in
the Dadu River basin, a typical extreme topography transition zone on the eastern margin
of the Qinghai-Tibet Plateau, and to provide technical support for disaster prevention and
mitigation. In this study, some novel hybrid machine learning approaches for assessing
debris flow susceptibility were developed in collaboration with the removing outliers
algorithm and the particle swarm optimization algorithm, to integrate topographical
conditions, hydrological conditions, and geotechnical conditions with vegetation impacts
on debris flow formation from the perspective of physical formation mechanisms. Finally,
debris flow susceptibility mapping was performed based on these novel hybrid machine
learning methods.

2. Study Area

The Dadu River basin is located on the eastern margin of the Qinghai-Tibet Plateau,
at the transition zone between the Sichuan Plain and Qinghai-Tibet Plateau (Figure 1).
Due to the uplift of the Qinghai-Tibet Plateau, this region has become a typical extreme
topography transition with high mountains and deep valleys. Affected by enormous
elevation differences, the climate in the northern part of the study area is different from
that in the other regions. The northern part of the study area has a mountainous plateau
climate with little rainfall throughout the year, the annual precipitation is 500–750 mm,
with most precipitation falling as snow, and the snow accumulation period can last up to
5 months. The rest of the region has a monsoon climate with warm winters, hot summers,
and humid and rainy characteristics, with an annual precipitation total of 1000 mm. The
annual precipitation in Luding and Shimian Counties can reach 1200–1500 mm, and that in
the downstream parts of the Dadu River region can reach 1400–1900 mm. Torrential rain
is mainly concentrated in the middle and lower reaches of the Dadu River from May to
September, and especially in July and August. Moreover, the spatial distribution of annual
rainfall shows a trend of high in the south and low in the north, and the annual average
temperature ranges from −19.1 to 18.2 ◦C. The vegetation has significant vertical zonality
in this region due to the influence of the topographically extreme belt, especially in the
alpine and gorge areas, where the vegetation types successively change with elevation and
include broad-leaved forests, mixed coniferous and broad-leaved forests, coniferous forests,
shrubs, and meadows.

Furthermore, the river system in this region is developed. From north to south, the
Suomo River, Dajinchuan River, and Xiaojinchuan River converge to form the Dadu River,
which turns to the east through Luding County and Shimian County and then flows into
the Minjiang River south of Leshan City through Hanyuan County and Ebian County.
There are 28 tributaries draining watershed areas greater than 1000 km2 along the river,
and the river network density is 0.39 [40].

Lithologically, according to the geological map of Sichuan Province [41], the main rock
strata that outcrop along the Dadu River from north to south in the study area include
Triassic sandstones, slates and late granitic intrusions, pre-Sinian granites and granitic
gneiss, Paleozoic limestones, metamorphic rocks, sand shales, and basalts. Tectonically, the
study area is located in three different geological tectonic units, namely, the Ganzi Aba fold
belt, the Kangdiantai anticline, and the Emeishan block fault. In addition, the Y-shaped
junction zone formed by the Longmenshan fault zone, the Xianshuihe fault zone and the
Anninghe fault zone is also located in the study area, as shown in Figure 1. Intense tectonic
activity leads to jointing and folding, and these activities facilitate the formation of debris
flows in this region.
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Figure 1. Location of the study area (Dadu River basin) and the distribution of faults.

3. Materials and Methods

This paper proposes new hybrid methods for assessing debris flow susceptibility
coupled with ecohydrological activation from the perspective of debris flow formation,
which includes several parts: parameter collection, indicator system construction, hybrid
model generation, evolution calculation of model hyperparameters, model training, optimal
model determining, and susceptibility assessment. Figure 2 depicts the flow chart that
represents this process.

Figure 2. Methodological flow chart.
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3.1. Catchment Boundaries Division

The catchment unit is a self-contained hydrological area, with the river serving as the
mainline and the water division acting as the boundary [42]. Catchment units having more
physical, geological, or geomorphological significance than grid cells are better suitable for
predicting debris flow occurrence [21,43]. Furthermore, in terms of debris flow formation,
activities such as material source initiation, debris flow movement, erosion, and deposition
all occur within catchment units. As a consequence, catchments were selected as mapping
units for this research. As illustrated in Figure 3, the Dadu river basin is divided into a total
of 1780 catchments using GIS spatial analysis tools with the DEM (30 m resolution).

Figure 3. Catchment units in the Dadu River basin.

3.2. Inventory of Debris Flows

In recent years, several field investigations on debris flow disasters in the Dadu River
basin have been conducted. However, due to its complex topographical conditions and
massive area, it is hard to perform an investigation that spans the whole Dadu River basin.
Given that remote sensing interpretations allow for flexibility and low labor costs [44], this
study utilized high-resolution remote sensing images to perform visual interpretations,
giving an abundance of data for model training. Distinguishing factors such as vegetation
changes, landslide scar(s), and clear channel visibility were fully considered in this inter-
pretation procedure to ensure the reliability of the interpretation outcomes [45]. Finally,
562 catchments were picked from the 1780 catchments to train the hybrid machine learning
models, with a total of 281 catchments identified in the study area as being prone to debris
flow (DFs), and the remaining 281 catchments as being not prone to debris flow (NDFs).

3.3. Establishment of an Indicator System Coupled with Ecohydrological Activation

The selection of predictor factors is crucial in predicting the susceptibility of debris
flows [36,46]. The debris flow formation process can be split into several stages based
on the physical formation mechanism, such as accumulation of loose materials, initiation
driven by rainfall, dynamic movement controlled by terrain and channel conditions, and
accumulation at the outlet [47–49]. Based on the aforementioned factors, this article presents
a debris flow susceptibility indicator system coupled with ecohydrological activation from
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the standpoint of physical mechanisms, taking into account the comprehensive effects of
vegetation, such as the positive effect of root anchoring and the negative effect of vegetation
weight loads, on the slope failure from the physical mechanism. Overall, the structure of this
new indicator system (Figure 4) is designed based on the debris flow formation mechanism
and general disaster-causing factors used in traditional debris flow susceptibility methods,
and the indicator system consists of ecological indexes, hydrological indexes, geotechnical
indexes, and topographic indexes. The processed data of this research and their sources
are presented in Table 1. To ensure the consistency of spatial resolution among all data,
the feasibility of parameter calculation, and the applicability of the accurate topography
depicted in the DEM to the debris flow susceptibility assessment [50], all data from different
sources were resampled to the same spatial resolution as the DEM (30 m) using the GIS
platform’s resampling tool. Due to the need for machine learning input parameter formats,
the GIS platform’s Zonal Statistics tools were then used to obtain the feature statistics (such
as the mean or majority) of each catchment.

Figure 4. Susceptibility prediction index system sketch coupled with eco-hydrological activation.

Table 1. Employed information and their sources in the current research.

Information Related Factor Maps or Parameters Source Scale/Resolution

Digital Elevation Model (DEM)
The Altitude Difference, Channel
Gradient, Connectivity Index and

Propagation Probability Index

DEM Dataset (GDEMV2)
Downloaded from Geospatial

Data Cloud
30 m

The Soil Thickness The Soil Thickness and Soil Strength Depth to Bedrock (DTB) Map
of China [51] 100 m

Vegetation Types Vegetation Weight Loads and
Root Morphology

Environmental & Ecological
ScienceData Center for West

China, National Natural Science
Foundation of China [52]

1:1,000,000

Precipitation The Flow Depth and Runoff Velocity
The National Data Center of

China for Meteorological
Sciences

90 m
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3.3.1. Ecological and Hydrological Indexes

(1) Vegetation weight loads (VWL) and root morphology (RM).
Vegetation is the producer in the food chain in terrestrial ecosystems; it transports

materials and energy through the ecosystem and is directly tied to the creation of the
natural environment [53]. The vegetation in the studied region has obvious vertical and
horizontal zonality, which is assisted by the topographically extreme belt conditions; dis-
tinct vegetation species with differing vegetation weight loads and root morphologies are
concentrated at different altitudes [54,55]. Given that root reinforcement and vegetation
weight loads are important in the stability evaluation of vegetation-covered slopes [54,56],
and that shallow landslides are one of the main material sources of debris flows, vegetation
weight loads and root morphology are included as ecological indexes in the debris flow
susceptibility assessment indicator system. The root morphological properties of various
plant types in the research region were collected via field investigations (Table 2), and the
quantitative techniques and details of the vegetation weight load calculations were found
to be similar to those employed by Zou et al. (2021b) [8].

Table 2. Morphological parameters of different vegetation types.

Vegetation Type
Plant Diameter at
Breast Height/cm

Root Depth/m Plant Height/m

Trees 25.0 15.0 20.0
Shrub 1.0 0.5 0.5

Grassy marshland 0.1 0.4 0.4
Alpine sparse vegetation 0.4 0.4 0.4
Agricultural vegetation 6.0 5.0 5.0

Alpine swamp 0.1 0.4 0.4

(2) Flow depth (FD) and runoff velocity (RV).
Water is not only the main triggering factor of debris flow formation, but it is also a

fundamental component of the debris flow; hence, hydrological conditions are important
for debris flow formation. The flow depth and runoff velocity at a gully’s mouth are the
overall outcomes of a dynamic hydrologic process that involves rainfall, water storage,
depression filling, overflowing within the slope area, and channel confluence [57,58]. To
some degree, these characteristics reflect the catchment’s topographic relief, the complexity
of the gully morphology, and the roughness of the gully base. As a result, to represent the
hydrodynamic properties of the runoff in the assessed river branches and channels, the
flow velocity and runoff depth are included as hydrological indicators in the susceptibility
indicator system. However, the study area is too large to use electronic equipment to
monitor flow velocity and runoff depth in each catchment. To compensate for this deficiency,
index values based on five assumptions were derived to substitute real flow velocity and
depth measurements:

i. A constant rainfall intensity,
ii. The water input from rainfall is equal to the output in the catchment,
iii. The effect of potential energy is considered, and the work done by resistance

is ignored,
iv. The influence of different water depths on potential energy is ignored, and
v. Water particles at the same elevation arrive at the gully mouth at the same time.

According to assumption 1, the rainfall per unit time is equal to the volume of water
output from the basin and can be deduced as follows:

PAdt = Qdt, (1)

where P is the rainfall intensity; A is the watershed area; Q is the discharge at the outlet;
and dt is the unit of time.
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Since resistance and the effect of the water depth on the potential energy are ignored,
all gravitational potential energy is converted into kinetic energy. Therefore, the following
formula is given for any particle:

mgh =
1
2

mv2, (2)

where m is the mass of the water particle; g is the acceleration of gravity; h is the height
difference between the water particle and the point at the gully mouth; and v is the particle
velocity at the gully mouth.

The initial potential energy of particles that flow to the gully mouth at the same time
is calculated as follows: ∫

mghdh = Pdt
∫

L(h)B(h)ρghdh, (3)

mgh =
∫

mgdh = Pdt
∫

L(h)B(h)ρgdh, (4)

where ρ is the density of water; L(h) is the length contour line where the relative height is h;
and B(h) is the horizontal displacement of the contour line.

The average kinetic energy of particles that flow to the gully mouth at the same time
is calculated using Formula (5):

1
2

mv2 =
1
2

PAdtρv2 = Pdt
∫

L(h)B(h)ρgdh, (5)

The runoff velocity is calculated as follows:

v =

√
2
∫

L(h)B(h)gdh
A

, (6)

The flow depth is calculated as follows:

H = S/b, (7)

S = Q/v, (8)

Q = PA, (9)

where b is the average width of the wet crossing section and S is the area of the wet
crossing section.

3.3.2. Geotechnical and Topographic Indexes

(1) Thickness (ST) and strength (SS) of the soil mass.
The direct reason for the formation of unstable slopes is that the impervious-layer

soil shear strength is less than the sliding force of the soil mass, which contributes to
the formation of landslide disasters [59,60]. Therefore, the soil shear strength and soil
mass thickness, related to the depth of the impervious layer, are included as geotechnical
indicators in the susceptibility prediction index system. Here, the soil shear strength refers
to the ultimate strength of the soil mass against shear failure. According to the Mohr–
Coulomb failure criterion [61], this variable is calculated using the following formulas:

τf = c + σ tan ϕ, (10)

σ = γz, (11)

τf = c + γz tan ϕ, (12)

where τf and c are the shear strength (kPa) and cohesion (kPa) of the soil mass, respectively;
ϕ and γ are the friction angle (◦) and density (t/m3) of the soil mass, respectively; σ is the
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normal stress of the soil mass (kPa); and z is the elevation difference from the surface of the
soil mass to the bedrock surface (m).

(2) Altitude difference (AD) and channel gradient (CG).
Topographical factors have a considerable impact on the initiation and dynamic

process of debris flow formation [62,63]. The steep channel and enormous relief may
give an abundance of potential energy conditions for debris flow formation [20]. As a
consequence, general topographical characteristics such as altitude difference and channel
gradient are included in this index system for assessing debris flow susceptibility. The
altitude difference (AD) between the catchment’s top and outflow shows the catchment’s
overall potential energy conditions [64]. The channel gradient (CG) reflects the channel’s
overall steepness and is computed by dividing AD by the channel length [65].

(3) Connectivity index (IC) and propagation probability index (PPI).
The formation of a debris flow requires not only an abundant water source and

loose material conditions but also steep topographic conditions that are conducive to the
movement of the debris flow [66]. The lower the stability of a slope with loose material
in the source area, the higher the terrain connectivity from the source area to the gully
mouth, and the more conducive the conditions to the formation of a debris flow. Therefore,
the propagation probability index and connectivity index are incorporated as topographic
indexes into the debris flow prediction index system.

The propagation probability index calculated by the Flow-R model [67] provides the
probability of the unstable materials propagating to a point likely to be reached by debris
flows. The Flow-R model’s key input parameters are a digital elevation model (DEM) and
the loose material source area. The procedure identifying the source area considers the
mechanical anchoring effect of the root system and the vegetation weight loads on the slope
covered with various vegetation types. Details and results of the propagation probability
index computation can be acquired by referring to Zou et al. (2021b) [8].

The connectivity index was used in this study to represent the potential connectivity
between the outlet and other parts of the catchment, and can be quantified by the spatial
analysis tools in geographic information systems (GIS). According to Equation (13), its input
parameters include land-use data (at a 30 m resolution) and a DEM (at a 30 m resolution) [68,69].

ICk = log10

(Dup,k

Ddn,k

)
= log10

⎛⎝W S
√

A

∑i
di

WiSi

⎞⎠, (13)

where ICk is the connectivity index; Dup is the potential of sediments moving from the
upstream channel to the downstream channel; Ddn is the possibility of sediments reaching
the outlet through the flow path; W is the average weight of the upslope catchment area
determined by the land-use type; S is the average gradient of the upslope catchment area;√

A is the square root of the upslope catchment area; di is the length of the flow path from
the debris source area to the ith unit; and Wi and Si are the weight and the gradient of the
ith unit in the watershed, respectively.

3.4. Parameter Preprocessing
3.4.1. Analysis of Selected Characteristics’ Collinearity

Characteristics’ collinearity in machine learning modeling indicates that two or more
features contain similar information, i.e., there is a strong correlation between them, and
that strong collinearity may cause model instability [20,35,38]. The Spearman correlation
analysis technique was used to compute the correlation coefficients (Figure 5) in this
research. There were two pairs of variables with strong relationships, with correlation
coefficients of 0.83 for RM vs. VWL and 0.82 for ST vs. SS. As a result, RM and ST
were eliminated.
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Figure 5. Correlation matrix among the predictor variables.

3.4.2. Data Standardization

The indexes involved in the index system can be quantified according to the calculation
methods described above based on the field investigations and collected documentation.
Furthermore, considering the direct use of data with different orders of magnitude and
dimensions for training affects the accuracy of the model [70], these indexes were standardized
using Formula (14) to accelerate model convergence and improve the model accuracy [20].

I f inal =
I − Imin

Imax − Imin
, (14)

where Ifinal is the index value after standardization; I is the index value before standardiza-
tion; Imin is the minimum index value; and Imax is the maximum index value.

Finally, some quantified indexes involved in the index system are shown in Figure 6a–f.

 

(a) (b) 

Figure 6. Cont.
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(c) (d) 

 
(e) (f) 

Figure 6. The data used for the susceptibility prediction: (a) the soil mass strength, (b) soil mass
thickness, (c) vegetation types, (d) channel connectivity, (e) flow depth, and (f) runoff velocity.

3.4.3. Generating the Cross-Validation Dataset

There is still a chance of overfitting on the test set because the parameters may be
changed until the estimator performs optimally when testing multiple settings (“hyper-
parameters”) for estimators, and the cross-validation algorithm in Scikit-learn was thus
used to build the cross-validation dataset. As a consequence, the model may be trained
with different subsets of training data before being tested with the test dataset, avoiding
overfitting. In this work, 70% of the sample set was used to construct the cross-validation
dataset (Figure 7), with the remaining 30% used for final model validation.
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Figure 7. The composition structure of the cross-validation dataset.

3.4.4. Removing Outliers (RO)

Outliers are abnormal values in a dataset, and the goal of integrating the RO algo-
rithm with the machine learning model in this study was to eliminate outliers from the
input dataset since their existence is often caused by human errors caused by the data
collection, recording, or input procedure, or to natural error. The removing outliers pro-
cedure improves the capacity to fit and mine the main relationships between debris flow
occurrence and disaster-causing factors by reducing noisy data learning in the machine
learning model [71,72]. As a consequence, the operation of removing outliers from the
original data was performed in this study before training the hybrid machine learning
models. According to the Pauta criteria [73], the process of removing outliers is separated
into two steps:

Step 1: When the data obey a normal distribution, values outside 3δ from the mean
are discarded since this is a small probability event.

Step 2: For the remaining data that do not obey a normal distribution, data outside x δ

from the mean are determined to be outliers. The δ is the standard deviation, and the value
of x needs to be decided depending on expert experience and the actual situation.

3.5. Machine Learning Algorithms

Due to the abundance of datasets available from remote sensing interpretations, the
use of machine learning methods to interpret patterns or extract information from data [74]
is increasing for mountain disaster prediction. These machine learning algorithms, such as
support vector machines (SVMs), eXtreme Gradient Boosting (XGB), and random forest
(RF) [33,35,36], were selected as the basis of hybrid machine learning methods and then
combined in a hybrid with the RO algorithm and hyperparameter optimization algorithm.

3.5.1. Support Vector Machines (SVMs)

SVM is a general term for some classifiers that are used to solve the separation hyper-
plane with the maximum interval on the feature space, with interval maximization as the
learning strategy [20,34]. The hyperplane is a linear subspace with the residual dimension
equal to 1 in the n-dimensional Euclidean space and is used to split the feature space into
two half-spaces [75]. In this study, support vector classification (SVC) was selected.

3.5.2. Random Forests (RF)

Random forest (RF) is one of the ensemble-learning approaches commonly used
for assessing debris flow susceptibility [36]. This technique improves the decision tree
algorithm by integrating numerous decision trees, the formation of which is based on
samples chosen independently [33]. To be more specific, some samples are drawn at
random from the original training sample set, and then a series of decision trees are created
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to build the random forest based on the decision rules. Finally, the classification results of
the new data are computed based on the number of votes cast by the decision trees. As a
result of the random selection of features and samples during each decision tree training,
random forest (RF) is distinguished by strong noise resistance and steady performance.

3.5.3. eXtreme Gradient Boosting (XGB)

XGB is a cutting-edge machine learning approach for debris flow susceptibility that
quickly implements the Gradient Boosting Decision Tree (GBDT) algorithm and adds many
refinements to it, integrating several tree models to construct a strong classifier [20]. The
technique is several times quicker than conventional algorithms due to the massively
parallel boosting tree, and it has superior computational accuracy since XGB conducts a
second-order Taylor expansion on the loss function, whereas common algorithms only use
a first-order Taylor expansion. XGB was thus chosen for this investigation.

3.6. Particle Swarm Optimization (PSO)

The particle swarm optimization (PSO) algorithm is a biological heuristic method in
the realm of computer intelligence that is often used for intelligence optimization [38]. The
PSO algorithm is inspired by the study of bird feeding behavior, and reflects an effective
and easy method used by birds to hunt for food by looking in the area nearest the food.
The particle is likened to a bird in that it decides its next move based on its own experience
and the best experience of its companions. The progression of its movement is summarized
in Equations (16) and (17).

Vm+1
ith = ωVm

ith + l1r1(Pbestm
ith − Xm

ith) + l2r2(Gbestm − Xm
ith), (15)

Xm+1
ith = Xm

ith + Vm+1
ith , (16)

where m is the number of current iterations, Vm
ith and Xm

ith are the position and velocity of
ith particle in the mth iteration in the feature space, r1 and r2 are random number of values
between 0 and 1, l1 and l2 are learning factors, ω is the inertial weight coefficient, Pbestm

ith
is the personal best position of particle i in the mth iteration, and Gbestm is the best position
of all particles.

3.7. Generating the Hybrid Machine Learning Models

In this study, the procedure of integrating each machine learning model with RO and
PSO consists of two steps:

Step 1: The RO algorithm removes outliers from the input dataset because their
presence is often attributable to human mistakes or to natural error. The goal of this step
is to improve the capacity to fit and mine the main relationships between debris flow
occurrence and disaster-causing factors by reducing noisy data learning in the machine
learning model. As a result, the operation of removing outliers is important.

Step 2: The dataset that has been processed by the RO algorithm is then utilized to
train the machine learning model. Some parameters, known as hyperparameters, must be
artificially set in the traditional training process of machine learning models. The traditional
hyperparameter debugging procedure cannot easily locate the optimal hyperparameters
from all parameter groups due to time and labor costs, particularly when the hyperparam-
eters can be parameters of the floating-point type. To address this shortcoming, the PSO
algorithm is used to optimize the selection of hyperparameters. By integrating with the
PSO algorithm, the computer can automatically calculate the optimal hyperparameters of
machine learning algorithms, avoiding the intervention of human subjective factors.

Finally, hybrid machine learning models, including RO-PSO-SVC, RO-PSO-RF, and
RO-PSO-XGB, were established by integrating the aforementioned machine learning algo-
rithms with the remove outliers (RO) operation and the PSO algorithm, which boosts the
model’s fitting accuracy and stability. The efficacy of the RO operation in hybrid model
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construction was evaluated further by comparing it to several hybrid models that just use
PSO, such as PSO-SVC, PSO-RF, and PSO-XGB.

3.8. Model Training and Evaluation

The relationship between disaster-causing factors and debris flow occurrence can be
quantified by model training with a set of weights and bias parameters of machine learning
models. However, the hyperparameters of conventional machine learning models have to
be artificially tuned, and the debugging process is subjective and highly dependent on the
experience of experts. In this article, the particle swarm algorithm (PSO) is used to look
objectively for the optimal super parameters for PSO-RF, PSO-SVC, PSO-XGB, RO-PSO-RF,
RO-PSO-SVC, and RO-PSO-XGB, with mean squared error (MSE) and root mean squared
error (RMSE) closest to 0 and prediction accuracy (ACC) (Formula (18)) scores closest to 1.
Additionally, the spatial consistency of these debris flow susceptibility results produced by
different models needs to be evaluated using Spearman’s rank correlation coefficients, since
a similar susceptibility result obtained by different approaches indicates that these results
are reliable [36,76]. To assess the effectiveness of these six hybrid models, the ACC, MSE,
RMSE, and the time consumed for hyperparameters optimization were recorded (Table 3).
According to Table 3, RO-PSO-SVC has the greatest performance with a test data ACC of
0.946. The area under the curve (AUC) was also calculated to estimate the performance
of the models using the receiver operating characteristic (ROC) curve [77,78], as shown in
Figure 8. The higher the AUC value, the better the prediction performance of the model.
The prediction accuracy (ACC) (Formula (3)) is a rate of correct assignment for test samples.

ACC = (TP + TN)/(TP + FN + FP + TN), (17)

where TP and TN show the number of properly identified catchments, whereas FP and FN
show the number of wrongly categorized catchments (Table 4).

Table 3. Final optimal super parameters of the models and consumed time (Note: for an explanation
of each parameter and its role in the model adjustment, refer to the Scikit-learn website: https:
//scikit-learn.org, accessed on 20 February 2022).

No Classifier Algorithm Optimal Parameters ACC AUC MSE RMSE Runtimes

1 SVC Default 0.911 0.968 0.068 0.261 /
2 RF Default 0.888 0.964 0.094 0.307 /
3 XGB Default 0.893 0.952 0.158 0.397 /

4 PSO-SVC

‘kernel’ = ‘rbf’
‘C’ = 7.5675

‘gamma’ = 0.0647
‘probability’ = True

‘decision_fuction_shape’ = ‘ovo’

0.935 0.973 0.063 0.251 649 s

5 PSO-RF
‘criterion’ = ‘gini’
‘ max_depth ‘ = 5

‘ n_estimators ‘ = 159
0.893 0.967 0.077 0.278 3674 s

6 PSO-XGB
‘learning_rate’ = 0.0595

‘max_depth’ = 2
‘n_estimators’ = 35

0.905 0.955 0.084 0.291 1563 s

7 RO-PSO-SVC

‘kernel’ = ‘rbf’
‘C’ = 64.6924

‘gamma’ = 0.0225
‘probability’ = True

‘decision_fuction_shape’ = ‘ovo’

0.946 0.981 0.050 0.224 1103 s

8 RO-PSO-RF
‘criterion’ = ‘gini’

‘ max_depth ‘ = 23
‘ n_estimators ‘ = 665

0.911 0.972 0.073 0.270 8721 s

9 RO-PSO-XGB
‘learning_rate’ = 0.0604

‘max_depth’ = 30
‘n_estimators’ = 337

0.946 0.977 0.055 0.234 4352 s
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Figure 8. Receiver operating characteristic (ROC) curve and the AUC of different machine learning models.

Table 4. Confusion matrix.

Predicted

Positive Negative

Observed
Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

The MSE and RMSE are used for estimating the generalization error of the model, and
can be expressed as follows:

MSE = ∑n
i=1

(
xi,tru − xi,pre

)2/n, (18)

RMSE =
√

∑n
i=1

(
xi,tru − xi,pre

)2/n, (19)

where xi,tru represents the observed values in the training dataset or validation dataset,
xi,pre represents the predicted values from the debris flow susceptibility models, and n is
the total number of the samples in the training or validation datasets.

4. Results

Using the techniques described above for parameter optimization, optimal models
with matching hyperparameters (Table 3) were identified and used to predict the suscep-
tibility of debris flows. The spatial consistency of the debris flow susceptibility maps for
the different optimal models noted above was thus analyzed using Spearman’s rank corre-
lation coefficients. The Pearson correlation coefficients range from 0.86 to 0.98 (Figure 9),
indicating that the index system presented in this article can predict the occurrence of
debris flows in the topographically extreme belt, and the results are reliable and effective.
The outputs of the aforementioned hybrid or non-hybrid models were used to reclassify
susceptibility levels into five groups (very low, low, medium, high, and very high) using
the natural break classification technique [36]. Susceptibility maps were then generated on
the GIS platform for visualization (Figure 10). The findings reveal that those catchments
with high and very high debris flow susceptibility are most prevalent in the study area’s
central mountainous region, whereas the northern plateau areas with gentle topographical
change have lower susceptibility. Compared with the distribution of the susceptibility
maps (Figure 10) obtained by different models, the findings show that the catchments with
different susceptibility levels tend to be clustered together with greater spatial continuity
after integrating the machine learning models used in this article with the RO and PSO
algorithms. This may be because the RO and PSO algorithms enhance the machine learning
model’s ability to fit and mine the major relationships between debris flow occurrence and
disaster-causing factors by reducing noisy data learning and hyperparameter optimization.
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Figure 9. Spatial consistency matrix among the debris flow susceptibility maps.

Figure 10. The debris flow susceptibility maps of the Dadu River based on the (a) SVC, (b) RF, (c) XGB,
(d) PSO-SVC, (e) PSO-RF, (f) PSO-XGB, (g) RO-PSO-SVC, (h) RO-PSO-RF, and (i) RO-PSO-XGB models.
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Figure 11 depicts the relative distribution of each model’s different susceptibility levels.
The high level has the highest percentage (28.99%) in the RO-PSO-SVC model, with the
remaining 24.33%, 13.82%, 21.35%, and 11.51% of watersheds falling into the very low, low,
medium, and very high susceptibility levels, respectively. The percentages of the total of
low and very low for all of the above-mentioned models’ debris flow susceptibility maps
are quite close to 38.85%. Furthermore, the main classes in the research region include
medium, high, and extremely high debris flow susceptibilities.

 

Figure 11. Proportions of the different debris susceptibility levels among the hybrid or non-hybrid models.

5. Discussion

This study proposes new hybrid machine-learning approaches combined with the
removing outliers (RO)algorithm and the particle swarm optimization (PSO) algorithm
to predict the susceptibility of debris flows in the Dadu River basin, a typical extreme
topography transition belt on the eastern margin of the Qinghai-Tibet Plateau. The PSO
and RO algorithms were implemented in these hybrid models to identify the perfect
hyperparameters for the machine learning model and to lessen the impact of noise on the
model’s convergence speed and prediction accuracy. The model performance evaluation
analysis (ACC) revealed that machine learning models enhanced by the PSO and RO
algorithms outperformed solo machine learning models. According to the ACC analysis,
the RO-PSO optimization algorithms improved the performance of SVC, RF, and XGB by
3.84%, 2.59%, and 5.94%, respectively. The ACC value of SVC, RF, and XGB rose by 2.63%,
0.56%, and 1.34%, respectively, when only the PSO algorithm was used. Furthermore, the
RO algorithm improved the performance of PSO-SVC, PSO-RF, and PSO-XGB by 1.21%,
2.03%, and 4.60%, respectively. The improvement in the performance of these machine
learning models shows that the indicators can shed light on the physical mechanisms
behind the debris flow formation, such as the physical failure mechanism on vegetation-
covered slopes revealed by the index PPI. Another point worth noting is that the degree
of RF improvement is not obvious after integrating only with the PSO algorithm. Results
analysis showed that the PSO algorithm can significantly improve the performance of
machine learning models with floating-point-type super parameters, such as SVC and XGB,
since the PSO algorithm has a stronger parameter search capability for floating-point-type
super parameters than for integer super parameters. The greater the number of floating-
point-type super parameters in the model, the greater the performance benefit. As a result,
the fact that the major super parameters for RF debugging in this study were all integer
types restricts the PSO algorithm’s ability to improve.

RO-PSO-SVC has the strongest spatial recognition capacity to identify debris flow hazards
among all of the aforementioned models, as its total percentage of debris flow catchments

104



Remote Sens. 2022, 14, 1444

(Figure 12) with high and very high susceptibility is the biggest, accounting for 91.04%.
Interestingly, we found that RO-PSO-SVC and RO-PSO-XGB result in fewer false alarms
than RO-PSO-RF, with a lower total percentage (1.44%) of debris flow catchments with very
low and low susceptibility levels. RO-PSO-XGB, by comparison, classifies more debris flow
as medium susceptibility than RO-PSO-SVC. In this regard, RO-PSO-SVC is better able to
minimize false alarms since the total percentage of debris flow catchments with very low, low,
and medium susceptibility is 8.96%, compared to 11.47% for RO-PSO-XGB.

Figure 12. Proportions of the historical debris flow occurring at the catchments with different
susceptibility levels among the different models.

RO-PSO-SVC also has the best performance for predicting debris flow susceptibility,
according to the model performance evaluation analysis (ACC, MSE, and RMSE), and
was thus chosen to interpret and diagnose the contribution of different predictor factors.
SHAP (SHapley Additive exPlanations) [79], a game-theoretic technique to explain the
output of any machine learning model, can quantify the relative importance of each causal
factor. Figure 13 shows that runoff velocity (RV) is the most significant predictor variable
in the RO-PSO-SVC model, with a relative importance value of 49.57%, and flow depth
(FD), the associated predictor variable representing hydrological conditions, has a relative
importance value of 8.45%. Topography-related factors such as AD, CG, IC, and PPI
have a relative relevance of 11.08%, 9.05%, 4.26%, and 3.33%, respectively. Such results
suggest that topography and hydrology play important roles in debris flow formation
as general factors, which is consistent with previous research [34–36] in topographically
extreme belts. Furthermore, the factor importance analysis shows that the ecology-related
factor, vegetation weight loads (VWL), has a relatively low contribution to the debris
flow occurrence, which is similar to the findings of previous studies [35,36] that revealed
that ecology-related factors reflecting vegetation cover, such as Normalized Difference
Vegetation Index (NDVI), contribute less to debris flow formation than topography- and
hydrology-related factors, taking the Sichuan province as the study area.

The top three indicators with the greatest contribution according to Figure 13 were
selected for further statistical analysis to investigate the impact of triggering factors on
debris flow occurrence. Figure 14 depicts the proportion of catchments with different debris
flow susceptibility (as predicted by RO-PSO-SVC) for each level of different triggering
factors. This shows that there is an obvious positive correlation between the factors of
runoff velocity and altitude difference with debris flow occurrence, because the catchments
with high and very high susceptibility levels are concentrated in the catchments with a
greater runoff velocity index and a greater altitude difference index. The performance
of altitude difference is easy to understand since the enormous relief may provide an
abundance of potential energy conditions for the formation of debris flows. After deep
analysis, we attribute the strong sensitivity of the runoff velocity factor to the debris flow
occurrence to the good ability of this index to represent the process of debris flow formation,
which indicates that there is strong link between the physical movement mechanism used
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in the derivation process of the runoff velocity index and the dynamic process of debris
flow movement. The factor of channel gradient also plays an essential role, as implied in
Figure 14. The total proportion of catchments with very high and high susceptibility in
100–200‰ of the channel gradient is 49.60%, the highest of all channel gradient levels. This
result is consistent with the findings of Xiong et al. (2020) [36], who conducted debris flow
susceptibility research in the Sichuan Province.

Figure 13. The relative importance of disaster-causing factors in the RO-PSO-SVC model. The relative
importance is normalized so that they sum to 1.

Figure 14. Proportions of the catchments with different debris flow susceptibility obtained by RO-
PSO-SVC for each level of different triggering factors.

It is worth noting that the susceptibility classification results show that there is a high
proportion of catchments with high and very high susceptibility in the study area, which
is consistent with the study results of Xiong et al. (2020), who explain that this is because
this region belongs to the transition belt, where the topography varies enormously, from
the Qinghai–Tibet Plateau to the Sichuan Basin, and is coupled with dry valleys and fault
zones. Another point of concern is that, although the study improved the performance of
the debris flow susceptibility assessment by introducing some factors related to physical–
mechanical mechanisms, the computation of these factors was time consuming, particularly
for the PPI reflecting the physical failure mechanism on vegetation-covered slopes, which
took nearly a month to compute with 26 computers. As a result, the next stage of the
research will look for methods to lower the computing costs associated with introducing
parameters related to physical–mechanical mechanisms at the regional scale.
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It is well known that the physics behind the debris flow formation are closely related
to the accumulation of loose materials, initiation driven by rainfall, the potential of dynamic
movement controlled by terrain and channel conditions, and accumulation at the outlet.
From the viewpoint of indicator selection, all indicators used in this research are focused
on the physical mechanisms behind debris flow formation, such as the failure mechanisms
of the vegetated slope and the dynamic processes of debris flows. As a result, the main
contribution of this paper is to propose a regional-scale susceptibility index system for
predicting the probability of debris flow occurrence in the Dadu River basin, a typical
extreme topography transition belt on the eastern margin of the Qinghai-Tibet Plateau,
from the perspective of the debris flow formation mechanism. This system takes into
account not only the common geographic features (such as enormous topographic relief
and active tectonics) that control the occurrence of debris flows, but also the comprehensive
impacts of vegetation on the occurrence of debris flows, such as the positive effect of root
anchoring and the negative effect of vegetation weight loads. In this respect, this study is
innovative and essential for the development of regional-scale debris flow susceptibility
evaluation. To ensure that the causal factors selected in this study stand up to scrutiny, these
indicators were classified into different categories, as is commonly done in the traditional
methodology. This was undertaken to ensure that the primary concept of constructing the
indicator system in this article was based on three fundamental disaster-causing factors
that control debris flow formation, namely, topographic condition, hydrological condition,
and material condition. Furthermore, the novel hybrid models formed by integrating the
machine learning model with RO and PSO algorithms were, for the first time, also used in
the catchment-based assessment of regional-scale debris flow susceptibility. These hybrid
models with good performance also provide a scientific reference for future regional-scale
debris flow susceptibility assessments.

6. Conclusions

A novel hybrid machine learning approach combined with the RO and PSO algo-
rithms is presented to assess the debris flow susceptibility in the Dadu River basin, a
typical extreme topography transition zone on the eastern margin of the Qinghai-Tibet
Plateau, taking into account the effects of vegetation on debris flow formation from the
perspective of physical mechanisms. Some of the significant findings are as follows. Based
on the index system coupled with ecohydrological activation, the hybrid machine learning
technique RO-PSO-SVC can effectively predict the occurrence of debris flows in an extreme
topography transition zone. The factor important analysis (for the RO-PSO-SVC method)
reveals that the ecology-related factor, vegetation weight load (VWL), contributes to the
occurrence of debris flows at a lower rate than topography- and hydrology-related factors,
and the contribution rate of the ecology-related factor is one-tenth that of topography- and
hydrology-related factors. Furthermore, according to the ACC value, the RO-PSO algorithm
enhanced SVC, RF, and XGB performance by 3.84%, 2.59%, and 5.94%, respectively. The
RO-PSO algorithm was included in the machine learning model, which provided the capac-
ity to remove anomalous data and automatically optimize hyperparameters. Nonetheless,
caution should be used when applying this model to determine debris flow susceptibility
since performance varies among research locations. The given susceptibility results can
offer scientific assistance to local governments for debris flow prevention and mitigation.
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Abstract: To understand the factors that make certain areas especially prone to landslides, statistical
approaches are typically used. The interpretation of statistical results in areas characterised by com-
plex geological and geomorphological patterns can be challenging, and this makes the understanding
of the causes of landslides more difficult. In some cases, landslide inventories report information on
the state of activity of landslides, adding a temporal dimension that can be beneficial in the analysis.
Here, we used an inventory covering a portion of Northwestern Turkey to demonstrate that active
and relict landslides (that is, landslides that occurred in the past and are now stabilised) could be
related to different triggers. To do so, we built two landslide susceptibility models and observed that
the spatial patterns of susceptibility were completely distinct. We found that these patterns were
correlated with specific controlling factors, suggesting that active landslides are regulated by current
rainfalls while relict landslides may represent a signature of past earthquakes on the landscape. The
importance of this result resides in that we obtained it with a purely data-driven approach, and this
was possible because the active/relict landslide classification in the inventory was accurate.

Keywords: landslide susceptibility; landslide inventory; controlling factor; slope unit; generalised
additive model

1. Introduction

Data-driven models can be thought as empirical tools that extract functional relation-
ships from past phenomena to estimate the expected behaviour of the same phenomena
in a pre-defined (or ill-defined) future. This framework is commonly referred to as Hut-
ton’s uniformitarian principle, and is more commonly translated as the past is the key to the
future [1–3]. Hutton first and subsequently Lyell helped to develop and spread the concept
of uniformitarianism, replacing the then prevailing idea of catastrophism. Since then, this
concept has formed the backbone of any landslide susceptibility study [3].

Landslide susceptibility models (LSM) can be used to predict the spatial occurrence
of future landslides by assuming, consistently with the uniformitarian principle, that in
any given area, slope failures will occur under the same circumstances and because of the
same conditions that caused them in the past. However, this principle may not always
hold true [4]. First-failure landslides and reactivations may have different controls, acting
both on their triggers and kinematics: think of the peak and residual shear strengths, or the
role of strong earthquakes as opposed to aftershocks or rainfall [5]. Changes in material
properties also are reflected in morphological changes which, in turn, affect the process
dynamics [6].

Uniformitarianism still represents a fundamental component of the literature [7–12],
albeit the current climate change has led us to question its present-day validity [13]. In
fact, data-driven models are generally built upon the effects of past events, which may
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not inform on the slope response to events of different nature in the future. This topic is
hardly addressed in the literature as it requires an understanding not only of the evolution
of the triggers, but also of the predisposing or preparatory conditions. These may behave
differently in time [4], reflecting changes in mechanical [14], hydrological and hydraulic [15],
or thermal conditions [13,16].

Moreover, the complexity of a seismically active area does not help perform a straight-
forward analysis and interpretation of both the predisposing and triggering factors. This is
true, for instance, in Turkey (Figure 1a), where the huge variability and complexity of the
territory makes the modelling difficult to tackle. The capability and feature of an existing
landslide inventory [17], able to discern relict (termed “inactive” in the inventory) from
active landslides, comes to our aid as it could enable the distinction of different processes in
place and their drivers. Moreover, especially for active landslides, the definition of the main
triggering factors is crucial for the evaluation of economic costs related with the frequency
and magnitude of disaster events [18].

Seismically active areas may contain many landslide bodies. The seismic shaking
likely triggers their first movement, while subsequent remobilisations become increasingly
related to different triggers and predisposing factors as time goes by [16,19]. Different
triggers can also produce distinct patterns in space [20]. In Northwestern Turkey, which we
took as our study area, we can discern two sub-areas: the North Anatolian fault region in
the southwest, characterised by a higher density of relict bodies, and the region close to
the Black Sea in the northeast, richer in active ones (Figure 1b,c). These sub-areas display
an attitude of surface processes to be related to distinct triggers: seismicity and rainfall
(Figure 1d,e). However, these differences may be difficult to discern in an inventory in
which landslide types or activity states or stages are not classified.

The effect of biases in susceptibility modelling has been explored in the literature [21–23].
The necessity to operate with an unbiased area [24,25] led us to focus on a specific sector in
Northwester Turkey, rich in landslides but not too tectonically complex, and sufficiently
geologically and geomorphologically homogeneous.

In terms of modelling approaches, the literature offers many options. We opted for
the Generalised Additive Model (GAM; [15,26]), which can explain the spatial distribution
of landslides via a family of Bernoulli exponential functions, in which the influence of the
covariates can be captured via linear and nonlinear relationships. As such, the approach
allows us to display the uncertainties in the estimations, which are intrinsically part of a
Bayesian framework [27]. This statistical implementation is utilised here for the first time to
investigate relationships between two distinct models covering the same area but differing
by a categorical entity (active/inactive landslide). Furthermore, we decided to use Slope
Units (SUs) as they are geomorphologically-consistent subdivisions that can be linked with
landslide processes and are thus preferrable to grid-based subdivisions [28–31].

2. Study Area

The geology and geomorphology of Turkey is unique and extremely complex, owing
to both past and ongoing processes in place. Various studies exist [32–36], in which the
national settings are dissected per geological history and geomorphological processes.
Figure 1 displays the large-scale geomorphological and geological features.

The diversity of morphologies derives from a geodynamic environment that is still
quite active and determines a variety in outcropping lithologies [35]. Three main landslide-
dominated landscapes are recognised, corresponding to the tectonostratigraphically-distinct
Western, Central, and Eastern Pontides [37]. The lithological units forming the Pontides
vary along the belt, featuring west-east-oriented sub-parallel bands of sedimentary, meta-
morphic, and igneous rocks. While the western portion is richer in Triassic to Paleogene
sedimentary and medium-grade metamorphic outcrops, the central zone comprises Eocene
volcaniclastic and sedimentary rocks and Palaeozoic metamorphic rocks, and the east-
ern zone features Paleogene and Cretaceous plutonic and igneous formations underlying
Eocene and Neogene sedimentary and volcanic formations [38].
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The portion chosen as our study area (Figure 1) corresponds to the Zonguldak quad-
rangle in the Western Pontides. Here, the North Anatolian Fault System (NAFS) produced
a landform dominated by mountain belts and plateaus. The NAFS is an over 1600 km long,
right-lateral strike-slip, active transform fault running along Northern Anatolia in the E–W
direction, that also separates the study area in a southern and a northern sector (Figure 1a).

Climatically, the area belongs to the Black Sea climatic region in the north and the
continental inner Anatolian climatic region in the southeast [39]. The former receives rainfall
throughout the year (>1000 mm mean annual precipitation, up to 2300 mm in its eastern
portion) [39]. The north-facing slopes of the coastal mountain belt are comparatively
wetter as they intercept the weather fronts, and this is reflected by a relative abundance of
landslides (Figure 1e). Precipitation decreases southward, where the Palaeocene-Eocene
flysch and Palaeocene-Middle Miocene volcanics are the most landslide-prone units [39].

Figure 1. Identification of the study area in Turkey and the North Anatolian Fault (a); density maps
of inactive (b) and active (c) landslides (see Section 2.2 for definitions); Peak Ground Acceleration
map (d) from [40]; mean annual precipitation map (e) from [41].
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2.1. Mapping Units

We used SUs as terrain partitions characterised by similar hydrological and geomor-
phological conditions [42]. Each SU has a distinct shape given by the interplay between
lithotypes and morphometries, and thus offers morphological and lithological character-
istics that can be analysed statistically. An SU-based subdivision is not the only possible
choice. In fact, most contributions in the literature opt for a regular lattice or pixel-based
subdivisions [3]. These, however, even though they can be expressed at a fine to very-fine
resolution, do not reflect any natural characteristics. Conversely, SUs can, better than
pixels, represent geomorphological processes (e.g., [43,44]) and, at the same time, reduce
the computational burden, especially in models covering large areas (in our case, SU-based
calculations are ~100 faster than pixel-based ones).

We used the r.slopeunits software [28]) to generate SUs. Specifically, we subdivided
the study area into SUs [28–30,45]. We computed 50,104 SUs, covering ~24,000 km2 out of
~29,400 km2 of the study area as we excluded flat areas that are not prone to landslides
(Figure 2) [31,46,47].

Figure 2. Slope Unit partition of the study area: SUs containing inactive (left) and active (right)
landslides are shown. The sub-panels show a detail for a small region, in which it is possible to
observe the flat areas excluded by the SU calculation (see Section 4.2 for explanation). The legend is
valid for the whole area and zoomed panels.

2.2. Landslides

The landslide inventory was compiled by the General Directorate of Mineral Research
and Explorations of Turkey (MTA) and published in 1:25,000 scale for the entire national
territory (http://yerbilimleri.mta.gov.tr/, accessed on 1 February 2022). It is a general
polygon-based-inventory that carries some complexities because the mapped phenomena
are related to a plurality of causes. Thus, the identification of unstable areas should
benefit from the use of as many variables as possible to discern the main factors affecting
slope stability.

The catalogue [39], within our study area, comprises 4084 active landslides and
1140 inactive landslides. The former are those that were moving at the time of mapping
(1997–2003), while the latter could be classified as relict according to the UNESCO Working
Party on World Landslide Inventory (1993) [48]. Qualitatively, we notice an abundance of
active phenomena in the northeastern area where the climatic influence of the Black Sea is
stronger. A less dense but significant presence of landslides can be seen in the southwestern
sector (Figure 2).
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We extracted the highest point in the landslide polygon to better represent the source
material and/or lithology [49,50]. Subsequently, separately for each model, we reported the
count of active or inactive landslides within each SU, attributing the presence of landslides
to those SUs containing at least one point. Finally, we identified 2822 SUs (X% of SUs) with
active phenomena, and 983 (Y%) with inactive phenomena.

3. Modelling Strategy

In a binomial GAM, the data (y) are assumed to be conditionally independent given
the linear predictor η:

yi | ηi ∼ Binomial (Ni, pi) (1)

ηi = pi ⁄ (1−pi) (2)

where pi is the binomial probability.
Here, we assume Ni = 1 for all i because we have binary data. The ηi as a function of

pi is called the link function, and we describe it using a logit, but we note that other link
functions are possible. The linear predictor η is where we put the additive model:

ηi = β1x1,i + ... + βmxm,i + f(Slope) + f(Precipitation), (3)

where βj are the fixed (or linear) effects, with weak priors, describing the linear relationship
of the covariates xj. Each f represents a random (or nonlinear) effect with

f ∼ N (0, τ−1) (4)

and τ is a constant. For the two f, we use a spline model, also referred to as Random Walk
of the first order (RW1; [51])

A RW1 induces adjacent class dependence among mean slope and precipitation bins,
respectively [52]. The whole implementation makes use of the INLA framework [46,47].

To quantitatively compare the inventories of active and inactive landslides, we relied
on the effects of the selected covariates. Active and inactive phenomena should present
distinct correlations with physical variables owing to changes in predisposing and trig-
gering conditions as well as their values. For instance, active and inactive phenomena
could be characterised by distinct distributions of slope angles or vegetation coverage.
However, while morphological and climatic factors can change rather rapidly, geological,
lithological, and structural factors are not expected to vary over human time scales (in
absence of catastrophic events).

Possible multicollinearity issues among covariates (Figure S1) were eliminated by
discarding those showing more than 0.75 collinearity with another covariate [53–55]. The
final list of covariates is reported in Table 1. We preferred covariates that are well known
in the literature [3,56], and analysed their linear effects in most cases. We investigated
the nonlinear effect of slope and precipitation to better capture the role of gravitative-
hydrological processes in landsliding.

For model fitting, we used the whole sets of active and inactive landslides (sepa-
rately). For validation, we used a tenfold Cross Validation (CV) with mutually exclusive
subsets, implying that no SUs are repeated across CV replicates, and thus, there is no
autocorrelation [57]. We used the Area Under the Receiving Operating Characteristic
Curve (AUC) and the confusion matrix to evaluate the model performance. This is not the
only possibility. In fact, new articles suggest a spatial CV with connected packages [58–60].
However, this solution is still under discussion [61], which is why we preferred to use a
pre-consolidated methodology.
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Table 1. List of covariates. L and NL indicate that the linear and nonlinear effects were investigated,
respectively. SD stands for standard deviation. All values are calculated within each SU.

Name Abbreviation Reference
Usage in the Inventory

Inactive Active

Mean slope Slope [62] NL NL
SD of slope Slopeσ [62] L L

Mean Rainfall Precipitation [5] NL NL
Mean peak ground acceleration PGAμ [5] L L

Topographic relief Reliefμ [35] L L
Elongation of the SU Elongation [46] L L

Mean Eastness ESTμ [50] L L
Mean Northness NRTμ [50] L L
SD of Northness NRTσ [50] L L

SD of planar curvature PLCσ [63] L L
Mean profile curvature PRCμ [63] L L

Mean Relative slope position RSPμ [64] L L
SD of Relative slope position RSPσ [64] L L

Mean topographic wetness index TWIμ [64] L L
SD of topographic wetness index TWIσ [64] L L

Mean Stream power index SPIμ [65] L L
SD of Stream power index SPIσ [65] L L

Mean Distance to Fault D2Fμ [15] L L
SD of Distance to Fault D2Fσ [15] L L

4. Results

We report the outcomes of the so-called fitting (within sample) and cross-validation
(out of sample) procedures. The former is used to interpret the patterns of the explanatory
variables, while the latter is a tool for model validation. We then produce two susceptibility
maps (that is, two spatial probability maps), one for the active landslides, and one for
the relict landslides. These maps are compared with those of a number of explanatory
variables, to seek common patterns. It should be stressed that the susceptibility maps are
intended as descriptions of past/present phenomena and not as a temporal prediction tool.

4.1. Distinct Patterns of Explanatory Variables

The main tool that we can use to evaluate the extent to which the classification into
inactive and active landslides relates to distinct controlling factors is the analysis of the
effects of these factors, represented by sets of covariates in the statistical model. We believe,
in fact, that inactive and active landslide phenomena should be spatially correlated with
physical variables in a distinct way. Predisposing factors that cause landslides must be
congruent in inactive as well as in active landslides. Hence, what should stand out the
most is that the predisposing factors can change over time.

The posterior marginal distributions of the linear effects of each covariate in the
models constructed with inactive and, separately, active landslides are displayed in Figure 3.
Notably, about half of the covariates exhibit distinct effects in the two models, suggesting
that the phenomena featured in the two classes may be controlled by different processes.

Geomorphologically, reasonable patterns are described. The role of Northness is con-
sistent with the distribution of precipitation, which comes from the Black Sea, north of the
study area (Figure 1). Negative values of RSPμ are observed in active landslides. Seemingly
counterintuitively, PGAμ is positively correlated with inactive landslides. However, this
is consistent with the observation [39] that these landslides may be related to historical
earthquakes in the NAFS. The elongation of the SUs has a negative effect on both active and
inactive landslides, as elongated slopes offer less room for large, deep-seated landslides
to form. The average slope negatively correlates with the presence of active landslides,
while no correlation is found with inactive ones. For active landslides, this suggests that
phenomena on very steep slopes are unlikely; in fact, unstable bodies are quickly removed
from steep slopes, while landslide inventories tend to better capture movements over
more gentle slopes, which can remain active for a longer time. Hydrological covariates
(TWIσ and SPIμ) seem to exert a negative effect in both active and inactive landslides,
suggesting their preferential occurrence in the upper portions of catchments. The effect
of lithology (Figure S2, Table S1) also shows some differences between the models. For
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instance, granitoid areas are negatively correlated with active landslides, while the opposite
holds true for carbonate rocks.

Figure 3. Fixed effects of geomorphological variables expressed as marginal distributions for inactive
and active landslides.

4.2. Distinct Landslide Triggers

The behaviours of the nonlinear effects of covariates for inactive and active phenomena
also are different, as shown in Figure 4. These nonlinear effects clearly point to distinct
triggers for inactive and active landslides. In fact, for inactive landslides, neither slope
nor precipitation exert significant effects (95% confidence level). For active landslides,
positive effects are seen within a certain range of slope angles (10–20◦) that could be related
to specific materials capable of sustaining prolonged landslides, and for large amounts
of annual precipitation (>800 mm/year), capable of frequently triggering or sustaining
a variety of movements. On the contrary, in areas with less precipitation, the effect is
slightly negative.
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Figure 4. Nonlinear effects of slope (left column) and precipitation (right column) for inactive
(top row) and active (bottom row) landslides. The effect is modelled as a random effect estimated
over 20 classes with adjacent dependency. Thick coloured lines represent the posterior means whereas
the coloured dashed lines indicate the posterior 95% credible interval. Dashed grey lines indicate the
zero line along which coefficients play no role in the modelling outcome.

In order to validate the result, the out-of-sample performance of the model is inves-
tigated. This is done in two steps: the first one involves the use of AUC for each of the
considered landslide classes, whereas the second one maintains the same structure but
focuses on the summary metrics of confusion matrices.

Figure 5a shows the ROC curves and their AUC values for ten cross-validations for the
active and inactive landslide models. The AUC values (~0.8) can be deemed satisfactory
and are consistent across the replicates, indicating robustness of the model [66]. The figure
(bottom row) also shows the confusion plots of the two models, which are rather similar in
both the high ability to detect true positive cases (~90%) and the lower ability to identify the
true negative ones (47–50%). Consequently, the error rate (bottom right) is also of similar
magnitude (44–50%), and it seems to fail on the stable conditions, together with the ratio
between Predicted True Negatives and Observed Negatives.

However, we should remind that the SUs had been calculated only for areas with slope
topography, as we excluded the flat areas that are obviously not susceptible to gravitative
movements. This could be interpreted as a weakness of the model, but actually facilitates
its ability in recognising the instable areas.
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Figure 5. (a) ROC curves and their AUCs for ten cross-validations for the inactive (left) and active
(right) landslide models. (b) Confusion plot (left) constructed via the percentage of Observed TP and
fitted TP against the percentage of Observed TN and fitted TN (for each landslide type), and error
rates (right), both have been obtained from a tenfold CV.

4.3. Distinct Susceptibility Maps

In Figure 6, we show the resulting susceptibility maps for the inactive and active
landslides. The maps display markedly different spatial patterns that are consistent with the
qualitative (Figure 1) and quantitative (Figures 3 and 4) observations that the distribution
of active landslides better correlates with the annual precipitation and that the distribution
of inactive landslides better correlates with the peak ground acceleration.

What is more, the two maps are not “one the negative of the other”. The patterns
that emerge are, in fact, distinct. Indeed, we do not observe a specular negative effect of
precipitation in the distribution of inactive landslides (in fact, we do not observe a significant
effect at all). However, we do see a negative effect of the peak ground acceleration in the
distribution of active landslides, but the magnitude of this effect is smaller than that seen
for inactive landslides.

The absence of correlation between the two maps is demonstrated quantitatively in
Figure 6d, where the Pearson correlation shown is 0.5, indicating a random dependence.
Similarities in the two maps mainly exist in areas with low density of landslides, indepen-
dently of their state of activity, such as the northwestern and southernmost portions.
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Figure 6. Susceptibility maps for inactive (a) and active (b) landslides. The maps are obtained by
merging ten cross-validated subsets and thus entirely come from predicted estimates. The resulting
probability values have been binned into seven susceptibility classes using a quantile criterion. The
difference in susceptibility between (a) and (b) is shown in (c), while the graph in (d) displays their
Pearson correlation.

5. Discussion

5.1. Controls and Fate of Active Landslides

From our analysis, it emerged that, consistently with the definition of relict landslides
(used to classify the inactive landslides), the conditions that caused their occurrence in the
past are distinct from those that are responsible for the active movements in the present.
Moreover, the locations of the inactive landslides point to areas with high seismicity, sug-
gesting that they may be earthquake-induced phenomena, now stabilised and insensitive
to hydrometeorological forcing. Conversely, the distribution of active landslides reflects the
pattern of present-time annual precipitation, suggesting the rainfall-induced nature of these
phenomena. If we interpret the active landslides as slow-moving mass movements (that is,
processes that remain active for a comparatively long time, and thus more easily captured
by inventories), the correlation between the rainfall pattern and the spatial distribution of
landslides makes very much sense. There is a large literature showing that the mobilisation
and acceleration of slow-moving landslides along slopes is mostly governed by rainfall
events causing an increase in pore water pressure and thus a reduction in the available shear
strength [67]. On the other hand, in the absence of significant shifts in hydro-meteorological
patterns, the stabilisation of these landslides should mostly be related to their transition
from steeper to gentler slopes and/or to plains or valleys without significant fluvial erosion
at the toe). In other words, active landslides could be described as meta-stable hillslopes
materials experiencing creep and consolidation processes while the ratio between driving
and resisting forces fluctuates over time mostly under the control of hydro-meteorological
factors.

Here, we should stress that slow-moving landslides could rapidly turn into catas-
trophic landslides (and thus rapidly stabilise) if at some point the driving forces dramati-
cally exceed their resisting counterparts. Various factors including seismicity or precipita-
tion itself could trigger catastrophic landslides. Yet, this may seem a more likely scenario
for a region exposed to intense seismic external forces rather than precipitation because,
overall, even relatively low-intensity ground shaking may be more destructive than intense
precipitation at triggering landslides [68]. In this context, it is not surprising that the relict
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landslides are mostly distributed closer to the North Anatolian Fault zone, whereas the
active landslides concentrate far from it.

5.2. Accuracy of the Active/Inactive Landslide Classification

The binary classification into active and inactive landslides in the inventory was
performed well. This is demonstrated by the fact that it resulted in the production of two
distinct and uncorrelated susceptibility maps. In other words, in addition to suggesting
differences between the conditions responsible for landslides in the past and in the present
in the study area (supporting a non-uniformitarian view in this highly dynamic context),
this result also suggests that we are dealing with a well-done classification. Logically, active
and relict landslides should not be difficult to discern, but the point here is that, if a bias
existed in this classifier, it would have resulted in less distinct (and thus more spatially
correlated) susceptibility maps. Seeing this the other way round, if a classifier is expected to
define distinct regions of space and this does not occur, the severity of the classification bias
could be quantified from the degree of correlation between the maps generated, separately,
for the distinct values of the classifier.

6. Conclusions

The analyses presented in this work aimed at investigating differences in the spatial
patterns of relict and active landslides in a landslide-rich geomorphological context. These
differences, expected in the light of qualitative observations on the possible landslide
triggers and predisposing factors, were expressed quantitatively using a purely data-driven
approach, confirming the validity of such methodology, suggested in the literature [69], and
the accuracy of the classification operated in the inventory. The result that the susceptibility
patterns of relict and active landslides in the study area are spatially distinct and correlate
with distinct explanatory variables suggests that, while current rainfall patterns may
explain the distribution of active landslides, seismicity may have had an impact on the
relict landslides.

Overall, we believe our work can represent a summary of good practices in the defini-
tion of landslide susceptibility mapping and hopefully serve as a reference standardised
assessments in both common and specific applications. It also brings novelty as it presents a
general slope unit-based susceptibility model through a Bayesian approach in a study area,
namely the Turkish Northwesternmost Sector, so far not investigated with this technique.
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Abstract: Landslide susceptibility mapping (LSM) is an important element of landslide risk assess-
ment, but the process often needs to span multiple platforms and the operation process is complex.
This paper develops an efficient user-friendly toolbox including the whole process of LSM, known
as the SVM-LSM toolbox. The toolbox realizes landslide susceptibility mapping based on a support
vector machine (SVM), which can be integrated into the ArcGIS or ArcGIS Pro platform. The toolbox
includes three sub-toolboxes, namely: (1) influence factor production, (2) factor selection and dataset
production, and (3) model training and prediction. Influence factor production provides automatic
calculation of DEM-related topographic factors, converts line vector data to continuous raster factors,
and performs rainfall data processing. Factor selection uses the Pearson correlation coefficient (PCC)
to calculate the correlations between factors, and the information gain ratio (IGR) to calculate the
contributions of different factors to landslide occurrence. Dataset sample production includes the
automatic generation of non-landslide data, data sample production and dataset split. The accuracy,
precision, recall, F1 value, receiver operating characteristic (ROC) and area under curve (AUC) are
used to evaluate the prediction ability of the model. In addition, two methods—single processing and
multiprocessing—are used to generate LSM. The prediction efficiency of multiprocessing is much
higher than that of the single process. In order to verify the performance and accuracy of the toolbox,
Wuqi County, Yan’an City, Shaanxi Province was selected as the test area to generate LSM. The results
show that the AUC value of the model is 0.8107. At the same time, the multiprocessing prediction
tool improves the efficiency of the susceptibility prediction process by about 60%. The experimental
results confirm the accuracy and practicability of the proposed toolbox in LSM.

Keywords: landslide susceptibility mapping; toolbox; SVM; automatic; multiprocessing; the whole process

1. Introduction

The occurrence of landslide disasters causes great losses to the economy and human
life all over the world every year [1,2]. Natural events such as rainfall [3,4], earthquakes [5,6]
and floods [7] often lead to a series of landslides. Landslide susceptibility mapping (LSM) is
used to determine the probability of future landslides in the study area by comprehensively
analyzing various topographic, geological and hydrological factors, as well as human
activity, alongside historical landslide activity in the study area [8,9]. LSM is of great
significance to landslide risk management, human life safety and urban future planning.

In recent years, LSM has attracted the attention of many scholars, and various re-
lated articles have been published. The methods of generating landslide susceptibility
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mapping mainly include empirical modeling based on expert experience [10,11], physi-
cally based models [12], data-driven statistical modeling [13–15] and machine learning
models [16–19]. Compared with traditional methods, the machine learning models do not
rely on expert experience, which reduce the subjectivity of evaluation and generally have
high accuracy. With the development of geographic information system (GIS) software
and open-source machine learning libraries, the machine learning methods are becoming
increasingly popular.

Compared with other machine learning algorithms, the support vector machine (SVM)
method has been widely used in calculating landslide susceptibility because of its advan-
tages in solving small-sample, nonlinear and high-dimensional classification problems [5,8].
However, the process of landslide susceptibility assessment using SVM is complicated,
consisting of multiple steps such as data preprocessing, influencing factor selection, dataset
production, model training and prediction. Generally, when using SVM to generate LSM,
researchers must work with a cross-platform. Terrain factors based on the Digital Elevation
Model (DEM) (e.g., slope, aspect) rely on platforms such as ArcGIS or QGIS. Model training
and parameter optimization usually adopt widely used programming languages such as
Python, R or MATLAB. In addition, Excel, SPSS software or programming languages have
been used for model accuracy evaluation and statistical analysis in most previous studies.

Tools related to landslide susceptibility mapping are usually available in the form
of academic code, which requires users to have programming skills. Some studies have
proposed and applied several tools to evaluate landslide susceptibility. Osna et al. [20]
developed an independent application (GeoFIS) to generate landslide susceptibility maps
using the Mamdani fuzzy inference system (FIS). Sezer et al. [11] developed an LSM module
based on expert experience with NetCAD architecture software. Jebur et al. [21] created
a landslide susceptibility mapping toolbox using bivariate statistical analysis (BSA) based
on ArcGIS. Zhang et al. [15] provided a landslide susceptibility assessment tool based
on the optimized frequency ratio method, which itself is based on the ArcGIS platform.
Torizin et al. [22] provided an independent landslide susceptibility assessment application
written in Python, Project Manager Suite (LSAT PM). Bragagnolo et al. [23] developed
a free and open-source plug-in, namely r.landslide, based on the GRASS software of open-
source GIS, to generate landslide susceptibility mapping based on an artificial neural
network. Sahin et al. [24] integrated R and ArcGIS software and developed a landslide
susceptibility mapping toolkit (LSM tool pack) based on logistic regression and random
forest. Guo et al. [25] introduced a Python QGIS plugin [26] named FSLAM, which allows
us to compute regional shallow landslide susceptibility based on the effective antecedent
water recharge and the event rainfall.

Most of the above toolboxes are based on expert experience models or statistical
models, such as the weight of evidence method, frequency ratio method and so on. These
methods are simple in principle and easy to implement, but with limited accuracy. To date,
only a limited number of previous studies have involved the development of landslide
susceptibility mapping tools based on machine learning methods. At the same time, most
tools only involve model training and prediction, instead of the whole process of LSM. In
addition, most studies only use the single-factor pixel value corresponding to landslide
point locations as samples for model training. However, landslides usually occur within
a region and are affected by characteristics from the surrounding environment. Therefore,
problems exist when constructing samples based on a single pixel [27,28]. The realization
of regional-scale data construction is often complicated and time-consuming.

To solve the above-mentioned problems, this research develops an LSM toolbox based
on the ArcGIS platform (SVM-LSM toolbox). The toolbox includes data preprocessing,
factor selection, SVM model training and evaluation, and landslide susceptibility map
prediction, involving the whole process of LSM. Moreover, this toolbox only uses the
ArcGIS platform, which avoids cross-platform operation and reduces user input param-
eters as much as possible. The operation is simple, convenient and user-friendly. The
susceptibility prediction process based on sliding windows is time-consuming. This tool
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provides a multiprocessing rapid prediction tool to sufficiently improve the production
efficiency of landslide susceptibility mapping. In addition, a tool for the rapid production
of multi-channel block datasets is constructed to improve the efficiency of dataset making.
It is worth noting that this toolbox is not limited to the mapping of landslide susceptibility
based on SVM and can also be used for other binary classification problems based on SVM.
Section 2 of this paper introduces the basic functions of the toolbox and a description of
each module; Section 3 discusses the experimental research on the landslide susceptibility
mapping of the toolbox in Wuqi County, Shaanxi Province, China, and provides an analysis
of the relevant results; and Section 4 presents the conclusion.

2. LSM Toolbox

2.1. LSM Workflow

An overall flow chart of LSM based on SVM is shown in Figure 1. The process of
generating LSM based on SVM consists of data collection, data preprocessing, dataset
making, feature selection, model training and susceptibility map prediction. The data
collection includes historical landslide data, the coverage of the study area and landslide
influencing factors, such as roads, rivers, faults, Normalized Difference Vegetation Index
(NDVI), DEM, lithology and rainfall. Among them, landslide points, the coverage of the
study area, roads, rivers and faults are vector data, NDVI, DEM and lithology are grid
data, and rainfall is the NetCDF-4 (nc4) format. Data preprocessing includes calculating
topographic factors (such as slope, aspect, etc.) based on DEM, converting line vector data
to continuous raster factors, and nc4 data processing. For raster data, it is also necessary to
clip them to the same study area range. Subsequently, based on landslide points and the
range of the study area, the same number of non-landslide points are randomly selected to
construct negative samples. Then, the dataset is randomly divided into training samples
and test samples in the ratio of 7:3. In addition, the Pearson correlation coefficient (PCC)
and information gain ratio (IGR) are calculated for all the samples. Influencing factors
are selected based on the calculation results; factors with high correlations or with less
importance to landslide occurrence are removed. Then, the training and test sets are
reconstructed according to the results of the feature selection. Finally, the training set is
used to train the model, and an optimal SVM model is obtained through the comprehensive
analysis of parameters and evaluation indicators such as accuracy, precision, recall, F1 value,
receiver operating characteristics (ROC) and area under the curve (AUC). The optimal
model is finally used to predict the susceptibility index of the study area and generate
a susceptibility map of the study area for subsequent analysis.

In this paper, a toolbox is presented to generate landslide susceptibility maps according
to the above-mentioned workflow. The LSM toolbox includes three sub-toolboxes: “1
influence factor production”, “2 factor selection and dataset production” and “3 model
training and prediction”, as shown in Figure 2. This toolbox is developed based on ArcPy
and Python language and can be directly integrated into ArcGIS 10.1 (or higher) or ArcGIS
Pro software. It is efficient and user-friendly.
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Figure 1. Flowchart of SVM-LSM toolbox.

Figure 2. Overall module of SVM-LSM toolbox.
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2.2. Influencing Factor Production

Landslide influencing factors are various factors that affect the occurrence of land-
slides through the study of the occurrence mechanism of landslides in the study area. The
occurrence of landslides is affected by various influencing factors. At present, there is no
unified standard for the selection of influencing factors. Pourghasemi et al. [29] conducted
a statistical analysis on the influencing factors used in the study and found that topographic
factors, geological factors and human activities are the most commonly used factors for
landslide occurrence. This toolbox provides a tool for generating relevant topographic
factors based on DEM, a tool for converting roads, faults and rivers into continuous raster
data, and a rainfall processing tool.

2.2.1. Topographic Factor Calculation

This tool integrates other factors calculated by DEM, and automatically calculates
other topographic factors such as slope, aspect, curvature, plane curvature, profile cur-
vature, relief amplitude, surface roughness, topographic wetness index (TWI) and other
topographic factors based on DEM data in the study area. As shown in Figure 3a, it is
necessary to only input DEM data and select the factors that need to be calculated. These
factors can be calculated optionally according to the needs of users by checking the box
in front of the factors to be calculated, but aspect must be calculated when calculating
plane curvature, and slope must be calculated when calculating profile curvature, surface
roughness or TWI.

Figure 3. Cont.
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Figure 3. Influencing factor production toolbox interface: (a) topographic factors calculation; (b) convert
line vector data to continuous raster factor; (c) rainfall data processing; and (d) batch clipping of each
factor layer.

2.2.2. Convert Line Vector Data to Continuous Raster Factor

This tool automatically converts the line vector data of the study area into continuous
raster data, such as distance to roads, distance to faults and distance to rivers. The conver-
sion principle adopts Euclidean distance. As shown in Figure 3b, the user only needs to
input the line vector data to be converted and the result save path.

2.2.3. Rainfall Data Processing

The National Aeronautics and Space Administration (NASA, https://gpm.nasa.gov/,
accessed on 24 December 2020) provides a Global Precipitation Measurement Mission
(GPM). These are high-precision precipitation data obtained using multi-sensors, multi-
satellites and multi-algorithms combined with the satellite network and rainfall gauge
inversion, with a spatial and temporal resolution up to 0.5 h, 0.1◦ × 0.1◦ [30]. The monthly or
daily rainfall data downloaded from NASA are in the .nc4 format, which is time-consuming
and laborious to convert into raster data one by one. Therefore, this tool provides a rainfall
batch conversion tool to convert the .nc4 format data to the .tif format raster data. As shown
in Figure 3c, the user only needs to input the rainfall data and specify the raster data output
coordinate system.

2.2.4. Batch Clipping of Each Factor Layer

After the production of the factor layer data, the row and column numbers and
coverage of each factor layer data are usually inconsistent. This tool is used to batch clip
the raster data of each factor layer according to the vector data of the study area in order to
obtain the factor layer data of the study area. As shown in Figure 3d, this tool only needs
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the user to set the folder where the raster factors are located and the vector data of the
study area; it can automatically iteratively select the .tif format files for clipping. All the
raster data resolutions should be consistent.

2.3. Factor Selection and Dataset Production
2.3.1. Non-Landslide Data Generation

This tool is used to generate non-landslide point data within the study area vector data
layer. As shown in Figure 4a, the user inputs landslide points and the study area vector
file and specifies the number of non-landslide points to be selected outside of a buffer
and how many meters from the landslide point. First, the tool generates a buffer zone
at a specified distance from the landslide point and erases the buffer zone layer on the
study area layer to obtain the selectable range of non-landslide sample points. It then uses
random points to generate the same number of non-landslide points within the optional
range. The non-landslide points should be selected as far from landslide points as possible.

Figure 4. Cont.
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Figure 4. Dataset production and factor selected toolbox interface: (a) non-landslide data generation;
(b) data sample production; (c) dataset split; and (d) PCC and IGR calculation.

2.3.2. Data Sample Production

This tool is used to generate multi-channel block sample raster data from vector
point data. As shown in Figure 4b, the user inputs the vector point elements and the
multi-channel factor layer data and specifies the buffer distance, which is half of the actual
distance represented by the cropped raster size. The tool uses vector point data to create
a buffer and iteratively selects the buffer range corresponding to each point vector in order
to cut the multi-channel raster data one by one, resulting in a single multi-channel block
dataset of each vector point named after the “FID” attribute value. When the buffer distance
is less than the resolution of the raster data, the obtained sample has reached the point at
which the landslide point is located.

2.3.3. Dataset Split

When using the machine learning methods for model training, it is common to split
the samples into a training set and a test set in a certain ratio. The training set is used to
train the model and the test set is used to test the generalization of the model and prevent
overfitting. As shown in Figure 4c, users can specify the ratio of the training and test sets
by themselves. Generally, the ratio of the training and test sets is 7:3. Finally, the sample
paths and labels of the training and test sets will be given, respectively (0 for non-landslide
and 1 for landslide), and the results are saved in a txt file.

2.3.4. PCC and IGR Calculation

Determining the most effective combination of the influencing factors for landslide
susceptibility mapping is of great importance. If the influencing factors are not evaluated,
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this will not only cause data redundancy but will also affect the execution efficiency
and prediction accuracy of the model [31]. At present, there is no optimal solution for
the selection of influencing factors, but they typically consist of two parts: correlation
analysis and importance evaluation. This toolbox provides two of the most commonly used
influencing factor selection methods: PCC and IGR. The PCC is an index used to measure
the correlation between the influencing factors. The closer its absolute value is to 1, the
stronger the correlation between the two factors. The information gain ratio is an index
used to evaluate the importance of each factor layer on landslide occurrence. The higher
the IGR value, the greater the impact of this factor on landslide occurrence. Any factor
with zero IGR does not influence landslide occurrence. As shown in Figure 4d, this tool
calculates PCC and IGR based on the generated data samples and saves them in a txt file.
Upon comprehensively considering the calculation results, factors with strong correlation
and little influence on landslide occurrence are eliminated based on the principle that the
lower the correlation is, the greater the importance is.

2.4. Model Training and Prediction
2.4.1. Image Generation to Be Predicted

The different factor layers are stacked in a certain order to form multi-channel raster
data, which is the image to be predicted. It is used for sample production and susceptibility
map prediction. As shown in Figure 5a, this tool only requires the input of the path and
stacking order of each factor layer. Here, the stacking order of the factor layers used for the
image to be predicted should be consistent with the order of the factor layers in the model
training samples.

Figure 5. Cont.
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Figure 5. Model training and prediction toolbox interface: (a) image generation to be predicted;
(b) model training and performance evaluation of SVM; (c) landslide susceptibility map prediction
(single process); and (d) landslide susceptibility map prediction (multiprocessing).

2.4.2. Model Training and Performance Evaluation of SVM

This tool is used to generate SVM models with given parameters and provide eval-
uation results of the accuracy of each model. As shown in Figure 5b, the user enters the
directory in which the dataset sample is located along with the number of rows, columns
and channels of the dataset. At the same time, the optional values of parameter gamma and
penalty factor C to be adjusted also should be given. The parameter adjustment method
used in this tool is the grid search algorithm.

SVM has certain advantages in solving the problem of small-sample classification [32].
The kernel function and slack variable are used to deal with the linear indivisibility of
the sample data. At the same time, because the classifier is only determined by the
support vector, SVM can effectively avoid overfitting. SVM attempts to classify samples by
introducing kernel functions that map landslide influencing factors to a high-dimensional
feature space, from which it attempts to locate the optimal hyperplane with the maximum
spacing between landslides and non-landslides from the feature space [33]. Xu et al. [5]
discussed the influence of different kernel functions of SVM on landslide susceptibility
mapping. The results show that the prediction effect of the radial basis function (RBF) in
SVM is optimum. Therefore, the kernel function of this tool defaults to RBF.

The susceptibility map is equivalent to a binary classification problem. Landslides
are marked as “1” and non-landslides marked as “0”. Thus, the confusion matrix can be
constructed according to different combinations of real value and predicted value, and the
model accuracy evaluation index can be constructed based on the confusion matrix. In
this tool, accuracy, precision, recall, F1 value, receiver operating characteristic (ROC) and
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area under curve (AUC) were used to evaluate the prediction ability of the model. The
calculation formula [6] is as follows.

accuracy =
TN + TP

TN + TP + FP + FN
(1)

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

F1 value =
2 × TP

2 × TP + FP + FN
(4)

If the real result and predicted result are landslide, it is called true positive (TP); if
the real result and predicted result are non-landslide, it is called true negative (TN); if the
real result is landslide and the predicted result is non-landslide, it is called false negative
(FN); if the real result is non-landslide and the predicted result is landslide, it is called false
positive (FP).

In the ROC, false-positive rate (FPR) is the x-axis and true-positive rate (TPR) is the
y-axis. At the same time, the area under the ROC (AUC) is used to quantitatively evaluate
the prediction accuracy of methods. The AUC value range is [0, 1]. The larger the AUC
value, the higher the accuracy of the model classification and the better the accuracy.

FPR =
FP

FP + TN
(5)

TPR =
TP

FN + TP
(6)

2.4.3. Landslide Susceptibility Map Prediction

This tool is used to predict landslide susceptibility in the study area, based on the
optimal model, and obtain the landslide susceptibility map in the study area. In this tool, a
sliding window with the same row and column numbers as the dataset is constructed to
select the data to be predicted for input into the optimal model to obtain the susceptibility
index until all rows and columns are sliding. The tool provides two options: single process
(Figure 5c) and multiprocessing (Figure 5d). Single-process and multiprocessing tools can
be used under ArcGIS and ArcGIS Pro, but the single-process tool speed is slow and the
multiprocessing tool is fast. In a single process, the user must only give the image to be
predicted, the optimal model and the number of rows and columns of the dataset. In
multiprocessing, the user must also specify “pythonw.exe” location.

3. Results

Taking Wuqi County, Shaanxi Province, China as an example, the developed toolbox
was applied to carry out a landslide susceptibility assessment.

3.1. Study Area

The study area is located in Wuqi County, Yan’an City, Shaanxi Province (107◦38′57′′E~
108◦32′49′′E, 36◦33′33′′N~37◦24′27′′N). It covers a total area of 3791.5 km2, encompasses
a total population of 145,700 and has an altitude of 1233~1809 m. The study area has a warm,
temperate, continental, semi-arid climate. It is dry and windy in spring, sees alternating
drought and flood conditions in summer, is cool and wet in autumn and is cold and dry
in winter, and the annual average temperature is 7.8 ◦C. The average annual rainfall is
483.4 mm, and the total coverage of forest and grass is 49.6%. The Wuding and Beiluo River
systems lie within the study area. The landform belongs to the hilly and gully area of the
Loess Plateau. The terrain fluctuates greatly, the gully is long and the slope is steep [34].
The landslide type in the study area mainly belongs to Loess landslides. During the flood
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season, rainstorms or continuous rainfall will often induce landslides, collapses and debris
flow of different scales, seriously threatening the lives and property safety of local people.
Therefore, it is of great practical significance to carry out landslide susceptibility evaluation
in Wuqi County. The location of the study area is shown in Figure 6.

Figure 6. (a) Location of Shaanxi Province, (b) location of Wuqi County, Yan’an City, (c) landslide
inventory mapping in Wuqi County.

3.2. Preprocessing of Influencing Factors

The influence factor data sources used in this example include DEM, roads, rivers,
lithology, NDVI and rainfall. Lithology and NDVI were pre-processed into 30 m resolution
raster data. For the acquired DEM data, the “topographic factor calculation” tool is used
to generate slope, aspect, curvature, plane curvature, profile curvature, relief amplitude,
surface roughness and a topographic wetness index (TWI). At the same time, the “convert
line vector data to continuous raster factor” tool is used to produce the distance to rivers
and distance to roads. Since there is no active fault in the study area and it is not affected
by active faults, the distance to the fault is not considered. For the rainfall data (.nc4), the
“rainfall data processing” tool is used to convert the monthly rainfall data obtained by
NASA into the corresponding raster data in batches, and the raster calculator is used to
accumulate monthly rainfall data in order to obtain annual rainfall data. Finally, the “batch
clipping of each factor layer” tool is used to batch cut the generated influencing factor data
according to the vector data of the study area. Finally, a total of 14 landslide influencing
factors are generated (Figure 7), and the spatial resolutions of all the factor data are 30 m.
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Figure 7. Landslide influencing factors in Wuqi County. (a) Altitude, (b) slope, (c) aspect, (d) curvature,
(e) plane curvature, (f) profile curvature, (g) relief amplitude, (h) surface roughness, (i) topographic
wetness index (TWI), (j) normalized difference vegetation index (NDVI), (k) rainfall, (l) lithology,
(m) distance to roads, (n) distance to rivers.
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3.3. Factor Selection and Sample Generation

There are 789 historical landslides in the study area, which can be divided into 175 large
landslides, 417 medium landslides and 197 small landslides. In this study, all the landslide
locations are used to construct the landslide dataset. Based on the landslide point data, the
“non-landslide data generation” tool was used to randomly generate the same number of
non-landslide points, each of which should be at least 1 km away from all of the landslide
points in the study area.

Since the calculation of IGR and PCC must be based on all the sample data, the dataset
needs to be created before the selection of influencing factors. Firstly, the “image generation
to be predicted” tool is used to stack the generated data of 14 influencing factors in the
study area in multiple channels. Then, the “data sample production” tool is used to make
landslide and non-landslide block datasets based on the superimposed multi-channel
images. In addition, the “dataset split” tool is used to divide the training samples and
test samples in the ratio of 7:3, before saving the path and labels of the samples to the
corresponding txt file, respectively. Finally, all the block datasets have fourteen channels,
eight rows and eight columns. There are 1104 images in the training set and 474 images in
the test set, in which the landslide dataset is marked as 1 and the non-landslide dataset is
marked as 0.

After using the “PCC and IGR calculation” tool to calculate the PCC and information
gain ratio of each factor layer based on the data samples, Figure 8 shows the results of the
PCC calculation. It can be seen that the correlation coefficients between plane curvature
and slope, TWI and slope, and relief amplitude and surface roughness are greater than 0.5.
The study area is located in the hinterland of the Loess Plateau which is a typical hilly and
gully landscape with high topographic fragmentation and loose soils. The reason for such
strong correlations is that the study area often suffers from severe rainfall erosion and river
erosion. On the one hand, the greater the slope, the more severe the soil erosion. Therefore,
the more complex the surface morphology, the greater roughness and relief amplitude of
the surface. On the other hand, the steep slopes with low water retention capacity lead to
low soil water content (TWI), and vice versa. Figure 9 presents the calculation results of
the information gain ratio. The IGR values of 14 landslide influencing factors are greater
than 0, indicating that these factors have an impact on the occurrence of landslides in the
corresponding areas. In this study area, lithology has the greatest impact on landslide
occurrence, followed by NDVI, plane curvature, profile curvature and TWI, while curvature
and relief amplitude have the least impact. Upon a comprehensive analysis of PCC and
IGR, the two influencing factors of slope and relief amplitude were removed for Wuqi
County, and the remaining 12 influencing factors were used for subsequent research.

According to the evaluation results, the steps of “image generation to be predicted”,
“data sample production” and “dataset split” should be repeated in decreasing order of
information gain ratio (i.e., lithology, plane curvature, profile curvature, NDVI, TWI, aspect,
surface roughness, distance to rivers, DEM, distance to roads, rainfall and curvature) to
obtain the final image and sample data for further prediction. The number of channels of
all the block datasets used is 12, and their row and column numbers are both eight in the
subsequent analysis.
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Figure 8. Pearson correlation coefficient matrix for the Wuqi County case study. Note that “slp”
represents slope, “asp” represents aspect, “cur” represents curvature, “plancur” represents plane
curvature, “profilecur” represents profile curvature, “rivers” represents distance to rivers, “roads”
represents distance to roads, “lithology” represents lithology, “SroughnessC” represents surface
roughness, “relief” represents relief amplitude, and “rainfall” represents rainfall.

Figure 9. Information gain ratio for the Wuqi County case study. Note that “slp” represents slope,
“asp” represents aspect, “cur” represents curvature, “plancur” represents plane curvature, “profilecur”
represents profile curvature, “rivers” represents distance to rivers, “roads” represents distance
to roads, “lithology” represents lithology, “SroughnessC” represents surface roughness, “relief”
represents relief amplitude, and “rainfall” represents rainfall.
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3.4. Model Training and Performance Evaluation

The “model training and performance evaluation of SVM” tool is used to train the
model based on the generated training data, evaluate the performance with the test set and
plot the ROC curve. Of these, the SVM model uses the RBF kernel function. The model has
two parameters: gamma and penalty factor C. The grid search algorithm is used to optimize
the parameters, find the optimal set of model parameters and generate the optimal model.
The values of parameters gamma and C are selected from 0.01, 0.02, 0.05, 0.08, 0.1, 0.2, 0.5,
0.8, 1, 2 and 5. Figure 10 shows the AUC values and the difference in accuracy between
the training and test sets for different gamma and C values, which used gamma values as
horizontal coordinates and C values as vertical coordinates. In the figure, the size of the
circle represents the AUC value. The larger the circle, the greater the AUC value and the
better the model performance. The color of the circle represents the accuracy difference
between the training and test sets. If it exceeds 0.5, it is represented by 0.5. The greater
the accuracy difference, the higher the degree of overfitting of the model and the worse
the generalization performance. Consequently, comprehensive analysis shows that when
gamma is 0.02 and C is 2, the AUC value is high, the accuracy difference is small, and the
model is optimal.

Figure 10. AUC values and accuracy differences under different parameter values.

Table 1 shows the performance of the optimal model with the testing dataset, and
Figure 11 shows its corresponding ROC curve. Among the 474 testing datasets, 169 land-
slides and 171 non-landslides were correctly predicted, while 68 landslides and 66 non-
landslides were incorrectly predicted. The correct samples predicted by the model accounted
for 71.73% of the total samples, with a precision of 71.55% and a recall rate of 72.15%. At
the same time, the AUC value of the model is 0.8029, indicating that the model has good
prediction performance and the result of the landslide susceptibility map is reliable.
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Table 1. Evaluation index of the model performance.

Evaluation Index Results

Confusion matrix
Landslide Non-landslide

Landslide 169 68
Non-landslide 66 171

Accuracy 0.7173
Precision 0.7155

Recall 0.7215
F1 0.7185

AUC 0.8029

Figure 11. The ROC curve of the optimal model.

3.5. Landslide Susceptibility Map Generation and Analysis

With the trained optimal model, the “landslide susceptibility map prediction” tool
is used to predict the generated image unit by unit according to the optimal model. The
probability of each evaluation unit being predicted as a landslide is obtained to generate
a landslide susceptibility map for the study area. The predicted susceptibility indexes lie
between 0 and 1. The larger the susceptibility index is, the more susceptible the area is to
landslides. The generated susceptibility map is divided into five levels—very low, low,
moderate, high and very high—using the natural break method in ArcGIS. The landslide
susceptibility map of Wuqi County after classification is obtained by SVM, as shown in
Figure 12.

It is clear in Figure 12 that the areas in Wuqi County with high and very high suscep-
tibility to landslides are mainly concentrated on both sides of rivers severely affected by
soil erosion. Low- and very-low-susceptibility areas are mainly distributed in high-altitude
areas with limited human activity. The locations of historical landslides are well fitted with
the predicted results. The areas where landslides are relatively concentrated are predicted
as high and very high susceptibility areas, which is in line with the actual situation. Table 2
shows the proportion of each graded area and the density of landslide points within each
grade. It can be seen that the proportion of high- and very-high-susceptibility areas is 29.97%,
and the proportion of low- and very-low-susceptibility areas is 49.18%. With increased
susceptibility grade, the density of landslide points increases continuously, which is in
line with the actual situation of the susceptibility grade. The density of landslide points in
very-high-susceptibility areas is 0.77 and that in very-low-susceptibility areas is 0.04.
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Figure 12. Classification map of landslide susceptibility in Wuqi County.

Table 2. Statistical analysis of each susceptibility class in Wuqi County.

Classes Area (km2) Proportion (%) Landslide Density (Number/km2)

Very low 924.43 24.28 0.04
Low 948.24 24.90 0.08

Moderate 794.02 20.85 0.14
High 648.42 17.03 0.28

Very high 493.02 12.94 0.77

3.6. Toolbox Operation Efficiency Evaluation

Although the “landslide susceptibility map prediction (single process)” and “landslide
susceptibility map prediction (multiprocessing)” tools can be used under ArcGIS and
ArcGIS Pro, it is recommended that they be used with ArcGIS Pro. Since Python 2.7 installed
in ArcGIS is generally 32-bit, it has extremely limited use of memory resources and can
only use a maximum of 2G of memory when processing massive data. If it exceeds 2G, a
“Memory Error” will appear. Meanwhile, the Python 3 environment used by ArcGIS Pro
is 64-bit, which can use more memory than the 32-bit Python, and therefore the “Memory
Error” rarely occurs.

Table 3 shows the computation statistics of various tools in ArcGIS and ArcGIS Pro
software for Wuqi County, respectively. For evaluation, all the experiments are conducted
on a Windows PC ×64 with a 2.30 GHz Gen Intel Core i7-11800H CPU, a 4 GB GeForce
RTX 3050 Ti Laptop graphic card and 16 GB of RAM.

Table 3. Computation statistics of various tools with different software in Wuqi County.

Tool ArcGIS ArcGIS Pro

Topographic factor calculation 58 s 42 s
Convert line vector data to continuous raster factor 1 min 9 s 34 s

Rainfall data processing 57 s 50 s
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Table 3. Cont.

Batch clipping of each factor layer 18 s 17 s
Non-landslide data generation 2 s 1 s

Data sample production * landslide 5 min 22 s/4 min 46 s 4 min 34 s/4 min 29 s
non-landslide 4 min 56 s/4 min 32 s 4 min 19 s/4 min 15 s

Dataset split * 0.5 s/0.5 s 0.5 s/0.5 s
PCC and IGR calculation 1 min 16 s 57 s

Image generation to be predicted * 3 min 38 s/2 min 45 s 1 min 32 s/1 min 13 s
Model training and performance evaluation of SVM 1 h 55 min 32 s 1 h 8 min 8 s

Landslide susceptibility map prediction
(single process) 2 h 53 min 15 s 1 h 26 min 47 s

Landslide susceptibility map prediction
(multiprocessing) 21 min 51 s 20 min 12 s

Total † 5 h 19 min 27 s/2 h 48 min 3 s 2 h 58 min 39 s/1 h 52 min 4 s

Notes: “Data sample production”, “dataset split” and “image generation to be predicted” tools must be run twice.
* indicates that the first run time and the second run time, and † shows the total single process running time and
the total multiprocessing running time.

As shown in Table 3, the total time of the SVM-LSM toolbox for the ArcGIS single
process is 5 h 19 min 27 s and that for the ArcGIS Pro single process is 2 h 58 min 39 s, which
improves running efficiency by 44.08%. The main gap in running time is concentrated in
the operation of the “susceptibility map prediction” tool. At the same time, the total time
of the SVM-LSM toolbox in ArcGIS multiprocessing is 2 h 48 min 3 s and the total time
in ArcGIS Pro multiprocessing is 1 h 52 min 4 s, which improves running efficiency by
33.31%. The main difference in the running time is concentrated in the step of the “model
training and performance evaluation of SVM”. The abovementioned two differences are
mainly due to their difference in the number of bits. Therefore, it is recommended that the
toolbox in ArcGIS Pro is run with 64-bit Python. In addition, under the ArcGIS platform,
the running time of the “landslide susceptibility map prediction (multiprocessing)” tool is
2 h 48 min 3 s and the running time of the “landslide susceptibility map prediction (single
process)” tool is 5 h 19 min 27 s, which shortens running time by nearly 2 h 31 min 24 s and
improves running efficiency by 47.39%. Under the ArcGIS Pro platform, the running time
of the “landslide susceptibility map prediction (multiprocessing)” tool is 20 min 12 s and
the running time of the “landslide susceptibility map prediction (single process)” tool is 1 h
26 min 47 s, which shortens running time by nearly 1 h 6 min 35 s and improves running
efficiency by 76.72%. This shows that the multiprocessing prediction tool for the sliding
window in this tool can greatly improve the efficiency of susceptibility mapping.

3.7. Model Selection: SVM

As mentioned earlier, SVM is used in the toolbox. To assess whether it is optimal to
employ SVM, comparisons with two other commonly used models, namely, decision tree
(DT) and random forest (RF), are performed. Table 4 shows the operation efficiency and
AUC values of different models. The DT model requires two parameters to be adjusted:
max_depth and min_samples_leaf ; the RF model requires five parameters to be adjusted:
max_depth, max_features, n_estimators, min_samples_leaf and min_samples_split; and the SVM
model requires two parameters to be adjusted: gamma and C. For the grid search method,
the greater the number of model parameters, the higher the model training time complexity,
and the more time-consuming the model tuning is. In terms of model accuracy, for the
same training and testing datasets in Wuqi County, the AUC of the optimal RF model
is 0.8372, the AUC of the optimal SVM model is 0.8029, and the AUC of the optimal DT
model is 0.7774. The AUC values of SVM and RF model are both higher than 0.8, indicating
that these two models can better reflect the landslide susceptibility in this area. Therefore,
compared with the three models, the SVM model is friendlier to beginners, with fewer
parameters to be adjusted, short running time and high accuracy. Therefore, we choose the
SVM model to build the LSM toolbox.
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Table 4. The operation efficiency and AUC values of different models.

Model Number of Parameters Training Time Complexity LSM Prediction (Multiprocessing) AUC

DT 2 O(m ∗ n) 4 min 28 s 0.7774
RF 5 O(m ∗ n ∗ l ∗ k ∗ j) 1 h 21 min 25 s 0.8372

SVM (this study) 2 O(m ∗ n) 20 min 12 s 0.8029

Notes: O represent the time complexity; m, n, l, k and j represent the number of optional values of different
parameters, respectively.

4. Conclusions

This paper develops a tool known as the SVM-LSM toolbox, which integrates the whole
process of landslide susceptibility mapping. The toolbox consists of three sub-toolboxes:
(1) influence factor production, (2) factor selection and dataset production, and (3) model
training and prediction. The tool can be integrated into ArcGIS 10.1 (or higher) as well as
ArcGIS Pro. The interface is user-friendly, easy to implement and provides multiprocessing
prediction, which greatly improves prediction efficiency. In order to assess the performance
of the toolbox, Wuqi County (an area highly prone to Loess landslides) is selected as the
study area. Six basic factors are selected and a total of fourteen landslide influencing factors
are obtained based on the influencing factor production tool. In the selection of influencing
factors, the slope and relief amplitude factors are eliminated according to the results of PCC
and IGR. Finally, the model training tool is used to obtain the optimal model according to
various evaluation indexes and generate a susceptibility map of the study area.

The results show that the model has good prediction performance and high prediction
accuracy. The susceptibility areas of Wuqi County are mainly concentrated along rivers
severely affected by soil erosion. In short, the SVM-LSM toolbox optimizes the complex
susceptibility mapping process, avoids the cross-platform operation of traditional workflow
and greatly shortens the prediction time of the susceptibility map. At present, the toolbox
has only been tested with ArcGIS and ArcGIS Pro software on the Windows system. In the
future, it will be integrated into other commonly used GIS processing software, such as
QGIS, for expansion. Furthermore, more machine learning models can be incorporated,
and automatic parameter tuning function can be developed to further improve the user-
friendliness and universality of the toolbox.
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Abstract: Accurate prediction of landslide susceptibility relies on effectively handling absence sam-
ples in data-driven models. This study investigates the influence of different absence sampling
methods, including buffer control sampling (BCS), controlled target space exteriorization sampling
(CTSES), information value (IV), and mini-batch k-medoids (MBKM), on landslide susceptibility
mapping in Songyang County, China, using support vector machines and random forest algorithms.
Various evaluation metrics are employed to compare the efficacy of these sampling methods for sus-
ceptibility zoning. The results demonstrate that CTSES, IV, and MBKM methods exhibit an expansion
of the high susceptibility region (maximum susceptibility mean value reaching 0.87) and divergence
in the susceptibility index when extreme absence samples are present, with MBKM showing a com-
parative advantage (lower susceptibility mean value) compared to the IV model. Building on the
strengths of different sampling methods, a novel integrative sampling approach that incorporates
multiple existing methods is proposed. The integrative sampling can mitigate negative effects caused
by extreme absence samples (susceptibility mean value is approximately 0.5 in the same extreme
samples and presence-absence ratio) and obtain significantly better prediction results (AUC = 0.92,
KC = 0.73, POA = 2.46 in the best model). Additionally, the mean level of susceptibility is heavily
influenced by the proportion of absent samples.

Keywords: presence-absence method; data-driven model; landslide susceptibility mapping; absence
sampling method; integrative sampling; machine learning

1. Introduction

Landslides are devastating geological processes that frequently cause massive casu-
alties and economic losses [1,2]. Due to their sudden occurrence, fast movement, and
strong impact, landslides pose a serious threat to traffic, buildings, and residents, espe-
cially in well-developed mountainous areas. Therefore, accurate landslide forecasting is of
paramount importance. In recent years, with the rapid development of 3S technology (re-
mote sensing, geographic information system, and global positioning system), tremendous
progress has been made in remote sensing for landslides, covering aspects of landslide
detection, monitoring, and hazard assessment and prediction [3–5]. Landslide susceptibility
mapping (LSM), which predicts the spatial probability of landslide occurrence under cer-
tain environmental conditions in an area, represents important regional landslide research
work [6].

In an era of rapid development in computer science and GIS technology, various
methods have been proposed for LSM. These methods can be categorized into three groups:
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knowledge-based methods, physical methods, and data-driven methods [7]. While the
subjectivity of expert knowledge is too strong and the wide-area parameters in physical
models possess uncertainty, data-driven methods have more objective results and higher
efficiency. Data-driven methods have been widely studied and applied in LSM. The kernel
idea of data-based methods is to find a certain relationship by means of data science,
relying on a landslide inventory and conditioning factors database. Researchers have
developed and applied data-based models in LSM, including bivariate and machine-
learning methods [8,9]. The classic and widely used bivariate methods include IV, certainty
factor (CF), frequency ratio (FR), and fuzzy logic (FL). There are various types of machine
learning models, such as logistic regression (LR), decision tree (DT), random forest (RF),
support vector machine (SVM), Bayes, K-Nearest Neighbor (KNN), and artificial neural
networks (ANN), as well as more complex models such as auto-encoder [10–15]. Data-
driven methods in LSM can be further classified into two groups: presence-absence methods
and presence-only methods [16]. The first group needs both landslide presence samples
and landslide absence samples. The other group of methods needs only landslide samples,
such as bivariate classification.

Sampling strategy, which involves using this acquired data to get a better prediction
effect in LSM, is an important issue. The samples used for LSM prediction are usually
divided into a training set and a testing set. For most machine learning methods in LSM,
this includes presence and absence samples. Extracting and dividing these samples from a
map are fundamental steps in LSM. The quality of the samples used for model training
significantly impacts the performance of a data-driven model [17]. The presence samples
(landslides) in LSM are usually generated from a landslide inventory map produced by
field investigations and the interpretation of aerial photos or remote sensing images [18,19].
For the presence sampling locations, there are some commonly used sampling strategies,
including the landslide scarp centroid, the centroid of the landslide body, the whole scarp
polygon region, and the entire landslide body [20,21]. Different from the present samples,
absence samples cannot be obtained directly. Therefore, studying the uncertainty of absence
samples is particularly important for data-driven LSM.

Three strategies are commonly employed for absence sampling in current LSM re-
search: geographic generation, feature-based generation, and generation from a prior
model [22]. In geographic generation, common methods include random sampling (selec-
tion from randomly distributed circular zones) and buffer-controlled sampling (sampling
from grid cells outside landslide buffer zones) [23], or selecting samples from areas where
landslides are not likely to occur, such as a plain (based on expert judgment) [24,25]. Among
these methods, buffer control sampling is the most frequently used [26]. However, this
method does not guarantee that the selected area is free from potential landslides or has
environmental parameters similar to landslides, either of which reduces the quality of the
samples and has a negative influence on the accuracy of the LSM. Some studies aim to
reduce the uncertainty associated with randomly selected samples in geographic space to
improve the quality of absence samples [27]. In a feature-based generation, the theoretical
foundation is the third law of geography, which states that landslides and non-landslides
should be separated as much as possible in their feature space. Absence sampling from
low-slope areas is an intuitive approach in a feature-based method, but the slope factor is
overly magnified because of subjectivity. Some optimized absence sampling methods have
been proposed, including target space exteriorization sampling (TSES) and similarity-based
methods such as mahalanobis distance, bioclim, domain, and other improved similarity
algorithms [22,28–30]. These methods select or create absence samples based on the feature
space rather than the geographic space, enhancing the reliability of absence samples. TSES
fabricates absence samples by modifying one or more features of a presence sample dataset
into random values in the exteriorization feature space; these absence samples, produced
in feature space, are not necessarily in geographic space and have some connection with
the presence samples. Similarity-based methods select absence samples from the research
area through quantitative indicators of similarity to landslide features. Another approach
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to improving the quality of absence samples is through generation from a prior model,
where absence samples are extracted from the low susceptibility zone of the prior model.
In LSM, the scenario where labels are available only for landslide samples corresponds to a
positive, unlabeled learning problem. The presence-only model is a suitable method for
positive-unlabeled learning as a prior model. Presence-only models such as IV and CF are
widely applied in hybrid models, such as CF-LR, CF-SVM, CF-RF, LV-LR, IV-SVM, and
IV-RF, by combining with a presence-absence model [31–34], but most of these methods
use only the output parameters of the presence-only model as the input parameters of the
presence-absence model. In fact, the bridge between the two methods can also be built on
samples. Research shows that a presence-only method may overestimate the susceptibility
of landslides [16,29]. When regional susceptibility is overestimated, it is easier to expose
low susceptibility zones from which absence samples can be selected with greater certainty.
Some studies have used presence-only as an a priori model for the extraction of missing
samples and obtained good prediction results [35,36]. Furthermore, the combination of
presence-only methods with unsupervised learning has been explored to further enhance
the absence sampling strategy [37]. The two-step approach is also an algorithm for solving
the absence sample problem; it trains a prior model with presence samples and unlabeled
samples to identify reliable absence samples [38]. Following similar concepts, a multiple-
layer perceptron model and a two-step approach based on deep neural networks have been
applied in some LSM studies [39–41].

In the field of landslide susceptibility prediction, absence sampling plays a crucial
role. However, existing studies often overlook the quality of absence samples in absence
sampling methods, leaving the impact of absence sample quality on landslide susceptibility
prediction understudied. It is essential to conduct comparative studies using different
methods and quality control measures to select appropriate absence sampling methods and
ensure the quality of absence samples. Moreover, many LSM studies tend to focus solely on
prediction performance scores, neglecting the importance of assessing the reasonableness
of landslide susceptibility prediction results. This oversight can lead to disregarding
the negative effects of selected absence samples. Therefore, it is necessary to establish
a comprehensive and valid evaluation system for absence samples in order to consider
their applicability. On this basis, an absence sampling method with strong applicability
considering the quality of different methods needs to be proposed.

In this paper, four absence sampling methods are investigated, and an integrative
sampling method is proposed based on the fusion of these methods for a data-driven
LSM model. In order to control the quality of absence samples, a controlled target space
exteriorization sampling (CTSES) method based on improved TSES is proposed. A less
commonly used optimization clustering algorithm, mini-batch K-medoids (MBKM), is
employed as a prior model. The sampling methods include BCS, CTSES, IV, and MBKM,
as well as a novel integrative sampling. Sampling intervals were established for each
method, and extensive training was conducted to investigate the effects of absence samples
from different sources and of varying quality on LSM. SVM and RF models are applied
as predictive models for LSM in Songyang County, Lishui City, Zhejiang Province, China,
where five absence sampling methods were tested.

2. Materials

2.1. Study Area

The study area is Songyang County, which is located in the southwest of Zhejiang
Province and northwest of Lishui City. The geographical coordinates are 119◦10′0′′E to
119◦42′42′′E, 28◦14′23′′N to 28◦36′15′′N. The largest diameter from north to south is 40.2 km,
with a total area of about 1404 square kilometers. Figure 1 presents the location of the
study area.
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Figure 1. Geographical location of Songyang County.

Songyang County is located in the mountainous region of southern Zhejiang Province.
The topography primarily consists of medium and low hills surrounded by mountains, with
an open central basin known as “Songgu Basin”. The terrain is higher in the northwest and
lower in the southeast. The county has obvious layers of landforms, including accumulation
landforms, erosion and denudation landforms, and structural erosion landforms. The
lithology formation includes rhyolite, tuff, gneiss, granite, sandstone, quartz sandstone,
and Quaternary sediments. Faults dominate the geological structure of the Songyang area,
with over 30 large and small fault zones identified. Most of these faults align in the NNW
and NNE directions, with the NNE fault belonging to the Yuyao-Lishui fault system, which
is a deep fault traversing the lithosphere. This fault system formed in a tensioning process
in the Cretaceous, with a strike of about 30◦ and 350 km in Zhejiang Province, and it runs
through Songyang County [42,43]. The multistage tectonic activity that occurred in the
ancient fault zone has resulted in the formation of a compressive fault zone, which spans
4–30 km in width. The fault zones in Songyang County exhibit intricate tectonic activities
and fractured internal rock mass structures, significantly influencing the local geological
and geomorphic environment and impacting the stability of the original slope [44]. The
seismic peak acceleration in Songyang County is within the range of 0.05 g, indicating a
stable crustal zone.

Songyang County is situated in a subtropical monsoon region characterized by a
mild climate, abundant rainfall, and distinct seasonal variations, with notable variations
in vertical climate. The annual precipitation is 1700 mm, with the period from March to
June receiving the highest amount of rainfall, averaging 816.8 mm annually. November
experiences the lowest rainfall, 40–50 mm. Additionally, the southeast coastal area is prone
to frequent typhoon occurrences, with Songyang County being affected by an average of
one to three typhoons each year. From 2015 to 2020, the county experienced the impact of
several typhoons, including Sudillo, Moranti, Likima, and Hagupe. Each of these typhoons
resulted in increased rainfall and triggered numerous landslides as they passed through
the area. The rivers in Songyang County are part of the Oujiang River Basin. Songyin Creek
and Xiaogang Creek meander from the northwest and southwest directions, respectively,
toward the southeast. The area is characterized by a dense development of tributaries and
numerous river valleys. During the rainy season, the water level of the rivers rises sharply.
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2.2. Landslide Inventory

A landslide inventory is an important dependent variable in a calculation model and
has a great influence on the accuracy of prediction results. In recent years, landslides
have continued to occur in the study area. According to a relevant landslide survey
report and remote sensing interpretation, 217 landslides were identified in the study area.
These landslides occurred between 2000 and 2021, and the years with the most frequent
occurrence were 2010, 2012, 2014, and 2016, which were also the years when Songyang
County was severely affected by heavy rainfall/typhoons, and other catastrophic effects.

Landslides in Songyang County are divided into soil landslides and rock landslides,
with soil landslides being the predominant type (Figure 2). The compositions of landslide
masses are generally uniform, composed mainly of silty clay with gravel and a sandy,
completely weathered layer in the metamorphic rock and granite distribution area. The
thicknesses of landslide masses are generally small, ranging from 1 to 5 m. The volume
sizes of landslides are generally below 10,000 m3; about half of the landslides are less than
1000 m3, while several reach 100,000 m3. The smaller ones can measure tens of cubic meters.
The soil within the sliding zone is often soft plastic powdery clay, and the sliding bed is
often the underlying bedrock or a relatively denser rock-soil layer. From the perspective
of a plane, landslides tend to exhibit generally semi-elliptical, tongue-shaped, or wide
fan-shaped patterns, with the semi-elliptical shape being the most common. From the
perspective of the longitudinal section, landslides primarily appear as linear or stepped
features. The transition zone is where the terrain slope changes from steep to gentle, and the
upper slope is mostly above 25◦. According to an analysis of landslide triggering, fragile
geological conditions are the primary causes. Additionally, extreme rainfall and human
engineering activities (excavation, slope cutting, plowing, etc.) have created a landslide
breeding environment.

Figure 2. Typical landslides in Songyang County. (a) Chengtian landslide; (b) Xiangxi town landslide;
(c) potential landslide in Fanshantui, Shaqiu Village. The red lines indicate the geometric boundary
of the landslides and the arrow indicates the direction of the main slide.
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2.3. Landslide Conditioning Factors

Factors affecting landslides can be divided into two categories: internal disaster-
forming conditioning factors and external triggering factors. In this study, a total of
16 parameters were considered as potential conditioning factors for landslides, including el-
evation, slope, aspect, plan curvature, profile curvature, topographic roughness index (TRI),
topographic wetness index (TWI), sediment transport index (STI), normalized difference
vegetation index (NDVI), lithology, rainfall, distance to faults, distance to river network,
distance to road, land use, and soil type (Figure 3). The grouping methods employed
subjective division (for factors that are more subjective) and natural breaks (for factors that
are more objective). The sources of all indicators are shown in Table 1. The formula for the
relevant metrics is shown below:

TRI =
Amean − Amin
Amax − Amin

(1)

where the Amean, Amin, and Amax indicate the mean, minimum, and maximum values of all
cells in a 3 × 3 cell, respectively.

TWI = ln
As

tan β
(2)

STI =
(

As

22.13

)0.6
+

(
sin β

0.0896

)1.3
(3)

where As and β indicate the specific catchment area (m2/m) and slope gradient, respectively.

NDVI =
NIR − Red
NIR + Red

(4)

where NIR is the reflection value in the near infrared band, and Red is the reflection value
in the red band.

Table 1. Data sources of conditioning factors.

Conditioning Factor Variable Type Spatial Resolution (m) Production Time (year) Data Source

Altitude Continuous 30 2009 ASTER GDEM 30M
Slope Continuous 30 2009 Derived from DEM

Slope aspect Continuous 30 2009 Derived from DEM
Plan curvature Continuous 30 2009 Derived from DEM

Profile curvature Continuous 30 2009 Derived from DEM
TRI Continuous 30 2009 Derived from DEM
TWI Continuous 30 2009 Derived from DEM
STI Continuous 30 2009 Derived from DEM

Lithology Discrete 30 2019 [41]
Distance to faults Continuous 30 2019 [41]

Soil type Discrete 30 2005 https://www.resdc.cn/
(accessed on 1 May 2022)

Annual rainfall Continuous 30 2000–2021 http://data.cma.cn/ (accessed
on 1 May 2022)

Distance to stream Continuous 30 2021 https://lbs.amap.com/
(accessed on 1 May 2022)

Distance to road Continuous 30 2021 https://lbs.amap.com/
(accessed on 1 May 2022)

Land use Discrete 30 2020 https://www.resdc.cn/
(accessed on 1 May 2022)

NDVI Continuous 30 2021 Landsat8
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Figure 3. Cont.
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Figure 3. Conditioning factors of LSM. (a) Altitude; (b) slope; (c) slope aspect; (d) plan curvature;
(e) profile curvature; (f) TRI; (g) TWI; (h) STI; (i) lithology; (j) distance to faults; (k) soil type; (l) annual
rainfall; (m) distance to stream; (n) distance to the road; (o) land use; (p) NDVI.

As illustrated in Table 1, the production time of each conditioning factor is inconsistent.
This is because this study is based on landslides that have occurred in the past 20 years,
and numerous real-time data points are not necessary for the long timescale. The ideal
data source would be produced at the same time as the landslide occurred. In the case of
LSM studies based on abrupt events (earthquakes, extreme weather), the requirement for
real-time data is higher. However, it is difficult to achieve consistency in timescales for
landslides that have occurred consecutively over 20 years. For less variable data on a long
time scale, such as DEM, lithology, faults, soil type, streams, and land use, momentary and
reliable data need to be selected to represent the conditions of the region over two decades.
For more variable data, such as rainfall, try to choose the average data over the research
time as a representative. For the conditioning factors of roads and vegetation, the most
recent data are considered representative of the average data of the last two decades by
simplification. Based on the above considerations and the limitations of the data sources,
more relatively reasonable layers of landslide conditioning factors were collected for this
research. Due to the long timescale and the uncertainty of data quality, systematic errors
introduced by the data sources are bound to exist but are not further discussed in this study.

Topographical factors have proved to be of great influence in LSM [45]. From the basic
DEM, slope, aspect, plan curvature, profile curvature, TRI, TWI, and STI can be calculated
using ArcGIS 10.8. Altitude and slope are intuitive factors in a landslide-hazard environ-
ment. The altitude values of the study area can be divided into five groups: 34–100 m,
301–600 m, 601–900 m, 901–1200 m, or 1201–1492 m. The slopes are divided into six cate-
gories at 10◦ intervals: 0◦–10◦, 10.1◦–20◦, 20.1◦–30◦, 30.1◦–40◦, 40.1◦–50◦, and >50◦. The
aspect of the study area is divided into the following nine categories: flat, north, northeast,
east, southeast, south, southwest, west, and northwest. Profile curvature measures the
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change in the slope of the surface and affects the acceleration or deceleration of water
flow. It can be divided into the following groups by the natural breaks group method:
−10.848–1.643, −1.642–−0.482, −0.481–0.412, 0.413–1.574, and 1.575–11.940. Plane curva-
ture reflects the change in the lateral slope of the land surface, which affects the convergence
or dispersion of surface water flow and, by the natural breaks, is divided into the following
five groups: −9.487–−1.297, −1.298–−0.355, −0.354–0.370, 0.371–1.239, and 1.240–8.994.
TRI expresses the degree of surface undulation and can be divided into five groups by
natural breaks: 0.111–0.294, 0.295–0.419, 0.420–0.498, 0.499–0.578, and 0.579–0.889. TWI
quantitatively describes the influence and cumulative effect of topography on watershed
runoff and predicts the spatial spread of regional soil moisture. By natural breaks, it can be
divided into the following five groups: 2.354–4.686, 4.687–6.410, 6.411–8.742, 8.743–12.392,
and 12.393–28.209. STI can provide important information on the potential for sediment
transport in a given river network; due to the uneven distribution of STI values in the study
area, they are manually divided into the following categories: 0–3.0, 3.1–12.0, 12.1–15.0,
15.1–50.0, and >50.0.

Regional geological factors are important endogenous factors for landslides. The lithol-
ogy map and fault map are based on a 1:200,000 geological map of China [44]. The lithology
includes sandstone, quartz sandstone, gneiss, tuff, rhyolite, quaternary alluvium, and gran-
odiorite porphyry. Areas in the fault map can be divided into five groups by the distance to
a fault: 0–200 m, 201–500 m, 501–1000 m, 1001–1500 m, and >1500 m. Soil type was also
included as an auxiliary conditioning factor and consists of rock, brown earths, paddy soils,
limestone soils, red earths, and yellow earth. Meteorology and hydrology are the most im-
portant triggers for landslides. The average annual rainfall from 2000 to 2021 was divided
into five groups according to the natural breaks: 1488–1497 mm/year, 1498–1528 mm/year,
1529–1552 mm/year, 1553–1575 mm/year, and 1576–1611 mm/year. The distance to the
stream is divided into the following groups: 0–50 m, 51–150 m, 151–300 m, 301–600 m, and
>600 m.

Other factors such as traffic, vegetation, and land use are also included. The traffic
network can reflect the modification of slopes by human engineering activities. The
distance to a road is divided into the following groups: 0–200 m, 201–400 m, 401–600 m,
601–800 m, and >800 m. Land use types involve human modification of the land surface;
the classifications detected in the study area are residential, bare lands, forests, water
bodies, and farmlands. The vegetation cover is represented by NDVI and is divided into
the following groups by natural breaks: −0.184–0.077, 0.078–0.161, 0.162–0.239, 0.240–0.316,
and 0.317–0.486.

3. Methodology

3.1. Study Route

This study was conducted in three stages (Figure 4). First, layers of the 16 conditioning
factors for the study area were prepared, and correlation tests were performed. Then, the
absence sample dataset with different qualities was constructed using different methods of
absence sampling: BCS, CTSES, IV, MBKM, and integrative sampling. Finally, LSM work
was produced by support vector machine and random forest algorithms, and evaluation
and comparison of the models produced by each absence sampling method were completed.
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Figure 4. Flowchart of comparison and evaluation process of absence sample sampling methods.

3.2. Correlation Analysis of Conditioning Factors

Here, correlation analysis was performed to determine the statistical correlation among
more than two variables. Multiple correlation analysis of conditioning factors in landslide
susceptibility mapping is important and represents the screening process for selected
indicators. If variables with strong correlations are input into the model, the complexity
of the model will increase, and the training process of the model will also be affected.
Thus, correlation analysis and screening of conditioning factors are indispensable steps
in LSM [46]. In this study, commonly used correlation indicators, including the Pearson
correlation coefficient (PCC), variance inflation factor (VIF), and tolerance (TOL), were
selected to scan the correlation and multicollinearity between the conditioning factors.

Pearson correlation analysis is used to measure the strength and direction of the linear
relationship between two variables. The value of the PCC is usually between −1 and 1,
where −1 indicates a perfect negative correlation, +1 indicates a perfect positive correlation,
and 0 indicates no linear correlation. The closer the absolute value of the PCC is to 1, the
stronger the correlation, and the closer the absolute value of the PCC is to 0, the weaker the
correlation. When the values are 0–0.2, 0.2–0.4, 0.4–0.6, 0.6–0.8, and 0.8–1, the correlation
between the two conditioning factors is very weak, weak, moderate, strong, and very
strong, respectively. The formula for calculating the PCC is as follows:

ρx,y =
cov(x, y)

σxσy
(5)

where cov(x, y ) denotes the covariance of the conditioning factors x and y; σx and σy denote
the standard deviation of x and y.

The VIF and TOL are indicators to test the multicollinearity of multiple conditioning
factors. It is generally considered that when the value of VIF is less than 5 and the value
of TOL > 0.2, the factor has no multicollinearity with other factors. Factors of VIF values
in the range of 5–10 and TOL values in the range of 0.1–0.2 are considered to have weak
multicollinearity. Factors with VIF values > 10 and TOL values < 0.1 are considered to
have moderate or higher multicollinearity. The formulas for calculating VIF and TOL are
as follows:

VIFi =
1

1 − R2
i

(6)

TOL = 1 − R2
i (7)
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where R2
i is the sample decidability coefficient of the i-th conditioning factor.

3.3. Absence Sampling Methods
3.3.1. Buffer Control Sampling (BCS)

BCS is a quick, easy way to create non-landslide samples and is widely used in
LSM [47]. The essential basis of BCS is similar to the first law of geography, which states that
things close together in geographical space have a stronger connection. Accordingly, in the
landslide inventory map, the area adjacent to a landslide is more susceptible to landslides.
This is also consistent with the physical mechanics and disaster-forming environment of
a landslide. Rock and soil in areas close enough to the landslide are more susceptible to
further sliding due to the scraping or accumulation of previous landslides. Moreover, due
to the continuity of engineering geological conditions, areas relatively close to landslides
are more likely to develop the same geological environment and be exposed to strong
external triggers. Therefore, the BCS method could set a buffer zone at a certain distance
around the landslide location in the landslide inventory map and complete the sampling
work in areas outside the buffer zone within the study area to reduce the strong effect of
the spatial proximity of landslide events.

3.3.2. Controlled Target Space Exteriorization Sampling (CTSES)

TSES is proposed to create pseudo-absence data for LSM. The absence of data are
produced from feature space instead of geographical space [28]. This method can make up
for the defects of sampling in geospatial samples with geographical differences that may
be similar in the feature space. The core principle of TSES is to extend landslide features
beyond the feature space of all landslides (within the feature space of the study area) to
obtain new non-landslide samples. It is reasonable for these absence samples to be created
using landslide samples, as doing so preserves the regional character of the study area
and enhances variability within landslide samples. Improved target space exteriorization
sampling (ITSES) has been proposed to compensate for the non-existence absence samples
in geographic space [29]. It maps the absence samples from feature exteriorizing space to
geographic space, which gives the absence data more chances to be validated in remote
sensing or field work.

Existing TSES methods exteriorize only one feature of the landslide sample during the
process. In fact, landslide samples can be simultaneously exteriorized on multiple feature
dimensions, and the number of such exteriorizing dimensions determines the degree of
difference between absence and landslide samples. Whether this difference could affect
the predictive performance of LSM is uncertain. In this study, controlled TSES (CTSES) is
proposed to explore absence sampling methods from different exteriorizing dimensions by
adding an artificially controlled number d of exteriorizing dimensions on the basis of the
ITSES (Figures 5 and 6). The code is as follows:

Input: landslide samples S, number of exteriorizing feature dimension d
Output: non-landslide samples Nd with exteriorizing feature dimension d

(1) Initialization:

N = ∅

(2) For each landslide conditioning factor A:

Calculate the value range VA max of feature A of all units on the whole study area;
calculate the value range VA of feature A of all landslide samples;

determine the exteriorized feature space V′
A =

−
VA ∩ VA max.

(3) Traverse every unit i in the study area:

(a) Set temporary variables a = 0;
(b) Traverse every landslide conditioning factor A:

if A of i is in V′
A, a = a + 1;

158



Remote Sens. 2023, 15, 3345

(c) If a = d, then run (d):
(d) Nd = Nd ∪ i

(4) Return Nd

Figure 5. Schematic of the two-dimensional feature space of the CTSES method.

 
(a) 

(b) 

Figure 6. Schematic of the three-dimensional feature space of the CTSES method. (a) Three-
dimensional feature space of the study area; (b) deconstruction map of the three-dimensional feature
space in the CTSES method.

3.3.3. Information Value (IV)

As a bivariate analysis method, the IV method is often used in landslide susceptibility
analysis. The method is consistent with the principles of several other bivariate analysis
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methods, including certainty factor (CF) and frequency ratio (FR). Information theory is the
basis of the IV method, in which the information gain measures the significance of features
to the prediction results. The theory of the IV method assumes that the generation of
geohazards depends on the quality and quantity of the information obtained. Probabilistic
statistics and comparative mapping are used to derive the magnitude of the contribution
of various conditioning factors to landslide generation from historical landslide data. The
significance of each conditioning factor is expressed by the IV, and the larger the value, the
more likely a geological hazard will occur under this factor.

The theoretical formula for the amount of information is:

I(xi, A) = ln
P(xi | A)

P(xi)
(8)

where I(xi, A) is the amount of information provided by the single-factor factor xi to the
occurrence of geohazard (A), P(xi | A) is the probability of xi under geohazard conditions,
and P(xi) is the probability of factor xi in the study area.

In specific applications, the sampling frequency (area ratio) is often used as:

Iij = ln

Nij
Sij

N
S

(9)

where Iij is the amount of information in the j-th classification of the i-th factor, S is the
total study area; Sij is the area under the j-th classification of the i-th factor in the study
area. N is the total number of geological hazards in the study area, and Nij is the number
of the j-th classification of the i-th factor in the study area.

The sum of the Iij of each unit is shown as the landslide sensitivity index, and the
formula is:

LSI =
n

∑
i=1

Iij (10)

3.3.4. Mini-Batch K-Medoids (MBKM)

K-medoids is an improved unsupervised algorithm for clustering based on K-means.
Various clustering algorithms are often used for LSM, but the k-medoids method is mini-
mally used in LSM [48,49]. The improvement of the K-medoids method is that it updates
the centroid with the most centrally located object in the cluster instead of the center of
mass formed by the average value in the K-means method. Therefore, K-medoids are far
more adaptable to noise and outliers than K-means.

1. K initial centroids are randomly selected.
2. Assign the remaining points to the cluster represented by the closest medoids.
3. In each class, the sum of distances between each sample point and other points

is calculated, and the point with the smallest sum of distances is selected as the
new medoid.

4. Repeat the process in steps 2–3 until all medoid points no longer change or the upper
limit of iterations is reached.

In this algorithm, the time complexity is much greater than that of K-means due
to iterating through all data points, especially with large datasets. When the number of
sample points reaches a million, huge computational resources will be required; however,
the mini-batch algorithm will solve this problem well.

The MBKM method randomly samples several small sample sets from a large sample
set and updates the initial centroids in each small sample set by substituting them into the
K-medoids model. The combined training effect on a large number of small samples will be
slightly lower than the training effect on the whole sample, but it will save computational
resources and time.
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3.3.5. Integrative Sampling

At its core, integrative sampling is similar to integrated learning but with added
diversity. The specific operation is to mix the absence samples from each sampling method
by a certain ratio to form a new absence sample set. The newly formed sample set has
more diversity, which results in a more robust and generalized model and a reduced risk
of overfitting (similar to the idea of bagging). Under the same sampling interval, the
characteristic pattern of the generated absence samples may be singular or one-sided.
Overly monotonic sample characteristics can make the model tend to overfit, and extreme
samples can make the model perform poorly against new datasets. However, in integrative
sampling, the learner receives samples from multiple sampling methods. Due to the
different sampling methods for absence samples, the distribution of absence samples in the
geographic space and feature space is diverse in order to give comprehensive information
to the training model. Therefore, the training model that accepts the integrative sampling
set can show good adaptability and generalization ability when faced with a diverse set of
prediction data.

Integrated sampling combines four absence sampling methods, namely BCS, CTSES,
IV, and MBKM, and the process is shown in Figure 7. The main processing steps are
as follows: (1) defining sampling thresholds and sampling for absence samples of each
method; (2) pre-training and evaluating combining with landslide samples; and (3) forming
the new integrated absence samples by assembling the best-quality sample sets for each
method. The best-quality sample sets are discriminated by the comprehensive predictive
performance metrics in the pre-training results.

Figure 7. Schematic of the procession of integrated sampling. The different colors represent the best
quality sample sets in each absence sampling method.

3.4. Machine Learning for Landslide Susceptibility Mapping

SVM and RF are among the most classical algorithms for prediction and classifica-
tion and are widely used and known for their excellent performance in a wide range of
industries. In recent years, SVM and RF have been prominent in LSM research due to their
excellent performance. In fact, SVM and RF models are capable of not only classification but
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also a probabilistic prediction that can be transformed into the assessment of susceptibility.
Data-driven landslide prediction is a high-dimensional and nonlinear problem that is well
suited to be solved with these two algorithms.

3.4.1. Random Forest

Random forest is a supervised machine learning integration algorithm based on bag-
ging. Multiple sample sets and decision trees are constructed through bootstrap sampling
(random sampling with put-back), and random features of the sample are selected for
splitting on the basis of the decision tree. Due to its randomness, the random forest does
not easily fall into overfitting and has good resistance to noise. After each decision tree split
is completed (training completed), the set becomes a forest, and each decision tree is voted
on to get the final result. Decision trees can achieve the tasks of classification and regression,
and for LSM, landslide susceptibility indicators can be obtained by averaging the results of
multiple decision trees [50]. Due to its excellent ability to handle high-dimensional and
nonlinear data, the random forest method can achieve good prediction results in LSM [51].

3.4.2. Support Vector Machine

A support vector machine is a supervised machine learning algorithm commonly
used in landslide susceptibility [52]. An SVM has the ability to solve problems with high-
dimensional, small samples, and nonlinear features. The two main ideas of the SVM
are the search for the best classification hyperplane and the use of kernel functions [53].
The hyperplane is a subspace of n-1 dimensions in an N-dimensional linear space; it can
correctly classify the sample categories. The support vector is the closest training sample
point to the hyperplane. The optimal hyperplane has the largest sum of the distances from it
to different classes of support vectors. In the two-dimensional feature space, the hyperplane
is a straight line that can divide the sample categories, and in the three-dimensional feature
space, a hyperplane is a plane that can divide the sample categories. Once no hyperplane
in the current feature space can linearly divide the sample categories, the original feature
space can be mapped to a higher-dimensional feature space by a kernel function to make
the samples linearly divisible in this space. The commonly used kernel functions are the
linear kernel, polynomial kernel, radial basis function kernel (RBF-kernel), and sigmoid
kernel; the polynomial kernel and the RBF-kernel are most frequently used and have a
good predictive effect on landslide susceptibility [54,55].

3.5. Model Evaluation Methods

To assess and compare the predictive performance of models using different absence
sample compositions, the models were evaluated from three perspectives. First, the ac-
curacy of the model was examined, encompassing both the accuracy of the training sets
and the testing sets. Accuracy is the most intuitive indicator of a model’s predictive per-
formance. The accuracy threshold is set to 0.5; it is considered a potential landslide when
the prediction result is >0.5. Training accuracy reflects the model’s ability to fit onto the
training sets; the higher the testing accuracy, the better the model can learn the patterns
and laws of the data. Testing accuracy reflects the model’s ability to generalize, which
represents the ability to perform on unseen data.

The second perspective involves evaluating the comprehensive performance of the
model. Area under the curve (AUC), kappa coefficient (KC), and performance overall
accuracy (POA) were used to evaluate the combined predictive performance of the model.
The receiver operating characteristic curve (ROC) and AUC are commonly used methods
to assess the performance of classification models. The AUC represents the area under the
ROC curve and ranges from 0.5 to 1.0. A higher AUC value implies a better discrimination
performance of the model. A confusion matrix is a table used to evaluate the performance
of a classification model by comparing the predicted class labels with the actual class labels.
The matrix contains four terms: true positives (TP), false positives (FP), true negatives (TN),
and false negatives (FN). From the confusion matrix, several metrics can be calculated to
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evaluate the performance of the classification model, such as precision, recall, accuracy,
KC, Matthews correlation coefficient (MCC), and F1-score. KC measures the agreement
between the predicted and actual class labels, correcting for the agreement expected by
chance. KC values range from −1 to 1, where a value of 1 indicates perfect agreement, a
value of 0 indicates agreement by chance, and a value of −1 indicates perfect disagreement.
POA, which is the sum of accuracy, MCC, and F1-score, provides a more comprehensive
assessment of the model’s predictive performance than individual metrics [31,56].

The third is the mean and standard deviation of landslide susceptibility. The mean
value reflects the overall overestimation or underestimation of the model’s susceptibility,
and the standard deviation represents the degree of dispersion of the susceptibility index.
Therefore, the mean and standard deviation can be used as auxiliary parameters to assess
the reasonableness of the model.

4. Results

4.1. Correlation Analysis

In ArcGIS 10.8, the band collection statistics function was used to calculate the PCC
between two conditioning factors by inputting a total of 16 conditioning factor layers
containing elevation, slope, aspect, profile curvature, plane curvature, NDVI, lithology,
rainfall, distance to faults, distance to rivers, TWI, TRI, STI, distance to roads, land use,
and soil type. The results are entered into Python for heat map visualization (Figure 8).
In the heat map, the stronger the correlation, the darker the color, and the weaker the
correlation, the lighter the color. The color tends to be brown for positive correlations and
purple for negative correlations. Among the 16 conditioning factors, the maximum PCC
value was −0.59, where the profile curvature and plane curvature were (relatively) most
correlated, followed by the PCC value of 0.56, showing a relatively positive correlation
between elevation and distance to the road. All PCC values are less than 0.6, which means
that there is no strong correlation among the factors.

Figure 8. Pearson correlation coefficient heat map of 16 conditioning factors.
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In all, 16 layers of conditioning factors were extracted from ArcGIS 10.8 for the whole
study area, and the VIF and TOL values of the 16 conditioning factors were calculated using
the statsmodels library in Python (Table 2). Elevation had the highest VIF value of 2.6 and
the lowest TOL value of 0.383, with relatively strong multicollinearity with all other factors.
In addition, VIF values for all conditioning factors were less than 10 and strictly less than
5, and all TOL values were greater than 0.1. Therefore, it can be assumed that there is no
strong multicollinearity between these 16 conditioning factors.

Table 2. VIF and TOL results for 16 conditioning factors.

Factor VIF TOL

Elevation 2.613 0.383
Slope 1.685 0.594

Aspect 1.105 0.905
Profile curvature 2.010 0.498
Plane curvature 2.087 0.479

TRI 1.558 0.642
TWI 2.090 0.478
STI 1.118 0.894

NDVI 1.143 0.875
Lithology 1.223 0.818
Rainfall 1.570 0.637

Distance to faults 1.028 0.972
Distance to rivers 1.172 0.854
Distance to roads 1.613 0.620

Land use 1.032 0.969
Soil type 1.350 0.740

4.2. Results of Absence Sampling

The absence sample set for BCS is constructed by first constructing a buffer for 217 land-
slide sample points and then creating random points outside the buffer by taking the inverse
of the function of the intersection set. By doing so, we can ensure that the random points
do not fall inside the buffer or near the landslide. By constructing buffers of different scales,
the sampling scales are divided into 300 m, 500 m, 800 m, 1000 m, and 1500 m, and 10 sets
of random points are randomly selected under each scale as absence samples. In the BCS
method, the relationship between the created absence sample location and the landslide
location is shown in Figure 9. The number of absence samples per group was 217, which
was used for the final training and testing after extracting 16 conditioning factors. The
whole sampling process for BCS was conducted on ArcGIS 10.8.

The program for CTSES was done in Python, and subsequently, all pixels in the study
area were entered and traversed in the program (the core code is shown in Section 3.3.2).
The number of input pixels was 1,559,752. The search for absence samples of different
quality was performed by changing the control parameters. In the sampling results of
CTSES, the number of absence samples with d = 1, d = 2, d = 3, and d = 4 were 200,023,
22,765, 2888, and 323, accounting for 12.824%, 1.459%, 0.185%, and 0.021% of the overall
pixels, respectively. When the controlled parameter d is increased to 5, the number of
absence samples found is 21, and we cannot find any absence samples with d greater than
5. The location of these absence samples mapped to the study area is shown in Figure 10.
Absence sample sets were created for training and testing from the CTSES data of d = 1,
d = 2, d = 3, and d = 4. In all, 20 sets of 217 absence samples were randomly selected from
each interval for final training and testing.
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Figure 9. Absence sample location schematic of the BCS method.

Figure 10. Absence sampling location of CTSES results.
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The total number of landslides in the study area was 217, and the total number of
pixels was 1,559,752, which was used to replace N and S in the IV model. The statistics
of the number of landslides Nij and the corresponding area Sij within the interval of each
conditioning factor are shown in Table 3. The IV values of the grading of each factor were
calculated. After the initial susceptibility mapping of the IV model was conducted, the
susceptibility was divided into 10 intervals based on the natural break method, as shown
in Figure 11a. The absence sampling threshold was set according to the natural break, and
a total of 10 sampling intervals were divided: <0.1, <0.2, <0.3, <0.4, <0.5, <0.6, <0.7, <0.8,
<0.9, and <1.0.

Table 3. IV calculation table of IV model.

Factor Class No. of Landslides No. of Pixels in Domain IV

Altitude (m)

34–400 65 400,676 0.154
301–600 105 529,308 0.355
601–900 40 424,249 −0.389

901–1200 7 191,726 −1.338
1201–1492 0 13,793 0.000

Slope (◦)

0–10 35 285,800 −0.128
10.1–20 75 353,914 0.421
20.1–30 60 484,962 −0.117
30.1–40 37 339,129 −0.243
40.1–50 10 84,504 −0.162

>50 0 5759 0.000

Aspect (◦)

0 0 5939 0.000
0–22.5 11 89,012 −0.118

22.6–67.5 34 202,755 0.187
67.6–112.5 32 216,747 0.059
112.6–157.5 35 202,523 0.217
157.6–202.5 30 178,953 0.186
202.6–247.5 24 182,953 −0.059
247.6–292.5 26 194,308 −0.039
292.6–337.5 16 192,853 −0.517
337.6–360 9 88,025 −0.308

Plane curvature

(−9.487–−1.297) 7 90,832 −0.591
(−1.296–−0.355) 57 358,239 0.134
(−0.354–0.370) 89 646,319 −0.010
(−0.371–1.239) 56 354,515 0.127
(1.240–8.994) 8 109,847 −0.647

Profile curvature

(−10.848–−1.643) 4 78,385 −1.003
(−1.642–−0.482) 36 318,609 −0.208
(−0.481–0.412) 91 696,850 −0.063
(0.413–1.574) 70 376,172 0.291

(1.575–11.940) 16 89,736 0.248

TWI

(2.354–4.686) 85 656,862 −0.072
(4.687–6.410) 69 524,863 −0.057
(6.411–8.742) 40 250,590 0.137

(8.743–12.392) 17 92,287 0.281
(12.393–28.209) 6 29,466 0.381

TRI

(0.111–0.294) 23 85,999 0.654
(0.295–0.419) 45 246,752 0.271
(0.420–0.498) 80 535,396 0.071
(0.499–0.578) 52 531,083 −0.351
(0.579–0.889) 17 208,097 −0.532
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Table 3. Cont.

Factor Class No. of Landslides No. of Pixels in Domain IV

STI

(0–3.0) 84 715,531 −0.170
(3.1–12.0) 64 586,030 −0.242

(12.1–15.0) 11 50,604 0.446
(15.1 -50.0) 31 140,393 0.462

(>50.0) 27 75,298 0.947

NDVI

(−0.184–0.077) 32 214,619 0.069
(0.078–0.161) 54 270,357 0.362
(0.162–0.239) 66 361,211 0.273
(0.240–0.316) 49 403,597 −0.136
(0.317–0.486) 16 309,958 −0.991

Rainfall (mm/year)

1488–1497 33 118,347 0.695
1498–1528 33 211,130 0.116
1529–1552 28 398,437 −0.683
1553–1575 70 494,390 0.018
1576–1611 53 337,453 0.121

Distance to rivers (m)

0–50 39 169,598 0.503
51–150 79 327,307 0.551
151–300 52 338,629 0.099
301–600 39 498,642 −0.576

>600 8 175,619 −1.116

Distance to roads (m)

0–200 66 222,151 0.759
201–400 21 147,406 0.024
401–600 8 119,129 −0.728
601–800 13 102,609 −0.094

>800 109 968,500 −0.212

Distance to faults (m)

0–200 17 146,962 −0.185
201–500 21 213,815 −0.348

501–1000 61 318,946 0.318
1001–1500 37 256,177 0.037

>1500 81 623,895 −0.069

Land use

Residential 3 42,047 −0.668
Bare land 0 2209 0.000

Forest 155 1,264,284 −0.126
Water body 1 12,156 −0.525
Farmland 56 216,100 0.622
Grassland 2 21,548 −0.405

Soil type

Rock 0 9137 0.000
Brown earth 3 78,111 −1.287
Paddy soil 20 170,108 −0.168

Limestone soil 1 4313 0.511
Red earth 179 1,011,069 0.241

Yellow earth 14 288,375 −1.053

Lithology

Sandstone 10 153,095 −0.756
Quartz sandstone 47 179,684 0.631

Gneiss 18 56,402 0.830
Tuff 38 373,449 −0.313

Rhyolite 86 679,184 −0.094
Quaternary alluvium 3 78,859 −1.297

Granodiorite Porphyry 15 38,986 1.017
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(a) (b) 

Figure 11. Results of the prior model. (a) IV model; (b) MBKM model. Absence samples were created
by random sampling within 10 sampling intervals delineated by landslide susceptibility.

The 1,559,752 pixels with information values were normalized and processed into
the MBKM algorithm for clustering calculations. The calculation process was based on
Python’s msmbuilder library [57]. The specific parameters were set as follows: n_clusters
is 10, max_iter is 1000, batch_size is 20,000, and max_no_improvement is 50. After the
clustering calculation, 10 clusters and 10 susceptibility rank intervals were obtained by
sorting the size according to the information content value of each cluster center. The
preliminary mapping of landslide susceptibility based on MBKM is shown in Figure 11b.
The absence sample sampling threshold was set according to the natural break, and a total
of 10 sampling intervals were divided as in the IV model: <0.1 through <1.0.

Absence samples extracted from low susceptibility intervals exhibited a lower proba-
bility of landslide occurrence in the IV and MBKM models. When the sampling threshold
was close to 1.0, the absence samples were almost randomly selected over the entire area.
Twenty sets of samples were created from each interval for training and prediction in the
prior models of IV and MBKM.

The idea behind integrative sampling is to feed the model with as many samples with
different characteristics as possible. Since the four sampling methods of BCS, CTSES, IV,
and MBKM have different sampling intervals, the default interval with the best prediction
performance metrics was the target interval for integrative sampling. According to the
results (reported in Section 4.4), the 1000 m interval in BCS, the d = 4 intervals in CTSES,
and the 0–0.1 interval in IV and MBKM had the best metrics (accuracy, AUC, KC, POA)
such that the samples in them could input more correct absence sample information to the
model. The selected absence sample sampling groups were BCS-1000m, CTSES-d = 4, IV-
0.1, and MBKM-0.1 for integrative sampling. The final input from the integrative samples
was obtained using random sampling from the intervals of different absence sampling
methods. The ratio of mixing was 1:1:1:1 to evaluate the mixing effect simply. The number
of absence samples in the input of prediction models was set to 217 and 506 to achieve
presence-to-absence sample ratios of 1:1 and 3:7, respectively. The purpose was to test the
effect of the training ratio on susceptibility prediction. This setting can explore whether
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increasing the proportion of absence samples reduces the overestimation of susceptibility
levels by comparing the results of different sample ratios of 1:1 and 3:7.

4.3. Landslide Susceptibility Mapping
4.3.1. LSM Results for Four Sampling Strategies with Different Sampling Intervals

The absence samples obtained in each of the above sampling methods were fed into
the SVM and RF prediction models for training and prediction. The ratio of landslide
samples to absence samples was set to 1:1. Optimal hyperparameters for SVM and RF
prediction models were found by grid search based on 10-fold cross-validation. In the
SVM training process, the RBF-kernel was used; the grid search range for hyperparameters
C and gamma was set to 0–20 and 0–1.2. In the training process of RF, the grid search
range for the hyperparameters n_estimators, max_depth, and min_samples_split were set
to 10–100, 10–50, and 10–40, respectively. There were 10/20 sets of samples under each
sampling threshold for each method, and the set with the highest AUC was selected for
LSM visualization.

Figure 12 shows the results of the SVM-based models for different sampling intervals
under four absence sampling strategies. In the BCS sampling method, the high landslide
susceptibility areas were concentrated in the eastern part of Songyang County and near the
east-west spreading gullies. Districts in the central flatlands exhibit a lower susceptibility to
landslides. As the size of the landslide buffer increases, the distribution pattern of landslide
susceptibility size little changes until it increases to 1000 m and 1500 m when the area of
the high susceptibility zone in the east increases significantly. Under the CTSES sampling
method, the high susceptibility areas at d = 1 are distributed in the eastern and central
districts around the county seat and on the slopes on both sides of the gully. With the
increase of parameter d, expansion of the high landslide susceptibility area and dispersion
of the susceptibility index (deepening of LSM color) can be observed. When d = 4, most
of the area is classified as having high susceptibility except for a small number of gullies,
mountain fronts, and flatlands in the central county. The same expansion and dispersion of
susceptibility are observed in the lower interval sampling of the IV prior model. When the
sampling threshold of IV is 0.1 or 0.2, the high susceptibility area covers the majority of the
study area. These two phenomena decrease as the IV sampling threshold increases and
eventually stabilize above a sampling threshold of 0.5; they are close to the BCS predictions.
The prediction model law based on the MBKM method of sampling is similar to that of the
IV model, but the polarization and expansion phenomena are greatly reduced compared
with the IV model, and most high landslide susceptibility areas in the low sampling interval
are distributed on both sides of the gullies, which seems more reasonable. In addition,
more areas of high landslide susceptibility occur in the central flatland county in the low
sampling interval (threshold < 0.6) of the IV and MBKM sampling models and in the d = 3
and 4 intervals of the CTSES, which are mitigated in the other sampling intervals.

The RF-based model results for different sampling intervals under four absence sam-
pling strategies are shown in Figure 13. The distribution pattern of susceptibility in the
RF model is similar to that of the SVM, but there are significant differences. In the BCS
method, when the buffer zone is 500 m, 800 m and 1000 m, the high susceptibility zone
is more concentrated in the gully without excessive expansion or confusion. In the three
sampling methods of CTSES, IV, and MBKM, expansion of high landslide susceptibility
areas and dispersion of landslide susceptibility indices can be found with changes in
sampling interval, which is consistent with the SVM prediction model. However, it is
important to note that the expansion and polarization of the RF model are milder than
those of the SVM model. Regardless, the expansion of high landslide susceptibility in the
intermediate flatland counties can still be seen in the low sampling interval of the IV and
MBKM sampling models and in the d = 4 sampling interval of CTSES.
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Figure 12. SVM-based LSM results of four absence sampling methods.
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Figure 13. RF-based LSM results of four absence sampling methods.
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4.3.2. LSM Results of the Integrative Sampling Method

The prediction plots of landslide susceptibility in SVM and RF prediction models
with integrative sampling methods are shown in Figure 14; 1:1 and 3:7 presence-absence
ratio sample sets are included respectively. In the training process of the SVM and RF,
the hyperparameters are searched in the same range as in Section 4.3.1 for the grid search
based on 10-fold cross-validation. The high landslide susceptibility areas are basically
distributed on and on both sides of the gully, in the eastern part of Songyang County, and
around the central prefecture. Widespread mountain peaks and flat areas in the central
prefecture are designated as safety zones. The results of the integrative sampling did not
reveal over-expansion or diversion of the high landslide susceptibility area, which is more
reasonable than the results obtained from the previous CTSES, IV, and MBKM sampling.
Comparing the results of presence-absence sample ratios of 1:1 and 3:7, the former has a
larger area of high landslide susceptibility. The high susceptibility area predicted by SVM
is slightly higher than in RF.

Figure 14. LSM of integrative sampling with different ratios. (a) SVM_IS_1:1; (b) RF_IS_1:1;
(c) SVM_IS_3:7; (d) RF_IS_3:7.

4.4. Evaluation of Different Absence Sampling Methods
4.4.1. Model Accuracy of Four Absence Sampling Methods with Respective
Sample Intervals

The training and testing accuracy of the models for different sampling intervals under
each absence sampling method is presented in the form of box-line plots in Figures 15 and 16.
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In the SVM and RF prediction models, a consistent pattern was found in the variation
of accuracy with different sampling intervals. In the BCS method, the accuracy of the
training and testing under SVM prediction increased slightly overall when the buffer rose
from 300 to 1000 m and decreased slightly by 1500 m. In the RF model, training accuracy
was relatively stable, mostly maintained above 0.9, and the amount and trend of testing
accuracy were similar to those of the SVM prediction model. In CTSES, as d increased
from 1 to 4, the accuracy of the training and testing sets under the SVM and RF prediction
models tended to increase. The testing accuracy of SVM and RF reached 0.95 (nearly 1),
as d = 4 and 3, respectively. In the IV and MBKM models, the accuracy of SVM decreased
with increasing sampling threshold, and the testing accuracy of RF also decreased, but the
training accuracy was maintained at a high level (>0.9). In addition, the testing accuracy of
IV was higher than that of MBKM at the sampling thresholds of 0.1, 0.2, 0.3, 0.4, and 0.5;
when the threshold was lowest, the testing accuracy was generally greater than 0.9 or close
to 1.

Figure 15. Accuracy results of SVM-based absence sampling. (a) BCS; (b) CTSES; (c) IV; (d) MBKM.
The “+” represents a small number of abnormal values that are outside the normal range.
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Figure 16. Accuracy results of RF-based absence sampling. (a) BCS; (b) CTSES; (c) IV; (d) MBKM.
The “+” represents a small number of abnormal values that are outside the normal range.

4.4.2. Model Comprehensive Predictive Performance of Four Absence Sampling Methods
with Respective Sample Intervals

Three metrics, namely AUC, KC, and POA, were used to weigh the comprehensive
predictive performance of each model consisting of each group of samples. They are
presented as box plots in Figures 17 and 18. The three metrics have a consistent pattern. In
BCS, they increased slightly when the buffer size changed from 300 to 1000 m and decreased
slightly to 1500 m. In BCS, the AUC was around 0.8, the KC did not exceed 0.6, and the
POA reached a maximum of approximately 2.0. In CTSES, the three metrics gradually
increased as d varied from 1 to 4. In IV and MBKM, the three metrics gradually decreased
as the sampling threshold increased. In addition, the AUC approached 1 and even the POA
approached 3 at low sampling intervals in IV and MBKM or a higher d in CTSES. In both
the RF and SVM prediction models, the above-mentioned pattern was present.
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Figure 17. Prediction performance results of SVM-based absence sampling. (a) BCS; (b) CTSES; (c) IV;
(d) MBKM.

Figure 18. Prediction performance results of RF-based absence sampling. (a) BCS; (b) CTSES; (c) IV;
(d) MBKM.
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4.4.3. Model Susceptibility Distribution of Four Absence Sampling Methods with
Respective Sample Intervals

Figure 19 shows the means and standard deviations of susceptibility for four absence
sampling strategies with different intervals. In BCS, the change in mean and standard
deviation was negligible. In the remaining three models, as d increased or the sampling
threshold decreased, there was a significant increase in the mean and a weaker upward
trend in the standard deviation. In CTSES, the change in the mean value was particularly
pronounced, rising from 0.4 to 0.87. In IV and MBKM, the maximum mean values were
approximately 0.65 and 0.8, respectively, when the threshold was 0.1. In terms of standard
deviation, BCS had the lowest with a maximum value of about 0.2, while the other methods
had a maximum value of 0.3 or above. In the comparison of the prediction models, the
mean distributions of SVM and RF were about the same in BCS and IV, slightly higher
for RF than SVM in CTSES, and higher for SVM than RF at low thresholds in MBKM. In
addition, almost all standard deviations of the SVM model were larger than those of the
RF model.

Figure 19. Means and standard deviations of four absence sampling methods with different intervals.
(a) BCS; (b) CTSES; (c) IV; (d) MBKM.

4.4.4. Evaluation of the Integrative Sampling Model

The prediction model evaluation metrics for the integrative sampling approach are
shown in Table 4. The training set accuracies were all greater than 0.9, while the training
set accuracy of RF was maintained at a high level (>0.95). The testing accuracy and
comprehensive predictive performance metrics, including the AUC, KC, and POA of SVM,
were less than those of RF. When the ratio was 1:1, the various metrics fell within the
region of the BCS and the other three models. The combined predictive performance
of the integrative sampling model was stronger than that of BCS but weaker than the
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performances of CTSES, IV, and MBKM under the same set of absence sample intervals.
When the ratio changed from 1:1 to 3:7, each parameter decreased slightly, resulting in
a slight decrease in prediction performance. In terms of susceptibility distribution, the
mean value of integrative sampling was slightly higher than that of BCS but significantly
lower than those of CTSES, IV, and MBKM. When the ratio changed from 1:1 to 3:7, further
significant decreases in the mean value occurred (from 0.52 and 0.56 to 0.36 and 0.39).

Table 4. Metrics of the integrative sampling model.

Predictive
Model

Presence:
Absence

Training
Accuracy

Testing
Accuracy

AUC KC POA
Susceptibility

Mean
Susceptibility

SD

SVM
1:1 0.90 0.77 0.89 0.55 2.13 0.52 0.29
3:7 0.93 0.81 0.87 0.56 2.06 0.36 0.28

RF
1:1 0.96 0.86 0.92 0.73 2.46 0.56 0.23
3:7 0.97 0.83 0.91 0.60 2.15 0.39 0.21

5. Discussion

5.1. Effects of Absence Sampling Strategies and Sample Quality on LSM

Each of the four absence sample sampling models has its own control parameters.
Figures 12 and 13 show the sensitivity of LSM to these parameters, and Figures 15–19 show
the sensitivity of the model evaluation metrics to the parameters.

For BCS, various evaluation metrics show that buffer size has the best performance
effect at 1000 m. The model’s performance rises first when the buffer increases and then
decreases when it increases to a certain level (1500 m). This scenario suggests that there may
be a buffer size that is most suitable for generating negative samples. However, compared
to the feature screening methods in CTSES, IV, and MBKM, the LSM prediction patterns and
prediction performance metrics, as well as the susceptibility distribution of BCS, show little
variation. This indicates that the improved geospatial-based absence sampling method has
a certain upper limit and is less sensitive.

CTSES, IV, and MBKM were found to have significant sensitivity in LSM as well as
various metrics to the control parameters, the main reason for which was absence sampling
methods based on feature screening patterns. The control parameter d in CTSES and the
sampling thresholds in IV and MBKM can be good representations of the negative sample
quality. The larger the d or the lower the sampling threshold, the greater the difference
between the features of the absence samples and the landslide samples, and the safer the
region of the absence samples. These control parameters control the reliability or certainty
of the absence of samples in the input model.

When the reliability and certainty of the absence samples are enhanced, an expan-
sion of the high landslide susceptibility area and a divergence of the susceptibility index
can be observed in the LSM results of these models and in the mean susceptibility level.
Similar results can also be seen in other studies that have classified absence sample relia-
bility [22]. These phenomena are particularly pronounced in IV and CTSES and slightly
less pronounced in MBKM. At the same time, the model’s predictive power indicators
(accuracy, AUC, KC, and POA) are significantly improved or even close to full scores. These
phenomena are due to the fact that when the non-landslide samples are too absent, the
prediction model learns only the extreme features of the absent samples and the features of
the landslides in the learning process. For those intermediate points between the extreme
absence sample and the deterministic landslide sample, the model does not have enough
information to assess them and overestimates them to a higher level of susceptibility. Since
landslide samples and extreme absence samples are used for validation scores, the model’s
susceptibility overestimation will not lead to misjudgment of these samples; therefore,
very high prediction scores can be obtained. The overestimation of the overall regional
susceptibility by the model due to extreme samples is obviously unreasonable and difficult
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to apply. This can be mitigated by reducing the d in CTSES or increasing the sampling
threshold in IV and MBKM, but it will cause some degradation in prediction performance.

5.2. Advantages of Integrative Sampling

The integrative sampling absence sample set is combined with highly reliable absence
samples, including CTSES-d = 4, IV-0.1, MBKM-0.1, and BCS-1000. Looking at the LSM
prediction results for the integrative sampling method, it is surprising to see that the predic-
tion pattern appears very reasonable. The flatland county in the central part of Songyang
County is no longer misclassified as a high susceptibility area, and the excessive extension
of the high susceptibility area in the gully to the banks has been significantly suppressed.
The high landslide susceptibility areas are basically distributed in the gully and both sides
of the gully, the eastern part of Songyang County, and around the central prefecture. The
same samples (CTSES-d = 4, IV-0.1 and MBKM-0.1) would still be susceptible to overes-
timation and differentiation if returned to the original single absence sample sampling
model, as Figures 12–14 show, but the integrated sampling method overcomes this. In
addition, the normal mean level at a presence-absence ratio of 1:1 also indicates that the
overall overestimation and divergence of regional susceptibility are greatly mitigated in
integrative sampling (0.52 in SVM and 0.56 in RF compared with a max mean value of 0.87
in CTSES). Although the predictive assessment metrics (accuracy, AUC, KC, and POA) are
lower than in the CTSES, IV, and MBKM methods, they are still much higher than in the
BCS method. As shown in Table 4, the AUC of the integrative sampling method is around
0.9 for both SVM and RF models, with presence-absence ratios of 1:1 and 3:7, and the other
metrics are within the excellent range (KC > 0.55, POA > 2.06).

Integrative sampling has the above advantages, mainly because the diversity of ab-
sence samples allows the prediction model to learn more non-landslide features. When
predicting objects that are ambiguous, the model is able to synthesize the susceptibility
value of the object based on the sample characteristics of each source. In the BCS indi-
vidual model, the selection of absence samples is highly random and has the potential
to give the model the wrong samples. In the CTSES, IV, and MBKM single models, the
combination of features with high reliability absence samples may be highly similar, with
insufficient information for the model to predict medium susceptibility objects. Integrative
sampling combines various types of absence samples to obtain more information about
the combination of absence sample features of CTSES, IV, and MBKM and also shares
the error introduction rate of BCS. Thus, integrative sampling would give the predic-
tive model a broader predictive capability rather than focusing on very low or very high
susceptibility zones.

In addition, when the presence-absence ratio was changed from 1:1 to 3:7 in integrative
sampling, a reduction in the high susceptibility zone and a decrease in the mean value
of susceptibility were observed. Metrics of model predictive performance are reduced
but within reasonable limits. Therefore, it is inferred that the overestimation level of
regional susceptibility can be reduced by increasing the proportion of absence samples in
the training process, as in another study [29]. Such an approach can be used in situations
where the overall regional susceptibility is too high or where very high susceptibility areas
need to be located quickly.

6. Conclusions

Four absence sampling methods were employed in LSM, namely BCS, CTSES, IV, and
MBKM, and a new method of integrative sampling was proposed. In these methods, the
TSES method was improved to obtain the CTSES method, and the less commonly used
optimized clustering algorithm MBKM was introduced and showed a more reasonable
prediction pattern than the IV model with the same set of samples. The absence of samples
generated by these four methods were mixed for the test of the integrative sampling
method. The above methods were applied to LSM in Songyang County, Lishui City,
Zhejiang Province, China, and the effects of various absence sampling methods and the
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quality of absence samples in LSM were discussed. Multiple sets of sampling intervals
were set for each method, and extensive training computations were conducted in each
interval. The results indicate that, as the certainty and reliability of the sample increase,
expansion of the high susceptibility region and divergence of the susceptibility index occur
in the CTSES, IV, and MBKM methods. This phenomenon can be significantly reduced, and
very satisfactory prediction results can be achieved by employing the proposed integrative
sampling method or a higher proportion of absence samples. Integrative sampling has a
stronger prediction performance than the general independent absence sample sampling
method and can combine the sample information of each sampling method for a more
reasonable classification of high, low, and medium susceptibility areas. The integrative
sampling method presents a valuable approach for constructing absence samples in LSM
based on data-driven models.
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Abstract: Selecting samples with non-landslide attributes significantly impacts the deep-learning
modeling of landslide susceptibility mapping. This study presents a method of information value
analysis in order to optimize the selection of negative samples used for machine learning. Recurrent
neural network (RNN) has a memory function, so when using an RNN for landslide susceptibility
mapping purposes, the input order of the landslide-influencing factors affects the resulting quality of
the model. The information value analysis calculates the landslide-influencing factors, determines
the input order of data based on the importance of any specific factor in determining the landslide
susceptibility, and improves the prediction potential of recurrent neural networks. The simple
recurrent unit (SRU), a newly proposed variant of the recurrent neural network, is characterized
by possessing a faster processing speed and currently has less application history in landslide
susceptibility mapping. This study used recurrent neural networks optimized by information value
analysis for landslide susceptibility mapping in Xinhui District, Jiangmen City, Guangdong Province,
China. Four models were constructed: the RNN model with optimized negative sample selection,
the SRU model with optimized negative sample selection, the RNN model, and the SRU model. The
results show that the RNN model with optimized negative sample selection has the best performance
in terms of AUC value (0.9280), followed by the SRU model with optimized negative sample selection
(0.9057), the RNN model (0.7277), and the SRU model (0.6355). In addition, several objective measures
of accuracy (0.8598), recall (0.8302), F1 score (0.8544), Matthews correlation coefficient (0.7206), and
the receiver operating characteristic also show that the RNN model performs the best. Therefore, the
information value analysis can be used to optimize negative sample selection in landslide sensitivity
mapping in order to improve the model’s performance; second, SRU is a weaker method than RNN
in terms of model performance.

Keywords: landslide susceptibility mapping; information value analysis; recurrent neural network;
simple recurrent unit

1. Introduction

Faced with current human societal challenges, it is more important than ever for
geoscientists to use their understanding of the earth to benefit the society [1]. The most
notable development in the field of mathematical geoscience in the last decade has been
the introduction of big data and artificial intelligence algorithms. The ability of machine
learning (ML) algorithms to handle nonlinear problems has tremendous advantages in
dealing with complex geoscience problems [2–4]. As a result, ML is now being fully uti-
lized in geoscience fields. For example, Wang et al. used unsupervised ML algorithms to
identify multielement geochemical anomalies [5], and Yu et al. used hierarchical clustering,
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singularity mapping, and the Kohonen neural network to identify Ag–Au–Pb–Zn poly-
metallic mineralization-associated geochemical anomalies [6]. In general, we are primarily
focused on geological events that have a significant impact but occur infrequently, such as
earthquakes, typhoons, vein formation, and landslides.

Landslides are natural disasters that pose a serious risk to human lives and prop-
erty and represent one of the most destructive categories of natural disasters that occur
globally [7]. Mountainous areas are especially affected by landslides, whose controlling
mechanisms are the complex geological and geographical conditions present in that land-
scape. Seventy percent of China’s area is mountainous, providing favorable conditions for
landslide occurrences, resulting in casualties and considerable economic losses [8–11]. As a
consequence, landslide susceptibility mapping (LSM), which can analyze possible spatial
areas for landslide occurrence, is an effective technique for land managers to mitigate the
effects of landslides [12,13].

Machine learning is a subdivision of artificial intelligence (AI) that uses computer
technologies to analyze and predict information by learning from the training dataset. A
variety of ML methods have been used for LSM, including Bayesian networks, decision
trees, support vector machines, random forests, and artificial networks [14–18]. It is to
be noted that in recent years, in the implementation and development of natural hazard
modelling, researchers have begun to consider the use of hybrid models. Hybrid models
combine individual models with metaheuristic algorithms, allowing the hybrid model to
eliminate the weak points inherent to the individual models to obtain more accurate results.
For example, adaptive neuro-fuzzy system-gradient-based optimization (ANFIS-GBO) is
applied to the spatial modelling of flood hazards [19]; cuckoo optimization algorithm-
multi-layer perceptron (COA-MLP) and SailFish optimizer- multi-layer perceptron (SFO-
MLP) approaches are applied to the landslide susceptibility assessment [20]; and ANFIS
integrated three optimization algorithms (ant colony optimization (ACO), genetic algorithm
(GA), and particle swarm optimization (PSO)) applied to flood susceptibility maps [21].
A variety of machine learning and deep learning models have been used to improve the
accuracy of LSM. In recent years, to obtain better deep learning and machine learning
models, researchers have adopted a variety of improved methods, such as the deep-learning
optimization algorithm [22], the hybrid ensemble-based deep-learning framework [23],
and the class-weighted algorithm combined with ML models [24].

Deep learning models have been increasingly applied in the modeling of environ-
mental variables, such as environmental remote sensing [25], PM2.5 prediction [26], and
water temperature prediction [27]. Recurrent neural networks (RNNs) are a specific kind
of neural network that not only considers the previous moment’s input but also gives the
network a “memory” function for the previous content. Based on this unique function of
the RNN approach, the order of data input will affect the model’s effectiveness. Exploring
a sequential data representation method can take advantage of the memory function of
RNNs, which allows for thorough exploration of the prediction potential of RNNs. RNNs
have been applied to LSM. Thi Ngo et al. applied RNN and CNN techniques for an LSM
of Iran at the national scale [28]. Liming Xiao et al. used long short-term memory (LSTM)
to predict landslide susceptibility along the China–Nepal Highway [29]. The common
variants of RNNs are LSTM [30] and gated recurrent units (GRUs) [31]. Recently, a simple
recurrent unit (SRU) was proposed as a new RNN variant that has a faster processing speed
than the LSTM and GRU approaches. The use of the new RNN variant, using an SRU, has
less application in LSM, and its specific performance in LSM should be further studied.

Traditional binary classifiers for machine learning usually require two sets of samples
with corresponding labels, including positive and negative samples [32]. There are often
imperfect cases in the practical applications, however, most commonly manifesting when
only positive and unlabeled samples are used in the training dataset. For non-landslide
samples, there still needs to be a specific definition and a reasonable method to obtain
them. In general, the study area is divided into landslide and non-landslide areas. Fur-
thermore, samples from non-landslide areas can be drawn randomly from non-landslide
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areas. These unlabeled samples cannot be directly considered negative samples, because
the areas of these samples are likely to be the only areas where disasters have not yet
occurred [33]. At present, the issue of non-landslide sample selection has received some
attention. Yang et al. [34] used Bayesian optimization algorithms to optimize the proportion
of landslide samples. Chang et al. [35] selected non-landslide samples multiple times and
investigated the uncertainty of non-landslide sample selection. Huang et al. [36] selected
the non-landslide samples from the non-landslide area with a low landslide susceptibility
level based on a semi-supervised multiple-layer perceptron model. Overall, there is no
universally accepted method for optimizing non-landslide sample selection due to the
differences in study areas and the logic and mechanisms behind different algorithms, which
need to be studied thoroughly.

Therefore, the main innovation of this study is to optimize the selection of negative
samples using information value analysis. Information value analysis determines the input
order of the data by calculating the influence factors and fully explores the prediction
potential of RNNs with memory function. In addition, SRU has been less studied on LSM,
and both RNN and SRU models are constructed to explore the prediction performance of
SRU through a comparative study.

2. Study Area

2.1. Description

Xinhui District, located between latitudes 22◦5′15′′ and 22◦35′01′′ N and longitudes
112◦46′55′′ and 113◦15′43′′ E, is in the south-central part of Guangdong Province (Figure 1).
The land area of the region contains 1354.71 square kilometers. Mountainous areas are
distributed in the northwest and southwest of the district, accounting for 35.84% of the total
area of the region. Plains are distributed in the southeastern, south-central and west-central
parts of the district, accounting for 43.53% of the total area of the district. The region’s
waters account for 20.63% of the total area of the region. Xinhui has a southern subtropical
maritime monsoon climate, abundant rainfall, sufficient sunshine, and mild and humid
conditions year round. The average annual temperature is 22.4 ◦C, with the highest and
lowest historical temperatures of 38.3 ◦C and 0.1 ◦C, respectively. The annual average
precipitation is 1808.3 mm. The precipitation is concentrated from April through September.
The average annual sunshine hours are 1734.1 h.

The list of landslides used in this paper, completed by the Guangdong Geological
Survey Institute, consists of 178 landslides and locations of high-risk points (Figure 1),
of which the landslide samples occurred from 2017 to 2020. Most of the landslides are
classified as sliding landslides. All the landslides in this study can be classified as moderate
(400–1000 m2) and small (<400 m2). In addition, there are rock landslides and earth
landslides. According to the report, these landslides were triggered by rainfall events that
occurred after anthropogenic activity.

2.2. Datasets

Heckmann et al. [37] stated that the increase in the samples accounted for has had
a positive impact on the LSM and has increased the model’s effectiveness. However, the
training samples used for LSM are insufficient in many cases. To solve this problem,
we collaborated with geologists to collect historical landslide points and locations with
significant potential for landslides throughout the whole region, totaling 178 points. We
used these points as samples to improve the effectiveness of the model.

In this study, 15 landslide influencing factors were considered, including elevation,
slope, aspect, plan curvature, profile curvature, degree of relief, land use, rock type, to-
pographic wetness index (TWI), terrain ruggedness index (TRI), topographic position
index (TPI), normalized difference vegetation index (NDVI) on 15 April 2014, distance
to faults, distance to rivers, and distance to roads. Detailed information on the landslide
influencing factors is shown in Table 1. The following describes the preparation for each
influencing factor.
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Figure 1. (a) Location of the study area; (b) and (c) are field photos.

The elevation, slope, aspect, plan curvature, profile curvature and degree of relief were
extracted from a digital elevation model (DEM) obtained from the Advanced Spaceborne
Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER
GDEM V2) (http://www.gscloud.cn, accessed on 11 March 2021). Slope, aspect, plan
curvature, profile curvature, and degree of relief were calculated in the MapGIS 10.2
software. The TWI and TPI were generated by the SAGA 6.1 software. The distance to
roads and the distance to rivers were produced by ArcGIS based on topographic maps at
a scale of 1:50,000. The distance to faults was produced by ArcGIS based on engineering
geological maps at a scale of 1:50,000. We obtained NDVI data for the study area from
the USGS (https://earthexplorer.usgs.gov, accessed on 20 March 2021). Land use data
and rock type data were provided by the collaboration with geologists. All factors were
converted into a raster form with a spatial resolution of 20 m. The descriptions of these
factors are shown in Table 1. Figure 2 shows the spatial distribution of these factors.
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Table 1. Description of landslide factors.

Factor Type Factors Range

Geologic Factors
Rock type Granite, Sandstone, Slate, Quaternary sediments and rivers

Distance to faults (m) (0, 6046)

Topographic Factors

Elevation (m) (0, 972)

Slope (0, 49.73)

Aspect Flat, North, Northeast, East, Southeast, South, Southwest, West,
Northwest

Plan curvature (0, 65.46)

Profile curvature (0, 11.36)

Degree of relief (0, 40.73)

TRI (0, 83.00)

TPI (−6.49, 10.96)

Water-Related Factors
Distance to rivers (m) (0, 3691)

TWI (0, 22.68)

Anthropogenic Factors Land use Farmland, Forest and grass, Residential, Bare, Water

Distance to roads (m) (0, 2704)

Vegetation Factors NDVI (−1, 1)

Figure 2. Cont.
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Figure 2. Spatial distribution of landslide influencing factors: (a) elevation, (b) slope, (c) aspect,
(d) plan curvature, (e) profile curvature, (f) degree of relief, (g) land use, (h) rock type, (i) NDVI,
(j) distance to faults, (k) distance to river, (l) distance to roads, (m) TWI, (n) TRI, and (o) TPI.

3. Materials and Methods

Figure 3 shows the process diagram used in this study. There are six steps in this
process: (1) selecting the landslide influencing factors, (2) selecting typical negative samples
and representing landslide data in series based on the information values (IVs), (3) prepar-
ing both the training and testing datasets by random partitioning, (4) constructing RNN
and SRU models, (5) evaluating and comparing the landslide models, and (6) constructing
a landslide susceptibility map.

3.1. Information Value Analysis

Information value analysis is a data exploration technique that helps determine which
columns in a dataset have predictive power or influence on the value of a specified de-
pendent variable. Information value is a very useful concept for variable selection during
model building. The roots of the IVs are in the information theory that was proposed by
Claude Shannon [38,39]. The IV analysis is a popular tool in the banking and bond ratings
fields [40,41]. The effectiveness of landslide models can be enhanced by introducing IV into
the processing of landslide factors for LSM. The correlation coefficient can be calculated
as follows:

IV(xi) = (ni1/n1 − ni0/n0)WOE(xi) = (ni1/n1 − ni0/n0)ln
ni1/n1

ni0/n0
(1)

IV(x) =
N

∑
i=1

IV(xi) (2)

where n1 is the total number of landslide rasters, n0 is the total number of non-landslide
rasters, ni1 is the number of landslide rasters of class xi for variable x, and ni0 is the number
of non-landslide rasters of class xi for variable x. In practice, the standard rule of using the
IVs is shown in the Table 2.
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Figure 3. Methodology of the study.

Table 2. Standard rule for using the information value.

Information Value Predictive Power

<0.02 Useless

0.02–0.1 Weak

0.1–0.3 Medium

0.3–0.5 Strong

>0.5 Suspiciously good

3.2. Recurrent Neural Network and Its Variants
3.2.1. Recurrent Neural Network

In traditional neural network models, the layers are fully connected from the input
layer to the hidden layer to the output layer, and the nodes between each layer are uncon-
nected [42,43]. Recurrent neural networks (RNNs) are a class of Artificial Neural Networks
(ANNs), and RNNs are intended to be used to process sequential data (Figure 4). Specif-
ically, the network remembers the previous information input and then applies it to the
calculation of the current output. The nodes between the hidden layers are no longer
connectionless but connected, and the input of the hidden layers includes not only the
output of the input layer but also the output of the hidden layer at the previous moment.
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Figure 4. (a) RNN architecture and (b) SRU architecture.

Traditional recurrent neural networks are often implemented using Elman networks or
Jordan networks, both of which are similar and are three-layer networks. The Elman network
and the Jordan network are also known as “simple recurrent networks” (SRN) [44,45]. Let
xt, yt, and ht be the input vector, the output vector, and the hidden layer vector, then we
can obtain

ht = σh(Whxt + Uhht−1 + bh) (3)

yt = σy(Wyht + by) (4)

where U and W are parameter matrices, b is the bias vector, and σh and σy are activa-
tion functions.

3.2.2. Simple Recurrent Unit

The SRU is a variant of the recently proposed RNN, and the SRU and the related
work aim to propose and explore simple, fast, and more explanatory RNNs (Figure 4) [46].
Compared to other RNN variants, such as LSTM and GRU, SRU can achieve faster training
speeds due to its designed structure. Figure 5 shows the basic structure of the SRU. The
SRU is built on the same “gate” structure as the LSTM and GRU, but the difference is that
SRU removes the limitation of parallelization of that LSTM and GRU adhere to, resulting
in a much faster processing speed. The SRU has two components: “light recurrence” and
“high network”. Let xt, ft, Ct, rt, and ht be the input vector, the forget gate vector, the
current state from light recurrence, the reset gate vector, and the hidden layer vector. The
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light recurrence can be summarized as Equations (5)–(7), and the high network can be
summarized as Equations (8) and (9).

∼
xt = Wxt (5)

ft = σ(Wf xt + b f ) (6)

Ct = ft � ct−1 + (1 − ft)� (Wxt) (7)

rt = σ(Wrxt + br) (8)

ht = rt � g(Ct) + (1 − rt)� xt (9)

where W and b are the parameter matrices. The value � is the pointwise multiplication
operation [47].

Figure 5. Data representation of models.

3.3. Selection of Landslide Influencing Factor

For LSM models, inputting more data does not necessarily result in a better model,
as too much redundancy in the influencing factors considered will reduce the model’s
predictive capability [48]. Therefore, it is crucial to correctly select the landslide influencing
factors [49]. The IV analysis method has been described above, and Table 3 shows the
analysis of these influencing factors using Equations (1) and (2).
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Table 3. Information value analysis of each landslide influencing factor.

Factor Class No. of Pixels
No. of

Landslides
WOE IV of Each Class IV

Rock type

Granite 10,872 65 0.1029 0.0037

0.0996

Sandstone 956 15 1.0678 0.0590

Slate 3832 11 −0.6308 0.0343

Quaternary
sediments and rivers 17,340 87 −0.0724 0.0027

Distance to
faults (m)

0–400 7630 68 0.5021 0.0757

0.1031

400–800 6770 37 0.0131 0.0000

800–1200 4824 16 −0.4863 0.0274

1200–1600 3634 22 0.1554 0.0016

1600–5300 10,142 35 −0.4466 0.0494

Elevation (m)

0–50 25,588 138 −0.0001 0.0000

0.0492
50–150 3469 27 0.3667 0.0171

150–220 1227 6 −0.0981 0.0003

220–972 2716 7 −0.7385 0.0317

Slope

0–4.10 22,125 79 −0.4125 0.0935

0.3456
4.10–11.31 5752 75 0.8827 0.2181

11.31–20.48 3531 21 0.0977 0.0011

20.48–49.73 1592 3 −1.0517 0.0330

Aspect

Flat 1442 1 −2.0513 0.0781

0.1859

North 3991 14 −0.4303 0.0182

Northeast 3899 17 −0.2128 0.0048

East 4313 18 −0.2565 0.0076

Southeast 4561 17 −0.3696 0.0158

South 3746 30 0.3952 0.0217

Southwest 3404 26 0.3479 0.0149

West 3670 29 0.3818 0.0197

Northwest 3974 26 0.1930 0.0050

Plan curvature

0–5.09 2509 4 −1.2189 0.0653

0.1889
5.09–25.90 10,913 92 0.4466 0.0831

25.90–44.40 11,148 42 −0.3589 0.0366

44.40–65.46 8430 40 −0.1282 0.0039

Profile
curvature

0–0.36 16,291 24 −1.2978 0.4657

0.6907
0.36–2.32 12,123 125 0.6479 0.2170

2.32–4.72 3855 26 0.2234 0.0065

4.72–11.36 731 3 −0.2733 0.0014

Degree of relief

0–5.00 25,944 115 −0.1963 0.0275

0.0994
5.00–7.67 2721 25 0.5326 0.0309

7.67–14.53 3272 30 0.5305 0.0368

14.53–40.73 1063 8 0.3331 0.0042
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Table 3. Cont.

Factor Class No. of Pixels
No. of

Landslides
WOE IV of Each Class IV

TRI

<2.93 16,246 19 −1.5287 0.5894

0.88272.93–20.83 13,470 145 0.6910 0.2808

>20.83 3284 12 −0.3894 0.0125

TPI

<−0.95 3392 21 0.1378 0.0021

0.4914

(−0.95)–0.33 4460 58 0.8800 0.1678

0.33–0.28 18,924 46 −0.7971 0.2511

0.28–2.13 4648 45 0.5849 0.0655

>20.83 1576 6 −0.3484 0.0049

Distance to
rivers (m)

0–500 17,364 116 0.2139 0.0268

0.0985500–1500 12,263 55 −0.1845 0.0116

1,500–3691 3373 7 −0.9552 0.0601

TWI

<7.88 11,184 108 0.5824 0.1560

0.32077.88–16.47 20,184 68 −0.4707 0.1081

>16.47 1632 2 −1.4819 0.0566

Land use

Farmland 11,517 35 −0.5738 0.0874

0.2750

Forest and grass 13,492 95 0.2665 0.0333

Residential 3981 39 0.5968 0.0588

Bare 646 4 0.1380 0.0004

Water 3364 5 −1.2890 0.0952

Distance to
roads (m)

0–50 16,797 100 0.0987 0.0052

0.137250–350 9534 64 0.2187 0.0155

350–2704 6669 14 −0.9437 0.1165

NDVI

<0.22 3356 3 −1.7974 0.1525

0.2058
0.22–0.49 12,749 61 −0.1199 0.0052

0.49–0.67 8974 66 0.3100 0.0306

>0.67 7921 32 −0.2891 0.0174

Table 2 shows the standard rule of using the IV analysis. All IVs are higher than 0.02,
indicating that all influencing factors have certain predictive power for the occurrence of
landslides. Based on the above results, the TRI has the highest IV of 0.8827, indicating
that it may be the dominant factor, and most of the other factors are between 0.1 and 0.4,
proving that they also have a positive correlation with the landslide occurrence.

3.4. Factor Importance Ranking

From the above introduction of the architecture of RNNs and SRUs, it is clear that
RNNs are effective in processing data that have sequential properties due to their special
recurrent hidden states. Therefore, constructing models using RNNs should consider the
problem of data redundancy and the input sequence of data. In this study, we propose a
landslide data representation of RNNs, as shown in Figure 5. According to the results in
Section 3.3, first, the IVs of all the influencing factors are arranged in a descending order,
and then the influencing factors are ranked via their level of importance. Then, each pixel
in the study area is converted into a continuous sample. Thus, the data are the input into
the model in the previously ranked order of importance. Due to the special architecture
inherent to RNNs, the previous input data are related to the latter input, and the key
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information of each influencing factor that induces landslides is passed along the next
hidden state.

3.5. Selection of Negative Sample

Landslides are geological events that occur infrequently but are hazardous to our
society, and we can further define landslides as being rare events [50]. Identifying classes
of rare events and representing them from a large quantity of data are challenging due to
the insufficient number of positive samples and the absence of negative samples [51]. The
lack of positive samples has been improved by adding the risk points above, and in this
section, negative samples are selected by the weight of the evidence (WOE) method.

The WOE is calculated by Equation (1), from which it can be seen that the difference
between the ratio of the number of landslides contained in the current class to the number
of all landslide occurrences and the ratio of the number of non-landslide samples contained
in the current class to the number of all non-landslide samples in this study is the logarithm
of the two ratios. The larger the WOE is, the greater the probability of landslide events
happening for the pixels belonging to this interval, and the opposite relation results in the
probability of landslides being smaller.

To obtain the area for selecting the negative samples, the WOEs of the 15 influencing
factors for all pixels were summed and averaged in order to obtain a WOE map of the
study area, and then the region was divided into two areas: positive WOE and negative
WOE (Figure 6). To verify the effectiveness of this method, two groups of negative samples
were selected: one group was randomly selected in the area of negative WOE region, and
the other group was randomly selected directly in the study area. The number of negative
samples in both groups was the same as the number of positive samples.

Figure 6. WOE and the selection of negative samples.
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3.6. Evaluation and Comparison of Models

The validation of model strength or weakness is a key condition for assessing model
performance. The fitting accuracy has been considered a significant feature and is obtained
by comparing the model predictions with the true values in the training dataset. The
analysis and evaluation of models using the receiver operating characteristic (ROC) curves
are common in many related studies. The ROC curve is plotted by including the statistical
index values of the false-positive and true-positive ratios. The area under the ROC curve
(AUC) represents the model’s predicted value. The AUC values range between 0.5 and
1.0, with larger areas indicating a better spatial prediction performance of the model [52].
Statistical indicators such as accuracy (ACC), Matthews correlation coefficient (MCC), F1
score, and recall are added to evaluate the predictive ability of the model, and these are
calculated as follows [53–55]:

ACC =
TP + TN

TP + FP + TN + FN
(10)

MCC =
TP × TN − FP × FN√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
(11)

F1 score =
2 × TP

2 × TP + FP + FN
(12)

recall =
TP

TP + FN
(13)

where TP and TN represent true positives and true negatives, and FP and FN denote false
positives and false negatives, respectively. The values of ACC, recall, and F1 score range
between 0 and 1. MCC ranges between −1 and 1. The higher the ACC, F1, and MCC
values, the better the predictive ability of the model.

4. Results

4.1. Performance of the Landslide Models

A dataset with negative samples selected by the IV analysis is input into the RNN
and SRU models, named the RNN model and SRU model. A dataset randomly selected
directly from the area of negative samples is input to the RNN and SRU models, named the
RNN_random model and SRU_random model. The models are implemented in Python
under scikit-learn (https://scikit-learn.org/stable/, accessed on 21 October 2022) and
Keras (https://keras.io/, accessed on 21 October 2022). Parameters of the RNN model
are as follows: hidden units = 40, learning rate =0.0001, batch size = 128, epoch = 500.
Parameters of the RNN model are as follows: hidden units = 40, learning rate =0.0001,
batch size = 128, epoch = 550, depth = 4, max features = 10,000.

The process of constructing the training and testing datasets is as follows: both of
our datasets include 178 positive samples and 178 negative samples in order to construct
the training and validation sets for the ML process; 70% of the positive samples (124) and
negative samples (124) are used for training, and the remaining 30% (54 and 54) are used
for testing. After training and testing the models, four machine learning models were
evaluated using five criteria: AUC, ACC, MCC, F1 score, and recall. Table 4 shows the
performance of the models. To verify that the method can work across data, we used the
five-fold cross-validation, and Table 5 shows the averages of the statistical metrics of the
five-fold cross-validation.
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Table 4. Performance of the models.

Model Name ACC MCC F1 Score Recall

RNN 0.8598 0.7206 0.8544 0.8302

SRU 0.7850 0.5949 0.8099 0.9245

RNN_random 0.6887 0.3780 0.6796 0.6604

SRU_random 0.6132 0.2274 0.6306 0.6604

Table 5. The averages of the statistical metrics of 5-fold cross-validation.

Model Name ACC MCC F1 Score Recall

RNN 0.8220 0.6489 0.8278 0.8549

SRU 0.7591 0.5456 0.7639 0.8228

RNN_random 0.6570 0.3150 0.6601 0.6651

SRU_random 0.5834 0.1915 0.5869 0.5883

The results show that the performance of the RNN model and SRU model are higher
than that of the RNN_random model and SRU_random model in all four statistical metrics,
indicating that the dataset constructed with negative samples selected by information value
analysis model fitting performance is significantly higher than that of the dataset with
randomly selected negative samples. Regarding the ACC, the RNN model performs the
best and achieves its highest ACC of 0.8598, which is over 0.0748 higher than that of the
SRU (0.7850). The RNN model also achieves the highest MCC and F1 score (0.7206, 0.8544),
which are 0.1257 and 0.0445 higher than those of the SRU model. In addition, it can be
seen that the ML models trained with the IV analysis dataset outperform the ML model
trained with the randomly selected negative samples dataset in terms of the RNN and
SRU. This is evidenced by the fact that all statistical indicators for the ML models trained
with the information value analysis dataset are greater than the ML model trained with the
randomly selected negative samples dataset by more than 0.2.

Figure 7 plots the ROC curves of the four models. It can be seen that the AUC values
of both the RNN model and the SRU model are above 0.90. In contrast, the AUC values
of both the RNN_random model and the SRU_random model are low, indicating that the
RNN and SRU techniques combined with the information value analysis show excellent
predictive power for LSM. In addition, the RNN model achieves the highest AUC value
(0.928), which is superior to the other models.

Figure 8 shows the accuracy and loss curves of four models, which are used to check
the robustness of the results. When the model is optimized to the most stable level, the
curves are presented as follows: as the epoch increases, the two accuracy curves gradually
increase and level off; the two loss curves gradually decrease and level off (the loss curve
of the training set decreases and the loss curve of the test set increases, indicating that the
model may have an overfitting problem). All four models are optimized to the most robust
level without overfitting problems.
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Figure 7. ROC curves of the four models.

Figure 8. Accuracy and loss curves of the four models.
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4.2. Landslide Susceptibility Maps

When LSM is used for comparison, the maps should be classified using quantitative
methods [56]. The model output was analyzed and processed using ArcGIS. The maps
were divided into five groups: very high, high, medium, low, and very low using the
Jenks natural breaks classification method to finally obtain the landslide susceptibility
maps (Figure 9). Among the four maps, most of the historical landslide and high-risk sites
in Figure 9a–c are in the high landslide susceptibility areas, which are mainly located in
the north, southwest, and southeast due to the mountainous terrain in the northwest and
southwest of the study area and the strong human engineering activities in the northeast.
According to the statistical indicators, the map shown in Figure 9a, which was constructed
by the RNN model, is the best, compared to the map shown in Figure 9b, which was
constructed by the SRU. Figure 9a does not have too many high susceptibility areas and
does not predict low susceptibility areas such as rivers in the study area (Figure 2) as high
susceptibility areas. Figure 9c, d also predict that some river areas are moderate and high
susceptibility areas, which are not in accordance with the geomorphological conditions of
the study area. Therefore, the map shown in Figure 9a is believed to be the best portrayal
of the real-world conditions.

Figure 9. Landslide susceptibility maps by (a) RNN, (b) SRU, (c) RNN_random, and (d) SRU_random.
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The visual data analysis initially shows the excellent results of the spatial predictive
ability of the RNN model encompassing the LSM of the study area. The model evalua-
tion results can still be described using mathematical-statistical methods (Table 6). LSM
produces a model that focuses on high-susceptibility areas and models them simply and
efficiently [57]. The evaluation of the practicability of models focuses on two groups, those
with a rating of high and very high. First, we introduce the concept of landslide density
(LD), which is the frequency ratio, referring to the ratio of the percentage of landslides
(IV + V) to the percentage of groups (IV + V) in Table 6. It can be seen that the RNN
model is more practical than the SRU model because although the RNN model covers
fewer landslide and high-risk points than the SRU model (lower than 3.37%), the high
susceptibility regions are much smaller than in the SRU model (lower than 16.31%). The low
LD value of the high susceptibility regions of the SRU model also reflects the weak range
of real-world applications when compared to that of the RNN model. The RNN_random
model and SRU_random model cover too few landslide and high-risk points, indicating
that the practical applications of these two models are poor.

Table 6. Practicability of the landslide susceptibility group.

Model Group
No. of
Pixels

Percentage
of Group

Percentage
of Group
(IV + V)

No. of
Landslide

Percentage
of

Landslide

Percentage
of

Landslide
(IV + V)

LD

RNN

Very low (I) 13,854 40.34%

34.96%

3 1.69%

77.53%

0.042

Low (II) 3846 11.20% 10 5.62% 0.502

Medium
(III) 4634 13.49% 27 15.17% 1.124

High (IV) 5611 16.34% 48 26.97% 1.650

Very high
(V) 6396 18.62% 90 50.56% 2.715

SRU

Very low (I) 2537 7.39%

51.27%

4 2.25%

80.90%

0.304

Low (II) 4054 11.81% 13 7.30% 0.619

Medium
(III) 10,144 29.54% 17 9.55% 0.323

High (IV) 10,200 29.70% 59 33.15% 1.116

Very high
(V) 7406 21.57% 85 47.75% 2.214

RNN_random

Very low (I) 9165 26.69%

12.99%

3 1.69%

59.55%

0.063

Low (II) 10,998 32.03% 10 5.62% 0.175

Medium
(III) 9717 28.30% 59 33.15% 1.171

High (IV) 3374 9.82% 80 44.94% 4.574

Very high
(V) 1087 3.17% 26 14.61% 4.615

SRU_random

Very low (I) 4491 13.08%

12.54%

10 5.62%

32.86%

0.430

Low (II) 8776 25.56% 41 23.03% 0.901

Medium
(III) 16,766 48.82% 69 38.76% 0.794

High (IV) 3520 10.25% 45 25.28% 2.466

Very high
(V) 788 2.29% 13 7.30% 3.183
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5. Discussion

5.1. Uniqueness of the Study Area

Although Xinhui District is neither an active seismicity area nor an extremely fragile
geological environment area, and its climate is not special, its geographic location deter-
mines its unique economic location and its research value, as shown in Figure 1. As a
new growth pole in the Guangdong Coastal Economic Belt and a destination for industrial
transfer from the east to the west of the Guangdong–Hong Kong–Macao Greater Bay Area,
the Xinhui District has become an important node district at the strategic intersection of the
Guangdong Coastal Economic Belt and the Guangdong–Hong Kong–Macao Greater Bay
Area in China, which is both an enormous opportunity and a great challenge. There will be
more and more human activities in the Xinhui District, posing a very big challenge to future
economic development and land use. Reasonable land planning cannot be separated from
reliable geological hazard investigation and evaluation. Therefore, assessing the landslide
susceptibility and the potential impacts of landslides on the economic environment can
lay the foundation for optimizing the land use patterns and reducing the geological risk in
the future.

5.2. Optimization of Non-Landslide Sample Selection

A variety of ML methods have been applied to LSM, with good results in recent years.
However, previous studies have mostly focused on applying and comparing various ML
methods to improve the performance of the models, but the selection of negative samples
used to construct the models has affected the architecture construction of ML models.
Randomly selecting non-occurring locations as negative samples will lead to considerable
pollution, and conducting unsupervised cluster analysis to select negative samples still
results in them being specified artificially, which also leads to a great deal of uncertainty
in the resultant performance of the model. Therefore, we use the IV analysis to calculate
the influencing factors based on historical landslide points to obtain negative samples that
have less pollution to produce the landslide susceptibility maps.

The data in this study are different from the positive and negative sample problem
that occurs in supervised learning; however, a positive and unlabeled (PU) problem occurs
where there are only definite positive and unlabeled samples. It can only be assumed that
the unlabeled samples may be negative samples without a level of certainty. Information
value analysis was used to obtain the WOE for the entire study area as a basis for the
selection of the negative samples. The final result comparison shows that this method works
well, and that the negative data pollution is effectively limited. The groups of influencing
factors within each pixel contain important data to consider both the positive and negative
influences they have on landslides, and the negative value indicates that the importance
is not in accordance with the daily logic. Therefore, we use the WOE with a proportional
correction IV as an indicator for the most important factors for determining the order of
the data for the input into the RNN model. The results indicate that the two slope-related
factors, the TRI and profile curvature, were the most important factors in determining
whether there was a chance of the occurrence of a landslide at that pixel location.

The problem of non-landslide sample selection has received attention, and many
methods have been proposed recently, such as determining the proportion of non-landslide
and landslide samples (because the value of negative samples is weaker than that of
landslide samples, more non-landslide samples should be selected to improve the accuracy
and avoid the imbalance of positive and negative samples caused by too many non-
landslide samples), selecting non-landslide sample sets several times to find the best
non-landslide sample set and using semi-supervised learning models. This study obtains
negative samples with less pollution through the IV analysis. Overall, various studies on
optimizing non-landslide sample selection have achieved satisfactory results. However, due
to the differences in study areas and the logic and mechanisms behind different algorithms,
there is no universally accepted method for optimizing non-landslide sample selection. A
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comparative study using different methods for selecting non-landslide samples under the
same conditions should be considered in the future.

5.3. Comprehensive Comparison of the Various Methods

Four datasets were input into the models, and Figure 9 shows that the dataset using
less noisy negative data performs significantly better than the dataset with more noisy
negative data in regard to their ROC, ACC, MCC, recall, and F1 values. After that, the
traditional RNN model was compared to the newly proposed SRU model (which both
use datasets that contain less noisy negative data) to produce two landslide susceptibility
maps. Both models have excellent accuracy (AUC > 0.900), but from Tables 4 and 5, the
RNN model generates a more reasonable area of high susceptibility for landslide events
and identifies more historical points. Therefore, the map helps regional managers make
effective decisions, and this study improves the prediction performance of deep learning
techniques represented by RNNs in LSM.

6. Conclusions

This paper focuses on landslide susceptibility mapping (LSM) in the Xinhui District
based on the RNN and SRU methods. Using the information value analysis, 15 landslide
influencing factors were calculated, and their order of input in the recurrent neural network
was determined. Then, the negative data were selected by the information value (IV)
analysis. The 178 historical landslide and high-risk points were randomly divided into a
training set and a test set for the model calculation, and the final landslide susceptibility
maps were produced by the RNN and SRU for comparison purposes. The results led
to the following conclusions: (1) the IV analysis method can improve the performance
of machine learning methods in LSM by optimizing the selection of negative samples;
(2) both the RNN and SRU models obtain excellent results in LSM (AUC > 0.900), but
the LSM performance of the SRU, a newly proposed variant of RNNs, is weaker than
the traditional RNN model in LSM; and (3) the RNN can produce accurate landslide
susceptibility maps in areas that have the geography similar to that of the Xinhui District.

However, there are some limitations to be addressed in further studies, such as better
consideration of the existing geomechanical properties, which are not well considered.
Moreover, in addition to the characteristics of the non-landslide sample itself, whether the
surrounding environment of the non-landslide area also influences the performance of the
model needs to be better determined. In the future, more focus will be made on selecting
more scientific non-landslide samples by increasing the influencing factors and analyzing
the mutual influence of the surrounding environment, etc., to ensure the accuracy of the
LSM results.
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Abstract: This study aimed to find the optimal thickness combination of the two-layered absorbing
system combinated with an expanded polystyrene (EPS) cushion and a soil layer in a steel shed
under dynamic loadings. The coupled Smooth Particle Hydrodynamic method (SPH) and Finite
Element Method (FEM) were introduced to simulate the impact of the rockfall against the steel shed
with a two-layer absorbing system. By comparing the numerical results with test data, the coupled
numerical model was well validated. Through the verified numerical model, a series of numerical
experiments were carried out to find the optimal combination for the two-layered absorbing system.
The values of the EPS layer thickness as a percentage of the total thickness were set as 0% (P1),
20% (P2), 40% (P3), 60% (P4), 80% (P5), and 100% (P6). The results show that the coupled FEM–
SPH method was an effective method to simulate rockfall impacting the steel rock shed; P4 (0.6 m
thickness EPS cushion and 0.9 m thickness soil layer) was the most efficient combination, which can
significantly reduce the structural displacement response by 43%. A two-layered absorbing system
can effectively absorb about 90% of the total energy. The obtained results yield scientifically sound
guidelines for further research on the design of steel sheds against rockfall.

Keywords: buffer capacity; rockfall; two-layered absorbing system; coupled SPH–FEM model;
optimal combination

1. Introduction

Rockfall hazards are natural disasters in mountainous areas. It poses a serious threat
to engineering structures such as highways, railways, bridges, buildings, etc., and the
huge impact force of falling rocks will destroy these structures [1,2]. There are mainly two
protective structures used to reduce this hazard: passive ones and active ones. Because it is
difficult to judge the potential source area of rocks, it is difficult to implement the active
ones, and engineers usually choose the passive ones. Steel rock sheds are regarded as
passive protective structures. Compared with reinforced concrete sheds, they have unique
advantages such as low dead weight and fast construction speed and are widely used to
prevent rocks from falling [3,4]. Most steel rock sheds are made of a steel column, steel
beam, steel roof slab, and a buffer layer on top of the steel roof slab [5]. The buffer layer
can effectively dissipate the rockfall impact energy, so as to reduce the maximum impact
on the steel shed [6–8].

Conventionally, sand and soil, which are relatively cheap, are used as a cushion
material; however, this kind of cushion has numerous disadvantages. The sand layer has
to be very thick to form enough resistance capacity, which in turn makes the shed too
much dead weight. Sheds also need massive foundations to support the heavy sands,
which are impractical in narrow mountainous areas. In addition, the removal of fallen
rocks and the replacement of cushion materials are difficult. In recent years, a two-layered
absorbing system combinated with an expanded polystyrene (EPS) cushion and a soil layer
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has been designed. It was found that the two-layered absorbing system provides better anti-
impact effects and, at the same time, it makes the structure dead-weight small. However,
the percentage of the thickness of the EPS layer to the total thickness of the two-layered
absorbing system is rarely studied, which leads to a poor buffering effect of the system
in practical engineering [6,9]. Therefore, in order to provide some helpful guidelines for
designing a two-layered absorbing system in steel sheds for the risk mitigation of rockfall,
it is urgently required to optimize the two-layered absorbing system.

In recent years, a series of experimental studies have been conducted in the field of
rock shed protection. Schellenberg et al. introduced various types of protective cushions
to search for better absorbing effects [10]. Calvetti et al. conducted a series of physical
experiments to study the shock absorption effects of soil stratum, including the effect of
various parameters such as falling height, block mass, and cushion thickness [11]. Bhatti
et al. performed a real-scale experiment of rockfall impacting a reinforced concrete shed to
study the dynamic responses [1]. Wu et al. developed a physical experiment of rockfall
impacting a steel rock shed with a two-layered absorbing system [12]. The above studies
are of positive significance in resisting rockfall impact. However, these studies are mainly
focused on a single buffer layer, and there are few studies on the optimization thickness
combination of a two-layered absorbing system. To date, in engineering practice, several
empirical methods have been proposed to estimate the rockfall impact force, such as the
Chinese, Swiss, and Japanese design codes [13–15]. He et al. proposed the calculation
formula of impact forces based on the elastoplastic collision theory and the Hertz contact
theory [16]. Yu et al. also established an impact force model [17]. The kinetic energy of the
rock block, the impact angle of the block, and the modulus of elasticity of the rock were
analyzed using the Buckingham theorem. Their results show that the buffer layer had a
significant effect on the magnitude of the impact force. These methods are simple to use for
a single buffer layer. However, these methods are not applicable to the combined absorbing
system [12].

Because of its economy and maturity, the numerical method has gradually become
the main research method for this kind of problem. In the present study, the numerical
methods for analyzing the combined absorbing system are mainly as follows: (1) FEM
(Finite Element Method); Wu et al. carried out numerical simulations to compare the impact
forces obtained by the single soil layer and the two-layered absorbing system [12]. Ouyang
analyzed the effects of various factors such as cushion strength and the thickness of the soil
cushion on the impact force [6]. However, the FEM simulation of the soil layer is prone to
grid distortion, which leads to a rough result. (2) DEM (Discrete Element Method); Zhang
et al. employed a DEM model to study the energy propagation during rockfall impact on a
granular material [18]. Shen investigated the various rock shape’s effects on the response of
block impacts against a buffer layer [19]. However, it is difficult to calibrate particle material
parameters with DEM [20]. Moreover, the soil layer consists of an enormous number of
fine particles, and the computer operation efficiency will be reduced. These numerical
studies are useful for understanding the mechanical mechanism of steel sheds impacted by
rockfall. However, these methods are not suitable for simulating steel sheds with buffer
layers impacted by rockfall. Moreover, it is still difficult to quantitatively conclude the
dynamic response of the combined absorbing system under rockfall impact.

Above all, the current research shows that the two-layered absorbing system has
a significant influence on the response of the steel shed, but quantitative studies of the
optimal thickness combination of the two-layered absorbing system combinated with EPS
cushion and soil layer are lacking. So, it is urgently required to study the optimal thickness
combination of the two-layered absorbing system based on a more robust numerical tool.

Smoothed particle hydrodynamics (SPH) is a convenient way to describe the particle
physics features and capture the sup-large deformation of the soil layer [20,21]. For the
finite element simulation of the steel column, steel beam, and steel slab, its algorithm
is mature, which can ensure sufficient accuracy. The coupled FEM–SPH approach can
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combine the advantages of SPH for simulating the sup-large deformation of soil and FEM
for solving structural dynamics [20,22].

In this study, the coupled FEM–SPH method is used to find the optimal thickness
combination between EPS and the soil layer under dynamic loadings. The content of this
study is outlined as follows: In Section 2, a coupled SPH–FEM method in the LS-DYNA
platform is introduced. In Section 3, a typical experiment of steel shed impacted by rockfall
is described. The coupled FEM–SPH model can successfully reproduce the scale experiment.
Section 4 conducts a series of numerical tests to find the optimal thickness combination for
the two-layered absorbing system. Section 5 summarizes several conclusions.

2. Simulation Approaches

2.1. Brief SPH Description

The basic idea of the SPH method is to use a group of arbitrarily distributed particles
to provide accurate and stable numerical solutions for the partial differential equations,
which carry field variables such as density, mass, and stress tensor [23]. The SPH method
can describe the mechanical state of the entire system by tracking the mechanical properties
of each particle at any moment. The governing equations can be converted to the SPH form
in two steps, including kernel approximation and particle approximation. In this way, the
field variables can be recommended [23]:

〈 f (ri)〉 =
∫
Ω

f (r′)W(r − r′, h)dr′ (1)

where f (r) is a function of the particle position vector r, r′ is a neighboring particle position
vector in Ω, Ω is the support area of a particle with position vector r, and W is the smoothing
kernel function. In this study, the cubic B-spline function is selected as the smoothing kernel
function [24]:

W(q, h) = αD

⎧⎪⎨⎪⎩
1 − 3q2

2 + 3q3

4 ; 0 ≤ q < 1
1
4 (2 − q)3; 1 ≤ q < 2
0; q ≥ 2

(2)

where q is the normalized distance between particles r and r′, q = |r − r′|/h, and h is the
smoothing length defining the size of the influence area of W. αD is the normalization factor;
in three-dimensional space, αD = 10/(7πh2).

The particle approximation discretizes the continuous form of the SPH kernel approxi-
mation into the sum of adjacent particles by evaluating the field variables of the particles
within the domain of influence as follows [24]:

〈 f (ri)〉 =
mj

ρj

N

∑
j=1

f (rj)W(ri − rj, h) (3)

where N is the total number of particles within the influence domain of the particle at point
r, ρj is the density of neighboring particles, and mj is the mass of the neighboring particles.

The governing equations for dynamic fluid flows can be written as a set of partial
differential equations [24]:⎧⎪⎪⎪⎨⎪⎪⎪⎩

dρi
dt = mi

N
∑

j=1
vij·∇iWij

dvi
dt =

N
∑

j=1
mj(

pi
ρj

2 +
pj

ρj
2 )∇iWij + Fexternal

i /mi

(4)

where Wij is the influence area of particle i with respect to particle j. vij is the velocity vector
of particle i with respect to particle j. Fexternal

i are external forces [25].

206



Sustainability 2022, 14, 13680

2.2. Coupled SPH-FEM Algorithm

The key problem of the coupled FEM–SPH method is dealing with the interface
between FEM elements and SPH particles. The contact form is a node-surface contact, and
the tangential impact force is obtained through the friction law. The normal impact force is
obtained through the penalty contact algorithm [24]. The flowchart of the coupled SPH–
FEM method is shown in Figure 1. At the beginning of every time step, it is determined
whether any SPH particles have penetrated the FEM surfaces. If no penetration occurs, no
processing is required, and these systems work as two separate processes. Otherwise, as
shown in Figure 2, a contact force is generated between the SPH particles that meet the
penetration conditions, and the parameters of the FEM elements and SPH particles will be
updated [22].

The normal contact force fn is calculated as follows [22]:

fn= (knδ + cn
.
δ)n (5)

where δ, cn,
.
δ, kn, and n are the normal overlap, the normal damping coefficient, the relative

normal velocity, the normal spring stiffness, and the unit normal displacement vector,
respectively.

The tangential contact force ft is calculated as follows [26,27]:

ft =

⎧⎪⎨⎪⎩
(

ktδt + ct
.
δt); if|fn|μ >

∣∣∣ktδt + ct
.
δt

∣∣∣(
ktδt+ct

.
δt)∣∣∣ktδt+ct
.
δt

∣∣∣ |fn|μ; otherwise
(6)

where kt, δt, μ and ct are the tangential spring stiffness, the incremental tangential displace-
ment, the friction coefficient, and the tangential damping coefficient, respectively. In this
paper, both cn and ct are set as 0 [26].

Calculate the time step

Renew
velocity/position
of SPH particles 

Renew position
of nodes of 

finite element

Density,
Stress rate

Strain and stress

Acceleration

Density,
Stress rate

Strain and stress

Acceleration

Node-
surface

contact check?

Yes

Contact force

SPH FEM

Figure 1. Flowchart of the coupled SPH–FEM method [27].
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kn and kt are calculated as follows [27]:

kn = kt = k1
Ks2

V
(7)

where k1 is a penalty scale factor and is set as 0.1 [26], s is the segment area, K is the bulk
modulus, and V is the element volume.

i
hi ni

li

SPH Particles

FE Elements

Interface SPH Particles

Interface FE Elements

Figure 2. The finite elements in contact with the SPH particles.

3. Verification of Coupled SPH-FEM Model

3.1. Experimental Overview

The test shed structure is shown in Figure 3. The shed structure model consisted of a
steel column, main girder, secondary beam, steel roof slab, and the two-layered absorbing
system. The two-layered absorbing system consisted of EPS (30 cm thickness) and sand
(40 cm thickness), in which EPS was laid under the sand. Specifications and material
parameters of test shed components were shown in Table 1 [12]. The bottom of the steel
column with a height of 0.7 m was fixed on the ground, and the top of the steel column was
welded with a steel plate. The steel plate was connected with the lower flange of the main
girder by bolts, the secondary beam was welded with the main girder, and the main girder
was connected with the steel roof slab by welding. The absorbing material was replaced
after each impact test. The impactor was a concrete polyhedral block [28]. The axial strain
of the main girder and the secondary beam was measured to reflect the dynamic response
of the shed under the impactor impact. As shown in Figure 4, the strain gauges 1 and 2
were attached to the lower flange of the main girder, 0.09 m and 0.17 m away from the
center of the shed, respectively [12].

Figure 3. Test model of steel shed structure.
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Table 1. Main component specifications.

Component Name Specifications Materials

Steel column HW300 × 300 × 20 × 20 Q345
Main girder HW300 × 300 × 6 × 6 Q345

Secondary beam HW150 × 150 × 6 × 6 Q345
Steel roof slab 6 mm thickness Q345

Two-layered absorbing system 30 cm thickness EPS + 40 cm thickness sand EPS + Sand
Impactor Standardized test block Concrete + Cladding steel plates

Figure 4. Bottom view of the steel shed and arrangement of the strain measuring points.

In the experiment, the impact test was conducted in accordance with the European
code [28]. The impactor was a concrete polyhedral block with a mass of 0.25 t confined
by steel plates, and the impact position of the impactor was the center position of the roof
slab of the shed [12]. Through the gantry crane, the impactor was raised to the heights
of 3 m (7.5 kJ impact energy), 6 m (15 kJ impact energy), and 8 m (20 kJ impact energy),
respectively. A high-speed camera was placed right ahead of the test model to record the
process of impacting with a frequency of 500 Hz. Through a dynamic acquisition system,
the time-strain curves of beams were measured to obtain the dynamic response, with the
acquisition frequency of 1000 Hz [12].

3.2. Numerical Model
3.2.1. Numerical Model Description

The calculation model is shown in Figure 5. The steel column, main girder, secondary
beam, and steel roof slab adopted shell elements with the complete integration of three/four
nodes, and the mesh size is 0.05 m. The EPS and impactor adopted solid elements with
the complete integration of six nodes, and the mesh sizes are 0.06 m and 0.04 m, respec-
tively. Due to the direct impact of the impactor, the sand cushion will experience a large
deformation, which can easily cause mesh distortion and lead to the instability of the calcu-
lation [20,27]. Therefore, SPH simulation is adopted for sand, and the spacing between the
adjacent SPH particles is about 0.05 m.
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Figure 5. Numerical model of steel shed structure.

3.2.2. Constitutive Material Models

The properties of materials are shown in Table 2. Figure 6 shows the stress–strain
relations for sand, EPS, and steel material. The constitutive models are briefly outlined
below.

Table 2. Material parameters for simulation.

Material Density (kg/m3)
Elasticity

Modulus (Pa)
Poisson Ratio Reference

Sand 2000 10.0 × 109 0.060 [1]
EPS 22 0.0069 × 109 0.12 [29]
Steel 7850 200.0 × 109 0.300 [20]

Impactor 2515 30.0 × 109 0.300 [27]
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Figure 6. Constitutive model curve of material: (a) sand; (b) EPS; (c) steel.

Sand cushion. Figure 6a shows the constitutive model for the sand. The stress–strain
relationship is described in the following expression [1]:

σsand = 50ε2
sand (8)

where σsand is the stress and εsand is the volumetric strain. LS-DYNA material model
MAT_CRUSHABLE_FOAM is used, which has a good simulation effect [1,20].
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EPS. As shown in Figure 6b, under a uniaxial compression test, the EPS material
will experience three stages: the linear elasticity stage, the yield stage characterized by
platform stress, and the compaction stage where stress rapidly increases with strain [29].
MAT_CRUSHABLE_FOAM was also selected as the calculation model to simulate the
mechanical properties of the EPS material during the impact process [29].

Steel. As shown in Figure 6c, for the steel column, main girder, secondary beam, and
steel roof slab, an elastoplastic model is used, and the plastic hardening modulus H’ is set
to 1% of elastic modulus Es [1,20].

Impactor. A rigid material model (*MAT_RIGID in LS-DYNA) can be used to simulate
some small deformation structures that do not require excessive attention, which can reduce
computer time [27].

3.2.3. Boundary Conditions

The bottom of the steel column is constrained by three translational degrees of free-
dom [12]. The steel roof slab and main girder/secondary beam, steel column, and main girder
are restricted by welding (Contact_Spotweld in LS-DYNA) [12]. Erosion contact is defined
between the impactor and sand SPH particles (Contact_Eroding_Nodes_To_Surface in LS-
DYNA), and the friction coefficient is set at 0.4 [30]. The interface between EPS and sand SPH
particles is defined as the node-to-surface contact (Contact_Automatic_Nodes_To_Surface in
LS-DYNA), and the friction coefficient is set as 0.4 [30]. The EPS finite element and the steel
roof slab element adopt surface-to-surface contact (Contact_Automatic_Surface_To_Surface in
LS-DYNA), and the friction coefficient is set at 0.3 [12].

Before the impact, gravity is applied to the entire shed structure [20]. The impact
case with an impact height of 8 m is simulated. The impact time is defined as 200 ms
when the impactor starts timing when it comes into contact with the sand [24]. During the
impact process, the automatic time step is used. It means that the program automatically
calculates the limit value of the time step. In addition, a viscous damping constant of 0.005
is considered, which is used for the lowest natural vibration mode [1].

The simulations are conducted on a 64-bit assembled Desktop with an Intel Core
i7-10700K 2.9 GHz processor and 8 GB of Kingston DDR4 RAM (random access memory)
bank. Run time refers to the real-world time, which is calculated from the onset of analysis
to its end. In this numerical model, the run time is about 3 h.

3.3. Verification of Accuracy of Numerical Analysis

The numerical analysis results for time histories of strain at the main girder and
secondary beam are compared with the steel shed test. From Figure 7, the waveforms of
the test curve and simulation curve are very similar. The maximum strain of the lower
flange of the main girder is only 520 με, indicating that the main girder is still in the elastic
stage (the elastic limit strain is 1500 με), and it still has a large residual bearing capacity.
Near the impact point of the impactor, the maximum strain of the main girder is much
greater than that of the secondary beam.

A more detailed comparison is shown in Table 3. It can be seen from Table 3 that
the maximum error of the maximum strain in the numerical simulation and test is only
9.0%, and the maximum error of the minimum strain is 12.2%. In this study, the time
frame between the 1st strain being 0 and the 2nd strain being 0 is denoted as a wave crest
propagation period. It can be seen from the table that the maximum error of the wave crest
propagation period of the numerical simulation and test is only −8.3%. The six groups of
key data are compared, of which the error of only one group is greater than 10%, but less
than 13%.
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Figure 7. Comparison of the strain time history: (a) strain gauge 1; (b) strain gauge 2.

Table 3. Comparison of strain obtained from the experiment and simulation.

Strain
Gauge

Maximum Strain
(με)

Minimum Strain
(με)

Wave crest Propagation Period
(ms)

Test Simulation Error Test Simulation Error Test Simulation Error

1 490.6 522.9 6.6% −81.1 −88.1 8.6% 54.2 49.7 −8.3%
2 456.5 497.8 9.0% −70.3 −78.9 12.2% 52.5 48.5 −7.6%

The final penetration of the impactor into the sand cushion is shown in Figure 8. The
penetration depth in the experiment is 0.16 m [12], while that in the simulation is 0.17 m.
The error of the penetration depth between the experiment and the simulation is 6.25%.

Figure 8. The final penetration of the impactor into the sand cushion.

Through the above comparison, the numerical model can be used for subsequent
dynamic analysis.

4. Numerical Simulation of Steel Shed under Block Impact

Based on the above-validated simulation model, extensive numerical simulations are
performed to investigate the dynamic response of steel sheds considering the effects of the
different combined absorbing systems. The impact process, mid-span displacements of the
steel shed, and the energy dissipation mechanism are summarized and discussed.

4.1. Computational Cases

Based on the statistical results [20], the average impact velocity of 90% of falling
rockfalls is 25 m/s. Therefore, the impact velocity of the rockfall is set as 25 m/s. The mass
of the rockfall is set to 0.75 t in the design energy level (elastic limit). It is stipulated that
the thickness of the backfill soil laid on the roof plate of the shed should not be less than
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1.5 m [30], so the thickness of the two-layered absorbing system in the model is set as 1.5 m.
The thickness of EPS is set as 0% (P1), 20% (P2), 40% (P3), 60% (P4), 80% (P5), and 100%
(P6) of the total thickness of the two-layered absorbing system, respectively.

4.2. Results and Discussion
4.2.1. Impact Process

Figure 9 illustrates the dynamic impact process of a 0.75 t impactor (EPS thickness =
40% of the total thickness of the buffer layer). As shown in Figure 9a, when t = 0.0 s, the
impactor begins to invade the sand cushion. As shown in Figure 9b, when t = 0.013 s, it
can be observed that the stress wave propagates radially downward from the impact point
in the sand cushion. As shown in Figure 9c, when t = 0.057 s, the vertical displacement of
the impactor reaches a maximum value of 0.508 m. During the transmission of the stress
wave, the elastic modulus of the material changes from large to small in the propagation
medium, and the maximum stress is located in the contact zone between the EPS and
the sand cushion, with a value of 5.07 MPa. As shown in Figure 9d, when t = 0.2 s, the
impact process of the block tends to be static, and the vertical block displacement is 0.499 m.
Finally, a bowl-shaped pit forms in the sand layer. Due to the distributed stress acting on
the EPS cushion, a small sag deformation appears in the EPS cushion.

Figure 9. Dynamic impact process of a 0.75 t impactor (EPS thickness = 40% of the total thickness of
the buffer layer) (stress unit: MPa): (a) t = 0.0 s; (b) t = 0.013 s; (c) t = 0.057 s; (d) t = 0.2 s.

4.2.2. Center Displacement of Main Girder

Figure 10 shows the center displacement of the main girder of the steel shed. The center
displacement of the main girder is mainly generated by two parts, one is the deadweight of
the buffer layer, and the other is the impact force. As shown in Figure 10a, when t = 0, the
center displacement of the main girder is not 0, which is mainly caused by the dead weight
of the buffer layer. With the increase of time, the center displacement of the main girder in
each case increases first and then decreases.

As shown in Figure 10b, with the increase in EPS thickness, the center displacement
of the main girder first decreases and then increases, and when EPS thickness is 40% of
the buffer layer thickness, the center displacement of main girder reaches the minimum
(6.9 mm). Compared with the single sand cushion, the combined cushion with an EPS
thickness of 0.6 m reduces the structural displacement response by 43%. The larger the
thickness of the sand cushion is, the smaller the impact force will be, but the corresponding
dead weight of the cushion will also increase. When the thickness of the sand cushion is
60% of the buffer layer, the adverse impact reaction to the structure will be minimized.

213



Sustainability 2022, 14, 13680

0 40 80 120 160 200
0

4

8

12

16  0% (P1)
 20% (P2)
 40% (P3)
 60% (P4)
 80% (P5)
 100% (P6)

C
en

tre
 d

is
pl

ac
em

en
t  

(m
m

)

Time (ms)
0 20 40 60 80 100

6

8

10

12

14

16

C
en

tre
 d

is
pl

ac
em

en
t (

m
m

)

EPS percent (%)
(a) (b) 

Figure 10. Center displacement of main girder of steel shed: (a) center displacement time history;
(b) maximum center displacement under each case.

4.2.3. Steel Shed Energy Dissipation

Upon impact, the total energy (ET) of the block is mainly converted into residual block
kinetic energy (EK), the internal energy of the EPS layer (EE), the internal energy of the
sand layer (ES), the internal energy of the steel components (EB), and the friction energy
(EF). The total energy (ET) is defined as:

ET = E0 + M0gh0 (9)

where M0 is the mass of the block, h0 is the final vertical displacement of the block, and E0
is the initial kinetic energy of the block.

Take a P3 case as an example (EPS thickness = 40% of the total thickness of the buffer
layer). The evolution of all of the energy components is shown in Figure 11a. Upon impact,
EK decreases rapidly, and the sand cushion dissipates a large part of the EK, accounting
for about 76.3% of the EK. The EPS layer also dissipates about 13.7% of the EK. There is
almost no dissipative impact energy in the steel components. The two-layered buffer layer
consumes 90% of the total energy. In addition, according to statistics, the percentage of
two-layered buffer layer energy consumption in total energy under six cases is 91.4% (P1),
90.1% (P2), 90% (P3), 88.8% (P4), 88.5% (P5), and 88.2% (P6) respectively, which indicates
that the two-layered buffer layer is very effective in protecting the steel shed structure.
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Figure 11. Evolution of the energy of steel shed: (a) evolution of the energy of P3 case (EPS thickness
= 40% of the total thickness of the buffer layer); (b) energy consumption of the buffer layer.

Figure 11b also shows the effect of the EPS thickness on the energy consumption of the
two-layered absorbing system. With the increase of EPS thickness, the energy consumption
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of the EPS layer increases, and the rate of the increase of energy consumption increases as
the EPS thickness increases. In addition, it can be seen that the energy dissipation effect of
the sand buffer layer is better than that of the EPS buffer layer with the same thickness, and
the key role of EPS is to reduce dead weight.

The coefficient of restitution (COR) is also an indicator of the material energy dissi-
pation capacity [8]. The COR is calculated from the impact and rebound velocities using
COR = Vi/Vre, where Vi is the impact velocity of the falling rock at the moment of contact
with the cushion, and Vre is the rebound velocity [8]. Table 4 shows COR in some cases. As
can be seen from Table 4, the simulation in this study is consistent with the test, and the
maximum error between the simulation and the test is 5%. The energy dissipation capacity
of the pure EPS foam layer is the worst, while the energy dissipation capacity of the pure
soil layer is the strongest.

Table 4. COR in some cases.

Case
Thickness Ratio

of EPS

COR
Error

Test Simulation

P1 0 0 [8] 0 0
P6 1 0.42 [8] 0.4 5%

5. Conclusions

This paper aimed to quantitatively find the optimal thickness combination between
EPS and soil layer under dynamic loadings. In order to solve the difficulty of the super
large deformation of the two-layered absorbing system with the finite element method, the
coupled Smooth Particle Hydrodynamic method (SPH) and the Finite Element Method
(FEM) are introduced. SPH particles were used to simulate the soil layer which experienced
a super large deformation. A numerical model for a steel shed impacted by a block was
established and validated. The conclusions are drawn as follows:

The stress wave propagates radially downward into the cushion layer and then the
steel structure during the block impact. With the increase of EPS thickness, the center
displacement of the main girder first decreases and then increases, and when EPS thickness
is 40% of the buffer layer thickness, the center displacement of the main girder reaches the
minimum. Compared with the single sand cushion, the combined cushion with an EPS
thickness of 0.6 m reduces the structural displacement response by 43%.

The two-layered buffer layer consumes about 90% of the total energy, which indicates
that the two-layered buffer layer is very effective in protecting the steel shed. The energy
dissipation effect of the sand buffer layer is better than that of the EPS buffer layer with the
same thickness, and the key role of EPS is to reduce dead weight.

In engineering design, the optimal combination of more different buffer layers can be
investigated and simulated.
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Abstract: The failure of treated slopes around the world, especially in China, is occurring at a
noteworthy rate, resulting in an urgent requirement for post evaluation of the treated slopes; however,
there is no mature technique established for post evaluation. By using a real loess slope treated by
slope cutting in Shaanxi Province as the prototype, indoor geotechnical tests and model tests were
performed to reveal the rainwater infiltration characteristics and pressure-varying characteristics
inside the slope, the results of which were used to conduct a post evaluation of the slope in situ. The
results mainly showed that the effect of rainwater scouring on the slope surface weakened gradually
into a steady state at the end of the first year. The rainwater upon the slope surface preferentially
infiltrated the platforms with gradually reducing rates; however, the observed wetting front cannot
be regarded as the border between the unsaturated and saturated loesses. The soil pressures inside
the slope did not increase, but decreased during the early period of rainfall. The displacements of key
points mainly occurred during the first two years and then steady periods were entered. The above
results were utilized to conduct a post evaluation of the slope prototype, by which a post evaluation
framework was constructed.

Keywords: post evaluation; loess slope; rainfall; model test; soil pressure

1. Introduction

In the 20th century, China started to develop the western area, which promoted the
construction of houses, highways, railways, etc., which inevitably brought a large number of
slopes under treatment. More than 70% of western China is covered by loess, characterized
by collapsibility under rainfall, which is more evident in northern Shaanxi. Thus, long-term
rainfall is the most active factor influencing slope stability in western China [1]. Comparably,
the failures of loess slopes after treatment has occurred widely in other areas around the
world, such as that of the Zemun Loess Plateau on the northern outskirts of Belgrade in
Serbia [2] and that in the loess-mantled regions of the American Midwest and Hungary [3].
Evidently, the treated loess slopes that are widespread around the world require further
treatments to defend their safety. This falls under the area of slope post evaluation, which
is different from the safety investigation undertaken in the design stage [4].

Addressed by scholars, slope post evaluation concerns the whole situation of the subject,
including its adaptations to the environment, displacements and cracks [5,6]. To make the
post evaluation of slopes more reasonable, Fang [7] adopted a rectified concept of the post
evaluation and made use of an evaluation method based on stress. However, the main post
evaluation theory still falls under the scope of field investigations and judgment based on
experience [5,7]. The developed post evaluation theories all fall under the scope of qualitative
and semiquantitative methods, which do not consider rainfall. This is a limitation of the
current post evaluation techniques.

Recently, an increasing number of scholars have made efforts in the field of slope
stability evaluation when the slope is under rainfall and the associated failure mechanism,
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including modeling tests [8–11], numerical simulations [12,13] and field monitoring [14,15].
Raj and Sengupta [16] studied the railway embankment slope failure in Malda, India,
during rainfall and found that the rainfall intensity and duration were the two critical
factors influencing soil slope safety. The draining of rockfill was an effective measure for
strengthening the railway embankment slope stability. Zhang et al. [17] conducted a series
of model tests on slopes under rainfall to reveal the hydrological mechanism for slope
failures and concisely concluded that the volumetric water content response and the matrix
suction response of the slopes occurred earlier than the pore water pressure response. The
loess slopes failed when the volumetric water content and the matrix suction reached their
maximum and minimum values, respectively; thus, a warning threshold model for the slope
instability induced by rainfall was proposed. Huang et al. [18] developed a piezometer system
to monitor the hydrological conditions of a highway earth slope in Taiwan under rainfall, from
which it was found that the pore water pressures inside the slope were apparently pertinent
to the rainfall pattern and the ground water flow. For a deep-seated slope failure, it was
suggested to combine the imperatively monitored pore water pressures with the monitored
stresses to establish a slope failure warning system. Perceivably, rainfall is the most critical
factor influencing slope safety, causing surface erosion of slopes [19–23], reducing the
strength of slope soils by infiltration [24–26] and degrading the stress situation in the slope
soil as it becomes saturated [27–31]. Regarding a loess slope, rainwater flows can scour
the slope surface easily, generating gullies and fall holes [32]. Thus, some researchers
have employed a geobarrier system to defend soil slopes from rainwater-scouring and to
ascertain the slope safety under rainfall [33]. It has been widely accepted that matrix suction
plays an important role in the strength of the slope soil and is thus very critical to slope
stability [34]. Under rainfall, rainwater infiltration leads to an increase in the water content
of the slope soils, thus reducing the suction inside, which in turn causes instability of the
slopes. For loess slopes incorporating more fines, this is more significant [35]. Moreover,
during the rainfall process, the effective stress of the slope soil declines, which also causes
a decrease in the soil strength, being adverse to the stability of the slope [36]. In summary,
rainfall is a critical factor inducing slope instability. Thus, in the slope design consideration,
drainage engineering is an compulsory measures.

Model tests have been used by a huge number of scholars to study slope stability and
the slope failure mechanism to assess its reliability. Schenato et al. [37] employed optical
fiber sensors in a model test to investigate the mechanical evolution in the slope. The results
indicated the four stages of slope evolution under rainfall, from which the effectiveness
of the fiber system in model tests was validated. Lan et al. [38] conducted model tests to
investigate the expansion and contraction of loess slopes with moisture fluctuations, and
established the relationship between the deformation of the loess slope and weather variation.
Chen et al. [39] investigated the influence of the vegetation on rainwater scouring on the soil
slope by model tests, and announced that the vegetation cover can adjust the rainfall patterns
and alleviate rainwater splash erosion. Hung et al. [40] employed model tests to investigate
the effects of earthquakes and rainfall on soil slopes. It was found that an earthquake is the
factor influencing the slope stability most evidently. Sun et al. [41] used a model test to explore
the influencing mechanism of rainfall on loess slopes and found that the infiltrated rainwater
reduces the suction of the slope soils, causing a reduction in the shear strength of the slope
loess, which eventually causes slope failure. In summary, it can be inferred that the ensuing
studies of loess slopes mainly concern the pre-evaluation phase (regarding the design
work), and only a very limited number of post evaluation studies have considered rainfall.

In order to facilitate the remediation of loess slopes treated in northern Shaanxi, a
physical model of loess corresponding to a real slope was used to study the effects of
slope-cutting treatment. The rainwater percolation and the variations in the pressures and
displacements of representing positions were obtained, and they were utilized to conduct
the post evaluation of the corresponding real slope. This technology of post evaluation
presents an innovation for the assessment of the effects of the treatment of other types of
slopes; meanwhile, the rainwater infiltration characteristics and the varying principles in
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the displacements and pressures of the slope may facilitate further research and design
work in this regard.

2. Prototype Failure

The current prototype slope is located in Luochuan County, Yan’an city, Shaanxi
Province, with a latitude of 35◦45′19.46′′ north and a longitude of 109◦25′34.63′′ east,
as shown in Figure 1. The elevation of Luochuan County fluctuates by approximately
1100 m. With a temperate continental monsoon climate, this area has an annual maximum
temperature of 37.4 ◦C and an average temperature of 5~17 ◦C. The average precipitation
of Luochuan County is approximately 606 mm per year, mainly occurring in July, August
and September.

Figure 1. Slope prototype location in China (The red star denotes the capital of China while the black
star denotes the provincial capital Xi’an).

Located on the Loess Plateau, the loess slope included in this study was treated by
slope cutting, and has a group of houses on the crest. From the field investigation, the slope
wholly consists of loess formed in the late Pleistocene epoch. As Figure 2 illustrates, the
slope prototype was 7.6 m high, and was cut into three grades of the same gradients 56◦.
The first grade was 5 m high, while the second and the third grades were 4 m and 5.6 m
high, respectively. The widths of the second and third grade platforms were both 3.8 m,
while the length of the slope was approximately 38.7 m. With the gully close to the right of
the slope, the slope was excavated inward by the rainwater vented by the gully, eventually
forming the collapse area (see Figure 2).

Figure 2. Slope prototype section with collapse.

219



Sustainability 2022, 14, 15838

According to the field investigation performed on 20 August 2017, this project was
built in approximately 2012 and ran for approximately 5 years. After a long run, affected
by rainfall, the slope had main damage on its right side (see Figure 2). From the above,
it can be considered that this slope prototype was composed of homogeneous loess and
was in operation for a relatively short period; however, a major collapse was caused
by rainwater scouring. Thus, it was reasonably chosen as a typical loess slope treated by
slope cutting, which was destroyed by rainwater, as this study concentrated on the effect
of rainfall on the treatment effect of loess slopes under slope cutting regardless of other
factors, such as geological conditions. To conduct the post evaluation of the current loess
slope through a model test, it was determined that the total simulated duration should be
5 years to be consistent with the actual running period. According to the similarity theory,
the simulated time can be shrunk by 100 times, allowing the model test to be finished in a
reasonable duration.

3. Methodology and Test Model

3.1. Test Device

The model test was performed in the Soil Mechanics Laboratory of Shangluo Univer-
sity, China. From the report of Liu et al. [42], a model box with a width of 1 m, length of
2.5 m and height of 1.8 m was used in the test (see Figure 3a). The box walls of the left and
right sides were made from organic glass, allowing the displacements inside the slope model
to be captured by the camera. The base, front and back walls of the box were all made from
planks, while the upper 1.5-m-high part of the front plank was removable, allowing the
model slope surface to be free.

Figure 3. Model test box and rainfall simulator: (a) Model test box, (b) Rainfall simulator.

The rainfall simulator was a steel frame with drilled holes of 1 mm in diameter on
one side. A valve connected the rainfall simulator to the water source (see Figure 3b) and
adjusted the rainfall intensity. Before the start of the experiment, the simulating rainfall
intensity was calibrated to a certain value according to the real rainfall, in which a beaker
and measuring cylinder was adopted as the calibrator. The rainfall intensity calibration
steps were as follows: (1) three beakers were placed under the rainfall simulator at different
positions after the valve connecting the water pipe and the rainfall simulator was opened;
(2) the three beakers were moved out five minutes later, and the water volumes contained
within them were measured by the cylinder; (3) the rainfall intensities of the three positions
were calculated as the corresponding water volume divided by the cross-sectional area of
the beaker; (4) the average rainfall intensity was calculated from the rainfall intensities of
the three positions; and (5) if the average rainfall intensity did not equal the required value,
the valve opening was adjusted, and the steps above were repeated until the required
rainfall intensity was achieved. Additionally, from the collected water volumes in the three
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beakers during the five minutes under the required rainfall intensity (31.94 mm/h), we
derived that the uniformity coefficient of the rainfall simulator under a rainfall intensity
of 31.94 mm/h was 0.93. This met the uniformity requirement of the model test. As the
duration of each rainfall event was exactly two hours, the total rainfall amount from
each rainfall event was derived as 31.94 mm/h multiplied by 2 h, resulting in a value of
63.88 mm.

3.2. Test Model

The current slope model was built to fully correspond to the prototype slope in
Luochuan County, Yan’an City, Shaanxi Province, as depicted in Figure 1. With a scale of
1:10, the height of the model slope was 1.76 m, while the length of the model was 2.5 m.
The three platforms of the slope model were approximately 0.38 m, while the gradients
of the three grades of the slope were exactly 56◦, identical to the slope prototype. In full
correspondence with the slope prototype, the first, second and third grades of the slope
heights were 0.5 m, 0.4 m and 0.56 m, respectively (Figure 4).

Figure 4. Slope model.

Similar to the research of Liu et al. [42], the slope in situ was first sampled by ring
knife to obtain undisturbed samples, which was performed on 20 August 2017. The water
content, density, permeability, grain size distribution and shear strength of the slope loess
were obtained via laboratory tests. Reasonably, the loess of the model slope was collected
from the site of the prototype slope. The slope model was built using the method of stratified
compaction. That is, the soil was first prepared with a certain water content, and then, the
loess mass of each layer of 10 cm was weighed before being used to fill the model box. As the
box was filled to the certain height, the front upper plank of the model box was removed,
and the filled model was cut to the dimensions corresponding to the slope prototype. Then,
the constructed slope model was left standing for one year prior to the start of the rainfall
experiment to simulate the formation process and the geological conditions of the slope
prototype, to increase the reliability of the experimental results.

As Figure 5 shows, building the slope model was a complex process and it can be
expressed by the following:

Figure 5. Slope model construction process.
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The loess obtained from the slope site was prepared such that it had an identical water
content to the prototype slope (ω = 17.4%), and then, a certain mass of the prepared loess
was added to the model box as a layer, which was compacted to the thickness of 10 cm.

Within the model slope building process, the soil pressure sensors and pore-water
pressure sensors were buried at the prescribed positions in the model.

Synchronously, inner displacement marks were set with colored sand particles next to
the two side walls of the model box, to show the displacements inside the slope model.

As the model was compacted to the required height, it was cut to the same dimensions
as the prototype.

Lastly, one displacement mark was fixed at each of the three slope shoulders.

3.3. Model Materials and Similarity Relations

The model slope was wholly constructed from the loess of the prototype slope. Thus,
all the hydraulic and mechanical properties of the model slope loess were identical to the
properties of the prototype. The critical soil property values are listed in Table 1.

Table 1. Key properties of the model soil material.

Parameters Value Parameters Value

Water content (%) 1.42 Compression modulus (MPa) 5.58
Permeability coefficient (cm/s) 5.4 × 10−4 Internal friction angle (◦) 27.0

Density (g/cm3) 17.4 Cohesion (kPa) 15.0

It is noteworthy that the parameters in Table 1 were obtained from geotechnical tests
conducted according to Liu et al. [42]. The water content of the soil was taken from the
water content experiment using the oven drying method. The permeability coefficient of
the soil was obtained from the standard permeability test of varying head. The soil density
was obtained from standard ring knife tests. The compression modulus of the soil was
measured by the compression test. The cohesion and internal friction angle of the soil were
obtained from the direct shear test of quick shear, as the quick and sudden failures of loess
slopes usually happen under rainfall. For the sake of clarity, the geotechnical test process is
depicted in Figure 6.

Figure 6. Photos of indoor geotechnical tests: (a) Density test, (b) Direct shear test, (c) Compression
test, (d) Water content test.

According to the π theorem [43,44], the similarity criterion of variables in model tests
can be derived from the dimension analysis. As the model slope is considerably complex,
it is impossible to meet the similarities of all the parameters. Thus, only the parameters of
geometric dimension, gravity acceleration and density were chosen as the fundamental
dimensions considering the purpose of the model test. Relevant similar constants in the
test are tabulated in Table 2.
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Table 2. Similarity ratios of the test model.

Parameters Similarity Relation Similarity Constant

Geometric dimension (L) CL 10
Density (ρ) Cρ 1

Gravity acceleration (g) Cg 1
Stress (σ) Cσ = CρCgCL 10
Strain (ε) Cε = 1 1

Displacement (s) Cs = CL 10
Cohesion (C) CC = CρCgCL 10

Internal friction angle (ϕ) Cϕ = 1 1
Rainfall intensity (Cq) Cq = Cρ0Cg0.5CL

0.5
√

10

It is noteworthy that the similarity constant of the rainfall time was derived from a
calculation according to Terzaghi’s consolidation theorem [45] but not from the π theorem.
This method was validated by Butterfield [46] and Garnier et al. [47] and was employed by
Tang [48] in studies of the slope stability with rainfall. Though the size of the slope model
was different from that of the slope in situ, the consolidation degrees of the slope model
and the slope in situ should be identical in the testing process. According to Terzaghi’s
consolidation principle, the consolidation degree of the slope soils can be expressed as

U = 1 − β.e−λ.TV (1)

Here, β and λ are the invariable constants and Tv is the time, which only varies with
the time elapsed. Therefore, the consolidation degree U varies only with time t.

Reasonably, the parameters β and λ of the slope model and the slope prototype have
the same value. Therefore, under the identical consolidation degree, the slope model has
the same time factors with the slope prototype, i.e.,

TVp = TVm (2)

Here, TVm and TVp are the time factors of the slope model and the slope prototype,
respectively. Equations (3) and (4) depict the relationships between the time factors and the
consolidation time.

tp =
(

Hp
2/CV

)
TVp (3)

tm =
(

Hm
2/CV

)
TVm (4)

Here, tm is the consolidation time of the model slope and tp is that of the the prototype
slope; Hm and Hp denote the sizes of the model slope and the prototype slope, respectively;
and Cv denotes the same consolidation constant of the model slope and the prototype slope.
Therefore, we can derive the similarity constant of the rainfall time as

Ct =
tp

tm
=

H2
p

H2
m

= C2
L (5)

Accordingly, CL was 10 here; thus, Ct was derived as 100. As a result, the experimental
time was shrunk by 100 times, allowing the experiment to be completed in a shorter
period. According to the field investigation, the slope prototype had been in operation for
approximately five years. Thus the experimental time was 0.05 years in this study.

3.4. Measuring System and Rainfall Scheme

In total, the model test employed seven pore pressure sensors and seven soil pressure
sensors. The pore pressure sensor U4 was seated at a position 10 cm under the shoulder of
the second grade of the model slope, and the seated depth of U3, U2, and U1 increased by
20 cm sequentially in a perpendicular line from U4. The pore pressure sensors U5, U6 and U7
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were seated 10 cm under the slope toes of the first, second and third grades, respectively. To
facilitate meaningful results, the soil pressure sensors P1, P2, P3, P4, P5, P6 and P7 were
buried at identical positions with those of U1, U2, U3, U4, U5, U6 and U7, respectively. A
strainometer was connected to the pressure sensors, and converted the pressures into digital
signals for the computer to store. Although the model test analyzed a planar problem, the
pressure sensors were seated close the axial plane of the model to deliver more reliable
data [42].

Three displacement marks were set at the three slope shoulders, which are shown in
Figure 7 as S5, S4, and S6 at the first, second and third grades of slope shoulder, respectively.
Three points were marked by colored sand particles close to the right wall of the model
box to measure the inner displacements of the model slope, which were S1, S2, and S3.
Similarly, three displacement marks, S1′, S2′ and S3′, were set by colored sand particles
close to the left wall of the model box, corresponding to the positions of S1, S2 and S3. To
obtain meaningful data, the depths of S1 (S1′), S2 (S2′) and S3 (S3′) were the same as those
of P1, P2 and P3, respectively, as shown in Figure 7. The displacements of the marked
positions were defined as the distance differences before and during rainfall, which were
measured by a laser rangefinder fixed in front of the model slope. A computer connected
to the laser rangefinder was used to display the distance data. It is noteworthy that the
accurate displacement of S1 was the average displacements of S1 and S1′, and the same
applies for S2 and S3.

Figure 7. Full dimensions of the model slope and layout of the measurement points.

At constant time intervals, photos were taken from the front and two sides of the
model; thus, we obtained the rainwater infiltration process and the deformation process of
the model slope during rainfall.

As addressed above, the precipitation in Luochuan County mainly happens in July,
August and September, with a total amount of approximately 606 mm per year. For this
study, we assumed that the annual precipitation was spread over three months, with each
month only having one rainfall event of 2 h. In the remaining period of the month after
the rainfall, the model slope stayed undisturbed. Thus, the rainfall intensity in situ was
calculated as being 101 mm/h constantly. The simulated rainfall intensity was derived
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as 101 mm/h divided by the similarity constant
√

10, resulting in a value of 31.94 mm/h.
In the same way, the total experimental time was derived as five years divided by the
similarity constant 100 (see Equation (5)), producing a value of 0.05 years, i.e., 18 days.
The time intervals between each of the 3 simulated rainfall events were derived as 30 days
divided by the similarity constant 100, and then 2 h were subtracted, producing a period of
5.2 h. The testing scheme of one year is detailed in Table 3, and this was repeated 5 times to
accomplish the rainfall of 5 years.

Table 3. Model test scheme (the scheme in this table was repeated 5 times to simulate 5 years
of rainfall).

Simulated Time Actual Time Rainfall Start Rainfall End Read Data

0 h 0 h Yes Yes
2 h 2 h Yes Yes

7.2 h 30 d Yes Yes
7.2 h + 2 h 30 d + 2 h Yes Yes

14.4 h 60 d Yes Yes
14.4 h + 2 h 60 d + 2 h Yes Yes

21.6 h 90 d Yes
28.8 h 120 d Yes
36 h 150 d Yes

43.2 h 180 d Yes
50.4 h 210 d Yes
57.6 h 240 d Yes
64.8 h 270 d Yes
72 h 300 d Yes

79.2 h 330 d Yes
86.4 h 360 d Yes

In general, the experimental steps can be depicted as follows:
Before burying the pressure sensors in the model construction process, their original

values were measured.
As the construction of the slope model was completed, the pressure sensor cables were

attached to the strainometer, which was used to send the pressure data to the computer.
Additionally, a laser rangefinder seated in front of the slope model was connected to the
computer to obtain the distances between the fixed position and the displacement marks (S1,
S1′, S2, S2′, S3, S3′, S4, S5, S6), thus deriving the horizontal displacements of the key points.

The rainfall intensity of the rainfall simulator was adjusted to 31.94 mm/h, and acted
the rainfall simulator on the model slope while the computer program used for data-capture
started.

The scheme in Table 3 was repeated 5 times to accomplish five years of rainfall simulation,
as the computer recorded the data of the pore water pressures, soil pressures and horizontal
displacements of the key points.

3.5. Compound Safety Factor Calculation

In the field of geotechnical engineering, safety factors have been widely accepted as
indicators of the safety situations of slopes. As Equation (6) shows, the slope safety factor
can be expressed as the ratio of the total anti-slide moment to the total sliding moment.

K =
∑ Mresisting

∑ Msliding
(6)

Here, Mresisting is the anti-slide moment at a slice base within the sliding body, and
Msliding is the sliding moment at the slice base. Within the limited equilibrium method, the
sliding surface is occasionally assumed as an arc. In this situation, the arm of a moment is
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identical to the arc radius, and the interslice forces are totally excluded from the calculation.
Adopting this consideration, the slope safety factor was simplified as

K =
∑ Fresisting

∑ Fsliding
(7)

Here, Fresisting is the anti-slide force at the slice base, while Fsliding is the sliding force at
the slice base. Taking the suction in the slope soils into consideration, Wang and Zhang [49]
reconstructed the anti-slide force and the sliding force equations of the slice as

Fresisting = Wi cos αi tan ϕ +

(
us tan ϕb + c

)
B

cos αi
(8)

Fsliding = Wi sin αi (9)

Accordingly, Wi and αi are the weight and bottom inclination angle of sliding slice i,
respectively; c and ϕ are the cohesion and internal friction angle at the bottom of sliding
slice i, respectively; us and ϕb are the matrix suction and suction friction angle at the bottom
of sliding slice i, respectively; ϕb usually has a value around ϕ/2, according to Fredlund
and Rahardjo [50]; and B denotes the sliding slice width. If the vertical soil pressure σy at
the bottom of the sliding slice can be obtained from the model test, Wi can be calculated by

Wi = σy · B (10)

Substituting Equation (10) into Equations (8) and (9), the results of which were then
substituted into Equation (7), a new equation of the safety factor was constructed as

K =
∑
[

σyB cos αi tan ϕ +
(us tan ϕb+c)B

cos αi

]
∑
[
σyB sin αi

] (11)

Using Equation (11) to calculate the slope safety factors, the sliding body should first
be divided into vertical slices. Then, assuming that the positions with the same burial
depth had identical soil pressures and matrix suction, the soil pressures and suction at
the bottoms of the slices can be obtained from the model test data. In most cases, the
interpolation method could be an useful tool in the determination of the pressures and
suction of the slice bottoms from adjacent points.

4. Results and Discussion

4.1. Slope Scour Failure Process

The camera seated in front of the model box was used to capture the scouring process
of the model slope at certain time intervals. In accordance with the field investigation, the
simulation period was five years, corresponding to five rounds of rainfall. Nevertheless,
this section does not present the rainfall scouring process on the model slope due to
its negligibility.

Figure 8 presents the scouring process of the slope model during rainfall. Evidently,
the scouring effect in the first round was very significant. Within 25 min from the beginning
of the first rainfall, the scour was reasonably categorized as splash erosion, as the raindrops
impacted the slope surface and made shallow pits. Later on, from 25 min to 60 min, the
scour form transformed into surface erosion. While the first rainfall progressed for 25 min,
the formed shallow pits gradually connected, inducing shallow gullies. At 45 min from
the start of the rainfall, a shallow sliding of a small size occurred on the left portion of
the top grade of the model slope. Meanwhile, gullies on the model slope were completely
formed. Lastly, in the period from 60 to 120 min, the scour pattern was found to constitute
gully erosion and sliding. At 60 min from the start of the first rainfall, the left portion
of the first slope grade developed a deep gully with a depth of 7~8 cm and a width of
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5 cm, while the second slope grade showed a gully with a depth of 4~5 cm and a width
of 3~4 cm. Meanwhile, larger slides happened on the middle portion of the third grade
of the model slope, and ruined displacement mark S6. Understandably, the rainwater
pooled on the left portion of the platform of second grade, softened the soil beneath it and
promoted gully development there, which was inevitable for a loess slope under rainfall.
Additionally, it was observed that the larger scale of slides on the third grade of the slope
model was induced by rainwater pooled on the slope crest, which softened the loess there
while percolating. In the later phase of the first rainfall, the developed gullies were widened
and deepened by the downflow of the rainwater. When the first round of the first rainfall
event ended, the main gully in the left part of the first slope grade was approximately 30 cm
deep and 10 cm wide, as shown in Figure 9a.

Figure 8. Scour failure process during three rounds of rainfall: (a) First round of the first rainfall
event lasted for 5 min, (b) First round of the first rainfall event lasted for 70 min, (c) First round of the
second rainfall event lasted for 120 min, (d) Third round of the third rainfall event lasted for 120 min.

As Figure 8 shows, different to the first rainfall event, the scour process of the second
rainfall event consisted of only two phases, namely the undisturbed phase and the gully
erosion with sliding phase. The period from the start of the rainfall to 20 min of rainfall
comprised the undisturbed phase, which resulted in no perceivable surface erosion to the
model slope, as the rainwater downflow was weak. Understandably, the loess within the
shallow layer of the model slope consolidated in the interval between the two rainfall
events, making further erosion difficult, which induced an undisturbed phase later in
the process. As the rainfall continued, the shallow layer of loess softened again, inciting
gully erosion with a sliding phase. The gully erosion with a sliding phase occurred in the
period after 20 min of rainfall, where gullies developed and slides happened occasionally.
Small scales of shallow slides occurred on the second grade of the model slope at 30 min,
40 min, 56 min and 78 min from the start of the second rainfall event, which fully ruined
displacement mark S4. In the meantime, larger scales of slides occurred on the third
grade of the model slope at 80 min and 100 min from the start of the second rainfall event,
inducing the declination of the gradient of the third grade of the model slope. Evidently,
different from first rainfall event, the slope slides in the second rainfall event had initiation
stages compromising the duration of approximately the first 20 min of rainfall. As the
rainfall progressed, the deeper layers of loess was wetted by the infiltrating rainwater,
which caused declines in the matrix suctions, the cohesion and the frictional angles of the
deeper loess. It is proven that the matrix suctions, the cohesion and the frictional angles
have positive contributions to the soil shearing strength, which is the critical factor in slope
safety. Thus, the decline in matrix suctions caused larger slope failures during the second
rainfall event. Additionally, the dimensions and number of gullies also increased in this
phase. When this rainfall event was over, the main gully at the left of the first grade of the
model slope was approximately 13 cm wide, which can be seen in Figure 9a.
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Figure 9. Development of the dimensions of the main gully on the left of the first slope grade:
(a) During the first round, (b) During the second round, (c) During the third round.

Compared with the previous rainfall event, the scour effect in the first round of the
third rainfall event was weaker, with a small scale of shallow slides occurring on the third
grade of the slope at 85 min from the start of this rainfall, and the gullies evolved gradually.
It was found that, the width of the main gully in the left portion of the first grade of the
slope was approximately 15 cm when this rainfall event was over.

It was found that, during the second and third rounds of rainfall, the model slope was
in a relatively steady state, with no slides resulting from the weak rainwater downflow.
Nevertheless, the main gully to the first slope grade persistently evolved. At the end of the
third round of rainfall, the width was approximately 30 cm, and the depth was approximately
45 cm. On the one hand, the first round of rainfall formed the outlet on the slope model
surface, and alleviated the scour effect of the rainfall upon the model slope. On the other
hand, the consolidation of the shallow layer of the model slope within the interval between
the first and the second round of rainfall impeded further scour from the rainfall. It could
be reasonably concluded that the loess model slope entered a relatively steady scour stage
at the beginning of the second round of rainfall, while the gully persistently evolved.

It is noteworthy that there was no sinkhole formation caused by the rainwater during the
five rounds of rainfall, which should be due to the absence of a perforated crack. As engineer-
ing practice revealed, sinkholes in loess slopes are developed from perforated cracks, which
form the preferential paths for venting rainwater. While the rainwater flowed through the
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perforated cracks, the walls of the cracks were scoured, which gradually formed sinkholes
in the loess slope. Referring to the slope prototype, we can infer that a sinkhole could not
form in the absence of a perforated crack in this model slope.

Figure 9 presents the dimension development of the main gully on the first grade of
the slope within the first, second and third rounds of rainfall. As the dimension of this
main gully showed no visible change after the third round, its development thereafter is
not presented here. Obviously, the development of the dimensions of this main gully was
most significant during the first round, particularly in the first round of the first rainfall
event. The depth of this gully increased from 0 cm to 30 cm during the first round of the
first rainfall and developed to 35 cm by the end of the first round of rainfall. The width
of this gully increased from 0 cm to 10 cm during the first round of the first rainfall and
developed to 15 cm by the end of the first round. In the following two rounds of rainfall,
the dimensions of this main gully developed more slowly, particularly in regard to its
depth. The depth of this gully only increased by 5 cm in both the second and third rounds.
Comparably, the width of this gully increased by 5 cm and 10 cm in the second and third
rounds, respectively. In summary, the development of the dimensions of the main gully
on the first slope grade was the most significant, particularly in the first round of the first
rainfall event, and gradually slowed over time. In the rounds after the third round, the gully
dimensions showed no visible development and thus are not presented here. This could
be mainly attributed to the consolidation effect of the slope soils in the intervals between
rainfall events.

4.2. Rainwater Infiltration Characteristics

Rainwater percolates slope soils, inducing a higher pore water pressures in the slope,
thus greatly influencing the slope stability. On the one hand, the percolated rainwater can
lower the shear strength of the slope soils, which is not beneficial for treatment projects.
On the other hand, the percolated rainwater can lead to large water pressures in the slope
soils, which is also adverse for the safety of the slope. Scholars have investigated the effects
of rainfall on slope safety and concluded that rainfall is the critical factor influencing the
stability of slopes and that rainwater percolation controls the deformation processes of
slopes [51,52]. In the current study, the model box sidewalls were made from transparent
glass. Therefore, the camera could capture the wetting front advancing process from the sides.

Figure 10 shows the advancing process of the wetting front in the rainfall rounds.
Evidently, the rainwater percolated into the platforms preferentially, which may have
been caused by rainwater pooled on the platforms. The water pooled on the platforms
generated water heads there, which actuated the water into the platforms with large rates.
After 10 min of the first rainfall, the percolation depths beneath the three platforms were
identical at 8 cm. After 20 min of the first rainfall, the percolation depths under the first,
second and third grade of the platform were 9 cm, 11 cm and 10 cm, respectively. After
40 min of the first rainfall, the percolation depths beneath the first, second and third
grade of the platform were 11.3 cm, 11.5 cm and 12 cm, respectively. Therefore, it can be
derived that the percolation rate of the rainwater declined with the progression of rainfall.
The average percolation rate was approximately 0.8 cm/min within the first 10 min of
rainfall, decreased to approximately 0.2 cm/min after 20 min of the first rainfall, and then
decreased to approximately 0.075 cm/min after 40 min of the first rainfall. The pores of
the unsaturated soils are partly filled with air and water. Under rainfall conditions, the
rainwater must discharge the pore air to percolate into the slope soils. In the shallow layers
of slope soils, the pore air was easier to be discharged, and thus showed a higher permeability;
therefore, it showed a larger percolation rate at the beginning of the rainfall event, which
decreased gradually with the progress of the rainfall event. Eventually, by the end of the first
rainfall event, after 120 min, the average vertical percolation rate declined to approximately
0.090 cm/min. In summary, the advancement rate of the wetting front declined gradually
within the first round of the first rainfall event, and eventually stabilized at 0.090 cm/min.
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Figure 10. Rainwater infiltration process within the slope model: (a) After 30 min of the first round
of the first rainfall event, (b) After 120 min of the first round of the first rainfall event, (c) 5.2 h after
the first round of the second rainfall event, (d) After 120 min of the second round of the third rainfall
event, (e) After 120 min of the third round of the first rainfall event.

Additionally, the wetting front advancement rates after rainfall could be derived in the
same way. Thirty minutes after the first rainfall event, the average advancement rate of the
wetting fronts under the platforms was approximately 0.07 cm/min. Three hundred and
twelve minutes after the first rainfall event, the percolation depths under the first, second and
third grades of the platform were 25 cm, 36 cm and 38 cm, respectively, resulting in an average
wetting front advancement rate of approximately 0.026 cm/min. Therefore, the wetting front
advancement rates after rainfall were less than those during rainfall, with a declining trend
over time. Furthermore, it can be seen from Figure 10b that the percolation depths beneath
the slope shoulders were greater than those under the platforms and slope surfaces. This may
have resulted from the combined influences of the percolation from the platforms and the
slope surfaces, reasonably viewed as the superposition of the two influences.

Within the first round of the next two rainfall events, the wetting front persistently
migrated downward at a rate lower than that during the first rainfall event, which decreased
gently with time. When the third rainfall event was over, the mean advancement rate of the
wetting front was approximately 0.05 cm/min. Moreover, when the rainfall events ceased, the
wetting front was clear, but this became vague 5.2 h later (see Figure 11c). Five hours and
twelve minutes after the second rainfall of this round, the wetting front was circular, which
corresponded to the Swedish arc method for evaluating slope stability. Ultimately, 70 h
after the first round of rainfall, most of the slope soils were soaked, while the lower-right
triangular corner remained dry; the horizontal side of the dry area was approximately
1.3 m long.

The entire slope body was wetted 5.2 h after the second rainfall event in the third round;
thus, the subsequent rainwater movement in the slope soils was not detectable. However,
the shrink rate of the triangular dry area was very minor, and was even imperceptible,
during the rainfall progress, at approximately 0.003 cm/min, 5.2 h after the third round of
the second rain event, which is nearly 10 times lower than the shrink rate at the end of the
first round.

Figure 11 presents the vertical infiltration distances under the three slope shoulders
and the horizontal infiltration distance at the slope base over time. It is evident that
the vertical infiltration distances under the slope shoulders increased sharply in the first
round, particularly during rainfall. However, the increasing rates of the vertical infiltration
distances gradually decreased over time. Forty-one hours after the second round of the
third rainfall event, rainwater infiltrated the slope base beneath the third grade slope
shoulder, while the vertical infiltration rate decreased to approximately 0.0056 cm/min.
Thus, the vertical infiltration under the slope shoulders after that time was not presented.
Similarly, the horizontal infiltration caused by the migration of the rainwater accumulated
near the first grade slope toe with a gradually decreasing rate. The difference being that
the horizontal infiltration at the base of the slope had an initiation stage, which occurred
during the 500 min after the start of the first round of rainfall. It is most noteworthy that
the horizontal infiltration rate was obviously higher than the vertical infiltration rates
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under the slope shoulders. From Figure 11a, the average vertical infiltration rate under the
slope shoulders was approximately 0.021 cm/min, while the average horizontal infiltration
rate at the base of the slope was approximately 0.036 cm/min. This could be due to the
structure of the horizontal layer of the slope model formed in the construction process,
which provided a larger horizontal permeability compared with the vertical permeability.

Figure 11. Rainwater infiltration distance with time: (a) Within the first round, (b) Within the second
round, (c) Within the third round.

4.3. Pressure Variations of the Model Slope

The slope safety mainly depends on the internal pressures, including the soil pressures
and the pore water pressures. Generally, during the rainfall event, only the top layer
of the slope soils was evidently penetrated by the rainwater, causing an increase in the
unit weight of the top layer. As the rise of the pore water pressure in the deep layer was
very limited, the increase in the soil pressure there inevitably outweighed the pore water
pressure, which in turn caused an increase in the shear stress. Moreover, the limit increase
in the pore water pressures could have caused the significant drop in the shear strength. In
a case where the shear stress increased to the limit value, the slope would begin to fail [53].
In the current research, prior to the rainfall test, a pressure coefficient was set for each of
the pressure sensors in the computer program. The program automatically converted the
signals delivered by the sensors into pressures. Lastly, they were subtracted by the initial
pressures to obtain the actual pressure values.

4.3.1. Pore Water Pressure Variations

The pore water pressure variations of the seven points (U1, U2, U3, U4, U5, U6 and U7)
over time are presented in Figure 12. As mentioned above, the precipitation was assumed
to be concentrated within three months each year, with no precipitation in the other months.
The precipitation of each month continually lasted two hours with a invariable intensity.
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Generally, within the five rounds of rainfall, the pore water pressures of the seven points
fluctuated sharply, with a total trend of declining, except for point U5. This result appeared
inconsistent with the classical theoretics of soil mechanics [50]. Only point U5 showed
positive pore water pressure values during the rainfall rounds, indicating nearby saturated
conditions. It increased from almost 0 kPa to approximately 1.5 kPa in the first round
of rainfall and then fluctuated up to approximately 2 kPa by the end of the fifth round,
indicating that the infiltrated rainwater concentrated around the toe of the first slope grade.
This is consistent with the findings of Chueasamat et al. [52]. Regarding the other key points,
it is most evident that the pore water pressure of U1 declined persistently from −10.35 kPa to
approximately −12 kPa, and the pore water pressure of U4 decreased persistently from −6.05
kPa to approximately −12 kPa, with a higher declining rate during the early rounds. For
U1, at the deepest position, it was hard for the rainwater to recharge, while the underlying
soils absorbed the water around it, and thus caused the declination of the saturation degree
near U1. Adopting Fredlund’s unsaturated soil theoretics [50], the negative pore water
pressures in the soils bring on suction, with less saturation corresponding to higher suction.
As a result, the pore water pressure on U1 declined within the rainfall rounds. Given that
U4 was at the shoulder of the second slope grade, it was washed out by the rainwater in
the first round of the first rainfall event. That is why the pore water pressure decreased
abnormally, producing meaningless data. While U2 and U3 were situated at intermediate
depths in the slope model, the water compensation effect from the soil above and the
absorption effect from the soil below remained in balance, which led to no perceptive
variation in the pore water pressures nearby.

However, carefully checking the pore water pressure data of U4, U5, U6 and U7
within the first round of rainfall, we found that there was an increasing trend in the pore
water pressures for these four points during the first rainfall event, which implicates the
saturation effects of the rainfall on the shallow layer of loess slopes. As the shallow layer of
the loess was saturated, the matrix suction thereby vanished and the cohesion and internal
friction angle attenuated, which caused the degradation of the shear strength of the loess
overall. With a decline in the shear strength, the shear stress thereby exceeded it, thus
causing the shallow slides stated above.

In addition, it was found from Figure 10e that almost the whole model slope was wet-
ted in the test, with all pore water pressures in the model slope except U5 showing negative
values from Figure 12, indicating unsaturated conditions. Therefore, we could infer that the
wetting front cannot be considered as the boundary between the saturated and unsaturated
regions during rain. According to the Green-Ampt infiltration model [54], the infiltrating
rainwater persistently migrates forward after rainfall, resulting in an unsaturated region in
front of the wetting front. Clearly, this finding of the Green-Ampt model is in agreement
with the current study.

Figure 12. Cont.
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Figure 12. Pore water pressure variations within the test: (a) First round, (b) Second round, (c) Third
round, (d) Fourth round, (e) Fifth round.

4.3.2. Soil Pressure Variations

The soil pressure variations of the seven representative points (P1, P2, P3, P4, P5, P6 and
P7) over time are shown in Figure 13. During the first round of rainfall, it was in opposition to
the developed soil mechanics as the soil pressures of all the representative points except P1
decreased sharply, which was caused by the in situ stress release as the rainwater infiltrated.
This was most evident for P6, incorporating a decline from 14.3 kPa to 1.0 kPa in the
first round of the rainfall event. After the first round of rainfall, all seven representative
points presented no regular variation in the soil pressure with some small fluctuations,
representing a relatively steady state of the slope model. Nevertheless, the soil pressure
of P1 started to decline in the second round of rainfall, which was later than that of the
other points. These results were caused by P1 being in the deepest location, which needed
a longer duration for the rainwater influence to occur. Thus, the second deepest point, P2,
represented a persistent decrease in soil pressure in the second round, implying that the
release of the in situ stress was still in progress in the deeper positions at this duration.
In the subsequent rounds, the soil pressure of P2 persistently declined at a smaller rate,
as the soil pressure of P1 fluctuated. When the fifth round of rainfall was over, the soil
pressures of P1 and P2 were approximately 3.5 kPa and 2.0 kPa, respectively. On the
contrary, the soil pressures of the other points were steady over the entire second round,
indicating the steady state of the shallower part of the slope model. In summary, induced
by the release of in situ stress, the soil pressures in the slope model declined but did not
increase, indicating that the influence of the in situ stress release was greater than that
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of the self-weight increase through rainwater percolation, which is seemingly different
from the classical soil mechanics [55]. Classical soil mechanics deems that the saturation
of soils increases during rainfall, thus inducing a self-weight increase in the soil. As it
does not consider the in situ stress increase inside the soils, theoretically, the soil pressures
inevitably increase during the rainfall process. However, in the current study, the slope
model construction process exactly simulated the loess-forming process, thus leading to
high in situ stress in the slope soils, which was higher than the gravity stress. When the
rainwater penetrated, the soils of the slope model were softened and dilated, causing the in
situ stress to be released abruptly. As the greatest portion of the in situ stress is released,
the measured soil stress must decrease rather than increase.

Figure 13. Variations in soil pressure inside the model slope: (a) First round, (b) Second round,
(c) Third round, (d) Fourth round, (e) Fifth round.
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4.4. Displacements of the Key Points

A laser rangefinder was used to measure the distances between the six key points
(S1, S2, S3, S4, S5 and S6) and a fixed point, the changes in which before and during the
rainfall events were the horizontal displacements of the corresponding positions. Figure 14
presents the variations of the horizontal displacements of the six points over time. In the
first round, all six points except S1 had displacements rising from 0 mm, especially within
the rainfall events. As the rainfall process advanced, the slope soils were humidified, and
the internal frictional angle and the cohesion were lessened, causing the yielding of parts
of the model slope, which in turn induced the displacements of the model slope. When the
first round of rainfall was over, the horizontal displacements of S2, S3 and S5 rose up to
15.1 mm, 9.2 mm and 12.9 mm, respectively, while that of S1 fluctuated at approximately
0 mm. Understandably, the fluctuations in the displacements were brought about by the
errors of the instruments. Additionally, the displacement of S6 rose to approximately
35 mm within the first round of the first rainfall event, and the displacement of S4 rose to
approximately 20 mm within the same round of the second rainfall event. According to the
rainwater scour data presented earlier, the displacement markers S4 and S6 were destroyed
in the first round of the second and first rainfall events, respectively, hence bringing about
oddly high increments of displacements. As a result, the figures of displacements do not
include those of S4 and S6 after the second round of rainfall.

Figure 14. Cont.
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Figure 14. Variations in the horizontal displacements of the six key points over time: (a) First round,
(b) Second round, (c) Third round, (d) Fourth round, (e) Fifth round.

Within the second round, the displacement for S5 fluctuated up to approximately 14 mm
and was still fluctuating around this value in the subsequent rounds. The displacements for S2
and S3 fluctuated at approximately 2.5 mm and 9.2 mm, respectively, as the displacement
for S1 kept fluctuating at approximately 0 mm. Reasonably, it could be concluded that
point S1 remained stationary during all five rainfall rounds. Considering the points in a
vertical line with S1, the longer the upward distance from S1, the larger the displacement.
This result indicated that a potential slip surface was situated between S1 and S2. This find-
ing is consistent with the research presented by Cui et al. [56], expressing the landslide
progress in five stages: steady deformation, slow deformation, intense deformation, steady
deformation and intense deformation. However, it was also found that the displacements
of the four remaining points (S1, S2, S3 and S5) fluctuated with no increase after the second
round, implying the status of the slope was ultimately stable.

5. Post Evaluation of the Treatment Project

Post evaluation was used in a slope treatment project in China by Zheng [4], who
proposed the definition of the post evaluation of slope treatment. During slope design,
engineers were concerned about the stability of the slope after the completion of construc-
tion. However, in post evaluation, engineers usually focused on the slope stability in the
long-term. Zheng proposed a displacement rate threshold of 0.1 mm/day that could be
used to judge slope stability. Additionally, a compound safety factor referring to the safety
factor of slopes was employed to assess the treatment effect of slopes, presented in Table 4.
Considering the deformation and failure extent, some quantitative standards [4] were
also adopted into the post evaluation of the slope treatment effect, as shown in Table 4.
In accordance with the employed standards, this section continues the post evaluation of
the slope prototype using the field investigation and model test data.

Table 4. Post evaluation criteria of the treatment effect.

Compound Safety Factor
(K)

Deformation and Failure Degree (D)
%

Displacement Rate (R)
mm/d

Treatment Effect

K > 1.20 0.1 < D ≤ 0.5 0.01 < R ≤ 0.05 Very good
1.10 < K ≤ 1.20 0.5 < D ≤ 1.0 0.05 < R ≤ 0.1 Good
1.0 < K ≤ 1.10 1.0 < D ≤ 10 0.1 < R ≤ 0.5 Not bad

K ≤ 1.0 R ≤ 0.1 or D > 10 R ≤ 0.01 or R > 0.5 Conservative or failed

236



Sustainability 2022, 14, 15838

5.1. Post Evaluation Based on the Deformation and Failure Degree

As can be seen in Figure 14, when the fifth round was over, the maximum horizontal
displacement of the slope model was approximately 14 mm, delivering the maximum
horizontal displacement of the slope prototype of 140 mm. Additionally, the main gully in
the first grade of the slope model was approximately 30 cm wide when the fifth round was
over, and the entire range of the third grade of the slope model had slid. Accordingly, the
ratio of the maximum displacement to the height of the slope was approximately 0.08, and
the ratio of the collapsed area to the slope surface area was approximately 0.3. As a result,
the collapse ratio could be 30.0%, with an overall collapse having a big influences on the
project operation. Additionally, this matched the discoveries from the field investigation
(see Figure 2). Hence, the treatment effect of the slope was preliminarily assessed as failed,
referring to Zheng’s qualitative criteria.

5.2. Post Evaluation Based on the Displacement Rate

Referring to Figure 14, the maximum displacement was approximately 14 mm of S5
when the fifth round was over, rendering the maximum displacement of the prototype
as 140 mm at the end of the five years. Therefore, the average deformation rate of the
slope project during the 5 years was approximately 0.08 mm/day, implying the security of
the treatment project. Thus, the treatment project of the current slope was preliminarily
evaluated as good, referring to the qualitative criteria of Zheng.

5.3. Post Evaluation Based on the Compound Safety Factor

The Morgenstern–Price method is a widely accepted way of calculating the safety
factors of earth slopes, with a function to generate the slide surface considering every
interslice force and satisfying every equilibria of the forces [57,58]. This section utilized the
Morgenstern–Price method within the Geo Studio software to delineate the potential slide
surface, with well-matched discoveries, as shown in Figure 14. The soil pressures from
the model test were utilized to calculate the sliding force and resistance to sliding, thus
delivering the factor of safety for the slope prototype. Incorporating Table 4, the treatment
effect of the current slope was assessed.

Figure 15 illustrates the potential sliding surface by the end of the fifth year from the
Morgenstern–Price method. Evidently, the generated sliding surface was situated between
S1 and S2, which strictly matched the model test results.

Figure 15. Critical sliding surface from the Morgenstern–Price method (S1, S2, S3 and S4 are displace-
ment markers identical to those in Figure 7).

Firstly, the sliding body was divided into six vertical slices, as shown in Figure 16. The
measured data of the key points were utilized to derive the soil pressures and suction of
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the adjacent slices. In this way, the soil pressure and suction values on the bottoms of the
slices were obtained, as shown in Table 5.

Figure 16. Slice division profile of the sliding mass.

Table 5. Sliding slice information.

Slice Number 1 2 3 4 5 6

σy (kPa) 19.45 9.46 6.63 5.68 12.30 19.90
us (kPa) 96.45 52.66 37.60 32.58 67.72 85.42

B (m) 2.6 3.8 3.7 2.8 3.7 3.5
αi (◦) 61 47.1 37.1 25.7 18 8.4

Fresisting (kN) 219.01 166.92 121.12 78.29 143.77 160.67
Fsliding (kN) 43.9959 26.24204 14.7186 6.83872 14.1081 10.4475

Referring to Equation (7), the safety factor of the slope was:

K =
∑ Fresisting
∑ Fsliding

= 889.79 (kN)
116.35 (kN)

= 7.65

(12)

Clearly, the safety factor from the developed method combined with the model test
data was substantially larger than the critical value of 1.2, implying the conservative design
theory of the slope treatment research. This result was likely caused by the underestimation
of the shear strength of loess in the slope treatment design theory of China, which did not
incorporate the matrix suction under unsaturated conditions. Nevertheless, the obtained
safety factor here delivers a result identical to those of the displacements from the model
test. Combined with Table 4, it can be seen that the preliminary treatment effect of the slope
prototype was very good.

5.4. Post Evaluation of Results

Combining the above post evaluation results, it can be considered that the slope
prototype was generally stable, with no further sliding tendency, but considerably large
amounts of destruction resulting from rainwater scouring. Accordingly, the destruction of
the slope was categorized as a local collapse. Therefore, the treatment effect of the current
slope was determined to be not bad.

Last, it is worth noting that the post evaluation framework formed here is useful to
other slope treatment projects referring to slope cutting. Therefore, the post evaluation
framework is presented in Figure 17.
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Figure 17. Post evaluation framework for slopes treated by slope cutting.

6. Conclusions

To clarify the influencing mechanism of long-term rainfall on loess slopes treated by
slope cutting in Yan’an city of Shaanxi Province, a field investigation and an indoor model
test were performed, based on the post evaluation of the loess slope with slope cutting. The
main conclusions are as follows:

(1) The runoff of rainwater has serious scouring effects on slope surfaces, causing gullies
and shallow slides. Mainly caused by the consolidation of the shallow soils within in-
tervals of rainfall, the scouring effect becomes increasingly weaker over time, inducing
a relatively steady state of the slope after the first round of rainfall.

(2) Rainwater percolates the platforms preferentially with large rates being observed
where rainwater pools. Over the simulation duration, the wetting front advancement
rate declined gradually.

(3) Caused by the release of in situ stress, the test soil pressures within the model slope
declined drastically during the first rainfall round, especially for the deep positions
inside the slope model.

(4) The horizontal displacements of the critical positions within the slope model increased
evidently during the first round, with declining rates. After the second rainfall round,
the horizontal displacements showed no regular rise, indicating the ultimately stable
status of the slope.

(5) The model test results were utilized to perform the post evaluation of the slope-cutting
treatment to the loess slope, forming a framework for the post evaluations of loess
slopes under long-term rainfall. This evaluation framework can be of benefit to other
slope treatment projects.
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Abstract: Being a fast-growing city with a high rate of urbanization and agricultural development,
the city of Najran, situated in the southwest of the Kingdom of Saudi Arabia, has witnessed a series
of earth fissuring events and some other geo-environmental hazards in recent times. These fissures
have posed a significant threat to inhabitants and infrastructure in the area. A few studies suggest
that excessive groundwater withdrawal is responsible for fissuring activities. Because of the intensity
of this geo-hazard, this article presupposes that groundwater extraction alone cannot be responsible
for the magnitude of fissuring activity in the area and discusses other severe factors that could be
responsible for the earth fissures. The study proposes that the cause of the problem is multifaceted
and synergistic, and outlines threatening factors that can inherently trigger more fissures in the region,
based on the geologic history of the area and a critical review of investigative studies conducted in
the area and beyond. Predicated on the region’s structural history, some undiscovered elements that
can potentially cause fissuring in the region were identified and discussed. Some of these include
the pre-existence of a fault system, a crack from the bedrock ridge, the existence of paleochannels,
the collapsibility of loess, the tectonic (earthquake) history of the area, and differential compaction
due to heterogeneity. The use of a metaheuristic and a combined application integrating other
optimization algorithms can be utilized to determine optimum hyperparameters and present their
statistical importance, thereby improving accuracy and dependability in fissure prediction in Najran.
Reliable models would primarily be used to monitor active fissures and identify key factors utilizing
spatial information, subsidence, groundwater-related data sets, etc.

Keywords: earth fissures; groundwater; subsidence; geo-hazard; environmental; Najran

1. Introduction

Recently, earth fissures, which are deformations or cracks at the Earth’s surface that
occur in regions with little or no rain, mainly caused by the immoderate withdrawal or
pumping of groundwater [1,2], have become one of the disturbing environmental problems
across different cities in the world. It causes damage to homes and businesses, highways,
bridges, waterways, drains, powerlines, farmland, pipeline infrastructure, animals, ecosys-
tems, biodiversity, and individual lives, as well as providing a pathway for toxins to enter
groundwater. According to [2–8], several researchers have confirmed that groundwater is
vulnerable to impurity through earth fissures, and cleaning these contaminants can be an
arduous and time-consuming task. As a result, this geological risk has had a huge impact
on business activities, social security, and environmental conservation, garnering more
attention in recent decades [9]. The occurrence of and damage caused by earth fissures
have been recorded in different places around the world, including the southeast corner of
the North China Plain, the southwest of the American Basin, the North Indian River Plain,
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the west Asian valley, the Somaliland coast in East Africa, the Iceland region, the valley of
Najran in Saudi Arabia, and so on [4,10–14].

Focusing on the city of Najran, the increased consumption of groundwater for crop
watering in the city of Najran has induced earth rifts of varying degrees in the zones
susceptible to tensile stress [2]. This unexpected occurrence of earth fissures has created
fear among the farmers and private owners of the area as it might render the land useless
for agricultural and other purposes. Because of its inherent geomorphologic and geologic
disposition, the territory is vulnerable to a variety of geo-hazards. As a rapidly expanding
city, with a high rate of urbanization and agricultural development, the earth’s fissuring
and some other geo-environmental hazards have posed a significant threat to inhabitants
and infrastructure in Najran [15]. Due to the obvious rapid rise of the populace and the
increased use of the existing infrastructure, the Saudi government is now building facilities
such as motorways and urban and agricultural fields in areas near hazard zones [15].
Increased ground fissures in Najran can obstruct the building of both surface and subsurface
infrastructure, according to prior events. When buildings are built in an area where there are
ground fissures, issues such as structural failure or cracking, groundwater leaks, damage
to already-existing buildings, and long-term structural instability may arise, because of
the activity of the ground fissure [16]. Sub-layer subsidence, post-construction ground
settlement following the dissipation of porewater pressure brought on by structural loads,
disturbance introduced by nearby building projects, shifts in the hydrological system and
aquifer infiltration, and cyclic loading of trains are a few factors that could contribute to
the destabilization of structures in fissure-prone regions. These elements might lead to the
expansion of ground fissures, and in the most extreme scenarios, brand-new dangers such
as rail track deformation might appear [16]. Therefore, in Najran and other fissure-prone
cities, remedies must be used to guarantee the long-term stability of the ground as well as
the overlying structures.

Groundwater depletion or over-pumping has been identified by scientists as the main
cause of earth fissuring [1,2,17–22] because it creates significant tensions in the aquifer.
To maintain an equilibrium in the aquifer volume, it adjusts itself, thereby causing com-
pression, and pressure that could result in enormous ground subsidence, and consequent
fissures. According to [17], it is believed that due to various lateral motions inside the
aquifer caused by groundwater harvesting from the unlithified aquifer, ground fractures
begin at deep levels underneath the surface [18]. Some researchers think that these fissures
are caused by the differential deformation of confined layers in the horizontal axis, and
others maintain that it is a result of the forceful gradient effects of groundwater harvest-
ing [19–21]. However, further studies have proven that the impact of groundwater on
fissure formation can be horizontal, vertical, and oblique [18,22]. Other factors such as soil
friability, non-consolidation, and the presence of pre-existing fractures can also cause earth
fissures. Several investigative studies have been conducted across the world to ascertain the
causes of fissure formation. Although these studies adopted different evaluation techniques
at unique geologic locations, the conclusions drawn from them are somewhat similar. Some
of these studies are listed in Table 1 below, which highlights the study locations, techniques
adopted, and the causes of the fissure formations in the study area.

Table 1. Showing fissure investigation locations, evaluation techniques, and their causes.

S/N Location Technique Causes References

1 Najran, Saudi Arabia

Remote sensing,
hydrological,
investigation studies,
and electrical
resistivity techniques

The major drivers in the development
of earth fissures are excessive
groundwater withdrawal owing to
irrigation activity and the area’s
underlying topography.

[2,15]
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Table 1. Cont.

S/N Location Technique Causes References

2 Qinglong Graben in
Yuncheng Basin, China

A variety of geological
investigations
including site
inspection, drilling, and
trench excavation were
employed to define the
characteristics and
examine how earth
fissures are formed.

The formation of earth fissures in
Qinglong Graben is divided into three
steps, namely (1) regional extension
creating normal faults under the
surface, (2) inadequate groundwater
extraction causing normal faults to
rupture the surface, and (3) erosion
widening the cracks

[23]

3 Haram-to-Haram
Highway, Iran

Extensive field
mapping, on-site
experiments, sampling,
and evaluation of soil
in the laboratory.

Fissure development and expansion in
the studied area were aided by a
combination of shallow and deep
mechanisms as well as other
environmental agents, with soil
features playing a key role.

[24]

4 Central and
northern Arabia

Integration of field,
interferometric
synthetic-aperture
radar (InSAR),
groundwater geology,
geodetic studies, and
geospatial analysis
were conducted to
decipher the cause
of fissuring.

The fissures were mostly constrained
by a graben fault system which played
a role in the development of the
fissures. Fissuring activity was
triggered by aquifer depletion.

[25]

5 Weihe Basin, China

Field mapping, trench
excavation, geophysics,
and geotechnical
testing methods
were applied

The ground fissures mirrored the
deeply buried faults on the surface.
Loess collapsibility and seepage were
involved in the mechanism of the
fissures. Differential settlement
occurred in the collapsible and
non-collapsible portions of the loess,
with ground fissures serving as
the borderline.

[26]

6 Su-Xi-Chang, southeast
corner of northern China

The geologic history
and piezometric
features of the area
were studied. Based on
this, a physics model
was used to evaluate
the mechanism of
ground fissure creation.

The creation of fissures in the location
is caused by repeated groundwater
impoundment and pumping, as well
as peculiar geological conditions.

[18]

7 Yingxian area, Datong
Basin, China

Trench excavation
analysis, spudding,
seismic exploration
techniques, and the
geologic history of the
area were employed.

The findings and interpretations show
that (1) the fissures are connected to two
large active faults that provide the
background for the fissure formation;
(2) intensified groundwater harvesting
has revived the underlying faults and
exacerbated fissure growth; and
(3) assuagement is best achieved by
ceasing excess groundwater exploitation,
suitable engineering design, and
avoiding major structure location.

[27]
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Table 1. Cont.

S/N Location Technique Causes References

8 Northeastern Beijing
Plain, China

To determine the
origins of fissure
formation, an
integrated ground
survey with trenches
and geophysical
prospecting profiles
was conducted.

The pre-existence of buried channels
and faults offered a favorable
condition for the origination of
fissures, and groundwater pumping
further accelerated the expansion and
the fissures.

[28]

9 Shuanghuaishu, Shaanxi
Province, China

An on-site water
immersion test was
performed to study the
cause of fissures

The creation of collapsible earth
fissures resulted from tensile tension
and strain caused by the unequal
collapse of loess. The loess encountered
tensile failure and developed an earth
fissure when the force was greater than
the eventual deformation

[29]

10 Wuxi, China

Stress displacement
assessment using an
interface infinite model
that was developed
from an impermeable
and non-compressible
rock cliff.

The shape of the underlying ridge is
the most important determinant. [30]

11 Taiyuan Basin,
northwestern China

Integrated the analytic
hierarchy process
(AHP), the area under
the curve (AUC), and
the certainty factor
model (CFM).

Active faults are the principal cause of
earth fissure creation. Fissures are
liable to emerge in alluvial–diluvial
clinoplain as well as the intermediate
zone at the geomorphologic borderline.

[31]

12 Al-Yutamah Valley,
Western Arabia

Used InSAR products
generated by the
JPL-Caltech ARIA
project to locate regions
with short-wavelength
abnormalities, and then
manually reprocessed
InSAR products at a
higher resolution to
optimize spatial and
temporal coverage.
MintPy processes were
used to build the
InSAR time series from
post-processed
InSAR products.

Aquifer depletion and the existence of
pre-existing sedimentary deposits
such as lake deposits promote friable
soil compaction.

[32]

From the reviews and ongoing discussion among scientists about fissure formation
processes, it can be summarized that (a) deep dynamic tectonism controls ground fissure
location, (b) the internal tectonic force of the earth’s crust leads to a collection of ground
fissures, (c) stresses at the fault planes induces the formation of ground fissures, (d) ground-
water overmining results in the reactivation and expansion of subsurface faults, leading to
fissure formation, and (e) buried paleo geomorphology aids the collapsibility of soils and
formation of fissures. The assemblage and appearance of ground fissures are thus majorly
influenced by the geological environment. More crucially, the combined impacts of interior
geological forces (such as crustal instability, tectonic forces within a craton, and motions
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at fault zones) and human-instigated stresses, such as excessive groundwater extraction,
heavy engineering structures, etc., cause ground fissure propagation.

A more detailed understanding of the mechanism and causative factors of fissures
would assist in designing suitable ways to mitigate the fissure hazards. This paper (1) iden-
tifies and discusses five major factors that cause ground fissures by reviewing scientific
studies conducted by different researchers, (2) relates these factors to suggested causes of
fissures in the city of Najran for a better understanding of its development mechanism,
(3) shares insightful conclusions about other potential factors that could contribute to the
development of fissures in in the city of Najran, (4) presents honest opinions about fissure
occurrences in Najran, and (5) makes recommendations on potential approaches that could
be taken to study, monitor, and mitigate fissuring in the city.

2. Geological Background

Najran is the administrative center of the Najran region in the southwest of Saudi
Arabia, close to the Yemeni border (Figure 1a,b). Najran is one of the kingdom’s extremely
fast-developing municipalities, with a populace that has increased nearly tenfold across an
area of around 360,000 km2. In the last four decades, both the government and the private
sector have invested significantly in Najran. The area is primarily an agricultural zone in
Wadi Najran’s floodplain. The elevation rises to 1447 m, with elevations ranging from 883 m
east to 2330 m west [2]. Three distinct geomorphic groups exist, namely (a) elevated zones
in the western part, (b) lowland regions with sediments deposited across the Wadi, and
(c) up the east dominated by sandy dunes. Najran is composed of volcanic Precambrian
rocks, as well as Wajeed sandstone deposited during Cambrian–Ordovician age, and the later
deposited tertiary bedrock [33,34]. Wadi Najran is covered in alluvial quaternary sediments,
especially dunes prevailing eastward near the Empty Quarter fields atop alluvial soils.

In the study area, Wajid sandstone is found in a sequence of hill and rock formations at
scattered outcrops. It lays unconformably atop the roughly flat basement rocks of the Shield
of Arabia. The topmost exposure of the Wajid sandstone formations does not quite extend
into the research region, but it does unconformably underlie the Permian Khuff Formation
to the northeast. The Wadi Najran region is made up of Arabian–Nubian basement massif
rocks such as granites, metamorphosed andesite, basalt, gneisses, granitoid formed during
orogeny, and gabbro and diorite volcanic rocks. The Arabian plate’s N–S trending structures
were created by extensional tectonic movements of the Arabian–Nubian Shield [35,36].
The NW–SE trending dextral fault system of Najid was created in the very last phase
of its rifting tectonic system, after which the Arabian Shield was made almost plain,
and the Wajid Group was accumulated during the Paleozoic in the southern region of
Saudi Arabia [37]. Numerous tectonic events, mostly in the Phanerozoic, reactivated the
Precambrian underlying structures [38–41]. The Wajid Group’s regional-scale fissures are
most likely the result of the reactivation of those structures [42]. Sedimentary rocks cover
the eastern section of the Najran region as well (Figure 1b).

The Wajid Group is a siliciclastic sequence that was deposited during the Cambrian and
Permian ages and underlies the southwestern zone of Saudi Arabia [43,44]. Its exposures
extend from Wadi Al-Dawasir in the south of Najran, with just a small exceptional case in
some areas [44] (Figure 1b). The Wajid Group in Najran is divided into five stratigraphic
units, from the earliest to the most recent formation, and they include Dibsiyah, Sanamah,
Qalibah, Khusayyayn, and Juwayl [43,45], as shown in Figure 2. Based on the previous
lithologic description, the lower Dibsiyah Formation is a reddish cross-stratified sandstone
with some conglomerate layers deposited in some kind of fluvial channels. The topmost of
Dibsiyah Formation’s intercalated massive and bioturbated sandstones were accumulated
in transitional shallow marine settings. The Sanamah Formation is composed of coarse-
grained conglomeratic sandstones, considered a mix of glacial and fluvial sediments.
The Khusayyayn Formation is composed of river- and wind-deposited sandstone with
grain sizes ranging from medium to coarse. The Juwayl Formation is massive and/or
layered, consisting of grains that range from fine to coarse, deposited in a glaciofluvial
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setting [42,46–48]. The Group’s sandstones range in texture from fine to coarse, are slightly
sorted, and are partly rounded to sub-angular in form. Quartz arenites that are composed
of limited percentages of feldspars form the basal units; however, Khusayyayn Formation
sandstone is a subarkose sandstone having a highly disproportionate amount of feldspar
grains [42], as illustrated in Figure 2.

 

Figure 1. (a) Location map of the city of Najran, the Kingdom of Saudi Arabia; (b) digitized geologic
map of Najran from [15].

248



Sustainability 2023, 15, 6006

Figure 2. Shows the stratigraphic sequence of the Wajid Group sandstones together with their litho
characteristics in the right column (after [49,50]).
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3. The Causes and Mechanisms of Fissures Formation

To better comprehend the fissuring process and establish a plan to mitigate earth
fissuring and, consequently, reduce hazards, it is essential to identify the elements that
influence earth fissuring. However, it is unclear how these factors affect the development
and evolution of earth cracks. In the intervening decades, several theories have been put
forth to elucidate how groundwater loss causes surface faulting as well as earth fissuring.
Some include localized vertical differential compaction, regional variable compaction, and
capillary stress related to a lowering water table [51]. It has also been proposed by [52]
and [53] that aquifer displacement, particularly lateral movement, is the cause of earth
fissures associated with groundwater depletion. The complicated processes of earth fissur-
ing resulting from inordinate groundwater drawdown, as perhaps the major influential
anthropogenic factor, are quite well discussed in the literature [54–62]. By pressurizing
susceptible aquifer systems, groundwater exploitation significantly contributes to soil slope
failure and fissure emergence. The subsidence associated with the extraction of liquids
such as water from subterranean strata is likely the most well-studied of all anthropogenic
and natural sources of subsidence [63]. In aquifer systems, lateral deformation is caused
by removal and occasional recharge/discharge pressures [17,64–67]. Earth fissure is most
often provincial and widespread in aquifer systems undergoing compaction, with provin-
cial lateral stresses rarely exceeding 2 ppm and regional misalignments rarely surpassing
240 arcseconds. Linear strains can be substantial locally, especially near pumping bore-
holes with higher pressure gradients, along with inflections in the bedrock landforms of
underground water systems, and near the borders of hydrogeologic units with differing
hydraulic and (or) mechanical characteristics [63]. Enough scientific work is necessary to
clarify the role of lateral strains in the formation of geological fissures in basins predisposed
to aquifer system compression. Research has shown that not only horizontal deformation
but shear on vertical planes and rotating stresses also play a part in the development
of certain earth cracks [20]. However, scientists have argued that lateral displacement
of the earth’s surface was only detected in a few spots in areas of subsidence related to
groundwater depletion. They maintain that lithologic differences, such as the amount of
consolidation or cementation in alluvial deposits [68], and subsurface structures such as
faults, both influence the formation and placement of fissures [58], whereas the inordinate
exploitation of groundwater only activates them. Based on previous studies, this paper
categorizes the mechanisms of fissure formation into three, namely tectonic, non-tectonic,
and anthropogenic (Table 2). Figure 3 illustrates how these mechanisms are interrelated
and dependent on each other, with groundwater pumping as the central factor that triggers
other processes.

Table 2. Categories of earth fissure formation mechanisms and processes.

S/N Non-Tectonic Tectonic Anthropogenic

1 Collapsibility of Loess Bedrock topography Groundwater pumping

2 Differential compaction Pre-existence of faults Structural loading

3 Existence of paleochannels Earthquake/subsidence Underground tunneling
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Figure 3. Illustrates the interdependence of earth fissure formation processes.

The following subsections discuss these processes and how they are triggered by dise-
quilibrium caused by groundwater over-pumping and other natural hydrological conditions.

3.1. Tectonic Mechanism
3.1.1. Crack from the Bedrock Ridge

The strata structure of the aquifer system is influenced by the bedrock ridge. The
large differential settlement arises because of sediment consolidation under higher effective
pressures from groundwater drawdown when groundwater is removed disproportionately
for a long time. Bending can cause tensile deformation in sediments above the bedrock ridge,
as shown in Figure 4. A fissure occurs when tension surpasses the tensile strain limit of soils.
The elastic deformation of sediments under plane strain circumstances can be calculated
using Equations (1)–(3), as the fissure develops longitudinally along the bedrock ridge.

Ex = dv/dy; Ey = du/dx;

Ex =
dv
dy

(1)

Ey =
du
dx

(2)

=
dv
dx

+
dv
dx

(3)

where u = lateral displacement (m), v = vertical displacement (m), Ex = perpendicular
strain in the horizontal direction, Ey = perpendicular strain in the vertical direction, and

= shear deformation (strain)
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Figure 4. Illustrating the deformation mechanism of bedrock-induced fissures, where S is the vertical
displacement due to differential stress, is horizontal displacement which is a function of S, and H
and L are vertical and horizontal thickness, respectively.

For illustration, [30] studied land subsidence and the accompanying ground fissures
in the Suzhou, Wuxi, and Changzhou (Su-Xi-Chang) areas of southern Jiangsu Province
in China in 2010. Excessive groundwater drawdown, in combination with the underlying
bedrock ridge, was identified as the causal element in previous site investigations and
geophysical surveys. As per new findings, earth fissures may have ruptured from the
underlying bedrock cliffs or ridges to the surface of the ground. Ref. [68] asserted that
previously postulated mechanisms to produce fissures from groundwater were predicated
on assumptions and abstract justifications which might or might not be coherent with the
physics of fissure formation from water table decrease. In the research, the authors aimed
to better understand the mechanical mechanism which culminates in the creation of earth
fissures in an unconfined aquifer due to fluctuating groundwater level fall, as well as the
important elements that regulate the commencement of earth fissures. Ref. [68] found
that earth cracks in aquifers emerging from groundwater over-pumping are created by
the effect of shearing on vertical planes and spinning, rather than tension, as is usually
assumed. It demonstrates how the gradient of the subduction bowl, which is composed
of simple shear deformation and spin can be used to anticipate the onset of earth fissures.
This finding supported the idea that applied stress could cause earth fissures to fracture
from the bedrock cliff face to the outer surface of the earth. Ref. [56] shed more light by
outlining two distinct mechanisms that are involved in the formation of fissures influenced
by bedrock ridge: first, bending or draping of horizontal bedding planes over the ridge by
differential vertical compaction and, second, tensile failure at depth along the top of the
ridge caused by horizontal movement of the aquifer in at least one direction away from
the ridge. According to the study by [69], the upper layers on either one or both sides of
the ridge drape or spin in a reverse orientation as a result of the vertical compression at a
range from the ridge. Aquifer fabric may be stretched horizontally over a rigid bedrock
ridge as a consequence of uneven vertical compression close to the ridge, creating a tension
region in which the aquifer material is thinnest. The latter process is predicated on a
groundwater aquifer that is moving horizontally and is partially or completely terminated
by the bedrock. This denotes a fresh impetus for the beginning and propagation of an earth
fissure. Additionally, this horizontal displacement may result in a deep tensile failure. If
there are two pumping centers on each side, this failure might happen in the material next
to the ridge in the axis of pumpage, but it may also happen right over the ridge’s highest
point where the aquifer material is moving away from the ridge on both flanks. As the
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horizontal aquifer migration intensifies, so any collapse might ultimately migrate upward
and start a fracture in the layers above.

3.1.2. Pre-Existence of Faults

Existing faults in constant shear states may become more active and stretch to the
ground surface, causing cracks in the hanging fault block. Besides that, sustained aquifer
depletion in such an area can cause the faults’ hanging wall to consolidate and settle,
increasing the unequal settlement on both blocks of the faults and hastening the mobility
and formation of the ground fissure [70]. Fault zones and buried fault scarps can have an
impact on the accumulation of stresses over time. The faulted zones have a considerable
influence on extensional and compressional patterns, whereas the buried fault scarp has
a greater impact on shear stress patterns. Ref. [58] discovered that a fissure caused by
tension is near the faulted block at the sliding wall, affirming that fissures begin near
the surface and make their way downward, terminating near the boundary between the
saturated and unsaturated column. The presence of a fault zone has been established
as a determinant in a fissure’s propagation course. This was further confirmed by the
authors of [28], who used site evaluation, drilling, and trench unearthing to define and
assess the basis for fissure formation in Qinglong Gaben, China. Syn-sedimentary faults, as
well as an excessive drawdown of groundwater and erosion processes, were shown to be
major drivers in the creation and multiplication of fissures in the region, according to the
research. Recent research has revealed that earth fissure cluster formation is polygenetic
and the result of the earth’s internal forces and anthropogenic actions. The origination of
fault-induced earth cracks can be subdivided into three developmental phases: first, initial
extension resulting from fault planes underground, followed by the excessive pumping of
groundwater, and then, washouts aided by the development of the fissure. Deep crustal
movements underneath the basin influence earth fissuring, which is driven by the local
geodynamic stress of the nearby fault zones [71]. The fault displacement increases as the
depth of the fault grows, which is typical of synthetic and other syn-depositional faults.
Vertical displacement characterizes these fissures, which can have a yearly growth rate
that ranges from 1 to 3 cm. The tectonic structure of a basin’s hidden faults is thought to
have an influence on the formation of large-scale fissures, which may also be influenced by
the basin’s regional extensional stress. Over-exploitation of groundwater further increases
the level of activities leading to fissure formation [72]. As a result, groundwater exploita-
tion is an important contributor to fault-induced earth fissure development. Intensive
groundwater extraction results in the establishment of an inner multi-directional (radial)
compression zone near pumping wells and an external radial tensional zone outside them.
Lateral tensile stress (σ) minimizes the resisting force on the fissure surface and increases
its activation in fissures in the external radial tensional zone. If a well is bored in one of
the fault compartments, for example, the rate of the water table decrease in the sliding (or
hanging) wall will be faster than it is in the footwall, resulting in more shear stress (τ) in
the vertical plane of the fissure. Unequal surface settling (ΔH > ΔF) causes tensional stress
around the ground fissure, which encourages fissure migration and expansion as shown in
Figure 5. The sediment thickness in the hanging wall is generally greater than thickness
of the accumulated sediment in the footwall due to the build-up of pre-existing faults.
Fissuring can form aberrant layer placements and subsequently stretch to pre-existing
faults as groundwater pumping intensifies.
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Figure 5. The aquifer-driven dynamics of ground fissuring. τ = shear stress; σ = tensile stress;
θ = inclination of earth fissure; ΔH and ΔF = the settling rate of the ground surface.

3.2. Non-Tectonic Mechanisms
3.2.1. Existence of Paleochannels

Paleochannels affect the creation of rock fissures, which are commonly caused by
intense rains, squeezing, or earthquakes, and inadequate groundwater pumping [73,74].
It creates an ideal environment for fissure formation [71]. Because of the inhomogeneity,
anisotropy, and friability of shallowly buried ancient channel deposits, instabilities and
uneven settling are common, resulting in fissure development, piping, and surface erosion,
among other things, and human activities hasten this process. Earth fissures linked with
paleochannels have short lengths and superficial depths overall, as well as the forming trend
of earth fissures on the edges of paleochannels, which reflects the channel’s meandering
model [73,75]. Due to gravitational force and extra pressures, the top has strata curves and
breaks above the empty spaces when unequal vertical strain occurs in the compressible layer.
According to a theoretical examination of their characteristics, channel controlled fissures
are generated by gravity, initial joint stresses, and groundwater withdrawal operations, and
are driven by paleo-fluvial factors [74]. The base of paleochannel-induced fissures usually
coincides with curving or meandering surfaces or gradational zones between valley slopes
and terraces, implying that they are generated by the self-weight of overlying strata [75].

3.2.2. Collapsibility of Loess

In recent years, experts have become increasingly interested in nontectonic ground
cracks. Nontectonic ground fissures were explored, and their causes were investigated
in [6,29]. They used field study, trenching, and geotechnical testing to conclude that
nontectonic ground cracks are mostly caused by loess collapsibility [6], determined that
earth cracks are produced by loess collapsibility and erosion is caused by infiltration,
and that loess cracks create a favorable environment for the creation of earth fissures.
The studies reached these conclusions by studying groundwater variability, topology,
soil physico-mechanical indexes, as well as the lithological backdrop. Ref. [26] looked
at the relationship connecting four soft soil properties and earth fissuring: density of
dry loess, its porosity, water saturation, and self-gravity collapsibility coefficient. They
described how earth fissures are generated by employing the spinning mechanism of a
loess cantilever beam, as well as the computation equation of tensile force. Although the
following research on fissures caused by factors other than tectonic forces has distinct foci
and creation mechanisms, they all agree that nontectonic fissure formation is linked to
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the ability of loess to collapse and allow fluids to infiltrate. According to [24], all fissures
formed by soil collapsibility go through a phase from emergence to maturity, starting with
microcracks and ending with eroded fissures as broad as gullies. It is said that as surface
water accumulates and infiltrates into the ground, the wetness of the soil increases while
its tensile strength falls, causing fissures to form. The saturation of collapsible soil occurs
because of water infiltration, which is followed by hydro-compaction and the creation of
new nascent hairline fissures. Additional water infiltrates inside the subsurface through
tiny cracks, eroding telescopic soils and forming underground passageways that are not
obvious on the earth’s surface in the initial state of growth and can only be observed
through some cave-ins along the fissures. More water erosion broadens and increases the
subway, causing the roofs to collapse and forming pits along the fissures. Finally, owing
to piping erosion, these potholes connect, producing more collapse. Continuous erosion
enlarges the collapsed structures and transforms them into eroded gullies, which are the
mature stage of the fissures.

3.2.3. Differential Compaction Due to Heterogeneity

Aquifer heterogeneity results in a sudden shift in an aquifer’s thickness or in its bed
composition. According to [53], such thickness fluctuations could lead to rotation, vertical
shear, or even lateral expansion at depth. For instance, the author in [56] illustrated that
the vertical compaction strength varies on either side of a geometric heterogeneity. He
explained that localized differential vertical movement in the underlying, non-compacting
interval is caused by a geometric anomaly that migrates upward, causing tilting and
shearing at the surface of the terrain. On the other hand, localized differential horizontal
distortions may cause fissures at the ground surface as well as a deep extensional zone and
induce an opposite direction of rotation (see Figure 6).

 

Figure 6. Heterogeneous layer of a highly compressible clay causes differential compaction, leading
to vertical shear, rotation, and horizontal extension [56].
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The ongoing discussion is summarized in Table 3, which highlights the major factors
and processes of fissure formation as discussed above. Other anthropogenic factors and
processes such as groundwater over-pumping is an integral part of the processes discussed
above since they facilitate them.

Table 3. Summary table of the formation mechanisms of earth fissures.

S/N Mechanism Factors Process of Formation

(1) Bedrock ridge crack
• Subsurface topography
• Compressibility of rock units
• Rupture due to brittleness

• Bending and/or rupturing due
to differential compaction

• Horizontal displacement due to
groundwater harvesting

Pre-existence of faults

• Buried fault scarps
• Unequal settling of foot and

hanging walls
• Fault/fracture zones
• Deep crustal movement

• Fault activation due to
over-pumping

• Initial extension of fault heave
• Washout due to erosion

Pre-existence of Paleochannels

• Intense rain
• Instability of recent

channel deposits
• Uneven settling of sediments
• Overburdened weight of soil

• Initial joint stress
• Piping and surface erosion
• Soil collapse due to

differential pumping
• Stratal curves due to gravity

and pressure

Differential compaction • Heterogeneity of rock units

• Thickness fluctuation
• Vertical shearing and

lateral expansion
• Rotation due to

differential loading

Collapsibility of loess
• Physico-mechanical

properties of rocks

• Tensile strength failure due to
water infiltration and
soil wetness

• Hydro compaction exerted by
water pressure

• Piping erosion, underground
tunnelling, and cave-ins

4. Earth Fissures in Najran

From the previous discussion, we can see that it is a popular opinion among researchers
that groundwater depletion makes a significant contribution to the formation of fissures.
Researchers have attributed inadequate groundwater removal as the primary cause of
land subsidence and earth fissures in several locations throughout the Kingdom of Saudi
Arabia [2,32,34,76]. Ref. [34] highlighted the diverse kinds of ground fissures (Figure 7)
found in the country based on their various causative factors, some of which include
(a) earth fissures induced by the excessive withdrawal of groundwater; (b) earth fissures
due to the swelling and shrinkage of clay deposits such as in Hail, Al Qasim; (c) earth
fissures caused by dewatering impacts on Khabra deposits, such as in the Al Qasim
geopolitical zone; (d) ground fissuring connected to subsurface structures and groundwater
over-pumping; and (e,f) earth fissures emanating from the effects of an earthquake.
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Figure 7. Images of ground fissures found in different parts of Saudi Arabia [34].

A study conducted in [2] estimated that the city of Najran witnesses only about
31.3 × 106 m3 rainfall per year. This is the reason for the constant reduction in water
table levels, which caused the drying of more than a thousand wells in the city. Rapid
groundwater depletion remains one of the most profound sustainability challenges facing
many cities. In Najran, the authors in [2] indicated that the Najran fissures have varying
lengths and widths; one of the fissures elongated to about 600 m in a northeast direction
and has a varying breadth of thirty or fifty centimeters (see Figure 8). Although these
reported initial widths of the fissures might seem small, the authors in [77] asserted from
their investigation of fissures in south–central Arizona that similar fissures being initially
narrow and having a width of about 2 cm wide and 1–2 km long, widen and elongate as
time passes. As discussed above, in Section 2, the length of the fissures or the extent of
deformations resulting from fissuring activity typically depends on the underlying geology
of the area, with causes such as pre-existing faults, the degree of groundwater depletion,
and the resultant pressure imbalance. As reported from a survey carried out in Su-Xi-Chang
Plain, in the southeastern part of the North China Plain, earth fissures can be up to two
thousand meters long [20]. It is therefore acceptable to presume that earth fissures in Najran
might become worse than they are presently.
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Figure 8. Fissures linked to subsidence because of groundwater over-withdrawal in Najran are shown
in subfigures (a,b) in non-residence locations [2].

In Najran, most exposed ground fissures caused by groundwater depletion appear
on the surface as linear ruptures with some vertical displacements, and the resulting
surface scarps result in myriad destruction on roadways, farms, and residences with a
range of influence of 30 to 400 m. Due to tensile forces caused by excessive groundwater
extraction, earth cracks in the city of Najran can stretch for tens of meters to kilometers [51].
Studies have shown that Najran’s earth fissures are linked to groundwater depletion
((Interdisciplinary Earthquake Hazard Research in Gulf of Aqaba and Strait of Tiran (GAST)-
NASA/ADS, n.d.) [34,78]. The rapid drop in the water table level caused subsidence as well
as ground failure, which was evidenced by earth rifts, owing to the aquifer’s composition
of poorly consolidated sands with high porosity and aquitards with low pore connectivity
and high compressibility [2,34]. If increased water exploitation in the city of Najran persists,
fissuring and some other environmental threats including sinkholes, seismic events, and
structural failure to engineering constructions will also persevere, causing the size of
existing subsidence and fissures throughout the location to grow even larger [15].

Research has proven that factors causing the formation of fissures are synergistic,
implying that, although groundwater depletion triggers or enhances the process, other
pre-existing geologic tectonic and nontectonic factors play major roles in enabling their
formation [23]. Apart from the excessive drawdown of the groundwater table in Najran,
the subsurface topography of the study area has been also suggested as a major factor
contributing to the formation of the fissures in that area. As discussed earlier, subsurface
slopes such as bedrock ridges can influence the formation of fissures [21,58]. This secondary
cause of the Najran fissure was proposed by the authors in [2], who used advanced electrical
resistivity tomography (ERT) to evaluate the subsurface extent, topological information,
and the spread of fissures in the Najran metropolis.

Several regional and local active seismic zones have been reported in the western
region of Saudi Arabia, including the Red Sea, the Gulf of Aqaba, and the Najid Fault
system in addition to many others that can potentially accommodate different magnitudes
of earthquakes such as the destructive 1993 (Mw 6.1) and 1995 (Mw 7.3) earthquakes that
occurred in the Gulf of Aqaba [79,80]. These seismic zones activate tectonic deformation of
the earth and consequent faulting across the region, and the city of Najran, being in the
western region, is not entirely free from their impacts. The Wajid Group which underlies
the city of Najran is reported to be fractured on a regional scale as a result of the paleo
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reactivation of the Arabian Shield structures [42]. These structures can be easily reactivated
due to the stress imbalance accruing from excessive groundwater pumping. Although it
has been suggested that subsurface topography is a key factor in the fissure’s formation,
it is not exhaustive and can be an insignificant contributor to the fissuring process. It
is, therefore, required to conduct fault or fracture mapping studies across the fissuring
zones. An in-depth understanding of the structural architecture and fault history of the
Najran Basin would be an immense guide toward understanding other unknown factors
responsible for fissuring in the area. There is a need to conduct further research into
the other potential causes of this hazard. A robust understanding of this would enable
the government to develop holistic mitigation and control measures to protect life and
properties in the area.

4.1. Najran Fissure Monitoring Recommendation

So many arithmetical, theoretic, geomechanical, and physics models have earlier been
established to explore the configurations, tensile forces, and resumption of fissuring pred-
icated on underground water lateral motion, drainage, agrarian operations, subsidence,
continuous soil cracking, bedrock characteristics, and aquifer/aquitard layer thickness,
as evidenced by the ongoing discussions in the literature [29,81–85]. We have shown that
the factors responsible for fissuring in Najran are multifaceted and may be more serious
than previously thought. If all the probable sources of hazard are identified, they can
be combined to create more robust conceptual and/or predictive models of the fissure
development mechanism in the area. It is especially important to have a holistic model
of the earth fissure hazards in the area to recognize susceptible groundwater areas for
the proper enactment of water management policies and efficacious implementation of
groundwater recharge strategies to achieve environmentally friendly preservation plans
and protect existing groundwater resources [86]. Predicting and comprehending hazardous
locations can assist policymakers in managing susceptible areas and reducing the like-
lihood of damage. The findings would also be useful for water resource managers in
formulating judgments on how to properly regulate groundwater extraction. To investigate
the creation mechanism of fissuring in Najran, statistically based models such as time
series models or artificial intelligence (AI) can be applied. These models would primarily
be used to monitor active fissures and identify key factors, utilizing spatial information,
subsidence, groundwater-related data sets, etc. [85–89]. As discussed by the authors of [90]
for landslide prediction, metaheuristic algorithms such as artificial bee colony (ABC), ge-
netic algorithms (GAs), [90–93], gray wolf optimization (GWO) algorithms [94,95], particle
swarm optimization (PSO) algorithms [96,97], and water cycle algorithms (WCAs) [97] can
also be implemented for fissure predictions. Ref. [90] further demonstrates that a combined
application integrating k-fold cross-validation, metaheuristic support vector regression,
and nonparametric Friedman tests can be utilized to determine optimum hyperparameters
and present their statistical significance, thereby improving the accuracy and dependability
of AI-based forecasts, and with the help of these methods, different machine-learning-
based geo-hazard models might be analyzed and contrasted to ensure high prediction
precision [98].

4.2. Future Fissure Studies in Najran

It is suggested that fissure-related studies in Najran and the surrounding cities focus
on identifying all the major potential contributors to their formation processes, as well
as assessing the contribution of an ephemeral variability of predictors such as rainfall,
groundwater drawdown, groundwater variability, and so on, in order to develop a reliable
model that can be utilized to forecast and monitor fissure formation in the area. This would
be a great opportunity to learn more about the earth fissures. The primary determinants in
fissure formation can be revealed through a sensitivity analysis of the predictors. Future
findings could serve as a foundation for fissure research in other sections of Saudi Arabia
and beyond. The increased demand for the prediction of possible hazards and susceptibility
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mapping can be met by constructing a credible fissuring model [7,99–102]. Irregular bedrock
topography, low groundwater recharge, excessive aquifer depletion, water table decline, a
high density of groundwater wells, a high density of constructed roads, collapsible sediment
distribution, fault zones, and other factors could make these areas more vulnerable to fissure
hazards, and an accurate predictive model could help the government monitor these areas.

5. Conclusions

The factors that cause fissures are complex and synergistic. The investigation of this
danger in many areas has revealed that multiple elements contribute to its creation. Because
of the stress imbalance caused by groundwater extraction, pre-existing geologic features
such as faults, fractures, joints, or sloppy terrain are mostly activated. The likelihood of
pre-existing underground faults being activated by excessive groundwater extraction is
quite likely, given the fracture history of the underlying geology of the city of Najran.
Because prior studies of the fissures in this area failed to account for pre-existing faults
or channels, future research should concentrate on this and other potential variables.
Moreover, additional research might focus on finding all probable fissure predictors in
this area and constructing holistic, realistic, and efficient predictive models that could be
used to monitor areas with significant fissuring potentials. Such models would aid the
government in making critical choices on facility development, city planning, agricultural
expansion, and groundwater extraction regulation for both irrigation and domestic use.
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Abstract: Understanding the complex dynamics of landslides is crucial for disaster planners to make
timely and effective decisions that save lives and reduce the economic impact on society. Using the
landslide inventory of the Chittagong Metropolitan Area (CMA), we have created a new artificial
intelligence (AI)-based insight system for the town planners and senior disaster recovery strategists
of Chittagong, Bangladesh. Our system generates dynamic AI-based insights for a range of complex
scenarios created from 7 different landslide feature attributes. The users of our system can select
a particular kind of scenario out of the exhaustive list of 1.054 × 1041 possible scenario sets, and
our AI-based system will immediately predict how many casualties are likely to occur based on
the selected kind of scenario. Moreover, an AI-based system shows how landslide attributes (e.g.,
rainfall, area of mass, elevation, etc.) correlate with landslide casualty by drawing detailed trend
lines by performing both linear and logistic regressions. According to the literature and the best
of our knowledge, our CMA scenario-based AI insight system is the first of its kind, providing the
most comprehensive understanding of landslide scenarios and associated deaths and damages in the
CMA. The system was deployed on a wide range of platforms including Android, iOS, and Windows
systems so that it could be easily adapted for strategic disaster planners. The deployed solutions
were handed down to 12 landslide strategists and disaster planners for evaluations, whereby 91.67%
of users found the solution easy to use, effective, and self-explanatory while using it via mobile.

Keywords: AI; landslides; causalities; hazards

1. Introduction

Landslides are natural phenomena that have an adverse effect on human life, as
well as the economy [1]. For the purpose of reducing the negative impact of landslides
and to have an increased level of disaster preparedness [2], it is crucial to have a multi-
dimensional understanding the attributes of landslides. The complex nature of landslide
dynamics makes it extremely difficult to understand the impact of a particular type of
landslide. Bangladesh is susceptible to a variety of natural and human-induced hazards
including tropical cyclones, floods, droughts, earthquakes, tsunamis, and landslides [2]. In
particular, landslides have become recurrent phenomena in the Southeast Bangladesh in
recent decades. Therefore, the Government of Bangladesh (GoB) and its coastal residents
have been engaged in reducing resultant deaths from tropical cyclones, but landslides
have still caused over 500 deaths in Southeast Bangladesh with the majority occurring in
informal settlements in Chittagong and Rangamati districts since 2000. The root causes
contributing to the vulnerability of three different communities in the southeast part
of Bangladesh. These communities are Bengali, Tribal, and Rohingya refugees, [3] and
effective local risk governance was also promulgated [4]. Studies were also conducted
to identify the root causes and impacts of landslides using qualitative methods (e.g.,
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interviews and surveys) in Chittagong city and Rangamati district [5]. However, there is
further scope for applying artificial intelligence (AI)-driven techniques to identify physical
parameters that significantly influence deaths associated with landslides. As such, in this
paper, we deployed a new scenario-based AI insight system, that facilitates an in-depth
understanding of landslide hazards, enhances “risk perception”, and raises the level of
“disaster preparedness” in relation to landslides.

Geo-structural and causative factor-based analyses were applied for exploring land-
slide susceptibility zoning. Landslide susceptibility and risk assessment have been studied
at global levels [6,7]. Geo-spatial technologies such as the application of geographical
information systems (GIS), global positioning systems (GPS), and remote sensing (RS)
have recently taken prominence in hazard assessment and risk identification to assist in
decision making related to landslide disaster risk management [8,9]. GPS is a space-based
navigation satellite system that acquires information relating to exact location and time in
all weather conditions, anywhere in the world and it assists with the collection and storage
of landslide information. GIS is used in collecting, storing, and analyzing geographic
information and their non-spatial attributes. A plethora of studies have been conducted
using GIS for landslide hazard and risk assessment [10]. Remote sensing is a system where
information about the earth’s surface is obtained without direct contact with it. In recent
decades, RS has been widely applied for the identification of landslide areas, vulnerability,
and risk mapping [11]. Apart from the aforementioned techniques, machine learning
algorithms are gaining prominence in enhancing disaster preparedness and response.

There are varieties of methods available to study landslide susceptibility. These in-
clude but are not limited to landslide inventory-based probabilistic, deterministic, heuristic,
and statistical techniques [12]. The most used landslide inventory-based probabilistic tech-
niques involve the development of the inventory of landslides, geo-morphological analysis,
and generating susceptibility maps based on provided parameters [13]. Deterministic
approaches are also familiar as quantitative methods that involve quantifying factors such
as physical factors, e.g., soil, rainfall, vegetation, and slope variables to generate maps
that display the spatial distribution of input data [14,15]. A qualitative approach (heuristic
analysis) involves analyzing aerial photographs or conducting field surveys to identify the
intrinsic properties of a landform [16]. Statistical analysis uses sample data to identify the
relationship between the dependent variable (the presence or absence of landslides), and
the independent variables (landslides triggering/causative factors [17].

Artificial intelligence (AI) methods use some of the statistical concepts. These methods
are based on assumptions, predetermined algorithms, and output. AI methods or machine
learning methods that are used for landslide studies include artificial neural networks
(ANN), fuzzy-based, hybrid, kernel-based, and tree-based methods [18]. These methods are
suitable for generating results regardless of data types (i.e., both discrete and continuous
data) and data limitation (i.e., the types and number of conditioning factors). For example,
the research in [19] uses machine learning algorithms to understand the complex dynamics
of global landslides which may help strategic decision makers.

Although these studies provide valuable insight into landslide susceptibility as well
as the causes and impacts of landslides on the poor in Chittagong, there is a dearth of
research that focuses on using AI systems to analyze casualties from landslides on a small
scale. Reducing disaster deaths through AI at both the national and local levels is aligned
with the United Nations’ Sendai Framework (2015–2030) for Disaster Risk Global Target A:
‘Substantially reduce global disaster mortality by 2030′ and Global Target G: ‘Substantially
increase the availability of and access to multi-hazard early warning systems and disaster
risk information and assessments to people by 2030 [20]. Since Bangladesh is a signatory
to the Sendai Framework; it is important that multi-hazard early warning systems and
disaster risk information for all hazards are available at the community level by the year
2030.

In this paper, first, we designed and developed a new scenario-based AI insight
system that can connect to a landslide database, so as to find out unknown insights from
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landslide data. Second, we connected our scenario-based AI insight system to a dataset
containing landslide information and finally, we demonstrated the dynamic generation
of AI-based insights based on specific scenarios. It should be noted that the methodology
described within this paper allows for the automatic generation of AI insights, without
the need to manually execute statistical methods. As opposed to the traditional statistical
methods, where a data scientist is required to manually prepare, execute, and analyze, the
methodology presented in this paper automates the entire process and provides AI-driven
insights in a fast and efficient manner. The results in Section 3 (results) show the positive
correlation of area of mass as well as rainfall towards the number of casualties.

Equipped with these AI insights, a disaster recovery planner and strategist can make
informed, timely, and evidence-based decisions that can save lives and reduce the economic
impact of likely disasters on a society. Moreover, the AI insights would support policy
planners in understanding the characteristics of landslides in a particular area and provide
useful guidance for policy implementation.

2. Materials and Methods

First, the data was obtained from previous landslide catalogues, local histories, archive
of institutional and administrative records, newspapers, reports, digital archives, and pub-
lished peer-reviewed journal papers dedicated to landslides in the Chittagong Metropolitan
Area (CMA), and subsequently cleaned and transformed before modelling. Data collected
from secondary sources were validated through field visits and investigations to identify
accurate locations of landslide occurrences. Following this, data modelling using the best
practice was performed and then the data was visualized and analyzed using AI systems
and algorithms. The details of these AI-based analyses are portrayed within this section.
Finally, data-driven insights were generated. Figure 1 demonstrates the step-by-step pro-
cess for generating AI insights on the CMA landslide data. The following subsections
describe the study area selection, the sources of the data, preparation of the data, modelling
of the data, visualization of the data, and analysis with AI-based algorithms (like linear
regression, logistic regression, and decomposition tree analysis).

1. Obtain & 
Prepare Data

2. Model Data

3. Visualize 
Data

4. Analyse Data 
with AI

5. Generate Data 
Driven Insights

Figure 1. High level methodology of AI insight system for analyzing landslides in the CMA of SE
Bangladesh, particularly the landslide susceptible areas in the Chittagong, Rangamati, and Cox’s
Bazar districts.

2.1. Study Area Selection

Chittagong was selected as the area of study, as the residents of the city have ex-
perienced a record of deaths associated with landslides since the year 2000. For exam-
ple, on the 11 June 2007, landslide events alone caused the death of 128 casualties and
100 injuries in places adjacent to hilly areas, because landslides were triggered by heavy
rainfall (610 mm) for eight consecutive days. Five years later, on the 26 June 2012, another
eight days of continuous rainfall (889 mm) triggered landslides that led to 90 casualties [2].
These landslide events occurred in hill cutting areas that are characterized by high an-
gles/slopes. Slope failure in these fragile hilly areas occurs during the rainy season between
the months of June and September. It is important to note that the population in Chittagong
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has increased six times in number since 1974, creating a significant number of people that
live in highly vulnerable areas (Figure 2).

  

  

Figure 2. Landslide vulnerability in different areas of Chittagong (map and photo) (Source: Field
visit, October 2018).

Chittagong lies along the western margin of the tectonically active Chittagong-Tripura
Fold Belt. The district is located between 20′35◦N and 22′59◦ N latitude, and 91′27◦ E and
92′22◦ E longitude (Figure 3). Hills in the district are mainly composed of weathered and
loose sedimentary rocks of tertiary (65–1.8 Ma) age, which are prone to landslides. The
mean monthly maximum and minimum temperatures range between 78.76–90.44◦ F and
55.88–77.38◦ F, and the monthly average minimum rainfall is 0.66 mm in the month of
January and maximum rainfall 74.70 mm in the month of July. The average rainfall per year
is about 2794 mm [21]. The northwestern and monsoon clouds are primarily responsible for
the rainfall in the area and almost 90% of the total yearly precipitation takes place between
the months of June and October [21]. The total area of Chittagong City Corporation is about
170.41 km2. The urban population of the Chittagong district was only 0.90 million in 1974
which increased to 5.13 million in 2021, representing an approximate increase of six times
of the urban population in the last 47 years [21].
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Figure 3. Location of SE Bangladesh, particularly the landslide susceptible areas in the Chittagong,
Rangamati, and Cox’s Bazar districts.

2.2. Obtaining and Preparing the Data

Data can be sourced from one or more sources and these sources can be multiple,
ranging from online databases, websites, excel files, flat files, web-based application pro-
gramming interfaces (APIs), or even PDF files. After identifying the data sources, the data
was obtained with integration tools like SQL Server Integration Services (SSIS), Power
BI Query Editor, Oracle Data Integrator, Tibco Pervasive Integration, etc. These data in-
tegration tools facilitate the export, transform, load (ETL) process, which obtains data
from many different sources and forms them into a data warehouse, whereas specialized
programming languages like the Mashup (M) language is used for data transformations
and data cleansing.

Data transformation and data cleansing can be referred to as “data preparation”, since
data needs to first be transformed into the right format before the data is modelled or
analyzed. For our research, we obtained publicly available data directly from PDF files [22]
and then we transformed the data into a suitable format that allowed for faster analysis.
Following data transformation, the feature attributes of the CMA landslide data can be
better understood after completing data preparation. Table 1 shows the detailed statistics
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of the CMA landslide data. Understanding the statistics for the CMA landslide feature
attribute details is crucial before proceeding to the next steps of the methodology, namely
modelling the data, visualizing the data, and analyzing the data with AI.

Table 1. Landslide attribute, data type, and data distribution.

Type of Attribute Data Type Attribute Distribution Other Attribute Details

ID Integer
57 Distinct, 57 Unique
Value Example: Ranges from 1
to 57

Latitude Decimal 50 Distinct, 44 Unique

Longitude Decimal 54 Distinct, 51 Unique

Elevation Decimal 56 Distinct, 55 Unique

Date Date
(dd-mm-yyyy)

6 Distinct, 0 Unique, 34 Empty

Hill Name Text

29 Distinct, 13 Unique
Value Example: Lebu Bagan,
Ctg. University, Foy’z Lake
Zoo Hill, Medical Hill, Tankir
Pahar, Sekandar Para, etc.

Area of Mass Decimal 56 Distinct, 55 Unique

Types Text
3 Distinct, 0 Unique
Value Example: Slide, Fall,
Topple

State Text

4 Distinct, 0 Unique
Value Example: Active,
Stabilized, Dormant,
Reactivated

Style Text
2 Distinct, 0 Unique
Value Example: Single,
Successive
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Table 1. Cont.

Type of Attribute Data Type Attribute Distribution Other Attribute Details

Rainfall Integer

10 Distinct, 4 Unique, 18
Empty

Casualty Integer 12 Distinct, 8 Unique

2.3. Modelling the Data

Data modelling is the most important stage in the process of generating data-driven
insights and when it is done correctly, an AI-driven solution can produce powerful insights
with minimum delay. During this stage, relationships among different sets of data are
drawn with the right cardinality.

As seen in Figure 4, the data obtained for this paper were arranged in a star schema [23],
where the main factual data resides in the center (referred to as landslide DB). Surrounding
the fact tables, there are dimension tables that include: types, state, date, hill name, and
style. This arrangement of star schema allows for the control of the fact table (i.e., Landslide
DB) with one-way filtering of information by type, state, date, and hill name as well as
style. The main benefit of the star schema technique over other data modelling techniques
(e.g., flattened table, snowflake, etc.) is the speed, since it provides more accurate results
during data analysis [24].

Figure 4. Data modelling of the CMA landslide database.

271



Sustainability 2023, 15, 4647

2.4. Visualizing the Data

Once the data modelling was completed, we used state, rainfall (mm), elevation (m),
and type information to filter the factual data that drives the AI-based insights. A wide
range of visualizations like slicer, Bing Maps, and key influencers were used. Changing
the values for each of the filters (e.g., state to dormant or stabilized), filters the fact table
landslide DB, which in turn changes the key influences (Figure 5).

 

Figure 5. AI-based insights and landslide analysis system.

2.5. Analyzing Data with AI

This paper focused on automatically identifying the relationships that may exist be-
tween an outcome variable (i.e., landslide related casualty) with a range of other variables
(e.g., rainfall, area of mass, elevation, etc.). Therefore, we used a particular AI-based re-
gression tool called the key influencers visualization (i.e., https://learn.microsoft.com/en-
us/power-bi/visuals/power-bi-visualization-influencers?tabs=powerbi-desktop, accessed
on 20 December 2022). There are many other AI-based as well as non-AI-based statistical
techniques that may suit other research objectives. For example, to find the similarities and
dissimilarities between past landslides, AI-based automated clustering techniques could be
used. Within this research, Microsoft Power BI’s Key Influencer visualization was used to
analyze casualties (from landslide) and they were explained by the following list of feature
attributes as named below:

• Area of Mass (m2)
• Elevation (m)
• Hill Name
• Rain fall (mm)
• State
• Style
• Types
• Date

This analysis used machine learning algorithms provided by ML.NET [25] to figure
out what matters the most in driving landslide feature attributes. As seen in Figure 6,
the analysis process uses the CMA landslide data, ranks the factors that matter, contrasts
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the relative importance of these factors, and displays them as key influencers for both
categorical and numeric metrics.

Regression Analysis

Transformation

One-hot 
encoding

 Replace 
missing 
value

Normalize 
mean 

variance

Chittagong 
Metropolitan 

Area Landslide 
Data

START

Result

END

L-BFGS Logistic Regression

SDCA Regression

Numerical or 
Categorical

Feature

Categorical

Numerical

Decomposition Analysis

Figure 6. The process of obtaining AI insights from CMA landslide data using machine learning
algorithms.

As seen in Figure 6, two main categories of AI-based statistical analysis are executed
on the CMA Landslide data, namely transformation [25], decompression analysis [25], and
regression analysis. Transformation analysis is executed for preparing the CMA landslide
data before running the regression analysis. Within the transformation, three algorithms
are executed and they include:

One-hot encoding: Calling on the OneHotEncoding() method within
Microsoft.ML.Transforms class results in a conversion of categorical information into
numeric values for efficient and effective processing of machine learning algorithms [25].

Replacing missing value: Calling on the ReplaceMissingValues() method within Mi-
crosoft.ML.Transforms class results in a replacement of the missing value with either
default, minimum, maximum, mean, or the most frequent value [25].

Normalize mean variance: Calling on the NormalizeMeanVariance() method within
Microsoft.ML.Transforms class results in an adjustment of values measured on different
scales to a notionally common scale with computed mean and variance of the data [25].

Once the CMA landslide data are prepared for regression analysis, two different types
of regressions are performed. For numerical features, linear regression is performed using
Microsoft’s ML.Net’s SDCA regression implementation [19,25]. Linear regression is one of
the simplest machine learning algorithms that falls under supervised learning techniques,
and it is used for solving regression problems. Moreover, it is used for predicting the
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continuous dependent variable with the help of independent variables. The goal of the
linear regression is to find the best fit line that can accurately predict the output for the
continuous dependent variable by finding the best fit line, so that the algorithm establishes
the linear relationship between dependent variable and independent variable in the form
of y = b0 + b1x1 + ε. On the other hand, for the categorical feature, logistic regression is
performed using ML.Net’s L-BFGS logistic regression [26]. Logistic regression is one of the
most popular machine learning algorithms that falls under supervised learning techniques
since it can be used for classification as well as for regression problems. Logistic regression
is used to predict the categorical dependent variable with the help of independent variables
using log

[
y

1−y

]
= b0 + b1x1 + b2x2 + . . . bnxn. As seen in Figure 6, depending on the

variable type (i.e., categorical or numerical), either logistic or linear regression is selected.
Other than using linear regression and logistic regression, this study also used decom-

position analysis with a decomposition tree. Decomposition tree visualization is a valuable
tool for ad hoc exploration and for conducting root cause analysis, whilst allowing the user
to visualize the data across multiple filter attributes or dimensions.

Our implementation of decomposition analysis allows for the visualization of landslide
casualty data over a range of landslide feature attributes, namely: area of mass, elevation,
rainfall, state, and types. As shown in Figure 7, interactive root cause analysis and data
exploration were supported by the aggregation of data and drill-down, where a user can
click and find out what feature attribute causes the highest or lowest number of casualties.

Figure 7. Decomposition tree visualization allows the user to perform interactive analysis by area of
mass, elevation, rainfall, state, and types.

For feature attributes (i.e., area of mass, elevation, rainfall, state, type, date, etc.),
T =

{
T1, T2, T3, . . . , TN}, where N is the number of total filter attributes within a dataset

(i.e., the cardinality of T, |T| = N), each feature attribute can form one or many filtered
conditions, as follows:

T1 =
{

T1
1 , T1

2 , T1
3 , . . . , T1

P

)
, such that

∣∣∣T1
∣∣∣ = P (1)

T2 =
{

T2
1 , T2

2 , T2
3 , . . . , T2

Q

)
, such that

∣∣∣T2
∣∣∣ = Q (2)

T3 =
{

T3
1 , T3

2 , T3
3 , . . . , T3

U

)
, such that

∣∣∣T3
∣∣∣ = U (3)

TN =
{

TN
1 , TN

2 , TN
3 , . . . , T3

N

)
, such that

∣∣∣T3
∣∣∣ = V (4)

Each of these filter conditions can filter r number of rows, r ∈ {1, 2, 3, . . . R} from
the dataset. Proceeding with this context, we defined casualty count from landslides as
Equation (5).

Cn
i =

r

∑
i=0

(casulty_count), Where, r is the rows e f f ected by f ilter attribute condition Tn
i (5)

Our decomposition tree visualization (supported by AI) allows the user to find the
next filter attribute condition to drill down into, based on either high or low values.
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High Value: This mode considers all available filter attribute conditions and deter-
mines which one to drill into to obtain the highest value of the measure being analyzed.
Therefore, the high-value AI split mode finds the most influential filter attribute condition
Tn

i , for which the highest level of casualties occur, which is represented by

∃Tn
i ⊆ T| Cn

i >Cm
j , ∀n, m ⊆ {1, 2, 3, . . . , N} ∧ ∀i, j ⊆ {1, 2, 3, . . .} (6)

Low Value: This mode considers all available filter attribute conditions and determines
which one to drill into to obtain the lowest value of the measure being analyzed. Therefore,
the low-value AI split mode finds the most influential filter attribute condition Tn

i , for
which the lowest level of casualties occur, which is represented by

∃Tn
i ⊆ T

∣∣∣ Cn
i < Cm

j , ∀n, m ⊆ {1, 2, 3, . . . , N} ∧ ∀i, j ⊆ {1, 2, 3, . . .} (7)

In this way, the AI split allows the user to understand the details of the root cause. This
AI split-based decomposition analysis was used in our most recent study on knowledge
discovery for landslides globally.

2.6. Generating Data-Driven Insights

In this phase, valuable insights are produced. The success of this phase depends on
the success of previous activities such as preparation (i.e., transformation and cleaning)
of the data, selection of the right AI visualization, and most importantly data modelling.
Following the employment of the AI-based key influencers visualization, the key factor
that influences the number of casualties was area of mass (m2). The other factor that
influences the number of casualties under specific conditions was elevation (m). Data-
driven insights are generated by configuring one or more scenarios. A scenario can easily
be created using our system either by clicking the desired buttons shown in Figure 8 or by
changing the sliders as shown in Figure 8. In our system, we have created scenarios (S) from
7 different attributes namely, types (T1), state (T2), style (T3), elevation (T4), area of mass (T5),
rainfall (T6), and date (T7) as parameters. Therefore,

S = [x, y, z, m, n, p, q | x ⊆ T1, y⊆ T2, z⊆ T3, m⊆ T4, n⊆ T5, p⊆ T6, q⊆ T7] (8)

 

Figure 8. Filter area for the selection of landslide attributes.

Equation (9) to Equation (15) provide the unique values obtained from our dataset for
each of the landslide parameters. For example, as seen from Equation (9), possible values
for types (T1) were “slide”, “fall”, or “topple”. Similarly, the possible values for state (T2)
were “active”, “stabilized”, “dormant”, or “reactivated” as seen from Equation (10). On the
other hand, style (T3) had only two unique values (i.e., single and successive) as it appears
from Equation (11).

T1 = {Slide, Fall, Topple} (9)

T2 = {Active, Stabilized, Dormant, Reactivated} (10)

T3 = {Single, Successive} (11)

275



Sustainability 2023, 15, 4647

T4 = { 13.93, 15.11, 15.93, 18.1, 18.1, 19.33, 19.84, 21.31, 21.59, 22.64, 23.12,
23.5, 24.71, 26.57, 26.98, 27, 28.41, 29.28, 30.82, 31.66, 32.39, 32.44, 32.56, 34.21,

34.63, 35, 35.18, 36.68, 37.54, 37.64, 37.92, 38.51, 38.64, 39.81, 40.19, 40.68,
41.18, 41.22, 44.26, 44.46, 45.12, 45.36, 45.42, 45.69, 46.07, 46.4, 46.51, 47.04,

48.36, 48.51, 48.67, 50.12, 51.79, 55.03, 55.95, 56.36, 58.72}

(12)

T5 = { 11.02, 15.03, 16.5, 31.67, 33, 45.86, 47.04, 50.17, 50.26, 52.3, 56.05,
59.1, 71.93, 71.93, 75.88, 76.43, 77.81, 84.56, 89.91, 105.38, 116.32, 118.34, 126.7,
130.32, 136, 145.06, 145.5, 152.79, 153.55, 157.07, 175.81, 181.7, 184.13, 188.59,

191.64, 198.89, 208.57, 209.12, 211.06, 211.61, 212.7, 213.26, 226.23, 232.52,
233.06, 241.79, 242.53, 301.06, 313.42, 331.84, 390.34, 427.04, 456.7,

582.27, 757.61, 1134.77, 1359.5}

(13)

T6 = {∅, 25, 26, 46, 50, 54, 55, 77, 88, 111} (14)

T7 = {∅, 11/6/2007, 1/1/1990, 1/7/2011, 3/8/2005, 5/14/2021} (15)

Equations (14) and (15) contains null values represented by ∅.
To calculate the number of possible scenarios, we first need to calculate the pos-

sible filter options for each of the feature attributes. For example, as it appears from
Equation (8), the type attribute could have the following filter options:

{}
{Fall}
{Topple}
{Slide, Fall}
{Fall, Topple}
{Slide, Topple}
{Slide, Fall, Topple}
Therefore, for the type attribute, there could be 7 possible filter settings as represented

by (2|T1| − 1), and the formula to calculate a power set of type attribute minus 1 (i.e.,
P
(
T1)− 1). The number 1 is deducted since the power set also includes empty set and the

selection of empty set is not a supported option by the system presented.
Hence, the total number of possible scenarios can be calculated as,

|S| = (2|T1| − 1)× (2|T2| − 1)× (2|T3| − 1)× (2|T4| − 1)× (2|T5| − 1)× (2|T6| − 1)
×(2|T7| − 1) = 1.054 × 1041 (16)

The purpose of this section is not only to produce an exhaustive list of insights from
the landslide data, but also to demonstrate the ability of the designed AI solution for
producing insights on any scenario out of the 1.054 × 1041 possible scenarios (as shown in
Equation (16)). In the next section we will explore results (i.e., AI insights obtained from a
few of these scenarios).

3. Results

This study was reported based on two different AI-based techniques namely: auto-
mated regression analysis and decomposition analysis. Therefore, within the results section
we will briefly describe AI insights derived from both methodologies. Table 2 demonstrates
the outcome of conducting regression analysis on various scenarios. Seven rows of Table 2
represent five different scenarios since row 3 and row 4 represent the same scenario and
row 5 and row 6 represent another single scenario. Table 2 has three columns representing
the AI-based insight, the results obtained through the system interface, and the scenario
condition. Row 5 and row 7 of Table 2 has the following scenario condition (i.e., both
belong to the same scenario):

1. State = “Stabilized”,
2. Type = All,
3. Style = All,
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4. Area of Mass = All,
5. Date = All,
6. Elevation = {p|29.05 ≤ p ≤ 58.72},
7. Rainfall = {n|43 ≤ n ≤ 111}

Table 2. Ai insights generated on specific scenarios.

AI Insight AI-Based System Settings Scenario

1.
When area of mass
goes up 241.92, the

average of
causalities

increases by 5.79

 

State = All, Type = All,
Style = All,

Area of Mass = All,
Date = All,

Elevation = All,
Rainfall = All

2.
When area of mass

(m2) goes up
539.49, the average

of causalities
increases by 15.97

 

State = “Dormant”, Type = All,
Style = All,

Area of Mass = All,
Date = All,

Elevation = All,
Rainfall = All

3.
When area of mass

(m2) goes up
137.08, the average

of causalities
increases by 1.53

 

State = “Stabilized”, Type = All,
Style = All,

Area of Mass = All,
Date = All,

Elevation = All,
Rainfall = All

4.
When rainfall (mm)
goes up 29.29, the

average of
causalities

increases by 0.49

 

State = “Stabilized”, Type = All,
Style = All,

Area of Mass = All,
Date = All,

Elevation = All,
Rainfall = All
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Table 2. Cont.

AI Insight AI-Based System Settings Scenario

5.
When area of

mass (m2)
goes up 71.31,
the average
of casualties
increases by

0.69

 

State = “Stabilized”, Type = All,
Style = All,

Area of Mass = All,
Date = All,

Elevation = {p|29.05 ≤ p ≤ 58.72},
Rainfall = {n|43 ≤ n ≤ 111}

6.
When

elevation (m)
goes up 5.62,
the average
of casualties
increases by

0.6

 

State = “Stabilized”, Type = All,
Style = All,

Area of Mass = All,
Date = All,

Elevation = {p|29.05 ≤ p ≤ 58.72},
Rainfall = {n|43 ≤ n ≤ 111}

7.
When, area of
mass goes up

149.35, the
average of
casualties

increases by
1.76

 

State = “Stabilized”, Type = “Slide”,
Style = “Single”,

Area of Mass = All,
Date = All,

Elevation = {p|18.25 ≤ p ≤ 58.72},
Rainfall = {n|24 ≤ n ≤ 105}

The above scenario conditions can be located in the scenario column of Table 2.
Once the above scenario was configured using the software interface (as shown

previously in Figure 8), the AI insight dynamically executed the regression analysis and
described the following insights into plain English:

When Area of Mass (m2) goes up 71.31, the average of Casualty increases by 0.69
When Elevation (m) goes up 5.62, the average of Casualty increases by 0.6
In other words, for the selected scenario, casualties are positively correlated with

both elevation and area of mass. The system dynamically calculated the coefficients of
the positive correlation as soon as the user configured the scenario. Hence, the user of the
system does not need to know the complexity of ML algorithms, and the user does not
need to understand when to use linear regression and when to use logistic regression. The
proposed interactive system executes the right regression depending on the configured
scenario of the user. A strategic decision maker can obtain the AI insight in plain English
and make appropriate decisions based on the AI insight.

The purpose of this section is not just to generate an exhaustive list of AI insights
for all 1.054 × 1041 possible scenarios. The rest of the Table 2 demonstrates some other AI
insights generated by 4 other scenarios to demonstrate the applicability of the system.
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Both Figures 9 and 10 show insights generated through decomposition analysis. Firstly,
in Figure 9, a user selected the entire range of data using the option box and sliders at the
top of the figure. Then, the user selected “High Value” (as shown previously in Figure 7)
to find out what caused the highest number of casualties. Immediately after selection, the
system showed the user that when type is “slide” casualty is highest. The system also
provides visual cues to the user showing type = slide caused 130 casualties out of total
158 casualties. Hence, the user can confidently perform root cause analysis without any
knowledge of underlying statistical methods. Furthermore, the user can select “High Value”
again (as shown previously in Figure 7), and find out that when rainfall is 88, the number
of casualties is at its peak (i.e., Figure 9 shows when rainfall is 88, there were 98 casualties).
Similarly, the user can continue drilling down into further root causes to find out all of the
features and the corresponding feature values that caused the highest number of recorded
casualties. Following from a condition like “type is slide” and “rainfall is 88”, Figure 9
shows the other feature conditions that caused the highest number of casualties, namely:
“state is dormant”, “area of mass is 1269.5”, and “elevation is 46.07”. Therefore, Figure 9
shows an interactive tool for discovering hidden insights into what caused the highest
number of casualties.

Figure 9. Decomposition analysis showing what causes the most casualties.

Using the decomposition tree visualization, the user can also find out what causes
the lowest number of casualties and to find out how a particular feature effects the num-
ber of casualties. For example, Figure 10 shows what caused the highest casualties when
types= “Topple”. As depicted in Figure 9, the highest number of casualties (for
types= “Topple”) was found to be state = active (i.e., most important factor) and area
of mass= 427.04 (m2) (i.e., second most important factor), elevation = 31.66 (m) (i.e., third
most important factor), and Rainfall = 55 (mm) (i.e., least important factor).
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Figure 10. Decompression analysis showing what caused the highest casualties when
types= “Topple”.

It is crucial to highlight the fact that the proposed system is robust enough to provide
critical insights from the underlying data on any number of scenarios as shown in Table 2,
Figure 9, and Figure 10 using regression analysis and decompression analysis.

4. Discussion

Since all of the existing studies in landslide research do not support mobile app-based
AI insight [1–28], it is not possible for a strategic decision maker to obtain instant insights
if he or she is only equipped with mobile phone. In this study, we have deployed the
proposed solution in desktop, tablet, and even mobile environments since the strategic
decision maker can be eager to find out AI-based insights when they are remotely located
at a possible landslide incident. As shown in Figure 11a, the AI-based auto-regression
was executed on a Samsung Note 10 mobile phone. Figure 11b shows the decomposition
analysis on the user’s selected scenario was executed in a mobile environment as well.
Figure 11c demonstrates the solution deployed through an iOS App on an Apple iPad 9th
generation, running iOS version 15.1. Figure 11d showcases the deployed Android app
running on a Samsung Galaxy Tab A7, running Android 11.

To test, assess, and evaluate the proposed AI-based landslide analysis system, the fully
deployed solutions were given to 12 landslide researchers, disaster strategists, and town
planners. The users were primarily located in the following area using their GPS-enabled
devices for obtaining location-based insights using the proposed solution:

• Colony para, the University of Chittagong
• Motijharna, Chittagong City
• Matiranga, Rangamati
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(a) Regression analysis on a Samsung Note 10 mobile device 

 
(b) Decompression tree analysis on a Samsung Note 10 mobile device 

 

(c) Linear regression on an Apple iPad 9th Generation (iOS 15.1) 

 

(d) Linear regression on a Samsung Galaxy Tab A7 (Android 11) 

Figure 11. The proposed system running on mobile devices and providing AI-based insights on
CMA landslides.

Table 3 shows the platform and user details for these tests and evaluations. As seen
from Table 3, the proposed solution was tested on a wide range of devices, including both
mobile devices and tablets. Since strategic decision makers often make their decisions
on the site of the landslide or away from offices, they need mobile solutions deployed
on tablets and mobile devices through iOS or Android apps. After the completion of
the test and evaluation, detailed feedback regarding usability and appropriateness of the
deployed solutions were obtained via Microsoft Form-based questionnaires (i.e., office
365 cloud-hosted). A total of 11 out of the 12 users (i.e., 91.67%) found the solution easy to
use, effective, and self-explanatory. However, one user preferred using the solution in his
desktop computer through the cloud-based interface.

Table 3. Details for deployment platforms and users.

Number of Users Device Name OS Version

2 Samsung Note 10 Lite
(Mobile) Android 11

1 Samsung Note 10 Lite
(Mobile) Android 12

2 Samsung Galaxy Tab A7
(Tablet) Android 11

2 iPhone 13 (Mobile) iOS 15
1 iPhone 12 (Mobile) iOS 14
2 iPad 9th Generation (Tablet) iOS 15.2
2 iPad Mini 6 (Tablet) iOS 15
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Hence, this mobile-based AI insight system provides a robust and innovative solution
for the strategic decision maker who does not need to depend on a data scientist to conduct
data modelling to obtain valuable insight. By interacting with the proposed system, a
strategic decision maker can harness powerful ML algorithms automatically and obtain
useful insights.

The process described within this paper is applicable for all different types of data
on different types of scenarios to answer several different types of research questions. For
example, this methodology was applied to obtain AI-driven insights on tornado-related
casualties in Bangladesh [29]. Similarly, the study in [30] utilized this methodology in
critically analyzing Australian cyclones. Moreover, this method could also be used to
monitor disasters from any global location as demonstrated in [31,32] by analyzing live
social media data. As shown in [31], AI-driven disaster intelligence solutions could be up
to 97% accurate.

As it becomes apparent from these recent publications [29–33], it is first required that
the dataset be cleansed and transformed. Pre-processing the available dataset with appro-
priate data cleansing and transformation is the key to obtaining better AI-driven insights
on the casualties. Then, the Microsoft Power BI’s key influencers visualization is used to
analyze the outcome variable (e.g., casualties) with respect to a list of available “explain
by” variables (e.g., elevation, rainfall, area of mass, longitude, latitude, number of injuries,
style, types, etc.). The detailed process of using Microsoft Power BI’s key influencers
visualization is explained at https://learn.microsoft.com/en-us/power-bi/visuals/power-
bi-visualization-influencers?tabs=powerbi-desktop, accessed on 20 December 2023. The
machine learning (ML)-based feature analysis (e.g., linear regression or logistic regression)
depends on the availability of many feature attributes for understanding their correlations
to the outcome variable. In this study, casualty was deemed as an outcome variable, since
strategic decision makers are always keen on saving precious lives resulting from landslides.
Within our dataset, we only had few available features to analyze (e.g., latitude, longitude,
elevation, area of mass, rainfall, etc.). After applying our innovative method, our solution
found a positive correlation of casualty with area of mass (as shown in Figure 5, Row 1 of
Table 2, Row 2 of Table 2, Row 3 of Table 2, Row 4 of Table 2, Row 5 of Table 2, Row 6 of
Table 2, Row 7 of Table 2), rainfall (as shown in Row 3 of Table 2, Row 4 of Table 2), and
elevation (as shown in Row 5 of Table 2, Row 6 of Table 2). Even though we utilized all of
the available features present within our dataset to obtain relationships with the observed
variable (i.e., casualty), we considered appropriate data cleansing prior to the automated
ML process. As a result of the cleansing process, elevation and area of mass turned out to
be a decimal data type and rainfall turned out to be integer data types.

5. User Notes

The ML-based knowledge discovery solution presented in this study was implemented
using Microsoft Power BI, which is freely available for download from https://app.powerbi.
com/, accessed on 20 December 2023. The user can download the complete source files
(.pbix), along with the CMA landslide data (.csv) files from the author’s GitHub site (i.e.,
https://github.com/DrSufi/landslide, accessed on 20 December 2023). After downloading
and opening the entire solution using MS Power BI Desktop, the user can host the solution
on either the Microsoft Cloud or within a local network to make it available to other
researchers or strategic planners.

The typical users of this system are strategic disaster planners, disaster risk assessors,
policymakers, and disaster strategists who are concerned with landslides or landfalls and
their subtle impact on society, groups, and locations. This system would allow users to
understand the characteristics of global events in a particular area since it provides useful
guidance for policy implementation.
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6. Conclusions

This paper provides a detailed methodological framework for generating AI-based
insights on landslides in the CMA. This experimentation was performed on a limited dataset
containing only 57 records. Sadly, there were several limitations due to the relatively small
dataset in terms of empty values within date and rainfall attributes. As is evident from
Table 1, the date attribute has 34 empty values (i.e., 40% valid and 60% empty values) and
rainfall has 18 empty values (i.e., 68% valid and 32% empty).

AI-based automated insight generation processes as depicted in this research are
often referred to as data-driven insights. For data-driven insights, having a robust and
complete set of data is often a mandate. In case the data suffers from irregular/missing
values (or any other data quality issues hampering the overall quality of the dataset) then
several pre-processing techniques (e.g., StandardScaler, MinMaxScaler, StandardScaler,
OneHotEncoder, etc.) could enhance the performance of data-driven insight solutions.
Despite these limitations on available information, the AI-based techniques like automated
regressions (both linear and logistic) as well as a decomposition algorithm successfully
derived useful insights for the strategic decision maker.

In the future, we will endeavor to work with more records of landslides outside of the
CMA region. Using these large-scale records, we hope to deploy more sophisticated AI-
based techniques like convolution neural network (CNN)-based deep learning to generate
useful insights (since our recent study in [30–32] has demonstrated that applying CNN
on disaster monitoring harnesses better results). Other than CNN, we also want to use
sophisticated AI-based techniques as demonstrated in our recent and past studies [29–34].
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Abstract: This study aims to produce a spatial model for sustainable land management in landslide-
prone areas, based on exploring non-stationary relationships between landslide events, geomorpho-
logical and anthropogenic variables on tropical hillsides, especially in Taji Village, Jabung District,
East Java Province, Indonesia. A series of approaches combine in this research, and methods are used
to construct independent and dependent variables so that GWR can analyze them to obtain the best
model. Transformation of categorical data on microtopography, landform, and land cover variables
was carried out. When modelled, landscape metrics can explain landslide events in the study area
better than distance metrics with adj. R2 = 0.75 and AICc = 2526.38. Generally, local coefficient maps
for each variable are mapped individually to reveal their relationship with landslide events, but in
this study they are integrated to make it more intuitive and less confusing. From this map, it was
found that most of the variables that showed the most positive relationship to the occurrence of
landslides in the study area were the divergent footslopes. At the same time, the negative one was
plantation land. It was concluded that the methodological approach offered and implemented in this
study provides significant output results for the spatial analysis of the interaction of landslide events
with geomorphological and anthropogenic variables locally, which cannot be explained in a global
regression. This study produces a detailed scale landslide-prone conservation model in tropical hill
areas and can be reproduced under the same geo-environmental conditions.

Keywords: landslide; geographical regression analysis; land management

1. Introduction

Land degradation for several countries is one of the problems that can lead to disas-
ters [1,2] by causing a reduction or loss of land productivity, resulting in economic losses.
Based on [3] 25% of land area worldwide is degraded, and as much as 24 billion tons
of fertile soil are lost every year due to degradation. Land degradation not only causes
disasters, but disasters also cause land degradation, one of which is landslides.

Landslides are natural disasters that usually occur in mountainous or hilly areas.
These disasters often cause extensive economic losses and yearly fatalities [4]. Indonesia is
located above the confluence of three major plates, namely the Eurasian plate, the Pacific
plate and the Indo-Australian plate, reflecting high tectonic activity with a tropical climate
and intensive anthropogenic activity, which often causes natural disasters. According to
the Indonesian Disaster Information Data, landslides are ranked 3rd (9047 incidents) after
tornadoes (11,016 incidents) and floods (13,723 incidents) recorded since 1822 until now [5].
Landslide disasters in Java Island, Indonesia tend to be caused by high rainfall, which
often occurs in remote hilly areas that are prone to these events [6,7]. In the vicinity of
Mount Bromo, landslides occur due to precipitated volcanic material, steep slopes, and
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high rainfall which often damage road accessibility [8]. Landslides caused by high rainfall
are a global problem yearly [9]. Landslides in Taji Village—one of the villages in the Mount
Bromo area—are caused by high-intensity rains and extreme weather (La nina), and often
damage the connecting roads between villages which causes residents to be isolated, thus
hindering farmer and gardening activities in the fields. In addition, the houses of affected
residents have also occurred, but there were no fatalities.

In addition to high rainfall as a trigger, the phenomenon of slope instability that causes
landslides can also be affected by landform conditions in terms of morphology, morpho-
process, morphochronology, and morphoarrangement [10]. In addition, geomorphological
mapping in mountainous and hilly areas is the most complex type of information and
the most subjective for landslide hazard assessment [11]. However, geomorphological
mapping is selective because it only focuses on certain features in an area of interest with
a certain scale for a particular study. The latest remote sensing techniques, namely by
utilizing Unmanned Aerial Vehicles (UAV) data and Digital Terrain Models (DTM) can
expand their application in geomorphological and topographical mapping for the iden-
tification and mapping of landslide hazards [12–14] in more detailed area coverage at a
precise scale. In addition, recently, low-cost UAVs (more commonly called drones) have
become a trend among academics, practitioners and commercial circles because they are
effective in collecting large amounts of elevation data in a relatively short time, which can
change the perspective and analysis by geomorphologists to study geomorphometrics and
topography in certain landscapes [15,16].

One of the geomorphological features on a detailed scale is the microtopography
built from the DTM. Micro-topography is defined as topographic changes on a small scale
that is divided into seven units, including crest slope, upper side slope, head hollow,
lower side slope, flood terrace and riverbed [17,18]. Chimner dan Hart (1996) defines
microtopography into three units: hummock, pool and intermediate area. In terms of the
scope of soil development, microtopography is divided into two types: pit and mound
on soil morphology caused by fallen trees forming drumlin landforms [19,20]. Another
definition of microtopography is the difference in size and shape in the local terrain caused
by soil erosion, thus affecting the heterogeneity of habitat conditions such as moisture
and soil nutrients on a scale of 1 m2 or more [21,22] with Microtopographic types include
platform, gully, sink hole, scarp and ephemeral gully [23]. Thus, the definition and type of
microtopography is “variable”, which adjusts to the study in a particular field. In this study,
microtopography is defined as changes in local topography in terms of size and shape,
as seen from differences in morphology [24,25]. Morphological mapping is based on line
shape mapping, which focuses on identifying the types of slope bends using a symbology
system that is unambiguous, clear, and reproducible [26]. In other words, microtopography
is a reflection of its morphology.

In general, geomorphological features have a major influence on landslide events.
Anthropogenic activity also plays an important role in slope instability, part of which
is land cover [27,28], and even contributes positively to landslide events [29]. However,
land cover and geomorphological features are closely related, allowing different spatial
relationships to landslide events [30]. In addition, vegetation density can also explain the
pattern of landslide occurrence, but often has an inverse relationship, namely the higher
the vegetation density, the lower the landslide vulnerability [13,31].

Spatial modeling of landslide susceptibility is crucial for further understanding the
assessment of disaster mitigation and preventive measures to conserve land in landslide-
prone areas. Approaches for landslide hazard mapping are developing rapidly, starting
from combined methods to produce the best models to emerging innovations for model
updates. In general, they include the evaluation of landslide models using qualitative
approaches [32], quantitatively based on the relationship of controlling factors and land-
slides [33], and even a combination of both [34,35]. However, the spatial interaction
between landslide points and their controlling factors in the quantitative approach is not
explained [35], it only relies on stationary parameter estimation to examine the relationship
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between the two. One of the quantitative approaches, local regression analysis, can explain
these spatial interactions in a non-stationary manner [36]. Feuillet et al.’s (2014) study
examined the strength of the spatial relationship between paraglacial factors and landslide
events. In addition, the authors of [29] investigated the local spatial relationship between
land use change resulting from human intervention and landslide events. Research [24]
also explains that different vegetation classes on different microtopography give different
responses to the process of soil loss in the form of erosion. These studies prove that the
occurrence of landslides has a non-stationary relationship to the predictor variable, which
is at the same time better than global regression in general. However, the coverage area of
the two studies is on a regional scale.

In this context, there are rarely studies that discuss the spatial relationship between
landslide events and landslide control factors at a detailed scale, especially in the tropical
hills of Indonesia. In fact, the spatial relationship of landslides with their controlling factors
can provide information on the biggest factors causing landslides spatially. Consequently,
it will be known that the arrangement of the microtography and vegetation parts that have
a positive and negative effect on landslides. This information can be essential information
in the management of sustainable land management.

As previously explained, drones are currently becoming a trend and are applied for
specific purposes, as well as an alternative to optical satellite imagery data with very high
spatial resolution that are quite expensive, and user demands are also high. Thus, this study
aims to produce a detailed scale conservation model in landslide-prone areas based on
exploring the local spatial relationship between landslide events and micro-topographical
variables, land cover, and vegetation density at a detailed scale in a small hilly area in Taji
Village, Jabung District, Province East Java, Indonesia uses the Geographically Weighted
Regression (GWR) method.

2. Materials and Methods

2.1. Study Area

The study area is in the Bromo Tengger Semeru Area (Figure 1). Astronomically,
it is located at 7◦56′34.98’–7◦57’6.1” South Latitude and 112◦48’49”–112◦49’30.58” East
Longitude. The study area covers 61.2 ha with an average elevation of 1110 ± 59 masl. The
topographical characteristics in the study area are hillsides that are quite steep to steep
and cut by rivers to form a fairly deep valley. The use of agricultural land and plantations
tends to dominate in the study area. On land that is not vegetated erosion is found to
be more intensive. The geological conditions in the study area consist of lower quarter
volcanic rocks (i.e., Mount Gendis) during the middle Pleistocene. The rock materials
include volcanic breccias, tuff-breccias, lava, and agglomerates. In addition, areas with
andesitic rock deposits, namely lava and breccia-tuff, tend to be prone to landslides [37].
The complex topography configuration, high erosion rate, and rock materials in the study
area have great potential for future landslides.

2.2. Methodology

Exploration of spatial relationships locally using the GWR model between landslides
and microtopographical variables, landform, land cover, and vegetation density through
several stages, involved: (1) building a Digital Terrain Model (DTM) from overlapping
drone photos in the study area; (2) creating imagery orthomosaic based on dense point
cloud, mesh, and texture data; (3) preparing raw data in the form of orthomosaic imagery
acquired from UAV drones and landslide inventory via orthomosaic; (4) orthomosaic
imagery used for land cover analysis using the Geographically Object-based Image Analysis
(GEOBIA) method) based on spectral features, haralick texture, and shape index, which
then attribute selection is carried out for all features through WEKA software to produce
optimal land cover classification; (5) individual stand identification from orthomosaic image
interpretation for vegetation density analysis; (6) curvature-based landform classification
by classification system Pennock uses DTM; (7) micro-topography constructed through
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on-screen digitization based on elevation contour lines and the landscape appearance
of the study area, which is then zoning micro-topography using the Voronoi diagram
or Thiessen polygon method; (8) integrating landslide data, landform, land cover, and
vegetation densityinto microtopography zoning as a spatial unit based on the value of the
results of transforming categorical data into numeric (specifically for microtopography,
landform, and land cover); (9) using three types of model for each variable, namely Type I
model (proximity factor), Type II (Principal Component (PC) with the highest percentage
of eigenvalues on the landscape metric comprehensive index), and Type III (PC on the
landscape metric comprehensive index with the largest contribution using the Relief-F
attribute selection method from WEKA software) prepared for GWR model fitting; and 10)
local spatial relationship analysis based on the best fit GWR model with the four variables
bell is modeled simultaneously. This series of stages can be simplified through the research
flowchart in (Figure 2).

Figure 1. Location of the study area in a small part of the Taji watershed.

2.3. Data Collection and Processing
2.3.1. Orthomosaic Image and Digital Terrain Model (DTM) from Unmanned Aerial
Vehicle (UAV)

Very high-resolution aerial photos were acquired through photogrammetric processing
using a UAV (a multirotor-type drone, the DJI Phantom 4). The Pix4Dcapture software [38]
is used for automatic flight control and aerial photo acquisition to retrieve information on
surface objects in the study area. In addition, geometric correction of orthorectified images
is also automatically performed in Pix4D. The mapping was carried out at an altitude of
about 70 m, producing an image with a spatial resolution of 2.4 cm per pixel. For the
flight path, forward and side overlap when shooting is set optimally at around 80% and
70%, respectively. This is due to reducing the canopy height error in vegetation, which
is a larger proportion than non-vegetation in the study area [39]. The aerial photos that
have been acquired are then processed using third-party software Agisoft PhotoScan [40]
to build orthomosaic images and Digital Terrain Models (DTM), which are often used
in previous research for experimental and other scientific fields, especially land cover
mapping [39,41–45].
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Figure 2. Flowchart of research on landslide local spatial relationships using the GWR model.

2.3.2. Landslide Inventory

The landslide inventory map was compiled from orthomosaic imagery, because histor-
ical data on past landslide events were not recorded. High-resolution imagery from Google
Earth with a timestamp also cannot help to identify landslide events because the scope and
scale in the study area is very detailed. A total of 14 landslide points were detected in the
study area (Figure 1). Then these landslide data are aggregated into micro-topographic
units as the dependent variable for the GWR model. Generally, landslides are denoted as a
binary class, namely, 0 (not landslide) and 1 (landslide). However, this does not represent
the actual landslide events when overlaid onto microtopographic units. In other words,
overlapping landslide areas do not always completely intersect with microtopographic
units because these spatial units certainly form non-uniform areas such as grids with a
fixed area shape. In addition, a statistical model for slope instability can use the percentage
of landslide area in each unit of analysis [33].

2.3.3. Microtopographic Zoning

The morphology to be mapped refers to the basic classification of Cooke dan Doornkamp
(1974), including cliff, an angular convex break of slope, an angular concave break of slope,
smoothly convex change in slope, smoothly concave change in slope, and convex and
concave too close together (breaks of slope and smooth change in slope, respectively).
However, the use of this classification is slightly subjective as there are no definitive rules
as to what an angular or smooth break of slope actually looks like, the extent to which
small undulations (<1 m) can or should be mapped, and where a break of slope no longer
occurs [26]. Apart from that, this research may change or add morphological classes
based on the landscape characteristics in the study area. The morphological mapping
process utilizes elevation contour lines from the DTM data that have been made. The
on-screen image interpretation technique [10,46] is used for morphological delineation
through observing contour line patterns and orthomosaic imagery to see the characteristics
of the landscape. Additionally, the output from the results of morphological mapping is
used for micro-topographical zoning.
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However, the spatial form of morphology is in the form of vector lines. Micro-
topographic zoning should be in the form of areas or polygons so that an approach is
needed to convert the form of spatial data. The buffer zone approach defines the area’s
boundaries within the morphological unit to the adjacent morphology. In fact, each unit’s
buffer zones can overlap because the buffer distance is fixed [47]. The expected output is
a flexible buffer zone that does not coincide, meaning that microtopographic zoning will
be formed when the buffer zone boundary in the morphological unit touches the buffer
zone boundary of the adjacent unit. Therefore, the Tyson polygon technique, also called
the Thiessen polygon, is used to overcome the problem of overlapping buffer zones. The
morphological output results are converted into points because vector lines consist of more
than one vertex point, so the Thiessen polygon technique can be executed. Then, each
point vertex whose area has been formed is aggregated based on the same ID, namely the
morphological unit. For more details, see the schematic diagram for microtopographic
zoning in (Figure 3).

Figure 3. Schematic diagram of microtopographic zoning using (A) vertex point line morphology;
and (B) Aggregation polygon based on the ID of each morphological unit.

2.3.4. Landforms of the Pennock Classification System

The landform analyzed in this study includes the landform elements based on the
surface shape on the slopes of the hills, which are explained by topographical derivatives,
namely slope, plan curvature and profile curvature proposed by [48]. DTM data are used
for the classification of landforms that include: Convergent Shoulder (LF1); Convergent
Backslope (LF2); Convergent Footslope (LF3); Divergent Shoulder (LF4); Divergent Backs-
lope (LF5) and Divergent Footslope (LF6). Each of these landform classes is identified based
on the threshold value of the combination of degrees of slope and curvature described
in Table 1. In this study, the ArcGIS geomorphometric toolbox developed by Evans et al.
(2016) was used to classify the Pennock landform [49].

Table 1. Pennock landform classification criteria based on slope, plan curvature and profile curvature
by Pennock et al. (1987).

Profile Curvature (◦/m) Kemiringan Lereng (◦) Plan Curvature (◦/m) Elemen Bentuklahan

Concave (<−0.10)
Linear (>−0.10, <0.10)

Convex (>0.10)

>3.0 Concave (<0.0) Convergent Shoulder
>3.0 Concave (<0.0) Convergent Backslope
>3.0 Concave (<0.0) Convergent Footslope
>3.0 Convex (>0.0) Divergent Shoulder
>3.0 Convex (>0.0) Divergent Backslope
>3.0 Convex (>0.0) Divergent Footslope

This landform is closely related to the pattern of movement and distribution of water
flow, which can explain the morphological properties of the soil of each class of landform
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elements. In addition, it can also identify the morphoprocess of each landform feature,
being erosional on the surface and so can develop and trigger landslides [50].

2.3.5. Land Cover Classification

Geographical Object-Based Image Analysis (GEOBIA) is implemented as the first
stage for land cover classification from orthomosaic imagery [51]. GEOBIA is an image
segmentation method that groups a set of segments in an image based on a group of
pixels that display homogeneous features, namely spectral, radiometric, geometric, and
others [51–53]. This method is more suitable for very high-resolution imagery, namely
orthomosaic from drones, because it can show the presence of massive shadows, low
spectral information, and a low signal-to-noise ratio [54,55].

One of the algorithms in the GEOBIA approach is multi-resolution segmentation
(Baatz, 2000) that is implemented in the eCognition software to create a set of objects in the
image. For segmentation settings, the weights of all three bands (RGB) in the orthomosaic
image are equated to be segmented in the scale parameter 150, and the shape/compactness
homogeneity criterion is set to 0.3/0.5. In this study, several additional features such as
spectral, texture and shape were analyzed through eCognition in each object, followed by
feature selection using the Correlation-based Feature Selection (CFS) method in WEKA
software [56], as was done in previous research by Ma [56]. Later, the Random Forest (RF)
classifier was implemented for land cover classification [57,58] because it is less sensitive to
data dimensionality; however, the training sample size was small [57]. In addition, RF is
often used as a guided classification for GEOBIA because it can produce land cover and
land use maps with good accuracy, both images at medium and very high scales [59–61].
Finally, the randomized training and validation samples were used for the RF classifier. This
study used sample proportions of about 70% and 30% for training and validation samples,
respectively. Classification validation uses a confusion matrix followed by accuracy metrics,
namely overall accuracy and kappa coefficient [62,63].

2.3.6. Vegetation Density

The drone only carries a digital camera sensor, which can only photograph objects
in the visible spectrum, so it cannot calculate the vegetation density index that requires
the near-infrared band. Therefore, vegetation density was analyzed based on the number
of vegetation stands per microtopographic unit in km2. This is because the vegetation
pattern is related to geomorphic processes—including the morphology of the scars—in
topographical units [24,25].

2.4. Transformation of Categorical Data into Numeric on Microtopography, Landform and Land Cover

Microtopographic zoning, landform, land cover and vegetation density have been
constructed to be used as independent variables in the GWR model. However, microtopog-
raphy, landform and land cover variables are categorical data, which is a problem for the
regression model due to data redundancy. To fulfill the requirements in the GWR analysis it
is necessary to transform categorical data into numeric. Two data transformation analyses
were implemented in this study, namely the proximity factor to feature boundaries based
on Euclidean Distance and landscape metrics using FRAGSTATS developed by Dr. Kevin
McGarigal with Eduard Ene and Chris Holme as programmers [64]. Thus, this study offers
three types of data transformations to find the most suitable GWR model.

2.4.1. Type I Data Transformation

Type I data transformation is based on the distance to feature boundary metrics
(using Euclidean Distance) for each class of microtopographic, landform and land cover
variables. Previous studies in other fields also used data transformation based on distance
metrics, namely land cover variables for spatial modeling [65–67]. Technically, each class is
analyzed by distance metrics, where the closer to the class feature boundaries, the smaller
the distance value (in meters). In addition, the area within the class feature boundary is set
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to a minus value so that the closer to the midpoint within the class feature area, the greater
the distance value with a minus value. This setting is used to distinguish between classes
and non-classes and is also considered to represent conventional transformations, namely
class 0 (non-class) and 1 (class) dummy variables.

After that, the distance metrics for micro-topography, landform and land cover vari-
ables were calculated. Then, a zonal statistical analysis was carried out to calculate the av-
erage distance metric for each class that was then aggregated into micro-topographic units.

2.4.2. Type II Data Transformation

Landscape metric analysis is used to transform Type II data, especially the landform
and land cover variables as independent variables. This is because the unit of analysis used
for the GWR model is the microtopographical unit. In other words, microtopographic units
can only be transformed into Type I data. Landscape metrics reflect spatial pattern charac-
teristics. Generally, landscape metrics are often used as predictor variables for ecological
analyses, especially for evaluating changes in land cover and land use [68]. However, in
this study, landscape metrics—like the distance metric method—were used to transform
data into land cover and landform variable categories that could reduce redundancy [69].
In this study, 11 class-level based landscape metrics were taken from several previous stud-
ies [69–72] and implemented to each of the landform and land cover classes, respectively,
as shown in Table 2. Landscape metrics analysis utilizes the ‘landscape metrics’ package
(reimplementation of FRAGSTATS) rather than FRAGSTATS software via R language [73].
This is because it can calculate landscape metrics locally and simultaneously (Nowosad,
2022), i.e., per microtopographic unit.

Table 2. Summary of 11 landscape metrics (Hesselbarth et al., 2019a).

Metrik Rumus Range

Aggregation index (AI) AI =
[

gii
max−gii

]
(100) 0 ≤ AI ≤ 100

Class area (CA) CA = sum
(

AREA
[

patchij

])
CA > 0

Clumpiness index (CLUMPY)
Given Gi =

(
gii

(∑m
k=1 gik)−min ei

)
CLUMPY =

[
Gi−Pi

Pi
f or Gi < Pi&Pi < 0.5; else Gi−Pi

1−Pi

] −1 ≤ CLUMPY ≤ 1

Patch cohesion index
(COHESION) COHESION = 1 −

(
∑n

j=1 pij

∑n
j=1 pij

√aij

)
×
(

1 − 1√
Z

)−1 × 100 0 ≤ COHESION ≤ 100

Landscape division index
(DIVISION) DIVISION =

(
1 − n

∑
j=1

(
aij
A

)2
)

0 ≤ DIVISION ≤ 100

Edge density (ED) ED = ∑m
k=1 eik

A × 10, 000 ED ≥ 0

Largest patch index (LPI) LPI =
maxn

j=1(aij)
A × 100 0 < LPI ≤ 100

Landscape shape index (LSI) LSI = ei
min ei

LSI ≥ 0
Number of patches (NP) NP = ni NP ≥ 0

Patch density (PD) PD = ni
A × 10, 000 × 100 0 < PD ≤ 1 × 106

Percentage of class (PLAND) PLAND =
∑n

j=1 aij

A × 100 0 < PLAND ≤ 100

The 11 landscape metrics calculated for each land cover and landform class can
produce many features, causing multicollinearity and redundancy between metrics [74,75].
Therefore, the Principal Component Analysis (PCA) approach was implemented to reduce
dimensionality by compressing landscape metric features in each class, which was also
studied [75–80] From the results of PCA calculations, the highest percentage of eigenvalues
in the Principal Component (PC) is chosen to represent all landscape metrics for each land
cover and landform class, which is named the comprehensive index of landscape metrics.

2.4.3. Type III Data Transformation

The comprehensive index of landscape metrics is also used in transforming Type
III data but does not use (PC) with the highest percentage of eigenvalues. Instead, the
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PC shows the greatest contribution when it is linked to the landslide data. Odhiambo
Omuya et al. (2021) developed a combination of PCA and Information Gain methods
to reduce dimensionality while selecting the best features of a PC. The result is that it
can significantly improve the performance of machine learning classifiers compared to
other feature selection methods, including Correlation-based feature selection (CFS), Gain
Ratio, and Relief-F. Thus, this study uses the conceptual approach [76] but the aim is to
investigate the best PC for each landform and land cover class. In addition, the Relief-F
algorithm [77,78] is implemented because it can analyze target data (i.e., landslide data)
in numerical form. Relief-F calculates the average merits (AM) in each land cover class
and landform which show the ranking of PC attributes. The initial hypothesis for the
transformation of Type III data is that it is not always that the Principal Component with
the largest percentage of eigenvalues shows a strong contribution to the landslides in the
study area.

2.5. Geographically Weighted Regression Model Analysis

The GWR model was run to explore the local spatial relationships of landslides with
microtopographical variables, landform, land cover, and vegetation density. GWR is a
local regression developed by Brunsdon et al. (1998), an update of the Ordinary Least
Squares (OLS) method. The GWR model was built based on the percentage of landslide
area as the dependent variable and microtopography, landform, land cover, and vegetation
density—with all kinds of data transformations carried out—as independent variables that
are integrated with microtopographic units. GWR analysis was performed through the
GWR4 software originally developed by [79]. The GWR model formula is described as
follows [36]:

Yi = β0(μi, vi) +
p

∑
k=1

βk(μi, vi)xik + εi, i = 1, 2, . . . , n (1)

where (μi, vi) represents the coordinates of the observed data; β0(μi, vi) is the intercept
parameter at location i; p is the number of independent variables; βk(μi, vi) is the local
regression coefficient for the independent variable kth at location i; xik is kth independent
variable in ith unit; and εi is a random error. The regression coefficient is calculated using
the local weighted least squares function with the following formula:

β̂k(μi, vi) =
[

XTW(μi, vi)X
]−1

XTW(μi, vi)Y (2)

where W(μi, vi) is the spatial weighting matrix of the observation data at the sample point i
which represents the effect of sample point i around the regression point on other regression
points. In other words, the closer to the sample point i, the greater the influence of the local
regression parameter with a larger weight value, and vice versa. Then, the selection of the
kernel function is important to determine the scope of the degree of spatial autocorrela-
tion [80]. In this study, the adaptive bi-square kernel was used because the distribution of
observational data was not uniform [79]. Here is the bi-square kernel formula:

wij =

⎛⎝1 −
(

dij

θi(k)

)2
⎞⎠2

if dij < θi(k) and wij = 0 otherwise (3)

where dij is the Euclidean distance between sample point j and point i; and θi(k) is a measure
of adaptive bandwidth that shows the spatial variation in the GWR model. Bandwidth
selection is also crucial because it measures how well the GWR model generalizes data
similar to the data that have been trained. The golden search function determines the
optimum bandwidth for the adaptive bi-square kernel function. The optimum bandwidth
is determined by the corrected Akaike Information Criterion (AICc) method [79]. The
AICc method is known to overcome the problem of over-fitting the model rather than the
cross-validation method [80]. When AIC is minimum, bandwidth size is the best.
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3. Results

3.1. Results of Mapping Microtopographic Zoning, Landforms, Land Cover, and Vegetation Density

Morphological mapping has been carried out systematically through a remote sens-
ing approach in the study area with a slight modification from the morphological map-
ping system by Cooke and Doornkamp, namely the Ridge and Valley classes divided
into major and minor. Thus, this study’s original morphological class numbered 8 was
updated to 15 classes (Figure 4). Then, thiessen polygons were applied to construct the
microtopographic zoning of each morphological class shown in (Figure 5). A total of
300 microtopographic units were formed in the study area. The symbolization system on
micro-topographic maps is based on a combination of colors and textures. Red, purple,
blue, brown, and green represent head scarp/cliff, ridge, valley, break of slope, and smooth
slope change, respectively.

Figure 4. Morphological mapping with a modified geomorphological symbolization system.

Microtopography is part of the geomorphological study that has an essential role in
landslides. Microtopography is defined as changes in topography that can be identified
and mapped on a detailed scale. Based on Figure 4, the microtopography in the study
area is divided into four essential parts: (i) ridge, which is divided into the major ridge
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and minor ridge in the form of sharp and round; (ii) valley, which is divided into major
valley and minor valet in sharp and round form; (iii) break of slope which is divided
into angular convex, angular concave, and convex and concave too close; and (iv) smooth
change in slope, which is divided into convex, concave and convex and concave too
close together. Each form of microtopography has a different effect on landslides. The
movement of soil material will increase on sharp slope morphology. In addition, differences
in microtopography will also affect the value of the shape of the land surface in the form of
plan curvature and curvature profile. Both influence the acceleration and deceleration of
the water flow. In ridge microtopography, the water flow will be accelerated so that the
potential for material movement increases.

Figure 5. Microtopographic Zoning Map from Morphology in the Study Area.

The pattern of microtopographic distribution in the study area can be said to be
heterogeneous. The southwestern part is dominated by ridge and valley morphology
with various class variations. The shape of the zoning in this area tends to be elongated,
reflecting the presence of hills. The major valley (sharp) with a large proportion of the area
is a perennial river channel stretching east to west. Then, the central part is formed by a
fragmented microtopography, namely the form of zoning with a relatively small proportion
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of areas and various morphological classes. This implies complex slope configurations and
slight fluctuations. The northeastern part is almost the same as the southwest, namely the
form of an elongated zonation, but the morphology is relatively fragmented. Meanwhile,
the northern part shows a more compact, elongated form of microtopographic zoning and
a large proportion of areas indicating a less volatile slope configuration.

Then, the shape-based landform variables by the Pennock system have been estimated
and classified. In contrast to microtopographic zoning, the Pennock landform in the
study area is defined by curvature and slope indices, namely profiles and plans with a
neighborhood radius of 40 m each. As shown in Figure 4a, the predetermined neighborhood
radius scale reflects the detailed landform pattern. Generally, in the Pennock method of
landform the slope is divided into three arrangements, covering the upper (shoulder),
middle (backslope), and lower (footslope), with almost the same proportions. However, the
Pennock method classifies a convergent/divergent backslope of around 3% of all existing
landforms in the study area. Meanwhile, the proportion of convergent/divergent shoulders
and footslopes is almost equal, but the spatial pattern still varies. In addition, the landform
in the study area tends to have a convex-concave pattern that repeats over short distances.

Class 1 hierarchical land cover classification on orthomosaic imagery based on GEOBIA
shows very good accuracy, with an overall accuracy of 98.26% and a kappa coefficient of
0.97. Table 3 presents the results of the confusion matrix calculation using the Random
Forest guided classification. The selection of attributes on spectral features, texture, and
shape index also influences satisfactory accuracy. Of the 27 features used as predictor
variables for classification, 13 features were selected based on the results of attribute
filtering using CFS (Correlation-based Feature) from WEKA software. In Figure 4b, most of
theland cover in the study area is dominated by herbaceous (45.77%) and forest (36.56%),
followed by bare soil (12.71%), shrub (3.58%), and built-up (1.36%). In addition, the density
of moderate to very high vegetation classes has spread from the north to northeast and
slightly in the center and southwest (Figure 6c).

Table 3. Results of land cover classification accuracy test from orthomosaic imagery based on the
confusion matrix.

Landcover Forest Shrub Herbaceous Bare Soil Built-up Total User Accuracy (%)

Forest 816 0 2 1 0 819 99.63
Shrub 4 177 5 1 0 187 94.65

Herbaceous 7 0 1050 2 0 1059 99.15
Bare soil 7 0 7 371 0 385 96.36
Built-up 3 0 3 3 125 134 93.28

Total 837 177 1067 378 125 Overall = 98.26%
Producer Accuracy (%) 97.49 100 98.4 98.15 100 Kappa = 0.97

3.2. Comprehensive Index Analysis of Landscape Metrics on Landform and Land Cover

A comprehensive index of landscape metrics for each land cover and landform class is
analyzed using the PCA algorithm to compress metric landscape features. As shown in
Tables 4 and 5, the highest percentage of eigenvalues is PC1, which is overall above 30%
and the eigenvalues are above 1. This indicates that the PC1 component has most of the
feature information from all landscape metrics, so it is used for data GWR Type II model
independent variable input. In addition, while each PC is associated with landslide data
and the results are not always PC1, it has a large contribution to explaining landslides in
the study area, though best represents all landscape metrics. Interestingly, the LF1 and LF6
classes show that PC6 contributes the most, although the eigenvalue is below 1. In fact,
negative AM values appear in PC1, namely classes LC2 and LC5, which means that it has
the lowest contribution among other classes to landslides, even though the negative AM
value is still used for the GWR model input.
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Figure 6. The independent variables include (A) curvature-based landform; (B) land cover; and
(C) vegetation density.

Table 4. Eigenvalues, merit values and ranking percentages of the main component’s contribution to
the landslide.

LF1 LF2 LF3 LF4 LF5 LF6

PC1
Eigen 4.18 4.52 3.89 3.81 4.99 4.51

% Eigen 37.98% 41.12% 35.42% 34.64% 45.44% 40.96%
AM 0.0147 −0.0005 −0.0003 0.009 −0.0002 0.0094

PC2
Eigen 2.36 2.19 2.28 2.58 1.9 2.23

% Eigen 21.44% 19.86% 20.74% 23.48% 17.30% 20.29%
AM 0.0059 0.01218 −0.0041 0.0016 0.00944 0.002

PC3
Eigen 1.92 1.81 1.65 1.77 1.78 1.63

% Eigen 17.42% 16.43% 15.02% 16.09% 16.19% 14.86%
AM 0.0108 −0.0042 0.01716 0.0264 −0.0001 0.0025

PC4
Eigen 1.55 1.36 1.41 1.45 1.28 1.56

% Eigen 14.08% 12.36% 12.81% 13.21% 11.67% 14.23%
AM −0.003 −0.0054 −0.007 0.0049 −0.0011 0.0037

PC5
Eigen 0.44 0.56 0.88 0.53 0.44 0.42

% Eigen 4.00% 5.16% 8.04% 4.82% 4.05% 3.83%
AM −0.003 −0.0067 −0.0012 0.0187 0.00039 7 × 10−5

PC6
Eigen 0.21 0.29 0.46 0.44 0.29 0.28

% Eigen 1.91% 2.68% 4.32% 4.07% 2.71% 2.58%
AM 0.0269 0.00359 −0.008 0.0154 0.00863 0.0241
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Table 5. The eigenvalues and eigen percentages of the principal component.

LC1 LC2 LC3 LC4 LC5

PC1
Eigen 4.87 7.39 3.45 4.47 6.63

% Eigen 44.27% 67.22% 31.33% 40.67% 60.29%
Merit −0.004 −0.0123 −0.003 0.0033 −0.0117

PC2
Eigen 2.24 1.69 3.1 2.72 1.84

% Eigen 20.38% 15.45% 28.22% 24.70% 16.69%
Merit −0.005 −0.013 0.01053 0.0405 −0.0119

PC3
Eigen 1.91 0.98 1.75 1.39 1.52

% Eigen 17.38% 8.95% 15.89% 12.67% 13.82%
Merit −0.01 −0.0147 −0.0012 0.0006 −0.0129

PC4
Eigen 1.15 0.56 0.98 0.95 0.64

% Eigen 10.42% 5.11% 8.98% 8.59% 5.81%
Merit 0.0038 −0.0145 0.00085 0.0334 −0.0141

PC5
Eigen 0.42 - 0.88 0.64 -

% Eigen 3.89% - 7.97% 5.78% -
Merit 0.0033 - 0.00503 0.0232 -

PC6
Eigen - - 0.5 0.46 -

% Eigen - - 4.57% 4.19% -
Merit - - 0.00644 0.0219 -

3.3. Model the Local Spatial Relationship between the Landslide and the Selected Independent
Variable Model Type for Priority Land Management Sustainability

In this study, the GWR model was implemented to investigate the spatial pattern
of local landslide relationships with independent variables collected in spatial units of
microtopographic areas. Table 6 shows the GWR fit model on the data group of predictor
variables influencing landslide events (microtopography, landform, land cover, and vegeta-
tion stand density), adjusted for R2 and AICc. All models use the Gaussian kernel, whose
bandwidth size is checked and calculated based on the Golden Search method. AICc is
used as a selection criterion to find the optimal bandwidth of 300 observational data.

Overall, in the univariate local sub-model the LC model Type I variable group indicates
the covariate most related to the landslide event, namely the value of adj. The highest R2

(0.789) and the lowest AICc (2478.33) are even more important than all the univariate and
multivariate sub-models analyzed. A multivariate model of two groups and three groups
of variables, the Type I model shows better performance (adj. R2 above 0.7) compared to the
Type II and Type II models. The univariate and multivariate sub-models, based on the type
of model, suggest that Type I shows the best fit model compared to Type II and Type III. In
addition, the Type III model is better than the Type II but performs lower than Type I. On
the other hand, the sub-model with all variable groups included shows a different pattern
of Type model results, namely Type III is the highest (adj R2 = 0.755) with the third lowest
AICc value (2526.38), after the LC group Type III (2515.51) and Type I (2478.33) sub-models.
Thus, the Type III group sub-model with four variables was chosen to provide additional
insight, namely the local spatial relationship experiment of the landslide. However, in
terms of calibration the fit model is not the best compared to other sub-models.

Table 6 is a summary of the results of univariate and multivariate comparisons of the
GWR model with four groups of predictor variables: microtopography (MT); landform (LF);
land cover (LC); and standing vegetation density (VD). Each predictor variable has sub-
variables for each class whose data form is divided into three types: proximity factor (Type
I); PC with the highest percentage of eigenvalues from the landscape metric comprehensive
index (Type II); and PC on the comprehensive metric index.

In the summary output of the GWR model (Table 6), the F-statistics in the ANOVA
comparison test shows that the entire GWR model significantly increases global model
performance (OLS). Thus, the null hypothesis of the GWR model being unable to improve
the performance of the global model is rejected. Figure 5 shows the local R2 generated from
the GWR, that the GWR model is fit to map local landslides, which are explained through
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the MT, LF, LC, and VD predictor variable groups that are modeled simultaneously. The
distribution of R2 in the study area tends to be homogeneous and clustered. About 80% of
the local model area has an R2 above 0.73, and at least 10% of the area in the southwestern
region shows that the local model is less fit (fit) with an R2 below 0.43. This implies that
additional covariates are needed to explain the slides in the study area, particularly the
southwest region. Then, the positive value of the standardized residual indicates over-
estimation. Likewise, negative values that appear indicate an underestimation. Overall, the
GWR model shows an over-/under-estimated distribution pattern that tends to be random
in the study area (Figure 7).

Table 6. Summary of univariate and multivariate GWR model comparison results.

Model
Model
Types

Global Regression vs. GWR

AICc
Significance Test (with

99% Confident Interval)
R2, Adjusted R

OLS GWR Diff. F-Statistic p-Value OLS GWR

MT Type I 2759.16 2625.24 133.92 5.52 <0.001 R2 = 0.36,
adj R2 = 0.32

R2 = 0.80,
adj R2 = 0.71

LF
Type I 2854.12 2738.12 116 4.08 <0.001 R2 = 0.07,

adj R2 = 0.05
R2 = 0.67,

adj R2 = 0.51

Type II 2796.78 2681.95 114.83 4.15 <0.001 R2 = 0.23,
adj R2 = 0.21

R2 = 0.69,
adj R2 = 0.57

Type III 2701.27 2667.08 34.19 2.66 <0.001 R2 = 0.44,
adj R = 0.43

R2 = 0.59,
adj R2 = 0.52

LC
Type I 2788.88 2478.33 310.55 10.12 <0.001 R2 = 0.24,

adj R2 = 0.23
R2 = 0.85,

adj R2 = 0.79

Type II 2764.29 2630.03 134.26 4.6 <0.001 R2 = 0.30,
adj R2 = 0.29

R2 = 0.73,
adj R2 = 0.64

Type III 2619.84 2515.51 104.33 3.94 <0.001 R2 = 0.57,
adj R2 = 0.56

R2 = 0.81,
adj R2 = 0.75

VD - 2850.2 2659.06 191.14 8.21 <0.001 R2 = 0.05,
adj R2 = 0.04

R2 = 0.61,
adj R2 = 0.54

LF + LC
Type I 2775.45 2588.26 187.19 6.08 <0.001 R2 = 0.31,

adj R2 = 0.28
R2 = 0.87,

adj R2 = 0.77

Type II 2748.56 2674.62 73.94 3.36 <0.001 R2 = 0.37,
adj R2 = 0.34

R2 = 0.66,
adj R2 = 0.56

Type III 2598.19 2565.58 32.61 2.44 <0.001 R2 = 0.62,
adj R2 = 0.60

R2 = 0.75,
adj R2 = 0.68

LF + LC + VD
Type I 2776.41 2612.5 163.91 5.6 <0.001 R2 = 0.31,

adj R2 = 0.28
R2 = 0.87,

adj R2 = 0.76

Type II 2748.15 2679.12 69.03 3.21 <0.001 R2 = 0.37,
adj R2 = 0.34

R2 = 0.66,
adj R2 = 0.55

Type III 2600.37 2573.24 27.13 2.3 <0.001 R2 = 0.62,
adj R2 = 0.60

R2 = 0.75,
adj R2 = 0.68

MT + LF +
LC + VD

Type I 2662.22 2608.1 54.12 3.08 <0.001 R2 = 0.58,
adj R2 = 0.54

R2 = 0.77,
adj R2 = 0.68

Type II 2667.68 2651.18 16.5 2.17 <0.001 R2 = 0.57,
adj R2 = 0.53

R2 = 0.68,
adj R2 = 0.59

Type III 2566 2526.38 39.62 2.72 <0.001 R2 = 0.69,
adj R2 = 0.66

R2 = 0.83,
adj R2 = 0.75

The local coefficients shown in Table 7 indicate that the relationship between the
landslide and the independent variables is non-stationary. The relationship varies spatially
with a range of magnitudes and directions. The independent variables in the MT, LF, LC,
and VD groups showed that the magnitude of the relationship varied in both negative and
positive directions in terms of min and max values. This can be interpreted as the presence
of an increasing variable that will also increase the occurrence of landslides, but the presence
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of variables can also reduce the occurrence of landslides. However, several independent
variables only show an inverse correlation to landslides, including Micro2, Micro6, LF3,
and LC3. This suggests that these four variables do not contribute to landslides within this
feature area. In addition, the variables LF4 and LF6 positively contribute to the occurrence
of landslides in all study areas in this feature. However, the VD variable has the smallest
relationship magnitude compared to the other variables, with a two-way relationship.

Figure 7. Map of the local coefficient of determination (R2) between the observed values and the fit
of the GWR model (left) and the standardized residual (right).

Table 7. Statistical summary of the local regression coefficients of GWR for each independent variable
in the MT, LF, LC, and VD groups.

Variables Coefficients

Code Description Min Mean Max StdDev

Intercept −0.54209 23.27006 41.68737 8.60305
Microtopography

Micro1 Head scarp/cliff −2.03661 0.29145 1.11392 0.64287
Ridge
Micro2 Major Ridge (sharp) −0.24350 −0.11556 −0.01758 0.06421
Micro3 Major Ridge (round) −0.07844 0.00832 0.07987 0.03425
Micro7 Minor Ridge (sharp) −0.00361 0.11336 0.25198 0.07270

Micro12 Minor Ridge (round) −0.18980 −0.01034 0.18657 0.10481
Valley

Micro14 Major Valley (sharp) −0.13701 0.03425 0.23303 0.09773
Micro15 Major Valley (round) −0.09968 0.08097 0.24498 0.08325
Micro5 Minor Valley (sharp) −0.07213 −3.2 × 10−5 0.11751 0.04632
Micro10 Minor Valley (round) −0.16003 −0.02185 0.17120 0.08092

Break of Slope
Micro4 Angular Convex −0.01100 0.08009 0.20867 0.05505
Micro6 Angular Concave −0.46316 −0.21412 −0.01252 0.13734
Micro8 Convex and concave too close together −0.30881 −0.08370 −0.01487 0.05277

Smooth Change in Slope
Micro9 Convex −0.02343 0.14797 0.40619 0.11046

Micro11 Concave −1.19064 −0.36578 2.03376 0.63251
Micro13 Convex and concave too close together −0.52585 −0.22090 0.02616 0.15946

Landform
LF1 Convergent Shoulder −4.28159 −1.66346 2.41592 1.45241
LF2 Convergent Backslope −1.86977 0.27553 4.02760 1.89846
LF3 Convergent Footslope −4.01443 −2.83184 −1.87514 0.49353
LF4 Divergent Shoulder 0.48987 1.22543 1.99219 0.31014
LF5 Divergent Backslope −0.39145 0.35599 1.88111 0.46366
LF6 Divergent Footslope 1.65203 4.29289 6.70036 1.07773
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Table 7. Cont.

Variables Coefficients

Code Description Min Mean Max StdDev

Landcover
LC1 Forest −2.62464 −1.12012 1.43396 1.26063
LC2 Shrub −1.25680 0.69419 2.43403 1.19657
LC3 Herbaceous −7.27211 −4.94960 −0.54137 1.69933
LC4 Bare soil −6.25056 −3.49079 0.20763 2.19209
LC5 Built-up −0.89751 0.30802 1.46729 0.65149
VD Vegetation Density −2.41 × 10−4 7.00 × 10−6 2.34 × 10−4 1.04 × 10−4

Generally, in local relationship analysis research the local coefficients of each inde-
pendent variable in the GWR model are imported and visualized as a map using the GIS
environment. The coefficient values are mapped taking into account the two-tailed t value,
i.e., t values above 1.96 and −1.96 are considered significant (equal to p < 0.05). However,
in this study the local coefficient maps are summarized in one map by integrating the
four groups of variables based on the largest local coefficient values (negative or positive
values). This is because the spatial units used are microtopographic units, so the other
three variables are superimposed and the value of the feature slices included in each unit
is calculated. In this case, the value of the principal component comprehensive index of
the selected landscape metrics is calculated. The estimated values of parameters or local
coefficients on the microtopography are searched for and adjusted to each class of unit so
that misinterpretation does not occur, e.g., extracting the Micro1 coefficient values based on
the attributes of the Micro1 class microtopographic units so that outside the area has been
selected. Likewise, with the landform and land cover, only the unit containing information
from the two variables is taken for the coefficient value.

As shown in Figure 8, there are 14 classes combined with the local coefficients of the
independent variables of each group. Signs “+” and “−“ are interpreted as the relationship’s
direction. Map visualization uses a combination of colors and textures to make it easier to
read map symbols and their information. Each unit of the analysis found several variables
positively or negatively related to landslides. In other words, the characteristics and
patterns of landslides in the study area can be explored through several variables related to
the unit of analysis.

In the map in Figure 8, MT classes that show a positive relationship to landslides
are green, and tend to be spread over the central area, being most prominent in the
northeast. Class LF2, LF6, and LC2 also show a positive relationship. However, units with
no significant positive or negative relationship are clustered in the southwestern region
with white symbols. This can also be attributed to the low R2 value in the region, as shown
in Figure 7. Interestingly, the units that only show a negative relationship, namely the MT,
LC3, and LC4 classes, appear in the northern region with a grayish color symbol. Vice
versa, which only shows a positive relationship appears in the south with a dark purple
color, but only one unit, namely the LF6 class.

As shown in Table 8, the number of units that have a positive and negative relation-
ship are 190 and 248, respectively. LF6 showed the most positive relationship (131 units),
followed by MT (38 units), LC2 (16 units), and LF2 (5 units). Meanwhile, LC3 showed
the most dominant negative relationship (224 units), compared to MT (17 units) and LC4
(7 units). Then, the positively related microtopographic classes include micro9 (14 units),
micro14 (7 units), micro15 (7 units), micro7 (6 units), micro12 (3 units), and micro5 (1 unit).
Meanwhile, only micro2 (1 unit) and micro6 (3 units) have a negative relationship. Thus,
LF6 and LC3 have an important role in understanding the landslide mechanism in the
study area. Figure 9 shows a map inset focused on landslide and non-slip areas overlap-
ping the most significant micro-topographical units and classes. The current landslides
were associated with LF6, rather than MT and LC2. Regardless of the significance of the
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local relationship, the current landslides predominately occur at micro6, micro8, micro9,
and micro13.

Figure 8. Map of integration of multivariate local coefficients that have the largest (positive) and
smallest (negative) significant impacts on landslides.

Table 8. The number of microtopographic units showing the most statistically significant variables in
each microtopographic class.

Microtopography Class
Significant Count of Units

Positive Sign Negative Sign

Code Description MT LF2 LC2 LF6 Sum MT LC3 LC4 Sum

Micro1 Head scarp/cliff - - - 9 9 - 12 - 12
Ridge
Micro2 Major Ridge (sharp) - 1 1 3 5 1 7 - 8
Micro3 Major Ridge (round) - - 1 5 6 - 10 - 10
Micro7 Minor Ridge (sharp) 6 1 2 8 17 - 19 - 19

Micro12 Minor Ridge (round) 3 1 - 7 11 - 16 16
Valley

Micro14 Major Valley (sharp) 7 - - 10 17 - 24 - 24
Micro15 Major Valley (round) 7 1 - 1 9 - 8 - 8
Micro5 Minor Valley (sharp) 1 - - 10 11 - 15 - 15

Micro10 Minor Valley (round) - - 1 10 11 - 13 - 13
Break of Slope

Micro4 Angular Convex - - 6 14 20 - 23 3 26
Micro6 Angular Concave - - - 12 12 3 15 - 18
Micro8 Convex and concave too close together - - 1 14 15 - 24 - 24

Smooth Change in Slope
Micro9 Convex 14 - - 6 20 - 21 1 22

Micro11 Concave - 1 1 3 5 - 4 3 7
Micro13 Convex and concave too close together - - 3 19 22 13 13 - 26

Total 38 5 16 131 190 17 224 7 248

302



Sustainability 2023, 15, 3043

Figure 9. Inset map of the integration map of multivariate local coefficients focused on landslide
areas (A–C); and non-slip areas (D,E).

4. Discussion

4.1. Mapping Microtopography, Landforms, Land Cover, and Vegetation Density

Microtopographic zoning mapping can be said to be rarely discussed in the field of
geomorphology. In addition, Yang et al. used the Thiessen polygon approach to construct
karst landform zoning precisely based on the spatial proximity of peak and nadir points,
namely positive and negative landscapes [81]. In this study, microtopographic zoning was
also derived from the results of thiessen polygon-based buffering on the morphology of
the Cooke and Doornkamp system. Each mapped morphological boundary is used as a
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Thiessen polygon control point to build micro-topographic zoning. The results show that
the shape and size of the microtopographic units vary (Figure 5). The large and rounded
unit shapes indicate that the distance between morphological boundaries is farther apart
than the small and elongated unit shapes. It can also reflect the degree of geomorphic
processes to form different microtopography. In other words, different morphologies allow
different morpho processes to form different surface material characteristics [10].

Elemental landforms based on the Pennock system have been classified using high-
resolution DTM data. The radius scale for the plan and profile curvature, which is 40 m
each, is set based on more detailed spatial variability, but this is visual, so there may be
uncertainty in the classification. In addition, the Pennock method identified the slope
arrangement of the shoulder and footslope sections on both convergent and divergent
slope shapes. Unfortunately, the Pennock method seems less sensitive for identifying
the backslope. This problem is contrary to the study of Evans et al. that the Pennock
method failed to identify the arrangement of shoulder and footslope slopes on agricultural
land with low relief configurations [49]; it is also reported that the study area could not
map divergent footslope landforms but was dominated by divergent back slopes with
more complex relief configurations [82]. Thus, the differences in the problems in this
study with other studies may be caused by differences in spatial resolution, unique relief
configurations, and setting the radius parameter scale for which there is no definitive rule.

GEOBIA works well in class 1 hierarchical land cover classification with orthomosaic
imagery: forest, shrubs, herbaceous plants, open land, and built-up land. Overall, producer
accuracy and user accuracy for all classes reach above 90%. For the user, accuracy metric
value of built land is the lowest among the other classes. This may be due to several built-up
land objects having similarities in spectra, shape, and texture with forest areas, herbaceous
plants and open land. However, this problem is not significant because it basically meets
the land cover mapping requirements, which are above 85% [83].

There are several reasons why the accuracy of this land cover map is satisfactory. First,
the method offered by [60], namely the combination of GEOBIA and selection of spectral
features, shapes and textures, can classify land cover from orthomosaic imagery very well.
Furthermore, segmentation parameters such as scale, shape, and compactness are obtained
through trial and error, especially for scales set with a range of 50 to 500 in multiples of 50.
As explained in the method Section 2.3.4., the optimum scale parameter is found, namely
150. Third, the CFS method works well in selecting all features into 13 optimal features
for land cover classification in the study area. In addition, the RF classifier also performs
very well, which is even slightly superior to the study by De Luca et al. with orthomosaic
imagery equipped with near-infrared bands [61].

4.2. GWR Model Implementation with Different Independent Variable Data Transformation

Categorical data transformation for each class of independent variable has been carried
out for the needs of the GWR model. The Type I model represents numerical data based on
distance metrics microtopographic, landform and land cover variables. Then, the Type II
and Type III models represent a comprehensive index of landscape metrics for each class
of land cover and landform variables using PCA. These three types of models are crucial
for the GWR model to work well because of the conventional-based data transformation
problems, namely binary classes. However, there is a uniqueness in the Type III model,
which breaks the standardization of PCA analysis that PC1 retains most of the information
by maximizing the variance of the data from the comprehensive index of landscape metrics
compiled in the Type II model. In other words, the PC with the highest AM value has the
greatest correlation with landslides, although the eigenvalue is less than 1. Class variables
with low variation are not unimportant [84] when associated with landslide data. This case
is like the climate study by Jolliffe, in which the low variation component relates to the
response variable rather than the high variation component [85]. In addition, discarding
PCs with small eigenvalues can lead to bias [86]. Hadi and Ling also reported that PCs
selected based on the breakdown of principal components that depend only on the variation
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in variable X (i.e., the independent variable) might fail to account for regression fit because
they do not contribute anything to the response variable (or the dependent variable) [87].
It was proven in the results of this study that when the Type II and Type III models were
analyzed byboth univariate and multivariate GWR, the overall values of AICc and adj. R2

in Type III is higher than Type II (Table 6). In addition, when the Type III model on landform
and land cover is combined with the microtopography and vegetation density variables
that are modeled simultaneously, it shows a higher regression fit than the variables in the
Type I and Type II models. Meanwhile, the univariate model in Type I showed a higher
regression fit than Type II and Type III. This indicates that setting compression and selecting
landscape metric features on landform and land cover can increase the predictive power of
the GWR model for exploring local spatial relationships of landslides in the study area.

4.3. Modeling Local Spatial Relationships of Landslides

The GWR model has been analyzed to identify the local spatial relationship between
the landslide and the micro-topography, landform, land cover, and vegetation density in
the study area. The Type III model with the best regression fit among the others was chosen
as the independent variable input and the percentage of landslide area as the response
variable. The result is that most of the independent variables can explain the landslides in
the study area but not for the southwestern region. The statistical summary of parameter
estimation (Table 7) shows that almost all variables spatially have positive and negative
estimates which indicate a non-stationary relationship to landslides. The local coefficient
integration map is the result of a synthesis of all variables that have been selected based on
their significance and adjustment of feature information for each variable (namely, local
coefficients that intersect with their features). This map is more intuitive and less confusing
in examining the most significant variables, both the positive and negative relationship
direction to landslides in each unit (Figure 6).

Variables positively related to landslides include microtopography, convergent backs-
lope, divergent footslope and shrubs. In contrast, those negatively related include a small
portion of microtopography, herbaceous plants, and open land. Meanwhile, the variables
that showed the most positive and negative relationships were divergent footslopes and
herbaceous plants, respectively. Sato et al. reported that landslides in the mountains of
the northwestern Himalayas occurred relatively on convex slopes rather than concave
slopes [88]. The study by [89] reported that landslides in Changshou Valley, Baoji City in
Shaanxi Province often occur in surface relief with convex slope shapes. Pourghasemi et al.
also reported that the shape of the convex slope had a major effect on landslides in the
Jumunjin Area, South Korea [28]. Havenith et al., revealed that the reasons why landslides
occur on convex slopes include: (1) convex slopes are relatively less stable under similar
hydrogeological conditions (lower factor of safety) because a larger slope body (larger
driving force) acts on the same sliding surface (more the same resistance); and (2) they
allow for the presence of a accumulated material (colluvium), which reflects lower shear
strength [90].

This statement supports the results of this study, namely that convex slopes are closely
related to landslides in the study area. In addition, this convex slope is specifically located
at the foot of the slope with surface material that holds a higher water content than the
backslope and upper slope arrangement [48]. Then, when the water content in the surface
material increases, the pore water pressure increases, which can result in a low Factor of
Safety (increased shear stress and decreased shear strength) resulting in landslides [91].
In addition, the dynamics of surface material moisture content can be affected by rainfall
intensity. As additional information, the divergent footslope in the study area is under
an average slope of 28.8◦ ± 15.2◦, thereby increasing the potential for landslides to occur.
Specifically, herbaceous plant land cover is plantation land that is negatively related to
landslides in the study area. This finding can be explained as land that was not initially
maintained, such as shrubs and grasslands; open land converted to cultivation implies
better water and land management practices that can allow for reduced slope instability [27].
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However, several other significant variables also need not be ignored; although, only a
few units.

Based on the findings of the spatial relationship of landslides with micro-topographical
and vegetation variables, it can be used as a basis for the conservation of research areas
to reduce the potential for landslides. Based on the results of the GWR, it shows that
landslides occur on convergent backslopes with surface cover in the form of shrubs. In
addition, landslides also have the potential to occur on convex slopes that are on the toe
slopes. These findings can become a model for micro-topography and vegetation-based
conservation arrangements, so that to reduce landslides the community in the study area
is not advised to plant species in the form of shrubs on steep slopes, or to carry out
intensive processing on footslopes with convex slope shapes. Herbaceous plants show a
negative relationship to landslides, so as part of the landslide conservation effort planting
of herbaceous plant species such as Rumput gajah (Pennisettrum Purpureum), Pakis (Diplazium
esculentum), Mindih (Melia azedarach L), and Waru (Hibiscus tiliaceus) can be applied. Several
herbaceous plants in the study area are conservative if planted using multi strata techniques,
thereby reducing the potential for movement of soil material.

4.4. Research Implications and Limitations

This study reveals local relationships between landslides and microtopography, land-
forms, land cover, and vegetation density. However, the novelty offered is to build a natural
unit of analysis compared to a grid basis, which is based on micro-topography derived from
morphological thiessen polygons. Pennock system-based landform element independent
variables are also taken into account. To our knowledge, they are rarely analyzed for
detailed scale landslide studies because they are indirectly related to geomorphic processes.
Land cover classification uses a reliable method that produces the best accuracy—using the
method from the study of Ma et al. applied to drone-based orthomosaic imagery, which
can be replicated for other studies. Then, three types of transformation of categorical
data on independent variables become new insights with an analytical approach for the
study of regression-based spatial modeling that can be reapplied, especially in research on
geo-environmental disasters. In addition, the last and most important thing is to offer the
output of the GWR model with a local coefficient integration map for the most significant
classification of variables related to landslides (positive or negative). This map information
can be used as a reference for landslide disaster management in the study area, namely
convergent backslope, divergent footslope, some microtopographical classes, and shrubs
that need to be watched out for in their land use and require special treatment to reduce
slope instability.

However, there are several limitations in this study, including: (1) the mapped study
area contains canopied vegetation, which is a weakness in building DTMs, so that it can
cause land surface elevation estimation errors; (2) microtopographic zoning does not have
field validation, so objectivity is still questionable because this study relies on interpretation
remote sensing; and (3) the results of the GWR model with the transformation of landscape
metric-based category data are not discussed further as to how the spatial configuration
of landforms and land cover can specifically explain landslides in the study area. For
further research, additional issues such as climate and anthropogenic factors can be added
to the GWR model to obtain more complete results and to explain landslides in the entire
study area.

5. Conclusions

Exploration of local spatial relationships between landslide occurrences in tropical
hills, especially in Taji Village, Jabung District, East Java Province, can explain the factors
that most influence landslides. A series of approaches and methods were introduced and
implemented to construct independent variables to be analyzed by GWR and produce
reliable model outputs. Microtopographical zoning is used as a unit of analysis to syn-
thesize all information on the independent variables—which incidentally have different

306



Sustainability 2023, 15, 3043

spatial forms—as well as the dependent variable, namely the percentage of avalanche area.
Categorical data transformation brought independent variables to be modeled, even better
than global regression. However, the best results for the independent variables modeled
simultaneously fell to the change in landscape metric data on landform and land cover
features that had been compressed through PCA analysis, and selected component features
associated with landslide occurrence data. GWR can reveal a non-stationary relationship
between landslide events and independent variables in the study area. Information on the
local coefficients of each independent variable is integrated into a single entity based on
the significance of the t values (i.e., ≤−1.96 and ≥1.96) and the selection of features of each
variable that intersect with the microtopographic unit. The majority of the variables that
show the most positive relationship to the occurrence of landslides are divergent footslopes
where colluvial (colluvial) material accumulates from the upper slopes (i.e., the shoulders
and backslope), which have a low Factor of Safety so that the slopes are less stable. In
addition, the slopes of the footslope accommodate more water content, and when heavy
rain occurs it can increase the pore water pressure so that the Factor of Safety is lower and
there is a potential for landslides to happen, especially since the angle of the slopes in the
study area is sufficient to support this. On the other hand, it was herbaceous plants or
plantation land in the study area that surprisingly reduced the occurrence of landslides,
due to good water and land management being able to maintain slope stability longer.
The methodological approach developed and introduced in this study is reproducible and
further analyzed in other tropical hills at a detailed and regional scale prone to landslides.
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Abstract: Planting vegetation is an environmentally friendly method for reducing landslides. Current
vegetated slope analysis fails to consider the influence of different root architectures, and the accuracy
and effectiveness of the numerical simulations need to be improved. In this study, an explicit
smoothed particle finite element method (eSPFEM) was used to evaluate slope stability under the
influence of vegetation roots. The Mohr–Coulomb constitutive model was extended by incorporating
apparent root cohesion into the shear strength of the soil. The slope factors of safety (FOS) of four
root architectures (uniform, triangular, parabolic, and exponential) for various planting distances,
root depths, slope angles, and planting locations were calculated using the shear strength reduction
technique with a kinetic energy-based criterion. The results indicated that the higher the planting
density, the stronger the reinforcement effect of the roots on the slope. With increasing root depth,
the FOS value first decreased and then increased. The FOS value decreased with an increase in
slope angle. Planting on the entire ground surface had the best improvement effect on the slope
stability, followed by planting vegetation with a uniform root architecture in the upper slope region or
planting vegetation with triangular or exponential root architecture on the slope’s toe. Our findings
are expected to deepen our understanding of the contributions of different root architectures to
vegetated slope protection and guide the selection of vegetation species and planting locations.

Keywords: explicit smooth particle finite element method; vegetated slope; root architectures; shear
strength reduction technique; factor of safety

1. Introduction

Landslides and debris flows are common natural disasters that cause environmental
damage, human casualties, and economic losses [1,2]. To tackle this problem, measures,
such as nailing, vegetation, ground improvement, geosynthetic reinforcement, and im-
proved drainage have been taken. Among these, vegetation is an economically, sustainable,
and environmentally friendly bio-remediation technique [3,4]. Further studies on the effects
of vegetation on slope stability are essential.

It is now understood that vegetation contributes to the stability of civil infrastructure,
including shallow slopes (i.e., slopes with vertical depths less than 2 m), road and railway
slopes, dams, embankments, and dykes [5–9]. Vegetation roots (e.g., from grasses, shrubs,
and trees) are believed to stabilise slopes and slow the large-scale movement of landslides
by strengthening soils with increased cohesion [10–13]. Planting trees on slopes can reduce
the occurrence of shallow landslides by up to 95% compared with similar areas without
trees [14,15].

To date, a large body of literature has documented studies that have focused on
quantifying the contribution of roots to soil shear strength. These studies included in situ
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direct shear tests [16,17] and laboratory direct shear tests [18,19] on soil blocks containing
plant roots, as well as laboratory direct shear tests of soils reinforced by fibres that sim-
ulate roots [20–22]. The finite element method (FEM) can also be applied in this vein of
research [23,24]. These studies have shown that roots can increase the shear strength of the
soil. Therefore, it is necessary to incorporate the effects of root reinforcement into landslide
prediction models and slope-stability analyses.

The limit equilibrium method (LEM) [25,26] and FEM [27,28] have been widely used
in slope-stability analyses. The advantages of FEM compared to LEM are that it does not
need to presuppose the shape and position of the critical slip surface, and the stress–strain
relationship and soil deformation behaviour can be considered using the FEM. Slope-
stability analysis based on the FEM has been recognised as an effective tool in geotechnical
engineering [29]. The FEM has also been applied to the analysis of vegetated slopes [30].
The traditional FEM can correctly describe the initial failure surface, but for the large
deformation problem of the slope after the initial failure, the numerical simulation may be
inaccurate or even impossible owing to mesh distortion; therefore, FEM has limitations to
such problems [29,31].

An alternative solution for overcoming the FEM mesh distortion problem is the
meshless technique, which uses a set of particles to replace the mesh in FEM-based
approaches [32]. Many meshless numerical frameworks have been presented to solve
large-deformation problems in geomechanics so far [33], such as discrete element method
(DEM) [34,35], smoothed particle hydrodynamics (SPH) [36,37], and the material point
method (MPM) [38,39]. However, meshless methods require neighbours’ searching, which
needs high computation costs. Moreover, meshless methods usually necessitate special
treatment techniques to deal with boundary conditions [32]. The particle finite element
method (PFEM) [40,41] uses particles to represent materials that are similar to those in the
mesh-free method, and it has been proven as a powerful numerical means to analyse the
post-failure mechanisms in geo-engineering [32]. In recent years, many novel methods have
been improved on the basis of PFEM, such as the smoothed particle finite element method
(SPFEM) [30,32,42,43], edge-based smoothed PFEM (ES-PFEM) [44], node-based smoothed
PFEM (NS-PFEM) [45], and stable node-based smoothed PFEM (SNS-PFEM) [46,47].

In previous studies, the numerical analysis of the influence of roots on slope stability
usually involved the change of material parameters at a certain depth of the soil layer, and
the effect of specific root architecture has seldom been considered. Plant roots penetrate
the soil matrix to form a root-soil composite [29,31]. Nevertheless, existing analytical
models generally concentrate on the ultimate limit state, and they neglect the complicated
interactions between root systems and soil [48]. Therefore, quantifying the root contribution
and determining the critical slip surface remains a challenge.

Based on the shortcomings of previous investigations, this study proposes a novel
method for evaluating the stability of shallow vegetated slopes. An eSPFEM with a
kinetic-energy-based criterion was used for the numerical simulation. The apparent root
cohesion is incorporated into the Mohr–Coulomb constitutive model. The FOS of the four
root architectures for various planting distances, root depths, slope angles, and planting
locations were calculated using the shear strength reduction technique. To the best of our
knowledge, this is the first study to use eSPFEM to calculate the effects of different root
architectures on slope stability. This study is expected to provide a reference for improving
the slope stability and optimising the management of mountain shelter forests. Nonetheless,
the limitation of this study lies in the need for a large amount of calculation and accurate
parameterisation, so it is currently only applicable to small and shallow slopes.

2. Materials and Methods

2.1. The eSPFEM Approaches

The PFEM solves the governing equations using a standard finite element approach [30].
Therefore, it not only has the flexibility of mesh-free particle methods for arbitrary changes
in geometry but also inherits the solid mathematical foundation of the traditional FEM [49].
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The PFEM is based on an updated Lagrangian (UL) fashion for modelling the motion of a
continuum medium. The continuum medium is discretised into a set of Lagrangian nodes
(particles) that contain and transmit all of the information present. The computational
mesh was built using the Delaunay triangulation technique, and the boundary of the
computational mesh was identified using the alpha-shape approach. A mesh was then
used to solve the governing equations. However, in the PFEM, excessive mesh distortion is
avoided by frequent remeshing, and the state variables (i.e., stress and strain) are mapped
from old Gauss points to new ones. This mapping procedure inevitably introduces errors,
which increase the complexity of the calculation process [30,32,42].

The SPFEM [50,51] uses a strain smoothing technique for nodal integration based
on the PFEM to achieve the balance of governing equations at nodes or particles. In the
SPFEM, all of the field variables are calculated at particles instead of Gauss points in the
PFEM, which can avoid information transfer between Gauss points and particles, thus
reducing the calculation error. In addition, the SPFEM possesses the upper-bound property
and provides a conservative estimate for problems in geomechanics. Finally, low-order
triangle elements can be used directly without volumetric locking [30,32,42]. The SPFEM
can consider the entire dynamic failure process of a slope in slope-stability analysis and
therefore simulate the large deformation and post-failure of soil to obtain a more reliable
FOS value [32].

In SPFEM, the computation domain is discretized into strain smoothing cells associated
with nodes. The physical volume, Ω, is correspondingly discretized into particles. As
shown in Figure 1, The smoothing cell associated with the particle k is created by connecting
sequentially the mid edge point to the central points of the surrounding triangular elements
of particle k. A strain smoothing operation is then performed based on the set of smoothing
cells that are created based on the triangulation mesh [32].

Figure 1. Construction of smoothing cell associated with particle k.

In the smoothed strain technique, the area, Ak, of the smoothing cell, Ωk, associated
with node k is calculated by:

Ak =
∫

Ωk

dΩ =
1
3

Nk

∑
j=1

Aj (1)

where Nk is the number of elements related to particle k and Aj is the area of the jth element.
The smoothed strain matrix is calculated by:

B̃k =
1

Ak

Nk

∑
j=1

1
3

AjBj (2)

where Bj represents the strain gradient matrix used in the standard FEM for the jth element.
More details regarding the strain smoothing technique are available in Liu et al. [51] and
Chen et al. [52].
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The discretization of the computational formulations of eSPFEM is now briefly pre-
sented. The motion of a continuum can be described as:

ρa = ∇ · σ + ρb (3)

where, ρ is the material density, a is the acceleration, σ is the Cauchy stress tensor, and b is
the specific body force density. Considering the principle of virtual displacement and the
divergence theorem, the weak form is expressed as:∫

Ω
δu · ρadΩ =

∫
S

δu · τSdS +
∫

Ω
δu · ρbdΩ −

∫
Ω

δu:σdΩ (4)

where u is the displacement vector, Ω represents the configuration domain, S represents
the boundary, and τS is the prescribed traction. After the node-based discretization, the
above equation reads:

T

∑
k=1

ρak Ak =
T

∑
k=1

∫
S

NkτSdS +
T

∑
k=1

ρbk Ak −
T

∑
k=1

B̃
T
k σk Ak (5)

where T is the total number of nodes in the computation domain. The above discrete form
can then be written in the vector or matrix form as:

Ma = Fext − Fint (6)

in which:

Fext =
T

∑
k=1

∫
S

NkτSdS +
T

∑
k=1

ρbk Ak (7)

Fint =
T

∑
k=1

B̃
T
k σk Ak (8)

M =
T

∑
k=1

ρAk (9)

where Fext and Fint are termed as the external and internal forces, respectively, and M is the
diagonal mass matrix.

A typical computational cycle of eSPFEM is shown as follows [43]:

(1) Generate mesh using Delaunay triangulation and alpha shape technique;
(2) Acquire basic data of elements and nodes;
(3) Calculate smoothed strains of nodes;
(4) Update stresses of nodes through constitutive integration;
(5) Calculate internal forces of nodes;
(6) Update velocities and position.

Compared with the implicit SPFEM [30], the eSPFEM adopts an explicit time-integration
scheme, which has a more concise formulation, lower computational cost, and wider appli-
cations. We used a self-developed code that aims to develop a GPU-accelerated SPFEM
for large deformation analysis in geomechanics based on CUDA [43], which is released
by NVIDIA to perform high-performance computing and has gained popularity rapidly
in geomechanics recently [53,54]. Details of the eSPFEM theory can be found in Yuan
et al. [32,42] and Zhang et al. [43,55,56].

2.2. Modelling the Mechanical Effect of Roots

Plant roots extend into the soil matrix and form a soil-root composite material with
a mechanical effect that enhances the shear strength of the soil [57]. This effect is often
considered as additional soil cohesion (known as apparent root cohesion) [23,58,59].
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Different theoretical models have been created to estimate the mechanical effect of
roots on slope stability, such as the Wu model [17,60] and the fibre bundle model (FBM) [61].
The Wu model assumes that all roots are moved and broken simultaneously, which is not
true in reality. However, it is the most commonly used model owing to its simplicity. The
Wu model is a perpendicular root-strengthening model established using two variables:
root area ratio (RAR) and root tensile strength [48].

The Wu model is used to describe the increase in soil shear strength caused by the
mechanical effect of the roots, as follows:

cr = ζ × Tr × R f × RAR (10)

where cr is the additional soil cohesion and ζ represents the correction factor, which takes
into account the influence of roots breaking progressively in reality on soil shear strength;
in the present study, ζ equals 0.4 [62].

Tr is the root tensile strength. For simplicity, the effects of the root diameter distri-
butions were ignored, and a constant root tensile strength was considered [63]. Available
current data on tree roots indicate that Tr ranges from 5 to 60 MPa [11,64]; in the present
study, Tr equals 20 MPa.

R f stands for the root orientation factor, which is defined as follows:

R f = sin θ + cos θ tan ϕ′ (11)

where θ represents the angle between the root and failure surface when the root breaks, and
ϕ′ is the effective angle of internal friction. It should be noted that roots do not always grow
perpendicular to the slope’s surface, as their growth is influenced by ambient conditions
(e.g., gravity and nutrition) [57]. In many cases, θ is between 48◦ and 72◦ at failure, so the
range of sin θ + cos θ tan ϕ′ is narrow, i.e., approaching 1.2 [11]. In the present study, R f
equals 1.2.

The RAR (in Equation (1)), which is defined as the proportion of the cross-sectional
area of the soil occupied by roots, is determined as follows:

RAR =
Ar

A
(12)

where Ar and A represent the cross-sectional area of root and soil, respectively. In the
present study, RAR equals 0.45% [64].

Many researchers have estimated the value of cr for various vegetation species growing
in different environments, and its typical values vary from 1.0 to 94.3 kPa [29]. According
to Equation (1), the original cr score in this study is 43.2 kPa.

2.3. Mechanical Effect of Root-Soil on Shallow Slope Stability

Most of the results from the direct-shear tests showed that roots increased the co-
hesion [60], whereas the friction angle remained mostly unchanged [64]. For undrained
loading, the shear strength of saturated vegetated soils, s, can commonly be determined
by incorporating the additional soil cohesion, cr, into the Mohr–Coulomb failure crite-
rion [64,65], which can be modified as follows:

s = cr + c′ + σn tan ϕ′ (13)

where, c′ is effective cohesion and σn is total normal stress.
The shear strength reduction technique was adopted to analyse the slope stability,

which is defined as follows:
s f =

s
SRF

ϕ′ f = arctan
(

tan ϕ′
SRF

) (14)
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where s f and ϕ′
f are the reduced shear strength and the reduced effective angle of internal

friction, respectively. SRF is the shear strength reduction factor. First, the initial value of
the SRF was set to an adequately low value to keep the slope stable under gravitational
loading. Then, the value of the SRF increases gradually until the slope becomes unstable
and failure occurs. The critical value of the SRF leading to slope instability is considered to
be the FOS of the slope [30].

2.4. The Four Patterns of Root Geometry
2.4.1. Idealisation of Typical Patterns of Root Architecture

The spatial location of thick roots determines the arrangement of related thin roots;
thus, root distribution presents a high degree of complexity [8]. Existing methods for
quantifying root architecture include the extraction of roots, the complete washing of soil,
and image analysis of roots [66]. The spatial distribution of roots is an important factor
in determining the reinforcement behaviour and mechanical properties of roots, and the
generalisation of root morphology is essential for evaluating the influence of vegetation on
slope stability [9,67].

Based on experimental observations, researchers have summarised four typical pat-
terns of root geometry: uniform distribution [10,68], triangular distribution [68], parabolic
distribution [69], and exponential distribution [10]. Table 1 lists the characteristics of differ-
ent root architectures, typical species, and their growing regions. Figure 2 shows the root
architecture of four different real roots.

Table 1. Introduction to different root architectures.

Root Architectures Characteristics Typical Species Growing Regions

Uniform distribution
A root system with a large
taproot and large horizontal
lateral roots

Aleppo pine [10]
Mediterranean, Southern
Europe, Asia, and North
Africa [70]

Pulsatilla pratensis [68]
Sub-polar areas of Europe,
Asia, North America Central,
and Eastern Europe [71]

Triangular distribution A root taproot system with
small lateral roots Trigonella balansae [68] Europe, and Asia [72]

Parabolic distribution A concentrated root system Cynodon dactylon [69] North Africa, Asia, Australia,
and Southern Europe [73]

Exponential distribution A plate-shaped root system Beech and Mature oaks [10] Europe, and North America
[74,75]

Figure 2. Different real root architectures: (a) Uniform distribution [68]; (b) Triangular distribu-
tion [68]; (c) Parabolic distribution [69]; (d) Exponential distribution [10].

Root biomass can be expressed by root volume, mass, area, or length, and the most
commonly adopted measure is the soil area occupied by the roots [76]. In order to achieve
a fair comparison, the symmetric parts of the four root architecture profiles are normalised
to the same unit area. Figure 3 describes their normalised function curves. It is assumed
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that these root architectures have the same root depth and are homogeneously distribute in
the root zone.

Figure 3. Normalised function curves of the four different root architectures.

2.4.2. Root Architecture Functions on Slope

The coordinate system on the slope can be defined as x′o′y′, and the extent between
the bottom of the root zone and the slope’s surface is defined by the root depth, zr. Figure 4
describes the boundaries of the four different root zones, and the green areas indicate the
root zones. The mathematical functions derived from the root zone boundaries are as
follows:

1. Uniform distribution

⎧⎪⎪⎨⎪⎪⎩
y′ = 1

zr
y′ = − 1

zr
x′ = 0
x′ = −zr

(15)

Figure 4. Boundaries of the four different root zones: (a) Uniform distribution; (b) Triangular
distribution; (c) Parabolic distribution; (d) Exponential distribution.

2. Triangular distribution
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⎧⎪⎨⎪⎩
y′ = − 1

zr2 x′ − 2
zr

y′ = 1
zr2 x′ + 2

zr

x′ = 0
(16)

3. Parabolic distribution

{
y′ = 6

zr3 x′2 + 6
zr2 x′

y′ = − 6
zr3 x′2 − 6

zr2 x′
(17)

4. Exponential distribution

⎧⎪⎪⎨⎪⎪⎩
y′ = ex′−e−zr

zre−zr+e−zr−1

y′ = e−zr−ex′
zre−zr+e−zr−1

x′ = 0

(18)

2.4.3. Root Architecture Functions after Coordinate Transformation

The coordinate transformation formula from the coordinate system x′o′y′ to the rect-
angular coordinate system xoy is assembled as:[

x
y

]
=

[
cos α − sin α
sin α cos α

][
x′
y′
]
+

[
C1
C2

]
(19)

where α is the complementary angle of the slope angle and β, C1, and C2 are parameters
related to the planting position. Equation (10) can be expressed as:{

x′ = x cos α + y sin α − C1 cos α − C2 sin α
y′ = y cos α − x sin α + C1 sin α − C2 cos α

(20)

According to Equations (15) and (20), the scope boundaries of the uniform distribution
were obtained. ⎧⎪⎪⎨⎪⎪⎩

y cos α − x sin α + C1 sin α − C2 cos α ≤ 1/zr
y cos α − x sin α + C1 sin α − C2 cos α ≥ −1/zr
x cos α + y sin α − C1 cos α − C2 sin α ≤ 0
x cos α + y sin α − C1 cos α − C2 sin α ≥ −zr

(21)

According to Equations (16) and (20), the scope boundaries of the triangular distribu-
tion were obtained.
when zr

2 − 2 tan α > 0,⎧⎪⎨⎪⎩
y cos α − x sin α + C1 sin α − C2 cos α ≥ − 2

zr2 (x cos α + y sin α − C1 cos α − C2 sin α)− 2
zr

y cos α − x sin α + C1 sin α − C2 cos α ≤ 2
zr2 (x cos α + y sin α − C1 cos α − C2 sin α) + 2

zr

x cos α + y sin α − C1 cos α − C2 sin α ≤ 0
(22)

when zr
2 − 2 tan α ≤ 0,⎧⎪⎨⎪⎩

y cos α − x sin α + C1 sin α − C2 cos α ≥ − 2
zr2 (x cos α + y sin α − C1 cos α − C2 sin α)− 2

zr

y cos α − x sin α + C1 sin α − C2 cos α ≥ 2
zr2 (x cos α + y sin α − C1 cos α − C2 sin α) + 2

zr

x cos α + y sin α − C1 cos α − C2 sin α ≤ 0
(23)

According to Equations (17) and (20), the scope boundaries of the parabolic distribution
were obtained.
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
y cos α − x sin α + C1 sin α − C2 cos α ≥ 6

zr3 (x cos α + y sin α − C1 cos α − C2 sin α)2

+ 6
zr2 (x cos α + y sin α − C1 cos α − C2 sin α)

y cos α − x sin α + C1 sin α − C2 cos α ≤ − 6
zr3 (x cos α + y sin α − C1 cos α − C2 sin α)2

− 6
zr2 (x cos α + y sin α − C1 cos α − C2 sin α)

(24)

According to Equations (18) and (20), the scope boundaries of the exponential distri-
bution were obtained.⎧⎪⎨⎪⎩

y cos α − x sin α + C1 sin α − C2 cos α ≥ ex cos α+y sin α−C1 cos α−C2 sin α−e−zr

zre−zr+e−zr−1

y cos α − x sin α + C1 sin α − C2 cos α ≤ e−zr−ex cos α+y sin α−C1 cos α−C2 sin α

zre−zr+e−zr−1
x cos α + y sin α − C1 cos α − C2 sin α ≤ 0

(25)

C1, C2, and α in Equations (21)–(25) are discussed under three different conditions:
vegetation growth on the slope’s surface, upper slope region, and lower slope region.
Figure 5 shows the geometric parameters of the vegetated slope (taking a uniform distribu-
tion as an example), green areas indicate the root zones.

Figure 5. Geometric parameters of the vegetated slope.

When vegetation is planted on the slope’s surface:⎧⎨⎩
α = 90o − β
C1,sur f ace = l1 + da − a(itree − 1)
C2,sur f ace = h1 + {l2 − [da + a(itree − 1)]} tan β

(26)

where a is the horizontal interval between root centres on the slope’s surface, da is the
horizontal distance between the root centre of the highest vegetation and the near edge of
the upper slope region, da = a/2, itree is the amount of vegetation on the slope’s surface,
1 ≤ itree ≤ l2/a, and l2/a is an integer.

When vegetation grows on the upper slope region:⎧⎨⎩
α = 90o

C1,upper = db + b(jtree − 1)
C2,upper = h1 + l2 tan β

(27)

where b is the horizontal interval between root centres on the upper slope region, db is the
horizontal distance between the root centre of the vegetation closest to the slope’s surface
and the top edge of the slope’s surface, db = b/2, jtree is the number of vegetation on the
upper slope region, 1 ≤ jtree ≤ l1/b, and l1/b is an integer.
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When vegetation is planted on the lower slope region:⎧⎨⎩
α = 90o

C1,lower = l1 + l2 + dg + g(ktree − 1)
C2,lower = h1

(28)

where g is the horizontal interval between the root centres in the lower slope region, dg is the
horizontal distance between the root centre of the vegetation closest to the slope’s surface
and the bottom edge of the slope’s surface, dg = g/2, ktree is the amount of vegetation in
the lower slope region, 1 ≤ ktree ≤ l3/g, and l3/g is an integer.

2.5. Numerical Implementation

The geometry and boundary conditions of the slope-stability problem are shown in
Figure 6. The boundary conditions were set as rollers along the left and right vertical
boundaries and were fully fixed at the base.

Figure 6. Geometry and boundary conditions of the slope-stability problem.

The soil behaviour was modelled by an elastic-perfectly plastic Mohr–Coulomb ma-
terial, and the material properties are listed in Table 2. The material parameters were
obtained by referring to [30,77]. The slope was divided into lower bedrock and upper soil.
The root zone is the soil elements influenced by vegetation [29]. It is assumed that two
adjacent root zones may overlap without affecting root distribution. Figure 7 shows root
zones and overlapping root zones of different root architectures in vegetated slopes (slope
angle of 45◦, root depth of 1 m, root zone area of 2 m2, planting distances of 2.5 m, and
planting location on the slope’s surface).

Table 2. Material properties.

Material
Unit Weight
γ (kN/m3)

Young’s Modulus
E/MPa

Poisson’s Ratio
υ

Cohesion
c’/kPa

Friction Angle
ϕ’(◦)

Bedrock 21 100 0.3 30 35
Soil 20 60 0.3 10 20

Root zone 20 60 0.3 53.2 20
Overlapping root zone 20 60 0.3 96.4 20

To guarantee both the numerical accuracy and the computational efficiency, a non-
uniform initial particle distribution is assumed. A very fine mesh discretisation is used
for the soil and root zones near the slope’s surface, and a coarser mesh discretisation is
used for the bedrock, which is situated away from the slope’s surface. The meshes adopt
six-node triangular elements. Table 3 shows the mesh parameters of slopes angle of 40◦,
45◦, and 50◦.
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Figure 7. Root zones and overlapping root zones of different root architectures in vegetated slopes:
(a) Uniform distribution; (b) Triangular distribution; (c) Parabolic distribution; (d) Exponential
distribution.

Table 3. Mesh parameters.

Slope Angle β 40◦ 45◦ 50◦

Number of elements 1695 1744 1863
Number of nodes (particles) 3498 3599 3842

In this study, the eSPFEM is utilised to simulate the failure process of the entire
vegetated slope and predict the large deformation behaviour and final deposit of the slope
failure. A kinetic energy-based criterion [32] is adopted to analyse the stability of vegetated
slopes. This approach is based on the relation of the kinetic energy of the slope with the
simulation time [32]. The peak value of kinetic energy curve can be considered as an
indicator of the critical state, because the failure of the slope is related to large deformation,
and the kinetic energy increases significantly after failure occurs. The value of SRF at the
peak of the kinetic energy curve is interpreted as the FOS of the slope, and kinetic energy
reaches a steady state in a short period after the peak.

The simulation is divided into two stages: first, the displacements of all of the particles
are fixed, and gravity is applied to all of the particles to achieve the initial stress field; then,
the particles are allowed to move, and after the initial shear failure, the unstable soil moves
and reaches an equilibrium state at a new slope configuration. The horizontal displacement
of point P, which is located at the slope’s toe, is monitored (see Figure 5).

Slope failure was calculated using the shear strength reduction technique by gradually
increasing the SRF. For different SRFs, the simulation was implemented with eSPFEM,
and a physical time of 6 s [32] was considered for each SRF to obtain a new steady state
for the slope after failure. To evaluate the effect of roots on slope stability, five variables
(root architecture, planting distance, root depth, slope angle, and planting location) were
systematically varied to calculate FOS values under different conditions.

3. Results

3.1. Comparison of the Instability of the Vegetated Slope and Bare Slope

Case 1 compares the failure mechanisms of the bare and vegetated slopes. The eSPFEM
was used to analyse the stability of bare and vegetated slopes with a slope angle of 45◦
(planting location is the slope’s surface, root depth of 1 m, root zone area of 2 m2, planting
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distance of 2.5 m, and a uniform root distribution) for various SRFs. Figure 8 shows the
evolution of the kinetic energy with time. Figure 9 shows the variation in the maximum
horizontal displacement at the slope’s toe with time. Figure 10 shows the equivalent plastic
strain and final configurations for various SRFs, and the grey zones indicate the initial root
areas.

Figure 8. Evolution of kinetic energy with time for various SRFs: (a) Bare slope; (b) Vegetated slope.

Figure 9. Variation of maximum horizontal displacement at the slope’s toe with time for various
SRFs: (a) Bare slope; (b) Vegetated slope.

For the bare slope (Figure 8a), when SRF ≤ 1.3, the slope is stable, and no obvious
kinetic energy occurs. When SRF ≥ 1.4, the kinetic energy-time curve exhibits a peak value,
and then the kinetic energy reaches a steady state within a short time. Therefore, the critical
SRF value was 1.3, which was regarded as the FOS of the slope. Displacement at the slope’s
toe (Figure 9a) also occurred when SRF ≥ 1.4. In addition, from the results of the equivalent
plastic strain (Figure 10a), it can be seen that when SRF = 1.2, a plastic strain develops at the
weak band between bedrock and soil as well as at the slope’s toe. When SRF = 1.3, a narrow
local band of plastic strain was detected, and the plastic zone subsequently extended from
the slope’s toe to the slope top. The plastic strain band was dark near the top of the slope,
indicating that the slope was not completely damaged. When SRF = 1.4, a continuous band
of plastic strain localisation was observed, and slope failure occurred, accompanied by a
large increment in displacement. The deformation of the slope was mainly concentrated
on the slope’s surface, and the maximum deformation occurred at the centre of the slope’s
surface.
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Figure 10. Equivalent plastic strain and final configurations for various SRFs: (a) Bare slope;
(b) Vegetated slope.

For the vegetated slope (Figure 8b), no obvious kinetic energy appears when SRF ≤ 1.5,
whereas the kinetic energy-time curve shows a peak value when SRF ≥ 1.6. The FOS of
the slope was 1.5. A large deformation displacement at the slope’s toe (Figure 9b) also
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occurs during FOS ≥ 1.6. Moreover, according to the equivalent plastic strain diagram
(Figure 10b), when SRF = 1.6, the slope produces a continuous band of plastic strain, and
the upper soil mass creates a displacement. The depth of the shear band corresponded to
the root zone depth.

3.2. Effects of the Planting Distance on the Stability of the Vegetated Slopes

The research object of case 2 was a vegetated slopes with a slope angle of 45◦, root
depth of 1 m, root zone area of 2 m2, and planting location on the slope’s surface. The
effects of the root architecture on slope stability are discussed when the planting distances,
a, are set to 5 m, 2.5 m, and 1.25 m, respectively. Figures 11 and 12 show the maximum
horizontal displacement at the slope’s toe after the failure of the vegetated slopes with the
increase in SRF for different planting distances.

Figure 11. With the increase in SRF, the maximum horizontal displacement at the slope’s toe for
different root architectures after slope failure: (a) a = 5 m; (b) a = 2.5 m; (c) a = 1.25 m.

Figure 12. With the increase in SRF, the maximum horizontal displacement at the slope’s toe for
various planting distances after slope failure: (a) Uniform distribution; (b) Triangular distribution;
(c) Parabolic distribution; (d) Exponential distribution.
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As shown in Figures 11 and 12, when the planting distance on the slope’s surface was
2.5 m or 1.5 m, the slope stability was significantly improved compared with the bare slope
(Figure 11b,c). However, the effect was not evident when the distance was 5 m (Figure 11a).
When the planting distance is 5 m, the slope FOS is 1.3 for the four root architectures,
which is equal to that of the bare slope. When the distance is 2.5 m, the FOS of the uniform
and exponential root architectures is 1.5, and that of the triangular and parabolic root
architectures is 1.4. The FOS of the four root architectures was 1.7 when the distance was
1.25 m.

3.3. Role of the Root Depth in the Stability of the Vegetated Slopes

The study object of case 3 is a vegetated slope with a slope angle of 45◦, planting
distances of 2.5 m, root zone area of 2 m2, and planting location on the slope’s surface. The
effects of root architecture on the slope stability are discussed when the root depths, zr,
are set to 0.5 m, 0.75 m, 1.0 m, 1.25 m, and 1.5 m, respectively. Figures 13 and 14 show
the maximum horizontal displacement at the slope’s toe after the failure of the vegetated
slopes with an increase in SRF for various root depths.

Figure 13. With the increase in SRF, the maximum horizontal displacement at the slope’s toe for
different root architectures after slope failure: (a) zr = 0.5 m; (b) zr = 0.75 m; (c) zr = 1 m;
(d) zr = 1.25 m; (e) zr = 1.5 m.

As shown in Figure 13, after slope failure, the horizontal displacement at the slope’s
toe with root depths of 0.5 m and 1.5 m is smaller than that with root depths of 0.75 m,
1.0 m, and 1.25 m. When the root depth is 1.5 m, the FOS of the triangular and exponential
root architectures is 1.6, whereas that of the uniform and parabolic root architectures is
greater than 1.8. The FOS of the four root architectures was 1.6 when the root depth was
0.5 m.
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Figure 14. With the increase in SRF, the maximum horizontal displacement at the slope’s toe
for various root depths after slope failure: (a) Uniform distribution; (b) Triangular distribution;
(c) Parabolic distribution; (d) Exponential distribution.

Figure 14 illustrates that, for uniform (Figure 14a) and parabolic root architectures
(Figure 14c), the slope stability is the best when the root depth is 1.5 m (FOS > 1.8). When
the root depth of the uniform root architecture was 0.75 m and that of the parabolic
root architecture was 1.0 m, the slope stability was the worst (FOS = 1.4). For triangular
(Figure 14b) and exponential (Figure 14d) root architectures, the FOS reaches the maximum
when root depths are 0.5 m and 1.5 m (FOS = 1.6); and the FOS is the lowest when the root
depths are 1.0 m and 1.25 m (FOS = 1.4).

3.4. Effects of the Slope Angle on the Stability of the Vegetated Slopes

The research object of case 4 is a vegetated slope with a planting distance of 2.5 m,
root depth of 1 m, root zone area of 2 m2, and planting location is the slope’s surface. The
influence of root architecture on slope stability is discussed when the slope angles, β, are
set to 40◦, 45◦, and 50◦, respectively. Figures 15 and 16 show the maximum horizontal
displacement at the slope’s toe after the failure of vegetated slopes with an increase in the
SRF for different slope angles.

As shown in Figures 15 and 16, when the slope angles are 40◦, 45◦, and 50◦, the FOS
are 1.3, 1.5, and 1.7, respectively, for the uniform and exponential root architectures; for
triangular root architecture, the FOS are 1.2, 1.4, and 1.6, and for parabolic root architecture,
the FOS are 1.3, 1.4, and 1.6, respectively.
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Figure 15. With the increase in SRF, the maximum horizontal displacement at the slope’s toe for
different root architectures after slope failure: (a) β = 40◦; (b) β = 45◦ (c) β = 50◦.

Figure 16. With the increase in SRF, the maximum horizontal displacement at the slope’s toe
for various slope angles after slope failure: (a) Uniform distribution; (b) Triangular distribution;
(c) Parabolic distribution; (d) Exponential distribution.

3.5. Influence of the Planting Location on the Stability of the Vegetated Slopes

The study object of case 5 is a vegetated slope with a slope angle of 45◦, planting
distance of 2.5 m, root depth of 1 m, and root zone area of 2 m2. The effects of the root
architecture on slope stability when the location of the root zone changes are discussed.
We referred to Chok et al. [29] for the planting locations. Figure 17 shows the slopes with
the planting positions of the slope’s surface, slope’s toe, the slope’s surface and toe, upper
slope region, lower slope region, upper and lower slope regions, and entire ground surface,
as well as their final equivalent plastic strains during FOS = 1.6. The grey area represents
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the root zone (taking uniform root architecture as an example). Figures 18 and 19 show the
maximum horizontal displacement at the slope’s toe after slope instability with an increase
in SRF for different planting locations.

Figure 17. Vegetated slopes for different planting locations and the final equivalent plastic strain
for FOS = 1.6: (a) slope’s surface; (b) slope’s toe; (c) slope’s surface and toe; (d) upper slope region;
(e) lower slope region; (f) upper and lower slope regions; (g) entire ground surface.

Figure 17 shows that different planting positions have different influences on the shear
band of the slope failure. The improvement in slope stability was the most obvious in the
entire ground surface planting. Planting at the slope’s toe can effectively reduce the sliding
displacement of the slope soil.

As shown in Figure 16, vegetation on the entire ground surface (Figure 18g) had the
best effect on the slope stability (FOS > 1.8). Planting on the lower slope region (Figure 18e)
has little impact on the FOS, which is equal to that of the bare slope (FOS = 1.3). Planting
on the slope’s surface (Figure 18a) was better than that on the lower slope region, and the
influence of uniform and exponential root architectures (FOS = 1.5) was better than that
of triangular and parabolic root architectures (FOS = 1.4). The effects of planting on the
slope’s toe (Figure 18b) and the slope’s surface and toe (Figure 18c) were both similar. Both
were better than the slope’s surface, and the impacts of the triangular and exponential root
architectures (FOS = 1.7) were better than those of uniform and parabolic root architectures
(FOS = 1.5). The effects of planting on the upper slope region (Figure 18d) and upper and
lower slope regions (Figure 18f) were similar, and the influence of uniform architecture
(FOS > 1.8) was better than that of the other three root architectures (FOS = 1.5).
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Figure 18. With the increase in SRF, the maximum horizontal displacement at the slope’s toe for
different root architectures after slope failure: (a) slope’s surface; (b) slope’s toe; (c) slope’s surface
and toe; (d) upper slope region; (e) lower slope region; (f) upper and lower slope regions; (g) entire
ground surface.

In Figure 19, the planting of uniform root architecture (Figure 19a) on the upper and
lower slope regions, upper slope region, and entire ground surface (FOS > 1.8) are better
than those on the slope’s surface and toe, as well as on the slope’s surface (FOS = 1.5). The
planting effects of parabolic root architecture (Figure 19c) on the upper and lower slope
regions, slope’s surface, and upper slope region were weaker than those of the uniform
root architecture. The effects of triangular (Figure 19b) and exponential root architectures
(Figure 19d) are similar, and they have a greater advantage when they are present at the
slope’s toe, as well as the slope’s surface and toe (FOS = 1.7).
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Figure 19. With the increase in SRF, the maximum horizontal displacement at the slope’s toe of the
slopes with different planting locations after slope failure: (a) Uniform distribution; (b) Triangular
distribution; (c) Parabolic distribution; (d) Exponential distribution.

4. Discussion

In this study, the slip surface of the bare slope was mainly distributed in the weak
layer at the interface of the rock and soil, whereas the slip surface of the vegetated slope
was distributed at the bottom of the root zone, and the upper layer of soil entrains the root
system to slip. The tensile strength and adhesion properties of the roots reinforced the soil.
Plant roots with high tensile strength increase the confining stress of the soil through their
compact root matrix system [29]. The results of the finite element analysis showed that
reinforcement of the root can improve the stability of the slope, reduce the displacement of
the landslide, and increase the FOS value.

The FOS value of the vegetated slope increased with decreasing planting distance.
The higher the planting density, the stronger the root-strengthening effect. It should be
noted that if the planting distance exceeds a certain range, then the slope stability may not
improve. In this study, when the planting distance on the slope was 5 m, the effect was
similar to that on the bare slope. The stability of a slope with a uniform root architecture is
most sensitive to the planting distance.

For many slopes, the root depth is usually limited by bedrock, which is usually shallow
and less than 2 m [58]. The failure depth of most slopes is between 0.5 m and 1 m, and the
root zone plays a role in mechanical stability only when the root depth reaches the deeper
soil layer [78]. With an increase in root depth, the FOS first decreased and then increased.
When the root depth is 0.5 m, the slope’s surface is covered with overlapping roots, which
is similar to the geosynthetic reinforcement on the slope’s surface. When the root depth
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was 1.5 m, it was similar to installing anti-slide piles or anchors. In addition, for uniform
and parabolic root architectures, a greater root depth is more beneficial for slope stability.
For triangular and exponential root architectures, shallow roots were more conducive. In
addition, the stability of a slope with a uniform and parabolic root architecture is more
sensitive to its root depth.

The slope FOS of the four root architectures decreased with an increase in slope angle.
Regardless of whether the slope is steep or has a slight incline, uniform and exponential
root architectures are more effective in improving the slope stability.

The position of the plants on the slope also affects their contribution to stability. Except
for planting in the lower slope region, the stability of the vegetated slope in the other
planting positions was better than that of the bare slope. If there is no restriction on
planting location and vegetation quantity, planting on the entire ground surface of a slope
has the best effect on improving slope stability, which is similar to the conclusion of [29].
Moreover, it is better to plant vegetation with a uniform root architecture in the upper slope
region or plant vegetation with a triangular or exponential root architecture on the slope’s
toe. When the vegetated slope is unstable, the depth of the plastic strain at the top and toe
of the slope is shallower; therefore, it is more conducive for roots to play a role. Tensile
cracks may occur at the top of a slope, and the roots provide traction and support soil to
prevent landslides [79]. The roots bear pressure at the toe of the slope, which can act as a
support and inhibit soil sliding [80].

5. Conclusions

In this study, the eSPFEM was utilised to simulate the instability of vegetated slopes
with large deformations. This method can reasonably predict the deformation process of
the slope structure and the final deposition, avoiding the difficulty of numerical calculations
and loss of calculation accuracy.

The Mohr–Coulomb constitutive model was extended by introducing the additional
soil cohesion, cr, generated by roots and therefore increasing the shear strength of the soil.
The boundary functions of the four root architectures (uniform, triangular, parabolic, and
exponential) on the slope were derived. The FOS values of the four root architectures for
various planting distances, root depths, slope angles, and planting locations were calculated
using the shear strength reduction technique with a kinetic energy-based criterion, and the
effects of root architecture on slope stability were evaluated.

Their results showed that roots can effectively improve slope stability and reduce land-
slide displacement. The higher the planting density, the stronger the root-strengthening
effect. With an increase in root depth, the FOS first decreased and then increased. For
uniform and parabolic root architectures, deeper roots are more beneficial to slope stabil-
ity, whereas for triangular and exponential root architectures, shallower roots are more
conducive. The FOS decreases with the increase in slope angle; uniform and exponential
root architectures are more effective in improving slope stability, no matter whether the
slope is steep or has a slight incline. Vegetation at the slope’s toe can effectively reduce the
sliding displacement of the slope soil. Planting on the entire ground surface had the best
effect on slope stability improvement, followed by planting vegetation with uniform root
architecture in the upper slope region or planting vegetation with triangular or exponential
root architectures on the slope’s toe.

This study provides valuable information on the contribution of different root archi-
tectures to slope stability and can guide the selection of vegetation species and planting
locations, which can contribute to improving slope stability and optimising the manage-
ment of mountain shelter forests. Nonetheless, the limitation of this model lies in the need
for accurate parameterisation and a large amount of calculation, so it is currently only
applicable to small slopes.
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Abstract: A shed cave structure with a sand cushion is often used as a protective structure for rockfall
disasters. Because of the randomness and unpredictability of rockfall disasters, the cushions of
shed caves often suffer multiple impacts from rockfalls. Aiming at the problem of multiple impacts
of rockfall, this paper uses the three-dimensional discrete element method to study the dynamic
response of multiple rockfall impacts on sand cushions from different heights. Before conducting
large-scale simulation studies, the input parameters in the numerical model are verified with data
from laboratory experiments. Analyzing the simulation results shows that when the same point
is impacted multiple times, the maximum impact force and the maximum penetration depth will
increase with the number of impacts. According to the numerical results, a calculation formula of the
maximum impact force that considers the number of impacts is fitted. At the same time, considering
the impact response when the rockfall impacts different positions multiple times, the distance range
that the subsequent impact is not affected by the previous impact is given. The significance of
studying the multiple impacts of rockfalls is shown by a numerical study of rockfalls impacting a
sand cushion multiple times from different heights, and it provides a reference for the design of
rockfall disaster-protection structures in practical engineering.

Keywords: rockfall disaster; sand cushion; multiple impacts; discrete element method; impact positions

1. Introduction

Rockfall disasters are one of the most common geological disasters near mountain
roads. The occurrence of rockfall disasters has had a great impact on the economic develop-
ment of mountainous areas. In China, with the advancement of the western development
strategy, it is even more necessary to reasonably and effectively protect against rockfall
disasters. In addition, casualties and damage to roads and railways due to rockfall disasters
should be avoided. The shed cave structure with a buffer layer is a typical structure for
rockfall-protection in mountainous areas and it is widely used in rockfall disaster-protection
in mountainous areas [1–3].

Sand is a cushion material commonly used in rockfall-protection engineering [4]. It is
a conveniently obtained material that has good durability, high economic benefit, and good
buffering performance. Many scholars have studied the buffer performance of sand buffer
layers. A series of laboratory experiments were conducted to investigate the effect of the dry
density and thickness of the sand pad on the impact pressure applied to the soil surface, the
earth pressure at the bottom of the mold, and the transferability of the impact pressure [5].
In recent years, the discrete element method (DEM) has emerged as a suitable numerical
tool for analyzing the impact of rockfalls from micro- to macroscales [6]. The calibration
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of validated DEM models with corresponding experimental data provides researchers
with data that are nearly impossible to obtain experimentally. Using the commercial DEM
software PFC3D 5.0, the initial kinetic energy of a rockfall can be set to 5000 kJ, which is
difficult to achieve experimentally, to study the impact of the rockfall on bunkers covered by
a soil buffer layer [7]. It is also possible to study the energy propagation and block bouncing
in the process of a rock block impacting a granular medium, as well as the evolution of the
shock-induced force chain and its relationship with the global mechanical response of the
granular buffer layer through the 3D discrete element model [8,9]. At the same time, the
effect of the particle size on the buffering efficiency of the soil buffer layer can be studied
by combining the experiments [10]. The influence of the sand buffer layer thickness and
porosity on the buffer performance can also be analyzed by the discrete element numerical
method [11]. In these studies, the DEM was found to be an effective method for studying
the impact response of sand buffers.

Because of the high frequency and randomness of rockfall disasters, it is difficult to
conduct monitoring and provide feedback in time. Often, the shed-hole cushion cannot be
repaired and replaced in time, and it will be impacted again. In addition, rockfall impact is
often accompanied by multiple rocks. Therefore, the shed cavity cushion is often repeatedly
impacted. Such an occurrence will compact the sand buffer layer and reduce the ability
to disperse the impact force of falling rocks, which will lead to the destruction of the shed
cave structure in the long run. At present, few reports are available on the multiple impacts
of rockfall on shed cave cushions. A new type of energy dissipator is designed for the
place where the rockfall occurs so that the structural energy-dissipating rock shed can
withstand the multiple impacts of the rockfall [12]. Tests of spherical rockfall impacting a
sand buffer layer and foam composite cushion layer were performed. In these multiple
impact laboratory tests, after the first impact, with an increasing number of impacts of the
buffer layer, the acceleration of the falling weight is greater [13,14]. The impact force is a
key parameter in the structural design of shed tunnels. In the case of multiple impacts, few
studies have reported on the impact force calculation after each impact. Simultaneously,
under multiple impacts, the impact position is not fixed. If the distance between two
adjacent impact positions is close, the effect of the second impact will be affected by the first
impact. However, at present, research is lacking on the influence of the distance between
different impact locations on the impact effect for multiple impacts.

This paper studies and analyzes the phenomenon of multiple shocks in rockfall dis-
asters. A small-scale laboratory multiple shock test was carried out to verify the discrete
element model. The dynamic process of a large-scale rockfall impacting a sand buffer layer
multiple times is simulated using a calibrated numerical model. The difference between
the dynamic response of multiple rockfall impacts and a single impact is explored, and a
calculation method for the impact force during multiple impacts is given in combination
with the existing rockfall impact force calculation formula. Furthermore, considering the
influence of the distance between impact points on the impact effect during two adjacent
impacts, the distance effect on the impact effect at different impact positions is given. The
experimental and numerical study on the multiple impacts of rockfall on the sand buffer
layer provides a basis for considering multiple impact problems in practical engineering.

2. Reduced-Scale Impact Test

Firstly, the dynamic response of the sand cushion under multiple impacts of rockfall is
studied by a laboratory impact test.

2.1. Overview of the Test

In this paper, the impact test of rockfall on a sand buffer layer is performed in a
self-designed drop weight impact test device. In this laboratory test, spherical rockfalls
made four consecutive impacts on the center point of the sand buffer layer from a height of
1 m. The rockfall has a radius of 0.057 m, a mass of 1.7 kg, and a density of 2187 kg/m3. The
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size of the sand buffer layer is 1 m × 1 m × 0.3 m. The falling height is 1 m. The laboratory
test device and schematic diagram are shown in Figure 1.

 
(a) (b) 

Figure 1. Laboratory test device and schematic diagram: (a) test device; (b) schematic diagram.

2.2. Test Method

In the laboratory test, the acceleration time–history curve of the falling weight is
collected by the acceleration sensor installed on the upper surface of the drop hammer,
and the impact force time–history curve is obtained according to Newton’s second law. In
order to avoid errors in the test as much as possible, three groups of tests with multiple
impacts under the same conditions were carried out. Judging from the signals collected by
the accelerometer, the acceleration trends in the three groups of tests are the same, and the
peak accelerations are slightly different, but the difference is small. The impact force results
are shown in Section 3.2.

3. Numerical Model Establishment and Validation

As a common and reliable scientific research method, numerical simulations are often
used in civil engineering research [15–17]. As discrete element software, PFC3D is mainly
used to study the micromechanical behavior between particles [18,19]. The ball and the wall
are the basic components of the software, and different numerical models are established
by assigning them different parameters. The choice of the particle radius in the model
is crucial and determines the speed of the numerical simulations. After the model is
built, mesoscopic parameters must be assigned to the particles to achieve the macroscopic
properties of the material, that is, to match the macroscopic parameters by selecting the
appropriate mesoscopic parameters. No clear conversion relationship holds between macro
parameters and meso parameters. In this paper, the model parameters in the numerical
model are corrected by performing laboratory experiments to determine the particle size,
stiffness, damping coefficient, and other simulation parameters.

Simulating the rockfall impact buffer layer mainly involves three types of rockfall,
buffer layers, and protective structures. Considering that the rockfall is less likely to break
after impacting the sand, the rockfall is simulated by a single rigid sphere (ball) [20], which
is colored in red. The sand buffer layer is generated by a Gaussian distribution of spheres
with different radii, and the thickness of the buffer layer is set by controlling the number
and position of the spheres [21]. The size of the spherical particles is a key parameter. The
actual size of the sand particles is approximately 0.1 mm. However, simulating a sand pad
with a particle size of 0.1 mm is impractical, especially on a practical engineering scale.
Considered comprehensively, the particle size range of the sand buffer layer in this model
will be larger than the actual particle size range [4,22]. The main analysis in the simulation
is the impact of rockfall on the buffer layer. The protective structure is directly treated as a
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wall element. That is, the surroundings of the sand buffer layer are constrained by rigid
wall elements. In this study, a linear model was used to simulate the sand buffer layer, the
contact between the sand buffer layer and the rockfall, and the contact between the sand
buffer layer and the protective structure. When applying PFC3D software to simulate the
dynamic impact process of rockfall under vertical falling conditions, factors such as gravity,
viscous resistance, and viscous damping need to be considered [23]. The acceleration of
gravity in the model is 9.8 m/s2, the damping is set to 0.01, and the friction coefficient
is set to 0.5. The normal contact force of the rigid sphere in the simulation is the rockfall
impact force. Since this paper considers multiple impacts of falling rocks, the rigid sphere
is deleted after each impact, and a new rigid sphere is established to continue the impact.

3.1. Numerical Model Establishment

Before conducting the analysis and research of a rockfall impacting a sand buffer layer
multiple times, a numerical model of the same size as the laboratory test was established
to verify the feasibility of using PFD3D software to calculate the sand buffer layer of the
rockfall impact.

According to the description of the test, rockfalls and cushions of the same size were
established in PFC3D software, and the dynamic impact process was simulated for a height
of 1 m. The numerical model is shown in Figure 2. The density of rockfall shall refer to the
value in the test. The size of the falling rock shall be replaced by a sphere with the same
volume as the falling hammer in the test. Only one particle is used to represent the falling
stone, which is because the falling rock is regarded as a rigid body. The size of the sand
buffer layer is 1 m × 1 m × 0.3 m. The material parameters of the falling rock and the sand
cushion are the same as those in the laboratory experiment, and the other input parameters
in the model are shown in Table 1. The bottom and four sides of the cushion is a fixed
constraint.

Figure 2. Small-scale numerical model diagram.

Table 1. Input parameters.

Sand Porosity Normal-to-Shear Stiffness Ratio Sand Effective Modulus Sand Density Sand Radius

0.35 10 30 MPa 2600 kg/m3 0.007–0.01 m
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3.2. Numerical Model Validation

The sphere rockfall with a mass of 1.7 kg impacts the sand cushion multiple times
at the falling height of 1 m. Figure 3 compares the time–history curve of the impact force
obtained by the laboratory test under multiple impacts with the curve that was extracted
by the numerical model.

 
(a) (b) 

 
(c) (d) 

Figure 3. Comparison of the impact force time–history curve between the laboratory tests and
numerical model under multiple impacts: (a) first impact; (b) second impact; (c) third impact; and
(d) fourth impact.

The instant when the rockfall starts to contact the cushion is set to zero. The impact
force increases rapidly when the rockfall contacts the sand buffer layer and quickly de-
creases to zero after reaching the maximum impact force. The entire shock process is very
brief. Under the four impacts, the numerical simulation results obtained by using discrete
element software are close to the experimental results, and the error is small. In general, the
average value of the maximum impact force results of the three groups of laboratory tests
was compared with the numerical results. The two results differ in maximum impact force
by 10.76%, 7.04%, 2.79%, and 5.59%, respectively. In terms of the duration of the impact
process and the change trend of the impact force, the simulation results agree well with the
test results.

339



Sustainability 2023, 15, 3554

Therefore, the analytical model and method proposed above can more reliably reflect
the dynamic response of rockfalls impacting a sand buffer layer. This is applied to the
study in the next section considering the multiple impacts of rockfall on a sand buffer layer
at the engineering scale.

4. Results and Discussion

Now, consider the dynamic process of rockfall impacting a sand buffer layer multiple
times at the engineering scale. The impact energy of rockfall disasters along Japanese
railways was calculated. Rockfall energies are approximately normally distributed. The
proportion of rockfall events with an impact energy of less than 100 kJ was 68%, and the
proportion of rockfall events with an impact energy of less than 1000 kJ reached 90% [24].
A study conducted off the east coast of New Wales, Australia, found that the average
diameter of rockfalls in the sandstone and granite areas of the basin was 0.45 m, and 95%
of the rockfalls had an impact energy of less than 1340 kJ [25]. Therefore, in the research of
this paper, the diameter of the rockfall is 0.5 m, the density is consistent with that in the
laboratory experiment, and the mass of the rockfall is 1.144 t. The drop heights are 10 m,
20 m, 30 m, 40 m, and 50 m, respectively. The impact energy corresponds to 112 kJ, 224 kJ,
336 kJ, 448 kJ, and 560 kJ, respectively.

4.1. Large-Scale Impact Numerical Model

In the research for this paper, the influence of the constraints around the sand buffer
layer on the impact effect is ignored, and the size of the buffer layer is guaranteed to be large
enough. When the ratio of the size of the buffer layer to the diameter of the rockfall exceeds
five, the effect of the lateral boundary constraints of the buffer layer can be ignored [26].
Therefore, the size of the cushion is selected as 5 m × 5 m × 2 m. Since the size of the
buffer layer is much larger than that of the laboratory test in Section 2, the soil radius has
also been adjusted accordingly, ranging from 0.03 m to 0.06 m. Except for the adjustment
of the soil radius in the cushion layer, the parameters of the cushion layer do not change.
The number of spherical particles in the buffer layer in the numerical model is 76801. The
model diagram is shown in Figure 4.

 
Figure 4. Large-scale numerical model diagram.

Next, we discuss the dynamic response of rockfall on the sand cushion for multiple
impacts. The analysis focuses on the impact force and penetration depth on the sand
cushion. The purpose is to reveal the importance of considering the multiple impacts of
rockfalls.
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4.2. Multiple Impact Cushion Center Positions
4.2.1. Analysis of the Rockfall and Cushion after Multiple Impacts

Figure 5 shows the cloud map of the change in the position of the rockfall and the
cushion after each impact when the rockfall falls from the same height and impacts the sand
cushion several times, for a total of four impacts. To observe the changes more intuitively in
the position of the rockfall and the impact point on the top surface of the cushion after the
impact of the rockfall, the model was cut along the xOz plane to observe the cross-section.
The upper black line is the starting surface of the sand cushion, and the lower black line is
the plane of the maximum penetration depth after impact. The vertical distance between
the two black lines is the maximum penetration depth. The area enclosed by the white line
and the upper black line is the range of particles affected by the impact. The impact of the
rockfall caused a certain penetration into the top surface of the cushion, and some particles
near the impact point were lifted. With the increase in the number of impacts, the height of
the rockfall relative to the top surface of the cushion gradually decreased, and the affected
particles in the lower part of the impact point in the cushion and near the impact point on
the top surface of the cushion tended to increase.

  
(a) (b) 

  
(c) (d) 

Figure 5. Nephogram of rockfall and cushion position changes (t = 0.05 s): (a) first impact; (b) second
impact; (c) third impact; and (d) fourth impact.

4.2.2. Impact Force at the Center of Multiple Impacts

Figure 6 shows the time–history curve of the impact force of the spherical rockfall
impacting the sand cushion multiple times from different heights. The instant when the
falling rock and the cushion first contacted was taken as time zero. The change rule of the
rockfall impact force is that at the moment of contact with the cushion, the impact force
rapidly increases to the peak impact force and then decreases relatively slowly to zero.
Since each impact will cause a certain penetration into the cushion, the time of contact
with the cushion will be delayed for the next impact compared with the previous impact.
With the increase in the number of impacts, the time lag of the peak impact force and
the magnitude of the impact force increase, but the duration of the entire impact process
is gradually shortened. The maximum impact force and impact duration are important
factors to be considered in actual rockfall-protection projects. It can be seen that the impact
number will affect the impact response of rockfall. Therefore, it is obvious that when
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discussing the dynamic response to rockfall impact, it is not comprehensive enough to
consider the consequences of only one rockfall impact.

 

(a) (b) 

 
(c) (d) 

 

(e) 

Figure 6. Time–history curve of the impact force of a spherical rockfall impacting a sand cushion
multiple times from different heights. (a) H = 10 m; (b) H = 20 m; (c) H = 30 m; (d) H = 40 m; and
(e) H = 50 m.
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Figure 7 shows the results of the maximum impact force of the spherical rock falling
on the sand cushion multiple times from five falling heights. The impact force increases
with the drop height. Regardless of the drop height, the impact force results of the four
impacts show a gradually increasing trend, but the increasing range gradually decreases.
For example, the impact force results for the drop height of 50 m are 2299 kN, 2645 kN,
2807 kN, and 2819 kN for the four impacts. The results of the second, third, and fourth
impacts were increased by 15%, 22.1%, and 22.6%, respectively, compared with the first
impact. The fourth impact force is slightly larger than the third impact force. Therefore,
only four shocks are considered in this paper to study multiple shocks. For different drop
heights, the total increase in the impact force of the four impacts is different. For heights
of 10 m, 20 m, 30 m, 40 m, and 50 m, the fourth impact force increased by 33.9%, 32.7%,
27.4%, 23.1%, and 22.6%, respectively, compared with the first impact force. Because of
the different falling heights, the impact energy of the falling rock varies greatly. With the
increase in the number of impacts, the main reason for the gradual increase in the impact
force is the gradual increase in the compactness of the cushion. However, the increase in
the compactness of the cushion has a limit. After the first impact, the compactness of the
cushion increases more at higher drop heights. During the last few impacts, the change in
cushion disorientation decreases with an increasing drop height. Therefore, a phenomenon
is observed in which an increasing falling height results in an impact force that is smaller
under multiple impacts than under a single impact. However, since the maximum impact
force increases with the increasing impact height, a higher impact height must still be
considered.

Figure 7. Maximum impact force of a spherical rock falling on a sand cushion multiple times from
five falling heights.
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The impact force of rockfall on the shed cavity cushion is a crucial inspection index
in the design of shed cavity structures. No existing impact force algorithm considers
the calculation of the impact force during multiple impacts. The maximum impact force
algorithm of rockfalls proposed by Labiouse et al. [27] based on Hertzian contact theory is
modified by introducing a coefficient, α, related to the number of impacts, t, through the
numerical results of the maximum impact force under multiple impacts.

The maximum impact force equation can be expressed as the following:

Pmax = α · 1.765 · (ME)
2
5 · R

1
5 · (WH)

3
5 (1)

In the formula, Pmax is the maximum impact force (kN); ME is the modulus of the
subgrade reaction obtained from a standardized plate bearing test on the soil cushion
(kN/m2); R is the radius of the falling block in contact with the cushion (m); W is the weight
of the falling rock (kN); and H is the falling height (m).

Combined with the impact force results of the falling rock impacting the sand cushion
for the first time from different heights, take ME = 5200 kN/m2, R = 0.5 m, W = 11.2 kN,
and H = 10 m, 20 m, 30 m, 40 m, and 50 m. The selection of parameters comes from the
conditions in the numerical model. At this time, α = 1. Figure 8 below compares the impact
force calculated by the maximum impact force formula with the numerical results for
different heights.

Figure 8. Comparison of the formula and simulated impact force results [27].

Comparing the two curves in Figure 8 shows that the maximum impact force calculated
by the formula proposed by Labiouse et al. agrees well with the impact force result of
the numerical model in this paper. The error of the calculated result can be controlled
within 10%. Therefore, this formula can be combined with the numerical results to explore
the calculation of the maximum impact force when the rockfall hits the buffer layer many
times.
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The numerical results for the impact force of the falling rock impacting the sand
cushion multiple times from heights of 10 m, 20 m, 30 m, 40 m, and 50 m are analyzed
and discussed. Consider the ratio of the impact force after the second, third, and fourth
impacts to the impact force of the first impact for a given height. Considering the five drop
heights comprehensively, the expression for α corresponding to the number of impacts t is
obtained by performing a fit. Figure 9 compares the numerical results of the impact force
with the results of the fitting formula for different drop heights.

α = 1.314 − 0.67 × 0.469t (2)

where t is the number of impacts and α is an expression that only relates to the number of
impacts.

 
Figure 9. Comparison of impact force results between numerical and fitted formulas.

Impact force algorithm for multiple impacts:

Pmax = (1.314 − 0.67 × 0.469t) · 1.765 · (ME)
2
5 · R

1
5 · (WH)

3
5 (3)

The numerical results for the impact force of the falling rock impacting the sand
cushion multiple times from heights of 10 m, 20 m, 30 m, 40 m, and 50 m are analyzed
and discussed. Consider the ratio of the impact force after the second, third, and fourth
impacts to the impact force of the first impact for a given height. Considering the five drop
heights comprehensively, the expression for α corresponding to the number of impacts t is
obtained by performing a fit. Figure 9 compares the numerical results of the impact force
with the results of the fitting formula for different drop heights.

Figure 10 compares the calculated results of the improved maximum impact force
algorithm with the numerical simulation results.
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Figure 10. Impact force results from improved algorithms and numerical simulations.

The impact forces of the impacts in the figure correspond to drop heights of 10 m,
20 m, 30 m, 40 m, and 50 m, respectively, from left to right. Solid color, unpatterned
fills represent the numerical results, and diagonal striped fills represent the calculation
results of formulas. The results calculated by the improved impact force algorithm agree
well with the numerical simulation results as a whole, and the maximum error of the
calculated results is 5.87%. For the more dangerous, high-impact energy cases, the error is
controlled within 5%. Therefore, the maximum impact force algorithm modified by fitting
the numerical simulation results in this paper can be considered reasonable.

4.2.3. Penetration Depth at the Center of Multiple Impacts

In addition to the maximum impact force of the rockfall, the maximum penetration
depth of the rockfall into the buffer layer is also an important parameter to be considered
in engineering design [20,28]. During the experiment, because of the special backfilling
phenomenon of the sand cushion, the depth of the cushion after the rockfall impact is
difficult to obtain. However, the change in the penetration depth can be observed intuitively
in the numerical simulation. Figure 11 shows the time–history curve of the penetration
depth of the spherical rockfall impacting the sand cushion multiple times from different
heights. After the rockfall is in contact with the cushion, the penetration depth gradually
increases. After reaching the peak penetration depth, the penetration depth recovers to
a certain extent because of the rebound phenomenon of the rockfall. Similarly, with an
increasing number of impacts, the maximum penetration depth appears slightly later and
gradually increases. This result confirms that the size of the maximum penetration depth
can provide a basis for selecting the thickness of the buffer layer of the shed cavity structure.
It also confirms the necessity of considering multiple impacts of rockfalls.
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Figure 11. Time–history curve of the penetration depth of a spherical rockfall impacting a sand
cushion multiple times from different heights. (a) H = 10 m; (b) H = 20 m; (c) H = 30 m; (d) H = 40 m;
and (e) H = 50 m.

347



Sustainability 2023, 15, 3554

Figure 12 shows the results of the maximum penetration depth of the spherical rockfall
with multiple impacts on the sand cushion for five drop heights. As with the maximum
impact force results, the maximum penetration depth increases with the number of impacts
regardless of the drop height. However, unlike the results for the maximum impact force,
the maximum penetration depth increases with the same magnitude as the number of
impacts increases. For example, when the drop height is 10 m, the maximum penetration
depths are 0.181 m, 0.236 m, 0.293 m, and 0.343 m, respectively. Compared with the first
impact, the maximum penetration depth of the latter three increased by 30.4%, 61.8%, and
89%, respectively. At different drop heights, the total increase in the penetration depth
under the four impacts is roughly the same. However, the penetration depth increases
slightly with an increasing drop height. At heights of 10 m, 20 m, 30 m, 40 m, and 50 m, the
ratios of the fourth penetration depth to the first penetration depth were 1.89, 1.97, 2.02,
2.06, and 2.08, respectively.

Figure 12. Maximum penetration depth of a spherical rock falling on a sand cushion multiple times
at five falling heights.

4.3. Distance between Different Impact Positions

At present, the only research on multiple impacts of rockfalls is limited to consecutive
multiple impacts of rockfalls on the same location. Notably, when a rockfall disaster occurs,
the impact position of the multiple impacts of the rockfall on the cushion may change.
After the impact position changes, it needs to be considered whether the dynamic response
between two adjacent shocks is affected by the distance between the shock positions. To
address this problem, this paper studies the effect of the distance between the impact
points on the impact response when the rockfall impacts different impact locations. The
approximate distance that the second impact is not affected by the first impact when two
consecutive impacts are at different positions is given.

Considering the rockfall radius R and the size of the cushion, in addition to the first
impact at the center of the cushion, six impact positions are also considered. They are 0.5R,
1R, 1.5R, 2R, 3R, and 4R from the center point O, corresponding to six points A, B, C, D, E,
and F, respectively, as shown in Figure 13.
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Figure 13. Schematic diagram of different impact positions.

To compare the effect of the distance between shock locations on the shock response,
two shock simulations were performed. Taking point A as an example, the other five points
are the same. For the convenience of comparison, the first one impacts point A only once.
The second carries out the simulation of rockfall impacting the sand cushion twice: the first
impact is at point O, the center point of the cushion, and the second impact is at point A.
The numerical results of the two shocks were compared and analyzed, and the distance
between the two shock locations that did not affect each other was explored.

4.3.1. Impact Force at Different Positions

Taking the falling height of 50 m as an example, Figure 14 shows the time–history
curve of the impact force of the rockfall at different positions on the top surface of the sand
cushion. The left picture is the curve of impacting the selected impact position only once,
and the right picture is the time–history curve of impacting the center point of the cushion
and then impacting the selected position. The time–history curve of the impact force at
each point in the left figure shows the same change trend. The instantaneous impact force
of the rockfall contacting the cushion rapidly increases to the maximum impact force and
then gradually decreases to zero. The time–history curves of different shock points in the
right figure are quite different, especially point A. The main reason for this is that after the
first impact on point O, the particles of the cushion layer are partially arched, as shown in
Figure 5, the sand particles here are relatively loose, and point A is located in the arched
part of the particles. Therefore, the maximum impact force is delayed. The impact force
time–history curves of other impact locations are consistently in trend with those with only
one impact, and the magnitude of the peak impact force is slightly different.

 
(a) (b) 

Figure 14. Time–history curve of the impact force of the falling rock at different positions on the top
surface of the sand cushion when falling from 50 m. (a) Impact only once; (b) second impact.
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Figure 15 shows the impact force results of rockfall impacting different positions of the
top surface of the sand cushion from different heights. The results corresponding to each
impact position in the figure correspond to drop heights of 10 m, 20 m, 30 m, 40 m, and
50 m from left to right. A solid, unpatterned fill represents the first impact simulation, and
a horizontal stripe fill represents the second impact simulation. Since the particles in the
mat are spheres, this results in slightly different levels of compaction at each location in the
mat. At the same time, as the impact position approaches the cushion boundary, boundary
constraints will also have a certain impact. Therefore, in the first impact simulation, the
impact force slightly differs between impact locations. Taking the drop height of 50 m as
an example, the impact force at point A to point F is 2306 kN, 2327 kN, 2297 kN, 2356 kN,
2287 kN, and 2238 kN, respectively. The maximum error is 5%. This error can be cancelled
out when comparing two shock results. This method can still be considered reasonably
reliable for investigating the effect of the distance between different impact locations.

Figure 15. Impact force results of rockfall impacting different positions on the top surface of the sand
cushion from different heights.

The abscissa in Figure 15 is from point A to point F from left to right, and the distance
from point O increases gradually. That is, the distance between the impact positions
increases gradually during multiple impacts. First, it can be observed that at different
drop heights and different impact positions, an impact is smaller if the center point of
the cushion is impacted first. This is mainly because after the first impact on the center
point, the particles near the impact point are smashed, while the particles at other positions
become sparser than the initial state. Therefore, the impact force is slightly larger when
the impact occurs only once. Taking the drop height of 50 m as an example, the difference
between the impact forces without and with a prior impact on the center point is 3.45%,
8.46%, 7.65%, 1.53%, 0.04%, and 0.08%. Judging from the difference in the impact force,
point B, which is a radius from point O, is the most affected point, followed by point C,
point A, and point D. Starting from point E at 1.5 m from point O, that is, when the distance
from the impact position is 3R, the impact force results in consistency between the two
impact modes. This finding means that when the distance between the impact positions
of two adjacent impacts is greater than 3R, the maximum impact force during the second
impact is not affected by the first impact. The same conclusion is obtained for drop heights
of 10 m, 20 m, 30 m, and 40 m.
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4.3.2. Penetration Depth at Different Positions

Taking the falling height of 50 m as an example, Figure 16 shows the time–history
curve of the penetration depth of the rockfall at different positions on the top surface of the
sand cushion. This curve is the same as the time–history curve of the impact force. The
left picture shows the curve of only one impact on the selected impact position, and the
right picture shows the time–history curve of the impact on the center point of the cushion
and then the selected position. The time–history curve of the penetration depth of each
point in the left figure shows the same trend of change. After the rockfall contacts the
cushion, the penetration depth gradually increases to the maximum penetration depth and
then recovers to a certain extent. The time–history curves of different shock points in the
right figure are quite different, particularly point A. The penetration depth is substantially
different from other impact locations at point A. The maximum penetration depth is quite
different from the result when only point A is impacted, as shown in the left picture, and
is much larger than the penetration depth of other impact points, as shown in the right
picture. At other impact locations, the time–history curves of the penetration depth are
consistently in trend with those with only one impact, and the magnitude of the peak
penetration depth is slightly different. In order to achieve more intuitive understanding,
the vertical displacement nephogram of particles at different impact positions is shown in
Figure 17.

 
(a) (b) 

Figure 16. Time–history curve of the penetration depth of the falling rock at different positions on
the top surface of the sand cushion when falling from 50 m. (a) Impact only once; (b) second impact.

Figure 18 shows the results for the penetration depth of the rockfall from different
heights impacting different positions on the top surface of the sand cushion. The results for
each impact position in the figure correspond to drop heights of 10 m, 20 m, 30 m, 40 m,
and 50 m from left to right. A solid, unpatterned fill represents the first impact simulation,
and a horizontal stripe fill represents the second impact simulation. Consistent with the
reason for the different impact force results at different positions when only one impact is
performed, the penetration depths at different locations are also not the same when only
one impact is performed, but the difference is very small. Taking the penetration depth
results when the drop height is 50 m as an example, the penetration depths from point A to
point F are 0.2903 m, 0.2925 m, 0.2918 m, 0.2863 m, 0.2875 m, and 0.2891 m, respectively.
The maximum error is 1.9%. The distance between the impact locations where the impact
effect is affected between two consecutive impacts can still be explored by comparing the
maximum penetration depths of the two impact modes.
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(a) 

(b) 

Figure 17. The vertical displacement nephogram of particles at different positions when falling from
50 m (t = 0.05 s). (a) Impact only once; (b) second impact.

The abscissa in Figure 18 is from point A to point F from left to right, and the distance
from point O increases gradually; that is, the distance between the impact positions in-
creases gradually during multiple impacts. Taking the drop height of 50 m as an example,
the difference between the penetration depth results without and with a prior impact at
the center point is 22.86%, 0.40%, 7.44%, 4.53%, 0.60%, and 0.15%, respectively. From
the difference in the penetration depths, point A at the shortest distance from point O is
the most affected point, followed by point C. After the first impact on point O, the sand
particles near the impact point are relatively loose. Point A is located in the loose part of the
particles, so the phenomenon of the maximum depression depth at point A changes greatly.
Likewise, starting from point E at 1.5 m from point O, that is, at a distance of 3R from the
impact location, the difference between the penetration depth results for the two impact
modes is very small. This observation shows that when the distance between the impact
positions of two adjacent impacts is greater than 3R, the maximum penetration depth of
the second impact is slightly affected by the first impact. The same conclusion is obtained
for drop heights of 10 m, 20 m, 30 m, and 40 m.
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Figure 18. Penetration depth results of rockfall impacting different positions on the top surface of the
sand cushion from different heights.

5. Conclusions

This paper focuses on the dynamic response of spherical rockfalls’ multiple impacts
on a sand cushion from different falling heights. First of all, carry out the reduced-scale
impact test. Secondly, a numerical model is established and compared with the test results
to verify the reliability of the model. On this basis, an engineering scale numerical model
is established to discuss the effect of multiple impacts on the impact response, including
multiple impacts at the same location and multiple impacts at different locations. In
addition, based on the numerical simulation results of the maximum impact force, the
existing impact force algorithm is modified to provide a reference basis for the design of
rockfall prevention engineering. The specific conclusions are as follows:

(1) When rockfall disasters occur, there are often multiple impacts. Therefore, it is
necessary to consider the multiple impacts of rockfall. Both the test and numerical
simulation show that the maximum impact force and the maximum penetration depth
increase to varying degrees with the increase in the number of impacts. For a given
drop height, the increase in the maximum impact force decreases gradually, and the
increase in the maximum penetration depth is almost constant. With the increase in
the impact height, the increase in the impact force decreases and the increase in the
penetration depth slightly increases.

(2) Based on the numerical simulation results, the maximum impact force equation
proposed by Labiouse et al. was revised, and a coefficient related to the number of
impacts was introduced to obtain the impact force after each impact under multiple
impacts. It can provide a more direct reference for the design of shed tunnel structures.

(3) In the rockfall disaster, there is the possibility that the two adjacent impact positions
are different during multiple impacts. Therefore, with the help of numerical simula-
tion, this paper explores the impact of the distance between impact positions on the
response to the impact. The numerical results of the maximum impact force and the
maximum penetration depth show that the impact response of the second impact is
not affected by the first impact when the distance between the impact positions of two
adjacent impacts is three times the radius of the falling rock. Under this condition, the
impact response of rockfall can be ignored for the first impact and only the second
impact is considered.
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Abstract: Using a numerical simulation method based on physical equations to obtain the debris
flow risk range is important for local-scale debris flow risk assessment. While many debris flow
models have been used to reproduce processes after debris flow occurrence, their predictability in
potentially catastrophic debris flow scenarios has mostly not been evaluated in detail. Two single-
phase flow models and two two-phase models were used to reproduce the Wayao debris flow event
in 2013. Then the Wayao debris flow event in 2020 was predicted by the four models with the same
parameters in 2013. The depth distributions of the debris source and deposition fan were mapped by
visual interpretation, electric resistivity surveys, field measurements, and unmanned aerial vehicle
(UAV) surveys. The digital elevation model (DEM), rainfall data, and other simulation parameters
were collected. These models can reproduce the geometry and thickness distribution of the debris
flow fan in 2013. However, the predictions of the runout range and the deposition depth are quite
different from the actuality in 2020. The performance and usability of these models are compared and
discussed. This could provide a reference for selecting physical models to assess debris-flow risk.

Keywords: debris flow; numerical modeling; risk assessment; single-phase models; two-phase
models

1. Introduction

Hazard maps of a debris flow can be obtained through two major kinds of methods:
Empirical methods based on analysis of historical events and numerical methods using
physically based equations [1,2]. An empirical method often uses correlations between the
debris flow runout and topographic parameters, sediment supply, or dynamic parameters
to make a prediction [3,4]. There are three major factors influencing the debris flow runout
distance: The volume of removable sediment, catchment area, and internal relief [5].
Zhou et al. [6] established a multivariate relationship between runout distance and the
debris volume or the internal catchment relief.

While empirical methods are useful to make hazard assessments at a regional scale,
the positive prediction accuracy of the runout area covered by debris-flow deposits may
be less than 40% [7,8]. Furthermore, empirical methods cannot provide comprehensive
information on the processes of debris flows and the final deposit topography [9]. An
accurate prediction of the potentially exposed areas can be fundamental for the safety of
human lives. The numerical methods can overcome some of these limitations, as they can
reproduce the debris flow process through physical equations.
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Two kinds of rheological closure models are commonly used in numerical simulation:
Single-phase flow models and two-phase flow models. Single-phase flow models are
commonly based on the Bingham rheology [10], the Voellmy rheology [11,12], and the
Bagnold rheology [13,14]. O’Brien et al. [15] designed a two-dimensional (2D) mudflow
program FLO-2D based on the Bingham rheology, and Beguería et al. [16] designed a GIS-
based debris flow program Massmove2D based on the Voellmy rheology. Ouyang et al. [17]
designed the two-dimensional debris flow program Massflow based on Coulomb and
Voellmy frictional laws. Takahashi [18] proposed a 2D granular flow model based on the
Bagnold rheology and coupled with Coulomb flow resistance. Then, several modified
granular models were developed by researchers [19–23]. Based on Bagnold rheology, a
new particle shear stress equation is derived for a wide range of particle flows [24]. The
equation was used to establish the continuum granular model Flow-3D [25], which yielded
promising results for the simulation of debris flow behavior [26,27].

Two-phase flow models mainly include the flow model composed of solid–fluid mix-
tures [28–30], two-fluid debris flow model [31,32], general two-phase debris flow model [33],
Euler–Euler model [34], a depth-averaged two-phase model [35], and the depth-integrated
model [36]. The general two-phase debris flow model allows smooth transitions between
non-viscous flow, hyper-concentrated sediment-laden flow, and debris flows. Moreover,
Bout et al. [37] developed OpenLISEM for the debris flow simulation. OpenLISEM couples
the two-phase debris flow equations and a full hydrological catchment model. It can recre-
ate the impact of both floods and debris flow runout. Furthermore, it involves simulating
runoff, entrainment of sediment, and the formation of debris flow from intense erosion. In
this paper, we call OpenLISEM without a full hydrological catchment model OpenLISEM_A,
and we call OpenLISEM with a full hydrological catchment model OpenLISEM_B.

In this work, the single-phase flow models Massflow and Flow-3D and the two-
phase flow models OpenLISEM_A and OpenLISEM_B were used to reproduce the process
and depositional topography of debris flow. Two debris flow events occurred in the
Wayao catchment in 2013 and 2020, and both debris flows were initiated from runoff. The
topography of debris fan, erosion depth of channel deposition, and debris flow density
were collected to calibrate simulation parameters and verify prediction ability. First, the
four models were applied to reproduce the debris flow event in 2013. Second, the four
models were used to predict the debris flow event in 2020, and the same set of parameters
as the debris flow in 2013 is adopted, which is considered satisfactory. The prediction
abilities of the four models are validated from the transport process and accumulation
characteristics of the 2020 debris flow. The purposes are to discuss the advantages and
limitations of the different models for debris flow prediction and provide suggestions for
the physically based hazard assessments in mountainous areas.

2. Study Sample

The Wayao catchment is located in Gaodian, Sichuan, China (Figure 1). It is located
in the Longmen Shan range, a region between the Qinghai-Tibet Plateau and the Sichuan
Basin [38,39]. The catchment area is 11.7 km2, and the main channel length is 2.2 km.
The terrain elevation varies between 1191 m and 2973 m, and the slope range is 35–50◦.
The geological setting consists mostly of Proterozoic magmatic rocks. The Wayao catch-
ment is located southeast of the Wenchuan-Maoxian fault, a thrust fault with a strike of
25◦ N–45◦ E [40] that ruptured in the Wenchuan earthquake [41]. Several landslides were
triggered by the 2008 Wenchuan earthquake in the Wayao catchment, and most of them
were deposited on the slope or along the channel. They provided the main debris source
for the debris flow in 2013. The Wayao catchment is in a typically humid subtropical
monsoon climate zone, with rainfall mainly concentrated between June and September.
Heavy rainfall triggered two debris flow events in the Wayao catchment in 2013 and 2019.
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Figure 1. Overview of the study area. The landslides and deposits along the channel were identified
on a satellite image from 15 April 2015.

On 10 July 2013, a catastrophic debris flow triggered by heavy rainfall destroyed the
village located in the Wayao catchment outlet (Figure 2). The triggering rainfall of the
debris flow was 18.6 mm/h at 9 a.m. on 10 July 2013. The rainfall data are from a rain
gauge approximately 9 km from the study area [42]. The debris flow was triggered by the
channel runoff, and several landslides were triggered by heavy rainfall [43]. The deposition
in the channel and several landslides along the channel provided source material for the
debris flow. The debris flow eroded the deposited debris along the channel and stopped at
the mouth of the catchment. Approximately 1.41 × 105 m3 of debris was transported out,
and the average depth of the debris fan was 5 m. The debris flow buried 27 houses and cut
national road G213. Then, the local government built a check dam and drainage channel in
2014 to avoid possible debris flows.

On 17 August 2020, during a rainstorm, the Wayao catchment suffered from a debris
flow. The triggering rainfall of the debris flow was 18.8 mm/h at 4 p.m. The rainfall
data are from a rain gauge about 18 km from the catchment and provided by the Sichuan
Provincial Meteorological Service. The debris flow was triggered by the channel runoff,
and three landslides were triggered by heavy rainfall. The three landslides provided the
main source material for the debris flow, and some of the deposition along the channel was
eroded by the debris flow. When the debris flow was transported to the check dam, the
check dam was filled by the debris flow deposition. Then the debris flow was transported
along the drainage channel, and most of the debris flow was transported into the Min River
(Figure 3).
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Figure 2. (A) Panoramic view of Wayao debris flow taken on 7 August 2013. The dashed red line
indicates the catchment boundary, and the solid red line indicates the extent of the debris fan. (B) The
debris deposition along the channel was eroded by the debris flow in 2013. The blue line indicates
the debris flow direction, and the red lines indicate the trace of the debris flow. (C) The debris fan of
the Wayao debris flow in 2013.

 

Figure 3. (A) The landslides are identified on a satellite image from 27 August 2020. It shows the
locations of (B,C). (B) Destroyed drainage channel and debris flow runout on UAV image from 25
October 2020. (C) A drone photo shows that the check dam was filled with debris-flow deposits after
the debris flow, and it was taken on 25 October 2020.

3. Measuring Debris Flow Volume

The depth distribution of landslides, deposition along the channel, and the debris fan
were measured by multiple methods. The volumes of landslides and deposits along the
channel are important input parameters of the debris flow simulation. Moreover, the depth
distribution of the debris fan is an important factor to evaluate the simulation results.
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For the debris flow event in 2013, the locations of landslides were mapped by visual
interpretation [44] using the image from Google Earth taken on 15 April 2015, and the
depths of landslides were measured by field measurement. The depth distribution of
debris fan, landslides, and eroded debris along the channel is shown in Figure 4A, and the
volumes are shown in Table 1. Eight sections along the channel and ten sections on the
slope were measured. The depth distributions of landslides and deposits along the channel
in 2013 are shown in Figure 3A. The depth distribution of the debris fan was measured
by electrical resistivity tomography (ERT). ERT is widely used to delineate the contact
surface between the debris fan and the underlying rock layer [45,46]. ERT measurements
were carried out on the deposition fan, and the instrument was a WDJD-3 system from
Chongqing Benteng Digital Control Technical Institute. L1 and L2 were two measuring
lines on the deposition fan (Figure 4A). Sixty electrodes were placed on measuring line L1,
and the distance between the electrodes was 2 m.

Figure 4. (A,B) The depth distributions of eroded debris and deposited debris in the 2013 debris
flow event and the 2020 debris flow event, respectively. (C,D) The longitudinal profiles along the
channel, and their positions are shown in A and B, respectively. The location of profiles a-a’ is shown
in (A) and the location of profile b-b’ is shown in (B).
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Table 1. The volumes of landslides, eroded debris along the channel, debris fan, and the deposition
after the barrier.

Year 2013 2020

Volume of the landslides (m3) 2.6 × 106 1.9 × 104

Volume of the eroded debris along the channel (m3) 5.3 × 106 1.1 × 104

Volume of the debris fan (m3) 7.9 × 106 / 1

Volume of the deposition after the barrier (m3) / 2 0.3 × 104

1 The debris flow did not form a debris fan in 2020, as it transported into Min River. 2 There was no debris
deposition after the barrier in 2013, as the barrier was built in 2014.

The total length of the L1 was 118 m. Fifty-four electrodes were placed on measuring
line L2, and the distance between the electrodes was 2 m. The total length of L2 was 106 m.
Res2DInv software was used for mesh refinement and robust inversion, and Figure 5 shows
the resistivity inversion results. At depths of 2 to 14 m, the electrical resistivity ranges from
40 to 200 Ω·m. At depths of 14 to 16 m, the values suddenly increase to 700–1000 Ω·m. The
depth value of the debris fan is consistent with the value obtained by drilling (bp1). The
location of bp1 was between the two measuring lines. Kriging [47] was used to interpolate
the depth values obtained by ERT and drilling. A 1:2000 topographic map, provided by
the Sichuan Metallurgical and Geological Exploration Bureau of the Chengdu Geological
Survey Institute, was used to build the terrain model for simulation of the debris flow
in 2013.

Figure 5. Resistivity results and interpretations. (A) Resistivity profile along L1. (B) Resistivity profile
along with L2. The white dotted line is the dividing line between the debris fan and the underlying
rock layer. L1, L2, and bp1 are shown in Figure 3.

For the debris flow event in 2020, the image from Sentinel-2 taken on 25 October 2020
was used to interpret the locations of rainfall-triggered landslides. Field measurements
and UAV surveys measured the depths of landslides, eroded debris along the channel, and
the deposition after the barrier. Their depth distributions are shown in Figure 4B. Their
volumes are shown in Table 1. Two UAV stereo photo-derived digital elevation models
(DEMs) were measured on 19 April 2019, and 25 October 2020. They are used to analyze
the depth distribution of deposits along the channel by comparing. The DEM, measured on
19 April 2019, was used to build the terrain model for simulation of the debris flow in 2020.

4. Model Description

Four different models, Massflow, Flow-3D, OpenLISEM_A, and OpenLISEM_B, were
used to simulate. They all require an input file of the debris volume in the release area.
For Massflow and Flow-3D, the debris flow was assumed as a single-phase fluid, and
the initial density of debris flow was measured by field survey. For OpenLISEM_A and
OpenLISEM_B, the debris flow was assumed as a two-phase fluid mixed with fluid and
solid. For OpenLISEM_A, the initial volume ratios of solid and liquid can be inversely
calculated by debris flow density. For OpenLISEM_B, the input data was the debris
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source triggered by the rainfall. The debris source’s initial porosity and moisture content
were measured by the field survey provided by the Sichuan Metallurgical and Geological
Exploration Bureau of the Chengdu Geological Survey Institute.

They have different boundary conditions. For Massflow, OpenLISEM_A, and Open-
LISEM_B, a hydrograph can be specified as boundary conditions. For Flow-3D, an outflow
boundary condition was set to allow debris flow to continue through the boundary with
minimal reflection [25]. A man-made structure can be input into the four models, and the
effort can be included in the simulation.

4.1. Massflow

Massflow is a program that adopts a depth-integrated continuum method to analyze
the debris flow progress. It obtained good Hongchun debris flow simulation results in
Wenchuan County [17,48]. For debris flow simulation, Massflow uses the Voellmy rheology.
The Voellmy rheology assumes no shear deformation, and the mean velocity (u) over the
height of the flow (h) of the flow is the same. The basal friction stress τ is given by:

τ = μ cosϕ +
u2

ξ h
(1)

where ϕ is the terrain’s downslope angle (positive), μ is the dry Coulomb-type friction. ξ is
the viscous resistance. Massflow uses the MacCormack-TVD scheme to solve the shallow
water equations [17,49].

The input parameters of Massflow are the depth distribution of debris flow, the
resistance parameters μ, and ξ. For the simulation, the resolution of 5 m grid post-event
topography data was adopted, and the data of the debris fan was replaced with the
topographic map taken before the event. The dry friction factor was calculated as the surface
slope of the debris fan, and its value was in a range between 0.4 and 0.45. According to past
research, the viscous resistance was chosen in a range between 100 and 300 m/s2 [50,51].
Then the inversion method was used to determine the specific parameter values. A series
of numerical simulations were performed to refine the parameter values by comparing the
depth distribution of the debris fan. Parameter values for Massflow are summarized in
Table 2. The running time was 300 s, with a time step Δt ≤ 1 s.

Table 2. Best-fit model parameters used in Massflow, Flow-3D, OpenLISEM_A, and OpenLISEM_B
simulations of the Wayao debris flow in 2013. A range of some debris parameters was measured by
field measurement and laboratory tests.

Parameter Massflow Flow-3D OpenLISEM_A OpenLISEM_B

Rheological model Coulomb frictional Granular flow general two-phase
debris flow model

Topographic mesh resolution 5 m 5 m 5 m 5 m

Debris flow density (kg/m3), ρ 1986 1986 1986 -

Cohesion (pa), c - - 1250 1250

Friction angle (degrees), θ — 32 24 20

Coulomb-type friction, μ 0.439 - - -

viscous resistance, ξ 200 - - -

Average grain diameter, D - 0.05 0.05 0.05

Grain density (kg/m3), ρs - 2700 2700 2700

Fluid density (kg/m3), ρf - 1000 - -

Fluid viscosity (kg/m/s) - 0.01 - -
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Table 2. Cont.

Parameter Massflow Flow-3D OpenLISEM_A OpenLISEM_B

Minimum volume fraction of
granular phase - 0.001 - -

XY mesh cell size 5 m 5 m 5 m 5 m

Z mess cell size - 2 m - -

Manning - - 0.1 0.1

Porosity - - 0.38 0.38

Initial moisture content - - - 0.114

Rainfall (mm/h) - - - 18.6

4.2. Flow-3D

Flow-3D is a general-purpose computational fluid dynamic (CFD) program. For debris
flow simulation, Flow-3D uses the high concentration granular model. The designation of
high concentration granular flow here means the volume fraction of the granular material is
50% or greater. A strong coupling exists between the solid particles and surrounding fluid
at high concentrations, so their mixture can be approximated as a single composite fluid [25].
The shear stress in non-cohesive granular flow consists of three parts: Impact among solid
particles τi, additional viscous shear stress due to the presence of solid particles τv, and
Shear stress in the fluid τf.

τ = τi + τv + τf = 7.8μ f
λ2

1 + λ

du
dy

+ ρs
0.015

1 +
0.5ρ f

ρs

1 + e

(1 − e)0.5

(
λD

du
dy

)2
+ 0.00062ρ f

(
ΔR

du
dy

)2
/(1 + λ) (2)

where μf is the fluid’s dynamic viscosity. λ is the diameter to the minimum gap ratio.
du/dy is the velocity gradient of the mixture. ρs is the density of the solid sphere. ρf is
the density of the fluid sphere. e is the coefficient of restitution of the solid particle, and a
typical coefficient of restitution for debris of 0.7 is assumed as a good general value. D is
the diameter of spherical particles. ΔR is the gap of a Couette flow. λ is a function of the
maximum solid volume fraction f mx

s divided by the solid volume fraction fs.

λ =
1(

1.032 f mx
s

fs

)1/3 − 1
(3)

when the volume fraction of solid material reaches or exceeds a value of about 0.99 f mx
s ,

the flow velocity is set to zero, and the material is considered to be fully packed. A typical
close packing volume fraction f cp

s for debris of 0.68 and the typical value of loose packing
volume fraction for debris f lp

s of 0.11 are assumed as good general values. As granular
material packs to a density where individual grains begin to touch one another, it becomes
more difficult for the mixture to flow. This state is sometimes referred to as mechanical
jamming and has a typical volume fraction of f jam

s = 0.62.
The simulation area at the Wayao catchment includes the debris source and the

deposition fan areas. The terrain model was resampled with a 5-m triangular mesh, and it
contains more than 996,000 facets. The landslide and deposit along the channel models were
resampled with a 2-m triangular mesh containing more than 63,000 facets. According to the
field survey, the density and viscosity of the fluid were set to 1000 kg/m3 and 0.01 kg/m/s,
respectively. The density of the solid was set to 2700 kg/m3. The average grain diameter
was set to 0.05 m, which was calculated by the measured value of the final deposit [18]. The
friction angle (degrees) was between 20 and ~35, as provided by the Sichuan Metallurgical
and Geological Exploration Bureau of the Chengdu Geological Survey Institute. The debris
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flow density was in a range between 1850 and 2030 kg/m3. The best simulation parameters
were obtained through repeated analysis, and the simulation results were satisfactory.
Table 2 shows the full set of parameters used in the simulation. The running time was 300 s,
with a time step Δt ≤ 0.5 s.

4.3. OpenLISEM_A and OpenLISEM_B

OpenLISEM is a physically based numerical program for simulating flood, erosion,
and debris flow [37]. It is based on the two-phase debris flow equations [33] and a full
hydrological catchment model that includes pressure, gravitational forces, viscous forces,
non-Newtonian viscosity, two-phase drag, and a Mohr–Coulomb type friction force. It
can simulate the flow dynamics and interactions of the flood and the nonuniform debris
flow [37,52]. The following is a constitutive equation:

Sx,s = αs(g
(

∂b
∂x

)
− us∣∣∣→us

∣∣∣ tan δPbs − εPbs

(
∂b
∂x

)
− εαsγPbf

(
∂h
∂x

+
∂b
∂x

)
+ CDG(uf − us)

∣∣∣→uf −→
us

∣∣∣j−1
(4)

Sy,s = αs(g
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∂b
∂y

)
− us∣∣∣→us
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(
∂b
∂y

)
− εαsγPbf

(
∂h
∂y
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∂y

)
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where αs is the volume fraction of solid phases (-), αf is the volume fraction of fluid phases
(-). δ is the internal friction angle. Pb is the pressure at the surface (Kg/ms2). b is the basal
surface of the flow (m). NR is the Reynolds number (-). NRA is the quasi-Reynolds number
(-). CDG is the drag coefficient (-). ρf is the density of the fluid (kg/m3), ρs is the density
of the solids (kg/m3), γ is the density ratio between the fluid and solid phase (-). χ is
the vertical shearing of fluid velocity (m/s). ε is the aspect ratio of the model (-). ξ is the
vertical distribution of αs (m−1).

We performed two kinds of simulations using the OpenLISEM model. First, we
applied a model that does not include the interception model (OpenLISEM_A), and it is
the same as Massflow and Flow-3D, which ignore the initiation process of debris flow.
According to the field survey, the solid’s density was set to 2700 kg/m3. The friction angle
(degrees) was in a range between 20 and ~35. The debris flow density was in a range
between 1850 and 2030 kg/m3. The value of manning was between 0.02 and 0.1. The
porosity was set to 0.38. According to the research results [17], the cohesion was in a range
between 0 and 2500 pa.

Second, we ran a model that includes the interception and slope failure models
(OpenLISEM_B). It is used to analyze the influence of rainfall conditions on debris flow
prediction. In OpenLISEM_B, the slope failure and debris flow runout would be triggered
by rainfall. According to the field survey, the value of the initial moisture content of the
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debris source is set to 0.114, and the rainfall was set to 18.6 mm/h. The debris flow density
would change dynamically with rainfall.

A series of numerical simulations were performed to refine the parameter values by
comparing the depth distribution of the debris fan. Parameters values for OpenLISEM_A
and OpenLISEM_B are summarized in Table 2. Both models were run for 15 min of
real-event duration, with a time step constrained to Δt ≤ 1 s.

5. Results

5.1. Application to the Debris Flow Event in 2013

The debris fan’s depth distribution was used to test the numerical parameters in four
models. Table 3 shows the analysis of the dependence of the final deposition volume in
the debris fan area on the various parameters. Figure 6 shows the four models’ simulation
results with different numerical parameters.

Table 3. Analysis of the final deposition volume dependence in the debris fan area on the various
parameters. When a variable is analyzed, the other parameters are the same as those in Table 1. Vr
means the simulated debris fan volume to measured debris fan volume.

Massflow Flow-3D

ID ξ μ Vr ρ θ Vr

1 200 0.4 76% 1986 20 49%

2 200 0.439 85% 1986 32 67%

3 200 0.45 66% 1986 35 39%

4 100 0.439 57% 1850 32 32%

5 300 0.439 71% 2030 32 1%

Common parameters OpenLISEM_A OpenLISEM_B

ID D c θ ρ Vr Vr

1 0.04 1250 24 1986 0.43 -

2 0.05 0 24 1986 0.68 -

3 0.05 1250 20 1986 0.7 0.59

4 0.05 1250 24 1850 0.52 -

5 0.05 1250 24 1986 0.73 0.53

6 0.05 1250 24 2030 0.65 -

7 0.05 1250 27 1986 0.65 -

8 0.05 1250 35 1986 0.52 0.49

9 0.05 2500 24 1986 0.59 -

10 0.06 1250 24 1986 0.5 -

11 0.04 1250 20 - - 0.36

12 0.05 0 20 - - 0.58

13 0.05 1250 17 - - 0.56

14 0.05 2500 20 - - 0.54
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Figure 6. Wayao debris flow fan reproduced by four models. (A) Massflow simulations-sensitivity
to the Coulomb-type friction μ = 0.4, μ = 0.439, and μ = 0.45. (B) Flow-3D simulations-sensitivity
to multiplier in internal friction angle θ = 20, θ = 32, and θ = 35. (C) OpenLISEM_A simulations-
sensitivity to internal friction angle θ = 20, θ = 24, and θ = 27. (D) OpenLISEM_B simulations-
sensitivity to internal friction angle coefficient θ = 17, θ = 20, and θ = 24.
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For the Massflow simulations, we found that the final debris fan volume is sensitive
to the Coulomb-type friction (μ) and viscous resistance (ξ). Figure 6A shows the geometry
of the debris fan with several different choices for the Coulomb-type friction (μ = 0.4, 0.439,
and 0.45). The simulation results show that the extent of the debris fan tends to be smaller
than that of the real debris fan. However, Massflow reproduces the thickness distribution of
debris deposition. Only the western part of the actual debris fan is slightly overestimated,
and the eastern part is slightly underestimated. The simulation result with μ = 0.439 is
considered to best reproduce the debris flow deposition, and the volume of the simulated
debris fan is 85% of the actual debris fan volume. However, this would lead to the selection
of a very low friction angle, and this situation is the same as that found in Scaringi et al. [53].

For the Flow-3D model, we found that the debris fan volume is more sensitive to the
debris density and the friction angle. When the value of debris flow density is 2030 kg/m3,
most of the debris flow deposits in the channel. When the value of debris flow density is
1850 kg/ m3, most of the debris flow runs out of the catchment at an abnormal velocity.
The friction angle (θ) is another key parameter to the deposition and entrainment of the
debris flow. A larger friction angle will cause the debris flow to deposit quickly, while a
smaller friction angle will cause the solid particles to be more easily transported. Different
simulations were performed to understand the friction angle (θ) influence on the debris
flow process. We found that the multiplier in the friction angle significantly impacts the
deposition rate of debris flow. The simulation result with θ = 32 is considered to best
reproduce the debris flow deposition, and the volume of the simulated debris fan is 67% of
the actual debris fan volume. However, the deposition thicknesses in the middle and east
of the debris fan are underestimated.

For OpenLISEM_A, we found that debris fan volume is more sensitive to debris
flow density, manning, and friction angle (θ), while less sensitive to cohesion. When
the value of the friction angle was 20 degrees, most of the debris flow ran out of the
catchment at an abnormal velocity. When the value of the friction angle is larger than
30 degrees, the velocity of debris flow will decrease significantly as the internal friction
angle increase. The simulation results show that the extent of the debris fan tends to be
larger than that of the real debris fan, and the deposit thickness in the east of the debris fan
is underestimated (Figure 6C). The simulation with θ = 24 is considered to best reproduce
the debris flow deposition, and the volume of the simulated debris fan is 73% of the actual
debris fan volume.

For OpenLISEM_B, we found that debris fan volume is more sensitive to manning
and the friction angle (θ) while less sensitive to cohesion. The influence on the debris
flow behavior of the friction angle was similar to that in OpenLISEM_A. However, the
simulation result with θ = 20 is considered to reproduce the debris flow deposition best,
and the value is smaller than that of OpenLISEM_A. The failure volume of the slope is
determined based on the infinite slope method. The failure part may slide into the channel
and participate in the debris flow. Figure 6D shows that the extent of the debris fan tends
to be smaller than the real extent, and the thickness distribution of debris deposition is
also underestimated. The simulation with θ = 20 is considered to best reproduce the debris
flow deposition, and the volume of the simulated debris fan is 59% of the actual debris fan
volume. The extent and volume of the debris fan in OpenLISEM_B is smaller than that in
OpenLISEM_A. It is speculated that part of the debris source was transported out of the
debris fan extent by the channel flood under the rainfall condition.

The four models can reproduce the geometry and thickness distribution of the debris
flow fan (Figure 7). The schematic diagram of verification results is shown in Figure 8, and
the accuracy [9] of the four models is shown in Table 4. The Massflow and OpenLISEM_A
models seem to reproduce the actual deposit area and volume more accurately than other
models. The positive accuracy area of Massflow and OpenLISEM_A was higher than 70%,
and the positive accuracy volume of Massflow (86%) was the best of all. The positive
accuracy area and volume of Flow-3D were lower than 70%. Flow-3D shows a runout
spread of debris flow larger than that in the actual event, and the negative accuracy area of
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Flow-3D was 73%. OpenLISEM_B shows a runout spread of debris flows smaller than that
in the actual event. The positive accuracy area and volume of OpenLISEM_B were lower
than 60%, but the negative accuracy area was the smallest. All models underestimate the
eastern part of the debris fan, which was discussed in Section 6.

Figure 7. Debris flow fan in 2013: Actual runout (A) and best simulations by Massflow (B), Flow-3D
(C), OpenLISEM_A (D), OpenLISEM_B (E). The full sets of model parameters are given in Table 1.

 
Figure 8. Schematic diagram of verification results of debris flow events. A predicted area was
measured, and the observed area was from the simulation result. X is the positive accuracy area, Y
represents the missing accuracy area, Z is negative.
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Table 4. Comparison of the simulation accuracy of four models. Ap means the positive accuracy area.
An means the negative accuracy area. Am means the missing accuracy area. Vp means the positive
accuracy volume. Mean depth means the mean depth of the debris fan.

Models
Area (×104 m2) Volume (×105 m3) Mean Depth (m)

Ap % An % Am % Vp % H %

Actual 2.9 100% 0 0% 0 0% 1.4 100% 4.8 100%

Massflow 2.1 71% 1.0 33% 0.9 29% 1.2 86% 7.3 152%

Flow-3D 2.0 69% 2.1 73% 0.9 31% 0.9 67% 4.7 97%

OpenLISEM_A 2.2 75% 2.7 94% 0.7 25% 1.0 73% 4.7 97%

OpenLISEM_B 1.6 55% 0.04 1% 1.3 45% 0.8 58% 5.1 106%

The thickness of the debris fan in the best-fit simulations of various models was
compared (Figure 9). Massflow and Flow-3D present the same thickness distribution in
section a-a’. The thickness values of Massflow are closer to the actual values than Flow-3D.
Those values are approximately 5 m larger than that of Flow-3D. OpenLISEM_A and
OpenLISEM_B present almost the same thickness distribution in two sections as they use
the same debris flow equations. The depth distribution of Massflow in section b-b’ is
closer to the actual depth distribution than the other three models. Massflow presents the
same thickness distribution shape as reality, and only the peak value is shifted. Flow-3D,
OpenLISEM_A, and OpenLISEM_B have similar thickness distributions of debris fan, and
they all underestimate the thickness distribution at 100–250 m (Figure 9C).

Figure 9. Comparison of debris fan thickness in 2013 (along two representative cross-sections).
Including the actual debris fan and the debris fan of best-fit simulations by Massflow, Flow-3D,
OpenLISEM_A, and OpenLISEM_B. (A) shows the debris fan thickness along the cross-section a-a’,
and (C) shows the debris fan thickness along the cross-section b-b’. The locations of a-a’ and b-b’ are
shown in (B).

The depth distribution of the debris flow at four representative moments after the
initiation of the debris flow was compared (Figure 10). Despite the different modeling
methods, the depth distributions resulting from the Massflow and Flow-3D simulations
are very similar in terms of runouts versus time and the spatial distribution of depth at
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each moment. Due to the different resistance terms of debris flows in the models, the flow
velocities of debris flow in Massflow and Flow-3D simulations are significantly higher than
OpenLISEM_A and OpenLISEM_B. Compared with OpenLISEM_B, OpenLISEM_A does
not include the hydrological model, so the processes of rainfall infiltration and slope failure
were omitted. Therefore, the time for the debris flow to reach the catchment mouth in
OpenLISEM_A is less than that in OpenLISEM_B (Figure 10C,D).

Figure 10. Snapshots of the debris flow height of Wayao debris flow in 2013 simulated by Massflow
(A), Flow-3D (B), OpenLISEM_A (C), and OpenLISEM_B (D). Abbreviations: s means seconds, and
m means minutes.

5.2. Prediction to the Debris Flow Event in 2020

To evaluate the prediction ability of the four models for possible debris flows, we
use the simulation results of the Wayao debris flow event in 2020. The sets of parameters
for prediction were the same as those for the Wayao debris flow in 2013 simulations. The
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depth distribution of the debris flow in 2020 was created as the input file. The rainfall
value was 18.8 mm/h in 2020. The depth distribution verified the prediction ability of
different models.

The simulation results of the four models are shown in Figure 11 to compare the
runout areas of different models. According to the UAV survey, the debris flow filled the
check dam in 2020, and the max depth value of the deposition was 7.6 m. Most of the debris
flow ran into the Min River, and only a few were deposited along the channel.

Figure 11. Debris flow runout in 2020: actual runout (A) and simulations by Massflow (B), Flow-3D
(C), OpenLISEM_A (D), OpenLISEM_B (E).

For Massflow, the simulation result shows that the runout extent of the debris flow
was more significant than the real in 2020. Some of the debris flow was deposited after
the check dam, and the max depth of the deposition was 1.9 m. Most of the debris flow
deposits at the junction of the catchment channel and the drainage channel, and the max
deposition depth was 8.3 m.

For Flow-3D, the simulation result shows that most of the debris flow ran into the Min
River which is consistent with reality. The deposition depth in the drainage channel was
slightly overestimated, and the value range was between 0.2 and 4.3 m. The deposition
depth after the check dam was underestimated, and the max value of depth was 2.2 m.

For OpenLISEM_A, the simulation result shows debris flow transported along the
drainage channel. However, most of the debris flow was deposited at the junction of the
catchment channel and the drainage channel, and the max depth of deposition was 5.6 m.
The deposition depth after the check dam was underestimated, and the max value of depth
was 3.6 m.

Among all the models, OpenLISEM_B yields the result most consistent with the actual
situation. The simulation and the actual error are approximately 25% at the deposition
depth and volume behind the dam. Most debris flows ran into the Min River along the
drainage channel. A small part of the debris flow was deposited in the drainage channel,
and the depth was approximately 0.5–1.1 m.

Figure 12 shows the comparison of the depth distribution of the debris flow at four
representative moments after the initiation of the debris flow. The simulation results of
Massflow and Flow-3D show that the time when debris flow reaches the mouth of the
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catchment is approximately 3 min. The time for OpenLISEM_A and OpenLISEM_B is
approximately 20~30 min. For Massflow and OpenLISEM_A, the debris flow deposited
along the channel in the simulation results. For Flow-3D and OpenLISEM_B, most of
the debris flow ran into the Min River in the simulation result. The comparison between
OpenLISEM_A and OpenLISEM_B indicates that when the debris flow arrives at the
channel with a gentle slope, the channel flow formed by rainfall could provide momentum
for the debris flow. If the debris flow model does not include the hydrological model, the
debris flow would rapidly deposit along the channel with a gentle slope.

Figure 12. Snapshots of the debris flow height of Wayao debris flow in 2020 simulated by Massflow
(A), Flow-3D (B), OpenLISEM_A (C), and OpenLISEM_B (D). Abbreviations: s means seconds, and
m means minutes.
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5.3. Scenario without Mitigation Structures

We evaluated the impacts of mitigation structures on the uncertainty of predication
with the depth distribution of debris flow deposition. The four models were used to
predict without mitigation structures. The simulation parameters were the same as those in
Section 5.2, and the mitigation structures were taken out from the models. Figure 13 shows
the prediction results of the four models. The simulation results show that the debris flow
ran out of the catchment. However, the depth distributions of the debris flow deposition
were different.

Figure 13. The prediction results without mitigation structures. Simulations for Massflow (A),
Flow-3D (B), OpenLISEM_A (C), and OpenLISEM_B (D).

For Massflow and OpenLISEM_A, most of the debris flow was deposited at the mouth
of the catchment, and the main deposit area was along the channel. This result indicates
that the structures had limited effort on the deposition progress of debris flow in Figure 12.

For Flow-3D, OpenLISEM_A, and OpenLISEM_B, the simulation results show that the
extent of runout areas was more significant than that in Figure 12. The debris flow buried
part of the road and several houses. The simulation result for Flow-3D shows that the main
threat area was located east of the catchment mouth. The debris flow buried five houses
and part of the roads. However, the west area of the catchment mouth was safe. This result
indicates that the mitigation structures played an essential role in reducing the danger of
the debris flow event in 2020.

The results of debris-flow risk assessment have important guiding significance for
land planning and the construction of prevention and control projects in mountainous
areas. When selecting debris-flow risk assessment models, each model’s advantages and
disadvantages should be thoroughly evaluated. A simulation model suitable for the
study area should be selected. Alternatively, a multi-model combination method should
be adopted.
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6. Discussion

Table 2 shows that the value of friction angle in the different models is significantly dif-
ferent. The models assume that the parameters of debris flow are constant. However, they
are not evenly distributed in all catchments, such as particle size and internal friction Angle.
The parameters values obtained by the field survey are in a range. The parameter values in
Table 2 are optimal simulation values, and they were obtained by parameter correction.

Figure 8 shows that all models underestimated the eastern part of the debris fan in
2013. According to reports from villagers who witnessed the debris flow, the Wayao debris
flow ran out several times on 10 July 2013. Moreover, we infer that numerous debris flows
formed the deposits in the eastern part of the debris fan. The phenomenon is related to
rainfall scenarios, random rainfall-triggered landslides [54], natural debris dams in the
channel, and natural dam failure [55].

The hydrological condition is one of the critical parameters in debris-flow simulation.
There is interaction or feedback between the hydrology and a debris flow. When this inter-
action is not considered in the model, the model’s predictive power is limited [37]. As we
can see in Section 5.2, the debris flows in the simulation results for OpenLISEM_A stopped
at the drainage channel. However, most of the debris flow in the simulation result for Open-
LISEM_B ran into the Min River. According to Equations (4)–(7), for OpenLISEM_A, the
initial volume fraction for solid and fluid phases is constant. However, for OpenLISEM_B,
the two values change dynamically with rainfall, and this is an important reason why the
prediction result of OpenLISEM_B is better than that of OpenLISEM_A.

In the Massflow prediction results, the runout distance of debris flow was underes-
timated. According to the dependence analysis, the value of the Coulomb-type friction
is proportional to the runout distance of debris flow. In Equation (1), the value of the
Coulomb-type friction is proportional to the basal friction stress. Therefore, we believe that
the value of the Coulomb-type friction was underestimated in the debris flow simulation
in 2020.

The quantity and accuracy of rainfall data affect the simulation results, as Open-
LISEM_B is sensitive to rainfall. In mountainous areas, precipitation may vary significantly
in space [56,57]. The uncertainty error between the measured and actual rainfall values is a
limitation of this manuscript, although we have obtained acceptable measured results by
parameter calibration.

In some cases, parameter calibration can obtain satisfactory results, such as the simula-
tion results in Section 5.1. However, the simulation accuracy may be significantly reduced
when these parameters are applied to debris flow prediction. None of the models used in
this work can be considered superior to the others. Discrimination among models should
also evaluate the actual usability of the model and its results. For example, a model should
be assessed in terms of the ease of use, the quantitative and physical significance of the
parameter assessment or calibration, the possibility of incorporating the model into early
warning systems [58,59], and finally, the calculation time. In the case of incorporating the
model into a real-time risk assessment system, the last factor may be decisive since the
inputs to the model may change over time, and the new solutions must be recalculated in
time to alert. On the other hand, in the situations that the imminent failure is not expected
or detailed risk assessment in land use is required, priority should be given to the accuracy
of debris flow prediction. It needs to combine more field surveys and experiments to obtain
physical parameters, and reproduce the complex debris flow process.

If the computation time is considered unique (Table 5), not including the modeling
time, Massflow can simulate the entire debris flow process in less than 5 min. A desktop
computer (CPU, AMD 2700X, 16 cores, 3.7 GHz; RAM, 16 G) was used, and the resolution
terrain grid was 5-m. When the same simulation is performed on a 10-m resolution grid,
Flow-3D takes 14 min. At the same time, the calculation on a 5-m grid takes approximately
2 h. Of course, the performance of Flow-3D models can be significantly improved by using
multicore/parallel solvers to run the code on a powerful workstation [25]. OpenLISEM_A
takes approximately half an hour on the same machine, but with a less precise (10 m)
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grid, the time is cut in half. However, the simulation time of OpenLISEM_B with the
hydrological model is much longer. The time for 10 m resolution exceeds one hour, while
the 5 m resolution requires more than two hours.

Table 5. With different mesh resolutions, the computational times required to simulate the debris
flow event in 2013.

Model Topographic Mesh Resolution Time for Computation

Massflow
5 m ~4 min

10 m ~2 min

Flow-3D
5 m ~2 h

10 m ~14 min

OpenLISEM_A 5 m ~28 min
10 m ~16 min

OpenLISEM_B 5 m ~2.5 h
10 m ~1.3 h

The topographic mesh resolution affects the time for computation and the simula-
tion result. So, the appropriate resolution requires consideration of both computational
efficiency and debris flow progresses [60]. For Massflow and Flow-3D, the simulation
results on the 5-m grid and the 10-m grid were similar. However, for OpenLISEM_A and
OpenLISEM_B, the grid size significantly influenced the debris flow height and velocity
and this is the consistent result of Bout and Jetten [52]’s sensitivity test on terrain resolution.

The advantages of Massflow are its simple parameter requirements and high computa-
tional efficiency, and the data can be directly exported through a geographical information
system (GIS). When the accuracy of the debris flow deposition range is not high, prelimi-
nary hazard prediction can be made by Massflow. OpenLISEM requires more parameters
than the other two models, but GIS can also integrate input parameters. Flow-3D has the
most parameters, and its terrain model needs to utilize professional modeling software, so
there may be some difficulties in operation. However, a three-dimensional description of
the structure of prevention measures can be realized, which is a significant advantage in
evaluating debris flow prevention projects for the future.

A common shortcoming of the simple-phase models used is that the initial spatial
distribution of the simplified variables (e.g., porosity, saturation, and cohesion in the soil)
cannot be easily considered. For example, the particle size distribution and the angle of
internal friction in the debris source are single values for the entire catchment (Table 1).
Similarly, in two-phase models, the input of a material parameter is its spatial distribution.
This input has important implications for hazard assessment using numerical methods and
developing early warning systems to mitigate risks.

Finally, it is worth re-emphasizing predictions of future events.

1. Different models have different predictive capabilities, and this may be due to the
different sensitivity to debris flow densities or considering the interactions between
the hydrology and the debris flow. Therefore, it should be considered when evaluating
model predictive reliability.

2. Adopting multiple methods in hazard assessment and early warning systems may
achieve ideal results. For example, a model with higher computational efficiency is
used for preliminary prediction. Moreover, a model with higher accuracy is used for
detailed prediction.

3. It is unclear whether a model is always the best performance model for prediction.
Therefore, combining various models to form a multi-model real-time risk assessment
and early warning system requires further research.
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7. Conclusions

In this work, two single-phase models (Massflow and Flow-3D) and two-phase flow
models (OpenLISEM_A and OpenLISEM_B) were applied to reproduce the main movement
and deposition characteristics of the Wayao debris flow event in 2013. Moreover, the four
models were applied to predict the Wayao debris flow event in 2020, and the parameters
are the same as those in 2013. The depth distribution of debris flow was used to analyze
prediction accuracy. Some conclusions can be drawn:

1. All four models provided satisfactory results for the geometry and depth distribution
of the debris fan in 2013.

2. Combining the simulation results in the scenario without mitigation structures indi-
cates that the mitigation structures played an essential role in reducing the danger of
the debris flow event in 2020.

3. Considering the prediction of the debris flow event in 2020, including the deposition
depth of debris behind the check dam and the runout extent of the debris flow,
OpenLISEM_B has the best performance among the four models. However, they are
different for both the adopted theoretical rheological model and the numerical scheme.
So, it is not easy to understand the different behavior.

4. OpenLISEM_B (the model with an entire hydrological catchment) has the advantage
of higher prediction accuracy of debris flow deposition depth than OpenLISEM_A
(the model without considering). Since the cases in this paper were triggered by
runoff, the comparison can only stand for debris flows triggered by runoff.

While each model has its limitations, the simulation of possible future debris flows
using back analysis of debris flow parameters based on existing debris flow events and
field investigation of potential debris sources can be a helpful tool for local risk assessment.
The ability to recalculate new solutions in a short time is necessary for a real-time early-
warning system. The accuracy of model prediction under different rainfall scenarios is
critical in hazard assessments of significant projects. Therefore, in different application
scenarios, such as debris flow risk assessment or early warning systems, comprehensively
consider the accuracy of the model prediction, the difficulty of parameter acquisition, and
the computational time.
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Abstract: The southwestern region of China is close to the Eurasian earthquake zone. Many engi-
neering areas in southwestern China are affected by earthquakes and are close to the epicenter of
earthquakes that occur in this region. During earthquakes, slopes with weak interlayers are more
likely to cause large-scale landslides. In response to the low stability of slopes with weak interlayers
in reservoir dam areas, the dynamic response law and failure mechanism of weak interlayered slopes
under the combined action of reservoir water and seismic forces were studied through shaking table
model tests and finite element numerical simulation software. The height of the water level and
the size of the seismic waves were changed during these tests. The research results indicate that
seismic waves are influenced by weak interlayers and are repeatedly superimposed between the
weak interlayers and the slope surface, resulting in an acceleration amplification effect that increases
by approximately 1.8 times compared to homogeneous slopes. Vertical earthquakes have a significant
impact on the dynamic response of slopes, and their peak acceleration amplification coefficient can
reach 0.83 times the horizontal peak acceleration. The stability of weak interlayers during earthquakes
is the worst within the range of the direct action of reservoir water. The failure mode of a slope is
as follows: earthquake action causes cracking in the upper part of the slope, and as the earthquake
increases in intensity, and the infiltration of reservoir water intensifies, the cracks expand. The soft
and muddy interlayer in the front section of the slope forms a sliding surface, and ultimately, the
sliding failure forms an accumulation body at the foot of the slope. In reservoir dam areas, the
stability of a slope is closely related to the engineering safety of the reservoir dam. Therefore, when a
strong earthquake and the water level in a reservoir jointly affect a weak-interlayer slope, the slope is
in the stage of plastic deformation and instability. The stability of the slope may be overestimated,
and the slope is likely vulnerable to sliding instability, which needs to be monitored and treated.

Keywords: weak intercalation; vibration table test; dynamic response; permanent displacement;
reservoir water slope; argillization

1. Introduction

In southwest China, the Earth’s crust moves vigorously, with strong earthquakes
frequently occurring. Large crustal uplift in this area has formed hills, deeply embedded
rivers, and high and steep slopes. In the vast mountainous area in this region, a large
amount of side (sliding) slopes are distributed. Vast engineering construction projects are
taking place in the southwest to cut paths in mountains and meet water to build bridges,
resulting in a large number of artificial slopes. Reservoir areas contain weak mezzanine
slopes, which occupy a considerable proportion of these areas. As a kind of weak structural
layer, the elastic modulus and strength of soft interlayers are lower than that of surrounding
rock. Under the combined action of reservoir water and a strong earthquake, rocks are more

Water 2023, 15, 1956. https://doi.org/10.3390/w15101956 https://www.mdpi.com/journal/water
379



Water 2023, 15, 1956

likely to slip along the soft interlayer, resulting in major geological disasters and serious
economic and livelihood losses [1,2]. For example, the 7.3-magnitude earthquake in Taiwan
in 1999 caused a large number of bedding landslides (partial weak interlayer landslides),
resulting in multiple traffic interruptions, and the maximum area affected by the landslides
reached 5 square kilometers [3]. In 2008, the Tangjiashan landslide in Beichuan swept
into a river valley, blocked the Jianjiang River channel, formed the dammed Tangjiashan
lake, killed 84 people, and threatened the lives of 1.3 million who lived downstream of the
river [4]. The landslide of Zhengjiashan in Pingwu buried houses, schools, and roads at the
foot of the slope, causing a large number of casualties, including students and villagers,
and direct economic losses of about CNY 3.5 million [5]. Therefore, it is very important
to study the stability of slopes under the combined effect of water and an earthquake in
an earthquake-stricken area; it is especially important to determine the damage process
and sliding instability mechanism of weak sandwiches under the influence of water and
an earthquake.

Physical model tests [6–9] and numerical simulation tests [10–12] are important meth-
ods of studying the stability of different factors. Domestic and foreign scholars have carried
out much research on the stability of a slope under the effect of water, mainly focusing on
changes in a slope’s stability and the forms of its destruction alongside changes in the water
level. Wang, R., Jiang, Z.H., and others used physical models to imitate the fluctuation of
the water level in a river, which proved that changes in the water level would seriously
endanger the stability of a slide. Among these changes, the distortion and destruction
of the slide mostly occurred in the weak sandwiched area, and the model construction
showed similar results [13,14]. Upomo, T.C. et al. analyzed a landslip caused by a change
in the water level due to heavy rain through a numerical simulation. Then, a model was
established to predict the damage caused by the landslip [15]. Many research results have
been obtained on the dynamic response of slopes under the effect of an earthquake [16].
K. L. Wan and M. L. Lin carried out research based on the limit balance analysis, PIV
analysis, and accelerated time history records. They used the vibration table model to
study the starting and destruction process of a slope [17]. Hailong Yang and others studied
the dynamic response of a saturated weak sandwiched slope under the effect of multiple
earthquakes. They demonstrated that the response increased with the increase in the input
wave, but they did not carry out a qualitative analysis [18]. Wang Liwei used the Newmark
sliding block analysis method to study whether the dynamic safety factor and permanent
displacement of a slope under vertical seismic action were considered [19]. Yan Zhixin et al.
used the finite difference method to compare the similarities and differences in a slope’s
dynamic response with or without a vertical earthquake [20].

Many studies have been carried out on the stability of rock slopes under the combined
effect of water and earthquakes, but few of them have focused on the two major factors:
water and an earthquake. Most of them have focused on the dynamic response of a
dam under the combined effect of water and an earthquake, and the mechanism of weak
sandwiches in a slope has scarcely been studied. Under the combined effect of water and the
force of an earthquake, the dynamic response of a slope with weak sandwiches was studied.
The indoor vibration platform model test and the limited element simulation software were
used to study the dynamic response mechanism of a slope with weak sandwiches under the
combined effect of water and the force of an earthquake and to analyze the impact of soft
sandwiches on the transmission of earthquake waves. It was clear that weak sandwiches
were destroyed under the influence of water and the force of an earthquake and the sliding
and losing mechanism.

Section 2 illustrates and briefly explains the preparation work for the preliminary
model test: determining the parameters, similarity ratio, material ratio, monitoring point
layout, and loading seismic plan. Section 3 discusses the dynamic response and displace-
ment law for each monitoring point on the slope surface based on an analysis of the
simulation results of the vibration table. Section 4 describes work in which numerical
simulation software was used to calculate and analyze the dynamic response and perma-

380



Water 2023, 15, 1956

nent displacement law of the slope, which was compared and verified with the model test
results. Section 5 summarizes the triggering factors and failure mechanisms in the sliding
of weak intercalated slopes under the action of reservoir water and seismic forces, based
on observations of the failure morphology of the slope. The conclusions are presented in
Section 6.

2. Shaking Table Model Test Scheme

2.1. General Situation of Engineering Geological Environment

The water depth in front of the dam in the reservoir area of the hydropower station
is about 130 m. This section of the valley is a V-shaped, longitudinal monoclinic valley
with symmetrical topography on both sides. The mountain is abundant and the terrain
is rugged, and the slope topography is largely uniform, as shown in Figure 1. Due to the
influence of the tropospheric occurrence and the steep slope along the river, the two sides
of the bank slope form a stepped topography. The left bank is a downhill slope with an
overall slope of 20◦–30◦. A series of 30 m–60 m high and continuous steep ridges develop
diagonally along the bank slope, and the slopes of steep ridges can reach more than 45◦.

 
Figure 1. Topography of engineering area.

The outcrop beds in the engineering area are mainly the upper part of the upper
Permian basalt formation, including basalt, almond basalt, volcanic breccia lava, and tuff,
as shown in Figure 2. According to 13 boreholes and 3 adits at the dam site, the tuff is
produced in layers with a thickness of 1 m–2 m, and there is obvious extrusion, dislocation,
and argillation between the tuff and the tuff layer. Due to changes in the water level, the
front section of the tuff interlayer is immersed for a long time in reservoir water, which
leads to the gradual formation of slime in the soft interlayer with good permeability, and
the corresponding strength parameters are greatly reduced, which seriously affects the
stability of the reservoir slope.
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Figure 2. Geological section of the left bank of the reservoir area.

2.2. Determining the Physical Parameters of Each Rock Layer

According to the borehole and adit sampling test near the engineering area, the shear
strength, tensile strength, and compressive strength of basalt were measured using a triaxial
test. See Figure 3 for the instrument used in the test and the test curve. The specifications
of the main machine of the MTS815−03 triaxial testing machine were as follows: static,
2667 kN; tensile load, 1335 kN; and loading rigidity of cross member, 10.5 × 109 N/m. The
maximum lateral pressure of the triaxial pressure chamber of the test machine was 500 MPa.
Specimen size was Φ50 ∼ 100 mm × (100 ∼ 150) mm; measuring range of displacement
was ±50 mm; range of strain measurement was ±0.03 mm. Four pieces of equipment
are commonly used for in situ shear tests: pressure plate (size 500 × 500 mm); loading
system−hydraulic jack; reaction system−transmission column with sufficient stiffness and
360 × 360 mm bracket; measuring system−a pressure gauge, dial gauge, and magnetic
gauge holder.

  
(a) (b) 

Figure 3. Laboratory and in situ tests. (a) Model MTS815−03 Triaxle Tester. (b) Original rock
shear test.
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For the calculation and analysis, we determined the physical and mechanical parame-
ters of the rock mass with weak interlayers in the reservoir area, as shown in Table 1, by
comprehensively considering indoor tests and field tests such as the deformation of rock
mass and the shear resistance of rock mass and weak surfaces and consulting recommended
values from various codes and empirical values from hydraulic manuals. It can be seen
from the table that the mechanical parameters of the argillized layer of tuff are lower than
those of tuff.

Table 1. Physical and mechanical parameters of rock mass.

Material Name
Volume Weight

γ/kN/m3

Elasticity
Modulus

E/MPa

Poisson’s Ratio
μ

Cohesion
c/Mpa

Frictional Angle
ϕ/◦

Accumulation body 24 25 0.38 0.03 31
Highly weathered basalt 30 1000 0.26 0.8 35

Tuff 29 80 0.30 0.09 28
Argillated tuff 30 40 0.33 0.05 24
Breezy basalt 30 20,000 0.23 1.5 43

Based on their theoretical and practical experience in rock behavior, H ◦ ek and Br
◦ wm established the principal stress relationship for rock mass failure, namely the H ◦
ek−Br ◦ wm criterion. By linking this criterion with RMR, the strength parameters of the
rock mass can be estimated. The H ◦ ek−Br ◦ wm criterion has the following relationship:

σ1 = σ3 +
√

mσcσ3 + sσ3 (1)

In the formula, σ1 is the maximum stress at failure; σ3 is the minimum principal stress
acting on the rock mass; m and s are the rock material constant.

The key to applying the above equation is how to determine the material parameters,
the m and s values, of rocks. H ◦ ek and Br ◦ wm introduced the RMR classification
system into the criteria and proposed using the following equation to estimate the material
constants m and s:

For disturbed rock masses:

m
mi

= exp
(

RMR − 100
14

)
(2)

s = exp
(

RMR − 100
6

)
(3)

For undisturbed rock mass:

m
mi

= exp
(

RMR − 100
28

)
(4)

s = exp
(

RMR − 100
9

)
(5)

In the formula, m and s are the material parameters of the rock mass; mi is the m value
of a complete rock.

Once the m and s values have been calculated, the normal stress on the sliding surface
of the slope can be estimated, and C is determined according to the tangent line of the
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envelope of the main stress circle in the definition of the H ◦ ek−Br ◦ wm criterion, ϕ. The
specific process is as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h = 1 + 16(mσn + sσc)/3m2σc

θ = [90◦ + arctan(1/
√

h3 − 1)]/3

φ = arctan(1/
√

4h cos2 θ − 1)

τ = (cot φ − cos σ)mσc/8

C = τ − σn tan φ

(6)

2.3. Similar Relationships and Material Ratios

Being affected by the site, quantity, and economy, an indoor model test usually reduces
the model size according to similar criteria. In order to achieve change characteristics that
are as close as possible to the actual engineering and create a similar relationship between
the slope model and bridge site slope prototype, the compatibility equation, physical
equation, geometric equation, balance equation, and boundary condition of the slope
model and bridge site slope prototype should be guaranteed. The similar relationship is
shown in the following formula, where m represents the physical quantity of the slope
model, and p represents the physical quantity of the slope prototype at the site:

Cσ = C1 = Cx, Cσ = CεCE, Cμ = 1, Cε = 1, Cx = Cσ (7)

Cσ is the stress ratio:

Cσ =
(σx)p

(σx)m
=

(
σy
)

p(
σy
)

m
=

(
τxy
)

p(
τxy
)

m
=

σp

σm
(8)

Cl is the geometric proportion:

Cl =
xp

xm
=

yp

ym
=

up

um
=

vp

vm
=

lp

lm
(9)

Cε is the strain ratio:

Cε =
(εx)p

(εx)m
=

(
εy
)

p(
εy
)

m
=

(
εxy
)

p(
εxy
)

m
=

εp

εm
(10)

CE is the modulus of elasticity ratio:

CE =
Ep

Em
(11)

Cμ is Poisson’s ratio:

Cμ =
μp

μm
(12)

The above equation is satisfied, and the similar relationship between the slope model
and the prototype of the bridge site slope is consistent. According to the similarity the-
ory [21,22], the similarity constant of the basic dimension of this test is determined from
the actual size of the slope with weak interlayers and the inside diameter of the model
box: the dimension similarity constant Cl = 400; the density similarity constant Cρ = 1;
the vibration acceleration similarity constant Ca = 1. We determined the size of the experi-
mental model to be 2.6 m × 1.4 m × 1.5 m (length × height × width). As shown in Table 2,
according to the dimension analysis method [23,24] and the Buckingham quantitative
method [25], the similar constants of other physical quantities were calculated. Based on
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the main similarity ratios of the model tests and repeated matching tests, the material ratios
corresponding to the physical and mechanical parameters of each rock layer in the model
were determined (see Table 3).

Table 2. Main similarities between model tests.

Physical Quantity Similar Relationships Similarity Ratio

Geometric dimension L CL 400
Accelerated speed a Ca = 1 1
Material density ρ Cρ 1

Cohesion c Cc = Cρ × CL 400
Friction angle ϕ Cϕ = 1 1
Unit weight γ Cγ = Cρ 1

Elastic modulus E CE = Cρ × CL 400
Poisson’s ratio μ Cμ = 1 1

Table 3. Material ratio and parameters for model test.

Material Name Material Ratio
Cohesion

c/kPa
Friction Angle

ϕ/◦

Accumulator Talc powder: Sand
2.4:1.6 1.55 31.8

Strongly weathered
basalt

Steel slag: Sand:
Gypsum: Water

5:4:1.3:2.2
9.3 34.4

Microweathered
basalt

Iron powder: Barite
powder: Water:

Cement
30.0:10.0:3.5:1.4

14.3 43.4

Tuff Hardboard 0.9 26.6

2.4. Layout of Monitoring Points

According to the layout principle of monitoring points and considering the influence
of a tuff interlayer on the dynamic response of a slope with a weak interlayer, 15 monitoring
points were set on the slope surface, interlayer, overburden, and bedrock (see Figure 4) to
monitor the acceleration time history change process of a slope during an earthquake.

 
Figure 4. Layout position diagram of monitoring point A1–A15 (unit: mm).
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2.5. Seismic Input and Loading Scheme

Structurally, the project area is located in the active tectonic area in northwest Yun-
nan. Neotectonic movement, deep tectonic deformation, fault activity, modern crustal
deformation, etc. are relatively strong and are affected by seismic tectonic activities in the
peripheral areas of the east and west sides. The basic seismic intensity in the project area is
measured in degrees, and the peak horizontal acceleration is 0.30 g. As shown in Figure 5,
the maximum acceleration of the input seismic wave was mainly concentrated within 6 s–10
s, and the peak acceleration occurred at 6.93 s. When considering inputting seismic waves
with different peak accelerations, the seismic waves are proportionally scaled to preserve
the consistent waveform of the seismic waves. The peak accelerations of horizontal and
vertical seismic waves are scaled to 0.1 g, 0.2 g, 0.3 g, and 0.4 g.

Figure 5. Input horizontal seismic wave curve.

The experimental simulation was divided into two conditions: no water and normal
water level. First, the input of the seismic wave changed from a vertical seismic wave to a
horizontal seismic wave, and the seismic acceleration gradually increased from 0 g to 0.4 g.
Different seismic conditions were simulated.

In order to study the dynamic responses of slope models under different directions of
seismic wave input conditions, the seismic load excitation direction was designed to be
loaded first in the vertical direction and then in the horizontal direction, and the seismic
acceleration was loaded in increments of 0.1 g, 0.2 g, 0.3 g, and 0.4 g. In order to study the
influence of the mud deposition of reservoir water on the dynamic response of the model,
a low water level test was conducted first, followed by a high water level test. The test plan
is shown in Table 4, and the low water level condition is shown in Figure 6.
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Table 4. Test loading conditions.

Loading Conditions
Earthquake
Direction

Seismic Peak
Acceleration/g

Reservoir Water
Status

1

Vertical earthquake

0.1 g Normal water level
2 No water level
3 0.2 g Normal water level
4 No water level
5 0.3 g Normal water level
6 No water level
7 0.4 g Normal water level
8 No water level

9

Horizontal
earthquake

0.1 g Normal water level
10 No water level
11 0.2 g Normal water level
12 No water level
13 0.3 g Normal water level
14 No water level
15 0.4 g Normal water level
16 No water level

  
Figure 6. Initial model.
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3. Shaking Table Test Results and Analysis

3.1. Dynamic Response Analysis during Earthquake

By analyzing the data collected using the acceleration sensor in the slope model,
we plotted the PGA change curve of each monitoring point in the model slope.
Figure 7 shows the variation curve of the PGA amplification factor under
the input vertical and horizontal earthquakes. H and N represent conditions
with normal storage and no water, respectively. The analysis of Figure 7 shows
the following:

1. It can be seen that when the input seismic acceleration was the same, the PGA at
the normal water level was greater than that with no water, indicating that the
mudding effect of reservoir water had a significant amplification effect on the PGA
of the slope. The sedimentation of reservoir water also had a certain influence
on the PGA distribution of the slope, and the enlarged area of PGA in the slope
obviously increased after sedimentation. This is because after the front section
of the weak interlayer was cemented, the cohesive force of the weak
interlayer decreased, and the slope surface was damaged under the action of
seismic waves, so the acceleration amplification effect at the slope angle was
more obvious.

2. When both horizontal and vertical seismic waves were input, the acceleration response
of the slope increased from the bottom to the top along the slope surface, reaching
the maximum value at the top of the slope, with the maximum amplification factor of
2.5 with the input of vertical seismic waves, 3.25 with the input of horizontal seismic
waves, and 0.83 times at the peak dynamic response of vertical seismic waves. By
observing the slope of the folding line of the amplification coefficient change in PGA,
it can be seen that, when increasing the slope height of the same height, the change in
PGA at the slope angle of 250–500 mm is not significant. PGA rapidly increases in the
middle part of the slope at 500–1000 mm, and the increase rate slows down again at
1000–1250 mm. Analyzing this phenomenon indicates that the impact of earthquakes
on the slope is mainly evident in the middle part of the slope, and it can be consid-
ered that the middle part of the slope should be reinforced. It can reduce the PGA
growth rate.

3. Upon comparing normal water storage conditions with no water level conditions, it
can be observed that an increase in water level significantly increases the PGA amplifi-
cation coefficient of the slope surface. When inputting vertical seismic waves, the peak
value of PGA without water level is 1.82, and under normal water storage conditions,
the peak value of PGA is 2.43, an increase of 33%. When inputting horizontal seismic
waves, the PGA peak without water level is 2.76, and under normal water storage con-
ditions, the PGA peak is 3.07, an increase of 11%. By analyzing the above data, it can be
found that changes in water level have a significant impact on the dynamic response of
the slope; especially, when inputting vertical seismic waves, the change in PGA is more
severe. This indicates that, when analyzing the dynamic response of the slope, reser-
voir water and vertical earthquakes are two important factors affecting the stability of
the slope.
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(a) (b) 

Figure 7. Variation curve of PGA amplification coefficient under different earthquakes. (a) Vertical
seismic waves. (b) Horizontal seismic waves.

3.2. Analysis of Permanent Displacement during Earthquake

The maximum surface deformation of each measuring point under different seismic
loads was plotted as a curve, from high to low, in different slope surface heights, and
the relationship between the surface deformation of the slope and the input seismic ac-
celeration was analyzed. Figure 8 shows the relationship between the maximum surface
deformation and the input seismic acceleration. It can be seen from the diagram that
the displacement of the slope surface increased with the increase in the input seismic
wave acceleration.

For vertical input loads, when the input seismic acceleration was 0–0.3 g, the dis-
placement increased uniformly. The surface displacement increased sharply when the
input seismic acceleration reached 0.3 g. When the input seismic acceleration was 0.4 g,
the maximum slope displacement appeared at up to 16.8 mm. When the input seismic
acceleration reached 0.45 g, a steep drop in surface displacement occurred, which indi-
cated that the dynamic response of a slope surface changes from the linear area to the
plastic area.

For horizontal input loads, the displacement curve could be divided into three stages.
In the first stage, when the input seismic acceleration was 0–0.3 g, the displacement in-
creased uniformly, which was elastic deformation. In the second stage, when the input
seismic acceleration was 0.3–0.45 g, the displacement first decreased and then increased,
which was plastic deformation. The maximum slope displacement also appeared at up to
31.2 mm. In the third stage, when the input seismic acceleration reached 0.45 g, the surface
displacement decreased abruptly, which was sliding destabilization, indicating that the
landslide began at this time, and the slope was already unstable. When the input seismic
acceleration reached 0.4 g, it coincided with the failure process of the slope in the test.
The surface displacement increased sharply at first and then decreased sharply, indicating
that the slope was unstable and slid completely, entering the post-failure stage. Upon
comparing the data obtained from displacement measurement points arranged at different
heights along the slope, it can be found that there is a sudden change in displacement at a
distance of 400 mm from the top of the slope. The measurement points are located on the
steeply inclined structural surface of the trailing edge, and obvious through cracks appear
during the failure process.
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(a) 

 
(b) 

Figure 8. Evolution curve of surface displacement. (a) Vertical square load. (b) Horizontal load.

390



Water 2023, 15, 1956

4. Numerical Simulation Analysis

4.1. Analysis Software and Constitutive Model Selection

Geostudio is a finite element software widely used in the field of geological engi-
neering, in which the QUAKE/W modules and SLOPE/W modules are used to analyze
dynamic responses and permanent displacements under the action of earthquakes. There-
fore, in this paper, Geostudio software was used to calculate and analyze the dynamic
response and permanent displacement of the slope under different seismic actions, in
which the material constitutive model was the Linear Elastic Model. The Linear Elastic
Model is immensely useful for education, testing, and verification purposes [26,27]. As
there are no convergence problems with this model, many other issues can be resolved
without convergence complications. For example, performing linear elastic analyses can be
useful to determine the effects of various boundary conditions and confirm that they are
being applied and used correctly or to confirm the effects of varying in situ conditions. The
Linear Elastic Model in QUAKE/W is useful for verifying that the software provides the
same solution.

4.2. The Establishment and Calculation of Numerical Model

The numerical model was established according to the optimal boundary require-
ments of the model proposed by Zhang Jiangwei et al. [28]. In the analysis of the model,
the finite element mesh was divided into quadrilateral and triangular mesh, and the
mesh size was determined according to the principle of 1/8–1/10 of the wavelength
corresponding to the highest frequency of the input seismic wave, meaning the mesh
needed to meet the accuracy requirements. The static boundary conditions of the finite
element model were set as the left and right boundary normal constraint, the bottom
fixed constraint, and the free slope. It should be noted that the above left and right
boundary conditions should be changed to free states in the follow-up dynamic analy-
sis. The model grouping and grid division are shown in Figure 9, and the finite element
calculation model with an extended boundary at both ends considering the boundary
effect is shown in Figure 10. Considering the influence of the tuff interlayer on the dy-
namic response of the slope, four columns of monitoring points were arranged on the
slope surface, interlayer, overlying layer, and bedrock (as shown in Figure 11) to moni-
tor the time-history variation process of acceleration, velocity, and displacement during
an earthquake.

Figure 9. Model grouping and mesh division.
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Figure 10. Finite element model of the slope (unit: m).

Figure 11. Layout of monitoring points.

4.3. Effect of Reservoir Water and Earthquake on Weak Sandwich Slope
4.3.1. Acceleration Response Analysis

In order to analyze the dynamic response of a slope to a vertical earthquake, the peak
acceleration of the monitoring points on the slope surface was compared by inputting
different vertical seismic accelerations. We defined the ratio of peak response accelera-
tion at the monitoring point to peak input seismic wave acceleration as the acceleration
amplification factor (PGA) at the monitoring point. Figure 12 shows the change in the
peak acceleration of the slope, which is visually displayed by X-direction and Y-direction
acceleration clouds during different earthquakes. It can be seen from the graph that with
the increase in input seismic acceleration, the maximum area of peak acceleration was
mainly distributed in the upper part of the slope, and the acceleration of rock mass near
the slope surface was significantly different. The peak acceleration increased compared
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with the peak input seismic wave. As the input vertical earthquake increased, the peak
acceleration of the entire slope in the X direction gradually moved towards the foot of the
slope. The peak acceleration of the whole slope in the Y direction increased significantly at
the top and foot of the slope. The acceleration in the Y direction of the lower rock mass of
the weak interlayer tended to increase in the slope, which indicated that the lower part of a
slope is liable to be damaged when a vertical earthquake is involved.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 12. Acceleration cloud map in X and Y directions under different earthquakes. (a) X−direction
acceleration cloud image at 0.1 g. (b) Y−direction acceleration cloud image at 0.1 g. (c) X−direction
acceleration cloud image at 0.2 g. (d) Y−direction acceleration cloud image at 0.2 g. (e) X−direction
acceleration cloud image at 0.3 g. (f) Y−direction acceleration cloud image at 0.3 g.

Compared with the acceleration cloud in the X and Y directions under the same
seismic acceleration, with an increase in the input seismic wave, the acceleration re-
sponse of the upper and lower rock mass of the weak interlayer gradually increases,
but there is no obvious change in the dynamic response of the weak interlayer, which
indicates that the weak interlayer has a certain energy absorption effect on the slope.
However, when the input seismic wave acceleration is 0.3 g, the dynamic response of
the upper and lower rock mass of the weak interlayer increases sharply. This indicates
that the ability of the weak interlayer to absorb a seismic wave is saturated, and the
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wave begins to affect the surrounding rock mass. Let us observe the acceleration cloud
in the Y direction. With an increase in the input seismic wave, the dynamic response
in the Y direction at the foot of slope is significantly larger than that in the X direction.
This shows that the participation of vertical earthquakes has a strong influence on the
dynamic response of the slope, which makes it easier for the slope to be destroyed at
its foot.

In order to analyze the influence of mud in the front section of the tuff interlayer on
the slope response, different vertical seismic accelerations were input to carry out slope
dynamic response calculations. The analysis of Figure 13a,b is an intuitive means of deter-
mining whether the different heights of the slope surface are affected by the mudding of the
weak interlayer. Upon comparing the PGA curve in the X and Y directions, the following
conclusions were obtained:

1. By analyzing the PGA variation curves of different vertical seismic actions in the X
direction, it can be seen from Figure 13a that the influence of reservoir water mud was
mainly 300 m away from the bottom of the slope. With the increase in the input vertical
seismic acceleration, the PGA within 300 m of the bottom of the slope changed most
obviously among the four monitoring points on the slope surface. Compared with the
normal water level and no water, only the PGA gap within 300 m of the bottom of the
slope was large, and the PGA in other areas was very similar. This shows that when
the weak interlayer in the front of a slope is muddled, the dynamic response of the
slope will increase, i.e., the muddied, weak interlayer in the X direction can amplify the
seismic wave.

2. By analyzing the PGA variation curves of different vertical seismic actions in the
Y direction, it can be seen from Figure 13b that the influence of reservoir water
mud was mainly 400 m from the bottom of the slope, and the PGA in other areas
were very similar with the normal water level and with no water, which indicates
that vertical seismic waves mainly affect the middle of a slope. When the weak
interlayer in front of the slope was muddy, the dynamic response in the Y direction
was mainly reflected in the middle and upper part of the slope. The maximum
PGA value in the Y direction was 3.0, which could reach 0.85 times the maximum
PGA value in the X direction, which was 3.5. These were very similar to the results
of the model test, which showed that the numerical simulation had a high level
of reliability.

By summarizing and analyzing the results in Figures 12 and 13, it is demonstrated
that the presence of weak interlayers can cause seismic waves to overlap between the
weak interlayers and the slope surface. The weak interlayers have the function of ab-
sorbing and isolating seismic waves, but their ability to absorb seismic waves is lim-
ited. When the seismic waves are large, the weak interlayers will stop absorbing seis-
mic waves, thus exhibiting the phenomenon of amplifying seismic waves. When the
weak interlayer undergoes mudification, the ability of the weak interlayer to absorb seis-
mic waves decreases again, manifested as a significant increase in the transmission of
seismic waves to the upper soil layer when they pass through the muddied weak in-
terlayer; However, the muddy weak interlayer had little effect on other areas, which
meant that the muddy weak interlayer was more likely to be destroyed in
the project.
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(a) 

 
(b) 

Figure 13. Variation curve of PGA amplification coefficient during different earthquakes. (a) Variation
regularity of PGA during different vertical earthquakes in X direction. (b) Variation regularity of
PGA during different vertical earthquakes in Y direction.

4.3.2. Permanent Displacement Analysis

In order to illustrate the influence of mud in the front section of tuff on permanent
displacement, here, we considered the mud state in the front section of the interlayer. The
calculation results are shown in Figure 14. It can be seen that the permanent displacement
of the slope increased with the increase in the vertical seismic acceleration. Taking the
slope displacement of the muddy interlayer as an example, the permanent displacement
of the slope was 32 cm when the vertical earthquake reached 0.3 g. In the shaking table
model test, when the input seismic wave reached 0.3 g, the measured displacement value
was 0.86 mm, and the model similarity ratio was 400. The calculated true displacement
value of the slope was 31.2 cm. The test results agreed with the numerical simulation
results, which showed that the numerical simulation analysis method was feasible and had
greater reliability.
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Figure 14. Permanent displacement of slope due to different seismic accelerations.

According to Jibson et al., when the permanent displacement of the slope exceeds
15 cm, the degree of failure of the slope is superelevation. It can be seen from the above
figure that, if the argillization of reservoir water on the tuff interlayer and vertical seismic
action are not considered, from the permanent displacement of the slope, the damage
degree of the slope is only high, but there is argillization of reservoir water on the tuff
interlayer in the project, so the actual damage caused to the slope is ultra-high.

5. Failure Pattern and Instability Mechanism Analysis

5.1. Slope Failure Pattern

After each input of different seismic waves, the crack positions and shedding parts of
the slope surface after different seismic waves were determined by measuring the crack
data on the model surface (see Figure 15). With the increase in the input seismic wave, the
deformation and failure of model slope was a process of progressive evolution.

It can be seen from Figure 15a,b that when the input seismic acceleration was 0–0.1 g,
no cracks occurred on the surface of the model slope after applying small seismic loads, i.e.,
the model slope vibration, which basically indicated that the model had not been damaged.
When the input seismic acceleration was 0.2 g, a small number of cracks formed on the
surface of the model slope, and a low level of shedding occurred in the middle and at the
foot of the slope. It can be seen from Figure 15c,d that with the increase in the applied
seismic load, i.e., when the input seismic acceleration was 0.3 g, the cracks on the surface of
the model slope extended in the left and right directions, and there were penetrating cracks
in the middle of the slope. The shedding phenomenon of the surface rock mass was mainly
concentrated in the middle and lower part of the slope. It can be seen from Figure 15e,f
that with the increase in the applied seismic load, when the input seismic acceleration was
0.4 g, several penetrating cracks appeared on the model slope. On the whole model surface,
the slope surface was divided into several blocks, and the front section of the model with a
weak interlayer (about 35 cm from the foot elevation) was completely destroyed.
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(a) (b) 

 
 

(c) (d) 

 
 

(e) (f) 

Figure 15. Failure of model slope during earthquake. (a) Description of 0–0.2 g crack. (b) A 0–0.2 g
normal water level crack. (c) Description of 0.3 g crack. (d) Photograph of 0.3 g normal water level
crack. (e) Depiction of 0.4 g cracks and damage. (f) Pictures depicting 0.4 cracks and damage.
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When the model was unstable as a whole, there were a lot of cracks on the surface
of the model. The damage was obvious with the change in model gradient, and the
damage occurred completely at the foot of the slope. At a level of elevation of about
35 cm from the slope, the surface slope body overturned and slid out in block form. The
reservoir water was pumped out, and the slope model was removed in layers, as shown
in Figure 16.

  
(a) (b) 

 
(c) 

Figure 16. Photos of model layer removal. (a) Photo after removal of the first layer. (b) Photo after
removal of the second layer. (c) Photo after removal of the third layer.

After the first layer was removed, the foot of the model slope was completely de-
stroyed, the remaining slope body was relatively complete as a whole, and the surface
water content of the remaining slope was high, which indicated that the surface slope body
was destroyed and the reservoir water penetrated into the slope body. After removing the
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second layer, the foot of the model slope was destroyed, the remaining slope was more
complete as a whole, and the remaining slope surface was drier, showing that the reservoir
water did not seep through the second layer of the slope surface. This showed that this layer
of the slope surface did not undergo high levels of deformation and was relatively complete.
It can be inferred that cracks appeared on the surface of the rear edge structure of the model,
and the first layer was fully penetrated but did not extend to the second and third layers.
After three layers were removed, the slope body was still dry, and the lowest layer of the
model was seriously damaged near the foot of the slope, which was caused by damage
to the foot due to reservoir water penetration. In conclusion, in the topmost slope of the
model slope, overturning and sliding failure occurred to a great extent along the upper
structural plane.

5.2. Induced Factors and Failure Mechanism of Slope Slip

Under the action of seismic load, due to the difference in the acceleration vector
directions between the upper blocks of the slope and the phenomenon of the acceleration
in the front block being greater than that in the rear block, cracks along joints occurred
between blocks, which provided favorable conditions for block formation. The reservoir
water seeped into the cracks and the upper structural plane, which quickly reached the
saturation state, weakened its strength, further enlarged the cracks, and promoted the
formation of massive and sliding zones. The sudden drop in the level of reservoir water
caused a large increase in PGA on the uphill slope as well as a large increase in the
downhill sliding force on the uphill slope. The acceleration in the rear block of the upper
slope was greater than that in the front block, while the rear block pushed the front block
to overturn and slide at a distance of 35 cm from the front edge to the bottom of the
model, and they collided with each other during the sliding process to form debris flow
based on the foot of the slope. Therefore, it can be concluded that the main process of a
landslide is as follows: the upper part of the slope cracks due to an earthquake; with the
increase in the intensity of the earthquake, the muddied weak interlayer in the front section
of the slope forms a sliding surface; during an earthquake, sliding damage gradually
occurs in the front section of the slope, and finally, accumulation occurs at the foot of
the slope.

Through detailed analyses of acceleration, dynamic soil pressure, dynamic strain and
displacement response during an earthquake, sliding induction factors, and failure mecha-
nisms of model slopes, the slope failure phenomena we observed were analyzed. Cracks
caused by seismic loads provide favorable conditions for the formation of induced land-
slides and the slide deformation of a slope body. Under the action of seismic load, different
acceleration response directions exist among rock layers, which result in different rock lay-
ers in the direction of motion. Under the action of vertical seismic waves, upward vibrations
between rock layers will occur, and speed and direction differences will occur during the
deformation process of a slope during an earthquake, resulting in dislocation and tension
between rock layers and the formation of cracks. Due to the difference in the acceleration
response direction, under the action of horizontal seismic waves, the acceleration of the foot
of a slope is higher than that of the top of a slope; thus, a tension crack is formed at the rock
layer boundary.

6. Conclusions

In this study, using a shaking table test and finite element numerical simulation,
the dynamic response law of slopes with weak interlayers under the combined
action of reservoir water and seismic force was defined, and the ring
breaking mechanism of weak interlayers was revealed. The main conclusions are
as follows:
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1. Seismic waves are affected by weak interlayers, which overlap repeatedly between
a weak interlayer and a slope surface. The acceleration amplification effect is about
1.8 times larger than that of a homogeneous slope. The acceleration response of
the input vertical and horizontal seismic waves in a slope is magnified from the
bottom to the top along the slope surface and reaches the maximum value at the
top of the slope. A vertical earthquake has a significant influence on the dynamic
response of a slope. The magnification factor of peak acceleration can reach 0.83
times the horizontal peak acceleration. An increase in the intensity of a vertical
earthquake is more likely to induce damage on the top and in the middle of
a slope.

2. When considering the mud action of reservoir water on weak interlayers, with the
increase in the input seismic acceleration, sliding failure first occurs in the mud
area located in the weak interlayer. The shear entrance and shear exit of slope
sliding are located in the middle and at the foot of the slope, respectively, which
indicates that the stability of the weak interlayer directly affected by reservoir water is
the worst.

3. The displacement of a slope can be generalized into three stages with the increase
in a seismic wave. The first stage is elastic deformation, when the displacement
increases uniformly from 0 to 0.3 g. In the second stage, when the displacement
is 0.3–0.45 g, the displacement first decreases and then increases, which is
the plastic deformation stage. The maximum displacement of the slope
surface also appears, up to 31.2 mm. The third stage is when the surface
displacement decreases sharply after reaching 0.45 g, which is the sliding
destabilization stage, indicating that the slope begins to slide and destabilize at
this time.

4. The failure mode of the slope is as follows: cracking occurs in the upper part of the
slope due to an earthquake. With the increase in the intensity of the earthquake and
reservoir water infiltration, the crack propagation is aggravated, and sliding damage
occurs gradually in the front section of the slope. Finally, accumulation occurs at the
foot of the slope. The failure mode of the slope model reveals that the sliding surface
is controlled by a weak interlayer. When a strong earthquake and the water level in
the reservoir area jointly affect the weak-interlayer slope, the slope is in the plastic
deformation and instability stage. The stability of the slope may be overestimated,
and sliding instability easily occurs. Therefore, monitoring and treatment must be
carried out.

In the numerical simulation part of this study, we only considered the effect of the
static water load of reservoir water, which is not in line with reality and requires the
dynamic calculation of fluid structure coupling.
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Abstract: Landslides are one of the most dangerous natural disasters, which have affected national
economic development and social stability. This paper proposes a method to indirectly monitor
the deformation characteristics of landslides by extracting the abnormal vegetation information,
especially for the inaccessible high-mountain landslides in southwestern China. This paper extracts
the vegetation anomaly information in the Jizong Shed-Tunnel landslide which is located on the main
traffic road to Tibet by the optical remote sensing Gaofen-1 (GF-1) data, and analyzes the temporal
and spatial characteristics of the vegetation anomaly information through a time series. Then, we
use the small baseline subsets interferometry synthetic aperture radar (SBAS-InSAR) technology
to process Sentinel-1 data to obtain the time-series surface deformation information. Finally, we
analyze and verify the results of the two methods. The results show that there is obvious vegetation
coverage (VC) decline, with a maximum increasing percentage of 8.77% for the low and medium VC,
and obvious surface deformation around the landslide, with the highest settlement rate of between
0 mm/year and 30 mm/year. Through the time-series analysis, we find that the change trends
of the two methods are basically the same. This paper shows that the method of using abnormal
vegetation information to monitor the Jizong Shed-Tunnel landslide has a certain degree of reliability
and practicability. It can provide a new idea and effective supplement for landslide monitoring.

Keywords: landslide monitoring; Jizong Shed-Tunnel landslide; optical remote sensing; vegetation
coverage; SBAS-InSAR; surface deformation

1. Introduction

Landslides are defined as the instability and destruction of rock, soil, or other artificial
materials under the action of gravity. They have become one of the most dangerous natural
disasters due to their suddenness and destructive power and being prone to secondary
disasters, causing huge casualties and economic losses all over the world [1–4]. China is
also one of the countries prone to landslide disasters. Especially in the southwest of China,
due to the large undulation terrain, the loose soil structure, and heavy rainfall, landslide
disasters are extremely prone to occurring [5–10]. The Jizong Shed-Tunnel landslide is
located in the southwestern Yunnan Province. The area is rich in mountains and is located
next to the G214 National Highway known as the “lifeline” of Sichuan and Tibet. Once
a landslide occurs, it will block the normal passage of the G214 National Highway and
cause serious casualties and economic losses. Therefore, the identification and continuous
monitoring of landslides is an effective way to prevent and control landslide hazards.

Many scholars have done a lot of work on landslide monitoring. Common landslide
monitoring methods include the global navigation satellite system (GNSS) methods and the
interferometry synthetic aperture radar (InSAR) methods. The global positioning system
(GPS), as one part of the GNSS system, is widely used. GPS monitoring has the advantages of
high automation degree, high precision, no need to meet the visibility between monitoring
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sites, and all-weather real-time monitoring [11]. In the era of single GPS, GPS methods
already have many precise applications for monitoring landslides [12–14]. In recent years,
with the development of GNSS technology, GNSS technology has more combined applications
and is developing towards low costs. Peng et al. [15] have used the BeiDou Navigation
Satellite System (BDS)/GPS single-point positioning method to effectively monitor sliding
landslides. Notti et al. [16] have used the low-cost GPS to continuously monitor unstable
slopes in northwestern Italy, which verifies the accuracy of the method. At the same time,
Šegina et al. [17] developed a low-cost GNSS monitoring system for a deep-seated landslide
in north-western Sloveni, further demonstrating the effectiveness of low-cost GNSS. However,
GPS satellite signals are easily blocked in complex terrain and dense vegetation coverage
areas, such as high-mountain areas, which affects the accuracy. Moreover, GPS collects data at
points, so it is difficult to monitor landslides comprehensively [18,19].

InSAR technology has the characteristics of all-weather and all-day operation and
can obtain large-area, long-term series of surface deformation information [20]. InSAR
also can generate the regional digital elevation model (DEM) from paired radar images,
which has particular significance for areas without terrain data and can provide basic data
for landslide hazard assessments [21]. In 2016, He et al. [22] used the optical and InSAR
technology to monitor loess landslides and accurately analyzed the change of landslide
surface elevation. In 2019, Huang et al. [23] used the small baseline subsets (SBAS)-
InSAR technology to monitor the deformation trend of Baige landslides, which proves the
feasibility of SBAS-InSAR technology for landslide monitoring. In 2020, Jiang et al. [24]
used the coherent scanner (CS)-InSAR Technology for monitoring potential landslides
in western China. However, InSAR is susceptible to the phase delay of water vapor in
mountainous areas. Simultaneously, the characteristics of InSAR technology slant-range
imaging can easily cause registration errors and spatial baseline decoherence in areas with
large terrain undulations [14,19]. In Yunnan Province, as the southwest region of China, the
terrain is undulating. The high-mountain landslides in this area are mostly lush vegetation,
and the high vegetation coverage can also affect the InSAR results.

Landslide creeping is a stage in the development process of landslide deformation
which is slow for a long time and difficult to be detected at the beginning [25]. During the
creep stage of the landslide, there will be sudden changes to the water level, the uplift of
the soil slope, and the collapse or relaxation of the surrounding rock mass. This is reflected
in the growth status of vegetation on the landslide. Of course, not all the landslides at the
creeping stage show obvious characteristics of changes to surface vegetation, but some
do exist (such as Baige landslide [26] and Su village landslide [27]). At present, many
scholars use remote sensing images to study the vegetation in landslide areas. In 2012, Lu
et al. [28] calculated the normalized difference vegetation index (NDVI) on Landsat5 TM
data before and after the earthquake, and have studied the vegetation recovery status of the
Maoxian landslide in Sichuan after the earthquake. In 2015, He and Zhang [29] used the
NDVI value to set a threshold to identify landslides, extract landslide feature information,
and perform area statistics. In 2020, Piroton et al. [30] used the NDVI difference values
of the pre-landslide image from the post-landslide image as a complementary qualitative
analysis for landslide monitoring. In 2022, Xun et al. [31] selected the NDVI as a feature
describing the vegetation information for the extraction of potential landslides. However,
most studies are aimed at monitoring the restoration of vegetation after landslides or as one
of the characteristics of identifying landslides. The studies on the analysis and monitoring
of landslide creep using vegetation cover changes are few currently.

Both GPS and InSAR methods have certain limitations in the high-mountain areas
of southwest China. In 2020, Guo et al. [32] used Gaofen (GF) satellite data to explore the
relationship between vegetation anomalies and landslides, taking the Xinmocun landslide
as an example. Subsequently, by studying the Baige landslide, Guo et al. [33] believe that
potential landslides in high-mountain areas can be preliminarily investigated economically
and effectively through vegetation change. Therefore, in order to further verify the pos-
sibility of using vegetation changes to monitor landslides, this paper uses the method of
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calculating the vegetation coverage to extract the abnormal vegetation information of the
Yunnan Jizong Shed-Tunnel landslide from optical remote sensing Gaofen-1 (GF-1) data.
Meanwhile, the SBAS-InSAR method, which more easily obtains more comprehensive
monitoring the GPS method, is used to obtain the time-series surface deformation of the
landslide area, to further support the indirect optical monitoring method. The two aspects
are combined to analyze the temporal and spatial characteristics of landslide creep and
verify the feasibility and effectiveness of the method in this paper. This study uses the
abnormal vegetation information to indirectly monitor the Jizong Shed-Tunnel landslides
in an effective and sequential manner and provides a new idea and monitoring technology
for high-mountain landslides in the southwest region, which can effectively supplement
the landslide monitoring methods.

2. Study Area and Data

2.1. Study Area

The Jizong Shed-Tunnel landslide is located in Ladong Mountain on the east bank of
the Jinsha River, in Diqing Tibetan Autonomous Prefecture, Yunnan Province (Figure 1).
The geographic coordinates of the center of the landslide source area are 99◦23′43′′E,
28◦7′53′′N. This is the active landslide that can be seen on the G214 National Highway.
As one of the main highways of the Chinese transportation network, the G214 National
Highway is the only main transportation road from Yushu area to Xining and Sichuan-Tibet.
It is the economic line and lifeline of the surrounding areas. Therefore, maintaining the
safety of G214 National Highway is an important task to guarantee the economic stability
and social stability of the surrounding areas [34].

Figure 1. The location and Google Earth image of Jizong Shed-Tunnel landslide. (a) Optical GF-1
fused true color image; (b) Site investigation image.

The Jizong Shed-Tunnel landslide is near the normal fault, which is mainly composed
of volcanic rock, slate, and limestone. The overall slope is between 30◦ and 45◦. Moreover,
there is abundant precipitation in the study area. Due to road construction and precipitation,
the Jizong Shed-Tunnel landslide experienced a large slide in 2015, then the landslide was
in a slow creep stage. The landslide moves along the slope layer from the top of the hillside
and slides to the Jinsha River for accumulation, which can be divided into the source area
(Figure 1a(I)) and the accumulation area (Figure 1a(II)) of the landslide. The creep of the
landslide is mainly caused by the slight deformation and cracks at the rear edge of the upper
landslide area. Therefore, the main analysis area is located in the upper landslide area.

2.2. Data

This paper selects GF-1 optical images for vegetation anomaly information extraction,
Sentinel-1 A satellite radar images for deformation monitoring, and shuttle radar topogra-
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phy mission digital elevation model (SRTM DEM) data as the auxiliary external DEM to
eliminate the influence of terrain factors on the deformation monitoring.

2.2.1. GF-1 Optical Image

The GF-1 satellite is equipped with a panchromatic/multispectral PMS camera. The
PMS camera can acquire panchromatic (PAN) images with a resolution of 2 m and multi-
spectral (MS) images with a resolution of 8 m (blue, green, red, and near-infrared 4 bands),
while the imaging width is 60 km. Thus, the GF-1 satellite provides reliable data formations
for Earth observation.

Because the high cloud cover in the Jizong Shed-Tunnel landslide in the summer and
the growth of vegetation in spring is easily affected, this paper selects eight GF-1 datapoints
around November from 2013 to 2020 to analyze the abnormal vegetation information in
order to avoid the influence of the season on the growth of plants. The image data are
shown in Table 1.

Table 1. GF-1 image data.

Number Image Time Number Image Time Number Image Time

1 5 November 2013 4 22 December 2016 7 24 November 2019
2 8 November 2014 5 11 November 2017 8 30 November 2020
3 16 November 2015 6 19 November 2018

2.2.2. Sentinel-1 A Radar Image

The Sentinel-1 satellite which carries a C-band synthetic aperture radar is composed
of Sentinel-1 A and Sentinel-1 B. It provides reliable and repeated wide-area monitoring
all-day and through all weather, so it can be used to obtain surface deformation and monitor
large-scale resources. It has four working modes: stripmap (SM), interferometric wide
swath mode (IW), extra wide swath mode (EW), and wave mode (WM). The Sentinel-1
satellite has an ultra-high radiation resolution and excellent coverage performance and
revisit performance, which meets the research requirements of this paper.

Since the time interval of the Sentinel-1 satellite data in the study area from 2014 to
2016 was too large, and this paper mainly studies the subsequent landslide creep stage
after 2015, in order to ensure the correlation between the InSAR data, this paper selects
57 scenes of the Sentinel-1 A satellite’s single look complex (SLC) data with the IW working
mode from 2017 to 2020 with the largest time interval of 24 days. All images are from the
ascending orbit data with the same orbit path number 99 and frame number 1270. The
image data are shown in Table 2.

Table 2. Sentinel-1 A image data.

Number Image Time Polarization Number Image Time Polarization

1 18 March 2017 VV 30 12 February 2019 VV
2 30 March 2017 VV 31 8 March 2019 VV
3 23 April 2017 VV 32 1 April 2019 VV
4 17 May 2017 VV 33 25 April 2019 VV
5 10 June 2017 VV 34 19 May 2019 VV
6 4 July 2017 VV 35 12 June 2019 VV
7 9 August 2017 VV 36 6 July 2019 VV
8 2 September 2017 VV 37 30 July 2019 VV
9 26 September 2017 VV 38 23 August 2019 VV
10 20 October 2017 VV 39 16 September 2019 VV
11 13 November 2017 VV 40 10 October 2019 VV
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Table 2. Cont.

Number Image Time Polarization Number Image Time Polarization

12 7 December 2017 VV 41 3 November 2019 VV
13 31 December 2017 VV 42 27 November 2019 VV
14 24 January 2018 VV 43 21 December 2019 VV
15 17 February 2018 VV 44 14 January2020 VV
16 13 March 2018 VV 45 7 February2020 VV
17 6 April 2018 VV 46 2 March 2020 VV
18 30 April 2018 VV 47 26 March 2020 VV
19 24 May 2018 VV 48 19 April 2020 VV
20 17 June 2018 VV 49 13 May2020 VV
21 11 July 2018 VV 50 6 June 2020 VV
22 4 August 2018 VV 51 30 June 2020 VV
23 28 August 2018 VV 52 24 July 2020 VV
24 21 September 2018 VV 53 17 August 2020 VV
25 15 October 2018 VV 54 10 September 2020 VV
26 8 November 2018 VV 55 4 October 2020 VV
27 2 December 2018 VV 56 28 October 2020 VV
28 26 December 2018 VV 57 21 Nevember 2020 VV
29 19 January 2019 VV

2.2.3. SRTM DEM Data

SRTM DEM data are synthesized in the United States using the SRTM system to obtain
the radar image data from 60 degrees north latitude to 60 degrees south latitude.

SRTM DEM data can be divided into SRTM 1 (resolution of 30 m) and SRTM 3 (resolution
of 90 m) data. This article uses SRTM 1 data with a latitude and longitude span of 1◦ × 1◦. In
order to cover the study area, we selected the SRTM N28E099 and N27E099 data.

3. Methods

3.1. Image Pre-Processing Method

Image fusion can complement the feature attributes of different data and make up
for the incompleteness and uncertainty caused by single pieces of information, which is
beneficial to the target recognition, analysis, and application of remote sensing [35].This
paper adopts and compares the five fusion methods which are generally accepted by the
public: nearest neighbor diffusion (NND) [36], principal component analysis (PCA) [37],
Gram-Schmidt (GS) [38], high pass filter (HPF) [39], and Pansharpening fusion [40], and
analyzes the fusion method suitable for the Jizong Shed-Tunnel landslide area. This enables
MS images to improve the spatial resolution while ensuring the spectral information is
unchanged as much as possible, so as to enhance the visual interpretation effect of the
Jizong Shed-Tunnel landslide and improve the ability to detect vegetation growth and
change information.

3.2. Vegetation Abnormal Information Extraction Method

In ideal theory, since this paper obtains optical images at nearly the same time every
year for the same study area, the vegetation information is basically unchanged. Therefore,
when there is obvious vegetation change information, it means that the vegetation in this
area is abnormal. We use the vegetation coverage (VC) to obtain the information about
vegetation abnormalities caused by the landslide creep. The VC is an important parameter
to describe the ground vegetation cover. The commonly used remote sensing calculation
method for VC is to estimate it based on the vegetation index. This paper adopts the
pixel dichotomy model proposed by Li [41] and uses the vegetation index to estimate the
VC. Since the vegetation in the study area is susceptible to the influence of the bare soil
background, NDVI which is commonly used is difficult to apply to this area, while other
vegetation indexes such as the green normalized difference index (GNDVI) can avoid this
phenomenon. Therefore, this paper chooses the GNDVI to conduct the experiment and
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finds that GNDVI can indeed be well applied in the study area. So, we finally chose GNDVI
as the vegetation index of the study area. GNDVI, as the vegetation index that extracts the
vegetation information and accurately reflects the vegetation coverage through the ratio
processing, can eliminate the errors of the altitude of the Sun, the atmospheric attenuation,
and the terrain changes. The formula is shown in Formula (1):

GNDVI =
ρNIR − ρG
ρNIR + ρG

(1)

Herein, ρNIR is the reflectivity in the near-infrared band, and ρG is the reflectivity in
the green band.

The specific formula of the pixel dichotomy model to calculate VC is shown in (2):

VC =

⎧⎪⎨⎪⎩
0 , GNDVI ≤ GNDVIsoil

GNDVI−GNDVIsoil
GNDVIveg−GNDVIsoil

, GNDVIsoil ≤ GNDVI ≤ GNDVIveg

1 , GNDVI ≤ GNDVIsoil

(2)

Herein, VC is the value of vegetation coverage. GNDVIsoil is the value of GNDVI in
the bare soil or areas without vegetation cover, and GNDVIveg is the value of GNDVI in
areas completely covered by plants, which are pure vegetation pixels. Low VC values near
0 represent completely barren surfaces (rock or soil) or no vegetation-covered areas, while
high VC values near 1 represent luxuriant vegetation.

When using the pixel dichotomy model to calculate the VC, the most important thing
is to obtain the values of GNDVIsoil and GNDVIveg. In the actual situation, according to
the definition of the parameters, these two values will change with time and space [42].
At present, we mainly count the value of GNDVI from the remote sensing images and
set the confidence interval according to the cumulative percentage to define the value of
GNDVIsoil and GNDVIveg. Because there are many remote sensing images in this article,
in order to avoid the result analysis error caused by different confidence interval selections,
this article makes multiple adjustments and calculations to obtain a unified confidence
interval. The VC calculation flow chart is in Figure 2, and the specific operation steps are
as follows:

(1) Calculate the initial GNDVIsoil and GNDVIveg values of each time phase. We count the
cumulative percentage of each GNDVI value in the image at first and select the initial
confidence interval based on empirical values. We first use the 5–95% confidence
interval [43] as the initial value to try. Then, we calculate the initial GNDVIsoil and
GNDVIveg based on the left and right boundaries of the confidence interval;

(2) Adjust the confidence interval for each time phase. We calculate the VC by using the
values of GNDVIsoil and GNDVIvegGNDVIveg determined in step (1) and enhance
results through the pseudo color density segmentation to visually judge the agreement
degree of the bare land and vegetation area between in the VC map and in the original
image. If not, repeat the above steps to redefine the confidence interval and perform
the calculation again until the obtained result is the optimal fit;

(3) Determine the final uniform confidence interval. In order to unify the thresholds of
each time phase and obtain the consistent and best-fitting VC as much as possible, we
comprehensively consider the confidence intervals of each phase and unify them to
obtain the final confidence interval consistent with each time phase.
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Figure 2. The VC calculation flow chart.

3.3. SBAS-InSAR Method

The traditional differential (D)-InSAR method is affected by factors such as the baseline
length, atmospheric propagation delay, and spatial resolution, so it cannot be monitored
well in most areas [44,45]. In recent years, researchers have successively proposed time-
series InSAR methods such as the permanent scatterer (PS)-InSAR technology [46,47] and
SBAS-InSAR technology [48] with the development of InSAR technology. The coherence
requirements of PS points are higher than those obtained by SBAS, so PS-InSAR technology
is often used for deformation monitoring in urban areas, and the SBAS-InSAR method is
more effective than the PS-InSAR method in monitoring landslides in mountainous areas.
Meanwhile, SBAS-InSAR is based on multi-master images, which overcomes the poor
coherence shortcoming of some interferograms caused by using only one master image.
Moreover, in SBAS-InSAR where only interferograms with small baselines are selected
for the time-series analysis, the deformation results are denser and more reliable. At the
same time, SBAS-InSAR method can still monitor the deformation rate in the vegetation
coverage area [49]. The study area of this paper is with the vegetation coverage and in
the mountainous area, so this paper chooses the SBAS-InSAR method to study the surface
deformation of the Jizong Shed-Tunnel landslide.

The SBAS-InSAR method is a time-series InSAR method proposed by Berardino
et al. [48]. This method mainly uses multiple synthetic aperture radar (SAR) images as
the main image and forms different short baseline subsets according to the principle of
short baseline interference to generate differential interference images. Then, based on
the least square rule, the average surface deformation rate of the study area and the time
series of the surface deformation are obtained by using the singular value decomposition
(SVD) [48,50].

The basic principles of the SBAS-InSAR method are as follows:

(a) When there are N scenes of SAR images in the study area, each SAR image will be
differentially interfered with by at least another N-1 scenes image to form an interfer-
ence image pair. Finally, M interference image pairs will be obtained. Meanwhile, the
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image with most interference pairs is chosen as the main image, and the rest of the
images are the slave images. The value range of M is shown in Formula (3) [51]:

N/2 ≤ M ≤ (N(N − 1))/2 (3)

(b) Differential interferogram is collected from M interferometric pairs by using the InSAR
phase deformation extraction method. The final interferogram is obtained through
the phase filtering and unwrapping. The interference phase of the j-th interferogram
ϕj can be expressed as Formula (4):

Δϕj (x, y) = ϕB (x, y)− ϕA (x, y) ≈ 4π/λ [d(tB, x, y)− d(tA, x, y)] (4)

Herein, tA is the acquisition time of the main image, tB is the acquisition time of the
slave image, λ is the central wavelength, and x, y are the azimuth and distance coordinates
of the image, respectively, ϕA, ϕB are the interference phase of the main image and the
slave image, respectively.

The interferograms after the phase filtering and unwrapping are arranged in the
time order of the image, and then, the vector phase of the interferogram can be directly
expressed in the form of matrix. In the matrix, each row corresponds to a differential phase
interferogram and each column corresponds to the SAR images at different times. The
column of the main image and the slave image in the matrix is ±1, and the remaining
columns are all 0, as shown in Formula (5):

Gϕ = Δϕ (5)

Herein, G is an M × N matrix, expressed as: G =

⎡⎢⎢⎢⎣
0 −1 0 1 · · · 0 0 0
−1 0 1 0 · · · 0 0 0

...
...

...
...

...
...

...
...

0 0 0 0 · · · −1 0 1

⎤⎥⎥⎥⎦,

ϕ is the interference phase.

(c) The G matrix is solved by using the SVD method through the least square rule, as
shown in Formula (6):

G = USVT (6)

Herein, U is the orthogonal matrix, S is the diagonal matrix, VT is the average phase
rate. The solving equation of VT is as shown in Formula (7):

VT =

[
V1 =

ϕ1

t1 − t0
, · · ·VN =

ϕN − ϕN−1

tN − tN−1

]
(7)

(d) Through the above steps, the optimal solution of the velocity vector can be obtained,
and thus, the surface deformation information can be obtained. The surface deforma-
tion information still has the atmospheric delay and other errors, so they need to be
filtered to obtain the final accurate surface deformation information [8].

4. Results

4.1. Evaluation of Image Preprocessing Results

In this paper, we first performed radiometric correction to convert the DN value into
the surface reflectance in PAN and MS images and performed geometric correction to
eliminate geometric distortion. Then, we performed five fusion methods for PAN image
and MS image: NND, GS, PCA, HPF, and Pansharpening fusion. This paper uses the
ENVI tool to perform NND, GS, and PCA fusion, uses the ERDAS IMAGINE 9.2 tool to
perform HPF fusion, and uses the PIE tool to perform Pansharpening fusion. The five fusion
methods have achieved good visual effects. At the same time, the fidelity of the spectral
performance is an important index for evaluating image fusion applications. Therefore,
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we focus on the comparison and analysis of these five fusion methods from the aspect of
spectral performance. After the comprehensive evaluation of these indicators, the fusion
method with the best overall performance will be adopted.

4.1.1. The Spectral Curve of Image Fusion Features

Since we need to mainly extract the abnormal vegetation information in optical images
for our landslide research, it is important to distinguish the vegetation from the bare land.
In this paper, we compare and analyze the five fusion methods by viewing the shape
and range of the spectral reflectance curves of vegetation and bare land, as shown in
Figures 3 and 4.

(a) (b) (c)

(d) (e) (f)

Figure 3. The vegetation spectrum curves of different fusion images. (a) MS image; (b) GS fusion image;
(c) PCA fusion image; (d) NND fusion image; (e) Pansharpening fusion image; (f) HPF fusion image.

(a) (b) (c)

(d) (e) (f)

Figure 4. The bare ground spectrum curves of different fusion images. (a) MS image; (b) GS fusion image;
(c) PCA fusion image; (d) NND fusion image; (e) Pansharpening fusion image; (f) HPF fusion image.

It can be seen from Figure 3 that in the vegetation reflectance spectrum curve, the
vegetation spectrum curves of the five fusion images are consistent with the curve trend
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of the MS image. In terms of the reflectance spectrum curve range, GS, PCA, HPF, and
Pansharpening fusion images are all lower in the near-infrared, and only the NND fusion
images tend to have the same range as a whole, which preserves the good spectrum
information of NND.

For Figure 4, about the reflectance spectrum curve on the bare ground, the curve trend
of the HPF fusion image is obviously inconsistent with that of MS image, and the trends of
the other fusion images are relatively consistent. In terms of the reflectance spectral curve
range, the NND, PCA, and Pansharpening fusion image and MS image tend to be the same,
but the overall reflectance of the GS fusion image was relatively lower.

According to the spectral reflectance curves of bare land and vegetation, the over-
all quality of the five fusion methods is NND fusion method > PCA fusion method >
Pansharpening > GS fusion method > HPF fusion method.

4.1.2. GNDVI Results

This paper needs to calculate the VC in the subsequent extraction of abormal vegetation
information. The basis of calculating the VC is to calculate the GNDVI. Therefore, this
paper chooses the GNDVI as the index of image fusion quality evaluation. The GNDVI
results calculated from the above five fusion images are shown in Table 3.

Table 3. Comparison of GNDVI statistical results of different fusion images.

GNDVI MS NND GS PCA HPF Pansharpening

Mean 0.27 0.27 0.26 0.28 0.28 0.28
Max 0.68 0.69 0.75 0.72 0.74 0.74
Min 0.03 0.03 −0.39 −0.17 −0.22 −0.27

According to the GNDVI data in Table 3, it can be seen that the overall GNDVI value
of the fused image is not much different from the MS image. Among them, the GNDVI
value of the NND fusion image is the closest to the MS image, and the fidelity of the NND
spectral information is the best.

After comprehensive evaluation of the above three different indicators, the NND
fusion image has better performance in the details of the visual effect and the fidelity of the
spectral curve. At the same time, the obtained GNDVI value of the NND fusion is also the
closest to the MS image, which proves that it is reasonable and effective to use NND fusion
images for subsequent vegetation monitoring.

4.2. Vegetation Abnormal Information Extraction Results Based on GF-1 Images

This paper determines 6% and 94% as the confidence interval of GNDVI according to
the above method of determining the confidence interval. Finally, the VC is calculated and
displayed in pseudo color. The VC results between 2013 and 2020 are shown in Figure 5.

During the creeping stage of the landslide, the slight deformation of the slope and the
shear failure will cause cracks in the trailing edge. Based on this phenomenon, this paper
mainly analyzes the vegetation cover change at the trailing edge of the landslide. Therefore,
this paper mainly analyzes the change in VC at the trailing edge of the landslide. However,
there are the landslide body and landslide trailing edge in the pseudo-color map of VC in
Figure 5. In order to make an accurate analysis, this paper uses a black line to distinguish.
On the left side of the black line, it is the landslide body. On the right side of the black line,
it is the vegetation on the trailing edge of the landslide and the hillside.

According to the pseudo-color VC map of the landslide trailing edge shown in Figure 5,
the overall VC shows a downward trend from 2013 to 2014 due to the large landslide in 2015.
Compared with 2015, the VC at the trailing edge of the landslide has a certain recovery
in 2016. The overall VCs change a little from 2017 to 2020, but from the perspective of
subdivision areas, the changes in VC can be observed between the red box area and the
green box area in Figure 5.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5. Pseudo-color VC maps in the upper of the Jizong Shed-Tunnel landslide. (a) Optical GF-1
fused true color image; (b) VC Map in 2013; (c) VC Map in 2014; (d) VC Map in 2015; (e) VC Map in
2016; (f) VC Map in 2017; (g) VC Map in 2018; (h) VC Map in 2019; (i) VC Map in 2020.

In the red box at the upper right corner, the bare land at the back edge of the landslide
has a trend of gradual upward development and the VC is decreasing from 2013 to 2015,
which corresponds to the known landslide in 2015. It provides a certain basis for the
method of monitoring the Jizong Shed-Tunnel landslide creep with abnormal vegetation
information. After 2016, the red area with high VC on the trailing edge of the landslide in
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the red box gradually moves backward, and the original red area changes into yellow and
green, which shows that the VC decreased.

In the green box at the lower right corner, from 2013 to 2015, the area next to the high
vegetation red area protruding from the trailing edge of the landslide changes from red to
yellow and green, which is consistent with the trend of the landslide in 2015. In 2016, the
areas on both sides are slightly eased. After 2016, the protruded part on the trailing edge of
the landslide in the green box gradually shrinks, and the bare land part gradually moves
upward. The area under the green box also changes from red to yellow and green from
2016 to 2020, which expresses the decreased VC.

The above research and analysis are mainly based on the visual interpretation of
the vegetation cover classification map of time series for qualitative analysis. In order to
more accurately analyze the VC change and monitor the vegetation growth in the area of
Jizong Shed-Tunnel landslide, the quantitative analysis and discussion are needed. For the
whole area in Figure 5, we use the classification grade [52] to divide the VC and calculate
the number and percentage of corresponding pixels for quantitative analysis. In order to
correspond to the actual situation of the study area and reduce the influence of the shadow
part of the landslide body on the result analysis, the low and medium VC is set VC ≤ 0.85
(VC above 0.85 is the red area in the subplots of Figure 5). The statistics of the number of
pixels and the cumulative percentage of low and medium VC are shown in Table 4. At the
same time, the curve is made as shown in Figure 6.

Table 4. Number and percentage of pixels with low and medium VC.

Image Time Fv ≤ 0.85 Pixels Number Fv ≤ 0.85 Pixels Percentage

5 November 2013 21,103 76.39%
8 November 2014 22,317 80.78%

16 November 2015 23,525 85.16%
22 December 2016 22,506 81.47%
11 November 2017 22,138 80.14%
19 November 2018 22,280 80.65%
24 November 2019 22,522 81.53%
30 November 2020 22,547 81.62%

Figure 6. Time series change curve of the pixel number percentage with medium and low VC values.

According to the statistical results in Table 4 and Figure 6, the number and percentage
of low and medium pixels gradually increased between 2013 and 2015, indicating that the
vegetation growth situation gradually deteriorated, which is consistent with the above
analysis results based on the VC classification map. With the time approaching the landslide
in 2015, the vegetation growth became worse, with the maximum increasing percentage,
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8.77%, of the low and medium VC, and the range of abnormal vegetation information
expands. From 2015 to 2017, the number of the abnormal vegetation pixels decreased,
which indicates that the vegetation had a certain recovery. After 2017, the pixels with low
and medium coverage increased slowly, which is consistent with the conclusion that the
overall VC change a little, but change in small areas.

According to the statistical results in Table 4 and Figure 6, the number and percentage
of low and medium pixels gradually increased between 2013 and 2015, indicating that the
vegetation growth situation gradually deteriorated, which is consistent with the above
analysis results based on the VC classification map. With the time approaching the landslide
in 2015, the vegetation growth becomes worse, and the range of abnormal vegetation
information expands. From 2015 to 2017, the number of the abnormal vegetation pixels
decreases, which indicates that the vegetation has a certain recovery. After 2017, the pixels
with low and medium coverage increase slowly, which is consistent with the conclusion
that the overall VC change a little, but change in small areas.

4.3. Surface Deformation Extraction Results Based on SBAS-InSAR

This paper uses the ENVI SARscape tool to process Sentinel-1 A data to obtain the
average deformation rate of the ground highcoherence points and the cumulative surface
deformation along the line of sight (LOS) of the satellite in the study area. However,
because these points are scattered and only have latitudes and longitudes, it is inconvenient
for visual interpretation and impossible to clearly observe and verify the specific surface
deformation of the study area. Therefore, the average deformation rate map obtained
by the SBAS-InSAR technology is superimposed with the GF-1 image. In order to better
analyze the surface subsidence, only the coherent points (with the threshold 0.2 of the
coherent points) of subsidence along the LOS direction are displayed, as shown in Figure 7.

 
(a) (b) 

Figure 7. The surface deformation extraction result map of the study area (LOS direction). (a) The
surface subsidence rate map; (b) The surface cumulative deformation map.

We can find that the settlement rate of the Jizong Shed-Tunnel landslide along LOS
direction is mostly between 0 mm/year and 30 mm/year from Figure 7a. According to
the sliding speed threshold in Table 5, that is also the annual average surface deformation
rate, this landslide is identified as the very slow type or the slightly slow type [53], so we
find that the Jizong Shed-Tunnel landslide is in the landslide creep stage after a large slide
in 2015. From Figure 7b, it can also be found that the Jizong Shed-Tunnel landslide has
obvious settlements as a whole, reaching more than 50 mm in some places, which also
proves that the landslide is sliding.
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Table 5. Classification of landslide type according to the sliding speed [53].

Speed
Grade

Landslide Type Sliding Speed Threshold Destructive Force Description

1 Very slow <0.016 m/year No damage will occur to buildings that have been
protected in advance.

2 Slightly slow 0.016 m/year~1.6 m/year Some permanent buildings are not damaged;even if the
building cracks due to sliding, it is repairable.

3 Slow speed 1.6 m/year~13 m/month

If the slip time is short and the movement of the edge of
the landslide is distributed over a wide area, the road and

fixed structures can be preserved after several
major repairs.

4 Medium speed 13 m/month~1.8 m/h
Fixed buildings at a certain distance from the foot of the
landslide can’t be damaged; the buildings located on the
upper part of the sliding body are extremely damaged.

5 Fast speed 1.8 m/h~3 m/min It has time for escape and evacuation; houses, property
and equipment are damaged by landslide.

6 High fast 3 m/min~5 m/s
The destructive power of the disaster is large, and due to
its high speed, it is impossible to transfer all personnel,

resulting in some casualties.

7 Super fast >5 m/s
The destructive force is huge, the surface buildings are

completely destroyed, and the impact or disintegration of
the sliding body causes huge casualties.

From the perspective of the spatial subdivision of landslides, the trailing edge of
the landslide is the main deformation area. Not only are most of the coherent points
located at the trailing edge of the landslide, but also the settlement rate and cumulative
deformation of the trailing edge of the landslide are relatively large. In addition, the upper
part of the landslide body has partial deformation, while the lower part of the landslide
has no obvious deformation information, which is in line with the movement pattern of the
landslide creep stage.

5. Discussion

Refarding the spatio-temporal analysis of surface deformation in abnormal vegetation
areas, this paper superimposes the vegetation anomaly area information on the optical
GF-1 image and compares it with the average land subsidence rate obtained by using the
SBAS-InSAR technology in Section 4.3, as shown in Figure 8.

(a) (b)

Figure 8. Location maps of the abnormal vegetation area. (a) The location on optical GF-1 fused true
color image; (b) The location on the surface subsidence rate map.
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According to Figure 8, this paper superimposes the abnormal vegetation A and B
areas extracted from the GF-1 image to the surface subsidence rate map and finds that
these two areas are located in the subsidence area of the coherent point in the surface
subsidence rate map. At the same time, the subsidence range of these areas is 10 mm/year
to 30 mm/year, which belongs to the landslide creep stage, reflecting the consistency
between the monitoring of landslides through the abnormal vegetation information in
optical images and the monitoring of landslides using the InSAR method.

Similar to the time series analysis of the abnormal vegetation information area, we
also analyze the time series deformation of the A and B areas. Since the cumulative surface
deformation obtained in SBAS-InSAR is displayed by points, this paper selects the center
point of the vegetation anomaly area to approximate the cumulative surface deformation
of the two areas. Moreover, we extract the low and medium VC in A and B areas for the
quantitative analysis and make a specific comparison analysis, as shown in Figure 9.

(a) (b)

(c) (d)

Figure 9. Time series diagrams of the abnormal vegetation information and the surface deformation.
(a) Time series surface deformation of A area; (b) Time series of VC changes in A area; (c) Time series
surface deformation of B area; (d) Time series of VC changes in B area.

According to Figure 9a, the overall deformation of the center point of A area is de-
creasing, and the maximum accumulated settlement is 40 mm. The time series deformation
in this area rises slightly from June 2017 to March 2019, and the maximum amount of uplift
is 9 mm, which may be caused by the surface movement of the surrounding area of the
center point squeezing each other. Although the area has undergone certain deformation
during this time period, it is still in a relatively stable state. In the percentage change curve
of VC in Figure 9b, it is also found that the decrease in the percentage of low and medium
VC from 2017 to 2018 indicates that the vegetation has recovered to a certain extent. This
indicates that the surface deformation trend is consistent with the change trend of the VC.
From January 2019 to November 2019, the overall time series surface deformation has a
sudden downward trend. It seems that this area is unstable. After 2020, the time series
deformation is not large, and the cumulative deformation is 7 mm, indicating that the area
is still creeping. Similarly, in the percentage change curve of VC in Figure 9b, it is also
found that the percentage of low and medium VC in 2019 has a rapid upward trend. It is
basically consistent with the time series deformation trend of the ground surface. In 2020,
the VC is slightly restored compared to 2019 but the overall trend is still declining.

According to Figure 9c, the maximum cumulative settlement at the center of B area
is 45 mm. Except for a certain uplift from March to November 2017, the cumulative
deformation of this area shows a downward trend, indicating that the area has been
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creeping and deforming. From the percentage change curve of VC in Figure 9d, it can also
be seen that the percentage of low and medium VC increased from 2017 to 2020, indicating
a decline in VC. The overall trend is the same as the change in the surface deformation.

In order to more accurately analyze the correlation between vegetation anomaly
information and surface deformation, this paper evaluates the accuracy of the two methods
through the correlation and linear regression. In the previous comparison and analysis of
the curves of the two methods, we find that the forms of surface activities in A area are
relatively changeable, and B area is always in a creeping state and the form of the surface
activity in B area is relatively stable. Moreover, since our study area is often covered by
clouds, the optical images that we obtain most suitable for our conditions are all in autumn,
which may cause the vegetation change to be less obvious. Therefore, we select B area as
the typical analysis. Simultaneously, since the time of the used optical and SAR image
is very difficult to be completely matched, and the time of the last SAR image in 2020 is
earlier than that of the optical image, in order to maintain the time consistency, we select
the SAR image time (20 October 2017, 8 November 2018, 3 November 2019, 21 November
2020) earlier than but closest to the optical image time (11 November 2017, 19 November
2018, 24 November 2019, 30 November 2020) for accuracy analysis, as shown in Figure 10.
The x coordinate is the statistical average of the surface deformation. The y coordinate is
the abnormal vegetation information, that is the percentage of the medium and low VC.

Figure 10. The correlation and regression analysis of the abnormal vegetation information and the
surface deformation.

According to Figure 10, the correlation coefficient between the cumulative surface
deformation and VC is 0.988, and the R2 of the linear regression model is 0.977, indicating
that the two methods have a significant linear correlation. When the deformation of the
land surface subsidence increases, the pixels with medium and low VC also gradually
increase, which provides reliable support for monitoring the Jizong Shed-Tunnel landslide
using abnormal vegetation information. Simultaneously, the root mean squared error
(RMSE) values of the error analysis and the upper and lower limits of the 95% confidence
intervals are both small. This further proves the reliability of the accuracy analysis in B area.

Based on the comparative analysis and accuracy assessment of the cumulative time
series variables and the changes in vegetation anomalies in these two areas, it was found
that the vegetation anomalies are similar to the surface deformation variables, which
proves that the use of abnormal vegetation information to monitor the Jizong Shed-Tunnel
landslide has a certain degree of correctness and reliability.
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6. Conclusions

In order to make up for the deficiencies of traditional GPS and InSAR technologies in
monitoring landslides with large ups and downs, inaccessible by manpower, and lush with
vegetation, based on the correlation between landslide creep and vegetation abnormality,
this paper proposes a method to indirectly monitor the deformation characteristics of
landslides by extracting the abnormal vegetation information from optical remote sensing
images. We use the GF-1 optical data from 2013 to 2020 to monitor the vegetation anomaly
information of the Jizong Shed-Tunnel landslide and use the SBAS-InSAR technology to
extract the surface deformation information of the study area from 2017 to 2020. Then, we
compare and analyze them. The results are as follows:

(1) This paper calculates the GNDVI index based on GF-1 time series data, and finally, ob-
tains the vegetation coverage information of each scene. Through the multi-temporal
qualitative and quantitative analysis of the extracted vegetation anomaly information,
the VC decreased from 2013 to 2015. In reality, the landslide did occur in the study
area in 2015, indicating that the early creep stage of landslides brings about a decrease
in the VC. This verifies that the method of using vegetation anomaly information
to monitor the Jizong Shed-Tunnel landslide is feasible. At the same time, it was
discovered that there were two areas on the trailing edge of the landslide showing a
downward trend in VC after 2017.

(2) Through the SBAS-InSAR technology based on the Sentinel-1 data, the main defor-
mation area is located at the rear edge of the landslide, and the surface subsidence
rate ranges from 0 mm/year to 30 mm/year, indicating that the Jizong Shed-Tunnel
landslide is in a slow creep stage.

(3) After superimposing the abnormal vegetation area in the optical data with the surface
deformation information in the radar data and performing time series analysis and
accuracy assessment, it is found that the vegetation abnormality and the change trend
of the surface deformation are basically consistent. When the surface deformation
of the landslide decreases, the VC also shows a downward trend. When the defor-
mation accelerates, the change in VC also intensifies. Even when the decline in the
deformation is not large, the vegetation growth status can reflect these changes, which
indicates the effectiveness and reliability of using vegetation abnormalities to monitor
the Jizong Shed-Tunnel landslide, and the results of the two methods are similar. This
method can provide new ways and ideas for the high-mountain landslide monitoring
in southwestern China and can make up for some of the shortcomings of existing
landslide monitoring methods.

Nevertheless, not all landslides at the creeping stage show obvious characteristic
changes on surface vegetation, but some do exist. So, the landslide monitoring method
in this paper is suitable for landslides with vegetation or vegetation change. Since the
vegetation information needs to select the appropriate optical image with similar imaging
time in each year, and the optical image is easily occluded by clouds, this method has some
limitations in areas with cloud coverage. In addition, the impact of landslides on vegetation
is a complex process, and this method has high monitoring accuracy for landslides that
are in the creeping stage for a long time. In the future, we will also explore accurate pixel
distinction models to improve the accuracy of vegetation information extraction.
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Abstract: The northern scenic area of Changbai Mountain is a high-incidence area of debris flow
disasters, which seriously threaten the safety of tourist’s lives and property. Monitoring debris flow
and providing early warning is critical for timely avoidance. Monitoring the change of debris flow
source is an effective way to predict debris flow, and the change of source can be reflected in the
settlement deformation of the study area. The offset tracking technique (OT) is insensitive to the
coherence of SAR images and can resist the decoherence of D-InSAR and SBSA-InSAR to a certain
extent. It is a technical means for monitoring large gradient deformation. It has been widely used in
the field of seismic activity, glaciers and landslides in recent years, but few scholars have applied this
technique in the field of debris flow. In this paper, we use OT techniques in combination with field
surveys, Google imagery and Sentinel-1 data to monitor surface deformation in the northern scenic
area of Changbai Mountain in 2017 and use D-InSAR techniques to compare and complement the OT
monitoring results. The results of this study show that for monitoring surface deformation in the
study area after a mudslide, it is better to use both methods to determine the surface deformation in
the study area rather than one, and that both methods have their own advantages and disadvantages
and yet can complement each other. Finally, we have predicted the development trend of mudflows
in the study area by combining the calculated single mudflow solids washout, which will help to
improve the long-term monitoring and warning capability of mudflows in the study area. The study
also enriches the application of offset-tracking technology and D-InSAR in the field of geohazard
monitoring and provides new ideas and methods for the study of mudflow material source changes.

Keywords: Changbai Mountain North Scenic Area; debris flow source; D-InSAR; offset-tracking;
surface deformation

1. Introduction

Debris flow is a sudden geological disaster that occurs in mountainous or ditch
areas [1–4], widely distributed in some areas of the world with special topography or
geomorphology [5–9]. Debris flows are very destructive [10–14]; they can rush out a large
amount of material sources in a short time, which even include huge rocks, which will pose
a great threat and damage to the ecological environment, life, property and construction
facilities in the basin [15–19]. Therefore, how to monitor and warn debris flow is the focus
of current research, and it is also a key problem that needs to be solved urgently.

The formation of debris flows needs to meet three conditions: steep terrain, sufficient
rainfall and rich debris flow source. The total quantity of material sources determines the
occurrence of debris flow and its degree of risk. The greater the reserves of material sources,
the greater the risk of debris flow. It is necessary to know the quantity of material sources
in the source area of debris flow to accurately evaluate the hazards of debris flow in the
basin [20,21].

Changbai Mountain is an area which is highly prone to geological disasters. It has a
main debris flow ditch and eight branch ditches. Almost every year, disasters of different
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scales occur, which seriously threaten the safety of tourists’ lives and property. In order to
better carry out geological disaster warnings in time, it is urgent to carry out the professional
monitoring of important hidden danger points of geological disaster in order to minimize
the possible losses caused by such disasters. In recent years, with the rapid development of
observation technology, scholars have used different technologies to obtain the provenance
of the study area. For example, aerial photos taken from aircraft or drones [22], satellite
images [23] and aerial laser scanning [24]. However, if we also adopt the same method
to evaluate the source of debris flow in the northern scenic spot of Changbai Mountain,
it is not enough for us to dynamically monitor the debris flow in the dangerous area;
because we do not know the source of the change in the source area after a debris flow
occurs, using the same method to assess the source will be very cumbersome and time-
consuming [25–29]. Therefore, the deformation monitoring of debris-flow-dangerous areas
is of great significance to the early warning of debris flow. The main observation method
of traditional settlement observation technology is to use a total station, a level and other
equipment to lay a certain number of monitoring points on the ground for continuous
observation, and then to invert the surface deformation of the whole study area according to
the deformation of the monitoring points, which belongs to the single-point measurement
method. This method cannot reflect the deformation state of the whole study area and has
great limitations [30,31].

Previous studies have mostly applied offset-tracking technology to the fields of earth-
quakes, glaciers and landslides, but few people have applied this technology to the surface
deformation monitoring of debris flows [32–36]. Chen used SBAS-InSAR technology to
monitor the deformation of the debris flow source area of Xulong Ditch and obtain the an-
nual deformation of the area [20]. However, the premise of their application of this method
is that there is no debris flow or landslide in the study area, and the annual settlement is
very small. Once a large area of deformation occurs due to natural disasters in this area, the
method will fail. In addition, in areas with complex terrain, some noise information will
be added in the image processing process, and some accuracy will be lost in small-scale
monitoring; hence, it is easy to form unreliable monitoring results. Therefore, the accuracy
of offset tracking (OT) is not high enough, but it is a powerful tool when other methods fail.

In this study, first, we conducted a field survey of the study area and calculated the
storage of loose solid matter sources in the study area; the second step calculated the
quantity of solid matter sources flushed out of each debris flow ditch in the study area in
2017; in the third step, we used offset tracking to monitor the deformation of the research
area, and we obtained the deformation of the research area in each season; in the fourth step,
D-InSAR was used to monitor the deformation of the research area, although decoherence
will occur in severely deformed areas, but it can be used as a supplement to the offset-
tracking technology in the slow-deformation area to obtain higher-precision deformation
values. Combining remote sensing images and field surveys, the debris flow danger zone
was delineated, and the development of debris flows was predicted based on the surface
deformation of each debris flow ditch combined with the calculated amount of debris
flow solids. These research results will help to improve the long-term monitoring and of
mudslides in the study area and, with improved early-warning capabilities, further protect
people’s lives and properties. The research also enriches the application of offset-tracking
technology and D-InSAR in the field of geohazard monitoring and provides new ideas and
methods for the study of mudflow material source changes.

2. Study Area

Changbai Mountain North Scenic Area is located in the southeast mountainous
area of Jilin Province, China, with the geographic coordinates of 127◦28′–128◦16′E and
41◦42′–42◦25′N. It belongs to the humid area of the mid-latitude continental monsoon
climate. The climate is characterized by long and cold winters and warm and short sum-
mers. Affected by the terrain and the continental and Pacific air flow, the vertical zoning
is obvious, and the temperature and rainfall are controlled by altitude. According to the
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relevant data, the terrain increased by 100 m, the temperature decreased by 0.5~0.6 ◦C and
precipitation increased by 30 mm. The average annual precipitation is 1407.6 mm, and
the precipitation is concentrated in June and August. The precipitation in three months
accounts for more than 60% of the total annual precipitation, and most of it results from
rainstorms. The highest peak in the study area is Tianwen Peak, which is located in the
northeast of Tianchi and has an altitude of 2670 m. The peak is composed of gray and pale
white pumice and is opposite Longmen Peak, forming a “U”-type valley between them.
From south to north, Changbai Mountain’s waterfall forms the source of the two white
rivers. The main types of geomorphological genesis in the study area are eroded volcanic
terrain and tectonic erosion terrain. The two sides of the “U”-shaped valley are formed by
volcanic cones and their extended mountains, and the canyon area is a ditch formed by the
Erdaobai River fault. Figure 1 is distribution of disaster sites in study area.

Figure 1. Distribution of disaster sites in study area. (a) Location of the study area in China;
(b) location of the study area in Baishan City; (c) extent of debris flow and location of the collapse in
the study area.

There are eight debris flows along the Erdaobai River in the northern scenic area
of Changbai Mountain (Table 1). The Erdaobai River is generally a deep-cutting “U”-
type valley, which has the characteristics of a steep slope and a large cutting depth. The
longitudinal length of the main ditch is 9.1 km, and the average longitudinal slope of the
main ditch is 48‰. Among them, the longitudinal slope of the upper reaches from the
Tianchi waterfall to the intersection of the No. 6 branch ditch is steep, with an average
longitudinal slope of 237‰, and the middle part of the Guanyatai section is slightly slow,
with an average longitudinal slope of 105‰. In the lower reaches of the main ditch, the
longitudinal slope is slightly slow, with a longitudinal slope of 51‰, and it shows obvious
spatial variation characteristics of steep up and slow down.
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Table 1. Statistical table of basic characteristics of each debris flow tributary ditches of Erdaobai River.

The Serial Number
Ditch Length

(km)
Ditch Area

(km2)
Relative Elevation Difference

(m)
Mean Longitudinal Slope

(‰)

1 1.53 0.48 618 403
2 1.45 0.46 664 458
3 0.76 0.10 434 569
4 0.80 0.10 356 446
5 0.79 0.08 390 466
6 0.82 0.09 429 522
7 0.80 0.07 392 487
8 0.84 0.08 393 468

The eight tributaries in the study area are not composed of typical formation areas,
formation circulation areas and accumulation areas. Therefore, according to the formation
conditions and movement mechanism of debris flow and the distribution of loose solid
sources of debris flow, the ditch area is divided into three areas: the catchment area in the
upper reaches of the ditch, the formation circulation section in the middle reaches and the
circulation accumulation area at the intersection of the ditch mouth to the Erdaobai River.
The No. 1 ditch has the largest ditch area. Taking the No. 1 ditch as an example, Figure 2 is
the GIS interpretation map of three sections of the No. 1 ditch, and Figure 3 is the cross
section of the No. 1 ditch.

Figure 2. No. 1 debris flow ditch, three sections.
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Figure 3. No. 1 debris flow ditch sectional drawing.

3. Data and Methods

3.1. Field Investigation

From 6 September 2018 to 15 October 2018, project team members conducted a 40-day
on-site geological survey of the North Changbai Mountain Scenic Area. The topography
and geomorphology of the working area, the environmental geological problems in the
area, the development history, the genetic mechanism and stability of the deformation
and the failure of the hidden danger points of geological disasters were investigated. In
addition, geophysical exploration work is carried out by the high density resistivity method
in the debris flow formation and accumulation area. The geophysical prospecting in the
accumulation area mainly elucidates the thickness, erosion and deposition amplitude,
distribution range and lithology composition of the debris flow accumulation fan, which
lays the foundation for finding out the formation conditions and characteristics of the
debris flow. The geophysical exploration of the formation area needs to elucidate the source
reserves. The source types mainly include the following: landslide accumulation source,
slope erosion source and ditch accumulation source.

3.2. Calculation of Solid Discharge of Debris Flow

On 2 July 2017, a heavy rainfall with an hourly rainfall intensity of 22.4 mm·h−1 in
the northern scenic spot of Changbai Mountain triggered debris flows in 8 branch ditches.
The relationship between the loose source, basin shape and debris flow discharge can
be analyzed by calculating the single debris flow solid discharge. At the same time, the
maximum amount of debris flow is an important parameter in the design of a debris flow
disaster prevention and mitigation project, which can provide a scientific basis for debris
flow disaster prevention and control. The single debris flow solid ejecta is calculated
according to the calculation formula provided of the “Debris Flow Disaster Prevention
Engineering Exploration Specification” (DT/T0220-2006),

QH = Q(γc − γw)/(γH − γw) (1)
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where QH—total amount of solids washed out by debris flow (m3); Q—total amount
of debris flow (m3); γc—debris flow severity (t/m3); γw—water severity (t/m3); and
γH—solid material weight of debris flow (t/m3).

The total amount of debris flow in one time, Q, is calculated according to the formula
provided of the Code for Exploration of Debris Flow Disaster Prevention Engineering
(DT/T0220-2006):

Q = KTQc. (2)

In the formula, T—debris flow duration (s); and Qc—debris flow maximum flow (m/s).
Through inquiry with the supervision staff of the scenic spot, it became known that

the debris flow lasted for 900 s except for ditches No. 3 and No. 8, for which is lasted about
15 min, and the debris flow in the remaining trenches lasted 10 min (600 s). The values of K
are shown in Table 2:

Table 2. K value reference table.

Catchment Area F Value of K

F < 5 km2 K = 0.202
F = 5~10 km2 K = 0.113

F = 10~100 km2 K = 0.0378
F > 10~100 km2 K < 0.0252

The peak flow of debris flow, Qc, is calculated according to the calculation for-
mula provided of ‘Debris Flow Disaster Prevention Engineering Exploration Specification’
(DT/T0220-2006):

Qc = (1 + φ)QpDc, (3)

where Qc—debris flow section peak flow (m3/s); φ—sediment correction factor, determined
by look-up table method as φ = 0.88; Qp—rainstorm peak discharge; and Dc—blockage
coefficient, determined as Dc = 1.8 according to survey specification Table 1.

Qp calculated the surface water catchment flow according to the empirical formula
proposed by China Institute of Highway Science:

When the catchment area F ≥ 3 km2, the formula is

Qp= ψF
2
3 S. (4)

When the catchment area F < 3 km2, the formula is

Qp = ψFS, (5)

where Qp—storm flood peak discharge (m3/s); ψ—rainstorm runoff coefficient; F—catchment
area (km2); and S—hourly rain intensity (mm/h).

3.3. Offset-Tracking Technology

The principle of offset-tracking technology is to calculate the cross-correlation of the
two time phases with a certain window size so as to obtain the sum of the offset caused by
satellite orbit and surface deformation [37,38]. Then, according to the orbit data of the satel-
lite, the offset caused by the satellite orbit is subtracted to obtain the deformation caused by
the surface deformation. According to the information used in the cross-correlation calcula-
tion, offset-tracking technology can be divided into two implementations: intensity tracking
and coherence tracking [39,40]. Because the intensity tracking method can overcome the
phenomenon of decoherence, this algorithm is generally used for offset tracking. OT is
mostly used in studies of large gradient deformation, and the study area experienced heavy
rainfall in 2017 with a once-in-20-year event, with many areas deforming significantly; thus,
using this method gives relatively reliable results.

The data processing flow is shown as follows (Figure 4).
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Figure 4. Flowchart of offset tracking data processing.

1. The SAR images of two time phases before and after the change are selected. According
to the orbit parameter file during the satellite imaging, the offset of the SAR image
caused by orbit error is calculated, and the image is roughly registered;

2. Accurate registration of two SAR images using the local window method to obtain a
certain number of corresponding points from the two images, and then using the least
squares polynomial fitting method to fit the mapping relationship between the two
images. The registration of this step is crucial for the subsequent steps;

3. Using the intensity tracking method [41], we track the offset of the image to obtain the
local offset;

4. The offset caused by the orbit is removed from the local offset obtained in the previous
step, and the joint interferometry and offset tracking of the surface are obtained
to extract the large gradient surface deformation offset. The range and azimuth
deformation fields are separated from the offset, and the range and azimuth offset
maps are geocoded and converted to the geographic coordinate system.

3.4. Differential Interferometry Synthetic Aperture Radar (D-InSAR) Technique

According to the interferometric mode, the D-InSAR technique can be divided into
two-track, three-track and four-track differential interferometry, among which the two-track
D-InSAR technique is the most widely used. The basic idea is to conjugate and multiply
the SAR images before and after deformation, and then differential interferometric stripe
maps are generated with DEM data to achieve the purpose of removing topography, i.e.,
weakening interference information, so as to obtain the topographic changes of ground
targets in the study area [42–47].

In this paper, we use SARscape for differential interferometric radar (D-InSAR) pro-
cessing, which consists of seven steps: data focusing, baseline estimation, interferogram
generation, adaptive filtering and coherence generation, phase de-entanglement, track re-
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finement and re-deplatforming and deformation conversion. In addition, there are several
modules containing different operation steps. For example, in the interferogram generation,
the interferometric data pair alignment and multi-view processing are included, and then
the interferogram is generated after the processing, and the generated interferogram is
based on the reference DEM image after the de-leveling of the interferometric image.

D-InSAR is prone to producing low frequency images when large-scale deformation
occurs, so we simply use the method as a complement to OT, i.e., to verify OT where slow
deformation can yield reliably deformed regions.

3.5. Remote Sensing Data

The SAR images used are collected by Sentinel-1, an earth observation satellite
launched by the European Space Agency, which is equipped with a C-band SAR sen-
sor. Sentinel-1 data can be registered and downloaded on the Sentinel Scientific Data Hub
website at http://scihub.copernicus.eu/dhus (accessed on 3 May 2017). Details are shown
in (Table 3). The acquisition mode of the image is IW, and the data format is SLC. The
selection of 2017 Sentinel-1 data is due to the occurrence of debris flow in 8 gullies this
year, of which No. 1 and No. 2 gullies occurred twice, and a large area of collapse and
landslide occurred at Longmen Peak. Taking this as the source data can help us to obtain
better offset-tracking demonstration results, and, using Google Maps as the base map to
distinguish the deformation location, the resolution is 2.5 m. Considering the large topo-
graphic relief in this area, a 30 m resolution digital elevation model (SRTM1 Arc-Second
Global, shuttle radar topography mission) (https://earthexplorer.usgs.gov/ (accessed on 3
May 2017)) is introduced to assist image registration and final terrain correction.

Table 3. Sentinel-1 data and imaging parameters.

Serial Number
Image

Acquisition Time
Absolute

Orbits
Relative

Orbit
Azimuth Angle

(◦)
Incidence Angle

(◦)
Satellite

Geometry

01 2017/01/01 3660 134 193 41 descending
8910310002 2017/03/07 4608 32 193 34 descending

03 2017/05/30 5833 32 193 34 descending
04 2017/09/03 3354 32 193 34 descending
05 2017/11/26 4058 32 193 34 descending
06 2017/12/20 3660 32 193 34 descending
07 2017/12/27 8910 134 193 41 descending
08 2018/03/03 9858 32 193 34 descending

4. Result

4.1. Debris Flow Solid out Volume

In order to explore the physical sources and the extent of each debris flow trench in the
study area, we conducted a one-month geological survey of the study area in September
2018. According to the field investigation results, we have ascertained the provenance
and reserves of the formation area, and, according to the type of provenance, they can
be divided into three types: collapse-slip accumulation source, slope erosion source and
channel accumulation source (Table 4).

On 2 July 2017, debris flow occurred in eight debris flow gullies in the northern scenic
spot. According to the formula given in 3.2, the solid outflow of each debris flow ditch was
calculated. The calculation results for each parameter are shown in Table 5. Among the
debris flows caused by the rainfall, the No. 2 ditch has the most solid outflow, reaching
0.34 × 104 m3, and the No. 7 ditch has the least solid outflow, reaching 0.01 × 104 m3.
Through regression analysis, we found that there is a strong power function correlation
between the loose material reserves (Vm) of the debris flow ditch and the single debris flow
solid source discharge (QH) (Figure 5): Vm = 0.0089Q1.3156

H , R2 = 0.9935. The amount of
debris flow solid material increased with the increase of loose material reserves; that is,
when the study area has more material source reserves, the greater the risk of debris flow.
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Table 4. Statistical table of sources of debris flow ditches in the Changbai Mountain North Scenic Area.

Ditch Number
Landslide Accumulation Source

(104 m3)
Slope Erosion Source

(104 m3)
Ditch Accumulation Source

(104 m3)
Total

(104 m3)

No. 1 ditch 6.13 2.91 1.96 11
No. 2 ditch 7.65 3.4 4.55 15.6
No. 3 ditch 1.7 1.8 0.19 3.69
No. 4 ditch 2.95 0.74 1.38 5.07
No. 5 ditch 0.59 1.71 0 2.3
No. 6 ditch 0.6 1.6 0 2.2
No. 7 ditch 0.62 1.28 0 1.9
No. 8 ditch 1.8 0.34 0.22 2.36

total 21.45 12.07 8.3 44.12

Table 5. Solid discharge of each debris flow ditch.

Ditch Number
Total Amount of

Debris Flow (104 m3)
Debris Flow

Severity (t/m3)
Water Severity

(t/m3)
Solid Material Weight of

Debris Flow (t/m3)

Solid Material Discharge

of Debris Flow (104 m3)

No. 1 ditch 0.49 1.70 1 2.50 0.23
No. 2 ditch 0.70 1.72 1 2.50 0.34
No. 3 ditch 0.06 1.48 1 2.50 0.02
No. 4 ditch 0.09 1.77 1 2.50 0.04
No. 5 ditch 0.07 1.48 1 2.50 0.03
No. 6 ditch 0.05 1.53 1 2.50 0.02
No. 7 ditch 0.04 1.49 1 2.50 0.01
No. 8 ditch 0.09 1.57 1 2.50 0.03

Figure 5. Relationship between source reserves and solid discharge of debris flow in the study area.

4.2. Offset Tracking Processing Results

The cross-correlation window size was adjusted and set to 16 × 16; the window size
coherence was 8 × 8, and the coherence coefficient was 0.3. The Sentinel-1 data of the
study area on 1 January 2017 and 27 December 2017 were processed by offset tracking to
obtain the range direction (along the satellite line of sight) and azimuth direction (satellite
orbit direction) of the study area during this time period. The results of displacement
deformation in the direction of travel are shown in Figure 6. It can be seen from the figure
that the range deformation in the study area in 2017 was very small, mainly in the azimuth
direction. In order to ascertain the variation of provenance in the study area in each season,
we use the six-scene Sentinel-1 data (since the end of each season is close to the beginning
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of another season, the same scene data are used) to study the surface deformation of the
area in each season which has been monitored. By using the formula Δx =

√
Δl2 + Δp2,

the deformation of azimuth and distance is transformed into total displacement (Δl, Δp are
the range offset and azimuth offset) (Figure 7). From the graph, it can be observed that
the deformation in the study area is at its maximum during summer, with a maximum
positive deformation of 130 mm/qr and a maximum negative deformation of 138 mm/qr.
It should be noted that varying amounts of deformation are observed near each debris flow
channel, which is due to the presence of large areas of slope debris near these channels.
However, based on field surveys, it was found that these solid debris do not participate
in the debris flow process; hence, they were not considered (Figure 8). Moreover, due
to the growth of vegetation during summer, densely vegetated areas may cause signal
obstruction or reflection, leading to increased precision error in offset tracking. The growth
and change in vegetation can also cause changes in surface height, affecting the accuracy
of offset tracking. Another point to consider is that the deposition areas of each debris
flow channel are close to Erdaobai river; as the peak flow of Erdaobai river during the
rainy season reaches 140 m3/s, the debris flow materials are more likely to be carried away
by the main river flow. Therefore, some deposition areas of debris flow may not exhibit
positive deformation during summer, and channels numbered 4, 6 and 7 may even be
affected by floods, resulting in negative deformation. In the circulation area of debris flow
gully, due to the entrainment of debris flow, the deformation is basically negative in the
figure, while the deformation amount in the formation area of the debris flow channel also
varies depending on the size of the landslide supply from upstream. Therefore, the OT
result alone is insufficient to determine the physical characteristics of the debris flow area
and must be combined with field surveys or interpretations of remote sensing images to
obtain more accurate results. However, analyzing the deformation amount in different
areas based on OT results can help to determine the trend of debris flow development.

Figure 6. Results of surface deformation offset tracking in the study area (2017/01/01–2017/12/27).
(a) Range direction; (b) azimuth direction.
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Figure 7. OT processing results of surface deformation in the study area in 2017. (a) Spring defor-
mation (2017/03/07–2017/05/30); (b) summer deformation (2017/05/30–2017/09/03); (c) autumn
deformation (2017/09/03–2017/11/26); (d) winter deformation (2017/11/26–2018/03/03).
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Figure 8. The slope debris near the debris flow channel and the vegetation that begins to grow in summer.

4.3. D-InSAR Processing Results

Following the surface deformation analysis of the study area using the offset-tracking
technique, we monitored the deformation of the study area by seasonal variation sing
D-InSAR. The coherence threshold is 0.3, and the results are shown in the Figure 9. It can
be seen from the figure that for each season, there is a certain range of blocky coherence
loss areas (blank areas in the figure), where the maximum positive deformation that can be
represented in the figure for each season is 78 mm, and the maximum negative deformation
is 80 mm. Although D-InSAR does not provide a complete picture of deformation at every
location in the study area, the ability to detect deformation in areas of slow deformation
(e.g., autumn and winter) is unmatched by offset tracking. For example, the OT results for
the study area in autumn and winter only reveal a trace of deformation but not the location,
whereas D-InSAR demonstrates complete performance. However, D-InSAR results are not
completely reliable and need to be used in conjunction with OT to obtain better analysis;
for example, in Figure 9a, the low-frequency image, possibly due to Unwrap error, shows a
south-to-north transition in the image, which is clearly not reliable.

Figure 9. Cont.
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Figure 9. D-InSAR processing results of surface deformation in the study area in 2017. (a) Spring de-
formation (2017/03/07–2017/05/30); (b) summer deformation (2017/05/30–2017/09/03); (c) autumn
deformation (2017/09/03–2017/11/26); (d) winter deformation (2017/11/26–2018/03/03).

4.4. Debris Flow Danger Zone in Scenic Area

According to the surface deformation monitoring results in the study area, combined
with remote sensing images and field surveys, six debris flow risk areas in the scenic
area of the study area were delineated, as shown in (Figure 10). Red is the monitored
dangerous area determined according to the debris flow accumulation area, and yellow
is the debris flow dangerous area determined by the field investigation. We can see that
the monitoring results are very close to the field investigation results, which proves that
OT has applicability in debris flow disaster prevention and mitigation. Among them, (a) is
the No. 1 debris flow ditch danger zone, which includes the waterfall viewing platform,
and the preliminary statistics threat number is 30,000 people; (b) is the No. 2 ditch debris
flow dangerous area, which includes the scenic area’s downstream trestle waterfall viewing
platform, and the preliminary statistics threat number is 40,000 people; (c) and (h–f) are,
respectively, No. 3 and No. 6–8 debris flow ditch dangerous areas, including the Julong hot
spring scenic area and ditch mouth scenic area infrastructure, and the preliminary statistics
threat number is 20,000 people; (d) is the No. 4 ditch debris flow danger zone, which
includes the scenic parking lot and highway, and the preliminary statistics threat number is
40,000 people; (e) is the No. 5 ditch debris flow danger zone, for which there is no direct
threat; (i) is the Longmen peak collapse landslide danger zone. It can be seen from the
scope of the danger zone delineated in the figure that the danger range of No. 1 and No. 2
ditches is much larger than those of other debris flow ditches, which is positively correlated
with the amount of solid outflow calculated by us. In the No. 2 ditch, solids flowed out of
the accumulation area near the Erdaobai River, but because the debris flow outbreak season
is the rainy season, the Erdaobai River peak flow of 140 m3/s debris flow material will
flow away with the main river water, so it will not cause a blocking the Erdaobai River’s
main channel.
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Figure 10. (a) North scenic dangerous area; (b) Longmen peak dangerous rock belt top; (c) Longmen
peak dangerous rock belt side.

5. Discussion

5.1. Error Analysis

The root mean square error (RMSE) of D-InSAR and OT is an error metric used to
evaluate the results of surface deformation measurements, and it is usually used to evaluate
the accuracy and reliability of D-InSAR and OT algorithms. The minimum accuracy
requirement is satisfied when the result is less than 100, and the smaller it is, the higher the
reliability of the result. The RMSE values can be accessed in the report of the result file after
the processing is completed. The RMSE values of offset tracking are 12.9, 95.8, 5.7 and 13.6,
and the RMSE values of D-InSAR are 135, 217, 35.8 and 45.5, respectively. The RMSE values
of D-InSAR are higher in both spring and summer, while OT meets the minimum value of
reliability. Therefore, the combination of these two methods has some reliability when used
to determine the changes of the source within the mudflow range that we have investigated
in the field and interpreted by remote sensing. However, both methods are subject to
certain limitations, leading to errors in accuracy. These include the height change due to the
growth of vegetation in summer, which we mentioned in the previous section, and which
will affect the monitoring accuracy, and the obscuring effect of terrain and vegetation may
also lead to the unfolding error of D-InSAR. The radar reflection signal is affected by terrain
and vegetation, and these effects will lead to different propagation times and paths of the
signal between different areas, thus causing phase differences in unfolding [48]. Thus,
phase differences occur and cause unfolding errors. Therefore, it is difficult and unreliable
for researchers to rely on this method to determine the extent of the mudslide area, which
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requires a combination of field survey and high-precision remote sensing images. There
is also the fact that the time baseline we used in the paper is too long for to be used to
obtain the variation of the source under different seasons, which will increase the ranging
error in the data and thus reduce the positioning accuracy. In addition, a long time baseline
also means that the signal is reflected or interfered with several times, which will further
increase the accuracy error, and improving accuracy and reliability requires the selection of
appropriate techniques and algorithms for data processing and correction [49].

For OT, although it can show a good performance in large gradient deformation, large
gradient deformation also increases the difficulty of image alignment during processing,
and incomplete alignment can have a large impact on accuracy, and the lower root mean
square error in the summer period may be related to incomplete alignment. Preprocessing
is needed to improve the stability and accuracy of the whole matching process. Jia H.
proposed an improved uniform sample-based adaptive noncoherent scattering offset-
tracking algorithm, which improves the speed and accuracy of co-alignment.

In addition to showing poor results in large gradient deformation monitoring, D-
InSAR is not and will not be completely reliable for deformation monitoring in slowly
deforming areas. For example, in this study on the amount of spring variation of mudflow
sources using D-InSAR, the resultant images show a low frequency image transitioning
from south to north during the unfolding process. In D-InSAR processing, low-frequency
images caused by unfolding errors are generated due to the limitation of interferometric
stripes, and the unfolding errors are usually caused by two factors: the large-scale deforma-
tion of the Earth’s surface and the inhomogeneity of the propagation medium. The study
area is covered with ice and snow in winter, and the shape of the medium changes when
the ice melts in spring, resulting in possible changes in the path of the light, which affects
the accuracy and reliability of phase untwisting. In addition, the melting of snow and ice
will produce a large amount of water vapor, which will interfere with the propagation of
light, and which will also cause some difficulties for phase decoupling. Therefore, for the
ice-covered areas, the introduction of information from other data sources as constraints
can be considered in the calculation process, or the D-InSAR method with multiple time
phases can be used so as to reduce the influence of the unfolding error and improve the
accuracy and reliability of deformation monitoring.

5.2. Offset Tracking Processing Results

In this study, we analyzed the relationship between the amount of debris flow solid
discharge and the source reserves, but in fact, the amount of debris flow solid discharge
is affected by many characteristic parameters [50]. By studying the relationship between
the amount of loose source in the basin, the relative height difference of the basin and
the amount of debris flow discharge, the prediction research is carried out by Bovis [51].
By analyzing the characteristics of the debris flow in the Wenchuan earthquake area, the
mathematical relationship between the debris flow discharge and the loose material source
is obtained by Ma [52]. An American scholar, Gartner, combined the three factors of debris
flow basin area [53], landslide source area and cumulative rainfall to count the debris
flow ditch in Corolla, analyzed the relationship between debris flow discharge and the
three factors, and established the prediction model of debris flow discharge. The type and
influence degree of these parameters can provide some data support for the prevention
and control project of debris flow in the study area, suggesting that the prevention and
control project can maximize the effect of disaster prevention and mitigation [54–56].

We analyzed the correlation and significance between debris flow solid outflow (QH)
and ditch length (GL), ditch area (AOC), relative elevation difference (RED), mean longitu-
dinal slope (MLS), source reserve (Vm), collapse accumulation source (LAS), slope erosion
source (SES) and ditch accumulation source (GAS). Here, we also divide the provenance
into slump deposit source, slope erosion source and ditch deposit source. Because of
different debris flow gullies due to the different ditch forms, rainfall conditions and the
distribution of material sources in the ditch, the main types of material sources involved
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in debris flow will be different. The correlation and significance analysis results pertain-
ing to these characteristic parameters and the number of solid debris flows are shown in
Figures 11 and 12.

Figure 11. Correlation analysis results.

Figure 12. Significance analysis results. * expressed p < 0.05, ** expressed p < 0.01, *** expressed
p < 0.001, **** expressed p < 0.0001.
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According to the analysis results, except that the p value of the average longitudinal
slope is negative, there is a strong positive correlation between the amount of debris
flow and other parameters. It shows that these characteristic parameters have a strong
influence on the amount of solid debris flow in this study area. There is a strong correlation
between the three types of material sources of landslide accumulation, slope erosion, ditch
accumulation and the amount of solid debris flow. Among them, the sources of landslide
accumulation and ditch accumulation are up to 0.98 and 0.97, respectively, indicating that
these two types of sources participate in debris flow activities. In the future monitoring of
disaster prevention and mitigation, we should pay special attention to the changes of these
two parameters.

6. Conclusions

Monitoring the change of provenance in the study area is an effective means of debris
flow early warning and prevention. In this paper, we combine field investigation, remote
sensing imaging and offset-tracking technology to monitor the deformation of solids in the
study area. The conclusions are as follows:

1. According to the comparison between the solid washout from the mudflow we cal-
culated, and the loose material source reserves obtained from the survey, the solid
washout from a single mudflow is much smaller than the material source reserves.
Combined with the analysis of the OT results, even after the occurrence of mudflow,
the formation area of multiple mudflows will be recharged by material sources due
to the collapse landslide above, and the recharge will be even greater than the con-
sumption. Therefore, the frequency of mudflow outbreaks in the study area may be
more frequent in the summer when heavy rainfall is encountered for a long time in
the future;

2. Although OT is widely used for large gradient deformation, and although we can
use it to determine the physical source variability of mudflows in the study area, for
different study purposes, the OT results are not completely reliable. For example, as
we mentioned in 4.2, we cannot use the OT results alone to delineate the extent of
mudflows, and its results are affected by various factors such as vegetation, rainfall
and weather. Therefore, in the study of mudslides, it is necessary to combine field
surveys or remote sensing images to delineate the extent of mudslides;

3. Combined with remote sensing images, field survey and offset tracking results de-
lineated the mudslide danger zone in the scenic area of the study area. Due to the
huge number of visitors in the scenic area—according to our preliminary statistics, the
total number of people threatened reached 130,000—it is necessary to do a good job of
disaster prevention and mitigation and protection work in the danger zone, especially
at the danger zone of the collapse of Longmen Peak, where there have been many
incidents of falling rocks injuring people;

4. We have used D-InSAR for deformation monitoring after deformation monitoring
using offset tracking, a method which, although subject to many factors when de-
forming large gradients, can be used as a complement to offset-tracking techniques.
D-InSAR can operate effectively in areas with slow deformation, and it can be used in
combination with offset tracking to obtain more highly accurate surface shape infor-
mation. We see an opportunity here to develop a hybrid velocity product combining
D-InSAR and offset tracking results in the areas where one method or the other- or
both-perform best, as suggested by Joughin [54] and Liu [55], in order to obtain more
reliable deformation monitoring results;

5. In snow and ice covered areas, the effect of snow and ice melting may increase the
error of phase untwisting, which, in turn, leads to low-frequency images. Therefore,
the monitoring accuracy and results of D-InSAR will be greatly affected during the
ice and snow melting in spring, and even if the deformation is small, the monitoring
results cannot be fully trusted and need to be used in combination with other methods;
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6. We learned from analyzing the relationship between various parameters in the wa-
tershed, as well as the quantity of washed out debris flow solids, that the source of
avalanche-slip accumulation and the source of channel accumulation have a high
correlation with the amount of debris flow solids washed out, and we should consider
increasing the weight of these two factors when predicting the development trend of
debris flow.
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Abstract: Very few studies have focused on diatomaceous earth slopes along high-speed railways,
and the special properties of diatomaceous earth under alternating dry and wet conditions are un-
known. This paper studies diatomaceous earth in the Shengzhou area, through which the newly built
Hangzhou–Taizhou high-speed railway passes, and the basic physical and hydraulic properties of
diatomaceous earth are analyzed by indoor test methods. A convenient, efficient, and controllable
high-speed railway slope artificial rainfall simulation system is designed, and in situ comprehensive
monitoring and fissure observation are performed on site to analyze the changes in various diatoma-
ceous soil slope parameters under rainfall infiltration, and to explore the cracking mechanisms of
diatomaceous earth under alternating dry and wet conditions. The results indicate extremely poor
hydrophysical properties of diatomaceous earth in the Shengzhou area; the disintegration resistance
index values of natural diatomaceous earth samples subjected to dry and wet cycles are 1.8–5.6%,
and the disintegration is strong. Comprehensive indoor tests and water content monitoring show
that natural diatomaceous earth has no obvious influence when it contacts water, but it disintegrates
and cracks under alternating dry and wet conditions. The horizontal displacement of both slope
types mainly occurs within 0.75–2.75 m of the surface layer, indicating shallow surface sliding; after
testing, natural slope crack widths of diatomaceous earth reach 10–25 mm, and their depths reach
40–60 cm. To guarantee safety during high-speed railway engineering construction, implementing
proper protection for diatomaceous earth slopes is recommended.

Keywords: high-speed railway; diatomaceous earth; dry and wet cycle; artificial rainfall simulation
systems; in situ monitoring

1. Introduction

As of the end of 2020, China’s operating railway mileage had reached 146,000 km, of
which 37,900 km were high-speed railways. As the density of high-speed railway networks
increases, high-speed railway construction will inevitably pass through special land areas.
The newly built Hangzhou–Taizhou high-speed railway passes through Shengzhou city.
A large amount of diatomaceous earth is present in the tertiary basalts and lacustrine
deposits in the basalt platform area. Diatomaceous earth has well-developed joints, and is
highly compressible; it easily softens when exposed to water, and its mechanical properties
decrease substantially. Diatomaceous earth is in a hard-plastic-to-plastic state, and its
engineering properties are extremely poor [1–6]. During on-site construction, diatomaceous
earth slopes are exposed to the natural environment after excavation. The permeability
coefficients of undisturbed diatomaceous earth are less than 10−6 cm/s, signaling an
impervious layer in a given project. However, under alternating wet and dry conditions,
depths of 40 to 60 cm are affected by the environment, resulting in cracks that greatly affect
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the safe development of railway construction. Therefore, under the action of alternating
wet and dry conditions, the destruction mechanism of diatomaceous earth and the dynamic
evolution of diatomaceous earth slope parameters have become issues that urgently need
to be studied.

At present, diatomaceous earth is widely used for environmental protection, and in
chemical, electrical, and other fields, because of its high porosity and light weight [7–11].
However, the existing literature contains very few studies on diatomaceous earth slopes,
and the special properties of diatomaceous earth under the action of dry and wet cycles are
not well understood. On loess and expansive soil slopes, a lot of work has been done by
scholars in the past; there is deeper research on the special properties of loess and swelling
soil under the action of alternating wet and dry conditions, and a lot of practice has been
done in combination with actual slope engineering; the main research results are shown in
Table 1.

Table 1. Literature review table.

N◦ Reference Research Methods and Content Research Findings

1 [12]
Artificial rainfall simulation experiments were
conducted on loess slopes to study the damage

mechanism of landslides under rainfall conditions.

Rainfall and landslides on loess slopes have a time
lag.

2 [13]

The changes in shear strength, cohesion, and
internal friction angle of loess samples under

different dry and wet cycles were determined by
indoor direct shear tests.

Under the same dry–wet cycle conditions, the
larger the variation range of the water content, the

lower the shear strength of the loess sample
appears to be.

3 [14]
The influence of pore water pressure on the

stability of loess slopes was analyzed by
combining field monitoring and laboratory tests.

Rainfall can reduce the stability of loess slopes.

4 [15] Indoor tests on loess soils were conducted.
The permeability coefficient of loess increases after
dry–wet cycling, and the dry–wet cycling action

causes damage to the microstructure of loess.

5 [16] Indoor dry and wet cycle tests were conducted on
expansive soils.

The shear strength of expansive soil decreased
with the increase in the number of cycles, and

finally reached a constant state

6 [17] Indoor tests on natural expansive soils were
conducted in Nanning.

The effective cohesion, which is an important
factor affecting the occurrence of surface damage

on expansive soil slopes, was reduced.

7 [18]

Centrifugal model tests were conducted on
swelling soil slopes to analyze the changes in slope

settlement, horizontal displacement, damage
mechanism, and accumulated cracks under

alternating wet and dry conditions.

The accumulation of cracks caused by dry–wet
cycles is key to the progressive failure of slopes.

8 [19]
The variation patterns of shear strength

parameters of expansive soils under different dry
and wet cycles were analyzed by indoor tests.

The shallow damage of the expansive slope was
mainly caused by the dry and wet effects of the

natural environment.

A few studies have found that diatomaceous earth has high structural strength and
is susceptible to disintegration and deterioration when exposed to water [20–24]. These
properties derived from previous studies are slightly similar to those of loess and expansive
soils, but are for reference only, and are not fully applicable to the field of high-speed
railroad diatomaceous earth slopes. Meanwhile, compared with loess and expansive soil
slopes, there are very few studies on diatomite slopes at home and abroad, and they
are mainly concentrated in the fields of highway and marine engineering. For example,
Zhang [22] conducted an in-depth study on the swelling properties of diatomite distributed
in Tengchong, Yunnan, and showed the existence of light-swelling diatomite with strong
swelling and disintegration in the area. Guo [25] studied the distribution characteristics
and formation mechanisms of diatomite (soil) landslides by taking the new Tenglu highway
slope landslide as an example, and pointed out that diatomite slopes are susceptible to
cracking, delamination, and reduction in mechanical properties of diatomite on the slope
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surface under the influence of artificial disturbance and external rainfall, etc. Wiemer [26]
et al. studied the effect of diatoms on the shear strength of diatom sediments and the
stability of submarine slopes, and pointed out that the shear strength of the diatom soil
layer would be reduced under the condition of disturbance. Currently, no corresponding
research results have been found in the field of high-speed railways, and there is no better
solution for the damage problem of diatomaceous earth slopes under the alternating action
of wet and dry conditions.

To gain a more thorough understanding of the diatomaceous earth slope damage
caused by alternating dry and wet cycles, a research project was carried out for the diatoma-
ceous earth in the Shengzhou area along the new Hangzhou–Taizhou high-speed railway.
The study was performed through indoor testing, analysis of physical and hydraulic
properties, and evaluation of the mechanisms of disintegration and degradation. Because
previous rainfall simulation equipment cannot undertake the problem of rapid rainfall
on high-speed railway slopes, a convenient, efficient, and controllable high-speed railway
slope artificial rainfall system was designed, and alternating dry–wet cycle simulations
were carried out on the test site. At the same time, in situ comprehensive monitoring and
fissure observation were carried out before and after the alternating dry–wet simulations
of natural diatomaceous earth slopes, in order to analyze the changing patterns of various
diatomaceous earth slope parameters under rainfall infiltration conditions and explore
the disintegration and cracking mechanisms of diatomaceous earth under the action of
dry–wet cycles.

2. Project Overview

The diatomaceous earth natural slope test site was located between Dongdawan
village and Xibanban village, on Lushan Street, in Shengzhou city, and next to Shangdawan
Reservoir. To study the engineering characteristics of diatomaceous earth and the damage
mechanism of diatomaceous earth under the action of dry–wet cycles, a diatomaceous
earth cutting slope with mileage of DK85 + 824 − DK85 + 840 was selected as the test
section (Figure 1a). The test section was covered with silty clay with a thickness of less than
3 m, and the underlying white diatomaceous earth was 9–12 m thick. The strata below the
white diatomaceous earth were blue diatomaceous earth, black diatomaceous earth, basalt,
stomatal basalt, and diatomaceous earth sandstone. After the excavation of the slope, the
exposed surface and the depth interval of 10–27 m were mainly white diatomaceous earth
(Figure 1b,c). Therefore, the properties of diatomaceous earth listed in this article and
related tests are all white diatomaceous earth.

 
(a) 

Figure 1. Cont.
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(b) (c) 

Figure 1. Test site and white diatomaceous earth: (a) Shengzhou diatomaceous earth slope test
section; (b) white diatomaceous earth; (c) white diatomaceous earth drilling and construction.

3. Diatomaceous Earth Characteristics

Studies have found that diatomaceous earth has the undesirable property of degradation
when in contact with water. To understand the mechanisms of diatomaceous earth’s
disintegration and degradation, an outdoor observation test of natural diatomaceous earth
slopes was first carried out. Part of the cutting slope of the test section was graded with a
slope ratio of 1:1.5. However, after a period of alternating dry and wet action, penetrating
cracks were generated, and the depths of the cracks were between 0.5 and 0.8 m, as shown
in Figure 2.

To solve the problem of damage to diatomaceous earth slopes under the action of
dry and wet cycles, diatomaceous earth in the slope test section was used as the research
object. First, basic geotechnical tests were carried out so as to become familiar with the basic
physical properties of the diatomaceous earth in the area. Then, through water immersion
observation and disintegration tests, the changes in diatomaceous earth after exposure
to water were assessed, and the mechanisms of its disintegration and deterioration were
initially evaluated.

  
(a) (b) 

Figure 2. Slope failure problem: (a) natural slope with a slope ratio of 1:1.5; (b) penetrating cracks
that appear under the alternating action of dry and wet conditions.

3.1. Basic Physical Properties of Diatomaceous Earth

By taking samples at different depths at the foot of the natural slope on the right side
of the line, ~155 m from the test slope, the original site was wax-sealed in time, and anti-
vibration and sun protection measures were taken during transportation to ensure that the
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original sample was not disturbed and did not lose water. Corresponding physical property
tests were performed on the samples in time, in accordance with the “Geotechnical Test
Procedure for Railway Engineering” [27]. In this study, white diatomaceous earth was used
as the main research object, and representative samples were selected for corresponding
tests. The properties of diatomaceous earth in this test section are shown in Table 2. Due
to the large number of test results, it is inconvenient to list the specific data in each group.
Through sampling at different depths, the results show that the natural density values of
the diatomaceous earth were 1.55–1.73 g/cm3, which are extremely low, and are similar to
those of pumice. The void ratio and water content of the diatomaceous earth samples were
very high. The void ratios of the seven samples were all greater than 1.0; the maximum
water content was 72.11%, and the average value was 55.78%. The diatomaceous earth was
dominated by the particle size ranges of 0.075–0.005 mm and < 0.002 mm, with a combined
fraction of 80%, and the proportion of particles in the particle size range of 0.25–0.075 mm
was the lowest. The mean plasticity index value of diatomaceous earth specimens was
36.30, which was much larger than 10, so it was classified as clay.

Table 2. Basic physical properties and particle analysis of diatomaceous earth.

N◦ —

Basic Physical Properties Particle Size Range (mm)

Density

(g/cm3)

Dry
Density

(g/cm3)

Water
Content

(%)

Void
Ratio

Wp(%) WL(%) Ip
0.50–0.25

(%)
0.25–0.075

(%)
0.075–0.005

(%)
0.005–0.002

(%)
<0.002

(%)

1 Maximum value 1.73 1.58 72.11 1.70 46.45 92.88 49.30 17.1 9.7 54.3 40.9 65.1
2 Minimum value 1.55 0.64 46.66 1.13 40.60 73.80 32.65 0.1 0.3 21.4 8.9 18.7
3 Average value 1.63 1.11 55.78 1.36 42.98 79.28 36.30 2.9 2.1 35.6 16.3 44.0
4 Number of

groups 7 7 6 8 7 7 7 8 8 8 8 8

3.2. Hydrological Properties of Diatomaceous Earth

Ten samples of white diatomaceous earth collected in the field test section were divided
into two groups with variable water contents. Each group consisted of five samples. The
average mass of the samples was consistent with the disintegration test (151.22 g). The first
group was left untreated, keeping each sample in its natural state. The second group was
placed in a cool place in the laboratory to undergo the drying process. The test phenomena
are shown in Figure 3. The natural diatomaceous earth had no obvious change after being
immersed in water, and only a small amount of soil fell off on the surface. After the natural
diatomaceous earth dried in the shade, cracks appeared, and then it was soaked in water.
Because of its small specific gravity, the sample floated on the water for a few seconds, sank
under the water, and quickly disintegrated into a fine scaly and powdery form.

 

Figure 3. Natural diatomaceous earth and natural diatomaceous earth after shade-drying to observe
the phenomenon of water immersion.
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According to the above test phenomena of diatomaceous earth after encountering
water, natural diatomaceous earth experiencing no obvious impact after encountering water.
When natural diatomaceous earth dries, cracks appear and fragmentation occurs; then, the
diatomaceous earth disintegrates quickly when exposed to water. The main reasons for
this damage are as follows:

1. Natural diatomaceous earth has a high water content. In a natural environment or
under high temperatures, due to the existence of a large number of clay minerals in
the sample that are prone to strong shrinkage, the sample dries and shrinks [22,28]. At
the same time, the shallow free water continues to evaporate, and air begins to enter
the pores of the shallow soil particles, causing matrix suction between the particles on
the soil surface. As water continues to evaporate, the suction of the matrix gradually
increases, and the force on the soil particles becomes increasingly strong. When there
are impurities or stress concentrations on the surface of the diatomaceous earth, the
tensile strength of the diatomaceous earth is insufficient, and initial cracks are formed
on the surface [29,30];

2. Since natural diatomaceous earth has a high void ratio and high water content, the
dry density is significantly lower than the natural density, so the sample floats on the
water surface for several seconds after the dry diatomaceous earth is immersed in
water;

3. The natural diatomaceous earth that was dried in the shade forms cracks due to the
above reasons. After being immersed in water, the water can dissolve and soften
certain minerals in diatomaceous earth, resulting in further enlargement of the cracks
and weakening of the connections between the soil particles. Then, because clay
minerals such as montmorillonite and kaolinite swell because of water, the tensile
strength of diatomaceous earth at the joints or microcracks is not enough to overcome
the swelling force, leading to its rapid disintegration [31,32].

Through the abovementioned water immersion observation test, the state of diatoma-
ceous earth after immersion in water is initially assessed. To further analyze the properties
of diatomaceous earth after encountering water, two sets of white diatomaceous earth
disintegration tests were designed. There were five samples in each group, and the average
mass of the two groups of samples was 151.22 g. The effect of time and the total amount of
disintegration and disintegration resistance of the two groups of samples under alternating
natural dry and wet conditions when exposed to water were tested.

The diatomaceous earth sample was placed into a water-permeable sample box and
immersed in a water tank to disintegrate. The mass of the residual sample was weighed
with an electronic balance, and the ratio of the residual mass of the sample after disintegra-
tion to the total mass of the sample—that is, the disintegration resistance index (%)—was
used to evaluate the disintegration characteristics of each sample.

I =
Mr

Mt
× 100% (1)

where I is the resistance to disintegration index (%), Mr is the mass of the residual sample
(g), and Mt is the total mass of the sample (g).

The test results are shown in Figure 4, and are summarized as follows:

1. The disintegration resistance index values of diatomaceous earth samples under
natural conditions range from 89.6% to 92.8%, with an average value of 91.2%. The
disintegration resistance index values of the sample after drying and wetting are
1.8–5.6%, and the average value is 3.7%. The comparison shows that the disintegration
resistance index values of the natural diatomaceous earth samples are much higher
than those of the diatomaceous earth samples after drying and wetting, and the
drying and wetting effect has a great influence on the disintegration resistance of
diatomaceous earth;
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2. The water physical properties of the diatomaceous earth are extremely poor. The
maximum disintegration resistance index value of the diatomaceous earth sample after
alternating wet and dry action is 5.6%, which indicates extremely strong disintegration.
The disintegration resistance of the sample is lower than that of soils with common
parent rocks, such as basalt residual soil, mudstone, and granite [33–37];

3. The disintegration rate of the diatomaceous earth sample after alternating wet and dry
conditions is lower in the first 30 s of being placed into the water. This phenomenon
occurs because water gradually enters the pores of the sample during this period,
and some of the air is surrounded by water in the pores. The high-speed disintegra-
tion of the sample occurs within 1–2 min after the start of the test, after which the
disintegration rate decreases and tends to stabilize until the end of the test.

  

(a) (b) 

 
(c) 

Figure 4. Disintegration test results of the two sets of samples: (a) comparison chart showing the
disintegration resistance index values of the first group of samples; (b) comparison chart showing the
disintegration resistance index values of the second group of samples; (c) comparison chart showing
the disintegration rates of the first group of samples (average mass of 151.22 g).

4. Diatomaceous Earth Slope Tests

By combining the preliminary field investigation and indoor tests, it can be concluded
that undisturbed diatomaceous earth has a high water content, high void ratio, and low
permeability coefficient, and is often recognized as an impervious layer in the engineering
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community. On the other hand, when the undisturbed diatomaceous earth loses water in
the sun, cracks develop, and the diatomaceous earth disintegrates into lumps. The dried
diatomaceous earth in the sun disintegrates quickly after being placed into water. This
implies that the change in the water content is the most direct cause of the destruction
of diatomaceous earth. Because this observation has not been analyzed and verified in
conjunction with in situ tests, the resulting changes in soil deformation, soil pressure, and
groundwater level in the slope soil are still unclear. Therefore, in order to obtain a more
thorough understanding of the diatomaceous earth slope damage caused by alternating
wet and dry conditions, two diatomaceous soil slopes with different slope ratios (1:1.5
and 1:2) in the test section were selected to conduct cycle simulations in the field, and
comprehensive in situ monitoring and fissure observation of the slopes were carried out.

4.1. Simulation of Alternating Dry and Wet Cycles
4.1.1. Artificial Rainfall Simulation System for High-Speed Railway Slopes

To build an alternating dry and wet test environment for diatomaceous earth slopes, a
convenient, efficient, and controllable high-speed railway slope artificial rainfall system
was designed. The system mainly includes three parts, namely, the water supply module,
control module, and rainfall module, as shown in Figure 5. The water supply module is
used to provide a water source for the rainfall module, and the water supply module is
connected to a control module. The control module is used to control the water supply
intensity and flow rate of the water supply module, thereby controlling the rainfall process
of the rainfall module. The rainfall module adopts a prefabricated rainfall bracket. Each
rainfall bracket is composed of a ground anchor and a rainfall column with a pin bolt, which
arbitrarily adjusts the height of the rainfall bracket and efficient installation, disassembly,
and transportation. The rain sprinkler uses a detachable downward spray atomization
sprinkler, which has two types of large diameters and small diameters that adjust the
rainfall intensity and enrich the rainfall diversity. The control module controls the whole
process of water supply and rainfall through a closed-loop control system composed of PU
water pipes, valves, water meters, and pressure gauges, and its operation is simple and
convenient. The water supply module stores and supplies water through water storage
buckets, generators, water pumps, and water supply pipes.

Figure 5. Schematic diagram of a convenient, efficient, and controllable high-speed railway slope
artificial rainfall simulation system.
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During use, the system can satisfactorily meet the needs of diatomaceous earth slopes
to simulate artificial rainfall, match the intensity of natural rainfall, and achieve rainfall on
slopes with different slope rates. The system has simple daily operations, easy disassembly
and assembly, and easy transportation; it can be repeatedly tested at multiple test sites,
which provides a strong guarantee for the development of high-speed rail projects. The
actual installation and layout of the test site are shown in Figure 6.

Figure 6. Site installation of the rainfall system.

4.1.2. Test Plan of the Dry and Wet Cycle Simulation

The alternating dry and wet test process is shown in Table 3. In the field test, to
simulate the effects of the dry and wet cycles in the natural environment, the rainfall was
set to occur at night, and outside sunlight was used to evaporate water during the day, as
shown in Figure 7a,b. On rainy days, to reduce the influence of rainwater on the rainfall test,
a layer of colored striped cloth and a layer of plastic film were used to cover the supporting
steel frame, as shown in Figure 7c.

  
(a) (b) 

 
(c) 

Figure 7. Dry and wet cycle simulation test: (a) rain at night; (b) dry during the day; (c) rainproof
measures.
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Table 3. Experimental history.

N◦ Date Test Slope Rainfall Intensity Daily Rainfall Time

1 27 June–2 July 1:2 8 mm/h 15 h

2 3 July–4 July 1:2 0 (Natural
placement) 0

3 5 July–7 July 1:2 15 mm/h 15 h
4 13 July–18 July 1:1.5 8 mm/h 15 h
5 19 July–20 July 1:1.5 0 0
6 21 July–23 July 1:1.5 15 mm/h 15 h

4.2. In Situ Comprehensive Monitoring

Before and after the simulated rainfall test on the natural diatomaceous earth slope,
comprehensive in situ monitoring was carried out. In the field test, the sensor layout of the
two types of natural diatomaceous earth slope was the same, and monitoring profiles R1,
R2, and R3 were positioned at the top, middle, and toe of the natural diatomaceous earth
slope, respectively. Sensors were embedded at different depths to monitor the changes in
the water content, horizontal displacement, earth pressure, and groundwater level of each
profile, as shown in Figure 8.

 
Figure 8. Sensor layout (side view).

5. Results

5.1. Water Content Analysis

By reading the monitoring data of the automatic acquisition instrument, the monitored
distribution pattern of the water contents in each section on the 1:2 slope and 1:1.5 slope
are shown in Figure 9a,b, respectively. The results are summarized as follows:

1. Heavy rain and artificial simulated rainfall both led to an abrupt increase in the water
content at each measuring point. For example, after the natural rainstorm on 18 June,
the change in water content at the depth of 0.2 m on the slope of section R2 with a slope
rate of 1:2 was the largest, changing from 48.1% to 59.4%—an increase of 11.3%—and the
average value of the change in water content of each section was 4.4%. This indicates that
rainfall has a significant impact on the water content at the measuring point. Before and
after artificial simulated rainfall, on the slope with a slope ratio of 1:2, the water content
at a depth of 1.5 m in the R1 section of the top of the slope increased the most—from
57.2% to 76.1%. On the slope with a slope ratio of 1:1.5, the water content at a depth
of 1.5 m in the R2 section in the middle of the slope increased the most—from 58.8%
to 78.9%. The reason for the sudden change in the water content was that the original
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structure of the diatomaceous earth was destroyed by the borehole construction at the
measurement point [38], and the backfill was not dense, resulting in rapid infiltration
after the rainfall began; thus, the water content increased abruptly;

2. The diatomaceous earth slope was excavated during artificial rainfall simulation, and
rainfall infiltration was assessed. The diatomaceous earth flowed only within the
range of 0.02–0.1 m from the surface of the slope, and the following diatomaceous
earth structure was complete. Rainwater could not penetrate into the lower diatomite
layer, and the measured water content was the same as that before rainfall, as shown
in Figure 9c. This phenomenon is consistent with the results of the indoor hydraulic
property observation test, again showing that natural diatomaceous earth experiences
no obvious impact after encountering water;

3. In the week before the end of the alternating dry–wet simulation, the water contents
at 0.2 m on the two types of slopes remained stable, and subsequently fluctuated
greatly. Approximately two and a half months after the end of the alternating dry
and wet simulation, the water content at 0.5 m was greatly affected by the climate.
The analysis shows that this occurred due to the initial fissures in the diatomaceous
earth produced by the alternating dry and wet external environment. Over time, the
fissures gradually developed from the surface of the slope to these two locations [39].

4. After the alternating dry–wet simulation, the water contents at the top of the two types
of slopes and at depth greater than 0.5 m remained stable, and the range of change
was small, indicating that the soil at the measuring point reached a saturated state; this
phenomenon is consistent with the analysis obtained by Zhao [40], and occurs due to the
hindering of the evaporation of water vapor by the surface soil. Consequently, the lower
soil is less affected by the natural environment, and the water content remains stable.

  
(a) (b) 

 
(c) 

Figure 9. Water content analysis: (a) 1:2 natural slope water content variation trend; (b) 1:1.5 natural
slope water content variation trend; (c) excavation of the diatomaceous earth slope.
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5.2. Horizontal Displacement Analysis

By reading the monitoring data of the automatic acquisition instrument, the monitored
horizontal displacement distribution of each section on the two types of slopes is shown in
Figure 10a,b, and the following are indicated:

  
(a) (b) 

Figure 10. Horizontal displacement analysis: (a) 1:2 natural slope horizontal displacement variation
trend; (b) 1:1.5 natural slope horizontal displacement variation trend.

On a slope with a ratio of 1:2, the monitored horizontal displacements at the depths of
0.75 m, 2.75 m, and 4.75 m at the top of the slope exhibited an overall increasing trend with
depth, and were 25.7 mm, 10.8 mm, and 6.4 mm, respectively, after stabilization. However,
during the dry–wet cycle simulation, the monitored horizontal displacement of the top
of the 1:2 slope increased slightly, and a larger increase occurred after the rainfall ended,
indicating that the monitored horizontal displacement of the 1:2 slope had a hysteresis
effect relative to the rainfall; this phenomenon is similar to the landslide hysteresis effect of
loess slopes obtained by Zhang [41]. After the dry–wet cycle simulation, the monitored
horizontal displacements at the depths of 0.75 m and 2.75 m on the top of the slope
increased to 20 mm and 6 mm, respectively, and temporarily stabilized. A heavy rainstorm
occurred in the test area on 4 September, which resulted in a relatively large increase in the
displacement of these two places on the slope. The displacement increased from 16.6 mm
to 24.5 mm at 0.75 m depth and from 4.5 mm to 9.9 mm at 2.75 m depth, and stabilized
at a later stage. However, the horizontal displacement at a depth of 4.75 m on the top of
the slope was less affected by the environment, and was always in a relatively stable state,
showing that the slope displacement mainly occurred between 0.75 m and 2.75 m from the
surface, indicating shallow surface slip.

On a slope with a ratio of 1:1.5, the monitored horizontal displacements at the top of
the slope at 0.75 m, 2.75 m, 4.75 m, and 6.75 m were 51.3 mm, 13.9 mm, 10.5 mm, and 7.4 mm,
respectively. The horizontal displacement of the slope top mainly occurred on the shallow
surface within 0.75–2.75 m, and the displacement increased abruptly at a depth of 0.75 m
during the dry–wet cycle simulation. The main reason for this increase was that the slope
with a ratio of 1:1.5 was relatively steep. After rainfall, the slope formed a relatively rapid
current, which caused the shallow surface soil on the slope to produce larger displacements;
this is consistent with the analysis obtained by Zhang [42]. The displacements of the slope
top and the slope toe were not synchronized. The slope top displacement occurred only
during the dry–wet cycle simulation, while the slope toe displacement continued to occur
and gradually stabilized after 1 October. This phenomenon occurred because the top of the
slope was mainly affected by the shallow surface displacement caused by rainfall, and the
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foot of the slope was mainly affected by the overall displacement of the top of the slope, so
it gradually stabilized in the later stage.

Comparing the 1:2 and 1:1.5 slopes, the horizontal displacement of the top surface of
the 1:2 slope was much smaller than the horizontal displacement of the top surface of the
1:1.5 slope. The displacement difference between the surface layer and the bottom layer of
the 1:2 slope was smaller than that of the 1:1.5 slope, indicating that the overall working
performance of the 1:2 slope was stronger [43].

5.3. Lateral Earth Pressure Analysis

By reading the monitoring data of the automatic acquisition instrument, the monitored
distribution pattern of the lateral earth pressure on each section of the 1:2 slope and 1:1.5
slope is shown in Figure 11a,b.

 
(a) (b) 

 
(c) 

Figure 11. Lateral earth pressure analysis: (a) 1:2 natural slope lateral earth pressure variation trend;
(b) 1:1.5 natural slope lateral earth pressure variation trend; (c) stacking on the top of the slope.

On a slope with a slope ratio of 1:2, the earth pressure at 0.5 m from the top of the
slope continued to increase until it stabilized on 4 October, and the earth pressure at 1.5 m
from the top of the slope gradually increased in the initial stage. Then, the earth pressure
remained stable and experienced small fluctuations. The observations indicate that no
significant change in earth pressure occurred after the artificial rainfall. An analysis of the
reasons shows that artificial rainfall did not penetrate the slope, and had no effect on the
internal earth pressure of the slope [44]. The earth pressure at the top of the slope at 0.5 m
was greater than the earth pressure at the top of the slope at 1.5 m, mainly because of the
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continuous accumulation of gravel on the top of the slope, which caused the earth pressure
at the top of the slope to increase continuously [45]. The burial depth at 1.5 m was larger,
and the impact of the piled load on it was small, as shown in Figure 11c.

On a slope with a ratio of 1:1.5, the lateral earth pressure at the top and toe of the slope
both increased in the early stage, and gradually stabilized in the later stage. However, the
R1 section at the top of the slope still fluctuated slightly after being stabilized. It may be
the case that the piled load on the top of the slope tended to be stable in the later stage;
however, every day, there were new abandoned slags, and some of the abandoned slags
were used for filling; thus, a small fluctuation in the stacking load occurred, as shown in
Figure 11c. An analysis of the earth pressure during artificial rainfall simulation showed
that the artificial rainfall had no obvious impact on the 1:1.5 slope, indicating that the
artificial rainfall did not penetrate into the interior of the 1:1.5 slope.

5.4. Groundwater Level Analysis

The groundwater level observation point of the test site was buried 6.5 m below the
toe of the slope. As shown in Figure 12, no significant change in the groundwater level
occurred before or after rainfall. The figure shows that the rainfall did not penetrate into
the diatomaceous soil slope, and the groundwater level did not rise overall [46,47].

Figure 12. Groundwater level change.

5.5. Crack Analysis

To study the process of crack development in diatomaceous earth under the action of
an external environment, it is necessary to constantly observe the changes in cracks during
the test. Field observations and measurements after the end of the test showed that the
crack widths of the 1:2 slope were 10–25 mm, and the crack depths were 50–60 cm, while
for the 1:1.5 slope, the widths of the cracks in the slope were 10–20 mm, and the depths of
the cracks were 40–55 cm, as shown in Figure 13. The development process of the above
cracks was as follows:

Diatomaceous earth has a high water content and low permeability [48,49]. Natural
diatomaceous earth with a high water content after slope excavation is exposed to the
natural environment, and water evaporates quickly under sunlight. Due to the high surface
temperature, the water evaporates quickly, the internal diatomaceous earth is affected by
the surface layer, and the water of that layer has difficultly evaporating, resulting in a
large difference in the upper and lower water contents, and leading to initial cracks [50,51].
Under the action of rainfall, the surface diatomaceous earth forms a hard shell layer because
of rainwater, and the rainwater enters the cracks, which intensifies the development of the
cracks. Because of evaporation, the fissures develop rapidly, and the integral diatomaceous
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earth slope is cut into several small pieces. This process is consistent with the above water
physical property test results of diatomaceous earth. Because diatomaceous earth has a
certain bedding structure, diatomaceous earth disintegrates from a monolithic soil layer into
large rocks because of evaporation. Then, it breaks down into small rocks, which intensifies
the infiltration of rainwater. If this process continues, under long-term alternating dry and
wet conditions, the shallow diatomaceous soil is completely disintegrated, and residual
soil is formed at the foot of the slope because of rainfall. The failure mode of the slope is
shallow instability failure, as shown in Figure 14.

  
(a) (b) 

Figure 13. Slope fissure diagram: (a) test section on the 1:2 side slope; (b) test section on the 1:1.5
side slope.

 

Figure 14. Natural side slope observation map.

6. Conclusions

In this paper, based on the newly built Hangzhou–Taizhou high-speed railway di-
atomaceous earth natural slope test section, indoor tests, in situ comprehensive monitoring,
and fissure observation, as well as other methods, the following conclusions were obtained:

1. The hydrological properties of diatomaceous earth in the Shengzhou area are ex-
tremely poor, and natural diatomaceous earth samples do not change significantly
when exposed to water. The disintegration resistance index values are 89.6–92.8%, and
the disintegration resistance is strong. After the natural diatomaceous earth samples
were dried in the shade, cracks appeared and fragmentation occurred due to dry–wet
cycle effects. Then, the samples disintegrated rapidly when exposed to water, with
disintegration resistance index values of 1.8–5.6% and an average value of 3.7%. The
disintegration resistance was very weak, and the disintegration was strong;

2. A convenient, efficient, and controllable high-speed railway slope artificial rainfall
simulation system was designed to provide strong support for the development of
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alternating dry and wet simulations. During the artificial rainfall simulation period,
the diatomaceous earth was in a flowing state within the range of 0.02–0.1 m from the
surface of the slope, and rainwater could not seep into the soil. After the alternating
dry–wet simulation, cracks developed within the range of 0–0.5 m on the slope, and
the water content was greatly affected by the environment. Comprehensive indoor
water physical property observations and water content monitoring results show that
natural diatomaceous earth has no obvious impact when exposed to water, but it
disintegrates and cracks under the action of alternating dry and wet cycles;

3. For the 1:2 diatomaceous earth slope, the monitored horizontal displacements at
depths of 0.75 m, 2.75 m, and 4.75 m at the top of the slope were 25.7 mm, 10.8 mm, and
6.4 mm, respectively; for the 1:1.5 diatomaceous earth slope, the monitored horizontal
displacements at the depths of 0.75 m, 2.75 m, and 4.75 m at the top of the slope were
51.3 mm, 13.9 mm, and 10.5 mm, respectively; The horizontal displacement of the
two types of slopes mainly occurred on the surface within 0.75–2.75 m, indicating
shallow slip;

4. After the test, the crack widths of the natural diatomaceous earth slope reached
10–25 mm, and the depth reached 40–60 cm. The natural slope of diatomaceous
earth is prone to complete disintegration of shallow soil under the effect of long-term
alternating wet and dry conditions, and residual soil is formed at the foot of the slope
under the effect of rainfall, resulting in shallow destabilization damage, which greatly
affects the safe development of railroad construction;

5. The key to preventing the damage to diatomaceous earth slopes is to protect the
original diatomaceous earth, isolate the alternating dry and wet effects of the outside
atmosphere on the surface layer of the diatomaceous earth slope, prevent the original
diatomaceous earth from producing a water content gradient, and avoid the fissure of
the surface layer of the diatomaceous earth slope. In the actual high-speed railroad
construction, it is recommended to provide proper protection for diatomite slopes.

Because of the limited number of research years of the authors, the issues that can be
further studied in the future are as follows:

1. Since the monitoring time of the field test is too short and the alternating wet and dry
action fails to fully develop the slope fissures, it is suggested to monitor the diatomite
slope for ~3 years in order to further quantify the influence range of diatomite fissures,
and to monitor the displacement, water content, pore water pressure, earth pressure,
and groundwater level changes for a long time;

2. On-site fissure diatomite strength tests should be conducted to provide strong support
for analyzing the influence of fissures on the stability of diatomite slopes, and the
influence of rainfall scouring on the stability of diatomite slopes should be considered;

3. Further numerical simulation and theoretical analysis of diatomite slope stability
under the action of alternating wet and dry conditions should be carried out.
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Abstract: The extraction of landslide deformation using terrestrial laser scanning (TLS) has many
important applications. The landslide deformation can be extracted based on a digital terrain model
(DTM). However, such methods usually suffer from the ill-posed problem of a multiplicative error
model as illustrated in previous studies. Moreover, the edge drift of commonly used spherical
targets for point cloud registration (PCR) is ignored in the existing method, which will result in the
unstable precision of the PCR. In response to these problems, we propose a method for extracting
landslide deformations from TLS data. To archive the PCR of different period point clouds, a new
triangular pyramid target is designed to eliminate the edge drift. If a fixed target is inconvenient,
we also propose a PCR method based on total station orientation. Then, the use of the Tikhonov
regularization method to derive the weighted least squares regularization solution is presented.
Finally, the landslide deformation is extracted by DTM deference. The experiments are conducted on
two datasets with more than 1.5 billion points. The first dataset takes Lashagou NO. 3 landslide in
Gansu Province, China, as the research object; the point cloud data were collected on 26 February
2021 and 3 May 2021. The registration accuracy was 0.003 m based on the permanent triangular
pyramid target and 0.005 m based on the total station orientation. The landslide deforms within 3 cm
due to the ablation of the frozen soil. The second dataset is TLS data from the Lihua landslide in
Chongqing, China, collected on 20 April 2021 and 1 May 2021. The overall deformation of the Lihua
landslide is small, with a maximum value of 0.011 m. The result shows that the proposed method
achieves a better performance than previous sphere-based registration and that the weighted least
square regularization iterative solution can effectively reduce the ill-condition of the model.

Keywords: point cloud; point cloud registration (PCR); ill-posed multiplicative error model; landslide
deformation extraction; terrestrial laser scanning (TLS)

1. Introduction

The extraction of landslide deformation is important for many applications [1–4], such
as disaster management and deformation detection. Laser scanning can be used to acquire
accurate and dense 3D points from a target surface and has unique advantages when it
comes to landslide monitoring, deformation extraction, and disaster management.

As the most direct manifestation of landslide stability, landslide surface deformation
has received special attention from scholars [5–7]. Conventional landslide monitoring meth-
ods, such as using the GNSS (Global Navigation Satellite System) [8–10], leveling [11,12],
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crack gauges [13,14], etc., can only obtain sparse measurements at a few locations or within
the affected slopes. Therefore, it is difficult to interpret the overall deformation characteris-
tics of a landslide [15,16]. Terrestrial laser scanning (TLS) is a ground-based active imaging
method that rapidly acquires precise and dense 3D point clouds on the surface of objects
through laser ranging. Guo et al. [17] used point cloud data and the digital elevation model
visualization method capable of a sky view to carry out geological disaster identification
research and verified the reliability of airborne LiDAR identification results through field
investigation. Abellan et al. [18] used TLS technology to monitor a dangerous rock mass in
Spain, and discussed the feasibility of millimeter-level high-precision monitoring. Kayen
et al. [19] used TLS to monitor nearly 400 large landslides induced by the Chuetsu earth-
quake in Niigata Prefecture, Japan, and greatly improved the efficiency of post-earthquake
disaster assessment. Liu et al. [20] proposed a landslide displacement monitoring method
based on point cloud density characteristics; the method identified the slope variation area
and directly reflected the landslide surface deformation.

PCR can merge these individually scanned period point clouds. The basic idea of
PCR is to seek the best transformation parameters to transform a point cloud with a local
coordinate system to the same reference system [21]. PCR is divided into real-time registra-
tion and accurate registration of point clouds in different periods. Real-time registration
refers to the detection of the surrounding environment while scanning and registering the
real-time scanning point cloud using mobile laser scanning with the acquired point cloud.
It is widely used for fast modeling, indoor navigation, and simultaneous localization and
mapping (SLAM). It is a low-precision PCR method. The point cloud data of different
periods is typically obtained using fixed scanners (such as TLS). The main PCR methods
for different period data are marker-based registration and data-based registration.

However, there are still many problems with the application of landslide monitoring
using TLS technology [22,23]. When using TLS to monitor landslide deformation, it
is necessary to collect a multi-period landslide point cloud and calculate the landslide
deformation by comparing the spatial position of the point cloud. Unfortunately, each
period point cloud is based on an independent coordinate system, and the reference data
are not unified, resulting in the low accuracy and unreliable results of landslide deformation
detection [24].

The widely used marker in TLS is the standard spherical target [25,26]. Spherical
targets have high precision and are easy to carry, but they are expensive, require high
precision in manufacturing and maintenance, and cause edge drift because of their excessive
laser reflection angle. The spherical target is shown in Figure 1, and the spherical target
cloud is shown in Figure 2. Since the edge drift is concentrated away from the scanning side,
it does not receive uniformly distributed random noise, which will cause non-negligible
calculation errors in the spherical center coordinates. An ICP algorithm is the most used
data-based PCR method due to its simple iteration and fast convergence [27]. The principle
of ICP is to find the nearest correspondence in the source and the target point cloud and use
the distance matrix of the nearest correspondence to estimate the rotation and translation
parameters [28].

 

Figure 1. Spherical target.
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Figure 2. Point cloud of spherical target.

The landslide deformation can be extracted based on DTM [29,30]. Unfortunately,
the DTM adjustment model is a typical ill-posed multiplicative random error model [31].
The ill-posed error model widely exists in the processing of remote sensing causing the
instability of the parameter solution and even serious deviations from the true value.
Xu et al. [32] first proposed the least square solution for the multiplicative error model.
Shi et al. [33] summarized the least square, weighted the least square, and bias-corrected
the weighted least square method of the multiplicative error model, and deduced the
accuracy formula for the parameter estimation. If these three methods are used to deal
with the ill-posed multiplicative error model without considering the ill-posed feature of
the coefficient matrix, the parameter estimation will be biased and unstable. To avoid the
ill-posed coefficient matrix, Wang et al. [34] built a DTM using the points at the peaks in
the simulated data. This model can only be used to process simulation data and cannot be
applied to practical observational data. Due to the ill-posed coefficient matrix, the complex
collinearity between the column vectors of the coefficient matrix causes the condition
number of the normal equation to be too large and thus the solution is unstable. Therefore,
research on ill-posed multiplicative random error model adjustment theory needs to be
further studied. At present, the methods for dealing with ill-posed multiplicative error
models mainly include truncated singular-value decomposition (TSVD) [35], the Tikhonov
regularization method [36], the ridge estimation method [37], and the virtual observation
value solution [38]. The Tikhonov regularization method is a general adjustment method
that strictly adheres to the theory. It is commonly used to solve the ill-posed multiplicative
random error model.

The works mentioned above have carried out detailed studies on the landslide de-
formation extraction from TLS. The PCR of different period point cloud and the DTM
construction are the vital procedures for deformation extraction. However, the number
of point clouds on a marker sphere is sparse in the scanning process of a landslide. Edge
drift caused by an excessively large laser reflection angle inevitably occurs due to the
characteristics of the sphere. Thus, the calculation error of the spherical center coordinates
cannot be disregarded. In this research, a new triangular pyramid target was developed
which can unify the data of the multi-period point cloud by three non-parallel surfaces. In
addition, aiming to address the problems of poor site access conditions and inconvenient
traffic, we also propose a new scheme of data acquisition and registration based on total
station orientation. The DTM adjustment model is an ill-posed multiplicative error model.
If an ill-posed coefficient matrix is not considered, the parameter estimation will be biased
and unstable. Hence, we utilize the Tikhonov regularization method to derive the weighted
least squares regularization solution.

2. Methodology

The method proposed in this paper mainly consists of three steps. First, the PCR of
the multi-period point cloud data is performed. Then, considering the ill-multiplicative
error model, a weighted least square regularization iterative solution is proposed for DTM
construction. Finally, the landslide deformation is obtained by differential DTMs.
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2.1. PCR of Multi-Period Point Cloud Data
2.1.1. PCR Based on Triangular Pyramid Target

Multi-phase point cloud is characterized by three fixed triangular pyramid vertices

of concrete in the field. The source point set X �
{→

x i

}Nx

i=1
(Nx ∈ N) and the target point

set Y �
{→

y i

}Ny

i=1
(Ny ∈ N) are assumed in the n-dimensional space Rn. The objective of

the rigid-body registration algorithm is to find a rotation matrix and translational matrix
so that the source point set and target point set can optimally correspond in space. The
optimization criterion based on Euclidean distance can be written as follows [39],

min
R,

→
t ,c(i)∈{1,2,··· ,Ny}
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∑
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∥∥∥(R
→
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→
t )−→
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s.t. RT R = I3, det(R) = 1 (1)

ICP algorithm is widely used in rigid body registration due to its simple iteration
and fast convergence. The ICP algorithm iteratively computes the rigid transformation

parameters R and
→
t until the objective function converges to a local minimum. In the kth

iteration, the algorithm is implemented through the following two steps,

(1) Setting up the matching point correspondence of two point sets,

ck(i) = argmin
∥∥∥(Rk−1

→
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→
t k−1)−→
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∥∥∥2

2
(2)

where i = 1, · · · , Nx, Rk−1,
→
t k−1 is the argument of iteration k − 1.

(2) The new rotation matrices and shift vectors are computed by minimizing the square
distance [40],
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The condition for the end of iteration for the ICP algorithm is that the registration
error is small enough or the number of iterations reaches its maximum number, then the
algorithm terminates, otherwise the iteration continues [41]. We use root mean square
(RMS) ε to evaluate the registration accuracy,

ε =
1
N

Ns

∑
i=1

∥∥∥Rk
→
x i +

→
t k −→

y ck(i)

∥∥∥2

2

(4)

where Rk,
→
t k is the argument of iteration k.

2.1.2. PCR Based on Total Station Orientation

The point cloud coordinates are converted to the independent coordinate system using
the Bursa–Wolf transformation model. The Bursa–Wolf transformations are conformal 3D
Cartesian coordinate transformations commonly used in surveying, photogrammetry, and
geodesy [42].

2.2. Landslide DTM Using the Weighted Least Squares Regularization Solution

Unlike common Gauss–Markov models with additive random error [43–45], we sup-
pose a set of observations with multiplicative random error yi(i = 1, 2, · · · n), and the
multiplicative error model can be defined as follows [46],

yi = fi(β)(1 + εi), i = 1, 2, · · · , n (5)
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where εi is the zero mean random error, f (β) and ε are the random variables, β is the
t-dimensional unknown parameter vector to be estimated, � is the Hadamard product of
matrices or vectors, and 1 is the n dimensional column vectors with all values set to 1.

Assuming that the variances of the elements in vector ε are equal and independent, if
every fi(·) is a linear function of variable β, that is, fi(β) = xT

i β, xT
i is a t-dimensional row

vector, the multiplicative error model can be written as follows,

y = (Xβ)� (1 + ε) (6)

The Formula (6) can be rewritten in the following form,

e = y − Xβ = (Xβ)� εm (7)

where X = (x1, x2, · · · , xn)
T .

It is evident that the accuracy of the observation value in the multiplicative error
model is proportional to the signal intensity. The stronger the signal Xβ, the greater the
error. The covariance matrix Qy is a function of the unknown parameter β. The commonly
used methods for solving the multiplicative error model include the least squares method
and the deviation correction weight least squares method. The weighted least square
regularization algorithm is applied to the ill-posed multiplicative error model in this paper.

We utilize the least square (LS) method to calculate the parameter; the parameter
estimation can be expressed as follows [47],

β̂LS= (XTX
)−1

XTy (8)

where β̂LS is the least square estimation of the multiplicative error model.
According to the law of cofactor propagation, the cofactor matrix of e and y is,

Qe = Qy =

⎡⎢⎢⎢⎣
xT

1 β 0 0 0
0 xT

2 β 0 0

0 0
. . . 0

0 0 0 xT
n β

⎤⎥⎥⎥⎦ (9)

We also utilize an unbiased estimation of weighted least-square (bcWLS) method; the
parameter estimation can be expressed as follows [48],

β̂bc= (X TQ−1
y X)−1XTQ−1

y y (10)

where β̂bc is the parameter estimation using bcWLS method.
If the normal equation N = (XTX)

−1 is ill-posed, the LS solution is unreliable. Hence,
to overcome the ill-posed state of the normal equation, we use the weighted least squares
regularization iterative solution (RWLS). First, a regularization factor α is introduced to
construct the regularization criterion of the ill-posed multiplicative error model,

φ = eTQ−1
e e + αβT β = min (11)

According to the definition of RWLS, the parameter estimation can be expressed as
follows [49],

β̂RWLS = (ATQ−1
e A + αIn)

−1
ATQ−1

e y (12)

where β̂RWLS is the RWLS solution of ill-posed multiplicative error model, and In is identity
matrix. The term αIn is added to the inversion of the normal equation, which effectively
weakens the ill-posed state of the normal equation. Therefore, we can obtain a reliable and
stable solution.
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As evident from Equation (11),
∥∥y − Aβ̂

∥∥ and
∥∥β̂
∥∥ are the function of the regularization

parameter α, and the L curve method is used to calculate the regularization parameters α.
The main procedures are as follows [50,51],

(1) Taking
∥∥y − Aβ̂

∥∥ as the x-axis coordinate and
∥∥β̂
∥∥ as the y-axis coordinate, we get

multiple sets of coordinate points (
∥∥y − Aβ̂

∥∥,
∥∥β̂
∥∥),

(2) These coordinate points are fitted to a curve similar to L shape, and the α value
corresponding to the point with the largest curvature is used as the estimation of the
regularization parameter.

As evident from Equation (12), Qe is the nonlinear function of β̂RWLS on the left
side of the Equation (12), and β̂RWLS is the nonlinear function of Qe on the right side of
Equation (12). Hence, there is no analytical solution, only a numerical solution [52]. We can
only use approximation methods to iteratively calculate the numerical solution.

The detailed procedure of RWLS solution is as follows,

(1) The LS solution is used as the RWLS initial value of iteration;
(2) Compute the cofactor matrix Qei ;

Qei =

⎡⎢⎢⎢⎣
xT

1 β̂i
RWLS 0 0 0
0 xT

2 β̂i
RWLS 0 0

0 0
. . . 0

0 0 0 xT
n β̂i

RWLS

⎤⎥⎥⎥⎦ (13)

(3) The regularization parameter αi is obtained by L curve method;
(4) The iterative formula is as follows:

β̂i+1
RWLS = (ATQ−1

ei
A + αi In)

−1
ATQ−1

ei
y, i = 0, 1, · · · (14)

(5) Repeat steps (2)–(4) until the value of the parameter subtraction is smaller than
the threshold, ∥∥∥β̂i+1

RWLS − β̂i
RWLS

∥∥∥ < εth (15)

where εth is defined as 10−10 in this paper.

The unit weight variance is always an important quality index for evaluating observa-
tion results and data processing results. It is defined as follows by using the
LS method,

σ̂2
LS =

VT
LSVLS

tr
{

Q̂y − (XTX)
−1XTQ̂yX

} (16)

where σ̂2
LS = unit weight variance.

The unit weight variance using bcWLS can be expressed as follows [53],

σ̂2
bc =

VT
bcQ̂−1

y Vbc

r
(17)

where σ̂2
bc = unit weight variance, r = freedom degree, and its value correlates with the

number of observation value and parameter estimation.
The unit weight variance of the ill-posed multiplicative random error model can be

expressed as follows [54],

σ̂2
0 =

êTQ−1
e ê

r
(18)

where ê = Aβ̂RWLS − y = [A(ATQ−1
e A + αIn)

−1
ATQ−1

e − I]y.
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The unit weight variance using RWLS can be expressed as follows [52],

σ̂2
RWLS = σ̂2

0 tr(Qβ̂RWLS×β̂RWLS
) + tr(bβ̂RWLS

bT
β̂RWLS

) (19)

where σ̂RWLS is the unit weight variance. In Equation (19), bβ̂RWLS
is defined as follows,

bβ̂RWLS
= −α(ATQ−1

e A + αIn)
−1

β̂RWLS (20)

In this paper, we use LS, bcWLS, and the RWLS method to estimate the parameters
and calculate the accuracy of parameters.

In addition, the noise of point cloud data has been shown with a nature of multi-
plicative random error [55–57]. Therefore, the multiplicative error model of DTM with 6
unknown parameters is as follows [33],

H(Xi, yi) = F(Xi, yi)� (1 + εm) (21)

where (Xi, yi) represents the x and y coordinates of the ground point, H(Xi, yi) represents
the corresponding elevation of the point, and εm represents the multiplicative error vector,

F(Xi, yi) = β1 + β2xi + β3yi + β4xiyi + β5x2
i + β6y2

i (22)

Then, we apply LS, bcWLS, and RWLS method to calculate the parameter estimation
and unit weight variance. Finally, we extract the landslide deformation by the difference
of DTM.

3. Experiments Data

3.1. Simulation Experiment
3.1.1. Simulation Experiment I: GNSS Elevation Point Disturbed by Multiplicative Error

GNSS is used to measure the elevation of the ground point of a road center line in a
certain area. It is assumed that the ground point elevation and distance conform to the
following functional model,

y = 10 + 4x + 2x2 + x3 + 0.5x4 + 2x5 (23)

In this example, the value range of x is 0–300 m, and 31 points are equally spaced
within the value range of x. The truth values of the parameters are 10, 4, 2, 1, 0.5, and 2.

Assuming that y is disturbed by the multiplicative random error, where the multi-
plicative random errors are independent of each other and follow a normal distribution
with a mean value of 0 and a standard deviation of 0.1, and the corresponding observation
equation of the multiplicative error model is,

Y(x) = y(x)� (1 + εm) (24)

where Y is the vector disturbed by multiplicative error, 1 is the 31-dimensional column
vector with all elements being 1, and εm is the 31-dimensional multiplicative random error
vector. The simulation values of the ground elevation points obtained from Equation (23)
are shown in Table 1.
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Table 1. Simulation Data.

Point Number y Point Number y

1 8.8529 17 52.9943
2 9.3072 18 66.6330
3 10.0079 19 80.6002
4 8.0547 20 80.1413
5 13.7458 21 106.8200
6 13.1323 22 112.3601
7 12.5329 23 136.7752
8 16.5769 24 184.5394
9 13.1390 25 254.6235
10 17.2795 26 242.7289
11 19.0292 27 323.5583
12 22.8096 28 360.2978
13 26.2168 29 482.2399
14 27.0681 30 453.0284
15 34.8363 31 595.4323
16 40.9079

To show that the elevation points are affected by multiplicative error, the data of the
ground elevation points before and after interference from multiplicative error are plotted
in Figure 3.

Figure 3. GNSS elevation point before and after being disturbed by multiplicative error.

3.1.2. Simulation Experiment II

This simulation uses DTM data. This paper mainly considers that the model is ill-
posed, so it simulates the ill-conditioned DTM model and generates the DTM using the
interpolation function method [53]

f xy =
4

∑
i=1

βi fi(x, y) (25)
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where f xy represents the elevation obtained by the interpolation function, x and y range
from 0 m to 80 m, the interval is 2 m, and the truth values of the four parameters are −1.5,
20, 5, and −4, respectively.

The function fi(x, y) is as follows,

f1(x, y) = exp
{
−((x − 22)2 + (y − 22)2)/500

}
(26)

f2(x, y) = exp
{
−((x − 28)2 + (y − 28)2)/500

}
(27)

f3(x, y) = exp
{
−((x − 25)2 + (y − 25)2)/500

}
(28)

f4(x, y) = exp
{
−((x − 20)2 + (y − 20)2)/500

}
(29)

The multiplicative error model is as follows,

h(x, y) = f (x, y)� (1 + εm) (30)

where h(x, y) is the vector of the observation values disturbed by multiplicative errors, 1 is
the 1681-dimensional column vector whose elements are all 1, and εm is the
1681-dimensional multiplicative error vector values which are independent of each other.
To illustrate that the DTM model is affected by multiplicative error, the DTM without the
errors are plotted in Figure 4 and the DTM influenced by multiplicative random error
is plotted in Figure 5. As can be seen from Figures 4 and 5, although the DTM with the
standard deviation has a 0.1 multiplicative error, it has a great influence on the elevation,
and the condition number of the normal equation N = ATQ−1

e A is 4.456 × 104; therefore,
the equation is seriously ill.

 
Figure 4. DTM.
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Figure 5. DTM with multiplicative error.

3.2. Actual Experiment
3.2.1. Actual Experiment I

(I) Experiment 1

The Lashagou NO. 3 landslide was a loess landslide located at Lashagou village,
Jishishan county, Gansu province, China. Its geographical coordinates are 35◦ 35′ 23′ ′E,
102◦ 57′ 12′ ′N. It is in the transition zone between the Tibetan Plateau and the Loess Plateau,
which is typical of an excavation-related shallow loess engineering landslide [58,59]. The
main stratum of the landslide is Holocene residual slope silty clay and the main stratum
of the slide bed is middle and lower Pleistocene fluvial and lacustrine maroon silty clay.
The central width of the slide body is 60–100 m, the axial length is 80–130 m, the area is
about 25,000 m2, the thickness is 3–8 m, and the volume is about 150,000 cubic meters,
belonging to the middle-shallow medium and small-sized landslide groups. The rear wall
of the landslide was 0.2–0.4 m high, the natural slope was 15◦, and the main slide direction
was 85◦. The front slope of this landslide group is mainly damaged by slime in the surface
1–3 m, but the lower soil is relatively stable, and the back edge of the landslide group is
in the shape of an armchair and a gentle arc, which belongs to the traction cohesive soil
landslide group. The optical remote sensing imagery of the landslide is shown in Figure 6a.
As shown in Figure 6b, the toe of the Lashagou NO. 3 landslide is close to the G310 highway,
which is activated or generated by the slope excavation during the construction of the
G310 mountain highway. The main effects of the Lashagou NO. 3 landslide are shown
in Figure 7. Figure 7b shows a local diagram of a crack 10 cm wide. Figure 7c shows the
local displacement diagram of a 0.6 m staggered platform in the vertical direction of road
surface formed by landslide. Figure 7d shows the local map of the road cracks formed by
the landslide.

In this study, a Leica P50 laser scanner was used for data acquisition. The scanner is a
ground-based 3D laser scanner with medium and long range, which has the advantages of
obtaining high-quality point cloud data in harsh environments and a wide scanning range
with minimal noise. The parameters of the Leica P50 laser scanner are shown in Table 2.
In addition, A Leica Nova TS30 total station and some prism spheres are also required to
collect data. The parameters of the Leica TS30 total station are shown in Table 3.
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Figure 6. (a) Optical remote sensing imagery of Lashagou NO. 3 landslide acquired from Google
Earth; (b) UAV image of Lashagou NO. 3 landslide.

Figure 7. (a) Study area and photos showing Lashagou NO. 3 landslide disease. (b) ground fracture
(c) staggered platform (d) tensile crack caused by the landslide.

Table 2. Parameters of Leica P50 3D laser scanner [60].

Parameter Value

Scan range mode

from 0.4 to120 m
from 0.4 to 270 m
from 0.4 to 570 m,

>1 km
Scan Rate up to 1,000,000 points per second

Vertical/horizontal field-of-view 360◦/290◦

Range noise * 0.4 mm rms at 10 m
0.5 mm rms at 50 m

Operating temperature −4◦ F to + 122◦ F
Dual-axis compensator accuracy 1.5′ ′

* at 78% albedo.

Table 3. Parameters of Leica TS30 total station [61].

Parameter Value

Accuracy of angle Horizontal and Vertical 0.5′ ′
Distance Measurement Range Round Prism (GPR1) 3500 m

Accuracy of distance Standard (prism) 1 mm + 1 ppm
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(I) Triangular pyramid target point cloud acquisition

In this paper, a triangular pyramid target was developed, and three concrete triangular
pyramids were poured in the study area, among which any triangular pyramid target is
shown in Figure 8. The size of the triangular pyramid template is an equilateral triangle
with a side length of 50 cm and a height of 15 cm. The point cloud of the triangular pyramid
is shown in Figure 9.

 

Figure 8. Triangular pyramid target.

Figure 9. The point cloud of triangular pyramid.

(II) Data collection based on total station orientation

In the monitoring of the landslide and other deformation forms, points in the stable
zone should be taken as the monitoring benchmark. The coordinates of the four control
points in the stable zone in this paper are shown in Table 4.
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Table 4. The coordinates of control points.

Control Point x/m y/m z/m

SCP1 531.375 533.190 761.551
SCP2 535.557 522.346 762.020
SCP3 479.548 473.771 766.402
SCP4 412.943 401.501 772.336

The point cloud of the prism sphere was collected using a Leica P50 scanner. We
used the Leica Nova TS30 total station to collect the 3-D coordinates of the prism sphere
simultaneously. The experiment was divided into three steps,

(1) Leica TS30 total station was used to collect the coordinates of the prism balls near the
landslide area.

The total station was set up at any position, and the coordinates of any two control
points in the stability area were intersected to obtain the coordinates of the current measur-
ing station. Then the central coordinates of the prism balls near the landslide area were
measured. The photos of the prism balls are shown in Figure 10.

 

Figure 10. Prism ball target.

(2) The coordinates of the prism balls near the landslide area were obtained by fitting
point cloud data collected by TLS simultaneously.

The Leica P50 scanner was set up at any position, and the point cloud data of the
prism balls were obtained. Then the center coordinates of the prism balls were calculated
by fitting the point cloud data of the prism balls. The transformation parameters from the
point cloud coordinate system to the total station coordinate system can be obtained by
using the Bursa–Wolf model.

(3) The unification of the data.

The point cloud coordinates of each period were converted to the control point co-
ordinate system of the stable area by using the transformation parameters to realize the
unification of the data.

The creep deformation of a landslide is a slow dynamic process. In this paper, a
one-station measurement method was adopted to avoid the error caused by multi-station
data PCR, which improved the accuracy of the landslide deformation monitoring. The
Leica P50 scanner was set on the highest point of the slope opposite the landslide, and
the scanning accuracy was set to 3 mm@ 10 m. Considering the influence of permafrost
ablation and other factors on the landslide, two period point cloud data were collected on
26 February 2021 (temperature 3 degrees Celsius, before permafrost ablation) and 3 May
2021 (temperature 28 degrees Celsius, after permafrost ablation) to analyze the landslide
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deformation. The data collection photo from period I (May 3, 2021) is shown in Figure 11,
and the point cloud of Lashagou NO.3 landslide is shown in Figure 12.

 

Figure 11. Prism ball target.

Figure 12. Point cloud of phase 1.

3.2.2. Actual Experiment II

The Lihua landslide was on the left side of the Lihua road at Nan’an District, Chongqing,
China. The relative height difference was about 10 m. It was a typical excavation-induced
shallow loess engineering landslide. Once a large-scale instability occurs, it may block the
Lihua road and threaten the lives and property of the nearby residents and pedestrians.
We collected a two-phase point cloud of the landslide with a Leica P50 3D laser scanner on
20 April 2021 (phase 1) and 1 May 2021 (phase 2). The Lihua landslide point cloud of phase
1 is shown in Figure 13. The UAV image of the Lihua landslide acquired on 4 June 2022 is
shown in Figure 14.

 

Figure 13. Lihua landslide point cloud of phase 1.
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Figure 14. UAV image of Lihua landslide.

4. Analysis of Result and Discussion

4.1. The Results of Simulation Experiments
4.1.1. The Result of Simulation Experiment I

In simulation experiment 1, the square root of unit weight variance is 0.3. The parame-
ter values obtained using the three methods are shown in Table 5.

Table 5. Parameter estimation and accuracy.

Method
^
β1

^
β2

^
β3

^
β4

^
β5

^
β6

^
σ0

∥∥∥∥Δ
^
β

∥∥∥∥
2

True value 10 4 2 1 0.5 2 0.3 —
LS 19.64 −147.21 442.38 −453.75 189.92 −25.37 12.0984 678.47

bcLS 11.45 −2.19 6.27 7.96 −8.11 3.99 20.98 13.61
RWLS 10.77 2.12 1.46 2.52 −1.46 2.46 1.26 3.28

The comparison between the RWLS method and the classical LS method is shown
in Figure 15.

 
Figure 15. GNSS elevation obtained by the RWLS method and LS.
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The condition number of the normal equation N = ATQ−1
e A is 8.3098 × 105, the equa-

tion is ill-posed. The regularization parameter values in this algorithm change dynamically,
and the change of the regularization parameters with the number of iterations is shown
in Figure 16.

Figure 16. The regularization parameters with the number of iterations.

It is evident from Figure 15 that ground elevation points are influenced by multiplica-
tive error, resulting in serious deviation. It is evident from Table 5 that the ‖Δβ‖2 obtained
by LS method is the largest. The ‖Δβ‖2 calculated by the bcWLS method is 13.61, which
still deviates greatly from the truth value because the ill-posed state of the model is not
considered. The ‖Δβ‖2 calculated by the RWLS algorithm in this paper is 3.28, and the
parameter estimation is closer to the true value, indicating that the RWLS algorithm has a
certain effect on reducing ill-condition. It is evident from Table 5 that the bcWLS method
does not consider the ill-posed nature of the model, which led to σ̂0 deviating from the true
value. However, the RWLS algorithm takes these factors into account and the σ̂0 is closer to
the true value, further verifying the advantages of the algorithm in this paper.

4.1.2. The Result of Simulation Experiment II

Following Xu et al. (2013), it is here assumed that σ̂0 is 0.3, and that the multiplicative
random error vectors are independent from each other. The parameter estimation, ‖Δβ‖2
and σ̂0, calculated by LS, bcWLS, and RWLS, are listed in Table 6. The DTM made using
the RWLS method is shown in Figure 17. The regularization parameters with the number
of iterations are shown in Figure 18.

Table 6. Parameter estimation and accuracy.

Method
^
β1

^
β2

^
β3

^
β4

^
σ0

∥∥∥∥Δ
^
β

∥∥∥∥
2

true value −3.5 15 8 −3 0.3 —
LS 21.68 21.00 −11.25 −14.87 4.52 34.38

bcWLS −6.44 18.99 8.59 −1.69 4.36 3.18
RWLS −1.94 14.91 7.46 −3.91 0.42 1.88
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Figure 17. DTM by the RWLS method.

 
Figure 18. The regularization parameters with the number of iterations.

As can be seen from Table 6, the parameter estimation obtained by bcWLS deviates
seriously from the true value because the ill-posed state of the model is not considered,
while the result obtained by the RWLS algorithm is closer to the true value. The parameter
‖Δβ‖2 calculated by RWLS is 1.88. It is less than that of the LS method and bcWLS method,
which further indicates that the algorithm in this paper has a certain effect on reducing the
ill-posed state. It is evident from Table 6 that the σ̂0 obtained by the LS method is 4.52, and
that σ̂0 seriously deviates from the true value. The σ̂0 calculated by the bcWLS method is
4.36, which is closer to the truth value, because it considers the weight of the observation
value. The RWLS method considered the influence of ill-condition on the σ̂0, hence the σ̂0 is
the closest to the true value.

4.2. The Result of the Actual Experiment

(I) The result of experiment I

4.2.1. The result of PCR Based on Triangular Pyramid Target

Three planes can be fitted using the point cloud of a triangular pyramid, and then
triangular pyramid vertices can be intersected through the three planes. The coordinates of
three triangular pyramid vertices in phase 1 and phase 2 are shown in
Tables 7 and 8, respectively.
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Table 7. Coordinates of three triangular pyramid vertices in phase 1.

Point Number x/m y/m z/m

CP1 5.989 22.562 −4.090
CP2 12.648 15.101 −4.803
CP3 32.494 −6.676 −6.480

Table 8. Coordinates of three triangular pyramid vertices in phase 2.

Point Number x/m y/m z/m

CP1 −12.412 19.621 −4.134
CP2 −2.413 19.380 −4.847
CP3 27.049 18.977 −6.523

The initial landslide point cloud of phase 1 and phase 2 is shown in Figure 19. The
translation vector obtained by the fine algorithm is (0.134, 0.080, −0.038). In this paper,
the rotation matrix is transformed into the rotation angle around the coordinate axis, in
which the rotation angle around the X axis is 0.164◦, the rotation angle around the Y axis is
−0.180◦, and the rotation angle around the Z axis is −46.886◦.

 
Figure 19. Initial point cloud of landslide in two phases.

The point cloud after unifying the data through the obtained rotation and translation
parameters is shown in Figure 20. The image of the Lashagou NO.3 landslide is shown
in Figure 21. It is evident that the two-phase point cloud has been accurately registered
based on the triangular pyramid target. The point cloud data of the two periods are unified,
which lays a foundation for landslide deformation detection.

 

Figure 20. Landslide point cloud after the PCR of two period data.
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Figure 21. Photos of Lashagou NO.3 landslide.

The standard sphere target has often been used in previous studies [50–53]. Figure 1
shows that edge drift caused by an excessively large laser reflection angle will inevitably
occur. Thus, the calculation error of the spherical center coordinates cannot be disregarded.
Compared with previous studies [52,53], our methods handle this problem by designing a
new triangular pyramid marker. As shown in Figure 9, three planes can be fitted through
the triangular pyramid point cloud, and then the triangular pyramid vertices can be
intersected through the three planes. The registration accuracy of the point cloud based on
the triangular pyramid target is 0.003 m.

4.2.2. The result of PCR Based on Total Station Orientation

Figure 22 shows the point cloud after fine registration using the total station orientation
theory. The two-phase point cloud has been accurately transformed into the control point
coordinate system in the stable area, realizing the unification of the multi-phase point cloud
data. The method is rigorous in theory, easy to operate in practice, free from the restriction
of landslide terrain conditions, and has a wide applicability. The registration accuracy
based on the total station orientation was 0.005 m.

 

Figure 22. Point cloud after accurate registration.

By comparing the two PCR method with other PCR methods, it is evident that:

(1) In terms of data acquisition, to ensure the accuracy of registration, the data acquisition
mode which is based on a fixed triangular pyramid target is simple and is capable
of fast operation. It is suitable for good visibility and convenient transportation and
is easy to cast in a concrete environment. In addition, based on the total station
orientation data acquisition mode, it is not limited by field conditions and has a
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wide applicability. Especially, in a situation where there are some control points in
the stable area, the point cloud can be directly and effectively transformed into the
existing coordinate system, which is of great significance to the continuous dynamic
monitoring of landslide disasters based on point cloud data.

(2) In terms of PCR, the PCR theory based on a fixed triangular pyramid target and
total station orientation is strict. The PCR based on a fixed triangular pyramid target
can overcome the problem of low precision in the sphere-based PCR method. The
advantage of PCR based on total station orientation is that the point cloud coordinates
can be converted to the existing control point coordinate system, which is favorable
for the utilization of survey area engineering.

The proposed approach strives at addressing the unstable precision of different period
TLS data. Figure 23 shows the TLS data of the 1 m wide detailed image shown in Figure 20.

Figure 23. PCR based on triangular target (1 m wide detail in Figure 20).

As shown in Figure 23, the result after applying the target-based (triangular pyramid)
PCR method suggests that the precision is stable. This may also indicate that in TLS data
such methods tend to retain point cloud detail features. Compared with the spherical
target [25,26], the triangular target can overcome the edge drift. After applying the PCR
method based on total station backward orientation, the precision of PCR is high. Compared
with a target-based PCR method [27], the station setup is flexible. In addition, it is suitable
for the situations that are not easily accessible.

Our PCR method is easy to use. The center of sphere has often been used for PCR in
previous studies [25]. Our conclusion about PCR based on spherical target is similar to [27],
which is that it is difficult to calculate the spherical center precisely because of edge drift.
Thus, a new PCR target is necessary. Compared with previous studies, our method handles
this problem by designing a triangular target. The vertices can be precisely intersected by
three triangular planes.

4.2.3. Landslide Based on DTM Difference

Parameter estimation values and their accuracy values are shown in Table 9. The
coefficient matrix of the LS method and bcWLS method is singular and the parameter
estimation does not converge due to the influence of the ill-condition. The algorithm in this
paper takes ill-condition into account and has advantages for processing real data.

Table 9. Parameters of DTM estimation and accuracy.

Method
^
β1

^
β2

^
β3

^
β4

^
β5

^
β6

^
σ0

LS −0.368 0.340 0.128 −0.007 −0.015 0.0003 13.12
bcWLS −0.265 0.135 0.313 −0.023 −0.062 0.0005 6.93
RWLS −0.165 0.102 0.033 0.016 −0.002 0.0267 2.34

The DTM of the Lashagou NO.3 landslide is shown in Figure 24. The deformation
of the Lashagou NO.3 landslide is shown in Figure 25. It is evident from Figure 25 that
from 26 February 2021 to 3 May 2021, the overall deformation of the landslide was small,
and its maximum value was 0.031 m. The landslide will continue to maintain a stable state
without special factors, such as earthquakes, heavy rainfall, and artificial excavation.
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Figure 24. Lashagou NO.3 landslide DTM.

Figure 25. Deformation of Lashagou NO.3 landslide.

(II) The result of experiment II

The point cloud of the Lihua landslide (phase I) is shown in Figure 26. The DTM
disturbed by multiplicative error obtained in this paper is shown in Figure 27.

Figure 26. Point cloud of Lihua landslide.
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Figure 27. DTM disturbed by multiplicative error.

The estimation and accuracy of the parameters are shown in Table 10.

Table 10. The estimation and accuracy of DTM parameters.

Method
^
β1

^
β2

^
β3

^
β4

^
β5

^
β6

^
σ0

LS −0.532 1.234 0.568 −0.146 −0.051 0.021 26.16
bcWLS −0.389 0.657 0.425 −0.072 −0.081 0.0063 8.24
RWLS −0.132 0.231 0.046 0.024 −0.006 0.001 2.34

The σ̂0 obtained by the LS method is too large, which does not conform to reality,
further indicating that the LS method cannot process actual data. It can also be seen
from Table 10 that the error of the parameter estimation obtained by the LS method is the
largest, and that the error obtained by the RWLS method is much smaller than LS and
bcWLS method.

The deformation of the Lihua landslide is shown in Figure 28. It is evident from
Figure 28 that from 20 April 2021 to 1 May 2021, the overall deformation of the Lihua
landslide was small, with a maximum value of 0.011 m.

Figure 28. Deformation of Lihua landslide.

As shown in Figure 26, the DTM has a huge deviation because of the multiplica-
tive random errors. As indicated in Tables 9 and 10, the σ̂0 obtained by LS and bcWLS
deviates from the true value, but RWLS can obtain a relatively reasonable result. The
results show that the RWLS method is applicable to solve the ill-posed state of DTM in
practical applications.
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The ill-posed problem of the coefficient matrix has been ignored in previous studies,
which results in an unstable or non-convergent solution [62]. We used the Tikhonov
regularization method to derive the RWLS solution for an ill-posed multiplicative error
model. The results of simulation I and simulation II suggest that RWLS’s solution has
a better performance than other methods, such as LS [47] and bcWLS [48]. In the test
on two actual landslide data sets, the LS and bcWLS methods dealt poorly with DTM
construction [29,30,54], because the DTM has a huge deviation due to the random errors.
Our method takes ill-condition into account. Hence, the results of actual experiment I and
actual experiment II are consistent with the results of the simulation data. Thus, the RWLS
method provides a new solution for the ill-posed multiplicative error model.

5. Conclusions

In this paper, TLS technology was used to extract the deformation of a landslide. We
discussed the major factors affecting the landslide deformation, and attempted to reveal
the relevant deformation mechanism. A new measurement and data processing strategy
is proposed in this paper, aiming at extracting the deformation of a landslide. Finally, the
landslide deformation was extracted by using two datasets. The first dataset is the point
cloud data of the Lashagou NO.3 landslide collected on 26 February 2021 and 3 May 2021.
The second dataset is the point cloud data of the Lihua landslide collected on 20 April 2021
and 1 May 2021. The main conclusions drawn from this study are as follows.

In this study, we designed a new triangular pyramid PCR marker, and a PCR experi-
ment for different period TLS datasets based on the new marker was carried out. Compared
with the commonly used spherical target, the edge drift of the sphere is overcome by the
new marker-based PCR proposed in this paper. The registration accuracy based on the
permanent triangular pyramid is 0.003 m. If it is not convenient to make a fixed target,
we also propose a new PCR method based on total station orientation. The registration
accuracy based on the unified theory of backward orientation using the total station method
is 0.005 m. The results show that the new method precisely aligns the point cloud system
with the engineering independent coordinate system.

The weighted least square regularization iterative method can effectively solve the
ill-posed multiplicative error problem. In the tests of two simulation data set, the accuracy
and reliability of the RWLS algorithm outperformed previous methods. Then, two actual
landslide experiment were conducted. The results show that the RWLS solution can
effectively reduce the ill-posed state of the model. The deformation of the Lashagou NO.3
landslide was small, with a maximum value of 0.031 m. The maximum deformation of the
Lihua landslide was 0.011 m.

In general, the monitoring results of the DTM subtraction based on TLS data technol-
ogy show that the Lashagou NO.3 landslide and Lihua landslide will continue to maintain
a stable state without special factors, such as earthquakes, heavy rainfall, or artificial exca-
vations. In cases where the point cloud system and engineering independent coordinate
system are different and the DTM is disturbed by the multiplicative random error, our
method is a more practical choice with stabler precision compared with previous methods.
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Abstract: Rain-triggered landslides frequently threaten public safety, infrastructure, and the economy
during typhoon seasons in Zhejiang Province. Landslides are complex structural systems, and
the subsurface features play a significant role in their stability. Their early identification and the
evaluation of potential danger in terms of the rupture surface and unstable body are essential for
geohazard prevention and protection. However, the information about the subsurface acquired by
conventional exploration approaches is generally limited to sparse data. This paper describes a joint
application of ground-penetrating radar (GPR) with a 100 MHz antenna and the electrical resistivity
tomography (ERT) method with the Wenner configuration to identify the stratum structure and
delineate the potentially unstable body of a clay-rich slope, the results of which were further verified
using borehole data and field observation. The acquired results from the GPR and ERT surveys,
consistent with each other, indicate two stratigraphic layers comprising silty clay and silty mudstone.
Moreover, the potential rupture zone very likely exists in the highly weathered mudstone in the
depth range of 3–7 m, and the average depth is 5 m. In addition, the thickness of the unstable mass is
greater on the east and crest parts of the slope. Conclusively, the optimum combination of ERT and
GPR is reliable for conducting rapid and effective delineation of subsurface characteristics of clayey
slopes for risk assessment and mitigation during the typhoon season.

Keywords: hilly slope; electrical resistivity tomography (ERT); ground-penetrating radar (GPR);
subsurface structure; potential sliding surface; Zhejiang; typhoon

1. Introduction

Zhejiang Province, an economically developed and densely populated region in the
subtropical zone of China, is exposed to a high risk of rainfall-triggered landslides caused
by an incremental occurrence of extreme weather events [1–5]. Moreover, the province’s
landscape is dominated by mountains and hills, accounting for about 75% of its total
area, which can easily lead to landslides. Additionally, increasing demand for modern
infrastructure has caused more engineering disturbance, thus multiplying human risks. At
present, the occurrence of landslides is still one of the greatest threats to local inhabitants
and infrastructure, as exemplified by the Xiashan village landslide in 2001 [4], the Lidong
village rockslide in 2015 [6], the Sucun village rockslide in 2016 [7–9], and the Shanzao
landslide in 2019 [10]. Currently, many slopes are still slide-prone, the majority of which
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are typically small in volume. It is a time- and resource-consuming task to thoroughly
investigate them. According to Mccann and Foster [11], estimation of landslide stability
has to consider the definition of the 3D shape of the unstable body with particular reference
to the failure surface. Hence, there is a pressing need for developing and implementing
actions for the accurate and rapid identification of subsurface features of natural slopes
in Zhejiang.

As regards the practical techniques of identifying subsurface objects, conventional
geotechnical (e.g., drilling, tunneling, and trenching) and geophysical approaches
(e.g., electrical, electromagnetic, and seismic methods) are the most known ones, which
have been broadly applied around the world. The former geotechnical approaches allow a
detailed subsurface description at sparse locations, but they fail to delineate continuous
spatial information. Moreover, they are very costly and relatively time-consuming. Indeed,
underground materials often show high lithological and tectonic variability within short
distances. However, the geophysical techniques, which are flexible, relatively quick, and
deployable on slopes, can provide bulk spatial data directly or indirectly linked with the
lithological, hydrological, and geotechnical characteristics of unstable slopes [11,12], there-
fore providing continuous geophysical mapping of subsurface features, and overcoming
the drawbacks of geotechnical measurements.

Among all geophysical methods, the electrical resistivity tomography (ERT) and
ground-penetrating radar (GPR) methods have proven to be highly efficient approaches
in landslide research [13]. By analyzing the reflected signal of transmitted waves from
the interface where there is a difference in materials, the GPR technique can image shal-
low subsurface structures (even small cavities) and determine the distance at which they
are located. Since the 1980s, GPR has been increasingly accepted for the localization of
fractures or cracks [14–18], the identification of stratigraphy or shear deformation [19–23],
and the characterization of soil water variations [24–27] in the geological, environmental,
and engineering areas. However, the transmitted waves of GPR are strongly attenuated
in conductive zones (e.g., water-rich, clay-rich) and cannot penetrate at greater depths
to identify unknown objects of interest. For a slope with high vegetation coverage, this
phenomenon might be further exacerbated. With a lower resolution and greater penetration
depths than GPR in conductive environments, the ERT technique has been used widely for
various landslides, from rockslides to debris slides, in different geological environments
from rock to soil materials, to identify the slip surface and hydrological conditions, depict
the internal structures, monitor the movement, and disclose the underground faults and
cracks [28–34]. Falae et al. [31] discussed the recent trend in applying ERT in landslide stud-
ies. This method relies on measuring the electrical properties between two electrodes when
transmitting a pulsed current between two other electrodes, which allows for characterizing
the unsteady body compared with the material having different electrical potentials.

Given the non-uniqueness of dataset interpretation, and the drawbacks of individual
techniques in resolution and penetration depth, GPR and ERT have been jointly used for
the investigation of subsurface features thanks to their complementarity [35–43]. Jongmans
and Garambois [28] concluded that almost all the advantages of the geophysical method
corresponded well to the disadvantages of the conventional geotechnical techniques. Per-
rone et al. [13] stated that the joint application of GPR and ERT could solve and overcome
the resolution problems of every single method. Specifically speaking, GPR provides more
helpful information on the shallow layers, while ERT is preferable for the intermediate–
thick layers. The combination of the above-mentioned methods is therefore believed to
have the potential to become a valuable tool for the pre-evaluation of high-risk sliding areas.
However, more attempts seem to be necessary regarding its accuracy and applicability
when probing clayey slopes.
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For these reasons, this work aimed to test the ability of the joint use of ERT and GPR
to distinguish the subsurface characteristics of a clayey slope, and to discuss the optimum
combination. Two geophysical measurements were performed along with three profiles, at
three sites where three boreholes are also available. Validated and calibrated with borehole
data and field observation, the unstable body and potential slip surface could be sufficiently
inferred. The effectiveness and limitations of ERT–GPR surveys for fast characterization of
the subsurface are also highlighted. The novel aspects of this study are as follows: (1) it was
conducted on a clay-rich slope which is usually not friendly for GPR surveys to distinguish
different stratum layers (clay and mudstone); (2) variations in amplitude and energy with
depth for three single-channel GPR waves are also analyzed, unlike in previous similar
studies focusing on the GPR profile; (3) it optimizes the typical GPR profile superimposed
with the elevation level; (4) a 3D model of the potentially unstable body is drawn for direct
visualization. These findings provide a reliable alternative for a more comprehensive and
faster investigation of active slopes in regions where typhoons are frequent and unstable
terrain is abundant.

2. Materials and Methods

2.1. Site Description

The studied slope (27◦34′59′′ N, 119◦54′10′′ E) is located in Yuxi village in Taishun
County, Wenzhou (Figure 1). It is about 300 km away from the capital city of Hangzhou,
in the southeast of Zhejiang Province, which belongs to a subtropical marine monsoonal
region with average annual precipitation of about 2000 mm. Moreover, the distribution
of rainfall over a whole year is not uniform. About 71.2 percent of the rainfall events
concentrate from May to September due to the influence of monsoons or typhoons, during
which geological disasters are highly likely to occur. For example, the super typhoon
Lekima in 2019 induced more than 400 landslides, debris flows, and numerous unstable
points, including the famous Shanzao rockslide causing 32 casualties in Wenzhou city,
according to the government report of Zhejiang Province [10]. In the future, climate change
will continue to exacerbate the frequency and intensity of disasters in China [44] (p. 14).

Figure 1. Location of the study site (red circle) in Zhejiang Province. (a) Map of China and its capital
city Beijing, and of (b) Zhejiang Province and its capital city Hangzhou.
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In Taishun County, more than 200 landslides have occurred since 2001 [45], in which
small and shallow movements were common, putting a great strain on the county’s people,
resources, and environment. Although no fatal landslide disasters have been recorded, all
villages in this county are still, to varying extents, facing negative impacts from geological
disasters as a result of climate change, rapid economic growth, and urbanization.

Geomorphologically, the entire terrain of the slope is inclined from the south toward
the north and drops in a step form due to artificial agricultural activities for the bayberry
plant, having an average slope gradient of 30◦ and an original dip of 5◦ in the NE direction
(Figure 2a). The area of the study site is a hilly terrain, the elevation of which varies between
370 and 402 m a.s.l. Geologically, its stratum units were precisely disclosed using rock and
soil samples collected from boreholes, whose locations and details are shown in Figure 3,
and further verified by stratum outcropping (Figure 2c). The lithological properties of
different layers were disclosed by drilling core samples, as shown in Figure 4. There
are two primary stratum layers in the sedimentary succession according to the borehole
information. At the base of the stratigraphic column, silty mudstone of the lower Cretaceous
Guantou Group (K1g) is overlain by a 1–5 m-thin Quaternary (Q) soil, containing strongly
weathered and fresh rock. More precisely, the near-surface layer is mainly composed
of silty clay with granular gravels, the majority of which are loose colluvial sediments
with large pores and high porosity. Over 80% of the landslides in Zhejiang Province
occur along the colluvium–bedrock contact resulting from the varying soil moisture and
pore water pressure of the colluvial deposits [46]. The upper grayish K1g mudstone is
strongly weathered and fractured, while the bottom is rarely weathered or fresh. The
slope’s potential failure will probably develop between these two stratum layers.

 

Figure 2. (a) Photo of the study site from the air. The red circle marks the study site, and the red
arrow represents the direction of the camera that obtained the photo shown in (c). (b) Photo of the
acquisition work showing the GPR system, step-shape landform, and vegetation coverage. (c) Field
observation of the stratum.
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Figure 3. (a) Locations of geophysical survey lines (A, B, C) and boreholes (ZK1, ZK2, ZK3).
(b) Drilling core logs of the three boreholes (ZK1, ZK2, ZK3).

 

Figure 4. Cont.

491



Sustainability 2022, 14, 7616

 

 

Figure 4. Drilling core samples from three boreholes (ZK1, ZK2, ZK3).

During drilling campaigns, soil and rock samples from three boreholes were carefully
collected and transported to the laboratory for basic physical properties, mineralogical
compositions, and direct resistivity measurements. The Atterberg limits and particle size
distribution of the soil samples were determined following the Chinese National Standards
(CNS) GB/T50123-2019 [47] (pp. 29–43). The bulk mineralogy and clay mineralogy of
the rock samples were measured using an X-ray diffractometer following the methods
described by Moore and Reynolds [48] (p. 378). More specifically, clays in the soil samples
ranged from 41 to 47%, silts from 27 to 30%, sands from 20 to 25%, and gravels from 4 to
7%. Their liquid limits and plastic limits were in the range of 39.7 to 42.4 and 20.8 to 23.2,
respectively (Table 1). The results of the semi-quantitative XRD analysis show that clay
minerals (50–52%) and quartz (34–36%) were the primary minerals, followed by mica and
feldspar, in all rock samples. In terms of the clay mineralogy, these samples were primarily
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composed of illite, with some chlorite and kaolinite (Table 2). Apparently, the slope under
probing is a clay-rich body.

Table 1. Basic physical properties of the soil samples.

Soil Sample
Atterberg Limits (%) Particle Size Distribution (mm, %)

Liquid Limit (%) Plastic Limit (%) Clay (<0.005) Silt (0.005–0.075) Sand (0.075–2) Gravel (>2)

ZK1 42.4 23.2 47 28 20 5
ZK2 39.7 20.8 41 30 22 7
ZK3 40.9 21.5 44 27 25 4

Table 2. Mineralogical compositions and resistivity of the rock samples.

Rock Sample
Whole Rock (%) Clay (%) Resistivity (Ωm)

Quartz Feldspar Mica Clay I K C Weathered Fresh

ZK1 34 8 6 52 56 23 21 785 1432
ZK2 36 8 5 51 55 26 19 801 1365
ZK3 34 7 9 50 53 22 25 812 1309

Note: I—illite; K—kaolinite; C—chlorite.

The studied slope threatens the safety of county road No. 601 and the safety of
15 residents in 5 households, with a potential economic loss exceeding CNY 1 million.
Furthermore, it was chosen because of its clayey conditions and typical geological structure
(two stratum layers: unconsolidated topsoil and bedrock), representing the most common
type of landslide that has not received sufficient attention in Zhejiang Province. There are
the upper loose topsoil layer allowing infiltration of rainwater, and the relatively dense
bedrock layer serving as an aquiclude. Usually, the contact zone between these two layers
has a high likelihood of developing into the rupture surface or area in intensive rainstorms.

2.2. Methodology

In collaboration with drilling core samples, we combined ERT and GPR to identify the
subsurface features of the studied slope, in particular with delineation of the shape of the
potential unstable body and potential slip surface, which were tentatively assumed to be
fault and/or joint planes, and interfaces between topsoils and/or highly fractured rocks
with intact bedrock [49]. All geophysical tests were conducted following the Standard
of Ministry of Water Resources of the People’s Republic of China: SL/T 291.1-2021 [50]
(pp. 6–10, 15–56, 143). Information about ERT profiles A, B, and C is shown in Figure 2. In
what follows, the details of the ERT and GPR measurements are described.

2.2.1. Data Acquisitions

Based on Ohm’s law, ERT measurements are accomplished by measuring electrical
potentials (ΔV) between an electrode pair while introducing a direct current (I) between
another pair of electrodes [51] (p. 806). Then, the resistive properties of the underground
medium can be acquired, commonly expressed in the form of apparent resistivity. In
this study, acquisition was carried out using the DUK-2B high-density resistivity imaging
system with 64 electrodes spaced by 1 m from Chongqing geological instruments. Two-
dimensional (2D) resistivity profiles along three survey lines (labeled A, B, and C) were
obtained using the Wenner configuration. The length of the survey lines varied from 51 m to
60 m, while the expected investigation depth was between 11 m and 20 m, correlating with
the elevation and topography conditions of the studied slope. Profiles A and B (longitudinal
profiles), striking SE and SW, were obtained down-slope, while profile C (cross-profile) was
obtained perpendicular to the dip direction of the slope.
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Three drill holes (ZK1, ZK2, and ZK3) were created using a mobile drilling rig installed
on a truck for stratum identification, which could provide information about the lithology
up to the depth of 25 m based on the extracted core samples. The exact locations of these
boreholes are shown in Figure 3.

Founded on Maxwell’s equations, GPR measurement can be conducted by trans-
mitting pulses of high-frequency electromagnetic (EM) waves that travel through the
subsurface, and receiving EM signals by receiver antennas. When EM energy emits into
the ground, these EM waves can encounter different interfaces, resulting in part of the
GPR signals being reflected to the receiver [52]. These interfaces commonly represent
changes in the physical properties of the subsurface system that are expressed by contrasts
in relative dielectric permittivity. Subsequently, waveform depth, time–frequency, and
amplitude characteristics of the reflected signals generated at the interfaces are collected
and then analyzed. In the pioneer studies (summarized in [28]), it was concluded that
an antenna with a higher frequency corresponded to a higher resolution and smaller
penetrating depth. A 100 MHz antenna commonly has a higher resolution to image
small features up to the depth of 4–5 m and a lower resolution up to a depth of 20 m. In
order to ensure a sufficient detecting depth and resolution at the same time, the ground-
penetrating radar SIR-3000 from Geophysical Survey Systems, Inc. (GSSI) Co., Ltd. a was
employed at three measured points close to the three boreholes, along with three profiles
similar to the ERT lines, coupled to a 100 MHz antenna with an average penetrating
depth of 15 m. Based on GPR datasets, the depth of unknown targets transformed from
the travel time was calculated using a GPR wave velocity of 0.12 m/ns, estimated using
the borehole data. The calculation process was demonstrated by [36]; no more details are
presented herein.

2.2.2. Data Processing

The collected resistivity datasets along all profiles were inverted using the program-
ming code and algorithms of the software RES2DINV, developed by [53]. The 2D resistivity
images were obtained by performing elimination of bad data points, topographic cor-
rection, an RMS convergence restraint, least squares inversion, and a robust smoothness
constraint [53]. All of the resistivity profiles were created after a maximum of 8 iterations,
and the RMS error in percentage of the last iteration was controlled to lower than 3%,
indicating the good and reliable results of the ERT surveys.

Radar data processing was accomplished using RADAN (version 6.0, Geophysical
Survey Systems Inc., Nashua, NH, USA), including static corrections, background removal,
distance norm, range gain, finite impulse response (FIR) filtering, deconvolution, and
time–depth conversion.

3. Results and Discussion

In what follows, information about the subsurface in terms of the amplitude/energy
of a single-channel radar wave, inverted resistivity section, and GPR reflection profile is
presented in Figures 5–9 and further verified using borehole data and field observation.
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Figure 5. ERT profile A and its geological interpretations. (a) ERT image of profile A, (b) geological
interpretations from ERT profile A.

 

Figure 6. ERT profile B and its geological interpretations. (a) ERT image of profile B, (b) geological
interpretations from ERT profile B.
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Figure 7. ERT profile C and its geological interpretations. (a) ERT image of profile C, (b) geological
interpretations from ERT profile C.

 
Figure 8. Cont.
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Figure 8. Waveforms of a single-channel GPR wave at three sites near the three boreholes, showing
variations in amplitude and energy with depth. The black solid lines represent the amplitude, while
the red solid lines denote the energy. The green dashed line with two arrows corresponds to the
peak-to-peak phenomenon. (a) Waveform of ZK1, of (b) ZK2, and of (c) ZK3.

 

Figure 9. Cont.
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Figure 9. GPR image profiles. (a) Profile A superimposed elevation values (Y axis), (b) profile B
superimposed elevation values (Y axis), and (c) profile C at the elevation of approximately 384 m. The
white dashed line indicates the boundary between different geological layers, while the white solid
and dashed line with two-way arrows in (a,b) represents the maximum and minimum thicknesses of
the overlying layer.

3.1. ERT Profiles and Interpretations

To obtain electrical properties of the subsurface, ERT surveys along three profiles
(A, B, and C) were carried out to image inverted resistivity variations with depth in autumn
at the end of the wet season. The inverted resistivity sections and their corresponding
geological interpretations are described in Figures 5–7, respectively. Of particular note is
that profiles A and B superimpose the elevation values, while profile C is a raw image.
Boreholes ZK2 and ZK3 were located at the bottom of the slope, while ZK1 was laid near its
crest. The effective probing depth of ERT was in the range between 12 m and 20 m, which
was greatly dependent upon the electrode spacing, resistivity contrast, broken properties of
the medium, and landform of the slope [54]. Due to its step-shape landform, the variations
in resistivity might also be impacted by the installed location of the electrodes, besides the
mineral components, underground water, and its chemical composition and temperature.

The resistivity range measured in this study was between 90 and 1762 Ohm.m, and its
distribution pattern can provide information about the stratigraphic distribution. The ERT
images from Figures 5–7 with the constraints of geological field observations (Figure 2c) and
drilling core samples (Figure 4) highlight two main resistive zones and their corresponding
stratigraphic layers in all probing profiles. In profile A (Figure 5), the near-surface layer,
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with a variable thickness between 1 and 7 m, has a relatively low resistivity distribution
(<722 Ohm.m), which can be associated with the overlying colluvium composed of silty
clay with granular gravels. The underlying layer at a depth ranging between 8 and 20 m
is primarily characterized by relatively high resistivity values (>722 Ohm.m) and can be
related to the bedrock consisting of silty mudstone. Meanwhile, the average thickness of
the colluvial layer is about 4 m. The colluvium thickness approaches its maximum at the
location of 38 m, but it goes down to its minimum on the middle and crest parts of the
slope, indicating the fluctuation in the bedrock surface. Additionally, a higher-resistivity
body (>1308 Ohm.m) exists in the range between 22 and 38 m at an elevation level of about
383 m, which most likely represents the rarely weathered bedrock by comparing with ZK3
that is the closest exposure site of the subsurface medium. Differently, the thickness of the
colluvial layer in profile B decreases gradually from the crest to the toe of the slope, with
an average value of 3 m, ranging from 2 m to 6 m. According to Figure 6, the depth to
the bedrock is the smallest at the position between 48 and 58 m. Similarly, there is also a
higher-resistivity zone delimited by the black thick line existing in the right part of profile
B at an elevation below 382 m. These findings indicate that a rugged bedrock surface does
not exist in profile B in the range of the horizontal distance.

Since profile C has approximately an EW routing direction at an average elevation
level of about 384 m, it is roughly perpendicular to the slope’s other two ERT profiles. Its
inverted section evidences a fluctuating cover of colluvial materials, which further supports
the interpretations of the other ERT profiles. It is clearly seen in Figure 7 that the colluvium
thickness of profile C is about 5 m near the position 15.3 m, decreases to <1 m at the point of
28 m, and then increases to 2.5 m at its right edge, in good agreement with those variations
in profiles A and B. Apparently, the colluvial material cover is non-uniform on this slope,
implying the limitations of drilling or trench technology at several points.

In short, the bedrock surface is rugged with obvious undulation on the east part of
the slope, while it follows the topography without any noticeable fluctuation on its west
part. The transition zone or interface between the silty clay and weathered mudstone layer
could be interpreted as the potential failure zone or surface. Similar interpretations were
also made by many researchers based on ERT results [32,36,41]. In the literature, ERT has
been used in geology, where [36] summarized the resistivity values of common materials,
with the resistivity value being about 10–2000 Ohm.m for silts, 1–100 Ohm.m for clay,
100–1400 Ohm.m for gravel, and >1000 Ohm.m for rocks. Similar to the values reported
by [54,55], herein, the resistivity of <722 Ohm.m for the overlying layer composed of
gravelly silty clay acquired from ERT matches well with a mixture of silt, gravel, and clay
materials. Consistent with the direct value from the laboratory tests (Table 2), the average
resistivity of bedrock from ERT was about 1000–1100 Ohm.m, and it reduced to the range
of 722–1000 Ohm.m in the upper weathered zone, probably due to the increased content
of finer and clayey particles resulting from the weathering of the mudstone. The same
variations in resistivity between weathered and fresh rocks are observable in previous
studies [32,54].

To further validate the accuracy and effectiveness of the ERT results, GPR measure-
ments involving three lines that are the same as the ERT arrangements and three other
points near these three boreholes were carried out. Therefore, in what follows, the GPR
results are systematically provided and discussed.

3.2. GPR Results and Interpretations

The GPR results of three surveying lines (A, B, and C) and three probing sites close to the
boreholes as well as their main interpreted features are presented in Figures 8a–c and 9a–c,
respectively.

3.2.1. Waveforms in Depth Domain and Interpretations

To directly depict the propagation process of EM waves, GPR signals containing
amplitude and energy information are exhibited firstly in the depth domain based on an

499



Sustainability 2022, 14, 7616

estimated velocity of 0.12 m/ns, which was determined by measuring the travel time in a
known borehole. In Figure 8, the variations in the amplitude and enemy of the EM waves
with depth are revealed by analyzing three single-channel EM waves acquired from three
probing sites close to Zk1, Zk2, and Zk3. It should be pointed out that errors in the depths
obtained using GPR and boreholes are inevitable due to changes in the water content in
subsurface materials.

In all profiles, the waveform in the depth domain highly assists in delineating the
lithological boundaries up to a maximum depth of 12 m in Figure 8. When the peak
amplitude of the radar wave represents an interface between layers or mediums with
different dielectric properties during propagation [55], as can be seen in Figure 8a,b, the
amplitude variations (black line) of the EM wave exhibit two significant peak-to-peak
phenomena around the depths of 0.5 m and 5.1 m for ZK1, and 0.5 m and 4.9 m for ZK2.
Let us compare the waveform with the geological stratigraphy (colorful legends). The first
peak-to-peak amplitude is highly related to the air–ground interface at a depth of about
0.5 m, and the second peak-to-peak position can be interpreted to represent the topsoil–
bedrock interface at a depth of 4.9 m for ZK1 and 5.05 m for ZK2. As the energy of the EM
wave is proportional to the square of the amplitude, it exhibits consistent undulating trends
similar to the amplitude with depth, having two principal peak values at similar positions
(red line). It is thus believed that the amplitude and energy of radar waves could be in
a relatively stable state when propagating in the same medium, whereas they fluctuate
dramatically around these interfaces.

However, for the GPR signal of ZK3 in Figure 8c, the amplitude displays only one
peak-to-peak phenomenon at a depth of about 0.5 m, and it thereafter shows a decreasing
trend with slight fluctuation. Correspondingly, the energy reaches a peak value around
the 0.5 m depth, and afterward, it shows little change with the increase in depth. For this
surveying site, the interpretation of the amplitude and energy dataset does not coincide
well with the borehole data. This contradiction may be mainly because of the fact that
broken anomalous rock bodies exist in the depth range between 3 and 4 m. Generally,
the fragments of rock existing in the underground medium are more likely to produce
interference signals, during which the GPR signals are most attenuated. The observations
made in drilling hole ZK3 delimited by the yellow dashed line in Figure 4 further confirm
the presence of an altered rock (fractured) zone.

Apparently, the amplitude/energy–depth curves obtained from sites near ZK1 and
ZK2 distinctly show two similar relatively stable stages separated by a transition zone,
implying two layers with different dielectric constants of mediums at the probing points.
However, the anomalous bodies (large stones or boulders) in geological units possibly
contribute to the strong attenuation of electromagnetic waves [41], leading to the reduction
in the energy and amplitude of the radar signals. This explains why the amplitude and
energy of the point close to ZK3 gradually decreased with a slight change. In other words,
the broken properties of the subsurface medium except for the dielectric capability also
contribute to the stronger reflection, refraction, and diffraction behaviors of the radar waves.
This indicates that the variation in the amplitude or energy of the radar waves with depth
is also suitable for identifying the internal structure of slopes, whereas its applicability may
be worse in more broken masses.

3.2.2. GPR Reflection Profiles and Interpretations

Generally, GPR signals of geological formations vary mainly depending on the nature
of the components and their textures, and banded sediments often present superimposition
of layered reflections [36,41]. Overall, the radargram in Figure 9 allows the characterization
of heterogeneous deposits in the slope, and it contains abundant GPR signals marked with
different colors representing various amplitude values. In this study, the richer the color,
the richer the reflection, and vice versa. Accordingly, all GPR images indicate a similar
reflected pattern over the topsoil versus the bedrock.
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Figure 9a explores subsurface information up to 13 m depth, and two distinctive
reflected zones are observed in profile A. The area along the upper part above the white
dashed line showing darker and continuous to moderately continuous reflectivity cor-
responds to the colluvial layer composed of gravelly silty clay, as disclosed by ZK1 and
ZK2. However, it is essential to note that the top area of the colluvium ranging from the
surface to about 1 m depth presents brighter and discontinuous reflectors. The effect of
the complex root systems of plants could explain this colorful phenomenon. Below this
layer, the abundant (colorful) and discontinuous reflectors most likely illustrate the strongly
reflective behaviors of the GPR waves, which are interpreted as highly fractured or strongly
weathered silty mudstone bedrock. The maximum and minimum depth values to the
bedrock surface occur at 33 m and 42 m, respectively, agreeing with the occurrences in ERT
profile A (Figure 5a). Additionally, the lithological samples collected from the drilling holes
provide further support for the interpretations of GPR profile A.

The GPR investigation of profile B (Figure 9b) reached a maximum depth of 11.5 m,
presenting two primary radar reflected zones. The overlying area is expressed by moderately
continuous darker reflectors with some occurrences of brighter discontinuous reflectors
in the depth range of 0–1 m, having a thickness range between 1 and 5 m. This is highly
likely related to the gravelly silty clay layer. A number of brighter discontinuous reflectors
are detected within the underlying layer, which corresponds to the bedrock of the strongly
weathered silty mudstone layer. Moreover, the contact boundary illustrated by the white
dashed line between these two lithological units is delineated, being subparallel to the
slope’s surface without noticeable fluctuations.

As previously mentioned, GPR profile C ran from southeast to southwest along the
stepwise flat arc trace and had an effective penetration depth of 7.5 m during the GPR
surveys. Comparing the radar reflector signatures and their corresponding geological
interpretations described in Figure 9a,b, we can see two central lithological units and a
rugged bedrock structure in GPR profile C (Figure 9c). Similarly, the overlying material
expressed by moderately continuous and darker reflectors relates to the colluvial layer
composed of gravelly silty clay. In comparison, the underlying medium with brighter and
discontinuous reflectors correlates with the bedrock of silty mudstone. From 0 m to 48 m in
the horizontal distance, it seems that the boundary between the colluvium and bedrock
fluctuates with notable troughs and crests, in agreement with the interpretation of ERT
profile C (Figure 7a). The maximum and minimum depths to the bedrock occur at 16 m
and 27 m, close to the 18 m and 28 m exhibited in ERT profile C in Figure 7a.

Conclusively, the GPR images better indicate the thickness of the topsoil and boundary
from the underlying bedrock and show detailed information on the subsurface material,
especially in the near-surface zone. However, they fail to detect the interfaces separating
strongly weathered and rarely weathered rock, due to the strong attenuation of the radar
waves penetrating fractured rocks.

3.3. Comparison between ERT and GPR Results

To further compare the ERT and GPR measurement results and hereby discuss the
effectiveness and accuracy of these two combined geophysical methods in the delineation
of subsurface characteristics, the inverted resistivity image and processed radargram of
profile B were plotted and are shown in Figure 10. First, we have to point out that the errors
in the topographical and lithological interpretations between the ERT and GPR images are
unavoidable due to the differences in the manipulation and manifestation of databases
using two geophysical technologies. The contrast both in the resistivity and the reflected
pattern make it easier to see two stratigraphic layers with diverse features as described
earlier in previous parts, showing an upper layer with a decreased trend in thickness from
the crest to the toe of the slope, which is separated by a boundary being subparallel to
the ground from the underlying bedrock. Obviously, in clay-rich conditions, GPR is able
to distinguish the clay layer from mudstone layer by reflected profile when superimpos-
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ing elevation values. This may be mainly because of the difference in internal structure
(e.g., extent of consolidation) and compositions between clay and mudstone.

Figure 10. Comparison between ERT and GPR images of profile B. (a) ERT image of profile B,
(b) GPR image of profile B.

Moreover, ERT is more likely to detect the area of rarely weathered bedrock between
a distance of 30 and 48 m below the elevation of 381 m, whereas GPR fails to exhibit
this phenomenon owing to its particular propagating ability. Commonly, the deeper the
penetration depth, the poorer the resolution. In short, GPR is more accurate in reflecting
shallow unknown objects (such as the planting soil layer in Figure 9a,b) and faster in
gathering information, but it has a smaller probing depth than ERT.

3.4. Model of Potentially Unstable Body

Figure 11 shows the 3D interpreted model of a potentially unstable body built from the
above analysis of the subsurface features through the combined ERT and GPR surveys as
well as the borehole datasets. Obviously, 3D visualization of it enables us to extract essential
information concerning the geometric shape, boundary, initial thickness, and lithological
variation of the unstable body, which is important for its volume estimation. Indeed, the
volume of the slide mass is one of the most important parameters for understanding its
kinetic behavior and the potential effect on objects at risk. Suppose the surface area and
average thickness are known. In that case, the volume of the potential landslide and its
potential influence area can be rapidly calculated, the results of which are the fundamental
basis for risk assessment and mitigation, and disaster protection and prevention.
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Figure 11. Three-dimensionally (3D) interpreted model of a potentially unstable body based on ERT
and GPR images. The light blue dashed lines represent the boundary of the potential failure surface.

Further, the unstable mass’s thickness is inhomogeneous and significantly undulates
on the east part of the slope, as shown in Figure 11. Under this context, the commonly used
drilling techniques are less likely to distinguish all these irregular distributions due to the
insufficient survey points at the slope scale. The integrated preliminary and non-invasive
geophysical surveys are particularly critical, as they can provide helpful references for
the location selection of boreholes during geological investigations. It can also be inferred
that the potential rupture surface might be located at the transition zone between the
silty clay and the mudstone bedrock, probably in the heavily weathered rock (rich in clay,
underground water, and cracks). Based on the identification of the potentially unstable
body, more attention should be paid to the surface drainage to reduce the influence of
rainfall infiltration in the typhoon season.

Although numerous studies have highlighted the inherent ambiguity of any individual
geophysical method when interpreting unknown underground objects, they have also
emphasized reducing uncertainty by incorporating multiple pieces of information acquired
from diverse data sources, e.g., geophysical, geotechnical, and geological data. In the
successful work published by [41], information on a colluvial layer, bedrock interface,
potential sliding surface, and underground seepage system was illustrated by employing
multi-geophysical methods and drilling data. Similarly, ref. [36] investigated the undulating
topography of the bedrock beneath clay by integrating GPR and ERT data as well as
boreholes. In this case study, the joint application of ERT and GPR was further confirmed to
be capable of decreasing such uncertainty and applicable when delineating the subsurface
features in clayey environments. Consequently, for Zhejiang Province where landslides
mainly occur along the contact zone between unconsolidated deposits and the bedrock and
are commonly shallow, the combination of ERT and GPR could be a reliable tool to obtain
information about potential sources of risk. However, it is difficult to extract a precise
threshold representing the potential failure zone in terms of the resistivity, amplitude, or
energy from the above results.

503



Sustainability 2022, 14, 7616

4. Conclusions

Amid a changing climate, China is facing the specter of even more significant disaster
risks in the future, which may also bring global cascading impacts. In Zhejiang Province, a
large number of small hilly slopes are in an unstable state and have not been effectively
investigated due to the difficulties of human surveys, the drawbacks of conventional
geotechnical tools, and the limits of financial resources. This paper demonstrated how
a combined geophysical method consisting of ERT and GPR with borehole data could
effectively identify the subsurface characteristics of a clayey slope in a relatively short time,
and how this delineated the potential unsteady body.

The inverted resistivity sections, radargram images, and single-channel waveform in
terms of the amplitude/energy versus the depth indicated two lithological layers, consistent
with the field observation and borehole data. The potential failure surface will most likely
develop in the strongly weathered mudstone in the depth range of 3–7 m, and the average
depth is 5 m. In addition, the thickness of the unstable mass is non-uniform in this slope,
being much greater on its east and crest parts.

The GPR survey was suitable for identifying the shallow subsurface features with high-
resolution imaging capability. Its reflection profile and the waveform of a single-channel
GPR signal provided a valuable contribution to the analysis of the stratum structure and
unstable body, even in a clay-rich environment. However, GPR could not distinguish
the strongly weathered layer from the intermediary or rarely weathered layer due to
their similarity in dielectric properties. The GPR wave was strongly attenuated when
encountering anomalous stones or boulders in the topsoil layer. ERT could simultaneously
assure both the resolution and exploration depth up to a maximum of 20 m and could be
applied to detect the degree of weathering of the bedrock. The fresh bedrock was illustrated
to exist at deeper zones in the ERT profiles. However, it was not easy to propose precise
resistivity thresholds for different lithological layers.

In conclusion, the combined method of ERT and GPR was beneficial for fast field
investigation of the subsurface features in a clay-rich condition, which could support a ref-
erence for geohazard prediction and prevention when precise knowledge of the subsurface
is absent. It could also offer guidance for selecting borehole and trench locations.
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Abstract: Although accurate root cohesion model estimates are essential to quantify the effect of
vegetation roots on shallow slope stability, few means exist to independently validate such model
outputs. One validation approach for cohesion estimates is back-calculation of apparent root cohesion
at a landslide site with well-documented failure conditions. The catchment named CB1, near Coos
Bay, Oregon, USA, which experienced a shallow landslide in 1996, is a prime locality for cohesion
model validation, as an abundance of data and observations from the site generated broad insights
related to hillslope hydrology and slope stability. However, previously published root cohesion
values at CB1 used the Wu and Waldron model (WWM), which assumes simultaneous root failure
and therefore likely overestimates root cohesion. Reassessing published cohesion estimates from
this site is warranted, as more recently developed models include the fiber bundle model (FBM),
which simulates progressive failure with load redistribution, and the root bundle model-Weibull
(RBMw), which accounts for differential strain loading. We applied the WWM, FBM, and RBMw at
CB1 using post-failure root data from five vegetation species. At CB1, the FBM and RBMw predict
values that are less than 30% of the WWM-estimated values. All three models show that root cohesion
has substantial spatial heterogeneity. Most parts of the landslide scarp have little root cohesion, with
areas of high cohesion concentrated near plant roots. These findings underscore the importance
of using physically realistic models and considering lateral and vertical spatial heterogeneity of
root cohesion in shallow landslide initiation and provide a necessary step towards independently
assessing root cohesion model validity.

Keywords: root reinforcement; shallow landslides; slope stability

1. Introduction

Vegetation plays a critical role in protecting slopes against shallow landslides, primar-
ily because of the mechanical reinforcement that plant roots provide to the soil on steep
slopes [1–4]. In many upland areas, shallow landslide susceptibility increases in response
to population and urbanization pressure, overgrazing, timber harvest [5], and climate-
induced wildland fire size and frequency [6]. Over the last several decades, researchers
have developed a variety of root breakage models to quantify the additional root cohesion
provided to the soil [7,8]. These models vary significantly in their assumptions about the
root reinforcement mechanics. For example, the earliest model developed by T.H. Wu, L.J.
Waldron, and colleagues [9–11], known as the Wu and Waldron model (WWM), assumes
that all roots break at once. This assumption was challenged by Pollen and Simon [12] in
their fiber bundle model (FBM), a stress-controlled model that represents root breakage as a
progressive process in which the weakest roots break and cause the load to be redistributed
to the surviving roots. Instead of a stress-controlled model, Schwarz et al. [13] proposed a
strain-controlled model called the root bundle model-Weibull (RBMw) that uses the Weibull
distribution to represent the probability of breakage with increasing strain.
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Since its publication, the WWM has been found to result in overestimation of root
reinforcement in numerous studies due to its assumption of simultaneous failure [12,14].
By contrast, the FBM and the RBMw are generally considered to have more realistic
assumptions [7]. However, despite the important role that root reinforcement plays in
preventing shallow landslides, the authors are not aware of any studies that have compared
results from these three models at a landslide site with the detailed measurements of root
characteristics that are necessary for computing root cohesion with all three models. To
the authors’ knowledge, only the study of Zydron and Skorski [15] has compared results
from all three models together, but this study was conducted at an agricultural plot rather
than at a landslide site. Similarly, while some studies have computed root cohesion using
root data collected from shallow landslide sites [16,17], none of these studies compared
more than two models. In this study, we use a unique dataset with detailed measurements
of root characteristics, collected from the scarp of a shallow landslide, to calculate root
cohesion using these three root breakage models. The comparison we present in this paper
demonstrates how the choice of root breakage model affects root reinforcement estimates
across an entire landslide site.

The study we present in this paper is important because the differences between the
results of the three models at a landslide site could have significant implications for making
engineering and land management decisions, such as the type, quantity, and extent of
vegetation required to reinforce a slope [2,18]. Comparing these models at the same site
would allow practitioners to adjust values that were previously estimated with one model
to obtain values equivalent to estimation with another model. This type of comparison
could be particularly valuable if other models are thought to be more realistic at that site. A
better understanding of the magnitude and spatial variation of root reinforcement provided
by different plant assemblages is necessary to evaluate potential negative impacts from
different land use scenarios.

The previously instrumented research catchment in the Oregon Coast Range, CB1,
is a thoroughly studied landslide site, with tightly constrained site characteristics, that is
well suited for this type of comparative study. This catchment was heavily instrumented
with hydrologic monitoring for several years before experiencing a landslide in 1996 [19].
Following the landslide, data from the catchment became the subject of several research
studies on hillslope hydrology and slope stability [19–24]. As part of this research, Schmidt
et al. [25] measured the tensile strength of vegetation roots at the site and used these data
to estimate root reinforcement in the slope using the WWM. Since then, the development of
the newer root breakage models, including the FBM and the RBMw, present the opportunity
to revisit estimates of root cohesion at CB1.

This paper has two main objectives:

1. To reexamine previously published root cohesion estimates for the CB1 landslide by
Schmidt et al. [25], which was evaluated before the development of breakage models
accounting for progressive root failure. Because root cohesion values for the CB1 slide
have been cited and used in subsequent studies [19,21,22,26,27], reexamining these
values has implications for these existing studies as well as future investigations.

2. To compare the results of these three models at an instrumented landslide site where
interpretations have implications for other shallow landslides. Because roots in the
landslide scarp were surveyed and measured post-failure, data from the CB1 site is
uniquely suited to this purpose.

In this study, we apply three different root breakage models to data from the CB1
catchment: (1) the WWM; (2) the global load-sharing FBM; and (3) the strain-controlled
RBMw. These three models are representative of the major developments in root breakage
models since the original publication of the WWM, as outlined by Dias et al. [7]. First,
we review how root tensile strength was calculated based on laboratory analysis of root
specimens collected at several locations in the Oregon Coast Range. We use these data to
estimate regression models for predicting root tensile strength for roots of a given diameter
and species. We then review the root data that were collected from the CB1 site after
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landsliding and use the regression models to calculate root tensile strengths. We then apply
the three root breakage models to obtain estimates for apparent root cohesion. Finally, we
investigate how root cohesion varies both laterally along the scarp perimeter and vertically
with depth. We also investigate the contribution of each of five vegetation species to the
overall root cohesion as a step towards independently validating cohesion estimates from
different model frameworks.

2. Materials and Methods

2.1. Root Breakage Models

Plant roots reinforce a soil mass against shear failure because roots are strong in tension
and weak in compression, whereas soil is weak in tension and strong in compression [28].
Root-reinforced soil is a composite material where roots of relatively high tensile strength
reinforce a soil matrix of relatively low tensile strength [29]. The contribution of roots to
the shear strength of soil can be described as an additional term in the widely adopted
Mohr–Coulomb failure criterion:

s = c′ + cr + (σ − u) tan φ′, (1)

where s is shear strength, σ is normal stress, u is pore-water pressure, φ′ is effective angle
of soil internal friction, and c′ is the effective soil cohesion. The apparent root cohesion cr
represents the additional shear strength provided by roots [29]. Roots produce an apparent
cohesion via fiber reinforcement, hereafter referred to as root cohesion. Most research
quantifying root cohesion focuses on the tensile resistance of the root “bundle”. We focus
on “breakage” models that calculate maximum tensile resistance of a root bundle where
tensile strengths of the individual roots are known [7].

The WWM, the first quantitative model for estimating root bundle tensile strength,
assumes that all roots fail simultaneously, mobilizing the sum of the full tensile strength of
all roots. Several studies indicated that the WWM overestimates the strength because the
assumption that all roots break simultaneously is not realistic; instead, roots break progres-
sively, with the load from broken roots being redistributed onto surviving threads [12,14].
Pollen and Simon [12] therefore developed the fiber bundle model (FBM) to simulate
progressive failure due to loading.

The greatest drawback of the FBM is that it does not account for root elasticity; the
stress-step approach does not allow roots of different sizes to respond differently to the same
applied load [15]. To address this shortcoming, Schwarz et al. [30] proposed a new model,
the root bundle model (RBM), which uses a strain-step approach. Subsequently, Schwarz
et al. [13] published an extension of the RBM, the root bundle model-Weibull (RBMw),
which uses a Weibull probability distribution to account for variability in mechanical
properties among roots of the same diameter.

Several studies have compared root cohesion estimates obtained between at least two
of the published models. Preti and Schwarz [31] suggested multiplying the root cohesion
by a correction factor to account for overestimation. Several studies have estimated this
correction factor for the purpose of adjusting results obtained using the WWM [16,32,33].
One of the original authors of the WWM suggested reducing WWM estimates by a factor
of 0.3–0.5 [34]. Arnone et al. [32] reports that the ratio of FBM-estimated cohesion to
the WWM-estimated cohesion ranges from 0.34 to 1, with an average of 0.4 proposed by
Preti and Schwarz [31]. Comparisons between the WWM and the RBMw suggest similar
values for the ratio of WWM-estimated cohesion to RBMw-estimated cohesion, in the range
of 0.4–0.6 [13,15], with Zydron and Skorski [15] proposing a correction factor of 0.5 for
adjusting WWM-estimated cohesion.

2.2. CB1 Landslide Site

The 860 m2 CB1 catchment was monitored for unsaturated and saturated hydrologic
flow response magnitude and pathways in the context of shallow-soil slope stability. CB1 is
located below Mettman Ridge in the Oregon Coast Range, approximately 15 km northeast
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of Coos Bay, Oregon, USA [35]. The ridge crest elevation is approximately 300 m. A
detailed physical description of the site and its soils is provided in Montgomery et al. [19]
and Anderson et al. [20]. CB1 is one of two adjacent catchments used for experimental work
on landslide failure [20,23,24]. The site was clearcut logged in 1987 and replanted with
Douglas fir saplings in 1989; instrumentation was installed starting in 1989 and remained
in place until November 1996, when it was destroyed by a landslide and the associated
debris flow [19]. Figure 1 shows an aerial view of the CB1 catchment immediately after the
landslide, and Figure 2 shows photos of the catchment both before and after the landslide
taken from the same vantage point.

 
Figure 1. Post-landslide oblique aerial photo, taken roughly towards the NNW direction, reveals
both upslope shallow landslide extent and downslope debris flow scour. Vehicles on the road near
the bottom of the image indicate the relative size of the landslide area. Photograph by K.M. Schmidt,
U.S. Geological Survey.
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Figure 2. View of the CB1 catchment (a) before and (b) after the landslide. Both images are taken
from the same location at the top of the scarp. The view is to the north, looking directly down the
central axis of the hollow. Panel (a) shows some of the instrumentation which was installed at the
site before the landslide. The instrumentation included tipping bucket rain gages, tensiometers,
piezometers, catwalks to minimize ground surface disturbance, and a downslope weir. Photograph
by K.M. Schmidt, U.S. Geological Survey.

The CB1 site used artificial sprinkling experiments to understand hydrologic re-
sponse [20,23,24]. Montgomery et al. [19] provides several photographs of the site before
and after failure, as well as analysis of hydrologic conditions at the time of landslide initia-
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tion. The initial landslide source area was confined to the colluvium overlying sandstone
bedrock with post-event observations constraining the failure mass upslope of the weir.
The landslide and associated surface water flow stripped off most of the colluvium down
to bedrock in the source area. After the landslide, the depth of the landslide scar from
remnant ground surface to landslide failure surface was measured around the perimeter of
the scar including lateral and head scarps components. The average depth of the landslide
failure plane around the perimeter of the slide was 0.7 m but varied from 0.3 m to 1.2 m.
The basal surface of the landslide scar was relatively planar, with an average slope of 43◦,
generally parallel to the ground surface. The basal area of the landslide scar was 157 m2

and the total length of the upper scar was 58 m. However, roots from only 37 m of the scar
perimeter could be collected and measured because of physical disturbance and obstruction
by catwalk infrastructure [19].

After the 1996 failure, Schmidt et al. [25] meticulously measured and collected vegeta-
tion roots from the failure scarp. Vegetation in the vicinity of the failure scarp is dominated
by Douglas fir (Pseudotsuga menziesii) saplings planted two years after the clear cut, blue
elderberry (Sambucus caerulea), thimbleberry (Rubus parviflorus), foxglove (Digitalis pur-
purea), and Himalayan blackberry (Rubus discolor). All the plant species are native except for
Himalayan blackberry, which is non-native and invasive [36]. Low confining stress triaxial
tests on undisturbed material determined the colluvium was essentially cohesionless, with
an internal friction angle of 40◦ [19]. Because very few roots intersected the basal landslide
surface, and all the roots intersecting the lateral margin were observed to have broken,
Schmidt et al. [25] concluded that plant roots mainly provided lateral reinforcement.

Previous root cohesion estimates at CB1, obtained using only the WWM [19,25],
estimated a spatially averaged root cohesion of 4.6 kPa over the entire 37 m perimeter of the
landslide scarp. These estimates were calculated in vertical and lateral profiles, revealing
that root cohesion is spatially heterogeneous, with values ranging from near 0 to 13 kPa
in the vertical profile dimension and near 0 to 14 kPa laterally along the scarp [19]. The
basal component of root cohesion was estimated to be 0.1 kPa [19], a small fraction of
the estimation for the roots exposed in the lateral scarp. The relatively low estimate for
the basal component highlights the fact that most of the roots are constrained within the
overlying colluvium, with few roots piercing the colluvium–bedrock interface.

2.3. Estimation of Root Thread Strength from Experimental Data

Schmidt et al. [25] carried out tensile strength tests for root threads of 12 species at
multiple sites throughout the Oregon Coast Range, including the Mettman Ridge area near
Coos Bay. Schmidt et al. [25] collected root specimens measuring up to 6.5 mm in diameter
by identifying healthy plant species in the field, excavating their roots, trimming suitable
lengths of similar diameter, and determining the tensile force at failure for given diameter
classes. Thread strength tests were conducted by adhering the ends of 15–20 cm-long
threads into clamps, pulling by hand with a consistent force until the thread failed, and
measuring the maximum force required for failure with calibrated springs. Healthy roots
were identified based on bark characteristics and relatively high elasticity. We use the same
method of estimating thread tensile strength as Schmidt et al. [25], who used a second-
order polynomial regression model to represent maximum tensile load. To obtain results in
units of tensile strength, which is necessary to apply the FBM, we convert the results of the
polynomial regression model to a power law representing tensile strength (see Appendix A).
We estimate maximum tensile load at failure for all species except Douglas fir. Because the
Douglas fir roots measured were relatively fine and not representative of larger Douglas fir
roots, we instead used the equation from Burroughs and Thomas [37] for the tensile load of
Coast Douglas fir, which is based on a sample with greater representation of large-diameter
roots. The experimental data and equations for tensile load are shown in Figure 3.
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Figure 3. Field-measured relations of species type with tensile load at failure (solid circles) for a given
thread diameter with best fit second-order polynomial model from Equation (A1) (see Appendix A)
(except for Douglas fir, where the equation of Burroughs and Thomas [37] was used). Equations are
shown for foxglove (a), Douglas fir (b), elderberry (c), blackberry (d), and thimbleberry (e). Panel
(f) shows the estimated curves for all species color-coded by the individual species. In all plots, the
diameter range of the curves represents the range over which the tensile load was estimated. All data
are available in Schmidt and Cronkite-Ratcliff [35].

2.4. Root Data from the CB1 Landslide Site

Root data obtained from the CB1 landslide scarp are available in Schmidt and Cronkite-
Ratcliff [35]. These data were collected by Schmidt et al. [25] and consist of 349 roots, 41 of
which are located in the basal surface. All roots intersecting the slide scarp were broken
during landsliding. These roots represent five different species: foxglove, Douglas fir,
elderberry, blackberry, and thimbleberry. Of the remaining 308 roots that were not in the
basal surface, 280 were live and generally oriented perpendicular to the failure surface
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and failed during landsliding. A subset of roots aligned roughly parallel to the slide scarp
were exposed but did not fail during landsliding. The majority (211 out of 280; 75%)
belonged to thimbleberry plants. It should be noted that the roots identified in the landslide
headscarp were not excavated to the plant of origin to determine species. Rather, species
were identified based on proximity to remaining above-ground plant biomass, and also by
characteristic species traits (e.g., color, texture, tortuosity, bark, etc.) of the roots observed
during the measurements of thread strength vs. diameter for the different species examined.
The scarp was divided into 16 segments ranging from 1 to 6.2 m in width and from 0.29 to
1.2 m in average depth. However, roots were measured in only 12 of these 16 segments,
with 4 segments occluded by ground disturbance (Figure 4). Segments are inclined at
angles of 39–87◦ from horizontal. The area of each segment ranged from 0.5 to 4 m2.

Figure 4. Panel (a) shows the plan view of the landslide scarp perimeter constructed with a tape
and compass survey, showing the locations of numbered segments. Only segments where roots
were measured are numbered. Segments where no roots were measured (because of obstructions
including collapsed soil masses and broken site infrastructure) are shown as dashed lines. Segments
of scarp perimeter are constrained to the boundary of the initial landslide and do not include the
downslope debris-flow. Data on the location of the scarp segments are available in Schmidt and
Cronkite-Ratcliff [35]. Panel (b) shows the location and diameter of live roots in the scarp, showing
the depth below ground surface and the position along the landslide scarp perimeter for each root.
The vertical dashed lines demarcate the lateral boundaries of each segment along the scarp perimeter,
with shaded areas showing the approximate areal extent of each scarp segment. A small amount of
“jitter” (Gaussian noise with variances of 0.1 m and 0.01 m in the horizontal and vertical dimensions,
respectively) has been applied to the location and depth to visually differentiate roots located at
the same perimeter and depth location. Data on the location and diameter of roots are available in
Schmidt and Cronkite-Ratcliff [35].

Figure 4 shows the location and diameter of the roots broken in the landslide scarp,
and Figures 5 and 6 show the diameter distribution and depth distribution for the roots
broken in the landslide scarp. All the root species exhibit a roughly similar diameter
distribution that is positive-skewed, with most values falling below 10 mm, and with
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modal values between 2 and 6 mm. The thickest observed root was an elderberry root
with a diameter of 20 mm. The depth distributions for all species appear to be relatively
similar, showing that most roots are located at relatively shallow depths. Approximately
90% of all roots are located within 50 cm of the ground surface. This is consistent with
earlier research showing that in general, at least 80% of the biomass is within 40–50 cm of
the ground surface [2].

Figure 5. Histograms of broken live root diameter for each of the vegetation species identified along
the landslide scarp. Histograms of broken live root diameter are shown for foxglove (a), Douglas fir
(b), elderberry (c), blackberry (d), and thimbleberry (e). Panel (f) shows the histogram of broken live
root diameter for roots of all species together.

515



GeoHazards 2022, 3

 

Figure 6. Histograms of depth below ground surface for the roots of each of the vegetation species
identified along the landslide scarp. Histograms of depth below ground surface are shown for
foxglove (a), Douglas fir (b), elderberry (c), blackberry (d), and thimbleberry (e). Panel (f) shows the
histogram of depth below ground surface for roots of all species together.
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2.5. Application of Root Breakage Models
2.5.1. Wu and Waldron Model (WWM)

The WWM uses a simple calculation where the total force that can be sustained by
the root bundle is the sum of the tensile strengths of all the individual roots in the bundle,
multiplied by their cross-sectional areas.

Fb = R f ∑N
i=1 Ti Ai, (2)

where Ti is the tensile strength of the i-th root (in units of stress), Ai is area of the i-th root,
and Rf is a correction factor for the inclination angle of the root. We use a value of 1.0 for
Rf, following the conclusion of Thomas and Pollen-Bankhead [28] that an Rf value of 1.0
was most appropriate for sites with friction angles between 5◦ and 45◦ and failure surface
angles between 10◦ and 90◦.

2.5.2. Fiber Bundle Model (FBM)

Pollen and Simon [12] developed the FBM to address the systematic overestimation
of root cohesion by the WWM, which assumes simultaneous failure of all roots. A single
force is applied to a bundle of parallel fibers according to a load apportionment rule which
determines the applied stress on each individual fiber. If the applied stress on a fiber
exceeds its tensile strength, the fiber breaks, and it is no longer available to support the
applied load in subsequent iterations. Effectively, this process finds the maximum total
force that can be sustained by the entire bundle without breaking all the roots. Flowcharts
describing the FBM are shown in Pollen and Simon [12] and Dias et al. [7].

In this study, we applied the FBM assuming global load sharing, in which the load
is distributed equally among all fibers, rather than local load sharing, in which the load
from a broken fiber is distributed disproportionally to its closer neighbors. In this study,
we implement the FBM such that the load is distributed equally to each individual root,
following the recommendation of Mao et al. [38]. This method of load apportionment
ensures that the largest roots break last, making the total bundle strength dependent on the
larger roots. This assumption is supported by Cohen et al. [39], who showed that small
diameter roots will always be the first to break, and Giadrossich et al. [40], who showed
that small roots provide almost no contribution to root reinforcement at the stand scale.

Note that any subset of roots with the same tensile strength and diameter will fail
simultaneously. Therefore, in this study, where tensile strength is a function of diameter
only, roots of the same species and diameter will either survive or fail together in a single
model iteration.

Root Bundle Model-Weibull (RBMw)

The root bundle model-Weibull (RBMw) was developed to account for the effects
of elastic deformation on root failure. Schwarz et al. [30] proposed a strain-controlled
model, the RBM, that imposes successive displacements to a root bundle and calculates
the resisting tensile force that results from the given strain. It is thus possible to calculate
the forces acting on the root bundle for any displacement [41]. Schwarz et al. [13] further
extended the RBM to account for variability in strength for roots of the same diameter. This
extension was named the RBMw (root bundle model-Weibull) because they used a Weibull
survival function to represent the decreasing probability of survival as the root is stretched
beyond its original length.

The Weibull survival function represents the probability that a root remains unbroken
when it has been stretched to a specific displacement. To model the elastic response of
the root in a way that is independent of the root diameter, the displacement is normalized
based on the elastic properties of the root. For details on how we implemented the RBMw,
see Appendix B. The shape parameter ω and the scale parameter λ* of the Weibull survival
function are estimated separately for each species. The resulting parameter values are
shown in Figure 7.
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Figure 7. Estimated normalized displacement data (circles) and curve from the fitted Weibull survival
function (see Appendix B). Estimated normalized displacement and fitted Weibull survival curves
are shown for foxglove (a), Douglas fir (b), elderberry (c), blackberry (d), and thimbleberry (e). Panel
(f) shows the estimated normalized displacement and the fitted Weibull survival curves for roots of
all species plotted together.

2.6. Calculation of Root Cohesion

For each of the three models (WWM, FBM, and RBMw), the goal is to obtain the
maximum force that can be sustained by the bundle. While the WWM directly gives an
estimate of the maximum force, the FBM and RBMw produce a force value as a function of
the nominal applied force or displacement, respectively. The FBM and RBMw therefore
require application over a range of inputs to find the maximum force that can be sustained
by the bundle. The root cohesion is calculated as the ratio of the maximum force Fb to the
area of the failure surface (A):

cr = Fb/A (3)
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The root cohesion can be calculated to give a scarp-averaged cohesion value for the
entire bundle, without accounting for any spatial variability due to the spatial distribution
of roots in the scarp. To obtain a spatially distributed estimate for root cohesion, the
domain is discretized into sections (laterally and/or vertically), and the maximum force is
calculated individually for each of these smaller sections ranging in cross-sectional area
from 0.57 to 4.0 m2 (when binned by segment) and from 0.42 to 3.3 m2 (when binned by
10-cm depth intervals).

3. Results

First, we describe the results of the maximum force calculation across the entire
landslide scarp without considering any spatial variability in the root cohesion. Figure 8
shows the number of surviving roots as a function of applied force from the FBM. Figure 9
shows the force-displacement curve from the RBMw. Whereas the WWM predicts a
maximum force of 101.2 kN, the FBM predicts a much lower maximum force of 26.1 kN.
The maximum force from the RBMw is lower still at 18.3 kN. These results are consistent
with earlier research showing that the WWM overpredicts cohesion relative to the FBM
and the RBMw [12,14]. Additionally, we draw the reader’s attention to the strain at which
each species reaches its maximum activated force. Whereas both elderberry and Douglas
fir exhibit peak values at about 200–300 mm of displacement, the maximum thimbleberry
contribution to strength occurs at a much lower displacement value of about 40 mm.

 

Figure 8. Results from the FBM, showing the number of surviving roots after application of different
loads. Vertical dashed line indicates the maximum activated force.
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Figure 9. Force-displacement curve resulting from the RBMw model. Horizontal dashed line shows
the maximum activated force.

In addition to the scarp-averaged values, we calculated the root cohesion distributed
vertically and laterally within the scarp. Along with these distributed values, we describe
the percent contribution to the overall bundle strength from vertical and lateral sections of
the scarp. Because of the nonlinearity of the FBM and RBMw models, a general formula
for the contribution of any one section k of the bundle is posed as a percent reduction in
strength (PRS) for the bundle without group k:

PRSk = 100

⎡⎣
(

Fb − F(b−k)

)
Fb

⎤⎦ (4)

where Fb is the maximum force for the entire bundle, and F(b−k) is the maximum force for
the bundle with all the roots belonging to group k removed. Group k could represent a
group of roots at a particular depth, a particular section along the perimeter of the scarp,
and/or roots belonging to a specific species.

3.1. Scarp-Averaged Cohesion

When converted to root cohesion averaged over the entire 37 m long slide scarp,
which has a total cross-sectional area of 21.8 m2, the root cohesion is 4.6 kPa for the
WWM, 1.2 kPa for the FBM, and 0.8 kPa for the RBMw. In their comparative study of the
three models, Zydron and Skorski [15] obtained similar results for the relative cohesion
estimates for two different tree species. However, the ratios of FBM-estimated cohesion
and RBMw-estimated cohesion to the WWM-estimated cohesion, which are 0.18 and 0.26,
respectively, are somewhat lower than estimates of comparable ratios from other researchers
(see Section 2.1). Results for the scarp-averaged root cohesion are summarized in Table 1.

Table 1. Results for root cohesion averaged over the entire CB1 landslide scarp.

Model Maximum Force (kN) Root Cohesion (kPa) WWM Reduction Factor

WWM 101.2 4.6 1
FBM 26.1 1.2 0.26

RBMw 18.3 0.8 0.18
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3.2. Root Cohesion by Depth

Root cohesion was calculated along different depth bins to highlight variability with
depth below the ground surface. All three models show that cohesion diminishes below
a depth of about 80 cm, with no model predicting cohesion greater than 2 kPa below this
depth. However, there are substantial discrepancies in the cohesion values as well as the
relationship versus depth that depend on the breakage model. The maximum root cohesion
calculated by the WWM, for example, is 11.4 kPa, which is approximately 40% greater than
the root cohesion calculated from the FBM at 8.1 kPa, and five times greater than the root
cohesion calculated by the RBMw method at 2.3 kPa. The maximum activated forces and
the root cohesion for the 10-cm depth bins are shown in Figure 10.

Figure 10. Root strength variation by depth calculated over the perimeter of the landslide scarp. Panel
(a) shows maximum activated force, and (b) shows cohesion, superimposed over the scarp-averaged
cohesion values for comparison depicted as vertical dashed lines. Panel (c) shows the cumulative
strength contribution with increasing depth for each of the three models. All quantities are calculated
over all roots within 10-cm depth increments along the scarp plane; negligible roots intersecting the
basal surface are not included.

For the WWM and RBMw models, root cohesion reaches its maximum at a depth
of 10–20 cm below the ground surface, and for these two models, roughly 80% of the
root cohesion provided by these shallowly rooted plants species is in the top 40 cm of the
regolith, with background negligible values at deeper soil depths. However, when using
the FBM, the maximum cohesion occurs at a depth of approximately 60–70 cm below the
ground surface. These results demonstrate the influence of the root strength model in
calculating root cohesion and the implications for applying these values in the context of
slope stability modeling in landscapes with plant species expressing different characteristic
rooting depths. Similar results were reported by Zydron and Skorski [15], who reported
that the WWM consistently produced the highest root cohesion values with depth, the
RBMw produced the lowest, and the FBM produced values that fell between the results of
the other two models.

3.3. Root Cohesion along the Scarp Perimeter

The results also show that root cohesion is not homogeneous in the planform dimen-
sion along the perimeter of the landslide scarp. The maximum force and the cohesion
calculated along the segments of the scarp are shown in Figure 11. For segment 3, the
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cohesion is <0.05 kPa for all three models, while in segment 9, the cohesion ranges from
3.1 kPa when calculated by the RBMw to 12.9 kPa when calculated by the WWM. The
differences in the relative magnitudes of cohesion estimated by each of the three models
are also evident in the depth-dependent and scarp-averaged cohesion values.

Figure 11. Maximum activated force (a) and root cohesion (b) calculated independently for each
scarp segment, showing lateral variation along the perimeter of the landslide scarp. Panel (a)
shows maximum activated force, and (b) shows root cohesion, with the scarp-averaged cohesion
superimposed as horizontal dashed lines for comparison. Both quantities are calculated within each
segment along the length of the scarp perimeter; negligible roots intersecting the basal surface are not
included. S1 through S16 denote the scarp segments depicted in Figure 4a.

The planform distribution of root cohesion may be less informative than the depth
distribution, since it mostly reflects the spatial location of roots belonging to specific plants,
whereas the vertical distribution may be more indicative of a generalized relationship
with depth. However, the lateral root distribution indicates areas of low root cohesion
along the scarp perimeter, which could indicate gaps in vegetative root reinforcement
and initiation areas for shallow landslides. For instance, Roering et al. [42] suggested that
shallow landslides occur in areas of low root cohesion between trees; they presented a
simple method for mapping of the distribution of trees and their canopies in hollows to
quantify the landslide susceptibility.

522



GeoHazards 2022, 3

Calculating the root cohesion by segment and by depth, as shown in Figure 12, pro-
vides more evidence that the cohesion has significant spatial heterogeneity. Although
depth bins have a uniform size of 10 cm, the variation in the width of each segment results
in the areas over which cohesion was calculated varying between 0.08 m2 and 0.65 m2.
Figure 12 shows that cohesion is highly concentrated within areas that have a high density
of elderberry and Douglas fir roots, which have the greatest tensile strengths. For all
three models, the cohesion distribution among the different depth/segment sections has a
skewness greater than 5, indicating the very high degree of spatial concentration. For the
depth/segment sections with the greatest contribution, while most depth/segment sections
contribute <1% to the overall root cohesion, the percent contribution for the strongest
section is 16% for the WWM, 23% for the FBM, and 12% for the RBMw. Alternatively,
the cohesion of the strongest individual section is 123 kPa for the WWM, 99 kPa for the
FBM, and 34 kPa for the RBMw, values which are greater than the scarp-averaged cohesion
calculated from the respective model by a factor greater than 25. This relation highlights
the great spatial variability and localized maxima adjacent to denser, spatially concentrated,
plant roots.

3.4. Contribution of Cohesion by Species

The amount of cohesion contributed by each of the species within the CB1 landslide
scarp is an especially important question from a geotechnical engineering point of view
because it addresses which species could be most effective for slope stabilization [2,18]. The
contribution of root cohesion by a particular species represents the PRS that would occur
if roots from that species were removed from the bundle, calculated using Equation (4).
Figure 13 shows the contribution of root cohesion by species for each of the three models.
The best way to interpret the results shown in Figure 13 is to compare the contributions
from different species in the FBM and RBMw to those in the WWM. This figure reveals
two interesting results. First, in the FBM model, the only two species that contribute to
the cohesion are Douglas fir and elderberry, which have the greatest tensile strength for
large diameter roots. This suggests that the results of the FBM are especially sensitive to the
tensile strength of the largest diameter roots. Second, the greatest strength contribution in
the RBMw model derives from thimbleberry and slightly exceeds that of either Douglas fir
or elderberry. The force-displacement curve in Figure 9 shows that the maximum resisting
force of each species is mobilized at different displacements. Furthermore, those resisting
forces activate over different ranges of displacement. While thimbleberry roots impart
a high strength, most of this strength is activated at displacements generally less than
250 mm, whereas the strength of Douglas fir and elderberry roots is activated over a much
wider range of displacements. Although thimbleberry is relatively weak in tensile strength
compared to Douglas fir and elderberry, its peak resisting force is concentrated at a different
displacement than Douglas fir and elderberry, allowing it to complement the cohesion from
the two stronger species.
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Figure 12. Root cohesion (a–c) and percent strength contribution (d–f) calculated by segment and
10-cm depth bin along the landslide scarp for each of the three models. The distribution of cohesion
across different segment and depth bins (g–i) shows that cohesion has a high degree of spatial
heterogeneity across the scarp.
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Figure 13. Contribution of root cohesion by species calculated for each of the three models. Because
of the nonlinearity of the FBM and RBMw models, the contributions for FBM and RBMw will not
necessarily sum to 100%.

4. Discussion

Although our results clearly show that cohesion estimates by both the FBM and the
RBMw are substantially less than those estimated by the WWM, at present, we have no
independent means to evaluate which model results are the most representative of actual
site conditions. It is well known that the assumptions of simultaneous failure in the WWM
are unrealistic and represent an upper bound on the strength of a root bundle. Both the
RBMw and FBM were developed to represent progressive failure, which we believe is much
more realistic generally. Although the results on the accuracy of root breakage models
compared to experimental and field tests varies widely (see Table 1 in Ji et al. [43]), it is
well established that the WWM overestimates the root strength [12,14]. Schwarz et al. [17]
report that for lateral reinforcement along a landslide scarp, the WWM overpredicts root
cohesion by approximately a factor of three, a finding supported by other studies [12,39,44].
Our results also indicate that progressive failure models produce scarp-averaged cohesion
values that are 18% and 26% of the WWM-estimated value for RBMw and FBM, respectively,
a result which is approximately consistent with these studies and others [15]. These
results are strong evidence that the WWM-estimated values represent overestimation of
the root strength at CB1 as well. However, the magnitude of overestimation is expected
to vary depending on the local root diameter distribution and the thread strength of
individual species.

The likely overestimation of root cohesion by the WWM has important implications
beyond the CB1 site. Schmidt et al. [25] investigated CB1 as one of several landslide sites
and compared the root cohesion values in terms of the land use and disturbance history,
particularly in terms of the forest management. The results of that study indicated that
the root cohesion at CB1 was broadly consistent with values (a range of 1.5–6.7 kPa) for
other clearcuts with a disturbance less than 11 years old. By comparison, Schmidt et al. [25]
estimated that median lateral root cohesion in industrial forests up to 123 years old fell
in the range of 6.8–23.2 kPa and old growth forests fell in the range of 25.6–94.3 kPa. If
these estimates, obtained using the WWM, overestimate the root strength by the degree
suggested in this study and others, these results are likely to be overestimates as well, and
caution should be exercised when quoting or applying these values in new investigations.
As previously reported values from Schmidt et al. [25] have been cited in other publica-
tions [19,21,22,26,27], these values in the literature should be used with great discretion.

525



GeoHazards 2022, 3

There are major discrepancies between the root strength values calculated using the
various models. These results point to the importance of using models that are physically
realistic and account for the important processes governing root behavior under tension,
including differential displacement and load redistribution. The three models have differ-
ences in which species impart the greatest contribution to the overall bundle strength. For
instance, the FBM-modeled cohesion is contributed entirely by two species, Douglas fir
and elderberry (Figure 13). However, field observations revealed broken roots of all five
species measured along the scarp. Observations of broken root threads are consistent with
a mobilization of a finite contribution of strength by a broader array of roots than indicated
by the FBM approach. Alternatively, the RBMw model results highlight the control of
species on the resisting forces activated over a range of displacements (Figure 9). Hence,
the RBMw model results suggest that a range of species with different tensile strength char-
acteristics may more effectively hinder landslide deformation at a range of displacements.
In Figure 13, the RBMw model results indicate a contribution from all species except for
foxglove in the total contribution to strength. Foxglove roots were both small in diameter
and limited in number and as such could be expected to play a minimal role in the total
resistance. Hence, results from the RBMw model are more consistent with observations of
broken roots of all species along the slide scarp.

Additionally, more sophisticated models also consider root behavior under com-
pression [4,45], a process which is not considered in this paper. In the distal extents of
landslides, roots undergo compression, imparting a lower strength than their tensional
forces [4,45]. However, remaining evidence following the CB1 landslide did not allow
for any estimate of root behavior in the landslide toe where compression would be more
pronounced. Such evidence was removed by the passage of the landslide and downslope
debris flow (Figures 1 and 2). None of the models applied in this study account for all these
processes. Future research directions should continue applying models that account for
these processes in addition to pursuing root model validation through alternate means to
evaluate actual model robustness.

5. Conclusions

Earlier publications that quantified the contribution of vegetation roots at the CB1
landslide site reported the apparent root cohesion had a spatially averaged, static value
of 4.6 kPa over the entire scarp [19,25], without considering the heterogeneity of root
cohesion across the failure plane. These analyses were based on the Wu and Waldron
model (WWM). We believe that root breakage models that account for progressive root
failure better characterize the reinforcement mechanics at the CB1 site, which failed with
progressive landslide deformation prior to debris flow mobilization. Hence, the static value
of 4.6 kPa determined from the WWM is likely an overestimate and such values should not
be used in subsequent numeric landslide susceptibility models. Furthermore, the RBMw
results from CB1 indicate that root cohesion may be less than a fifth of the static WWM
value (0.8 kPa). Combined with other research suggesting that the WWM can substantially
overpredict root cohesion, this result suggests that the vegetation roots contribute far
less cohesion to the soil than indicated by earlier investigations at CB1. Additionally,
because the vegetation is responsible for nearly all the cohesion in the root–soil composite,
and the mineral component of the soil has been shown to have negligible cohesion, this
result means that the overall regolith has far less cohesion than previously established by
Schmidt et al. [25].

Despite the discrepancies in the magnitude of the apparent root cohesion, the results of
all three models consistently show that root cohesion has significant spatial heterogeneity,
corroborating the conclusion of Schwarz et al. [17]. This result has important implications
for slope stability modeling, which because of constraints on model input parameters
have traditionally assumed that root cohesion is a homogeneous, spatially invariant value.
When combined with site-specific data on topography, hydrologic response to rainfall, and
material properties available for the CB1 site, slope-stability analysis will allow these three
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root models to be tested against factors of safety estimated from three-dimensional slope
stability models.
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Appendix A

We use the same method of estimating thread tensile strength as Schmidt et al. [25],
who used a second-order polynomial regression model to represent maximum tensile load:

Fmax(d) = ad + bd2, (A1)

where Fmax is the tensile load and a and b are scaling factors.
While Equation (A1) gives the maximum load in units of force, many root breakage

models, particularly the FBM, use tensile strength in units of stress. For this reason, we
first estimate maximum force at failure using Equation (A1) and then convert to units of
stress. Equation (A1) can be converted to negative power-law form by dividing by the
cross-sectional area of the root to convert the dependent variable to units of stress. This
conversion transforms the relationship to be linear in the reciprocal of the diameter [46]:

Tmax(d) = ud−1 + c, (A2)

where Tmax is the tensile strength, u is a scaling factor and c is a constant.
To estimate the tensile load at failure for each species, we use ordinary least squares

regression to obtain fits to Equation (A1). We then convert the results to the form of
Equation (A2) to obtain results in units of tensile strength. In our specific case, where the
tensile force is represented by a load measured in kilograms [25], we first multiply the
load by the standard acceleration of gravity to obtain units of force before converting to
Equation (A2).

Appendix B

In the RBMw, roots are modeled with linear-elastic deformation that break at a thresh-
old displacement [13]. The average root length L, the average maximum tensile force F,
and the average elastic modulus E are modeled as power-law functions of root diameter
d [13,30]:

L(d) = L0dγ (A3)

E(d) = rE0dβ (A4)

where L0 and E0 are scaling factors for length and elastic modulus, respectively, β and γ
are exponents, and r is a scaling factor which accounts for reduction in the elastic modulus
due to root tortuosity [13].
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Using the above equations, the tensile force sustained by a root as a function of the
diameter d and the displacement Δx is:

F(d, Δx) =
πrE0

4L0
d2+β−γ Δx , F(d, Δx) < Fmax(d) (A5)

where Fmax represents the maximum tensile force of the root (Equation (A1)). For a given
displacement Δx, the force mobilized by the bundle is the sum of the forces on each root at
that displacement:

Fb(Δx) = ∑N
i=1 F(d, Δx) (A6)

To represent the variability in the mechanical properties of roots of the same diameter,
Schwarz et al. [13] use the two-parameter Weibull survival function defined by the scale
parameter λ* and the shape parameter ω:

S(Δx∗) = exp
[
−
(

Δx∗

λ∗

)ω]
(A7)

where Δx* represents the normalized displacement. The normalized displacement is the
ratio of the displacement Δx to the displacement at which the root fails, Δxmax:

Δx∗ = Δx
Δxmax

(A8)

By introducing the Weibull survival function, the force mobilized by roots of the same
diameter becomes dependent on displacement as well as the diameter. This additional
dependence is achieved by multiplying the force on each root by its probability of survival
for a given normalized displacement, giving the term F(di, Δx) S(Δx* ). The total strength
of the root bundle at a given normalized displacement is the sum of forces mobilized by all
roots at that displacement:

Fb(Δx) = ∑N
i=1 F(di, Δx)S(Δx∗) (A9)

The RBMw requires a range of displacements to be applied to the bundle using
Equation (A9), until the maximum applied force is found.

In our model, root length L was calculated using Equation (A3), and the elastic
modulus E was calculated using Equation (A4). As no site- nor species-specific values
for the scaling factors and exponents were available, we adopted values from Schwarz
et al. [30] that fit data for 27 spruce roots: E0 is 696 MPa mm, L0 is 335 mm, β is −1, and γ is
0.63. Because the value for E0 accounts for the effects of tortuosity, the tortuosity coefficient
r from Equations (A4) and (A5) is effectively equal to 1 [30]. Root force at failure Fmax was
obtained by Equation (A1) using coefficient values shown in Figure 3.

Because Weibull survival function parameters must be calibrated from the normal-
ized displacement, we estimate the normalized displacement from the experimental data
described in Section 2.3. We represent the displacement at which the root fails, Δxmax, as
the displacement where the applied force equals root force at failure Fmax. The normalized
displacement was estimated as the ratio of the measured displacement to the displacement
at failure (Equation (A8)). However, because the displacement is linearly proportional to
force, the normalized displacement is equivalent to the ratio of the measured tensile force
Fmeas to the estimated tensile force at failure Fmax:

Δx∗ = Fmeas

Fmax
(A10)

The estimated normalized displacement values used to calibrate the Weibull functions
are therefore equivalent to the multiplicative residuals from the tensile force regression
models (Equation (A1); Figure 3). The Weibull survival function shape and scale parameters
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(Figure 7) are estimated separately for each species using maximum likelihood estimation
(e.g., Lee [47]).
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Abstract: The temporary or permanent river blocking event caused by mass movement usually
occurs on steep terrain. With the increase of mountain population and land use pressure and the
construction of water conservancy and hydropower projects, river blocking events have gradually
attracted people’s attention and understanding. The area in this study is affected by strong tectonic
activity in the Jinsha River suture zone and the rapid uplift of the Tibetan Plateau. In the past
6000 years, there have been at least five obvious river blocking events in the reach. The number
and density are very rare. Combining field investigation, indoor interpretation, laboratory tests,
optically stimulated luminescence (OSL) dating, SBAS-InSAR and previous studies, multidisciplinary
approaches are used to systematically summarize the analysis methods and further the understanding
of one river blocking event and multiple river blocking events from different perspectives. Especially
in multiple river blocking events, we can get the wrong results if interaction is not considered.
Through this study, the general method of analyzing the river blocking event and the problems that
should be paid attention to in sampling are given, and relatively reliable historical results of river
blocking events are obtained. This method has applicability to the identification and analysis of river
blocking events and age determination of dams with multiple river blockages.

Keywords: river blocking event; landslide dam; multidisciplinary approaches; dating and SBAS-InSAR

1. Introduction

The Qinghai–Tibet Plateau is the highest plateau in the world, and it is still increas-
ing [1–3]. The upper Jinsha River is located on the southeast margin of the Qinghai–Tibet
Plateau, significantly affected by tectonic uplift. There are steep slopes, deep valleys, and
widely developed mass movement [4]. When geomorphic processes such as landslides cut
off the river, they lead to the formation of temporary or permanent stream blockage [5,6]
and present the greatest threat to people and property [7,8]. A recent blockage of the
Jinsha River occurred on 10 October 2018, and the Baige landslide river blocking event
(31◦4′51′′ N; 98◦43′01′′ E) was about 200 km upstream of our study area. Then, secondary
hazards can be induced when landslide dams form and fail, including dam breach, up-
stream inundation, and downstream flooding [9]. Jinsha River is one of the rivers with the
largest water resource potential in China [10], so it is a relevant area in the development of
water conservancy and hydropower projects. In addition, it is of great significance to carry
out geological hazard research on this section [11,12].

As a complex geological and geomorphic phenomenon, especially in ancient times,
the blocking of Jinsha River provides a lot of information for its development history,
quaternary seismic activity, formation and evolution of catastrophic geological disasters
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in large valleys, and better understanding of the geological environment caused by earth-
quakes [13]. In the research area of about 26 km, there are several large landslide bodies, six
of which could be identified as river blocking events, named Wangdalong I and II (WDL I
and II), Rongcharong (RCR), Suwalong (SWL), Suoduoxi (SDX), Gangda (GD). Geologists
are interested in learning ancient information from these events.

In recent years, there have been numerous studies conducted concerned about
dammed lakes in the Quaternary, which developed on the major rivers of the Qinghai–Tibet
Plateau [2,13–17]. The research methods are becoming more quantitative and systematic,
but there are still problems such as the lack of details and theoretical support due to limited
information obtainable from Quaternary sediments, which makes it possible to ignore
certain information about the river blocking event, and the analysis results are biased,
especially in the case of multiple river blocking events in one river section.

Therefore, based on previous studies, we combined field investigation, experimental
data and our own analysis methods, hoping to play a complementary role in the research
of river blocking events. The goals of this study include: (1) characterizing the geomorpho-
logical and sedimentological features of the ancient river blocking events; (2) determining
the formation and breaching time of ancient river blocking events in order to contribute to
the analysis of paleoclimatic and paleotectonic activity; (3) summarizing key ideas about
analysis of multiple river blockages; (4) summarizing of general flow and precautions of
river blocking research, providing some further insights in prospective research analysis,
experiments, etc.

2. Study Area

2.1. Regional Geologic Setting

The study area is located on the upper reaches of Jinsha River in the southeastern
margin of Qinghai–Tibet Plateau (Figure 1a). Tectonically, the structure of the study area
is strong and there are many deep faults around (Figure 1b). There are two main groups
of active faults in the study area: Yangla–Dongzhulin Fault zone (F3) and Zeng Datong
North–South fault (F4), which are still active with the estimation of strike slip rates to be
6~7 mm/a and vertical rates to be 2~3 mm/a [18]. The study reach belongs to arid or
semiarid climate [3], resulting in serious weathering and poor vegetation development on
both sides of the bank slope. Along both sides of the valley, the exposed rocks are mainly
schist, granodiorite, marble, limestone and granite (Figure 1c). These conditions lead to the
development of jointed fractures in rock mass.

2.2. Geologic Setting of Each Dam

Affected by tectonic activities, there are faults near the dam body in this area, which
make the surrounding rock mass more broken and joint fissures to develop, and this is
the main reason for the existence of landslide dams in this river section (Figure 2). Except
for GD, there are several kinds of lithology around the dam body, and different lithology
boundaries are places with poor mechanical properties. The inclined plate rock mass
around the dam body is prone to bending and cracking. These are unfavorable factors for
the stability of the riverbank slope.
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Figure 1. Map showing the locations and regional geologic settings (a) located on the southeastern
edge of the Tibetan Plateau, (b) tectonic outline map (according to 1:1,000,000 geological map),
(c) regional geological map (according to 1:1,000,000 geological map).
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Figure 2. Map showing the specific geological settings of the dam site. Note: Due to the limitations
in data collection, WDL, RCR and SWL were generated according to 1:50,000 geological map; SDX
and GD were generated according to 1:200,000 geological map. (Note: these figures were created by
ArcGIS 10.2).

3. Methodology

Uniformitarianism, also called the comparative–historical method, is an important
paradigm in the process of geological research [19,20]. We can deduce the conditions,
processes and characteristics of ancient geological events by using the existing laws of
geological action, through the geological phenomena and results left over by various
geological events. ‘The Present is the key to the Past’ is the uniformitarian paradigm [19,21]
and nature is the best geological museum and laboratory, so field investigation is the
premise and foundation of geological research and it is the traditional thinking method
of geology. Therefore, a uniformitarian approach with the combination of modern science
and technology is applied to improve the analysis of river blocking events.

For an ancient river blocking event, there are many pertinent research methods.
A method called the “trinity” combination of residual landslide dams, upstream lacustrine
sediments and downstream break-outburst sediments has been proposed [2,22]. In short,
the fact that the river is blocked has basically reached a consensus and the method is reliably
suitable for landslide dams as classified by Costa and Schuster [23].

3.1. Analysis of an Independent Landslide Damming of River Event

For one landslide damming river event, some traces would be left near the location
where the river was blocked. Considering the fact that there would be less key direct
information left in some river blocking events, it is necessary to analyze and summarize
from different dimensions and perspectives.
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3.1.1. Evidence from Remote Sensing Interpretation

The occurrence of the river blocking event requires the joint action of two aspects.
The first is the stream channel, the other is blocking dam. For the remaining Quaternary
ancient river blocking event, the square is generally large. Therefore, we can search along
the river to find the landslide dam body on both sides of the river using remote sensing
images (Figure 3), which is the potential evidence of blocking the river. Therefore, there
will be greater changes in topography, including the change of bank slope morphology and
the phenomenon of river diversion. In Google Earth, we can roughly circle the scope of
the remaining dam block to find the source of blocking material. At the same time, we can
also use DEM data for 3D modeling in GIS software such as ArcGIS to obtain some relative
geometric parameters, such as the accumulation area, the accumulation length along the
river, the accumulation width perpendicular to the river direction and the accumulation
thickness of the dam body at the collapse.

Figure 3. Remote sensing map of river blocking event. (Note: these images are from Google Earth).
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3.1.2. Evidence from Morphology

After determining the approximate location of river blocking, the phenomenon of river
blocking can be more accurately identified by detailed field investigation. Taking on-site
photos of GD as an example (Figure 4), we can see that the dam bodies on both sides of
the Jinsha River have geometric continuity and a good curve can be obviously observed
by abstracting it into geometry. In the photographs taken, the geometric size of the river
blocking body is well identified and recognized. At this time, important information
such as the maximum thickness, average thickness of the accumulation body, and the
geometric position and size of the breach are recorded, which are of great significance for
the verification of the inversion results of the numerical simulation.

Figure 4. Geometry of GD landslide dam.

3.1.3. Evidence from Geology

For a river blocking dam where we can find a source area, geological continuity
usually is maintained. That is, the lithology of the dam is consistent with the lithology of
the material source area. Similarly, we can look for material sources on this basis. When
the lithology of the bank slopes on both sides is inconsistent, and the lithology of the
residual dam on both sides is consistent, we can infer the occurrence of river blockage and
determine the source of material. However, in turn, when both sides of the bank slope
have the same lithology, even if the internal lithology of the residual dam is consistent, it
cannot be inferred that the material comes from one bank, which requires further analysis
combined with remote sensing interpretation.

3.1.4. Evidence from Sedimentology

In the study section, there are a lot of fine-grained sediments (Figure 5). These lacustrine
sediments not only directly reflect the sedimentary environment, but also reflect the hy-
drodynamic conditions of the transport medium. In order to determine the grain size
characteristics of the lake sediments, the samples were taken from the lake sediments
during the field investigation. As the lacustrine sediments particles are small, they can be
all brought back for grain size analysis to obtain cumulative curve of particle size. In our
laboratories, we used a hydrostatic sedimentation experiment to measure the grain size.
Then we can get particle size characteristic parameters (Table 1). Firstly, according to Eli
law, the diameter of the bed load moving on the riverbed is proportional to the square of
the flow velocity (Equation (1)). In this study, we selected the maximum d50 value in Table 1
as the calculation data. By the following assignment, d = d50max = 2.6 × 10−5, rS = 2700,
r = 1000, g = 9.8, we calculated V = 1.73 × 10−2 m/s, which is far less than the normal
velocity of Jinsha River. Secondly, according to the Stokes formula, similarly, 0.026 mm
is chosen as the calculation particle size, and the average temperature of Jinsha River is
selected as 9.2 ◦C (according to the Batang Hydrological Station) to select the particle size
calculation coefficient. The sedimentation velocity v = 8.146 × 10−7 m /s is calculated and
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the setting time is about 568 days when the settling height is 40 m. Through the above
rough calculation, it is concluded that a certain thickness of fine sediment layer on the
upstream of landslide body must be formed in a stable still environment where the river is
blocked. Therefore, the existence of the lacustrine deposits layer can effectively reveal the
river blocking event.

d =
rk

2g f (rs − r)
·V2 (1)

where V is the velocity acting on the surface of sediment particles, m/s; d is the diameter
of sediment particles; mrS is the density of sediment particles, kg/m3; r is the density of
water, kg/cm3; f is the coefficient of friction; g is the acceleration of gravity, 9.8 m/s2.

v =
2
9
· (ρS − ρW)g

η
·r2 (2)

where v is the sedimentation velocity of soil particles, cm/s; r is the radius of soil particles,
cm; ρS is the density of solid particles, g/cm3; ρw is the density of water, g/cm3; η is the
coefficient of dynamic viscosity of water, Pa·s; g is the acceleration of gravity, 980 cm/s2.

Figure 5. Lake sediments formed in dammed lakes. (a) In WDL-RCR reach; (b) in WDL-RCR reach;
(c) in RCR-SWL reach.

Table 1. Characteristic parameters of cumulative percentage curves of lacustrine sediments.

Sample
Effective Size Mean Size Control Size

d30/mm
d10/mm d50/mm d60/mm

S1 0.0050 0.026 0.032 0.015
S2 0.0029 0.015 0.019 0.0064

S3 0.0090 0.03 0.036 0.021
S4 0.0016 0.01 0.014 0.0043

S5 0.0043 0.019 0.026 0.012
S6 0.0027 0.024 0.029 0.0048
S7 0.0042 0.017 0.018 0.0087

S8 0.0020 0.009 0.013 0.0045
S9 0.0015 0.006 0.0088 0.0019
S10 0.0023 0.011 0.014 0.0051

Note: Location of the sample is shown in Figure 2 as Snumber.
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3.1.5. Evidence from Break-Outburst Sediments

The dam break-outburst sediment is also one record of a landslide dammed lake, and
it is also an important way to understand the dam-break process, which is usually difficult
to find in an old river blocking event. According to the particle size of dam break-outburst
sediments, the flood parameters at that time can be obtained by back analysis [22,24].
Furthermore, reasonable analysis of dam break-outburst sediments can also be made to
determine the sequence of river blocking events.

In short, for a complete blockage of the river, starting with the blockage of the river
by a landslide and ending with a dam failure, we can mainly investigate, describe and
summarize from the above five aspects. Among them, many lacustrine deposits is the most
critical and convincing evidence for long-term existence of river blocking.

3.2. Analysis of Interdependence Landslide Damming of River Events

The characteristic of the study area is that there have been many river blocking events.
Therefore, more data are needed to explain whether these river blocking events interact
with each other, which may be inconsistent with or even contrary to the results obtained
from a single analysis of river blocking. These problems will mainly affect the judgment of
river blocking time and thus affect the order of river blocking events, so more means and
evidence are needed to explain the overall process of river blocking events. For example, if
the WDL dammed lake formed early and lasted for a long time, then the dating age of the
lacustrine sediments is likely to indicate WDL rather than other dams upstream. Besides,
considering a long time of dammed lake existence, the effect of water on the genesis of
other landslide dams shall be considered in numerical simulation even in such dry and
rainy areas.

3.2.1. Elevation Inference

In terms of elevation, there is a rule that Edam (the elevation at stable formation of the
dammed lake) ≥ Elake (the highest elevation of the dammed lake) ≥ Elacustrine (the highest
elevation of the lacustrine sediments). Since the ancient barrier lake has disappeared,
we can obtain information from the present shape of the dam and the highest retention
elevation of the lacustrine sediments. If the lacustrine sediments and landslide dam belong
to the same river blocking event, then the highest elevation of the former cannot be higher
than that of the latter. If not, the lacustrine sediments would not be formed by the dam.
The principle is to rely on the geological boundary.

For Edam, we obtain the profile chart according to the DEM, then the original dam
shape is roughly outlined in reference to the form of the Baige landslide which occurred
in the upstream according to Feng, et al. [25]. Finally, the reasonable elevation value
(Figure 6) is deduced. For Elacustrine, we use lacustrine sediments elevation recorded on
field investigation by comparing the relatively highest point (Table 2).

Table 2. Elevation of dam crest and maximum elevation of lacustrine deposits upstream from the
dam.

Dam
Minimum

Elevation of Dam
Crest (m)

Maximum Elevation of
Lacustrine Deposits

Upstream the Dam (m)
Dam

Minimum
Elevation of Dam

Crest (m)

Maximum Elevation of
Lacustrine Deposits

Upstream the Dam (m)

WDL I 2500
2426

SWL 2394 2430

WDL II 2463 SDX 2423 2445

RCR 2444 2442 GD 2455 2446
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Figure 6. Speculative profile of each dam.

3.2.2. Dating

For several river blocking events, dating is a direct method to determine the sequence
and, especially, multi-method dating campaigns enhance our understanding of the begin-
ning and end of the river blocking event. However, due to the limitations of objective
conditions, such as the error of test methods, the lack of availability of dating samples,
insufficient funds and the uncertainty of whether the obtained samples have been in the
accumulation body or later mixed in, it is often necessary to analyze them from multiple
aspects using different methods [26]. Although more direct and high precision evidence is
the 14C dating age of the dam material, 14C dating requires high wood charcoal samples.
First, this section belongs to the dry and hot valley, and there is less vegetation on both
sides of the river, so the sample collection is very difficult. Second, the source of samples
cannot be guaranteed, so data may be deceptive. Therefore, the dating data of lacustrine
sediments can often be used to assist the explanation. At present, the optically stimulated
luminescence (OSL) dating method is widely used. In our paper, we commissioned the
Institute of Hydrogeology and Environmental Geology to carry out OSL dating of the
samples. To enrich the number of samples, we also used sample data from published
literature [16,17].

In a single river blocking event, it is reasonable to infer that the normal sequence is
formed later in the upper than lower part; in other words, the bottom is older than the top.
Through field investigation, there is no sequence inversion caused by tectonic movement.
According to the stratigraphic relationships between the dam body and the lacustrine
sediments, a relative age for the dam can be concluded.

However, for several river blocking events, due to the influence of river geomorphol-
ogy (Figure 7), the analysis of the dating results of the lacustrine sediments can be divided
into the following situations.
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Figure 7. Diagrammatic drawing of river geomorphology.

Situation 1 is the formation of lacustrine sediments in the same river blockage with
the same bottom baseline (Figure 8a). In general, through the detailed investigation on the
site, the relative bottom and the relative top of the lacustrine sediments are found. Through
the time difference between the top and bottom, we can roughly infer the duration of the
river blocking.

Figure 8. Diagram of the relationship between lacustrine sediments. (a) Situation 1; (b) Situation 2;
(c) Situation 3 and Situation 4.

Situation 2 is in the same river blockage with the different bottom baseline (Figure 8b).
We find the bottom of the profile of the right-hand sampling point then subtract the
bottommost elevation of the left-hand sampling point from the bottommost elevation.
Finally, we subtract the difference in elevation obtained above from the right-hand sampling
point. The same bottom elevation is obtained according to the above method and then
analyzed according to situation 1. When the bottom cannot be determined, the difference
can be made by using the elevation of sampling points of the same age.

Situation 3 is in different periods of river blocking events with the same bottom
baseline (Figure 8c, Dam II with Dam III). The age of sediments in the bottom is most likely
different. Data analysis can often form two series.
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Situation 4 is in different periods of river blocking events with the different bottom
baseline (Figure 8c, Dam I with Dam II), first according to situation 2, then according to
situation 3.

These situations only consider the general case, not all. The specific method will be
described below.

We first assume that several river blocking events are independent of each other,
and then we make the chart (Figure 9) according to dating data. The analysis results of
these data are obviously contrary to the assumption preceding part of the text that there
is a negative linear correlation between years and elevation. These data are dependent
and need to be processed further. According to the results of dating data and its errors,
the frequency statistics are carried out with 100-year intervals, and four peaks are found
(Figure 10). Under the guidance of no clear experimental purpose, the results of random
sampling are related to the distribution of samples, so it can be considered that these dating
data roughly represent the four river blocking events.

Figure 9. Unprocessed OSL dating data.

Figure 10. Frequency histogram of OSL dating data.
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Therefore, we processed the data as follows:
First, the data were classified by river sections according to their locations.
Then, in each category, the classification was further carried out according to the

linear relationship.
Last, the classified data were reasonably segmented combined with the results of

the age–frequency histogram, and the classification results were processed into the same
baseline to obtain the results (Figure 11).

Figure 11. Grouping results of post-processing OSL dating data.

3.2.3. Interpretation of Geological Phenomena

Good analysis results should be able to reasonably explain the observed phenomenon.
We explain the field investigation on this basis to show that the above results are correct.

First, considering landslide dam, GD and SDX residual dam body are relatively
complete, the distance between the right bank dam and left bank is short, and the collapse
occurs at the cross section, which indicates that the dam body exists for a short time.

Second, we consider the characteristics of dam break-outburst sediments. In the
upstream of SWL and SDX, the sedimentary layers under different hydrodynamic environ-
ments are found, and the maximum number of accumulation layers in SWL (Figure 12) is
more than that in SDX. This is because the formation of SWL is earlier than that of SDX and
GD, so it is affected by the two river blocking events.

Figure 12. Stratification phenomenon in SWL-SDX reach.

542



Water 2022, 14, 968

Third, from the point of view of lacustrine sediments, the stratification of lacustrine
sediments should be more obvious and nearly horizontal in the general long-term stable
water environment, while the stratification of lacustrine sediments found in SWL, SDX
and GD deposits is not obvious, indicating that the water environment is not stable in the
long-term. It was also found that the bedding of the lacustrine sediments was inclined,
indicating that the sediments formed before landslides (Figure 13). The horizontal continu-
ous lacustrine sediments in the WDL-SWL reaching up to hundreds of meters are more
obvious than that in the SWL-GD reach. Therefore, according to the results of Section 3.2.2,
the sequence of each river blocking is relatively reasonable, which is consistent with the
results of field investigation.

Figure 13. Typical geological phenomena. (a) Inclined lacustrine sedimentary layer on SDX dam body
upstream. (b) Horizontal sedimentary layer covers inclined sedimentary layer phenomenon on GD
dam body. (c) Inclined lacustrine sedimentary layer on SDX dam body downstream. (d) Horizontally
stratified lacustrine sediments in WDLII-RCR section. (e) Horizontally bedding lacustrine deposits
layer on RCR dam body upstream.

3.2.4. River Long Profile Morphology

Fluvial response causing by landslide dam may theoretically influence sediment yield,
channel planform, cross section, gradient, or bed configuration [27]. Among these potential
response variables, researchers are interested in long-term fluvial response, especially in
channel gradient (Figure 14). By finding the turning point between the gentle gradient and
the steep gradient, knickpoints can be recognized in the river long profile [28]. In our paper,
the following steps were used to obtain a profile of the river section:
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Figure 14. Fluvial response to river blocking dam. (a) is generated from ALOS 12.5 m DEM. (b) is
generated from ALOS 12.5 m DEM in order to determine the scope of (a,c) which is generated from
GDEMV2 30M as the control group of (b).

First, generate Jinsha River channel lines; second, generate points every 5 m from the
river line; third, extract elevation values to points; fourth, generate a river length profile by
using elevation and length; finally, sketch the profile and find the corresponding elevation
of the dam. The first four steps were completed by ArcGIS, and the last step was completed
by AutoCAD.
3.2.5. Deformation Analysis

Usually, the longer the accumulation body exists, the more tectonic activities it ex-
periences, causing relative instability, vulnerable to erosion, and gradually disappearing.
This explains why the longer the time the river blocking event is, the harder we find the
remaining dam.

In this paper, the surface deformation of the residual dam body was analyzed through
the SARscape module of ENVI 5.3 using remote sensing images from January 2018 to
December 2020. Then, the average deformation rate and the response to the flood from
Baige barrier lake were obtained of both the whole dam body and part of the whole area
along the river (Figure 15).
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Figure 15. The surface deformation of the residual dam body. (a) The average deformation rate of the
whole dam body; (b) the average deformation rate of part of the whole area along the river; (c) the
whole dam body response to the flood from Baige barrier lake; (d) the response to the flood from
Baige barrier lake of part of the whole area along the river.

4. Results and Discussions

Using the proposed analytical approach of multiple river blockages, we derived the
evolutionary sequence of the dams blocking the river in this section. Based on Table 2, we
can analyze that WDL I, II and RCR river blocking events have a wide range of influence,
and other river blocking events might have been affected. Therefore, the influence of each
other must be considered in sampling analysis.

On this basis we analyzed the OSL dating data; the fitted data are shown in Figure 11.
Compared with the results of 14C dating data [17], the results of WDG II are very close,
indicating that the analysis method is suitable. The approximate time of river blocking in
this reach can be obtained: the river blocking occurred in WDL I reach about 6300 years
ago, and the duration of river blocking is about 1000 years; the river blocking occurred
in WDL II reach about 1900 years ago, and the duration is about 400–840 years; the river
blocking occurred in RCR reach around 1300–1400 years ago, and the duration is about
190–370 years; the river blocking occurred in SWL reach about 1370 ago, and the river
blocking was relatively short; at least two landslides occurred in SDX, the first at 750 a B.P.
on the right bank and the second at 510 a B.P. on the left bank. The river blocking duration
was about 100–110 years, the GD river blocking time was about 900 years ago, and the
river blocking duration was uncertain because of fewer data. The above results can explain
many implausible geological phenomena.

Finally, we found further evidence corresponding to the deformation of the dam and
the long profile of the river. It can be seen from Figure 14 that the river blocking event not
only generates knickpoints at the dam site, but also generates knickpoints at the upstream.
Moreover, the results of the points analysis are basically consistent with the above dating
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data. The blocking age of WDL I and WDL II is long, and the change of river channel is
obvious. The SWL blocking event lasted for a small time and had little effect on the river.
In terms of elevation, the height fitted by the profile shape of the dam body seems to be
conservative, such that the height of the WDL I may initially reach 2600 m.

By analyzing Figure 15a,b, we can draw a conclusion that the dam bodies are in
denudation state, but the denudation rate is small, which is consistent with the situation
that the accumulation dam can exist for thousands of years. Comparing GD, SWL, WDL
I and WDL II in Figure 15a, the older the age, the greater the deformation rate; SDX is
abnormal in Figure 15a because the construction camp of Suwalong Hydropower Station is
built on it, and it has been artificially transformed, while in Figure 15b of the control, the
part of the whole dam along the river is slightly uplifted mainly due to the uplift of the
region with around 5 mm/yr rate [4]. The RCR river section is relatively small because
this reach may be a relatively “sedimentary area” in the whole study reach. As can be
seen from Figure 15c,d, flood is not the main reason for the disappearance of the dam.
After the flood, the dam body is in a state of accumulation rather than erosion, and the
accumulation thickness of RCR is the largest in the whole river section of the study area,
which may be related to the existence of a large number of continuous lacustrine sediments
in the upstream of RCR. Moreover, comparing Figure 15a,b, it can be concluded that the
erosion rate along the river section of RCR is lower than the whole erosion rate, because
the material on the upper part of the dam body is eroded and stripped from the original
position and then deposited in the lower part of the dam body along the river.

If the above deformation can only explain the result of a short time, the landform
of the accumulation dam body is the result of long-term evolution. Through the rough
measurement of two relatively distant points on both sides of the residual dam body by
Google Earth, the erosion section length perpendicular to the river of WDL I is about
1100 m, WDL II is about 500 m, RCR is about 350 m, SDX is about 190 m, and GD is about
200 m; these data are positively correlated with the ages of the accumulation dams.

The paper also summarizes a systematic process for investigating river blocking
incidents. The geological environment of the research area breeds a wide range of mass
movement, which creates good conditions for the occurrence of the river blocking event.
For an ancient river blocking event, whether dammed lakes persist for a short time or
a long time [29], there will always be some traces near the river block. Five important
aspects of the field investigation of the river blocking event need to be paid attention to.
Among this evidence, the dam body on both sides is the most intuitive evidence of ancient
river blocking event, because it is one of the necessary conditions for the formation of the
river blocking; and the wide range of lacustrine sediments accumulated behind the dam is
convincing and abundant evidence (because its existence often indicates longer duration
of dammed lake). For example, based on lacustrine sediments located in the same profile,
we could roughly predict the age and duration of the river blocking event by calculating
the difference between the age of the top layer and the bottom layer; then, we could obtain
the average deposition rate by dividing the difference by the thickness of the lacustrine
sediments, which is related to the sediment content, fine particle composition and climate;
the mineral composition of the sediment; and chemical composition can reveal the source
of material and sedimentary environment, etc. In addition, because of its widespread
existence and fine-grained sediment with low cementation strength, it makes sampling
convenient. Compared with the 14C dating (samples need higher requirements and are
not easy to obtain; sometimes we are even unable to find the appropriate test sample),
the samples used for OSL dating of lacustrine sediments are easily found and obtained,
which can increase efficiency and prevention of accidental errors. However, when multiple
river blocking events occur in a river reach interacting with each other, if the sample is
not carefully distinguished from which river blocking event, the analysis results from OSL
dating will be seriously affected. In this paper, a feasible method for analyzing several
river blocking events is proposed. Then, combined with the geological phenomena of field
investigation, the relative reasonable sequence of river blocking is obtained, and the age
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of some river blocking events that previous researchers did not give clear results for have
also been identified. An accurate activity history is of great significance not only for the
further study of the tectonic activity and sedimentary climate at that time, but also for the
numerical simulation of dam-break and accurate back analysis of the event of landslide
blocking river occurrence.

At the same time, our team finds that the error of OSL dating by using lacustrine
sediments is within the acceptable range, but the following proposals must be paid attention
to: (1) Before sampling, the experimental plan must be made and the samples should be
collected purposefully. (2) Light should be avoided when sampling, and timely experiments
should be conducted after sampling. Otherwise, the sample needs to be sealed, avoiding
light, and stored at room temperature. (3) The determination of moisture content of samples
is a very important error factor, which is not only the current moisture content, but also
the average moisture content of samples in the historical process. (4) Under money- and
time-permitting conditions, parallel samples should be collected around the sample and
a profile sequence should be collected for dating in order to reduce accidental errors and
improve the accuracy of the results.

Although the research method and research ideas are quite complete, the research is
limited because of the complicated geological environment of the reach, the urgent time in
the investigation, the inaccessibility of some positions to carry out the field investigation,
and the inability to take samples due to the high sampling location. Therefore, the results
presented are one of the development processes of river blocking with a greater probability.
More discussion is welcome from future researchers. Finally, in order to make the relevant
investigation more detailed and efficient, we made a systematic summary based on our
team and previous studies, and put forward the following complete investigation and
analysis flow chart (Figure 16), so that the relevant investigation can be more scientific and
comprehensive, and fully reflect the relevant geological and geomorphic information.

Figure 16. The general flow chart of studying the river blocking event.
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5. Conclusions

There are very few studies on the age determination of dams with multiple river
blockages. This paper presented an applicable method for investigating river blocking
bodies and studying multiple river blocking processes in the same reach. Through this
method, the relatively reliable river blocking sequence evolution history of Wangdalong-
Gangda reach was scientifically and effectively restored. The results of elevation and dating
analysis showed that the river blocking occurred in WDL I reach about 6300 years ago,
WDL II reach about 1900 years ago, RCR reach around 1300–1400 years ago, SWL reach
about 1370 ago, SDX reach about 750 years ago (a time away from today) and 510 (a time
close to today), and the GD river blocking was about 900 years ago. The formation of these
barrier lakes led to the decrease of river dynamics and river deposition effect, which may
be an important reason for the inhibition of river channel incision and may directly affect
the evolution of the local landscape [30]. From this perspective, the above results were also
well verified by geological phenomena, river long profile morphology and accumulation
deformation. This study is of great significance because it shows that the integrated method
can provide a reasonable explanation for the evolution of the history of river closure in this
area and provide a reference for future related research.
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Abstract: The ground deformation rate is an important index for evaluating the stability and degra-
dation of permafrost. Due to limited accessibility, in-situ measurement of the ground deformation of
permafrost areas on the Tibetan Plateau is a challenge. Thus, the technique of time-series interfer-
ometric synthetic aperture radar (InSAR) is often adopted for measuring the ground deformation
rate of the permafrost area, the effectiveness of which is, however, degraded in areas with geometric
distortions in synthetic aperture radar (SAR) images. In this study, a method that integrates InSAR
and the random forest method is proposed for an improved permafrost stability mapping on the
Tibetan Plateau; to demonstrate the application of the proposed method, the permafrost stability
mapping in a small area located in the central region of the Tibetan Plateau is studied. First, the
ground deformation rate in the concerned area is studied with InSAR, in which 67 Sentinel-1 scenes
taken in the period from 2014 to 2020 are collected and analyzed. Second, the relationship between the
environmental factors (i.e., topography, land cover, land surface temperature, and distance to road)
and the permafrost stability is mapped with the random forest method based on the high-quality
data extracted from the initial InSAR analysis. Third, the permafrost stability in the whole study
area is mapped with the trained random forest model, and the issue of data scarcity in areas where
the terrain visibility of SAR images is poor or InSAR results are not available in permafrost stability
mapping can be overcome. Comparative analyses demonstrate that the integration of the InSAR and
the random forest method yields a more effective permafrost stability mapping compared with the
sole application of InSAR analysis.

Keywords: permafrost stability; InSAR; random forest method; Tibetan Plateau; data scarcity

1. Introduction

Global mean surface temperature is increasing at the rate of 0.2 ± 0.1 ◦C per decade,
reaching 1.0 ◦C above the pre-industrial period (reference period 1850–1900) in 2017. Gen-
erally, the burning of fossil fuels is the main source of climate warming [1–3]. Under the
influences of global climate warming and human activities, mountain ecosystems and
cryosphere systems have changed significantly, especially those at high altitudes and high
latitudes [1,4–7]. As the third pole of the Earth, the Tibetan Plateau is sensitive to climate
warming. The warming rate in this plateau is about twice as high as the global climate
warming rate over the past 40 years [8]. As a result, the permafrost on the Tibetan Plateau
has been degraded drastically, manifesting in shrinking of the permafrost extent, change in
permafrost types, increase in the thickness of the active layer, emergence of thermokarst
lakes, and even soil desertification [9–12]. The degradation of the permafrost will have neg-
ative impacts on engineering facilities, ecosystem functions, and hydrogeological processes
on the Tibetan Plateau [13,14]. It is worthwhile noting that due to the permafrost warming
and degradation, the organic carbon stored in the permafrost will be released into the atmo-
sphere, which can further amplify regional and global climate warming [5]. In addition, the
ice in the uppermost permafrost could melt due to climate warming, which causes ground
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deformations and related geohazards (e.g., failed slopes and retrogressive thaw slumps).
These geohazards may affect the stability and operation safety of highways, railways, and
other infrastructure in permafrost areas [6]. Hence, it is particularly important to monitor
the deformation and stability of the permafrost on the Tibetan Plateau.

Permafrost stability is often evaluated based on the mean annual ground tempera-
ture [13], even though it can be influenced by various factors. Note that the permafrost
degradation, manifested by the warming temperatures, could lead to an increase in the
annual active-layer thickness and retreat of the permafrost extent [15,16]. The studies in Ko-
vakov and Shvetsov [17] showed that permafrost stability could be assessed by the amount
of annual increase in the thickness of the active layer. The thickness of the active layer can
be measured directly with grid probing, thaw tubes, and ground penetrating radar [18,19].
Although these measurements are of high quality, they are sparse and the measurement
accuracy is site specific [20]. Indeed, similar problems exist in the monitoring of ground
temperature. With the aid of an analytical model that is based on the heat conduction
equation and the environmental conditions [21], the thickness of the active layer monitored
from the point measurement could be extended to that at a regional scale. A potential
limitation of this interpolation is that too many environmental factors are involved, and
the determination of these factors can be a challenge [22]. Further, permafrost-related
disturbances (e.g., retrogressive thaw slumps) can also indicate permafrost stability. Some
studies have used deep-learning-based models to map retrogressive thaw slumps [10,23,24].
Though the accuracy of the deep-learning-based models is high, the main limitation is that
too many training datasets are needed.

Note that the variation in active-layer thickness can be monitored by the ground
deformation [25]. In addition, under warming or local disturbance, the excess ice or ice-rich
sediment in the uppermost permafrost can lead to additional long-term ground subsidence,
which could be regarded as an indicator of permafrost degradation [14,26]. Thus, the
permafrost stability can be assessed based on the ground deformations. For instance,
larger ground subsidence indicates permafrost instability or degradation, whereas smaller
subsidence indicates permafrost stability. During the past few decades, remote sensing
techniques have become an indispensable tool for monitoring the ground deformation and
evaluating the permafrost stability in permafrost areas owing to their wide coverage and
independence from ground measurements [27–31]. Among the various remote sensing
techniques, interferometric synthetic aperture radar (InSAR), the effectiveness of which
is not affected by the weather conditions, is quite popular because of its high accuracy in
monitoring small ground deformations [6,11]. However, the effectiveness of differential
InSAR in monitoring the ground deformation and the permafrost stability is degraded by
spatial decoherence and atmospheric distortion. Hence, the techniques of time-series InSAR
such as persistent scatterer InSAR (PS-InSAR) and small baseline subset InSAR (SBAS-
InSAR) have been developed recently and applied to monitoring the ground deformation
and permafrost stability on the Tibetan Plateau [9,14,32]. However, side-view imaging
is often adopted to generate SAR images and the terrain visibility of SAR images relies
upon the acquisition direction of the adopted satellite radar with respect to the imaged
terrain [33,34]. In mountainous areas, the geometric distortions caused by side-view
imaging include foreshortening, layover, and shadow, which can degrade the effectiveness
of the time-series InSAR [34]. Although a few image pixels with bright reflectivity in the
foreshortening areas in the SAR image can be detected and monitored by the time-series
InSAR, the monitored ground deformations in foreshortening areas might be inaccurate [34].
In addition, the ground deformation results in layover and shadow areas are also not
accurate [34]. Thus, the geometric distortion areas are regarded as poor terrain visibility
areas, and the rest are good visibility areas. Further, the ground deformation in areas with
dense vegetation and water covering may not be monitored due to decoherence. In other
words, the ground deformation points detected by time-series InSAR may not cover the
entire study area. In this study, data scarcity can be defined as the area where the terrain
visibility is poor or InSAR results are not available.
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In the field of landslide susceptibility mapping, the historical landslide information of
a region is often collected and adopted for training the relationship between environmental
factors and landslide occurrence; the trained relationship is then applied to predict the
probability of landslide occurrence in other regions with similar environmental condi-
tions [35,36]. Inspired by the concept of landslide susceptibility mapping, a method that
integrates the time-series InSAR and machine learning methods is proposed in this paper
for improved permafrost stability mapping on the Tibetan Plateau. The integrated method
could have the advantages of the effectiveness of time-series InSAR (in monitoring the
ground deformation in areas with good visibility of input SAR images) and the machine
learning method (in mapping the relationship between the environmental factors and the
ground deformation). With the aid of the trained relationship between the environmental
factors and permafrost stability, the permafrost stability in the entire study area can be
readily mapped. Thus, the issue of data scarcity can be overcome. Indeed, the method
integrating time-series InSAR and machine learning has shown effectiveness in landslide
susceptibility mapping [37]. Note that the ground deformation in permafrost areas is
correlated with environmental factors [14]; thus, such an integrated method can also be
adopted to map permafrost stability.

To illustrate the application and effectiveness of the proposed method, the permafrost
stability mapping in a small area located in the central region of the Tibetan Plateau is
analyzed. The novelty of this study is the permafrost stability mapping integrating the
time-series InSAR and machine learning methods, with which the issue of data scarcity
could be overcome. The remainder of this article is organized as follows. First, the study
area is briefly introduced in Section 2. Second, the principle of the proposed method and the
data processing are provided in Section 3. Third, the ground deformation and permafrost
stability mapping results are presented in Section 4. Fifth, the ground deformation and
permafrost stability mapping results obtained are validated and discussed in Section 5.
Finally, the concluding remarks are provided.

2. Information of the Study Area

The Tibetan Plateau has the largest permafrost area in the middle and low lati-
tude regions of the Earth, with an area underlain by a permafrost of approximately
1.06 × 106 km2 [38]. According to the permafrost continuity, the duration of frozen ground,
and the maximum depth of seasonal frost penetration, the permafrost on the Tibetan Plateau
is categorized into six types: predominantly continuous permafrost, predominantly contin-
uous and island permafrost, mountain permafrost, middle-thick seasonally frozen ground,
thin seasonally frozen ground, and short-time frozen ground (http://www.ncdc.ac.cn,
accessed on 19 March 2023). Figure 1a shows that the distribution of different types of per-
mafrost can be affected by latitude. For example, the predominantly continuous permafrost
is mainly located in the central and northwest of the Tibetan Plateau, the predominately
continuous and island permafrost is located in the south of the predominately continuous
permafrost, the mountain permafrost is mainly located in the north, west, and south of the
Tibetan Plateau, and the seasonally frozen ground is primarily scattered in the east of the
Tibetan Plateau. Depending on the complex environmental conditions, the responses of
these six types of permafrost to climate warming can be different.

To illustrate the application and effectiveness of the integrated method proposed, a
small area located in the central region of the Tibetan Plateau, as shown in Figure 1a, is
analyzed in this paper. The reasons for selecting this study area are summarized as follows:
(1) The permafrost stability in the study area cannot be fully monitored by time-series InSAR
due to the terrain visibility and decoherence; thus, the machine learning method is taken
as an effective and necessary supplement to the InSAR analysis in the permafrost stability
mapping. (2) The time-series InSAR and machine learning method are both effective
in the study area; thus, the proposed method is applicable in the study area. (3) This
area is predominately occupied by continuous permafrost and the permafrost stability
has been studied by many studies [39–41], the results of which indicate that permafrost
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degradation occurs frequently in this area under climate warming; thus, this study is
significant in assessing the permafrost stability of this area. (4) This area is covered by
both ascending and descending SAR data (see Figure 1a), as such, the permafrost stability
mapping results obtained can be cross-validated. (5) The Qinghai–Tibet Highway crosses
this area; thus, permafrost stability mapping in this area will be significant for the operation
of this highway.

Figure 1. General information of the study area: (a) Permafrost types on the Tibetan plateau;
(b) Ground elevation map of the study area.

As can be seen from Figure 1b, the dimensions of the study area are 80 km by 80 km
and the topography mainly consists of mountainous terrain with ground elevations ranging
from 4747 to 5227 m. Note that the variation in the ground elevation in the mountainous
terrain is relatively small. The bedrock of the study area is red or gray sandstone and
mudstone, and lacustrine deposits can also be identified in the study area. The vegetation
cover mainly consists of alpine meadow and desert grassland. The climate is cold and
dry with the mean annual air temperature of about 4.5 ◦C, and the annual precipitation
ranges from 300 to 400 mm. Note that the precipitation is mainly concentrated in the rainy
season (from June to August), and the heavy rainfall in the rainy season often brings about
flooding and surface erosion in the study area [42]. Thus, the water content of the soil is
fairly low and under the effects of freeze–thaw cycles and surface runoff processes; the
study area is prone to suffer from permafrost degradation and desertification [32].

3. Methodology and Data Processing

3.1. Principle of the Integrated Method for Permafrost Stability Mapping

To overcome the data scarcity issue in the InSAR-based permafrost stability mapping,
an integrated method that can take advantage of the effectiveness of InSAR analysis (in
monitoring the ground deformation in areas with good terrain visibility of SAR images)
and that of machine learning (in mapping the relationship between the environmental
factors and the permafrost stability) is proposed in this study. The general principle and
implementation procedures of this integrated method are illustrated in Figure 2.

Figure 2. Principle and implementation procedures of the integrated method for permafrost
stability mapping.

553



Remote Sens. 2023, 15, 2294

Within the context of the integrated method, the ground deformation in the concerned
region is first studied with the time-series InSAR analysis, through which an initial per-
mafrost stability mapping is obtained. It is noted that the ground deformation in this initial
permafrost stability mapping cannot be available in areas with dense vegetation and water
covering, due to the temporal decoherence induced in the processing of input SAR images,
whereas the permafrost stability obtained in areas with poor visibility (of SAR images)
can be problematic. Thus, a screening analysis that is based on the analysis of geometric
distortion (in input SAR images) and the coherence of InSAR analysis results is conducted
to locate the area with high-quality ground deformation data. The screened area is termed
as the high-quality area, whereas the rest of the area is termed as the low-quality area.
Then, the high-quality samples (i.e., unstable and stable ground points) for the permafrost
stability mapping are extracted from the high-quality area based on the ground deformation
rate and Google Earth image characteristics, which are detailed in the results section.

The studies in [14,43] depict that ground deformation and permafrost stability can
be closely correlated with environmental factors, including topography, land cover, land
surface temperature, and distance to road. Note that although the effectiveness of the
time-series InSAR in monitoring the ground deformation in the high-quality area and that
in the low-quality area may be different, the mapping relationship between the environ-
mental factors and the permafrost stability in the high-quality area can be applied to the
low-quality area; indeed, a similar concept is often employed in landslide susceptibility
mapping [35,36]. The machine learning method has been extensively adopted for mapping
the relationship between environmental factors and landslide occurrence. Although per-
mafrost stability and landslide susceptibility can follow different physical mechanisms,
both are correlated with environmental factors and the relationship between permafrost
stability and environmental factors and that between landslide susceptibility and environ-
mental factors can be mapped with similar methods. As such, the relationship between
environmental factors and permafrost stability in this study is mapped with the machine
learning method. Here, the relationship between the environmental factors and permafrost
stability is trained by the data (i.e., permafrost stability and environmental factors) extracted
in the high-quality area using the machine learning method and the trained relationship is
further adopted to map the permafrost stability in the whole study area. As an outcome,
the data scarcity issue in the InSAR-based permafrost stability mapping can be overcome
and an improved permafrost stability mapping can be achieved.

3.2. Data Processing with the Proposed Method
3.2.1. Time-Series InSAR Analysis

To analyze the ground deformations and permafrost stability in the study area,
67 scenes of SAR images, acquired by the descending Sentinel-1 from October 2014 to
August 2020, were downloaded from the European Space Agency (https://earth.esa.int,
accessed on 19 March 2023). Further, 69 scenes of SAR images, acquired by the ascending
Sentinel-1 in the same observation period were downloaded to validate the accuracy of
the permafrost stability mapping obtained from the integrated method. The boundaries
of these SAR images are provided in Figure 1a. Note that although the combination of
descending and ascending SAR images can improve the monitoring ability of ground
deformation, the reasons for only using the descending SAR images as input to train the
permafrost stability mapping model are summarized as follows: (1) the deformation results
obtained from ascending SAR images are adopted for the validations of the ground defor-
mations and the permafrost stability mapping, and if the deformation points obtained from
descending and ascending SAR images are combined to extract the training samples, such
validations would be not convincing and (2) the training samples are extracted from the
high-quality area, which is not affected by the geometric distortions; thus, the deformation
results of these training samples are reliable. Further, these samples are verified through
visual interpretations of Google Earth images to guarantee the accuracy of the training
samples and the permafrost stability mapping model. In this study, the SBAS-InSAR
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method is employed to reduce the temporal decorrelation caused by the large timespan
of the input SAR images. The ground deformation is analyzed with the following steps:
(1) The signal-to-noise ratio (SNR) in the interferometric SAR images is improved with the
Goldstein radar interferogram filter [44]. (2) The flat-earth phase and the topographic phase
in the interferometric SAR images are removed by the precise orbit determination (POD)
data and the digital elevation model (DEM) data, respectively. In the InSAR processing,
the atmospheric effect is mainly the topography-correlated tropospheric delay. Thus, the
tropospheric delay can be estimated from the correlation between the interferometric phase
and the topography. However, this method assumes a single relationship between phase
and topography over the whole interferogram as it does not account for the spatial variation
in the tropospheric properties [45]. In this study, the tropospheric errors are minimized
through spatial–temporal filtering, which is based on the assumption of Gaussian distribu-
tion of time-series tropospheric delays. This method has been shown effective in reducing
the effect of tropospheric delay on the Tibetan Plateau [25,46]. (3) Phase unwrapping (of
interferometric SAR images obtained in the previous step) is conducted with the minimum
cost flow algorithm (MCF) [47]. (4) The residual phase component and phase ramps (of
interferometric SAR images obtained in the previous step) are removed using the ground
control points (GCPs). (5) The time-series ground deformation along the line of sight (LOS)
direction is retrieved with the inversion model [48]. Note that the GCPs are selected on the
flat terrain with minimal ground deformation, and the GCPs are stable in InSAR images
over the entire observation period.

The main ground deformation in permafrost areas is thaw subsidence or frost heave,
which is manifested in vertical ground deformation. Thus, vertical ground deformation,
rather than the LOS deformation, is adopted in this study for analyzing the permafrost
stability. As shown in Figure 1b, the study area is relatively flat and homogeneous and no
active fault is developed. Thus, the ground deformation in the study area is assumed to
be concentrated in the vertical direction. Based on the incidence angle of the satellite LOS,
the LOS deformation can be easily converted to vertical ground deformation. This kind of
ground deformation transformation is reliable and has been widely adopted [11,19]. Note
that the accuracy of the ground deformation obtained from InSAR analysis can be affected
by the coherent pixels, the coherence values of which range from 0 to 1. In general, a smaller
coherence value indicates that the ground deformation obtained is less reliable, whereas a
larger coherence value indicates the ground deformation obtained is more accurate. Thus,
the coherence threshold is often adopted in InSAR analyses and the threshold adopted
to ranges from 0.4 to 0.9 depending on the topographic complexity [40,49]. In this study,
the threshold value is set at 0.8 for screening the InSAR analysis results, which is mainly
determined through a preliminary sensitivity analysis; this value can yield accurate and
sufficient ground deformation points.

In reference to Daout et al. [9] and Lu et al. [32], the ground deformation of the
permafrost on the Tibetan Plateau under climate warming can be decomposed into two
elements: long-term deformation (mainly induced by the increase in active-layer thickness
under climate warming) and seasonal deformation (mainly induced by the frost heave
and thaw settlement within each freeze–thaw cycle). Thus, the ground deformation of the
permafrost, denoted as S, can be approximated as follows.

S(t) = a × t + b × sin
(

2π

T
× t
)
+ c × cos

(
2π

T
× t
)
+ d (1)

where t represents the time (unit: day); T represents the period of a freeze–thaw cycle, which
is usually set at one year (i.e., T = 1 year); and a, b, c, and d represent the model coefficients.

3.2.2. Analysis of Geometric Distortion in Input SAR Images Using the R-Index Model

The quality of the InSAR analysis results (i.e., ground deformation) can be greatly
affected by geometric distortions in input SAR images, which can be analyzed from the
orientation parameters of the satellite LOS (i.e., incidence angle and azimuth angle) and
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the features of the local terrain (i.e., slope and aspect). For example, the effectiveness of the
InSAR analysis results can be degraded in areas with poor terrain visibility. To locate the
areas with poor visibility (in SAR images) in the study area, the R-index model [34,50,51],
which has been widely adopted for analyzing geometric distortions, is employed in this
paper. This R-index is calculated based on the cosine of the angle between the local terrain
surface and the radar beam, as follows [44],

R − index = sin{θ + arctan[tanα × cos(ϕ − β)]} × La × Sh (2)

where α is the slope of the terrain; β is the aspect of the terrain; θ is the incidence angle of the
satellite LOS; ϕ is the azimuth angle of the satellite LOS; La is the layover coefficient; and Sh
is the shadow coefficient. The coefficients of La and Sh can be calculated using the hillshade
model, with the satellite position representing the sun in GIS software [51]. The geometric
distortion areas in the study area can be determined with the following criteria: (1) if the
R-index is greater than or equal to sin(θ) (i.e., R-index ≥ sin(θ)), the related area is categorized
as an area with good visibility, and no geometric distortion exists; (2) if R-index is between
0 and sin(θ) (i.e., 0 < R-index < sin(θ)), the related area is categorized as a foreshortening
region, and geometric distortion exists; and (3) if R-index is not positive (i.e., R-index ≤ 0),
the related area is categorized as a layover or shadow region, and geometric distortion
exists. In this study, the areas with geometric distortions (i.e., foreshortening, layover, and
shadow) are considered as areas with poor visibility. From there, the high-quality areas,
which are defined as the intersection of the areas with InSAR deformation points and good
visibility, in the study area can be located, whereas the rest of the areas are categorized as
low quality.

3.2.3. Random-Forest-Method-Based Permafrost Stability Mapping

As discussed above, the relationship mapping between the environmental factors and
permafrost stability is fairly similar to that between the environmental factors and landslide
occurrence. There are various models for mapping the relationship between environmental
factors and landslide occurrences, such as neural-network-based deep learning [52,53],
decision trees [54], frequency ratios [55], and fuzzy assessment [36]. These methods could
be readily adopted for mapping the relationship between environmental factors and per-
mafrost stability. Note that although the deep learning method can achieve high accuracy
in landslide susceptibility mapping and permafrost stability mapping, the computational
efficiency might be relatively low. In this study, the random forest model [56] is adopted
for the relationship mapping between the environmental factors and the permafrost sta-
bility, mainly for the following reasons: (1) the random forest method is a non-linear,
non-parametric algorithm that can deal with large datasets containing both categorical and
numerical data and account for complex interactions and non-linearity between variables;
(2) it can handle missing values and maintain accuracy for missing data; (3) compared
with other machine learning methods, such as artificial neural network, the random forest
method does not require much fine-tuning of hyperparameters; in many cases, using de-
fault parameter settings can achieve good performance [57,58]; and (4) compared with other
tree-ensemble methods, the random forest method is computationally light. Therefore,
the random forest method is commonly used in large-scale mapping and classification
applications [58]. Although the random forest method is adopted in this study to map
the relationship between permafrost stability and environmental factors, other machine
learning methods, which have their specific advantages, can also be adopted for mapping
such a relationship. Within the context of the random forest method, the technique of
bootstrap resampling is used for extracting bootstrap samples from the original samples;
each bootstrap sample is then modeled by a decision tree and the predictions obtained from
multiple decision trees are finally combined. As such, the issues caused by the outliers
in the prediction, overfitting, and data missing in the training samples can be overcome.
In addition, the random forest method adopted has been shown effective in mapping the
permafrost degradation-induced thaw settlement susceptibility on the Tibetan Plateau [59].
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Note that the selection of the number of decision trees plays a vital role in the prediction
accuracy of the trained random forest model. For example, an insufficient number of deci-
sion trees may lead to the reduced accuracy of the model prediction, whereas an excessive
number of decision trees may cause data redundancy. In this study, the determination of
the number of decision trees is based on trial-and-error analysis, and when the number of
decision trees is larger than 400, the prediction accuracy does not increase. Thus, based
on a tradeoff analysis between prediction accuracy and data redundancy, the number of
decision trees in this study is set up as 400.

The analyses by Ran et al. [12] and Chen et al. [60] indicated that permafrost stability
can be greatly affected by vegetation coverage (i.e., NDVI) and the topography factors of
ground elevation and slope orientation. The report from Deluigi et al. [61] showed that
permafrost stability can also be affected by other topographic factors such as slope and
curvature, and the analysis in Qin et al. [62] depicted that the land surface temperature
might influence the vegetation coverage and soil water content, which could be a good
indicator for analyzing the permafrost stability. Further, the land cover plays a vital role in
influencing permafrost stability [63]. Apart from the factors discussed above, the permafrost
stability might also be degraded by engineering activities. For example, the construction
and operation of the Qinghai–Tibet Highway has led to an obvious degradation of the
permafrost along this highway [64]; thus, the Qinghai–Tibet Highway is also one of the
important environmental factors in assessing permafrost stability.

Under these circumstances, eight environmental factors, including the ground eleva-
tion, aspect, slope, curvature, land cover, NDVI, land surface temperature, and distance to
the Qinghai–Tibet Highway, are extracted in the study area for mapping the permafrost
stability. Here, the topography factors (i.e., ground elevation, aspect, slope, and curvature)
are calculated from the ALOS DEM, the land cover is generated from the GlobeLand30
product (http://www.globallandcover.com/, accessed on 19 March 2023), the NDVI and
land surface temperature are the annual average NDVI and land surface temperature from
2014 to 2020, which are generated using Landsat 8 Level 2 images on the Google Earth
Engine platform (http://earthengine.google.org/, accessed on 19 March 2023), and the
distance to Qinghai–Tibet Highway is generated by the Euclidean distance function in GIS
software. Plotted in Figure 3 are the environmental factors extracted in the study area,
which are resampled into the 100 m by 100 m spatial grids.

Figure 3. Environmental factors extracted in the study area: (a) Ground elevation; (b) Aspect;
(c) Slope; (d) Curvature; (e) Land cover; (f) NDVI; (g) Land surface temperature; (h) Distance to the
Qinghai–Tibet Highway.

A multicollinearity analysis indicates that the environmental factors shown in Figure 3
are independent of each other. For ease of screening stable and unstable ground points
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in the initial InSAR analysis results, threshold values for the ground deformation rate are
prespecified, and the determination of these threshold values is detailed in the section
containing the results. In order to train the relationship between the environmental factors
and permafrost stability, 80% of the high-quality samples, which are extracted in the high-
quality area and screened according to the threshold values of the ground deformation
rate and Google Earth image characteristics, are taken as the training samples, whereas
the rest (20%) of the high-quality samples, which are not involved in the model training,
are taken as the validation samples to assess the accuracy of the model. In summary, the
data adopted for training the random forest model are the high-quality samples extracted
in the high-quality area; the inputs to the random forest model are the environmental
factors including the ground elevation, aspect, slope, curvature, land cover, NDVI, land
surface temperature, and distance to the Qinghai–Tibet Highway, whereas the output of the
random forest model is the mapping result in the whole study area, in terms of a probability
of permafrost stability ranging from 0 to 1 (where 0 represents permafrost instability and
1 represents permafrost stability).

In this study, except for the validation samples, the receiver operating characteristics
(ROC) curve is also employed for evaluating the mapping accuracy of the trained random
forest model [65]. The ROC curve plots the true positive rate on the Y-axis and the false
positive rate on the X-axis. The area under the curve (AUC) measures the probability of
correct classification, and an AUC value close to 1 indicates high mapping accuracy. In
addition, the relative importance of each environmental factor to the permafrost stability
is evaluated by the indexes of mean decrease accuracy (MDA) and mean decrease Gini
(MDG), which can be calculated according to the reduction in the prediction accuracy when
values of this environmental factor in a decision tree are permuted randomly [56].

4. Results

4.1. Results of the Ground Deformation with Time-Series InSAR Analysis
4.1.1. Ground Deformations Obtained in the Study Area

Figure 4a shows the vertical ground deformation rate in the study area obtained from
October 2014 to August 2020. As can be seen, the ground deformation rate ranges from
−58 mm/year to 29 mm/year, and the regions with permafrost instability, indicated by
the area with large deformation rates, are mainly distributed in the valley areas with low
altitudes where the water content is relatively high. However, there are areas with high
deformation rates that are distributed in high-altitude mountainous areas. The reason
may be that permafrost stability is affected by various environmental factors. For exam-
ple, the land cover type in some high-altitude mountainous areas is bare lands with no
vegetation coverage, which is susceptible to ice melting and thaw subsidence. In addition,
the ground deformation mainly takes place on the west-facing slopes (see the comparison
in Figure 4b,c), partially because the input SAR images are collected by the descending
satellite. Note that the terrain visibility of the descending SAR images in east-facing slopes
is mainly foreshortening, which means the ground deformation results obtained for east-
facing slopes might be not reliable. Further, the visual interpretations of Google Earth
images indicate that there may be unstable characteristics in east-facing slopes, as shown in
Figure 4d,e. In fact, many studies have shown that the deformation results in foreshort-
ening areas and other poor visibility areas are not accurate [34,66,67]. As such, although
there are many deformation points located on east-facing slopes, the related deformation
results are not reliable and could not be adopted to indicate permafrost degradation. More
deformation points in Figure 4b, compared with Figure 4c, might be attributed to the higher
coherence of the interferograms.
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Figure 4. InSAR analysis results of the ground deformation in the study area: (a) Vertical ground
deformation rate from October 2014 to August 2020 [39]; (b) Ground deformation rate in east-facing
slopes; (c) Ground deformation rate in west-facing slopes; (d,e) Google Earth images for east-facing
slopes (Image from © Google Earth 2020).

As described above, the ground deformation of permafrost areas can be decomposed
into two elements: long-term deformation and seasonal deformation. Note that the long-
term ground subsidence induced by the thawing permafrost could lead to permafrost
instability or degradation. Here, the ground deformations at three points (in terms of
points P1, P2, and P3 in Figure 4a) are adopted to analyze the ground deformations using
the empirical model established in Equation (1). According to the ground deformations
monitored from October 2014 to August 2020, the model coefficients are estimated with the
least squares method. Although deviations exist in the estimated deformation trend, and the
errors caused by such deviations may come from processing errors (e.g., phase unwrapping
errors) and human disturbance that cause the low R-square of P1, the overall trend of the
ground deformations is not much affected. For example, the R-squares of P2 and P3 are
relatively high (i.e., 0.80 and 0.83), indicating that the ground deformations in the study area
can be well captured by the empirical model shown in Equation (1), as shown in Figure 5a.
Indeed, such an empirical model has been excessively adopted for the decomposition
of ground deformations in permafrost areas [9,32]. Moreover, the decomposition of the
ground deformation using the empirical model is mainly conducted to determine the
periods of thawing and frozen seasons, and the inputs to the built random forest model are
the unstable and stable ground points determined through the ground deformation rate
estimated from time-series InSAR analyses and Google Earth images. Thus, the accuracy of
the permafrost stability mapping in the study area would not be degraded by the deviations
in the empirical models shown in Figure 5a. The plots in Figure 5a indicate that the ground
surface exhibits heaves in the frozen season (from September to March, attributed to the
freezing of the active layer) and exhibits subsidence in the thawing season (from April
to August, attributed to the thaws of the active layer). Hence, the maximum ground
settlement of the permafrost each year occurs around the month of August. Figure 5b
depicts that the seasonal deformations (calculated as the total deformation minus the long-
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term deformation, expressed as S(t) − a × t) tend to be negatively correlated with the air
temperature, which confirms that the seasonal deformation is mainly caused by the frost
heave and thaw settlement within each freeze–thaw cycle, similar phenomena were also
observed by Lu et al. [32] and Zhao et al. [43].

 

 

Figure 5. Fitting analysis of the ground deformation in the period from 2014 to 2020: (a) Fitting
analysis between the ground deformation and the time; (b) Correlation analysis between the seasonal
deformation and the air temperature (note: the air temperature is from the 2.0 m air temperature
dataset from the European Centre for Medium-Range Weather Forecasting—Fifth-Generation Reanal-
ysis (ECMWF ERA5)).

Figure 6 depicts that the maximum ground deformations of the study area occurred
during the thawing periods in 2015, 2017, 2018, and 2019. It is found that the magnitude
of the maximum seasonal thaw subsidence increases from 2015 to 2019, which is quite
evident in the northern region of the study area, though there may be some exceptions due
to the accuracy of the ground deformation results. To quantitively assess the subsidence
trend, the study area is evenly divided into three regions (i.e., the northern, middle, and
southern regions shown in Figure 6), then the average seasonal thaw subsidence of the
whole study area and the three regions in 2015, 2017, 2018, and 2019 are estimated; the
results are depicted in Figure 7. Note that the seasonal thaw subsidence consists of the
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ground deformations that occurred in the thawing season (i.e., from April to August) and
the average seasonal thaw subsidence values shown in Figure 7 are estimated in the whole
study area, the northern region, the middle region, and the southern region, respectively.
It shows that the subsidence in the whole study area and the northern region increases
from 2015 to 2019, whereas that in the middle and southern regions is not evident. Note
that the ground elevation of this study area tends to decrease from south to north, except
along the Qinghai–Tibet Highway, as shown in Figure 1b. Therefore, the regions with a
lower altitude have a higher risk of permafrost instability or degradation; this inference
is in general agreement with the observations by Huang et al. [10] and Lu et al. [32]. For
example, more thermokarst lakes, retrogressive thaw slumps, and failed slopes are detected
in regions with low altitudes [10,32].

Figure 6. The maximum ground deformations of the study area occurred during the thawing periods
in 2015, 2017, 2018, and 2019.

Figure 7. The average seasonal thaw subsidence of the whole study area and the three regions in
2015, 2017, 2018, and 2019.

4.1.2. Influences of Ground Elevation and NDVI on the Seasonal Thaw Subsidence

It is known that the watershed and river network in an area are mainly determined
by the topography [60]; thus, the distribution of the water content in the ground can be
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strongly affected by the local topography. To analyze the influence of the topography on
the seasonal thaw subsidence of the permafrost areas, the river network in the study area
is generated from the DEM, which is then superimposed onto the average seasonal thaw
subsidence that took place in the period from 2015 to 2019, as shown in Figure 8a. Note
that the average seasonal thaw subsidence shown in Figure 8a is the average value of the
seasonal thaw subsidence from 2015 to 2019. In addition, in the InSAR processing, the
topography-correlated tropospheric delay has been minimized through spatial–temporal
filtering; thus, the atmospheric condition could not affect this analysis. As can be seen, the
regions with large thaw subsidence are mainly located in the river valleys where the soil is
typically fully saturated and the ground ice is rich [60,68], whereas the regions with small
thaw subsidence are mainly located in the hill ridges where the water content in the ground
is relatively low. Further, the elevation could affect the distribution of water content; thus,
the influence of elevation on the seasonal thaw subsidence is also analyzed. To illustrate
this analysis more intuitively, a profile, AB, which is along the highway, is delineated (see
Figure 8a), and the study results are shown in Figure 8b,c. Figure 8b depicts the relationship
between the acquired average seasonal thaw subsidence and the ground elevation. Plotted
in Figure 8c are the variations of the seasonal thaw subsidence and the ground elevation
along profile AB. As can be seen, a larger ground elevation tends to yield smaller thaw
subsidence; however, there are exceptions. For example, the thaw subsidence in Zone
I matches the ground elevation well, whereas that in Zone II cannot match the ground
elevation. A detailed survey of the topography suggests that Zone I is located in a river
valley, whereas Zone II is located on a north-facing slope (see Figure 8d). Although the
ground elevation in Zone II is lower than that in Zone I, the solar radiation in Zone II may
be much weaker and thus the ice in the ground is more difficult to melt. This phenomenon
could also explain the low Pearson’s coefficient between the elevation and the ground
deformations shown in Figure 8b. Indeed, ground deformation can be affected by many
environmental factors, and when other environmental factors are dominant, the impact of
the ground elevation may be not significant. Although the Pearson’s coefficient is very low,
it still indicates that the elevation could have an impact on the ground deformation.

Figure 8. The influence of the topography on the seasonal thaw subsidence of the permafrost:
(a) Average seasonal thaw subsidence of the study area took place in the period from 2015 to 2019;
(b) Relationship between the seasonal thaw subsidence and the ground elevation along profile AB;
(c) Variations in the seasonal thaw subsidence and the ground elevation with the distance measured
from A to B along profile AB; (d) A detailed survey of the topography (Zone I is located in a river
valley; Zone II is located on a north-facing slope).
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The vegetation coverage is also taken as an important index of the soil water con-
tent [12]. The influence of the vegetation coverage on the seasonal thaw subsidence in
the study area is herein investigated. In reference to Figure 9a, the vegetation coverage in
the study area is dominated by grasslands and bare lands. The NDVI is employed in this
study to represent vegetation coverage, and a larger NDVI value signals denser vegetation
coverage. The influence of NDVI on the ground deformation (i.e., the average seasonal
thaw subsidence that took place in the period from 2015 to 2019, see Figure 8a) is studied
based on the data collected along the profile AB, and the results are illustrated in Figure 9b,c.
Similar to that in Figure 8c, the change in the magnitude of the seasonal thaw subsidence
is in good agreement with the change in NDVI: a larger NDVI value tends to result in
smaller thaw subsidence, partially due to the protective effect of the vegetation coverage
(on the ground) in terms of the ice melting (in the ground). The study by Jin et al. [69]
confirmed that vegetation coverage has important impacts on the ground thermal regime
by influencing the energy transfer between the atmosphere and ground surface and thus
affects the seasonal thaw subsidence. Figure 9b,c depict that a smaller NDVI value tends
to result in larger thaw subsidence, and the bare lands with smaller NDVI values tend to
have larger thaw subsidence; however, the seasonal thaw subsidence can be affected by
various factors (e.g., elevation, slope, and ice content), making the relationship between the
seasonal thaw subsidence and the NDVI values not statistically significant. As such, the
bare lands with smaller NDVI values do not always yield significant deformations.

 

Figure 9. The influence of the vegetation coverage on the seasonal thaw subsidence of the permafrost:
(a) Vegetation coverage in the study area; (b) Relationship between the seasonal thaw subsidence and
the NDVI along profile AB; (c) Variations in the seasonal thaw subsidence and the NDVI with the
distance measured from A to B along profile AB.

4.2. Results of Screening and Permafrost Stability Mapping with the Proposed Method
4.2.1. Screening Results of the High-Quality and Low-Quality Areas

As mentioned previously, the coherence threshold is set at 0.8 in the processing of
SAR images. As a result, only the high-quality InSAR deformation points could be kept
in the initial InSAR analysis of the ground deformations, whereas the InSAR deformation
points where the coherence is less than the threshold value of 0.8 are not displayed. Thus,
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the initial map of the obtained ground deformation cannot cover the entire study area, as
shown in Figure 4a. Here, the areas that do not have ground deformation are categorized
as the low-quality areas.

The geometric distortion analysis results are sketched in Figure 10a. As can be seen,
most areas can be categorized as good visibility areas, and the east-facing slopes are mainly
located in the regions with geometric distortions (see Figure 10b). The areas with geometric
distortions are then categorized as the low-quality areas. From there, the high-quality
areas, defined as the intersection of the areas with InSAR deformation points (see Figure 4a)
and good visibility (see Figure 10a), can be located. Figure 10c depicts the zonation of
the high-quality and low-quality areas in the study area. Here, the ground deformation
monitored in the high-quality areas is reliable, whereas that monitored in the low-quality
areas can be problematic.

Figure 10. Screening analysis of the InSAR analysis results of ground deformation in the study area:
(a) Geometric distortion analysis results; (b) A detailed survey of the geometric distortions on an
east-facing slope; (c) Zonation of the high-quality and low-quality areas.

According to the Google Earth images, the permafrost instability areas with obvious
unstable characteristics (e.g., retrogressive thaw slumps and failed slopes) are usually
located in areas with a ground deformation rate smaller than −40 mm/year. Thus, in this
study, the ground points with a deformation rate smaller than −40 mm/year and obvious
unstable characteristics are classified as unstable ground points. In reference to Zhang
et al. [70], the maximum subsidence rate of the permafrost instability area that is located in
the central Tibetan Plateau is about −30 mm/year. In other words, the threshold value of
−40 mm/year adopted in this study is relatively conservative. The stable ground points
are also determined according to the ground deformation rate and the image characteristics.
In general, the areas with a ground deformation rate close to 0 mm/year could be classified
as stable, thus the threshold value of the ground deformation rate for stable ground points
should be set at a value close to 0 mm/year. Additionally, an equal number of stable ground
points should be identified in the high-quality area to avoid potential bias in the selection
of samples. Based on these two criteria, the threshold value of the ground deformation
rate for the stable ground points is set at ±0.15 mm/year. Thus, the ground points with a
deformation rate ranging from −0.15 mm/year to 0.15 mm/year and no obvious unstable
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characteristics are classified as stable ground points. Based on these criteria, a total number
of 1172 high-quality samples (i.e., 586 unstable ground points and 586 stable ground points)
(shown in Figure 10c) are included in the initial InSAR analysis results.

4.2.2. Permafrost Stability Mapping in the Study Area with the Random Forest Method

In order to train the relationship between the environmental factors and permafrost
stability, 80% of the 1172 high-quality samples screened above (i.e., 80% of 586 unstable
ground points and 80% of 586 stable ground points) are taken as the training samples and
the other 20% of the 1172 high-quality samples are taken as the validation samples. The
outcome of the permafrost stability mapping by the trained random forest model is a value
ranging from 0 to 1, which indicates the probability of permafrost stability. For example,
0 represents permafrost instability whereas 1 represents permafrost stability. For ease of
visual interpretation, this value is then categorized into five classes of permafrost stability
(i.e., very low, low, medium, high, and very high) with the Jenks optimization method [71],
and the resulting values of the five classes are [0, 0.36), [0.36, 0.56), [0.56, 0.72), [0.72, 0.86),
and [0.86, 1], respectively.

Figure 11a depicts the results of the permafrost stability mapping in the study area
with the trained random forest model. Figure 12 shows the validation of the trained random
forest model using the ROC curve based on the descending dataset; the AUC value of
the permafrost stability mapping results is 0.975, indicating the high mapping accuracy
of the trained random forest model using the descending dataset. Meanwhile, among the
234 validation samples, 82.05% of the unstable ground points are located in areas with
very low and low permafrost stability. Therefore, the mapping accuracy of the permafrost
stability can be quantitatively validated.

Figure 11. Permafrost stability mapping in the study area: (a) Results of the permafrost stability
mapping with the trained random forest model; (b) Ground deformation rate obtained by the Kriging
interpolation of initial InSAR analysis (Note: Profiles AB and CD are delineated to compare the two
permafrost stability results).

To illustrate the effects of different classification schemes on permafrost stability classes,
other classification schemes including equal intervals and standard deviations are also
adopted to categorize permafrost stability; the results are shown in Figure 13. Compared
with Figure 11a, although different classification schemes can generate different permafrost
stability classes, the spatial distribution of the permafrost stability class is similar. For
example, the very low and low permafrost stability is mainly distributed along the highway

565



Remote Sens. 2023, 15, 2294

and the river valleys. In fact, the Jenks optimization method seeks to reduce the variance
within classes and maximize the variance between classes, which can effectively categorize
a continuous variable into different classes using natural breaks in the data values. This
method has been widely adopted in classification tasks [59,72]. Figure 14 shows the relative
importance of the environmental factors for permafrost stability. In general, larger values
of these two indexes (i.e., MDA and MDG) could signal the greater importance of the
related environmental factor. As can be seen, the permafrost stability is mostly affected
by the slope and the aspect, whereas the least impact is from the curvature. The other
environmental factors yield similar importance in the permafrost stability mapping. It is
noted that although the curvature yields the least impact on permafrost stability, it cannot
be ignored in permafrost stability mapping.

Figure 12. Validation of the trained random forest model using the ROC curve.

Figure 13. Permafrost stability mapping using different classification schemes: (a) Equal intervals;
(b) Standard deviations.
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Figure 14. The relative importance of the environmental factors to the permafrost stability.

5. Verifications and Discussions

5.1. Verifications of the Ground Deformations Obtained with InSAR Analysis

As formulated above, the high-quality samples (i.e., the basic inputs to the proposed
permafrost stability mapping) are derived from the time-series InSAR analysis. Thus, the
verification is vital for the accuracy of the time-series InSAR analysis results. Note that the
InSAR analysis results and the field measurements often cover different temporal and spa-
tial scales. Hence, a direct verification by the field measurements might be impossible [60].
Further, ground-based deformation measurement is fairly limited within the study area. In
this study, the time-series InSAR analysis results are mainly verified through comparing
them with the leveling data and InSAR analysis results outlined by Wu et al. [39]. As only
one leveling site is located in the study area, only one leveling datapoint is provided in
this study. The location of the leveling observation site is labeled in Figure 4a. Figure 15
shows the InSAR analysis results obtained in this study together with the leveling data and
InSAR analysis results obtained by Wu et al. [39]. As can be seen, the InSAR analysis results
obtained in this study are in general agreement with the leveling data and InSAR analysis
results obtained by Wu et al. [39], even though an inconsistency exists in the frozen season
from 2015 to 2016. In our study, frost heave is observed in this frozen season, whereas thaw
settlement was detected by Wu et al. [39]. The InSAR analysis results obtained in this study
appear to be more consistent with the available knowledge of ground deformations in the
study area than those outlined by Wu et al. [39]. In addition, limited by the resolution of the
adopted SAR images, the deformation point obtained in this study is only the closest point
near the leveling data, and they do not overlap. Further, the leveling site may be disturbed
by human activity, which could also cause the inconsistency shown in Figure 15. In general,
there are negative correlations between ground deformations and air temperature [43]; thus,
the relationships between the ground deformations and the air temperature are analyzed
to further verify the effectiveness of the time-series InSAR analysis results obtained in this
study. Note that the air temperature is from the 2.0 m air temperature dataset from the
European Centre for Medium-Range Weather Forecasting—Fifth-Generation Reanalysis
(ECMWF ERA5); this reanalysis data combines model data with observations from across
the world into a globally complete and consistent dataset. Here, three ground points (points
P1, P2, and P3 in Figure 4a) are studied, and the resulting relationships between the ground
surface deformations and the air temperature are plotted in Figure 16a. As expected, the
ground deformations in the thawing seasons are large (caused by thaw settlement), whereas
those in the frozen seasons are small (caused by frost heave), and the air temperature in the
thawing seasons is high, whereas in the frozen season it is low. Figure 16b–d show that the
Pearson’s coefficients between ground deformation and the air temperature of points P1,
P2, and P3 reach −0.53, −0.50, and −0.51, respectively, which quantitatively confirms the
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negative correlations between the ground deformations and the air temperature and thus
verifies the accuracy of the InSAR analysis results.

 

Figure 15. Verifications of the time-series InSAR analysis results with the leveling data and InSAR
analysis results obtained by Wu et al. [39] (Reprinted with permission from ref. [39]. Copyright 2018
Copyright Sciences in Cold and Arid Regions).

Figure 16. Relationships between the ground deformation and the air temperature: (a) Relationships
between the ground deformation and the air temperature at points P1, P2, and P3; (b–d) Correlations
between the ground deformation and the air temperature at points P1, P2, and P3.

Note that the comparison of the ground deformations over flat areas obtained from
both descending and ascending data can also be adopted for verifying the deformation
signals. Thus, the ground deformations in the study area are further analyzed with the
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ascending Sentinel-1 SAR images, and the results are illustrated in Figure 17. It is noted that
the same procedures are adopted for processing the ascending and descending SAR images.
Figure 17a shows the ground deformation rate obtained from the ascending Sentinel-1 SAR
images. As can be seen, the ground deformation rates in the study area obtained from the
ascending SAR images are in general agreement with those obtained from the descending
SAR images (see Figure 4a). To quantitatively compare the two ground deformation results,
the vertical ground deformation rates obtained from the ascending and descending SAR
images are both extracted from good visibility areas, then the two deformation results are
resampled to a grid of 100 × 100 m to avoid spatial mismatch. Figure 18a depicts that
Pearson’s coefficient reaches 0.84, which confirms the accuracy of the ground deformation
results and time-series InSAR processing. Further, Figure 18b shows that the difference
in ground deformation rates obtained from the ascending and descending SAR images
obeys a normal distribution, with a mean of 0.02 mm/year and a standard deviation of
0.01 mm/year, and that this distribution quantitatively verifies the accuracy of the InSAR
analysis results.

Figure 17. InSAR analysis results in the study area obtained from the ascending Sentinel-1 SAR
images: (a) Vertical ground deformation rate from October 2014 to August 2020; (b) Geometric
distortion analysis results.

Figure 18. Comparison of the ground deformation rate obtained from ascending and descending SAR
images: (a) Correlation analysis of the vertical ground deformation rates obtained from ascending
and descending SAR images; (b) Distribution of the ground deformation rate differences between
ascending and descending SAR images.
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5.2. Verifications of Permafrost Stability Mapping with Ascending SAR Images

Figure 17b shows the geometric distortion analysis results of the ascending SAR
images, which suggests that most regions in the study area can be categorized as having
good visibility. To verify the permafrost stability mapping results shown in Figure 11a, the
permafrost stability mapping results obtained with the proposed method and the ground
deformations obtained from the ascending SAR images (see Figure 17a) are compared in
Test Area 1, and the comparison results are illustrated in Figure 19. The permafrost stability
in the bottom-right corner of this test area is low and very low (see Figure 19a). Note
that this corner is mainly occupied by good visibility areas in the ascending SAR images
(see Figure 17b), whereas it is occupied by geometric distortion areas in the descending
SAR images (see Figure 10a); thus, the ground deformations in this corner obtained from
the ascending SAR images are reliable, whereas those obtained from the descending SAR
images might be problematic. Figure 19b shows the ground deformations in this corner
obtained from the ascending SAR images, whereas Figure 19c shows those obtained from
the descending SAR images. In Figure 19b, the bottom-right corner of Test Area 1 shows a
trend of subsidence, which is in general agreement with the low or very low permafrost
stability shown in Figure 19a, whereas only limited points with ground deformations could
be obtained from the descending SAR images (see Figure 19c). From there, the accuracy
of the permafrost stability mapping results obtained with the proposed method could
be qualitatively validated based on this visual interpretation. Note that the quantitative
comparison between the ground deformation results obtained from the ascending SAR
images and the permafrost stability results is not carried out. The reason is that it is difficult
to quantitatively measure the correspondence between the ground deformation results and
the results of the permafrost stability. In addition, the comparisons in Figure 19 could also
indicate that the combination of descending and ascending SAR images can improve the
monitoring ability of ground deformation and thus provide an alternative for improving
the permafrost stability mapping in some complex areas. However, in regions where the
datasets are strongly degraded by terrain visibility, the ground deformation cannot be fully
monitored by the combination of ascending and descending datasets. In such situations, the
combination of InSAR and the machine learning method for permafrost stability mapping
is still a topic worthy of investigation.

Figure 19. Comparisons between the permafrost stability mapping results in Test Area 1 obtained
with the proposed method and the ground deformations obtained from the ascending SAR images:
(a) Permafrost stability mapping results obtained with the proposed method; (b) Vertical ground
deformation rates obtained from the ascending SAR images; (c) Vertical ground deformation rates
obtained from the descending SAR images.

5.3. Superiority of the Proposed Method over the Sole Application of InSAR Analysis

To demonstrate the superiority of the proposed method over the sole adoption of
InSAR analysis in permafrost stability mapping, a comparative analysis is carried out
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between the permafrost stability zonation obtained by the proposed method and the ground
deformation rate obtained from InSAR analyses (with descending Sentinel-1 SAR images as
inputs). For ease of comparison, the ground deformation rate in the areas where the InSAR
analysis results are not available is interpolated here using the Kriging method [73], and the
results of this interpolation are plotted in Figure 11b. Though the interpolated deformation
results may have deviations from the real deformation results, this interpolation method
has been widely adopted for handling missing data [74,75] and the deviations could not
affect the comparative results. As can be seen, the permafrost stability zonation obtained by
the proposed method is in general agreement with the ground deformation rate obtained
by InSAR analysis (see Figure 11a,b). However, due to the interpolated accuracy of the
ground deformations there are exceptions. For example, the permafrost stability zonation
is not consistent with the ground deformation rates in Zones III, IV, V, and VI. Figure 20
shows a detailed comparison between the permafrost stability zonation obtained by the
proposed method and the ground deformation rate obtained by InSAR analysis along the
profiles AB and CD (note: these two profiles are depicted in Figure 11a,b).

Figure 20. Comparisons between the proposed method and the sole application of InSAR analysis:
(a) Permafrost stability zonation obtained by the proposed method versus the ground deformation
rate obtained by the Kriging interpolation of initial InSAR analysis along profile AB; (b) Permafrost
stability zonation obtained by the integrated method versus the ground deformation rate obtained
by the Kriging interpolation of initial InSAR analysis along profile CD; (c) A detailed survey of the
permafrost stability in Zones III, IV, V, and VI with the Google Earth images (note: Zones III and VI
are located in areas with medium and high permafrost stability and Zones IV and V are located in
areas with low permafrost stability. Image from © Google Earth 2019).

It can be seen from Figure 20a,b that Zones III and VI are located in areas with medium
and high permafrost stability according to the permafrost stability mapping obtained by the
proposed method. The permafrost stability in Zones III and VI can be visually confirmed
by the Google Earth images, as depicted in Figure 20c. However, the ground deformation
rate (obtained by a combination of InSAR analysis and Kriging interpolation) in Zones
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III and VI could reach −10 mm/year, indicating instability of the permafrost. Similarly,
according to the permafrost stability zonation obtained by the proposed method, Zones IV
and V are located in areas with low permafrost stability. In reference to the Google Earth
images shown in Figure 20c, the stability of the permafrost in Zones IV and V is fairly
poor, as evidenced by retrogressive thaw slumps and failed slopes. However, the ground
deformation rate (obtained by the combination of InSAR analysis and Kriging interpolation)
in Zones IV and V is larger than −5 mm/year, indicating stability of the permafrost. Hence,
the proposed method is shown to be more effective in permafrost stability mapping than
the sole adoption of InSAR analysis and the data scarcity issue of InSAR analysis in the
low-quality areas could be surmounted.

5.4. Discussion on the Influence of Environmental Factors on the Permafrost Stability

It is worthwhile mentioning that the transfers of water and heat in the frozen soil
could be strongly affected by environmental factors and that the transfers of water and
heat can lead to phase changes in the water in the active layer, which consequently affects
the permafrost stability [43]. In addition, the seasonal thaw subsidence in permafrost
areas is highly related to the distribution of ice or water content in the active layer [60].
However, the ice or water content of the soil in a large area is challenging to monitor. Thus,
only the influences of topography and vegetation coverage, which have great impacts
on the distribution of the ice or water content in the soil [12,60], on the seasonal thaw
subsidence are studied to analyze the influences of the environmental factors on permafrost
stability. In this study, the reasons for only analyzing the influence of elevation on the
ground deformations among these topography factors are as follows: (1) the occurrence
of permafrost on the Tibetan Plateau is mainly affected by the high altitude [76]; thus, the
permafrost stability can be more affected by the ground elevation; (2) it is known that the
soil water content and the river network could affect the permafrost stability [60] and the
river network can be generated from DEM; thus, the ground elevation could be the key
parameter to assess permafrost stability.

In addition, the plots in Figure 9c indicate that for the same NDVI value, the seasonal
thaw subsidence may vary with the position along the profile AB, implying that the
influence of the vegetation coverage on seasonal thaw subsidence can be rather complicated.
In most cases, the relationship between permafrost stability and vegetation might be
interdependent or symbiotic [30,67]. On one hand, the vegetation coverage could shade
from direct sunshine in summer and intercept snowfall in winter, as such, the vegetation
could help cool the ground and thus protect the underlying permafrost. On the other hand,
the shallow thickness of the active layer and the low temperature of the ground can prevent
the growth of vegetation.

It is worthwhile mentioning that the heat flux in permafrost areas is also an important
factor affecting permafrost thaw and permafrost stability and that it can be varied over
several years. The heat flow can affect the permafrost soil temperature and thus affect
permafrost stability [77–79]. However, this study area is only a small area located in the
central region of the Tibetan Plateau, and it can be expected that the long-range variation
of heat flow is the same over this area. Thus, the physical interpretation of the permafrost
stability by considering the effect of heat flux is not achieved in this study.

In summary, this study proposes an integrated permafrost stability mapping method.
It can be further applied to other permafrost areas on the Tibetan Plateau. This study
is significant in assessing permafrost stability and predicting the potential permafrost
degradation-related geohazards on the Tibetan Plateau under climate warming. Further,
with the increase in engineering activities on the Tibetan Plateau, the permafrost stability
mapping results could provide scientific support for engineering construction.
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6. Conclusions

This paper presents a method that integrates InSAR and the random forest method
for an improved permafrost stability mapping on the Tibetan Plateau. This method could
overcome the problem of the data scarcity of InSAR analysis in low-quality areas (i.e., where
InSAR analysis results are not available due to the coherence of InSAR analysis results
and geometric distortions in input SAR images). To demonstrate the application of this
proposed method, the permafrost stability mapping is studied in a small area located in the
central region of the Tibetan Plateau. The results obtained are validated through qualitative
and quantitative verifications, and comparative analyses are conducted to illustrate the
superiority of this integrated method over the sole adoption of InSAR analysis in permafrost
stability mapping. Based upon the results presented, the following conclusions are reached.

1. The initial InSAR analysis of the ground deformation shows that the maximum
ground settlement of the permafrost occurs around the month of August each year,
due to the frost heave of the active layer in the frozen season and subsidence in the
thawing season, and the magnitude of the ground deformations tends to increase
from 2015 to 2019, which might be taken as a sign of the degradation of the permafrost.
The initial InSAR analysis also confirms that the seasonal thaw subsidence is strongly
affected by the ground elevation topography and vegetation coverage.

2. According to the analysis of geometric distortion and coherence of the InSAR results,
the high-quality areas could be recognized, in which high-quality samples can be
readily located based on the threshold values of the ground deformation rate and
Google Earth image characteristics. The permafrost stability and associated environ-
mental factors for these high-quality samples can then be extracted for the permafrost
stability mapping of the entire study area. The random-forest-based mapping analysis
suggests that the permafrost stability (in the study area) is mostly affected by the slope
and aspect, whereas the least impact is from the curvature. The factors of ground
elevation, land cover, NDVI, land surface temperature, and distance to the highway
yield similar importance in the permafrost stability mapping analysis.

3. The validation analysis of the obtained permafrost stability zonation, which is based
on the ROC curve and the unstable ground points in the validation samples, indicates
that this integrated method could yield high mapping accuracy in the study area.
Through qualitative and quantitative verifications, the ground deformations and the
permafrost stability mapping results obtained with the time-series InSAR analysis
and the proposed method, respectively, could be validated. Compared with the sole
adoption of InSAR analysis, this integrated method is shown to be more effective in
permafrost stability mapping of the study area; meanwhile, the issue of data scarcity
of InSAR analysis in the low-quality areas could be overcome.

It should be mentioned that although the proposed method has shown to be promising
in the permafrost stability mapping of the study area, there is room for improvement. For
example, research to further validate the permafrost stability zonation with ground-based
measurements is warranted. Moreover, the InSAR analysis in the study is based on the
Sentinel-1 C-band SAR images with a 6-day revisiting time, the effectiveness of which is
often degraded in mountainous and vegetated areas. Hence, research is also warranted on
data fusion methods that could integrate different sources of SAR images.
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Abstract: Several land-creation projects, such as the Lanzhou New Area (LNA), have been undertaken
in China as part of the Belt and Road Initiative to bring more living space to the local people in loess
areas. However, undisturbed loess and remolded loess have different mechanical characteristics,
which may influence the stability of the filling process. Therefore, we monitored the deformation
through InSAR and field monitoring to investigate the deformation characteristics and their causes.
We obtained the horizontal and vertical displacements, internal deformation, water content, and
pressure, according to the air–space–ground integrated monitoring technique. The results show
that stress and deformation increase rapidly during construction. Deformation in different places is
different during the winter: (1) for vertical displacement, uplift is present in the cut area, settlement
is present in the fill area, and heterogeneity is evident in other areas; (2) for horizontal displacement,
the expansion state is present in the filling area and the compression state is present at the boundary.
Laboratory tests show that the difference in soil compression properties is one of the reasons for
these deformation characteristics. Additionally, the difference in volumetric water content and
permeability coefficient may trigger different mechanical properties on both sides of the boundary.
All the evidence indicates that the boundary region is critical for filling projects. It is also necessary
to install monitoring equipment to observe deformation. When abnormal deformations appear, we
should take measures to control them.

Keywords: InSAR; loess; in situ; deformation; land creation

1. Introduction

Loess, one of the quaternary sediments, is widely distributed in China, covering
approximately 440,000 km2 [1,2]. The Loess Plateau is a plateau in north-central China
formed of loess. It is one of the important agricultural regions in China, covering an area of
624,641 km2 and supporting 17% of the population [3]. Additionally, there is not enough
space for downtown areas to expand in these places. Lanzhou is an important city in
western China, but it is located in a valley, which seriously hinders urban development [4].
A total of 57% of the area of Lanzhou comprises unused land such as barren hills, gentle
slopes, and gullies; filling gullies to create farmland on the Loess Plateau can help to
solve many problems. As part of the strategy of Western Development and the Belt and
Road Initiative, several loess projects have been initiated, such as the Lanzhou New Area
(LNA) [5], which consists of more than 250 square kilometers of reclaimed land [6]. The
maximum annual average expansion rate was about 36 km2/a from 2012 to 2016 [7]. These
projects will give people more new flat land and more ground for agriculture [8], but that
comes with risks in the absence of carefully designed engineering controls [6,9].

Loess, a clastic, predominantly silt-sized sediment, has a metastable structure [10–12]
and is composed of million-year-old thick deposits of windblown dust and silt. The grain
sizes range from 0.005 to 0.05 mm, and the porosity generally ranges from 42% to 55% [13].
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The loess structure produces collapsibility, which induces sharp sinking and causes ground
deformation when it encounters water. At the micro level, debonding, grain crushing,
and fabric transition appear during collapse; at the macro level, creeping and softening
appear when the structure changes. According to Wen and Yan [14], the shear strength
reduction in loess due to structural characteristics should be attributed to the breaking of
cementation bonds between particles. The different physical and mechanical properties
make construction difficult, especially for filling and excavation projects; consequently,
researchers have designed several experiments to explore such geotechnical properties in
order to address these problems [15–17].

Loess, a strongly collapsible soil, easily softens and deforms when it encounters
water. The penetration of water into loess is very complicated: after water infiltrates
the pores of the undisturbed loess, the moisture content and matric suction of the loess
will change, and its shear strength will be reduced significantly [18,19]. In some studies,
undisturbed loess is stronger than remolded loess at the same density and water content [20].
The experimental results show that mechanical parameters such as the shear strength,
compressive strength, and Young’s modulus of undisturbed loess and remolded loess
are significantly different. Differential deformation with different properties is one of the
factors that trigger geohazards [21–23]; therefore, this variability in soil properties can cause
problems in filling projects. However, the deformation process at the boundary is unclear
for loess-filling projects.

For displacement monitoring, GPS is the best real-time monitoring technique to moni-
tor surface deformation, especially for landslide displacement [24]. For large-scale mon-
itoring, InSAR observations are the favored tool and have been successfully applied in
mountains and plains [25,26], glacier monitoring [27], urban subsidence monitoring [28],
and landslide monitoring [29]. Large-scale loess deformation has also been observed using
this technique [5,30–32]. From monitoring loess filling projects, it has been found that
deformation generally occurs on the edge of the cutting and filling slope; in the LNA,
there is significant subsidence after filling from large-scale observations. In addition, the
spatial heterogeneity of land creation results in different deformation modes [5]. After
land reclamation in loess areas, the stress changes, amounting to hundreds of kilopascals
in shallow zones, which, in turn, induce deformations in the filling bodies [33]. Based
on monitoring studies, the surface subsidence is mainly located in the filling area [34,35],
while uplifting occurs in the excavation area [36].

In this paper, we monitored the surface deformation process in the study area through
ascending and descending images during the winter and buried equipment such as dis-
placement meters to monitor the internal deformation. Additionally, we buried moisture
meters and earth pressure cells to investigate the reasons for such changes. Based on
the space–air–ground integrated monitoring technique, we analyzed the deformation
characteristics of loess during the winter.

2. Study Area

Lanzhou city, Gansu, located in northwestern China (Figure 1A), is an important
regional commercial center and transportation hub. Due to the U-shaped and V-shaped
valleys around the city and the Yellow River that crosses the city, the topography hampers
the development of Lanzhou. Lanzhou creates more land for development by filling the
loess valley and cutting the loess mountain; in the LNA in particular, hundreds of mountain
tops have been flattened.

The LNA, founded in 2012, is a state-level new area that spans 40 km north to south
and 16 km east to the west. It is located 30 km from Lanzhou’s old city in the Qinwangchuan
Plain, which is the largest plateau basin near Lanzhou (Figure 1A). Local governments
removed the tops of many high loess mountains to fill the adjacent valleys to create new
flat land for living space and agriculture. In this area, it has a typical semiarid continental
monsoon climate. The average temperature is approximately 4.1 ◦C, and the typical
annual precipitation is 300–500 mm, with almost 60% of the precipitation occurring in the
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summer [5]. There have been many filling projects from 2002 to 2022 (Figure 1B). Our study
area is located in the southeast of the LNA, which is set to provide sufficient land for local
agriculture in the future.

Figure 1. Study area and photos of different stages ((A) is the location of the research area, (B) is the
distribution of the filling areas in Lanzhou, (C) is a photo of our research area taken on 12 September 2018,
(D) is a photo of our research area taken on 16 October 2018, and (E) is a photo of our research area
taken on 6 June 2019. LZ: Lanzhou city, GL: Gaolan county, BY: Baiyin city).

In this project, the construction process is divided into five steps: (1) cutting the
slope into steps; (2) filling 30 cm at a time; (3) watering it to achieve the optimal moisture
content; (4) rolling it to achieve the desired compaction degree; and (5) repeating the above
steps until the predetermined height is reached. The filling project began on 6 July 2018
and ended on 13 May 2019, according to the construction log. There were 30 layers of
landfill from 6 July 2018 to 15 September 2018 (Figure 1C), 35 layers from 11 October 2018 to
14 November 2018 (Figure 1D), and 28 layers from 12 March 2019 to 13 May 2019 (Figure 1E).
The winter break lasted from 14 November 2018 to 12 March 2019. During the winter break,
the site experienced little human disturbance, thus reflecting the actual site deformation
process. Therefore, large-scale loess deformation can be observed thoroughly via InSAR
and internal monitoring.

We employed a UAV to conduct terrain mapping before and after the project to
measure the surface change after filling and applied Agisoft PhotoScan to create the Digital
Surface Model (DSM) [37]. The maximum landfill is 24.91 m, and the maximum excavation
thickness is 17.30 m, according to the DSM differences in Figure 2.
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Figure 2. DEM differences before and after filling in the study area (positive value represent filling
height and negative values represent excavation depth).

Malan loess is widely distributed in the project area, and the strata are mainly qua-
ternary loose sediments. From the X-ray diffraction, quartz and plagioclase are the main
minerals in the Malan loess, which account for 35.2% and 24.0% of minerals, respectively
(Table 1). Illite and illite/smectite are the main clay minerals, which account for 41.0% and
35.0% of clays, respectively (Table 2). These characteristics indicate that changes in moisture
content can significantly affect the mechanical properties [14,38]. Malan loess is formed
by weak cementation between silts, sands, and aggregates. Cementation is provided by
crystalline carbonate [39,40]. The Malan loess tensile and shear strengths decrease with wa-
ter content and increase with dry density, producing a close multi-regression relationship.
Differences in tensile strengths between undisturbed loess and remolded loess indicate the
significance of its structure [41]. The composition is quaternary alluvial silt, silty clay, sand,
and gravel.

Table 1. X-ray diffraction analysis of the relative quantity.

Quartz Feldspar Plagioclase Calcite Dolomite Total Clay

35.2 10.9 24.0 11.9 7.6 10.4

Table 2. X-ray diffraction analysis of the relative quantity of clay minerals.

Illite/Smectite Illite Kaolinite Chlorites

41.0 35.0 10.0 14.0

581



Land 2022, 11, 1263

In the study area, we take soil samples and determine the basic parameters in the
laboratory (Table 3). According to British Standard (BS 1377) [42], we measured the basic
physical property parameters of the samples, while according to the measured volume and
mass, the bulk density is 2.03 g/cm3 for remolded loess, while the density is 1.31 g/cm3

for undisturbed loess. Subsequently, the samples were dried in an oven until the mass
no longer changed (the oven temperature was set to 108 ◦C). The dry densities of the
undisturbed loess and the remolded loess were 1.20 g/cm3 and 1.80 g/cm3, and the
moisture content was 8.90% and 14.50%. The specific gravity of the loess sample measured
by the pycnometer was 2.73. To obtain the void ratio, the equation as follows:

e =
(1 + ω)Gsρw

ρ
− 1 (1)

where ω is moisture content, ρ is density, ρw is water density, and Gs is specific gravity.
Based on the Equation (1), the void ratios of undisturbed loess and remodeled loess are
1.27 and 0.54, respectively. The properties of the loess in the filling area are significantly
different from those of the original mountain. These differences in basic properties may
result in different deformation characteristics after filling.

Table 3. The basic parameters of the loess in the study area measured by laboratory tests.

Type Remolded Loess Undisturbed Loess

Specific gravity 2.73 2.73
Bulk density (g/cm3) 2.03 1.31

Water content (%) 14.50 8.90
Dry density (g/cm3) 1.80 1.20

Void ratio 0.54 1.27

3. Methods

3.1. InSAR Process

D-InSAR (differential interferometric synthetic aperture radar) is a technique for
mapping ground deformation in the wave phase between two radar images acquired at
different times over the same area [43]. PS-InSAR is based on using permanent scatterers to
overcome phase decorrelation and atmospheric delay effects in D-InSAR to obtain accurate
deformation estimates [44]. Ferretti et al. described the PS-InSAR technique in detail [45]. In
the persistent scatterer (PS) targets, the phase includes the deformation phase, atmospheric
delay phase, orbit error phase, topographic phase and noise phase as follows:

φint = W
{

φde f o + φatmos + Δφorbit + Δφtopo + φnoise

}
(2)

where φde f o is the deformation phase, φatmos is the atmospheric delay phase, Δφorbit is the
orbit error phase, Δφtopo is the topographic phase, and φnoise is the noise phase. The PS-
InSAR method used regression and filtering methods to obtain the real deformation phase.

To date, PS-InSAR has been widely developed. There are many programs for PS-
InSAR, such as GAMMA-rs [46], SARPROZ [47], and StaMPS [48]. StaMPS is a software
package that allows for the extraction of ground displacements from the time series of
synthetic aperture radar (SAR) acquisitions [49,50]. StaMPS applies phase analysis and
amplitude to determine the PS probability and calculate displacements on these PSs from
the time series of synthetic aperture radar (SAR) acquisitions [44], which it separates into
eight steps (Figure 3): (1) data load; (2) phase noise estimation; (3) PS point selection; (4) PS
weeding; (5) phase correction; (6) phase unwrapping; (7) estimation of spatially correlated
look angle error; and (8) atmosphere filtering [51]. The mean velocity and displacement on
each line of sight (LOS) can be calculated by StaMPS. Based on the results calculated by
StaMPS, we applied our 2-D decomposition method to calculate the displacements.
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Figure 3. Workflow chart of InSAR.

Sentinel-1 SAR products are free and open access, providing a large number of images
to observe deformation around the world. Sentinel Application Platform (SNAP) is the
official software for dealing with Sentinel-1 data, which involves coregistration images and
the generation of interferograms for data preparation. To integrate SNAP with StaMPS, a
free application called snap2stamps [52] was developed and is available on GitHub (https:
//github.com/mdelgadoblasco/snap2stamps, accessed on 9 May 2022). The workflow for
the SNAP–StaMPS approach is shown in Figure 3. In this paper, we used the above method
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to deal with the ascending and descending images separately to acquire the deformation on
each line of sight (LOS) and decomposed them into horizontal and vertical displacements.

3.2. 2-D Decomposition

Based on StaMPS, we can obtain the mean velocity and displacement on each line of
sight (LOS) through ascending and descending tracks of Sentinel-1 images. SAR is sensitive
in the direction perpendicular to its azimuth. Since the Sentinel 1 satellite is in a near-north–
south motion, we can obtain the mean velocities and displacements in the vertical and
east–west directions based on the ascending and descending images [53–58]. According
to the rotation matrix, the east–west motion and vertical motion can be decomposed
as follows: [

dasc
LOS

ddesc
LOS

]
=

[
cos θasc − cos αasc sin θasc

cos θdesc − cos αdesc sin θdesc

][
dv

de

]
(3)

In Equation (3), dasc
LOS is the displacement or velocity on the line-of-sight of ascending

images, and ddesc
LOS is the displacement or velocity on the line-of-sight of descending images.

However, the PS in the ascending satellite image and the descending image may not
be the same location. Therefore, we cannot decompose the phase on the same PSs. We
can assume that the deformation changes in the near region are similar. Then, we esti-
mated the phase and uncertainties according to the PS around the reference and adopted
the least squares method. The LOS displacement of the ascending and descending im-
ages should be included at the same time to prevent equation collinearity (Figure 4).
Equation (3) changes to:

Y = AX (4)

where X =

[
dv
de

]
, Y =

[
dLOS1

asc , . . . , dLOSn
asc , dLOS1

desc , . . . , dLOSm
desc

]T
, and A is:

[
cos θ1

asc · · · cos θn
asc cos θ1

desc · · · cos θm
desc

− cos αasc sin θ1
asc · · · − cos αasc sin θn

asc − cos αdesc sin θ1
desc · · · − cos αdesc sin θm

desc

]T

Figure 4. The selection of the PS correction point in the reference PS points.

θasc
i is the radar incidence angle at the ith PS point through the ascending tracks

of Sentinel-1 images, θdesc
j is the radar incidence angle at the jth PS point through the

descending tracks of Sentinel-1 images, αasc is the LOS azimuth on the ascending tracks,
αdesc is the LOS azimuth on the descending tracks, dLOSasc is the displacement or velocities
along the line-of-sight (LOS) through the ascending tracks of Sentinel-1 images, dLOSdesc is
the displacement or velocity along the line-of-sight (LOS) through the ascending tracks of
the Sentinel-1 images, dv is the vertical displacement or velocity, and de is the displacement
or velocity in the east–west direction. Based on the least squares method, X is:

584



Land 2022, 11, 1263

X =
(

AT A
)−1

ATY (5)

For each PS, we can calculate the east–west displacement and vertical displacement
and velocity according to the above method.

3.3. Field Monitoring

We buried instruments in the soil layers to monitor vertical and horizontal stress,
deformation, and moisture movements. Three earth pressure cells were buried in this area:
two earth pressure cells monitored the horizontal pressure, and one monitored the vertical
pressure. Two earth pressure cells were in the landfill at 16 m and 19.4 m relative to the
designed elevation to monitor the horizontal pressure. One earth pressure cell was placed
at the bottom interface (21 m relative to the designed elevation) to monitor the vertical
pressure. For deformation, three extensometers were used to monitor the deformation: two
for horizontal deformation and one for vertical deformation. For horizontal deformation,
we monitored deformations in the filling area and boundary area. For vertical deformation,
the meter monitors the deformation from 16 m to 21 m relative to the designed elevation.
For the moisture movement, two moisture meters were located in the filling areas and
excavation areas. The schematic layout of the equipment is shown in Figure 5. According
to the above monitoring equipment data, the deformation process of the internal landfill
area can be measured.

Figure 5. Schematic diagram of buried equipment layout.

4. Results

4.1. Surface Monitoring

Considering Sentinel 1 satellite imagery coverage, we selected nine ascending and
nine descending images of this area on the same day during the winter break from
29 November 2018 to 5 March 2019 (Table 4). Then, we adopted the above method to
calculate the surface deformation in the vertical and east–west directions. In our method, a
positive value in the east–west direction indicates western movement and a positive value
in the vertical direction indicates uplift after decomposition.

Table 4. Sentinel data for the LNA.

Ascending Descending

No. Acquisition Date No. Acquisition Date

1 29 November 2018 1 29 November 2018
2 11 December 2018 2 11 December 2018
3 23 December 2018 3 23 December 2018
4 4 January 2019 4 4 January 2019
5 16 January 2019 5 16 January 2019
6 28 January 2019 6 28 January 2019
7 9 February 2019 7 9 February 2019
8 21 February 2019 8 21 February 2019
9 5 March 2019 9 5 March 2019
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According to the spatial distribution of PS points, they are distributed in the original
mountain and cutting areas. There are few PS points in the filling area due to rapid
settlement (Figure 6A); therefore, in situ monitoring is required.

Figure 6. The vertical deformation based on InSAR data ((A) is the spatial distribution of vertical
deformation, (B) is the deformation in region A, and (C) is the deformation in region B).

The characteristics of deformation in different areas are different. On the road, there is
heterogeneity. There is significant settlement in region A (Figure 6B); however, there is an
uplift in the excavation area (Figure 6C) throughout the winter break. The settlement in
region A in Figure 6A appears to be more than 20 mm/year, which is affected by the filling
projects. In the excavation area, the deformation rate is greater than 5 mm per year, which
is related to the cutting process.

According to the horizontal deformation, the movements in the east–west direction
show different deformations in the boundary areas and the excavation areas (Figure 7A).
Different boundaries show different deformation characteristics. The eastern boundaries
(Region A in Figure 7A), i.e., high-fill boundaries, appear to have moved eastwards due to
the absence of the original mountain restrictions (>20 mm/a) (Figure 7B), while deformation
is relatively low at the western boundary. Additionally, the excavation area appeared to
move west (Region B in Figure 7A). The velocity of the excavation area is more than
10 mm/year (Figure 7C). Therefore, the filling procedure will have an impact on the
neighboring areas based on these InSAR observations.
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Figure 7. East–west displacement based on InSAR data ((A) is the spatial distribution of displacement
in the east–west direction, (B) is the deformation in region A, and (C) is the deformation in region B).

4.2. Internal Monitoring

The geological body is composed of undisturbed loess and remolded loess, which
results in complex deformation processes [59]. Based on field monitoring, the deformations
during construction are large and range from 16 m to 21 m during the filling process
(Figure 8). The pressure at 21 m presents an increase in the filling process (Figure 8A);
this pressure is from 125.3 kPa to 172.3 kPa during construction (about 2.14 kPa/day). In
terms of vertical deformation, it is about −10.3 mm, and the average velocity is about
0.47 mm/day during construction (Figure 8B).

Figure 8. Vertical stress at 21 m and displacement from 16 m to 21 m in the filling areas in the first
stage ((A) is the pressure over time, and (B) is the displacement over time. The solid line is the
measured data, and the dashed line is the estimation of missing data due to a lack of data).
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During the winter break, the pressure ranged from 172.3 kPa to 227.1 kPa. This
process shows that stress in the filling bodies is redistributed (Figure 9A). In addition,
the settlement reaches 12 mm from 16 m to 21 m (Figure 9B). The relationship between
settlement and time follows logarithmic models during the winter down period, similar to
previous studies [60–62].

Figure 9. Vertical stress at 21 m and displacement from 16 m to 21 m in the filling areas during winter
break ((A) is the pressure over time during winter, and (B) is the displacement over time during
winter. The solid line is the measured data, and the dashed line is the estimation of missing data due
to a lack of data).

Compared with vertical deformation, the horizontal deformation is complicated [59].
The horizontal deformation in different areas presents different characteristics: the loess is
tense in the filling area and compressed at the boundary (Figure 10A,B). Based on the data
measured by the horizontal displacement gauge, the horizontal displacement increased
by approximately 2.5 mm in the filling area and decreased by 1 mm at the boundary from
25 October 2018 to 24 March 2019 (Figure 10C). The lateral stress increased rapidly during
construction and grew slowly during the winter break (Figure 11). At the same time, this
process shows that the filling area is not stable during the winter break. Additionally, the
high strength when the undisturbed loess is dry prevents the disturbed loess from moving
due to the mechanical characteristics. The results show that the filling body will affect the
adjacent areas. According to the above analysis, the internal monitoring results are in good
agreement with the surface InSAR measurements. These results show that the filling bodies
may squeeze surrounding areas.

Figure 10. Horizontal displacement ((A) is a schematic diagram of the deformation of the landfill area,
(B) is a schematic diagram of the deformation at the boundary, and (C) is the deformation over time).
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Figure 11. Horizontal stresses (the blue line is at 19.4 m, and the orange line is at 16 m).

5. Discussion

5.1. Effects of Different Compressibilities

The compression tests were conducted on a one-dimensional oedometer apparatus at
the College of Geological Engineering and Geomatics, Chang’an University. The Accuracy
of this equipment is ±0.001 mm. In this test, we set the pressure to 12.5 kPa, 25 kPa, 50 kPa,
100 kPa, 200 kPa, 400 kPa, 600 kPa, 800 kPa, 1600 kPa, and 3200 kPa on the in situ remolded
and undisturbed loess. At each loading step, the settlement of the specimens was measured
so that the void ratio could be calculated.

Regarding the results, there are some differences in the compressibility between
undisturbed loess and remolded loess (Figure 12). The coefficient of compressibility in
undisturbed loess decreases from 0.78 MPa−1 to 0.07 MPa−1. For the remolded loess, the
curve decreases linearly with pressure in the e-logp plot (Figure 12). The coefficient of
compressibility is 1.13 MPa−1, and it gradually decreases to 0.02 MPa−1. Before the load
reaches a certain threshold, the compression deformation of undisturbed loess is relatively
small, and the compression curve of undisturbed loess is gentler than that of remolded
loess. However, when the load exceeds the threshold, the void ratio decreases rapidly. The
compression curve of the undisturbed soil after the load exceeds the threshold is steeper
than that of the remolded loess, and the compression index of the undisturbed loess is larger
than that of the remolded loess. Undisturbed loess has more pores, which provides room
for compression. With increasing pressure, the structure of undisturbed loess gradually
began to play a role, and the changes in the two curves were also significantly different.

Figure 12. Compression curve shown by e-logp plots (the orange line is undisturbed loess, and the
blue line is remolded loess).
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In the filling project, due to the difference in compressibility, the internal deformation
of loess produces different characteristics. The compression of undisturbed loess is small
compared with that of remolded loess under low pressure. These differences cause the
border to appear compressed. The filling body squeezes the adjacent areas. Therefore,
different compression properties are one of the reasons that the boundary area becomes a
vital area of loess.

5.2. Effects of Different Permeabilities

The volumetric water content (VWC) shows an increasing trend on both sides of the
boundary. The process may be related to the groundwater level rising during the filling
process. However, there are differences in volumetric water content on both sides of the
boundary (Figure 13). According to laboratory tests for in situ loess, remolded loess and
undisturbed loess have different hydraulic conductivities: 2.3 × 10−5 m/s for remolded
loess and 1.4 × 10−4 m/s for undisturbed loess (Table 5). The hydraulic conductivity of
undisturbed loess is an order of magnitude higher than that of remolded loess, which
may induce different moisture movements. The difference in the soil properties may
lead to different transport processes and cause different moisture concentrations at the
boundary [63]. Therefore, the difference in horizontal deformation is related to moisture.
In particular, these hydraulic discontinuities may contribute to high pore pressures during
intense rainstorms and loading. In the filling project, moisture movement affects the
high-fill slope stability, which causes settlement [64].

Figure 13. VWC on both sides of the boundary (the blue line is VWC in the original mountain, and
the red line is VWC in the filling area).

Table 5. Permeability coefficients of undisturbed loess and remolded loess.

Type of Loess Sample Permeability Coefficient Average Permeability Coefficient

Remolded loess
F01 2.6 × 10−5 m/s

2.3 × 10−5 m/sF02 2.2 × 10−5 m/s
F03 2.1 × 10−5 m/s

Undisturbed loess
W01 1.5 × 10−4 m/s

1.4 × 10−4 m/sW02 1.4 × 10−4 m/s
W03 1.3 × 10−4 m/s

Based on the above monitoring data, the filling process affects adjacent areas due to
having different physical properties and different water contents. The deformation char-
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acteristics affected by various factors are not homogeneous. The InSAR results show that
the high filling boundary moves outward under the force of gravity. Internal monitoring
shows that the boundary region shows a state of compression, while the landfill region
shows a state of expansion.

5.3. Lessons from Monitoring

The project has provided new flat land for local agriculture and promoted economic
development (Figure 14). This study demonstrates the early deformation characteristics
of loess landfill through an air–space–ground integrated monitoring technique. In the
excavation area, the deformation characteristics are similar to those of the core of LNA,
which uplifts slightly. In the filling areas, due to soil instability in the landfill area, there are
few PS points, so it is impossible to measure the deformation through InSAR accurately.
From the vertical displacement meter in the filling body, the deformation from 16 m to 21 m
reaches about 37.12 mm/a. However, the maximum annual deformation rate in the urban
core areas of LNA measured by InSAR was 56.35 mm/a [34]. There are two main reasons
for the difference in settlement: (1) different landfill methods and (2) different settling
time intervals. Firstly, the study area has only just been landfilled, and the subsidence is
relatively fast. In addition, due to this leveled land being intended for agriculture, roller
compaction was selected for the landfill process. In general, the deformation in this area
after the landfill process is within expectations. In addition, pressure and deformation
are related to the filling process. The pressure and deformation increased following the
filling process. However, the deformation and stress have some hysteresis according to the
monitoring data.

Figure 14. Changes in the research area ((A) is on 12 October 2018; (B) is on 4 July 2019; (C) is on
4 May 2022).

As a result of urban development, filling projects are distributed widely around the
world, including projects such as Kansai International Airport in Japan [65], Macau Inter-
national Airport in China [66], and Treasure Island in the USA [67]. Unreasonable landfill
methods may cause geological disasters such as the Shenzhen landslide. Additionally, land
subsidence is one of the problems in these areas. This case shows that we can use differ-
ent landfill methods depending on the purposes and costs. It is also necessary to install
monitoring equipment to monitor deformation. When abnormal deformations appear, we
should take measures to control them.

6. Conclusions

In this study, we monitored large-scale deformation and investigated the causes using
large-scale field monitoring from Sentinel-1 satellite data, in situ monitoring equipment,
and laboratory tests. The following conclusions can be drawn:

(1) During the construction, stress and deformation increase rapidly (2.14 kPa/day for
vertical stress at 21 m relative to the designed elevation and 0.47 mm/day from 16 m
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to 21 m relative to the designed elevation). The loess in the filling area is the state of
expansion while the state of compression is at the boundary. The deformation and
stress have some hysteresis;

(2) During winter, the deformations in different regions varied. In the horizontal direction,
the excavation area exhibits horizontal movement. Some boundaries appear to cause
extrusion deformation in adjacent regions. The high filling boundary moves outward
under the force of gravity (the deformation velocity in some areas exceeds 20 mm/a).
In the vertical direction, there is an uplift in excavated areas and subsidence in the
fill region;

(3) The water content on both sides of the boundary gradually increases due to the
influence of the filling project. Different permeability properties indicate that the
boundary area is critical. The filling and excavation processes have impacted the
surrounding area;

(4) The compression characteristics of undisturbed loess and remolded loess are different,
which is one of the reasons for their different deformation characteristics. At low
pressure, the compressibility coefficient of undisturbed loess (0.78 MPa−1) is lower
than that of remolded loess (1.13 MPa−1), but at high pressure, the compressibility
coefficient of undisturbed loess (0.07 MPa−1) is higher than that of remolded loess
(0.02 MPa−1). Different mechanical properties and hydraulic conductivities may
trigger differential soil transfer and cause geohazards. It is also necessary to install
monitoring equipment to monitor deformation. When abnormal deformations appear,
measures should be taken to control them.
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Abstract: Interferometric radar is a hot research topic in manmade target displacement measuring
applications, as it features high precision, a large operation range, and a remote multiple point
measuring ability. Most one-dimensional interferometric radars use single-input single-output (SISO)
radar architecture to achieve a high repetition measuring rate of more than 200 Hz; however, it cannot
resolve multiple targets with the same radial range but different azimuth angles. This paper presents
a multiple-input multiple-output (MIMO) radar that adopts a limited number of antennas (usually
tens) to simultaneously improve azimuth resolution and achieve a high repetition measuring rate.
A MUSICAPES algorithm is proposed, which is cascades the multiple signal classification (MUSIC)
algorithm and the amplitude and phase estimation (APES) filter. The MUSIC algorithm is used to
further improve the angular resolution of the small array. The APES is used to precisely recover
the phases of the multiple close targets by suppressing their mutual interferences. Simulations and
experiments with a millimeter-wave radar validate the performance of the proposed method.

Keywords: interferometric MIMO radar; displacement measurement; multiple close targets; millime-
ter wave; MUSIC; APES

1. Introduction

Many manmade targets, such as bridges, tunnels, towers, tall buildings, etc., deform
slightly under external forces. These external forces are wind, traffic, hydraulic, temperature
stress, or a combination of them. The deformation may cause irreversible structural damage
if it exceeds the maximum deformation threshold; therefore, it is of great significance to
precisely monitor the tiny deformations of these targets. At present, deformation can
be measured by contact or non-contact deformation measuring sensors. Conventional
contact measurement sensors include displacement gauge, tension gauge, accelerometer,
vibration pickup, strain gauge, inclinometer, level gauge, and Beidou/GPS displacement
gauge. Non-contact sensors include total station, laser interferometry, high-definition
video, interferometric radar, etc. According to the working mode, the most widely used
deformation measuring sensors belong to the single-point measurement system; however,
they suffer several technical limitations. Interferometric radars are popular for monitoring
bridges, towers, slopes, mine pits, dams, and other civil infrastructures.

Interferometric radars receive the echo of an object’s backscattering by transmitting
microwave radio waves and measuring the displacement of the object by time difference
interferometry. They feature high precision, long working range, operational convenience,
remote multiple point measuring ability, and good environmental adaptability [1]. They
can be further divided into one-dimensional interferometric radars and two-dimensional
interferometric radars. The former kind of radars is applied to measure bridges, tall
buildings, and towers, which requires a higher repetition measurement rate [2,3], whereas
the latter kind is applied to measure slopes and dams, which features a lower repetition rate
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but a large coverage requirement [4]. Interferometric radars can be extended to different
platforms, such as satellites, airplanes, ships, and rails [5]. These radars would also work at
different frequency bands, from the X band up to the W band [6].

One-dimensional interferometric radars generally adopt the single-input signal-output
(SISO) radar architecture. The radar can only measure the deformations of objects with
different radial distances. It would hinder the radar’s application in the case of there being
two objects with the same radial distance but different azimuth angles. Most amendments
to these radars are to solve displacements with multiple directions [7]. If a one-dimensional
interferometric radar adopts multiple-input multiple-output (MIMO) radar architecture, its
multiple targets resolving capability can be improved. Traditional MIMO interferometric
radars are usually proposed to reduce the data acquisition time of rail-mounted two-
dimensional interferometric radars [8,9]. Some improvements to MIMO interferometric
radars would involve forming 3-D images and retrieving 3-D displacements [10,11]. Few
MIMO radars are capable of even measuring dynamic displacements [12], and many of
them find it hard to achieve a high repetition rate similar to that of a one-dimensional radar.

Multiple target imaging algorithms for MIMO interferometric radar include the back
projection (BP) algorithm [8], the range migration algorithm, and the far-field pseudo-
polar format algorithm (FPFA) [13]. All these algorithms are suitable when the equivalent
elements of a MIMO array are large; however, a large repetition rate requires a smaller
MIMO array. The imaging algorithm should adapt to the small array while still having a
fine multiple-target resolving ability. As the range migration of a target is not prominent
for the small array, fast Fourier transformation (FFT) can be used to resolve multiple targets.
Although improved methods such as ZOOM-FFT(ZFFT), FFT-FS, and chirp z-transform
(CZT) [14], can be used to improve the computation resolution. These FFT-based methods
still suffer from a limited angle resolution that is inversely proportional to the array length.
Direction of arrival (DOA) estimation methods can achieve a better performance when
scatters are independent. These methods include Capon beamforming [15], the amplitude
and phase estimation (APES) [16,17], the multiple signal classification (MUSIC) [18,19], and
so on. The phases of multiple targets would suffer mutual interferences if they were close.
It would cause additional requirements for the DOA methods. None of these methods can
achieve azimuth super-resolution and precise phase estimation at the same time.

In this paper, a short MIMO interferometric radar is designed to extract multiple
close targets with a high repetition rate. A MUSICAPES algorithm is proposed to resolve
multiple targets beyond the angle resolution and suppress the mutual interferences of their
side lobes. The algorithm is performed by cascading the root-MUSIC algorithm and an
APES filter. The deformations of multiple targets with the same radial distance but different
azimuth angles are finally accurately estimated with time differential interferometry. The
main contributions of this paper are summarized as follows.

• A MIMO interferometric radar is proposed for a precise, high repetition rate, non-
contact, multi-point simultaneous displacement measurement. It has the advantages
of both one-dimensional and two-dimensional deformation measuring radars. It can
measure multiple close targets such as complex bridges, towers, and buildings, which
traditional one-dimensional radars fail to do.

• A MUSICAPES method is proposed to resolve multiple azimuth close targets and
precisely extract their displacements. The method first adopts the root-MUSIC al-
gorithm to estimate the azimuth angle of each target. Then, the APES algorithm
is used to precisely recover the phases of the targets using the azimuth angles es-
timated in the former step. The method can improve the displacement measuring
precision significantly.

• A millimeter-wave MIMO interferometric radar is designed for multiple target dis-
placement measuring. The radar is composed of a commercial off-the-shelf (COTS)
radar front end, an analog to digital (AD) card, and a laptop computer. Experiment
results show that the radar can resolve multiple targets beyond the angular resolution
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of the MIMO array and can precisely measure their displacements at a repetition rate
of more than 100 Hz.

Notation: We denote vectors and matrices by boldface letters. See Table 1 for the main
acronyms and symbols and their meanings.

Table 1. Meanings of main abbreviations, acronyms and symbols.

Index Term Meaning

1 SISO single-input signal-output
2 MIMO multiple-input multiple-output
3 MUSIC multiple signal classification
4 APES amplitude and phase estimation
5 CZT chirp z-transform
6 DOA direction of arrival
7 MMW millimeter-wave
8 COTS commercial off-the-shelf
9 R1 input covariance matrix for MUSIC
10 R2 input covariance matrix for APES
11 US signal space by eigen decomposition
12 UN noise space by eigen decomposition
13 Q̂ noise covariance matrix for APES
14 h optimal complex filter coefficients of APES

The rest of this paper is organized as follows. Section 2 briefly describes the architecture
of the MIMO interferometric radar and the principles of multiple target discrimination. A
MUSICAPES method is proposed in Section 3, to precisely extract the displacements of
multiple close targets. Simulations and two-target displacement measuring experiments
with an MMW MIMO radar are presented in Section 4. Finally, conclusions are drawn in
Section 5.

2. MIMO Interferometric Radar and Multiple Target Discrimination

Conventional one-dimensional interferometric radars adopt one transmitting antenna
and one receiving antenna. The azimuth resolution is restricted to the beamwidth of the
two antennas. Generally speaking, the radar cannot resolve two targets with the same
radial range but different cross-range positions, as target A and target B in Figure 1, for
example. The radar can only resolve targets with different radial ranges, as target A and
target C in Figure 1, for example.

Figure 1. Multiple target deformation measurement with a MIMO interferometric radar.
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Azimuth or angle discrimination can be improved by using a SAR or DOA algorithm
in traditional radars. Two-dimensional interferometric radars adopt the SAR system and the
persistent scatter (PS) algorithm to estimate slow displacement. We use the DOA method to
estimate fast displacement. The radar architecture, the principles of range discrimination,
and azimuth discrimination are described in this section in detail.

2.1. Basic Architecture of an Interferometric MIMO Radar

To achieve a high repetition measuring rate, all the transmitting and receiving channels
of a MIMO radar should work simultaneously. The radar should adopt an orthogonal
waveform, multiple transmitters, and multiple receivers to achieve the best performance;
however, the overall cost of the radar would be unaffordable in most civil applications.
Moreover, we will use the MIMO radar that works in time-division mode.

The MIMO interferometric radar is composed of M transmitting antennas and N
receiving antennas, as shown in Figure 2. The space between two receiving antennas is
half the wavelength. The interval between two transmitting antennas is N times the half
wavelength. As a result, an equivalent transceiving antenna array is formed. The interval
between two equivalent antennas is a quarter of the wavelength. In a far-field assumption,
the equivalent transceiving antenna TRij is in the middle of the transmitting antenna Ti and
the receiving antenna Rj.

Figure 2. Antenna array layout of the MIMO radar.

xTRij =
(

xTi + xRj

)
/2 yTRij =

(
yTi + yRj

)
/2 (1)

where xTi , xRj , xTRij are positions in the x coordinate of the ith transmitting antenna, the
jth receiving antenna, and the equivalent transceiving antenna, respectively. yTi , yRj , yTRij
are positions in the y coordinate of the ith transmitting antenna, the jth receiving antenna,
and the equivalent transceiving antenna, respectively.

The transmitting antenna is connected to an RF switch whose input port is connected
to the transmitter. Each receiving antenna is fed to a receiver that performs bandpass filter,
low noise amplification, and dechirp demodulation. Then, the outputted echo is fed to
an analog-to-digital converter whose output is sent to a laptop computer via Ethernet. A
laptop computer controls the radar front end through a serial port, to configure the working
frequency range, the sweep duration of a linear frequency modulation (LFM) signal, the
pulse repetition frequency, the AD sampling frequency, and the sampling length. The
sampled radar echo is streamed out through an LVDS bus to a data acquisition board which
formats the echo into standard UDP socket packages. The packages are finally sent to the
laptop computer via Ethernet.
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2.2. Multiple Target Discriminator from the Range Direction

To distinguish nearby targets, the interferometric MIMO radar has to emit wideband
signals. The LFM signal is one of the most widely used waveforms. The frequency of an
LFM signal changes linearly with time. It can be formulated as

st(t) = A × rect
(

t
T

)
exp
[

jπ
(

2 f0t + K f t2
)]

0 < t < T (2)

where f0 is the start frequency, T is the sweep period, and K f is the chirp rate. A is
the amplitude, and it is often omitted for simplicity. The function rect is defined as

rect(x) =

{
1, |x| ≤ 1
0, |x| > 1

. The received signal of a point target is an attenuated -and time-

delayed replica of the transmitting signal. After a dechirp demodulation operation, the
received intermediate-frequency signal can be written as

s
(Ti ,Rj)

IF (t) = exp(j2π f0τ) exp
(

j2πK f τt
)

exp
(
−jπK f τ2

)
(3)

where the first exponential component indicates the phase delay; the second component is
a linear phase term and indicates the range of the target; the last component is the quadratic
phase error of the dechirp operation. τ =

(
rk,Ti

+ rk,Rj

)
/c is the round trip travelling

delay of the electromagnetic wave. rk,Ti
, rk,Rj

are the distances from the kth target to the
transmitting antenna Ti, and the receiving antenna Rj, respectively. c is the electromagnetic
wave velocity.

rk,Ti
=
√(

xk − xTi

)2
+
(
yk − yTi

)2 Ti = 1, · · · M

rk,Rj
=

√(
xk − xRj

)2
+
(

yk − yRj

)2
Rj = 1, · · · N

(4)

A one-dimensional radar image is obtained by the FFT operation and is expressed as

S
(Ti ,Rj)

RC (n) ≈ NT exp
[

j2π

(
f0τ − 1

2
K f τ2

)]
exp
[

jπ
(K f τ

fs
− n

NFFT

)
(NFFT − 1)

]
sin c

[(K f τ

fs
− n

NFFT

)
NFFT

]
(5)

where NFFT is the length of the FFT operation. fs is the sampling frequency of the AD
card. The one-dimensional radar image of the target is a peak whose index is npeak =

round
(

NFFTK f τ/ fs

)
. The complex radar response of the target is denoted as α(npeak) =

exp
[

jπ
(

2 f0τ − K f τ2
)]

. As the second term is far less than the first one, we can obtain the
phase of the target as

ϕ(Ti, Rj, npeak) = 2π f0τ (6)

The range resolution of the radar is proportional to the time duration T-τ. As T is much
larger than τ, so is the resolution ρr = 0.886c/(K f T). The coefficient 0.886 is a correction
factor that makes the range resolution accurate [20]. If we want to discriminate between

target A and target C in Figure 1, ρr should be smaller than
√
(x1 − x3)

2 + (y1 − y3)
2.

2.3. Multiple Target Discriminator from the Cross Range Direction

Each combination of Ti and Rj can output a one-dimensional radar image. The
responses of a target in all the images have similar ranges and amplitudes, but they are
different in phases. Figure 3 shows the geometry of DOA estimation with the equivalent
MIMO array. If the DOA angle of the target is θ, then the phase difference between two
adjacent antennas is π sin θ.
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Figure 3. Direction of arrival estimation with an array.

At the discrete time tick ts, a target response vector can be constructed by using the
target’s peaks in all the M × N one-dimensional images.

S(ts, npeak) =
[
s(1,1)

RC (npeak), s(1,2)
RC (npeak), · · · , s(1,N)

RC (npeak), · · · , s(M,N)
RC (npeak)

]T
(7)

The DOA angle θ can be estimated by the traditional FFT operation. An angle response
image of the target is famulated as

sSP(ts, k) = Aeiφ0
sin[MNπ(k/(MN) + sin θ/2)]

sin[π(k/(MN) + sin θ/2)]
(8)

The DOA angle θ coincides with the peak of the angle image. We can find that the
angular resolution ρθ of an M × N array is

ρθ = asin
(

2 × 0.886
MN

)
(9)

where the coefficient 0.886 is a correction factor to make the angular resolution accurate. If
we want to discriminate between target A and target B in Figure 1, the resolution ρθ should

be smaller than asin
[
|x1 − x3|/

√
(x1 − x3)

2 + (y1 − y3)
2
]

.

3. MUSICAPES for Multiple Close Targets Deformation Estimation

Since the array length of the interferometric MIMO radar is small enough to maintain
a high repetition measuring rate, and if the traditional MIMO radar processing method is
used to estimate the displacements of multiple targets, it has to face two challenges. One
challenge is that the angular resolution of the array is limited. The other one is that the
large side lobes of the array would cause prominent phase errors. As a result, the radar
would find it difficult to precisely estimate the displacements of multiple close targets.
A MUSICAPES is proposed to solve the two problems. Firstly, the method adopts the
root-MUSIC algorithm to improve the angular resolution of the short MIMO radar. Then, it
employs the APES filter to suppress the interferences of other targets and precisely estimate
the complex coefficients, using the DOA angle obtained by the root-MUSIC algorithm.
Finally, the displacement is calculated by the traditional time differential operation.

3.1. Multiple Targets Extraction Based on MUSIC

There are many advanced array processing algorithms for DOA estimation, such as
Capon beamforming, MUSIC, ESPRIT, IAA [21], and so on. We will adopt the widely
used MUSIC algorithm to estimate DOA angles, as the algorithm is famous for its super-
resolution performance. The MUSIC algorithm can be incorporated with phase interferom-
etry to improve the performance of DOA estimation [22].

The input to the MUSIC algorithm is one snapshot of the MIMO array, as shown in (7).
The length of the observation is (M × N). Firstly, we have to estimate the covariance of the
observation. An estimation of the covariance matrix is usually obtained by (time) averaging
several independent snapshots; however, there is only one snapshot, so we have to divide
the long snapshot vector into several overlapped shorter subvectors. Supposing the length
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of the subvectors is Mmusic (Mmusic ≤ (MN)/2 generally), then an estimation of the input
covariance matrix can be formulated as follows.

R1 = ∑NTR−Mmusic
i=0 y1(i)×(y1(i))

H (10)

where ()H is the conjunction transpose operator. The subvector is y1(i) = [s(ts, npeak, i),
s(ts, npeak, i + 1), · · · s(ts, npeak, i + Mmusic − 1)]T . Then, the eigendecomposition is performed,
which can be expressed as

R1 = UΛUH = USΛSUH
S + UNΛNUH

N (11)

There are Mmusic eigenvalues, among which bigger ones are indicators of targets, and
smaller ones are indicators of noise. Supposing there are P bigger eigenvalues, the corre-
sponding eigenvectors in U span a signal space which is denoted as US. The dimensions
of US are Mmusic × P. The remaining eigenvectors in U span the noise space which is
expressed as UN . The dimensions of UN are Mmusic × (Mmusic − P).

The traditional MUSIC algorithm estimates DOA angles by finding peaks of the
pseudospectrum. The pseudospectrum estimate is defined as

PMUSIC(θ) =
1

[a1(θ)]
HUNUH

Na1(θ)
(12)

where a1(θ) = [1, e−j4π sin θd/λ, · · · , e−j4π sin θMmusicd/λ]
T

is the steering vector of DOA angle
θ. It is time-consuming to calculate the pseudo spectrum if the number of tested angles is
large. The root-MUSIC can reduce the computation load. MUSIC and root-MUSIC have the
same asymptotic performances, but the latter one has better performance in small sample
situations [23]. The DOA angle can be estimated by solving the equation below [24].

zMAPES−1 pT(z−1)UNUH
N p(z) = 0 (13)

The steering vector a1(θ) is replaced by vector p(z) = [1, z, · · · zMmusic−1]
T . Where

z = e−j4π sin θd/λ. There are 2Mmusic solutions for Equation (13). They are symmetrical with
respect to the unit circle. We choose the P solutions that are most close to the unit circle.
Suppose the solutions are θ1, θ2, · · · θP.

3.2. Deformation Estimation Based on APES

APES is a maximum likelihood estimation of the complex sinusoidal signal, which is
proposed by Li and Stoica. It can obtain more precise phase and amplitude estimations
than those of the Capon filter [16]. For a target angle θk estimated by the root-MUSIC,

a steering vector is formed as aMAPES(θk) = [1, e−j4π sin θkd/λ, · · · e−j(MAPES−1)4π sin θkd/λ]
T

.
MAPES is the length of the APES filter. The complex coefficients are obtained by solving the
following problem.

min
h,α

1
L

L−1

∑
l=0

∣∣∣hHy2(l)− α(θk)ej4πl sin θkd/λ
∣∣∣2, Subject to : hHaMAPES(θk) = 1 (14)

where y2(l) = [s
(

ts, npeak, l
)

, s
(

ts, npeak, l + 1
)

, · · · s
(

ts, npeak, l + MAPES − 1
)
]
T

; h is a filter
weighting coefficient of length MAPES. L = M × N − MAPES+1. By some manipulations,
the minimization problem is converted into a linear minimization, as shown below

min
h

hHQ̂h subject to : hHaMAPES(ω) = 1 (15)
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where Q̂ = R2 − g(θk)g
H(θk) and R2 = 1

L ∑L−1
l=0 y2(l)(y2(l))

H. g(θk) is the Fourier trans-
formation of y2(l). The optimal complex coefficients can be obtained by a Lagrange
multiplication [16].

h =
Q̂

−1
aMAPES(θk)

aH
MAPES

(θk)Q̂
−1

aMAPES(θk)
(16)

α̂(θk) = aH
MAPES

(θk)h (17)

The matrix inversion operation in APES is computation intensive. It can be reduced
by using the matrix inversion lemma. Then a new formulation of Q̂

−1 is

Q̂
−1

= R−1
2 − R−1

2 g(θk)g
H(θk)R

−1
2

gH(θk)R
−1
2 g(θk)− 1

(18)

The computation efficiency is improved as direct matrix inversions are prevented.
By substituting Equation (18) into Equation (17), a new expression of the coefficients is
obtained as follows

α̂(θk) =
aH

MAPES
(θk)R

−1
2 g(θk)(

gH(θk)R
−1
2 g(θk)− 1

)
aH

MAPES
(θk)R

−1
2 aMAPES(θk)−

∣∣∣aH
MAPES

(θk)R
−1
2 g(θk)

∣∣∣2 (19)

The phase difference between two coefficients estimated at ts and ts+1 can be written as

Δφ(ts, θk) = phase(α̂(ts+1, θk)× α̂∗(ts, θk)) (20)

where phase() returns the phase angle in the interval [−π, π] for a complex number. The
time interval between two measurements should be small enough to avoid phase wrapping.
Then, the displacement of a target at (npeak, θk) can be obtained by summing time differential
results from the t0 to ts. The displacement can be written as

d(ts, θk) =
ts

∑
n=t0

λ

4π
Δφ(ts, θk) (21)

4. Simulation and Experiment Results

The proposed MUSICAPES algorithm is evaluated by simulations and radar experi-
ments. A MIMO interferometric radar is built with a COTS MMW radar frontend, an AD
card, and a laptop computer. Main parameters of both tests are the same, which are listed
in Table 2.

Table 2. Parameters for simulations and experiments.

Transmitting
Antennas

Receiving
Antennas

Signal Type
Frequency

Slope
Start

Frequency
AD

Frequency
Sampling

Length
PRF

3 4 LFMCW 20 MHz/us 77 GHz 10 MHz 256 100 Hz

4.1. Simulations

One simulation is performed when there is only one target. The other three simulations
are conducted to evaluate the performance of the proposed method versus the angle interval
between two targets, the length of the MIMO array, and the input SNR.

4.1.1. Single Target Displacement Estimation

Supposing the MIMO radar is composed of three transmitting antennas and four
receiving antennas, the angular resolution of the array is 8.46◦, according to Equation (9).
If one target is located at (20 m, 0◦), all the MUSIC, CZT, and root-MUSIC algorithms can
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precisely estimate the angle of the target, as shown in Figure 4a. The real displacements of
the target are the piecewise linear curves shown in Figure 4b. We can obtain two estimated
displacement curves using the MUSICAPES and CZT algorithms. As they are nearly the
same as the real value, we further analyze the difference between the estimated curves
and the real value. The error curves of the MUSICAPES and CZT algorithms are shown
in Figure 4c. The mean errors of the MUSICAPES and CZT algorithms are −0.15 μm
and −0.22 μm, respectively. The standard deviations (STD) are 0.40 μm and 0.36 μm for
MUSICAPES and CZT, respectively. These errors are far less than 0.1 mm which is a widely
used error threshold. The results indicate that the MUSICAPES and CZT algorithms both
work well in one-target situations.

  
(a) (b) (c) 

Figure 4. The simulated displacement curve and the estimated ones by the two algorithms. (a) DOA
curves in a one-target situation; (b) real value of simulated displacement curve; (c) errors between
the estimated displacements and the simulated one.

4.1.2. Measurement Performance of Two Targets vs. Azimuth Intervals

There are two targets in this simulation case; the ‘Target1’ is located at (20 m, 0◦) and
the ‘Target2’ is located at (20 m, −8.46◦). The angle interval between the two targets equals
the angular resolution of the MIMO radar. The SNR of the input signal is 20 dB. Multiple-
target resolving results of the MUSIC, CZT, and root-MUSIC algorithms are shown in
Figure 5a. Then, the ‘Target2’ is moved to (20 m, −4.23◦), which means the angle interval is
half the angular resolution. The multiple-target resolving results are shown in Figure 5b.
We can see that the CZT algorithm fails to resolve the two targets when the angle interval
is smaller than the angular resolution. Though the CZT algorithm can resolve the two
targets when the angle interval is larger than the angular resolution, the estimated angles
of the two targets are not precise. This is due to the fact that the side lobes of one target
would interfere with the main lobe of the other target. On the contrary, the MUSIC and
root-MUSIC algorithms can resolve the two targets and precisely estimate their angles even
when the angle interval is smaller than the angular resolution.

The next step is to evaluate the displacement estimation performance in the two-target
situation. The angle interval is half the angular resolution of the MIMO radar, namely, 4.23◦.
This is the same as that of Figure 5b. The real displacement values of the two targets are
plotted in Figure 6a. As the CZT algorithm cannot obtain a precise azimuth angle estimation,
we use the real angle value for the latter processing. Then, we extract the responses of
the CZT and the MUSICAPES and calculate the displacement. The displacement curves
are shown in Figure 6b. The blue solid and blue dash curves are the displacements of the
‘Target1’ estimated by the MUSICAPES and CZT algorithms, respectively. The red solid and
red dash curves are the displacements of the ‘Target2’ estimated by the MUSICAPES and
CZT algorithms, respectively. The comparison indicates that the traditional CZT method
fails to recover the displacements, but the proposed MUSICAPES can obtain precise results.

603



Remote Sens. 2022, 14, 2005

The maximum displacement error of the CZT algorithm is 0.42 mm for the ‘Target1’. The
error is generally unacceptable for normal applications.

  

(a) (b) 

Figure 5. Multiple targets resolving ability. (a) DOA curves of two targets separated by one angular
resolution; (b) DOA curves of two targets separated by half the angular resolution.

  

(a) (b) 

Figure 6. Displacement curves of the real value and the estimated ones. (a) The real value of
displacement; (b) the displacement curves estimated by MUSICAPES and CZT.

The performances are further analyzed at different angle intervals between the two
targets. ‘Target1’ is fixed at (20 m, 0◦) and the azimuth angle of ‘Target2’ is variable. The
angle interval between them varies exponentially from 10−1.5 ρθ to 100.5 ρθ . The angular
resolution ρθ is 8.46◦ in this case. The SNR of the input signal is 20 dB. We use the real
angle value to estimate the complex coefficients of the two targets. The displacements
of the two targets are subsequently estimated by the MUSICAPES and CZT algorithms.
Then, differences between the estimated displacements and the real values (as shown in
Figure 6a) are calculated. Finally, the mean and the STD of the differences are measured.

Figure 7 shows the mean error of the difference. The comparison of the curves indicates
that the displacement error of the CZT algorithm is much larger than that of the proposed
MUSICAPES algorithm. The maximum mean error of the CZT algorithm exceeds 0.2 mm
for both targets. On the other hand, the proposed MUSICAPES performs steadily and
well, even when the angle interval is a tenth of the angular resolution. If the angle interval
further decreases, the performance of MUSICAPES would also deteriorate.
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(a) (b) 

Figure 7. Mean error of displacement difference vs. angle interval. (a) The mean error of ‘Target1’;
(b) the mean error of ‘Target2’.

Figure 8 shows the STD of the difference. The STD result is similar to the mean error.
The CZT algorithm has much larger STD errors. On the other hand, the MUSICAPES works
well when the angle interval is larger than a tenth of the angular resolution.

  
(a) (b) 

Figure 8. STD of displacement difference vs. angle interval. (a) STD of ‘Target1’; (b) STD of ‘Target2’.

4.1.3. Measurement Performance of Two Targets vs. Array Length

We will test the displacement estimation performance versus the number of antennas.
In this simulation case, the number of transmitting antennas is set to be 1; the number of
receiving antennas varies from 8 to 64 with an incremental step of 2. There are also two
targets. ‘Target1’ is still fixed at (20 m, 0◦). ‘Target2’ is on the right side, 20 m from the
radar. The angle interval between the two targets is equal to half the angular resolution
of the used array. It is known that the angular resolution is inversely proportional to the
number of antenna arrays. As a result, the larger the number of antennas, the smaller the
angle interval.

Figure 9 shows the means of the displacement measuring errors of the two targets.
Figure 10 shows the STD of the displacement measuring errors of the two targets The
proposed MUSICAPES algorithm performs much better than the traditional CZT algorithm.
The mean error and STD curve of the MUSICAPES are much smaller than 0.1 mm; however,
the STD of the MUSICAPES algorithm would increase as the array gets larger. The reason
for this phenomenon is that the input covariance matrix cannot be accurately estimated
when the dimensions of the matrix are large, and the input samples are limited.
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(a) (b) 

Figure 9. Mean error of displacement difference vs. array length. (a) The mean error of ‘Target1’;
(b) the mean error of ‘Target2’.

(a) (b)

Figure 10. STD of displacement difference vs. array length. (a) STD of ‘Target1’; (b) STD of ‘Target2’.

4.1.4. Measurement Performance of Two Targets vs. SNR

In this simulation case, the number of transmitting receiving antennas are set as three
and four, respectively. There are also two targets. ‘Target1’ is fixed at (20 m, 0◦) and ‘Target2’
is fixed at (20 m, 4.23◦). The angle interval between them is half the angular resolution of
the MIMO array. The real displacement curves of the two targets are illustrated in Figure 6a.
We will analyze the measuring performance as the input SNR varies from −40 dB to 50 dB
with a stride of 3 dB.

Figures 11 and 12 show the results of the two algorithms. We can see that the CZT
algorithm performs better than MUSICAPES when the SNR is lower than −30 dB; however,
both algorithms cannot give reasonable results in that situation. If the SNR is larger than
−25 dB, both algorithms work well. In general, the CZT algorithm is more robust than the
MUSICAPES algorithm.
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(a) (b) 

Figure 11. Mean error of displacement difference vs. SNR. (a) The mean error of ‘Target1’; (b) the
mean error of ‘Target2’.

  
(a) (b) 

Figure 12. STD of displacement difference vs. SNR. (a) STD of ‘Target1’; (b) STD of ‘Target2’.

4.2. Experiments

An MMW MIMO radar is designed to measure the displacements of multiple close
targets. The MMW MIMO radar is composed of the TI AWR2243BOOST radar front end,
the TI DCA1000EVM card, a USB 3.0 hub, and a laptop computer. The experiment is
conducted on a table with two trihedral reflectors; one is fixed on the left and the other
one is mounted on a sliding platform on the right, as shown in Figure 13. Both ranges
of the two trihedral reflectors to the radar are 2.9 m. In the two experiments, the sliding
platform stays at 0 mm for several seconds; then it is turned to 1 mm and stays for a
while; then it is turned to 2 mm and stays for a moment; finally, it is turned back to 0 mm.
The sliding platform operator has to hide beneath the table to eliminate his interference
with the trihedral reflectors. The TI AWR2243BOOST has three transmitting antennas and
four receiving antennas. The interval between two adjacent receiving antennas is half
the wavelength; however, the interval between two adjacent transmitting antennas is one
wavelength. So, only the first and the third transmitting antennas can be used to form
the required MIMO radar. The angle resolution of the MMW MIMO radar is 12.69◦. The
maximum repetition rate of the radar can be set to 1 kHz which can satisfy the dynamic
displacement measuring requirement.
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(a) (b) (c) 

Figure 13. Multiple close targets displacement measuring experiment with an MMW MIMO radar.
The radar is mounted on a tripod and connected to a laptop computer via a USB3.0 hub. (a) Two
trihedral reflectors are placed at the end of a table. The left one is still and the right one can be moved
on a sliding platform. The azimuth distance between them is 1.2 m; (b) the TI AWR2243BOOST
is mounted on the TI DAC1000 EVM. (c) The right reflector is on the sliding platform which can
be measured by a micrometer. The platform is stuck onto the desktop to suppress additional
displacements caused by manual operations.

4.2.1. Displacement Measurement of Two Targets Separated beyond the Resolution

In the first experiment, the azimuth distance between them is 1.2 m (or 20.1◦ in angle),
which is larger than the angular resolution of AWR2243BOOST. Though a traditional SISO
radar cannot resolve the two reflectors, the proposed MIMO radar can successfully resolve
them, even with the traditional CZT method. All three methods can resolve the two targets
and output the same angle estimations, as shown in Figure 14.

(a) (b)

Figure 14. One-dimensional image and DOA results of the first experiment. (a) High resolution
one-dimensional radar image. The first peak is the responses of the two trihedral reflectors separated
1.2 m in azimuth; (b) MUSIC, CZT and root-MUSIC can discriminate between the two reflectors.

The estimated displacement curves of the MUSICAPES and CZT methods are shown
in Figure 15. When multiple targets present in the same radial range, their side lobes
would interfere with the other’s main lobe. As a result, even if multiple targets can be
resolved, their displacements cannot be precisely estimated by the CZT methods. The
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displacement curve of the still reflector fluctuates while the other one moves. The maximum
displacement measuring error is about 0.1 mm. The displacement of the moving reflectors
is also not precise. As the absolute displacement is large, the relative measuring error is
not prominent. On the other hand, the proposed MUSICAPES algorithm can precisely
recover the displacements of both reflectors. The mean error and STD error of the still
reflector are 0.002 mm and 0.003 mm, respectively. The displacement curve of the moving
reflector estimated by MUSICAPES is consistent with the real value. The errors between
the measurement and the real value are 0.023 mm and 0.01 mm when the moving reflector
stays at 1 mm and 2 mm, respectively. The error is small enough for most applications.

Figure 15. Displacement curves of the two trihedral reflectors estimated by the MUSICAPES and
the CZT method. Target 1 is the still reflector and Target 2 is the moving one mounted on the
sliding platform.

4.2.2. Displacement Measurement of Two Close Targets

In the second experiment, the azimuth distance between the two reflectors is reduced
to 0.7 m (or 11.3◦ in angle), which is smaller than the angular resolution of AWR2243BOOST.
In this situation, both the CZT method and the MUSIC algorithm fail to resolve the two
reflectors, but the root-MUSIC works well, as shown in Figure 16. This is due to the fact that
the covariance matrix is not accurately estimated from only one snapshot, but root-MUSIC
generally has better performance in limited snapshot situations [22].

If we use the angle estimated by root-MUSIC and then estimate the phase by the
CZT method, we can obtain the displacement curves of the two reflectors. The estimated
displacement curves of the MUSICAPES and CZT methods are shown in Figure 17. We can
see that the CZT method fails to estimate the displacements of the reflectors. The maximum
displacement error of the moving one is larger than 2 mm. The displacement error of the
still one is not prominent, because the interference of the moving one is small. Only the
proposed MUSICAPES successfully recovers the displacements of the two close trihedral
reflectors. The mean error and STD error of the still trihedral reflector are 0.002 mm
and 0.003 mm, respectively. The displacement curve of the moving one estimated by
MUSICAPES fits the real value well. The error between the measurement and the real value
is 0.042 mm and 0.051 mm when the moving reflector stays at 1mm and 2 mm, respectively.
The error is also small enough for most applications.
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(a) (b)

Figure 16. One-dimensional image and DOA results of the second experiment. (a) High resolution
one-dimensional radar image. The first peak is the responses of two trihedral reflectors separated
by 0.7 m in azimuth; (b) the angle between the two trihedral reflectors is smaller than the angular
resolution, root-MUSIC can discriminate between them, but MUSIC and CZT fail.

Figure 17. Displacement curves of the two trihedral reflectors estimated by the MUSICAPES and
the CZT method. Target 1 is the still reflector and Target 2 is the moving one mounted on the
sliding platform.

5. Conclusions

An interferometric MIMO radar and a MUSICAPES algorithm are proposed to pre-
cisely estimate the dynamic displacements of multiple close targets. The array length of
the MIMO radar is small enough to maintain a high repetition measuring rate; however,
the short MIMO radar would face two challenges, which are limited angular resolution
and large side lobe interferences. The MUSICAPES method is proposed to resolve the
multiple azimuth close targets and precisely extract their displacements. The method
firstly adopts the root-MUSIC algorithm to estimate the azimuth angle of each target. Then,
the APES algorithm is used to recover the phases of the targets using the azimuth angles
estimated in the previous step. The method can improve the displacement measuring
precision significantly.
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A millimeter-wave MIMO interferometric radar is designed for multiple target dis-
placement measuring. Simulations and experiments with the MMW radar validate the
performance of the proposed method.

The proposed radar can be applied to measure dynamic displacements of bridges,
towers, and buildings. It is especially useful to solve multiple close-target displacement
measuring requirements that traditional one-dimensional interferometric radars fail to
do. The proposed method can also be applied to other MIMO radars if both the fine
angular resolution and precise phase estimation are the pursuits, such as monitoring the
displacements of dams and radar tomography of complex scenes.
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