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Preface

This reprint is the third of three volumes that collect articles on the topic of Natural Hazards

and Disaster Risks Reduction. Some papers focus on aspects related to the different phases of the

risk cycle. Other papers deal with the issues, seismic hazards and natural hazards of very different

types (e.g., surface deformation, volcanic activity, dust storms, etc.) with an approach focused

on single or multiple hazards. However, all of them paint an important picture of the progress

of hazard studies and continuous risk management efforts. Climate change and human actions

play a central role in the papers’ discussions. The material within this work serves as a valuable

collection for scholars involved in comprehending the discussed phenomena and seeking specialized

solutions. Furthermore, given its practical attributes, it also provides support for technicians in

public administration dedicated to enhancing security in regions affected by these natural adversities

striving for sustainable development.

Stefano Morelli, Veronica Pazzi, and Mirko Francioni

Editors
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Abstract: The high intensity of the earthquake on Lombok Island on 5 August 2018, with a magnitude
of 7.0 Mb, caused material losses experienced by the affected residential areas. The Indonesian
Geological Agency in 2015 published a microzonation map that mapped zones prone to earthquake
shocks to mitigate disasters. This study aimed to compare the level of damage and loss in residential
areas due to earthquakes in Mataram City with earthquake-prone zones using a microzonation
map. The correlation between damage and loss value of residentials with microzonation maps was
evaluated using the overlay method. The results showed that the level of damage and the value
of the loss of houses in the high disaster-prone zone (red zone) showed the highest loss value. In
comparison, the level of losses in the moderate disaster-prone zone (yellow zone) and light disaster-
prone zone (blue zone) on the microzonation map shows a low and lower loss value. This study
concludes that the microzonation map helps determine the damage zone and the level of disaster
vulnerability caused by the earthquake hazard.

Keywords: microzonation; earthquake; level of damage and loss; disaster vulnerability

1. Introduction

The location of Indonesia in the collision zone causes frequent natural disasters.
Earthquakes are one of such disasters caused by tectonic activities. The dynamic interaction
of numerous tectonic plates in eastern Indonesia causes high seismicity rates, which resulted
in catastrophic damaging earthquake sequences on Lombok Island in 2018 [1–3]. Based on
the National Disaster Management Agency (BNPB) records, from the beginning of 2017
to June 2018, there have been 4006 disasters in Indonesia, with 30 tectonic earthquakes on
Lombok Island occurring in August 2018 with a magnitude of 5.9–6.9. The earthquake in
Lombok claimed at least 481 lives and caused an economic loss of US$ 514,000,000 as of
17 August 2018 [4]. These financial losses are caused mainly by damage to infrastructure
and buildings.

Natural disasters are a significant concern in Mataram City. A natural disaster is
an unanticipated event or set of circumstances that endanger and disrupts people’s lives
and livelihoods as a result of natural causes, both by natural factors and/or non-natural
factors and human factors, resulting in fatalities, environmental damages, property losses,
and psychological impacts [5]. Examples of natural catastrophes include floods, tsunamis,
earthquakes, and landslides [6,7]. After the earthquake disaster in Lombok in August
2018, the damage level of the Municipality of Mataram ranked fourth out of six regencies

Sustainability 2022, 14, 2028. https://doi.org/10.3390/su14042028 https://www.mdpi.com/journal/sustainability
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in Lombok with a total loss of US$ 69,008,289. The tremendous damage and loss to
the settlement sector reached a value of US$ 34,907,209, damage to the housing sub-
sector reached US$ 32,500,610, and other losses, including cleaning of debris, worth US$
1,600,470 [4].

Earthquakes are the vibrations or shocks that occur on the surface of the Earth caused
by the collisions between the tectonic plates, active fault zones, volcanic eruption activ-
ity, and rock debris. Lombok Island is located north of the subduction zone, where the
Indo/Australian Plate collides and subducts below the Eurasian Plate with a convergence
rate of 44–68 mm/yr [8].

It is crucial to distinguish between risk and vulnerability. Seismic risk is the risk of
damage and consequential loss to a particular structure or collection of structures over a
specific period. The anticipated losses from all degrees of hazard severity are included
in risk, taking their occurrence probability into account, whereas the vulnerability of an
element is generally specified for a specific hazard severity level. Seismic vulnerability
analysis in urban environments focuses mainly on building structural, geological, and
geographical information directly related to potential human and economic losses in the
case of a seismic episode [9]. On the other side, Lombok Island is locked between two active
faults, the Flores back arc thrust on the north with a convergence rate of ca. 9.9 mm/yr and
the normal fault of Sumbawa with a rate of 0.5 mm/yr [10]. Those faults influenced the
earthquake events in Lombok Island (Figure 1).

The earthquake with the greatest strength occurred on 19 August 2018, with a magni-
tude of 6.9 Mb, and the epicenter at a radius of 30 km NE of East Lombok. At the same time,
five other earthquakes occurred with a magnitude of 4.9 Mb–5.7 Mb, whose shaking inten-
sities were scattered in several areas in the island of Lombok, with the distribution shown
in Figure 2. The earthquake on the island of Lombok, taking place in July–August 2018, had
negative impacts, such as fatalities, damages, and material losses. From January through
October 2018, there were 98 earthquakes with a magnitude ranging from 4.1 Mb–6.9 Mb.
The depth of the earthquake sources was between 5.7 km–121.9 km [11]; the earthquakes
that occurred were dominated in the NW–NE region of the island of Lombok.

The microzonation map of Mataram City from the Geological Agency (2015) is used as
an estimated vulnerability zoning model. The map is used as a basis to prepare a zonation
map by using the microtremor. Bertelli and Omori were the first to discover microtremors in
1909, while Guttenberg was the first to introduce engineering uses of microtremors [12,13].
Microtremor measurements are valuable for assessing seismic threats in the near-surface
substructure [14,15]. Microtremor (or ambient vibration) methods analyze the mechanical
qualities of the Earth’s subsurface, particularly seismic velocities, by measuring background
seismic noise. Seismic noise is the constant vibration of the Earth’s surface caused by
a combination of the low-frequency (less than 1 Hz) natural phenomena (earthquakes,
wind, tides, rivers, rain, variations in atmospheric pressure) and high-frequency (greater
than 1 Hz) human activities [16,17]. Idriss and Boulanger [18] showed that damage to
building structures due to earthquake intensity of ground shocks during an earthquake was
significantly influenced by local geological and soil conditions. The microzonation divides
or classifies areas of zones that have relatively similar potential shocks and disasters. Their
engineering characteristics have local effects. Hard rock sites will experience a low shock
intensity, while soft soil will experience a high shock intensity [19–22].

The purpose of this research was to determine the accuracy of the microzonation map
against actual building losses and damage when the Lombok earthquake in 2018 occurred.
The high accuracy of microzonation maps is perfect for development plans such as urban
planning and financial risk transfer strategies. The burden of the state budget will be
reduced in the future if disaster impact mitigation using the prediction of microzonation
maps goes well; in turn, it will also reduce casualties and material losses.

2
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Figure 1. (A) Map view of Lombok Island (Google Maps). (B) Cross-section of Lombok Island [10].
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Figure 2. Distribution and intensity map of the Lombok Island Earthquakes, January–October 2018
(Epicenter coordinate based on USGS).

2. Materials and Methods

The availability of microzonation maps is one of the factors that makes Mataram
City a research area, with well-collected data on losses and damages to buildings after
the 2018 Lombok earthquake. The city of Mataram has six districts, such as the Ampenan
District, Sekarbela District, Selaparang District, Mataram District, Cakranegara District,
and Sandubaya District. All districts have different values of loss and deterioration to the
buildings and their microzonation areas.

2.1. Study Area

Mataram is a land relatively flat, undulating topography, with a slope of 0–2% covering
an area of 3.216 hectares and a bumpy area with a slope of more than 2–14% surrounding
an area of 2.909 hectares. The altitude of Mataram City is approximately 0–50 m above
sea level. These conditions indicate that most of the city is a plain area. The western part
of the city is occupied by the flat-sloping area while the eastern has rather high-bumpy
relief. The overlay area, with flat physiography, has two conflicting implications. First,
flat areas have positive values, namely the construction of infrastructure and facilities
which physically have fewer technical obstacles, and the development funding is relatively
cheaper. Second, a flat area with an altitude almost parallel to the sea level has terrible
implications, including flood-prone areas.

Based on the Geological map of Lombok sheet West Nusa Tenggara [23], three rock
formations are covering the research area: Kalikupang Formation (Tqp), Kalibabak For-
mation (Tqb), and Lekopiko Formation (Qvl) that consists of volcanic rocks, sedimentary
rocks, and intrusive rocks whose ages range from Tertiary to Quaternary. The engineering
geological map of the Lombok Island, Mataram, lays on the geological unit of the Alluvium
deposit (Al), consisting of the river, coastal, and swamp deposits, composed of silty sand,
sandy silt, and loose sand [24]. Sedimentary swamp comprises sandy silt, silty clay, black to

4
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grey color, fine-medium grained, very soft-firm, medium to high porosity. River sediment
consists of sandy silt to silty clay and loose sand, brownish yellow-brown. It contains
gravel, fine-medium-grained, very soft–dense, low to moderate plasticity, 3.50–6.50 m
thick. Coastal deposits are black to grey sand, fine-grained, high porosity, containing shells.
The engineering geological constraints or geological disasters prone are floods, abrasions,
and tsunamis.

2.2. Damage and Loss Due to the Mataram Earthquake in August 2018

The earthquakes hit Mataram City, impacting six districts, including Ampenan, Sekar-
bela, Selaparang, Mataram, Cakranegara, and Sandubaya. The first earthquake occurred
on 5 August 2018, with a magnitude of 7 Mb at 19.46 CIT (Central Indonesian Time).
The coordinates of the epicenter of the earthquakes are 8.37◦ S, 116.48◦ E, about 27 km
NE. The depth of the quake is around 15 km. The aftershock that caused considerable
damage in Mataram was on August 9, 2018, at 13.25 CIT, with a magnitude 6.2 Mb located
at 8.36◦ S–116.22◦ E, 27 km NE of Mataram with a depth of 12 km. On 19 August 2018, the
next earthquake occurred at 22.56 CIT, located 75 km NE of Mataram with the magnitude
V-VI of MMI (Modified Mercalli Intensity) [4].

The impacts of the Lombok earthquakes caused damages and losses in various sec-
tors such as residential, infrastructure, social, economic, and cross-sectoral, which have
disrupted public activities and services in the affected areas based on the data from the
Post-Natural Disaster Reconstruction and Rehabilitation Action Plan. This natural disas-
ter caused total damage and loss of 69,008,289 US$. The tremendous damage and loss
occurred in some sectors comprising the residential sector amounted to 34,905,750 US$; the
social sector amounted to 25,335,416 US$; the cross-sector amounted to 7,023,475 US$; the
productive economic industries amounted to 1,743,648 US$.

The amount or pattern of building damage caused by the earthquake that impacted
Mataram demonstrates the pattern’s conformance with the microzonation map. The
proportion of building damage by the district is depicted in Figure 3. The Sekarbela district
(21.66 percent) and Ampenan (19.76 percent) have suffered the worst damage, while the
Mataram district (8.75 percent), Selaparang (8.75 percent), and Sandubaya (7.76 percent)
have sustained minor damage. The Cakranegara district in the blue zone is the least affected
(1.7 percent).

Figure 3. Buildings Damaged Map by the 2018 Lombok Earthquake in Mataram City.
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2.3. Microzonation Map

The Potential Earthquake Ground Shaking Hazard Map (Microzonation) Mataram
City, West Nusa Tenggara Province, produces three types of zones, namely red, yellow and
blue zones (Figure 4). The red zone indicates that the area has a relatively high level of
shaking with the morphology of volcanic fluvial plains. The yellow zone means that the
area has a fairly medium level of shock in volcanic fluvial plains. The blue one indicates that
the area has a relatively low level of shock with the morphology of the undulating volcanic
plain of volcanoes. Regional zones on the Microzonation Map of Mataram involve four
seismic microzonation parameters, which are dominant periods, soft sediment thickness,
average rock/soil amplification, and soil rock site classification.

Figure 4. Microzonation Map of Mataram City (Modified from Geological Agency).

The red zone has the characteristics of a dominant period of more than 0.5 s, a soft
sediment thickness of more than 30 m, an average amplification ranging from 1.9 to 2.3,
and a site class of soft to medium soil. While the yellow zone has the characteristics of a
dominant period ranging from 0.25 to 0.5 s, a thickness of soft sediment ranging from 10 to
30 m, an average amplification ranging from 1.6 to 1.9, and a medium soil site class. Finally,
the blue zone has the characteristics of a dominant period of less than 0.25 s, a thickness of
soft sediment below 10 m and amplification below 1.6, and a hard soil site class.

After generating three types of zones based on the level of shock on the Earthquake
Potential Map (Microzonation) of Mataram City, West Nusa Tenggara Province, these zones
can be developed based on disaster mitigation recommendations for safer development.

The red zone has a relatively high level of shock. Therefore, this area is not recom-
mended to construct houses or critical and emergency (IV) facilities. However, once facility
(IV) has been built, it needs to be reviewed with special geological studies, site investiga-
tions, and specialized foundation designs. The yellow zone with a relatively moderate level
of shock is recommended for medium-risk (II) facilities built in this zone. The construction
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of medium-risk (II) facilities must comply with the provisions of the local building code.
The blue zone, which has a relatively low level of shock, is recommended to build facilities
in building categories I, II, III, and IV (Table 1).

Table 1. Matrix of potential earthquake hazard of Mataram City (Modified from Geological Agency, 2015).

Potential Seismic
Hazard Zone

Landform Land Use Recommendations

High Potential Seismic
Hazard Zone Fluvio Volcanic Plan

Public services 70%,
Settlement 50%
Plantation 60%,
Industrial area 100%
Defense and security 50%,
Agricultural area 60 %

‚ Essential and emergency facilities
(IV) should not be built in this zone.

‚ Existent facilities (IV) should be
re-evaluated. Retro-fitting of facilities
(IV) should be performed.

‚ Require special geological studies,
site investigations and special
foundation designs.

‚ Low-risk facilities (I) can be built in
this zone.

Medium Potential
Seismic Hazard Zone Fluvio Volcanic Plain

Public services 15%,
Settlement 30%,
Plantation 25%,
Defense and security 30%,
Agricultural area 20%

‚ Medium-risk facilities (I, II) can be
built in this zone.

‚ Enact and adopt building code
regulations that adequately represent
the seismic hazards. (I, II)

Low Potential Seismic
Hazard Zone

Undulating Fluvio
Volcanic Plain

Public services 15%,
Settlement 20%
Plantation 15%,
Defense and security 20%,
Agricultural area 20%

‚ Facilities (I, II, III and IV) can be built
in this zone.

‚ City development is recommended in
this zone.

Note: (Facilities I: low risk, such as agriculture, livestock, warehouse, fishery; Facilities II: Medium Risk, such
as housing, apartment, office buildings, markets, factories; Facilities III: High Risk, such as stadium, cinemas,
medical facilities, prisons; Facilities IV: Essential Facilities, such as hospitals, monumental buildings, schools,
energy generation center, public facilities for emergencies.)

According to the microzonation map, it has been found that each district has a zonation
of the potential hazardous ground shocks that differ according to the distribution of soil
and rocks characteristics. The largest red zone coverages are respectively in Sekarbela
(SK), Ampenan (AM), Mataram MA), Selaparang (SL), Sandubaya (SD) and Cakranegara
(CA). The results of microzonation research are directly proportional to the damage and
losses that occur. These facts are summarized in Table 1, where it has been found that the
Sekarbela (SK) district, with the most significant red zone of 88.52%, experienced enormous
damage and loss. Meanwhile, the Cakranegara (CA) district, which has the largest blue
zone of 85.37%, experienced the slightest damage and loss.

2.4. Worksteps

The Geographic information system is a computer-based information system that fo-
cuses on the geography of an area, which can be used and designed to compile, manipulate,
process, display, and analyze data that have spatial information. The relation between equal
intervals, natural breaks, manual and statistical examination, all of which are GIS-default
operations, are the most common mathematical approaches for data classification [25].

The GIS-based data for the land-use suitability analysis has been used in various
situations, including geological favorability [26–28]. Simple processes, such as laying a
road map over a map of local wetlands, or more complex processes, such as multiplying
and adding map characteristics of different values to calculate averages and correlations,
can be represented by these outputs. This process could be a visual action at its most basic
level, but analytical activities require combining one or more data layers [29–32].

The superimposed research was conducted by correlating the Earthquake Hazard
Potential (Microzonation) map of Mataram City, West Nusa Tenggara Province, with data on
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damage and losses in each district in Mataram Municipality, based on the BNPB report [4].
The comparison of the two data aimed to determine the correlation between both data is
either directly or inversely proportional, or even irregular way. The comparisons were
also made on the residential area data from each district obtained from the digitization
results of Google Earth satellite imagery. It was performed because the variable density of
residential could affect the value of losses caused by earthquake disasters.

This research uses the weighted overlay GIS method (Figure 5). The weighted overlay
method analyses spatial data using the overlay technique of several raster maps related
to the factors that affect the vulnerability assessment of a problem. Weighted Overlay
can combine various inputs in a grid map [33]. This method solves problems with many
criteria, such as optimal site selection or suitability modeling.

Figure 5. Illustration of overlay method in this research.

Applying the latter approach to the case of the loss and damage data values and the
microzonation map units above (Figure 6), the average element values can be obtained
using Equation (1) [26]:

Zi =
∑n

j=1 ∂ij.zj

∑n
j=1 ∂ij

(1)

where are:

i = microzonation units
j = loss damage data values
z = variable in the source zones
∂ij = overlapping target zone
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Figure 6. Overlay of two polygon maps, producing a new set of polygons common to both maps.
The polygons in C are not linked to the polygons of maps A and B in a polygon attribute Table 2.

3. Results

The level of damage to buildings after the Lombok earthquake (Table 2), adapted
from the Mataram city redevelopment action plan in 2018, shows the number of damaged
houses in each district in Mataram City. The highest level of damage is in the Ampenan
(AM) district, where as many as 4773 units are dominated by light (3162 units), moderate
(957 units) and severe (654 units) damage; Second, the number of houses damaged in the
Sekarbela district was 3774 units, consisting of 1540 units heavily damaged, moderately
damaged (944 units) and lightly damaged (1290 units); Selaparang district contained 1972
damaged houses, dominated by light (1399 units), moderate (495 units), heavily (78 units)
damaged; in Mataram Regency, the number of houses damaged was 1467 houses, consisting
of lightly (1101 units), moderately (267 units) and heavily (99 units) damaged; Furthermore,
the Sandubaya district suffered damage as many as 1211 housing units, consisting of lightly
(1096 units), moderately (96 units) and heavily (19) damaged units; Finally, Cakranegara
Regency suffered damage as many as 270 houses, with light (246 units), moderate (18 units)
and six houses heavily damaged.

The value of losses due to house damage is calculated based on the standard value
of the level of damage due to the Lombok earthquake (Table 3), where total loss (100%) is
US$ 6320; heavily damaged (80%) worth US$ 5056; moderate damage (50%) worth US$
3160; and Low (20%) at $1264. Then the value of the loss for each district (Table 4) is the
highest loss suffered by Sekarbela (SK) of US$ 12,399,840, the second loss of Ampenan (AM)
US$ 10,327,512, followed by Selaparang (SL) of US$ 3,726,904; Mataram (MA) suffered a
loss of US$ 2,735,928; Sandubaya (SA) of US$ 1,784,768 and the last is Cakranegara (CA)
of US$ 398,160.
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Table 2. Level of buildings damages after the earthquake per district in Mataram City (adapted from
Mataram City redevelopment action plan, BNPB).

No District
Damage Data (Units)

Heavy Moderate Light Total

1 Ampenan (AM) 654 957 3.162 4.773

2 Cakranegara (CA) 6 18 246 270

3 Mataram (MA) 99 267 1.101 1.467

4 Selaparang (SL) 78 495 1.399 1.972

5 Sandubuya (SD) 19 96 1.096 1.211

6 Sekarbela (SK) 1.540 944 1.290 3.774

Total 2.396 2.777 8.294 13.467

Table 3. Standard budget for house rehabilitation based on level of damage (BNPB).

Total Loss High Moderate Low

100% 80% 50% 20%

US$ 6320 US$ 5056 US$ 3160 US$ 1264

Table 4. Value of losses after the earthquake per district in Mataram City.

No District
Value of Damage (US$)

Heavy Moderate Light Total

1 Ampenan (AM) 3,306,624 3,024,120 3,996,768 10,327,512

2 Cakranegara (CA) 30,336 56,880 310,944 398,160

3 Mataram (MA) 500,544 843,720 1,391,664 2,735,928

4 Selaparang (SL) 394,368 1,564,200 1,768,336 3,726,904

5 Sandubuya (SD) 96,064 303,360 1,385,344 1,784,768

6 Sekarbela (SK) 7,786,260 2,983,040 1,630,560 12,399,840

Total 12,114,176 8,775,320 10,483,616 31,373,112

The loss rating and dominance of the red zone reflect a pattern of conformity based
on the magnitude of losses caused by the earthquake (Table 5). The ranking of earthquake
losses is directly related to the prevalence of the red zone distribution in the districts
of Sekarbela (SK) and Ampenan (AM). It implied that areas with red zone domination
post-earthquake would also suffer significant losses. Based on the rating of the loss value
compared to the level of the vulnerability zone (red), it shows the suitability of the pattern.
The value of losses due to the earthquake is directly proportional to the dominance of
the red zone distribution in the Sekarbela and Ampenan districts. These show that post-
earthquake, subdistricts with high red zone dominance will also have high losses.
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Table 5. Comparative tables of regional microzonation and damage-loss data.

District
Rank (Damages and Losses) Zone (%) (Microzonation)

Population Damage Loss Red Yellow Blue

Sekarbela (SK) 5 2 1 88.52 11.48 0
Ampenan (AM) 4 1 2 79.81 20.19 0
Mataram (MA) 3 4 4 67.01 32.99 0
Selaparang (SL) 1 3 3 33.04 55.14 11.82
Sindubaya (SD) 2 5 5 17.36 0 82.64

Cakranegara (CA) 6 6 6 0 14.63 85.37

4. Discussion

The research area has a thickness of soft rock (volcanic fluvial deposits) which causes
earthquake waves to be trapped and amplified, explaining the higher degree of damage.
The distribution of damage from the earthquake on Lombok Island was irregular. The study
shows that the microzonation map helps determine the damage zone and level of disaster
vulnerability due to the earthquake hazards. Earthquake hazard microzonation mapping
is an essential tool for land use planning in infrastructure development and mitigation
strategies. It provides easy-to-read charts and maps, making it easier for governing bodies
to make decisions. It is highly recommended that microzonation studies support urban
planning development, residential areas, and areas of people’s economic activities in
disaster-safe areas.

Microzonation studies over large areas can support urban development plans and
designs. This study can mitigate potentially earthquake-prone areas by recording the
physical properties of rocks in static conditions so that determining the designation of an
area can be more manageable. This research is relatively inexpensive, easy, and suitable
for developing and utilizing regions. The blue zone area must be designated for housing,
buildings, and areas for community economic activities. While the yellow zone is suitable
for developing community activities such as workshops and carpentry, locations included
in the red zone allocates as a buffer area for environmental conservation that is reforested
by governance programs to reduce carbon emissions.

The level of damage to areas that caused significant losses is dominant in the red
zone, although the highest population is not in the areas where the loss rate is high.
Local governments should reform land usage and distribution following the disastrous
Lombok earthquake.

Based on the comparison between the level of building damage and the value of the
loss, it concluded that although the number of damaged houses in the Ampenan district
is the highest (4773 units) worth US$ 10,327,512, the loss value is still below that of the
Sekarbela district (3774 units), but the loss value is US$ 12,399,840. The number of houses
with severe damage dominates the number of damaged in Sekarbela (1540 units), while
the value of losses in other districts is proportional to the level of damage. The high level
of loss in Sekarbela, caused by the dominance of the number of heavily damaged houses
being more than Ampenan.

Future development planning may be more successful in site selection for important
infrastructure investment decisions with a scientific understanding of each earthquake
hazard level [34,35]. During the 2018–2020 timeframe, 61.000 homes were built for earth-
quake victims, ranging from mildly damaged to badly damaged homes, while 225.000
buildings were constructed for public amenities and social functions, and millions of dollars
were spent to recover the damage [36]. Risk transfer is a strategy to cope with the effects
of natural disasters. Natural disasters are unforeseeable, unpredictable phenomena that
can have a devastating impact on the population, wreaking havoc on infrastructure and
causing enormous human and economic losses [5]. An alternative to risk transfer is disaster
insurance, especially earthquake insurance. Earthquake insurance is essential to recover
from earthquake disasters and protect from the associated financial losses [37,38].

11



Sustainability 2022, 14, 2028

5. Conclusions

Its location in the collision zone causes frequent natural disasters in Indonesia. Earth-
quakes are one of such disasters caused by tectonic activities. The dynamic interaction of
numerous tectonic plates in eastern Indonesia causes high seismicity rates, which resulted
in catastrophic damaging earthquake sequences on Lombok Island in 2018. The research
area in the present study has a thickness of the soft rock (volcanic fluvial deposits), causing
earthquake waves to be trapped and amplified, which explains the higher level of damage.
The distribution of damage caused by the earthquake on the island of Lombok is irregular.
Therefore, it can be concluded that mapping hazard zones based on microzonation are
directly proportional to the damage and losses caused by the earthquake. In other words,
areas included in the red zone are the most vulnerable to damage and losses. In other
words, areas included in the red zone are the most vulnerable to damage and losses.

Microzonation research is a valuable tool for mapping potential earthquake threats in
a particular area, making research more detailed and accurate. In addition, it is essential
to conduct regional tectonic research and its influence on local geological structures that
impact Tertiary bedrock covered by Quaternary volcanic rock from the eruption of Mount
Rinjani. It is suggested that local government improve the “building code” rules when
applying for building permits.

Based on the findings of this study, it is also suggested that additional models be
investigated to predict the amount of seismic activity, such as the Markov Chain model,
which has been applied to the Algerian region [39]. As a result, the seismic activity can be
observed using multiple models to gain a more comprehensive understanding. Meanwhile,
since this region is located in a steep area, land use for forests and farmland does not require
considerable consideration due to the earthquakes. As a result, substantial consideration
must be given to slope stability, building structures, and available types of settlement
materials [40].
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Abstract: The management of seismic risk is an important aspect of social development. However,
urbanization has led to an increase in disaster-bearing bodies, making it more difficult to reduce
seismic risk. To understand the changes in seismic risk associated with urbanization and then adjust
the risk management strategy, remote-sensing technology is necessary. By identifying the types
of earthquake-bearing bodies, it is possible to estimate the seismic risk and then determine the
changes. For this purpose, this study proposes a set of algorithms that combine deep-learning models
with object-oriented image classification and extract building information using multisource remote
sensing data. Following this, the area of the building is estimated, the vulnerability is determined, and,
lastly, the economic and social impacts of an earthquake are determined based on the corresponding
ground motion level and fragility function. Our study contributes to the understanding of changes in
seismic risk caused by urbanization processes and offers a practical reference for updating seismic
risk management, as well as a methodological framework to evaluate the effectiveness of seismic
policies. Experimental results indicate that the proposed model is capable of effectively capturing
buildings’ information. Through verification, the overall accuracy of the classification of vulnerability
types reaches 86.77%. Furthermore, this study calculates social and economic losses of the core
area of Tianjin Baodi District in 2011, 2012, 2014, 2016, 2018, 2020, and 2021, obtaining changes in
seismic risk in the study area. The result shows that for rare earthquakes at night, although the death
rate decreased from 2.29% to 0.66%, the possible death toll seems unchanged, due to the increase
in population.

Keywords: remote sensing; earthquakes; exposure evaluation; risk assessment; vulnerability assess-
ment; seismic risk management; Tianjin Baodi; China

1. Introduction

Urbanization refers to the transformation of rural populations into urban populations,
the migration of rural people into cities and people no longer working in agriculture [1].
Towns and cities are formed and increase in size with this process. In recent decades,
industrialization and modernization have accelerated the process of urbanization, and, as a
result, the proportion of the urban population has been increasing worldwide, notably in
China. China’s urbanization rate has increased steadily over the last decades. In 1950, 13%
of people in China lived in cities. By 2010, the urban share of the population had grown to
45% [2]. The Seventh Population Census of China, conducted in 2020, showed that about
63.9 % of the total population lived in cities in 2020.

However, as urbanization continues, the accumulation of the urban population
and wealth will directly increase the risk of disaster and pose challenges for disaster
mitigation [3–5].
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For China, earthquakes are the most damaging of all natural disasters. Over the past
decade, more than 50% of deaths from natural disasters in China were caused by earth-
quakes [6]. As a consequence of the influence of the Pacific Rim and Eurasian seismic belts,
China has the most frequent continental earthquakes in the world and faces a significant
risk of earthquake disasters [7,8]. Additionally, statistical data show that 41% of large
Chinese cities, 33% of prefecture-level cities, and 30% of county-level towns are located in
earthquake-prone areas [9].

With the rapid development that has occurred in recent years, China’s earthquake
disaster mitigation strategy has paid more attention to pre-disaster prevention [10]. This is
consistent with the Sendai Framework’s focus on disaster preparedness and its emphasis on
understanding disaster risk, strengthening disaster risk governance, managing disaster risk,
and strengthening preparedness for an effective response [11]. Considering the changes in
seismic risk associated with urbanization is critical in improving seismic risk management
capabilities and the mitigation of seismic risk [12].

Generally, the seismic risk analysis models used by organizations or institutions
around the world, such as The Global Earthquake Model (GEM) [13] and the Federal
Emergency Management Agency (FEMA) [14], involve the quantification of three main
components, namely hazard, exposure, and vulnerability [15]. Assuming that seismic
hazard remains stable in the near future, then the seismic risk is primarily affected by
changes in disaster-bearing bodies and their vulnerability.

Furthermore, because social and economic losses due to earthquake disasters are
mainly determined by the destruction of structures, it is worth paying closer attention to
changes in the building stock.

In recent years, remote sensing technology has become widely used in seismic risk
assessment and management due to its ability to obtain large-scale geospatial information
quickly and effectively [16]. The international Group on Earth Observations put forward
the idea of estimating the seismic vulnerability of buildings through remote sensing data in
the work task of 2009–2011. Polli et al. [17] and Zhai Yongmei [18], respectively, proposed
earthquake disaster risk estimation workflows based on remote sensing images in 2009. Ini-
tially, researchers focused on distinguishing building types based on their height and shape
and how to extract geometric properties from remote sensing data about building shapes
using remote sensing [19,20]. To improve the accuracy of exposure information extraction,
combining statistical data, ground surveys, street views, and digital surface models with
proxies obtained from remote sensing data has become a popular approach [20–29]. As well
as this, to gather data for the risk assessment of historic monuments, the Wireless Sensors
Network (WSN) system is paramount [30–32].

Most of the intelligent analysis algorithms that were developed as a result of the
continuous evolution of computer vision tasks, from image-level understanding to pixel-
level understanding, were developed to solve the problem of extracting information from
remote sensing data.

Traditional feature learning methods often rely on creating features based on specific
expertise and therefore often show reduced reusability. In addition, sophisticated methods
may be required to handle irregular or complex data [33]. In contrast, deep learning meth-
ods learn deep features from the data themselves, which means expertise is not required,
and the results based on deep features are much better than shallow methods. In visual
recognition, convolutional neural networks outperform other deep learning models [34].
In principle, a CNN is a network that usually consists of many layers of operations, such as
convolution, pooling, nonlinear activation functions, and normalizing, that can be divided
into a feature extractor and a multilayer perceptron (MLP) [35]. In 2012, Alexnet [36] re-
freshed people’s understanding of CNN. Then, the VGG frame [37] and Resnet model [38]
were successively proposed. For semantic segmentation, Fully Convolutional Networks
(FCNs), based on VGG and first proposed in 2015 [39], were the first to realize end-to-
end segmentation. Several other models, including U-net [40], SegNet [41], PSPNet [42],
DeepLab [43–45], and Mask R-CNN [46], are also capable of accurate segmentation, which
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is commonly used in remote sensing classification [47–50].Overall, although the research
on urbanization process analysis [51–58] and seismic risk assessment [17–29] using remote
sensing data has achieved many results, the specific research does not address the changes
in seismic risk caused by urbanization and the connection between the two. Accordingly,
there is no established methodology within the field of remote sensing applications for
understanding the seismic risk associated with urbanization.

Therefore, in this paper, a practical method of observing the changes in seismic risk
under urbanization based on remote sensing data is proposed. The objectives of this study
are as follows: (i) To improve the remote sensing data analysis method for earthquake
bearing-body detection by integrating deep learning semantic segmentation and ensemble
learning classification. (ii) To propose a comprehensive workflow for identifying seismic
risk change under urbanization processes using remote sensing data. The remainder of this
paper is organized as follows: Section 2 provides an overview of the study area and its
materials. A method for identifying structural vulnerabilities that integrates object-oriented
classification and deep-learning-based segmentation is described as well. Section 3 presents
the experimental results in the study area. Section 4 discusses improvements and future
directions. A comprehensive summary is given in Section 5.

2. Materials and Methods

2.1. Study Area

Figure 1 shows the study area of this article: the central area of the District Baodi,
Tianjin, China, with an approximate population of more than 200,000 people and an area of
35 km2, located at 39◦43′ N,117◦18′ E [59].

Figure 1. (a) Location of the study area in China. (b) Baodi District of Tianjin. (c) Location of the
study area in Baodi. (d) Satellite map of the study area.

Tianjin is in the central part of the North China Plain. The city is a port city and the
only megacity in China to have experienced a major earthquake in recent decades. Tianjin’s
District Baodi is a short drive from Beijing, Tangshan City, and the Tianjin downtown
area [59]. The agriculture, industry, and tourism here have flourished over the past few
decades, and the district has grown from a village to a county, then to a district [60].
However, the district is at risk of earthquakes. Throughout its history, District Baodi
has been affected by many major earthquakes, including those of magnitude 7.8 in 1976
Tangshan and 8 in 1679 Sanhe-Pinggu [8]. These earthquakes caused extensive damage
to Baodi, and the earthquake intensity was as high as VIII CSIS (China seismic intensity
scale) in most areas [61]. An east-west fault in the region, the Baodi fault, shows evidence
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of activity in the Quaternary [62]. Over the last ten years, District Baodi was affected by
three earthquakes that measured magnitude 3.7, magnitude 4.0, and magnitude 3.3, on
14 January 2005, 18 June 2012, and 26 August 2012, respectively [8].

2.2. Data Sources

In this study, very high resolution (VHR) images, as well as medium-resolution
images were collected. They are mainly from Gaofen-2 and Sentinel-2 sensors. ALOS-1 and
WorldView-1 satellite data and Google Earth imagery were used as supplements in the years
2011, 2012, and 2014, as Gaofen-2 and Sentinel-2 satellites were not available over these
years. At the same time, the census data and statistical yearbook data of the corresponding
years were also collected, and the WorldPop [63] data were used as a reference for the
spatial distribution of the population. Table 1 shows the information from the data source.

Table 1. Source of datasets.

Dataset Source Spatial Resolution Time Scale

GF-1/6 China Center For Resources Satellite Data and Application
http://36.112.130.153:7777/DSSPlatform/index.html (accessed on 9 March 2022)

2 m/8 m 2014–2020
GF-2 1 m/4 m 2016–2021
ZY-3 2 m/6 m 2012–2016

Sentinel 2 https://scihub.copernicus.eu/ (accessed on 9 March 2022) 10 m 2015–2021
Point of interest https://lbsyun.baidu.com/ (accessed on 9 March 2022) - 2018, 2020
Questionnaire Field survey - 2019

Statistical Yearbook http://stats.tj.gov.cn/ (accessed on 9 March 2022) - 2011–2021
Census data http://stats.tj.gov.cn/ (accessed on 9 March 2022) - 2010, 2020, 2021

In addition, four separate datasets were built for the four main tasks in this study:
(i) footprint segmentation of single buildings, (ii) shadow segmentation of single build-
ings, (iii) rural building groups, and (iv) vulnerability classification of single buildings.
Three of the datasets were instance segmentation datasets, and one was a multi-feature
classification dataset.

Based on VHR satellite imagery and ground surveys located approximately 50 km
from the study area, we produced data in shapefile format for 62,185 buildings. As shown
in Figure 2, the footprint of a building is highly detailed. Building property information is
given in the form of vulnerability type, usage, and floor numbers. Using ArcGIS Pro, we
turned these data into a dataset that can be used as a basis for training building instance
segmentation models, as well as for building vulnerability classification models.

Figure 2. 3D visualization of single building datasets.
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Additionally, 720 samples of rural building groups were derived from Sentinel 2 data,
and shadow contours of 3250 buildings from GF2. Figure 3 illustrates an example of the
instance segmentation dataset.

Figure 3. Example of the instance segmentation dataset.

To verify the final results, this study conducted a field survey in the study area during
2019–2020, collected a sample of 823 buildings, as shown in Figure 4, and created a sample
of building structures by utilizing Baidu Maps API libraries.

Figure 4. Field survey samples and examples of structure types: (a) shear wall structure (dwelling),
(b) RC structure (hospital), (c) brick wood (dwelling), (d) RC structure (dwelling), (e) confined
masonry (dwelling), (f) field survey samples.

19



Sustainability 2022, 14, 6132

2.3. Overall Workflow

In this section, the proposed workflow is described in detail. The seismic risk assess-
ment process involves the quantification of three major input components, namely, seismic
hazard intensity, exposure, and vulnerability [15].

Our understanding of the change in seismic risk resulting from urbanization relies on
the assumption that the seismic hazard remains relatively stable; thus, the change in seismic
risk is due to changes in the hazard-bearing body. When a disaster occurs involving an
earthquake, social and economic losses are determined by the destruction of buildings. This
form of structural change is the focus of our study. The primary role of remote sensing data
in this study is to extract building information from images taken over several years. Object-
oriented classification and deep-learning-based instance segmentation are integrated into
the pipeline to efficiently accomplish this task.

As shown in Figure 5, the overall workflow includes four main parts. Part 1: Building
object segmentation and feature extraction. The footprints of single buildings and rural
building groups are extracted from high- and medium-resolution imagery, respectively.
The image feature extraction is carried out with the building’s footprint as the object unit.
Part 2: Calculating the proxies in each object unit, according to the extracted object features,
and then conducting vulnerability classification to obtain the disaster-bearing body dataset.
Part 3: Calculating structural losses and the resulting economic and population losses at
three ground motion intensity levels. Finally, repeat the above work for different years to
obtain the results regarding changes in seismic risk during the urbanization process. In
addition, to extract the building footprint and features and the vulnerability classification
of the structure, multiple machine learning classifiers need to be pre-trained. This part can
be regarded as Part 0 of the whole process.

Figure 5. The overall workflow consists of four major sections: part 0 to pre-train the segmentation
and classification models, part 1 to extract image features, part 2 to classify structural vulnerability,
and part 3, a seismic risk assessment.
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2.4. Building Feature Extraction

The acquisition of building parameters is probably the most time-consuming, tedious,
and expensive part of each seismic risk assessment [64]. In this study, three BMask R-CNN
classifiers were trained to extract footprints from single buildings and rural building groups,
respectively. The footprints of single buildings are taken as object units for multi-feature
extraction. The footprint of rural building groups can be directly applied to the classification
of vulnerability and the calculation of inventory, according to the survey data.

The third BMask R-CNN classifier extracts the shadows of single buildings to calculate
the height and number of floors. Other information on single buildings is extracted by
eCognition v9.3, Trimble, CA, USA. A pretrained random forest classifier is used for
structure vulnerability classification.

2.4.1. Mask R-CNN Framework

Mask R-CNN is a flexible object instance segmentation framework that efficiently
detects objects in an image while simultaneously generating a high-quality segmentation
mask for each instance [46]. Based on Faster R-CNN [65] and Fast R-CNN [66], Mask
R-CNN adds a branch to predict an object mask while preserving the branch for bounding
box recognition, thereby achieving pixel-level instance segmentation. Since Mask R-CNN
is easy to generalize to other tasks, it has been widely adopted in remote sensing object
classification. As shown in Figure 6, the original network structure of MASK R-CNN
includes several components. The multiscale feature maps are extracted from the input
image through the backbone part based on ResNet and the feature pyramid network (FPN).
These features are shared by the RPN part and the RoIAlign layer. The feature map fed
to the RPN is further extracted to generate candidate ROIs. After filtering, the obtained
feature maps are used as proposals. The feature maps from the backbone part and the RPN
part are properly aligned with the input based on bilinear interpolation [46] through the
RoIAlign layer. Finally, the aligned feature map enters two branches in the head part: one
is a fully convolutional mask prediction branch, and the other branch is divided into two
sub-branches for class prediction and bounding box regression [67].

Figure 6. Structure and main components of Mask R-CNN framework [46].

2.4.2. BMask R-CNN Framework

When performing pixel-level instance segmentation based on Mask R-CNN, predic-
tions are made based on the local information. Although large receptive fields are obtained
through the deep framework, which helps to extract features and improve the accuracy
of classification, the information details, such as the shape information of the object, are
still elusive.
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To solve the problem of coarseness and indistinctness in the prediction output, Cheng,
T.H. et al. [68] proposed a boundary-preserving Mask R-CNN to exploit boundary informa-
tion and guide more precise mask prediction.

By adopting boundary features and boundary prediction, BMask R-CNN optimizes
the mask head in Mask R-CNN, as illustrated in Figure 7. The new mask head is called the
boundary-preserving mask head.

Figure 7. The overall architecture of boundary-preserving Mask R-CNN (BMask R-CNN). The dotted
arrow denotes 3 × 3 convolutions, and the solid arrow denotes identity connection unless there is a
specified annotation in the boundary-preserving mask head. “×4/×2” denotes a stack of four/two
consecutive convs [68].

Boundary-preserving mask heads synchronously learn object boundaries and masks.
First, features from the mask sub-network can provide high-level semantic information
for learning boundaries. Then, after obtaining the boundaries, the shape information and
abundant location information in boundary features can help to achieve more precise mask
predictions [68].

Since a boundary learning head branch is added to the multiple Mask R-CNN tasks,
the loss function of the model also needs to accordingly increase a component. Here, ref.
[68] proposes a combination of dice loss [69] and binary cross-entropy to optimize the
boundary learning

Lb (pb, yb) = LDice (pb, yb) + λLBCE (pb, yb) (1)

in which LBCE (pb, yb) is binary cross-entropy loss, with λ as a hyperparameter to adjust the
weight. pb and yb representing the predicted boundary for a particular category and the
corresponding boundary ground truth, respectively.

The Dice coefficient is used to measure the spatial overlap or similarities between the
two sets. Here, the consistency between the predicted boundary and the corresponding
boundary ground truth is compared. Since Dice loss is insensitive to the number of
foreground/background pixels, it alleviates the class-imbalance problem. The calculation
formula of Dice loss is as follows:

LDice(pb, yb) = 1 − 2 ∑H×W
i pi

byi
b + ε

∑H×W
i

(
pi

b
)2

+ ∑H×W
i

(
yi

b
)2

+ ε
(2)

where H and W are the height and width of the predicted boundary map, respectively; i
denotes the i-th pixel, and ε is a smooth term to avoid zero division.

Finally, after adding a boundary-preserving branch to Mask R-CNN, the combined
multi-task learning loss functions are as follows:

L = Lcls + Lbox + Lmask + Lb (3)

22



Sustainability 2022, 14, 6132

where Lcls, Lbox, and Lmask represent the loss of classification, localization, and segmentation
mask, respectively, which are identical to those in [46].

2.4.3. Post-Processing of Building Footprint

After obtaining the footprints of single buildings and rural building groups from
high-resolution and medium-resolution images, respectively, the post-processing of both
results must be performed. This mainly includes the following processes:

(i) Eliminating non-structural misclassification by setting an area threshold;
(ii) Intersecting single buildings and building groups, keeping single buildings in the

rural building group, and eliminating redundancy in the two output footprints;
(iii) Calculating the actual building area of the rural building group.

In a typical rural residential setting in the study area, a class of simple structures with
intact roofs often causes buildings to be misclassified. A good example of this is shown
in Figure 8, where the roofs indicated in the red frame generally correspond to actual
buildings, whereas other roofs may be simple structures or serve only as shelter from the
sun and rain. To estimate the total amount of rural buildings, we apply the empirical
formula based on the ratio of the total land area of the rural buildings group to the total
area of the rural buildings.

Figure 8. (a) Blue boxes indicate a single household, while red boxes indicate buildings to be counted;
(b) red outline indicates rural building groups.

For our study area, the relationship between the group area of rural buildings and the
number of households is as follows:

group area = 652.77 m2 × number of households + 1.4366 m2 (4)

Further, according to the average floor area of each household, the building stock to
be counted can be obtained.

2.4.4. Estimating Floor Numbers

The height of a building is an effective way of assessing its seismic capacity and is
essential to the calculation of its area [16]. This can be extracted by applying the shadow
length of the building structure in the high-resolution optical image [18–20,27], SAR image
imaging geometric characteristics [18], LiDAR data [27], or DSM data [25–27]. Since high-
resolution LiDAR data and DSM data were not obtained in this study, the number of floors
in the building was inferred from the building shadows in the GF-2 data.

As illustrated in Figure 9, taking a regular building model as an example, according to
the angle of solar irradiation and the angle of satellite observation, the geometric relation-
ship between the building and its own shadow mainly presents two situations [70]. When
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the sun and the satellite are located on the same side of the building, the building itself
partially occludes its own shadow. When the satellite and the sun are located on both sides
of the building, the shadow of the building can be fully exposed to the viewing direction.

Figure 9. Building shadow geometry; the red and blue lines indicate the line-of-sight directions of
the sun and satellites, respectively: (a) side view of satellite and sun on the same side; (b) top view of
satellite and sun on the same side; (c) side view of satellite and sun on different sides; (d) top view of
satellite and sun on different sides.

According to the basic trigonometric function principle, the formula to calculate the
height of the building in two different cases can be obtained [70]:

H = L1 tan ω (5)

here, H represents the height of the building, L1 represents the length of the unobstructed
shadow, and ω is the sun elevation angle. Considering the situation where the shadow
is occluded when the sun and the satellite are on the same side, it is necessary to infer H
according to L2 and L3, as follows:

H = L2
tan ωtanθ cos(β − ϕ)

tanθ cos(β − ϕ)− tanω cos(α − ϕ)
(6)

H = L3
tanωtanθ sin(β − ϕ)

tanθ sin(β − ϕ)− tanωsin(α − ϕ)
(7)
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where θ is the altitude angle of the satellite, α is the azimuth of the satellite, β is the azimuth
of the sun, and ϕ is the azimuth of the building. The computational difficulty is significantly
simpler when the satellites and the sun are on different sides of the building.

2.4.5. Occupancy and Population Disaggregation

We assume that the change in the POI of functional facilities is stable and that the
increase or decrease in POI in each year is purely dependent on the existence of buildings.
Based on the POI obtained in 2018 and 2020, the POI information has been assigned to the
building through spatial analysis. By 2020, there were 110 medical institutions of various
types, 63 educational institutions at all levels, 24 shopping malls, 39 enterprises exceeding
their designated sizes, and 238 manufacturing companies found in the research area.

Samples from the on-site investigation were used to count the density of people in
various buildings. These were divided into daytime and nighttime counts.

Table 2 represents the Indoor Population Density of different occupancy (people per
square meter).

Table 2. Indoor Population Density of different occupancies (people per square meter).

Occupancy Office Factory Business Education Medical Residency Other

Day 0.03 0.01 0.09 0.52 0.3 0.01 0.03
Night 0.001 0 0 0.12 0.1 0.033 0.001

2.5. Vulnerability Classification

Based on footprints of single buildings, object feature extraction was carried out in
eCognition [71]. Then, a pretrained Random Forest (RF) [72] classifier was adopted to
classify the vulnerability type of buildings. The selected features are shown in Table 3.

Table 3. Selected Features.

Type Features Data

Extend Area, length, length/width, width, border length VHR image
Shape Asymmetry, compactness, density, elliptic fit, rectangular fit, main direction, shape index, roundness

Texture GLCM (homogeneity, contrast, dissimilarity, entropy, Ang. 2nd moment, mean, Std.Dev.) Multi-Spectral DataLayer Values mean, standard deviation, HSI transformation

2.6. Loss Assessment

In this study, approaches to loss assessment are based on structural damage. Moreover,
this study aims to determine the number of deaths and direct losses due to structural
damage caused by ground motions. Explicitly addressing the damage and loss caused by
secondary disasters such as surface fault rupture, landslides, soil liquefaction, fire, etc.,
as well as damage to infrastructures such as bridges and roads, is outside the scope of
this paper.

2.6.1. Structural Damage

Structural damage assessment based on vulnerability analysis is the basis for quan-
tifying economic loss and casualty. The vulnerability of structures that are exposed to
earthquake loading expresses the likelihood of the occurrence of certain damage levels
caused by seismic action [15].

Furthermore, the fragility model can be assumed to be a reliable measurement of dam-
age to a respective set of buildings with similar structural taxonomy of dynamic behavior.

Building damage states are divided into five levels, which are intact, slightly dam-
aged, moderately damaged, severely damaged, or collapsed, according to the damage to
structural members or the entire structure. The division points of five kinds of failures
correspond to the four limit state divisions of the structure in turn, and those from LS1 to
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LS4 gradually become more serious. The fragility model relates building response to seis-
mic demand inputs and follows the lognormal assumption [73], as given by Equation (8),
which refers to the conditional probability of various limit states of the structure under
different earthquakes.

F (x, μ, σ) = P(LS|x) = Φ ((ln (x/μ))/σ) (8)

here, Φ is a standard normal cumulative distribution function and x denotes seismic motion
intensity, which is taken as peak ground acceleration (PGA). Parameters μ and σ are the
fragility model median and standard deviation of ln (x). Table 4 presents the parameters of
the fragility model used for different structural typologies in this study.

Table 4. Fragility model parameters.

Typology
LS1 LS2 LS3 LS4

Source
μ σ μ σ μ σ μ σ

Brick wood 0.2997 0.093 0.2005 0.1397 0.216 0.2175 0.2228 0.2837 [74]
Confined masonry 0.139 0.845 0.292 0.709 0.510 0.608 1.372 0.828 [75]
Reinforced concrete 0.267 0.785 0.540 0.548 0.841 0.506 1.629 0.558 [75]

shear wall 0.130 0.170 0.150 0.240 0.20 0.470 0.250 0.810 [76]
Bottom RC 0.122 0.2 0.145 0.2 0.213 0.2 0.461 0.2 [75]

According to the parameters of LSs (s = 1, 2, 3, 4), Equation (8) calculates the probability
that the structure will reach LSs. Then, the probability of each DSi (i = 0, 1, 2, 3, 4) of the
seismic intensity can be calculated:

PDS0 = 1 − P(LS1|x) (9)

PDS1 = P(LS1|x) − P(LS2|x) (10)

PDS2 = P(LS2|x) − P(LS3|x) (11)

PDS3 = P(LS3|x) − P(LS4|x) (12)

PDS4 = P(LS4|x) (13)

Based on the hazard level of the study area, we calculated the loss at three different
levels of ground motion intensity. The three ground motion levels correspond to rare earth-
quakes, moderate earthquakes, and frequent earthquakes, respectively. The probability of
exceedance during 50 years is 2–3%, 10%, and 63%, respectively.

2.6.2. Economic Loss

In this paper, the method used to calculate direct economic loss according to the
damage state, loss ratio, and replacement price refers to the provisions of China Code GB/T
18208.4-2011 (Seismic Field Work Part IV: Disaster Direct Loss Assessment) [77]. According
to this code, the formula proposed in this study for the calculation of direct earthquake
economic loss for H types of structures is as follows:

(1) The direct economic loss LA of H building structure types and D damage levels in a
certain area is calculated as follows:

LA = ∑H ∑D Ph Ad Rd (14)

Ad denotes the total area of the h-type structure with damage stated; Rd is the loss
ratio when the h-type structure has a damage state of d; and Ph is the replacement price of
the h-type structure.

(2) The direct economic loss LB of the indoor property is calculated as:

LB = ∑H ∑D Ph Ad Rd (15)
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where Td is the ratio of the indoor property loss when the damage level of the h-type
structure is d; Ph is the replacement unit price of the h-type structure; and μ1 is the ratio of
the indoor property value of the building structure to the structural replacement price.

(3) The direct economic loss LC of decoration damage is calculated as follows:

LC = ∑H ∑D γ1 γ2 γ3 Qh Ad Sd (16)

Sd denotes the decoration loss ratio when the damage level of the h-type structure is d;
Qh denotes the decoration price of the h-type structure; γ1 represents the correction factor,
considering the difference in economic development levels; γ2 represents the correction
factor considering building occupancy; and γ3 represents the proportion of high-level
decoration. γ1 and γ2 values are specified in [77].

2.6.3. Social Loss

In this study, death and injury calculations were carried out according to the rela-
tionship between the damage state of the house and the casualty rate of people, without
distinguishing between structure types; the calculation formula is as follows:

Nd = ∑D ρ Ad RDd (17)

NI = ∑D ρ Ad RId (18)

Nd and NI denote the numbers of dead people and injured people, RDd and RId
represent the death and injury rate of people under different damage levels, Ad is the area
of the building structure under the damage level, and ρ is the density of people in the room.
The fatality rate values used in this study are listed in Table 5.

Table 5. Casualty rates of different damage states.

Casualty Rate Moderate Damage Severely Damaged Destroyed

Death Rate 0.001% 0.5% 3%
Injury Rate 10% 15% 30%

2.7. Evaluation Indicators

The performance of the proposed algorithms was assessed using six metrics, namely,
IoU, precision, recall, F1-score for segmentation tasks, and Overall Accuracy and Kappa
coefficients for vulnerability classification.

IoU =
TP

TP + FP + FN
(19)

Precision =
TP

TP + FP
(20)

Recall =
TP

TP + FN
(21)

F1 =
2 ∗ percision ∗ recall

percision ∗ recall
(22)

Overall Accuracy =
TP + TN

TP + TN + FP + FN
(23)

Kappa =
P0 − Pe

1 − Pe
(24)

where TP is the value of the true positives, FP is the value of the false positives, TN
is the value of the true negatives, and FN is the value of the false negatives. P0 is the
relative observed agreement among raters. Pe is the hypothetical probability of chance
agreement [78].
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3. Results

In this section, the results obtained by applying the workflow and method mentioned
in Section 3 to the study area in Section 2 are presented. The results of the extraction of
disaster-bearing body information and the estimation of seismic risk will be described, as
well as the evaluation of the outputs.

3.1. Building Information Extraction Result

The building segmentation of the study area data is performed by the BMask-RCNN
model presented in Section 3. Table 6 shows the extraction accuracy of single buildings and
rural building groups. In terms of IoU, precision, recall, and F1 score, rural group buildings
exhibit a lower extraction accuracy than single buildings. Extraction examples of single
buildings and rural group buildings are presented in Figures 10 and 11. The results show a
small number of errors and missing records.

Table 6. Extraction Accuracy Evaluation.

Buildings IoU Precision Recall F1 Score

Rural building
group 0.792079 0.898876 0.869565 0.883978

Single buildings 0.855615 0.924855 0.91954 0.92219

Figure 10. Example of single building extraction results.

The accuracy of height and floor estimation is shown in Figure 12a,b. An excellent
linear fitting relationship exists between the height estimate and the real value, and the
error of the height estimate is within one meter. The difference between the estimated
number of floors and the actual number of floors may be as large as three stories, and the
error for from 5- to 10-story buildings is larger.

According to field sampling data, the Overall Accuracy for the building vulnerability
classification reached 86.77%, and the Kappa coefficient was 0.6538. Figure 13 shows
the distribution of building structures over different years. In Figure 13, the brick–wood
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structures represented by the color red are gradually disappearing in the study area. In
the extraction results for 2011, 2012, and 2014, brick–wood structures occupied the largest
portion of the study area. According to the extraction results, only a few brick–wood
structures survived in 2016.

Figure 11. Example of the rural building group.

Figure 12. Accuracy of height and floor estimation: (a) height and floor estimation;
(b) layers estimation.

However, the shear wall structures indicated in blue have been increasing since
2016. Meanwhile, brick–wood structures are being replaced with shear wall structures in
this process.

Nevertheless, the overall pattern at the center of the study area has not changed
dramatically, and the road between building blocks remains generally unchanged. This
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area of buildings remains unchanged and includes many functional facilities, including
schools, hospitals, malls, offices, etc.

Figure 13. Distribution of building footprints over different years in the study area.

Furthermore, based on the above results, the construction area of various structures
in different years can be estimated. In 2020, the construction area of shear wall structure
buildings reached 15 times that of the area in 2011, from 0.842 km2 to 12.643 square km2.
The proportion changed from 9.22% to 64.66%. Figure 14 illustrates how the area of each
structure type changes over the years of this study. From 2011 to 2014, the construction
area of various types of buildings remained stable, while the area for shear wall structures
steadily increased. The construction area of brick wood buildings dramatically declined
in 2016. However, the shear wall structure continued to grow into 2018 and saw a surge
in 2020.

Grids are used to estimate the density of the building area. Figure 15 was made by
applying a 200 × 200 m grid. Comparing Figures 13 and 14, Figure 15 also illustrates that,
after experiencing a plateau in 2011, 2012, and 2014, the results in 2016 and 2018 show
the disappearance of low-density building areas. Meanwhile, the results for 2020 and
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2021 demonstrate the emergence of high-density building areas near the boundary of the
study area.

Figure 14. Construction area of buildings in different years.

Figure 15. Construction area over different years in the study area, in a 200 m grid.

Table 7 shows the estimated total population for each year.
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Table 7. Estimated total population.

Year 2011 2012 2014 2016 2018 2020 2021

Day 240,344 240,260 258,043 268,555 274,613 360,118 369,280
Night 203,244 203,182 233,786 230,443 241,556 477,837 505,323

3.2. Estimation of Seismic Risk Changes

Based on the methods outlined in Section 3 and the results presented in Section 3.1,
estimates of losses under different ground motion levels, including direct losses in economic
terms and deaths due to seismic activity during night and daytime, were further obtained
for the study area. Table 8 provides a summary of the losses.

Table 8. Estimated economic and social losses.

Level Year 2011 2012 2014 2016 2018 2020 2021

Rare
Eco loss (billion RMB) 57.7964 57.7817 61.1094 54.6339 54.8115 66.6552 68.0225

Night death toll 4662 4660 4762 3421 3270 3348 3362
Day death toll 4526 4524 4658 4371 4355 4480 4484

Moderate
Eco loss (billion RMB) 40.8394 40.8280 42.8254 36.9838 36.8194 43.3709 44.1346

Night death toll 1896 1895 1939 1437 1384 1388 1390
Day death toll 1630 1629 1670 1540 1530 1554 1555

Frequent
Eco loss (billion RMB) 8.0140 8.0123 8.7140 8.4178 8.6097 11.8013 12.1698

Night death toll 40 40 43 44 45 45 45
Day death toll 35 35 37 37 37 37 37

Figure 16 illustrates the trend in earthquake losses over many years based on different
levels of ground motion intensity. The estimated results of losses include death tolls
when earthquakes occur during the daytime as well as at night, as well as a death toll per
10,000 people when earthquakes occur at night. A direct economic loss is also incurred.

Figure 16. Variation trend of loss under different ground-motion intensity levels. The blue, orange and
green lines represent rare earthquakes, moderate earthquakes, and frequent earthquakes, respectively:
(a) estimated death toll when an earthquake occurs during daytime, (b) estimated death toll when
the earthquake occurs at night, (c) estimated death toll per 10k people when an earthquake occurs at
night, (d) estimated direct economic loss.

In general, for frequent earthquakes, there was little change in losses from 2011 to
2021, except for an increase in direct economic losses after 2018. In terms of loss estimates
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from moderate earthquakes, as well as those from rare earthquakes, the trends were almost
identical in recent years.

Firstly, it should be noted that the number of deaths caused by earthquakes occurs
during the day and night, with one obvious trend being that the results in 2016 decreased
compared with those before 2014 and began increasing thereafter. Additionally, after 2016,
the death toll when the earthquake occurred at night was much lower than the death
toll when it occurred during the day. A rare earthquake occurring at night will cause
1300 fewer deaths in 2021 than it did in 2011, which represents a reduction of one-third.
Second, the death rate has declined from 2011 to 2021. For example, the death rate per
10,000 people resulting from a rare earthquake declined from 229 in 2011 to 66 in 2021. It
can be said that the death rate decreased from 2.29% to 0.66%. Similarly, the death rate for
every 10,000 people affected by the moderate earthquake declined from 93 to 27.

Third, the economic losses showed a slight upward trend between 2011 and 2014 and
began to decline in 2016. There was an inflection point in 2018, and economic losses began
to rise after that year.

Figure 17 demonstrates the death toll of a rare earthquake that occurred at night.
According to the results of the death toll estimation, the spatialized results for 2011 to
2014 indicate that this stage is mainly characterized by lower values uniformly distributed
within space. In the 2016 and 2018 results, some low-value areas disappeared, while the
original high-value areas remained. Additionally, the results for 2020 and 2021 indicate
several increasing potential deaths.

Figure 17. Spatial distribution of population deaths caused by rare earthquakes occurring at night, in
a 200 m grid.
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4. Discussion

In this paper, we describe a new task regarding the perception of changes in seismic
risk due to urbanization, based on remote sensing data. By applying multi-source remote
sensing image data for different years and combining auxiliary information, we were able
to monitor the earthquake-bearing body changes within the study area as the urbanization
process continued and subsequently estimate seismic risk changes. Our work is based on
the assumption that the seismic hazard remains relatively stationary over ten years.

Building structure information was extracted using the improved Mask R-CNN in-
stance segmentation model, and the random forest classification algorithm was applied
after instance segmentation to obtain a classification result. Furthermore, a method of
earthquake disaster loss assessment was used to calculate the societal and economic losses
over different years based on the three earthquake intensity levels.

First, building object types were divided into single buildings and rural building
groups. Based on the BMask R-CNN model, we obtained relatively reliable results for both
building object types.

Several factors affect the extraction accuracy of single buildings:
The shadows cast by tall buildings and tall plants block the view of the buildings;

these are the major reasons for misclassifications. Additionally, some low buildings that
blend into the background environment are not identified. A third reason is that we use
annotated data with very fine edges and an edge-preserving model to construct a finer
outline of the building geometry. However, since the sample data have such a large number
of edges, it is still challenging to achieve the same level of building segmentation.

Factors that influence building segmentation accuracy in rural areas include:
In some cases, the plastic sheds surrounding rural buildings are similar in color, tone,

and geometric size to the buildings, which confuses their classification. As in single build-
ings, some backgrounds, such as barren land, cause misclassifications and omissions. More-
over, some independent buildings are also incorrectly classified as rural group buildings.

A redundant processing operation is carried out at the intersection between rural
group buildings and single buildings, based on the results of the single building extraction.

Although the results for estimations of the height of the building are relatively accurate,
there is a certain amount of variance in the estimation of the number of floors of the building.
This can be attributed to several factors: (i) There is a wide range of story heights in factory
buildings with a single floor, ranging from 3 m to 10 m. (ii) Additionally, classifications
of building use types do not always reflect the attributes of each specific building use.
An example would be a university campus, which contains a wide variety of buildings,
all of which are classified as one occupation, or a gymnasium that may be in a high-rise,
one-story structure. Furthermore, the height of the teaching building in schools is often
higher than that of the office. (iii) The third point is that the top floor of some buildings has
a decorative roof, and the number of floors is rounded off incorrectly.

Confusion between structures primarily exists among confined masonry, reinforced
concrete, and shear wall structures. This is particularly true for low-rise dwellings, which
usually have a variety of structural types and a close geometrical arrangement. Since
high-rise buildings are commonly shear wall structures, the number of stories plays an
important role in improving their classification accuracy.

As seen from the result, there has been a significant change in the building stock within
the study area from 2011 to 2021. This change could be attributed to several factors. First,
the gross floor area of buildings decelerated between 2014 and 2016 but subsequently grew
rapidly. A second characteristic of the change in building types is the decreased number of
brick wood structures, followed by a significant rise in the number of shear wall structures,
while other types of buildings continue to steadily change. Moreover, most of the buildings
that were reduced or added were residential. Third, the renewal of buildings occurs in a
variety of areas throughout the city, from the center to the edge.

The above analysis results are consistent with the period of demolition and recon-
struction in this area in the past. According to the statistical yearbook of the Baodi District,

34



Sustainability 2022, 14, 6132

the district launched a relocation and reconstruction project in October 2015, involving
25,000 households and 66,000 residents, with an investment of 43.3 billion RMB yuan
(approximately 6551 million EURO). A total of 35 urban villages and 21 dormitories were
demolished in 2016, and, in 2020, 35 replacement communities were built, which are
currently in operation.

In this study, the calculation to estimate building area change was based on the extrac-
tion of the building’s footprint, the estimation of the number of floors, and the classification
of building types. Additionally, a change in the building use is implied. This is a major
difference from previous methods of monitoring urbanization expansion by identifying
impervious layers. We also consider this to be a fundamental issue in our research, and it
forms the basis for the determination of variations in specific earthquake losses.

There are still some limitations in our study that need to be acknowledged. Dur-
ing remote sensing analysis, first, we adopted a large private dataset to train the image
segmentation model and classification model, which is a time-consuming procedure that
needs to be performed carefully. This localized dataset has proven to be indispensable
in our research. Second, even though high-rise buildings and one-story rural dwellings
are classified with high accuracy, building structure type confusion exists among confined
masonry and reinforced concrete.

In calculations of population and economic losses, no earthquake simulation would
enable the results to be verified, as in the case of [79]. This means that the results of the
calculation presented in this paper are only theoretically reliable. Second, since the study
area is relatively small, we perform calculations by setting a consistent PGA value rather
than using the conventional seismic hazard model [80,81].

In future work, we will study transfer learning techniques to reduce the dependence
on sample size and examine the attention module. We will also study the subdivision
of the vulnerability function, as well as the spatialization of population data based on
remote sensing.

5. Conclusions

Identifying and mastering the changes in earthquake risk due to urbanization is crucial
to effectively adjust countermeasures to reduce earthquake losses and execute earthquake
emergency preparedness in a targeted manner. To achieve this goal, we propose an inte-
grated workflow incorporating deep learning and ensemble learning methods for remote
sensing image analysis. As an example, the urbanization process of the Baodi core area in
Tianjin was studied using remote sensing images taken in recent years. The type of build-
ing and changes in building area were analyzed from the extracted building information,
and the economic and social losses resulting from these changes were calculated at three
ground-motion intensity levels. Yet, the seismic loss calculation was made based on certain
parameters; additional factors such as geology, soil type, distance from the seismogenic
fault, seismic wave propagation, and secondary hazards were not taken into consideration.

According to our research, the study area has changed from a county seat to a dormi-
tory town of a big city as a result of urbanization. In the study area, the development of
commercial real estate eliminated low-quality housing and nearly doubled the number of
people that could be accommodated, but the growth rate of functional infrastructure was
relatively low.

New residential buildings have resulted in a reduction in the rate of night-time earth-
quake deaths in this area. The spatial distribution of the probability of a fatality also
changes accordingly. However, there is a possibility that the number of deaths caused by
rare earthquakes may not significantly decrease, given the dramatic increase in population.
This may be overlooked in the context of urbanization.

Earth observation data complement ground-collected data and play a pivotal role in
risk assessment and reduction [82]. Moreover, our study demonstrates that remote sensing
data can be a valuable resource to observe changes in seismic risk as a result of urbanization.
Although there are still some areas for improvement, the method based on remote sensing
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data can be used as a tool for updating seismic risk management plans and urban planning
in other parts of China in the future.
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Abstract: Since the beginning of 2020, the COVID-19 pandemic has caused unprecedented global
disruption with considerable impact on human activities. However, natural hazards and related
disasters do not wait for SARS-CoV-2 to vanish, resulting in the emergence of many conflicting
issues between earthquake emergency response actions and pandemic mitigation measures. In this
study, these conflicting issues are highlighted through the cases of four earthquakes that struck
Greece at different phases of the pandemic. The earthquake effects on the local population and on
the natural environment and building stock form ideal conditions for local COVID-19 outbreaks in
earthquake-affected communities. However, the implementation of response actions and mitigation
measures in light of a multi-hazard approach to disaster risk reduction and disaster risk management
has led not only to the maintenance of pre-existing low viral load in the earthquake-affected areas, but
in some cases even to their reduction. This fact suggests that the applied measures are good practice
and an important lesson for improving disaster management in the future. Taking into account the
aforementioned, a series of actions are proposed for the effective management of the impact of a
geological hazard in the midst of an evolving biological hazard with epidemiological characteristics
similar to the COVID-19 pandemic.

Keywords: earthquake emergency; COVID-19 pandemic; hazard interaction; compound emergencies;
multi-hazard management; emergency shelters

1. Introduction

The single-hazard approach is widely used by most countries worldwide in disaster
management and disaster risk reduction (DRR) because hazards are considered and man-
aged as isolated and independent phenomena. However, in some cases, different types
of hazards overlap and interact in the following ways: (i) natural hazards causing one or
more hazard events; (ii) human activities causing natural hazards; (iii) human activities
exacerbating natural hazard triggering; (iv) networks of hazard interactions (cascades)
forming; and (v) the concurrence of two (or more) hazard events are all examples of human
activities triggering natural hazards [1,2].

Gill and Malamund [1] studied how natural hazards, including earthquakes, tsunamis,
volcanic eruptions, landslides, floods, fires, and extreme weather events, among others,
interact. They were able to identify 90 interactions between 21 natural hazards. It is
impressive how the number of interactions can be increased if we add different types
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of hazards, such as biological as well as human-made hazards and related disasters and
crises. Through this synergy of phenomena and impact, we can imagine how many more
challenges, incompatibilities and contrasts can arise when disasters from different hazards
occur in parallel.

Since March 2020, when the World Health Organization declared a global pandemic
caused by the rapid worldwide spread of severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) infection [3], the last type of such interaction between biological and natural
hazards has become a common occurrence. Since then, many countries have been negatively
impacted by natural hazards (earthquakes, floods, fires, hurricanes, and other phenomena)
and related disasters [4–7], all while attempting to address and mitigate an evolving
biological hazard: the COVID-19 pandemic. It is the most important biological hazard
that humanity has recently been called to face, as to date (12 June 2022) SARS-CoV-2 has
infected 535,125,479 individuals and has claimed the lives of 6,309,209 people (COVID-19
Dashboard at Johns Hopkins University (JHU); https://coronavirus.jhu.edu/map.html,
accessed on 12 June 2022). Furthermore, the COVID-19 pandemic has impacted the daily
lives of billions of people and has raised many concerns about community exposure,
vulnerability, and preparedness. When this evolving biological hazard collides with natural
hazards that do not pause for a virus, these issues become even more complicated. Among
other complications, the scientific community and disaster risk management authorities
are debating the hierarchy of hazards, which can be used to resolve conflicting issues when
two (or more) hazards occur simultaneously. Important questions arise to do with the
most effective way of responding to competing hazards, and the most efficient disaster
management and DRR policies that are incompatible with pandemic mitigation measures.
These strategies and policies must be adapted and new innovative multi-hazard approaches
should be adopted to reduce individual and community vulnerability.

Many such issues arose during the collision of earthquake-related geological hazards
and the evolving pandemic. Many earthquake emergency response actions were incompat-
ible with the pandemic mitigation measures. This fact was highlighted in Greece after the
occurrence of large and destructive earthquakes from early 2020. It is important to note
that Greece, located in the Eastern Mediterranean region, is characterized by high seismic-
ity [8,9], ranking it first in Europe and sixth in the world among seismic active countries.
This high seismicity comprises frequent strong earthquakes [8,9] with a significant impact
on the local population, the natural environment, and the building stock, e.g., [10,11]. This
is attributed to the occurrence and activation of seismogenic structures, mainly related
to the subduction of the Eastern Mediterranean plate beneath the Aegean one along the
Hellenic Trench and to major onshore and offshore seismic faults along the margins of
neotectonic macrostructures, e.g., [12,13]. Typical examples of such events, which occurred
in different waves of the pandemic in Greece and will be examined in the context of this
research, are as follows (Figures 1 and 2):

1. The Mw = 5.7 Epirus (northwestern Greece) earthquake generated on 21 March 2020
at the beginning of the first pandemic wave and two days before the installation of a
strict nationwide lockdown strategy;

2. The Mw = 7.0 Samos earthquake generated on 30 October 2020 during the second
pandemic wave and 7 days before the installation of a strict nationwide lockdown
strategy for the second time in Greece;

3. The Mw = 6.3 Thessaly earthquake that occurred on 3 March 2021 during the third
pandemic wave;

4. The Mw = 6.0 Crete earthquake that occurred on 27 September 2021 during the fourth
pandemic wave.

Regarding the seismotectonic setting of the aforementioned earthquake-affected areas,
the main source of the Mw = 5.7 Epirus earthquake was located on the Margariti thrust fault,
within the frontal area of the Ionian fold and the thrust belt of the Hellenic orogen [14]; the
Mw = 7.0 2020 Samos earthquake epicenter was located along the southern marginal fault
of the North Ikaria Basin [15]; the Mw = 6.3 2021 Thessaly earthquake epicenter was located
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along the margins of the Tyrnavos Basin [16]; and the Mw = 6.0 2021 Crete earthquake
was strongly related to the NNE–SSW-striking W-dipping faults of the Kasteli fault zone
located along the eastern margin of the Neogene to Quaternary Heraklion Basin [17].

Figure 1. The epicenters of the studied earthquakes in Epirus, Samos, Thessaly, and Crete. They were
all generated in different waves of the COVID-19 pandemic in Greece.

Regarding the impact on the local population of Greece, these earthquakes resulted
in limited human losses (two fatalities from the Samos earthquake, one from the Thessaly
earthquake, and one from the Crete earthquake) attributed to the partial or total collapse of
unreinforced masonry structures. The reported losses could be characterized as minimal,
considering the extensive structural and non-structural damage observed especially in
old unreinforced buildings with load-bearing walls (Ref. [18] for the Samos earthquake;
Ref. [19] for the Thessaly earthquake). It is significant to note that the Samos seismic event
was the largest in Europe and Turkey and the most fatal worldwide amid the first year of
the COVID-19 pandemic evolution, if we also consider the 117 fatalities reported in Izmir
city attributed to the partial or total collapse of buildings with reinforced concrete frames
and infill walls [17].

Regarding the earthquake environmental effects, the Epirus earthquake triggered
rockfalls and river water turbidity in the earthquake-affected area. The Samos earthquake
induced primary effects comprising coseismic uplift and surface ruptures and secondary
phenomena including slope failures, ground cracks, liquefaction phenomena and hydrolog-
ical anomalies and the largest tsunami in Greece since 1956 [20]. The Thessaly earthquake
triggered extended liquefaction phenomena in recent deposits in the riverbeds of the
earthquake-affected area [19]. The Crete earthquake generated mainly rockfalls and slides,
as well as ground cracks within or close to landslide zones.
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Taking into account the new adverse conditions that have emerged in the field of
disaster risk reduction and management, this paper aims to (Figure 3):

1. Highlight the contradictory issues that arose in the emergency response to the afore-
mentioned earthquakes during different phases of the evolving COVID-19 pandemic
that did not exist in the pre-pandemic period;

2. Share the practices used during the emergency response;
3. Present the approaches that need to be adapted and adopted during emergency

response to earthquakes not only amid the current pandemic but also when geological
hazards collide with evolving biological hazards.

Furthermore, in the earthquake-affected regions of Epirus, Samos, Thessaly, and Crete,
an analysis of the COVID-19 pandemic’s evolution is carried out (Figure 3). The goal of
this post-event analysis is to determine the impact of the earthquake on the pandemic’s
progression in the affected areas, as well as to evaluate the effectiveness of the actions taken
in the early hours and days of the emergency response phase.

In this context, a brief description of the Civil Protection framework in Greece is given,
with emphasis on the existing general plan for the emergency response and immediate
management of the earthquake impact and effects (Figure 3). Particular emphasis is
placed on the single-hazard nature of this plan. The absence of a plan that takes into
account the interactions between geological and biological hazards is also highlighted. In
addition, reference is made to the COVID-19 pandemic mitigation strategies and measures
implemented during the last two years in Greece.

Figure 2. The laboratory-confirmed daily-reported COVID-19 cases, intubated patients and fatalities
in Greece from the pandemic onset in February 2020 until late April 2022 based on the daily reports
of the National Public Health Organization (NPHO) of Greece. The studied earthquakes of Epirus,
Samos, Thessaly, and Crete are also presented.
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Figure 3. Flow chart showing the approach followed in the present study.

2. Civil Protection Framework in Greece

In late February 2020, the pandemic came knocking on Greece’s door. The general
plans for dealing with emergencies and managing the consequences of each hazard were
also released at the same time. The General Secretariat for Civil Protection (GSCP) an-
nounced the formulation of the “Enceladus” earthquake plan, the “Dardanos” flood plan,
the “Iolaos” forest fire plan, the “Talos” plan for volcanic activity in the Santorini complex
(Aegean Sea), the “Voreas” plan for snowfall and frost, and the “Heraclitus” plan for large-
scale technological accidents, all of which are publicly available online at the GSCP site
(https://www.civilprotection.gr/en, accessed on 10 May 2022).

In terms of earthquakes, the “Enceladus” plan aims to provide an immediate and
coordinated response from authorities at the national, regional, and local levels in order
to effectively respond to earthquake effects and manage them. The most significant flaw
or omission identified in the aforementioned is the lack of a general plan for dealing with
emergencies and managing the consequences of biological hazards. This gap, in the case
of the COVID-19 pandemic, was filled by the prevention measures against SARS-CoV-2
issued by the Ministry of Health (https://www.moh.gov.gr/articles/health/dieythynsh-
dhmosias-ygieinhs/metra-prolhpshs-enanti-koronoioy-sars-cov-2/, accessed on 10 May
2022) from 28 February 2020 and the information material and specialized instructions
of the National Public Health Organization (NPHO) (https://eody.gov.gr/en/covid-19
/, accessed on 10 May 2022) from early February 2020 until the present. These bodies
are in constant contact with the European Center for Disease Prevention and Control
(ECDC) and the World Health Organization (WHO) to ensure that prevention measures,
information materials, and specialized instructions are kept up to date, taking into account
the pandemic’s evolution in Greece. The analysis of these plans also reveals that the existing
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plans use a single-hazard approach to assessing hazard potential, in which hazards are
treated as separate and unrelated events.

What happens, however, if a disaster induced by a natural hazard strikes in the
midst of the COVID-19 pandemic in Greece? Unfortunately, no plans exist to consider
potential interactions between natural and biological hazards. This is due to the fact that the
pandemic is a constantly evolving biological hazard that poses unprecedented challenges
and threats to all, including citizens and governments, patients, and health systems around
the world, putting public health and many other aspects of daily life and human activities
at risk. The COVID-19 pandemic has evolved into a rapidly changing emergency, with data
and measures constantly changing across Europe and around the world, affecting people
at all levels.

3. COVID-19 Pandemic Mitigation in Greece

On 26 February 2020, the first confirmed case of SARS-CoV-2 infection in Greece was
reported. Since then, the Greek government and authorities involved in the COVID-
19 pandemic management in Greece have taken precautionary measures to limit the
spread of the novel virus in the community and the pandemic’s effects on public health.
Mavroulis et al. [6] present the measures taken during the first and second waves of the
COVID-19 pandemic in Greece. During the first wave of the pandemic, Greece imple-
mented a strict nationwide lockdown strategy on 23 March 2020, which was extended until
4 May 2020. The emergency COVID-19 restrictive measures were gradually deescalated as
of 4 May, with the gradual reopening of retail businesses, commercial stores, educational
and religious activities, the lifting of travel restrictions across the country, and the gradual
lifting of national and international restrictions.

All daily activity resumptions and restrictions were accompanied by the majority of the
population’s continued protective measures. These included hygiene and social distancing
measures, restrictions on the maximum number of people allowed indoors and outdoors,
and guidelines for the use of masks and disposable gloves, both optional and mandatory
on occasion. Furthermore, authorities involved in COVID-19 pandemic management, such
as the Ministry of Health, the NPHO, and the GSCP, imposed COVID-19 and SARS-CoV-2
transmission prevention measures, taking into account all updated scientific data on the
pandemic’s evolution in Greece and around the world.

Despite the measures taken, the number of COVID-19 cases increased, and a second
wave of the pandemic began in Greece in early August, with a more aggressive course than
the first, according to daily reports of laboratory-confirmed COVID-19 cases, ICU patients,
and fatalities [21]. By mid-September 2020, the number of cases had surpassed the first
wave’s peak, and the number of ICU patients and fatalities had surpassed those of April
2020 when a nationwide lockdown was imposed. On 20 October, an upward trend in cases
began, peaking on 12 November with 3316 daily reported COVID-19 cases [21]. There
was a corresponding increase in the number of fatalities, which peaked on 28 November
with 121 casualties [21]. In December and January, there was a gradual decrease in daily
COVID-19 cases, ICU patients, and casualties. These figures never recovered to pre-October
2020 levels. This means that the virus was prevalent in the community and that an increase
in cases could occur at any time.

The main measures implemented by the government and the involved authorities
to limit the spread of the novel virus in the community during the second wave of the
COVID-19 pandemic in Greece were local-scale restrictive measures, such as local-scale
lockdowns in large cities, towns, and settlements, as well as a second national-scale lock-
down, which began on 7 November 2020. The earthquake on Samos struck on 30 October,
just days before the second national-scale lockdown.

The main guidelines announced by the involved authorities for preventing SARS-CoV-2
transmission, from the start of the pandemic in Greece on 26 February 2020 until the sec-
ond wave, included personal hygiene measures, cleaning and disinfecting areas, surfaces,
and items, restricting contact, and avoiding gatherings and overcrowding indoors and
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outdoors. The announced guidelines included hygiene measures in health-related busi-
nesses, hygiene rules for public transportation, protection measures in sports facilities,
educational units, workplaces, elderly care units, health units, health service units, and the
country’s entrance gates, as well as temporary reception and accommodation facilities for
refugees seeking asylum and unaccompanied minors and youths, and public infrastructure
protection measures.

Personal hygiene guidelines and advice comprised the following actions in order to
reduce the infection risk:

• Keeping hands away from the eyes, nose, and mouth;
• Avoiding sharing personal items;
• Covering the mouth and nose with a tissue, sleeve or flexed elbow when coughing or

sneezing and throwing the tissue into a closed bin after use;
• Regular hand washing with liquid soap and water for at least 20 s and careful hand

drying with disposable paper towels;
• Using alcohol-based hand sanitizer containing at least 70% alcohol;

The cleaning and disinfection guidelines comprised:

• Systematic and adequate ventilation of all areas with complete and frequent air renewal;
• Frequent cleaning of commonly used smooth surfaces (e.g., knobs, handles, handrails

or railings, taps, etc.) with common cleaners and disinfectants;
• The use of appropriate protective equipment (gloves and work uniform) during

cleaning and disinfection;
• Cleaning objects and surfaces of which a person who showed symptoms of SARS-CoV-2

infection had come into contact.

Physical social contacts were reduced by keeping a distance of at least 1.5 to 2 m and
avoiding contact with people who had infection symptoms (shaking hands, hugs, and kiss-
ing), avoiding gatherings and overcrowding, reducing contact with people who belonged
to vulnerable groups, and minimizing group activities and non-essential movements.

Since the second wave in Greece, the implementation of vaccines—initially for health
workers and very high-risk population groups and then for all other age groups of
the population—and the subsequent administration of antiviral drugs to patients with
COVID-19 infection have been useful tools for halting the pandemic and limiting its neg-
ative consequences on public health and all sectors of human activity. However, the
imposition or withdrawal of these pandemic containment measures—even after the arrival
of vaccines and medicines—is carried out according to the burden that the pandemic
occasionally places on the national health system.

4. Earthquake Emergency Response Actions, Incompatibilities with the COVID-19
Pandemic Mitigation Measures, and Adaptation for Dealing with Both Earthquake
and Pandemic Effects

Following the aforementioned earthquakes, the Greek government launched a massive
resource mobilization effort to aid the affected population. For disaster management, public
authorities from all levels of government, Civil Protection agencies and security and armed
forces, are mobilized. The main actions taken by agencies during the response to an
earthquake disaster can be divided into 11 categories [6,19,22]:

1. Initial earthquake notification;
2. First assessment of the impact, followed by mobilization of and coordination by the

Civil Protection authorities;
3. Civil Protection guidelines through emergency communications services;
4. Search and rescue (SAR) operations, first-aid administration and medical care;
5. Mobilization and contribution of volunteers;
6. Set up of emergency shelters;
7. Provision of emergency supplies and donations;
8. Psychological support for the affected population;
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9. Raising awareness and education for protective measures to successfully deal with
the continuous aftershock sequence;

10. Post-earthquake hazard mitigation and building inspections;
11. Immediate financial relief measures.

The emergency response actions for the mobilization, intervention, and management
of earthquake effects had never been tested before in the context of another crisis that
posed an additional risk to public health and, thus, human life. In the pre-pandemic
period, this sequence of actions would be completely unconcerned. With the earthquakes
in Epirus, Samos, Thessaly, and Crete, the local population and Civil Protection authorities
were confronted with unprecedented circumstances, including considerable earthquake-
triggered effects and the ongoing threat of the COVID-19 pandemic. During the COVID-19
pandemic, many conflicting issues arose from the start of the emergency response, owing
to the fact that the majority of emergency actions were incompatible with the pandemic
mitigation measures that had been implemented. This is due to the fact that, from the
first moments after an earthquake, emergency response actions and people’s reactions
involve or require the gathering of a large number of people in one location for an extended
period of time, the interaction of locals with rescue teams, volunteer teams, and disaster
management staff, as well as the unintentional violation of many basic hygiene rules
(e.g., regular hand washing, surface disinfection). During the pandemic, these actions
may result in clusters of SARS-CoV-2 infection cases within the affected area, hampering
emergency response and slowing the recovery process.

To overcome the incompatibilities between earthquake emergency response actions
and pandemic mitigation measures, earthquake emergency response actions were adapted
to the unprecedented conditions of the parallel occurrence of geological and biological
hazards. These adaptations were made in light of a multi-hazard approach at all stages
of the earthquake emergency response, starting from the initial mobilization of the Civil
Protection authorities up to the conduction of awareness and education activities for the
protection of the local population during the continuous aftershock sequence.

The staff of the Civil Protection authorities, who contributed to the earthquake disas-
ters’ management, came mostly from other areas with different infection rates and different
degrees of public health emergency and risk for SARS-CoV-2 infection. Regarding the
implementation of self-protection measures and the protection of the local population by
the Civil Protection staff that participated in the emergency management in the earthquake-
affected areas, the main adaptations included the mandatory use of masks outdoors and
the frequent use of antiseptics, keeping physical distance from the local population, and
the disinfection of equipment and tools used by many people. These measures were strictly
used especially in actions that required interaction and closer contact with the local popula-
tion, such as SAR operations, the assessment of building damage, as well as the provision
of basic necessities and emergency supplies to the affected residents.

The adaptations for avoiding overcrowding and maintaining physical distancing in
emergency shelters comprised the use of a large number of different types of shelters
(Figure 4). A typical example of this approach is the emergency shelters used in the 2020
Samos earthquake-affected area. Many homeless and affected people were accommodated
in hotel rooms and tourist accommodation facilities. This measure ensured not only the
maintenance of physical distance between the affected people, but also the avoidance
of overcrowding in outdoor emergency shelters. This solution was possible because the
earthquake occurred during the autumn when the tourist traffic in Samos was low, resulting
in empty or closed hotels in the earthquake-affected areas. The accommodation of homeless
and severely affected people in the unaffected houses of relatives and friends also aided
the maintenance of physical distance.

47



Sustainability 2022, 14, 8486

Figure 4. Several types of emergency shelters for the immediate housing of people in need after an
earthquake which were used at the Damassi (Thessaly) camp (a) after the 3 March 2021 Thessaly
earthquake. They comprised (b) camper vans, (c) tents, and (d) temporary container-type structures
in the same area. Amid the pandemic, the use of many different types of shelters contributed to the
avoidance of overcrowding in camps and the maintenance of physical distance in order to limit the
spread of the novel virus in the earthquake-affected community.

The same approach of using a large number of different types of emergency shelters
was applied in the case of the 2021 Thessaly earthquake, which occurred a few months later
during the third pandemic wave. The Civil Protection authorities used outdoor emergency
shelters, hotel rooms and tourist facilities, camper vans, and temporary container-type
facilities (Figure 4) as well as accommodation in the houses of relatives and friends. In this
way, it was possible to ensure a certain amount of space between groups and individuals
who camped in outdoor emergency shelters, which before the pandemic usually housed
the majority of earthquake-affected people.

During the collection and distribution of essentials, and especially during the distribu-
tion of meals to the affected people, volunteers used personal protective equipment at all
stages of the process (Figure 5a–c). As for the daily meals, these were most often prepared
in packet form (Figure 5c,d) for further distribution to the affected people.

Regarding the post-earthquake building inspections, information activities were car-
ried out for civil engineering teams outdoors or in closed spaces with adequate ventilation
in the earthquake-affected areas. The appropriate physical distances between the partici-
pants were effectively maintained. For example, these activities were held either outdoors,
such as in the central square of the Town Hall of Eastern Samos in the capital city of the
homonymous municipality, or in large indoor spaces, such as indoor sports facilities with
large spaces, ensuring the maintenance of physical distance and adequate ventilation,
which ensured the safety of the participants during these briefings (Figure 6). In the case
of the Thessaly earthquake, the briefings were held in open spaces in the most-affected
settlements. In the case of the Crete earthquake, these briefings were held in the courtyard
of the 2nd Primary School of Arkalochori town, where the operational center had been
established by the Civil Protection authorities (Figure 6).
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Figure 5. Typical views of the distribution of relief supplies: (a) in the operational center in the
Town Hall Square of the Eastern Samos municipality; (b,c) in the earthquake camp in Damassi
(Thessaly); and (d) in the earthquake camp at the exhibition center of the earthquake-affected town of
Arkalochori on Crete Island. The distribution of relief supplies was adapted to the new conditions
formed by the pandemic. Civil Protection personnel, members of the armed forces and voluntary
groups used personal protective equipment at every stage of the preparation and distribution of
supplies (c), and the meals were served packed (c,d).

Figure 6. Information activities for building inspections on the affected island took place in indoor
sports facilities after the 2020 Samos earthquake.

Moreover, building-damage documentation centers were set up outdoors. In these
centers, especially during the first hours and days of the emergency phase, it was impossible
to implement the measures of physical distancing due to the fact that many residents
gathered to report building and property damage. In this case, the use of masks and hand
sanitizers was vital. Thus, personal protective equipment supplies were available not only
for the affected people but also for the involved personnel.

Coordination meetings of the Civil Protection authorities involved in disaster manage-
ment took place during the emergency response, with the aim to assess the situation and
organize, coordinate and implement further actions. These meetings were conducted in
specially designed outdoor sites, which provided not only protection from large aftershocks,
but also comfort in maintaining physical distance (Figure 7). In these areas, all personal
protective measures including masks, hand sanitizers and disposable gloves when neces-
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sary, were available for both the affected people and the Civil Protection staff. In addition,
food supplies including bottled water and packaged food were also immediately available
and distributed to those in need by complying with all precautions against COVID-19.

Figure 7. (a,b) The coordination operation center after the 2020 Samos earthquake was set up outdoors
with spatial arrangement adapted to the pandemic mitigation measures. (c,d) The same approach
was applied in the case of the Arkalochori (Crete) earthquake. The coordination operation center was
also set up outdoors in the courtyard of a school, providing space for maintaining physical distance
and avoiding overcrowding.

In Samos, the operations coordination center was set up shortly after the earthquake
occurrence in the square in front of the Eastern Samos Municipality building in Vathy
(Figure 7a,b). There were seats placed at appropriate distances and personal protective
equipment supplies available for all involved when it was not possible to maintain distance.
The use of masks was mandatory. In Crete, the operations coordination center was set up
shortly after the earthquake occurrence in a courtyard of a primary school (Figure 7c,d)
located at the town most affected by the main shock on 27 September 2021.

Regarding raising awareness and education activities for the local population, sem-
inars were held by the Earthquake Planning and Protection Organization of Greece for
certain targeted population groups in all earthquake-affected areas in Epirus, Samos, Thes-
saly and Crete. These seminars were not held indoors, but outdoors (Figure 8), where all
the protection measures against the pandemic could be applied. The provided information
included training and guidelines for protection during the aftershock period against both
possible large aftershocks and the further transmission of the novel virus.

Regarding psychological support for the earthquake-affected people, it was provided
to everyone who was experiencing significant psychological stress by the regional and
local authorities and voluntary organizations acting in the earthquake-affected Samos,
always in excellent cooperation. In order to apply social distancing practices and to
avoid overcrowding during sessions, the psychological support was usually provided
after making an appointment for in-person counseling, while remote communication via
teleconference or videoconference was also available. In the case of in-person meetings,
wearing masks and keeping the appropriate physical distance was mandatory both indoors
and outdoors.

Table 1 summarizes the main actions taken during the first hours and days of the emer-
gency response that were incompatible with pandemic mitigation measures, as well as the
adaptations made in order to effectively deal with both the earthquakes and the pandemic.
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Figure 8. Awareness-raising and educational activities were conducted by the staff of the Earthquake
Planning and Protection Organization of Greece in the earthquake-affected Samos. Amid the pan-
demic, the activities were held outdoors with participants using personal protective equipment (mask,
gloves and antiseptics). (a–d) Views from workshops for the directors of primary and secondary
schools in Vathy town located at the northeastern part of Samos Island.

Table 1. Earthquake emergency response actions, incompatibilities with the pandemic mitigation
measures, and adaptations for the effective management of both the earthquakes and the pandemic.

Earthquake Emergency Response
Actions in the

Pre-Pandemic Period

Pandemic Mitigation Measures and
Incompatibilities with Earthquake

Emergency Response Actions

Adaptations for the Effective Management
of both Earthquakes and the Pandemic

Mobilization of Civil Protection Authorities

Civil Protection staff should be on
time in the earthquake-affected area.

It is prohibited to move, by any means,
outside the boundaries of an area with a
larger viral load and higher infection rate.
It is prohibited to visit an area with larger

viral load and higher infection rate.

Two exclusive flights operated by Civil
Protection transported all required personnel a

few hours after the earthquake.
All the necessary safety measures were taken

during the flight (masks throughout the whole
journey, one person sitting in each seat row,

hand sanitizer).

Application of preventive measures
comprising mandatory mask wearing, hand
washing and maintaining physical distance

during interactions between the local
population and authorities.

Coordination of the Civil Protection Authorities

Coordination meetings take place
usually indoors in unaffected

buildings with the staff involved in
disaster management.

Gathering many people indoors for
several hours should be avoided.

Set up of Emergency Operations Centers
outdoors, with seats placed at appropriate
distances, personal protective equipment

supplies available for all involved, mandatory
use of face masks.
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Table 1. Cont.

Earthquake Emergency Response
Actions in the

Pre-Pandemic Period

Pandemic Mitigation Measures and
Incompatibilities with Earthquake

Emergency Response Actions

Adaptations for the Effective Management
of both Earthquakes and the Pandemic

SAR Operations

SAR operations require close and
frequent contact not only with the
affected local population and local

authorities, but also with other
rescue teams and volunteers.

Rescuers should maintain the
appropriate physical distancing. Mandatory use of masks indoors and outdoors,

frequent use of antiseptics, keeping physical
distance from the local population and

disinfection of equipment and tools used by
many rescuers.The special equipment can be used

by many members of rescue teams.

The use and exchange of items, tools and
equipment and the frequent use of

surfaces and spaces by many individuals
carries the risk of transmitting the

novel virus.

Set up of Emergency Shelters

Overcrowding and coexistence of
many people in emergency shelters

over a long period of time. The accommodated people should
maintain physical distancing.

Use of different types of emergency shelters.
Outdoor camps, accommodation in hotel

rooms, tourist accommodation facilities and
unaffected houses of relatives and friends.
Personal protective equipment supplies
available for all involved in all shelters.

High mobility usually observed in
emergency shelters during the first
hours and days of the emergency.

Mobilization and Contribution of Volunteers

Volunteers not only from the
affected area, but from every corner
of the country rush to the affected

area and provide support.

It is prohibited to move, by any means,
outside the boundaries of an area with a
larger viral load and higher infection rate.
It is prohibited to visit an area with larger

viral load and higher infection rate.
Mandatory use of masks indoors and outdoors,
frequent use of antiseptics, keeping physical

distance from the local population and
disinfection of items, tools and equipment.

Volunteers distribute humanitarian
aid gathered from various sources.

The distribution of items, tools and
equipment and the frequent use of surfaces
and spaces by many individuals carries the

risk of transmitting the novel virus.
Volunteers distribute meals to

affected people where necessary.

Voluntary teams and their members
come into close contact with many
people and for many hours in the

affected area.

Volunteers should maintain the
appropriate physical distancing.

Provision of Emergency Supplies and Donations

People from around the country
and worldwide are mobilized in

order to donate essential emergency
supplies to the affected population.

The whole process, from the collection of
emergency supplies to their final

distribution to the affected population,
involves risks for the public health

attributed to touching undisinfected
items and surfaces.

Mandatory use of masks indoors and outdoors,
frequent use of antiseptics, keeping physical

distance from the local population and
disinfection of items, tools and equipment.
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Table 1. Cont.

Earthquake Emergency Response
Actions in the

Pre-Pandemic Period

Pandemic Mitigation Measures and
Incompatibilities with Earthquake

Emergency Response Actions

Adaptations for the Effective Management
of both Earthquakes and the Pandemic

Post-earthquake Hazard Mitigation and Building Inspections

Evacuation of the affected
population from several heavily

affected areas.

Residents and Civil Protection staff
should maintain the appropriate

physical distancing

The involved Civil Protection staff applied
necessary individual preventive measures for
their safety and the protection of the affected
community (mandatory use of masks, regular

hand washing, and maintaining
physical distance).

Civil engineers inspect buildings
during the emergency response.
This action requires interaction

with homeowners.

Information activities were carried out for
participants in civil engineering teams in open

or closed spaces with adequate ventilation.
Civil engineers applied necessary individual
preventive measures for their safety and the

protection of the affected community
(mandatory use of masks, regular hand

washing, and maintaining physical distance).
Building damage documentation centers were

set up in open spaces.

Psychological Support for the Affected Population

Psychological support and
counseling sessions are carried out

in person and indoors.

These sessions pose a risk of spreading
the virus among participants and then in

the community.

Remote communication via teleconference or
videoconference was available. In the case of

in-person meetings, mandatory mask-wearing
and keeping appropriate physical distance

both indoors and outdoors

Awareness-raising and Education Activities
on the Earthquake Effects and Protective Measures

Seminars take place indoors in
educational facilities, properly

designed to accommodate many
people for many hours.

Gathering of many people indoors for
several hours should be avoided.

Outdoors seminars in safe places away from
the adverse effects of possible aftershocks and

easy application of pandemic mitigation
measures comprising mainly maintaining of

physical distance.

Transmission of information through the
loudspeakers of police patrol vehicles, calling
on the people to comply with the pandemic

prevention measures.

5. The Evolution of the COVID-19 Pandemic in the Earthquake-Affected Areas

The findings of the study on the pandemic’s post-disaster evolution during the first
weeks of emergency response and recovery in earthquake-affected areas are presented in
this section. They are based on laboratory-confirmed and daily-recorded COVID-19 cases
in earthquake-affected regional units derived from the NPHO’s COVID-19 epidemiological
surveillance daily reports. These reports are freely available online on the NPHO’s website
(http://eody.gov.gr/epidimiologika-statistika-dedomena/ektheseis-covid-19/, accessed
on 30 January 2022).

Regional units are the smallest local government organizations for which daily case
numbers are announced in Greece and include the affected areas based on the above data
and the available sources of daily COVID-19 cases. As a result, we used data from the
above source in our research for the following regional units (Figure 9):

• The Arta, Thesprotia, Ioannina, and Preveza regional units of the Epirus region, which
were affected by the Epirus earthquake;
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• The Samos, Ikaria and Chios regional units of the North Aegean region, which were
affected by the Samos earthquake;

• The Karditsa, Larissa, Magnesia and Trikala regional units of the Thessaly region,
which were affected by the Thessaly earthquake;

• The Heraklion regional unit of the Crete region, which was affected by the earthquake
on 27 September 2021.

Figure 9. The earthquake-affected regional units in Greece during the COVID-19 pandemic.

Mavroulis et al. [6] used the same methodology to investigate post-disaster trends and
factors affecting the evolution of the COVID-19 pandemic in areas affected by geological
and hydrometeorological hazards in Greece. In particular, it was taken into account that the
estimated incubation period of SARS-CoV-2 ranges from 2 to 14 days (median incubation
time: 5 days) [23,24] and that SARS-CoV-2 can be detected by the polymerase chain reaction
(PCR) test in infected patients up to 21 days after the onset of symptoms [25,26]. As a
result, COVID-19 cases reported 5 days after disasters could be attributed to disaster-related
adverse effects. Mavroulis et al. [6] suggested that it was appropriate to track the number
of daily confirmed cases in the 7 days (1 week) leading up to the disaster to determine the
pre-existing viral load and infection rate in each affected area.

Taking into account all the aforementioned data, the number of daily COVID-19 cases
in the present study was tracked:

• From 14 March to 11 April 2020 for the Epirus earthquake generated on 21 March 2020
(Figure 10);

• From 23 October to 21 November 2020 for the Samos earthquake generated on
30 October 2020 (Figure 11);

• From 24 February to 24 March 2021 for the Thessaly earthquake generated on 3 March 2021
(Figure 12);

• From 20 September to 10 October 2021 for the Crete earthquake generated on
27 September 2021 (Figure 13).
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Figure 10. The evolution of COVID-19 cases in the earthquake-affected regional units of the Epirus
region before and after the occurrence of the 21 March 2020 Epirus earthquake. The laboratory-
confirmed, daily-recorded COVID-19 cases are from the NPHO’s COVID-19 epidemiological surveil-
lance daily reports [21] covering the period from 14 March to 12 April 2020.

Figure 11. The evolution of COVID-19 cases in the earthquake-affected regional units of the North
Aegean region before and after the occurrence of the 30 October 2020 Samos earthquake. The
laboratory-confirmed, daily-recorded COVID-19 cases are from the NPHO’s COVID-19 epidemiologi-
cal surveillance daily reports [21] covering the period from 23 October to 21 November 2020.

Figure 12. The evolution of COVID-19 cases in the earthquake-affected regional units of the Thessaly
region before and after the occurrence of the 3 March 2021 earthquake. The laboratory-confirmed,
daily-recorded COVID-19 cases are from the NPHO’s COVID-19 epidemiological surveillance daily
reports [27] covering the period from 24 February to 24 March 2021.
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Figure 13. The evolution of COVID-19 cases in the earthquake-affected regional units of the Crete
region before and after the occurrence of the 27 September 2021 Arkalochori earthquake. The
laboratory-confirmed, daily-recorded COVID-19 cases are from the NPHO’s COVID-19 epidemiologi-
cal surveillance daily reports [27] covering the period from 20 September to 18 October 2021.

According to the following graphs of the laboratory-confirmed and daily-recorded
COVID-19 cases (Figures 10–13), it is concluded that no considerable increase in the number
of COVID-19 cases was detected in the selected post-disaster period for the earthquake-
affected regional units of Epirus, North Aegean, Thessaly or Crete.

In disaster-affected areas around the world, a similar post-disaster trend in the evolu-
tion of the pandemic has been observed, including not only earthquakes but also hydrome-
teorological hazards such as floods and hurricanes. Silva and Paul [5] mention the M = 6.0
earthquake near Khoy (Iran) on 23 February 2020, the M = 5.3 Zagreb (Croatia) earthquake
on 22 March 2020, the M = 5.7 Magna earthquake in Utah, and the earthquake swarm that
hit Puerto Rico’s southern region in early 2020.

In the case of the earthquake in Iran, the first confirmed COVID-19 case was reported
a few days before the event, which could indicate that some cases already existed in the
earthquake-affected area, that there were no COVID-19 cases in the affected province prior
to the seismic event, and that there were less than 40 cases in the 14 days following the
event. Silva and Paul [5] assumed that even if the earthquake’s impact increased the virus’s
transmissibility, there were insufficient cases to cause an outbreak.

According to the Croatian Institute of Public Health, 87 COVID-19 cases were noted in
the most affected city of Zagreb before the earthquake, and 206 COVID-19 cases were noted
in the entire country. In the two weeks that followed, 337 cases were reported in Zagreb.
Based on Peitl et al. [28] and Civljak et al. [29], COVID-19 testing was disrupted for hours in
hospitals of the earthquake-affected areas, while people left their homes due to widespread
unrest and compromised physical distancing measures. The rise in COVID-19 cases could
be attributed to the earthquake’s potential disruption of safety measures [5]. They did not,
however, mention any other factors that could have contributed to the significant increase
in cases in Croatia following the earthquake.

After the M = 5.7 Magna earthquake in Utah and the earthquake swarm that hit the
southern region of Puerto Rico in early 2020, no significant increase in the number of
COVID-19 cases was found, as was the case in Iran. Insufficient pre-existing COVID-19
cases with low potential to trigger an outbreak during the post-disaster period were held
responsible for this post-disaster trend [5].

Mavroulis et al. [6] studied how the COVID-19 pandemic evolved in areas affected
by disasters caused by hydrometeorological hazards in 2020, such as the Evia flood on
August 9 and the Ianos medicane on September 19. They used publicly available laboratory-
confirmed daily-recorded COVID-19 cases in disaster-affected areas for post-processing
in selected pre- and post-disaster periods, including one week before the earthquake and
three weeks after the earthquake, respectively. Only after the Ianos medicane there was an
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increase in reported COVID-19 cases in the post-disaster period. After the Evia flood, there
was no change in the number of cases.

Mavroulis et al. [6] referred to a number of factors related to the pandemic’s evolution,
as well as disasters and their management plans, which may have influenced the post-
disaster evolution of cases. The pre-existing viral load and infection rate in the affected
areas, the severity of the disaster effects, and the measures adopted for the effective disaster
management of compound emergencies were all shown to have the potential to influence
the pandemic’s post-disaster evolution in disaster-affected areas.

In conclusion, the post-disaster evolution of COVID-19 in disaster-affected areas is
strongly linked to:

1. The pre-disaster viral load and infection rate in the earthquake-affected areas;
2. The demographic characteristics of the earthquake-affected areas, comprising their

population density and spatial distribution;
3. The intensity of the generated earthquakes and the triggered effects on public health

(casualties and injured people), on nature (primary and secondary earthquake envi-
ronmental effects) and on building stock (damage to buildings and infrastructures);

4. The need for immediate evacuation without the assistance of emergency responders;
5. The number of evacuees;
6. The number of people involved in managing the disaster during the immediate

response phase;
7. The restrictions on movement and access to the affected area before and after the

disaster for mitigating pandemic;
8. The level of training and preparedness of the responders and authorities involved in

the disaster management;
9. The effectiveness of the measures adopted and amended by the responders and the

authorities involved in disaster management.

Taking into account the results of the analysis of the post-earthquake evolution of
the pandemic in the earthquake-affected areas and the factors with which this evolu-
tion is closely linked, we can argue that these measures—applied by the Civil Protection
authorities during the emergency phase and during the preparation of the immediate
response actions, with all the adjustments to the new conditions of the parallel occurrence
of earthquakes and the pandemic—can be considered effective in limiting the spread of
the pandemic in earthquake-affected communities. There was no increase in any of the
examined and analyzed cases under consideration in terms of the number of cases during
the post-earthquake period.

At this point, it should be mentioned that these cases may be considered as ideal, as
there was no increase in viral load and no increase in infection rate or infection outbreak in
the earthquake-affected communities during the pre-earthquake period. However, even in
these cases of pre-existing low viral load and low infection rates, the measures adapted
to the new specific conditions of the simultaneous occurrence of earthquakes and the
pandemic can be characterized as beneficial and effective, as they helped to maintain the
low viral load in the post-earthquake period, and in some cases to further reduce it. In any
case, they did not lead to an increase in viral load in the earthquake-affected communities.

In view of the latter finding, it can be said that strict compliance with the above adapted
measures would have beneficial effects, even in more unfavorable conditions formed by
the parallel occurrence of these hazards. Of course, in any case of a parallel occurrence of
geological and biological hazards which requires the application of emergency measures to
manage the impact on the local population, the applied measures should always be tailored
to the type and characteristics of the natural hazard, the epidemiological characteristics,
the physiographic and demographic characteristics of the affected area, the characteristics
of the affected population and, most importantly, the conditions created by the synergy
and the interaction of the aforementioned factors.
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6. Proposal of Multi-Hazard Measures for Managing Earthquake Disasters Amid
a Pandemic

Based on the good practices and lessons learned from the immediate response of the
Civil Protection services for the management of earthquake emergencies in Greece during
the pandemic, in this section we share multi-hazard approaches that must be adopted and
applied during earthquake emergency responses not only during the current pandemic,
but also during future biological hazards with similar characteristics.

The proposed approach constitutes a combination of the aforementioned measures
with similar measures that have been applied so far to effectively manage the impact
of concurrent crises formed by the simultaneous occurrence of natural and biological
hazards, including earthquakes and floods amid the pandemic (e.g., [4,30–32]), and aims to
effectively deal with the adverse conditions created when disasters and crises collide to
improve disaster management and preparedness in the future.

These approaches comprise:

• Measures for first responders and staff involved in the emergency response phase
and increasing the type and number of emergency shelters to limit transmission risk
among the affected population;

• Pandemic mitigation measures for accommodated staff and visitors in emergency shelters;
• Administrative and engineering controls in emergency shelters, including changes to

facility layouts and supply distribution practices;
• The designation of isolation facilities to separate suspected cases;
• Remote psychological support.

The proposed measures are summarized in Table 2.

Table 2. Multi-hazard measures during the emergency response phase amid the pandemic.

Proposed Measures during the Emergency Response Phase
Amid an Evolving Biological Hazard

Measures for first
responders and staff
involved in the emergency
response phase

• Screening for infectious disease before being transferred to the disaster-affected area;
• Rapid diagnostic tests for COVID-19 detection before engaging in emergency response

operations and activities;
• Regular assessment of the clinical condition of the staff;
• Regular screening of temperature during operations;
• Mandatory use of mask indoors and outdoors;
• Regular hand washing with soap and clean water or the regular use of alcohol-based

hand sanitizer;
• Covering the mouth and nose with a tissue, sleeve or flexed elbow when coughing or sneezing

and throwing tissue into closed bin after use;
• Regular disinfection of equipment and surfaces heavily used and often touched;
• Maintaining physical distance;
• Avoiding places of overcrowding;
• Seeking immediate medical care in cases of infection symptoms among the staff;
• Activation of an emergency response plan in the case of the detection of infection symptoms

among the disaster-affected population;
• Isolation of members of teams and staff of Civil Protection authorities who have even mild

symptoms or who are expecting test results and have mild symptoms, or who do not have
symptoms but have been in contact with a confirmed case.

Avoidance of
overcrowding in
emergency shelters

• Increasing the number of emergency shelters of the same type;
• Using different facility types as emergency shelters.
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Table 2. Cont.

Proposed Measures during the Emergency Response Phase
Amid an Evolving Biological Hazard

Mitigation measures in
emergency shelters

Measures for the staff of
the emergency shelters

• Minimum staff needed for the shelter operation;
• Screening for symptoms by the medical staff of the shelter;
• Training for the detection and reporting of symptoms, infection

prevention and control within the facility;
• Training for applying pandemic mitigation measures within the

emergency shelter;
• Using face masks while staying in the emergency shelter, especially

during interaction with the disaster-affected people;
• Regular hand washing with soap and clean water or the regular use

of alcohol-based hand sanitizer;
• Using disposable gloves;
• Implementing all appropriate measures for the management of a

person living in the shelter and suffering infection;
• Immediate evaluation of accommodated people by responsible

medical staff;
• Maintaining an appropriate physical distance between all people in

the shelter, including staff, disaster-affected people and visitors.

Measures for the
visitors of the
emergency shelters

• Screening temperature before entering emergency shelters;
• Using face masks throughout their visit to the emergency shelter;
• Maintaining appropriate physical distance;
• Regular hand washing with soap or alcohol-based hand sanitizer;
• Avoiding visiting when feeling ill or if they have symptoms

of infection;

Administrative and
engineering controls in
emergency shelters

Modification of
facility layouts

• Configuration of the emergency shelter spaces in order to maintain
physical distance between the affected people:

� Individual rooms;
� Separate areas;
� Large facilities;
� Guidance for spacing.

Modification of food
distribution practices

• Shelter equipped with adequate handwashing stations with clean
water, soap and disposable towels or alcohol-based hand sanitizer
for use prior to entering food lines;

• Packaged meals prepared and served by staff wearing masks and
disposable gloves throughout the preparation and serving of meals;

• Each family should consume meals in places that have been
predetermined, maintaining physical distance;

• Individual and disposable serving items;
• Continuous and regular cleaning and disinfection of the

used surfaces.

Restriction of mixing
between groups

• Limiting interaction of families with other groups of residents
and staff;

• Avoiding sharing emergency supplies;
• Restriction of entrance to non-essential visitors;
• Restriction of entrance to volunteers;
• Restriction of mass gatherings;
• Designation of outdoor spaces for religious services and

communal meetings.

Designation of isolation
facilities to separate
suspected cases

• Facilities equipped with beds, oxygen cylinders and equipment for
monitoring temperature and oxygen levels;

• Access to health assessment, medical care and counseling for the
isolated person if needed.
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7. Discussion

Many of these measures were proposed and implemented during the emergency re-
sponse phase after earthquakes generated in the early stages of the pandemic. In this phase,
the conditions were unprecedented and difficult for all involved in managing the effects of
the pandemic and in dealing with the parallel occurrence of disasters induced by geological
and biological hazards. However, the measures were effective as they were reverently
applied by the majority of the affected population. Furthermore, their implementation
was strictly monitored by Public Health organizations and Civil Protection authorities. It
is significant to note that, in the early stages of the pandemic, effective medical means to
combat COVID-19 infection and disease, such as antiviral drugs and COVID-19 vaccines,
were either non-existent or under development.

After 2 years of the pandemic—marked on the one hand by numerous human losses
worldwide, but on the other hand by the discoveries of COVID-19 vaccines and antiviral
drugs and extensive vaccination coverage in a large part of the world—it can be said
that strict compliance with the above adapted measures would have beneficial effects,
even in more unfavorable conditions formed by the parallel occurrence of these hazards.
These harsh conditions could be attributed either to single events or to a synergy of events
and triggering factors. Characteristic examples of such events and factors could include
the occurrence of earthquakes during the winter period, the triggering of earthquake
environmental effects and building damage in densely populated urban areas, the creation
of large numbers of displaced residents in need of immediate accommodation in emergency
shelters and camps, and increased viral load and infection rate resulting in COVID-19
outbreaks and clusters in the pre-disaster period in the areas of interest.

In the case of the relaxation of control measures and a subsequent increase in viral
load and infection rate, the majority of these measures should be reapplied at least for the
disaster-affected areas, and necessarily for all affected residents and participants in the
emergency response zones, among whom interaction cannot be avoided.

8. Conclusions

The COVID-19 pandemic has caused unprecedented global disruption. The disease
and the resulting mitigation measures have brought societies and many public services to
a halt. Such disruptions also have an impact on disaster risk reduction and disaster risk
management. Earthquakes, on the other hand, do not wait for the virus to vanish. From
the initiation of the pandemic, earthquakes have struck many countries around the world.
One of them was Greece.

The earthquake in Epirus (northwestern Greece) occurred on 21 March 2020, at the
start of the country’s first wave of the pandemic and two days before the imposition of
the first national lockdown. The Samos earthquake occurred on 30 October 2020, just
before the peak of the second wave of the pandemic in the country and 7 days before the
imposition of the second national lockdown. In 2021, two destructive earthquakes struck
Greece: the Thessaly earthquake on 3 March, during the third pandemic wave, and the
Crete earthquake on 27 September, during the fourth pandemic wave.

Considering Greece’s single-hazard management plans, the multi-hazard approach
needed to manage geological hazards (earthquakes and related phenomena) in the midst of
an evolving biological hazard (COVID-19 pandemic) has been a challenge for all involved
in the scientific community and for Civil Protection personnel. This challenge arose from
the fact that many actions, particularly during the first hours of the emergency response,
required direct communication, contact, and interaction with the disaster-affected popu-
lation. SAR operations, the establishment of emergency shelters following the disaster,
the contribution of volunteer teams, the distribution of emergency supplies, post-event
building inspections, hazard mitigation during the emergency response phase, psychologi-
cal support, and awareness and education activities during the aftershock period were all
included in these actions.
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New approaches were used to carry out all of these actions in the case of the earth-
quakes studied in Greece since the initiation of the COVID-19 pandemic. The main focus of
these approaches was on individuals and the community and taking preventive measures
against the spread of the novel virus, particularly by maintaining physical distance and
avoiding overcrowding, as well as proper mask use and hand hygiene. Considering the
post-disaster trend of daily cases and the pandemic’s evolution in the affected regional
units, it is possible to conclude that the multi-hazard approach to managing the negative
effects of the earthquakes and subsequent seismic effects amid the evolving pandemic in
the earthquake-affected areas was effective. As a result, we regard the actions taken by the
relevant authorities as good practices and important lessons learned for the management
of natural hazards and related disasters in the context of an evolving biological hazard.

The synergy of several factors and the characteristics of the affected areas and those
affected resulted in this effectiveness. The epidemiological characteristics of the affected
areas, such as the low viral load and infection rate in the affected communities, the demo-
graphics of the affected areas, such as the low population density, the sparse distribution of
residential areas in the affected regional units, and the accessibility to the areas during the
emergency phase, as well as the implementation of pandemic mitigation measures, were
among these factors.

We propose an approach that could significantly contribute to the safety of staff and
affected people in various phases of emergency response after an earthquake disaster amid
the evolving pandemic, keeping in mind the lessons learned from the emergency response
for the studied earthquakes’ management. Individual and collective protection measures
for emergency responders and staff before and during their involvement in the affected
area, measures to reduce the risk of transmitting the virus to the affected community, and
measures to limit the spread of the virus inside shelters are all part of this strategy.

This strategy can be used not only in the event of a destructive earthquake during a
pandemic, but also whenever a disaster caused by a natural hazard has a significant impact
on the built environment, particularly buildings and infrastructure, necessitating the estab-
lishment of emergency shelters until normalcy is restored. It can also be used in seismically
similar areas with similar building vulnerability and susceptibility to earthquake-triggered
effects. The evolving pandemic and its consequences may exacerbate the effects on public
health and lengthen the time it takes to restore normalcy in affected areas if individual and
collective pandemic mitigation measures are not followed during an emergency.

The simultaneous occurrence of a natural disaster and an evolving biological hazard
(a pandemic) exposes the shortcomings of single-hazard approaches to disaster manage-
ment and emphasizes the need for a multi-hazard strategy. Every phase of the disaster
management cycle, specifically mitigation, preparedness, response, and recovery, should
use a multi-hazard strategy. Despite the difficulty of comprehending the interactions be-
tween different types of hazards and multi-hazard assessments, the adaptation of general
risk management plans and the adoption of multi-hazard approaches involving multi-
stakeholder participation are critical, as the frequency and severity of extreme events rise
due to the interaction of several factors and the collision of disasters and crises. National,
regional, and local government bodies, as well as volunteer teams and the armed forces,
should collaborate with scientists who specialize in natural and technological hazards,
related disasters, and all types of crises in order to provide the Civil Protection author-
ities with more knowledge, experience, and expertise. Innovative technology services
and tools to support the Civil Protection mission are important results of scientific and
operational synergy.

Despite the ongoing mass vaccination campaigns, it is possible that virus transmission
will remain high in the coming months. To avoid a resurgence of the pandemic, it is critical
for stakeholders and decision-makers to ensure that disaster management approaches
take this risk into account. Multiple ongoing disasters and crises are extremely difficult to
manage, but adopting the best practices that have emerged in this field is critical.
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Abstract: The Tanlu fault zone, extending over 2400 km from South China to Russia, is one of the most
conspicuous tectonic elements in eastern Asia. In this study, we processed the Global Positioning
System (GPS) measurements of Anhui Continuously Operating Reference System (AHCORS) between
January 2013 and June 2018 to derive a high-precision velocity field in the central and southern
segments of the Tanlu fault zone. We integrated the AHCORS data with those publicly available
for geodetic imaging of the interseismic coupling and slip rate deficit distribution in the central
and southern segments of the Tanlu fault zone. This work aims at a better understanding of strain
accumulation and future seismic hazard in the Tanlu fault zone. The result indicates lateral variation
of coupling distribution along the strike of the Tanlu fault zone. The northern segment of the Tanlu
fault zone has a larger slip rate deficit and a deeper locking depth than the southern segment. Then,
we analyzed three velocity profiles across the fault. The result suggests that the central and southern
segments of the Tanlu fault zone are characterized by right-lateral strike-slip (0.29–0.44 mm/y) with
compression components (0.35–0.76 mm/y). Finally, we estimated strain rates using the least-squares
collocation method. The result shows that the dilatation rates concentrate in the region where
the principal strain rates are very large. The interface of extension and compression is always
accompanied by sudden change of direction of principal strain rates. Especially, in the north of Anhui,
the dilatation rate is largest, reaching 3.780 × 10−8/a. Our study suggests that the seismic risk in the
northern segment of the Tanlu fault zone remains very high for its strong strain accumulation and
the lack of historical large earthquakes.

Keywords: Anhui CORS; velocity field; fault coupling; slip rate deficit; strain rates

1. Introduction

Tanlu fault zone, which is mainly characterized by right-lateral strike-slip and re-
verse components, is one of the largest fault zones in eastern China [1,2]. It runs from
Heilongjiang Province in the north to the shore of the Yangtze River, Hubei Province, in
the south, totaling 2400 km. The Tanlu fault zone crosses multiple tectonic blocks from
north to south and its internal structure is complex. Many earthquakes with magnitudes
larger than Ms 5.0 have occurred in the Tanlu fault zone since the Quaternary [3]. For
instance, in 1668, an Ms 8.5 earthquake occurred in Tancheng, located on the Yishu fault
of the central segment of the Tanlu fault zone, resulting in huge casualties and property
losses [4,5]. Additionally, the Tanlu fault zone has also been influenced by the far-field
post-seismic effects of many large earthquakes during the past decades, such as the 2008
Wenchuan Ms 8.0 earthquake and the 2011 Mw 9.0 Tohoku, Japan Earthquake [6–8]. The
future seismic risk for this densely populated region is still not very clear due to the lack of
a detailed study of the crustal deformation and strain accumulation in the Tanlu fault zone.
The seismogenic potential on the Tanlu fault zone is largely dominated by the mechanical
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properties on the fault interface, in which the coupling ratio (also inferred as locking degree)
and slip rate deficit are two vital indicators that can shed light on the strain buildup on fault
interfaces. Many previous studies have explored the interseismic coupling and estimated
the slip rate deficit on a series of active faults using the Global Positioning System (GPS) and
Interferometric Synthetic Aperture Radar (InSAR) measurements [9–11]. For instance, Zhao
et al. (2017) inverted the fault locking and fault slip deficit in the main Himalaya thrust
fault [12]. They have shown that the maximal magnitude and the rupture extents of large
earthquakes on a fault can be well constrained by the spatial distribution of interseismic
coupling. Therefore, a refined coupling image for the Tanlu fault zone could help us to
assess the strain buildup and future earthquake hazard in this region.

The characteristics of crustal movement and strain accumulation of the Tanlu fault zone
have been constrained by geodetic surveying; most of them are GPS observations [13–15].
Recently, Li et al. (2020) used the two periods of GPS horizontal velocity field in the north
China between 1999–2017 to invert the fault locking and slip rate deficit of the Tanlu fault
zone, by utilizing the back-slip dislocation model, and compared the differences between
two periods [16]. They found that the 2011 Tohoku MW 9.0 earthquake played a vital role
in alleviating the strain accumulation of the Tanlu fault zone. Li et al. (2016) inverted the
fault locking and slip rate deficit of the Tanlu fault zone by using GPS horizontal velocity
of 2009–2014 in North China and verified that different reference frames have little impact
on the inversion results [7]. They suggested that the locking depth in the northern end of
the Tanlu fault zone is nearly 27 km depth, while the locking depth reaches 32 km in the
central segment and then it decreases to only 5 km in the southern end of the Tanlu fault
zone, exhibiting lateral variation of fault locking along the strike of the Tanlu fault zone.

It can be inferred that the first-order characteristics of the fault activity and strain
buildup on the Tanlu fault zone have been constrained by previous geodetic surveying.
However, we still found that fault slip and interseismic coupling distribution on each
segment of the Tanlu fault zone revealed by different studies show significant discrepancies.
We attributed them to various timescales of GPS data and different parameter settings
in the modeling. Additionally, the spatial resolution of interseismic coupling image on
the Tanlu fault zone remains low due to the lack of near-field GPS observation. With the
completion of the Anhui Continuously Operating Reference System (AHCORS) in 2011
and upgrading in 2016, there are more than 50 AHCORS stations throughout the Anhui
Province. Most of these stations are located in the near-field of the central and southern
segments of the Tanlu fault zone, providing a valuable chance for us to further study the
motion characteristics and strain accumulation in the Tanlu fault zone. In this paper, we
processed GPS data of 50 AHCORS stations from January 2013 to June 2018 with time
period of nearly 6 years. In combination with the data of Crustal Movement Observation
Network of China (CMONOC) between 1999–2016 computed by Wang (2020) [17], we
obtained a complete velocity field of the central and southern segments of the Tanlu fault
zone. This new velocity field is then employed to invert for the fault locking and slip rate
deficit on the central and southern segments of the Tanlu fault zone. Finally, we discussed
the characteristics of the fault slip according to two-dimensional velocity analysis. We also
analyzed the strain accumulation based on the least-squares collocation method, which has
the advantage that the higher the density of the site distribution, the higher the accuracy.
Our work provides useful constraints on the fault slip motion and sheds new light on the
seismic hazard of the central and southern segments of the Tanlu fault zone.

The rest of the paper is organized as follows. In Section 2, the tectonic setting of
the study region is described. In Section 3, datasets, methodology, and fault geometry
are presented. Section 4 demonstrates the results of fault coupling ratios, fault slip rate
deficit, and velocity profiles. Section 5 discusses how to use checkboard tests to assess the
spatial resolution of the fault coupling ratios, comparison with previous studies, strain
characteristics, and implication for seismic hazard.
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2. Tectonic Setting

The Tanlu fault zone represents a NE-trending continental-scale strike-slip fault zone
with high levels of seismicity in East China and records the evolutionary history of plate
interactions in East Asia during Mesozoic and Cenozoic times [18]. The Tanlu fault zone is
commonly interpreted to have generated due to the collision between the North China block
and Yangtze Plate from the middle Triassic [19]. After that, the fault zone was transformed
to an extensional structure by the Cretaceous–Paleocene that controlled several grabens
filled by Cretaceous volcanic rocks and terrestrial clasts [20]. In terms of geographical
location, the Tanlu fault zone is always divided into three segments, that are the northern
segment in northeast China, the central segment in the Bohai Bay, and the southern segment
from Shandong Province to Anhui Province. The central and southern segments of the
Tanlu fault zone, which act as the boundary faults that separate the North China block
from the Subei basin and the Sulu belt, experienced a complex deformation characterized
by Mesozoic sinistral and Cenozoic dextral motions. The rock types across the fault zone
change abruptly from Archean to Paleoproterozoic high-grade metamorphic basement
rocks in the North China block to ultra-high-pressure metamorphic rocks and Mesozoic
granites in the Sulu belt [21]. The fault outcrops along the central and southern segments
of the Tanlu fault zone are diffusely distributed. The central segment of the Tanlu fault
zone is composed of five subparallel faults [20]. The fault activities of these faults remain
controversial. Both reverse and dextral slips have been proposed to explain the Quaternary
activities of these subparallel faults [20,22]. Many large earthquakes have occurred in
this segment, such as the 1668 Tancheng Ms 8.5 earthquake and the 1969 Mw 7.4 Bohai
earthquake, suggesting that the central segment is still an active earthquake zone [23].
In contrast, the fault activity of the southern segment of the Tanlu fault zone is much
weaker than the central segment, consistent with the weak seismic activity of the southern
segment [22].

3. Data and Methods

3.1. Data Processing

The GPS data we collected are mainly from AHCORS between January 2013 and June
2018. Figure 1 shows the spatial distribution of AHCORS stations. All the GPS data are
processed using the GAMIT/GLOBK software (Ver.10.7) with a double-difference approach
to generate daily solutions [24]. In the processing, we eliminated the GPS stations with data
integrity less than 90 percent. More than nine International GNSS Service (IGS) stations
around the Chinese mainland are adopted in the processing.

In the detailed processing strategy, we adopt the Vienna Mapping Function 1 (VMF1)
to correct the tropospheric delay, and a zenith wet delay parameter is estimated every
2 h [25]. The most recent global ocean tide model (Finite Element Solutions 2004, FES2004)
is used to correct the station displacements induced by ocean tides [26]. The detailed
geophysical models and parameter settings used in the processing are listed in Table 1.

The specific processing is as follows. Firstly, GAMIT is used to obtain daily solutions
that are loosely constrained for station coordinates and satellite orbits. Secondly, the global
H files released by Scripps Orbits and Permanent Array Center (SOPAC) are used for
network adjustment. Finally, the velocity field of AHCORS stations in the International
Terrestrial Reference Frame 2008 (ITRF2008) can be obtained through coordinate frame
transformation. For the convenience of tectonic interpretation, we transformed the hori-
zontal velocity field from ITRF2008 to a stable Eurasia frame using Euler vectors for the
Eurasian plate proposed by Wang et al. (2020) (−0.087, −0.514, and 0.741 mas/a) [17],
and the velocity field is listed in Table 2. Figure 2 displays the horizontal velocity field
on the central and southern segments of the Tanlu fault zone and its surrounding areas
under the Eurasia reference frame, including the velocity field of AHCORS calculated by
ourselves and the velocity field of CMONOC. Generally, the velocity of AHCORS stations
coincides well with the velocity of CMONOC stations, and our AHCORS stations show
higher precision thanks to the longer observation time.
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Table 1. Data processing strategy.

Data Processing Strategy Option

Sampling interval set sint = ‘30′
Number of epochs set nepc = ‘2880′

Start time for processing set stime = ‘0 0′
Choice of Experiment RELAX.

Type of Analysis 1-ITER
Choice of Observable LC_AUTCLN

Zenith Delay Estimation Y
Met obs source GPT 50

DMap VMF1
WMap VMF1

Use otl.grid Y
Use atml.grid Y
Use atl.grid Y

Table 2. Site velocity solution.

Station Ve_I a Ve_E b dVe c Vn_I d Vn_E e dVn f

AQSS 33.831 7.488 0.234 −10.813 −1.414 0.168
AQYX 33.672 7.353 0.166 −11.961 −2.509 0.120
BZGY 34.786 8.504 0.161 −9.981 −0.568 0.155
BZLX 34.122 7.830 0.148 −10.666 −1.254 0.127
BZMC 33.767 7.509 0.157 −11.812 −2.325 0.143
CHCH 33.850 7.669 0.155 −12.460 −2.677 0.104
CHJU 33.475 7.249 0.152 −12.544 −2.890 0.105
CZDY 33.518 7.346 0.136 −11.340 −1.590 0.110
CZLA 33.876 7.769 0.150 −12.224 −2.311 0.120
CZMG 33.769 7.632 0.153 −12.219 −2.400 0.130
CZQJ 33.485 7.358 0.149 −11.351 −1.465 0.128
CZQY 36.731 10.539 0.204 −11.237 −1.446 0.129
CZST 34.930 8.702 0.175 −12.303 −2.595 0.128
CZTC 33.338 7.294 0.149 −11.851 −1.808 0.128
CZZT 35.710 9.424 0.205 −12.047 −2.490 0.097
FYFN 33.736 7.380 0.147 −11.544 −2.265 0.120
FYFY 34.555 8.217 0.141 −10.189 −0.879 0.121
FYJS 35.317 8.953 0.147 −10.143 −0.924 0.119

FYLQ 34.635 8.261 0.155 −9.803 −0.595 0.125
FYTH 32.688 6.348 0.141 −11.228 −1.939 0.113
FYYS 32.883 6.583 0.158 −9.438 −0.014 0.115
HFCF 33.092 6.871 0.161 −11.345 −1.712 0.124
HFFD 34.026 7.820 0.170 −11.239 −1.535 0.138
HSHS 33.885 7.713 0.176 −11.645 −1.793 0.130
HSQM 32.905 6.693 0.174 −11.953 −2.196 0.123
LAHS 33.551 7.237 0.164 −11.113 −1.666 0.130
LALA 33.863 7.569 0.145 −10.967 −1.480 0.099
MASM 33.091 6.979 0.156 −11.844 −1.899 0.133
SZDS 34.521 8.285 0.140 −14.830 −5.385 0.122
SZSX 32.867 6.741 0.156 −10.695 −0.902 0.143
SZXX 33.922 7.736 0.159 −12.062 −2.473 0.125
XCGD 33.422 7.372 0.167 −12.799 −2.664 0.127
XCJD 33.703 7.566 0.167 −9.387 0.553 0.125
XCJN 33.578 7.434 0.172 −12.919 −3.008 0.125
XCJX 33.686 7.551 0.178 −11.446 −1.494 0.128
XCLX 34.776 8.710 0.164 −12.279 −2.195 0.121
XCNG 34.176 8.082 0.181 −12.847 −2.809 0.130

a East components under ITRF2008 reference frame. b East components under Eurasian plate. c East velocity
uncertainties. d North components under ITRF2008 reference frame. e North components under Eurasian plate. f

North velocity uncertainties.
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Figure 1. Distribution map of Anhui CORS stations. The red triangles are where the Anhui CORS
stations are located. White circles show earthquakes with 3.0 ≤ Ms ≤ 8.5 from 1 January 1900 to
31 December 2020 (https://earthquake.usgs.gov, accessed on 14 December 2021). The largest white
circle is an Ms 8.5 earthquake that struck Tancheng on 25 July 1668. The blue broken line represents
the central and southern segments of the Tanlu fault zone, and the Yishu fault zone is a part of the
Tanlu fault zone in Shandong Province. The three red lines labeled by (a–c) represent the locations of
three velocity profiles across the Tanlu fault zone.

3.2. Modeling Approach

In this study, we adopted the Fortran-based DEFNODE software [27,28] for the in-
version. The DEFNODE software has been widely used to invert the interseismic block
rotation, fault locking, and slip deficit in the northwestern U.S., Pacific Northwest, and
southern Cascadia [29–31].

The DEFNODE program assumes that the movement of the points in the blocks are
the sum of the surface elastic deformation caused by the block rotation, the uniform strain
rates within blocks, and slip deficit at the block boundary due to fault locking. Constrained
by GPS vector, surface uplifts, earthquake slip vector, spreading rates, or other data, we
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can use grid searches or simulated annealing technique to estimate fault coupling ratios,
fault slip rates, and Euler pole at the block boundary. McCaffrey (2002) [32] proposed the
expression if there are no uniform strain rates within blocks:

Vi(X) =
B

∑
b=1

H(X ∈ Δb)[RΩb]·i −
F

∑
k=1

Nk

∑
n=1

2

∑
j=1

ΦnkGij(X, Xnk)
[

hΩ f × Xnk

]
·j (1)

Where X is the position of GPS stations, B is the number of blocks, Δb is the area range
of block B (H = 1 if the station is within the range of block B, otherwise H = 0), i is the
unit vector in the i direction, and RΩb is the Euler rotation pole of block B with respect
to the reference frame. hΩ f = RΩb − f ΩR is the Euler vector of footwall block f relative
to the hanging wall block, F is the number of faults, Nk is the number of nodes for fault
k, j is the unit vector of direction j on the fault surface, Φnk is the fault coupling ratio of
node n on fault k, and Xnk is the position of node n on fault k. For Gij(X, Xnk), it represents
the response function of the velocity of surface point X in the direction of i generated by
unit slip in the j direction at node Xnk on the fault. V is velocity, and the unit of V is in
millimeters per year.

 

Figure 2. GPS velocity field with respect to Eurasian plate. Blue and red arrows represent the velocity
field of CMONOC and AHCORS, respectively. The areas surrounded by dashed line are North China
block, Ludong block, and South China block. Error ellipses represent 70% confidence.
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If uniform strain exists in the block, the strain rate can be calculated by using Formula (2)
given by Savage et al. [33]. In this case, the model is obtained by adding Formula (1) to
Formula (2). The velocity caused by the internal strain in the block can be written as

[
Vλ

Vθ

]
=

[
R sin θ0Δλ RΔθ 0

0 R sin θ0Δλ RΔθ

]⎡⎣ .
ελ.
ελθ.
εθ

⎤⎦ (2)

where λ and θ correspond to the colongitude and colatitude, respectively, while the Δλ
and Δθ are the colongitude and colatitude differences between the measuring point and
the regional geometric center. R is the mean radius of the regional geometric center and θ0
is the colatitude of the regional geometric center. V and

.
ε are the velocity component and

strain rate component, respectively.
After the GPS horizontal velocity field of a certain region is solved, grid searches or

simulated annealing method are then used to invert the fault coupling ratios and slip rate
deficit. The coupling ratio is defined as a value between 0 and 1. A value of 1 indicates that
the fault patch is fully locked and a value of 0 means that the fault patch is freely creeping.
A value between 0 and 1 suggests that the fault is partly locked. The quality of parameter
fitting can be evaluated using the reduced χ2 statistic which is defined as follows [32]:

χ2
n = [

n

∑
i=1

(
ri
f σi

)2
]/do f (3)

where n is the number of observed data and ri is the residual of observed data. For f,
it represents the error weight factor, which is generally between 1 and 5 [34]. σi is the
standard deviation and dof is the degrees of freedom.

In order to obtain a set of optimal solutions, we need to adjust the size of f repeatedly
during inversion to make χ2

n ≈ 1, so that the model is able to simulate the observed
data accurately.

3.3. Block Definition and Fault Geometry

According to the geological and geodetic information, Zhang et al. [35] delimited active
blocks in China. As a result, our research area is bounded by the central and southern
segments of the Tanlu fault zone and divided into three parts: North China block, Ludong
block, and South China block. In the inversion process, we assumed that the South China
block is an internally stable rigid block, while there is uniform strain in the North China
block and Ludong block [2]. The central and southern segments of the Tanlu fault zone
have a strike of SSW, a downdip of NW, and the dip angle is fixed at 65◦ [36]. The fault
plane is composed of fifteen nodes along the strike, and the average distance between nodes
is about 50 km. Meanwhile, the setting of nodes along the downdip is based on the research
results of Li et al. [16]. According to the results of earthquake relocation [7], the depth
of earthquakes in the central and southern segments of the Tanlu fault zone are mostly
within 30 km, and only a few earthquakes exceed 30 km. Therefore, eight independent
nodes are set along the downdip direction, with the depth of 0.1 km, 5 km, 10 km, 15 km,
20 km, 25 km, 30 km, and 35 km. At present, no studies show that there is creeping in the
shallow of the central and southern segments of the Tanlu fault zone. Accordingly, a strong
constraint with fault coupling ratios of 1.0 is added to the nodes at 0.1 km and 5 km [32],
and it is assumed that only free slip exists below 35 km. The coupling ratios of the fault
between 0.1–35 km decrease monotonically along the downdip.
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4. Results

4.1. Fault Coupling Ratios

According to the parameter settings above, we utilized the velocity field data of
AHCORS and CMONOC to obtain our optimal coupling model. For the preferred model,
when the sigma scaling factor f of its horizontal velocity field data is taken as 2.754, χ2

n
is just equal to 1.000 (the number of observations is 1290, the degree of freedom is 1212).
Figure 3 depicts the comparison between observed and predicted GPS velocity field and
the velocity residuals for the optimal model. The mean residual of the north and east
components is −0.223 and 0.058 mm/y, respectively. This indicates that the fitting result of
the model is precise.

 

Figure 3. Cont.
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Figure 3. Comparison between observed and predicted GPS velocity field (a). Black and red arrows
are observed velocity and predicted velocity, respectively. GPS velocity residuals distribution for the
optimal model (b). The images in the upper left corner are the statistical histogram of residuals of the
east components and north components, respectively.

The fault coupling distribution on the central and southern segments of the Tanlu fault
zone is shown in Figure 4. For the convenience of analysis, the whole fault is divided into
three parts from north to south: the Weifang–Tancheng segment, the Tancheng–Jiashan
segment, and the Jiashan–Tongcheng segment. They are all located in eastern China, and
most places are plains and hills. From Figure 4, lateral variation of coupling distribution
can be found along the strike of the Tanlu fault zone. The Weifang–Tancheng segment is in
a state of high coupling 26 km below the surface, with coupling ratios above 0.8. Along
the downdip, the coupling ratios decrease with the increase of depth. The coupling ratios
of 26–30 km change from high coupling to medium coupling, and the coupling ratios are
about 0.6. Along the downdip, from 30 km to 35 km, the fault changes from strong coupling
to freely creeping. As for the Tancheng–Jiashan segment, its locking depth is 5 km below
the surface, which is much shallower than that of the Weifang–Tancheng segment. The
vicinity of Tancheng at the north end is in a fully coupling state within the uppermost
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26 km below the surface. The epicenter of the 1663 Tancheng Ms 8.5 earthquake is close to
this region. The lower edge of the source fault is determined to be about 32 km depth [37],
coinciding well with the strong coupling area. For the Jiashan–Tongcheng segment, its
middle and north sections are in a medium coupling state. The middle section especially is
still in a strong coupling state 25 km below the surface; however, the south section is freely
creeping below the depth of 10 km. Generally, compared with the southern segment of the
Tanlu fault zone, the northern segment has a higher coupling degree and a deeper locking
depth, which means that the strain accumulation in the northern segment is more rapid.

 

Figure 4. The three-dimensional (3D) spatial distribution of coupling ratios of the optimal model
inverted by AHCORS and CMONOC velocity field. Purple to red indicates the fault coupling
coefficient. The red places indicate that the fault is fully locked, and the purple places mean that the
fault is freely creeping; other colors suggest that the fault is partly locked.

4.2. Fault Slip Rate Deficit

Figure 5 shows the slip rate deficit of the optimal model on the central and southern
segments of the Tanlu fault zone. In Figure 5, the 3D spatial distribution of slip rate
deficit is similar to coupling ratios. For the Weifang–Tancheng segment, the slip rate deficit
is the largest within 30 km below the surface, ranging from 0.8 to 1.6 mm/a. For the
Tancheng–Jiashan segment, the slip rate deficit gradually decreases from north to south,
and the rate is between 0.6–1.0 mm/a. As for the Jiashan–Tongcheng segment, the slip rate
deficit is between 0.2–0.5 mm/a.

Fault slip rate deficit is calculated by multiplying the slip rate by the coupling coeffi-
cient. For the central and southern segments of the Tanlu fault zone, we can conclude, by
combining the coupling ratios in Figure 4, that although the segments are fully coupled
within 5 km underground, the slip rate deficit at the north is larger than that at the south,
indicating that the slip rate at the north is larger. This result is consistent with the conclusion
of Guo et al. (2011), that the slip rate of Tanlu fault zone gradually decreases from north to
south (1.24–1.06 mm/a) [38].

4.3. Velocity Profiles Analysis

It is a conventional method to analyze the relative motion between blocks by GPS
velocity profiles across the fault. As shown in Figure 1, we have made three profiles from
north to south along the Tanlu fault zone. To facilitate the distinction, we represented them
as profile a, profile b, and profile c from north to south, and the velocity profile results are
shown in Figure 6. Through the profiles, it is clearer to see some features of the velocity
field. For the velocity component parallel to the profile lines, when the slope of the red line
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is positive, it indicates extension, while when the slope is negative, it indicates compression.
Meanwhile, as for the velocity component perpendicular to the profile lines, positive slopes
of blue lines mean left-lateral. On the contrary, negative slopes are right-lateral [28,30,39].

 

Figure 5. The 3D spatial distribution of slip rate deficit of the optimal model inverted by AHCORS
and CMONOC velocity field (mm/a). Purple to red indicates the slip rate deficit. The red places
indicate the slip rate deficit is large, and the purple places mean that there is no slip rate deficit.

In Figure 6, we compare the observed (points) and calculated (lines) GPS velocity and
found that there are a few misfits between observed and calculated velocity results from
longer distance to the profiles. However, on the whole, the fitting result is quite accurate.
From the profiles, the velocity parallel to the profile lines and perpendicular to the profile
lines changes slightly when passing through the fault; it is continuous without any obvious
step, indicating that the fault cannot slip freely and is still locked. At the same time, the
velocities of profile a, profile b, and profile c, whether parallel or perpendicular to the
profile lines, show a gentle negative slope. We also derived the slip rates and root mean
square error of the Tanlu fault by calculating the velocity of the profiles, as shown in Table 3.
Generally, the velocity parallel to the profiles is between −0.76 and −0.35 mm/a, and the
velocity perpendicular to the profiles is between −0.44 and −0.29 mm/a. Hence, it proves
that the fault among the profiles is right-lateral and compressive, and the compression
component gradually decreases from north to south. From geological studies, Li et al.
(2019) suggested that the kinematic characteristics of the Tanlu fault zone are right-lateral
and thrust [40], which is consistent with our result.

Table 3. Slip rates on the central and southern segments of the Tanlu fault zone (left-lateral with
tension is positive).

Segment
Velocity Parallel to the

Profiles/RMSE (mm·a−1)
Velocity Perpendicular to the

Profiles/RMSE (mm·a−1)

a −0.76/0.16 −0.44/0.22
b −0.57/0.11 −0.40/0.15
c −0.35/0.16 −0.29/0.17
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Figure 6. GPS velocity profiles from north to south (a–c). The length of the profiles is less than
350 km, and the width is 160 km. The red points and lines represent the observed and calculated GPS
velocity parallel to the profile lines, respectively. The blue points and lines represent the observed
and calculated GPS velocity perpendicular to the profile lines. The gray dashed line represents the
Tanlu fault zone, and the median value of the yellow rectangle is the average of the velocities.
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5. Discussion

5.1. Checkboard Tests

We conducted a series of checkboard tests to determine the minimum distance along
the strike of the coupling ratios that the GPS velocity field can resolve. First, in the forward
modeling, we input the rotation parameters of the blocks to estimate the velocity of each
station, and then added the Gaussian noise to obtain a new velocity field. Finally, we
used the synthetic velocity field to invert the coupling ratios of the fault and compared it
with the forward modeling result [41,42], as shown in Figure 7. We compared the cases
where the distance between nodes along the strike is 50–70 km and found that when the
distance between nodes is 60 km and 70 km, the input information cannot be recovered
well, especially at the depth of 20 km below the surface. In Figure 7f, while the distance
between nodes is 50 km, most grid cells are recovered well except for a small part, which
may be caused by inhomogeneous distribution of velocity field. As a result, we chose
50 km as the minimum distance between adjacent nodes. From the spatial resolution of the
coupling ratios, we can conclude that in order to obtain the optimal inversion results, we
need to consider the GPS velocity density.

 

Figure 7. Resolution tests for coupling ratios inverted by different distances between adjacent fault
nodes. Figures on the left (a,c,e) are 3D distribution of coupling ratios for forward modeling, and on
the right (b,d,f) are recovered 3D distribution of coupling ratios using the same inversion strategy.

5.2. Comparison with Previous Studies

In order to explore whether near-field data will affect the inversion results of the model,
we used only CMONOC velocity field to invert the distribution of fault coupling ratios
and slip rate deficit, as shown in Figure 8. Comparing the results of this inversion with the
results integrating the near-field data of AHCORS, we found that the fault coupling ratios
and slip rate deficit are quite similar. In the Tancheng–Jiashan segment, both of them are in
a state of strong coupling 26 km below the surface, and the difference mainly lies in the
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Tancheng–Jiashan and the Jiashan–Tongcheng segments, which also exactly corresponds
to the position of AHCORS velocity field. In the Tancheng–Jiashan segment, the locking
depth of the inversion result for the optimal model is relatively shallower than that of this
result. In the Jiashan–Tongcheng segment, the inversion result of the optimal model is
strongly locked in the middle section, and the depth can reach 25 km, which is not reflected
in this inversion. As for slip rate deficit, except for the Jiashan–Tongcheng segment, other
parts are basically the same. Compared with the results of Li et al. (2020) [16], the main
difference is also shown in the south of Tancheng. As a result, we believe that this is caused
by the integration of near-field data, which significantly affects the inversion results.

 

Figure 8. The 3D spatial distribution of coupling ratios inverted only by CMONOC velocity field
(a). The 3D spatial distribution of slip rate deficit inverted only by CMONOC velocity field (b). The
values in the northern segment are mostly larger than those in the southern segment.

5.3. Strain Characteristics

The inconsistency of spatial distribution of the GPS horizontal velocity field is a direct
reflection of crustal deformation. Different reference frame will lead to a large difference in
velocity field; however, the strain rates are not related to the reference datum, and it is one
of the crucial indicators to describe regional surface deformation directly [43–45].

Taking GPS horizontal velocity field as constraints, we used DEFNODE to invert
the coupling ratios and slip rate deficit of the Tanlu fault zone. Next, we utilized GPS
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horizontal velocity field to calculate regional strain rates, to describe surface deformation
characteristics and fault activity. In this paper, we chose the horizontal velocity field from
245 stations including CMONOC and AHCORS in the longitude and latitude range of
113

◦
E–122

◦
E and 27

◦
N–38

◦
N, and calculated the principal strain rates, dilatation rates,

and maximum shear strain rates of the central and southern segments of the Tanlu fault
zone and surrounding areas using least-squares collocation method. The horizontal strain
rates are shown in Figure 9.

 

Figure 9. Strain rates on the central and southern segments of the Tanlu fault zone. (a) Principal
strain rates and dilatation rates. Principle strain rates are shown as vector pairs and dilatation
rates are shown in background color. Positive dilatation rates show extension, while negative show
compression. (b) Maximum shear strain rates. White circles show earthquakes with 3.0 ≤ Ms ≤ 8.5
from 1 January 1900 to 31 December 2020.

In Figure 9a, the principal strain rates near the Weifang–Tancheng segment of the
Tanlu fault zone are almost zero. The Tancheng–Jiashan segment corresponds to the
high-value area of the principal strain rates. Bounded by the Tanlu fault zone, the west
side shows a nearly E–W and N–S extension, while the east side is a NE–SW or NW–SE
extension. The principal strain rates of Jiashan–Tongcheng are relatively small, and the
east side is dominated by approximately E–W extension, and the west side is nearly N–S
compression. For dilatation rates, the maximum value appears on the west side of the
Tancheng–Jiashan segment, which is 3.78 × 10−8/a. It is in the north of Anhui Province,
where shallow groundwater has been exploited for a long time. Additionally, there are
abundant coal resources here, and years of mining have contributed to the subsidence of
the area. Therefore, we believe that it is likely to be caused by human activities, which
should attract public attention.

In Figure 9b, it can be recognized that the maximum shear strain rates in the central
and southern segments of the Tanlu Fault zone are smaller than those on both sides of the
Tancheng–Jiashan segment and the east of the southern segment of Tongcheng. Generally,
the maximum shear strain rates in the central segment of the Tanlu fault zone are much
larger than the southern segment, consistent with the geological results indicating that the
activity of the southern segment is weaker than the central segment [22].
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5.4. Implication for Future Seismic Hazard

Generally, we believe that the occurrence of an earthquake is a process of continuous
strain accumulation. When the accumulation reaches the limitation, it will break through
the stable state, resulting in sudden rupture of the fault zone [46–48]. Therefore, for the fault
zone with high coupling ratios and deep locking depth, this means the accumulation of
strain rates, and it is more likely to have a large earthquake in the future. At the same time,
slip rate deficit is also an important indicator of the rate of strain accumulation on active
faults [49]. Therefore, we have reason to pay attention to the places with high coupling
ratios, deep locking depth, and high slip rate deficit or abnormal strain rates on the surface.

For the central and southern segments of the Tanlu fault zone, according to the spatial
distribution of coupling ratios, we could find that the Tancheng–Weifang segment is in
a state of high coupling 26 km below the surface, with coupling ratios above 0.8. In this
segment, there are only two major earthquakes above Ms 8.0, occurring in Anqiu in 70 BC
and Tancheng in 1668. Notably, the focal depth of the 1663 Tancheng Ms 8.5 earthquake is
32 km, which is deeper than the strong coupling depth of 26 km based on our inversion
result. It indicates that the locking depth was at least 32 km before the earthquake, and
the locking degree has not returned to its previous state, which may be the reason why
there has been no earthquake with a magnitude lager than Ms 8.5 in this region so far.
From geological studies, Li et al. (2019) considered that the age of the latest paleoseismic
event was about 12.8 + 4.0/−3.7 ka through paleoseismic trough and AMS − 14C dating
method [40]. As a consequence, the recurrence interval of long-period large earthquakes is
the main feature of Late Quaternary activity in the central and southern segments of Tanlu
fault zone. In general, the fault coupling ratios and slip rate deficit of the northern segment
are larger than those of the southern segment, which indicates that the northern segment is
more prone to generate large earthquakes. Although it has been more than 350 years since
the 1668 Tancheng earthquake, the Weifang–Tancheng segment still deserves our attention.

For the distribution of the strain rates, the area with large principal strain rates also
corresponds to the high-value area of the dilatation rates, and the interface area between
extension and compression is always accompanied by a sudden change in the direction
of the principal strain rates. The places where the strain rates are abnormal may have
potential for disaster. They provide an important reference for us to prevent seismic hazard.

6. Conclusions

Using the data of AHCORS and CMONOC stations, we inverted the coupling ratios,
slip rate deficit, and velocity profiles by DEFNODE on the central and southern segments of
the Tanlu fault zone. We found that slip rate deficit and locking depth in the north is higher
and deeper than that in the south and it is more likely to produce strain accumulation. In
particular, the locking degree of the Tancheng has not been restored to the state before the
1668 Tancheng earthquake, so its adjacent region has not experienced a large earthquake for
a long time. Based on geological studies and historical large earthquakes, it can be seen that
the Tanlu fault zone is characterized by long-period recurrence interval of large earthquakes.
By comparing the coupling ratios and slip rate deficit, the fault shows that it has high
coupling ratios within 5 km under the surface; however, the slip rate deficit in the north is
larger. Hence, the slip rate in the north is also larger than that in the south. Subsequently,
we analyzed three velocity profiles across the fault zone. The result shows that the velocity
parallel to the profiles is between −0.76 and −0.35 mm/a, and the velocity perpendicular to
the profiles is between −0.44 and −0.29 mm/a, which indicates that the fault is right-lateral
strike-slip and compressive. Finally, we used least-squares collocation to calculate the
strain rates. The results suggest that where the principal strain rates are large, the value of
dilatation rates will also be large. The interface of extension and compression is always
accompanied by sudden change of direction of principal strain rates. These places with
abnormal strain rates have the potential for disaster.

While we used AHCORS data to obtain a high-precision velocity field on the central
and southern segments of the Tanlu fault zone, the measurements of the AHCORS, as is
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known, could be affected by various types of uncertainties and inaccuracies that arise from
different causes. It would be necessary to evaluate the fuzziness [50] and jumps of data [51],
which play an important role in estimating trends and forecasting in the future work. At
the same time, we believe that the setting of fault geometry can be further improved, such
as setting different dip angles at different depths of the fault. Additionally, only GPS data
were used to invert the coupling pattern of the Tanlu fault zone in this study. In the future,
a refined coupling model jointly constrained by multisource data (e.g., InSAR and GPS
data) could help us to better understand the strain accumulation and seismic risk in the
Tanlu fault zone.
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The following abbreviations are used in this manuscript:
GPS Global Positioning System
InSAR Interferometric synthetic aperture radar
AHCORS Anhui Continuously Operating Reference System
CMONOC Crustal Movement Observation Network of China
IGS International GNSS Service
VMF1 Vienna Mapping Function 1
FES2004 Finite 79 Element Solutions 2004
SOPAC Scripps Orbits and Permanent Array Center
ITRF2008 International Terrestrial Reference Frame 2008
3D Three-dimensional
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Abstract: Pre-seismic anomalies have the potential to indicate imminent strong earthquakes in the
short to medium terms. However, an improved understanding of the statistical significance between
anomalies and earthquakes is required to develop operational forecasting systems. We developed
a temporal integrated anomaly (TIA) method to obtain the temporal trends of multiparametric
anomalies derived from the Atmospheric Infrared Sounder (AIRS) product before earthquakes. A
total of 169 global earthquakes that occurred from 2006 to 2020 and had magnitudes of ≥7.0 and
focal depths of ≤70 km were used to test this new method in a retrospective manner. In addition,
169 synthetic earthquakes were randomly generated to demonstrate the suppression capacity of the
TIA method for false alarms. We identified four different TIA trends according to the temporal char-
acteristics of positive and negative TIAs. Long-term correlation analyses show that the recognition
ability was 12.4–28.4% higher for true earthquakes than for synthetic earthquakes (i.e., higher than
that of a random guess). Incorporating 2–5 kinds of TIAs offered the best chance of recognizing
imminent shocks, highlighting the importance of multiparameter anomalies. Although the TIA trend
characteristics before the earthquakes were not unique, we identified certain unexplained pre-seismic
phenomena within the remote sensing data. The results provide new insight into the relationships
between pre-seismic anomalies and earthquakes; moreover, the recognition ability of the proposed
approach exceeds that of random guessing.

Keywords: earthquake anomaly; multiparametric anomalies; thermal infrared remote sensing

1. Introduction

Earthquakes and their associated disasters are major hazards around the world. Accu-
rately predicting earthquakes would give communities more time to prepare [1,2]; however,
despite decades of research, earthquake prediction remains an open question [2–7]. Utiliz-
ing pre-seismic anomalies in remote sensing data has become a research focus owing to the
continuous development of space-based remote sensing technologies that provide various
geophysical parameters from the top of the atmosphere (TOA) to the Earth’s surface [8,9].
However, current anomaly detection methods fail to meet the requirements of operational
earthquake forecasting systems [10,11]. In particular, improved pre-seismic anomaly recog-
nition is fundamental to advancing short-to-medium term earthquake forecasting based on
remote sensing data.

Precursory signals are most significant in epicentral areas and close by, and their
possible correlation with earthquake preparation phases is the basis of earthquake forecasts.
By monitoring tectonic activity using remote sensing technologies in seismically active
areas, we can further our scientific understanding of pre-seismic diagnostic variation [12,13].
An earthquake is a dynamic process that involves the transition of mechanical energy,
electromagnetic radiation, and thermal effects [14]. Thus, many physical pre-seismic
parameters have been used to analyze the anomalous signals of earthquake events during
preparation phases [2,15–19]. Remote sensing data offer a variety of geophysical and
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geochemical parameters, and thereby provide abundant data for pre-seismic anomaly
detection [8,20]. Moreover, remotely sensed data derived from satellite platforms are
of high spatial and temporal resolution, take global measurements, generate rigorously
validated data products, are easily accessed, and have broad community applications.
Therefore, observable parameters have the potential to indicate the spatial extent, time
window, and magnitude of an imminent event at different time scales with various degrees
of probability. As such, remote sensing is the principal means of gathering and discerning
pre-seismic anomalous information to prepare for potentially destructive earthquakes.

The earthquake preparation phase involves complex nucleation and non-linear fault-
ing processes, and a variety of geophysical parameters have been considered for pre-seismic
anomaly analysis [15,21]. Promising correlations between pre-seismic anomalies and strong
earthquakes have been reported [4,8,9,15,20,22,23]. Surface temperature is a widely used
parameter to detect earthquake-related thermal effects, with anomalous changes of ±10 K
being reported before earthquakes [24–26]. Near-surface air temperature is strongly related
to surface temperature, and significant anomalies of air temperature have been observed
prior to large earthquakes because of degassing and air ionization along the fault sys-
tem [27,28]. Column water vapor, which can be accurately estimated from remote sensing
data, shows anomalous changes in epicentral areas, possibly related to ascending fluids
and surface latent heat flux [29,30]. Outgoing longwave radiation (OLR) at the TOA is
another candidate precursor for predicting earthquakes [31]. OLR anomalies represent the
overall thermal effects from the clouds, atmosphere, and Earth’s surface, all of which are
impacted by seismogenic activity; large variations of >10 W/m2 have been reported prior to
earthquakes [32,33]. Finally, multi-parametric analyses have been carried out with the aim
of improving correlations between pre-seismic anomalies and imminent shocks [30,33,34].

However, despite some promising advances, in practice, earthquake forecasting re-
sults indicate the low statistical significance of these precursors. As a result, forecasts
suffer from a high rate of false alarms when using remotely sensed land surface tempera-
tures [11], while the false alarm rate can be effectively suppressed using seismic catalog
data based on the natural time analysis approach [23]. Surface and atmospheric anomalies
can have different effects. The impacts of short-term meteorological disturbances and
anthropogenic interferences are difficult to eliminate. As such, anomaly detection methods
require improved knowledge of pre-seismic anomalous characteristics in both the spatial
and temporal domains to improve the forecasting ability.

Pre-seismic anomalies are influenced by topography, land cover, meteorology, and
deep tectonic features. Observable information that is drawn from deep strata only accounts
for a small proportion of most dominant features. Therefore, it is difficult to eliminate
the influence of non-tectonic factors on thermal infrared radiation and to extract weak
signals (i.e., pre-seismic anomalies) from strong noise backgrounds that reflect both nat-
ural processes and anthropogenic activities. Meanwhile, the pre-seismic phase before
a significant earthquake is important for identifying anomalous signals. Therefore, we
developed a pre-earthquake temporal integrated anomaly (TIA) method to describe the
overall anomalous variation in a specified period (from days to months). The foreshocks
before strong earthquakes are accompanied by a significant nucleation process [35] and
exhibit intensive enhancement with a power law [36–38]. This will affect the occurrence
and evolution of pre-seismic anomalies to a certain extent. By using the TIA, the influence
of the weakness, transience, and discontinuity of the anomaly was reduced to highlight
the overall change over a specific period. Then, the cumulative temporal trend of the TIA
was used to identify the intensive enhancement of seismic-related anomalies in different
time periods. Moreover, multiparametric TIAs were analyzed to inspect their feasibility for
improving earthquake forecasting ability.
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2. Data

2.1. Atmospheric Infrared Sounder (AIRS) Product

Hyperspectral infrared data make it possible to retrieve surface and atmospheric
properties into various geophysical parameters [39]. Since 2002, the AIRS on the Aqua
satellite has measured thermal infrared radiation emitted from the Earth’s surface and
atmosphere in a three-dimensional structure on a global scale twice a day. In this study, we
used the Aqua/AIRS L3 Daily Standard Physical Retrieval (AIRS-only) V7.0 (AIRS3STD)
product with 1-degree spatial resolution from descending (nighttime) orbits to estimate
pre-seismic anomalies, including skin temperature (ST; K), near-surface air temperature
(AT; K), total integrated column water vapor burden (CWV; kg/m2), OLR (W/m2), and
clear-sky OLR (COLR; W/m2). These parameters measure information at different vertical
levels from the surface to the TOA and reflect the process of thermal radiative energy, which
can be affected by seismic-related anomalous interference. Using nighttime remote sensing
data minimizes the effect of solar radiation and improves the reliability of pre-seismic
anomalies [40,41]. The AIRS data from 2002 to 2020 were used for pre-seismic anomalies.

2.2. Global Earthquake Events

A total of 169 earthquakes representing the most significant seismic events of re-
cent years were collected from the USGS Earthquake Hazards Program (Figure 1). The
earthquakes were divided into inland, oceanic, and coastal for comparison, wherein most
earthquakes belonged to the coastal class. In addition, to validate the forecasting effective-
ness of TIA, 169 synthetic earthquakes were randomly generated based on three criteria:
(1) within ±75◦ latitudes; (2) occurring between 2006 and 2020; and (3) for day t and posi-
tion p, we built a spatiotemporal cube of 11 × 11 pixels around p as the spatial dimension,
within which a day ranged between t − 60 and t + 90 as the time dimension, and if no
M ≥ 5.5 earthquakes occurred within this cube, it was reserved. Randomly generated
earthquakes were iteratively produced to check these restrictions, and we collected the first
169 valid events. The synthetic events were more widely dispersed compared with the true
earthquakes in earthquake-prone regions (Figure 1a, light gray areas). This was due to the
random generation mechanism; compared with the true earthquakes, a higher proportion
of the synthetic earthquakes were in the ocean and inland classes; therefore, the number of
synthetic coastal earthquakes was very small compared with that of the true earthquakes.
As shown in Figure 1b, the temporal distribution of synthetic earthquakes was similar
to that of true earthquakes, and their interoccurrence time presented similar statistical
characteristics in Figure 1c, which indicates the rationality of the randomly generated
synthetic earthquakes.
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Figure 1. Characteristics of 169 global earthquakes (EQ) and 169 synthetic (SYN) earthquakes with
magnitudes ≥7 and focal depths ≤70 km from 2006 to 2020. (a) Spatial distribution of both true and
SYN EQs. The gray circles denote global 15,646 earthquakes with magnitudes ≥5.5 and focal depths
≤70 km from 1980 to 2020, representing global active seismic regions. (b) Temporal characteristics of
EQ occurrences. (c) Statistics of interoccurrence time of both true and SYN EQs.

3. Methods

3.1. Pre-Seismic Anomaly Detection

A simple and yet widely used anomaly detection method was used to calculate the
initial anomalous values from five surface and atmospheric parameters. The Z-Score (ZS)
method is defined as the multiple of standard deviation (STD) between measured and
mean values [42], and its mathematical formula is:

ZS(x, y, t) =
v(x, y, t)− μ(x, y)

δ(x, y)
, (1)

where v(x, y, t) is the pixel value at position (x, y) and at time t, μ(x, y) is the average of the
reference field for the same or similar period in multiple years, and δ(x, y) is the standard
deviation of the reference field.

The daily reference field for each geophysical parameter is essential for calculating
anomalies on a robust basis. A time series-based reference field synthesis method was
developed to filter outliers in order to improve stability. A dataset of one parameter
(e.g., ST) at the same location on the same day during historical years was collected from
AIRS3STD data. Negative outliers were removed by retaining only samples with a negative
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deviation from the mean value of the dataset less than n times STD, where n is a scaling
coefficient of 3. Next, samples with a deviation from the mean value greater than n times
STD were regarded as positive outliers and were excluded from the dataset. These two
steps were executed for each pixel within the study area, and finally, a daily reference
field image was created to represent the long-term average status on that specific day. The
11-day moving window approach was applied to generate daily reference field according to
aforementioned method. For example, the reference field for 6 January 2010 was calculated
using AIRS data from 1 January to 11 January for each year from 2002 to 2010, representing
a 9-year average.

Anomalies calculated by any anomaly detection methods are based on mathematical
formula and observation data. A correlation between anomalies and seismogenic conditions
is not guaranteed. Moreover, real pre-seismic anomalous signals triggered by earthquakes
remain unclear. Therefore, recognition criteria were proposed based on empirical evidence
in order to refine anomalies and make them as close as possible to the true situation in terms
of spatial and temporal correlations [43]. In a 5◦ × 5◦ spatial window surrounding a central
pixel (a total of 25 pixels), if pixels had absolute anomaly values of ≥2 (i.e., valid pixels),
and the average absolute anomaly value from these valid pixels was ≥2.5, the anomaly
value at the central pixel was considered valid and was retained for subsequent analyses.

3.2. Definition of TIA

The TIA of a pixel is a weighted average calculated from daily anomaly values within
a specific time interval (from several days to months). Two types of TIAs were calcu-
lated using positive and negative anomalies (e.g., warming and cooling anomalies for
temperature) derived from the ZS method for each selected parameter. Daily anomalies
were weighted by a given integration function with a temporal distance from the time of
earthquake occurrence used as the input. The integration function significantly affects the
value of temporally integrated anomalies. Thus, three functions were used to analyze their
differences and feasibility in detecting multiparametric anomalies prior to an earthquake.
The constant (CST) weighted integration function is an arithmetic mean method using all
selected daily anomaly values. Its formula is as follows:

TIACST =
∑n

t=1 ΘAt

∑n
t=1

Θ
n

, (2)

where t is the temporal distance relative to the day of an earthquake, which is set to zero; n
is the number of days used in the calculation; Θ is a flag with 1 for valid At and 0 for invalid
At; and At is the valid anomaly value at day t, which was first calculated by Equation (1),
and then filtered according to the recognition criteria in Section 3.1.

Generally, anomaly magnitudes measured closer to the time of an earthquake are more
significant. Nevertheless, a TIA with constant weighted integration cannot denote this tem-
poral characteristic. Hence, using two additional methods, we assigned different weights
to anomaly points for each day of the integration interval. The Gaussian distribution is
widely used to describe a normal distribution in statistics and to define the Gaussian filter
in signal processing. The distribution of a Gaussian function is suitable for situations where
anomalies occurring closer to the occurrence day have a higher weight. The Gaussian
(GAU) weighted integration function was calculated as follows:

TIAGAU =
∑n

t=0 Θ 1
σ
√

2π
e
−(t−μ)2

2σ2 ·At

∑n
t=0 Θ 1

σ
√

2π
e
−(t−μ)2

2σ2

, (3)

where μ is set to 0, and σ is the STD that controls the width of the shape of the Gaus-
sian function. The other integration function was the Laplace (LAP) distribution, which
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has a steeper distribution, causing the weight assigned to anomaly values to vary more
significantly. LAP is calculated as follows:

TIALAP =
∑n

t=0
Θ
2σ e

−|t−μ|
σ ·At

∑n
t=0

Θ
2σ e

−|t−μ|
σ

, (4)

where μ is set to 0, t is a positive value of zero to n, and σ is the STD of the distribution.
In general, the closer the timing of an anomaly to the time of an earthquake, the greater

the weight value for the GAU and LAP, but not for the CST (Figure 2). Among them, the
largest weight is from the LAP function in the first few days. If the anomalies for some
days are invalid, the corresponding weights of the integration functions are set to zero and
the change of the sum of weights reallocates the relative weights, causing different relative
weights among different functions. The TIA was calculated using 5 × 5 window data
around the epicenter pixel, where valid positive/negative anomalies were used to calculate
positive/negative TIAs (PTIA and NTIA, respectively). The temporal range for predicting
impending earthquakes was from 60 days before until the day of the earthquake itself.
Note that a longer anomaly window could capture more anomaly counts for anomalies
with short durations; however, it would also record more irrelevant anomalies, resulting in
higher uncertainties.

Figure 2. Constant (CST), Gaussian (GAU), and Laplace (LAP) weight integration functions used in
the temporal integrated anomaly (TIA) calculation within a 60-day interval. In the LAP and GAU
functions, μ is set to 0 and σ is 15. The red, blue, and green dots denote GAU, LAP, and CST weight
integration functions, respectively.

4. Results

4.1. Trend Characteristics of Multiparametric TIA

The time series of pre-seismic anomalies of different geophysical parameters used in
this study was first obtained within 60 days prior to a true or synthetic earthquake. The TIA
for each parameter was calculated with different time intervals according to the method
described in Section 3.2, and then the calculated TIA values were plotted in a cumulative
manner (Figure 3a). For example, the ST TIA value for the 10th day was calculated using
data from 0 to 10 days before the earthquake. Thus, the time series indicates the temporal
evolution characteristics of pre-seismic anomalies. When anomalies were observed in
multiple parameters, a pre-seismic anomaly was identified, and an alarm warned that an
M ≥ 7 earthquake would likely take place within the 5◦ × 5◦ grid within the next few days
(Table 1). We identified four different TIA trends, especially for the first ~30 days prior to
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the events. For one earthquake, five parameters could present different TIA trends, even
when some parameters had no anomalous variation.

Table 1. Fundamental forecasting parameters of pre-seismic anomalies in retrospective analyses
according to the trend characteristics of multiparametric TIA.

Parameters Values

Time range <10 days

Spatial extent 5◦ × 5◦ around the epicenter (equivalent of a circle with the radius of
~275 km)

Magnitude ≥7

Type 1: PTIA and NTIA decrease rapidly before the earthquake with negative anoma-
lies dominating the area near the epicenter (e.g., significant temperature reduction effects)
(see ST, AT, CWV, and COLR TIAs in Figure 3). Prior to the 2011 M9.1 Great Tohoku
Earthquake, significant crust uplift was detected along with the full southward align-
ment of Global Positioning System (GPS) azimuths [19], which may have led to cold
water upwelling from the seafloor. Meanwhile, in a well 155 km northwest of the epicen-
ter, anomalous decreases in groundwater level and temperature were observed starting
3 months before the earthquake due to possible pre-seismic crustal deformation [44]. These
observations could explain negative anomaly phenomena. Similar phenomena can also
be observed for inland earthquakes. Significant cooling phenomena along the Himalayas
prior to the 2015 Mw 7.9 Nepal earthquake have been reported, and stress relaxation is
suggested as a possible explanation [24].

Figure 3. Trend characteristics for multiparametric temporal integrated anomalies (TIAs) before the
2011 M9.1 Great Tohoku Earthquake, Japan, demonstrating enhanced negative TIAs close to earth-
quake occurrence. (a) Skin temperature (ST) TIA; (b) air temperature (AT) TIA; (c) total integrated
column water vapor burden (CWV) TIA; (d) outgoing longwave radiation (OLR) TIA; (e) clear-sky
OLR (COLR) TIA. The two subfigures for each anomaly show the positive and negative TIAs, re-
spectively. Negative days at the abscissa denote the days before the earthquake. The gray dashed
frame indicates the TIA trend characteristics. The red, blue, and green dots denote Gaussian (GAU),
Laplace (LAP), and Constant (CST) weight integration functions, respectively.
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Type 2: PTIA and NTIA increase rapidly before the earthquake with positive anomalies
dominating the area near the epicenter (e.g., significant warming effects) (see AT, CWV,
OLR, and COLR TIAs in Figure 4). This phenomenon has been reported by many studies;
that is, anomalous increases in diverse parameters prior to earthquakes [15].

Figure 4. Trend characteristics for multiparametric temporal integrated anomalies (TIAs) before the
2009 M7.7 Papua earthquake, Indonesia, demonstrating enhanced positive TIAs close to earthquake
occurrence. (a) Skin temperature (ST) TIA; (b) air temperature (AT) TIA; (c) total integrated column
water vapor burden (CWV) TIA; (d) outgoing longwave radiation (OLR) TIA; (e) clear-sky OLR
(COLR) TIA. The two subfigures for each anomaly show the positive and negative TIAs, respectively.
Negative days at the abscissa denote the days before the earthquake. The gray dashed frame indicates
the TIA trend characteristics. The red, blue, and green dots denote Gaussian (GAU), Laplace (LAP),
and Constant (CST) weight integration functions, respectively.

Type 3: PTIA increases and NTIA decreases rapidly before the earthquake, with
both positive and negative anomalies apparent in the area near the epicenter before the
earthquake (see ST, AT, OLR, and COLR TIAs in Figure 5). This bidirectional trend indicates
strongly anomalous perturbation around the epicenter [45].

Type 4: Similar to Type 3, with either PTIA or NTIA reaching a peak and then rapidly
disappearing within several days following the strong earthquakes (Figure 6). This delayed
phenomenon was observed for only a small percentage of the tested earthquakes.
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Figure 5. Trend characteristics for multiparametric temporal integrated anomalies (TIAs) before
the 2013 M7.7 Awaran earthquake, Pakistan, demonstrating simultaneously enhanced positive &
negative TIAs close to earthquake occurrence. (a) Skin temperature (ST) TIA; (b) air temperature (AT)
TIA; (c) total integrated column water vapor burden (CWV) TIA; (d) outgoing longwave radiation
(OLR) TIA; (e) clear-sky OLR (COLR) TIA. The two subfigures for each anomaly show the positive
and negative TIAs, respectively. Negative days at the abscissa denote the days before the earthquake.
The gray dashed frame indicates the TIA trend characteristics. The red, blue, and green dots denote
Gaussian (GAU), Laplace (LAP), and Constant (CST) weight integration functions, respectively.

Figure 6. Trend characteristics for multiparametric temporal integrated anomalies (TIAs) before
the 2015 M7.2 Murghob earthquake, Tajikistan, demonstrating enhanced positive/negative TIAs
close to earthquake occurrence. (a) Skin temperature (ST) TIA; (b) air temperature (AT) TIA; (c) total
integrated column water vapor burden (CWV) TIA; (d) outgoing longwave radiation (OLR) TIA;
(e) clear-sky OLR (COLR) TIA. The two subfigures for each anomaly show the positive and negative
TIAs, respectively. Negative days at the abscissa denote the days before the earthquake. The gray
dashed frame indicates the TIA trend characteristics. The red, blue, and green dots denote Gaussian
(GAU), Laplace (LAP), and Constant (CST) weight integration functions, respectively.
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4.2. Comparison between True and Synthetic Earthquake TIAs

A higher rate of earthquake alarms was triggered for true earthquakes compared
with synthetic earthquakes, and the rates decreased from 93.5% to 0% and from 85.2%
to 0% as the number of TIA parameters increased for true and synthetic earthquakes,
respectively (Figure 7a). The optimal number of parameters was found to be 2–5, for which
the recognition ability for true earthquakes was 12.4–28.4% higher than that for synthetic
earthquakes; when >6 TIA parameters were used, the rate of earthquake recognition
dropped significantly for both true and synthetic events. In total, we identified 627 TIA
for true earthquakes and 430 TIA for synthetic earthquakes. The different TIA types were
similar between the true and synthetic earthquakes (Figure 7b,c). For true earthquakes, the
NTIAs of ST, AT, CWV, and COLR had slightly more counts; for the synthetic earthquakes,
the PTIAs of AT and CWV, and NTIA of COLR had slightly more counts. This suggests
that NTIAs tend to correlate with true earthquakes, while PTIAs correlate with synthetic
earthquakes. This is consistent with the results of past studies in which significant negative
anomalies were confirmed around epicenters [24,45]. For true earthquakes, positive and
negative TIAs of AT and CWV had the highest recognition counts (>15); for synthetic
earthquakes, positive and negative TIAs of ST and AT had the highest recognition counts
(>20) (Figure 7d,e). The TIA trend characteristics before earthquake occurrence were not
unique; however, the data revealed certain unexplained anomalous phenomena.

Figure 7. Statistical results of multiparametric temporal integrated anomaly (TIA) trends for true and
synthetic (SYN) earthquakes (EQ). (a) Alarmed earthquake ratios as a function of TIA type counts for
TIAs based on 5 parameters multiplied by 2 types of positive or negative anomalies; anomaly counts
of different TIA types for (b) true and (c) synthetic earthquakes; “P”/“N” before the underscore
denotes positive or negative TIA (e.g., ST_P is positive skin temperature TIA); earthquake counts of
different TIA types for (d) true and (e) synthetic earthquakes.
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Positive/negative anomalies could have one of four combinations: (1) neither positive
nor negative TIA, (2) only positive TIA, (3) only negative TIA, and (4) both positive and
negative TIAs. For each geophysical parameter, the likelihood of identifying pre-seismic
anomalies was higher for true earthquakes than for synthetic earthquakes (Figure 8). More
specifically, synthetic earthquakes had more no-TIA situations, and the counts of the other
three combinations were less than those of the true earthquakes. While we identified a
small number of exceptions for the AT and CWV TIAs, these results confirm that TIAs
for all parameters can identify pre-seismic anomalous signals to some extent (Figure 7).
As such, the proposed approach has good potential for predicting future earthquakes.
Remote sensing observations from space-borne platforms contain seismogenic information
that is subtle and transient compared with the strong background signals from natural
processes and anthropogenic activities. As a result, most precursory parameters also
had high missed detection and false alarm rates. Moreover, when the false alarm rate
was suppressed, the accuracy rate also decreased [45]. The TIA provides the potential to
improve forecast accuracy.

Figure 8. Statistical results of temporal integrated anomalies (TIAs) for each geophysical parameter.
(a) Skin temperature (ST) TIA; (b) air temperature (AT) TIA; (c) total integrated column water vapor
burden (CWV) TIA; (d) outgoing longwave radiation (OLR) TIA; (e) clear-sky OLR (COLR) TIA.
‘None’ denotes neither positive nor negative TIA; P denotes only positive TIA; N denotes only
negative TIA; and P & N denotes synchronous positive and negative TIAs.

4.3. Statistical Analysis Based on Earthquake Locations

Earthquake location influences anomaly characteristics owing to different underlying
surfaces and medium properties. For true earthquakes, coastal earthquakes were the most
common (109), and inland earthquakes were the least common (13; Figure 9). OLR and
CWV NTIAs recognized more inland earthquakes but with higher missed earthquakes
(Figure 9a). COLR TIA had a strong ability to recognize oceanic earthquakes with both
positive and negative anomalies. Similar patterns were observed for coastal and oceanic
earthquakes (Figure 9c). The synchronous positive and negative TIAs always had poor
recognition ability for oceanic and coastal earthquakes. Land cover affects the spatial
distributions of diverse parameters, leading to high spatial heterogeneity, while seawater
has high thermal inertia, which changes thermal radiative transfer from the seabed to the
sea surface [8]. For instance, CWV increased after the 2001 Gujarat earthquake, for which
the epicenter was beneath the sea [29]. Significantly reduced sea surface temperatures have
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been observed prior to some earthquakes and may be related to the upwelling of cold water
from the ocean floor [46].

Figure 9. Statistical results of multiparameter temporal integrated anomalies (TIAs) for (a) inland,
(b) oceanic, and (c) coastal earthquakes (EQ). ST, skin temperature; AT, air temperature; CWV, total
integrated column water vapor burden; OLR, outgoing longwave radiation; COLR, clear-sky OLR.

Figure 10 shows the spatial distributions of recognition and non-recognition earth-
quakes. The recognized rates were higher near earthquake-prone regions (light gray areas).
Therefore, the proposed method provides insight into the apparent statistical significance
between anomaly phenomena and earthquakes and has a forecasting ability that exceeds
that of random guessing. Our results clearly demonstrate that seismically active regions are
the most appropriate for testing methods to forecast earthquakes (e.g., in Japan; [32,43]).
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Figure 10. Map of alarmed (temporal integrated anomaly [TIA] counts ≥ 2) and not alarmed
earthquakes for both (a) true and (b) synthetic (SYN) events.

4.4. Statistical Analysis Based on Earthquake Focal Mechanisms

Focal mechanisms were obtained from the GEOFON data center of the GFZ German
Research Centre [47]. Focal mechanism solutions, which were only available for 94 of the
169 earthquakes (mostly those after 2011), were classified into strike-slip, normal, and thrust.
If more than one type existed for a given earthquake, the major component was chosen.
For normal earthquakes in Figure 11a, ST PTIA and OLR/COLR NTIAs showed the best
recognition ability. Thrust earthquakes were the most numerous (49 events) and were most
commonly associated with NTIAs (Figure 11b). For strike-slip earthquakes, synchronous
positive and negative TIAs (particularly OLR/COLR TIAs) had better recognition ability
than they did for the other earthquake types. Overall, negative anomalies were the most
prevalent phenomena for all earthquake types (Figure 9; [45]).
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Figure 11. Statistical results of multiparameter temporal integrated anomalies (TIAs) for (a) normal,
(b) thrust, and (c) strike-slip earthquakes (EQ). ST, skin temperature; AT, air temperature; CWV, total
integrated column water vapor burden; OLR, outgoing longwave radiation; COLR, clear-sky OLR.

5. Discussion

5.1. Implications for Earthquake Forecasts

The prediction of earthquakes has been recognized as a global problem [10]. Earth-
quakes are rapid energy release processes that must produce various anomalous phenom-
ena with respect to normal reference signals [4,19]. The basic assumptions are: (1) the
bigger the earthquake, the more obvious the anomalous signals; and (2) the shorter the
interval until the earthquake, the clearer the anomalous signals. TIA trend characteristics
were observed for both true and synthetic earthquakes; as such, earthquake alarms based
on the proposed method come with significant uncertainties. This is a prevalent issue
that impedes operational earthquake forecasting. Anomaly detection methods have good
performance for retrospective correlation analysis (i.e., high accuracy and low missed detec-
tion rates); however, earthquake forecasting based on prospective statistics in seismically
active regions has low forecasting capacity [45].

Despite the optimism of some researchers, routine and accurate earthquake forecasting
remains a challenge [48]. Therefore, new approaches (e.g., artificial intelligence) need to
be developed and verified [21]. The extension of natural time analysis to remote sensing
data is also an important aspect, based on the success of this approach, in the detection
of precursory phenomena of seismicity, surface displacements, Earth’s magnetic field,
and seismic electric signals prior to the strong earthquakes [7,19]. Combining multiple
data sources offers the potential to refine the detection of anomalous phenomena [4,15], as
confirmed by our results. Therefore, short-term earthquake forecasting models that combine
multiple data streams are deemed to be the most promising approach [43]. Moreover, a
robust and quantitative evaluation of anomaly detection methods is needed to gain new
insights into the feasibility of earthquake forecasts. By constructing a uniform baseline
using historical observation data and earthquake catalogs in retrospective and prospective
ways [45], we will be better able to compare various approaches and parameters, offering
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the potential to develop models for integrating precursors and anomaly detection methods
for operational earthquake forecasting.

5.2. Underlying Geophysical Mechanisms of Pre-Seismic Anomalies

The findings derived from rock experiments offer an experimental basis for relating
temperature anomalies to variations in crustal stress fields and tectonic activities from
remote sensing observations [49–52]. Elastic energy continuously accumulates in the
rock mass during earthquake preparation. Both theoretical calculations and laboratory
measurements indicate that temperature variations are related to the quantity of volume
strain measured under elastic stress conditions for solid materials. The thermal elastic
coefficient of roughly 1 mK/MPa is proportional to the principal stress [50,53]. When the
volume strain increases due to compression, the temperature also rises, while it will decline
in the tensile state. Accompanying thermal effects caused by the change in the strain
levels of the deformation field are likely associated with surface temperature, which can
be retrieved from thermal infrared (TIR) measurements [54]. TIR radiation field (e.g., ST,
AT, and OLR) derived from satellite observations serves as a feasible physical parameter
related to regional overall stress fields to some extent in this research field [55].

Fault deformation is always local and mostly deep below the ground surface. However,
multiparametric anomalies are widespread and regional at the seismogenic zones. The
geophysical mechanism of how the heating derived from fault deformation transfers to
the ground surface or the atmosphere is a key point. The thermal conductivity, thermal
inertia, and time constant of the thermal diffusion of rocks are the controlling factors for
transmitting the Joule temperature to the TIR radiation field. The low heat conductivity
of rocks delays the transfer of increased temperatures caused by fault deformation at the
scales of months to years, even decades. This is inconsistent with the satellite observation.
In p-hole theory [56–60], however, mechanical stresses between rocks lead to the activation
of peroxy defects deep in the Earth’s crust. These peroxy defects release electronic charge
carriers, electrons e’ and holes h•. The h• have the remarkable ability to flow out into and
through the surrounding rocks that are less stressed or unstressed and to propagate rapidly
to the distant regions. When the h• arrive on the Earth’s surface, they lead to a series of
follow-up reactions. The exothermal recombination of h• on the Earth’s surface leads to a
stimulated TIR emission, another source of thermal radiation other than Joule temperature,
which could be received by satellite sensors.

This work illustrates the extensive TIR measurements that can be derived from a
satellite platform. It is worth noting that multiparametric anomalies may reflect the fault
activities of tectonically active regions that do not always correspond to an impending earth-
quake, as the anomaly is not a sufficient condition. Various non-seismic factors affect TIR
radiation changes and anomalous features [8], and the triggering of an earthquake is also
influenced by intricate geologic conditions, tectonic movements, and dynamic processes.

6. Conclusions

The short-term (days or weeks) pre-seismic period is a critical phase during which
stress accumulation becomes stronger and corresponding precursory responses (e.g., ST)
likely increase in amplitude. We developed a TIA method to obtain the temporal trend of
multiparametric anomalies derived from AIRS products before earthquakes; four types of
TIA trends were identified. A total of 169 global earthquakes with magnitudes of ≥7.0 were
used to test this new method in a retrospective manner. In addition, we generated 169 syn-
thetic earthquakes to test the suppression capacity of anomaly detection in tectonically
non-active areas. A time series-based anomaly removal method was developed to generate
the reference fields of ZS methods. Long-term correlation analyses showed that recog-
nition ability was 12.4–28.4% higher for true earthquakes than for synthetic earthquakes
(i.e., higher than that of a random guess). TIA incorporating 2–5 parameters was optimal
for recognizing the earthquakes, indicating that multiparametric anomalies can provide
complementary information to improve statistical significance. Our results confirm the
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appearance of TIA in spatiotemporal correspondence with forthcoming earthquakes, and
some unexplained anomalous signals around epicentral areas were observed. A greater
understanding of geophysical mechanisms and the development of new anomaly detection
methods would strengthen the uniqueness of pre-seismic anomalous phenomena.
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Abstract: This study intends to evaluate the possible correlation between the correlation dimension
(DC) and the seismic moment rate for different late Quaternary active fault data, shallow crustal
earthquakes, and GPS on the island of Sumatra Probabilistic Seismic Hazard Analysis (PSHA). The
seismicity smoothing was applied to estimate the DC of active faults (DF) and earthquake data
(DE) and then to correlate that with the b-value, which will be used to identify seismic hazard
functions (SHF) along with the Sumatra Fault Zone (SFZ). The seismicity based on GPS data was
calculated by the seismic moment rate that is estimated based on pre-seismic horizontal surface
displacement data. The correlation between DF, DE, and the b-value was analyzed, and a reasonable
correlation between the two seismotectonic parameters, DF-b, and DE-b, respectively, could be found.
The relatively high DC coincides with the high seismic moment rate model derived from the pre-
seismic GPS data. Furthermore, the SHF curve of total probability of exceedance versus the mean of
each observation point’s peak ground acceleration (PGA) shows that the relatively high correlation
dimension coincides with the high SHF. The results of this study might be very beneficial for seismic
mitigation in the future.

Keywords: correlation dimension; active fault; earthquake; b-value; GPS; seismic moment rate;
seismic hazard function

1. Introduction

Sumatra Island, Indonesia, is located in the convergent plate zone. It accounts for the
high concurrent rate and the oblique NE-ward geometry between the subduction of the
Indian–Australian Plates and the overriding southeastern Eurasian Plate [1–3]. This high
convergence rate causes Sumatra Island to have many earthquakes annually, implying a
high-stress level. The five most significant earthquakes support the large historical catalog
of shallow earthquakes along the Sumatran megathrust over the last 250 years, Mw ≥ 8.0.
As explained by references [3,4], the active fault on Sumatra Island has been termed the
1700 km long Sumatran Fault Zone (SFZ). The Sumatran seismotectonic map depicting
the Sumatran Subduction Zone, SFZ, and plot of the historical shallow large earthquake
data can be seen in Figure 1. Consistent with [1,5], the dominant right-lateral shear fault
zone accommodates most of the parallel components of the convergence of the sloping
plate between the Indian-Australian and the Sunda Plates and has an average slip rate of
~15–16 mm per annum along some of its length [6–8]. The Sumatra Fault Zone (SFZ) within
the mainland of Sumatra suggests that the released megathrust strain directly influences it.
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Figure 1. The Sumatran seismotectonic map depicting the Sumatran Subduction Zone and Sumatran
Fault Zone (SFZ) overlays with the historical shallow large earthquake data of 1925–2014 with a
magnitude (Mw) larger than or equal to 6.0. Historical earthquake data are based on Ref. [9].

McCloskey et al. [10] pointed out the effect of change in stress due to the 2004 Sumatra-
Andaman earthquake on the adjacent rupture zone in the Nias segment, which was even-
tually quaked in March 2005 northern part of the SFZ, which has not yet produced M7
onshore earthquake. Qiu et al. [11] and Cattin et al. [12] suggest that there exists the effect
of megathrust earthquakes on the SFZ. Sumatra Island was chosen as a master model
because of the large body of complete historical earthquake and active fault data of the
Northwestern Sunda Arc that can be found there.

Based on the previous study [13], late quaternary active faults in seismic hazard
assessments allowed us to capture the recurrence of large magnitude events and, therefore,
increase the reliability of the Probabilistic Seismic Hazard Analysis (PSHA). From a seismic
hazard point of view, the first step would be to identify a potentially active fault and
then evaluate the earthquake rate that each fault might generate. Swan et al. [14] and
others [15,16] proposed the various features of the potential factors controlling the location
and length of failure (i.e., rules for segmentation). Meng et al. [17] found that the largest
strike-slip and intraplate earthquake ever recorded offshore Sumatra has resulted from
the combination of deep extent, high-stress drop, and rupture of multiple faults. Using
geometrical constraints to identify persistent segment boundaries (where most or all of a
propagating rupture is arrested event after event) provided an important framework for
quantifying fault-based PSHA [18–20].

Sieh and Natawidjaja [3] and others [7,8,21] acknowledge that the Sumatran Fault is
very segmented. The SFZ has often been divided into 12–19 segments separated by a ~3 to
12 km wide stepover [3], limiting the break area that will break in one event [22,23]. Burton
and Hall [21] studied clustering by applying k-means analysis along the SFZ using shallow
earthquake data with a strike-slip mechanism. Burton and Hall [21] suggested that about
16 clusters partition the seismicity, and eight significant segments dominate the SFZ. The
results of Burton and Hall [21] may improve the previous seismic hazard study [7,24] from
the viewpoint of the probabilistic method.

According to Mandelbrot [25], fractal analysis can be used to describe the geome-
try of objects naturally. Many shreds of evidence of phenomena in space-time, such as
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seismicity, can be characterized and interpreted by fractal models using power laws (e.g.,
Refs. [26–35]).

Studies on the possible correlation between earthquake seismicity and the distribution
of active faults are limited. Sukmono et al. [30,31] studied the fractal geometry of the
Sumatran active fault system, the data used were active fault data, and the correlation with
the earthquake seismicity was not discussed very clearly. Pailoplee and Choowong [34]
studied the earthquake frequency-magnitude distribution and fractal dimension; however,
they only focused on using the earthquake catalog data. In this study, we use integrated data
of active fault, shallow earthquake catalog, and the GPS to understand better the possible
correlation between an earthquake and active fault seismicity based on the correlation
dimension (DC) and its correlation with the b-value to estimate the seismic hazard.

Based on previous study results, the b-value in time and space can be related to the
phenomenon of stress levels before the occurrence of a large earthquake in a seismotectonic
area [26,28,32,33]. Wyss et al. [36] acknowledge that the application of earthquake statistics,
frequency-magnitude distribution (FMD) [37], and the correlation dimension (DC) may
be a convenient approach for understanding local seismotectonic activities. Both the b-
values of FMD and DC values are significantly and directly associated with the stress
and earthquake phenomena. Pailoplee and Choowong [34] studied the FMD and DC in
mainland Southeast Asia, and their results suggest that the northern part of Sumatra Island
has a high-stress level.

Moreover, Bayrak and Ozturk [38] show that a low b-value is closely related to high
stress and strain loading. Therefore, it implies that we can expect to find a low b-value area
coinciding with a high seismic moment rate; thus, characterizing a correlation between the
DC values and the b-value could help better understand the possible seismic hazards by
identifying earthquake hazard functions (SHF). Furthermore, it might be very beneficial
for earthquake mitigation efforts, as these areas could be interpreted as having high-
stress levels.

Triyoso et al. [39,40] applied the least-square prediction method (LSC) over the entire
gridded area using pre-seismic GPS data. Their purpose was to estimate the horizontal
surface displacement in each grid or cell of the coastal area of Sumatra Island. The hori-
zontal crustal strain was calculated using the horizontal surface displacement estimated
by LSC in the entire study area of each cell. Furthermore, the horizontal crustal strain was
used as the input to calculate the seismic moment rate [41–44]. The stress level could then
be characterized based on the seismic moment rate; thus, it is possible to better correlate
the DC values and the b-values with the seismic moment rate to understand the stress
level [35,45].

This study aims to find the relationship between seismic b-values and the correla-
tion dimension (DC) based on Sumatran Island’s earthquake and active fault data. Since
relatively high Dc is often directly associated with the stress level and earthquake phenom-
ena [34,35,45], finding seismic hazard function (SHF) with high Dc at several observation
points will be interpreted as areas with high-stress levels; thus, characterizing a corre-
lation between the Dc value and the b-value could help better understand the possible
seismic hazard.

The SHF is calculated based on an integrated seismic model of the earthquake catalog,
active fault data, and the estimated seismic moment rate. These are taken into consideration
to understand better the possible hazard that might occur. The analysis of seismic moments
around Sumatra Island refers to references [39,40], in which the approximation made by
reference [41] and others, such as Refs. [42–44], was adopted.

This study evaluated the correlation dimension for data from the late Quaternary
active fault and the shallow crustal earthquakes. First, the correlation between DF, DE, and
the b-value was analyzed using a cross-plot and then compared with the seismic moment
rate to estimate the SHF. In addition, the algorithm of the seismic smoothing based on the
previous study [39,46,47] is used to estimate the correlation dimension, as it is supposed to
obtain a more robust result.
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2. Data and Methods

The data utilized in this study are supported by Natawidjaja and Triyoso [7] and
others [8,9,39,48]. Pre-seismic GPS data refer to Ref. [49] and others [2,6,50–54]. The earth-
quake seismic data used in this study are based on earthquake data with a magnitude of
Mw ≥ 4.7 and a maximum depth of 50 km selected from 1963 to 2020 (Figure 2A). This
study adopts the 5 km starting locking depth and 20 km of the seismogenic thickness or
25 km of the maximum seismogenic depth by referring to Ref. [39]; thus, the maximum
depth of earthquake catalog of 50 km or twice the maximum seismogenic depth is used.
Seismic zoning is based on the modified clustering of Burton and Hall [21]. The active
fault data are based on the newly revised results of the PuSGeN Team [48] for the Updated
Indonesia Seismic Hazard Map with new slip rates from recent geological and geodetical
(GPS) studies [8,48]. Based on previous studies [47], the MATLAB subroutine is used to
realize seismology and geological data modeling. The FORTRAN and MATLAB subroutine
based on Refs. [39,40] is used in the case of the GPS data. Mapping and plotting tools are
developed using MATLAB subroutine based on previous studies [39,40,47]. The summariz-
ing data used in this study can be found in the Supplementary Materials. They are shallow
earthquake catalog data, the boundary zone based on Ref. [20], the grid in MAT file format
LSQR 152 GPS data, and active fault data of SFZ.

 

Figure 2. The shallow earthquake catalog data from 1963 to 2020 with the magnitude of Mw ≥ 4.7
and a maximum depth of 50 km [9] of 1963–2016 and the GCMT catalog of 2017–2020, the active fault,
and pre-seismic GPS data (A). The b-value map overlays with the 15 zones area (B). The b-value is
estimated based on the maximum likelihood (2) using a constant number of 50 events on each grid.

2.1. Earthquake Frequency-Magnitude Distribution (FMD)

Frequency-magnitude distribution (FMD) is usually parameterized by using the
Gutenberg-Richter (G-R) power-law relationship [37]; such a frequency-magnitude re-
lationship is as follows:

log10 N(M) = a − b(M − Mc) (1)

where N(M) is the number of earthquakes with a magnitude greater than or equal to Mc
(magnitude completeness or minimum magnitude), a is a constant, and b describes the
slope of the size distribution of events. It is proportional to the productivity of the seismic
volume or the rate of earthquake production.
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The b-value is an important statistical parameter and is correlated with the possible
size of the scaling properties of seismicity. Generally, b-values are in the range of 0.3
to 2.0, depending on different regions. According to Ref. [55], the average b-value on a
regional scale is usually equal to 1. Lower b-values are often interpreted as possible regions
that are subjected to higher applied shear stress after the mainshock. In contrast, areas
having higher b-values are areas that have experienced slip. Based on the previous study,
high b-values are often found in areas with increased geological complexity, indicating
multi-fracture areas. The critical findings of an earlier study [38] show that a low b-value is
closely related to the low degree of heterogeneity of the cracked medium, enormous stress
and strain, high deformation rates, large faults, and thus, seismic moment rates. The most
robust method for calculating the b-value is maximum likelihood [56]. The formula can be
written as follows:

b =
log10(e)(

M − Mc + 0.05
) (2)

where M is the average magnitude value greater or equal to Mc, and Mc is the minimum
magnitude or the magnitude completeness. The 0.05 in Equation (2) is a correction con-
stant [38]. The standard deviation of the b-value with 95% of the confidence limit can be
estimated based on the equation suggested by Ref. [56] as ≈ (1.96b/

√
n), where n is the

number of earthquakes used to estimate the b-value of each zone.

2.2. Correlation Dimension (Dc) of Earthquake and Active Fault Data

In the chaos theory [57], the correlation dimension (DC) is a measure of the dimension
of the space occupied by a set of random points. It is often referred to as a type of
fractal dimension. Using a two-point correlation dimension (DC), the spatial and temporal
distribution patterns of fault and earthquake seismicity were shown to be fractal [32–36].
Analysis of the correlation dimension is a powerful tool for quantifying a geometrical object
of self-similarity, following Ref. [57], which defined DC and correlation sum C(r), as follows:

Dc = lim
r→∞

( log C(r)

log(r)

)
(3)

in which C(r) is the correlation function, r is the distance between two epicenters, and
supposing N is the number of pairs of events separated by distance R < r. If the epicenter
distribution has a fractal structure, the following relationship would be obtained:

C(r) =
(

2NR<r

N(N − 1)

)
(4)

C(r) ∼ rDc (5)

where DC is the fractal dimension (more strictly, the correlation dimension). Distance r
between two earthquakes could be calculated (in degrees) using:

r = cos−1(cos θicos θj + sin θi sin θj cos
(
φi − φj

))
(6)

where (θi,φi) and (θj,φj) are the latitudes and longitudes of the ith and jth events, respec-
tively [26]. In this study, the algorithm of the box counting [58] is adopted to estimate
Dc, in which the binary image of the object is successively divided into finer equivalent
sub-regions (4, 16, 64, and more) by the ratio (r = 2, 4, 8, and so on) on both horizontal and
vertical axis, respectively. Following the box counting algorithm, in which the object pixel
value is represented by logical 1 and the background pixel value is represented by logical 0,
then the Equation (3) could be written as follows,

Dc = lim
r→∞

( log N(r)

log(r)

)
(7)
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in which N(r) is the number of the same size squared sub-regions containing one or more
pixels of value 1.

By plotting log r and log N(r), the fractal dimension, DC, could be obtained from the
slope of the graph’s line of least squares (LLS).

2.3. Seismicity Smoothing

In keeping with the previous study, the seismicity smoothing algorithm using the
Gaussian function approach, for example, was implemented [23,39,46,47]. To realize the
seismic smoothing algorithm, we first gridded the study area, then counted the number (ni)
of earthquake events with a magnitude greater than or equal to the reference (Mref) in each
cell or grid. The counting result of ni represents the maximum likelihood estimate of 10a

or A-value for earthquakes with a magnitude larger than or equal to Mref in each cell [59].
The ni values in each cell were then smoothed spatially by applying a Gaussian function.
The correlation distance c was used during smoothing. The following equation obtained
the smoothed value in each cell:

ñi =
∑j nie

−Δ2
ij

c2

∑j e
−Δ2

ij
c2

(8)

in which ñi is normalized and addressed to preserve the total number of events, Δij is the
distance between the i-th and j-th cells, and c is the correlation distance. In Equation (7),
the sum is taken from cell j within a distance of 3c from cell i. When applying seismicity
smoothing in this study, a correlation distance of 50 km was used to estimate the A-value.

To derive the correlation dimension based on shallow earthquake data, denoted by
DE, in this study, we first apply the seismicity algorithm using a distance correlation of
25 km. The DE is then estimated by application of the box-counting algorithm using (7).

2.4. Active Fault Modeling

To derive the correlation dimension based on active fault data, denoted by DF, in
this study, we first create the synthetic epicenter of an earthquake using fault distribution
data. The synthetic catalog algorithm is based on Refs. [47,60]. First, the fault earthquake
epicenter positions were distributed uniformly along with the active fault positions, with
each interval at a distance range of about 5 to 10 km. Subsequent synthetic epicenter
distribution data were smoothed with a distance correlation of 10 km. The DF is then
estimated by application of the box counting algorithm using (7).

Furthermore, fault seismicity, or the A-values for active fault data, were modeled
by integrating shallow earthquake data from Ref. [9] of the (Mw ≥ 4.7, H ≤ 50 km from
1963 to 2016) and GCMT catalog from 2017 to 2020 around the active fault zone and
the synthetic catalog data model. For shallow earthquake data around the active fault
zone and the synthetic catalog data model, we followed Ref. [60] by applying the seismic
smoothing algorithm based on [46] and using a correlation distance of 50 km and 25 km.
The integration between the two models was done by weighting the A-value model from the
earthquake catalog with normalized smoothed seismicity obtained from active fault data.

2.5. Geodetic Modeling

To obtain the geodetic modeling data, we assumed that the horizontal displacement
field of each observation point over the entire seismogenic depth is homogeneous and
isotropic. Furthermore, the horizontal displacement components of u and v are in E-W N-S
directions. Therefore, an assumption is needed to determine which signals of u and v are
not correlated [61,62]. The study area was gridded into 10 km × 10 km cell sizes to estimate
the surface strain rate based on GPS data. Basing our procedures on previous studies [39,40],
we calculated the horizontal crustal strain rate of each cell by applying the LSC method.
In keeping with previous studies around the Sumatra Islands [39,40], we applied the
least-square prediction method, which uses the horizontal surface displacement data to
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estimate the horizontal surface displacement of each cell in the study area. Furthermore,
the horizontal crustal strain was used as the input to estimate the seismic moments around
Sumatra Island. The following equation to calculate the scalar moment was adopted using
the formulation done by Refs. [41–44]:

.
M0 = 2μHA max(|e1|, |e2| ) (9)

where μ is the rigidity, H is the seismogenic thickness, A is the unit area, and e1 and e2 are
the principal strain rates.

Finally, the annual seismicity rate model around the SFZ is estimated based on the
integrated annual A-value of the earthquake and active fault data as described in Section 2.4
and is weighted by the normalized seismic moment rate based on GPS data. This annual
seismicity rate model is then used to estimate seismic hazards.

2.6. Seismicity Rate Model: Earthquake Rate Formulation

In reference to Refs. [39,40,60], the rate of earthquake occurrence with a magnitude
above or equal to magnitude completeness as the magnitude reference (Mref) could be
expressed as:

vi(≥ Mref) ≈ Ni

T
(10)

where Ni is the number of earthquakes with a magnitude greater than or equal to magnitude
completeness (≥Mc), T is the period of observation, and vi, based on Ref. [60]’s research,
represents the likelihood of the A-value (10a) of the earthquake with a magnitude greater
than or equal to the reference magnitude (Mref). The Mref could be greater than or equal
to Mc.

Furthermore, by substituting 10a of Equation (9) in the frequency-magnitude of the
Guttenberg–Richter equation [37], the following equation is obtained:

vi(≥ m) ≈ ñi(≥ Mref)

Tbln(10)
10−bm

(
1 − 10−b(m−Mmax)

)
(11)

where ni(≥Mref) is the estimated number of earthquakes above or equal to magnitude
completeness, T is a period of observation, and b is the b-value.

The annual seismic rate model around the SFZ is used to estimate seismic hazards
based on the result as described in Section 2.5.

2.7. Seismic Hazard Function (SHF) Estimation: Ground Motion Prediction Equation (GMPE)
and Probability Exceedance (PE)

In reference to Refs. [39,40,60], the probability of exceedance (PE) of the annual earth-
quake rate with magnitudes greater than or equal to Mc, which can be converted into the
estimated ground motion (PGA) using Ground Motion Prediction Equation (GMPE) at
point of observation, can be expressed as:

P(a ≥ ao) = Pk(m ≥ m(ao, Rk)) = 1 − e(−vi(≥m(ao,Rk))) (12)

where Pk (m ≥ m(ao, Rk)) is the annual PE of earthquakes in the kth cell, m(ao, Rk) is the
magnitude in the kth source cell that could produce an estimated PGA of ao or larger at
the observation point, and Rk is the distance between the site and the source cell. The
calculation of the SHF parameter is based on [60]. The function m(ao, Rk) is estimated
based on the GMPE relation. The GMPE used is based on the results of [7], in which the
GMPE of Ref. [63] is used. In this study, the GMPE of Ref. [63] is updated with the GMPE
of [64]. The total PE distribution of PGA at the site was estimated based on a given radius
of the influences of the surrounding source cells, which can be expressed as:

P(a ≥ ao) = 1 − ∏ Pk(m ≥ m(ao, Rk)) (13)
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By substituting the GMPE in (13), we can obtain the annual PE of the particular PGA
or PGV as follows:

P(a ≥ ao) = 1 − ∏ e(−vi(≥m(ao,Rk))) = 1 − e−Σvi(≥m(ao,Rk)) (14)

Furthermore, for a given time duration T, the PE could be estimated as follows:

P(a ≥ ao) = 1 − ∏ e(−Tvi(≥m(ao,Rk))) = 1 − e−ΣTvi(≥m(ao,Rk)) (15)

Thus, each grid’s annual PE of specified ground motion is calculated using (14). Then,
for a given time duration of T, the PE of a given value of the ground motion is computed
using Equation (15).

3. Result and Discussion

The motivation of this study is to determine the relationship between seismic b-values
and the correlation dimension (DC) based on earthquake and active fault data in the
Sumatra Islands. The purpose of using both the shallow earthquake catalog data and the
active faults to estimate the correlation dimension (DE and DF) is to find a better correlation
with the b-value, which will be used to identify earthquake hazard functions (SHF) as a
function of DC along with SFZ. The SHF is calculated based on an integrated seismic model
of the earthquake catalog, active fault data, and the estimated seismic moment rate. These
are addressed to produce an annual seismic rate model based on the combined data sources
for probabilistic seismic hazard analysis. In addition, the pre-seismic GPS data are used to
estimate the seismic moment rate model based on the estimated horizontal crustal strain.
The estimation of the seismic moment around the Sumatra Islands refers to Refs. [39,40], in
which the approximation made by Ref. [41] and others, such as Refs. [42–44], was adopted.

The shallow earthquake catalog data from 1963 to 2020 with Mw ≥ 4.7 and a maximum
depth of 50 km [9] of 1963–2016 and GCMT catalog of 2017–2020, the active fault and
pre-seismic GPS data are used in this study (Figure 2A). The active fault data are based
on the newly revised [9] and recent studies [8,48]. The pre-seismic GPS data are based
on [2,6,49–54]. The zonation based on the clustering study of [21] is adopted for estimating
DC and the b-value. In this study, about 15 zones around SFZ are used by following their
suggestion [21] to merge the zonations 15th and 16th.

First, to estimate the b-value, we grid the study area based on 15 zones around the
SFZ by 10 km × 10 km. Furthermore, the b-value is calculated based on the maximum
likelihood (2) using a constant number of 50 events on each grid. The result can be found
in Figure 2B.

Based on the result of Figure 2B, the mean b-value of each zone is calculated, and the
DE and DF are estimated using (7) based on the box-counting algorithm. Furthermore, the
cross plotting between DE or DF with the mean b-value is constructed. The result can be
seen in Figure 3A. In this study, the purpose of evaluating both DE and DF is to find a better
correlation between the correlation dimension and the b-value utilized to estimate the SHF
of the SFZ or the sites in the SFZ selected zone.

The correlation between DF, DE, and the b-value was then evaluated by referring to the
previous studies [34,35,38] in which linear regression was applied. Based on Figure 3A, a
reasonable correlation between two seismotectonic parameters, DF-b, and DE-b, for Sumatra
Island can be found. It appears that the relationship of DF-b seems better compared to DE-b.
It is probably related to the certainty of the distribution of the geometry data. The surface
break of the late quaternary active fault is better than the distribution of the epicenter of the
earthquake data. Next, to better understand the focal mechanism of the GCMT earthquake
catalog in the depth range of 10 to 50 km around the SFZ depicts the strike-slip with a right
lateral mechanism, as shown in Figure 3B.
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Figure 3. The cross-plot DF, DE, and the mean b-values are estimated based on the 15 zones (A). The
focal mechanism plot is based on the GCMT catalog of shallow earthquake data for earthquakes at
depths less than or equal to 50 km with a magnitude larger than or equal to 4.7 in the earthquake
period between January 1976 to December 2020 [65,66] (B).

The next step calculates the DF over the entire area of the 15 zones using the equation
DF = 2.851 – 1.272b with the input of the b-value map of Figure 2B. The result can be found
in Figure 4A. Figure 4A shows the map of the estimated DF overlay with the historical large
earthquake catalog around the SFZ. The relatively high DC coincides with the historical
data of the large earthquakes with a maximum depth of less than 50 km from 1925 to 2014.
To enhance the contrast of DF, we then constructed the map of DF subtracted by the mean
of DF over the entire area of the 15 zones. Furthermore, we selected about ten sites to
evaluate the SHF. The result can be found in Figure 4B. Referring to Figure 4B, relatively
high DC (DC > the mean of DF) is distributed along zone 1, zone 5, zone 6, zone 8, zone 10,
and part of zone 11; most of the previous historical large earthquakes are found.

The reliable annual seismicity rate model needs to be constructed to estimate the SHF
on each site we selected. To assess the reliability of the annual seismicity rate model in
this study is developed by integrating shallow earthquake catalog, active fault, and the
pre-seismic GPS data. The summarized workflow in this study based on Sections 2.3–2.6
could be described as follows. First, we smoothed the shallow earthquake catalog data
around the study area using a 50 km correlation distance. Next, the synthetic catalog
data model based on active fault data are smoothed using a correlation distance of 25 km.
The integration between the two models was done by weighting the A-value model from
the earthquake catalog with normalized smoothed seismicity obtained from active fault
data. Furthermore, the shallow crustal dynamic data are incorporated in this study by
following [39]; it is used GPS data.
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Figure 4. The map of DF overlay with the historical earthquake catalog with the Mw ≥ 6.0 around
the SFZ (A). DF is calculated using equation DF = 2.851 – 1.272b with the input of the b-value map
of Figure 2B. The map of (DF—mean of DF) over the entire clustered zone boundary of Burton and
Hall [21] and selected about ten sites to evaluate the SHF starting from the North-West to South-East
(B). The relatively high DC coincides with the historical shallow large earthquakes data of Ref. [9]
from 1925 to 2014.

The algorithm for constructing the model using the GPS data are as follows. First, we
developed the seismic moment rate is based on Sumatran Island’s horizontal crustal strain
model. In this step, the least-square prediction method [39,40,47,61,62,67] was applied to
calculate the horizontal crustal strain based on each cell’s horizontal surface displacement
estimation over the entire study area. Furthermore, each cell’s seismic moment could be
calculated using Equation (8) [41–44]. We assumed the rigidity (μ) and the seismogenic
thickness (H) to be 3.4 × 1011 dyne·cm−2 and 20 km, respectively [39,40]. The result of the
seismic moment rate model can be found in Figure 4A. Figure 4A shows that the areas with
relatively high correlation dimensions (DF) coincide with high seismic moment loading
rates, implying high tectonic stress loading that could pose the risk of producing significant
earthquake hazards. The result of this study is aligned with the previous study [34,35];
however, the advantage result of this study is that we could understand the correlation
between the high DC with the possible present-day strain loading since we incorporate the
present-day shallow crustal movement data. It is suggested that the algorithm of this study
is applicable in the other active tectonic area as far as the data are available.

Finally, the annual seismicity rate model around the SFZ is estimated based on the
integrated annual A-value of an earthquake and active fault data as described in Section 2.4
and is weighted by the normalized seismic moment rate based on GPS data as is shown in
Figure 5A. The result can be found in Figure 5B. Figure 5B shows the annual seismicity rate
model that we propose as the most reliable model to estimate seismic hazards along SFZ.
In addition, the model is suggested to have a better certainty in geometrical source and
rate distribution.
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Figure 5. The estimated seismic moment rate is based on the horizontal crustal strain model around
Sumatra Island (A). The annual seismic rate model for the SHF calculation was constructed based on
the seismic smoothing of the earthquake catalog weighted by the normalized fault seismic model
and the normalized seismic moment rate model based on the GPS data (B).

Furthermore, the SHF curve of the total probability of exceedance versus the mean of
the peak ground acceleration of each observation point (sites #1 to #10) was constructed
using the maximum radius distance of about 100 km with a magnitude range of 6.0–8.0.
Since seismicity smoothing was used, the point source model was applied, and the source
depth was placed at about half of the seismogenic thickness (about 20 km), with the starting
locking depth being 5 km [39]; thus, a source depth of 15 km was used. The period of
the SHF evaluation was set at about 50 years. The result of the SHF curve can be seen in
Figure 6A,B. Another critical finding in this study is that the relatively high correlation
dimension coincides with a high SHF curve, and it could be summarized that the areas with
a relatively high correlation dimension (DF) overlap with high seismic moment loading
rates, which may imply high tectonic stress loading that could pose the risk of producing
significant earthquake hazards in the future.
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Figure 6. The graphs show the SHF curve of each observation point (A,B). The SHF curve of total
probability of exceedance versus the mean of the peak ground acceleration of each observation
point (sites #1 to #10) was constructed using the maximum radius distance of about 100 km with a
magnitude range of 6.0–8.0. The source depth was set at half of the seismogenic thickness, which was
about 20 km, and the starting locking depth of 5 km was used; thus, 15 km of the source depth was
used. The period of the SHF evaluation was set at about 50 years.

4. Conclusions

This study could characterize a reasonable correlation between two seismotectonic
parameters, DF-b and DE-b, for Sumatra Island, especially around SFZ. The relationships
are DF-b and DE-b, respectively (DF = 2.851 − 1.272b) and (DE = 2.5242 − 1.0702b). It is
found that the relationship of DF-b seems better compared to DE-b. The result leads to the
fundamental understanding that the certainty of the source geometry distribution based
on the surface break of the late quaternary active fault is better than the distribution of the
epicenter of the earthquake data.

The correlation dimension map in this study concludes that the relatively high DC
coincides with the historical data of large earthquakes from 1925 to 2014. The most critical
finding in this study is that the areas with relatively high DC coincide with high seismic
moment loading rates, implying high tectonic stress loading that could pose the risk
of producing significant earthquake hazards in the future. The advantage of this study
compared to the previous research is that we could understand the correlation between the
high DC with the possible present-day strain loading since we incorporate the present-day
shallow crustal dynamic data.

In this study, we have proposed the algorithm to construct the most reliable annual
seismicity rate model along the SFZ. The model is estimated based on the integrated annual
A-value of the shallow earthquake, active fault, and seismic moment rate derived from the
GPS data. We suggest that the annual seismicity rate model tends to have better certainty
in geometrical source and rate distribution.

Another critical finding of this study leads us to conclude that the relatively high corre-
lation dimension coincides with a high SHF curve. Therefore, it could be summarized that
the areas with relatively high DC overlap with high seismic moment loading rates, which
may imply high tectonic stress loading that could pose the risk of producing significant
earthquake hazards in the future. This study also led us to the understanding that the
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high correlation dimension is closely related to the possibility of high seismic hazards in
the future.
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data (combined of PUSGEN catalog of 1963–2016 and GCMT catalog of 2017–2020), estimated b-value
based on a constant number of 50 events, the boundary zone based on Ref. [21], and grid in MAT file
format, LSQR GPS data, active fault data of SFZ and other materials related to the estimation results
in this manuscript.
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Abstract: The Ms 8.0 Wenchuan earthquake occurred on 12 May 2008, in the Sichuan Province of
China, and it was accompanied by a series of strong aftershocks. The mechanisms contributing
to the triggering of the Wenchuan aftershocks have attracted international attention. In this paper,
based on previous analysis of spatiotemporal distribution of aftershocks regarding pore pressure
diffusion of deep fluid, we established a three-dimensional hydraulic–mechanical coupling model
and investigated the influence of fluid migration and its mechanical effects in the Longmenshan fault
zone by using FLAC3D software. We obtained the characteristics of the pore pressure diffusion and
fault reactivation within 70 days in an area NA. The results show that the pore pressure significantly
increases up to 80 MPa during fluid intrusion into the fault plane. The pore pressure increase along
the fault dip is greater than that along the fault strike, with a maximum difference of 3.18 MPa. The
increase in pore pressure along the fault reduces the effective stress and leads to fault reactivation. The
evolution of the fault reactivation area calculated in the model is compared with the spatiotemporal
characteristics of the aftershocks. This study is meaningful for furthering the understanding of the
role of deep fluids in fault dynamics and aftershocks triggering.

Keywords: numerical simulation; pore pressure; hydraulic–mechanical coupling; spatiotemporal
distribution of aftershocks

1. Introduction

Earthquakes are often accompanied by changes in the physical properties, chemical
compositions, and other aspects of deep fluids [1–5]. The stress changes caused by a
mainshock can cause the diffusion of trapped fluids along a seismogenic fault, thereby
reducing the effective stresses and leading to further rock failure and triggering after-
shocks [6,7]. Geophysical inversions show that some earthquakes are located in areas
containing fluids or with high pore pressures, such as the 1995 Kobe earthquake [8], the
2001 Bhuj earthquake [9] and the 1938 Kutcharo earthquake [10] in Japan, and the 2009
L’Aquila earthquake in Italy [11]. Furthermore, there is much evidence to support that
the spatiotemporal distribution of some aftershocks may be driven by the migration of
fluid [12], including aftershocks of the 1992 Landers earthquake in the United States [13],
the 1995 Antofagasta aftershocks in northern Chile [14], the 1997 Umbra–Marche after-
shocks in Italy [6], the 2004 Sumatra aftershocks [15], and the aftershocks that occurred in
2014 in the West Bohemia/Vogtland region [16].

The Ms 8.0 Wenchuan earthquake is one of the largest disasters in China in recent
years. The mechanisms related to its triggering have been the focus of international at-
tention and have become an attractive field. Some scholars suggest that the occurrence of
the Wenchuan earthquake is related to the filling of the Zipingpu reservoir, e.g., [17–19].
Ge et al. [17] calculated stress changes caused by the filling of the Zipingpu reservoir at the
depth of the Wenchuan hypocenter and found that its filling could cause an earthquake to
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occur earlier than it otherwise would have. Lei et al. [18] analyzed the relationship between
reservoir-induced stress changes and seismicity near the reservoir. They found that the
filling of the Zipingpu reservoir caused Coulomb stress changes up to 0.05 MPa at 10 km
depth along the central fault of the Longmenshan fault zone, which could have contributed
to the Wenchuan earthquake. Sun et al. [19] used a three-dimensional porous elastic model
to estimate that filling the Zipingpu reservoir increased Coulomb stresses by 1 kPa at the
depth of the Wenchuan earthquake hypocenter. Although there is not yet a consensus
on whether the Wenchuan earthquake was triggered by the filling of the Zipingpu reser-
voir [20], these studies show that even small stress changes caused by fluids can lead to the
acceleration of seismicity. However, compared with surface reservoir impoundment, the
stress changes caused by deep fluid migration may be greater at the depth of the earthquake
hypocenter [21–23]. Many scholars have demonstrated the possibility that deep fluid may
exist in the Longmenshan fault zone using geophysical and geochemical methods [24–27].
Liu et al. [1] analyzed the Wenchuan aftershock spatiotemporal distributions by pore
pressure diffusion mechanics and suggest that the movement of deep fluid may trigger
aftershocks in the Longmenshan fault zone (Figure 1). However, it was mainly studied
from the point of view of hydraulic dynamics without considering the mechanical process.
It is necessary to further discuss the role of deep fluid migration in the triggering of the
Wenchuan aftershocks by considering a coupled hydraulic–mechanical model.

 

Figure 1. Spatiotemporal distributions of aftershocks [1]. Reproduced with permission from Liu et al.,
Tectonophysics; published by Elsevier, 2014, with Number 5270230803519.

In this study, based on the analysis of spatiotemporal distribution of Wenchuan af-
tershocks [1], we build a three-dimensional hydraulic–mechanical coupling model for
investigating the process of deep-fluid diffusion along the fault and calculated its mechani-
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cal effects on fault reactivation using FLAC3D software. The calculated fault reactivation
area is compared with the spatial and temporal distribution of Wenchuan aftershocks. The
results provide an insight into the role of pore pressure diffusion in triggering aftershocks
and the relationship between deep fluids and the seismogenic process.

2. Study Area

Based on focal mechanisms and distribution of hypocenters of the Wenchuan after-
shocks and the Longmenshan fault zone structure [28], there are some areas containing
similar types of seismicity along the Longmenshan fault zone. Because the focal mech-
anisms of the aftershocks are similar in such areas, it is likely that they have the same
triggering mechanisms [29], that is, the pore pressure diffusion of trapped deep fluid which
is initiated by stress changes caused by the mainshock [6], as observed in aftershocks
related to fluid migration elsewhere [11].

Pore pressure diffusion is one of the main methods of analyzing the spatiotemporal
distribution of earthquakes and extracting information on fluids involved in earthquakes,
e.g., [7,30–32]. If the first earthquake in an earthquake sequence is considered as a fluid
intrusion point, then if the distance between the first earthquake and its aftershocks (r)
gradually increases with time (t), these points will follow an envelope line in an r–t plot.
The emergence of an envelope line demonstrates that the earthquakes are triggered mainly
by the diffusion of pore pressure, which can be used to estimate hydraulic diffusivity, D [7]:

r =
√

4πDt (1)

Liu et al. [1] analyzed the spatiotemporal distribution of aftershocks for the areas with
the similar focal mechanisms and concentrated hypocenters and evaluated the hydraulic
diffusivities for such areas along the Longmenshan fault zone. An area NA is located in the
north of the Longmenshan fault zone (Figure 2a). Considering the aftershocks triggered by
pore pressure diffusion may have multiple stages [1], the aftershocks within 70 days in the
area NA are analyzed (Figure 2b). The spatiotemporal distribution of the aftershocks in the
NA area is plotted on the r–t plot (Figure 2c) and the M–t plot (Figure 2d). The aftershocks
in the area NA (Figure 2a) are more in line with an envelope shape in r–t space (Figure 2c)
than other areas and suggest that the aftershocks in the area NA were mainly triggered by
pore pressure diffusion. The hydraulic diffusivity D was estimated roughly to be 1.8 m2/s
from the envelope line, with a corresponding permeability of k = 3.7 × 10−15 m2 [14]. The
estimated value is reasonable compared to the seismogenic fault rock permeability [33].
Therefore, we select the area NA as the study area here and establish a three-dimensional
hydraulic–mechanical coupling model based on the previous work.

Figure 2. Cont.
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Figure 2. (a) The area NA. The star denotes the location of the Wenchuan mainshock, the solid
black lines denote faults, F1 denotes the back fault, F2 denotes the central fault, and F3 denotes the
piedmont fault (Deng et al., 2003). (b) Spatiotemporal distribution of aftershocks in the area NA.
The grey color represents the topography of the area. (c) The r–t plot for the area NA. The red lines
are the envelope lines for different hydraulic diffusivities D and the blue circles denote aftershocks.
(d) The M–t plot for the area NA.

3. Method

The fault rock was treated as an equivalent porous medium in the hydraulic–mechanical
coupling model. The migration of fluid in a porous medium obeys Darcy’s law [34], and the
rock stresses obey the Terzaghi effective stress principle [35]. The equations for calculating
pore pressure and stress changes are briefly described below.

3.1. The Mathematical Model

Based on Darcy’s law and mass conservation, the fluid flow in the fault and rock
matrix can be expressed by [3]:

∂(φρS)
∂t

= ∇·[ρk(∇P − ρg∇z)] + ρQ, (2)

in which φ is the porosity, ρ is the fluid density, kg/m3, S is the saturation, k is the
permeability, m2, P is the pore pressure, Pa, and Q is the source term, m3/s.

Assuming that the rock is an isotropic elastic medium in the fault, the stress state
influenced by the fluid can be represented by the Terzaghi effective stress principle:

σ′ = σ − αP, (3)

where σ′ is the effective stress, Pa, σ is the total stress, Pa, and α is the Biot coefficient.
Fault reactivation occurs when the difference between the maximum and minimum

principal stresses is sufficiently large [36]:

σ′
1

σ′
3
=

σ1 − αP
σ3 − αP

≤ q =

[(
μ2

s + 1
)1/2

+ μs

]2
, (4)

where σ1 and σ3 are the maximum and minimum principal stresses, respectively, σ′
1 and

σ′
3 are the maximum and minimum effective stresses, respectively, μs is static friction

coefficient of the rock, and q is the limiting stress difference. When the stress ratio exceeds q,
fault reactivation will occur. The mathematical model was solved with the finite difference
method by using the software FLAC3D [37]. Compared to the finite element method, the
finite difference method is computationally efficient for both meshing and solving the
numerical model.
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3.2. The Numerical Model

According to the location of the area NA and its fault structure [28,38], we established
a 30 km × 30 km × 10 km geological model (Figure 3a). The model includes a fault with
a dip of approximately 60◦ and a thickness of approximately 100 m, corresponding to
the high-angle reverse fault of Longmenshan fault zone [25]. Considering that nearly
90% of the aftershocks are distributed shallower than 10 km depth in the area NA, it is
assumed that the middle point of the fault in the Y-direction at 10 km depth is the fluid
intrusion point (Figure 3b). We should note that the location of the “intrusion point” is
chosen based on the mechanism of fluid-induced aftershocks (Liu et al., 2014) and the
temporal–spatial distribution of aftershocks in the area NA. From the point of view of
the triggering mechanism, it is assumed that there were many areas with trapped fluid
along the Longmenshan fault zone before the Wenchuan earthquake, and when the main
shock occurred, the changed crustal stress causes the trapped fluid in such zones to diffuse
upward. Accordingly, the main shock provides the geomechanical condition of the first
occurrence of aftershocks, whereas the zone of the trapped fluid, i.e., the existence of
fluid, determines the location of the “intrusion point” of the area. For the studied area
NA, considering the seep characteristic of deep fluid, we infer that the “intrusion point”
is the middle point in the Y-direction at 10 km depth. We should note that due to the
heterogeneity of the subsurface rocks, the inferred “intrusion point” may not be rigorously
in the bottom middle of the area, whereas it is a proper one, regarding the above mechanism
and the limited data about the geological aspect of this area. Thus, the model includes a
three-dimensional rock matrix (impermeable) and fault (permeable). From the point of
view of engineering geology, the rock matrix and large fractures (fault) constitute the rock
mass. Properties of the rock matrix and fault for the model are presented in Table 1 [33,36].

Figure 3. The model geometry and meshes used in the study. (a) A 3D view of the grid. (b) Plane
view of the fault zone in the Y–Z plane. The triangle denotes the fluid intrusion point.

Table 1. Parameters for the rock matrix, fault, and fluid for the numerical model.

Properties Rock Matrix Fault

Bulk modulus (Pa) 4.667 × 1010 2.800 × 1010

Shear modulus (Pa) 2.890 × 1010 1.646 × 1010

Rock density (kg/m3) 2600 2600
Fluid density (kg/m3) N/A 1000

Static friction coefficient N/A 0.6
Fluid modulus (Pa) N/A 2.2 × 1010

Permeability (m2) N/A 3.7 × 10−15

Biot coefficient N/A 1.00
Porosity N/A 0.05
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3.3. Initial and Boundary Conditions

As Longmenshan fault zone belongs to a reverse fault, which is the result of horizontal
compression, the maximum principal stress is in a direction perpendicular to the fault
strike in the model. Stress measurements at some places along the Longmenshan fault zone
prior to the Wenchuan earthquake show that the horizontal stress (σH) was greater than the
vertical stress (σv) and that σH = 1.35 ∼ 2.1σv [39]. We set the initial stress conditions for
the model based on the measured stresses and the stress characteristics for reverse faulting
and assume hydrostatic pressure for the fluid. The stress and hydrostatic pressure increase
linearly with depth.

The maximum principal stress is perpendicular to the fault strike in the horizontal
plane, and it is also the maximum horizontal stress σHmax, MPa, which can be expressed
by [39]:

σHmax = 6.5 + 0.0494H (5)

The intermediate principal stress is in the strike direction of the fault, i.e., the minimum
horizontal stress σHmin, MPa, can be expressed by the following [39]:

σHmin = 4.9 + 0.039H (6)

The minimum principal stress is vertical stress σv, MPa, which can be expressed
by [39]:

σv = ρrgH × 10−6, (7)

and the pore pressure, MPa, is assumed as hydrostatic initially [3]:

P = 0.01H, (8)

where H is the depth, m, ρr is the rock density, kg/m3 and g is the gravitational acceleration
of 10 m/s2.

Considering that stress accumulates relatively slowly compared to stress changes due
to pore pressure diffusion, it is assumed that the stress changes caused by tectonic activity
were unchanged during the study period. Therefore, the stress boundary conditions are
consistent with the initial conditions. The stresses along boundaries perpendicular to the
fault were represented by Equation (5), the stresses along boundaries parallel to the fault
were represented by Equation (6), and the stresses at the upper and lower boundaries were
0 MPa and 260 MPa, respectively.

Determining the source term of deep fluid and pore pressure in the fault is difficult in
the study of fluid dynamics in seismic processes. Although some scholars have studied fluid
migration and pore pressure in the Longmenshan fault zone [24], there is little knowledge
of the physical parameters of fluids in the fault zone during the Wenchuan earthquake. For
the fluid diffusion model in Equation (2), the source term should be specified, whereas, to
the best of our knowledge, it is hard to measure at the depth of 10 km. The source term, Q,
was 0.15 m3/s for the Matsushiro earthquake swarm [40], but the magnitude of Wenchuan
earthquake was much higher than those of the Matsushiro earthquakes. Hence, the source
term is assumed as 1.5 m3/s in our model.

4. Results

The intrusion of the fluid increases the pore pressure in the fault plane, which reduces
the effective stress in a rock and causes failure when it is sufficiently large. Here, we first
calculate the increased pore pressure in the fault plane within 70 days. Then the reduced
effective stress due to the pore pressure diffusion is analyzed. Last, we estimate the fault
reactivation area based on the calculated effective stress state.

4.1. Pore Pressure Increases Caused by the Fluid Intrusion

The fluid flow Equation (1) is solved numerically for investigating the characteristics
of pore pressure diffusion within the fault. The gradual increase in pore pressure in the
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fault plane due to fluid intrusion is shown in Figure 4. The area of elevated pore pressure
expands gradually along the fault dip and strike directions. The pore pressure in the fault
plane increases up to 80 MPa during the fluid intrusion.

Figure 4. The distribution of increasing pore pressure at different times during the fluid intrusion.

The increases in pore pressures ΔP along the strike (the red dashed line in Figure 3b)
and dip (the green dashed line in Figure 3b) differ from each other (Figure 5). It shows
that the increase in pore pressure along the dip is greater than along the strike, and the
difference increases with distance from the intrusion point and over time, reaching a
maximum of 3.18 MPa at 70 days. ΔP decays from the intrusion point over 70 days with an
averaged decay gradient of 0.8 MPa/km and 1.1 MPa/km along the dip and strike direction,
respectively. This suggests that the range of the increased pore pressure along the dip is
bigger than along the strike regarding the fluid intrusion point in this model. According to
the Terzaghi effective stress principle, the difference in the increase in pore pressure in the
two directions causes stress changes correspondingly. Therefore, it is necessary to further
calculate the crustal stress changes caused by the fluid intrusion.

Figure 5. The increases of pore pressure along the dip (solid line) and strike (dashed line) from the
intrusion point in the fault plane.
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4.2. Changes in Maximum Horizontal Stress and Vertical Stress Caused by Fluid Intrusion

The reduction of the effective stress caused by the increase in pore pressure along
the fault zone is one of the main mechanisms to explain earthquake triggering [3]. The
failure of rock is related to the difference between the maximum and minimum principal
stresses, as shown in Equation (4) [41]. For a reverse fault, the maximum and the minimum
principal stresses correspond to the maximum horizontal stress σHmax and the vertical
stress σv (Figure 3a), respectively. Therefore, we calculated the effective stress in the X-
and Z-directions, σ′

Hmax and σ′
v, considering the increased pore pressure (ΔP) using

Equation (3). The effective stresses in the X- and Z-directions during fluid intrusion are
shown in Figure 6a,b, respectively. It shows that the effective stress gradually decreases
over time in both directions.

Figure 6. The distribution of effective stress (a) in the X-direction σ′
Hmax; (b) in the Z-direction σ′

v
during the fluid intrusion.

4.3. Fault Reactivation Caused by Fluid Intrusion

Fault reactivation occurs after rock failure, and it is then followed by earthquakes [40,41].
Calculating the fault reactivation area caused by fluid intrusion is helpful in analyzing the
spatiotemporal distribution of aftershocks triggered by pore pressure diffusion. Based on the ef-
fective stresses calculated above, we can estimate the fault reactivation area using Equation (4).

Fault reactivation will occur when the ratio of the effective stresses in the X- and Z-
directions exceed the limiting stress difference q shown in Equation (4), which is influenced
by the static friction coefficient μs. For the Longmenshan fault zone, q is 3.13 when μs is
assumed to be 0.6 [39]. The ratio of the effective stress in the X- and Z-directions at 10 days,
25 days, and 70 days are shown in Figure 7, where the red area indicates where the fault
may reactivate. It suggests that fault reactivation area expands gradually over time in both
the X- and Z-directions.

The locations of aftershocks in the area NA for 70 days are plotted in Figure 8a. The
spatiotemporal distribution of aftershocks in the area NA shows that most aftershocks
locate in the central area initially (red circles) and they expand gradually with time to some
extent (blue circles). We should note that computer-aided algorithms would be helpful
for a comprehensive analysis of such area/volume in further study. Furthermore, based
on the fault reactivation area calculated above (the red area in Figure 7), we delineate the
contour of fault reactivation area calculated numerically (Figure 8b). Such comparison of
Figure 8a,b provides insights into the correlation between the spatiotemporal distribution
of aftershocks and the fault reactivation area.
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Figure 7. The distribution of the stress ratio σ′
Hmax/σ′

v during the fluid intrusion.

Figure 8. A comparison of the spatiotemporal distribution of aftershocks and the numerical simula-
tion of the fault reactivation area. (a) The aftershock distribution at different times. (b) The calculated
fault reactivation area at different times.

5. Discussion

5.1. Aftershock Triggering Mechanisms and Pore Pressure Diffusion

Based on the results of this study, we suggest that the aftershocks in the area NA are
mainly triggered by pore pressure diffusion along the fault. The Longmenshan fault has
been very tectonically active since the Cenozoic. It has been under compression due to
the collision between the Indian and Eurasian Plates, and the maximum horizontal stress
has been increasing until the Wenchuan earthquake, which led to a release of stress. At
the same time, there are some studies indicating that deep fluids were likely to exist in the
Longmenshan fault zone prior to and during the Wenchuan earthquake. Stress changes
generated by the mainshock may lead to the diffusion of fluid trapped along the fault, then

124



Water 2022, 14, 952

the increased pore pressure caused fault reactivation and triggered aftershocks where the
rock stress was at the critical state.

Some aftershocks in the r–t plot (Figure 2c) did not follow the envelope line, par-
ticularly early in the aftershock sequence. Stress transfer may be the main triggering
mechanism of these aftershocks. These aftershocks display burst-like characteristics in r–t
space [29], but they do not gradually migrate away from the initiation point over time.
Although the stress transfer caused by the mainshock may have triggered some aftershocks
in the initial stage, pore pressure diffusion may predominate the aftershocks in the area
NA afterwards.

Focal mechanism tomography (FMT) is one of the main methods to estimate the excess
pore pressure in a source region. Excess pore pressures were in the range of 0~60 MPa for
the 2009 L’Aquila earthquake in Italy [11]. In this study, the estimated range of the increase
in pore pressure caused by fluid intrusion is 0~80 MPa, which is comparable with the
results of the L’Aquila earthquake. In addition, the larger increase in pore pressure along
the dip than along the strike is similar to the results of the Matsushiro earthquake [40].
However, in addition to the mechanical aspect, the chemical effect of fluid should also be
considered in future research, which may contribute to change the composition of the fluid
and rock during fluid migration and hydraulic–mechanical interactions [42].

5.2. Spatiotemporal Distribution of Aftershocks and Pore Pressure Diffusion

In the hydraulic–mechanical coupling model, the evolution of the fault reactivation
area calculated is correlated with the spatiotemporal distribution of aftershocks in the area
NA. Several investigations of the 1965–1967 Matsushiro earthquake swarm in Japan have
also suggested that the migration of deep fluids may have strongly influenced swarm
activity [40]. The spatiotemporal distribution of the Matsushiro earthquake swarm is also
comparable with the evolution trend of the fault reactivation area in this study [43]. Here,
we studied the area NA for analyzing the correlation between the pore pressure diffusion
and the aftershocks distribution. Nevertheless, it does not mean that only the aftershocks
in the area NA might be related to deep fluid intrusion along the Longmenshan fault zone.
This is due to the fact that the geological structure and the focal mechanism of aftershocks
are similar in the area NA [29], which indicates that the seismogenic process of the area
tends to be uniform. Therefore, the influences of heterogeneous structure and complex
stress state along the fault zone on the spatiotemporal distribution of aftershocks have
been minimized. However, for analyzing the triggering mechanism of aftershocks and
pore pressure diffusion process of fluid intrusion along the whole Longmenshan fault zone,
several aspects require further study, as discussed in the following.

First, in the modeling process, we treated fluid as the main factor affecting aftershock
activity. However, there may be other important factors, such as the mechanical effect of
fault slip, the interaction between aftershocks, or the effect of seismic waves. Additionally,
the trapped fluid intrusion area is assumed as a point in the model due to the fact that
the dimension of the trapped fluid area is very small compared to the modeling area NA,
e.g., [16,44]. However, in the case of the dimension of the modeling area decreasing, the
source term might be depicted as a line or other shapes constrained by the geophysical data,
which should be explored in the further study. Additionally, the location of the intrusion
point and the flow rate of the source term is assumed as constant in this study. We should
note that these critical properties may contain uncertainties due to the limitation in the
insufficient observation data, which should be further explored. Second, the heterogeneity
and anisotropy of rocks and a non-uniform stress distribution along the fault may also affect
the spatiotemporal distribution of aftershocks. The permeability of fault rocks affects the
fluid migration, which may influence the spatiotemporal distribution of aftershocks [13,45].
Thus, a model with heterogeneous permeability based on upscaling permeability for
fractured rocks should be explored in a future study [46]. Furthermore, the sensitivity
analysis should be further investigated for such key parameters listed in Table 1, which may
have a significant impact on the coupled hydraulic–mechanical model. Third, a different
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initial stress state in the model may influence fault reactivation during fluid migration.
Advanced methods for calculating crustal stress, e.g., [47], could help in constraining
our hydraulic–mechanical model and thus may yield a better match between the real
data and model results. Fourth, the model solved the pore-pressure diffusion equation
numerically and fault reactivation area analytically, and we noted that recent contributions,
e.g., [16,48], built models with coupled fluid–mechanical equations for analyzing the
relationship between aftershock and fluid diffusion. Calculation of deformations and
displacements should be further studied.

Therefore, it is necessary to further consider the heterogeneity and anisotropy of rocks,
the properties of the fluid source, and the related dynamics during aftershocks. Based
on the results of scientific drilling in the Wenchuan fault, further research is needed to
combine seismology and geochemistry to obtain comprehensive poroelastic parameters
and understand their changes along the fault during the aftershock sequence.

5.3. Numerical Aspects of the Model

Considering the Longmenshan fault zone is very large horizontally and the distance
between most aftershocks and their initial point (which is located at the bottom-center
of the model) is less than 10 km in the studied area (Figure 2c), a rectangle fault plane
30 km × 11.5 km (dip angle 60◦, 11.5 = 10/sin(π/3)) is built for eliminating the boundary
effect in the horizontal and vertical directions.

The Wenchuan aftershocks were distributed along the Longmenshan fault zone (Figure 1).
Especially, the model dimension of the studied area NA is 30 km × 30 km × 10 km, which is
still very large and is not feasible for computation when the meshes are very fine. Considering
the assumed homogeneous hydraulic properties within the fault plane, which yields more
stable results than those of the heterogeneous model, a 1 km × 1 km (30 × 10) grid is assumed.
The calculated results in Figures 4 and 5 demonstrate that the change of pore pressure reached
the top boundary (i.e., the Earth’s surface), which may affect the distribution of pore pressure.
In addition, for demonstrating the stability and reliability of the numerical models, sensitivity
analyses of mesh and model size have been conducted (Figure 9). It is shown that either
refining the grid block of 0.75 km × 0.77 km (40 × 13) for the fault plane (green color) or
enlarging the model dimension of 30 km × 40 km × 10 km (blue color), the calculated pore
pressures at 30 days are very close regarding the numerical model used in the previous study
(red color). The relative errors are roughly evaluated, and are below 6%.

Figure 9. Pore pressure along the dip from the intrusion point in the fault plane for varied model and
grid dimensions.
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6. Conclusions

Based on previous studies of the Wenchuan earthquake and the spatiotemporal distri-
bution of aftershocks with respect to pore pressure diffusion of deep fluids, we established
a three-dimensional hydraulic–mechanical coupling model to investigate pore pressure
diffusion and its mechanical effects in the fault plane using FLAC3D. During fluid intru-
sion into the fault plane, the pore pressures increase significantly by up to 80 MPa within
70 days in the study area NA. The increase in pore pressure, ΔP, along the fault dip is
greater than that along fault strike on the fault plane. During 70 days, ΔP decays from the
intrusion point with an averaged gradient of 0.8 MPa/km and 1.1 MPa/km along the dip
and strike direction, respectively. The increase in pore pressure on the fault plane reduces
the maximum and minimum effective stresses and thus can lead to fault reactivation. The
evolution of the fault reactivation area calculated in the model is compared with the spa-
tiotemporal distribution of aftershocks, taking into account the assumed input parameters
and measurements of other studies. Our results provide insights for understanding the
triggering mechanisms of the Wenchuan aftershocks.
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Abstract: Increased levels of resilience will reduce the negative consequences of any disaster and
develop the capacities of communities to mitigate future disasters. The main objective of this study
was to measure the level of resilience of two different communities in two different study areas
and compare the resilience levels in terms of a flood. The study used the Analysis of Resilience
of Communities to Disasters (ARC-D) toolkit. The study was conducted in two different areas to
compare the level of community resilience. Both quantitative and qualitative methods were used
in the study. A structured questionnaire was developed by using the toolkit. Results of the study
indicated that communities in study area 1 were more resilient than communities in study area 2.
Communities from study area 1 were more aware of their risk(s) and problem(s) and ensured proper
strategies and actions to solve problems. On the other hand, communities in study area 2 were less
aware of their risk(s). The strategies and actions implemented by the communities of study area 1
focused on the short-term problem(s), which reduced their level of resilience. Measuring resilience is
very important in terms of developing disaster risk reduction (DRR) plans and incorporating DRR
in the development process in lower-income countries and developing countries. As data scarcity
is one of the major issues in developing countries, introducing a community resilience assessment
mechanism can be a great help to reduce gaps in the planning and implementation process.

Keywords: community; resilience; measurement; risk; hazard; disaster

1. Introduction

Bangladesh is one of the most disaster-prone countries in the world. Bangladesh is
situated in the south Asian sub-continent, and due to its unique geographical location,
it is always the subject and victim of different kinds of disasters. According to World Risk
Index 2019, Bangladesh stood in 10th position in the list of most risky countries around
the world [1]. Disasters are almost an annual phenomenon here, that severely render the
sustainable and progressive activities of the country. Between 1900 and 2016, ninety major
flood events happened in Bangladesh, which cost 52,437 people their lives and almost
32 million people were directly affected [2]. Moreover, poverty, lack of resources, limited
preparedness, lack of awareness, and gaps in response mechanisms make the scenario
worse. In developing countries, lack of information and data, limited hazard assessment
mechanisms, dynamic characteristics of vulnerabilities of the communities, and inadequate
knowledge about disaster management also hamper the process of achieving resilience at
the community level [3–6].

Sustainability 2022, 14, 1758. https://doi.org/10.3390/su14031758 https://www.mdpi.com/journal/sustainability
130



Sustainability 2022, 14, 1758

In the year 2020, floods in the northern part of Bangladesh caused significant de-
struction. The duration of the 2020 flood was longer than in previous years. Further,
the water level was much higher than for regular monsoon floods [7]. Most of the districts
in the northern part faced the consequences of the 2020 flood. The government and non-
government organizations (NGOs) initiated different projects and programs to support the
innocent victims of the flood. Still, they are struggling to adjust to the unfavorable situation
as people are not rehabilitated properly following a systematic plan of resilience. After a
disaster, recovery activities should focus more on increasing the community’s resilience and
all other support. The Sendai Framework for Disaster Risk Reduction (SFDRR) 2015–2030
is mainly introduced to make communities more pro-active and initiate action long before
the strike of a disaster. All the four priorities of SFDRR are focused to reduce loss of lives,
properties, and environment and to make communities resilient.

In English, the word ‘resilience’ is derived from the Latin words resilire and salire,
which stand for leap back, recoil, and spring again. In common words, resilience is said
to be the responsiveness of anything in a reflective manner [8]. Resilience can be defined
from different disciplines, and there are complexities in developing consensus regarding
the definition [8]. In disaster studies, resilience is the ability of any organization to rebound
or spring back to normal operations after an event has occurred [8]. Mainly, resilience is
seen as a condition or trait or process or outcome that can bend but not break. The system
which is capable of bouncing back even grows in the face of an adverse experience [9].
According to [10,11], resilience is related to the capacity of social units to reduce the effects
of disasters and continue recovery activities after a disaster to reduce the disruption of
social engagements. Furthermore, resilience is known as the ability of individuals to
continue working in a given adverse condition [11,12]. Resilience is the level of capacity
and resources of any community to organize itself before and during any hazardous
event [13]. Resilience is known as the strategy or strength of someone or any society to
adapt to face any traumatic situation and continue normal activities. Disaster resilience is
related to the disturbance occurring from natural and human phenomenon and community
coping capacity. Resilience has been seen as the combination of three criteria: capacity of a
system to remain in the same domain but face changes in the system, capacity of a system
to reorganize by itself, and capacity of a system to learn and cope with conditions [14].
The basic idea of community resilience is to bounce back to the previous position after
any negative life events [15]. Community resilience has been identified in various ways
by different researchers. According to [16], community resilience is a condition where
the community will bounce forward to address the previous weaknesses and to take
measures. It is also coined by [16] that community resilience is a transformational process
rather than addressing the strengths of the community. The United Nations Environment
Programme (UNEP) took another step to merge resilience with Disaster Risk Reduction
(DRR). According to UNEP, through DRR, environments and eco-systems should revitalized
to make communities and countries resilient [17]. In the study by [18], community resilience
is seen from a public health perspective. As individual resilience is the adaptation strategy
after facing an adverse event, community resilience is the ability of the community to
sustain in adverse conditions and recover from negative events [18]. It has been identified
by [19] that community resilience is not only related to social and natural context within
which community lies but also related to the political and economic circumstances.

Community capacity is seen as an ability that will enhance the community’s coping
capacity after a disaster to manage future disasters [19]. In the work of [20], two major com-
ponents are identified to define community disaster resilience: emergency adjustment and
long-term adaptation capacity. According to [20], community disaster resilience is related
to increasing disaster recovery capacity, introducing adjustment to an emergency, and en-
suring long-term adaptation after a disaster, eventually reducing community vulnerability.
It is also coined here that community disaster resilience is related to the community’s social,
political, economic, and environmental circumstances [20]. Community resilience is an on-
going process to develop community capacity to prevent or mitigate any stressful incident
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and ensure response, recovery, and restoration after an incident [21]. In [22], resilience is
indicated as the capacity or ability of communities, cities, or groups to endure hazardous
events and recover from such events. Thus, community resilience is the ability of the
community to continue functioning during and after a disaster [22]. A study of community
disaster resilience [23] defined community disaster resilience as “the capacity or the ability
of a community to anticipate, prepare for, respond to, and recover quickly from impacts
of disaster”. Here, community disaster resilience is related to recovering from hazardous
conditions and learning processes to cope with current and future hazards [23]. Community
resilience depends on different social values, capacities, social capital, knowledge, expertise,
skills, physical assets, relation, economic conditions, and political conditions, reducing
vulnerabilities and increasing adaptation capacities [24].

From all these definitions and concepts, it is very clear that community disaster
resilience depends on current capacities to endure a hazardous event and develop abilities
to adapt to future events without disrupting regular functioning. In this case, it is important
to assess the different current social, economic, political, and environmental capacities of
the community so that initiatives can be designed to increase the level of resilience. Both
short-term responses and long-term efforts should be included. The main objective of this
study was to measure the level of resilience of two different communities in two different
study areas by using the Analysis of Resilience of Communities to Disasters (ARC-D)
toolkit and compare their level of resilience in terms of the flood. The research questions
were: to what extent the communities are resilient, and what level of differences are there
between the two communities in terms of resilience? Studies explored that making a
community resilient is a complex process and it is not easy to define a community that
is resilient for all disasters [25]. Thus, assessing the level of resilience of communities for
an individual disaster can be effective. This study explicitly focused on floods to assess
the resilience level of two different communities. The study used the ARC-D toolkit to
showcase the interconnectedness of different components which enable a community to
become resilient [26].

2. ARC-D Toolkit

There are different resilience assessment tools that are used to assess the level of
resilience from different perspectives. Assessing community resilience is a complex activ-
ity. There is no standard tool to measure community resilience. Each tool measures and
assesses community resilience with different objectives. It is important to specify why we
need to measure community resilience and how we will utilize the results. Tools, such as
the Community Disaster Resilience Index (CDRI) [27], Community Disaster Resilience
Framework for Iran [28], Community Resilience Score Card [24], Community Resilience
framework [29], and Communities Resilience Index [30], are used to measure and ana-
lyze community disaster resilience. In this study, we used the Analysis of Resilience of
Communities to Disasters (ARC-D) toolkit developed by GOAL [31]. The ARC-D toolkit
was developed to measure community resilience under a 10-year project by GOAL [31].
This tool was used in 11 different countries to ensure its credibility, validity, reliability,
and applicability. A long research process and testing ensured the proper development
of the ARC-D toolkit. There are 30 specific indicators in the ARC-D toolkit to measure
community resilience (Table 1). This toolkit is initially derived from the Characteristics of
Disaster Resilient Communities guidelines developed by [32]. The main reason for using
the ARC-D toolkit in this study was to measure community resilience from a comprehen-
sive perspective. The ARC-D toolkit was designed to assess the multi-dimensional level of
community resilience and explore the areas for further development. The ARC-D toolkit
not only measures community resilience but also refers to possible actions for the future.
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Table 1. ARC-D toolkit resilience components, questions, and measurement scores [31].

Sl. No. Components Questions SFDRR Priority Areas

1 Participatory risk
assessment

Has the community carried out a participatory risk assessment (hazard
analysis, vulnerability and capacity analysis (VCA), impact analysis), shared
the findings, and have human resources capable for conducting and updating

this assessment? [31,33]

Priority 1:
Understanding disaster risk

2 Scientific risk
assessment

Does the community combine local knowledge and perceptions of risk with
scientific knowledge, data, and assessment methods? [31,33]

3

Dissemination of
Disaster Risk

Reduction (DRR)
information

Have community members been exposed to/have participated in DRR
specific awareness events (campaigns, discussions, and training) and have

improved awareness and practices as a result? [31,33]

4 Education of children
on DRR

Are DRR and recovery knowledge and capacities being passed on to children
formally through local schools and informally via oral tradition from one

generation to the next? [31,33]

5 DRR in development
planning

Does the community see DRR as an integral part of plans and actions to
achieve wider community goals (e.g., poverty alleviation,

quality of life)? [31,33]

Priority 2:
Strengthening disaster risk

governance to manage
disaster risk

6 DRR in land use
planning

Does community decision-making regarding land use and management take
disaster risk into account? [31,33]

7 Community
decision-making Is the community leadership committed, effective, and accountable? [31,33]

8 Inclusion of
vulnerable groups

Are the vulnerable groups in the community included and represented in
community decision-making and management of DRR and recovery? [31,33]

9 Participation of
women

Do women participate in community decision-making and management of
DRR and recovery? [31,33]

10 Rights awareness and
advocacy

Is the community aware of its rights, relevant legal mechanisms, and
responsible actors for their fulfillment, and does it advocate for these? [31,33]

11 Partnerships for DRR
and recovery

Are there clear, agreed, and stable partnerships between the community and
other actors (local authorities, NGOs, businesses, etc.) that provide resources

for DRR and recovery? [31,33]

12
Sustainable

environmental
management

Does the community adopt sustainable environmental management practices
that reduce disaster risk and new risks related to the effects of

climate change? [31,33]

Priority 3:
Investing in disaster risk
reduction for resilience

13 Water security and
management

Does the community have access to sufficient quantity and quality of water for
domestic needs during disasters? [31,33]

14 Health access and
awareness

Do community members maintain good health in normal times through
appropriate awareness and practices (adequate nutrition, hygiene, and health

care access)? [31,33]

15 Secure and sufficient
food supply

Does the community have a secure and sufficient food supply during
disasters? [31,33]

16 Hazard-resistant
livelihood practices

Does the community employ hazard-resistant livelihood practices for food
and income security? [31,33]

17 Access to market Are the local market links for products, labor, and services protected against
shocks? [31,33]

18 Access to
financial services

Are there affordable and flexible financial services (savings and credit
schemes, microfinance), whether formal or informal? [31,33]

19 Income and asset
protection

Are household asset bases (income, savings, and convertible property)
sufficiently large and diverse, and protected to ensure reduced vulnerability to

disaster? [31,33]

20 Social protection Does the community have access to informal and formal social protection
schemes that support disaster risk reduction and recovery? [31,33]

21 Social cohesion and
conflict prevention

Is there a sense of peace, security, and effective conflict prevention and
mitigation mechanisms, both within the community and with other

communities? [31,33]

22 Critical infrastructure
Are the community’s critical infrastructure and basic services resilient to

disaster (e.g., located in low-risk areas, using hazard-resistant construction
methods, and structural mitigation measures)? [31,33]

23 Housing
Is the community’s housing resilient to disaster (e.g., located in low-risk areas,

using hazard-resistant construction methods, and structural mitigation
measures)? [31,33]

24 Contingency and
recovery planning

Does the community use communally developed contingency and recovery
plans that are widely understood and include measures to protect vulnerable

groups? [31,33]
25 Early warning system Is there an operational early warning system in the community? [31,33]

26

Capacity in
preparedness,

response, and early
recovery

Does the community have a trained and operating organization in disaster
preparedness, response, and early recovery? [31,33]
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Table 1. Cont.

Sl. No. Components Questions SFDRR Priority Areas

27 Health services in
emergencies

Does the community have access to health care facilities and health workers
equipped and trained to respond to physical and mental health consequences

of disasters, and supported by access to emergency health services,
medicines, etc.? [31,33] Priority 4:

Enhancing disaster
preparedness for effective

response, and to “Build
Back Better” in recovery,

rehabilitation, and
reconstruction

28 Education services in
emergencies

Do education services have the capacity to continue operating
in emergencies? [31,33]

29 Emergency
infrastructure

Are emergency shelters (purpose-built or modified) accessible to the
community and have adequate facilities to meet basic needs for all of the

affected population? [31,33]

30

Leadership and
volunteerism in

response and
recovery

Does the community play a leading role in coordinating preparedness,
response, and recovery, reaching all affected people—including the most

vulnerable—through organized and trained volunteers? [31,33]

Measurement Score
Score 1 2 3 4 5

Description Minimum resilience Low resilience Medium resilience Approaching resilience Resilience

3. Data and Method

3.1. Research Approach

The study used a mixed-method approach for collecting and analyzing data. Both qual-
itative and quantitative methods were used to conduct the study. The quantitative method
was focused on the ARC-D tool to measure community resilience. Previous studies showed
that this toolkit can be successfully used to measure community resilience in a collective
approach [31,33–36]. On the other hand, the qualitative method focused on collecting data
on communities’ perspectives, beliefs, and practices related to resilience. The quantita-
tive method helps to use different measurements to summarize and quantify results [37].
Through the qualitative method, experiences and practices are recorded to gain a descrip-
tive view related research objective [37]. The study mainly followed the triangulation
of methods that ensure the use of more than one method in a study to achieve a more
reliable and valid result [37]. Previous community resilience assessment models divided
scales in physical, environmental, economic, natural, and social resilience to gain a more
in-depth view. However, this study did not follow the process. This can be indicated as a
methodological limitation of this study.

3.2. Study Area

Due to the geographical context and physical distribution of rivers, Bangladesh faces
flooding regularly every year. The main river systems, which are known as the Ganges,
Brahmaputra, and Meghna river systems, bring a huge amount of water from upstream
and cause devastating floods in this deltaic area [38]. Rivers in Bangladesh are mainly in the
old stage and deposit massive amounts of sediment every year. Due to this reason drainage
capacity of the river system is reducing every year [38]. When a massive amount of water
passes through the country, it overflows nearby areas and creates devastating floods. This
study had chosen two different areas that faced the major impact of the 2020 flood: Sirajganj
and Bogura. According to the Need Assessment Working Group 2020 report, approximately
338,455 people were affected by the flood in Sirajganj. On the other hand, according to the
same report total of 127,875 people were affected by the flood in Bogura [7]. Throughout
the study, areas are referred to as study area 1 = Sirajganj, and study area 2 = Bogura.

3.3. Sample Size and Sampling

There were two study areas (Sirajganj and Bogura). Solvin’s 1960 tool was used to
select the sample size [39,40]. The formula and sample size are given below (Equation (1)):

n = N/
(

1 + N × e2
)

(1)
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where n = sample size, N = total population affected by 2020 flood (Sirajganj = 338,455,
Bogura = 127,875) [7], e = margin of error (5%):

n = 466330/
(

1 + 466330 × (5%)2
)

n = 399.66

A total of 435 respondents were surveyed during the study. After adjusting the
missing responses with a 95 percent response rate, 413 responses were transferred for
further assessment. After completing the coding and transcription of the data, finally,
410 responses were valid for final analysis. The samples were equally distributed in two
study areas (Sirajganj = 205, Bogura = 205).

The study used the snowball sampling technique to select the samples in the study area.
Snowball sampling is one of the major non-probability sampling techniques [37,41]. Under
the snowball technique, primarily, the samples were selected randomly. After collecting
data from a few samples, the respondents were asked to indicate from whom the study
should collect the next responses. In this way the respondents who already participated in
the study helped to select new samples. A network of samples was developed through this
technique. Non-probability sampling techniques help to reach the convenient samples as
much as possible [37,42]. The criteria to become a sample in the study were: the respondent
must be 15 years old or above, be a permanent member of the study communities, and have
faced the impacts of the 2020 flood.

3.4. Data Collection Tool
3.4.1. Quantitative Method

As part of the quantitative approach, a survey tool was used to collect the data.
The ARC-D toolkit was followed to develop a structured questionnaire to collect data from
the communities (Table 1). The questionnaire was administered by trained data enumera-
tors who translated each question for the respondents and collected the responses. There
is a total of 30 components in the ARC-D toolkit. There are specific questions for specific
components with a special measurement scale [31]. Responses of questions were collected
using a 5-level Likert scale representing 1 = minimum resilience and 5 = full resilience
(Table 1). The components of the toolkit are also aligned with the priorities of the Sendai
Framework for Disaster Risk Reduction (SFDRR) 2015–2030.

3.4.2. Qualitative Method

The study also used an observation tool as part of the qualitative method. The ob-
servation tool helps to gain a broader picture of any field and collect perspective-based
information [37]. The main reason behind using a qualitative tool is to gather the informa-
tion that will support or deny the quantitative findings. Only number-based results are not
enough to develop a comprehensive picture of the study communities.

3.5. Data Analysis

Quantitative data were coded and analyzed using IBM SPSS version 25 [43]. The de-
scriptive statistical analysis helped to assess the resilience level. The whole quantitative
analysis followed the process from the ARC-D toolkit. Responses of the samples were
analyzed, and the mean values were gathered for each component. With the total mean
value of each community, the level of resilience was defined. Table 2 shows the scale for
assigning community resilience levels according to the ARC-D score [31]. The qualita-
tive data were analyzed based on commonality and differences in the responses. All the
common responses were accumulated and discussed with quantitative findings.
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Table 2. Community resilience levels [31].

Resilience Level Score Description

Very low resilience 30–45 Very limited awareness and knowledge of the problem(s). No action taken [31,33]

Low resilience 46–75 A certain awareness of the problem(s), willingness to act, some actions taken, but actions are
fragmented, and solutions are only short term [31,33]

Medium resilience 76–105 Awareness of the problems and long-term actions taken, but not related to a long-term strategy
and/or addressing all aspects of the problem(s) [31,33]

Close to resilience 106–135 Long-term actions, in accordance with a predefined strategy, addressing the main aspects of the
problem(s), but are inhibited by persistent shortcomings in their implementation [31,33]

Resilience 136–150 Long-term actions are undertaken in accordance with a pre-defined strategy assessing all aspects
of the problem(s); they are sustainable and supported by the community [31,33]

3.6. Ethical Considerations

The project proposal and tools were ethically reviewed and approved by the institu-
tional ethical review committee of the Institute of Disaster Management and Vulnerability
Studies, University of Dhaka. The committee included both internal and external members.
All the respondents participated in the study voluntarily. Prior consent was collected before
collecting the data. During the whole study, the research team followed a strong ethical
guideline in every stage.

4. Results

4.1. Socio-Demographic Information

Demographic information showed that 55.6 percent of the respondents were male,
and 44.4 percent were female. As getting access to women of the household was difficult
in the study areas, the number of female respondents is comparatively low. The majority
of the respondents were from the 26–35 years age group. Most of the respondents were
married and did not have any formal education. The income and expense levels among
the respondents were very low. A significant number of respondents depended on peer
group-based loans to maintain their families. A low level of income represents a higher
level of economic vulnerability (Table 3).

Table 3. Socio-demographic information of the respondents.

Sl. No. Characteristics
Percent p-Value Df

Study Area 1 Study Area 2

1
Sex

0.426 1Male 28.8 26.8
Female 21.2 23.2

2

Age

0.002 ** 36

<18 2.2 1.7
18–25 12.7 11.9
26–35 14.7 14.7
36–45 10.1 12.2
>45 10.3 9.5

3
Marital status

0.087 2Single 5.4 2.7
Married 44.6 47.3

4

Educational status

0.024 * 7
No formal education 23.9 25.4

Primary level 11.7 16.3
Secondary level 10.7 7.4

Higher secondary level and above 3.7 0.9
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Table 3. Cont.

Sl. No. Characteristics
Percent

p-Value Df
Study Area 1 Study Area 2

5

Monthly household expenses
(in BDT)

0.001 ** 17
<5000 1.6 2.9

5000–10,000 37.1 41.0
10,000–20,000 10.0 6.1

>20,000 1.3 0.0

6

Monthly household income
(in BDT)

0.000 *** 22
<5000 0.4 2.5

5000–10,000 31.6 40.6
10,000–20,000 14.6 6.8

>20,000 3.4 0.1

7

Number of family member(s)

0.001 ** 11
<5 21.0 25.1

5–10 27.0 24.8
>10 2.0 0.1

* p < 0.05, ** p < 0.01, *** p < 0.001.

4.2. Community Resilience Level

The following section discusses the results of community resilience measurement
activity. In the methodology section, the scoring system and process of collecting data are
already discussed. The results in Table 4 are presented to clearly show the comparison of
the level of community resilience between the two study areas.

Communities in study area 1 saw disasters as an integral part of their development
process. They tried to include disaster-related issues in their development activities. As a
result, they have scored a medium level of resilience. On the other hand, communities in
study area 2 mostly did not have any idea about how to include disasters in development
planning (Table 4). Some of the community members thought about disasters during
their livelihood planning. For this reason, they have scored a lower level of resilience.
Communities in both study areas were not greatly aware of DRR in land use planning.
Due to this, both of the study areas showed low resilience levels in DRR related land
use. Community leaders in study area 1 were very proactive related to DRR related
activities. The majority of the respondents from study area 1 shared that local leaders
work effectively in the pre, during, and post phases of a flood. However, community
leaders and political members of study area 2 were not very active in the phases of a
flood. Most of the respondents in study area 2 regretted that they did not see that many
interventions from community leaders during the recent flood. Both study areas still
lag behind in terms of ensuring inclusiveness in the DRR process. Vulnerable groups,
especially women, did not receive many opportunities to share their voices in the decision-
making platforms. Qualitative data disclosed that limited education and a lower level of
income make people more vulnerable to disasters. These vulnerable were socially deprived
by other community members. Following this, in both study areas, people were not
greatly aware of their rights and legal mechanisms related to DRR. Though communities in
study area 1 scored better on the resilience measurement scale, there were still areas for
development. Due to the availability of different NGOs in study area 1, the partnership-
related resilience was comparatively better in study area 1. However, the communities
in study area 2 lagged in partnership-related resources, which hindered their level of
resilience. Altogether, study area 1 was in a better position in the governance-related
resilience components. Strengthening disaster risk governance is one of the priorities of
SFDRR (2015–2030). Ensuring participation of community members in decision-making
platforms, building the capacity of local governments, developing a partnership with
different organizations, mobilizing resources to vulnerable areas, including at-risk groups in
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the planning process, and prioritizing the needs of communities can support strengthening
the disaster risk governance.

Table 4. Community resilience level scores [31,33].

Sl. No. Component

¯
x σ

p-Value
Study Area 1 Study Area 2 Study Area 1 Study Area 2

1 Participatory risk assessment 3.67 1.78 1.032 0.538

0.000 ***

2 Scientific risk assessment 3.50 1.86 1.008 0.570
3 Dissemination of DRR information 3.24 1.77 1.241 0.509
4 Education of children on DRR 3.18 1.88 1.241 0.524
5 DRR in development planning 3.00 1.72 1.122 0.452
6 DRR in land use planning 2.59 1.92 0.833 0.713
7 Community decision-making 3.46 1.87 1.319 0.367
8 Inclusion of vulnerable groups 2.07 1.61 0.918 0.588
9 Participation of women 2.87 1.56 1.399 0.517

10 Rights awareness and advocacy 2.91 1.72 1.312 0.520
11 Partnerships for DRR and recovery 3.31 1.56 1.501 0.497
12 Sustainable environmental management 2.14 1.79 1.022 0.723
13 Water security and management 3.92 4.07 0.794 0.671
14 Health access and awareness 1.91 2.98 1.020 1.014
15 Secure and sufficient food supply 2.13 1.53 1.050 0.547
16 Hazard-resistant livelihoods practices 1.84 1.62 0.685 0.579
17 Access to market 1.61 1.30 0.659 0.458
18 Access to financial services 2.10 1.66 1.005 0.559
19 Income and asset protection 1.83 1.58 0.818 0.495
20 Social protection 2.27 1.65 1.143 0.487
21 Social cohesion and conflict prevention 3.50 3.66 0.958 0.891
22 Critical infrastructure 2.13 1.66 0.989 0.474
23 Housing 2.15 1.50 1.009 0.520
24 Contingency and recovery planning 2.42 1.60 0.869 0.490
25 Early warning system 3.41 1.60 1.475 0.566

26 Capacity in preparedness, response and
early recovery 4.08 2.08 0.772 0.527

27 Health services in emergencies 1.84 1.76 1.078 0.481
28 Education services in emergencies 1.70 1.55 0.717 0.537 0.005 **
29 Emergency infrastructure 3.55 4.19 1.054 0.519

0.000 ***
30 Leadership and volunteerism in

response and recovery 3.29 1.53 1.425 0.573

Total Score 81.62 60.56

** p < 0.01, *** p < 0.001.

In the participatory risk assessment component, study area 1 scored a medium level of
resilience. On the other hand, study area 2 showed a low level of resilience. Following this,
study area 1 also showed a medium level of resilience in terms of scientific risk assessment,
whereas study area 2 lagged behind. In study area 1, respondents agreed that they had par-
ticipated in DRR related different training and awareness-raising programs which ensured
effective dissemination of DRR information. On the other hand, communities from study
area 2 had very little opportunity to participate in DRR information dissemination pro-
grams. Furthermore, in study area 1, respondents shared that schools in their communities
had formal structures to share DRR related knowledge with children. Whereas children
from study area 2 rarely heard about DRR related information in their schools (Table 4).
Qualitative data indicated that communities in study area 1 received risk assessment-related
training from different non-governmental organizations (NGOs) which were working in
their area for a long time. These NGOs organized different awareness-raising programs too.
Observation-based data explored that in study area 2, there was almost no intervention
related to DRR related knowledge sharing, which ultimately reduced the possibilities of
the communities to understand the disaster in their area. If community members become
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aware of the risks, they will increase their level of preparedness. One of the first stages to
become resilient is identifying the risks. The first priority of SFDRR is also understanding
disaster risk. If the communities can assess their risks, they will be able to propose possible
preparedness measures too.

Both of the study area communities were not very aware of sustainable environmental
management activities (Table 4). However, communities in study area 1 had shown some
practices related to environmental management, including specific places in the community
for garbage deposition, planting trees near riverbanks to reduce erosion during and after
a flood, using modern sanitation systems, and avoiding open defecation, etc. In such a
scenario, communities in study area 2 did not have many activities related to sustainable
environmental management. These data related to community practices were collected
through the qualitative tool. In some components, study area 2 scored better than study
area 1. One of them was water security and management. Due to raising the tube wells,
communities in study area 2 had access to safe drinking water during the recent flood.
Communities in study area 1 were also working to raise their water sources and increase
resilience. In components, such as health access and awareness, social cohesion, and conflict
prevention, study area 2 showed a better level of resilience than study area 1. Communities
in study area 2 were relatively more aware of healthy practices and had better access to
healthcare during normal periods than study area 1. Furthermore, communities in study
area 2 were more cautious about preventing conflicts. Qualitative data indicated that the
community feeling was higher among the respondents of study area 2. In study area 2,
community members rush to support each other during a disaster with limited resources.
On the other hand, study area 1 had areas to develop related to healthy practices and social
cohesion. Other than these several components, study area 1 scored higher than study
area 2, including secure and sufficient food supply, hazard-resistant livelihood practices,
access to market, access to financial services, income and asset protection, social protection,
critical infrastructure, and housing. Qualitative data showed that study area 1 received
more resources from both internal (government) and external (NGOs) agencies related
to these components, which supported them to score comparatively better than study
area 2. Individually, however, study area 1 was lagging behind, and there were areas for
improvement. Increasing investment for increasing disaster resilience should be a priority
in both study areas. Disaster Risk Reduction (DRR) related investments can come from
both governmental and non-governmental agencies. The priority of these investments
should be increasing levels of resilience within communities.

Respondents of study area 1 shared that they received training related to contingency
and recovery planning (Table 4). Most of the respondents in study area 1 took measures
before the monsoon so that they could manage the flood, which was imminent to take place.
On the other hand, respondents in study area 2 were not aware of contingency planning.
Though they did practice individual preparedness, there was no sign of community-based
contingency and recovery planning. In study area 1, respondents had a community-based
flood early warning system. An NGO helped them to install a water level measurement
scale in the river near the study area. The NGO also provided training to communities about
measuring water levels, monitoring and disseminating warnings, and ensuring proper
response to the warnings. At the same time, there was no community-based warning
system in study area 2. Respondents shared that they learned about the recent flood
from radios and from SMS communication from their relatives who faced flooding before
them. The absence of a community-based flood warning system increases vulnerability
and reduces resilience. It was only in the emergency infrastructure component that study
area 2 scored higher than study area 1. There were a large number of flood shelter centers
in study area 2 which increased their infrastructure-related resilience. The number of flood
shelter centers in study area 1 was comparatively low. Other than this, in components such
as capacity in preparedness, education in emergencies, and leadership and volunteerism
in response recovery, respondents from study area 1 showed a higher level of resilience
than study area 1. Qualitative data explored that external interventions from NGOs were
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the main reason for a higher level of community resilience. External interventions helped
communities of study area 1 to become more prepared for responding to floods and for
recovering effectively. Communities will be more resilient if the level of preparedness is
increased for effective response and recovery.

There is a significant relationship between the components and the study areas (p < 0.001,
p < 0.01). The relationship indicates that the level of resilience differs in terms of study areas.
Due to physical, economic, social, environmental, cultural, and institutional vulnerabilities,
study areas achieved a different level of resilience in each component. The total resilience
score of study area 1 was 81.62, and study area 2 was 60.56 (Table 4). According to the
community resilience level score (Table 2), the total score of study area 1 represented a
medium level of resilience. According to the description, the communities in study area
1 were aware of the problem(s) in their area, and they had taken some sort of long-term
action related to the problem(s), but these actions and strategies did not cover all the
aspects of the problem(s). Moreover, the strategies implemented to increase the level of
resilience in study area 1 were not focused on the long-term perspectives. On the other
hand, the total resilience score of the study area represented a low level of resilience.
According to the description from Table 2, the communities in study area 1 were aware
of the problem(s) to some extent, and there were some actions and strategies to manage
those problems. However, these actions were only for short-term solutions to the problems.
Results concluded that study area 1 was comparatively more resilient than study area 2.

5. Discussion

The results already indicated the difference in community resilience between the two
areas. The study should also reflect the community resilience from the Sendai Framework
for Disaster Risk Reduction (SFDRR) 2015–2030 perspective. According to Table 1, the com-
ponents are related to the four priorities of SFDRR. Figure 1 shows community resilience
based on the priorities of SFDRR.

There were four components under priority 1 (Table 1). In understanding disaster risk,
study area 1 scored 13.59, whereas study area 2 scored 7.29 (Figure 2). The main reason for
the higher resilience level of study area 1 was external interventions. The communities of
study area 1 developed partnerships with different NGOs, which increased their capacities
to understand the risks. Communities received training and participated in awareness-
raising programs organized by the NGOs, which helped them to strengthen their resilience.
A completely different picture was seen in study area 2. The communities in study area 2
rarely participated in any risk assessment-related activities. They were aware of the risks in
their area by their own traditional knowledge. Moreover, a small number of interventions
were seen in study area 2 to raise awareness of disasters such as floods. Disaster-related
information was not disseminated at the community level. Formal educational institutions,
such as schools, did not have any programs related to DRR. Thus, the level of understanding
of disaster risk was low in study area 2. Understanding disasters and sharing information
related to disasters are vital components to make communities resilient [44]. Participating
in different decision-making platforms and assessment processes is important as these will
help communities to understand the risk of disasters and work to reduce risk [28]. Human
capital, such as education, knowledge about disasters, and information related to risk, help
to implement risk reduction strategies and increase community disaster resilience [23].
This study summarizes that activities, such as training for community members related
to DRR, organizing awareness-raising programs, incorporating DRR related knowledge
in the formal education system, introducing participatory risk assessment, and including
vulnerable groups in assessment, will help communities to understand disaster risks and
increase the level of community resilience.

140



Sustainability 2022, 14, 1758

Figure 1. Study area map (source: developed by the study).
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Figure 2. Community Resilience Level (Based on SFDRR Priorities).

Priority 2 had seven components (Table 1). Study area 1 also showed a higher level
of resilience in terms of disaster risk governance. The score was 20.21 (Figure 2). Local
government and community-based organizations (CBOs) tried to ensure the participation
of community members in the decision-making process. Communities in study area 2
were more aware of their rights and responsibilities. Further, women and other vulnerable
groups in study area 2 had the opportunity to be included in the DRR process. These rea-
sons supported communities in study area 2 to achieve a higher level of resilience. On the
other hand, study area 1 scored 11.96 in disaster risk governance points. The reasons behind
the lower level of community resilience were limited access to decision-making platforms,
lack of participation of women and other vulnerable groups in DRR activities, ineffective
local government agencies, and a lower level of partnership with non-governmental agen-
cies. Studies explored that availability of a strong local government, inclusion of vulnerable
populations, equal socio-economic development, and enhancement of community capaci-
ties can increase community disaster resilience [30,45,46]. Furthermore, policies that are
developed through prioritizing the needs of vulnerable groups can promote community
resilience [45]. DRR related training programs for local government agencies can be one of
the major interventions to strengthen disaster risk governance. If personnel-related local
governments learn about interventions that can reduce disaster risk, they will ensure an
inclusive DRR approach. Along with this, it is also important to increase the capacity of
at-risk groups. Women, children, persons with disabilities, and elderly people, should
be prioritized in DRR planning and programs. Reducing vulnerabilities through strong
disaster risk governance will make communities resilient.

In the third priority, communities from both of the study areas scored very closely.
The community resilience level of study area 1 was 27.53, and study area 2 was 25.0
(Figure 2). Though both of the study areas scored very closely, the community resilience
level was still low. There were 12 components in priority 3 (Table 1). A lower level of
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community resilience indicated that there were areas, such as health access during the
normal period, access to financial services and markets, social protection, critical infrastruc-
ture, housing, and income and asset protection, that needed more interventions. Investing
more to reduce disaster risk will also increase community resilience. Previous studies
identified the importance of each component to make a community resilient. For instance,
social capital and access to economical supports were seen as major variables to improve
levels of community resilience [47,48]. Resources, such as social networks, communica-
tion infrastructure, transportation, livelihood and employment, economic development,
and funding, etc., are seen as capitals which construct the framework to make communities
resilient [49,50]. Furthermore, economic stability, equitable income, access to healthcare
facilities, availability of critical infrastructure, and sense of community, etc., are also iden-
tified as major components to uphold a community as resilient [51–53]. For the study
areas, local organizations, national agencies, governmental organizations, international
development agencies, and private companies should invest more in these areas to make
communities resilient. A developed healthcare system, shock-resistant critical infras-
tructures, strategies to protect income and assets, inclusive social protection programs,
and accessible financial services can increase the level of community resilience. All of these
interventions need a higher level of investment.

There were seven components in priority 4 (Table 1). Study area 1 scored 20.29,
and study area 2 scored 16.31 in this priority area of SFDRR (Figure 2). Effective disaster
preparedness and response depend on several factors, such as contingency planning, educa-
tion in emergencies, access to health care during emergencies, crisis-related infrastructures
such as flood shelter centers, and voluntary activities of different groups. Communities in
study area 1 were well ahead in terms of disaster preparedness and recovery planning than
communities in study area 1. To enhance the level of preparedness for effective response,
government and non-government agencies in study area 2 should come forward. Avail-
ability of a recovery plan and business continuity plan, increasing preparedness capacity
of communities through training and awareness raising, including exercise and drills in
the education system before disasters, improving resources to continue education during
disasters and properly managing critical infrastructure such as emergency shelters, etc.,
will support the process of making communities resilient [54,55]. Involving communities
in developing contingency planning can ensure effective response after a disaster and
make communities resilient [56]. Furthermore, developing volunteer groups to support
vulnerable populations during emergencies will amplify the level of community disaster
resilience [57]. The idea of resilience is related to the idea of ‘build back better’. Community
resilience depends on the capacity of the community, which helps to absorb any shock and
cope with the new condition. After any disaster, communities should focus on building
their capacity to cope with similar disasters in the future. The idea of resilience is mainly
related to response and recovery. If a community can effectively respond to any disaster
and recover from the effects in the shortest period then that community will be identified
as resilient. Moreover, recovery-related activities must make the community strong enough
to absorb a similar level of shocks in the future.

6. Conclusions

The study used the ARC-D toolkit to measure community resilience in two different
areas. In nature, the study followed a comparative analysis style. Both study areas had
scopes to enhance their resilience. The results indicated that communities in study area
1 were more resilient than study area 2. The ARC-D toolkit helped not only to measure
community resilience but also to show the areas which needed immediate attention. Mea-
suring community resilience is very important in developing DRR plans and incorporating
DRR in the development process. If concerned authorities are not aware of the level of
resilience of different communities, development plans will not be fruitful. A clearer picture
of community resilience can be developed if the community receives the opportunity to
share its perspectives related to DRR. Involving communities in every aspect of DRR will
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help to create ownership and ensure the sustainability of interventions. Using a tool that
involves the community in measuring resilience should be prioritized. The ARC-D toolkit
has the efficiency to support concerned authorities by measuring community resilience and
providing inputs for future planning. As previous literature explained, successful use of
this tool in different contexts, as in this study, will strengthen the appropriateness of this
tool to be applicable in developing countries.
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Abstract: The aim of this study was to propose an approach for assessing the social resilience of
citizens, using a locative multi-criteria decision-making (MCDM) model for an exemplary case study
of Sarpol-e Zahab city, Iran. To do so, a set of 10 variables and 28 criteria affecting social resilience
were used and their weights were measured using the Analytical Hierarchy Process, which was
then inserted into the Weighted Linear Combination (WLC) model for mapping social resilience
across our case study. Finally, the accuracy of the generated social resilience map, the correlation
coefficient between the results of the WLC model and the accuracy level of the social resilience map
were assessed, based on in-situ data collection after conducting a survey. The outcomes revealed that
more than 60% of the study area falls into the low social resilience category, categorized as the most
vulnerable areas. The correlation coefficient between the WLC model and the social resilience level
was 79%, which proves the acceptability of our approach for mapping social resilience of citizens
across cities vulnerable to diverse risks. The proposed methodological approach, which focuses on
chosen data and presented discussions, borne from this study can be beneficial to a wide range of
stakeholders and decision makers in prioritizing resources and efforts to benefit more vulnerable
areas and inhabitants.

Keywords: social resilience; natural hazards; locative multi-criteria decision-making (MCDM) model;
Sarpol-e Zahab

1. Introduction

According to United Nations estimates, more than 70 percent of the world’s population
will live in urban areas by 2050 [1]. Due to the population growth in cities, it is of great
importance to consider the socio-economic and administrative processes related to the
performance of cities, and to evaluate the resilience of residents to natural hazards [2,3].
Cities today have not only taken the path of development, but have also expanded their
spatial areas into areas that need physical development against natural hazards to ensure
they are ready to accommodate more people [4].
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Natural hazards are “disasters that occur suddenly and cause harm to humans and the
environment” [5,6]. These hazards can be highly devastating in terms of human lives, as-
sets and infrastructure, and pose major challenges to sustainable urban development [7,8].
Therefore, preparing for these hazards can lead to increased adaptive capacity and sus-
tainable livelihoods for urban communities [9,10]. One of the ways to prepare cities for
these risks is to increase social resilience [7,11]. Adger [12] defines social resilience as the
ability of individuals, groups, and communities/cities to cope with external stresses and
environmental disturbances. The goal of this study wa/*s to assess social resilience with a
view to finding ways to increase the resilience capacity of communities and strengthen the
ability of citizens and urban managers to cope with the impacts of natural hazards [13].

Given the continuous growth of the urban population and its density, as well as the
threat of natural hazards, it is of outmost importance to pay attention to, and strengthen,
social resilience in cities as the backbone of disaster risk management [14,15]. Considering
that natural disasters cause immense social disruption in cities, promoting social resilience
as a capability not only helps to maintain the basic performance of cities, but also leads to
the improvement and prosperity of cities after disasters [16]. Resilient cities are capable
of positively responding to hazards or stresses [17,18]. These cities can also maintain their
primary functions as a whole, despite existing tensions, and move towards sustainable
development through a cohesive and integrated approach [3,19].

Iran is frequently affected by natural hazards due to its geographical and geological
conditions [20,21], as 31.7 percent of the country’s territory is exposed to natural hazards,
and 70 percent of its population are residing in vulnerable areas [21,22]. Sarpol-e Zahab
city has been one of the most affected cities by natural disasters in Iran in recent decades.
Statistical and historical studies show that this city has experienced many natural disasters
so far. Natural disasters such as earthquakes, floods, droughts, air pollution and dust
storms are the main hazards that severely affect this city. Examples of natural disasters that
have caused major challenges to the citizens of Sarpol-e Zahab and have, hence, indicated
that the building of social resilience against natural hazards is an imperative, include
the following: Floods in 1998 and 2007; Earthquakes in 2003, 2014 and 2017, and recent
droughts and dust storms (Iran Crisis Management Organization, 2020).

Social resilience is influenced by various criteria with spatial reference, so the use of
spatial systems and analysis can be useful in spatial measurement and analysis of social re-
silience. In addition, the use of spatial multifactor decision-making models can increase the
accuracy of measurement. In this paper, GIS-MCDM spatial multi-criteria decision-making
models were used to measure the social resilience of the Sarpol-Zahab urban areas. The
general purpose of GIS-MCDM techniques is to help decision-making processes towards
selecting the most suitable option among existing options. These techniques combine
in-situ data and decision makers’ priorities, based on decision-making principles [23,24].
Considering the fact that making a right and timely decision can have a substantial effect
in choosing suitable options using various criteria, the need for a robust technique that
can help various stakeholders is important. The MCDM techniques are effectively used in
various studies, such as geothermal sources [25], usage of lands [26,27], migration [28,29],
thermal comfort [30], solar energy [31,32] and natural hazards [33–35].

Many studies have been conducted in relation to analysis of resilience and its role in
reducing the consequent effects of natural incidents, but previous studies to assess social
resilience are descriptive and statistically-based, and the weight of effective metrics and
user preferences are not considered. Therefore, to make data-informed decisions, it is
necessary to consider various effective criteria in a comprehensive approach. As mentioned
earlier, the GIS-MCDM approach can be very useful in this regard. Furthermore, previous
studies have not combined GIS and MCDM. Therefore, the main objective of this study
was to measure social resilience in Sarpol-e Zahab so as to raise awareness against natural
hazards. The results of this study could be very useful and practical for managers and
urban planners.
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2. Literature Review

The term social resilience, in social systems, was first coined by Adger [12]. Social
resilience provides a conceptual framework for measuring community capacity to cope
with change and emergencies [36]. A resilient society is able to respond positively to
changes or tensions and is able to maintain its core function as a society despite tensions. A
particular change can have far-reaching and different consequences in different societies,
and different societies will show different degrees of resilience to change. A resilient
society not only minimizes the difficulty of overcoming vulnerability, but also implements
it through education and adaptation to advance society [37]. According to Bogardi [38],
social resilience is measured over time. In particular; how long does it take for a community
to respond to an incident, organize itself, and integrate lessons learned before returning to
a new practice? The amount of time it takes to escape a hazard not only affects a society’s
economic presence, but also its social context or the “intermediary” that holds it together.
The longer this recovery lasts, the more likely society is to be destroyed as recession ensues
and emotional and psychological pressures spread [39].

In recent years, several studies have been conducted on the analysis of social resilience
and its role in reducing the effects of natural disasters. Some studies have identified social
harms, social capital and demographic characteristics as features characterizing the resilience
of societies to natural hazards [11,12,40–42]. Some studies [43,44] also consider religious
beliefs and values to be effective in creating a sense of calm, hope, and a return to the pre-
crisis state. Various studies [12,45–47] also consider local community capabilities, diversity of
resources/skills, level of awareness and human capital as resilience requirements against hazards.
Various studies [46,48–50] have also pointed out the negative effects of lack of security and
social inequality on the resilience of society to disasters. Most previous attempts to assess
social resilience are descriptive and statistically based, and the weight of effective metrics
and user preferences are not considered. Moreover, this topic has not been studied visually
and from a spatial perspective. Therefore, to make an accurate decision in this regard, it is
necessary to consider various effective criteria in a comprehensive approach. As mentioned
earlier, the GIS -MCDM approach can be very useful in this regard. Furthermore, previous
research has not combined GIS and MCDM. Therefore, the main objective of this study was
to measure the social resilience of urban areas in Sarpol-e Zahab with a view to reducing
risk against natural hazards, based on multi-criteria decision models. The results of this
study could be very useful and practical for managers and urban planners. Effective criteria
in social resilience analysis and description of each of them are presented in Table 1.

Table 1. The variables used for assessing social resilience.

Variables Sub-Variables Description References

Demographic Characteristics

Age Structure (population aged
under 15 and over 65); Literacy

Status; Gender (ratio); Population
Density; Immigration;

Female-headed households;
Occupation Status

Population and its characteristics are among
the most important criteria affecting the rate
of resilience in a region. In order to achieve a
resilient society, special attention should be

given to the demographic structure and
context of the regions and their changes.

Accurate knowledge about the demographic
structure of a region before, during and after

the occurrence of hazards, is of
particular importance.

[11,12,40–42,51–53]

Social harms Poverty; Addiction;
Suicide; Divorce

Social harms disturb relationships between
members of the society, cause failures in
social relations and lead to inability of

society to integrate itself; this can be one of
the important factors reducing the resilience

of societies against crises.

[12,17,54–57]
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Table 1. Cont.

Variables Sub-Variables Description References

Social Capital

Social Trust; Social Participation;
Social Integrity; Social Awareness;
Social Support; Social Networks;

Social Relations

Social capital, referring to the social relations
of individuals with each other, can have a
very positive effect on social resilience and

developing security in cities. The greater the
amount of social capital in a region, the
more resilient that region will be in the

course of a crisis.

[12,46,51,58–62]

Religious Beliefs and Values -

Beliefs are considered as an essential factor
in strengthening the social resilience of

societies against hazards, having an
influential role in creating a sense of

calmness, hope and returning to
a pre-crisis state.

[43,44,63,64]

The General Capability of
Local Community

Sense of Belonging to a Place;
Sympathy and

Altruism; Cooperation

Membership in the local community is one
of the necessities for resilience and an
important resource for encouraging

community members to be efficiently
capable when faced with challenges. With a
sense of local community, participation in

social networks takes form and capabilities
of individuals increase capabilities of the

community to use internal resources when
encountering crises.

[12,45–47,65,66]

Resources and Skills -

Resources and skills in a society are
positively correlated with social resilience of

that society against crises, because they
promote the qualities of time and effort

spent on planning

[10,12,44,65,67–69]

Social Inequality -

Inequalities lead a society to mistrustfulness,
isolation and lawlessness; strengthening

such unfairness leads to forming a kind of
anger caused by disparities in individuals.

This will affect social ties and break
individual and group relationships.

[45,46,50,62,65]

Social Security Theft; Murder; Individual
Conflicts; Group Conflicts

In a society that has maximum security, it
will be easily possible to implement

knowledge of design and construction
related to encountering hazards, through
strengthening these features to achieve

resilience.

[12,48,49,54]

Human Assets Public Health; Having Trained
and Skilled Workforce

Human assets bring flexibility power, which
is one of the principals of resilience. Having
a sufficient, skilled and trained workforce is

a prerequisite for economic development
and capacity building. This means that the

more human assets available in society,
equals more capacity to develop

better resilience.

[11,40,46,62,70–72]

Awareness and ducation -

The level of public awareness and
knowledge about the incidents that might
threaten them is very effective in building

resilience of society and for proper reaction
to the events; thus, greatly reducing the

damage inflicted.

[11,47,62,65,66,72,73]

3. Materials and Methods

3.1. Study Area

The city of Sarpol-e Zahab is the center of a county with the same name in Kermanshah
province, with an area of 1271 km2, located between 45◦52′′ E longitude and 34◦24′′ latitude,
in the western part of Iran, at the end of the slopes of the Zagros heights. According to the
2016 census, conducted by the Statistical Center of Iran (SCI), the city includes 35 urban
areas (Figure 1). Regarding population, Sarpol-e Zahab is the third most populated county
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in Kermanshah province. According to the latest census (mentioned above), the population
of the county was 85,342, 53% of which (45,481) lived in urban areas. According to the
official statistics of the Statistical Center of Iran, the city of Sarpol-e Zahab did not fare
well in terms of social resilience indicators before the earthquake. A comparison of the
average sex ratio, percentage of households headed by women, employment percentage,
and literacy rate in the country, and in Sarpol-e Zahab city, shows that Sarpol-e Zahab
city was in an unfavorable situation in all these indicators, compared to the country
as a whole. In terms of statistics on suicide, divorce rate and unemployment, Sarpol-
e Zahab is also in a worse situation than the country average. Being the city with the
most unemployment among the country’s cities indicates problems, such as addiction,
domestic violence, reduction of social capital, etc. The city also ranks first in the country
in suicides. In addition, the divorce rate in this city is higher than the national average,
which may reduce social skills in this city. In areas where these conditions are evident,
disaster prevention issues can no longer be given much importance. Therefore, based
on the particular conditions in Sarpol-e-Zahab city, it can be said that the poor responses
to the consequences of natural disasters, such as floods and earthquakes, are due to lack
of risk management, lack of education, lack of empowerment and, finally, lack of social
resilience. Sarpol-e Zahab has been categorized as one of the most disaster-prone cities of
Iran, experiencing various natural hazards. According to field observations and reports
from urban dwellers and experts from the earthquake-exposed areas of Kermanshah
province, the damaged buildings and infrastructure resulting from previous earthquakes
are not yet restored and living conditions are still unsuitable. The earthquake in 2017, with
a magnitude of 7.3 on the Richter scale, was devastating and caused deaths exceeding 621,
along with 9388 people injured and almost 70,000 people becoming homeless. Subsequent
events such as torrential rains, lack of adequate emergency and temporary accommodation,
the inadequacy of tents against cold and heat, social damage and increasing poverty, and
the price of construction materials and labor have aggravated the situation (Iran Crisis
Management Organization, 2020).

Figure 1. Study area.
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3.2. Data Collection

The sources of the data used for each index is presented in Table 2. As is known, some
data sources have been obtained using surveys and questionnaires with the support of
the Iranian Sociological Association. In order to determine the sample size, we used the
framework of the census by the Statistics Center of Iran in 2016. Cochran’s Formula was
applied to estimate an optimal sample size, which suggested 385 people to include in a
random sampling setting.

Table 2. The characteristics of data used in this study.

Row Data Format Source

1 Demographic Characteristics Vector (polygon) Civil Registration Organization and
Statistics Center of Iran

2 Social harms Vector (polygon) National Plan for Family Conversations
and Statistics Center of Iran

3 Social Capital Vector (polygon) Sarpol-e Zahab Health Center and
Statistical Center of Iran

4 Religious Beliefs and Values Vector (polygon) Questionnaire

5 The General Capability of Local Community Vector (polygon) Questionnaire

6 Resources and Skills Vector (polygon) Questionnaire

7 Social Inequality Vector (polygon) Questionnaire

8 Social Security Vector (polygon) Sar-pol-e Zahab Police Force

9 Human Assets Vector (polygon) Questionnaire

10 Awareness and education Vector (polygon) Questionnaire

3.3. Overall Method

In Figure 2, the overall flowchart of the proposed methodology is illustrated. In the
first step of this proposed approach, the effective social resilience variables were selected
and standardized with reference to theoretical literature and previous studies. In the second
step, the criteria were weighted based on experts’ opinions and an Analytical Hierarchy
Processes [28] method. In the third step, using the suggested GIS-MCDM approach and the
map of criteria and the resulted weights, the final social resilience map of the target region
was prepared. At the end, in the fourth step, the obtained results were assessed.

3.3.1. Variables Selection and Standardization

After reviewing experts’ opinions and the literature related to the concept of resilience,
a total of 28 sub-indicators embedded within 10 locative variables were selected for making
social resilience maps. These selected variables included demographic characteristics, social
harms, social capital, religious beliefs and values, general capability of the local community,
resources and skills, social inequality, social security, human assets, and level of awareness
and education (Table 1).

After the set of variables for assessing social resilience were selected, each index
was stored on a locative database as a GIS map. GIS-MCDM requires standardized crite-
rion maps, as evaluating all criteria together requires converting layers into comparable
units [74]. In this study, it was, therefore, necessary to standardize the criteria, considering
that the data of each index came from different sources, in order for the criteria to be
comparable with each other.

As “maximum” values for some variables, and “minimum” values for other vari-
ables, have more significance regarding the definition of resilience, in the present study
a “maximum–minimum” standardization method was employed. The variables were
categorized into two main groups: benefit variables (the variables in which maximum
value was of significance) and cost variables (the variables in which minimum value was
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of significance). The benefit variables, including demographic characteristics, social capital,
religious beliefs and values, general capability of the local community, resources and skills,
social security, human capital, and the level of awareness and education were standardized
through Equation (1), and the cost variables, including social harms, and social inequality
were standardized through Equation (2) (Table 3). For instance, to calculate social capital,
the higher the social capital, the higher the level of social resilience. Therefore, the maxi-
mum values were more important and, as a result, Equation (2) was adapted, while for the
social harms variable, the lower the value of this index, the higher the social resilience. As
a result, Equation (1) was applied to create a normal marker.

Figure 2. The flowchart of the main steps of the study.

Table 3. The equations used for standardization of social resilience variables.

Equation Applied Condition Standardization Technique

(1) nij =
rij − rmin

rmax − rmin
Minimum variables

Linear: Maximum-Minimum
(2) nij =

rmax − rij
rmax − rmin

Maximum variables

3.3.2. AHP Method

The AHP is one of the most efficient techniques of multi-criteria decision making,
which was first suggested by Saaty [75]. A general overview of multi-criteria decision-
making methods was conducted by Pohekar and Ramachandran [76] who concluded that,
among all weighting techniques, the AHP method was the most popular one. This method
is based on pairwise comparisons of criteria and gives managers and decision-makers
the possibility of reviewing different strategies [75,77]. This technique is one of the most
comprehensive systems designed for decision-making with multiple criteria; because it
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provides the possibility of formulation of complicated problems in a hierarchical manner,
and also offers the possibility of considering different quantitative and qualitative criteria
in the problem [77,78].

The first step in the AHP method, is to construct a hierarchical structure. This is the
most crucial step of the hierarchical analysis process, because, in this step, with decomposi-
tion of difficult and complicated problems, it becomes possible to transform the problems
into simple forms corresponding to human mind and nature [79,80]. At the top of this
hierarchy would be the general goal of the problem and on the other layers, the criteria
and options. The second step is forming a pairwise comparison matrix. At this stage,
elements of each layer in the hierarchy are compared with their corresponding criteria in
the higher layers to form pairs, and the pairwise comparison matrix is formed [74]. In order
to determine importance and preference in pairwise comparisons, a 1 to 9 range is used
(Table 4). The third step is calculating the inconsistency rate. The inconsistency rate clarifies
whether the pairwise comparisons have stability and consistency or not. If the value of this
rate is lower than 0.1, it is indicative of higher consistency of the matrix, while if the value
is above 0.1, there needs to be reconsideration about the pairwise comparison results [81].

Table 4. Weighting variables according to priority in the form of pairwise comparison.

Value
Status of Comparing

i to j Description

1 Similar Priority Index i ranks similar to index j in terms of
significance, or there is no priority.

2 A Little Prioritized Index i slightly outranks index j in
terms of significance.

5 Moderately Prioritized Index i moderately outranks index j in terms of
significance.

7 Highly Prioritized Index i significantly outranks index j.

9 Absolutely Prioritized Index i has absolute priority over index j.

2-4-6-8 In-between
These figures indicate “in-between” values;

e.g., a value of 8, is higher in priority than 7, but
lower than 9 for a given index (i).

In this study, using the AHP method and the opinion of 30 experts in the fields of social
sciences (sociology, demography, etc.), geography and urban planning, remote sensing and
GIS, regional planning and development, and crisis management, the criteria were ranked
at different levels relative to each other and according to the degree of their importance at
each decision-making level.

3.3.3. Weighted Linear Combination (WLC) Method

There are several methods for analyzing multi-criteria assessments, and the WLC
method is one of the most applied and most common ones for preparing suitability
maps [82–84]. This technique is also called “the simple collectible weighting method”,
or “the scoring method”, which operates according to mean weight; namely, the relative
weight of each criterion measured by experts and the weighting method [28], is multiplied
by the value of each pixel [85–87]. Once the final value of each option is determined, the
options with the highest values are selected as the appropriate locations for the target [88].
In this study, the WLC model was used to combine different criteria to create the final social
resilience index (standard map). In this model, the map of each criterion was multiplied by
its own weight (which was determined by experts using the AHP method), and, finally,
the sum of all the criteria together was the final result of the WLC model (WLC section,
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relationship 3), which resulted in the same map. The ultimate aim in this study was that of
assessing social resilience. This method was calculated using Equation (3):

Aj =
n

∑
j=1

Wj × Xj (3)

In the above equation, Wj is the relative weight of each criterion/index and Xj is the
value of each pixel or location.

3.3.4. Evaluation of the Accuracy of the Proposed Model

The results of multi-criteria decision-making methods are not complete, until their
accuracy is evaluated, and in order to ensure the actuality ratio of the prepared map,
its accuracy had to be evaluated. In order to evaluate the final map of social resilience
obtained from the multi-criteria spatial decision-making system, another questionnaire
was designed to represent the current situation, the information of which was collected
from the officials of the city administration system and the local government of Sarpol-e
Zahab. Based on the combination of information collected from the questionnaires, an
urban social resilience map of the city was prepared on the principles of public participation
geographic information system (PPGIS). Finally, the correlation coefficient between the
social resilience status model, based on the multi-criteria spatial decision-making system,
and the social resilience status, based on the questionnaire, were evaluated. The accuracy
of the produced map showed the level of confidence in the results of the multi-criteria
decision models [89]. Vanolya, et al. [90] used PPGIS results to evaluate the validity of the
results of the multi-criteria spatial decision system.

4. Results

In this study, using the AHP model, the final weights for the criteria at each level
were calculated and the results are presented in Table 5. According to the experts, social
capital (0.23) and social harm (0.19) variables had the greatest influence and religious beliefs
and values (0.01) and awareness and education (0.03) variables had the least influence on
social resilience.

In order to investigate the locative distribution of the effective criteria on social re-
silience, each criterion was standardized according to its highest and lowest values. For a
more precise review of resilience conditions for the studied region under the locative aspect,
the standardized values of the different sub-criteria were calculated for different urban
areas. Below, the standardized sub-criteria maps for the study region are shown. Indicator
values range from 0 to 1. Values of zero (brown color) represent very low resilience and
values of one (blue color) represent very high resilience.

According to the results shown in Figure 3, the demographic parameters influencing
social resilience in Sarpol-e Zahab tended to have a lot of locative variances. Regarding
literacy status, social resilience of urban areas appeared to be on an optimal level and only
three urban areas had unfavorable conditions. As is clear, regarding occupation status,
southern areas of the city were not in good conditions, while, compared to other areas,
the northwestern parts had better conditions regarding employment. Also, regarding
population density, the status of central areas was not good.

The statuses regarding the criteria related to the social harms index are shown in
Figure 4, and indicate that, from this regard, Sarpol-e Zahab was not in a good condition.
As can be clearly seen, the suicide criterion had a high locative variance throughout the
city compared to other criteria; specifically, the southern and southwestern areas were not
in good condition, while the northwestern regions were in a better state than the others.
Regarding addiction and poverty, in most parts conditions were not suitable.
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Table 5. The variables and criteria used for assessing social resilience, and their corresponding
weight values.

Variables
Variable–
Weight

CR * Sub-Variables
Criterion
Weight

CR
Criterion

Type

Demographic
Characteristics

0.07

0.004

Age Structure (population aged under 15 and over 65) 0.23

0.002

Minimum

Literacy Status 0.19 Maximum

Gender (ratio) 0.11 Maximum

Population Density 0.28 Minimum

Immigration 0.04 Minimum

Female-headed households 0.07 Minimum

Occupation Status 0.08 Maximum

Social Harms 0.19

Poverty 0.31

0.008

Minimum

Addiction 0.26 Minimum

Suicide 0.24 Minimum

Divorce 0.19 Minimum

Social Capital 0.23

Social Trust 0.18

0.005

Maximum

Social Participation 0.22 Maximum

Social Integrity 0.12 Maximum

Social Awareness 0.09 Maximum

Social Support 0.08 Maximum

Social Networks 0.16 Maximum

Social Relations 0.15 Maximum

Religious Beliefs
and Values 0.01 - Maximum

The General
Capability of

Local Community
0.05

Sense of Belonging to a Place 0.48

0.004

Maximum

Sympathy and Altruism 0.13 Maximum

Cooperation 0.39 Maximum

Resources and
Skills 0.09 - 0.001 Maximum

Social Inequality 0.14 - 0.005 Minimum

Social Security 0.11

Theft 0.28

0.005

Minimum

Murder 0.37 Minimum

Individual Conflicts 0.14 Minimum

Group Conflicts 0.21 Minimum

Social Capital 0.08
Public Health 0.68

0.008
Maximum

Having Trained and Skilled Workforce 0.32 Maximum

Awareness and
Education 0.03 - 0.006 Maximum

* Consistency Rate.
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Figure 3. The standardized maps of different criteria related to the demographic index.

Figure 4. The standardized maps of different criteria related to social harms index.

Figure 5 shows the status of the criteria related to the social capital index. As is
observable, regarding social participation, most urban areas were in a favorable status.
Furthermore, considering the social integration criterion, most urban areas were in a
moderate condition. Among the criteria related to the index of social capital, social trust
was not at a good level in most of the urban areas; in other words, the majority of the
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urban areas were on a low level in terms of the social trust criterion. Considering social
awareness, most of the urban areas were in a moderate status. Besides this, social relations
were at moderate and low levels in most of the urban areas.

Figure 5. The standardized maps of different criteria related to social capital index.

Figure 6 depicts the status of the religious beliefs index as a significant factor affecting
social resilience against various hazards. As is clear from the maps, in this regard, a specific
locative pattern was observable throughout the urban areas; the northwestern parts, that
are mainly populated by Sunnis, were in an unsuitable state. The central regions, the
population of which mostly believe in the Yarsan religion, were in a relatively good state.
Additionally, the southeastern parts were in a suitable status, while the southern areas were
in unsuitable conditions.

Figure 6. The standardized maps of the criteria related to religious beliefs and values index.

158



Sustainability 2022, 14, 8304

According to the findings depicted in Figure 7, showing the status of the local com-
munity capability index, it is observable that there was a certain locative diversity among
urban areas in all the criteria. The sense of belonging to place was relatively low in the
central areas, medium in the southern areas, high in the southeastern areas, and relatively
high in the northwestern areas of the city. Besides this, the sense of empathy and altruism
were low in the southern areas, moderate in the northwestern areas, and high in parts of
the southeastern areas.

Figure 7. The standardized maps of the criteria related to general capability of local community index.

The results illustrated in Figure 8 show that in terms of the resources and skills index
status, except for some areas in the center and northwest, most other urban areas were not
in good conditions. As is observable, in this regard, the southern and suburban areas of the
city were in unacceptable conditions, and centralization of resources in the central part of
the city was higher than in other areas.

Figure 8. The standardized map of resources and skills index.

The status of the social inequality index presented in Figure 9 shows the imbalance of
educational, cultural and social facilities in the private and public sectors of Sarpol-e Zahab.
As is observable, the southeastern parts were in better conditions than other urban areas.
Most of the governmental centers and organizations are located in this part of the city. The
southern, southwestern and northwestern regions (except for one urban area) were not in
favorable conditions in this regard.

159



Sustainability 2022, 14, 8304

Figure 9. The standardized map of social inequality index.

The findings depicted in Figure 10 show that there is great locative diversity between
urban areas in terms of the social security index criterion in Sarpol-e Zahab. As is clear,
the murder rate was high in southern and central areas, low in southeastern areas and
moderate in northwestern areas. Also, the rate of theft was very high in the southern and
central areas of the city, and moderate in the southeastern areas.

Figure 10. The standardized maps of the criteria related to social security index.

According to the results shown in Figure 11, that are indicative of the conditions
of the human assets index criterion, it is clearly observable that, considering population
health, there was locative diversity throughout the city. Southern parts were not in good
conditions, central regions were in good conditions, southeastern areas were in moderate
conditions and northwestern parts were in relatively good conditions. On the other hand,
considering the criterion of a trained and skilled workforce, most of the urban areas were
not in good conditions.
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Figure 11. The standardized maps of the criteria related to human assets index.

The status of the urban areas in Sarpol-e Zahab, regarding the awareness and education
index, as one of the key variables for social resilience against incidents and shocks, is
illustrated in Figure 12; it shows that, in this regard, except for the central areas, most of
the other parts were in unfavorable conditions.

Figure 12. The standardized map of awareness and education index.

4.1. Locative Distribution of the Criteria Affecting Social Resilience

According to the values of the standardized criteria and criteria weights, the decision-
making analysis method could be used to create a set of social resilience maps, based on
the WLC method. Social resilience maps are prepared on the basis that the weights of the
criteria are different for all variables. The values of variables range from 0 to 1. Values of
0 indicate very low resilience and values of 1 indicate very high resilience. The maps of
variables were categorized into 5 categories, based on the degree of social resilience: very
low (0–0.2), low (0.2–0.4), medium (0.4–0.6), high (0.6–0.8) and very high (0.8–1).

Figure 13 illustrates the extent of the variables, including demographic characteris-
tics, social harms, social capital, religious beliefs and values, general capability of local
communities, resources and skills, social inequality, social security, human assets, and
awareness and education, on social resilience. Overall, the results indicated a variant
locative distribution of the mentioned variables throughout the study region. The status
of social capital, as the most significant factor that can promote social resilience of society,
generally (country) and specifically (cities), shows that more than 48% of urban areas in
the studied region were at a low level and had unfavorable conditions in terms of social
resilience. Moreover, the results for social harms of individual urban areas were indicative
of a generally low level of social resilience in the city; only 20 percent of the urban areas
had high or very high social resilience levels. The status of resources and skills, as another
affecting index for social resilience, showed that, except for the central areas and one area
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in the northwest, where the level of resilience was high, other areas were in unfavorable
conditions regarding social resilience level. The southeastern areas and urban area 22 in
the northwest were in a very high level of resilience, in terms of social security and social
inequality variables. Generally, it can be claimed that, considering the results of most of the
variables, urban areas 35 and 22 were at good levels of social resilience, while the southern
areas were at poor levels for most of the variables.

Figure 13. The standardized maps of the variables affecting social resilience.

In Figure 14, the final map of social resilience obtained from the WLC model, based
on GIS-MCDM and the diagram of the percentage of social resilience in the urban areas
in different classes, is presented. The results indicated that the levels and scope of social
resilience were not evenly distributed throughout the city. Almost all areas in the south
and southwest were in poor social resilience conditions. The central and eastern areas had
better conditions, in terms of social resilience, compared to other districts and urban areas.
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Figure 14. Final social resilience map prepared based on wlc model.

4.2. Accuracy Assessment

In order to assess the accuracy of the final social resilience map, the correlation coeffi-
cient between the results of the WLC model and the real-world resilience data from each
urban area acquired through the questionnaires, was calculated. The results are presented
in Figure 15. The results showed that the correlation coefficient between the WLC model
and the level of social resilience was 0.79, which was indicative of the high capability of the
proposed WLC model for preparing the locative map of social resilience.

− 

Figure 15. Correlation coefficient between the results of WLC model and real-world social
resilience data.

5. Discussion

Facing natural hazards is one of the most important concerns of human communi-
ties [91]. Despite developments in encountering these hazards, there are limitations im-
posed on humans from nature, preventing effective mitigation actions [7]. Social resilience,
as one of the effective metrics in the process of crisis management, is a community-based
approach to improve the preparedness of urban communities against instabilities resulting
from natural hazards [7,18]. In the meantime, identifying the resilient points of a city before,
during, and after the occurrence of natural hazards has a great effect on the amount and
time of recovery after the occurrence of shocks in every area [41,59–61].

This study was conducted with the aim of measuring the social resilience of Sarpol-e
Zahab city against natural hazards. The results showed that most of the urban areas of
Sarpol-e Zahab are in an unfavorable situation in terms of social resilience to natural haz-
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ards. In most urban areas, the situation is unfavorable in social capital and social damage
variables compared to other variables. According to experts, these two variables have
the greatest weight in reducing social resilience. In this regard, the research findings are
consistent with the results of studies [11,59,60,92,93] shown in a study of Jabareen [92].
In a society where social capital is strong, a return from a damaged state is quick. Pere-
grine [93], in his study, concluded that social capital can strengthen and expand the area
of cohesion and solidarity, sense of responsibility, social participation and awareness of
citizens to develop and strengthen social justice in cities (Provide). The results of a study
by Cutter, Barnes, Berry, Burton, Evans, Tate and Webb [59] also showed that reducing
social vulnerability (poverty, addiction, etc.) and empowering people strengthens social
resilience in urban communities. It also showed that, considering social resilience, more
than 60% of the studied urban areas were at low to very low levels, 25% were at a moderate
level, and nearly 14% at high to very high levels. This was indicative of the low defensive
power of the city against shocks and incidents. Evidence on the retrieval rate in all urban
areas of Sarpol-e Zahab shows that recovery from the earthquake in 2017 has remained
really slow and unchanged in recent years. After almost four years since the incident, most
of the urban areas have not dealt properly with the shock and have not returned to their
initial states. The occurrence of that incident has affected all aspects of the survivors’ lives
and has had consequences, such as homelessness, displacement, social dispersions, social
discrimination and inequality, poverty and unemployment, violence against women, social
rejection, lack of social and psychological security, and various other social problems.

From the viewpoints of the researchers studying resilience of urban communities,
the basis of resilience and sustainability of a whole society against natural hazards, lies
in the extent of its social resilience [3,94,95]. In this approach, the concepts of public
engagement and social development are given deeper and more serious attention; and
because this approach includes community-oriented factors, it has a significant impact on
reducing vulnerability, and, thus, enhancing the power of defense mechanisms and the
resilience of cities against natural hazards [17,59]. Nevertheless, the approach of urban
crisis management concerning the encountering of natural hazards in Iran, tends to be
more physical and only reinforcement of buildings is taken into consideration, while other
aspects of social resilience, such as economic and social aspects, are overlooked. Due to the
non-participatory, highly centralized, vertical (top-to-down), and politicized characteristics
of the urban management structure in Iran, there is a lack of horizontal convergence
and mutual relations among different urban levels, and so, modern approaches of urban
management are overlooked. This, along with other issues, is why retrieval after an incident
is belated or delayed, thereby turning any natural hazard into a crisis.

Considering the applications and strengths of GIS-MCDM techniques in various
decision-making processes relating to natural and human phenomena, this method was
used in this study as a proposed method to identify the degree of social resilience of
different urban areas and to determine the optimal areas for resilience in Sarpol-e Zahab
city. In GIS-MCDM models, areas with high or low resilience can be determined according
to the values and weights of the effective criteria. Obviously, the region with high resilience
is one that has good conditions in terms of all variables.

The methods of GIS-MCDM consider the user’s preferences, manipulate the data, and
help decision-makers in complex multi-criteria decision scenarios by combining preferences
and data [83]. The WLC method is one of the simplest and most common techniques in
GIS-MCDA and was used in this study to identify urban resilient areas to natural hazards.
The main advantage of this technique is that it can be implemented very easily in a GIS
environment. Moreover, it is easy to understand and intuitively appealing to analysts [96].

6. Conclusions

Today, following the growth of urbanization and increasing natural hazards, investi-
gating and measuring urban resilience to reduce the impact of natural hazards is considered
one of the effective and most important factors of urban planning and management. Appro-
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priate and accurate knowledge of the characteristics of each urban area, facilitates decision
making and planning to monitor natural hazards, use of urban capacity, optimal location
and finally management and decision making in urban affairs.

In this study, the level of social resilience in different urban areas of Sarpol-e Zahab city,
Iran, was evaluated using local multi-criteria decision-making models with 10 variables
and 28 criteria. The results showed that the southern, southwestern and northwestern
parts of the city were unsuitable in all criteria (except for one urban area) and the central
and southeastern areas had a significant area of medium and suitable rating in terms of
flexibility. They were social. Considering that most of the urban areas, 60% of the study
area, had very low levels in terms of social resilience, it is suggested that by strengthening
communication between people and institutions, enhancing risk awareness, improving
environmental quality, increasing the preparedness of people and NGOs, and developing
and implementing disaster management plans to support the recovery process, social
resilience could be achieved, resulting in improved urban areas.

Our findings indicate the relatively high performance of locative multi-criteria decision-
making models for assessing the level of social resilience in highly vulnerable cities. The
following limitations were encountered in the course of this study: (a) the strong depen-
dency of the accuracy of the results on the experts’ knowledge; (b) the input data were
collected from different sources and at heterogenous coordinate systems, resolutions (i.e.,
spatial or temporal), and data formats (i.e., raster or vector); (c) data redundancy. As per
future studies, we suggest considering models with the ability to consider the concept of
risk in decision-making, based on Ordered Weight Averaging (OWA) logic for better map-
ping of optimal areas, in terms of social resilience. Furthermore, the incorporation of fuzzy
logic-based models could be very useful, in order to consider uncertainty in measuring
urban social resilience.
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Abstract: Disaster risk reduction (DRR) has become an important element of donor policy, because
numerous governments have expressed their commitment to helping countries vulnerable to natural
hazards by mainstreaming DRR into their development programs. Meanwhile, countries that are
considered fragile, as well as conflict-affected states, have faced a high risk of disasters brought on
by natural hazards. However, there has been little research that addresses the complex relation-
ship between disasters, conflict, and fragility in the context of development cooperation. Against
this backdrop, this study analyzed the determinants of DRR aid allocation from Japan and South
Korea—two East Asian countries that have shown a strong commitment to disaster resilience and
peacebuilding—to investigate whether they are responsive to countries experiencing the combined
risks of disasters and conflicts and/or fragility. Despite the vulnerable countries being in the most
need, the study found that both Japan and Korea’s aid allocation has not been influenced much by
the concurrence of disasters and conflict. Rather, it has been more driven by the level of a country’s
climate vulnerability than the level of a country’s fragility. This suggests that developing countries
facing multiple risks and challenges are at a major disadvantage in terms of the responsiveness of
donors toward their needs and vulnerability.

Keywords: development cooperation; climate change; disaster risk reduction (DRR); fragile and
conflict-affected states (FCSs); generalized method of moments (GMM); official development
assistance (ODA)

1. Introduction

Although climate change affects every country, its effects are distributed differently
across the globe. In this study, countries classified as low (with a GNI per capita of USD 1085
or less) and lower-middle income countries (with a GNI per capita between USD 1086–4255)
by the World Bank are considered developing countries, while developed countries are
high-income economies with a GNI per capita of $13,205 or more. Developing countries are
the most impacted by climate change given their large rural population, the pervasiveness
of resource-dependent livelihoods, and poverty, as well as their lack of coping capacities
to protect themselves against environmental shocks [1,2]. Future climate change effects
will be more severe and pervasive, and bring will irreversible impacts on all [3]. Hence,
without proper adaptation, people in developing countries are more likely to lose their
livelihoods and homes during natural hazards, which would prevent their social mobility
out of poverty. Furthermore, the risks associated with climate change are already affecting
millions of people around the globe, aggravating already fragile situations, such as poverty
and hunger.

In fragile and conflict-affected states (FCSs), there is a greater risk for climate change
to cause instability and unrest, posing serious threats to human security [4,5]. This is due
to the conditions of fragile and conflict-affected states, including extreme poverty, war,
and the process of reconstruction to crises and disasters [6]. As such, these countries lack

Sustainability 2022, 14, 10003. https://doi.org/10.3390/engproc2023030004 https://www.mdpi.com/journal/sustainability
169



Sustainability 2022, 14, 10003

the capacities to carry out basic governance functions, leaving their citizens vulnerable
to a range of shocks [7–10]. In other words, a state’s level of fragility and violent conflict
increases people’s likelihood to be harmed by natural hazards because it limits their ability
to cope with the impact. The occurrence of a natural hazard in FCSs exacerbates existing
challenges that people face on a daily basis, heightening sources of tensions, such as
weak governance, historical grievances, mobilization, and poverty [11–13]. Put differently,
there is a risk of a negative feedback loop emerging, where existing fragility and conflict
undermine the ability of a government to manage or mitigate social, economic, political,
security, or environmental risks, and this, in turn, potentially exacerbates the conflict
itself, further reducing the ability of states to respond and recover from disasters. Within
these contexts, climate change considerations must be integrated into peacebuilding and
development interventions to promote climate-resilient peacebuilding in FCSs [13,14].

Disaster risk reduction (DRR) is a concept of the practice of “preventing new and
reducing existing disaster risk and managing residual risk” [15]. Reducing exposure
and vulnerability of people and assets, strengthening buildings and roads, improving
forecasting and early warning systems, maintaining adequate emergency shelters, and
strict land-use planning are all examples of disaster risk reduction [16]. In short, the
omission of these acts can turn natural hazards into a disaster. While DRR has long
been recognized as a powerful tool for strengthening resilience and, therefore, achieving
sustainable development, DRR has rarely been integrated into development efforts. While
several studies [17–19] assessed the environmental impact of overall development aid, there
is little research that concentrates almost exclusively on the determinants of DRR aid. In
addition, previous research has often only examined development policies focusing on DRR
and, thus, studies based on empirical analysis on aid allocation in DRR are rather scarce.

Against this background, this study aims to examine the determinants of Japan and
South Korea’s aid allocation in relation to DRR. According to Stallings [20], Japan and
South Korea share a set of characteristics that differentiate them from Western donors
in terms of geographical and sectoral focus, grants and loans profile, and public-private
links. The commonalities—including prioritizing economic growth and preference for
subsidized loans rather than grant aid, infrastructure-centered programs, and the pursuit
of mutual benefits—have created an image of Japan and South Korea’s aid as self-serving.
Amongst the OECD DAC donors, Japan and South Korea stand out as two of the most
widely criticized donor countries based on allegations that they both prioritize national
interests over the needs of recipient countries [21–23]. Indeed, what distinguishes them
from other Western donors is that for both Japan and South Korea, aid has not been only
altruistic, but also about mutual benefits, global recognition, and economic interests [23,24].
Meanwhile, both countries have committed to building disaster resilience in the interna-
tional community by leading in, namely, DRR and green growth, while also committing to
expand efforts for peacebuilding.

The previous literature that looked at Japan’s foreign policy tended to focus on Japan’s
major DRR efforts, policy strategies, and funding trends [23,25,26]. In the case of South
Korea, most of the climate literature has examined the process of green growth or SDGs
mainstreaming into Korea’s development portfolios, but these studies did not make policy
connections to DRR despite the shared goals between the field of green growth, climate
change adaptation, and DRR [27–29]. To the best of the authors’ knowledge, no research
has been conducted that compares the two donors’ policy rhetoric in relation to DRR aid
with their behavior as carried out in this study. The comparative approach allows us to
examine the differences and similarities between these donors to provide a broader picture
of DRR aid policy.

2. Literature Review

2.1. Disproportionate Risks of Climate Change

From 1990–2018, a total of 3734 disasters related to natural hazards were recorded in
the emergency events database (EM-DAT). Figure 1 illustrates the frequency of each disaster
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type from 1990 to 2018 in low, lower-middle, and upper-middle-income countries. Over
the past 30 years, Asian countries have experienced more disasters than any other region.
The cumulative number of disasters for East and South Asia between 1990 and 2018 was
3501, which accounts for 40.1% of the total reported disasters around the world in the same
period. Floods occurred more often than any other type, accounting for 46.8% of incidents,
followed by storms at 32.7%, and earthquakes at 9.2%. Bangladesh, Pakistan, and Vietnam
have faced relentless floods over the past three decades. Because of under-reporting in low-
and lower-middle income countries due to the difficulty of tracking disasters, the actual
number of incidents in those places is expected to be higher.

As evident in Figure 1, statistics reveal that more than half of the people affected by
disasters have lived in a FCS, demonstrating a “deadly interdependence” between conflict,
fragility, and disasters [30–32]. In 2018, Somalia experienced deadly flooding, which af-
fected over 700,000 people and, in Nigeria, flooding took 300 lives and impacted nearly
4 million people [33]. Droughts were frequent in many Sub-Saharan African countries, as
37.6% of the total drought incidents occurred in this region from 1990 to 2018 alone; more
than 3 million people were affected by drought in Kenya. Additionally, Afghanistan suf-
fered a major drought that impacted 2.2 million people, causing the internal displacement
of thousands [34]. According to the UN, the drought in 2018 displaced more Afghans than
the conflict between the Taliban and the domestic government [35]. According to a 2020
report by the International Committee of the Red Cross (ICRC), 14 of the 25 countries that
are considered to be fragile and conflict-affected states are currently facing environmental
degradation and climate change. In summary, the intersections between disasters and
conflict and fragility are manifold, and have become a source of massive human suffering
and even more instability and conflict in FCSs [36,37]. If the international community is
to build resilience and peace across the world, it must understand the negative feedback
loop, where existing fragility and conflict raise people’s potential to be harmed by natural
hazards, which in turn exacerbate the sources of tension and poverty; the international
community must work together to confront these interrelated and mutually reinforcing
risks [38].

Over the past decade, development research tried to capture the broad spectrum of a
possible relationship between disasters and conflicts [5,31,37,39], and several aid projects
have been conducted by development agencies to reduce the threats to human well-being
from consequences of disasters and conflicts [40,41]. The sustainable development goals
(SDGs), launched in 2015, recognize and reaffirm the urgent need to reduce the risk of
disasters and promote peace, justice, and inclusion in FCSs. While ‘peace’ is explicitly
mentioned in Goal 16, a peace dimension is found across the SDGs as a whole, and 25
targets in 10 of the 17 SDGs are related to DRR [42]. Indeed, building peace and resilience
across the world is the priority. To this end, a more strategic and innovative approach that
can break the negative feedback loop of disasters, conflict, and fragility is necessary for
development aid to promise a meaningful path forward.

2.2. The Lead-Up to the Appearance of DRR in Development Assistance

Typically, DRR is a combination of measures that reduce exposure and susceptibility
to natural hazards by enhancing coping and adaptive capacity [15]. The last two decades
have seen intense global actions toward mainstreaming DRR principles in development
planning and practices, due to the ongoing disasters in many developing countries. In fact,
a series of UN conferences on disaster and climate risk management convened in Japan,
namely in Yokohama in 1994, Hyogo in 2005, and Sendai in 2015.
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The Sendai Framework for Disaster Risk Reduction 2015–2030 calls for a strong inte-
gration of DRR into development. One of the targets of the Sendai Framework seeks to
accomplish the following:

‘Substantially enhance international cooperation to developing countries through ade-
quate and sustainable support to complement their national actions for implementation of
the present Framework by 2030.’ [16]

Nevertheless, the mere ratification of international DRR agreements tells us little
about how serious countries are in addressing climate change. To confirm whether their
commitment has been converted into action, it is important to examine donor’s aid activities
and track the exact amount of official development assistance (ODA) invested in DRR.

Many studies that attempted to analyze DDR via ODA reported that the lack of ade-
quate DRR classification and information in the OECD development assistance committee
(DAC)’s creditor reporting system (CRS) poses a major bottleneck in estimating the aid
flows in DRR or climate-related areas [25,43]. There have been no standardized guidelines
for tracking such investments. This is largely due to how DRR has rarely been seen as a
stand-alone factor; DRR activities have been commonly included within wider programs
and projects, including those related to rural development, food security, health systems,
energy production, environmental protection, etc. Due to the cross-cutting nature of DRR,
it was hard to quantify the exact amount spent on DRR, and donors were unsure of how to
report it; thus, the data on DRR investment has been limited [25,43]. Against this backdrop,
in 2018, OECD DAC members agreed to add a new marker called “Disaster Risk Reduc-
tion” to the CRS database to easily identify DRR-related ODA. However, scholars have
questioned how accurately this marker conveys the true purpose of aid in practice based on
the experiences with other environmental markers, namely the “Rio climate” markers [44].
For example, Roberts et al. [45] found that only 25% of projects with Rio markers were ac-
tually relevant to climate change, and Michaelowa and Micahelowa [46] and Junghans and
Harmeling [47] later came to similar conclusions. Consequently, environmental markers
lack reliability as well as validity [44,48].

Because of the newness of the DRR marker in CRS, not all projects have been screened
against the DRR marker. As an alternative, this study uses five different sectors to iden-
tify DRR aid. While there is no single approach to track and evaluate DRR aid, this
study will consider sectors commonly used in other studies [25,43] to evaluate DRR aid,
such as (i) “disaster prevention and preparedness”, (ii) “reconstruction relief & rehabilita-
tion”, (iii) “general environmental protection”, (iv) “energy generation and non-renewable
sources”, and (v) “disaster risk reduction”, a subcategory of the multi-sector. Further-
more, “emergency response”—a category under “humanitarian Aid”—may appear directly
related to DRR, but it has served multiple purposes, responding to a variety of needs includ-
ing education, protection, and safety in conflict situations, health, pandemics, post-crisis
refugees, etc. [25,49]. For this reason, “Emergency Response” will be omitted from further
analysis. The sectoral name in (i), (ii), and (v) makes apparent its relevance to DRR by
its name. The “energy generation and renewable resources” sector is included since the
replacement of fossil fuels with various sources of renewable energy plays a crucial role in
all stages of DRR, especially considering the importance of the energy sector in everyday
activities [50]. The “general environment protection” sector is also added to the estimation
of DRR aid, given that many development projects classified into this sector are designed
with DRR-related intents, such as flood prevention and control, environmental policy,
protection of ecosystems and biosphere, and environmental research [43,51]. Furthermore,
despite the large number of sectors that may include an element of DRR, Spark’s research
(2012) found that only three sectors–disaster prevention and preparedness, reconstruction
relief and rehabilitation, and general environmental protection accounted for 80% of the
entire DRR aid in the fiscal years 2006–2010 [25]. This method is prone to bias and omission,
as the selection depends entirely on the sector description. It will be sufficient, however, to
explain the recent trend of donors’ ODA spending in DRR.
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2.3. Japan and Korea’s Environmental Initiatives

In 2019, Japan’s ODA stood at 15.5 billion USD, making Japan the fourth largest donor
in absolute terms (OECD statistics). Being one of the oldest members of the OECD-DAC,
Japan has been the only major aid donor not located in Western Europe or North America.
On the other hand, South Korea only joined the OECD-DAC in 2010. In 2019, South Korea
spent 2.5 billion USD on its ODA, making South Korea the 15th largest donor country
(OECD statistics). Although Japan does not select priority partner countries, its recipient
countries have been concentrated in the Asia region, with a slow expansion to sub-Saharan
Africa in recent years [52]. In the case of South Korea, it has chosen priority countries
every five years, allocating a large proportion of its ODA to them. In January 2021, the
South Korean government re-selected priority partner countries for the next five years. The
new priority partner countries are composed of 11 Asian countries, 8 African countries, 4
Central and South American countries, 2 Middle Eastern countries, and 1 in Oceania [53].

Japan and Korea share very similar developmental approaches. Both have allocated
about three-quarters of their total ODA to bilateral ODA over the past decade (OECD
statistics). Both countries have been subject to criticism for their self-serving features,
including a high proportion of concessional loans and tied aid, often heavily tied to pro-
curement of their own domestic contractors [54–57]. In addition, their aid has primarily
focused on the hardware of development (i.e., infrastructure and industrial production)
with less concern for the software (i.e., governance and institutions) [58]. In sum, Japan
and Korea’s ODA have been often regarded as instruments of growth rather than of relief
and life-saving assistance.

Nevertheless, both countries deserve serious credit for actively promoting DRR and
climate change adaptation, which is referred to as activities that reduce the vulnerability of
human and natural systems to the impacts of climate change [59]. As a host country for all
three World Conferences on Natural Disasters from 1994 to 2015, Japan has played a leading
role in sharing its experience, knowledge, and techniques relating to DRR, and is strongly
committed to building a sustainable and resilient international community [60]. Between
1991 and 2010, Japan spent the largest amount of ODA for DRR activities among the DAC
donors, disbursing 64% (3.7 billion USD) of the total funding [61]. Furthermore, important
synergies exist between the Sendai Framework and Japan’s ODA Charter, revised in 2015 for
the third time since its initial formulation in 1992. It outlines three basic policies, as follows:
(i) contribute to peace and prosperity, (ii) promote human security, and (iii) emphasize
self-reliant development and collaboration [62]. Japan’s desire for peace, stability, and
prosperity in the international community can only be realized when safe and resilient
societies are built in developing countries, especially in fragile states. There is overlap in
the thematic priorities of Japan’s ODA and the Sendai Framework, as both are grounded in
“human security” perspectives.

Whereas Japan has been at the forefront of DRR initiatives, South Korea has been at the
front of green growth initiatives. In 2005, the concept of “green growth” was pioneered and
brought into the discussion by the United Nations Economic and Social Commission for
Asia and the Pacific (UNESCAP) during the Fifth Ministerial Conference on Environment
and Development (MCED) in Asia and the Pacific held in Seoul, Korea. Regarded as
the most appropriate approach for harmonizing economic growth with environmental
sustainability, the principles and approaches of green growth attracted significant attention
in many countries, and have been incorporated into various DRR activities [63–65].

South Korea is the first country to make green growth a national strategy [64,66]. In
response to the 2008 global financial crisis, South Korea adopted “low carbon green growth”
as the country’s new development vision with the hope of getting the economy back on
track. South Korea formulated two major national plans for green growth, as follows: the
National Strategy for Green Growth (2009–2050) and the Five-Year Plan (2009–2013). These
plans were implemented to ensure that green growth initiatives are pursued in a systematic
and organized manner. Around the same time, South Korea launched the East Asia Climate
Partnership (EACP), the most significant initiative under “green ODA”, and dedicated
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200 million USD for 2008–2012 in the form of ODA [67]. Notably, Korea turned its pledge
into action to fight climate change and promote green growth. Attempting to establish
South Korea as truly a global player, South Korea joined the OECD-DAC in 2010 and
pledged to spend 30% of its entire ODA on green projects by 2020, up from 11% in 2007 [68].
Lastly, in the same year, South Korea established the Global Green Growth Institute (GGGI)
as a way to extend its green growth strategies into “green ODA”, and to share its green
growth experience with developing countries [66].

In South Korea, the presidential election takes place every five years, and the new
foreign policy agenda set by a new office shapes the direction and strategies of development
cooperation policies, often resulting in policy discontinuity and inconsistency [69]. Aid
policy in Korea is strongly determined by the type of vision the new president has for the
future of the country. The term “green growth”—a slogan that epitomized the national
development policies from 2008–2013—has gradually disappeared in South Korea’s ODA
agenda with the start of a new presidency in 2013, but the concept of green growth—
reducing environmental impacts of society while still expanding the economy—remained
in the ODA agenda under different names and purposes, such as “sustainable development”
and “climate change adaptation” [69,70].

As for security and peacebuilding efforts, Korea pledged to increase its support
for FCSs and least-developed countries following the endorsement of the New Deal for
Engagement in Fragile States in 2011, which is an international guidance document on
supporting FCSs. Specifically, South Korea formulated its own guidelines to support FCSs
in 2012, a plan to implement the New Deal in 2015, and the Mid-term Assistance Strategy
for Fragile States in 2016. South Korea expressed a strong willingness in recent years to
contribute to institutional-building, peacekeeping, and the containment of transborder
threats in FCSs.

Such evidence of climate, DRR, and peacebuilding initiatives by Japan and South
Korea leads us to the following questions: how responsive are Japan and South Korea
to the needs of low-income countries, specifically those experiencing compound risks of
disasters and conflict? Are these donors more sensitive to the interplay of disasters and
conflict, or are they more influenced by one type of risk over the other? For 50 years,
developed countries used ODA as a strategic tool to respond to humanitarian crises. In the
name of ODA, developed countries have delivered various forms of assistance including
projects, trainings, the dispatch of experts and volunteers, and the import of equipment for
development cooperation. Indeed, ODA has been the global standard for measuring donors’
responsiveness to the needs of recipient countries, as well as assessing their performance
against their pledges. In this study, donors’ responsiveness to disaster risk is measured
with the actual amount of ODA disbursed with DRR objectives.

As disasters associated with natural hazards could compromise development and
peacebuilding efforts in FCS, this study tests a hypothesis regarding an increase in respon-
siveness by Japan and South Korea to recipient countries with combined risks. The result
of this study would answer our main question of whether Japan and Korea have become
donors who are sensitive to the needs of developing countries with fragility and high risks
of disaster, moving beyond self-interest by turning their pledges to disaster resilience and
peacebuilding into real action.

3. Methodology

3.1. Data Description

We used several indicators to explore the determinants of Japan and Korea’s bilateral
DRR aid. For reference, determinants of DRR aid by OECD-DAC donors as a group have
also been looked at, which would help us understand in general whether donors’ policies
are oriented toward disasters or man-made crises in terms of aid allocation.

As a dependent variable (DV), we used the disbursements of total bilateral ODA,
as well as the one of the combined bilateral ODA in five DRR-related sectors. Both are
converted to natural logs to account for the skewed distribution. The reason for focusing
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on bilateral aid is because most climate aid is bilateral [44,71]. By 2008, bilateral aid
represented two-thirds of the 15 million USD categorized as climate aid. According to a
study by Victor [72], bilateral environmental aid is over 20 times larger than multilateral
climate funds. Additionally, as previously mentioned, our main countries of interest, Japan
and Korea, allocate about three-quarters of their total ODA for bilateral ODA. Thus, the
bilateral ODA of Japan and Korea, and that of other OECD-DAC donors, is substantively
more important and more likely to have discernible effects in the environmental field.

As for the core explanatory variables, we constructed four respective categories
(disaster-prone countries, FCS, both, and neither). Countries in the reference category
are neither FCSs nor disaster-prone countries, but either low or lower-middle income
countries, having a GNI per capita below UDS 4045 based on the World Bank country
classification by income level.

As for constructing the dummy variable “FCS”, we used the Fragile State Index (FSI).
The FSI is based on 12 key political, social, and economic indicators and over 100 sub-
indicators. The 12 key risk indicators measure whether conditions with regard to security
apparatus, fractionalized elites, group grievance, economic decline, uneven economic
development, human flight and brain drain, state legitimacy, public services, human rights
and rule of law, demographic pressures, refugees and internally displaced persons, and
external intervention, are improving or worsening. developed by a US think tank, the Fund
for Peace. Since 2005, the FSI has measured the social, economic, and political pressures
facing countries around the world based on a scale of 0–120, with 0 being the lowest
intensity (least fragile) and 120 being the highest intensity (most fragile). As a composite
index, it is comprised of 12 primary indicators that create a representation of overall fragility
and conflict. This is used extensively by government bodies and aid agencies to assess their
contributions toward development initiatives [73]. The World Bank and OECD also refer
to the FSI when creating their own list of fragile states. From 2016, KOICA, Korea’s ODA
agency, also began to refer to the FSI to identify countries in need and to select priority
fragile states for support, and now uses a cutoff value of 90 in the FSI score [74]. We apply
the same rule and consider a country fragile if it has an FSI score greater than or equal
to 90.

As for constructing the “disaster-prone countries” dummy variable, we used the
Climate Risk Index (CRI). The CRI uses a country’s fatalities and economic losses to
calculate the impacts on each country. The average ranking in four indicating categories,
namely number of deaths, number of deaths per 100,000 inhabitants, sum of losses in USD
in purchasing power parity, and losses per unit of gross domestic product, are used to
calculate the CRI score. The CRI was developed by a German think tank, GermanWatch.
This is one of the leading risk indices, and it is highly cited in scientific domain [75–77] The
CRI analyzes to what extent countries have been affected by the impacts of extreme weather
events based on four sub-indicators, such as fatalities and economic loss [78]. The higher the
CRI score, the more vulnerable the country is to disasters associated with natural hazards.
Since the average CRI score for around 180 countries in the period of 1990–2018 was 90, this
number was used as a cutoff value to create a dummy variable, namely “disaster-prone
countries.” In the end, there were a total of 66 low and lower-middle countries in 4 different
groups, with 20 in the disaster-prone countries group, 14 in the FCS group, 14 in both, and
18 in neither.

Over the past 20 years, more than 4.4 billion people have been made homeless or
injured [79]. According to the ‘Lost at home’ report by UNICEF, in 2019 alone, 33 million
new people became internally displaced by conflict and disasters worldwide, around
25 million of which were due to disasters associated with natural hazards. Given that
displacement associated with disasters is one of today’s most serious consequences of
natural hazards, displacing millions from their home every year, the number of internal
displacement cases, provided by the Internal Displacement Monitoring Center (IDMC), is
used as an indicator to show the scale and severity of disasters within countries. We did not
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put them in same regression model due to the nature of the strong correlation between the
number of internal displacement cases and the “disaster-prone countries” dummy variable.

For control variables, we used 11 additional indicators across regression models. They
include a population indicator from the UN Population Prospects, as well as fragility and
conflict indicators, such as security threat, economic inequality, public services functioning
from the Fund for Peace. Macroeconomic indicators, such as GDP per capita, foreign direct
investment (FDI), trade openness, and remittances from the World Bank were also used.

Firstly, population is an important predictor of development assistance [24,80–82].
More populous developing countries are expected to be in greater need of development
and more likely to receive aid [83] but, at the same time, large population tends to decrease
marginal benefits of aid allocation and, thus, aid has been much higher for counties with
small populations in relative terms [84]. Secondly, country’s income level (GDP per capita)
is also an important factor to consider because the material need of recipient countries is
measured by the level of income [85]. As countries with low per capita income have a
greater need for foreign aid, donors tended to respond negatively to per capita income [86].
Third, there has been a notion that FDI and aid are complementary sources of capital [87].
While the aid allocation sends a signal to firms that donors have trust in local authorities,
FDI decision signals the presence of good physical infrastructure in recipient countries
to donor countries. We expect countries receiving larger FDI would attract more aid.
Fourth, the degree of the recipient country’s trade openness has been one of the most
frequently used determinants of development finance [83,88]. Trade liberalization policies
would enhance competitiveness and send signals to donors of the country’s commitment
to sound macroeconomic policies. In this study, we expect that donors allocate more aid
to reward countries for the good quality of their economic policies, in particular their
trade liberalization policies. Lastly, a number of past studies analyzed the relationship
between aid and remittances, and found that development aid acts as a complement
to remittances [18,89,90]. By improving household capacity to invest in education and
healthcare, remittance does improve the recipient country’s absorption capacity, the lack of
which has been often pointed out as a bottleneck to aid scaling up. Therefore, remittances
can in fact lead to an increase in aid. In this study, we expect likewise.

As for proxies for fragility and conflict, security threats to a recipient country, the
presence of basic state functions, and inequality within the economy are selected. Security
threats refer to the level of danger associated with events, such as bombings, attacks,
rebel movements, or terrorism [91]. Public service functioning refers to the presence of
basic state functions in terms of providing essential services, such as health, education,
water and sanitation, transport infrastructure, etc. The economic inequality indicator
refers to structural inequality that is based on identity groups, such as racial, ethnic, or
religious inequality. These proxies are carefully chosen based on the key characteristics
of fragile states defined by several institutes [6,92–94] that, as follows: (i) fragile states
are active in armed conflicts involving the use of weapons, violence, and force; (ii) they
have weak governance, ineffective public administration, and rule of law and, therefore,
their government cannot or will not provide its core functions to the majority of its people;
and (iii) structural inequality is inherent in those states due to extractive institutions,
which prevent some people from having economic opportunities to better their lives. Such
inequality in return fuels communal tensions and violence, creating the ‘vicious cycle’.
Indeed, all three indicators appear to be good proxies for describing the conditions of state
fragility. The higher the score in each indicator, the worse the country’s fragility.

Lastly, we added a couple of regional indicators in regression models on Korea and
Japan, such as South and East Asia, and Africa, hoping that our core explanatory variables,
fragile states and disaster-prone countries dummy variables, do not spuriously capture the
effects of regions since both Korea and Japan tend to favor countries in these two regions in
terms of aid allocation. Given that many of these indicators are available from 2008 up to
2018, we conduct a regression analysis based on the 2008–2018 data.
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3.2. Methodological Framework

In this study, we use dynamic panel data, meaning that the current behaviors of the
dependent variable depend upon past behavior. In addition, some of our explanatory
variables are endogenous. For instance, the direction of the causality flow of bilateral ODA
to the characteristics of recipient countries remains uncertain.

The quantity of ODA is likely to be endogenous to each recipient country’s charac-
teristics. Often, donors are reluctant to interfere in states characterized by low democratic
activity, absence of public services, corruption, and a weak legal system [95,96]. There is
evidence that poor countries with thorough policies received more financing than equally
poor countries with weak economic management and political instability [88]. Besides the
situations associated with fragility, countries differ in several ways, such as their colonial
history, political regimes, ideologies, religious affiliation, and geographic locations. Failing
to take this heterogeneity into account will inevitably produce bias in the results.

Using a lagged dependent variable in panel data regression does come with complica-
tions, since lagged dependent variables are correlated with the disturbance term, which is
due to unobserved effects, resulting in a bias, particularly in the “small T, large N” con-
text [97]. If individual-level error terms are correlated with the lagged dependent variable
to some degree, their coefficients are likely to be biased as well.

The generalized method of moments (GMM) estimators help overcome this problem
by utilizing a set of instruments to deal with the potential problem of correlation between
the lagged dependent variable and the disturbance term [98]. The Arellano and Bond
estimator works by taking the first difference of the regression model to sweep out the
individual fixed effect and its associated omitted variable bias; it then uses lagged levels of
the dependent variable as instruments for differenced lags of the dependent variable. This is
the standard first-difference GMM estimator. A potential weakness in the difference GMM
is that the lagged levels are often rather poor instruments for first-differenced variables,
and the dependent variable is close to a random walk. Arellano and Bover (1995), and
later and Blundell and Bond (1998), identified this weakness and modified the estimator to
include lagged levels as well as lagged differences, naming this the system GMM estimator.
The introduction of more instruments at both levels and first-differences in the estimation
process can dramatically improve efficiency. We will employ the two-step robust option,
since it is more efficient than the one-step robust in system GMM [99].

For the possible weaknesses in the estimation results, such as unobserved heterogene-
ity, endogeneity, autocorrelation, and weak instruments, we conduct the Arellano–Bond AR
test for autocorrelation and the Hansen J tests for over-identifying restrictions to provide
some evidence of the instruments’ validity.

Given the considerations presented above, the GMM is specified as follows:

yit = α1yit−1 + α2X′it + β1Dit + β2Fit + β3Cit + ui, + εit

where yit is the dependent variable (DV) which is either log of per capita ODA or DRR
aid of country i at time t. Additionally, yit−1 is the one-period lagged dependent variable;
X′

it represents a vector of control variables; the dummy variable Dit captures natural
hazard vulnerability, taking 1 for environmentally vulnerable states and 0 otherwise; Fit is
a measure of fragility and conflict, taking 1 for fragile states and 0 otherwise; Cit captures
the concomitance of natural hazards and conflicts, taking 1 for countries under compound
risks and 0 otherwise; ui, is an unobserved country-specific effect; and εit is the remainder
error term that varies over both country and time.

4. Results

4.1. General Trend of DRR Aid over 2006–2019

Between 2006–2019, 86 billion USD of official ODA was reported as DRR, which
constituted approximately 5.8% of the total ODA (1.5 trillion USD) spent by the OECD
DAC donor countries over the same period. This DRR aid has increased considerably from
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2006 to 2010, rising from 3.3 billion to 7.9 billion USD in 2010, but since then the amount
has been up and down around 7 billion USD, standing at 7.3 billion USD in 2019. The
increase in DRR aid in 2010 may partially be due to the improved reporting of expenditure
to DRR, as 21 out of 24 donors began to report their DRR funding from 2010, compared
to only 10 in 2006 [25]. Although a new marker, “disaster risk reduction”, was added to
the CRS reporting format in 2019 for 2018 data, there was no significant change in DRR
amount from 2017 to 2018.

The DRR aid has been marginal for all donor countries. Table 1 shows that only two
donors, Norway and Germany, have spent more than 10% of their total ODA on DRR
between 2006–2019. Seven donors (France, Finland, Denmark, Spain, Japan, New Zealand,
Czech Republic, and the UK) have allocated around 5–8% of their budgets, and the remain-
ing donors have allocated below 5%. However, in absolute terms, Japan was the second
largest donor to DRR, spending 12 billion USD throughout 2006–2019. Korea’s DRR aid has
amounted to 4.57%, which is the average percentage for all DAC members in 2006–2019.
Overall, data suggest that the majority of OECD donors have not met the wide range of
commitments they have made in the DRR framework.

Figure 2. compares the top 10 recipient countries of Japan and Korea with those of
OECD-DAC members as a reference. The main recipients of Japan’s DRR aid throughout
2006–2019 were Asian countries, with 7 out of 10 being in East and South Asia; none
of these countries were FCSs. In the case of South Korea, the composition of the top 10
recipient countries were more diverse, with four East and South Asian countries, two
Central American countries, two Sub-Saharan African countries, and one Middle East
country; three of these were FCSs (marked with [F] in the figure). However, 6 out of these
10 are Korea’s priority partner countries (Vietnam, Mongolia, Lao PDR, Nepal, Indonesia,
and Mozambique), meaning they were meant to receive Korea’s aid regardless of their state
of danger. As for the OECD countries, only one recipient country was a fragile state.

In addition, for both Japan and Korea, a heavy concentration of DRR aid in relatively
few countries and perhaps in a small number of projects is found as a pattern. Both
countries allocated about 75% of the total DRR aid to their top 10 recipient countries for
2006–2019, whereas OECD-DAC members as a whole allocated about 45% of their total
DRR aid to their top 10 recipient countries, meaning that, compared to Japan and Korea,
many more high-risk countries shared little funding across many projects. In an exact
number figure, 30 countries shared about 75% of the total DRR aid throughout 2006–2019.
However, in terms of income classification, only about 18% went to low-income countries,
whereas lower-middle income and upper-middle income groups received about 44% and
37% of OECD-DRR aid, respectively. For instance, China, Brazil, and Mexico—classified as
upper-middle income countries, received around 6%, 5.1%, and 3.6% of the total DRR aid
throughout 2006–2019, respectively, for various types of disasters, which may suggest that,
when allocating DRR aid, donors’ main priority is recipient countries’ exposure to natural
hazards alone, ignoring the potential for a far greater risk that may arise from the interplay
between natural hazards and poverty, as well as conflict in the recipient country.

Figure 3 shows that none of the five DRR sub-sectors exceeded 5% of the total ODA in
2006–2019. Korea’s allocation for reconstruction and rehabilitation and Japan’s allocation for
general environment protection rose close to 5% immediately following their endorsement
the of Hyogo Framework in 2005, but this did not sustain over time. While investment in
all DRR sectors was marginal, constituting less than 1% of the total ODA over time, the
amount allocated for the sector of energy generation and renewable sources has fluctuated
the most for both countries. Overall, there was no sign of sufficient support for DRR from
both countries.
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Figure 2. Top 10 DRR recipient countries, 2006–2019 (unit: in USD millions). Note: the author used
data from OECD Creditor Reporting System (CRS). Here, [F] indicates fragile states.

Figure 3. Changes in Japan and Korea’s DRR spending as % of total ODA in 2006–2019. Note: author
used data from OECD Creditor Reporting System (CRS).

4.2. Empirical Results

Table 2 provides the estimation results for the allocation of both total bilateral ODA
and DRR aid. The coefficients for the three dummy categories show a clear-cut pattern.
The results in models 3, 7, and 11 show that OECD-DAC donors, Korea, and Japan pro-
vided approximately 36%, 11%, and 39% more of DRR aid to disaster-prone countries,
respectively, than those low-income countries in the reference group throughout 2008–2018.
This indicates that donor states significantly increase their DRR aid with respect to the
recipient countries’ level of disaster risk, but not to their level of fragility and conflict. This
reveals that, at least for utilizing DRR aid, the underlying orientations of donor countries
are focused on the recipient country’s vulnerability to climate-induced natural hazards
rather than being strategically deployed to respond to risks from a combination of dis-
asters, conflict, and fragility. The result that donors do not respond to the DRR needs of
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FCSs, could be a reflection of difficulties and challenges in implementing DRR work in
FCSs because of violence, social and political instability, weak governance, and a gener-
ally unsafe environment [100,101]. Yet, there was no indication that FCSs, nor countries
with both frequent conflicts and disasters, receive significantly less aid than those in the
reference group.

Given the strong correlation between those dummy groups and their country char-
acteristics, the dummy groups are omitted from models 2, 4, 6, 8, and 10 and, instead,
characteristics that describe different dimensions of countries’ fragility and conflict are
included. As a proxy for vulnerability to natural hazards, internal displacement is included.
Korea’s aid responsiveness to the recipient country’s internal displacement situation was
much stronger via its total bilateral ODA. In model 6, a 1% increase in internal displacement
cases resulted in a 0.053% increase in the amount of Korea’s bilateral ODA but, ironically,
such responsiveness disappears in its DRR aid. However, in the case of Japan, internal
displacement was an important determinant of its DRR aid. The result of model 12 shows
that countries that experienced large internal displacement received larger amounts of
DRR aid from Japan. This suggests that Korea’s DRR aid may have a specific purpose
of strengthening recipient countries’ adaptive capacity to climate change, whereas Japan
intends to help the victims in post-crisis situations, who are generally poorly assisted by
their own government. While recipient countries’ internal displacement situation did not
have a significant influence on Japan’s total bilateral ODA allocation, one must not forget
that the amount of Japan’ ODA specifically allocated for DRR sectors is significantly larger
than that of Korea. For instance, Japan’s DRR aid for 2006–2019 was approximately 13
times greater than that of Korea, meaning Japan has spent a significant amount of money
for post-crisis situations over the past decade with their DRR aid. Overall, the internal
displacement situation is an important factor that influences the ODA budget allocation of
bilateral donors.

The population size of the recipient county is included across all models, assuming
that larger countries receive more overall aid. While large countries received more DRR aid
from Japan and other DAC countries, they received less in terms of overall development
assistance, meaning donors are likely to have multiple motivations across different types of
aid [102]. The total bilateral aid with multiple objectives may be more likely to be associated
with donors’ self-interest and, thus, less likely to be used for populous countries where
the marginal benefits of aid decrease [84]. However, in the context of DRR aid, donors’
altruistic humanitarian motivation tends to play a bigger role because what really matters
is helping as many people as possible that are devasted by wars and natural hazards. In
case of Korea, population size did not influence its DRR aid allocation.

The most common indicator used in ODA development assistance studies is GDP
per capita, which approximates the economic needs of the recipient country’s population.
The effect of the economic hardship was not strong on Japan and Korea’s aid allocation
decisions, which is rather surprising since both Japan and Korea have a reputation of
favoring countries with growth potential and, thus, growing GDP [24,103]. However,
Japan does appear to pursue self-interests in the sense that it has assisted countries with
higher FDI. Perhaps such a result can be explained by the fact that institutions and financial
systems tend to be better in countries receiving a high level of FDI [104,105] and, thus, more
effective use of ODA is guaranteed to some degree. A slight tendency for increased aid
for countries with higher FDI and a higher trade share is found for OECD-DAC donors.
Both variables are significant at the 0.1 level. This confirms the results of various studies
that showed the United Kingdom favored countries that have a high trade share relative to
their GDP [58,106].
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The level of recipient country’s trade openness had an effect on neither Japan nor
Korea, which does not seem very intuitive, as one would expect that Japan and Korea
would provide more aid to countries with stronger commercial ties, counting on forming
or strengthening trade partnerships [107,108]. However, this study found no evidence that
either Japan or Korea tried to pursue national interests by strategically allocating ODA to
countries with higher trade flows.

The estimation results show that OECD donors, Japan, and Korea have been reluctant
to support states with higher security threats. The allocation of their total bilateral ODA
was lesser for those states. However, no such indication was found with their DRR
aid. Such mixed results raise the following question: if development aid in general does
not work in countries with high-security threats, why should DRR aid should fare any
better? Previous studies on environmental aid may answer this question. For instance,
Connolly [109] notes that “donors do not always provide aid in order to solve environmental
problems . . . sometimes care more about the appearance of doing something . . . than about
finding genuine solutions.” This image-focused motivation explains why many of the
environmental projects marked with the “Rio marker” were unrelated to climate-related
projects, which was found in a study by Michaelowa and Michaelowa [46]. The results of
our study reinforce their viewpoint that donors have political motives for linking their aid
to environmental markers, simply to show that they are “doing something good”.

The regional indicators show that Japan has strongly favored countries in South and
East Asia when allocating their bilateral aid, including DRR aid. Countries in South and
East Asia received a disproportionate quantity of Japan’s ODA compared to the rest of
the world during 2008–2019. This is consistent with recent statistics that Japan’s ODA is
still mainly concentrated in the Asian region [110]. In the case of Korea, its priority ODA
partner countries have been more diverse in recent years, beyond its traditional Asian
partners [111].

5. Conclusions

The study focused on the role of development aid in breaking the negative feedback
loop between disasters, conflict, and fragility. Many studies have shown that disasters
and conflicts have occurred alongside one another over the past decades. The nexus of
disasters, conflict, and fragility have severely undermined peaceful development and
poverty reduction because most the world’s poor lives in fragile and conflict-affected
states. The effects of climate change will only intensify the situation and bring unintended
consequences in the future. Despite this relationship, few studies have evaluated the
combined risks from disasters and conflict in the development literature. The literature gap
is jarring, given that disasters are also a driver of conflict.

In this context, this study examined how two East Asian donors, Japan and Korea,
with reference to OECD-DAC donors as a group, have responded to disasters and conflict
in their aid allocation. First, the proportion of DRR aid in the total bilateral aid is found
to be small for all donors. Most OECD-DAC members spent less than 5% of development
aid on DRR activities. Further, DRR aid, particularly of Korea and Japan, has been heavily
concentrated in a few developing countries; this especially holds for those located in Asia.
Only a fraction of the aid went to FCSs. Thus, DRR aid has not always reached people in
most need.

The GMM estimators showed that neither Japan nor Korea is responsive to the com-
pound risk of disasters and conflict. Both donors are found to have been more influenced by
recipient countries’ disaster vulnerability than their fragility and conflict, implying that the
climate aid policies of both Japan and Korea are more oriented toward building resilience
in disaster-prone countries. This answers the main question of the study, namely whether
Japan and South Korea have moved beyond their self-serving behaviors and responded
more effectively to the development needs of FCSs, despite their characteristics of being
dysfunctional, fragile, and high-risk, to help them achieve climate-resilient peacebuilding,
thereby lessening their ODA policy orientations toward economic consideration. Unfor-
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tunately, there was no such indication that FCSs and countries with compounding risks
received more aid from either Japan or Korea.

In the era of climate change, addressing the root causes of disasters is a strategic
priority to end extreme poverty and promote growth in developing countries. Yet, this
study found that the topics of fragility and conflict, which have the potential to disrupt
governance and the implementation of DRR or any other development programs, are barely
considered by Japan and Korea in the DRR program design process. Consequently, no
matter the size of DRR funding and efficiency of DRR program design, fragility and conflict
make operating environments too difficult for DRR strategies and programs. Indeed, the
lack of fragility and conflict considerations in DRR program design becomes a contributing
factor that reduces the probability of program success.

As noted earlier, DRR programs in both Japan and Korea are conducted in relatively
peaceful and stable contexts. Though conflict makes the attainment of DRR outcomes
more challenging, it is necessary to offer opportunities to FCSs to advance DRR and help
find innovative ways to manage the impacts of natural hazards. It is time to design a
DRR roadmap for fragile and conflict situations, train staff accordingly, and have much
patience. In the process, it is vital to build synergies between local and scientific knowledge
to establish the right policies and procedures, as the other scientific literature has already
suggested [112]. This is the only way to break the negative feedback loop between disaster,
fragility, and conflict. Now, the question becomes whether Japan and Korea are willing to ac-
knowledge the link between disasters, conflict, and fragility, and if they can act accordingly.
We know that the Sendai Framework and SDGs can only be realized in a world of peace,
security, and respect for human rights. Japan and Korea have shown a strong commitment
to disaster resilience over the past decade, but still need to reflect on the complexities of
conflict and disasters and respond to them in a holistic and integrative manner.

Despite the conclusions and implications drawn from the findings, certain limitations
of this study must be noted. It is too early to assess the disbursement and recipients of
DRR aid, especially regarding Korea’s small DRR aid quantity and, more importantly, there
is an overall lack of reliable data relating to aid with DRR objectives. Without accurate
coding, donors may over-report or under-report their efforts related to DRR and climate
change adaptation to varying degrees. As there is no system in place to verify their claims,
identifying aid whose core purpose is clearly climate-relevant and, thus, measuring its
true impacts, would be exceedingly difficult. Addressing limitations relating to DRR aid
data remains a task for all donors to conduct meaningful studies about the development–
disaster–conflict nexus.

Furthermore, this study has limited its analysis to Japan and South Korea’s bilateral
aid. With various innovative financing mechanisms becoming more prominent in funding
developing countries to address climate change issues, it would be necessary to compare
the aid delivery and effectiveness via different financial mechanisms in the future.
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Abstract: A large number of massive repair machines are urgently necessary for a post-disaster
rescue. These machines also need to be operated by professionals, and the demands require the
participation of different industries in the whole society since they cannot be met via the national
emergency resource storage system. Therefore, the support of extensive emergency resources from
different industries across the entire society is needed in the rescue process, that is, social emergency
resource sharing. To achieve this sharing, an emergency resource scheduling model should have
the ability to allocate resources from the whole society. However, traditional emergency scheduling
models have not considered the suppliers’ willingness to take part in the scheduling activities and
their abilities to supply the resources. To solve the above issues, this paper designs a scheduling
model for social emergency resource sharing based on an emergency contribution index (SSERS).
The emergency contribution index (ECI) can be used to find the enterprises that not only have the
ability to provide efficient emergency resources on time but also have the willingness to participate
in emergency rescue. The results show that our model effectively optimizes the basic models to some
extent and achieves social emergency resource sharing.

Keywords: emergency resource; social emergency resource sharing; SSERS; emergency contribution
index; emergency production capacity; enterprise willingness

1. Introduction

The existing emergency resource scheduling models (traditional models) can be mainly
divided into two types, i.e., single-objective models and multi-objective models. The single-
objective models mainly aim to minimize time [1–4], minimizing distance [5–7], maximizing
satisfaction [8–10], etc. The multi-objective models combine the above objectives to find the
best solution [11–19]. These models are mainly applicable to the suppliers of daily living
materials, such as the national emergency resource reserve system, and they focus more on
providing basic emergency materials, such as food and water, to disaster-affected areas in
the shortest time and with the lowest costs, but they fail to consider the specific situations in
terms of a dynamic and open environment. Large and specialized engineering equipment,
such as the graders, road rollers, and pavers required for road repair construction, are not
only expensive and require a great deal of storage space, but they also need to be operated
by professionals to function, so they are not included in the national reserve system. In this
case, the massive resources existing in various industries across the entire society need to
be used in the post-disaster emergency process so as to effectively compensate for the lack
of national emergency resource reserves, minimize disaster losses, and protect people’s
lives and property.
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In summary, due to the differences between the national reserve system and social
emergency resource sharing, i.e., that the suppliers of the social emergency resource sharing
come from different industries across the entire society, and their resource abilities and will-
ingness to participate in emergency resource scheduling are quite different, scientific social
emergency resource sharing requires emergency resource scheduling to be transformed
from a static, closed national emergency resource system to an environment which adapts
to a dynamic and open society.

However, in previous research [1–5], the researchers mainly focused on the constraints
of the amount of emergency resources, the scheduling time, or the costs, and they did not
take production ability and the willingness of the suppliers into account.

In the traditional model [1], each supplier is a national emergency resource reserve
base, the types of emergency resources stored are basically the same, and only the distances
from the disaster site are different for each. In this case, the only things that need to be
considered during emergency resource scheduling are the time and cost of transportation.
However, in social emergency resource sharing, things are quite different, and the abilities
and willingness of the enterprises providing emergency resources will affect the efficiency
of the scheduling. Currently, there are a large number of enterprises that can produce emer-
gency resources from many industries in China, but their supply capacities are different.
On the other hand, some enterprises may prioritize pursuing their own interests rather
than the common goal of completing an emergency rescue. These differences will affect
the efficiency of social emergency resource sharing, but as far as we know, no research has
been published on the impacts of enterprises’ intrinsic factors (abilities and willingness to
provide emergency resources) on social emergency resource sharing.

Briefly, there are two issues that must be addressed in the design of a new model. First,
the participants have different abilities to provide emergency resources, and some may
not be suitable for social emergency resource sharing. Second, it is difficult to coordinate
and efficiently complete emergency resource-sharing operations because of the different
interests and demands of the participants.

Therefore, in this paper, an emergency contribution index is introduced into the tradi-
tional emergency resource scheduling; it includes two components: emergency production
capacity and enterprise willingness. The emergency production capacity of an enterprise is
used to reflect its ability to supply various emergency resources, which is characterized by
the enterprise’s capital information and business scope. The enterprise’s willingness can
be divided into staff motivation and leadership enthusiasm. The staff motivation is used
to reflect the commitment of the staff to the enterprise; the higher the staff motivation is,
the greater the production capacity will be. Leadership enthusiasm is used to reflect the
willingness of the leaders in an enterprise to participate in emergency resource-sharing
activities. It is characterized by the ratio of the enterprise’s philanthropy expenditures in
the previous year to the total expenditures of that year.

After considering the emergency resources needed and the spatial distance involved,
the introduction of the emergency contribution index is helpful in choosing an enter-
prise that has both strong production capacity and a strong willingness to participate in
social emergency resource-sharing activities from among a large number of emergency
resource production enterprises, so as to optimize the traditional emergency resource
scheduling program.

The innovations of this paper are listed below.

(1) The “Emergency Production Capacity” was innovatively designed and used to quan-
titatively describe an enterprise’s ability to provide emergency resources; thus, it is
helpful in choosing enterprises that can provide more suitable emergency resources.

(2) More Powerful Participation Willingness We first designed the “Enterprise Willing-
ness”, which can be used as a quantitative evaluation indicator to select enterprises
with a strong willingness to participate in social emergency resource scheduling.

(3) SSERS Model In this paper, we proposed the SSERS Model for the first time. On the
basis of the traditional multi-objective emergency resource scheduling models that
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merely considered the requests of demand-side (scheduling time and costs, etc.), this
model takes the supply side into account, i.e., the supply capabilities (emergency
production capacity and staff motivation) of emergency resources and the willingness
to participate in emergency resource scheduling (leadership enthusiasm). This innova-
tion gives the model the ability to quantitatively describe the capacity and willingness
for the first time; thus, the enterprises with stronger supply abilities and willingness
to participate in the emergency resource scheduling can be chosen as suppliers of the
emergency resources.

The remainder of the paper is organized as follows: Section 2 presents a literature
review of previous research on emergency resource scheduling. Section 3 describes the
details of the SSERS Model. The experiments and analysis are illustrated in Section 4, and
the conclusions are discussed in the final section.

2. Related Works

2.1. The Issues Exist in the Traditional Emergency Resource Scheduling Models

At this stage, some researchers have already studied the multi-object emergency
resource dispatch and proposed different models, which can be divided into the follow-
ing types.

2.1.1. Single Objective Emergency Resource Scheduling

When studying the scheduling plan of emergency resources, different researchers may
have different goals. To improve the efficiency of rescue, some researchers chose minimum
time as a goal. Hu et al. aimed for minimum time and put forward an emergency resource
scheduling model of multi-vehicle types [1]. Yan et al. studied the emergency material
scheduling for multi-rescue points under real-time conditions and then used an improved
Genetic Algorithm (GA) to realize the dynamic path adjustment [2]. Lu et al. presented a
rolling horizon based on real-time relief distribution of a disaster. [3]. Chai et al. defined
the rescue route travel time as the sum of free flow travel time and queuing delay time then
set the minimum travel time as a goal of the scheduling [4].

Apart from minimum time, other researchers prefer taking the shortest distance.
Batmetan et al. calculated the shortest path to be selected by using a multi-objective
optimization algorithm for cloud computing task scheduling based on an improved ant
colony algorithm in the Lokon volcano [5]. Ferrer et al. built a compromise programming
model for multi-criteria optimization in humanitarian last-mile distribution [6]. Vidal et al.
established three emergency material scheduling (EMS) models with time windows, which
were multi-cycle, multi-distribution center, and disaster point that can only be guaranteed
by special vehicles [7].

Furthermore, other researchers took the satisfaction of the demand points in the
scheduling as an objective. Das et al. constructed a warehouse location model with the goal
of maximum satisfaction [8]. Chen et al. took the satisfaction of the whole disaster area as
the objective of emergency resource scheduling and built a model for multi-commodity,
multi-supply depots to maximize efficiency [9]. Wang et al. constructed a multi-level
emergency material scheduling optimization model for marine disasters by using the
cooperative scheduling method to maximize the reliability of material supply [10].

2.1.2. Multi-Objective Emergency Resource Scheduling

Ding et al. proposed an emergency supplies scheduling model based on multi-
objectives, then designed the minimum time cost and the shortest route cost model. The
results show that the two cost models can serve different scheduling needs and provide
efficient scheduling for emergency supplies [11]. Wan et al. established a multi-objective,
multi-constraint (EMS) model based on the above-mentioned principle. Subsequently, a hy-
brid ant colony optimization (HACO) was proposed to solve EMS. The experimental results
show that HACO has better performance than other methods [12]. Chi et al. combined two
rescue objectives, i.e., time and resource satisfaction, into a timeliness evaluation function,
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which provides new insight into the design of objective functions utilized in emergency
resource scheduling [13]. Zhou et al. designed a multi-objective optimization model for
multi-period dynamic emergency resource scheduling problems. The results show that
the model can find a better candidate solution than traditional models [14]. Zhang et al.
proposed a three-stage stochastic program model; its objectives were to minimize the time
and costs of the scheduling and the number of unsatisfied demands [15]. Cui et al. came
up with a post-disaster material transportation model to minimize the time and costs [16].
Wang et al. gave out a two-dimensional and multi-objective emergency resource scheduling
model to achieve the shortest time and the lowest costs [17].

Behrooz et al. [18] formulated the Multi-Resource Scheduling and Routing Problem
(MRSRP) for emergency relief and developed a solution framework. Results show that the
six methods are valid when optimizing the existing solutions. Zhang et al. aimed to conduct
a study on a novel dynamic multi-objective location-routing model with split delivery
considering practical characteristics. A two-stage optimization model was proposed to
address the model’s complexity [19]. Xu et al. proposed a plug-in-free three-dimensional
spatial fusion scheme based on WebGL rendering technology and developed a visualization
system for emergency rescue data fusion [20]. Li et al. developed an emergency resource
dispatching model with random demands and optimized the expected total cost [21].
Wang et al. [22] presented a two-stage optimization model of emergency resource storage
and scheduling. In the first stage of the model, the objective is to decrease the response
time, while in the second stage, the objective turns to optimizing the resource scheduling
satisfaction. Chen et al. proposed a co-scheduling model of emergency resources with the
goals of minimizing time-consuming, cost, and shedding load [23].

Affected by COVID-19, Sun et al. proposed a multi-resource collaborative scheduling
optimization model with the objectives of minimizing the makespan of Quay Crane and
transportation energy consumption [24]. Ding et al. [25] put forward an emergency material
scheduling model with multiple logistics supply points for multiple demand points. They
achieved an optimization on this model by using a multi-objective algorithm based on a
genetic algorithm.

The above-mentioned models improved the efficiency of the rescue to some extent.
However, most of the above models use the national emergency material reserve base
as the source; the materials they reserve are basically the same category, and the bases
are only at different distances from the disaster point. As a result, these models only
need to consider the time cost when completing the scheduling task. However, the social
emergency resource-sharing process has the following differences:

(1) The suppliers of social emergency resource sharing are from different industries; they
have different abilities to provide the resources.

(2) Unlike simple emergency material dispatch, social emergency resource sharing often
involves professional services in related industries, which includes not only profes-
sional equipment but also the support of professional human resources.

(3) The willingness of each enterprise to participate in the social emergency resource
sharing is related to the form of the sharing (like paid or unpaid).

Therefore, the particularity of social emergency resource sharing must be incorporated
into the model using quantitative indicators.

2.2. The Issues Exist in the Social Emergency Resource Sharing

In terms of the social emergency resource sharing, Zhang et al. established a tripartite
evolutionary model of the government, enterprise, and society, explored the influencing
factors of realizing government-enterprise cooperation, i.e., income variables, cost vari-
ables, initial willingness and stakeholder behaviors [26]. Meng presented an integrated
social emergency resource monitoring system to optimize the collection and dispatch of
emergency resources. A time-bound multi-layer recruitment network of emergency re-
sources was modeled to maximize the amount of the collected resources and minimize the
logistics costs [27]. Olanrewaju et al. proposed to integrate the decision-making of supplier
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selection into the preparedness stage in responding to disasters for the timely distribution
of relief supplies [28]. Hu et al. presented a two-stage stochastic program model to produce
plains, including facility location and inventory, supplier selection, and distribution of
relief supplies [29].

The scheduling plan involved in the current research only considers the constraints of
the quantity of the emergency materials while ignoring the supply capacity of the suppliers
and their subjective willingness to participate in the social emergency resource sharing,
which results in the lack of rationality of the emergency resource scheduling plan.

3. Methodology

In this chapter, we propose a scheduling model for social emergency resource sharing
with multiple objectives. On the basis of the traditional model, the emergency production
capacity and leadership enthusiasm of enterprises are taken into account so that we can
choose enterprises with a strong ability to provide emergency resources and a strong
willingness to participate in the sharing activities.

3.1. The Emergency Contribution Index of an Enterprise

To choose a better supplier from multiple candidate enterprises, the emergency contri-
bution index (ECI) of an enterprise is defined, which includes two components: Emergency
Production Capacity and Enterprise Willingness.

3.1.1. Enterprise Willingness

The Enterprise Willingness consists of two key parts: staff motivation and leadership
enthusiasm. They are employed to quantitatively describe the willingness of an enterprise
to participate in emergency resource sharing at the levels of employee and leader separately.

(1) Staff Motivation

The staff motivation of an enterprise is an indicator used to evaluate the work mo-
tivation of the staff in the enterprise. It is affected by the ratio of the number of insured
employees to the size of staff and the ratio of employees’ wages to the local average wage.
The higher the number of insured employees in an enterprise, the more emphasis the
enterprise attaches to employee benefits, thus the higher the enthusiasm of employees for
work. The calculative formula is shown below:

ω = (
i
i0

+
q
qa
)/m (1)

where ω means the staff motivation of an enterprise, “i” means the insured persons, and
“i0” means the total personnel of the enterprise. So, i

i0
means the ratio of the number of

insured persons to the size of personnel. “q” means the average salary of the staff in the
enterprise, and “qa” means the local average salary. So, q

qa
means the ratio of the average

salary of the enterprise to the average salary of the city in which the enterprise is located.
The “m” means the number of the parameters.

(2) Leadership Enthusiasm

The leadership enthusiasm of an enterprise is an indicator used to evaluate the will-
ingness of the leaders of an enterprise to participate in social emergency resource sharing.
It is affected by the amount of charitable donations (including money and items) made
by the enterprise in the previous year, the costs of human resources (such as labor cost
for emergency resource transportation) in the previous year, and the output value of the
previous year. The higher the proportion of an enterprise’s social donation in the previous
year to its total output value in the previous year, the more emphasis the enterprise’s leaders
attach to the corporation’s social responsibility. When natural disasters or social events
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occur, such leaders are often more willing to be active and get involved in the response.
The calculative formula is shown below:

θ =
w + y

v
(2)

where θ means the leadership enthusiasm of an enterprise, “w” means the enterprise’s value
of public donations in the previous year, “y” means the costs incurred by the enterprise in
participating in emergency resource-sharing activities, and “v” means the total operating
income in the previous year.

3.1.2. Emergency Production Capacity

The emergency production capacity can be used to evaluate the ability to provide
emergency resources of an enterprise in the process of social emergency resource sharing.
It is related to factors such as the enterprise’s operating status, unified social credit code,
business scope change records, the ratio of the paid-in capital to the registered capital, and
the ratio of the value of emergency resources produced by the enterprise to the total value
of all products of the enterprise. These factors are divided into two types: control factors
and contribution factors. The calculative formula of emergency production capacity is
shown below.

ϕ = (b × s × r)× [(
c
c0

+
pe

pt
)]/n (3)

where ϕ means the emergency production capacity of an enterprise, “b”, “s”, and “r” are
the control factors of the emergency production capacity, which is the business status,
business scope change records, and social credit code, respectively. The value of these
factors is either 0 or 1, i.e., when an enterprise no longer exists or it changed the business
scope before (which does not produce emergency resources anymore), these values of this
enterprise will be 0; otherwise, they will be 1. The “ c

co
” are contribution factors of the

emergency production capacity, it means the ratio of the enterprise’s registered capital to
paid-in capital and the “ pe

pt
” means the ratio of the value of emergency supplies produced

to the value of all products of an enterprise. These factors take values between 0 and 1. The
“n” means the number of contribution factors; its value is 2 in this paper.

The purpose of introducing this indicator is to compare the enterprises’ operating
conditions, social credit ratings, registered and paid-in capital, personnel scale, etc., and
then to select enterprises with strong supply abilities for emergency resources from a
large number of candidate enterprises as suppliers to participate in social emergency
resource sharing.

Therefore, emergency production capacity is an indicator that can effectively exclude
some small and weak enterprises that are limited by their own conditions and cannot
efficiently complete the process of post-disaster rescue.

3.1.3. Emergency Contribution Index

The ECI is an indicator that can comprehensively describe the ability to provide
emergency resources and the willingness to participate in emergency resource sharing of
an enterprise. The calculative formula is shown below:

ECI = θ × ω × ϕ (4)

where θ means the leadership enthusiasm of an enterprise, ω means the staff motivation of
an enterprise, and ϕ means the emergency production capacity of an enterprise. The three
parameters commonly form the ECI. The higher the value of these parameters, the higher
the value of ECI, indicating that the enterprise is more capable of providing emergency
resources and simultaneously has a stronger willingness to participate in social emergency
resource sharing.
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3.2. Social Emergency Resource Sharing Scheduling Model Based on ECI

In this section, the ECI is combined into the traditional emergency resource scheduling
model, giving it the ability to quantify the production capacities and willingness of the
enterprises, thus compensating for the weakness of the traditional model that it only focuses
on the demand side.

3.2.1. The SSERS Model

In this section, we will establish a function for analysis with the goal of minimizing
total delay time and total cost and then improve it on the basis of the previous studies. The
improved scheduling model is shown below.

min
m

∑
a=1

n

∑
b=1

(1 − ECIa)(tab − tb + τ)xab (5)

min
m

∑
a=1

n

∑
b=1

(1 − ECIa)cabxab (6)

The constraints of the model are shown below:

m

∑
a=1

sa =
n

∑
b=1

db (7)

m

∑
a=1

xab = db (8)

0 ≤ sa≤ sa
′ (9)

xab ≥ 0 (10)

In the above equations, the 1 − ECIa is a selection factor; the higher the ECI, the lower
the value of the select factor, and the more suitable it is to participate in social emergency
resource sharing. The (tab − tb) is the total delay time in transporting emergency resources
from the supply point (a) to the demand point (b), xab is the number of emergency resources
that have been transported from the supply point (a) to the demand point (b). cab is the
cost of transporting a unit of emergency resource from the supply point (a) to the demand
point (b).

Among the above equations, Equations (5) and (6) are objective functions, which
indicate that the total delay time and total economic cost in the emergency resource trans-
portation process are the lowest. Equations (7)–(10) are the restrictions, where Equation (7)
means that the total supply of emergency resources should be equal to the total demand.
Equation (8) indicates that the total amount of emergency resources shipped from each
supply point to the transfer station near the disaster area should be equal to the total
demand for the transfer station. Equation (9) means that the emergency resource supply
of each supply point cannot exceed the maximum amount it can provide. Equation (10)
means that the number of emergency resources transferred from the supply points to the
demand point is a non-negative number.

3.2.2. Model Analysis

Compared with the traditional model, a selection factor, 1 − ECI, is added to our model,
as shown in Equations (5) and (6). Enterprises with higher ECI have greater production
capacity and willingness, and accordingly, their values of 1 − ECI are lower, and thus,
the total delay time and total costs will be lower. Therefore, such enterprises are more
likely to be selected to participate in social emergency-sharing activities so that the defect
of the traditional model of treating all emergency resource suppliers indiscriminately can
be solved.

198



Sustainability 2023, 15, 13029

The improved model has the following advantages:

(1) This model can select the enterprises that best provide the emergency resources
required by the disaster area in sufficient quantity in the shortest time based on the
Emergency Production Capacities. The factors of registered and paid-in capital, size
of personnel, and the nature of the enterprises in the emergency production capacity
are able to identify larger state-owned enterprises. In addition, the factors of industry
and business scope enable the scheduling program to filter equipment wholesale and
retail enterprises. The model prefers enterprises that can provide equipment and
technical staff at the same time. For example, in the process of road rescue, the model
can choose road engineering service enterprises (with professional engineers) instead
of enterprises that solely sell machines.

(2) When comprehensively considering emergency production capacity and leadership
enthusiasm, the model is able to select enterprises that can not only provide ap-
propriate emergency resources but also have a strong willingness to participate in
emergency resource sharing. While analyzing the supply capacity of various supply
enterprises using their emergency production capacities, their leadership enthusiasms
can be analyzed by calculating the percentage of their charitable donations in the total
output in the previous year. This indicator is able to select enterprises with a higher
willingness to participate in social emergency resource sharing.

4. Experiments

In 2008, a massive 8.0 magnitude earthquake occurred in Wenchuan County, Sichuan
Province in China; the direct economic loss caused by the earthquake was about 845.14 bil-
lion RMB, of which the value of damaged roads was about 185 billion RMB [30,31]. In this
section, the calculation process and results of the SSERS Model will be shown.

4.1. Introduction of the Experimental Area

This study involves an area in Wenchuan, Sichuan Province. The remote sensing
image was taken on 1 July 2008 by Worldview-1 satellite; its spatial resolution is 0.5 m.
The latitude and longitude ranges are 31◦25′48′′ N to 31◦31′23′′ N and 103◦31′34′′ E to
103◦38′13′′ E, respectively. These ranges cover an area of 149.36 square kilometers. The
entire research area is shown in Figure 1.

 

Figure 1. The research area of this study (Wenchuan).
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4.2. The Process of the Experiments

In this study, the experiments can be divided into five stages. Figure 2 shows the
details of these stages.

Figure 2. The process of our experiment.

Step 1: Data Preparation. First, a path for emergency resource transportation between
the supply points to the disaster-affected area will be planned. Then, the data for road
repair volume calculation will be collected, which includes the level of the roads, the
construction standards of the roads, the essential materials for road repair, etc. Finally, the
total volume for road repair and the number of road repair machinery required to complete
the repair project within the specified time will be calculated.

Step 2: Enterprise Initial Selection Based on Buffer Analysis. The beginning city of
resource transportation will be determined based on the time and the transportation costs.
Then, the enterprises can be initially selected based on the buffer analysis.

Step 3: ECI Calculation. First, the basic information of all the enterprises that passed
the initial selection will be collected, which includes operation status, registered capital,
number of staff, etc. Then, for the ith supplier (Si), calculate its ECIi by using Formula (4).

Step 4: Scheduling Plan Production and Optimization. For every supplier (Si), we
bring its ECIi into the Formulas (5) and (6), then the emergency resource scheduling plan
with Si can come out.

Step 5: GIS Results Display. Combining the initial enterprise screening based on
buffer analysis and the emergency resource scheduling plan based on the SSERS Model, a
path planing graph of emergency resource transportation based on GIS will be displayed.
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4.3. Emergency Resource Scheduling Based on the SSERS Model

In this section, the 24-h post-disaster road repair is selected as an example; then the
SSERS Model will be used to design the road repair equipment scheduling scheme.

(1) Data Preparation—the Demands of the Volume of Road Reparation

The demands of road repair equipment are related to the volume of the repair, so the
working efficiency of every set of equipment should be determined first, then the total
volume of road repair should come out. Based on these parameters, the number of sets of
equipment required to complete road repair within the specified time can be derived.

The equipment used to repair such pavement and its efficiency are shown below. The
equipment is generally provided in sets. Table 1 shows a set of equipment.

Table 1. Equipment used in road repairment (1 set) Reprinted/adapted with permission from [32].

Types of Equipment Names of Equipment Product Ratio (t/h) Weight (t) Number
Product Ratio of Every
Set of Equipment (t/h)

Mixing equipment
Cement mixing machine 600 30 1

1400

Sand and soil mixing machine 700 60 1
Asphalt mixing machine 280 50 1

Booth equipment
Cement booth machine 600 28 2
Sand and soil booth machine 400 24 1
Asphalt booth machine 400 30 1

Compaction equipment

Vibratory roller 22 2
Double-wheel vibratory roller 14 2
Double-wheel vibratory roller 12 1
Rubber wheel roller 30 1
Rubber wheel roller 22 1
Rubber wheel roller 12 1

Loader 8 8
Grader 20 1

In this section, the number of sets of road repair equipment needs to be determined,
so we designed the following formula.

n =
D

psT
(11)

where n means the number of sets of equipment required in the road repairment (sets). The
“D”, which equals to Atlρ, means the total mass of construction materials required in the
course of road repairs (t), it is used to indicate the total project of the road repairs. ps means
the product ratio of each set of equipment (t/h), its value is 1400, and T means the total
time required in the repairment (h).

The average density of cement and soil is 2.5 t/m3. As a result, the total mass of
materials required in road repair (D) should be:

D = At × l × ρ = 198,000 m2 × 0.5 m × 2.5 t/m3 = 247,500 t (12)

In order to complete the road repairs as soon as possible, we design that the repairs
need to be finished within 24 h after the earthquake. If the equipment is transported from
Chengdu City, the distance between Chengdu and Wenchuan is 128 km, based on the speed
of 80 km/h. The transport time should be 1.6 h, so the repair time should be 22.4 h.

In summary, the sets of equipment required in the process of road repairs should be:

n =
247, 500 t

1400 t/h × 22.4 h
= 8sets (13)

The above result means that the road repairs need to be finished within 24 h, and
the 8 sets of equipment should work simultaneously. That includes 8 of each of the three
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types of mixing machines, 16 cement booth machines, a number of sand and soil booth
machines, and asphalt booth machines is 8, respectively. Further, 64 loaders and 8 graders
are also required.

(2) Enterprise Initial Selection Based on Buffer Analysis

The equipment is set to be dispatched from Chengdu; considering the actual situation,
the target time is designed to be 2 h, which means the loaders should be transported to
Wenchuan within 2 h. Using an average speed of 80 km/h, it takes 1.8 h to reach Wenchuan
from Chengdu. The total delay time from Chengdu to Wenchuan is calculated below:

T = tab − tb = 1.85 − 2 = −0.15 (14)

So, the radius of the buffer will be:

R = 80 km/h × 0.15 = 12 km (15)

Based on this calculation and the buffer analysis, there are six enterprises that can
meet the needs, which are recorded as No. 1–No. 6. The number of loaders shipped from
Chengdu to Wenchuan is x1–x6. The details of these enterprises are shown below.

The above table shows the basic information of the six enterprises, including the regis-
tered and paid-in capitals, numbers of the total and insured staff, the profits of produced
emergency resources, the profits of all products of every enterprise, the donations and labor
expenses, and their industries.

(3) ECI Calculation

The emergency production capacity and leadership enthusiasm of the above enter-
prises can be calculated based on Equations (1)–(3); the data used in the calculation comes
from Table 2. The results are shown in the Table 3. We assume that all the enterprises have
no business scope change records, so their values are 1.

Table 2. Details of the six enterprises in Chengdu in 2021.

# Name of the
Enterprise

Registered
Capital
(RMB)

Paid-in
Capital
(RMB)

Number of
Staff

Insured
Staff

Profits of Produced
Emergency

Resources (RMB)

Profits of
All Products

(RMB)

Donations and
Labor Expenses

(RMB)
Industry

1
Chengdu

Chenggong
Industry

14 million 14 million 500 268 720 million 1.2 billion 633 million Construction

2 Sichuan Zhonglu
Architecture 68 million 50 million 500 206 33 million 152 million 20 million Construction

3
Sichuan

Highway
Architecture

30 million 30 million 1000 885 639 million 1.7 billion 729 million Construction

4
Chengdu
Zhongzhi

Construction
36 million 36 million 1000 724 1.1 billion 2 billion 780 million Construction

5 Sichuan No. 1
Construction 6 million 6 million 100 51 52 million 150 million 33 million Construction

6 ChengduYixin
Industry 5 million 5 million 100 57 30 million 102 million 20 million Retail

Source: https://www.tianyancha.com/company/2314420002, accessed on 12 May 2023.

Table 3. The Values of the Components of ECI of the 6 Enterprises.

Name of Enterprises
Sichuan Highway

Architecture
Chengdu Chenggong

Industry
Chengdu Zhongzhi

Construction
Sichuan No. 1
Construction

Sichuan Zhonglu
Architecture

Chengdu Yixin
Construction

Emergency Production
Capacity 0.8 0.69 0.76 0.68 0.48 0.65

Staff Motivation 0.89 0.54 0.72 0.51 0.41 0.57

Leadership Enthusiasm 0.43 0.53 0.39 0.22 0.13 0.19

ECI 0.26 0.23 0.21 0.08 0.07 0.03
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(4) Scheduling Plan Production and Optimization (Emergency Resource Scheduling

Based on SSERS)

This model adds emergency production capacity and emergency willingness of the
enterprises simultaneously on the basis of the traditional model, which can make the
scheduling plan more reasonable. The related indicators of the above-mentioned six
enterprises are shown below.

When calculating the data, we will first use the traditional model to analyze the
scheduling and analyze the irrationality of only considering the restriction of the amount
of emergency resources. On the basis of this analysis, the emergency production capacity
and leadership enthusiasm of every enterprise will be considered. We will use the same
restrictions to compare different scheduling plans, and then the best plan can be developed.

In this example, there is only one demand point for emergency resources (Wenchuan),
so the value of “b” is 1. Thus, Equations (3)–(5) will be changed into:

min
m

∑
a=1

(1 − ECIi)(ti1 − t1 + τ)xi1 (16)

To make the results more realistic, the restrictions of this model are shown below.
x1 < 100, x2 < 100, x3 < 100, x4 < 200, x5 < 200, x6 < 200,

The calculative result is: x1 = 4, x2 = 0, x3 = 60, x4 = x5 = x6 = 0.
When considering emergency production capacity and leadership enthusiasm simul-

taneously, the scheduling plan is shown in Table 4.

Table 4. The scheduling plan of loaders is based on the SSERS Model.

Name of
Enterprises

Sichuan
Highway

Architecture

Chengdu
Chenggong

Industry

Chengdu
Zhongzhi

Construction

Sichuan No. 1
Construction

Sichuan
Zhonglu

Architecture

Chengdu Yixin
Industry

ECI 0.26 0.23 0.21 0.08 0.07 0.03

Scheduling
Quality (Ton) 60 4 0 0 0 0

(5) GIS Result Display

Figure 3 shows the spatial distribution of the six selected enterprises, of which
Chengdu Chenggong Industry and Sichuan Highway Industry (shown as blue points)
are the two preferred enterprises to participate in the social emergency resource scheduling.
The red line in the figure is the transportation path of the emergency resource from the
preferred enterprises to Wenchuan based on the SSERS Model.
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Figure 3. The spatial distribution of the six selected enterprises.

5. Discussion

In this section, the traditional model will be used to design an emergency resource
scheduling plan first; then, it will be compared with the plan based on the SSERS Model to
testify to the effects of our model.
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5.1. Emergency Resource Scheduling Based on the Traditional Model

This model only considers the restrictions of the number of resources and does not
take the emergency production capacity and enterprise willingness of the enterprises into
account. In the extreme emergency period, the total demand on loaders was 64; the model
and its restrictions are shown below.

min
m

∑
a=1

n

∑
b=1

(tab − tb)xab (17)

min
m

∑
a=1

n

∑
b=1

cabxab (18)

The constraints of the model are shown below:

m

∑
a=1

sa =
n

∑
b=1

db (19)

m

∑
a=1

xab = db (20)

0 ≤ sa ≤ sa
′ (21)

xab ≥ 0 (22)

In the above equations, (tab − tb) is the total delay time in transporting emergency
resources from the supply point (a) to demand point (b), xab is the number of emergency
resources that have been transported from the supply point (a) to demand point (b). cab
is the cost of transporting a unit of emergency resource from the supply point (a) to the
demand point (b).

Among the above equations, (17) and (18) are objective functions, which indicate that
the total delay time and total economic cost in the emergency resource transportation pro-
cess are the lowest. Equations (19)–(22) are the restrictions, where Equation (19) means that
the total supply of emergency resources should be equal to the total demand. Equation (20)
indicates that the total amount of emergency resources shipped from each supply point
to the transfer station near the disaster area should be equal to the total demand for the
transfer station. Equation (21) means that the emergency resource supply of each supply
point cannot exceed the maximum amount it can provide. Equation (22) means that the
number of emergency resources transferred from the supply points to the demand point is
a non-negative number.

In this example, there is only one demand point (Wenchuan), so the “b” in Equation (17)
equals 1. The Equation used here is:

min
m

∑
a=1

(ti1 − t1)xi1

The constraints of the model are shown below:
x1 < 100, x2 < 100, x3 < 100, x4 < 200, x5 < 200, x6 < 200,
The calculative result is: x1 = x2 = x3 = x4 = x5 = 0 and x6 = 64.
When only considering the restriction of the amount, the scheduling plan is shown in

Table 5.
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Table 5. The scheduling plan of loaders is based on the traditional model.

Name of
Enterprises

Sichuan
Highway

Architecture

Chengdu
Chenggong

Industry

Chengdu
Zhongzhi

Construction

Sichuan No. 1
Construction

Sichuan
Zhonglu

Architecture

Chengdu Yixin
Industry

ECI 0.26 0.23 0.21 0.08 0.07 0.03

Scheduling
Quality (Ton) 0 0 0 0 0 64

The ECI values of the six enterprises are calculated according to the formula (4), and
the data used in the calculation comes from Table 3.

The above result shows that when only considering the restrictions of amount, all
64 loaders would be provided only by Chengdu Blue Eagle Beverage Co., Ltd. (Chengdu,
China). However, its ECI value is 0.03, which ranked 6th among the six enterprises.

5.2. A Comparison of the Traditional Model and the SSERS Model

The results of the two models are integrated in Table 6.

Table 6. The results of the two models.

Name of Enterprises
Sichuan Highway

Architecture
Chengdu Chenggong

Industry
Chengdu Zhongzhi

Construction
Sichuan No. 1
Construction

Sichuan Zhonglu
Architecture

Chengdu Yixin
Industry

ECI 0.26 0.23 0.21 0.08 0.07 0.03

Scheduling Quality (Ton)
based on the basic model 0 0 0 0 0 64

Scheduling Quality (Ton)
based on the SSERS model 60 4 0 0 0 0

The above results show that when considering the emergency contribution index,
64 of the loaders can be provided by Chengdu Chenggong Co., Ltd. and Sichuan Highway
Architecture Co., Ltd.

Sichuan Highway Architecture and Chengdu Chenggong Industry ranked among the
top two out of the six enterprises in terms of the ECI (0.26 and 0.23, respectively). These
enterprises have the following advantages:

(1) They have a stronger willingness to participate in social emergency resource sharing.

The leadership enthusiasm of the two enterprises is 0.53 and 0.43, respectively, which
are ranked in the top two among the six enterprises. This means the enterprises are keen
on leadership enthusiasm and have a strong sense of social responsibility. Further, the staff
motivation of these enterprises is 0.54 and 0.89, respectively, positioning them at the top
among these enterprises, so they have a high value on the enterprise willingness. It means
that in these two enterprises, both the leaders and the employees are passionate about
social charity work; they are willing to contribute to relief efforts when disasters happen.

(2) They have stronger abilities to provide emergency resources.

The Emergency Production Capacity of the two enterprises is 0.69 and 0.8, respectively,
which rank third and first among the six enterprises, which shows that both of them have
a relatively strong ability to provide emergency resources. The Sichuan Highway Archi-
tecture has the largest number of personnel among the six enterprises, and its registered
capital ranks highly, so its emergency production capacity reaches the highest level of 0.8.
Further, both enterprises have strong economic strength (registered and paid-in capitals) in
the six enterprises, which can strongly guarantee the production of emergency resources.

From the above analysis, it can be seen that both the emergency production capacity
and the enterprise willingness of the two enterprises chosen using the SSERS Model are
relatively high, which means that they have a strong ability and willingness to provide
emergency resources. Regarding the enterprise chosen using the traditional model, the

206



Sustainability 2023, 15, 13029

values of the three indicators, emergency production capacity, staff motivation, and lead-
ership enthusiasm, for the enterprise are 0.65, 0.57, and 0.19, respectively. Among the six
candidates, they rank 5th, 3rd, and 5th, respectively, which indicates that the emergency
production capacity of the Chengdu Yixin Industry is not very strong; it may not be able
to meet the resource demands during the post-disaster emergency rescue operation. On
the other hand, the leaders and the staff in this enterprise are not enthusiastic about par-
ticipating in emergency resource sharing. As a result, its ECI value is only 0.03, which is
the lowest of the six candidates. Therefore, compared with the Chengdu Yixin industry,
Sichuan Highway Architecture and Chengdu Chonggong Industry are fit for emergency
resource sharing.

6. Conclusions

To quantify the supply ability and willingness to participate in social emergency
resource sharing, this paper defines the emergency contribution index (ECI) of an enterprise,
which includes emergency production capacity and enterprise willingness. Then, we
proposed a multi-objective social emergency resource scheduling model based on the
emergency contribution index (SSERS). It incorporates the ECI of an enterprise for the first
time, addressing the limitations of traditional models that overlook supply-side conditions.
As a result, the SSERS realizes the optimization of the social emergency resource scheduling
and sharing scheme.

However, the model proposed in this paper still has some limitations: the calculation
of Leadership enthusiasm only takes the enterprises’ information in the previous year into
consideration, and it is disturbed using incomplete information.

Therefore, in the future, it will be necessary to use Big Data for trend analysis to more
accurately describe the supply capabilities of emergency resources and the willingness to
participate in social emergency resource sharing.
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Abstract: For risk assessment, two methods, quantitative risk assessment and qualitative risk as-
sessment, are used. In this study, we identified the regional risk level for a disaster-prevention
plan for an overall area at the national level using qualitative risk assessment. To overcome the
limitations of previous studies, a heavy rain damage risk index (HDRI) was proposed by clarifying
the framework and using the indicator selection principle. Using historical damage data, we also
carried out hierarchical cluster analysis to identify the major damage types that were not considered
in previous risk-assessment studies. The result of the risk-level analysis revealed that risk levels are
relatively high in some cities in South Korea where heavy rain damage occurs frequently or is severe.
Five causes of damage were derived from this study—A: landslides, B: river inundation, C: poor
drainage in arable areas, D: rapid water velocity, and E: inundation in urban lowlands. Finally, a
prevention project was proposed considering regional risk level and damage type in this study. Our
results can be used when macroscopically planning mid- to long-term disaster prevention projects.

Keywords: disaster prevention project; heavy-rain-damage risk index; hierarchical clustering; quali-
tative risk assessment

1. Introduction

The frequency and magnitude of natural disasters such as localized torrential rain and
typhoons caused by climate change are increasing worldwide, and have resulted in massive
property damage and casualties [1]. Heavy rainfall damage, which is one of the main types
of natural disaster in South Korea, causes over 120 million USD in damage every year
in South Korea [2]. Emergency managers in many countries use four phases of disaster
management to reduce the damage caused by natural disasters—Phase 1: Mitigation,
Phase 2: Preparedness, Phase 3: Response, and Phase 4: Recovery. The mitigation phase is
to prevent future emergencies and to take steps to minimize their effects. The preparedness
phase is to take actions ahead of time to be ready for an emergency. The response phase
is to protect people and property in the wake of an emergency, disaster, or crisis. The
recovery phase is to rebuild after a disaster in an effort to return operations back to
normal. The mitigation phase is an especially important element that forms the basis of
disaster management.

Studies on the mitigation phase are closely related to risk assessment and are divided
into quantitative and qualitative risk assessments. Within quantitative risk assessment,
flood risk (i.e., inundation depth and area of flooded land) is analyzed based on a physical
model, and quantitative loss (i.e., damage of property and fatality) is also identified.
T, încu, et al. [3] estimated direct flood damage in three scenarios (i.e., residential buildings,
infrastructure, agriculture) in the basin of the Trotus River located in Romania. Di et al. [4]
proposed a quantitative risk assessment method for the loss of fatality caused by floods.
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In this study, we reproduced the 1953 East Coast flood event in England and used several
methods, such as “Mortality Function” and “Flood Risk Method to People”, for detailed
assessments of the subsequent mortality. The quantitative risk assessment method can
be used to calculate the cost-benefit ratio through reduced loss when disaster prevention
facilities are introduced in a specific area; this method can then be utilized to evaluate the
economics of prevention facilities.

For qualitative risk assessment, the integrated index is calculated using statistical
indicators reflecting regional characteristics, and the risk level of each region is analyzed.
This method can be used to identify the relative level of risk when establishing a disaster
prevention plan for the overall area at the national level. Zhang et al. [5] proposed a
fourth-grade flood damage risk index (FDRI) that considers the potential flood damage
risk, the status of flood damage, flood damage change, degree of social and economic
development, and flood damage defense capability. Fekete [6] proposed social flood vul-
nerability indicators based on factor analysis of flood damage data collected by Germany’s
Federal Government Statistics Office. Sharma et al. [7] assessed the flood risk in the Kopili
River basin of India using flood maps derived from satellite data by overlapping them
with GIS data on roads, crops, and buildings. Amira et al. [8] used qualitative flood risk
assessment to ascertain the risk of flooding in Jakarta, assigning each indicator a score
using the categorical scale method.

In previous research related to qualitative risk assessment, a framework to define flood
risk has been heavily emphasized. For example, Lim et al. [9] developed dimension-related
indicators for various basins based on the Organization for Economic Cooperation and
Development (OECD)’s (2001) P-S-R framework (i.e., the pressure, state, and response
framework), and proposed a flood risk index (FRI) that can identify the overall flood risk
for any given study area. Within the P-S-R framework [10] used in this study, P refers to
a dangerous natural phenomenon or economic loss, S refers to the inventory affected by
dangerous natural phenomena, and R refers to the ability to adapt to dangerous natural
phenomena; however, the PSR framework cannot consider inventory vulnerability. Anin-
dita et al. [11] performed a spatial assessment of flood risk for coastal areas of Central Java,
Indonesia, based on the Intergovernmental Panel on Climate Change (IPCC) framework
(i.e., considering nature of hazard, exposure, sensitivity, and adaptive capacity). Each
region was divided into five risk levels and mapped using GIS. In the IPCC framework [12],
hazard, exposure, and adaptive capacity have the same meaning as pressure, state, and
response of the PSR framework; sensitivity refers to the vulnerability of the inventory.
The Korea Institute of Civil Engineering and Building Technology (KICT) [13] evaluated
qualitative flood risk for Korea using the framework (i.e., considering hazard, exposure,
vulnerability, capacity) presented by the United Nations International Strategy for Disaster
Reduction (UNISDR). The components of the UNISDR framework [14] are similar in mean-
ing to the IPCC’s framework, with the only difference being in words such as vulnerability
(sensitivity is used instead) and capacity (adaptive capacity is used instead).

The results of the aforementioned risk assessment may be analyzed differently depend-
ing on the selection of indicators. Rygel et al. [15] mentioned that the most important factor
in vulnerability assessment is selecting an appropriate indicator, and proposed vulnerabil-
ity assessment techniques that were selected as indicators using the Pareto-ranking process.
Joo et al. [16] stated that disaster management decision-makers may be perplexed by incon-
sistent results for each methodology of flood risk assessment. To solve this issue, a new
method was proposed based on a Bayesian network, designed to support comprehensive
judgment by integrating indicators and weights in major previous studies. Kim et al. [17]
selected assessment indicators via factor analysis and proposed a heavy rain damage risk
index (HDRI). They then presented the results of the risk assessment by classifying it into
three risk levels for Gyeonggi-do, South Korea. Birkmann [18] mentioned that because the
selection of an indicator is the most important part of process to develop an index, it should
be selected through clear principles. In addition, he proposed the concept of a method for
qualitative disaster risk assessment.
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However, in many previous studies, there is insufficient evidence to support selection
on assessment indicators, and the frameworks used in their studies are unclear. Therefore,
this study used the UNISDR framework (i.e., hazard, exposure, vulnerability, and capacity),
which is judged to be the most clearly distinguished among such frameworks. In addition,
a clear selection principle was identified by reviewing the selection principles mentioned
in previous studies, after which the assessment indicators were selected.

There are various types of disaster prevention projects related to floods, which are
related to the causes of flood damage (river maintenance project: river inundation; erosion
control maintenance project: landslide; sewer pipe maintenance project: inland flooding
due to poor sewage; drainage pump station project: inland flooding in the region of lower
elevation, etc.). However, previous studies did not consider the regional cause of flood
damage. As a result, although it was possible to grasp the level of risk in each region, it
was not possible to present a disaster-prevention project favorable to the region. To address
these limitations, the aim of this study is twofold.

The first aim is to improve the limitations, such as unclear frameworks, the assessment
indicator selection of previous qualitative risk assessments; we investigated the assessment
indicators and frameworks used in previous studies. The UNISDR’s framework (i.e., hazard,
exposure, vulnerability, and capacity) was judged the most clearly distinguished among
the various frameworks. The assessment indicators used in previous studies were then
reconstructed into the UNISDR framework. The second aim is to identify the main causes
of damage, by region, that were not considered in previous studies. We also performed
hierarchical cluster analysis using historical damage data through a novel approach to the
existing methodology. Furthermore, the assessment indicators used in this study were
chosen based on six selection principles. Finally, a prevention project suitable depending
on the regional damage type was proposed.

2. Theoretical Background (Materials and Methodology)

2.1. Characteristics of the Study Area

In this study, South Korea was selected as the study area. South Korea is divided into
nine provinces, i.e., GyeongGi (GG), GangWon (GW), GyeongsangBuk (GB), Gyeongsang-
Nam (GN), ChungcheongBuk (CB), ChungcheongNam (CN), JeollaBuk (JB), JeollaNam
(JB), and JeJu (JJ), and eight major cities, i.e., Seoul (SO), Incheon (IC), Busan (BS), Daegu
(DG), Ulsan (US), Daejeon (DJ), Sejong (SJ), and Gwangju (GJ). These cities and provinces
have an average of 14 administrative districts, giving a total of 228 administrative districts.
The location and features of the administrative districts of South Korea are summarized in
Figure 1 and Table 1. In general, the eight cities have a higher level of regional development
than the provinces. Therefore, these cities contain a large number of impervious areas,
whereas the provinces contain large portions of permeable areas due to their agricultural
system. Despite being a province, Gyeonggi-do has a high level of regional development
because it is included in the metropolitan area.

South Korea’s main topographical feature is its peninsula, with high elevation in the
east and low elevation in the west. This is due to the country’s extensive mountain ranges,
which are in GW, JB, and GB. Figure 2a shows the elevation of South Korea, where the part
marked in red represents the mountain range. Moreover, as shown in Figure 2b, rivers in
South Korea are primarily classified into three types: national rivers, local rivers, and small
rivers. National rivers are largely divided into four basins: Han, Nakdong, Geum and the
Seomjin-Yeongsan. The Han River flows through SO, IC, GG, and GW, the Nakdong River
flows through GB, GN, DG, US, the Geum River flows through BS. CB, CN, SJ, and DJ,
and JB, JN, and GJ are home to the Seomjin-Yeongsan River. From Figure 2a,b, it can be
seen that rivers are less distributed in regions containing mountain ranges. This means
that mountain ranges and rivers have opposite characteristics, and therefore, the types of
damage caused in each landscape may be different.
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Figure 1. Locations of nine provinces and eight cities in South Korea.

Table 1. Abbreviations for the provinces and cities of South Korea.

Province Abbreviation City Abbreviation

Gyeonggi-do GG Seoul SO

Gangwon-do GW Incheon IC

Gyeongsangbuk-do GB Busan BS

Gyeongsangnam-do GN Daegu DG

Chungcheongbuk-do CB Ulsan US

Chungcheongnam-do CN Daejeon DJ

Jeollabuk-do JB Sejong SJ

Jeollanam-do JN Gwangju GJ

JeJu-do JJ

2.2. Qualitative Risk Assessment Method

Risk assessment is a method for evaluating the relative risk level in a region by
calculating an integrated index from statistical indicators representing a region’s risk levels.
Here, an indicator refers to a variable that contains information about a risk level or state,
and an index is calculated by aggregating two or more indicators or computing their
weights. The procedure for performing heavy rain damage risk assessment is shown in
Figure 3.
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(a) The map is elevation distribution (b) The map is stream distribution 

Figure 2. Elevation and river map in study area.

Figure 3. Procedure of heavy rain damage risk assessment.

The first step was to select and collect assessment indicators for the component. The
component used the framework suggested by UNISDR, and consisted of hazard, exposure,
vulnerability, and capacity. Assessment indicators were selected and collected according
to the selection principle. In the second stage, assessment indicators were standardized
and calculated for weight of each indicator. Then, the integrated index, defined as the
heavy-rain-damage risk index (HDRI) was calculated. In the third step, risk levels were
classified for HDRIs by region based on probability distributions. Heavy-rain-damage risk
was then analyzed spatially using ARC GIS tool.
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The sub-index was calculated corresponding to the indicators and it weight of each
component. For example, the Hazard index was integrated through the indicators and
weight of hazard component. If the calculations for the four sub-indices, Hazard index, Ex-
posure index, Vulnerability index, and Capacity index were complete, they were integrated
as the HDRI.

Sub index (SI) = ∑ n
i=1 Ij·wj (1)

HDRI = ∑ n
i=1SIi·wi = HI·wH + EI·wE + VI·wV + CI·wC (2)

where Ij is jth indicator of corresponding component, wj is the jth indicator of corre-
sponding component, HI is the Hazard index, wH is the weight of Hazard index EI is the
Exposure index, wE is the weight of Exposure index, VI is the Vulnerability index, wV is
the weight of Vulnerability index, CI is the Capacity index, and wC is the weight of the
Capacity index.

2.2.1. Principle for Selecting Assessment Indicators

It was confirmed that several principles with similar meanings were repeated in pre-
vious studies for indicator selection. [19–21]. The most frequently used and important
principles among these were extracted; those six principles are listed in Table 2. The major
principles included were correlation, simplicity, quantitative, reliability, redundancy, and
ease. The first principle, correlation, was to check whether the meaning of the components
was similar; the second principle, simplicity, was to check whether the meanings of indi-
vidual indicators were easy to understand; the third principle, quantitative, was to check
whether an indicator could be quantified numerically; the fourth, validity, was to check
whether the conceptual basis of the relevant indicator was clear; the fifth, redundancy, was
to check whether there were indicators with overlapping meanings and, finally, ease was to
check whether it was easy to continuously collect data.

Table 2. Six principles for selection of indicators [19–21].

Indicator Selection
Principles

Abbreviations Descriptions

Correlation C Examines whether the meanings of the components are similar

Simplicity S Examines whether the meanings of individual indicators are easy to understand

Quantitative Q Examines whether indicators can be quantified numerically

Validity V Examines whether the conceptual basis of the relevant indicator is clear

Redundancy R Examines whether any of the indicators have overlapping meanings

Ease E Examines whether it is easy to continuously collect data

2.2.2. Standardization Method for Assessment Indicators

When calculating an index using an indicator, it is necessary to perform standard-
ization, calculation of weights, and aggregation, because the assessment indicators used
to calculate the index are unit- and scale-dependent, thus making direct calculation im-
possible. Standardization is a method for resolving the issues of deviation and distortion
caused by size and unit differences, by converting each evaluation index into a dimen-
sionless value. Typically, rankings, Z-scores, categorical scales, and re-scaling are used
as representative standardization methods; in this study, data were standardized using
both method re-scaling and categorical scale methods. Generally, the re-scaling method is
easy to understand, and the categorical scale method can be used to solve the problem of
distortion in given datasets [22]. Table 3 describes the features of the two standardization
methods used in this study.
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Table 3. Features of standardization methods used in this study [22].

Methods Equation Description

Categorical scale
Ii =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0.25, i f xi ∈
{

p25th
}

percentile

0.5, i f xi ∈
{

p50th − p25th
}

percentile

0.75, i f xi ∈
{

p75th − p50th
}

percentile

1.00, i f xi ∈
{

p100th − p75th
}

percentile

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
A method of classifying categories by
quantile and assigning scores even if
the range of specific indicator values

is very wide.
xi means the value of the ith data, and scores are given according to

the range to which the value belongs.

Re-Scaling
Ii =

xi−min(x)
max(x)−min(x)

A transformation method based on
the range of indicators. Standardized

values are included in the range of
0 to 1.

xi means the value of the ith data, and max(x) and min(x) represent
the maximum and minimum values of the data, respectively.

2.2.3. Method of Calculating Weights

Assessment indicators have varying degrees of impact depending on the purpose
of analysis, and they should be given weights during the process of determining their
significance and calculating them as an index. Typically, the analytical hierarchy process
(AHP), factor analysis, the Delphi method, and the entropy method are used as weight
determination techniques [23–26] This study used the entropy technique, which is a method
for calculating objective weights and conducting experiments.

The following procedures were used to calculate the weight of each indicator using
the aforementioned entropy method. First, the constructed values of each indicator are
organized into a matrix by region, followed by the normalization of the configured attribute
information of each indicator. Weight values between the indicators were finally determined
after calculating the entropy for each attribute using normalized data. Equations (3)–(7)
summarize this process [27].

First, a matrix of attribute information of regional assessment indicators is set up:

D =

⎡⎢⎣ x11 · · · x1n
...

. . .
...

xm1 · · · xmn

⎤⎥⎦ (3)

Second, attribute information is normalized using the assessment indicator:

pij =
xij

∑m
i=1 xij

(i = 1, 2, · · ·m ; j = 1, 2, · · · , n) (4)

Third, the entropy for each attribute is calculated:

Ej = −k ∑ m
i=1 pij log pij

(
Here, k =

1
log m

; j = 1, 2, · · · , n
)

(5)

Fourth, the weight of each assessment indicator was calculated by considering the
degree of diversity.

Degree of diversity : dj = 1 − Ej (6)

Weight : wj =
dj

∑n
j=1 dj

(j = 1, 2, · · · , n) (7)

where, m is the number of regions, n is the number of indicators, i is the ith region, j is the
jth indicator, pij is the ith and jth normalized assessment indicators, and Ej is the entropy
of the jth assessment indicator.
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2.3. Hierarchical Cluster Analysis

Cluster analysis is a typical statistical technique that can identify group objects with
similar characteristics in given datasets. The two types of cluster analysis are hierarchical
and non-hierarchical cluster analysis [28,29]. Hierarchical cluster analysis is a technique for
deriving a target cluster by sequentially clustering subjects with a high degree of similarity
and gradually combining clusters. Non-hierarchical clustering is a technique for clustering
that involves specifying the number of clusters and the initial starting point based on the
cluster center [30].

The advantage of hierarchical cluster analysis is that it can perform clustering in a
way that the cluster forms a hierarchy without first specifying the number of clusters,
after which it identifies the cluster’s hierarchical structure using dendrograms [31]. The
dendrogram expresses a cluster’s hierarchical structure in the form of a tree, and within the
hierarchical structure, the lower cluster takes on the form of the upper cluster (Figure 4). In
this study, hierarchical cluster analysis was used to cluster groups that were sequentially or
hierarchically similar to each other.

 

Figure 4. Conceptual diagram of dendrogram [31].

Here, the term “distance” should be used to refer to a metric of regional similarity.
There are several methods of defining distance—Euclidean distance, which is the most
frequently used, hamming distance, which is used when all variables are categorical,
Manhattan distance, and cosine similarity. Since the normalized data was used in this
study, the distance was calculated using the Euclidean distance. Equation (8) illustrates the
Euclidean distance equation [32].

dij =

[
∑ p

k=1

(
xik − xjk

)2
]1/2

(8)

where i and j are two objects in p-dimensional space and dij represents the Euclidean
distance, i.e., the shortest direct distance. p is the total number of variables and k is
kth variable.
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3. Result of Analysis

3.1. Risk Assessment of Heavy Rain Damage
3.1.1. Selection and Construction of Assessment Indicators

In this study, we investigated the assessment indicators and framework used in refer-
ences [5–18]. The UNISDR framework (hazard, exposure, vulnerability, and capacity) was
judged to be the most clearly distinguished among various frameworks and the assessment
indicators used in previous studies were reconstructed into the UNISDR framework. The
assessment indicators used in this study were chosen based on six selection principles
(Table 2). The principles were correlation (C), simplicity (S), quantitative (Q), validity (V),
redundancy (R), and ease (E). Table 4 shows the assessment indicators selected through
indicator-selection principles.

Table 4. Selection of assessment indicators.

Framework Components Potential Assessment Indicators
Indicator Selection Principles Final

SelectionC S Q V R E

Hazard

Meteorological

Probable rainfall X � � � � � X

Number of days of rainfall of 80 mm � X � � X � X

Maximum rainfall per day � � � � X � X

Maximum rainfall during the duration (24 h) � � � � � � � (H1)

Annual average rainfall � � � � � � � (H2)

Historical Damage

Flood damage � � � � � � � (H3)

Scale of flood damage � � � � X � X

Frequency of flood damage � � � � � � � (H4)

Flooded area � � X X � X X

Exposure

Socio-economic

Total population � � � � � � � (E1)

GRDP � � � � � � � (E2)

Per capita income � � � � X � X

Average official land price � � � � X � X

Population density � � � � X X X

Physical

Number of buildings � � � � � � � (E3)

Infrastructure (road) � � � � � � � (E4)

Slope X � � � X � X

River density � � � � � � � (E5)

Vulnerability

Social

Vulnerable population � � � � � � � (V1)

Poor population � � � � X X X

Infant mortality � � � � X X X

TV distribution rate X � � � � X X

Number of semi-basement households � � � � � X X

Population in flooded areas � � X X � X X

Number of households not supplied with electricity X � � � X X X

Physical

Area of the lowland area � X � X X X X

Runoff curve index � � � � � X X

Disaster-prone districts � � � � � � � (V2)

Steep slope � � � � � � � (V3)

Old buildings � � � � � � � (V4)
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Table 4. Cont.

Framework Components Potential Assessment Indicators
Indicator Selection Principles Final

SelectionC S Q V R E

Capacity

Disaster Prevention
Capability

Number of disaster prevention facilities � � � � � X X

Preventive facilities � � � � X X X

Drainage pump station � � � � � � � (C1)

Dam and reservoir � � X � � X X

River management personnel X � X � � X X

Financial independence � � � � � � � (C2)

Disaster Prevention
History

Cumulative disaster prevention budget � � � � � � � (C3)

Promotion of preventive measures � � X � X X X

River embankment ratio X � X X � X X

The hazard-component indicators selected were maximum rainfall during the duration
(24 h) (H1), annual average rainfall (H2), flood damage (H3), and flood damage frequency
(H4). The exposure component indicators were the total population (E1), the GRDP (gross
regional domestic product) (E2), total number of buildings (E3), road facility area (E4), and
river density (E5). The vulnerability component indicators were vulnerable populations
(V1), disaster-prone districts (V2), steep slopes (V3), and old buildings (V4). Capacity
indicators were drainage pump stations (C1), financial independence (C2), and cumulative
disaster prevention budgets (C3). All assessment indicators chosen for this study were
constructed as of 2019 and as cumulative or average concepts, depending on the nature of
the data.

Meteorological data were obtained from the Korea Meteorological Administration
(KMA), and damage data were obtained from the Statistical Yearbook of Natural Disaster
(SYND) published by the Ministry of the Interior and Safety (MOIS). The total population,
GRDP, total number of buildings, and financial independence were obtained from the
Korean Statistical Information Service (KOSIS) and data on road area and river density
were obtained from the Ministry of Environment (MOE). MOIS collected data on drainage
pump stations and investment costs for the disaster prevention budget. In Table 4, a circle
means the indicator was selected, and a cross means the indictor was not selected.

3.1.2. Standardization and Calculation of Weights of Assessment Indicators

Since it is advantageous for the visualization of integrated index, the re-scaling method
was standardized and used, but the categorical scale method was also considered to
minimize distortion caused by extreme values. Statistics of the assessment indicators for
standardization are shown in Table 5.

As shown Table 5, the maximum values of H4, V3, and C1 were excessively large
in comparison to the average value, and thus, 80% of data did not exceed 0.1. The data
mentioned above (H4, V3, and C1) signified that the probability distribution was skewed
to the left and the tail was generated far to the right, which means that some data among
the total are extreme values. If there is standardization without using the categorical scale
method, significant data distortion problems can be caused. To this end, the integrated
index was also calculated considering the categorical scale, and the score for each percentile
is shown in Table 6.
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Table 5. Elementary statistics for assessment indicators.

Assessment
Indicators

Re-Scaling The Percentage of Standardized Value

Min Max 20% 40% 60% 80%

H1 833.18 1443.75 0.2245 0.3503 0.4490 0.5518

H2 96.43 200.625 0.2906 0.3778 0.4889 0.6391

H3 0 156 0.2321 0.3654 0.4679 0.5923

H4 0 635,553,387 0.0024 0.0065 0.0161 0.0407

E1 16,993 1,194,465 0.0245 0.0709 0.1753 0.3181

E2 431,322 60,407,392 0.0171 0.0446 0.0853 0.1725

E3 2257 180,936 0.1184 0.1718 0.2508 0.3608

E4 0.000421 0.281286 0.0233 0.0346 0.0712 0.1614

E5 0 0.209904 0.0444 0.0712 0.1098 0.1740

V1 7382 258,384 0.0491 0.1038 0.2135 0.3627

V2 0 20 0.0250 0.0500 0.1500 0.3000

V3 0 71.76 0.0002 0.0025 0.0224 0.1015

V4 337 67,767 0.1235 0.1843 0.2463 0.3156

C1 0 283,740 0.0008 0.0016 0.0081 0.0250

C2 0 453,722.3 0.0176 0.0352 0.0851 0.1341

C3 8.5 69.2 0.1081 0.1951 0.2965 0.4870

Table 6. Percentile and score for standardized value.

Percentile Score Percentile Score

0% ≤ xi < 20% 0.2 60% ≤ xi < 80% 0.8

20% ≤ xi < 40% 0.4 80% ≤ xi < 100% 1.0

40% ≤ xi < 60% 0.6 - -

Table 7 summarizes the weights of the assessment indicators and the sub-index. Here,
the sub-index means that it is integrated by the indicators of each framework. As shown
in Table 7, the Hazard index places a large weight on H4 (accumulated amount of heavy
rain damage), showing that previous damage is critical for determining the current risk of
heavy rain damage. The Exposure index is distributed more evenly than the hazard, index
and the density of river has the most weight. The steep slopes of the Vulnerability index
(V3) show that it has the highest weight, whereas the number of disaster-prone districts
(V2) has the second-highest weight. In terms of capacity, the drainage pump station’s
treatment capacity (C1) had the highest weight. As for the weights of the sub-index, the
Hazard index had the highest weight for each sub-index and the Capacity index has the
second-highest weight.

3.1.3. Definition of the Risk Level of Heavy Rain Damage by Region

Each sub-index was calculated using the weight and assessment indicators corre-
sponding to each component (see Equation (1)). Figure 5 illustrates the spatial distribution
map of each sub-index. The Hazard index, Exposure index, and Vulnerability index have
positive (+) values which show an increased risk of heavy rain damage, while the Capacity
index has a negative (−) value which indicates a decreased risk of heavy rain damage.
According to the Hazard index, the frequency of damage was high in GG and the scale of
damage was large in GW and JB. It was confirmed that rainfall occurrence characteristics
were concentrated in the central and southern coastal regions, and as a result, GW, GG,
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JB, and GN have a high Hazard index. The Exposure index consists of indicators that are
susceptible to damage from heavy rain, and the more developed a region is, the greater the
risk of flooding. Indicators such as population, GRDP, and road density were found to be
higher in urban areas such as SO, BS, IC, DG, and GJ. Thus, the Exposure index seemed to
be higher in urban areas.

Table 7. Weights of the assessment indicators and sub-index.

Framework
Assessment
Indicators

Indicators
Weight

Sub-Index
Weight

Hazard

H1 0.0043

0.3198
H2 0.0075
H3 0.0867
H4 0.9014

Exposure

E1 0.139

0.1978
E2 0.1861
E3 0.0613
E4 0.189
E5 0.4245

Vulnerability

V1 0.123

0.186
V2 0.2937
V3 0.518
V4 0.0654

Capacity
C1 0.7646

0.2963C2 0.1983
C3 0.0371

The Vulnerability index was highest in GW, GB, JB, and JN, which are predominantly
composed of disaster-prone districts and steep slopes. As shown in the elevation map
(Figure 4), there are many areas that are vulnerable to damage from heavy rain distributed
along the mountain ranges. In addition, these areas have a high risk of landslide damage.
The Capacity index refers to areas with a high density of disaster-prevention facilities, and
this index was particularly high in JN, GN, and CN.

The heavy-rain-damage risk index (HDRI) was integrated through Equation (2) using
sub-index and weight. Figure 6a shows the probability distribution of HDRI. Since HDRI
followed a normal distribution, it was possible to classify the probability values into evenly
intervals. This means that some regions have similar probability values and therefore,
similar risk levels. The cumulative probability of the HDRI is shown in Figure 6b, and the
probability boundaries between Levels 1 and 4 was defined as 0%, 25%, 75%, and 100%. As
such, areas at low risk of heavy-rain damage were classified as Level 1, whereas those at
high risk were classified as Level 4.

The assessment indicators for flood risk were selected based on the principle, these
were weighted averaged and integrated as the HDRI. The heavy-rain-damage risk level
was classified based on the probability distribution of the HDRI. Figure 7 illustrates the
spatial distribution map of the risk level by region. According to the results of the regional
heavy-rain-damage risk assessment presented in Figure 7, the risks were greatest in GD,
GG, and JB, while SO, IC, DG, CN, and JD were considered relatively safe.
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(a) (b) 

  
(c) (d) 

Figure 5. Normalized spatial distribution of each sub–index. (a) Hazard index, (b) Exposure index,
(c) Vulnerability index, and (d) Capacity index.

(a) (b) 

Figure 6. Classification of risk level based on probability distribution. (a) PDF of HDRI and (b) classi-
fication of risk level using CDF.
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Figure 7. Result of risk assessment.

3.2. Classification of Heavy Rain Damage Types Based on Hierarchical Cluster Analysis

The magnitude of damage that occurs each year in South Korea is aggregated and
recorded for a total of 23 facilities: 13 public and 10 private facilities. The study collected
data on heavy rain damage from 2003–2019 and analyzed the ratio of major damaged facilities.

As can be seen in Figure 8, more than 30% of damage occurred in streams, 17% in
water resource infrastructure, 13% on roads, and 8.9% in erosion-control infrastructure.
Furthermore, 5% damage is incurred by arable land, 4% by buildings, and 2% by military
facilities; facilities that accounted for less than 1% of damage were not indicated. The
primary facilities in South Korea that sustain damage from heavy rains are streams, water
resource facilities, roads, erosion control projects, arable land, buildings, and military
facilities. In order to identify the type of damage by region according to topographical
characteristics, we performed a hierarchical cluster analysis using the regional damage
ratios for the seven facilities as variables. As shown Figure 9, damage types were divided
into five clusters.

 

Figure 8. Distribution of facilities affected by heavy rain damage from 2003–2019 in South Korea.
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Figure 9. Hierarchical cluster analysis result based on dendrogram.

Based on the findings in Figure 10, the Type A area was identified as the location of the
most damage in “erosion control” and “road”, and the Type B area had the highest damage
ratio in “stream facility” and “road”. In addition, the Type C area had a high damage ratio
in arable land, Type D area was identified as just “stream facility”. Type E area had a high
damage ratio for “building”. These findings indicate that topographical characteristics and
the level of regional development have a significant impact on different types of damage
from heavy rainfall.

 

Figure 10. Regional classification of damage type from the analysis.

Considering the damage-type map and topographical characteristics together, Type A
was mainly found in mountainous regions of GW, JB, and JN, indicating that the damage in
“erosion control” and “road” due to landslides was severe. Damage occurs frequently in the
local river in the GG area near the Han River in the case of Type B. Type C was confirmed
to be primarily distributed in CN, CB, GN, and GB areas where arable land is located. Type
D was confirmed in the GJ and GG areas where damage occurred in “stream facility”. Type
E was primarily found in city-oriented SO, IC, and DG areas.
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Type A affects erosion control facilities and roads due to landslides, and thus, in Type
A areas, prevention projects such as erosion facility maintenance and repair projects and
road drainage maintenance projects to reduce landslides should be implemented. Type
B is a case of damage caused to levee facilities by river inundation, and to road facilities
by poor road drainage; thus, a river improvement project that can lower water depth
and a road drainage maintenance project that can well release water into drainage should
be implemented.

Because Type C can occur due to poor drainage in arable land, prevention projects
such as sewer-pipes maintenance projects should be implemented. Type D was a case
of damage caused to a stream facility by rapid water velocity and river inundation, and
prevention projects such as a river improvement project that can lower the flow velocity
and water depth could be implemented. Type E mainly occurred due to inundation of
urban area by lowlands areas; thus, prevention projects such as drainage-pump projects
that can release the flooded water in lowlands into rivers could be implemented.

3.3. Analysis for Heavy Rain Damage Risk and Damage Type in Each Region

To comprehend the characteristics of heavy rain damage by region, risk level, and
damage types classified in the previous section, the two results are evaluated in this section.
As shown Figure 11, the risk level is represented by a fill color, and the damage type is
represented by an outline color. From the results of this study, GW, JB, CB, and GG areas
were identified as having high risk levels. For damage type in these areas, GW and JB were
shown to be Type A and C, the GG area was Type B and C, and the CB area was Type C.
Considering the causes of damage in these areas, when damage occurs in GW and JB, the
scale of damage can be large and caused by landslides, and as the stream density in the
GG area is high, damage can be occur frequently. In the CB area, damage are occurred
mainly in arable land due to poor drainage by steep slopes. The GB and GN areas are the
representative areas shown to be in risk level 3, and the damage type for this area is C.

Figure 11. Regional risk level and heavy rain damage types from the analysis.
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In addition, urban area such as IC, SO, BS, and GJ were presented Type E and low risk
level; west coast area such as JN, CN, and IC also were presented a low risk level. However,
even if the risk levels are comparable, the damage type and cause can be different according
to the topographic characteristics. Thus, in order to determine the priority and type of
appropriate prevention projects, it is necessary to consider the risk level and damage type
each region.

4. Discussions and Conclusions

In this study, a method which can identify the types and priorities of disaster preven-
tion projects by considering various regional characteristics was proposed. First, potential
assessment indicators for risk assessment were gathered by reviewing previous research
cases, and assessment indicators relevant to this study were chosen based on principle for
indicator selection. Following that, an integrated index and the risk level were calculated
and four grades were identified. Damage types by region were classified into five types
using hierarchical cluster analysis and the facility’s history of damage in the corresponding
region. Finally, the two results were combined to examine the characteristics of heavy-rain
damage in each region, and appropriate types and priorities of disaster prevention projects
were proposed based on these findings.

The results of the risk-level analysis revealed that the risk level was relatively high
in cities such as GW, JB, GG, CB, and JJ, where heavy rain damage occurs frequently or is
severe, and relatively low in cities such as JN, CN, IC, and SE. The frequency of damage
was found to be low in GW and JB, but the scale was very large; while, the scale was
small, but it occurred very frequently in GG. According to the damage type analysis,
Type A which mainly consists of landslide damage was primarily found in GW and JB,
whereas Type B is river inundation damage and was found in GG. Furthermore, Type C is
agricultural land damage which was prevalent in CB, and Type D is stream facility damage
by rapid water velocity and was found in GJ, GG. Type E is building damage, which was
prevalent in urban areas such as SO, IC, and DG. When analyzing regional characteristics
by linking risk level and damage type, there were few cases of damage due to landslides in
GW and JB, but most of the damage was significant. Damage occurred primarily in river
facilities in GG, and most of the damage was minor, but it occurred frequently. Finally,
considering the most dangerous areas in relation to the risk level and damage type, GW
and JB areas were identified as requiring an erosion facility maintenance and repair project
and a sewer pipes maintenance project; a river improvement project was suggested for
the GG area. Furthermore, in CB and JJ, a sewer-pipe maintenance project should ideally
be implemented.

We were able to identify the flood cause and to propose the prevention project for
each region by analyzing the major damage types that were not considered in previous
risk-assessment studies and with risk level. However, since this study is the result of
analysis at the national level, it was impossible to identify the specific location at district
level where each prevention project was necessary. Therefore, in future research, it will be
necessary to derive the specific location via quantitative risk assessment for high-risk areas
that were identified in the results of this study.

In this study, a strategy for determining the risk level and type of damage South
Korea’s entire region was proposed. When developing various types of disaster-prevention
project plans from a macroscopic perspective, it is believed that identifying the types of
projects and prioritizing them can be of great help in reducing the national budget in
terms of time and cost. Therefore, the findings of this study are expected to be used as a
method of identifying damage characteristics by region when developing a plan for disaster
prevention projects.
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Abstract: Geohazards pose significant risks to communities and infrastructure, emphasizing the
need for accurate susceptibility assessments to guide land-use planning and hazard management.
This study presents a comprehensive method that combines Variable Weight Theory (VWT) with
Analytic Hierarchy Process (AHP) to assess geo-environment vulnerability based on susceptibility
to various geohazards. The method was applied to the Pearl River Delta in China, resulting in the
classification of areas into high vulnerability (5961.85 km2), medium vulnerability (19,227.93 km2),
low vulnerability (14,892.02 km2), and stable areas (1616.19 km2). The findings demonstrate improved
accuracy and reliability compared to using AHP alone. ROC curve analysis confirms the enhanced
performance of the integrated method, highlighting its effectiveness in discerning susceptibility levels
and making informed decisions in hazard preparedness and risk reduction. Additionally, this study
assessed the risks posed by geohazards to critical infrastructures, roads, and artificial surfaces, while
discussing prevention strategies. However, this study acknowledges certain limitations, including
the subjective determination of its judgment matrix and data constraints. Future research could
explore the integration of alternative methods to enhance the objectivity of factor weighting. In
practical applications, this study contributes to the understanding of geo-environment vulnerability
assessments, providing insight into the intricate interplay among geological processes, human
activities, and disaster resilience.

Keywords: geo-environment vulnerability; geohazard susceptibility; VWT-AHP; Pearl River Delta

1. Introduction

Geohazards encompass a range of geological processes occurring on the Earth’s sur-
face influenced by interactions among the atmosphere, hydrosphere, and biosphere [1].
Geohazards, notably landslides and debris flows, have caused significant human casualties
and property losses, reaching billions of dollars [2,3]. Improving geohazard risk manage-
ment is a crucial global effort aimed at mitigating the consequences of geohazards [4].
Geo-environment vulnerability assessment is an effective tool for enhancing disaster man-
agement. It can assess susceptibility to various geohazards, offering proactive strategies for
disaster reduction. Consequently, it can contribute significantly to promoting symbiosis
and sustainable development between humanity and the natural environment.

Vulnerability stands as a metric extensively harnessed in the fields of climate change,
resource environments, and ecosystems [5–11]. Due to variations in research subjects and
disciplinary perspectives, the definition of vulnerability can vary significantly among disci-
plines [12]. Initially introduced by Margat (1968) [13] in a study on groundwater pollution
susceptibility, vulnerability is defined as the ability of groundwater to resist contamina-
tion based on hydrogeological conditions. Timmerman (1981) [14] defined vulnerability
from the perspective of climate change as the degree to which a system responds unfa-
vorably when subjected to damage. Smit et al. (1999) [15], at the scale of global change,
described vulnerability as the extent to which a system is susceptible to harm or injury.
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Research in the field of geo-environment vulnerability remains limited, leading to a lack of
a universal definition for geo-environment vulnerability. In this study, geo-environment
vulnerability is considered the capacity of a geo-environmental system to autonomously
regulate and reinstate its structure and functionality amid external disruptions [16]. The
magnitude of geo-environment vulnerability depends on the components and configu-
ration of the system, intertwined with the nature and intensity of external perturbations.
When the intensity of external disturbances surpasses the system’s self-regulatory capac-
ities, latent geo-environment vulnerability transforms into geo-environmental issues or
geohazards [17]. Consequently, the susceptibility status of geohazards can characterize
geo-environment vulnerability [17]. The impact and duration of geohazards vary, occurring
in isolation or conjunction. Thus, conducting vulnerability assessments based on a range
of geohazards is essential, rather than relying on the susceptibility to a single type of
geohazard [18,19].

Advancements in remote sensing (RS) technology and geographic information sys-
tems (GIS) have contributed to the maturity of geo-environment vulnerability assess-
ment techniques. Ma et al. (2019) [17] assessed the geo-environment vulnerability of Bei-
hai, China, based on the susceptibility to landslides, collapses, and sea water intrusion.
Ma et al. (2020) [20] assessed the geo-environmental risk in Zhengzhou, China, considering
regional crustal stability and 11 types of geohazards and progressive geo-environmental
issues. Chang et al. (2022) [21] researched the susceptibility of landslides, collapses, ground
subsidence, and debris flows, proposing a multi-hazard vulnerability assessment method.
Li et al. (2023) [22] developed an assessment framework for the ecological geo-environment
vulnerability of arid and semi-arid cities, focusing on land desertification, soil erosion, and
landslides. While these studies have made progress, there is currently no unified quantita-
tive scoring standard, and research on geo-environment vulnerability assessment in large
urban clusters is limited [23]. These limitations hinder the ability to balance socio-economic
development and effective decision-making for geohazard prevention and control.

Multiple methods exist for assessing susceptibility to geohazards, classified into the
following four primary categories: process-based modeling methods, statistical methods,
machine learning methods, and knowledge-driven methods [24]. Process-based model-
ing methods simulate the occurrence processes of geohazards, grounded in physical or
mathematical principles and capable of delivering precise susceptibility predictions [25].
However, their applicability to regional-scale studies is limited due to the substantial re-
quirements of detailed field data and extensive computational simulations [26]. Statistical
methods, such as Frequency Ratio (FR) [27], Logistic Regression (LR) [28], and Weight of
Evidence (WoE) [29], rely on extensive data and statistical analysis, with result accuracy
closely associated with statistical assumptions [26]. Machine learning methods, such as
Support Vector Machine (SVM) [30], Random Forest (RF) [31], and Artificial Neural Net-
work (ANN) [32], manage multidimensional data and complex linear relationships but
may face challenges related to interpretability and data quality [26,33]. Knowledge-driven
methods are flexible approaches relying on the judgment of decision-makers or experts
based on their knowledge and experience, offering high decision-making efficiency and
effectiveness [34]. These methods are adaptable to various spatial and temporal scales
and suitable for a wide range of applications. They are particularly valuable when data is
limited or unavailable, allowing for assessments even in data-scarce scenarios [35].

Multi-Criteria Decision Analysis (MCDA) is a fundamental knowledge-driven method,
recognized as an essential tool for environmental decision-making, enabling the visualiza-
tion and resolution of competitive decision problems [36–39]. By integrating qualitative
and quantitative criteria, MCDA has become a cornerstone in integrated problem-solving
solutions [40]. Among the suite of MCDA techniques, the Analytic Hierarchy Process
(AHP) emerges as a fitting choice for grappling with intricate issues [41]. AHP is a frame-
work that ascertains the relative significance of factors through pairwise comparisons and
expert assessments, harmonizing subjective and objective criteria [42,43]. This method
deconstructs complex problems into distinct factors, systematically arranging them in a
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hierarchical manner according to their interrelationships, yielding a multi-level analytical
structural model [44].

While AHP furnishes unchanging factor weights across varying conditions, the values
of these factors exhibit diversity amidst different circumstances. Consequently, AHP falls
short in capturing the dynamic fluctuations of factor weights within distinct contexts [45].
The core concept of the Variable Weight Theory (VWT) involves introducing a state-variable
weight vector while retaining the stability of factor weights. This theoretical framework
comprises three distinctive modes: penalization-based, incentive-based, and a hybrid form
combining both penalization and incentive elements [46]. This method guarantees the flexi-
bility of weight adjustments in alignment with varying factor values and specific contextual
circumstances, thereby presenting an effective resolution to these complexities [47].

China is significantly impacted by global geohazards, evident from the mounting in-
tensity and frequency of such incidents [48]. In recent times, driven by rapid socio-economic
growth and urbanization, the Pearl River Delta, as one of the largest urban clusters in China,
has experienced an expansion in geological environmental development and utilization.
Characterized by intricate tectonics, extensive karst landscapes, and widespread Quater-
nary deposits, the area faces natural catastrophes including landslides, collapses, and debris
flows, resulting in substantial economic losses [49–52]. Data from the Guangdong Province
Disaster Prevention and Reduction Yearbook [53] show that between 1994 and 2009, geo-
hazards caused 276 fatalities, 534 injuries, and economic losses totaling 256.48 million US
dollars. Research on the geo-environment vulnerability in the Pearl River Delta primarily
focuses on two aspects: geological environmental status assessments and single geohazard
susceptibility assessments. Zeng and Liu (2015) [54] conducted an investigation into key
geo-environmental issues in the Pearl River Delta, including ground subsidence, sea water
intrusion, and waste pollution. The study identified rising sea levels, human activities, and
extreme weather events as the primary triggering factors for geohazards. In a separate
study, Zhang et al. (2019) [55] employed the AHP method to assess landslide susceptibility.
Dou et al. (2008) [56] introduced an innovative automated detection method for karst
collapse based on image analysis. Liu et al. (2023) [57] conducted ground subsidence mod-
eling and assessment using remote sensing imagery and geological data. Furthermore, Lin
et al. (2019) [58] employed an integrated Bayesian model for modeling sea water intrusion.
Presently, there exists a notable dearth of comprehensive assessments regarding geological
environmental vulnerability. Given the presence of geohazards, such as landslides, debris
flows, ground subsidence, and karst collapses, the assessment of geo-environment vulnera-
bility based on susceptibility to multiple geohazards is crucial for effective prevention and
mitigation, ensuring human safety and protecting valuable assets.

Using the AHP method, this study partitioned geo-environment vulnerability into
discrete dimensions: landslide and collapse susceptibility, debris flow susceptibility, karst
collapse susceptibility, ground subsidence susceptibility, soil erosion susceptibility, and
sea water intrusion susceptibility. Comprehensive assessment indicators and classifica-
tion criteria were delineated for each dimension. Judgment matrices were formulated to
establish constant weights of individual indicators. Moreover, a “penalization-incentive”
variant of the VWT was adeptly utilized to dynamically adjust the weights of these indica-
tors. By assessing the susceptibility to distinct geohazards, the methodology subsequently
defined distinct zones of geo-environment vulnerability. Based on the assessment results
and in conjunction with the distribution of land use/land cover (LULC), road, and critical
infrastructure, the impact of geohazard susceptibility and geo-environment vulnerability
on urban development was discussed. The specific research objectives are as follows:

1. Propose a multi-hazard geological disaster susceptibility assessment system using the
VWT-AHP method.

2. Analyze the geo-environment vulnerability in the Pearl River Delta.
3. Provide recommendations for LULC, road, and critical infrastructure planning.
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The implications of the findings from this assessment hold substantial pertinence
for local governing bodies, providing invaluable insights for the formulation of land use
planning and strategies for industrial development.

2. Study Area

Situated in the central-southern expanse of Guangdong Province, China, the Pearl
River Delta shares its borders with the South China Sea. Geographically, it spans longitudi-
nally from approximately 112◦0′E to 115◦24′E and latitudinally from 21◦43′N to 23◦56′N,
encompassing a land area of 41,698 km2. The region’s topography features a central lowland
and elevations that ascend in the northwest and east (Figure 1b). A dominant landform is
the alluvial plain, with low mountains, hills, and tablelands distributed across the western,
northern, and eastern sectors (Figure 1a). The region’s hydrology is extensive, characterized
by river systems such as the Xi River and Dong River, which emanate from mountainous
terrains and discharge into the South China Sea. The climatic conditions prevailing in
this study area are warm and humid, with an average annual temperature of 21.9 ◦C.
Monsoonal influences lead to pronounced temporal and spatial variations in precipitation,
with a concentrated peak during the summer months. The yearly average precipitation
amounts to approximately 1600 mm, with certain mountainous locales experiencing levels
ranging from 2000 mm to 2600 mm (Figure 1c).

 
Figure 1. The altitude, precipitation, and topography of the study area. (a) Topography, (b) Altitude,
(c) Precipitation.
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The study area exhibits a comprehensive and diverse development of geological
strata, with extensive distribution patterns. Encompassing a broad spectrum, geological
formations range from the ancient, highly metamorphosed rocks of the Mesoproterozoic era
to the more recent loose clastic sediments of the Quaternary period. Geological dynamics in
this region are primarily characterized by significant, episodic fluctuations in elevation and
subsidence, accompanied by differential block movements. The demarcation of boundaries
is predominantly dictated by fault lines, while the internal structure is further influenced
by the intersection of secondary faults oriented in various directions. Drawing from the
attributes, origins, and structural traits of lithological entities, the geological compositions
in the study area are classified into six primary categories: unconsolidated soil, intrusive
rocks, volcanic rocks, metamorphic rocks, clastic rocks and carbonate rocks (Figure 2).
Groundwater predominantly exists within the interstices of loose sediments, fractures
within carbonate rocks, and fissures in bedrock.

 
Figure 2. The lithology of the study area.

3. Methods and Materials

3.1. Technical Route

In this study, the assessment of landslide and collapse susceptibility, debris flow
susceptibility, karst collapse susceptibility, ground subsidence susceptibility, soil erosion
susceptibility, and sea water intrusion susceptibility was carried out utilizing the VWT-AHP
method. Furthermore, the assessment of geo-environment vulnerability was conducted by
drawing parallels with the principle of the “barrel effect”. Based on the assessment results
and considering the distribution of LULC, road construction, and critical infrastructure,
recommendations for geohazard prevention and mitigation were provided. The flowchart
for this study is depicted in Figure 3.

232



Remote Sens. 2023, 15, 5007

 

Figure 3. Flowchart of this study.

3.2. Database
3.2.1. Geo-Hazard Inventory

The geological environmental challenges in the study area are predominantly char-
acterized by occurrences of collapses, landslides, debris flows, karst collapses, ground
subsidence, and soil erosion, showcasing a widespread distribution (Figure 4). As of 2020,
there are 83 locations with landslides and collapses posing a threat to over 100 people,
23 locations with debris flows endangering more than 100 people, and 97 locations expe-
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riencing karst collapses. Ground subsidence exceeding 10 cm has been documented in
65 locations. Soil erosion takes the form of a fragmented distribution within the research
zone, covering 1.76% of the total study area. Employing a criterion of Total Dissolved Solids
(TDS) exceeding 1 g/L, the Pearl River Estuary region experiences a discernible degree of
seawater intrusion, affecting approximately 10.87% of the total area. The distribution map
of geohazards was provided by the Guangdong Geological Survey Institute.

 
Figure 4. The distribution map of geohazards in the study area.

3.2.2. Assessment Indicators

In this study, a total of 34 factors were selected for assessing the susceptibility to six
types of geohazards. Details regarding the data types, resolutions, temporal coverages, and
sources of these factors are detailed in Table 1.

Table 1. Data types, resolutions, temporal coverages, and sources of all indicators.

Geohazard
Susceptibility

Assessment Indicator Data Type Resolution
Temporal
Coverage

Source

Landslide and
collapse (A1)

Elevation (B11) TIFF 30 m × 30 m / Geospatial Data Cloud [59]
Slope (B12) TIFF 30 m × 30 m / /

Lithology (B13) Shapefile (Polygon) / / Guangdong Geological
Survey Institute

Topography (B14) Shapefile (Polygon) / / Guangdong Geological
Survey Institute

Distance to fault (B15) Shapefile (Polygon) / / Guangdong Geological
Survey Institute

Distance to river (B16) Shapefile (Polygon) / 2020 Google Earth

Precipitation (B17) Shapefile (Polygon) / 2020 Guangdong Geological
Survey Institute
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Table 1. Cont.

Geohazard
Susceptibility

Assessment Indicator Data Type Resolution
Temporal
Coverage

Source

Debris flow (A2)

Elevation (B21) TIFF 30 m × 30 m / Geospatial Data Cloud [59]
Slope (B22) TIFF 30 m × 30 m / /

Lithology (B23) Shapefile (Polygon) / / Guangdong Geological
Survey Institute

Topography (B24) Shapefile (Polygon) / / Guangdong Geological
Survey Institute

Distance to fault (B25) Shapefile (Polygon) / / Guangdong Geological
Survey Institute

Distance to river (B26) Shapefile (Polygon) / 2020 Google Earth
Distance to landslide and

collapse (B27) Shapefile (Polygon) / / Guangdong Geological
Survey Institute

Precipitation(B28) Shapefile (Polygon) / 2020 Guangdong Geological
Survey Institute

Karst collapse (A3)

Lithology (B31) Shapefile (Polygon) / / Guangdong Geological
Survey Institute

Degree of karst
development (B32) Shapefile (Polygon) / / Guangdong Geological

Survey Institute
Thickness of overlying

layer (B33) Shapefile (Polygon) / / Guangdong Geological
Survey Institute

Water yield property (B34) Shapefile (Polygon) / 2020 Guangdong Geological
Survey Institute

Distance to fault (B35) Shapefile (Polygon) / / Guangdong Geological
Survey Institute

Ground
subsidence (A4)

Thickness of soft soil
layer (B41) Shapefile (Polygon) / / Guangdong Geological

Survey Institute

Age of soft soil layer (B42) Shapefile (Polygon) / / Guangdong Geological
Survey Institute

Water yield property (B43) Shapefile (Polygon) / 2020 Guangdong Geological
Survey Institute

Distance to fault (B44) Shapefile (Polygon) / / Guangdong Geological
Survey Institute

Soil erosion (A5)

Slope (B51) TIFF 30 m × 30 m / /

Topography (B52) Shapefile (Polygon) / / Guangdong Geological
Survey Institute

Type of vegetation (B53) Shapefile (Polygon) / 2020 Guangdong Geological
Survey Institute

Type of soil (B54) Shapefile (Polygon) / 2020 Soil Science Database [60]
Distance to river (B55) Shapefile (Polygon) / 2020 Google Earth

Precipitation (B56) Shapefile (Polygon) / 2020 Guangdong Geological
Survey Institute

Sea water
intrusion (A6)

Topography (B61) Shapefile (Polygon) / / Guangdong Geological
Survey Institute

Type of Quaternary
sedimentary rock (B62) Shapefile (Polygon) / / Guangdong Geological

Survey Institute

Groundwater level (B63) TIFF 30 m × 30 m 2020 Guangdong Geological
Survey Institute

Precipitation (B64) Shapefile (Polygon) / 2020 Guangdong Geological
Survey Institute

Landslide and collapse susceptibility. Landslides refer to the downward movement of
rock and soil masses along weak surfaces under the influence of gravity, whereas collapses
involve the abrupt detachment of soil or rock masses from their parent materials, resulting in
vertical descent and potential rolling and accumulation along slopes. Numerous factors trigger
landslides and collapses, including heavy precipitation, lithology, seismic activity, geomorphic
processes, and human activities [61,62]. These events predominantly occur in mountainous
and valley regions, characterized by steep topography and significant elevation differences.
Steeper slopes with intense terrain incision are more prone to landslides and collapses due
to concentrated stress at steeper angles. Geological factors such as lithology and geological
structures play pivotal roles in landslides and collapses. Lithology serves as the fundamental
condition determining the possibility of these events, while geological structures influence the
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development of fractures within rocks. In regions marked by fault zones and the presence
of weak rocks, fissures within rocks lead to structural looseness, reduced shear strength, and
diminished resistance to weathering. Greater fissure development and rock fragmentation
heighten the likelihood of landslides and collapses. Precipitation is a critical triggering factor,
as water infiltrates through rock fractures, eroding and softening the material, promoting
further fissure expansion, weakening the mechanical strength of rocks, and simultaneously
eroding slope angles, thus forming precipitous faces. In this study, the selected assessment
indicators encompassed elevation, slope, lithology, topography, distance to fault, distance to
river, and precipitation [63–67]. Slope data was computed using ArcGIS 10.6 based on the
elevation data. River data was extracted from remote sensing images and the distance to river
was calculated using ArcGIS 10.6 with the Euclidean distance method.

Debris flow susceptibility. Debris flow entails the rapid surging of a mixture compris-
ing water, sediment, rocks, and soil on steep slopes, often triggered by heavy precipitation.
They exhibit high speeds, extended propagation distances, and significant destructive po-
tential [68–70]. In regions characterized by intense fissure development, active faulting, and
abundant landslides, fragmented rocks constitute the material basis for debris flow occurrence.
Precipitation plays a pivotal role as a triggering factor for mudflows, as intense precipita-
tion generates temporary surface runoff that provides the dynamic conditions for mudflow
initiation. Debris flows predominantly occur in steep mountainous terrain, where unstable
slopes are prone to landslides and collapses, facilitating the rapid accumulation of fragmented
rock masses. Debris flows frequently follow river valleys and ravines, which facilitate the
convergence of water flow and the transportation of eroded rock–soil material. For this
study, the chosen assessment indicators encompassed elevation, slope, lithology, topography,
distance to fault, distance to river, distance to landslide and collapse, and precipitation [71–74].
The distance to landslide and collapse was calculated using ArcGIS 10.6 with the Euclidean
distance method.

Karst collapse susceptibility. Karst collapse refers to the abrupt sinking and deformation
of loose rock–soil material overlaying soluble rock layers with well-developed karst cavities,
resulting from the collapse of the terrain. The presence of karst caves is a prerequisite for karst
collapse occurrences. The concentration of stress induced by surrounding rock dynamics on
the roofs and sidewalls of karst caves impairs their stability. The extent of karst formation,
the quantity, and dimensions of karst caves all contribute to heightened susceptibility to karst
collapses. Groundwater inflow augments the weight of the cave roof rock mass, coursing
through fractures to diminish shear resistance between adjacent rock segments and exacerbate
the erosion of soluble rock, thereby intensifying karst development. Greater fragmentation
of the soluble rock mass corresponds to more advanced fissuring, rendering it increasingly
susceptible to groundwater erosion. This study incorporated a range of assessment indicators
for karst collapse susceptibility, including lithology, degree of karst development, thickness of
overlying layer, water yield property, and distance to fault [31,75–77].

Ground subsidence susceptibility. Ground subsidence refers to the abrupt or gradual
downward movement of the Earth’s surface, primarily in the vertical dimension, with
minimal lateral shifts [78]. Ground subsidence is frequently instigated by excessive ground-
water extraction [79]. A fundamental prerequisite for ground subsidence is the presence
of an overlaying stratum of soft soil. The drainage of water from the soft soil results in
diminished pore water pressure and amplification of effective stress, leading to the consoli-
dation and densification of the soft soil layer. Crustal movements can also trigger ground
subsidence, typically manifesting at a comparably sluggish pace. In this study, the chosen
assessment indicators encompassed thickness of soft soil layer, age of soft soil layer, water
yield property, and distance to fault [80–83].

Soil erosion susceptibility. Soil erosion is the phenomenon in which soil particles
disperse, transport, and submerge under the influence of hydraulic processes and human
activities. Climate, topography, land cover, and land use conditions are pivotal factors
shaping soil erosion dynamics [84,85]. The physical structure of soil serves as the substrate
for soil erosion, with loosely compacted soil structures and reduced viscosity rendering
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it more susceptible to erosion caused by water and human actions. Precipitation-induced
surface runoff acts as a fundamental driving force behind soil erosion, with higher precipi-
tation intensities leading to increased runoff volumes and escalated erosion potential. Slope
gradient stands as a critical determinant in soil erosion resistance, as steeper slopes elevate
the propensity of soil mass movement due to gravitational forces, thereby intensifying
surface runoff and augmenting erosion risks. Vegetation plays a crucial role in intercepting
precipitation, thus mitigating surface runoff intensity. Root systems contribute to water
retention and soil compaction, thereby ameliorating the impact of soil erosion. In this
study, the selected assessment indicators for soil erosion susceptibility encompassed slope,
topography, type of vegetation, type of soil, distance to river, and precipitation [86–88].

Sea water intrusion susceptibility. Sea water intrusion pertains to the process whereby
freshwater aquifers undergo salinization due to both natural and human-induced fac-
tors [89]. The manifestation of sea water intrusion necessitates the fulfillment of two
conditions: the existence of hydraulic conduits and a disparity in hydraulic pressure within
the aquifer. In coastal aquifers characterized by porous or fractured substrates, as well
as those shaped by karst formations, sea water gains access to the groundwater system
through these pathways. As the hydraulic head of sea water surpasses that of the coastal
aquifer, driven by this hydraulic gradient, sea water infiltrates the groundwater reservoir
via hydraulic connections. The replenishment of groundwater, which potentially leads to
an increase in groundwater levels within coastal aquifers, can occur through mechanisms
like precipitation-induced infiltration. In this study, the chosen indicators for assessing sea
water intrusion susceptibility encompassed topography, type of Quaternary sedimentary
rock, groundwater level, and precipitation [90–93].

Each indicator has been assigned ratings of 0.1, 0.3, 0.7, and 0.9 across four ranges. In
cases where an indicator is categorized into three ranges, its ratings were adjusted to 0.1,
0.3, and 0.7. The delineation of factor ranges and assignment of ratings are derived from
previous studies [94–98]. The ranges and ratings of all indicators are presented in Table 2.
The distribution maps of all indicators are available in Figures 5–10.

Table 2. Ranges and ratings of all indicators.

Geohazard
Susceptibility

Assessment
Indicator

Rating

0.9 0.7 0.3 0.1

Landslide and
collapse (A1)

Elevation (B11) >400 m 200–400 m 80–200 m <80 m
Slope (B12) >20◦ 10◦–20◦ 5◦–10◦ <5◦

Lithology (B13)
Metamorphic rock;

clastic rock;
sand shale

Carbonate rock;
carbonate mudstone

Massive rock;
massive lava

Mucky soil;
cohesive soil

Topography (B14) Mountainous area;
hilly area (>200 m)

Hilly area (<200 m);
volcanic hilly area;
tableland (>20 m)

Tableland (10–20 m);
lacustrine plain

Tableland (<10 m);
beach; fluvial plain;
marine depositional

plain; delta plain
Distance to fault (B15) <2 km 2–4 km 4–6 km >6 km
Distance to river (B16) <0.5 km 0.5–1 km 1–1.5 km >1.5 km

Precipitation (B17) >2400 mm 2000–2400 mm 1600–2000 mm <1600 mm

Debris flow (A2)

Elevation (B21) >600 m 300–600 m 100–300 m <100 m
Slope (B22) >20◦ 10◦–20◦ 5◦–10◦ <5◦

Lithology (B23) Mucky soil;
cohesive soil

Metamorphic rock;
clastic rock;
sand shale

Carbonate rock;
carbonate mudstone

Massive rock;
massive lava

Topography (B24) Mountainous area;
hilly area (>200 m)

Hilly area (<200 m);
volcanic hilly area;
tableland (>20 m)

Tableland (10–20 m);
lacustrine plain

Tableland (<10 m);
beach; fluvial plain;
marine depositional

plain; delta plain
Distance to fault (B25) <2 km 2–4 km 4–6 km >6 km
Distance to river (B26) <0.5 km 0.5–1 km 1–1.5 km >1.5 km
Distance to landslide

and collapse (B27) <2 km 2–4 km 4–6 km >6 km

Precipitation(B28) >2400 mm 2000–2400 mm 1600–2000 mm <1600 mm
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Table 2. Cont.

Geohazard
Susceptibility

Assessment
Indicator

Rating

0.9 0.7 0.3 0.1

Karst collapse (A3)

Lithology (B31) / Carbonate rock
Argillaceous

limestone;
sandstone; basalt

Mudstone; shale;
silly slate

Degree of karst
development (B32) / Strong Moderate Poor

Thickness of
overlying layer (B33) / <10 m 10–20 m >20 m

Water yield
property (B34) / >1000 m3/d 100–1000 m3/d <100 m3/d

Distance to fault (B35) / <2 km 2–4 km >4 km

Ground
subsidence (A4)

Thickness of soft soil
layer (B41) / >20 m 10–20 m <10 m

Age of soft soil
layer (B42) /

Holocene alluvial
deposits; Holocene
residual deposits

Holocene
Dawanzhen

Formation; Holocene
Mugao Formation

Holocene Guizhou
Formation; Upper

Pleistocene deposits

Water yield
property (B43) / >1000 m3/d 100–1000 m3/d <100 m3/d

Distance to fault (B44) / <2 km 2–4 km >4 km

Soil erosion (A5)

Slope (B51) >20◦ 10◦–20◦ 5◦–10◦ <5◦

Topography (B52) Mountainous area;
hilly area (>200 m)

Hilly area (<200 m);
volcanic hilly area;
tableland (>20 m)

Tableland (10–20 m);
lacustrine plain

Tableland (<10 m);
beach; fluvial plain;
marine depositional

plain; delta plain

Type of
vegetation (B53)

Sandy land;
urban land Arable land

Grassland; economic
forest land;

protective forest land

Arbor land;
shrub land

Type of soil (B54) Latosolic red soil Alluvial soil Red soil Paddy soil
Distance to river (B55) <0.5 km 0.5–1 km 1–1.5 km >1.5 km

Precipitation (B56) >2400 mm 2000–2400 mm 1600–2000 mm <1600 mm

Sea water
intrusion (A6)

Topography (B61)

Tableland (<10 m);
beach; fluvial plain;
marine depositional

plain; delta plain

Tableland (10–20 m);
lacustrine plain

Hilly area (<200 m);
volcanic hilly area;
tableland (>20 m)

Mountainous area;
hilly area (>200 m)

Type of Quaternary
sedimentary

rock (B62)
Alluvial sandy clay Marine clay Proluvial clay Bedrock

Groundwater
level (B63) <−2 m −2–0 m 0–2 m >2 m

Precipitation (B64) <1600 mm 1600–2000 mm 2000–2400 mm >2400 mm

3.2.3. LULC, Road, and Critical Infrastructure

In the study area, there are 13 LULC types (Figure 11). Artificial surfaces are predom-
inantly found in urban areas, particularly in Guangzhou and Shenzhen. The area also
includes both paddy fields and dryland and economic crops mainly include banana, citrus,
and sugarcane. The mountainous areas exhibit significant variation in vegetation cover,
ranging from less than 30% to over 90%. The LULC data for the year 2020 was provided by
the Guangdong Geological Survey Institute.

The road network encompasses national highways, provincial roads, and railways,
while critical infrastructure comprises facilities related to education, energy, healthcare,
and water resources. All data was sourced from OSM (2023) [99].

3.3. Methods
3.3.1. Analytic Hierarchy Process

The AHP, introduced by Saaty (1980) [42], is known for its simplicity in principle
and dependable theoretical foundation. Abundant practical cases have demonstrated the
significant applicability of AHP in effectively addressing complex multi-objective com-
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petitive decision-making problems [100–104]. The AHP generally involves the following
three steps:

Step 1: Develop a multi-level hierarchical structure model.

The multi-level hierarchical structure elucidates the interplays among various con-
stituents within complex challenges [105]. Factors are categorized into distinct strata based
on their attributes, with each stratum subordinate to higher-level factors and capable of
influencing lower-level factors. The identification of factors primarily relies on existing
knowledge and expertise.

Figure 5. Distribution maps of assessment indicators for landslide and collapse susceptibility. (a) Eleva-
tion, (b) Slope, (c) Lithology, (d) Topography (e), Distance to fault, (f) Distance to river, (g) Precipitation.
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Figure 6. Distribution maps of assessment indicators for debris flow susceptibility. (a) Elevation,
(b) Slope, (c) Lithology, (d) Topography, (e) Distance to fault, (f) Distance to river, (g) Distance to
landslide and collapse, (h) Precipitation.

Step 2: Conduct pairwise comparisons of factors and formulate judgment matrices.

Based on the assessments of decision-makers or experts, the relative importance of
factors is determined through pairwise comparisons. For these comparisons, a scale from 1
to 9 is used (Table 3). The judgment matrix A, derived from these pairwise comparisons, is
used to calculate the weights of each factor. Matrix A is represented in Equation (1). The
dimension n of the matrix corresponds to the number of factors.

A =

⎡⎢⎣a11 · · · a1n
...

. . .
...

an1 · · · ann

⎤⎥⎦ (1)
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Figure 7. Distribution maps of assessment indicators for karst collapse susceptibility. (a) Lithology,
(b) Degree of karst development, (c) Thickness of overlying layer, (d) Water yield property, (e) Distance
to fault.

Figure 8. Distribution maps of assessment indicators for ground subsidence susceptibility. (a) Thick-
ness of soft soil layer, (b) Age of soft soil layer, (c) Water yield property, (d) Distance to fault.
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Figure 9. Distribution maps of assessment indicators for soil erosion susceptibility. (a) Slope, (b) To-
pography, (c) Type of vegetation, (d) Type of soil, (e) Distance to river, (f) Precipitation.

Figure 10. Distribution maps of assessment indicators for sea water intrusion susceptibility. (a) To-
pography, (b) Type of Quaternary rock, (c) Groundwater level, (d) Precipitation.
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Figure 11. Distribution map of LULC, road construction and critical infrastructure.

Table 3. Pairwise comparison scale for AHP.

Scale 1 3 5 7 9

Importance Equal Moderate Strong Very strong Extreme

To reduce significant variations among the elements within the judgment matrix A,
a normalization procedure is applied to the matrix elements. The calculation method for
normalizing the elements within the matrix is outlined in Equation (2).

bij =
aij

∑n
i=1 aij

(2)

To calculate the eigenvector corresponding to the maximum eigenvalue, the average
of the row elements of the normalized matrix is calculated as described in Equation (3).

wi =
∑n

j=1 bij

n
(3)

The method for calculating the maximum eigenvalue is outlined in Equation (4).

λmax =
1
n∑n

i=1
(Aw)i

wi
(4)

Step 3: Determine factor weights and perform consistency checks.

The coherence of pairwise comparisons plays a pivotal role in influencing the pre-
cision of decisions made by evaluators. Improved coherence corresponds to more ac-
curate outcomes in these pairwise assessments. When coherence is found to be lacking,
a re-examination of the pairwise comparisons among factors becomes imperative. The
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procedure for computing the Consistency Index (CI), an indicator used to quantify the
consistency of the judgment matrix, is explained in Equation (5).

CI =
λmax − n

n − 1
(5)

To calculate the Consistency Ratio (CR), the first step involves establishing the Average
Random Consistency Index (RI), as guided by the values provided in Table 4.

Table 4. Average Random Consistency Index.

n 1 2 3 4 5 6 7 8 9 10

RI 0 0 0.52 0.89 1.11 1.24 1.35 1.40 1.45 1.49

The equation to calculate the CR, used for addressing inconsistencies, is provided by
Equation (6). A CR value less than or equal to 0.10 is considered acceptable for maintaining
a reasonable level of consistency.

CR =
CI
RI

(6)

3.3.2. Variable Weight Theory

In the context of the AHP, the conventional assumption assumes the constancy of
factor weights. However, in practical scenarios, factors with exceptionally high or low
values can significantly impact assessment outcomes. To address this issue, this study
introduces the VWT, a mechanism that dynamically adjusts the weights of factors based on
their values. This adaptation enhances the fidelity of assessment results in representing
complex real-world contexts.

The VWT, initially introduced by Wang (1985) [106], has garnered significant attention
and application across diverse fields [107–110]. This theory presents a framework that
establishes a linkage between weight vectors and state vectors, enabling the adaptation of
factor weights by shifts in decision states.

To better reflect the impact of extreme values on indicator weights, this study intro-
duces a “penalization-incentive” variant of the VWT. The definitions of the state variable
weight vector and the variable weight vector are provided, along with their corresponding
calculation methods presented in Equations (7) and (8), respectively.

si =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a−b
α−λ λln λ

xi
+ a xj ∈ (0, λ]

b−a
α−β xi +

aα−bλ
α−λ xj ∈ (λ, α]

a−b
2(α−λ)(β−α) (β − xi)

2 + c xj ∈ (α, β]

c xj ∈ (β, μ]

k(1 − μ)ln 1−μ
1−xi

+ c xj ∈ (μ, 1)

(7)

w′
i =

wisi

∑n
i=1 wisi

(8)

In Equations (7) and (8), the symbol xj represents the rating of the i-th indicator, si sig-
nifies the state variable weight vector corresponding to the i-th indicator, wi denotes the con-
stant weight vector associated with the i-th indicator, and wi’ indicates the variable weight
vector of the i-th indicator. The parameters are subject to the conditions 0 < λ < α < β < μ < 1
and 0 < c < b < a < 1. In this study, the parameter values were set as follows: λ = 0.2, α = 0.4,
β = 0.6, μ = 0.8, c = 0.2, b = 0.3, and a = 0.5 [111].

Finally, the Comprehensive Index (CPI) is determined by Equation (9).

CPI = ∑n
i=1 w′

ixi (9)
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3.3.3. Assessment Unit Segmentation

The irregular polygon grid method was used to segment assessment units [112].
Specifically, for each geohazard, the distribution maps of all indicators were superimposed
using ArcGIS 10.6 to generate a susceptibility distribution map. Each closed polygon with
uniform ratings was treated as an individual assessment unit, thus eliminating rating incon-
sistencies within the same unit that could introduce errors. The irregular polygons formed
by overlaying the susceptibility distribution maps were considered as the assessment units
for geo-environment vulnerability assessment. The distribution maps of assessment units
are shown in Supplementary Figures S1–S7.

3.3.4. Weight Determination and Comprehensive Index Calculation

Utilizing the AHP method, the constant weights of each indicator were computed, and
the VWT was employed to determine the variable weights. Specifically, within each assessment
unit, the constant weights for each indicator remained fixed, while the variable weights were
dynamically adjusted based on the indicator’s rating and Equations (7) and (8).The judgment
matrices and the constant weights of each factor are presented in Supplementary Tables S1–S6.
The variable weights of each factor are presented in Supplementary Tables S7–S12.

The CPI for each assessment unit was calculated following Equation (9) and cate-
gorized [113,114]. Based on the classification results, high susceptibility areas, medium
susceptibility areas, low susceptibility areas, and stable areas were identified using the
Jenks Natural Breaks method [114].

3.3.5. Geo-Environment Vulnerability Assessment

The categorization of geo-environment vulnerability is determined based on the
principle of the “barrel effect”, considering the susceptibility to all geohazards. Specifically,
for each assessment unit, if a high susceptibility area is identified for any type of geohazard,
it is designated as a high geo-environment vulnerability area. Conversely, if a medium
susceptibility area exists for any geohazard, it is classified as a medium geo-environment
vulnerability area. In cases where neither high nor medium susceptibility areas are present
for any geohazard, and a low susceptibility area is detected, it is categorized as a low
geo-environment vulnerability area. Otherwise, it is classified as a stable area.

4. Results and Discussion

4.1. Geohazard Susceptibility
4.1.1. Landslide and Collapse Susceptibility

The high susceptibility areas are concentrated within three subareas in both the eastern
and western sectors, covering a combined area of 3514.68 km2 (Figure 12). Subarea A is
located in the southwestern mountainous and hilly terrain of the study area, characterized
by prevalent geological formations such as metamorphic rock, clastic rock, and sand shale,
with annual precipitation exceeding 2000 mm. Subarea B is located in the northwestern por-
tion of the study area, exhibiting similar topographical and geological conditions to Subarea
A. Nevertheless, the precipitation within this area falls below 2000 mm. Subareas C, D, and
E are distributed in the mountainous and hilly areas of the eastern part of the study area.
The dominant geological formations include metamorphic rock, clastic rock, sand shale,
massive rock, and massive lava. The annual precipitation in these subareas ranges from
1600 mm to 2400 mm. In comparison to the other subareas, Subarea C exhibits a denser river
network. The medium susceptibility areas and low susceptibility areas are primarily situ-
ated around the high susceptibility areas, covering an area of 9848.89 km2 and 9688.68 km2,
respectively. The stable areas are extensively distributed across low-altitude tablelands and
plains, encompassing an area of 18,645.75 km2. These areas feature widespread occurrences
of mucky soil and cohesive soil, dense river networks, and precipitation predominantly
below 1600 mm.
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Figure 12. Distribution map of landslide and collapse susceptibility.

4.1.2. Debris Flow Susceptibility

The high and medium susceptibility areas are concentrated in the southwestern part
of the study area, characterized by higher elevations and precipitation below 1600 mm,
primarily within mountainous and hilly areas (Figure 13). In other parts of the study area,
the high susceptibility areas are scattered along faults and river valleys, primarily within
areas of fractured rock. The high susceptibility areas cover 480.94 km2, while the medium
susceptibility areas span 3619.66 km2. The low susceptibility areas are situated around the
high susceptibility areas and medium susceptibility areas, as well as along rock fractured
areas along faults, covering an area of 26,905.16 km2. The stable areas are widely distributed
in the study area, encompassing low-elevation, flat terrain such as tablelands and plains,
with a total area of 10,692.25 km2.

 

Figure 13. Distribution map of debris flow susceptibility.
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4.1.3. Karst Collapse Susceptibility

The high susceptibility areas cover an extent of 484.94 km2, primarily subdivided into
three subareas characterized by dominant rock formations including argillaceous limestone,
sandstone, and basalt, with a fragmented geological structure (Figure 14). Subarea A is
situated in the southwestern portion of the study area, exhibiting a moderate degree of
karst development and a thickness of overlying layer generally exceeding 20 m. Subarea
B experiences a poorer degree of karst development, with thickness of overlying layer
typically under 20 m. Subarea C, located in the central part of the study area, presents a
limited degree of karst development, and the thickness of overlying layer is generally less
than 10 m. The medium susceptibility areas are distributed around the high susceptibility
areas, covering areas characterized by thickness of overlying layer below 10 m, significant
aquifer yields surpassing 100 m3/d, or prominent fault development. The combined area
of these areas totals 2553.61 km2. The low susceptibility areas are distributed within areas
outside the high and medium susceptibility areas, where distributed soluble lava is present,
covering an area of 1812.95 km2. Areas lacking distributed soluble lava are designated as
stable areas, covering an expanse of 36,841.23 km2.

 
Figure 14. Distribution map of karst collapse susceptibility.

4.1.4. Ground Subsidence Susceptibility

The high susceptibility areas are sparsely distributed in areas with a thickness of soft
soil layer exceeding 20 m, fractured geological structures, and aquifer yields less than
100 m3/d, covering an area of 454.65 km2 (Figure 15). The medium susceptibility areas
are predominantly distributed along faults, characterized by thickness of soft soil layer
surpassing 10 m, encompassing an area of 3741.20 km2. The low susceptibility areas are
situated within areas other than the high susceptibility and medium susceptibility areas,
where distributed soft soil layers are present, covering a total area of 4468.67 km2. Areas
devoid of distributed soft soil layers are classified as stable areas, covering an area of
36,841.23 km2.
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Figure 15. Distribution map of ground subsidence susceptibility.

4.1.5. Soil Erosion Susceptibility

The high susceptibility areas are primarily concentrated in the central part of the
study area, with scattered occurrences in other areas, generally associated with sandy
terrain or urban land use (Figure 16). These areas are characterized by predominantly
alluvial soil, dense river networks, and cover a total area of 344.54 km2. The medium
and low susceptibility areas are widely distributed along riverbanks, characterized by
diverse vegetation and soil types. The total area occupied by the medium susceptibility
areas is 5526.97 km2, while the low susceptibility areas encompass an extensive expanse of
22,743.83 km2. The stable areas are predominantly distributed across arbor lands and shrub
lands, characterized by predominant soil types of red soil and paddy soil. These areas are
situated at a considerable distance from rivers, covering a total area of 13,081.98 km2.

 
Figure 16. Distribution map of soil erosion susceptibility.
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4.1.6. Sea Water Intrusion Susceptibility

The high susceptibility areas can be further subdivided into two subareas, covering a
total area of 1095.33 km2 (Figure 17). Subarea A is located in the southwestern plains of
the study area, characterized by widespread distribution of proluvial clay and bedrock.
The groundwater level is situated below −2 m, and the annual precipitation surpasses
2000 mm. Subarea B is distributed in the central plains of the study area, characterized
by widespread distribution of alluvial sandy clay. The groundwater level typically ranges
between 0 m to 2 m, and the annual precipitation is generally less than 2000 mm. The
medium susceptibility areas are primarily situated in the plains surrounding the high sus-
ceptibility areas. The topographical and geological conditions in these areas are relatively
comparable to the high susceptibility areas. The annual precipitation typically falls within
the range of 1600 mm to 2000 mm. The cumulative area of these medium susceptibility
areas amounts to 4341.74 km2. The low susceptibility areas are extensively distributed
across plains and tablelands, characterized by widespread presence of alluvial sandy clay
and marine clay. The groundwater level typically remains above 2 m, while the annual
precipitation is less than 2000 mm. The combined area of these low susceptibility areas en-
compasses 14,123.59 km2. The stable areas are predominantly situated in the mountainous
and hilly areas characterized by extensive distribution of bedrock, covering a total area of
22,136.74 km2.

 
Figure 17. Distribution map of sea water intrusion susceptibility.

4.2. Geo-Environment Vulnerability

The high vulnerability areas are predominantly situated in the southwestern, north-
western, and northeastern mountainous and hilly areas, as well as the central plains of the
study area (Figure 18). These areas cover a total area of 5961.85 km2 and can be further
divided into four subareas. Subarea A is situated in the southwestern part of the study
area, while Subarea B is located in the northwestern portion. Both subareas exhibit higher
susceptibility to landslides, collapses, debris flows, and karst collapses. Subarea C is lo-
cated in the northwestern section of the study area, exhibiting an elevated susceptibility to
landslides, collapses, and debris flows. Subarea D is situated in the central plains of the
study area, characterized by a higher susceptibility to karst collapse, ground subsidence,
soil erosion, and sea water intrusion. The medium vulnerability areas, low vulnerability
areas, and stable areas are interspersed, covering areas of 19,227.93 km2, 14,892.02 km2,
and 1616.19 km2, respectively.
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Figure 18. Distribution map of geo-environment vulnerability.

4.3. Accuracy of Assessment Results

In this study, the integration of the AHP and VWT was employed for the assessment
of susceptibility to multiple geohazards. In comparison to using only AHP, notable shifts
in the weights of factors were observed, resulting in significant changes in the distribution
and extent of susceptibility areas (Table 5). The results of geohazard susceptibility assess-
ment should adhere to two sufficiency principles: the density of geohazards gradually
increases from stable areas to high susceptibility areas, and the high susceptibility areas
occupy a relatively smaller area [115]. Table 5 demonstrates that regardless of whether the
VWT-AHP method or the AHP method is employed, the assessment results consistently
adhere to the first principle. Except for the susceptibility assessment results for sea water
intrusion obtained using the AHP method, all other results also conform to the second
principle. It is worth noting that for the same geohazard, the susceptibility assessment
results obtained using the VWT-AHP method indicate a higher density of geohazards in
the high susceptibility areas compared to the results obtained using the AHP method. A
similar trend is observed for the density of geohazards in the medium susceptibility areas
for debris flows, ground subsidence, soil erosion, and sea water intrusion.

Table 5. Results of susceptibility assessment of geohazards.

Geohazard Method Area Stable Low Medium High

Landslide and collapse

VWT-AHP
Area (km2) 18,645.75 9688.68 9848.89 3514.68

Number of geohazards 3 3 22 56
Density of geohazards 0.0002 0.0003 0.0022 0.0159

AHP
Area (km2) 20,079.53 11,597.94 8076.18 1944.34

Number of geohazards 8 25 37 13
Density of geohazards 0.0004 0.0022 0.0046 0.0067

Debris flow

VWT-AHP
Area (km2) 10,692.25 26,905.16 3619.66 480.94

Number of geohazards 2 1 11 9
Density of geohazards 0.0002 0.0000 0.0030 0.0187

AHP
Area (km2) 14,253.97 19,483.31 6716.05 1244.67

Number of geohazards 5 6 9 3
Density of geohazards 0.0004 0.0003 0.0013 0.0024
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Table 5. Cont.

Geohazard Method Area Stable Low Medium High

Karst collapse

VWT-AHP
Area (km2) 36,841.23 1812.95 2553.61 484.94

Number of geohazards 0 1 39 57
Density of geohazards 0.0000 0.0006 0.0153 0.1175

AHP
Area (km2) 36,841.23 3033.69 1752.37 65.42

Number of geohazards 0 24 62 11
Density of geohazards 0.0000 0.0079 0.0354 0.1681

Ground subsidence

VWT-AHP
Area (km2) 33,007.04 4468.67 3741.2 454.65

Number of geohazards 0 1 33 31
Density of geohazards 0.0000 0.0002 0.0088 0.0682

AHP
Area (km2) 33,007.04 1109.03 5616.46 1939.02

Number of geohazards 0 0 25 40
Density of geohazards 0.0000 0.0000 0.0045 0.0206

Soil erosion

VWT-AHP
Area (km2) 13,081.98 22,743.83 5526.97 344.54

Area of geohazards (km2) 71.96 252.77 627.08 133.84
Density of geohazards 0.0055 0.0111 0.1135 0.3885

AHP
Area (km2) 14,525.31 15,470.48 10,386.07 1315.47

Area of geohazards (km2) 81.36 180.78 548.36 275.17
Density of geohazards 0.0056 0.0117 0.0528 0.2092

Sea water intrusion

VWT-AHP
Area (km2) 22,136.74 14,123.59 4341.74 1095.33

Area of geohazards (km2) 471.08 1277.44 1893.99 889.54
Density of geohazards 0.0213 0.0904 0.4362 0.8121

AHP
Area (km2) 20,285.86 9269.77 8698.65 3443.12

Area of geohazards (km2) 196.89 846.61 1875 413.55
Density of geohazards 0.0097 0.0913 0.2156 0.1201

The Receiver Operating Characteristic (ROC) curve serves as a tool for quantitative
analysis to gauge the precision of models, with the Area Under the Curve (AUC) value
falling within the range of 0.1 to 1.0 [116,117]. A higher AUC value indicates enhanced
model accuracy, with an AUC value of 1.0 signifying optimal accuracy. An AUC value
below 0.5 suggests that the model’s predictive ability is less precise than random chance.
Based on the AUC value, the performance of the assessment model is classified as excellent
(0.9–1.0), very good (0.8–0.9), good (0.7–0.8), general (0.6–0.7), or poor (0.5–0.6) [118,119].
The ROC curves illustrating the susceptibility assessment results for different geohazards
are shown in Figure 19. The AUC values demonstrate that the utilization of VWT-AHP in
assessing the susceptibility of various geohazards consistently yields outcomes categorized
as “very good”, while the employment of AHP alone results in classifications of “good” or
“general”. This suggests a reasonable determination of constant weights of each assessment
indicator, with the variable weights calculated by VWT more closely aligned with the actual
conditions of the study area. For the assessment of geohazard susceptibility, the VWT-AHP
model demonstrates higher precision compared to AHP alone.

In addition, a comparison was made with other studies focusing on geohazard suscep-
tibility within the study area. Zhang et al. (2019) [55] conducted landslide susceptibility
assessments using the AHP method with ten random samples, resulting in ROC curves with
a maximum AUC value of 0.855, a minimum of 0.791, and an average of 0.831. This closely
aligns with the AUC value of 0.82 obtained in this study. Lin et al. (2019) [58] employed a
Bayesian averaging approach, combining three machine learning models for predicting sea
water intrusion susceptibility, achieving a Nash-Sutcliffe Efficiency Coefficient (NSE) of
0.79, indicating a good fit. In this study, an AUC value of 0.81 was achieved, classified as
“very good”. However, it is essential to acknowledge that comparing the accuracy of results
between classification and regression tasks is not straightforward. Liu et al. (2023) [57]
investigated ground subsidence in a specific area of the Pearl River Delta using an RF
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model, yielding an R2 of 0.579. In contrast, this study achieved an AUC value of 0.84.
Notably, the spatial patterns of ground subsidence susceptibility obtained from the two
studies were not significantly different.

 
Figure 19. ROC curves of susceptibility assessment results for various geohazards. (a) Landslide
and collapse, (b) Debris flow, (c) Karst collapse, (d) Ground subsidence, (e) Soil erosion, (f) Sea
water intrusion.

4.4. Single-Indicator Sensitivity Analysis

The single-indicator sensitivity analysis is utilized to assess the spatial importance
of each indicator in the assessment of geohazard susceptibility [120]. Higher effective
weights indicate a more pronounced importance of factors in the geohazard susceptibility
assessment. The calculation method for effective weights is presented in Equation (10).

Wi =
xi·w′

i
CPI

(10)

In Equation (10), the symbol xj represents the rating of the i-th indicator, wi
′ indicates

the variable weight vector of the i-th indicator, CPI represents the comprehensive index.
Table 6 presents the maximum, minimum, average, and standard deviation values

of the effective weights of each assessment indicator. The effective weights reveal that
in the assessment of landslide and collapse susceptibility, topography and lithology are
indispensable crucial indicators. For debris flow susceptibility, topography and landform
remain highly significant, but the impact of the distance to river should not be disregarded.
In the assessment of karst collapse susceptibility, the distance to fault emerges as the
paramount indicator, followed by lithology. In the assessment of ground subsidence
susceptibility, the age of soft soil layer holds the most significant effective weight. The
most significant effective factor for soil erosion susceptibility is the type of vegetation,
followed by distance to river and topography. In the assessment of sea water intrusion
susceptibility, precipitation holds the highest level of effect, followed by topography and
type of Quaternary sedimentary rock.
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Table 6. Results of single-indicator sensitivity analysis.

Geohazard
Susceptibility

Assessment Indicator Maximum Minimum Average Standard Deviation

Landslide and
collapse (A1)

Elevation (B11) 0.6089 0.0133 0.1004 0.0877
Slope (B12) 0.4058 0.0106 0.0492 0.0371

Lithology (B13) 0.8187 0.0280 0.2413 0.1969
Topography (B14) 0.6304 0.0096 0.1844 0.1407

Distance to fault (B15) 0.6512 0.0100 0.1453 0.1435
Distance to river (B16) 0.4906 0.0059 0.0952 0.0904

Precipitation (B17) 0.8034 0.0218 0.1842 0.1232

Debris flow (A2)

Elevation (B21) 0.3267 0.0063 0.0403 0.0383
Slope (B22) 0.3539 0.0069 0.0318 0.0267

Lithology (B23) 0.6452 0.0112 0.1638 0.1372
Topography (B24) 0.6646 0.0135 0.2371 0.1696

Distance to fault (B25) 0.5780 0.0080 0.1008 0.0990
Distance to river (B26) 0.7111 0.0162 0.1680 0.1411

Distance to landslide and
collapse (B27) 0.7722 0.0206 0.0960 0.1028

Precipitation(B28) 0.7722 0.0207 0.1621 0.1123

Karst collapse (A3)

Lithology (B31) 0.7268 0.0603 0.2707 0.1429
Degree of karst

development (B32) 0.7268 0.0587 0.1748 0.0946

Thickness of overlying layer (B33) 0.4356 0.0161 0.1288 0.1149
Water yield property (B34) 0.4356 0.0178 0.0852 0.0531

Distance to fault (B35) 0.6833 0.0491 0.3405 0.1852

Ground
subsidence (A4)

Thickness of soft soil layer (B41) 0.7917 0.0747 0.1872 0.1114
Age of soft soil layer (B42) 0.7683 0.1054 0.5342 0.1878
Water yield property (B43) 0.4935 0.0203 0.0826 0.0690

Distance to fault (B44) 0.6223 0.0376 0.1960 0.1396

Soil erosion (A5)

Slope (B51) 0.3794 0.0077 0.0398 0.0356
Topography (B52) 0.5837 0.0082 0.1825 0.1612

Type of vegetation (B53) 0.8482 0.0295 0.3052 0.2061
Type of soil (B54) 0.8290 0.0305 0.1728 0.1076

Distance to river (B55) 0.7106 0.0152 0.2072 0.1488
Precipitation (B56) 0.6175 0.0089 0.0925 0.0765

Sea water
intrusion (A6)

Topography (B61) 0.6626 0.0155 0.2534 0.1756
Type of Quaternary sedimentary

rock (B62) 0.7534 0.0240 0.2046 0.1731

Groundwater level (B63) 0.8753 0.0496 0.1346 0.0829
Precipitation (B64) 0.8054 0.0270 0.4074 0.1521

4.5. Geo-Hazard Prevention Strategies

The distribution of critical infrastructures, roads, and artificial surfaces in various
geo-environment vulnerability areas is presented in Figure 20 and Table 7. The distribution
in different geohazard susceptibility areas can be found in Figure S8 and Table S13.

Table 7. Distribution of critical infrastructures, roads, and artificial surfaces in different vulnerability areas.

Stable Low Medium High

Critical infrastructure 8 175 512 102
Road (km) 575.43 10,258.47 16,550.36 3890.09

Artificial surface (km2) 18.95 447.95 1653.15 359.71
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Figure 20. Distribution maps of critical infrastructures, roads, and artificial surfaces in different
vulnerability areas. (a) Guangzhou and Foshan, (b) Dongguan, (c) the entire study area, (d) Shenzhen,
(e) Jiangmen and Zhongshan.

The critical infrastructures and artificial surfaces are primarily located in medium
and high geo-environment vulnerability areas, particularly in the major cities in the study
area (Figure 20). Guangzhou, Shenzhen, and Jiangmen face significant threats from land-
slides, collapses, and debris flows. When selecting locations for critical infrastructure,
it is crucial to avoid faults and hazardous slopes. Simultaneously, identifying potential
hazard-prone areas is essential for implementing early protective measures or considering
relocation. Karst collapses also pose a threat to Guangzhou and Foshan, mainly due to the
widespread distribution of soluble rocks and the thickness of overlying layers. Conducting
a comprehensive assessment of karst development and implementing measures such as
reinforcement in vulnerable areas is necessary. Foshan and Jiangmen need to address the
threat of ground subsidence. New construction should strictly control ground loads, and in
areas prone to subsidence attention should be paid to controlling groundwater extraction
and implementing groundwater recharge measures if necessary. Soil erosion and sea water
intrusion are common challenges faced by all cities. Soil erosion often arises large-scale
urban development, extensive agricultural activities, and low vegetation cover. Enhancing
vegetation restoration, planning protective forests, and implementing sustainable land
management practices are advisable to mitigate soil erosion. Sea water intrusion primarily
results from groundwater extraction during urbanization. It is recommended to establish
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effective coastal management policies, construct protective structures such as seawalls, and
manage groundwater extraction rationally to address sea water intrusion issues.

Over half of the road mileage is situated in medium and high geo-environment
vulnerability areas. In urban areas, roads encounter geohazard threats akin to critical
infrastructure. In mountainous areas, road construction is mainly impacted by landslides,
collapses, and debris flows. Hence, it is essential to identify potential threats during road
planning, avoid areas with fractured rock slopes and valleys, and implement protective
measures for hazardous slopes.

4.6. Limitation and Future Research

This study is inherently constrained by certain limitations. The availability of data
has imposed significant constraints on the selection of indicators for assessing geohazard
susceptibility. Notably, the absence of long-term monitoring data for groundwater levels
represents a substantial limitation, impeding the acquisition of crucial indicators of suscep-
tibility to ground subsidence and sea water intrusion [121,122]. On the other hand, within
the VWT-AHP method, the judgment matrix is established by researchers, introducing a
notable element of subjectivity. Even though results with relatively high accuracy have
been obtained, to enhance the objectivity and precision of weights, alternative method-
ologies such as regression models, decision trees, and artificial neural networks could be
considered [123–125].

Geohazard susceptibility is a crucial aspect of disaster prevention and management.
Nevertheless, the devastating impacts of geohazards are not solely contingent on suscep-
tibility, but also intricately linked to regional economic progress and human activities.
The geo-environment vulnerability assessed in this study is rooted in the susceptibility to
diverse geohazards. Due to the determination of geo-environment vulnerability based on
the principle of the “barrel effect”, there is a possibility of an overestimation of vulnerability
levels in certain areas. As a result, it serves merely as a fundamental point of reference for
the systematic development of strategies in geohazard management and economic growth
planning. The alignment of geological circumstances with human activities remains a
pivotal concern that local administrations and researchers must conscientiously address.

5. Conclusions

In conclusion, this study successfully demonstrates the methodology of using VWT-
AHP for assessing geo-environment vulnerability based on susceptibility to various geo-
hazards. The application of this method resulted in the classification of the Pearl River
Delta in China into high vulnerability (5961.85 km2), medium vulnerability (19,227.93 km2),
low vulnerability (14,892.02 km2), and stable areas (1616.19 km2). The ROC curves indicate
that the accuracy and reliability of VWT-AHP are significantly improved compared to
the standalone use of AHP. Furthermore, the study assessed the threats posed by vari-
ous geohazards to critical infrastructure, roads, and artificial surfaces, while discussing
prevention measures.

However, the study does acknowledge several limitations. The constrained availability
of data limited the selection of indicators for assessment, particularly the absence of
long-term groundwater level data which impacted the assessment of susceptibility to
ground subsidence and sea water intrusion. Furthermore, the subjectivity inherent in
the establishment of judgment matrices within VWT-AHP underscores the necessity of
exploring alternative methodologies to enhance the objectivity of factor weights.

It is crucial to recognize that geo-environment vulnerability is just one facet of disaster
prevention and management. The broader impacts of geohazards are interlinked with
regional economic development and human activities. The geo-environment vulnerability
identified in this study serves as a crucial reference for informed decision-making in
geohazard management and economic planning. Balancing geological considerations with
human actions emerges as a critical imperative for local governance.
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Abstract: During natural disasters, social media can provide real time or rapid disaster, perception
information to help government managers carry out disaster response efforts efficiently. Therefore, it
is of great significance to mine social media information accurately. In contrast to previous studies,
this study proposes a multimodal data classification model for mining social media information.
Using the model, the study employs Late Dirichlet Allocation (LDA) to identify subject information
from multimodal data, then, the multimodal data is analyzed by bidirectional encoder representation
from transformers (Bert) and visual geometry group 16 (Vgg-16). Text and image data are classified
separately, resulting in real mining of topic information during disasters. This study uses Weibo
data during the 2021 Henan heavy storm as the research object. Comparing the data with previous
experiment results, this study proposes a model that can classify natural disaster topics more accu-
rately. The accuracy of this study is 0.93. Compared with a topic-based event classification model
KGE-MMSLDA, the accuracy of this study is improved by 12%. This study results in a real-time
understanding of different themed natural disasters to help make informed decisions.

Keywords: multimodal data; LDA; Bert; VGG-16

1. Introduction

Flood is a high-frequency natural disaster [1], which occurs worldwide with a pro-
found impact on national and social development [2]. Since the 21st century, with the rapid
development in China, flood disaster has caused immeasurable economic losses [3]. Ac-
cording to “the water drought disaster Bulletin of China” during the decade of 2010–2019,
the total value of direct financial loss due to flood disasters has exceeded 234.31 billion in
the country. Flood disasters occurred in 62% of cities nationwide, and 137 cities experienced
more than three episodes of flood disasters. Severe human injuries, economic losses, and
traffic are often caused by heavy rainfall because of the clustering of crucial infrastructure
such as population, resources, transportation, as well as power disruption.

With the development of information technology, the number of social media users is
growing. The research institution We Are Social released the latest global digital reports
in 2019. The report shows that the number of global social media users has increased to
3.5 billion. Each user spends one-third of their Internet time on social media every day.
After a natural disaster, rescue organizations need to use extensive data in the initial phase
as a decision basis to make low-risk decisions quickly [4]. Natural disasters can cause signal
interruption, and so obtaining useful data information has become an urgent problem.
In the past, due to the lack of data, experts made emergency decisions mainly relying
on their knowledge and experience [5]. In recent years, with the rapid development of
social networks, experts have found an essential platform for information dissemination [6].
Therefore, after the occurrence of natural disasters, hundreds of millions of people share
information on social media, forming a vast amount of data information that could serve
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as a basis for making emergency decisions in the literature [7]. Behl et al. proposed that
the sudden and urgent nature of emergencies requires crisis managers to remain updated
and meet the critical information needs of the public, so that researchers could use social
media as a source of information for crisis management [8]. Kitazawa proposed the rapid
development and application of social media in crisis communication, the effectiveness
of which improved the efficiency of crisis communication, enhanced emergency response
methods, reduced the cost of disasters, and increased transparency and democratism in
decision-making [9]. The author further proposed that in an emergency event, social media
contains a large amount of subject matter, spatiotemporal and other emergency information,
by classifying the real-time and massive emergency information, which could identify the
subject matter information such as the facts, rescue, and impact of the event, so that it was
beneficial to understand the status of the emergency event.

Most previous studies on social media data had focused on a single form of data (e.g.,
text or visual data). Piatyszek adopted a logistic regression algorithm to classify text data,
and detected damage and injuries caused by Sri Lankan flooding; however, the overall
accuracy of this classifier was only 0.647 because the subject sample size was too small [10].
Yu used the CNN classifier to classify text data and detect damages caused by hurricanes by
using the text data of hurricanes Sandy and Harvey, resulting in relevant recommendations
for donation and assistance [11].

To increase precision, we needed to analyze the other modal data while classifying
textual information [12]. The analysis of seismic image information, from which human
body parts were examined from debris, provided an adequate basis for developing seismic
rescue measures, with a precision of 0.8037. Seismic rescue efforts need to obtain geographic
location information in addition to accurate image information, an effective combination of
both kinds of information to obtain precise information on people trapped in earthquakes.
Aznar-Crespo classified disaster social media images into three categories: severe, mild,
and no damage, to analyze the effects caused by natural disasters, develop related assis-
tance measures, and mine their corresponding text information, while classifying image
information, which could further improve the accuracy of classification [13].

Recently, the form of people’s expression views on social media platforms had signifi-
cantly changed and people prefer diverse expressions, such as text, images, and video, to
help multimodal data contain richer information and more accurately describe the natural
disaster situation [9]. Therefore, we must establish a model for multimodal data analysis.
Multimodal data analysis was a very challenging task [14]. Min constructed a unified cross-
media word bag model for both text and image; the model acquired the representation
of text and image and used a logistic regression classifier. Through the experiment, the
precision of the CBM model, which could analyze both text and image modal data, was 0.80,
and the precision of the logistic regression, which could analyze the text data, was 0.76.
The experiment results showed that the preparation rate of information classification for
analyzing both text and image modal data was 4% higher than the text-based method [15].
Kaplan and Haenlein also used 2CNN structures, which extracted text data features and
image data features separately and performed significantly better than existing models that
used only text or visual content [16].

In natural disasters, local and international studies have proven that social media data
could be applied to real-time monitoring, trending the prediction of disaster events [17].
Disaster-related text data were usually thematically classified, as in the literature [18].
Combined LDA and SVM were used to construct a theme classification model, which
divided microblogs related to the typhoon “moranti” into four themes: “early warning
information”, “disaster information”, “irrelevant information”, and “rescue information”.
Ghosh et al. proposed an LDA subject-based event detection model, in which multimodal
information was used to increase the number of acquired event descriptions, and the
multimodal data were combined into the subject model, which all achieved a classification
accuracy of 81% [19]. In addition, Wood et al. designed a system named m-trend, based on
tweets containing geographic information [20], to construct and visualize the spatiotempo-
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ral variation trends of the display theme as well as explore the trend and spatial distribution
law of disaster events [21]. Thematic model analysis of user-developed text information on
microblogs generated before and after the onset of a heavy storm in Beijing in 2012 revealed
differences in the temporal and spatial distribution of microblogs across themes.

Based on this, this paper proposes a multi-modal data mining method based on
theme change, to perceive the development trend of disaster. This study has the following
three contributions:

1. This study presents a multimodal system for classifying and processing multimodal
data from social media.

2. In this study, the heavy storm disaster topic was more meticulously divided using the
Latent Dirichlet Allocation (LDA) theme model, which realizes real-time extraction of
information on serious storm disasters from social media.

3. Based on Sina Weibo, a multi-classification model was constructed using convolutional
neural networks to extract storm-related disaster information [22], such as weather,
traffic, and rescue, from a large number of social media text streams. At the same
time, the study visualizes and analyzes different rainstorm disaster themes in terms
of relative quantity and spatial attributes as well as explores the time trend of disaster
development and spatial distribution characteristics of rainstorm events.

The rest of the paper is organized as follows. In Section 2, we present the working
principle of the topic classification model and multi-modal data processing model. In
Section 3, we take the Henan rainstorm as the research object, we present the results and
discussion of these experiments. In Section 4, we discuss the conclusions and future work.

2. Methods

This study takes heavy rain in Henan in 2021 as an example. Since the night of
17 July 2021, Henan Province had experienced heavy rains. The average rainfall in the
province was 73.1 mm. As of noon, 2 August 2021, 150 counties (cities and districts),
1663 townships, and 14,531,600 people were affected. The whole province had organized
emergency avoidance for 933,800 people and relocation for 1,470,800 people. Heavy rain
resulted in the collapse of 89,001 houses; the area affected by crops was 109.04 Square
kilometres, and direct economic loss was 114.269 billion yuan. Sadly, 302 people were
killed and 50 people were missing. Therefore, this study combines the Weibo API and
web crawler to obtain a total of 28,099 pieces of data from 0:00 on 18 July 2021 to 23:00 on
30 July 2021, using “Henan rainstorm” as the keywords.

This study focuses on automatically locating and mining natural disaster information
from images and text data on social media. A real-time classification and positioning model
of emergency topics based on social text and images is proposed. The structure diagram of
Multimodal data classification is shown in Figure 1. The model consists of the following
modules. The data processing module is responsible for data collection and processing.
Since the correlation between images and text data is weak, this study treats text and image
data separately. The topic mining module is responsible for mining hidden topics. By
mining the topic information, we can fully understand emergencies. The topic analysis
module is responsible for analyzing text and image data.

2.1. Acquisition and Preprocessing of Data

Weibo is used as the research object; it is a popular social-media platform. In particular,
there are thousands of pieces of Weibo data on natural disasters every day. During natural
disasters, people report disaster information through Weibo, express their urgent needs,
and seek help. As a result, Weibo data have become an important source of data for disaster
management. Text, images, and geographic location data can be used to learn more about
natural disasters and provide a data basis for natural disaster management.
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Figure 1. A structure diagram of multimodal data classification.

2.2. Topic Mining

A topic model is an essential tool for data mining on social media and has attracted
extensive attention in recent years. Empirical research has found that the release of social
data is closely related to the cycle of disaster occurrence, which is usually divided into three
stages: pre-disaster preparation, emergency response, and post-disaster recovery. People
discuss different topics on social media at different stages. In the early days of a disaster,
people discussed content mainly on disaster preparedness and weather warnings. After the
disaster, people focused on disaster discussions and emergency rescue. In the later stage of
the disaster, people mainly focused on post-disaster recovery and reconstruction. Thus,
different themes occurred in different periods.

LDA (Latent Dirichlet Allocation) is the most representative topic model [23]. The LDA
model is a typical generative model that is primarily used in text and image processing [24].
Owing to the emergence of the BOW model, it is currently widely used for image labeling.
The text uses the LDA model for topic mining of images and text data [25]. The core idea of
the LDA model is to regard topics as the probability distribution of text words and different
topics corresponding to other text word distributions. In the field of image annotation, we
need to extract the low-level features of the image and perform clustering. Then, we use
the clustering algorithm to vectorize the low-level features of the image into visual words.
Finally, we use the BOW model to convert the image into a set of visual words. The LDA
probability graph model is shown in Figure 2. Table 1 lists the symbols used in the model,
and their meanings are shown in Figure 2.

2.3. Text Data Classification Model

The use of social media texts for natural disaster assessment can be divided into three
areas. First, we must identify whether the tweets are related to rainstorm damage; this is a
two-classification task. Second, rainstorm damage was divided into multiple categories
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according to the theme; this is a multi-classification task. Finally, we classified the text data
according to the theme and generated a damage report.

The process of subject classification is shown in Figure 3. First, we use Bert to build
a relational classification model to identify text segments corresponding to two aspects,
namely entity tags. Then, we used the predicted relationship and text to build an entity
extraction model using Bert, that is, a multi-classification task. We divided each sen-
tence into a three-tuple of description objects, damage descriptions, and damage results.
Corresponding to relationships.

Figure 2. Probabilistic graphical model of LDA model.

Table 1. Symbols and their meanings in Figure 1.

Symbol Symbolic Meaning Symbol Symbolic Meaning

M Training set size N Number of words
α Model parameters w words
z Potential topic θ Theme ratio
β Model parameters

Figure 3. The framework of topic classification.

Bert is a large pre-trained model that shows excellent performance when generating
text-entity embeddings [26]. The Bert model improves the performance of text classification
through entity embedding, so it can identify tweets and generate corresponding damage
reports. Finally, we classify the damage reports into corresponding topics.

2.3.1. Damage Relationship Definition

Topic classification based on social media text data requires identifying tweets with a
harmful relationship, which can be abstracted into a triad, with three aspects describing
the object. Common victims of heavy rain include roads, people, houses, water, and
electricity. The damage description is related to the feature words corresponding to the
description object, and the damage result describes the ultimate severity of the damage.
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For example, 10,600 houses collapsed; this sentence describes the object as a house, the
damage is described as 10,600 houses, and the result of the damage is collapsed. Thus, it
is possible to classify the damage reports as corresponding. We can identify whether the
tweets are related to the rainstorm based on the damage report, classify the damage report
by topic, and, finally, classify the damage report into the corresponding topic.

The word collocation in this paper is based on the Chinese word collocation database
SogouR, and we summarize the collocations of the Weibo texts of the rainstorm event.
The construction of lexical collocation model in this paper is based on the text statistics of
rainstorm events in Weibo, and the data were obtained from the “2017 Rainstorm Disaster
Social Media Dataset”. We randomly selected 5000 pieces of text information from the
rainstorm event, analyzed the grammatical characteristics of the disaster information, and
obtained the lexical rules shown in Table 2, thereby obtaining the collocation relationship
between the expression description object and the damage result.

Table 2. The lexical rule pattern.

Pattern Rule Text Word

v-n Shattered glass everywhere
n-v The whole village was blown to the ground
a-n Broken window glass in one place
n-a The road has been blocked
d-vi Soon the community will no longer supply water
v-vi About to stop power supply
r-v Saw him smashed by a tree
v-r The branch was blown off by the wind just hit him
vi Power outage for one day today

Note: v is a verb; n is a noun; a is an adjective; d is an adverb; r is a pronoun; vi is an intransitive verb.

We present examples of identifying whether a tweet is heavy rain related based on a
damage report.

Negative example: Heavy rains in Henan in 2021, the tribute to the cutest man!
Tributes to people’s younger cousins.

Positive example: The father was washed away by a flood at 2 p.m. on 20 July 2021,
at the Sukangcun Shi River, Takayama Town, Xingyang, from south to north and in the
direction of the downstream fenggou. His upper body was covered with a white spot
under the curve, and the lower body with sports pants.

Although the negative examples mention the heavy rain, they do not contain a detailed
description or relevant contents of the damage, so they cannot be regarded as related to
heavy rain. The positive examples include a detailed description of the subject’s father, and
they include a detailed description of the damage in Baohe, Zhonggang Village, Gaoshan
Town, and Xingyang City. Therefore, they were regarded as related to heavy rain.

2.3.2. Constructing Word Pairing Rules

In the study, we use the skip-gram to extract feature. Based on lexical rules to extract
feature words in a small-scale annotated corpus, the feature words are used to express the
object, damage description, or damage result. Then, we put the object, damage description,
and damage result together as the original word pair. Based on this, the word vector model
and the extended version of “Synonyms Clin” are used to enrich the collocation information
of characteristic words, to realize the diversity of Chinese expressions.

In this study, based on the results of subject mining, the original words are defined as
six aspects: weather warning, traffic situation, rescue information, disaster information,
disaster cause, casualty, and damage. According to these six aspects, a dictionary of
description objects and damage results is established, as shown in Table 3.
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Table 3. The dictionary of description objects and damage results.

The Object Damage Description Damage Result

Weather Southern North China, Henan Rainstorm, Moderate to heavy
rain, Continuous heavy rainfall

Traffic situation Railway Line 2, Platform, road Pause, Adjustment operation,
Temporary closure, Blocked

Rescue information
Xiao Pengpeng, Huang xinrui,
Genghuang Central Primary

School

Lost contact, Lost contact,
Bedding

Infrastructure Civic Center Station, Escalator,
College Road, East Coach Station

Service paused, Temporary
closure, Sever diplomatic relations

Hazard Factor Worldwide, Western Pacific
Subtropical, Dongfeng

High temperature, High pressure,
Rapids

Water or
Power Supply Anyang, Village, Outdoor Water and power outages, Fetch

water

In the field of natural language processing, the word vector model is used to calculate
the distance between words. Usually, two words that are close in the distance are also
highly correlated, thus realizing the expansion of feature word collocation. The commonly
used word vector model contains CBOW (continuous bag of words) and Skip-gram models.
For data with less than 100 million words, the performance of the skip-gram model is
better [25], therefore, this study uses the skip-gram model to calculate the phase between
the relevance of words. The structure of the model is shown in Figure 4. The frontal context
information is predicted by the current word W(t) for the etymological sequence in which
the word resides.

Figure 4. The model structure diagram.

2.4. Image Data Classification Model

Compared with social media text data, images convey information as more objective
and valuable. Contrary to a few studies that have utilized graphical data for natural disaster
damage assessment, this study uses image and text data for multimodal data analysis, to
make damage assessment more objective and accurate.
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Image data are processed by converting the image into a digital feature vector, and,
then, using the classifier for image classification. The classifiers are responsible for different
tasks that define the semantic hierarchy.

In this study, Vgg-16 was used to extract the image features. VGG-16 is a classic CNN
network of convolutional neural networks. The VGG-16 convolutional neural network uses
the small convolution kernel 3 × 3 and the largest pooling layer 2 × 2. The model stacks the
convolutional layers several times the number of layers in the standard CNN model. With
the maximum pooling layer, the parameters can be reduced, the number of calculations
can be reduced, and the model’s ability to express nonlinear data can be improved [26].

The structure of the image feature extraction model based on Vgg-16 is illustrated
in Figure 5. The input of the Vgg-16 network was fixed in size as 224 × 224. Opencv is
an open-source computer vision library that utilizes the resize function, which uniformly
scales the images of the dataset to 224 × 224, which can be input to the VGG-16 network.

Figure 5. The image feature extraction model structure diagram.

The remaining network structure of the original VGG-16 model is encapsulated in
the Keras deep learning library, except for the fully connected layer. To realize the feature-
based transfer learning method in the homogeneous space, we choose the VGG-16 model
parameters pre-trained by ImageNet as the initial value of the feature extraction model;
that is, the weight parameters of VGG-16 is set to “image net”. The flattened layer is used to
make the multi-dimensional input one-dimensional, and, then, input the one-dimensional
vector into the dense layer using ReLu as the activation function. The dropout layer is,
finally, added to obtain the image feature extraction model based on VGG-16.

AdaBoost Classifier

In this study, we switched the softmax classifier from the original model of Vgg-16
to an AdaBoost classifier with better classification performance. The working principle
of the Adaboost classifier is to train multiple different weak classifiers from a training set
and retrain them each time, by combining the last training sample with the new sample to
obtain a new classifier, finally forming a stronger classifier for the model classification. The
AdaBoost iteration algorithm was divided into three steps.
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(1) Initialize the distribution of weights for the training data. If there are N samples, each
is given the same weight at the very beginning: 1/N.

D1 = (w11, w12 · · ·wi1 · · · , w1N), wi1 =
1
N

, i = 1, 2, · · · , N (1)

where w1i is the weight of the sample, D1 is the set of the weights.

(2) Train weak classifiers. In the specific training process, if a sample point has been
accurately classified, its weight is reduced in the construction of the next training set;
however, if a sample point has not been accurately classified, its weight is increased.
Then, the sample set with updated weights is used to train the next classifier, and the
entire training process proceeds iteratively in this manner, where m = 1, 2, . . . , M is
used to indicate the number of iterations.

(3) The weak classifiers obtained from each training session were combined into a robust
classifier. After the training process of each weak classifier is completed, the weight of
the weak classifier is increased with a small classification error rate, to make it play a
more significant role in the final classification function and reduce the weak classifier
with a significant classification error rate. Weight plays a minor decisive role in the
last classification function. In other words, a weak classifier with a low error rate
occupies a more significant weight in the final classifier; otherwise, it becomes smaller.

2.5. Emergency Severity Assessment Based on Entropy Method

In this paper, social media related to events are grouped by day, and the entropy
method is used to evaluate the severity of emergencies. It is mainly used to judge the
degree of dispersion of a certain indicator. The calculation process for assessing the severity
of emergencies in this study is as follows:

Xi =
vi − min0≤i≤n(vi)

max0≤i≤n(vi)
− min0≤i≤n(vi)

(2)

where Xi is the data after standardized processing, the range of values of i is from 1 to n,
and n is the number of samples.

pi =
xi

n
∑

i=1
xi

(3)

where pi is the proportion of the ith sample value.

fi = −k
n

∑
i=1

pi ln(pi) (4)

where fi is the entropy of the ith indicator, k = 1/ln(n).

di = 1 − fi (5)

where di is the redundancy of information entropy.

Wi =
di

n
∑

i=1
di

(6)

where Wi is the weight of indicators.

F =
n

∑
i=1

Wi × Xi (7)

where F is the severity of the emergency.
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3. Research Result

In this study, we develop the crawler program based on Python and use “Henan
rainstorm” as the keywords to obtain a total of 28,099 pieces of data from 0:00 on 18 July
2021 to 23:00 on 30 July 2021. We count the number of social media posts per day during
the heavy rains in Henan, and the statistical graph of the number of tweets based on time is
shown in Figure 6. Since the night of 17 July 2021, heavy rains began to attract widespread
public attention, and on 20 July 2021, the emergency response level was elevated from level
IV to level II by the Henan Provincial command on drought resistance, due to the severe
prevention situation. According to the statistics in Figure 6, the number of microblogs
started to rise significantly on 20 July in response to the increasing severity of the forms of
flooding; the mobile communication network of the province was fully restored and the
supply of water was restored in most areas starting on 25 July. Thus, the public concern
for heavy rains in Henan gradually declined as typhoon “fireworks” on 27 July affected
Henan; as a result, the number of microblogs showed an obvious upward trend. Thus, the
temporal trend of microblog data largely coincides with the real-time occurrence of the
event, suggesting that Sina’s original information on microblogs has usage value when a
major emergency occurs.

Figure 6. The number of social media.

3.1. Topic Mining

This study extracted 2219 pictures related to the Henan rainstorm from Weibo and
randomly selected 20% of the pictures as the test set, with the remaining 80% of the pictures
as the training set. The image annotation results obtained using the LDA model are listed in
Table 4. The image size was set to 224 × 224 × 3, obtaining an average number of annotated
words per picture of 4.5. The average number of annotated images for each annotated word is
58.6. A total of 170 annotated words in the image set and annotated words with fewer annotated
images were eliminated, while the remaining 120 words formed the label vocabulary.

In Table 4 deduplication, Chinese word segmentation, stop word removal, and emoji
preprocessing were performed on the 25,880 Weibo datasets obtained from Weibo. The
vocabulary expression of each Weibo dataset was obtained, and the data were manually
labeled to obtain the corresponding Weibo vocabulary collection and emergency themes. To
verify the accuracy of the model classification, 20% of the samples were randomly selected
as the test set and the remaining 80% were used as the training set. Using the LDA model
as the topic classification model, the topic distribution of the sample documents and the
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respective feature vocabulary distributions of all the topics were obtained. Some of these
themes are shown in Figure 7.

Table 4. The theme extraction of a picture.

Image Topic Model

 

People, umbrella, bicycle, rainstorm, tree

 

Houses, tree, flood, people

 
Figure 7. The part of the theme distribution.

Through thematic classification of text data, we finally got 40 thematic categories, as
shown in Figure 7. Through lexical analysis of thematic distribution, we merge similar
topics manually, such as both topic 29 and topic 33 discussion themes were about the losses
and impacts caused by heavy rains in Henan. Therefore, we combined similar themes, and
obtained 40 thematic categories combined to get “weather warning”, “traffic situation”,
and six emergency-information-related topics including “rescue information”, “disaster
information”, “disaster cause”, and “casualties and losses”. The classification of their topics
is shown in Table 5.
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Table 5. Social media classification scheme.

Class Description Example

1 Weather warning A warning is given about the change of
the weather

According to the latest weather forecast by the
Meteorological Bureau, it is expected that there
will be heavy rainfall in Zhengzhou from 22 July to
25 July

2 Traffic condition The traffic obstruction and the damage
to vehicles

At 4 p.m. on 20 July 2021, a lot of rain poured into
the platform layer of the Huiji District
Government Station of Zhengzhou Metro Line 2

3 Rescue information Provide goods and services needed by
victims

On 20 July 2021, Gongyi, Henan was hit by heavy
rain, and the Yichuan Condor rescue team rushed
to the disaster area overnight for rescue

4 Disaster information The information about the level and
duration of the rainstorm

Continuous heavy rainfall has caused the flooding
of roads, subways, and other public facilities in
many places in Henan

5 The cause of the
disaster

The discussion of the cause of the
rainstorm

More rainfall in the north this year the most
important reason is the abnormally northerly
subtropical high

6 Casualties and damage Information about casualties or
infrastructure damage

Wang Yufeng walked to Sizhuang Village after
about 2:40 and lost contact

3.2. Disaster Type Classification as Well as Severity Information

Weibo data were classified according to the subject classification results, which ulti-
mately yielded the natural disaster situation for each region of Henan. Figure 8 presents the
number of subject social media during heavy rains in Henan. Figure 9 presents the change
in subject microblogs overtime during heavy rains in Henan. As shown in Figures 8 and 9,
little attention has been paid to weather warnings during heavy rains, though it began
on 19 July. Henan experienced a heavy storm; people started to release weather warning
information via Weibo, so the number of Weibo posts with a weather warning on 19 July
was significantly more than that of other subjects, and on 27 July the typhoon “fireworks”
affected Henan, so the number of microblogs regarding weather warning increased on
27 July. With the development of catastrophes, the number of microblogs regarding disaster
information rapidly increased on 19 July. On 24 July, as rainfall declined, people’s concerns
about disaster information gradually decreased. Heavy rain caused huge damage to Henan;
therefore, it can be seen in Figure 8 that people discussed was mainly focused on rescue
information and casualty loss. From 20 July, there was an explosion of social media about
rescue information and casualty loss. The concern about rescue information, casualties, and
loss was much higher than for other topics throughout the storm. On 26 July, as rainfall
decreased, concerns about rescue information, casualties, and loss began, and the degree
showed a decreasing trend. People’s attention to traffic information and the causes of disas-
ter situations during heavy rains was generally low, and there were a few discussions about
disaster information and traffic information during the period of storm disaster emergencies
from 21 July to 22 July. Therefore, during heavy rains in Henan, people paid more attention
to rescue information and the relationship between casualties and loss situations.

When natural disasters occur, we need to focus on the geographical distribution of dis-
aster occurrence and disaster severity. Therefore, we fully mined the geographical location
information in Weibo tweets, as shown in Figures 10 and 11, as a regional distribution map
of social media as well as a map of social media quantity distribution. As can be seen in
Figures 10 and 11, there were relatively more heavy-rain-related Weibo numbers released
from the Zhengzhou and Xinxiang regions during the heavy rains in Henan. Second,
Hebi, Anyang, and Luoyang released a certain amount of Weibo posts about heavy rain.
Figure 12 calculates the damage reporting ratio for all tweets in each city. In the work of
Zou et al., the damage reporting ratio is considered as the ratio of disaster-related tweets
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to the total number of tweets, which is the damage severity metric: its value range is 0–1.
Based on the data contrasted in Figures 10–12, on the one hand, the number of Weibo posts
in each area is related to the severity of the rainstorm; on the other hand, it is related to the
population density of the city. Zhengzhou is subjected to heavy rains during heavy rainfall.
There are heavy rains affecting 10.352 million people, simultaneously, in Zhengzhou. Thus,
Zhengzhou released the largest number of microblogs, at the same time that Xinxiang City
was severely affected by heavy rains, but the population of Xinxiang was 6.043 million
people. Thus, the number of microblogs in Xinxiang with regard to heavy rains is less
than that of Zhengzhou. At the same time, Anyang City, Hebi City, and Luoyang City
were all seriously affected by heavy rains. However, the population of Anyang City is
5.192 million, that of Luoyang City is 6.69 million, and that of Hebi City is 1.609 million.
Therefore, the population of Hebi City is significantly lower than that of Hebi City and
Anyang City. Although Hebi City, Anyang City, and Luoyang City have almost the same
number of microblogs as rainstorms, it can be inferred that Hebi City is affected more by
rainstorms than Anyang City and Luoyang City.

 

Figure 8. The histogram of natural disaster classification.

 

Figure 9. The number of Weibo posts on every topic.
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Figure 10. The space distribution map by region.

Figure 11. The number of loss reports by region.

Figure 12. The loss reported rate by region.
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Since more attention has been paid to rescue information as well as casualties and loss
information during heavy rains, the geographical location of the rescue information as well
as casualty and loss information are discussed separately in this paper. Figures 13 and 14
show the regional distribution plots of microblogs, with respect to rescue information dur-
ing heavy rains, as well as the distribution plots of microblog numbers. Figures 13 and 14
show the microblog area distribution map and the number of microblogs about rescue in-
formation during the heavy rain; the number of rescued information microblogs are larger,
and there are few discussions about rescue information. The population size of Zhengzhou
is 10.352 million, the population size of Xinxiang is 6.043 million, the population size of
modification is 6.922 million, the population size of Anyang is 5.19 million, the population
size of Zhoukou is 8.8 million, the population size of Zhu median is 6.89 million, and the
population of Hebi City is 1.6 million. According to the ratio of the number of microblogs
related to rescue information in Figure 15, we can infer that Zhengzhou City, Xinxiang City,
Hebi City, and Anyang City are comparable, although the number of microblogs related to
rescue information in Hebi City is slightly less than in Anyang City, though the population
of Hebi City is significantly less than Anyang City, so the rescue demand in Hebi City is
higher than Anyang City; at the same time, Luoyang City, Kaifeng City, Zhoukou City, and
Zhumadian City have issued a certain amount of rescue information, and we need to pay
attention to the rescue needs of the area.

Figure 13. The area distribution map of rescue information.

Figure 14. The number distribution map of rescue information.
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Figure 15. The loss reported rate by region.

Figures 16 and 17 show the Weibo area distribution map regarding casualties and losses
during heavy rain and the distribution map of the number of Weibo posts. Figures 16 and 17
show that Weibo posts about casualties and losses are mainly concentrated in the Zhengzhou
area, followed by a certain number of Weibo posts in Xinxiang and Zhoukou City, while
Hebi and Luoyang also made Weibo posts about casualties and losses. By comparing the
casualty and loss ratio chart in Figure 18, we can infer that the Weibo posts of casualties and
losses are mainly concentrated in Zhengzhou City because Zhengzhou City experienced a
greater impact from heavy rains, and Zhengzhou has a large population. At the same time,
Hebi and Anyang had a small number of casualties, and loss microblogs were posted in
Zhumadian and Luoyang. It can be seen that the number of casualties and loss microblogs
is related to the severity of the heavy rains in each city and the population density. At the
same time, compared with the number of rescue information microblogs, the distribution of
casualties and losses was more concentrated in Zhengzhou. This is because during heavy
rains, people use microblogs to seek help and find missing persons, and such microblogs
attract more public attention. A large number of reposts were generated. Therefore, the
Weibo location information of casualties and losses is more accurate and concentrated.

Figure 16. The area distribution map of casualties and losses.
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Figure 17. The number distribution map of casualties and losses.

Figure 18. The casualties and losses reported rate by region.

3.3. Evaluating Indicator

Classification performance was evaluated by precision, recall, and F1-score. Three
indicators were used to measure the accuracy of the proposed classification method. The
accuracy of the calculations for each category is presented in Table 6. From the perspective
of accuracy, recall rate, and F1-score, most of them are above 0.8, indicating that most of the
disaster themes can be correctly identified, and that the method used in this study has a
comparative advantage. A good classification effect exists, but the poor performance of the
recall rate of the weather warning category is due to a large amount of weather warning
information being misidentified. This may be because of two reasons. On the one hand, the
number of Weibo posts related to weather warnings is small; on the other hand, the content
of Weibo posts related to weather warnings is relatively complicated and may contain
various types of information, resulting in misidentification from the text.

Table 6. The text disaster information accuracy assessment results.

Category Acc Rel F1_Score

Weather warning 0.99 0.07 0.13
Traffic condition 0.97 0.89 0.90

Rescue information 0.95 0.91 0.93
Disaster information 0.88 0.87 0.85

The cause of the disaster 0.98 0.86 0.83
Casualties and losses 0.89 0.89 0.89

Overall 0.93 0.78 0.85
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We collect 25,880 tweets from Weibo. We perform the following standard text pre-
processing steps: (1) remove the content on Weibo that is not related to the rainstorm in
Henan; (2) classify the remaining text by topic; and (3) manually read and mark 3000 texts
as training samples for the Bert model.

All images are resized to (224 × 224 × 3), which is the input size that Vgg-16 needs.
In the dataset, 20% of samples are used to evaluate the performance of models, and the
remaining 80% of them are used for training.

To prove the effectiveness of the model proposed in this study, we compare the model
with several traditional models and several state-of-the-art models on our dataset. In
contrast, the classification performance is measured by three indicators: accuracy, recall,
and F1-score, which are shown in Table 7. Table 7 displays the performance of all the
compared models in three categories: (1) text-based networks: the model is listed in No.1 in
the table. The model was designed based on the encoder of bidirectional transformer. They
were trained from scratch on our dataset; (2) imaged-based networks: these models are
listed from No.2 to No.3 in the table. In our experiment, these models were initialized with
weights learned from ImageNet and fine-tuned with our dataset; and (3) multimodal-based
networks: these models are listed from No.4 to No.6 in the table, which uses both image and
textual information for the model training. These models were also trained entirely on our
dataset. The performance of our multimodal network is listed in the last line of the table.

Table 7. Compared with traditional classification models.

Acc Rel F1_Score

Bert (text only) 0.78 0.79 0.78
Vgg-16 (image only) 0.79 0.80 0.80
Vgg-19 (image only) 0.80 0.81 0.81

CCR [27] 0.81 0.81 0.82
KGE-MMSLDA [28] 0.81 0.82 0.83

EANN [29] 0.84 0.82 0.83
Proposed approach 0.93 0.84 0.85

Based on the testing results in Table 7, we have several observations: (1) our proposed
network outperforms the other multimodal based networks; (2) modes that leverage
multimodal information perform better than only considering single modal information;
and (3) image-based models perform better than text-based models. This is reasonable
since image information is more intuitive and clearer.

3.4. The Severity Assessment of Emergencies

According to the description of the entropy method in the research, the study calculates
the weights, then, we convert the indicators so that the larger of the F values represents a
higher severity. At last, we expand the value of F to 100 times, thus, its range of values is
transformed into [0, 100].

According to F values, the study set the severity assessment levels in Table 8.

Table 8. The severity level and warning level.

F-Value The Severity Level The Warning Level

[0, 10] / The grey warning
[10, 30] I The yellow warning
[30, 60] II The orange warning
[60, 100] III The red warning

As shown in Table 9 the study judges the severity of the event, it takes the highest value
of the event in the whole time period as the final evaluation level. The experiments have
shown that the highest score of weather warning is 38, and the corresponding severity level
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is II. The highest score of traffic condition is 6, and the corresponding severity level is /. The
highest score of rescue information is 73, and the corresponding severity level is III. The
highest score of disaster information is 49, and the corresponding severity level is II. The
highest score of the cause of the disaster is 19, and the corresponding severity level is I. The
highest score of the casualties and losses is 81, and the corresponding severity level is III.

Table 9. Early warning mechanism for emergencies.

The Indicators
The Grey
Warning

The Yellow
Warning

The Orange
Warning

The Red
Warning

The Others

Post rate <100 <300 <500 ≥500 — —
Retweet rate <500 <1000 <3000 ≥3000 — —

Comment rate <1000 <2000 [3000, 6000] ≥6000 Between [2000–3000], to avoid
deterioration to amoderate events

Liket rate <2000 <6000 [8000, 80,000] ≥80,000 Between [6000–8000], to avoid
deterioration to amoderate events

When the post rate is less than 100, the retweet rate is less than 500, the comment rate
is less than 1000, and the like rate is less than 2000, the event may be in the initial period
or recession. However, we need to pay special attention to the double growth of these
indicators: if they suddenly increase exponentially, the event is deteriorating.

When the post rate is between [100–300], the retweet rate is between [500–1000], the
comment rate is between [1000–2000], and the like rate is between [2000–6000], the event
may be in the period of outbreak and spread. At this time, the impact on the severity of
emergencies tends to be general, so in order to avoid further deterioration of the incident,
the government needs to start the yellow warning in time.

When the post rate is more than 300, the retweet rate is between [1000–3000], the comment
rate is between [3000–6000], and the like rate is between [8000–80,000], the event may be in
the period of outbreak and spread. At this time, the impact on the severity of emergencies
tends to be medium, so the government needs to start the orange warning in time.

When the post rate is more than 500, the retweet rate is more than 3000, the comment
rate is more than 6000, and the like rate is more than 80,000, the event may be in the period
of outbreak and spread. At this time, the impact on the severity of emergencies tends to be
serious, so the government needs to start the red warning in time.

4. Conclusions

In recent years, the acquisition and analysis of disaster information have become key
issues for government and scientific research institutions. Social media data can enable
officials and victims to be the truth and disseminators of natural disaster information,
simultaneously, and social media data have the advantages of real-time and low latency.
Therefore, social media has become an important source of natural disaster information.
With the development of technology, scholars have optimized the methods for studying
natural disaster information.

This study uses a classification model based on LDA and a multi-classification model
based on Bert and Vgg-16, which are suitable for short-term social media and other types
of disaster events that have caused a large-scale sensation.

In this study, we first used a web crawler combined with the Weibo API to obtain the
text and graphic data for subsequent processing and classification. The LDA model was
used to classify and identify topics related to emergencies. Based on the data characteristics
of text and images, this study constructed a network framework suitable for microblog text
and image disaster extraction. After optimization operations, such as control over-fitting
and grid-parameter optimization, the accuracy of the model on the test set was improved,
and the classification accuracy reached more than 80%. The results of the verification on
the newly acquired Henan torrential rain dataset in 2021 further show that the application
of the model to disaster information classification has a certain degree of accuracy. Finally,
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through the visualization and statistical analysis of the data, it was found that the disaster
information is consistent with the actual disaster development stage, which shows that the
method proposed in this study is effective in monitoring Henan rainstorm disaster events
and can effectively help in official disaster decision-making.
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Abstract: The impact of global climate change is gradually intensifying, and the frequent occurrence
of meteorological disasters poses a serious challenge to crop production. Analyzing and evaluat-
ing agricultural multi-hazard meteorological disaster risks based on historical disaster data and a
summary of disaster occurrences and development patterns are important bases for the effective
reduction of natural disaster risks and the regulation of agricultural production. This paper explores
the technical system of agricultural multi-hazard meteorological disaster risk assessment and estab-
lishes a disaster risk assessment model based on the historical disaster data at the regional level from
1978–2020 in the first national comprehensive natural disaster risk census, carrying out multi-hazard
meteorological disaster risk assessments in 18 major grain-producing regions in Jilin province. The
empirical evidence shows: (1) drought and flood disasters are the key disasters for agricultural mete-
orological disaster prevention in Jilin province. Hotspots of drought and flood disasters are widely
distributed in the study area, while hail and typhoons are mainly concentrated in the eastern region
with a certain regionality. (2) The risk values of the four major meteorological disasters all decreased
with the increase of the disaster index. Under the same disaster index, the disaster risk of various
disasters in the main grain-producing areas is as follows: drought > flood > typhoon > hail. Under
different disaster indices, Jiutai, Nongan, Yitong, Tongyu, and other places all presented high and
medium–high risk levels. (3) From the spatial evolution trend, along with the rising disaster index,
the risk of multi-hazard meteorological hazards is spatially oriented in a southeastern direction, and
the risk level of multi-hazard meteorological hazards in the central part of the study area decreases
gradually along with the increasing damage index. In addition, regional agricultural multi-hazard
meteorological disaster risk reduction recommendations are made in three aspects: institutional
construction, management model, and reduction capacity.

Keywords: historical disasters; multi-hazard meteorological disasters; risk assessment; major
grain-producing areas; Jilin province

1. Introduction

The Sixth Assessment Report of the IPCC, held in August 2021, noted that climate
change has affected the occurrence of a number of extreme weather and climate events in all
regions of the world [1]. Global warming and urbanization have brought about changes in
the intensity and frequency of weather-causing factors and in the exposure of crop-bearing
bodies, which have important implications for agricultural production’s ability to withstand
natural disasters, and the assessment of agricultural multi-hazard disaster risks is important
for formulating disaster reduction measures and increasing farmers’ income [2–5]. China
is one of the countries that is most severely affected by natural disasters in the world due
to its vast territory, complex geographical environment, large climate fluctuations, poor
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ecological stability, and high frequency and intensity of multiple disaster types. Although
agricultural production has gradually declined in the process of economic development due
to rapid economic growth, it is undeniable that agriculture plays a major role in ensuring
people’s living standards and the stable operation of the national economy. Natural
disasters pose a major challenge to China’s food security. The analysis and evaluation of
agricultural multi-hazard meteorological disaster risks based on historical disaster data and
the summary of disaster occurrence patterns are important bases for regulating agricultural
production and effectively mitigating natural disaster risks. The total grain output of
Jilin province in 2021 was 80.784 billion pounds, maintaining the fifth position among all
provinces in the national ranking; the grain yield was 941.3 pounds/acres, increasing by
48.7 pounds/acres compared with the previous year. The yield maintained Jilin province’s
position of fourth place among all provinces in China (http://www.moa.gov.cn/xw/qg/20
2112/t20211227_6385576.htm, accessed on 5 May 2022). All data reflect that Jilin province’s
food security production cannot be ignored.

Agricultural production relies on the natural environment for animal and plant growth
and is more vulnerable to natural disasters than other industries. In recent years, agricul-
tural disaster risk assessment has been carried out in various large food-producing regions.
Kim et al. used the heavy rain damage risk index (HDRI) to analyze flood risk levels in
the southern region of Korea, to determine high-risk cities and five causes of damage,
and to propose reduction and control programs based on regional risk levels and hazard
types [6]. Liu et al. used a comprehensive multi-indicator evaluation method, combined
with an entropic information diffusion model, to assess the risk of agricultural droughts
and floods in the middle and lower reaches of the Yangtze River, proposing relevant policy
recommendations based on the assessment results [7]. Summarizing the past studies, it was
found that the agricultural multi-disaster risk assessment mainly focused on single-hazard
or single-crop studies, and there were few multi-hazard risk assessments. Furthermore, in
terms of the use of historical disaster data, the historical disaster data were mostly based
on regional or national assessment units, and there was little guidance for disaster risk
assessment and work in small regions.

Since the 21st century, various countries have gradually tried to establish national or
regional disaster risk databases, such as the Emergency Disaster Database (EM-DAT) of the
National Centre for Research on the Epidemiology of Disasters of the University of Leuven
in Belgium, the Natural Disaster Database (Nat-Cat) of the Munich Reinsurance Company
in Germany, and the database of the Swiss Reinsurance Company (Sigma), etc. [8–11].
However, these databases are often based on regional or national statistical units, and the
spatial distribution of risks is vague and thus cannot accurately guide the local agricultural
safety production and disaster reduction work. Moreover, historical disaster information
of small-scale regional units often exists in the form of reports, yearbooks, news reports,
disaster records, etc. The statistical caliber of disaster indicators varies especially greatly
among different departments, making it difficult for disaster reduction departments to
effectively collect and use early historical disaster data.

China plans to carry out the first national comprehensive natural disaster risk census
in 2020–2022, which is a survey of China’s natural disaster risk potential and basic national
conditions, and this work is currently under intense progress [12]. The construction of
historical disaster surveys and databases is the highlight of the first comprehensive natural
disaster risk survey. The Emergency Management Department coordinates the collection of
historical disaster archives from 1978 to 2020 by various sectors (e.g., Water, Meteorological,
Agricultural). This is the first large-scale and comprehensive risk survey since the founding
of the People’s Republic of China. This data survey is characterized by a large amount
of data with many sectors involved featuring a full range of disaster types. The collected
data are of great significance for the future assessment of natural disaster risk and the
sustainable development of agriculture in China.

In this study, we used the meteorological disaster data and related historical disaster
files from the first comprehensive natural disaster risk census, and used the crop disaster
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index to characterize the impact range of each disaster. After combining the historical
disaster database of the first comprehensive natural disaster risk census and the actual
situation in the main grain-producing areas of Jilin province, the agricultural multi-hazard
meteorological hazards in the study area were confirmed. We analyzed and evaluated the
risk of agricultural multi-hazard meteorological disasters in the region by constructing an
agricultural multi-hazard meteorological disaster risk assessment model, and obtained the
risk level and spatial variation of agricultural multi-hazard meteorological hazards under
different disaster indices. The study is a useful exploration of the application of natural
disaster census data to multi-hazard meteorological disaster risk assessment methods at
the county level, and provides a quantitative basis for relevant departments to scientifically
formulate disaster reduction and mitigation policies and plans. The main contributions of
the article are as follows:

1. Disaster risk identification: confirm the hotspots of various disasters in the study area;
2. Disaster risk analysis: calculate the meteorological disaster risk value of the study

area and the weight of a single disaster risk in each region;
3. Disaster risk assessment: determine the multi-hazard risk level and spatial differentia-

tion in the study area;
4. Disaster risk reduction: put forward three suggestions for the reduction of food safety

production in the study area.

2. Materials and Methods

2.1. Study Area

Jilin province is located at mid-latitudes on the eastern side of the Eurasian continent
(121◦38′ E–131◦19′ E, 40◦52′ N–46◦18′ N). It has a land area of about 187,400 km2. The area
is rich in products and is fertile; the main grain crops are corn and rice. It is one of the three
major black soil distribution areas in the world. The eastern part of Jilin is the Changbai
Mountains, the central part is Song Liao Plain, and the western part is the Horqin Grassland.
The terrain is high in the southeast and low in the northwest, with significant differences
in geomorphology and obvious spatial differentiation in land use types [13,14]. Climatic
conditions are an important factor influencing the layout and structure of food crops. The
study area is influenced by the westerly wind circulation and the low-pressure system of
Lake Baikal. In terms of seasonal distribution, rapid warming and high insolation rates in
spring provide light resources for the early stages of crop production. High temperatures
and rain in summer with long daylight hours are favorable for crops to photosynthesize.
Autumn has sufficient light, a large temperature difference between day and night, more
sunshine, and less rain, which is conducive to nutrient accumulation in food crops. Cold
and long winters reduce the occurrence of pests and pesticide use, which is conducive
to the rest and recuperation of arable land. There are obvious seasonal variations and
regional differences in temperature and precipitation in Jilin province [15–17]. The average
winter temperature is below −11 ◦C, and the average summer temperature is above 23 ◦C.
The frost-free period is 100–160 days, and there is an annual average of 2259–3016 h of
sunshine with a sunshine rate of 50–70%. The average annual precipitation is 400–600 mm,
with summer exceeding the sum of spring, autumn, and winter, just at the peak of crop
development and growth with light, heat, and rain arriving simultaneously; this is a
unique advantage for crop cultivation in Jilin province [18–20]. There is an obvious wet to
semi-humid to semi-arid transition from the east to the west, and the alluvial plain area
covered by sand dunes in the west is a sensitive area for climate change response and an
important agricultural production base in China; thus, there is some theoretical significance
and practical value to studying the integrated risk law of multi-hazards in the study area.
Combining the available data, the article classifies the province’s grain yield using the
natural intermittent classification method based on the grain yield data of 60 districts in
Jilin province in 2020, and finally obtains 18 districts with high and medium–high yield
grades as the study area (Figure 1a). The study area is mostly arable land with an arable
land cover of 70% (Figure 1b).
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Figure 1. The main grain-producing area of Jilin province, China: (a) distribution of grain yield
classes in Jilin province (left); (b) distribution of land use types in the study area (right).

2.2. Data Sources

The historical disaster survey of the first national comprehensive natural disaster risk
census uses the district as its basic survey unit. Seven types of disasters, namely, drought,
flood, typhoon, hail, sandstorm, freezing, and snowstorm, were investigated in the his-
torical disasters from 1978 to 2020. Because of the wide distribution of historical disaster
files, non-uniform statistical indicators, and a lack of data precision, the management of
historical disaster files has been confusing in various industries. The first national compre-
hensive natural disaster risk census historical disaster database is the most comprehensive
coverage of disaster database construction since the founding of the People’s Republic of
China, which is of great significance for the subsequent statistics and predictions of natural
disaster risk. The data underlying this study were derived from this historical disaster
database (https://fxpc.mem.gov.cn/NationalDisastersProject/#/LoginPage, accessed on
14 January 2022). Through the collation and measurement of all survey data, we obtained
basic data for the last 43 years. The basic data and the disaster data, such as sown area,
crop damage, and house damage, for each disaster type in the past years were obtained.
Taking the main grain-producing areas in Jilin province as the basic evaluation unit, the
multi-hazard meteorological disaster risk was studied from the perspective of disaster loss,
using the crop damage area and annual sown area data of each disaster in the past years, as
well as the grain production data in 2020, as the original data. With the help of the disaster
index (disaster index = affected area/sown area), which reflects the degree of agricultural
disaster, the larger the index is, the greater the impact of the disaster and the higher the
crop yield reduction due to the disaster.

The disaster information for seven major disaster types in the study area was extracted
from the historical disaster database of the first comprehensive natural disaster risk census.
It mainly includes statistics on the average affected area, average demolished area, and
frequency of disasters in the main grain-producing areas of Jilin province (Figure 2). In
terms of average affected area, drought has the largest disaster area, while floods, typhoons,
and freezing have little difference in disaster areas, indicating that the main grain-producing
areas in Jilin province are prone to large disaster areas due to drought. The average
demolished area refers to the sown area where the crop yield has been reduced by more
than 80% compared with the normal year due to the disaster. The average demolished area
can reflect the severity of disasters from the side. The average demolished area of four
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disasters, namely, drought, flood, hail, and typhoon, exceeds 1000 hm2, indicating that four
disasters have a high degree of impact on agricultural production in Jilin province. In terms
of the frequency of disasters in the main grain-producing areas, the frequency of droughts,
floods, hail, and typhoons all exceed 50 times, which are high-frequency disasters in the
main grain-producing areas of Jilin province. Freezing events and snowstorms are common
after November, but the main grain-producing areas in Jilin province have completed
harvesting and transferring the crop yield into a warehouse, as well as other tasks, by this
time, so the impact on the large area of grain damage is minimal. Similarly, sandstorms
tend to occur in March, when crops have not been sown and do not cause serious damage.
Grain crops in Jilin province are sown in April and harvested in October. These three
disasters (freezing, snowstorm, and sandstorm) do not cause widespread damage. Based
on the above analysis, four disasters, namely, drought, flood, hail, and typhoon, were
selected as the disasters for our study.

Figure 2. Average affected (demolished) area and frequency of each disaster species in the study area.

From the original data, four disasters affected the main grain-producing areas in
Jilin province (Table 1). The average disaster index for drought in Taonan and Qianan
in the western region of the study area was greater than 0.5, and the severity of the
disaster was more serious compared with other places. Floods and hail occurred with
high frequency in the study area but did not cause larger-scale disasters to occur, and the
average disaster index was below 0.3. The average disaster index of typhoons in Yitong
and Jiutai is relatively high, and the others are at relatively low levels, with certain regional
characteristics. In general, there are many kinds of disasters in the main grain-producing
areas of Jilin province, and the wide distribution of the affected areas and the multi-hazard
meteorological disasters pose a greater threat to the agricultural safety production in
the province’s main grain-producing areas, which should attract the attention of local
governments and experts.
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Table 1. Average damage index of four disaster species in the main grain-producing areas.

Evaluation Unit Drought Flood Typhoon Hail

Jiutai (JT) 0.390631 0.148485 0.235727 0.124041
Nongan (NA) 0.394813 0.116918 0.095588 0.038850

Yushu (YS) 0.343445 0.084944 0.021053 0.043148
Dehui (DH) 0.285873 0.122036 0.194169 0.031608

Gongzhuling (GZL) 0.175963 0.079955 0.066505 0.054757
Shulan (SL) 0.216273 0.070940 0.110332 0.123191
Lishu (LS) 0.302651 0.089038 0.081240 0.069131

Yitong (YT) 0.313006 0.161347 0.370114 0.084881
Shuangliao (SL) 0.300570 0.197455 0.026547 0.046671
Qianguo (QG) 0.346500 0.081293 0.042080 0.059420

Changling (CL) 0.383543 0.098864 0.080606 0.043555
Qianan (QA) 0.532736 0.131110 0.070101 0.044578

Fuyu (FY) 0.160851 0.034925 0.109651 0.020429
Taobei (TB) 0.479668 0.203550 0.026796 0.149567

Zhenlai (ZL) 0.442655 0.293019 0.020543 0.032686
Tongyu (TY) 0.254391 0.228752 0.006609 0.031698
Taonan (TN) 0.576323 0.274184 0.000000 0.084189
Daan (DA) 0.277935 0.123955 0.065271 0.078949

2.3. Methodology

In this study, we arrived at comprehensive disaster risk assessment research results
by using historical disaster data over the years to calculate the disaster index of various
disasters, and then using the fuzzy mathematical method for small-area and small-sample
risk assessment to infer the risk value of disaster risk occurrence under different disaster
indices. The risk level of disaster evaluation was classified using the risk recurrence period,
and the risk assessment level and spatial distribution of multi-hazard meteorological
disasters at the county level were obtained by weighting each disaster type based on the
entropy weighting method. The used multi-hazard risk assessment technical route is shown
in Figure 3.

For disaster risk identification, the average affected area was used to calculate the
local Getis-Ord Gi* index, and the cold hotspot area of each single disaster species and
the dominant disaster species of multi-hazard meteorological hazards in the region were
determined. Based on the average affected area of each region, the entropy weight method
was used to reflect the amount of information contained in the disasters in the main grain-
producing areas so as to obtain the risk assessment weight of each disaster type in each
assessment unit.

For the disaster risk analysis, using the agricultural disaster indices of each disaster
species, the single sample observations were converted into fuzzy sets by information
diffusion coefficients. Meanwhile, a quantitative analysis of regional agricultural multi-
hazard meteorological hazards was carried out, and the probability values and risk values
of multi-hazards under different disaster indices were calculated for each evaluation unit.
In addition, based on the risk values of the disaster risk analysis, the risk recurrence period
of each disaster under different disaster indices was calculated, and five risk evaluation
levels under different disaster indices were classified according to the actual situation of
risk values.

In the disaster risk assessment, the assessment weights in the risk identification stage
and the risk evaluation levels in the disaster risk analysis stage were weighted and summed
to obtain the risk assessment results of agricultural multi-hazard meteorological hazards for
each assessment unit under different disaster indices. In addition, the spatial directionality
and predictability of the risk assessment results of agricultural multi-hazard meteorological
hazards were studied to obtain their spatial distribution.
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Figure 3. Multi-hazard risk assessment technical route.

2.3.1. Fuzzy Risk Analysis Model

The risk analysis and evaluation of agricultural multi-hazard meteorological disasters
was based on the method of fuzzy mathematics to collect the traditional observation sample
points in order to solve the problem of insufficient sample data and improve the accuracy
of information processing [21–23]. The specific operation steps are as follows:

289



Sustainability 2022, 14, 7482

Assume that y1, y2, · · · , ym are the actual values (observations) of risk factor indicators
(hazard indicators) in year m, and the set of observation samples is:

yj = {y1, y2, · · · , ym} (1)

where: yj—sample observation points; m—total number of sample observations.
Let the universe of yj (ui), ui(i = 1, 2 . . . n) be the control point of the universe of

disaster index:
ui = {u1, u2, · · · , un} (2)

where: ui—any discrete real value obtained by discretizing at a fixed interval in the interval
[0, 1]; n—the total number of discrete points.

The information carried by each single observation sample value yj is diffused to
each member of the indicator domain ui based on the following equation, the information
diffusion equation for yj:

f j(ui) =
1

h
√

2π
e

[
− (yj−ui)

2

2h2

]
(3)

where: h—the diffusion coefficient, which is determined according to the number of
samples. It is given by the following equation:

h =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.8146(b − a), m = 5
0.5690(b − a), m = 6
0.4560(b − a), m = 7
0.3860(b − a), m = 8
0.3362(b − a), m = 9
0.2986(b − a), m = 10

2.6851(b−a)
(m−1) , m ≥ 11

(4)

where: b—the maximum value in the sample set; a—the minimum value in the sample set;
m—the number of samples.

If marked:

Cj =
n

∑
i=1

f j(ui), j = 1, 2, . . . , m (5)

then any observation sample yj becomes a fuzzy set with μyj(ui) as the affiliation function,
and the affiliation function of the corresponding fuzzy subset is:

μyj(ui) =
f j(ui)

cj
(6)

where: cj is the sum of f j(ui); μyj(ui) is the normalized information distribution of sample
yj. Then, let:

Q(ui) =
m

∑
j=1

μyj(ui) (7)

From the set of observation samples {y1, y2, · · · , ym}, it is inferred by information
diffusion that if the sample observation can only take one of {u1, u2, · · · , un}, the number
of samples with observation ui is q(ui) when all yj are considered as sample representatives.
Q(ui) is usually not a positive integer, but must be a number not less than 0.

Q =
n

∑
i=1

q(ui) (8)
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Q is the sum of the number of samples at each ui point, so theoretically it should be
Q = m, but due to the error of numerical calculation, Q is slightly different from m.

P(ui) =
q(ui)

Q
(9)

P(ui) is the probability value of the sample falling at ui, which can be used as a prob-
ability estimate. For a single-valued observation sample indicator yj = {y1, y2, · · · , ym},
take yj as an element ui in the theoretical domain u. The probability value of exceeding
ui should be:

P(u ≥ ui) =
n

∑
k=i

P(ui) (10)

where P(ui) is the value of the frequency of the sample falling at ui, which is the value
of the probability of exceeding ui ; P(u ≥ ui) is called the risk value or loss value of the
hazard factor.

2.3.2. Entropy Weight Method

The entropy weight method is a mathematical formula that calculates a comprehensive
index based on the comprehensive consideration of the information provided by various
factors. As an objective comprehensive weight determination method, it mainly determines
the weight according to the amount of information that each indicator transmits to decision
makers. The entropy weight method can accurately reflect the amount of information
contained in the disasters of major grain-producing areas and can solve the problems of a
large amount of information and the difficulty of accurate quantification for each index of
multi-disaster agricultural risk assessment [24–29].

If the study area has n assessment units, there are m evaluation indicators reflecting its
disaster indicators, which are Xi(i = 1, 2 . . . m), and the statistical values of each evaluation
indicator in each county are obtained. Let its matrix be:

R′ =
(

r′ij
)

m×n
(i = 1, 2 . . . m; j = 1, 2 . . . n) (11)

where r′ij is the statistical value of the jth district on the ith index. In order to eliminate the
influence of the dimension, the extreme value method is used to standardize the statistical
data on R′, and the index standardization matrix rij is obtained:

rij =
r′ij − min

|r′ij |
j

max
|r′ij |
j − min

|r′ij |
j

× 10 (12)

After normalization, the information entropy of each index can be calculated. The
entropy Hi of the ith index can be defined as:

Hi = −t
n

∑
j=1

fijln fij
(13)

In the formula
fij =

rij

∑n
j=1 rij

, t =
1

lnn
(14)

The entropy weight wi of the ith indicator is as follows:

wi =
1 − Hi

m − ∑m
i=1 Hi

(15)
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2.3.3. Hotspot Analysis

Hotspot and cold spot analysis are performed to delineate the spatial cluster of the
average affected area of each single disaster in Jilin province based on the Getis-Ord Gi*
statistic using a fixed distance band in ArcGIS software. The local Getis-Ord Gi* was used to
identify hotspots with statistical significance, and the extremes and hotspots were spatially
superimposed to explore the clustering characteristics of each disaster distribution in the
study area. The Z-score obtained using ArcGIS software identifies regions that have high
or low clustering in space. A larger Z-score indicates a stronger clustering of high values
(hot spots), a smaller Z-score indicates a stronger clustering of low values (cold spots), and
a Z-score closer to zero indicates no significant spatial clustering [30–33].

The Getis-Ord local statistic is given as:

G∗
i =

∑n
j=1 wi,jxj − x ∑n

j=1 wi,j

S

√[
n ∑n

j=1 w2
i,j−

(
∑n

j=1 wi,j

)2
]

n−1

(16)

where xj is the attribute value for feature j, wi,j is the spatial weight between features i and
j, n is equal to the total number of features, and:

x =
∑n

j=1 xj

n
(17)

S =

√
∑n

j=1 w2
j

n
− (x)2 (18)

The G∗
i statistic is a Z-score, so no further calculations are required.

2.3.4. Ordinary Kriging

Kriging in geostatistics refers to a family of generalized least square regression meth-
ods. It helps to estimate the unknown variable values at unobserved locations based on
the observed known values at surrounding locations [34,35]. The general expression of the
ordinary kriging to estimate missing value of variable Z in space is given by:

Z(x0) =
n

∑
i=1

λiZ(xi) (19)

where Z(x0) refers to the estimated missing value of variable Z (multi-hazard risk assess-
ment levels in this study) at desired location x0; λi is the kriging weights associated with
the observation at location xi with respect to x0; and n indicates the number of observed
data points.

3. Results and Discussion

3.1. The Characteristics of Agricultural Multi-Hazard Meteorological Disasters

Grasping the development characteristics of disaster risk is one of the important links
for effective disaster reduction and control. The statistical analysis of the affected area
of the major meteorological disasters in Jilin province was carried out by combination
with the previous statistical data. The purpose of this section is to provide a preliminary
understanding of the disaster situation in the region and to provide a reference for the
determination of the dominant disaster types later. However, due to the different degrees
of retention of historical records, there is missing data for some years.

The drought disaster not only affected a large area of crops, but also affected a wide
range; all the major food production areas have been affected by the drought disaster.
Nongan and Yushu were seriously affected by the drought, with the average affected
area exceeding 100 khm2 (Figure 4a). The average affected area caused by flood disasters
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has decreased compared with drought, and the average affected area of each main grain-
producing area is below 40 khm2; however, the average affected area in Taonan, Tongyu,
and Zhenlai is higher compared with other places, which has a certain correlation with
the water system, such as Nen Jiang River or Jiao Liu River, in the region (Figure 4b).
Typhoon disaster presents a certain regional correlation in the main grain-producing areas
of the eastern regions of Jiutai, Nongan, Dehui, Yitong, and other places where the more
obvious impact is the focus on regional prevention (Figure 4c). Hail disasters have the least
impact on the main grain-producing areas, with an average affected area of 20 khm2; only
Changling and Tongyu are relatively high and need to focus on prevention (Figure 4d).
From a comprehensive point of view, among the four hazard disasters studied, drought
disasters and flood disasters are the core disasters in the main grain-producing areas of
Jilin province and need to be the focus of prevention methods. The average disaster losses
of crops from hail and typhoon disasters are relatively lower, but regional hail and typhoon
disasters occur frequently, and their resulting regional impacts cannot be ignored.

 

(a) (b) 

 

(c) (d) 

Figure 4. Grain production and average area affected by each disaster in major grain-producing areas
((a). Drought; (b). Flood; (c). Hail; (d). Typhoon).

Based on the average disaster area of 18 major grain-producing areas, the local Getis-
Ord Gi* index was used to study the degree of clustering of the spatial distribution of
variables, which can respond well to the distribution of cold hotspots on the local spatial
area of variables. The distribution of hotspot areas for each disaster was analyzed for
18 major grain-producing areas, and the degree of clustering was expressed according to
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the significance Z. The higher and greater that Z was than 0, the tighter the target object’s
high-value clustering (forming a hotspot); the lower and greater that Z was than 0, the
tighter the target object’s low-value clustering (forming a cold spot). The hotspot and cold
spot are calculated by Formulas (16)–(18). In hotspot analysis, the natural intermittent
point method was used to divide the cold hot spot area into five categories, namely, core
hot spot area, sub-core hot spot area, transition area, sub-core cold spot area, and core
cold spot area. The results show that the hotspot areas for drought hazards are widely
distributed in the study area. Qianguo, Nongan, Dehui, and Jiutai are the core hotspot
areas of drought disasters, and Taonan and Tongyu, in the western part of the study area,
are the sub-core hotspot areas (Figure 5a). Flood disasters are similar to drought disasters,
with Taonan and Tongyu as the core hotspot areas and Jiutai and other places in the eastern
region as the sub-core hotspot areas (Figure 5b). This means drought and flood disasters are
widely distributed and many hotspot areas are affected. Hail disasters present core hotspot
areas and sub-core hotspot areas in the five eastern places of study, while Tao Nan is also
a hotspot area (Figure 5c). In addition, the hotspot area of typhoon disasters is mainly
concentrated in the eastern part of the study area (Figure 5d). This means the distribution
of hail and typhoon disasters has a certain regional nature.

 

(a) (b) 

 

(c) (d) 

Figure 5. Distribution of each disaster hotspot area in the main grain-producing areas of Jilin province
((a). Drought; (b). Flood; (c). Hail; (d). Typhoon).
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After standardizing the average area affected in each district, the entropy weights of
multi-hazard meteorological hazards were calculated using Formulas (11)–(15) to obtain
the weights of four meteorological hazards in 18 major grain-producing regions, and the
results are shown in Table 2.

Table 2. Weight of single disaster species in the main grain-producing areas of Jilin province.

Evaluation Unit Drought Flood Hail Typhoon

Jiutai (JT) 0.11 0.13 0.38 0.39
Nongan (NA) 0.29 0.24 0.19 0.28

Yushu (YS) 0.36 0.22 0.32 0.10
Dehui (DH) 0.16 0.22 0.07 0.55

Gongzhuling (GZL) 0.11 0.18 0.38 0.33
Lishu (LS) 0.19 0.14 0.42 0.25

Yitong (YT) 0.06 0.14 0.12 0.68
Shuangliao (SL) 0.25 0.49 0.09 0.18
Qianguo (QG) 0.30 0.15 0.30 0.24

Changling (CL) 0.30 0.14 0.19 0.37
Qianan (QA) 0.44 0.14 0.11 0.32

Fuyu (FY) 0.18 0.07 0.01 0.73
Taobei (TB) 0.15 0.16 0.61 0.07

Zhenlai (ZL) 0.26 0.63 0.00 0.11
Tongyu (TY) 0.28 0.51 0.18 0.04
Taonan (TN) 0.25 0.38 0.37 0.00
Shulan (SL) 0.00 0.00 0.55 0.45
Daan (DA) 0.04 0.19 0.32 0.46

3.2. Multi-Hazard Meteorological Hazard Risk Analysis in Agriculture

The discrete domain is constructed according to the scope of disaster, the maximum
value of the intensity of disaster, and the possible value of disaster; the discrete domain is
constructed and the probability of disaster risk under different disaster indices in the main
grain-producing areas is obtained according to Formulas (1)–(10). The probability density
reflects the probability of the occurrence of major meteorological disasters under different
disaster indices in the main grain-producing areas of Jilin province, so that the probability
of the occurrence of different disaster levels can be inferred (Figure 6). The results show
that the disaster indices of four meteorological disasters span the whole disaster index axis
and all have the possibility of large area damage, among which the disaster areas of hail,
typhoon, flood, and drought do not exceed 20%, 30%, 50%, and 80% of the total sown area,
respectively. The density of exceedance probability can laterally reflect the level of risk of
major meteorological disasters in Jilin agriculture under different disaster indices (Figure 7).
The results show that the risk values of four major meteorological disasters decrease with
the increase of disaster indices, and the disaster risk of each disaster in the main grain-
producing areas under the same disaster indices is: drought > flood > typhoon > hail. From
the frequency of disasters and the scope of disaster impact, drought disaster is the main
natural disaster that harms Jilin province’s main natural disaster for grain production.

In order to give managers and decision makers a clearer understanding of the risk level
based on the disaster risk values obtained from the fuzzy risk model, and to make the risk
assessment results more intuitive, the grading criterion of risk recurrence period (T = 1/P)
was used to calculate the risk levels of meteorological hazards under different disaster
indices. To facilitate the analysis and evaluation of the spatial distribution characteristics
of each meteorological disaster risk in 18 major grain-producing areas in Jilin province,
the main meteorological risk assessment grades for 18 major grain-producing areas were
developed by combining the actual situation of the main meteorological risk values in each
area (Table 3). The multi-hazard meteorological hazard risk assessment levels were divided
into five levels of high, medium–high, medium, medium–low, and low under different
damage indices, and were assigned 5, 4, 3, 2, and 1, respectively. The classification of
disaster risk level is mainly based on the previous research results and the actual situation
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of disaster risk value. The high risk implies a short period of occurrence and a high
frequency of recurrence of disasters under the same crop damage.

Figure 6. Probability density of multi-hazard meteorological hazards in major grain-producing areas.

Figure 7. Risk values of multi-hazard meteorological hazards in major grain-producing areas.

Table 3. The main meteorological risk assessment scale of Jilin province.

Disaster Index High Medium–High Medium Medium–Low Low

5% ≤ x < 10% T = 1 1 < T ≤ 2 2 < T ≤ 3 3 < T ≤ 4 T > 4
10% ≤ x < 15% 1 < T ≤ 2 2 < T ≤ 3 3 < T ≤ 4 4 < T ≤ 6 T > 6
15% ≤ x < 20% 1 < T ≤ 2 2 < T ≤ 4 4 < T ≤ 6 6 < T ≤ 10 T > 10

≥20% 1 < T ≤ 2 2 < T ≤ 5 5 < T ≤ 10 10 < T ≤ 20 T > 20
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In Table 3, T = 1 means the frequency of disaster occurrence is once a year, 1 < T ≤ 2
means the frequency of disaster occurs once every 1~2 years, T > 4 means the probability of
disaster occurrence is greater than once every 4 years, and so on for the rest. According to
the above risk analysis model and risk classification criteria, the results of meteorological
disaster risk evaluation in 18 major grain-producing areas in Jilin province under different
disaster indices are derived.

Overall, under different disaster index conditions, drought and flood are the dominant
hazards affecting the 18 major grain-producing areas in Jilin province. The risk level
of multi-hazard meteorological hazards is higher in Nongan when the disaster index is
5% ≤ x < 10%, and the risk level of multi-hazard meteorological hazards is at a higher
level in Jiutai and Yitong when the disaster index is 10% ≤ x < 15% and 15% ≤ x < 20%,
respectively. As the disaster index rises to x ≥ 20%, Jiutai is at high risk of multi-hazard
meteorological hazard risk and the probability of a large area of multi-hazard hazard risk
is higher.

At the disaster index of 5% ≤ x < 10% (Figure 8), the risk level of drought disaster in
each major grain-producing area is at medium–high or high risk, and the risk probability
is once every 1~2 years. A flood disaster is a secondary disaster affecting the main grain-
producing areas in Jilin province, and the risk level of a flood disaster in each main grain-
producing area is in the medium–high- or high-risk area, but it is low in Fuyu City, which
is related to the lack of data that may be caused by the change of administrative division in
the history of Fuyu. The risk level of hail disasters in each major grain-producing area is at
a medium or low risk level, but Yushu and Shulan are at high and medium–high risk levels,
showing that the probability of hail disasters in these three places is higher than in other
places. The risk level of typhoon disaster in each major grain-producing area has a large
difference. Specifically, the risk level of Yushu, Changling, Zhenlai, Tongyu, Changling,
Taobei, Taonan, Yushu, and Daan is small, while Jiutai, Nongan, and Dehui are high, which
is in line with the actual situation.

Figure 8. Risk evaluation value of multi-hazard meteorological disasters under the disaster index of
5% ≤ x < 10%.

At a disaster index of 10% ≤ x < 15% (Figure 9), there was almost no change in the
risk level of drought disaster and flood disaster in each major grain-producing area with a
disaster index of 5% ≤ x < 10%. The risk level of hail hazards in each major grain-producing
area was elevated, and only two areas (Shuangliao and Qianan) had no change in disaster
risk level. Typhoon disaster risk is just the opposite of hail disaster risk. The risk level of
most areas did not change, but the disaster risk level of Fuyu and Yitong increased to a
high level.
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Figure 9. Risk evaluation value of multi-hazard meteorological disasters under the disaster index of
10% ≤ x < 15%.

At the disaster index of 15% ≤ x < 20% (Figure 10), the risk of drought disaster was at
high risk in all major grain-producing regions. The risk level of flood disaster in all other
regions remained unchanged. The risk levels of hail disasters all decreased overall, but
Jiutai, Yushu, Yitong, Changling, and Taobei were still at high-risk levels, and the chance
of suffering large area damage remained high. There was no big change in the overall
probability of typhoon disasters, and the disaster risk levels of Gongzhuling and Qianan
have dropped to medium–low and low risk, that is, the recurrence period of typhoon
disasters is more than once every 6 years.

Figure 10. Risk evaluation value of multi-hazard meteorological disasters under the disaster index of
15% ≤ x < 20%.

At a disaster index of x ≥ 20% (Figure 11), the risk levels of drought disaster and flood
disaster in each major grain-producing area are at high and medium–high risk levels. This
indicates that droughts and floods have a serious impact on the main grain-producing
areas in Jilin province, with droughts and floods causing more than 20% damage, occurring
about once every 5 years. With the rise of the disaster index, the risk level of hail disasters
in most areas is at medium risk or below, but Jiutai and Yushu are still at high risk levels,
indicating that these two areas have a high chance of being affected by hail disasters and
are prone to large areas of hail disasters. The risk level of typhoon disasters appears
to be widely different, with relatively high disaster risk in the eastern part of the study
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area. Specifically, the risk levels of Jiutai, Nongan, Dehui, Yitong, Fuyu, and Shulan have
remained medium–high or high, while other major grain-producing areas are at low risk.

Figure 11. Risk evaluation value of multi-hazard meteorological disasters under the disaster index of
x ≥ 20%.

3.3. Risk Assessment and Spatial Distribution of Multi-Hazard Meteorological Hazards
in Agriculture

After completing the analysis and evaluation of multi-hazard meteorological disaster
risk levels in agriculture, the multi-hazard meteorological disaster risk assessment results
were weighted and summed with each disaster weight to obtain the multi-hazard meteoro-
logical disaster risk assessment results for 18 major grain-producing areas, according to the
disaster index, disaster recurrence period, and risk level classification criteria. At the same
time, the assessment results were classified into five levels (high, medium–high, medium,
medium–low, and low) using the natural interruption point method, and the multi-hazard
disaster risk assessment level maps were obtained for 18 major grain-producing areas
under different disaster indices. Based on the results of agricultural multi-hazard meteoro-
logical disaster risk assessment, the spatial distribution pattern and regional distribution
characteristics of agricultural multi-hazard disasters under 18 major grain-producing areas
in Jilin province were analyzed.

The disaster risk level in the Yushu, Dehui, Nongan, and Jiutai areas in the eastern
part of the study area has been at high and medium–high levels, and the areas at high and
medium–high risk are expanding as the disaster index continues to increase. When the
disaster index is 5% ≤ x < 10%, the southwest side of the study area is a medium-risk area,
and the high hail is mainly concentrated on the northeast side of the study area in Nongan
and Dehui, both of which are high-risk areas. That is, they suffered from a high frequency
of multi-hazard impacts and caused a large area of agricultural losses (Figure 12a). When
the disaster index was 10% ≤ x < 15%, the high-risk area was expanding. Jiutai, Tongyu,
and Lishu were high-risk areas, and the risk level in some areas in the southeast of the
region was decreasing (Figure 12b). When the damage index increases to 15%, the risk
level in the central part of the study area is medium–low and low risk, i.e., there is a low
chance of widespread, high-frequency, and strong damage. Jiutai and Lishu are high-risk
areas, and three places in the western part of the study area are in medium–high-risk areas
with the feasibility of suffering from large areas and high frequency (Figure 12c). When the
disaster index is x ≥ 20%, the multi-hazard rating of the main grain-producing areas shows
the characteristics of medium–high risk in the western region, low and medium–low risk
in the central region, and high and medium–high risk in the eastern region. Among them,
the danger of the disaster-causing factors of agricultural multi-hazard species in Dehui,
Jiutai, and Lishu cannot be ignored, which are prone to causing large-scale damage and
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forming disaster chains, and the task of coping with multi-hazard meteorological disaster
prevention is arduous (Figure 12d).

 

 

(a) (b) 

 

 

(c) (d) 

Figure 12. Risk assessment map of multi-hazard meteorological disasters under different disaster
indices ((a). 5% ≤ x < 10%; (b). 10% ≤ x < 15%; (c). 15% ≤ x < 20%; (d). x ≥ 20%).

An ordinary kriging interpolation method based on variance function theory and
structural analysis was used in this study for an unbiased optimal estimation of regionalized
variables in a limited area. Specifically, it was used to predict the risk of agricultural multi-
hazard meteorological hazards in the study area. The ordinary kriging to estimate the
missing value of variable Z is calculated by Formula (19). The results show that the risk of
multi-hazard meteorological hazards shows a southeastern direction. At the same time, the
multi-hazard meteorological disaster risk level gradually decreases in both the southeast
direction and the northwest direction, with the continuous increase of the disaster index.
There are high- and medium–high-risk trends of multi-hazard meteorological disasters in
Taonan, Taobei, Tongyu, Shulan, Jiutai, Yitong, Yushu, and Dehui. Thus, they are the focus
of agricultural multi-hazard meteorological disaster risk prevention.

Specifically, when the disaster index is 5% ≤ x < 10% (Figure 13a), the multi-hazard
rank trend in the central part of the study area shows medium–low risk, the multi-hazard
rank trend in some districts and counties in the eastern part is high and medium–high
risk, and this area is the key area for multi-hazard risk prevention. With the increase of
the disaster index to 10% ≤ x < 15% (Figure 13b), the trend of agricultural multi-hazard
meteorological disaster risk level develops from the east and west to the middle, and
the low-risk area in the middle of the study area expands. Shulan and Yushu may have
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more than 10% of their crops affected by multiple hazards. When the damage index
is 15% ≤ x < 20% (Figure 13c), the range of low- and medium–low-risk areas is further
expanded, and the risk levels in the central part of the study area all show low risk levels,
while only some areas in Taonan, Yushu, and Shulan are medium–high risk, and the area
covered by low risk is the most extensive at this time. When the disaster index is x ≥ 20%
(Figure 13d), the range of medium–high risk is further expanded, and the northeast of the
study area and the western part of Taonan and other places present a medium–high-risk
grade of agricultural multi-hazard meteorological disaster. Some areas in the northeastern
direction suffer from the possibility of a multi-hazard meteorological disaster risk impact
and a wide range of impact, which is the focus of regional agricultural prevention.

 

(a) (b) 

 

(c) (d) 

Figure 13. Risk trend of multi-hazard meteorological disasters under different disaster indices
((a). 5% ≤ x < 10%; (b). 10% ≤ x < 15%; (c). 15% ≤ x < 20%; (d). x ≥ 20%).

3.4. Agricultural Multi-Hazard Meteorological Disaster Risk Reduction Recommendations

This paper assesses the risk of agricultural multi-hazards using the historical disaster
data of the first natural disaster risk census in 18 major grain-producing areas in Jilin
province, and obtains the risk of each multi-hazard meteorological disaster, which is an
attempt to apply the data from the first natural disaster risk census. From the actual
situation of food production areas, we put forward the following recommendations for the
reduction of agricultural multi-hazard meteorological disaster risks so they might provide
a reference for the reduction and resolution of major disaster risks under the new situation,
ensuring the strategic goals of national food security and sustainable development.

301



Sustainability 2022, 14, 7482

3.4.1. Improve Regional Agricultural Multi-Hazard Risk Reduction System Construction

To develop effective agricultural multi-hazard reduction policies according to local
conditions, appropriate mechanisms and legal system construction are very important,
which is a necessary guarantee to improve the efficiency of disaster mitigation and reduc-
tion. Multi-hazard meteorological disaster risk reduction in agriculture involves multiple
sectors and regions, with more emphasis on information sharing, horizontal collabora-
tion, and up–down linkage, and it is necessary to strengthen the top design of the central
government and make a good overall plan [36–39].

Firstly, accelerate the improvement of the system of multiple coordination mechanisms
and real-time emergency plans to provide an all-round institutional guarantee to enhance
regional agricultural multi-hazard risk reduction capabilities. Secondly, the government
should increase its financial investment in agricultural water conservancy construction
and subsidize the construction of small water conservancy projects on collective village
farmland [40,41]. Thirdly, the government should increase its investment in agricultural
insurance for natural disasters in Jiutai, Tongyu, and other places; moreover, it should
increase its investment in rural social security, medical care, and minimum living security as
well to improve disaster response capacity. The government could act as a reinsurer against
agricultural losses so that it can provide protection for agricultural crop and livestock
insurance initiatives, even if local insurers and international reinsurers are unwilling to
provide excess-of-loss reinsurance [42]. Overall, combining normal disaster reduction
and mitigation with extraordinary emergency disaster relief, enhancing the integration of
laws and the whole disaster risk management system, and realizing coordinated operation
and comprehensive management of multiple subjects are good strategies for multi-hazard
risk reduction.

3.4.2. Optimize Regional Agricultural Multi-Hazard Risk Management Models

The inefficiency of disaster risk management in administrative regions independent
of each other often leads to gaps in disaster risk management. In order to further change
the idea of “disaster relief over disaster mitigation”, a whole-process disaster risk manage-
ment model should be established. While developing emergency plans, the government
should vigorously develop a watershed disaster management network system to form
and coordinate a linkage [38,43–45]. From international experience, the United States has
formed a triple system of federal, regional, and local emergency response mechanisms; the
United Kingdom mobilizes the resources of the whole society to structure the emergency
management system [46,47]; and Japan has established a prevention-centered emergency
management system [48,49]. The experiences from which you can learn are as follows.

Firstly, in terms of the main body of disaster management, we should include social
agricultural companies, agricultural volunteers, and grassroots organizations in the gov-
ernment to improve agricultural disaster mitigation capacity through these experts who
are familiar with local agricultural disasters and land conditions so that they can become
an important force in disaster mitigation [41,50]. Second, on the mechanism of disaster
management, we should strengthen the unified dispatch and management of multi-hazard
meteorological disaster risks (especially in several areas of the Nen Jiang and Heilongjiang
River Basin), break the mechanism of independent management in each administrative
region, realize the rational allocation of resources, and reduce disputes over the impact
of disaster risks. Overall, the communication–feedback–supervision working mechanism
should be continuously improved for the weak links of natural disaster risk management,
especially the coupling aspect of multi-hazards, by insisting on the prevention-oriented
methods combined with disaster reduction and relief, and improving the decision-making
capacity of risk management.

3.4.3. Strengthened Regional Agricultural Multi-Hazard Risk Reduction Capacity

In the face of the severe and complex situation of major disasters and multi-hazard
disaster risks, agricultural multi-hazard risk reduction should be incorporated into the
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overall planning of social development to provide support for effectively enhancing the
ability of the whole society to reduce major disaster risks. The first national comprehensive
natural disaster risk census is also a survey of China’s national situation and strength
and is a fundamental work to enhance disaster risk reduction capacity, which is of great
significance in mapping out the risk base [51–53].

Overall, in terms of proceeding with strengthening the capacity of agricultural pro-
duction for disaster reduction and mitigation, first, the construction of farmland water
conservancy facilities to improve the ability to resist drought and flooding, especially in
small watersheds, should be strengthened [54–56]. Second, to strengthen the transforma-
tion of low-yielding fields, the “fertile soil project” should be implemented to improve the
organic content of farmland and enhance fertilizer supply and water retention capacity, and
thus to improve the ability of crops to withstand natural disasters [57,58]. Third, harmful
biological early warning systems and disaster forecasting, monitoring, reduction, and
control capacity should be strengthened.

Specifically, Nongan, Jiutai, and Yitong should strengthen agricultural drought-prevention
systems, concentrating on the establishment of an effective early warning system for agricul-
tural drought reduction and mitigation. In order to improve farmland water conservancy
facilities in agricultural production areas, especially small farmland water conservancy
facilities in villages and towns, deep ditches should be built, as should more profound
ditches for agricultural water storage and farmland drainage to facilitate flood and drought
reduction [59–63]. The western part of the study area should strengthen flood and drought
control facilities, especially drainage facilities, to focus on construction. In addition to the
construction of farmland water conservancy facilities, the resilience of crops themselves
should be strengthened. Research and promotion of good crop varieties should be firmly
supported. The application of high-quality and flexible crop varieties can improve the
disaster resistance of crops. Dehui, Shulan, and Yushu should do a good job of laying and
covering hail nets for each crop and should carry out reinforcement work for seedling
sheds and breeding bases to reduce the impact of hail disasters on crops.

4. Conclusions

The difficult problem in disaster risk assessment is how to use incomplete information
to derive the most accurate evaluation results possible. To this end, this paper proposes
a multi-hazard meteorological disaster risk assessment method for agriculture based on
historical disaster data, which mainly consists of three aspects: disaster risk identification,
disaster risk analysis, and disaster risk assessment. Meanwhile, the authors made a prelim-
inary attempt to conduct a multi-hazard meteorological disaster risk assessment for each
major grain-producing area based on historical disaster data from the first national compre-
hensive natural disaster risk census of 18 major grain-producing areas in Jilin province. The
results of the study provide a new idea for the application of historical disaster data at the
small-scale area level in the later stage of the disaster risk census results and provide a basis
for agricultural safety and disaster prevention and control in the main grain-producing
areas. The main conclusions are as follows.

By a comprehensive analysis of the climatic conditions of crop growth in the study
area and the disaster damage data in the database, four kinds of disasters, namely, drought,
flood, typhoon, and hail, were identified as disasters in the study area. The frequency of
drought and flood disasters is high, and the scope of the disasters is large. The core hotspots
and sub-core hotspots are Jiutai, Nongan, Dehui, Tongyu, Taonan, and other places, which
are the key disasters for agriculture meteorological disaster reduction in the main grain-
producing areas of Jilin province. The hail and typhoon disasters are regional, and the core
hotspots and sub-core hotspots are mainly in the east of the main grain-producing areas.
Attention should be paid to these two disasters in the eastern part of the study area.

Using a fuzzy risk analysis model and the entropy weight method to calculate the
meteorological disaster risk value in the study area and the single disaster risk weight
in each region, respectively, the risk value of the four major meteorological disasters de-
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creases with the increase of the disaster index, and the hazard of each disaster in the main
grain-producing areas under the same disaster index is drought > flood > typhoon > hail.
When the disaster index is 5% ≤ x < 10%, the disaster risk level for Nongan is high,
and the comprehensive risk evaluation value rises with the rising disaster index; when
10% ≤ x < 15% and 15% ≤ x < 20%, Yitong and Jiutai are multi-hazard meteorological dis-
asters at high risk; when the disaster index is increased to x ≥ 20%, the risk level of Jiutai
multi-hazard meteorological disaster is at an even higher level. The probability of the
occurrence of a large area of multi-hazard disaster risk is high.

The risk value of each disaster and the weight of each assessment unit are weighted
to obtain the multi-hazard comprehensive risk assessment risk level of each main grain-
producing area. The risk assessment results of multi-hazard meteorological hazards showed
that Jiutai, Nongan, Yitong, and Tongyu showed high and medium–high risk levels under
different disaster indices. There is a wide range of high-frequency, strong disaster situ-
ations, and the risk of its multi-hazard-causing factors cannot be ignored. To deal with
multi-hazard meteorological disaster prevention tasks is difficult. In addition, the risk of
multi-hazard meteorological hazards is spatially oriented to the southeast, and the risk level
of multi-hazard meteorological hazards in the central part of the study area is decreases
gradually along with the increasing disaster index. Based on the severe and complex
disaster risk situation in the study area, especially the complexity and high uncertainty
of multi-hazard meteorological disaster risks, suggestions are given on three aspects: im-
proving regional agricultural multi-hazard risk reduction system construction; optimizing
regional agricultural multi-hazard risk management models; and strengthening regional
agricultural multi-hazard risk reduction capacity, so as to face the severe and complex
multi-hazard disaster risk situation.

Shortcomings and prospects: this paper evaluates the multi-hazard meteorological
disaster risk of all crops to guide various regions in carrying out regional multi-hazard
agricultural safety production and risk prevention. If the crops were further divided into
specific food products (such as rice, corn, etc.), and the disaster resistance of each food
product was added to the evaluation system, it could more accurately guide the agricultural
disaster reduction and mitigation work in each grain-producing area.
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Abstract: Intensified tropical cyclones (TCs) threaten the socioeconomic development of coastal
cities. The coupling of strong wind and precipitation with the TC process usually amplifies the
destructive effects of storms. Currently, an integrated analytical framework for TC hazard assessment
at the city level that combines the joint statistical characteristics of multiple TC-induced hazards and
local environmental features does not exist. In this study, we developed a novel hazard assessment
framework with a high spatiotemporal resolution that includes a fine-tuned K-means algorithm
for clustering TC tracks and a Copula model to depict the wind–precipitation joint probability
distribution of different TC categories. High-resolution wind and precipitation data were used to
conduct an empirical study in Shenzhen, a coastal megacity in Guangdong Province, China. The
results show that the probabilities of TC-induced wind speed and precipitation exhibit significant
spatial heterogeneity in Shenzhen, which can be explained by the characteristics of TC tracks and
terrain environment factors. In general, the hazard intensity of TCs landing from the west side is
higher than that from the east side, and the greatest TC intensity appears on the southeast coast
of Shenzhen, implying that more disaster prevention efforts are needed. The proposed TC hazard
assessment method provides a solid base for highly precise risk assessment at the city level.

Keywords: tropical cyclone; hazard assessment; high resolution; Copula theory; K-means
clustering; Shenzhen

1. Introduction

This past decade has been marked by devastating extreme events, including Hurricane
Harvey in 2017, Typhoon Lekima in 2019, and Typhoon Rai in 2021. Climate change has
intensified tropical cyclones (TCs), posing a greater threat to life and property along coastal
areas [1,2]. With the influence of the anthropogenic rise in greenhouse gases, cyclone track
density, power dissipation, and cyclone genesis have shown robust increasing trends over
the North Pacific [3,4]. In addition, the development of infrastructure in coastal areas,
especially in developing countries, has accelerated. As a result, risks have increased with
the urban infrastructures from more severe TCs [5]. TC hazard assessment at a high spatial
resolution is an inevitable and fundamental step for risk assessment.

The demand from stakeholders for information on natural hazards has been high-
lighted in several reports, such as Global Assessment Reports on Disaster Risk Reduction
and IPCC SREX. Comprehensive hazard assessment is essential to achieving the Millen-
nium Development Goals, Sustainable Development Goals, and the Sendai framework.
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Knowledge of natural hazards is key to developing preventative policies and taking risk-
reduction measures. Such information is valuable to stakeholders from the (re)insurance,
governance, and spatial planning sectors.

Many empirical models consider that TC hazards vary among different areas, provinces,
cities, and even greater regions. However, the spatial or temporal resolution of previous
studies has generally been rough, making it difficult to illustrate the hazards of a TC pro-
cess at the city level. How do TC hazards vary within a city? What factors can explain
the variation? In contrast to the extensive studies of inventory exposure to TCs with
a high spatiotemporal resolution, these questions have not received adequate attention.
High-resolution TC hazard assessment is urgently needed for refined risk analysis and
emergency management in coastal cities. For a more accurate impact analysis of TCs,
hazard assessments with a high temporal resolution are needed to depict the changes
during a TC process. Additionally, hazard assessments with a high spatial resolution
are also essential to match the heterogeneously distributed urban infrastructures in cities.
Meanwhile, a single factor of TC, such as wind speed, cannot fully reflect the compound
impacts of TCs, which usually include strong winds, rainfall, and flooding [6]. Therefore,
the combined possibilities of the intensity and frequency of multiple hazards caused by
TCs should be considered simultaneously. In addition, the location and direction of TCs
affect the scope and distribution pattern of wind and rain in coastal cities [7,8], such that
the hazards of different TC categories should be assessed separately.

To address the above issues, we developed a hazard assessment framework with a
high spatiotemporal resolution to analyze regional TC hazards. In the framework, TC
tracks are clustered by a fine-tuned K-means algorithm, and the wind–precipitation joint
probability distribution of different TC categories is depicted by a Copula model. The
proposed framework focuses on the short-term wind–rain joint occurrence probability
during TC processes and enables subsequent fine-grained risk analysis. To the best of
our knowledge, this is the first TC hazard assessment study with such a high temporal
and spatial resolution. The outcomes can also be used to plan and schedule disaster
preparedness and response operations in urban areas.

The paper is organized as follows. Section 2 reviews previous studies. Section 3
describes the proposed methodological framework, and Section 4 presents a hazard assess-
ment application and results for Shenzhen, China. Thereafter, Sections 5 and 6 present the
discussion and conclusions, respectively.

2. Literature Review

This section surveys an extensive set of TC clustering techniques and TC hazard
assessment methodologies.

2.1. TC Clustering Techniques

In recent years, many clustering algorithms have been used to categorize TCs based on
their features, such as TC tracks, forms, lengths, or intensities, from TC databases, among
which tracks (longitudes and latitudes) have been the most widely used. The key for a
clustering algorithm is clustering the data into several groups based on some similarity
measures such that the total variance among the groups is minimized. The K-means
algorithm is a straightforward and widely used partitioning method that seeks to assign
each track to one of K groups [9–11]. However, difficulties arise because of the differentiated
TC evolution processes, which result in very different point shapes and lengths. The typical
K-means algorithm is not suitable for TC tracks of different lengths, and we show that
this is a serious shortcoming for TCs. Hu et al. interpolated different tracks to obtain the
same length of vectors [12], which added errors. Tian et al. detected interdecadal changes
in the genesis of TCs in the western North Pacific based on pHash and K-means cluster
analysis [13]. Chand et al. [14] and Samuel et al. [15] used the curve-clustering approach to
classify TC tracks. Camargo et al. developed a special probabilistic clustering algorithm
that relies on a regression mixture model to cluster TC tracks [16,17]. These techniques

309



Sustainability 2022, 14, 13969

provide a mixture of polynomial regression functions (curves) to fit the geographical shapes
of trajectories. The Hausdorff distance is a simple dissimilarity measure and is widely used
for comparing point sets [18] and image identifying [19]. The combination of the K-means
algorithm and the Hausdorff distance can be a new way to cluster the irregular point sets.

2.2. TC Hazard Assessment

There are two main categories of TC hazard assessment methodologies. The first
category consists of comprehensive index constructions, including the weighting, nor-
malization, and mechanism-based methods. The weighting method gives weights to
different hazard factors according to their importance, occurrence probability, or hazard
intensity [20]. The normalization method normalizes a variety of indices into a single index,
which is convenient for comprehensive probability analysis [21,22]. However, in these
methods, the relationship among factors is characterized as linear, while it is nonlinear
for actual TCs. Some researchers have constructed comprehensive indices based on the
physical mechanisms or economic characteristics of TCs, such as Accumulated Cyclone
Energy [23], Integrated Kinetic Energy [24], and Carvill Hurricane Index [25]. These com-
prehensive indices mainly focus on winds and fail to consider other TC-induced hazards
(e.g., precipitation).

The other category consists of joint probability models, which construct a joint proba-
bility distribution function based on multi-hazard correlations. The Copula theory uses
marginal distributions to form a joint distribution. It can solve nonlinear, nonnormal, non-
symmetric, and long-tailed problems. In recent years, this theory has been widely used in
multivariate analysis in the fields of extreme value theory [26], financial risk [27], wireless
communication [28], drought [29,30], and flood disasters [31,32]. Some researchers have
previously constructed the TC-induced wind–rain joint probability distribution function
based on Copula theory. However, the data are mainly the maximum or accumulated
value of annual statistics [33] or TC events [6,34] from a single meteorological station.
Recent studies have used meteorological data from multiple stations to depict the regional
difference of hazard intensity [35,36]. These studies have indicated that Copula theory can
be an effective tool for TC hazard assessment.

3. Methodological Framework

In this paper, a novel TC hazard assessment framework is proposed and divided
into three steps: determination of hazard datasets, analysis of hazard probability, and
assessment of regional hazards. The analytical framework of this work is shown in Figure 1.

Figure 1. The analytical framework.
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3.1. Hazard Datasets
3.1.1. Disaster Thresholds

The proposed framework assesses wind and rain, the two representative TC-induced
hazards. Wind and rain have a significant influence on society, as they commonly lead to
storm surges, floods, and debris flows. Our goal is to assess the comprehensive hazard
intensity of short-term wind or rain exceeding certain thresholds during TC processes.
Therefore, we set the distance threshold from the location to the TC center to determine
if the wind and rain are induced by the TC and the intensity thresholds to determine if a
hazard of a certain intensity will cause damage.

The thresholds used in this study include the TC impact distance threshold, wind-
induced disaster threshold, and rain-induced disaster threshold. (1) TCs in the western
Pacific Ocean are nearly circular circulation systems, with a typical radius of approximately
200–500 km [37]. Previous studies have shown that rainfall within 5◦ in longitude-latitude
(approximately 500 km) from the TC center can be considered TC-induced rainfall [38],
which is also consistent with on-site evidence. Therefore, we used a circle with a radius
of 500 km from the TC center as the TC impact distance threshold. (2) According to the
national standard of Grade of tropical cyclones https://www.codeofchina.com/standard/
GBT19201-2006.html (accessed on 23 October 2022), a tropical depression is defined when
the maximum 2 min mean wind speed near the TC center exceeds 10.8 m/s. Therefore, we
set 10.8 m/s as the wind-induced disaster threshold. (3) According to the national standard
of Grade of precipitation https://www.codeofchina.com/standard/GBT28592-2012.html
(accessed on 23 October 2022), the precipitation was divided into seven levels. In this
study, we chose the precipitation reaching the storm level (50 mm/24 h) as the rain-induced
disaster threshold.

3.1.2. The Fine-Tuned K-Means Algorithm

In a general K-means algorithm, the data are mapped into points in a Euclidean
space and clustered into several classes. These classes can be natural groups of variables,
data points, or objects similar to one another in terms of some similarity measures. The
clustering performance is evaluated by using the sum of squares for the error from each
data point to the clustering center, as shown in Equation (1).

ST =

K

∑
i=1

∑
ej∈Pi

‖ej − ci‖2 (1)

Here, K is the number of classes; ci is the clustering center of Class i; Pi is the dataset
for Class i; ej is the location attribute of TC track j (the latitudes and longitudes of TC
centers); and ‖ej − ci‖ is the Euclidean distance from ej to ci.

The iterative calculation process of K-means is as follows:

(1) Select K TC tracks as the initial clustering center.
(2) Calculate the Euclidean distances from all the tracks to each clustering center and

assign them to the nearest class.
(3) Calculate the mean value of all data in each class as the new clustering center.
(4) End if ST converges or the number of iterations reaches the preset maximum; other-

wise, return to Step (2).

K-means cannot accommodate tracks of different lengths [37]. To address this problem,
we fine-tuned the distance calculation in the algorithm by changing the Euclidean distance
of two points to the Hausdorff distance of two point sets [38]. The Hausdorff distance is
defined as follows:

H(A, B) = max[h(A, B), h(B, A)] (2)

Here,
h(A, B) = max

a∈A
min
b∈B

‖a − b‖ (3)
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h(B, A) = max
b∈B

min
a∈A

‖b − a‖ (4)

H(A, B) is the bidirectional Hausdorff distance between point sets A and B, h(A, B)
is the unidirectional Hausdorff distance from A to B, and correspondingly, h(B, A) is the
Hausdorff distance from B to A. H(A, B) is larger than h(A, B) and h(B, A), which measures
the maximum mismatch between two point sets. In this study, the K-means clustering
algorithm was reconstructed using the Hausdorff distance.

The fine-tuned K-means algorithm used in this study to fit the geographical shape of
the trajectories allows the clustering to be posed and accommodates TC tracks of different
lengths. The filtered TC tracks might be composed of the longitudes and latitudes of
TC centers with different numbers, that is, have different lengths and shapes. The pro-
posed method is more objective and simpler than the mixture K-means method used in
previous studies.

We determined the hazard datasets in three steps. First, we filtered out the historical TC
tracks by using the TC impact distance threshold. Second, we split the TC tracks according
to the fine-tuned K-means clustering algorithm. Third, we filtered the meteorological data
by using the wind-induced disaster threshold and rain-induced disaster threshold. Thus,
the subsequent hazard analysis was carried out based on the subsets of wind speed and
precipitation during the impact of different TC classes.

3.2. Analysis of Hazard Probability

The hazards for different TC classes were analyzed during two stages: single hazard
of wind or rain and coupled hazards of wind–rain. Single hazard analysis constructs
the probability density function (PDF), which indicates the probability of a hazard with
different intensities. The probability distribution of a single hazard is the basis of multi-
hazard joint probability analysis, commonly known as the marginal distribution. Then, the
cumulative distribution function (CDF) of coupled hazards can be further generated based
on the two-dimensional (2D) Copula functions.

Copulas are a family of functions that construct the joint distribution of two or more
random variables with an unidentified dependence among the variables [39,40]. The most
widely used Copula functions include two categories: Elliptic Copulas and Archimedean
Copulas. Elliptic Copulas mainly include Gaussian Copula and t Copula, which are
suitable when the marginal distribution obeys the standard normal distribution or Student’s
T distribution. Archimedean Copulas are obtained by constructing different generator
functions, including Clayton Copula, Frank Copula, Gumbel Copula, and Joe Copula
(Table 1).

Table 1. Commonly used 2D Archimedean Copulas.

Copulas C(u,v;θ) Limiting Condition

Clayton Copula
[
max

{
u−θ + v−θ − 1; 0

}]−1/θ
θ ∈ [−1, ∞]

Frank Copula − 1
θ log

[
1 + (exp(−θu)−1)(exp(−θv)−1)

(exp(−θ)−1)

]
θ �= 0

Gumbel Copula exp
[
−((− log(u))θ +

(
− log(v))θ

) 1
θ

]
θ ∈ [1, ∞]

Joe Copula 1 −
(
(1 − u)θ + (1 − v)θ − (1 − u)θ ∗ (1 − v)θ

) 1
θ θ ∈ [1, ∞]

Here, u and v are the marginal distributions of two variables, θ is the Copula function
parameter, and C(u, v; θ) is the 2D Archimedean Copula.

We constructed a multi-hazard joint probability model based on 2D Copula theory,
which was divided into the following four steps:

(1) Determine the marginal distribution of the wind speed and precipitation;
(2) Measure the correlation among the hazards;
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(3) Estimate the parameters of Copula functions that may be applicable;
(4) Select the appropriate Copula function to fit the joint distribution. Then, the probabil-

ity of multiple hazards with different intensities can be calculated.

To choose the marginal distribution and joint distribution in Steps (1) and (4), we
first determined if the variable was subject to the fitted distribution type based on the
Kolmogorov-Smirnov (K-S) test. Then, we selected the best fitting function based on
the Akaike information criterion (AIC) minimum, Bayesian information criteria (BIC)
minimum, and log-likelihood (LogLik) maximum principle. The calculation formulas are
shown in Equations (5)–(8).

AIC = 2k − 2 ln(L(θ)) (5)

BIC = kln(n)− 2 ln(L(θ)) (6)

L(θ) = ∏m
i=1p(yi; θ) (7)

LogLik(θ) = lnL(θ) (8)

where yi is the data sample, and p(yi; θ) is the PDF of the fitting function.
According to the single-hazard X occurrence probability P(x) = P(X ≥ x ) = 1− F(x),

we defined two kinds of double-hazard joint occurrence probability. P∪(x1,x2)
indicates the

probability of at least one hazard reaching a specific intensity, while P∩(x1,x2)
indicates the

probability of two hazards reaching a specific intensity simultaneously. The calculation
formulas are shown in Equations (9) and (10).

P∪(x1,x2)
= P(X1 ≥ x1 or X2 ≥ x2) = 1 − F(x1, x2) (9)

P∩(x1,x2)
= P(X1 ≥ x1 and X2 ≥ x2) = 1 − FX1(x1)− FX2(x2) + F(x1, x2) (10)

where X1, X2 are random variables, their respective CDFs are FX1(x1) and FX2(x2), and
the joint CDF of the Copula function is F(x1, x2).

In this study, we fitted the marginal distributions of the hourly wind and precipitation
data separately and then fitted the joint distribution of the coupled wind and precipitation
by Copula theory. Based on the single or coupled hazard fitting results of different subareas,
we quantitatively depicted the characteristics of regional hazards.

4. Application and Results

4.1. Study Area and Data Source

Shenzhen, which is an economically developed and densely populated coastal megac-
ity in China, has an area of 1997.47 km2, a GDP of 2.69 trillion yuan and a perma-
nent population of 13.44 million as of 2019 http://www.sz.gov.cn/en_szgov/aboutsz/
profile/content/post_10093130.html (accessed on 23 October 2022), a total road mileage of
8066.1 km, and a civilian car ownership of 3.53 million as of 2020 http://tjnj.gdstats.gov.cn:
8080/tjnj/2021/directory/15/html/15-11-0.htm (accessed on 23 October 2022). Shen-
zhen faces the South China Sea and the Pearl River. It has a subtropical oceanic climate.
During summer, Shenzhen is vulnerable to frequent TCs from the western Pacific Ocean.
With the development of infrastructure, the TC risk to Shenzhen’s transportation system,
communication system, and buildings has increased.

Four categories of data were used in this study: (1) the meteorological data of Shen-
zhen provided by the National Climate Center (NCC), including 10 m wind speed and
precipitation data between 1 January 2008 and 31 December 2018 in 39 grid points with
resolutions of 0.0625◦ × 0.0625◦ and 1 h, respectively http://data.cma.cn/en/?r=data/
detail&dataCode=NAFP_CLDAS2.0_NRT (accessed on 23 October 2022); (2) the TC track
dataset provided by the NCC, which includes the hourly historical TCs that landed in
China from 2008 to 2018. Each record includes the TC ID, year, month, day, time, longitude,
and latitude of the TC centers https://tcdata.typhoon.org.cn/en/zjljsjj_sm.html (accessed
on 23 October 2022); (3) the 90 m digital elevation model (DEM) of Shenzhen from the
NASA SRTM3 dataset https://www.gscloud.cn/ (accessed on 23 October 2022); and (4) the
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data of the main rivers and water bodies in Shenzhen from the Resource and Environment
Science and Data Center https://www.resdc.cn/DOI/DOI.aspx?DOIID=44 (accessed on
23 October 2022). The meteorological data and TC tracks were used to determine the hazard
datasets, and the distribution of the DEM and river/water bodies served as a reference for
subsequent causative analysis. Figure 2 shows the geographical location of Shenzhen and
the distribution of multisource meteorological environment data.

 

Figure 2. Case study area: Shenzhen. (a) The geographical location; (b) The distribution of multi-
source environmental data.

Compared with the annual or TC events in previous studies, the temporal resolution
of the hourly data used in this study is considerably enhanced. In meteorological research,
one hour is typically acknowledged as a high-precision time unit. When compared to
historical weather station observational data utilized for regional hazard studies, the spatial
resolution of 0.0625◦ is significantly more accurate.

4.2. Preprocessing of Hazard Datasets

We filtered out the datasets according to the proposed K-means-based TC track clus-
tering algorithm and three thresholds referred to in Step 1 in Figure 1.

First, for each grid point in Shenzhen, we calculated the distance d from the TC center
in all the track records (Figure 2a) to the grid. The grid point was classified as being
impacted by TCs at that moment if d ≤ 500 km. From 2008–2018, 74 TCs affected Shenzhen,
with an average duration of 47.89 h. Then, we clustered the TC tracks affecting Shenzhen
based on the fine-tuned K-means algorithm. We clustered the TC tracks into two classes,
and the maximum number of iterations was 100. Figure 3 shows that the two TC classes
can be roughly interpreted as landing from the west side of Shenzhen (Class 1) or the east
side (Class 2). Furthermore, we retrieved the hourly wind speed and precipitation data for
a grid point if the 24 h cumulative precipitation was greater than 50 mm or the wind speed
was greater than 10.8 m/s. Thus, we created TC-induced wind speed and precipitation
datasets for 39 grid points and 2 TC classes. Approximately 80–200 samples were recorded
per grid point for each TC class. Next, we analyzed the TC hazards from the single variable
(wind or precipitation) and coupled variables (joint wind–precipitation).

4.3. Hazard Analysis

In this section, we conducted the analysis of hazard probability referred to Step 2 in
Figure 1. First, we found a fit for the CDF of observed wind and precipitation data. Then,
we specified the Copula method to fit the joint PDFs and CDFs. Later, we appraised the
performance of the hazard assessment.
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Figure 3. Clustering results of TCs affecting Shenzhen.

4.3.1. Single Hazard Analysis

We randomly picked one grid point (denoted by A) as an example to analyze a single
hazard. There were 105 records of grid point A for TC Class 1 and 143 records for TC Class 2.
Referring to existing research results [33–35], we selected the Gumbel, Weibull, Gamma,
and lognormal distributions as the theoretical distribution functions to fit the hourly wind
and precipitation data separately. We utilized the maximum likelihood estimate (MLE)
approach to estimate the parameters. According to the AIC, BIC, and LogLik values, we
found that for two TC classes, Gamma distribution was the best marginal distribution to
fit the wind speed data (Figure 4a,b), whereas the lognormal distribution was suitable for
fitting the precipitation data (Figure 4c,d).

For TC Class 1, the fitting Gamma CDF F1(x1) of the wind speed data in A is

F1(x1) =

∫
0.502.16x1

1.16 exp(−0.50x1)

Γ(2.16)dx1
(11)

Here, Γ(x) =
∫ ∞

0 tx−1e−tdt is the Gamma function with recursion, i.e., Γ(x + 1) =
xΓ(x).

The fitting lognormal CDF F2(x2) of the precipitation in A is

F2(x2) =
1
2
+

1
2

er f
[

ln(x2)− 1.13
1.35 ∗ √2

]
(12)

Here, er f (x) = 2√
π

∫ x
0 e−y2

dy is the Gaussian error function.

For TC Class 2, the fitting Gamma CDF F1
(

x′1
)

of the wind speed data in A is

F1
(

x′1
)
=

∫
0.603.02x′1

2.02 exp
(−0.60x′1

)
Γ(3.02)dx′1

(13)

The fitting lognormal CDF F2(x′2) of the precipitation in A is

F2
(

x′2
)
=

1
2
+

1
2

er f
[

ln(x′2)− 1.07

1.40 ∗ √2

]
(14)
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Based on Equations (11)–(14), we calculated the corresponding wind speed and pre-
cipitation intensities with different probabilities (Table 2) and the probabilities of different
wind speeds (Table 3) and precipitations (Table 4) for the two TC classes.

Figure 4. The fitting Cumulative Distribution Function of the hourly wind speed (a,b) and precipita-
tion (c,d) in grid point A for TC Class 1 (a,c) and Class 2 (b,d).

Table 2. The wind speeds and precipitations with different probabilities in A.

TC Classes Class 1 Class 2

Probability
Wind

Speed (m/s)
Precipitation

(mm/h)
Wind

Speed (m/s)
Precipitation

(mm/h)

50% 3.67 3.11 4.50 2.92

20% 6.41 9.72 7.18 9.48

10% 8.25 17.64 8.93 17.57

5% 10.00 28.86 10.56 29.23

1% 13.87 72.64 14.08 75.95

0.5% 15.48 101.84 15.53 107.73

In addition, we found that the gamma distribution and lognormal distribution are also
good fits for the TC-induced wind speed and precipitation in other grid points in Shenzhen.

4.3.2. Coupled Hazard Analysis

Using grid point A as an example, the bivariate distribution of hourly wind speed
and precipitation is given in Figure 5. The blue line in Figure 5 is the linear regression fit,
and the shading along the lines is the confidence interval (95%). There are some points
with wind speeds less than 10 m/s and 24 h cumulative precipitation greater than 50 mm.
This is consistent with the facts—a typhoon may bring rainfall for several hours, but it is
not always windy. At a high temporal resolution, such as one hour, the TC-induced wind
and precipitation are not synchronous. The scattered distribution of the wind speed and
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precipitation in Figure 5 caught our attention. For TC Class 1, the wind–rain correlation
was Pwest = 0.13, passing the significance test of 0.05. The distributions of the hourly wind
and rain data were asymmetric and nonnormal, as indicated by the kurtosis values of the
wind speed and precipitation, which were 4.65 and 2.17, and their skewness values, which
were 2.07 and 1.71, respectively. For TC Class 2, the wind–rain correlation was Peast = 0.17.
The kurtosis values of the wind speed and precipitation were 6.99 and 0.84, and their
skewness values were 1.99 and 1.29, respectively. Therefore, we selected Archimedean
Copulas to fit the joint probability distribution and estimated the parameters by MLE.
We found that the Joe Copula outperformed the other three Copulas in fitting the joint
probability of the TC-Class-1-induced wind speed and precipitation in grid point A, but the
Clayton Copula performed better for fitting the TC-Class-2-induced wind and precipitation
(Table 5). Figure 6 shows the Copula fitting results in grid point A.

Table 3. The probabilities of different wind speeds in A.

Grade of TCs
Wind Speed

(m/s)
Wind Scale

Probability
(Class 1)

Probability
(Class 2)

Tropical depression 10.8–17.1 6–7 0.036 0.045

Tropical storm 17.2–24.4 8–9 0.002 0.002

Severe tropical storm 24.5–32.6 10–11 / /

Typhoon 32.7–41.4 12–13 / /

Strong typhoon 41.5–50.9 14–15 / /

Super typhoon ≥51.0 ≥16 / /
/ indicates that the calculated value is too small, the same below.

Table 4. The probabilities of different precipitations in A.

Grade of
Precipitation

Precipitation (mm/h) Probability (Class 1) Probability (Class 2)

Light rain ≤2.5 - -

Moderate rain 2.6–8.0 0.564 0.544

Heavy rain 8.1–15.9 0.243 0.236

Torrential rain 16.0–49.9 0.113 0.112

Heavy downpour 50.0–99.9 0.020 0.021

Rainstorm ≥100.0 0.005 0.006

Table 5. Comparison of AIC, BIC, LogLik results for Copulas in A.

TC Class Copulas Fitting θ AIC BIC LogLik

Class 1

Clayton 0.32 −6.96 −4.00 4.48

Frank 0.88 −0.66 2.31 1.33

Gumbel 1.15 −5.45 −2.48 3.72

Joe 1.26 −7.85 −4.89 4.92

Class 2

Clayton 0.23 −1.02 −1.63 1.51

Frank 0.95 −0.64 2.02 1.32

Gumbel 1.12 −1.00 −1.65 1.50

Joe 1.18 −0.67 −1.98 1.34
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Figure 5. Bivariate distribution of wind speed and precipitation in grid point A for TC Class 1 (a) and
Class 2 (b). The blue line is the linear regression fit, and the shading along the lines is the confidence
interval (95%).

Figure 6. The fitting results of the coupled hazards in A. (a) Joe Copula PDF for TC Class 1; (b) Joe
Copula CDF for TC Class 1; (c) Clayton Copula PDF for TC Class 2; (d) Clayton Copula CDF for
TC Class 2.

Based on the fitting Copula and marginal distribution of two single hazards, we
obtained the joint occurrence probability of double hazards in A. When the TC lands
in western Shenzhen (Class 1), the probability of the simultaneous occurrence of a rain-
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storm and a tropical depression in one hour during the TC process is P∩(10.8,16.0) = 0.021,
and the probability of occurrence of a rainstorm or tropical depression in one hour is
P∪(10.8,16.0) = 0.136. When the TC lands on the east side (Class 2), P∩(10.8,16.0) = 0.017,
P∪(10.8,16.0) = 0.125. That is, for grid point A, the TCs landing on the west side of Shenzhen
have a higher intensity than those landing on the east side. The results may help prepare
for events that have not yet been observed in the past but nonetheless can be expected in
the future.

4.3.3. The Performance of Hazard Assessment

Based on the fitting results above, we calculated descriptive statistics, including the
mean value, standard deviation (sd), coefficient of skewness (cs), and their relative error
(RE, in %) [41], to demonstrate the performance of the hazard assessment (Table 6). Here,
the descriptive statistics were calculated by Monte Carlo simulation, which consisted of
three steps: (1) generating 5000 random numbers obeying the fitted Copula functions,
(2) performing a computation of descriptive statistics using the random numbers, and
(3) averaging the results across 10 repetitions to eliminate randomness.

Table 6. The comparison of the fitting results in A.

TC
Classes

Statistics

Wind Speed Precipitation

Single
Factor
Fitting

Coupled
Factor
Fitting

Empi-
rical

Value

RE of
Single
Factor

RE of
Coupled

Factor

Single
Factor
Fitting

Coupled
Factor
Fitting

Empirical
Value

RE of
Single
Factor

RE of
Coupled

Factor

Class 1

Mean 4.32 4.31 4.32 0 0 7.72 7.86 6.42 0.20 0.22

sd 2.94 2.96 3.50 −0.16 −0.15 16.86 17.69 7.54 1.24 1.35

cs 1.36 1.49 2.07 −0.34 −0.28 4.84 4.79 1.71 1.83 1.80

Class 2

Mean 5.04 4.25 5.04 0 −0.16 7.75 7.37 6.48 0.20 0.14

sd 2.90 1.35 3.03 −0.04 −0.55 8.35 8.84 7.31 0.14 0.21

cs 2.15 2.93 1.99 0.08 0.47 3.05 2.41 1.29 1.36 0.87

Table 6 shows the fitting results of the single and coupled hazards. The descriptive
statistics of the single fitting factor were calculated from Equations (11)–(14). The descriptive
statistics of the fitting coupled factors were calculated from C(u, v; θ) of Joe Copula and
Clayton Copula in Table 1; here, θ is the bold fitting θ in Table 5, and u, v are taken from
Equations (11)–(14). The descriptive statistics of the empirical values were calculated from
preprocessed hazard datasets in Section 4.2. Then, we compared the RE of the descriptive
statistics between the empirical values and fitting values. Table 6 demonstrates that the
hazard assessment performed well because the REs for more than half of the statistics were
less than 30%. Comparing the wind speed and precipitation, we found that the fitting
REs of the precipitation are larger than those of the wind speed because the wind speed
values are mostly concentrated in a smaller range (approximately 0–14 m/s). While the
precipitation span is larger (approximately 0–40 mm/h), the extreme precipitation values
amplify the bias. Comparing the three statistics, we found that the REs of the mean are
small, while the REs of sd and cs are large. Because the statistics of the fitting values were
generated based on simulation data with randomness, the generated extreme values have
a smaller impact on the mean value but a greater impact on sd and cs.

It should be noted that the uncertainty of the meteorological gridded data, which
are interpolated based on the observational data from the weather stations, affects the
goodness of the fitting results.

4.4. The Spatial Heterogeneity of TC Hazards

Based on the analysis results of single and coupled hazard probabilities, we further
assessed the regional hazards for specific infrastructure risks referred to in Step 3 in Figure 1.
Using road traffic as an example, we analyzed the spatial distribution of TC hazards and
identified significant heterogeneity. We set the TC disaster threshold for road traffic based
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on the Technical Specification for Highway Travel Information Service as 10 mm/h for the
precipitation and 8 m/s for the wind speed.

For the 39 grid points in Shenzhen, we used Gamma distribution to fit the wind speed
and a lognormal distribution to fit the precipitation for the two TC classes. Then, we
calculated the probability of wind speeds over 8 m/s as P(west_wind) and P(east_wind)
and the probability of precipitation over 10 mm/h as P(west_rain) and P(east_rain). Figure 7
displays the spatial distribution.

 
Figure 7. Spatial distribution of the probability of a single hazard for road traffic. (a) P(west_wind);
(b) P(west_rain); (c) P(east_wind); (d) P(east_rain).

Figure 7a,c demonstrate that the spatial distributions of P(west_wind) and P(east_wind)
have a similar pattern regardless of the TC landing location. The east is larger than the west,
and the south is larger than the north because the water vapor and surface environment
are distinct between the sea and the land, and TCs cause much stronger winds in coastal
areas compared to inland areas. In Shenzhen, the TC-induced winds in the west have been
significantly weakened due to the blockage of the Pearl River estuary and Hong Kong. The
eastern region, particularly Dapeng District, lacks natural barriers and is frequently exposed
to severe winds.

Most of western Shenzhen and some of eastern Shenzhen have a higher probability
of experiencing rainfall over 10 mm/h when a TC arrives from the west (Figure 7b),
whereas small areas of eastern Shenzhen experience rainfall exceeding 10 mm/h when a
TC arrives from the east (Figure 7d). This higher probability is due to the terrain and TC
tracks. Shenzhen is generally in low hilly areas with mild terraces in between, with a high
elevation in the southeast and a low elevation in the northwest. When addressing TCs
that are landing from the west, Shenzhen’s western plains and rivers promote significant
rainfall, which gradually decreases until it hits gentle hills. The southeast mountains would
obstruct the flow while facing TCs arriving from the east. As a result, the elevation causes
the wind to be weaker and the rainfall to be heavier on the windward sides. Dense air flow
lines at the top and sides of the mountains cause the wind to blow faster. As a result, in the
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area east of Shenzhen, the likelihood of strong winds would decrease, while the likelihood
of heavy rain would change from south to north.

In conclusion, there is a significant spatial difference in the probability of a single
hazard affecting road traffic. The most widespread effects of TC-induced rainfall occurred
when it arrived from the west. The spatial heterogeneity of TC hazards is influenced by
multiple factors of the meteorological environment. These findings validate the necessity
and illustrate the importance of high-resolution hazard assessments, especially for accurate
urban disaster management.

Repeating the calculation process, we tested the fitting performance of Archimedean
Copulas for 39 grid points in Shenzhen. Joe Copula and Clayton Copula fit 27 and
12 grid points, respectively, for TCs landing in western Shenzhen (Class 1). For TCs
landing in eastern Shenzhen (Class 2), Clayton Copula had a good fitting performance on
the combined probability of 28 grid points, and Joe Copula fit well for 11 grid points. Most
of the hourly data in our dataset are on the low side, and Clayton Copula is sensitive to
changes at the lower tail of the variables. Joe Copula can describe the intense wind and
rain because it is more sensitive to changes in the upper tail of the variable. This higher
sensitivity indicates that in some areas, a TC-induced rainfall process may be accompanied
by extremely high winds and rainfall. We estimated the two double-hazard joint occurrence
probabilities for the two TC classes as P(west_and), P(west_or), P(east_and), and P(east_or)
based on the best fitted Copula for each grid. The spatial distributions are given in Figure 8.

Figure 8. Spatial distribution of the probability of coupled hazards for road traffic. (a) P(west_and);
(b) P(west_or); (c) P(east_and); (d) P(east_or).

Dapeng District of Shenzhen is the most vulnerable and in need of catastrophe pro-
tection, as indicated in Figure 8. When a TC arrives from the west, the probability of at
least one hazard affecting road traffic P(west_or) is approximately 12–46%. Comparing
the colors of Figure 8b,d, we find that P(west_or) is larger than P(east_or) in most areas
of Shenzhen, especially in western Shenzhen. The analysis results of grid point A show
that the wind–rain hazard of TCs arriving from the west is higher than that of TCs arriving
from the east, and this finding is also applicable to the other area in Shenzhen.
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5. Discussion

The trend in hazard assessment is toward high resolutions for refined risk analysis
and emergency management. Figure 5 shows the weak correlation between the hourly
wind speed and precipitation during the impact of TCs—this is surprising, but it also
makes sense. A typhoon may bring rainfall for several hours, but it is not always windy.
At a high temporal resolution, such as one hour, the TC-induced wind and precipitation
are not synchronous. In previous studies, a higher correlation has been found by using
maximum or cumulative values based on TC events or annual statistics. This finding
suggests that we need to consider the time scale differences of TC hazard assessment.
Here, we compared the Pearson correlation coefficients of wind and rain over various
time scales. Coefficients were used instead of Copulas because Copula fitting results may
vary for different time scales. The Pearson correlation coefficient represents the degree of
linear correlation between winds and rains. A larger correlation indicates a larger risk of
strong winds and heavy rains. Based on the filtered hourly data reaching three thresholds
in Section 4.2, we calculated the maximum wind speed and cumulative precipitation for
39 grid points at four time scales, including the hour, rainfall process, TC event, and year.
Here, a rainfall process is a set of continuous records with hourly precipitation data greater
than 0. We then obtained their Pearson coefficients.

Figure 9 shows a higher and more dispersed correlation when using the cumulative
data (rainfall process, TC event, and year scales) than the hourly data. We speculate that
the reason is that the temporal accumulation amplifies the compound hazard severity and
local spatial heterogeneity. If we evaluate the TC process hazards based on the overall
statistics, the higher correlation between multiple hazards would lead to a higher disaster
risk. This finding suggests that we need to pay attention to the time scale of TC hazard
analysis. For research on the impact of TCs on urban infrastructures that change rapidly,
such as urban road transportation, the evolution of a TC process matters. Hazard analysis
with a high temporal resolution can help improve the accuracy of determining how TC
processes affect urban infrastructures.

Figure 9. The box plot of wind–rain correlation at different time scales.

From the hazard assessment results based on the high-resolution TC-induced wind
rain data in Shenzhen, we found that the probability of the TC-induced wind speed and
precipitation displayed a significant spatial heterogeneity, which can be explained by the
TC tracks and terrain environment factors. The findings show that the TC hazard assess-
ment results in different regions are customized. However, the proposed framework can
be generalized.
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6. Conclusions

This study developed a high-resolution framework to assess the regional hazards of
wind and rain. This is a key step toward city-scale risk management and infrastructure
resilience analysis during TC processes.

The proposed framework was applied to Shenzhen, China. Based on the hazard
assessment results, we identified a significant spatial heterogeneity of TC hazards for urban
traffic within the city and addressed the importance of high-resolution hazard assessment
in urban disaster management. The southeast coast of Shenzhen is the most likely to be
affected by TCs, and disaster prevention efforts should be increased. The hazard of TCs
arriving from the west is greater than that of TCs arriving from the east, mostly due to the
geographical location and terrain environment.

Our framework has the following three advantages: (1) the framework integrates
single hazards and coupled hazards at the city level and is combined with joint statistical
characteristics of TC hazards and local environmental features; (2) the fine-tuned K-means
clustering algorithm provides a simple method to cluster TC tracks of various shapes and
lengths and maintains the characteristics of the original data; and (3) the Copula-based
joint probability model provides considerable flexibility for additional multiple hazards
and can also be expanded to the joint probability distribution of more dimensions.

There are also certain limitations to this study. When studying joint probability based
on Copula theory, we need to select the marginal distribution function and joint probability
distribution. The outcomes of the joint probability distribution can vary with different
models and fitting methods. Discussing the uncertainty of the results in Copula-based
hazard analysis is worthwhile. Several extensions to the methodology are anticipated in
our future work. We will analyze historical data based on a larger time scale and more
dimensions to improve the fitting performance.

Our study can better reveal the interaction between a TC system and the physical
environment of Shenzhen. The expected assessment outputs can be used for informed
decision making and as a reference for disaster risk reduction.
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433735@mail.muni.cz (J.Ř.); dobro@sci.muni.cz (P.D.); ladkar@sci.muni.cz (L.Ř.)
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Abstract: The paper investigates weather-related fatalities over the territory of the Czech Republic in
the 100-year period from 1921 to 2020. The unique database, created from documentary evidence
(particularly newspapers), includes, for each deadly event, information about the weather event, the
fatality itself, and related circumstances. A total of 2729 fatalities were detected during the 100-year
period and were associated with various weather categories including frost (38%), convective storms
(19%), floods (17%), fog (11%), snow and glaze ice (8%), windstorms (5%), and other inclement
weather (2%). A detailed analysis was performed for each individual category. Fatalities occurred
throughout the country, with a main maximum in winter (January) and a secondary maximum in
summer (July), corresponding to the occurrence of extreme weather. Deaths were mainly interpreted
as direct, caused by freezing to death/hypothermia or drowning, and occurred in the afternoon and
at night in open countryside or on rivers and water bodies. Males outnumbered females, and adults
outnumbered children and the elderly. Hazardous behavior was more frequent than non-hazardous
behavior among victims. The information on fatalities and the structure of their characteristics
strongly reflects historical milestones of the country, political and socioeconomic changes, as well as
changes in lifestyle. Although important weather effects were observed on the deadliest events, the
character of the data did not allow for clear evidence of the effects of long-term climate variability.

Keywords: weather-related fatality; fatality characteristics; documentary data; flood; windstorm;
convective storm; snow; glaze ice; frost; fog; inclement weather; Czech Republic

1. Introduction

Meteorological and hydrological extremes cause great material damage and high
numbers of associated injuries and fatalities worldwide every year. In Europe, the period
from 1970 to 2019 experienced 1672 disastrous events, with economic damage calculated at
US$476.5 billion, attributed particularly to floods (38% and 36%, respectively) and storms
(32% and 44%, respectively). Whereas the number of related fatalities achieved 9953 in
the three decades between 1970 and 1999, in the two following decades, it rose to 82,919
and 66,566 fatalities, respectively, with an absolutely dominant role of heat waves [1]. For
the Czech Republic, the recorded 1619 weather-related fatalities in 1961–2020 represent a
lower estimate [2]. According to the European Severe Weather Database (ESWD), selected
weather extremes in Central Europe (avalanche, severe wind, tornado, lightning, heavy
rain) have been responsible for 799 fatalities in 2010–2020 [3].

Fatalities related to extreme weather are a frequent topic of research, covering different
time periods (usually a few decades) and scales (from local over regional to global). Partic-
ularly high attention has been devoted to flood fatalities (e.g., [4–8]), sometimes together
with landslides (e.g., [9–11]), based on different databases, such as the Euro-Mediterranean
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database—FFEM-DB [12,13] or the pan-European database—HANZE [14]. Many papers
have also dealt with fatalities related to heat waves (e.g., [15–18]), cold waves (e.g., [19])
or both (e.g., [20,21]). Fatalities during convective storms were analyzed with respect to
lightning strikes (e.g., [22–25]) or tornadoes (e.g., [26]). Even daily mortality in connection
with drought has also been analyzed [27].

Regarding the Czech Republic, the highest attention has been given not only to heat-
wave fatalities (e.g., [28–31]), but also to cold-wave fatalities (e.g., [32,33]). Brázdil et al. [34]
evaluated the potential of documentary evidence for studying fatalities of hydrological
and meteorological events. The systematic collection of weather-related fatalities was
reflected in their analysis for the periods of 2000–2019 [35] and 1961–2020 [2]. Vehicle
accidents accompanied by severe weather for the period of 1979–2020 were also investigated
separately [36]. Czech flood-related fatalities from 1980 became part of the FFEM-DB [5,13].

The aim of the recent paper is to present a unique 100-year chronology (1921–2020 CE)
of weather-related fatalities in the Czech Republic, explaining their spatiotemporal vari-
ability and the features/circumstances of related deadly events, taking into account
weather/climatic, environmental, and socio-political situations that strongly influence
not only the occurrence of these deadly events but also the communication of information
about them.

2. Materials and Methods

2.1. Data
2.1.1. The Czech Republic

The Czech Republic (further as CR) was formed on 1 January 1993 following the split
of Czechoslovakia into the Czech and Slovak republics. It is located in Central Europe,
covering an area of 78,866 km2. Historically, its territory consisted of Bohemia in the
western part and Moravia and southern Silesia in the eastern part (Figure 1a). The territory
comprises various geographic units, from lowlands to mountains (Figure 1b), with an
average altitude of 390 m a.s.l. (with an altitudinal range from 115 to 1603 m). The
mean areal air temperature is 7.6 ◦C, and the total precipitation is 677 mm (for the period
1921–2020). In the long-term context, in addition to large interannual and interdecadal
variability, temperatures have experienced a statistically significant increasing (warming)
linear trend (0.21 ◦C/10 years, p < 0.01), whereas precipitation totals have shown a non-
significant decreasing trend (−2.2 mm/10 years) (Figure 1c). Based on the Köppen climatic
classification, most of the CR belongs to the category of temperate broadleaf deciduous
forest (Cfb), whereas the remaining parts are attributed to a boreal climate, particularly Dfb
and less Dfc [37].

Figure 1. Cont.
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Figure 1. Basic information about the Czech Republic: (a) location in Central Europe and historical
parts; (b) physical-geographic map; (c) fluctuations and linear trends in mean areal annual tem-
peratures and precipitation totals in 1921–2020 smoothed by 10-year Gaussian filter (data in [38],
extended); (d) age pyramids for 1 July 1921, 31 December 1971, and 31 December 2020 (data from [39]).

The number of inhabitants in the CR slightly decreased between 1921 and 1971 (from
9,966,856 to 9,830,602), and then grew until 2020 (10,701,777). The proportion of females
decreased from 52.1% to 50.7%. The age proportion was characterized by an aging popu-
lation (Figure 1d), with the proportion in the 65 years and older category growing from
6.2% in 1921 to 20.2% in 2020, whereas the proportion in the child category (0–14 years)
decreased from 27.8% in 1921 to 16.0% in 2020. The proportion of adults (15–64 years) re-
mained relatively stable (66.0%, 66.6%, and 63.8%, respectively). There was also a growing
proportion of city dwellers, who comprised 73.1% of the population in 2020 [39].

2.1.2. Fatality Data

Different types of documentary evidence can be used to extract data on fatalities
attributed to severe weather, represented particularly by:

(i) Newspapers and magazines

Weather-related fatality reports for the 1921–2020 period were systematically collected
from three long-term printed newspapers: Lidové noviny 1921–1950, Rudé právo (Právo)
1945–2020, and Svobodné slovo 1954–1997 (Figure 2). Based on digitized versions of other
newspapers, they were non-systematically complemented by reports from Venkov and
Národní listy before 1945 and by Lidová demokracie, Rovnost, and other local newspapers after
1946. The printed version of Právo and its internet archives Novinky.cz were systematically
excerpted based on the online monitoring method according to selected keywords for
1991–2020. Since 1998, the additional newspaper internet archive iDNES.cz was also
systematically investigated. For example, Rudé právo [40] reported a fatal event from 12
February 1975: “Two boys drowned in the water reservoir at Větřní, the Český Krumlov district
[for the location of places see Figure A1 in Appendix A]. Nine-year-old Ludvík and his brother,
two years younger, rode a bicycle on the ice, which collapsed under them”. During the continuing
frosty weather from the beginning of 2010, the newspaper Právo [41] reported two fatalities
in Prague: “Police drove out yesterday [24 January] at around noon to Makovská street in Prague
6-Řepy, where there was a dead man. “Around one hour later we went to the other [man], who was
found also dead in the area of a former kindergarten in Radlická street at [Prague-] Jinonice”, said
the police spokesperson Eva Miklíková. From investigations so far it is most probable that they were
homeless, and according to the preliminary doctor’s report, they died of hypothermia”.

328



Water 2023, 15, 1965

Figure 2. Temporal coverage of basic newspapers used and major historical and socio-political events
in the Czech Republic: 1918—establishment of Czechoslovakia, 1939–1945—the Second World War,
1948—communist coup, 1968—“Prague spring”, 1989—“velvet revolution”, 1993—the Czech Republic
establishment, 2004—EU membership.

(ii) Narrative sources

After 1918, keeping chronicles of villages and towns became a broad praxis in Czechoslo-
vakia. In the annual description of the life in a particular settlement, notes about the loss
of lives related to severe weather appeared. For example, the memorial book of Karlovice
(north Bohemia) reported torrential rain on the night of 29 May 1941 and subsequent
flash floods in the broader surroundings that a woman at Loučky and a lieutenant of the
governmental army at Turnov drowned during the rescuing work [42]. The chronicle of
Radotín (central Moravia) described a tragic event from 15 August 1962 [43]: “On 15th
August in the late afternoon, seven children were bathing in a small pond at Radvanice not far from
Přerov. After the sudden onset of a thunderstorm, they looked for shelter and found it in a nearby
unfinished waterwork object of the local cooperative farm. Around 1900 [CET—Central European
Time], a lightning strike hit this object, and six children, four boys, and two girls were killed. Only
one boy with severe burns survived”.

(iii) Climatological records

In some cases, sheets of climatological observations at the standard meteorological
stations of the Czech Hydrometeorological Institute may contain short notes of observers
or clippings from newspapers concerning fatalities during observed weather events. For
example, the observer at the Polička station (east Bohemia) added on 6 September 1934
that a lightning strike killed the farmer Andrlík at Nedvězí during the raking of hay [44].
The climatological sheet of the Nový Jičín station (the northeast of the CR) reported a
thunderstorm with 60.4 mm of precipitation, flash floods in the region, great damage, and
two drowning people on 18 August 1958 [45].

(iv) Parliamentary proposals

The Czechoslovak digital parliament library [46] contains proposals from some deputies
of the parliament on sets of measures to help people who have been affected by natural
disasters (e.g., flash floods). However, fatalities reported there were expressed rather
generally, and more detailed information has to be searched elsewhere (e.g., in newspapers).
As an example of detailed information, a proposal connected with damaging cloudburst
and flash flood on 9 May 1927 in the Třebíč region (southwest Moravia) reported three
casualties [47]: “ . . . A torrent of water a meter deep swept away the family of the cooper Štancl
when they were returning from the fields; Štancl’s wife Antonie and their two small children, aged
three and a half and five and a half, were drowned. Their corpses were washed away by the rapid
torrent and found only on the morning of the subsequent day [10 May]”.
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(v) Professional papers and reports

Information about weather-related fatalities may occur in special reports devoted to
extreme events or in professional papers investigating some particular problems. To such
papers can be attributed, for example, the study by Polách and Gába [48], who described in
detail the history of (flash) floods in the regions of Šumperk and Jeseník in north Moravia,
giving also particular attention to their damaging consequences, including fatalities. For
example, they mentioned the death of a father and his son in Šumperk-Temenice (north
Moravia) on 13 July 1984: they tried to take out a car from a flooded garage after a torrential
rain but were killed in the water by electric current from a damaged cable.

(vi) Memorials

Memorials were created to remember particular events and their victims. They usually
contain basic information about the event and its date, names of affected people, and also
the year of their birth. Frequent are, for example, “memorials of mountain victims” with
the list of related fatalities with brief information on how they died (e.g., for the Krkonoše
Mts. [49] or for the Jeseníky Mts. [50]) or memorials devoted to the deaths of individual
people by lightning strike, flood, freezing to death, aircraft crashes, and other causes. For
example, an inscription on the memorial at Třemošná-Záluží (west Bohemia) explains
death during a thunderstorm [51]: “Let this stone remember them who will come after us that on
22 June 1959, between 1500 and 1600 [CET] in the afternoon, Šustrová Emilie, Marková Anežka,
Čechurová Růžena, [and] Pešková Jarmila were tragically killed by lightning during a sudden and
sharp [thunder]storm at this place. Honor to their memory!” A short description of a particular
memorial can be expanded by more detailed chronicles or newspaper reports, as is the case
for many such memorials in the region of the Jizerské hory Mts. in North Bohemia [52].

(vii) Internet sources

Great attention on the internet has been devoted to aircraft crashes. In very detailed
records of such events involving military or civilian airplanes, based on the results of
investigation commission reports, it is possible to distinguish the role of inclement weather
patterns in these accidents. This type of information in the CR has been systematically
documented since 1918 [53,54]. A similar type of information is available for train acci-
dents [55].

2.2. Methods
2.2.1. Types of Severe Weather

Each deadly event is the result of a combination of different effects and circumstances
that ultimately lead to the loss of human life. The course of the weather or the occurrence
of some severe weather phenomena, which do not necessarily have characteristics of
extremes in the statistical sense, may be one of the driving or contributing factors resulting
in deaths. Since we are dealing with fatalities that can be attributed in some way to (severe)
weather, the variety of weather circumstances of such fatalities is divided into the following
weather categories:

(i) Flood

Fatalities attributed to floods usually occur when people are drowned and swept away
by strong water torrents or killed in collapsed buildings or objects. Two types of floods
are taken into account. The first type includes floods arising from single-day or multi-day
rainfall (rainy floods), sudden melts of deep snow cover (snow floods), and a combination
of snow-melt and rainfall, sometimes even accompanied by ice jams on rivers (mixed
floods) on larger rivers. The onset of flood-waves in these cases can start relatively slowly,
and high-water levels have a longer duration. The second type are flash floods, which have
a sudden onset and shorter duration and follow cloudbursts or torrential rain in any area,
usually occurring on smaller water streams but not necessarily joining with them.
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(ii) Windstorm

Fatalities in this category are associated with strong winds or wind gusts that cause
trees or branches to fall, walls to collapse, or buildings or other objects to collapse. Meteo-
rologically, they are associated with windstorms that originate as a result of existing large
horizontal pressure gradients. Their duration ranges from a few hours to several days.

(iii) Convective storm

The development of cumulonimbus clouds is associated with several severe phe-
nomena, particularly lightning, strong winds (such as squalls, tornadoes, or downbursts),
hailstorms, or downpours. Fatalities attributed to this category are divided into those caused
by lightning strikes, strong winds (same deadly reasons as mentioned in point (ii)), and
thunderstorms in general (if corresponding effects were not specified in sufficient detail).

(iv) Snow and glaze ice

This category includes fatalities associated with a large amount of snow or the occur-
rence of glaze ice. Related fatalities in this category are divided into snow-related deaths
(e.g., death during the cleaning of streets and roads, removing snow from roofs, accidents
while sledding), avalanche-related deaths in mountain regions, and deaths caused by falls
on slippery ground due to glaze ice.

(v) Frost

Fatalities in this category are related either to cold spells with severe frosts, when
people are freezing to death or dying of hypothermia during the night spent outside
buildings or resulting from activities undertaken on insufficiently frozen water bodies (such
as ice skating, sliding on ice, or walking across it), with victims subsequently drowning
after breaking through the ice.

(vi) Fog

Fatalities in this category are related to situations with significantly decreased visibility
caused by water droplets or snow particles in the air. This concerns airplane crashes,
particularly during landing in fog or flight in low clouds when pilots lose spatial orientation.
Deadly train accidents in dense fog also fall into this category.

(vii) Other inclement weather

This category includes less frequently occurring fatalities that occurred in situations
not attributable to any of the preceding six categories, where the reason for deaths related
to hot weather (heatwaves), landslides, rime, rain events, or during inclement weather
without closer specification.

2.2.2. Database of Fatalities

The Czech database of weather-related fatalities follows the concept presented by
Petrucci et al. [5,12] and maintains the same structure with slight changes. This database
has been used in two previous papers [2,34] and includes the following information:

(i) date of the fatal accident or event;
(ii) locality (i.e., the place of the fatal accident or event);
(iii) type of weather category (see Section 2.2.1);
(iv) time (hour) of the day when the fatal accident or event occurred (morning

0400–0800 CET, forenoon 0800–1200 CET, afternoon 1200–1800 CET, evening
1800–2200 CET, night 2200–0400 CET);

(v) name of the casualty;
(vi) gender of the casualty (male, female);
(vii) age of the casualty (exact age in years or estimated age: child 0–15 years, adult

16–65 years, elderly 66 years and older);
(viii) cause of death (drowning, falling tree/branch, traffic (vehicle/plane/train) accident,

underlying health reason, freezing to death/hypothermia, lightning strike, other reason);
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(ix) place of death (river/lake/reservoir/bank, within a building, road, open space in a
built-up area, countryside, other places);

(x) type of death (direct—deaths caused by weather phenomena, e.g., drowning due to
water torrent or collapse of a building; indirect—deaths during activity related to
weather phenomena, e.g., health collapse during saving activities);

(xi) behavior of the casualty or culprit of a deadly event (non-hazardous, hazardous);
(xii) source of information.

Not all data in the above points (i)–(xi) were available or clearly interpretable for each
fatality. In such cases, the related information was taken as “unknown”.

2.2.3. Statistical Analysis

The database of weather-related fatalities in the CR for the 1921–2020 period was
used for all analyses done in this paper. Figures presenting long-term fluctuations in
annual frequencies of fatalities, their annual variations, spatial distribution, and selected
characteristics that explain basic circumstances joined with fatality events according to
Section 2.2.2 were prepared for every particular weather category and all weather categories
together. Long-term fluctuations in annual frequencies of fatalities were not complemented
by calculations of linear trends, which would be misleading with respect to the temporal
distribution of data (see Section 4.1 for more details).

For the 100-year series of temperature and precipitation in Figure 1c, their fluctuations
were smoothed by a 10-year Gaussian filter and complemented by linear trends. The
non-parametric Theil–Sen method, which is more robust to outliers in time series, was
used to estimate parameters of linear trends [56,57]. The significance of linear trends was
evaluated by applying the non-parametric Mann–Kendall test [58,59].

3. Results

3.1. Fatalities in Individual Weather Categories
3.1.1. Floods

A total of 471 people died during floods in the CR between 1921 and 2020, of which
194 fatalities (41.2%) were attributed to flash floods. The deadliest event was a rainy flood
in early July 1997 in Moravia and Silesia [60], which claimed 61 direct and indirect fatalities
(63 fatalities for the entire year of 1997) (Figure 3a). The most tragic flash flood was on 9 June
1970 at Šardice in southern Moravia, where a lignite mine collapsed due to a water torrent,
resulting in 34 fatalities ([34]; 52 fatalities for the entire year of 1970). Of several important
floods that occurred after 2000, the August 2002 flood in Bohemia [61] claimed 17 fatalities
(a total of 22 fatalities in 2002), whereas in other flood years of 2009, 2010, and 2013 [62–64],
the number of deaths gradually achieved 16, 19, and 18 fatalities, respectively. In ten other
years of the 100-year series, the annual death toll was ≥10 fatalities, but in 32 years, no
fatalities were recorded. In terms of annual variations, the highest numbers of fatalities
occurred in July (28.0% with dominance of floods) and in June (27.6% with dominance of
flash floods) (Figure 3b). The spatial distribution of flood fatalities shows, as expected, their
concentration around larger rivers, as well as around small water streams (Figure 3c). In
the context of the entire country, the fatality region in the northeastern part of the CR is
particularly well expressed, as well as other similar regions in South Moravia. Drowning
(80.3%), as expected, was identified as the most frequent reason for death, but only 62.0%
of fatalities were attributed to the place category “river/lake/reservoir/bank” (14.6% died
within collapsing buildings) (Figure 3d,f). Fatalities from floods were mainly direct victims
(89.0%) (Figure 3e). Whereas for nearly half of the fatalities the part of the day was not
specified, for 22.3% of them, it was in the afternoon (Figure 3g). In other fatality categories,
distributions were males 68.2% to females 24.6%, adults 47.8% to children 18.7% and elderly
11.0%, and non-hazardous behavior of victims 49.5% to hazardous 36.1% (Figure 3h–j).
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Figure 3. Characteristics of flood-related fatalities in the Czech Republic during the 1921–2020 period
(1—flood, 2—flash flood): (a) long-term fluctuation; (b) annual variation (J—January, F—February,
. . . , D—December); (c) spatial distribution (15 fatalities lack exact locations); (d) cause of death;
(e) type of fatality; (f) place of death; (g) part of the day; (h) age (years); (i) gender; (j) behavior.
Symbols and abbreviations: A—drowning, B—tree/branch fall, C—traffic (vehicle/plane/train) acci-
dent, D—underlying health reason, E—freezing to death/hypothermia, F—lightning strike, G—other
reason; Di—direct death, ND—non-direct death; a—river/lake/reservoir/bank, b—within a building,
c—road, d—open space in built-up area, e—open countryside, f—other place; mo—morning, fn—
forenoon, an—afternoon, ev—evening, ni—night; M—males, F—females; Ha—hazardous behavior,
NH—non-hazardous behavior; X—unknown.

3.1.2. Windstorms

A 100-year chronology of deaths associated with windstorms includes 128 fatalities.
Whereas one-third of all years had only one or two fatalities, five or more occurred in only
eight years (Figure 4a). As for significantly damaging windstorms that affected Central
Europe, six fatalities were attributed to the Kyrill storm on 18–19 January 2007 [65] and four
to the Herwart storm on 29 October 2017 [66]. The annual variation shows two maxima
of fatalities: the primary maximum in March (14.1%), slightly higher than in February
(13.3%), and the secondary maximum in November (12.5%), slightly higher than in October
(10.9%) (Figure 4b). As for the spatial distribution of windstorm-related fatalities, a rather
random distribution of them across the country is characteristic, with some concentration
of higher casualties in Prague and its surroundings and, to a lesser extent, also in Brno
and its surroundings (Figure 4c). The majority of fatalities (82.0%) were classified as
“direct” victims (Figure 4e). People died especially due to falling trees or branches (39.8%),
but fatalities in traffic accidents or due to other reasons were also common (21.9% each)
(Figure 4d). The place of deaths was mainly open spaces in built-up areas (28.9%) or in
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open countryside (27.3%), followed by roads (18.8%) (Figure 4f). One-third of deadly
events occurred in the afternoon (34.4%), but for a higher proportion of fatalities (44.5%),
the part of the day was not specified (Figure 4g). In other categories of fatalities, males
predominated (80.5%, females 17.2%), as did adults (61.7%, but 24.2% unknown), and their
behavior was mostly non-hazardous (73.4%, hazardous 23.4%) (Figure 4h–j).

Figure 4. Characteristics of windstorm-related fatalities in the Czech Republic during the 1921–2020
period: (a) long-term fluctuation; (b) annual variation; (c) spatial distribution (four fatalities lack
exact locations); (d) cause of death; (e) type of fatality; (f) place of death; (g) part of the day; (h) age;
(i) gender; (j) behavior. For symbols and abbreviations see Figure 3.

3.1.3. Convective Storms

A total of 530 fatalities occurred during the 1921–2020 period, associated with convec-
tive storms. These fatalities were divided into 371 (70.0%) due to lightning, 108 (20.4%)
due to strong winds, and the remaining 51 (9.6%) during thunderstorms without further
specification. Most fatalities occurred between 1921–1939 (287 fatalities, i.e., 54.2%) and
1962–1972 (84 fatalities, i.e., 15.8%) (Figure 5a). The highest number of fatalities, 48, was
recorded in 1929, primarily connected with an extremely damaging convective storm with
extreme winds on 4 July [67]. There were 32 fatalities in 1925 and ≥20 fatalities in 1927,
1928, 1930, and 1937. A total of 31.1% of fatalities occurred in July, followed by June (24.3%),
May (19.6%), and August (17.5%). In these four months combined, 92.5% of fatalities took
place (Figure 5b). The spatial distribution of convective storm-related fatalities does not
show any systematic features, and appears rather random, despite the existence of some
small areas where no deaths were recorded (Figure 5c). “Direct” deaths comprised 84.3%
of all fatalities (Figure 5e). The dominant proportion of lightning-related fatalities was
reflected in 68.9% of fatalities due to lightning strikes, in open countryside (46.8%) or open
spaces within built-up areas (17.9%), and occurring particularly in the afternoon (26.0%,
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but for 51.9% of fatalities, the time was unknown) (Figure 5d,f,g). Male fatalities were more
than double those of females (63.6% compared to 30.0%), and adults represented the most
affected category (41.9%), despite a high proportion of unknown cases (46.0%) (Figure 5h,i).
A total of 57.7% of fatalities were attributed to non-hazardous behavior (26.0% hazardous)
(Figure 5j).

Figure 5. Characteristics of fatalities related to convective storms (1—lightning strike, 2—strong
wind, 3—during a thunderstorm) in the Czech Republic during the 1921–2020 period: (a) long-term
fluctuation; (b) annual variation; (c) spatial distribution (42 fatalities lack exact locations); (d) cause of
death; (e) type of fatality; (f) place of death; (g) part of the day; (h) age; (i) gender; (j) behavior. For
symbols and abbreviations see Figure 3.

3.1.4. Snow and Glaze Ice

In the period of 1921 to 2020, there were 213 fatalities associated with this category,
with 140 fatalities due to snow (65.7%), 41 fatalities due to glaze ice (19.3%), and 32 fatalities
due to avalanches (15.0%). A maximum of 31 fatalities was recorded in 1945 (two air
crashes in snowstorms [53,54]), despite the end of the Second World War and a general
drop in the number of reports in newspapers that year (Figure 6a). In the remaining
years, 12 people died in 1929, 9 in 1962 and 2006, and only 1 or 2 fatalities were recorded
in 46 years. The annual distribution shows a clear dominance of the months December
through March (92.5% combined), with the maximum in January (32.9%), followed by
February (31.9%) (Figure 6b). The spatial distribution of fatalities shows a rather irregular
pattern, with increased numbers of casualties in the northwestern and northern Bohemia
regions. Other clusters are apparent in eastern Bohemia and central Moravia (Figure 6c).
As for avalanche-related fatalities, they were limited exclusively to the Krkonoše Mts.
in northern Bohemia, the Jeseníky Mts. in the northern part, and the Moravskoslezské
Beskydy Mts. in the northeastern part of Moravia and Silesia. Fatalities attributed to
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snow and glaze ice were characterized by a higher proportion of indirect deaths (62.4%
indirect to 37.6% direct) and comparable hazardous and non-hazardous behavior (50.2%
hazardous to 48.4% non-hazardous) (Figure 6e,j). The cause of death was mainly due to
other reasons (57.3%), followed by traffic accidents (29.6%) (Figure 6d). People died mainly
in open countryside (52.1%), but also in open spaces in built-up areas (18.3%) (Figure 6f).
Despite comparable proportions of fatalities in the afternoon and at night (16.0% and 17.4%,
respectively), the time of day was not specified for 44.6% of fatalities (Figure 6g). A total of
77.0% of fatalities were male, whereas 18.8% were female (Figure 6h). The number of adult
fatalities was comparable to unknown (39.4% to 38.0%), but a relatively high proportion of
child deaths occurred (16.9%) (Figure 6i).

Figure 6. Characteristics of fatalities related to snow and glaze ice (1—snow, 2—avalanche, 3—glaze
of ice) in the Czech Republic during the 1921–2020 period: (a) long-term fluctuation; (b) annual
variation; (c) spatial distribution (four fatalities lack exact locations); (d) cause of death; (e) type
of fatality; (f) place of death; (g) part of the day; (h) age; (i) gender; (j) behavior. For symbols and
abbreviations see Figure 3.

3.1.5. Frosts

A total of 1031 fatalities in the 1921–2020 period were associated with the frost category,
of which 758 fatalities (73.5%) were attributed to cold spells and 273 fatalities (26.5%) to
accidents on ice. The maximum of 63 fatalities was recorded in 2010, followed by 44
in 2012 and 43 in 1929 (as a result of the coldest winter of 1928/29 in the past century—
e.g., [34,68]) (Figure 7a). The annual distribution shows the highest proportion of fatalities in
January (30.8%), followed by February (25.2%) and December (25.0%), i.e., 81.0% combined
(Figure 7b). Frost-related fatalities densely cover the entire country with some spots in and
around large towns and cities (e.g., Prague, Plzeň, Brno, Olomouc, or Ostrava) (Figure 7c).
However, for some relatively larger areas in western and south-east central Bohemia, as
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well as in a belt located easterly of the Jeseníky Mts., no such fatalities were found. Nearly
all frost fatalities (99.1%) were interpreted as “direct” (Figure 7e). The cause of death in
this category has been split between freezing to death/hypothermia (72.8%) and drowning
(26.6%) during breaking of ice with people on water bodies (Figure 7d). Nearly equal
proportions of fatalities were attributed to three places of death: open spaces in built-up
areas (29.1%), open countryside (28.3%), and river/lake/reservoir/bank (28.1%) (Figure 7f).
A quarter of frost fatalities occurred during the night (25.3%), but the majority of them were
not attributed to any part of the day (60.1%) (Figure 7g). In other fatality characteristics,
males prevailed compared to females (78.8% to 17.1%) as well as adults (46.3%, but 24.6% in
the child category) (Figure 7h,i). Hazardous behavior of fatalities was dominant compared
to non-hazardous fatalities (73.0% to 10.7%) (Figure 7j).

Figure 7. Characteristics of frost-related fatalities (1—cold spell, 2—ice) in the Czech Republic
during the 1921–2020 period: (a) long-term fluctuation; (b) annual variation; (c) spatial distribution
(19 fatalities lack exact locations); (d) cause of death; (e) type of fatality; (f) place of death; (g) part of
the day; (h) age; (i) gender; (j) behavior. For symbols and abbreviations see Figure 3.

3.1.6. Fog

A total of 293 fatalities were associated with very poor visibility, i.e., included under
fog. This category was represented particularly by deaths during air crashes, involving
both military and civilian aircraft. This was connected with a loss of pilot orientation
due to poor visibility in dense fog or low clouds, causing uncontrollable aircraft to crash
into the ground. The deadliest crash happened on 30 October 1975, at 09:20 CET, when
a Yugoslavian McDonnell Douglas DC-9 airplane, preparing to land during fog at the
Prague-Ruzyně airport, crashed into the ground in a cottage colony above the River Vltava
valley in Prague-Suchdol (Figure 8a). The crash claimed 79 lives and caused 41 injuries
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among airplane passengers, mostly Czech tourists returning from holiday, and additionally,
an older woman in the cottage colony [69]. Following the 1975 event, two other years,
1945 and 1962, each had 16 fatalities. In 1945, this included eight fatalities of two Soviet
military planes, which crashed on 18 July in dense fog while flying to Moscow for a military
parade [54]. Another Czech aircraft crashed on 14 December when eight men died (ibid.).
In 1962, 13 people died and 29 were seriously injured when an Il-14M airplane, operated by
Czechoslovak airlines and flying on 10 October from Košice (Slovakia) to Prague, crashed
around 10:00 CET in dense fog on a hill (280 m a.s.l.), 6 km before the intermediate landing
at Brno airport [70].

Figure 8. Characteristics of fog-related fatalities in the Czech Republic during the 1921–2020 period:
(a) long-term fluctuation; (b) annual variation; (c) spatial distribution; (d) cause of death; (e) type
of fatality; (f) place of death; (g) part of the day; (h) age; (i) gender; (j) behavior. For symbols and
abbreviations see Figure 3.

The above-mentioned major crashes, along with other similar events, influence all
other characteristics of fatalities, with a high proportion of unknown cases. In the annual
distribution (Figure 8b), proportions of fatalities in autumn months, with the most frequent
occurrence of fog during the year, were the highest: October 44.4%, November 11.3%, and
September 9.2%. Spatial distribution of fatalities indicates rather places of aircraft crashes
close to airports in Prague or Brno (here particularly places located south-easterly from
the town) (Figure 8c). The highest proportions of fatalities in other characteristics consist
of indirect deaths (100.0%), aircraft and train crashes (98.6%), open countryside (90.4%),
forenoon (51.5%), males (63.8%, but 33.1% unknown), adults (33.8%, but 63.8% unknown),
and non-hazardous behavior (78.2%) (Figure 8d–j).
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3.1.7. Other Inclement Weather

This category includes fatalities that could not be assigned to any of the preceding six
weather categories. It includes 63 fatalities attributed to hot weather (41.3%), inclement
weather without specification (23.8%), landslides (11.1%), and rime (9.5%). The remaining
portion of 14.3% fatalities includes accidents on wet ground during downpour or heavy
rain. Fatalities attributed to hot weather appeared particularly after 2000, with a maximum
of nine fatalities in June–July 2006. Inclement weather was often reported in the case of
airplane accidents. For example, on 30 November 1952, a military airplane transported the
print matrix of the communist newspaper Rudé právo from Prague to Brno. As the airplane
of Czechoslovak airlines did not fly due to bad weather, the military plane crashed into a
hill at 20:59 CET during landing, and all five men onboard died [54,71]. Three boys died in
a tent on 5 July 1969, at Sivice (easterly from Brno), when a part of a slope with a brick wall
collapsed in the morning (after strong rain) [72–74].

3.2. Synthesis of Weather-Related Fatalities

A total of 2729 fatalities associated with severe weather were found in the 1921–2020
period in the CR. The highest annual numbers in this 100-year chronology reflect the
deadliest events mentioned already in the individual weather categories: 110 fatalities in
1929, 106 in 1975, 95 in 2010, 86 in 1997, and 72 in 1970 (Figure 9a). Based on individual
decades, the highest numbers were recorded in 2001–2010 (450 fatalities, i.e., 16.5%) and
1921–1930 (434, i.e., 15.9%), the lowest in 1951–1960 (106, i.e., 3.9%) and 1981–1990 (73, i.e.,
2.7%). Fatality proportions according to individual weather categories were as follows:
frosts 37.8%, convective storms 19.4%, floods 17.3%, fog 10.7%, snow and glaze ice 7.8%,
windstorms 4.7%, and other inclement weather 2.3%. The annual variation of fatalities
shows two maxima: the main maximum in January with 15.5% (winter 40.2%) and the
secondary in July with 12.2% (summer 29.3%) (Figure 9b). Spatial distribution of fatalities
shows their dense distribution over the country with the higher coverage particularly
in the eastern part of the CR, as well as in northwestern, northern, and central Bohemia
(Figure 9c). Deaths were interpreted as direct for 77.0% of fatalities and as indirect for
22.4% (Figure 9e). Freezing to death/hypothermia (27.6%) and drowning (25.5%) were the
most frequent reasons, followed by traffic accidents (16.3%) and lightning strikes (13.4%)
(Figure 9d). People died particularly in open countryside (36.1%), followed by categories
river/lake/reservoir/bank (23.2%) and open spaces in built-up areas (19.0%) (Figure 9f).
The critical parts of the day were in the afternoon (16.9%) and night (14.3%), but for half of
the fatalities (50.9%), corresponding information was missing (Figure 9g). Males accounted
for 72.3% of all fatalities, whereas females accounted for 19.4% (Figure 9i). Adults had the
highest proportion according to age with 44.7%, but for 32.1% of fatalities, this information
remained unknown; more than double the number of deaths occurred in the child category
compared to the elderly (16.0% to 7.2%) (Figure 9h). Hazardous behavior in deadly events
was higher than non-hazardous behavior (46.9% to 40.7%) (Figure 9j).

Figure 9c characterizes the distribution of fatalities across the territory of the CR
according to individual places, whereas Figure 10 shows a summarized distribution of
their numbers for the 77 existing districts. The highest number of 244 fatalities (8.9% of
all of them) was recorded in the capital, Prague, which has the highest concentration of
people (1.335 million in 2020). A lower number of casualties occurred in other large towns
(with a population of over 100,000 inhabitants): Ostrava had 74 fatalities (2.7%), Brno
had 71 fatalities (2.6%), but when combined with the adjacent Brno-venkov district, there
were 141 fatalities (5.2%), and Plzeň had 35 fatalities (1.3%). As for other districts, the
Trutnov district in northeast Bohemia recorded the second-highest number of casualties,
with 125 (4.6%) fatalities recorded, particularly deaths in the Krkonoše Mts. A greater part
of the Bohemian districts had fewer than 20 fatalities. In general, seven other districts
in the eastern CR, along with the Brno region and Ostrava, experienced higher numbers
of fatalities (more than 50), whereas in Bohemia, it was only the Liberec district in north
Bohemia that had a similar number of fatalities (56).
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Figure 9. Characteristics of weather-related fatalities (1—flood, 2—windstorm, 3—convective storm,
4—snow and glaze ice, 5—frost, 6—fog, 7—other inclement weather) in the Czech Republic during the
1921–2020 period: (a) long-term fluctuation; (b) annual variation; (c) spatial distribution (88 fatalities
lack exact locations); (d) cause of death; (e) type of fatality; (f) place of death; (g) part of the day;
(h) age; (i) gender; (j) behavior. For symbols and abbreviations see Figure 3.
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Figure 10. Distribution of weather-related fatalities for the individual districts of the Czech Republic
during the period of 1921–2020, expressed in colored intervals and numbers of fatalities.

4. Discussion

4.1. Data Uncertainty

Information on weather-related fatalities from newspapers is often used as the main
source of data to create corresponding fatality datasets (e.g., [9,75–80]). Regarding the
CR, information on 2435 fatalities (i.e., 89.2% of all of them) comes from this particular
source. Despite systematic extractions of reports from three basic newspapers covering
long time intervals (Rudé právo/Právo for 76 years, Svobodné slovo for 44 years, and Lidové
noviny for 30 years) and their complementing by many other newspapers extracted for
several months, the whole year, or a couple of years (see Section 2.1.2, point (i)), fatality
reports have been strongly influenced by many other factors, particularly with political,
societal, and economic changes in the country.

After the establishment of Czechoslovakia in 1918 (see Figure 2), the media flourished
in a democratic society, and information on weather phenomena and related fatalities or
injuries received ample attention. Surprisingly, a relatively high level of local information in
Czech written media (e.g., Lidové noviny or Venkov) remained even after the full occupation
of Czechoslovakia by Nazis in 1939 (borderland areas, “Sudetenland”, were occupied
after the signing of the Munich Agreement on 29 September 1938), as well as during
the Second World War until 1944. The last year of the war, 1945, was characterized by
close war operations, which caused disruptions in newspaper publishing and information
flow. After the liberation of Czechoslovakia, some communist newspaper (e.g., Rudé
právo, Rovnost), prohibited during Nazis occupation have been again issued, but some
newspapers produced during occupation were stopped and some new ones appeared,
which were published for a few years or longer (e.g., Lidová demokracie, Svobodné slovo).
The post-war years in newspapers were particularly focused on dealing with the far-
reaching consequences of the war. This democratic development and media freedom were
interrupted by the communist coup in 1948 when the country became a part of the Soviet
bloc. Newspapers, strongly influenced by communist ideology, “building of socialism” and
“cold war” between East and West, reported rather larger weather extremes, but paid less
attention to deadly events during these extremes or describing their circumstances. This
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trend continued until the early 1960s. The political liberalization afterwards, culminating
in the “Prague Spring” in 1968 (which was stopped by Soviet occupation), brought positive
changes to the reporting of weather-related injuries and fatalities, but in the late 1970s and
1980s, these reports became less frequent again. The return to a democratic society after
the “Velvet Revolution” in 1989 and the establishment of the CR in 1993 were reflected
with some delay in an increase in regional or local reports of weather events and their
fatalities and injuries. The described facts and circumstances were reflected in three periods
that were relatively well-covered by the data analyzed, namely 1921–1944, 1962–1977, and
1996–2020, whereas the years in between, i.e., 1945–1961 and 1978–1995, suffered from
a lack of weather-related fatality reports. This uneven temporal information coverage
explains why our unique 100-year long fatality chronology is not suitable for the study of
any long-term trends.

In addition to the historical milestones and subsequent changes, the media market
itself and internal changes in newspapers may have played an important role in reporting
weather-related fatalities. Changes in the space devoted to certain kinds of information, the
perceived interest of target readers, the political orientation of the newspaper, the reduction
in regional editorial staff, different quantities of space given to regional and countrywide
reporting, advertising space, competition in reporting, reader fatigue, availability of re-
gional/local news taken from other bodies (e.g., police, press agencies, state and regional
administration), etc., could all have had an impact.

Despite the unique character of our 100-year database of weather-related fatalities, it
represents a lower estimate of the real numbers. Spatial and temporal non-homogeneity in
available data is a typical feature of most analyses based on documentary data (e.g., [34]).
For example, the lower number of fatalities in Bohemia compared to Moravia and Silesia in
Figure 10 could be partly related to the availability of local newspaper issues. The problem
of data non-homogeneity is not solved by other “official” databases such as the Czech
Statistical Office (CSO), which, besides its short length (since 1994), is influenced by the
subjective evaluation of causes of death by doctors and contains only limited information
about fatality characteristics (for a comparison of our and CSO databases in the 2000–2019
period, see [35]).

4.2. Broader Context

The results of the recent article reflect the progress achieved in the study of weather-
related fatalities in the past few years. Whereas the first study by Brázdil et al. [34]
presented very preliminary results with only 269 fatalities (including vehicle accidents)
during the period of 1981–2018 and some methodological considerations related to the use
of documentary evidence, the subsequent study for 2000–2019 [35] reported 601 fatalities
(excluding vehicle accidents). The extension of our dataset to a 60-year period [2] focused
on comparing two “normal” periods, 1961–1990 and 1991–2020, which are typically used in
climatology and reported 657 and 962 fatalities, respectively (a total of 1619 fatalities). The
recent paper is based on a unique 100-year chronology for the period of 1921–2020, adding
1074 new fatalities before 1961 (part of the fatalities reported in Lidové noviny were extracted
based on [81,82]) and 36 new fatalities after 1960 (i.e., 40.7% of all fatalities in the 100-year
period). Apart from flood fatalities (e.g., [6,8]), there are not many papers analyzing such
a broad scale of weather-related fatalities in this long-term context and detailed internal
structure (e.g., [83]) as our study.

Section 4.1 demonstrated how past historical milestones, subsequent political changes,
and newspaper “politics” could have influenced the availability of weather-related fatality
data. However, the frequency and structure of fatalities also reflect other socio-economic
changes and changes in lifestyle. During the 100-year period analyzed, there was an
important change in the proportion of people working in agriculture, i.e., people who
were more frequently exposed to the outdoors and an open landscape; their numbers
continuously and strongly declined from the past to the present. In 1930, their number
was 2.316 million, but in 1946, it was 1.588 million, in 1961, 0.832 million, in 1981, 0.578
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million, in 2001 only 156 thousand, and finally, in 2021, 133 thousand ([84], complemented).
The proportion of women decreased between 1930 and 2021 from approximately 59% to
35%. These facts are well reflected in the number of fatalities due to lightning strikes. Of
371 such fatalities, 33.2% of them were recorded in 1921–1930, 22.9% in 1931–1940, and after
two clearly underestimated decades, 18.1% in 1961–1970. In the five decades after 1970
until 2020, only 12.9% of all such fatalities were recorded. No doubt, the clear decreasing
tendency in these fatalities is also due to the increased use of lightning conductors, vast
improvements in medical services, an increase in the availability of immediate emergency
help with rapid transport to hospitals, and a broader public awareness of how to behave
during a thunderstorm [23,34]. Similarly, well-expressed decreasing lightning-related
fatalities were documented, for example, also for the UK [22], Switzerland [83], Western
Europe [85], or Romania [25].

Despite the decreasing severity of winter temperature and snow patterns in the CR
from 1961 [86], fatalities attributed to cold spells, i.e., due to freezing to death or hy-
pothermia, surprisingly significantly increased after 1990. The following three decades
experienced 63.7% of all 758 such fatalities during the past 100 years. This increase can be
explained by the important increase in the homeless population after the “Velvet Revolu-
tion” in the CR, whereas before 1990, such people were very rare. Despite some possibilities
to spend nights with heavy frosts in some special facilities, many homeless people prefer
to spend the night outside, often with heavy alcohol consumption. The opposite situa-
tion characterizes higher proportions of deaths by drowning during different activities
provided on not enough frozen water bodies with a subsequent breaking of ice: from
273 such fatalities, 40.7% of them died in 1921–1950, and 41.4% in 1961–1980. A very high
proportion of 83.5% belongs to the child category (0–15 years), which—compared to recent
decades—was related to more frequent children’s activities outdoors in the past, often
without any supervision from parents. It also reflects changes in age pyramids in Figure 1d,
demonstrating significantly decreasing proportions of children from 27.8% in 1921 to 16.0%
in 2020. However, the results for the CR differ from those obtained for ten countries over
the Northern Hemisphere, for which Sharma et al. [87] found increased drownings in
ice-covered regions in warmer winters.

Finding stronger relationships between weather-related fatalities and long-term cli-
mate variability is more complicated. Although there has been a significant increase in
maximum temperatures and frequency of heat waves [88,89], which is well reflected in
growing numbers of heat-wave-related fatalities (e.g., [1,18]), the relationship with other
weather-related fatalities is not as conclusive.

Of the 277 flood fatalities detected, 48.8% were recorded only between 1996 and 2013.
Although 22.7% of these fatalities were a consequence of the July 1997 flood event [60]
by itself, the period from 1997 to 2010 in the CR was generally evaluated as flood-rich,
compared to relatively flood-poor years from 1966 to 1992 [90]. The years from 1996 to
2013 in the CR are within the 1990–2016 period, which Blöschl et al. [91] identified among
the ten most flood-rich periods in Western and Central Europe in the context of the past
500 years. Despite regional variations of none, increasing, or decreasing trends in flood-
related fatalities in past decades (e.g., [4,5,92,93], Paprotny et al. [94] reported an increase in
annually inundated area and in the number of persons affected for 37 European countries
(HANZE database) since 1870, but a substantial decrease in flood fatalities. Similarly,
Franzke and Torelló i Sentelles [95] found a significant downward flood fatality trend for
Europe in 1960–2019, but an upward trend for worldwide aggregated data.

Regarding fatalities from flash floods in the CR, besides the deadliest year of 1970
(38 fatalities, i.e., 19.6% of all flash flood fatalities), 33.0% of such fatalities occurred in
1921–1940 and 22.7% in 2001–2020. These values show that the past two decades did
not experience any particular increase in fatalities related to flash floods in the context of
the 100-year series. Terti et al. [96], analyzing 1075 fatalities from flash floods across the
United States in 1996–2012, found no clear trend in such events and associated fatalities.
Ahmadalipour and Moradkhani [97], extending that period until 2017 with 1399 fatalities
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across the contiguous United States, mentioned only that the number of flash flood fatalities
did not decrease in the past decades. Vinet et al. [98], analyzing French departments prone
to Mediterranean flash floods in 1980–2020, pointed out a decreased mean toll of flood
events but an increase in the number of deadly events. Similarly, Diakakis et al. [8], investi-
gating 132 flash floods with ≥10 fatalities in 13 countries over the eastern Mediterranean
during 1882–2021, found a statistically significant increase in the number of fatalities.

Although 26 fatalities related to hot weather or heat-waves appeared in our database
(see Section 3.1.7), such information occurred in newspapers only sporadically. These
fatalities have to be derived from another type of data (namely medical data of deaths due
to cardiovascular problems) than those we used to create our database. From the many
papers dealing with heat-waves in the CR, some quantitative fatality data can be derived.
For example, Urban et al. [31], analyzing mortality attributed to heat in Prague during 1982–
2019, found the following numbers of excess deaths for the individual decades: 61 fatalities
per year in 1982–1989, 43 in 1990–1999, 53 in 2000–2009, and nearly 90 in 2010–2019, while
the highest annual value with 271 excess deaths was achieved in 2015. These numbers are
significantly exceeding the numbers of fatalities attributed to other weather phenomena in
the entire CR as presented in our study.

Despite some specific characteristics of fatalities in the CR for the individual weather
categories, some general features can be summarized from their synthesis in Section 3.2.
The main maximum appears in the winter months, and the secondary maximum ap-
pears in the summer months, which is connected to the climatology of decisive weather
extremes. Deaths were interpreted mainly as direct, caused particularly by freezing to
death/hypothermia or drowning, happening in the afternoon and night in an open coun-
tryside or on rivers and in water bodies. Males prevailed over females, and adults over
the categories of children and elderly people. Hazardous behavior of victims or culprits
of deadly events was more frequent than non-hazardous behavior. Similar features in
fatality characteristics can be found in many similar studies in other countries or regions
(e.g., [7,10,12,83,99]). On the other hand, some regionally specific features not typical for
fatalities in the CR can appear, such as an important proportion of vehicle fatalities during
floods, as documented, for example, for Greece [100], Portugal and Greece [92], Spain [101],
or the United States [93].

The fatality database used in the recent paper did not include fatalities during vehicle
accidents that occurred during inclement weather conditions (divided into seven categories:
fog, onset of rain and light rain, rain, snow and snowfall, glaze of ice and rime, gusty wind,
and other inclement weather) which have been analyzed in the earlier studies [2,35,36] and
create another database. The exceptions were only a few cases when either the accident took
place in a flood or flooded area (e.g., driving in flowing water on the road or accident of a
rescue car on the way to flooded area) or was connected with strong winds or thunderstorms
(e.g., accidents caused by sudden strong wind gust or crash to a tree uprooted by strong
wind on the road). Moreover, compared to the previous study by Brázdil et al. [2], which
pointed out 1834 fatalities of vehicle accidents in the CR for the 1961–2020 period connected
with any inclement weather, only 60 new such fatalities were found for 1921–1960, which
represents a deep underestimation of their real value, particularly before 1961, even though
the number of cars and types of roads used was smaller than in the following decades. If
any vehicle accidents were mentioned in the extracted newspapers (particularly for any
persons considered as “important”), accompanying weather patterns were usually only
sporadically reported. For this reason, we skipped this type of analysis for the whole
100-year period. Concerning the reported 60 fatalities before 1961, more than two-thirds
of them were attributed to the categories snow and snowfall (35.0%) and fog (33.3%); for
glaze of ice, it was 16.7%, and for wet road and rain, it was 15.0%.

5. Conclusions

The analysis of the 100-year chronology (1921–2020) of fatalities attributed to severe
weather in the CR allows us to summarize the main results as follows:
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(i) The database of weather-related fatalities in the past 100 years was created from
different documentary sources, particularly newspapers. By covering a long period
and a broad scope of severe weather events, it is a unique dataset in the national
and European scales. Despite representing a lower estimate of the real numbers of
such fatalities, this database is suitable for the study of spatiotemporal variability of
weather-related fatalities, as well as their different special characteristics and features.

(ii) Historical milestones, political and socioeconomic developments, as well as changes
in media, significantly influenced the availability of fatality reports related to extreme
weather in newspapers. As a result, fatality data are highly underestimated in 1945–
1961 and 1978–1995, which makes it difficult to analyze long-term trends and compare
them with trends in selected climatological variables.

(iii) An annual average of 27.3 weather-related fatalities per year was attributed to the
following weather categories: frosts—cold spells and ice on water bodies (38%); con-
vective storms—lightning strike, strong wind, thunderstorm (19%); floods—including
flash floods (17%); fog with bad visibility (11%); snow, avalanches, and glaze ice (8%);
windstorms (5%); and other inclement weather not attributable to any preceding
categories (2%).

(iv) Despite some differences among individual weather categories, the prevailing char-
acteristics/features of all fatalities were as follows: direct deaths; fatalities mainly
caused by freezing to death/hypothermia or drowning, happening in the afternoon
and night in an open countryside or on rivers and water bodies; particularly dominant
male and adult fatalities; hazardous behavior of victims (or culprits of deadly events)
more frequently than non-hazardous.

(v) Detailed knowledge of weather-related fatalities with respect to their spatiotempo-
ral occurrence, structure, and characteristics, with almost half of them classified as
hazardous behavior of victims (or culprits of deadly events), offers the possibility to
learn from this fatality data to apply appropriate risk communication and contribute
to potentially decreasing fatalities (injuries) during extreme weather events.

(vi) Further research on weather-related fatalities in the CR would require their compari-
son with other official public sources as demographic yearbooks (despite their more
generalized data), extension of the period analyzed back to 19th century and the study
of fatalities in their broad climatological, environmental, and socioeconomic context
in contrast to recent climate change.
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Appendix A

Figure A1. Location of places reported in this study (1—Český Krumlov; 2—Jeseník; 3—Karlovice; 4—
Liberec; 5—Loučky; 6—Nedvězí; 7—Nový Jičín; 8—Olomouc; 9—Ostrava; 10—Plzeň; 11—Polička;
12—Prague-Ruzyně; 13—Prague-Suchdol; 14—Přerov; 15—Radotín; 16—Radvanice; 17—Sivice;
18—Šardice; 19—Šumperk; 20—Šumperk-Temenice; 21—Trutnov; 22—Třebíč; 23—Třemošná-Záluží;
24—Turnov; 25—Větřní).
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39. Český Statistický Úřad, Veřejná Databáze (Czech Statistical Office, Public Database). Available online: https://vdb.czso.cz/
vdbvo2/faces/en/index.jsf (accessed on 3 April 2023).
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Abstract: Land subsidence has become an increasing global concern over the past few decades due to
natural and anthropogenic factors. However, although several studies have examined factors affecting
land subsidence in recent years, few have focused on the spatial heterogeneity of relationships
between land subsidence and urbanization. In this paper, we adopted the small baseline subset-
synthetic aperture radar interferometry (SBAS-InSAR) method using Sentinel-1 radar satellite images
to map land subsidence from 2015 to 2018 and characterized its spatial pattern in Wuhan. The bivariate
Moran’s I index was used to test and visualize the spatial correlations between land subsidence and
urbanization. A geographically weighted regression (GWR) model was employed to explore the
strengths and directions of impacts of urbanization on land subsidence. Our findings showed that
land subsidence was obvious and unevenly distributed in the study area, the annual deformation
rate varied from −42.85 mm/year to +29.98 mm/year, and its average value was −1.0 mm/year. A
clear spatial pattern for land subsidence in Wuhan was mapped, and several apparent subsidence
funnels were primarily located in central urban areas. All urbanization indicators were found
to be significantly spatially correlated with land subsidence at different scales. In addition, the
GWR model results showed that all urbanization indicators were significantly associated with land
subsidence across the whole study area in Wuhan. The results of bivariate Moran’s I and GWR
results confirmed that the relationships between land subsidence and urbanization spatially varied in
Wuhan at multiple spatial scales. Although scale dependence existed in both the bivariate Moran’s I
and GWR models for land subsidence and urbanization indicators, a “best” spatial scale could not be
confirmed because the disturbance of factors varied over different sampling scales. The results can
advance the understanding of the relationships between land subsidence and urbanization, and they
will provide guidance for subsidence control and sustainable urban planning.

Keywords: SBAS-InSAR; Sentinel-1 images; geographically weighted regression (GWR); bivariate
Moran’s I; land subsidence; urbanization; spatial non-stationarity

1. Introduction

Land subsidence (LS) is the gentle settlement of the ground surface due to the consol-
idation of compressible sediments or loss of regional earth materials as a result of water
exploitation or extraction of oil and gas. Land subsidence is usually observed as a series of
geological-environmental hazards, including severe destruction of buildings [1], roads [2],
bridges, pipelines [3], railway tracks [4], and metro networks [5], and it increases the risk of
urban flooding particularly in coastal regions experiencing sea-level rise [6]. In 1891, land
subsidence was first observed in Mexico City while it has been detected and recorded in
Shanghai (China) since 1921 [7,8]. Currently, land subsidence occurs mainly in regions with
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flat terrains where loose deposits accumulate in river deltas or coastal plains, especially
densely populated areas, as well as urban or agricultural areas developed in temperate or
arid climates that are characterized by long-term drought [9–11]. Although land subsidence
affects 8% of the global terrestrial area, people at risk account for approximately 16% of the
total world population comprising approximately 1.2 billion inhabitants [12]. Along with
a growing population and the developments in urbanization and industrialization, the
exposure of the population to land subsidence is expected to increase by 30% approximately
to 1.6 billion inhabitants while predicted potential subsidence areas will increase by only 7%
globally; 1596 of 7343 major world cities are predicted to be located in potential subsidence
areas by 2040 [13]. Land subsidence is one of the considerable challenges facing the world,
and poses a significant threat to the long-term sustainable development of the humankind.
Therefore, it is crucial to effectively monitor and map land subsidence in real time [14].

Differential synthetic aperture radar interferometry (D-InSAR) spaceborne-based is a
remotely sensed technology that enables investigation of widespread surface deformation
across the earth. In contrast to conventional spirit levelling and GPS survey techniques,
D-InSAR provides spatially dense displacement measurements that are updated periodi-
cally at relatively low cost. Advanced multitemporal InSAR (MT-InSAR) technology such
as persistent scatterer interferometry (PS-InSAR) [15,16] and small baseline subset inter-
ferometry (SBAS-InSAR) [17,18] can effectively overcome spatial-temporal decorrelations
and mitigate atmospheric delay effects, thus allowing the measurement of surface deforma-
tion with centimeter and even subcentimeter accuracy at very high spatial resolution [19].
To date, the MT-InSAR method has been widely applied to monitor deformation of the
earth’s surface [20], including volcanoes and seismic activity [21], landslides [22], glacial
motion [23], mining-related subsidence [24], subsidence of urban or peri-urban area [25,26],
and even large-scale land deformation nationwide [27].

Wuhan, as the largest city in central China, has recently been a relatively highly
populous metropolis. In the last two decades, Wuhan has experienced rapid urbanization
and industrialization combined with ongoing construction of high-rise buildings and
massive underground space development. At present, a variety of efforts have been made
to measure and map land subsidence derived from multisource space-borne remotely
sensed data based on the MT-InSAR method in Wuhan, concentrating on wide-coverage
urban surface settlement and building structure stability. It can be stated in detail as follows.
Zhou monitored the spatial distribution of land subsidence from 2015 to 2016 using Sentinel-
1 SAR images [28]. Han and Jiang [29,30] investigated the spatial pattern and temporal
evolution characteristics of land subsidence, aiming to reveal the spatiotemporal variations
in subsidence and the induction of subsidence. Bai and Zhang [31,32] qualitatively analyzed
the relationship between land subsidence and influential factors from the aspects of natural
conditions and human activities. In addition, Ding [33] predicted time-series surface
subsidence based on long short-term memory (LSTM) model in selected key regions.

The aforementioned works have led to a substantial understanding of the spatial
extent, magnitude, and temporal evolution of land deformation and qualitatively explored
influential factors in Wuhan. However, local clustering patterns between land subsidence
and urbanization have been ignored, and fewer studies have examined the quantitative
impact of urbanization on land subsidence in Wuhan, especially for spatially varying rela-
tionships between land subsidence and urbanization at different scales. In fact, knowledge
of spatially varying relationships is an important prerequisite to protect cities from damage
due to surface subsidence. In addition, previous studies have neglected the interactions
between land subsidence and its various impact factors, which exhibit scale dependence.

To address the gaps in the existing studies, we first adopted the SBAS-InSAR method
using Sentinel-1 radar satellite images to map land subsidence and characterized its spa-
tial pattern in Wuhan. Furthermore, the bivariate Moran’s I index was used to test and
visualize the spatial correlations between land subsidence and urbanization. In addition, a
geographically weighted regression (GWR) model was employed to explore the strengths
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and directions of impacts of urbanization on land subsidence. Finally, we discussed scale
effects on the spatially varying relationship between land subsidence and urbanization.

2. Study Area

Wuhan is located in the eastern region of the Jiang-Han Plain, with geographical
coordinates between latitudes 29◦58′ N and 31◦22′ N and between longitudes 113◦41′ E
and 115◦05′ E (see Figure 1). The Yangtze River and its largest branch, the Han River, have
a confluence in central urban areas of Wuhan, which divides it into three main parts. The
overall terrain of Wuhan is flat, with an average altitude of approximately 37 m above sea
level. Soft clay layers with high compressibility and low strength are primarily spread
along both banks of the Yangtze River in Wuhan. The belts of carbonate rock in Wuhan
cover an area of more than 1100 km2, and they align in a trend with a nearly east–west
orientation. Wuhan is in a northern humid subtropical monsoon climate zone, which is
characterized by plentiful rainfall and abundant sunshine. The average annual temperature
is approximately 16.6 ◦C and precipitation ranges from 1150 mm to 1450 mm. The rainfall
is concentrated mainly in the rainy season from June to August every year, accounting for
41% of the total precipitation.

Figure 1. Location of study area and Wuhan city. The study area is represented by the red square.
The simplified geological setting of the study area is shown in the right panel.

Wuhan, the capital city of Hubei Province, acts as an important industrial and eco-
nomic center, cultural and educational base, and comprehensive transportation hub in
central China. It covers a total area of 8494 km2 with permanent residents totaling approxi-
mately 11.08 million in 2018. Wuhan has witnessed unprecedented economic development
and urban sprawl since the new millennium.The urban built-up area in 2000 was 221.01 km2,
while it reached 812.39 km2 at the end of 2018, and the average annual urban expansion
rate was more than 7%. During the process of horizontal urban growth, a mass of high-rise
buildings and underground space development promoted significant urban expansion
in the vertical direction, thus resulting in the continuous emergence of the subsidence
phenomena in Wuhan.
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3. Materials and Methods

3.1. Land Subsidence Extraction

Sentinel-1 mission SAR sensors operate in the C-band (a wavelength of approximately
5.6 cm) and two satellites consisting of Sentinel-1 A/B satellites observe earth’s surface
globally within 6 days and 12 days for a single satellite. The Sentinel-1 interferometric wide
swath mode (IW) provides large swath width of ~250 km images using the novel terrain
observation by progressive scans (TOPSAR) imaging technique. The spatial resolutions of
the IW mode are less than 20 m and 5 m in the azimuth and range directions (single look),
respectively [34]. The Sentinel-1 satellite single look complex (SLC) data for interferometric
applications can be accessed freely from European Space Agency (ESA) Copernicus Open
Access Hub website (https://scihub.copernicus.eu (accessed on 8 December 2021).

In this work, we used 30 Sentinel-1A SAR images acquired in IW mode with VV
(vertical-vertical) polarization between April 2015 and January 2019 to provide an assess-
ment of land subsidence in Wuhan, China. All scenes were acquired along the descending
orbits and average value of incidence angle is approximately 41.59◦. The SBAS algo-
rithm [17] was employed to process multitemporal IW SLC level-1 data products to derive
the land subsidence velocity. A combination of time-series images within thresholds of
spatial and temporal baseline (smaller than 148 m and less than 365 days) was selected to
generate a connected graph of differential interferograms, which allows maximization of
geometric coherence [35]. After the removal of interferometric pairs with low coherence and
poor unwrapping, a total of 99 differential interferograms were obtained. The average num-
ber of connections per scene is more than 5 to ensure sufficient interconnected redundancy.
The flat-earth phase of interferograms can be determined and removed by the precise
orbit determination (POD) data provided by the ESA. Shuttle Radar Topographic Mission
(SRTM) DEM data with a resolution of 30 m obtained from the U.S. Geological Survey
(https://lta.cr.usgs.gov (accessed on 8 December 2021) was used to simulate and eliminate
topographic phases and geocode displacement results. We selected 30 stable pixels without
displacement located in the study site as ground control points (GCPs) to perform orbital
refinement and phase reflattening for interferometric pairs. A multilooking operation with
a ratio of 1:4 in the azimuth and range directions was carried out to improve the phase
performance of the differential interferograms, and the interferograms were processed with
the adaptive Goldstein-Werner filter to further mitigate the effects of speckle noise. Then,
phase unwrapping of each interferometric pair was implemented with minimum cost flow
(MCF) network and Delaunay 3D method, setting the unwrapping coherence threshold
ranging from 0.2 to 0.3 by trial and error. The singular value decomposition (SVD) method
was employed to generate the minimum norm least square solution for the unwrapped
phase for pixels exhibiting consistently high coherence levels from interferograms and
to retrieve the deformation time series. In addition, the atmospheric phase signal and
nonlinear displacement component were estimated and subtracted from the displacement
time series through a low pass spatial filter combined with a high temporal pass filter.
Finally, the line-of-sight (LOS) deformation was transformed into the vertical direction
using the radar incident angle assuming that the displacement in the horizontal direction
is negligible. Thus, positive values of the deformation rate indicate that the ground is
moving upwards in the vertical direction (uplift), whereas negative values mean that the
ground is moving downwards in the vertical direction (subsidence). The land subsidence
velocity map was extracted using SARScape module version 5.2.1 in the ENVI software
environment and is shown in Figure 2.

354



Remote Sens. 2022, 14, 291

 

Figure 2. The average land subsidence velocity in the vertical direction from 2015 to 2018 across the
study area in Wuhan city using Sentinel-1A SAR images. The Landsat-8 OLI optical image acquired
on 27 June 2018 is used as the background.

3.2. Urbanization Metric Quantification

Impervious surfaces, defined as artificial structures that prevent natural infiltration
of water into the soil, are considered an indicator of urbanization [36,37]. The impervious
surface area (ISA) data were extracted from the global artificial impervious area (GAIA)
dataset [38], an annual product in raster format with a 30 × 30 m resolution between
1985 and 2018. The original ISA raster data in 2018 were resampled at a resolution of
500 × 500 m. Building and road network data in vector format were obtained from the
Wuhan Nature Resource and Planning Bureau.

Night-time lights generated by anthropogenic activities correlate significantly with
numerous urbanization and socioeconomic parameters at regional or global scales, which
have been recorded by satellite sensors for a long time. Satellite-based artificial night-
time light (NTL) observations provide a unique proxy measure for unveiling urbanization
and regional development [39]. Night-time light satellite images are obtained from the
extended time series (2000–2018) of global NPP-VIIRS-like night-time light data [40], which
has a consistent temporal trend at both global and regional scales. NTL and ISA can be
applied to represent the comprehensive degree of urbanization because they both belong
to physical quantity.
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Numerous high-rise buildings and roads densely concentrated within the limits of
plane space transform the natural landscape, which is necessary content and one of the
spatial manifestations of urbanization. Buildings and roads parallel the intensity of ur-
banization, and the changes in landscape characteristics can reflect the degree of human
influences on the environment. The building load plays an important factor in land subsi-
dence. The central area of the building group has larger subsidence and the subsidence
superimposition effect is obvious [41]. The kernel density method is employed to quantify
the component of urbanization related to buildings, called building kernel density (BKD),
based on the weight of base areas by the number of floors. Similarly, the line density
method is used to estimate the component urbanization related to roads named road line
density (RLD), based on the weight of the type and grade of roads.

3.3. Exploratory Spatial Data Analysis

Tobler’s first law of geography [42] pointed out that ubiquitous spatial dependence
occurs widely in geographical phenomena. Spatial dependency is defined as an effect
between the occurrence of a given geographical location and that of surrounding loca-
tions. The global and local Moran’s I indicators were used to describe the global spatial
dependence among variables. The global Moran’s I statistic is defined as follows [43]:

Ig =
n ∑n

i=1 ∑n
j=1 Wij

(
Xi − X

)(
Xj − X

)
∑n

i=1 ∑n
j=1 Wij ∑n

i=1
(
Xi − X

)2 , (1)

where n is equal to the total number of spatial units in the study area; Xi and Xj are the
observed value of the variable for spatial units i and j (i �= j), respectively; X denotes the
mean of the variable; and Wij is the spatial weight between spatial units i and j defined
by the inverse distance method, which is commonly used in row-standardized form. In
general, the global Moran’s I value ranges from −1 to 1. The Global Moran’s I > 0 indicates
that similar subsidence values are clustered together (positive spatial autocorrelation),
whereas the global Moran’s I < 0 indicates that dissimilar subsidence values are clustered
together (negative spatial autocorrelation); and when the global Moran’s I is zero, no spatial
autocorrelation exists.

The local indicator of spatial association (LISA; local Moran’s I statistic) measures the
degree of spatial autocorrelation in each sample unit. For each spatial unit i, the LISA is
calculated as follows [44,45]:

Ii =
(n − 1)

(
Xi − X

)
∑n

j=1,j �=i
(
Xj − X

)2 ∑n
j=1,j �=i Wij

(
Xj − X

)
, (2)

The LISA index can identify two spatial cluster types: a high-high cluster indicating a
high value surrounded by higher value; and a low-low cluster indicating a low subsidence
value surrounded by neighbors with lower values. Spatial outliers refer to those values
that are significantly different from the values of their neighbors, including low-high (a low
value surrounded by high value) and high-low (a high value surrounded by low values)
outliers. The Monte Carlo simulation method (999 permutations) was used to test the
statistical significance of Moran’s I, and significance value for spatial autocorrelation was
set at p < 0.05. The global Moran’s I is regarded as the average LISA value of all spatial
units. The land subsidence/uplift clusters were obtained using GeoDa software version
1.12 (GeoDa Press LLC, Chicago, IL, USA) and are shown in Figure 3.
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Figure 3. Local indicator of spatial association for land subsidence at block scales of
0.5 km × 0.5 km (a), 1 km × 1 km (b), 1.5 km × 1.5 km (c), and 2 km × 2 km (d) across the study area
in Wuhan city.

We use the bivariate Moran’s I index to measure the spatial association relationships
between land subsidence and urbanization. The bivariate global Moran’s I can detect
whether a cluster or outlier exist in the study area, and bivariate local Moran’s I is able
to identify the exact location. The bivariate global Moran’s I statistic is expressed as
follows [46]:

Ilm = ∑n
p=1 ∑n

q=1 Wpqzp
l zq

m, (3)

For each spatial unit p, the bivariate local Moran’s I (bivariate LISA) is defined
as follows:

Ip
lm = zp

l ∑n
q=1 Wpqzq

m, (4)

where n is the total number of spatial units; zp
l is the standard value of land subsidence in

spatial unit p; zq
m is the standard value of the urbanization metric in spatial unit q; and Wpq

is the spatial weight between units p and q. The value of bivariate Moran’s I ranges between
−1 and 1, where a positive value suggests positive spatial correlation and a negative value
indicates negative spatial correlation between two variables. When bivariate Moran’s I is
equal to 0, it signifies a random spatial pattern. In the case of statistical significance, the
bivariate local Moran’s I index divides the spatial relationship between land subsidence and
urbanization in each sample unit into: “High-High (HH)”, “Low-Low (LL)”, “High-Low
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(HL)”, and “Low-High (LH)”. We used Monte Carlo randomization (9999 permutations)
to assess the significance of the bivariate Moran’s I. When the test is significant (p < 0.05),
there is a clustered or dispersed pattern between two variables. The land subsidence/uplift
clusters were obtained using GeoDa software version 1.12 (GeoDa Press LLC, Chicago, IL,
USA; Anselin, Luc, 2006) and are shown in Figure 3.

3.4. Geographically Weighted Regression Model

GWR is a relatively simple but effective, technique that extends the traditional re-
gression framework for exploring spatial nonstationarity. It allows different relationships
to exist at different points in space, such that local rather than global parameters can be
estimated. Brunsdon [47] described spatial heterogeneity as a condition where a global
regression model cannot describe the relationship between the response variable and
explanatory variables because of the variation in characteristics among the observation
regions. Global regression models, such as ordinary least squares (OLS), assume constant
relationships over space, ignoring the effects of spatial heterogeneity among the observa-
tions. The GWR model can capture spatial nonstationarity by allowing the variation in
relationships across space, and the model can be defined as follows [48]:

yi = βi0 + ∑k βikxik + εi (5)

where yi represents the value of the dependent variable, βi0 is the constant term, xik is the
value of the independent variable k of unit I, βik is the parameter estimate associated with
xik, and εi is the random error. The local estimates for unit i using matrix representation are
calculated as follows [47,48]:

β̂(i) =
(

XTW(i)X
)−1

XTW(i)Y, (6)

where X is a (n × (k + 1)) independent variable matrix, the first column of which represents
the intercept term and all of them are set as 1; Y denotes an n × 1 vector of dependent
variables; W(i) is an n × n matrix with the element Wij indicating the spatial weight
between units i and j, whose diagonal elements are spatial weights between two units, and
the off-diagonal elements are set to zero. To obtain weights, we used the adaptive Gaussian
function to define the spatial kernel:

Wij = exp [−(
dij

bi
)

2

], (7)

where bi represents the spatial distance between units i and j, i.e., the bandwidth of unit i,
which determines whether the kernel function will be performed.

The selection of bandwidth of spatial kernel function plays a critical role in GWR
model performance [49], which is more important than the choice of spatial kernel function
itself. In this work, we used the corrected Akaike information criterion (AICc) to determine
the appropriate bandwidth of each kernel as it achieves a balance between goodness-of-fit
and model complexity. Under the circumstance of GWR, the AICc is expressed as follows:

AIC = 2n loge(σ̂
2) + n loge(2π) + n

{
n + tr(S)

n − 2 − tr(S)

}
, (8)

where S denotes the hat matrix; σ̂2 is defined as the variance in the error term; and tr(S) is
the trace of the hat matrix.
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4. Results and Discussion

4.1. Spatial Autocorrelations of Land Subsidence

A total of 2,013,600 pixels were ultimately identified as coherent targets (CTs) in the
study area, the density of which was 1293 CTs per km2. In general, CT pixels were more
densely distributed in the core of urban areas with plenty of buildings and roads than
peri-urban areas. Figure 2 demonstrates the spatial distribution of the CT pixels and the cor-
responding vertical deformation velocity field map across the study area. During the whole
observation period, the annual deformation rate of CT pixels varied from −42.85 mm/year
to +29.98 mm/year, and its average value and standard deviation were −1.0 mm/year and
3.86 mm/year, respectively. As shown in Figure 2, obvious heterogeneous land subsidence
patterns were detected in Wuhan. The main land subsidence zones were distributed in
central built-up areas of Wuhan along the bank of the Yangtze River. Most of the severe
subsidence zones were located in Jianghan (JH), Jiangan (JA), Qiaokou (QK), Wuchang
(WC), and Hongshan (HS) districts.

The global Moran’s I index was calculated to examine the spatial dependence of
land subsidence across the whole study area (Figure 3). The value of global Moran’s I at
the four block scales ranged from 0.70 to 0.81 and passed the significance test at the 99%
confidence level, which indicated a significantly positive global spatial autocorrelation of
land subsidence across the entire study area. In general, the values of the global Moran’s
index for land subsidence have an increasing trend with increasing block scale, with the
exception of 1.5 km × 1.5 km. The multiscale comparative analysis of the global Moran’s
I index suggests that the spatial autocorrelation of land subsidence is not an accidental
phenomenon dependent on scale.

The LISA index was used to depict the local spatial correlation of land subsidence
across the study area (Figure 3). The cluster maps of LISA in Figure 3 exhibit the spatial
aggregation state of land subsidence and distinct spatial patterns of the clusters at four block
scales. The low-low clusters (serious land subsidence) were mainly concentrated in QK, JH,
the south of Hanyang (HY), the southwest of HS, the north of Jiangxia (JX) and WC along
the southern bank of the Yangtze River, while the high-high value agglomerations (land
uplift) were mostly located north of HS and south of Huangpi (HP) along the Yangtze River.
With an increase in block scale, the area of low-value and high-value agglomerations for
land subsidence gradually shrank and some clusters disappeared. Nevertheless, the spatial
distribution of low-value and high-value agglomerations for land subsidence became more
concentrated. The LISA index can accurately delineate the funnel of land subsidence
quantitatively. Thus, the multiscale LISA index can help guide corresponding actions at
different administrative levels to address the consequences of land subsidence. The small
number of spatial outliers (low-high or high-low) for land subsidence at four block scales
were sporadically distributed within the study area. The high-low outlier refers to area
where a unit with higher subsidence value is surrounded by other comparatively lower
subsidence value units, it is likely to develop into an emerging subsiding area in the near
future according to Tobler’s first law of geography [42].

4.2. Spatial Patterns of Urbanization

As shown in Figure 4, all urbanization indicators (ISA, NTL, BKD and RLD) gradually
decrease from the city center to its outer periphery, and their spatial distributions are similar
to each other globally. The ratio of the area for ISA across the study area is 44.40%, and the
averages of NTL, BKD, and RLD are 16.31 n·W·cm−2·sr−1, 523.40, and 14.93, respectively.
ISA and NTL are comprehensive indicators of urbanization, while BKD and RLD focus on
a single aspect of urbanization. Therefore, the intragroup similarity between ISA and NTL,
BKD and RDL is higher than the intergroup similarity in terms of spatial patterns. It is
observed that water bodies, which are mainly composed of rivers, lakes, and reservoirs, play
a crucial role in shaping the urban expansion of Wuhan according to the spatial distribution
of urbanization indicators. In addition, BKD and RLD were both found to exhibit low
values compared to the relatively values of high ISA and NTL in the southeastern part of
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the study area, which indicated local spatial disparities among urbanization indicators.
The urban-rural gradient of NTL and BKD has a significant spatial variation as opposed to
ISA and RLD. Although the spatial distribution of RLD is different from that of the original
road, RLD also showed an obvious linear distribution characteristic.

Figure 4. Spatial distribution of urbanization indicators of Wuhan city in 2018. Abbreviations:
impervious surface area (ISA); night-time lights (NTL); building kernel density (BKD); road line
density (RLD).

4.3. Spatial Associations between Land Subsidence and Urban Development

The values of global bivariate Moran’s I at four block scales are less than 0 (p < 0.01),
indicating significantly negative spatial correlations between the four types of urbaniza-
tion indicators and surface deformation (Figure 5). That is, overall, urbanization is an
important factor leading to land subsidence. However, the degree of negative spatial
correlation varied with different urbanization factor types and scales. Among these types,
the strongest negative correlation was found between land subsidence and BKD (Moran’s
I: ranging from −0.1911 to −0.1639), followed by that between land subsidence and NTL
(Moran’s I: ranging from −0.1793 to −0.1220) and that between land subsidence and RLD
(Moran’s I: ranging from −0.1224 to −0.0683). The weakest correlation was between land
subsidence and ISA (Moran’s I: ranging from −0.1121 to −0.0666). The negative spatial
correlation between urbanization and land deformation manifested as a gradual increase
in the block size.
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Figure 5. Bivariate local indicators of spatial associations between land subsidence and four kinds of
urbanization indicators in Wuhan city at four block scales.

The cluster maps of the bivariate local Moran’s I in Figure 5 further illustrate the pat-
tern of spatial heterogeneity in the relationships between land subsidence and urbanization
at four block scales. We observed an obvious clustering pattern similarity between the
spatial distributions of each of the urbanization indicators and land subsidence in the study
area at four block scales. The low-high spatial outliers were mainly concentrated in the
urban center of Wuhan, particularly in JA, JH, QK, and WC along the bank of the Yangtze
River, and the southwest HS. A low-low cluster was significantly observed in the periphery
of the study area, especially in the south HS, north JX. The high-low areas were mostly
located across the region clustered in the northeast section of the study area. A high-high
cluster was mainly distributed in the transition zone between East Lake and the Yangtze
River and Hanyang (HY) district along the bank of the Han River, almost adjacent to the
low-high regions. At block scale of 2 km × 2 km, the number of statistically significant

361



Remote Sens. 2022, 14, 291

clusters and their occupied areas both decreased compared to those at other scales in terms
of the four types of urbanization indicators. In particular, the other three types of clusters
(except for low-high outliers) exhibited drastic declines in the number of clusters and the
occupied areas and the low-high cluster appeared to have a concentrated distribution.
The degree of global spatial correlation was the highest when low-high outliers became
dominant agglomerates because clusters whose bivariate spatial autocorrelation type was
opposing no longer canceled each other out. This suggests that the value of local bivariate
Moran’s I between land subsidence and urbanization indicators depends on the block scale
to some degree.

4.4. Impacts of Urbanization on Land Subsidence

To prevent the disturbance of potential multicollinearity on the parameter estimation of
the model, each urbanization factor was independently analyzed with the land subsidence
indicator in the GWR model due to high correlations existing among the urbanization
indicators [50]. Thus, a total of 4 × 4 = 16 GWR models were generated and combined with
four block scales. The standardized residual values of all GWR models range from −11.0298
to 6.7591 at most; more than 97% is in the range of −2.58–2.58. Therefore, the standardized
residual values of all GWR models are randomly distributed at a 95% confidence level. To
further examine whether the residuals from GWR models exhibit spatial randomness, a
spatial autocorrelation analysis was performed on the residuals to obtain the global Moran’s
I statistics. As shown in Table 1, in general, low spatial autocorrelations of residuals from
the GWR model are detected at the small block scale compared to the large scale, indicating
that the variance in land subsidence over the study area is relatively random and exhibits
spatial stationarity at the small block scale.

Table 1. Global Moran’s I for residuals of GWR models.

Scale ISA NTL BKD RLD

500 m 0.0570 −0.0377 −0.0623 −0.0581
1000 m 0.1267 −0.0309 −0.0711 −0.0038
1500 m −0.0281 −0.0585 −0.0278 −0.0129
2000 m 0.1150 0.1167 0.1268 0.0216

Notes: Bold numbers denote significance at less than 0.01 level. Abbreviations: impervious surface area (ISA);
night-time lights (NTL); building kernel density (BKD); road line density (RLD).

The local parameter estimates of the GWR model indicate the spatially varying rela-
tionships between the independent variable and response variable at different locations.
The magnitude of the absolute value of the model regression coefficient denotes the degree
of impact of an independent variable on land subsidence. In addition, the local adjusted
determined coefficient (adjusted R2) value from the GWR model is used to detect and assess
the ability of the explanatory variable to explain the spatial variance in land subsidence,
and a higher local adjusted R2 value means better performance of the model. The ranges
of local parameter estimate and adjusted R2 between land subsidence and urbanization
indicators obtained from GWR models are summarized in Table 2. Both positive and
negative relationships are identified by local coefficients between urbanization indicators
and land subsidence at different block scales, and the average of regression coefficients
for NTL (except at the 1500 m scale) is less than 0. The local adjusted R2 indicated that
the urbanization indicators could explain more than 75% of the spatial variance in land
subsidence on average at the four block scales (Table 2). In general, the explanatory power
of urbanization indicators on land subsidence presents no significant difference from small
to large block scales. However, the higher adjusted R2 suggests that NTL has a stronger
ability to explain the land subsidence changes than ISA at different block scales, which
indicates that both ISA and NTL are relatively comprehensive indicators measuring the de-
gree of urbanization, although NTL can reflect dynamic human activities and urban vitality
better than ISA because artificial lights provide a direct signature of human activity [51].
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Table 2. Descriptive statistical summary for GWR models.

Scale Variable
Coefficient

Adjusted R2

Min Lower Quartile Mean Upper Quartile Max

500 m

ISA −0.2393 −0.0058 0.0240 0.0528 0.3389 0.7525
NTL −2.2963 −0.1292 −0.0026 0.1413 3.6109 0.7929
BKD −32.1901 −0.0593 0.0722 0.1371 39.3492 0.8180
RLD −3.1004 −0.0548 0.0295 0.0913 1.9124 0.8205

1000 m

ISA −0.2357 −0.0332 0.0126 0.0653 0.2151 0.7535
NTL −1.4376 −0.1626 −0.0126 0.1586 2.2220 0.8191
BKD −13.7699 −0.0816 0.0356 0.1842 6.6497 0.8374
RLD −0.7648 −0.0905 0.0389 0.1339 1.5085 0.8019

1500 m

ISA −0.5730 −0.0766 0.0043 0.1050 0.3629 0.7895
NTL −4.4310 −0.1935 0.0129 0.2425 3.4730 0.8667
BKD −1.4849 −0.0952 0.1182 0.2601 3.4356 0.7841
RLD −0.8631 −0.1476 0.0408 0.2192 2.0384 0.7835

2000 m

ISA −0.5431 −0.0940 0.0013 0.1154 0.3364 0.7701
NTL −1.2506 −0.2347 −0.0581 0.1684 0.9370 0.7805
BKD −3.2007 −0.1089 0.0918 0.2867 2.2430 0.7660
RLD −1.7809 −0.2026 0.0237 0.2558 1.8308 0.8136

As shown in Figure 6, the explanatory ability of GWR revealed by the local adjusted
R2 varies spatially. In general, GWR exhibits stronger explanatory power in WC, QS,
central HS adjacent to East Lake, and northern JX. In contrast, the prediction ability of
GWR appears to be lower in JA and around the periphery of the study area. The spatial
patterns of coefficients of independent variables for urbanization indicators identified by
GWR are clearly shown in Figure 7. In terms of the spatially varying regression coefficients,
the directions (positive or negative) and strengths of the relationships between land defor-
mation and urbanization indicators are not constant over the study area at different block
scales. This result suggests that homogeneity and heterogeneity in the spatial relationships
between land subsidence and urbanization indicators are sensitive to spatial scales. In
addition, the spatial patterns of the regression coefficients of urbanization indicators tend
to become more similar with increasing block scale. At the 2000 km block scale, negative
relationships between urbanization indicators and land surface deformation are detected
for JA, JH, QK, and WC along the Yangtze River and south HS, indicating that urban
construction and anthropogenic activities resulted in the occurrence of land subsidence.

As shown in Figure 7, the negative values of the regression coefficients from the GWR
model concentration region coincide with the distribution of soft soils or carbonate rocks,
which have a high degree of urbanization. According to the definitions of urbanization
indicators (ISA, NTL, BKD, and RLD), a region with a high degree of urbanization has large
dynamic and static loads or is undergoing frequent construction and renewal activities.
The urban construction of Wuhan city witnessed a stage of rapid development during the
study period. In the construction process, groundwater extraction is required for operations
around sites where buildings and subways are constructed. Previous studies have shown
that the loss of groundwater results in consolidation of highly compressible soft soils and
the dissolution of carbonate rocks, which thereby leads to land subsidence [30]. At the same
time, the excavation of a subway tunnel inevitably disturbs the surrounding soil layers,
followed by ground settlement. After the completion of project construction, i.e., in the
process of building and subway operation, continuous dynamic and static loading act on
the foundations of structures such as buildings, subways, and bridges. When the soil layer
underneath a structure can no longer support the loading, settlement occurs within the
structure and the surrounding area [32,41,52].
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Figure 6. Spatial patterns of local adjusted R2 obtained from the GWR model for urbanization
indicators at four block scales.

In contrast, some unexpected local relationships are also identified by the GWR
model. For example, the southeastern and northeastern parts of the study area have
concentrations of positive values. The density of deformation monitoring point pixels
obtained in peri-urban areas is sparser than that in the center of the city due to dense
vegetation and abundant waters. As a result, the land surface deformation monitoring data
in the aggregated unit are easily influenced by random errors, and such unexpected results
thus appear. Additionally, some omitted unknown variables in the GWR model may also
contribute to the unexpected results.
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Figure 7. Spatial distribution of regression coefficients between urbanization indicators and
land subsidence.

4.5. Scale Effects of Relationships between Land Subsidence and Urbanization

The scale effect refers to smaller units being aggregated into larger units for spatial
data, this likely provides inconsistent results [53]. Numerous studies have pointed out that
the scale effect has been proven to be ubiquitous in the analysis of geographical phenomena
and processes [54–56]. Neglecting the scale effect may lead to uncertainty in the results
of spatial analyses and statistics and may even produce false conclusions. Thus, scale
effects cannot be overlooked when analyzing the relationship between land subsidence
and urbanization. In this work, the global and local bivariate Moran’s I (Figure 5), the
spatial patterns of the local adjusted R2 (Figure 6), and the directions and strengths of the
identified relationships between land subsidence and urbanization (Figure 7) all varied
among the different block scales. In other words, the above results showed that the spatially
varying relationship between land subsidence and urbanization was also scale dependent.
First, the explanatory ability of the GWR models increased as the block scale increased,
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but approximately 20% of the spatial variance in land subsidence remained unexplained
even at a block scale of 2 km. The reason for this may be that the larger block size was able
to significantly reduce random disturbance for the estimation of land subsidence at the
statistical unit due to the effect of spatial filtering. Nevertheless, the spatial autocorrelations
of the residuals produced from the GWR models did not change accordingly with the
variation in the block scale. Notably, significant positive spatial autocorrelations were
found in the GWR model for land subsidence and ISA at the scales of 1.0 km (Moran’s
I = 0.1267, p < 0.01) and 2.0 km (Moran’s I = 0.1150, p < 0.01), NTL (Moran’s I = 0.1167,
p < 0.01), and BKD (Moran’s I = 0.1268, p < 0.01) at the 2.0 km scale. This finding indicated
that although the results of the GWR model varied with changes in the block scale, certain
bias occurred randomly in the calibration due to the interference of other factors that were
not considered.

In fact, the interactions between land subsidence and urbanization indicators are very
complicated, and thus it is difficult to design an appropriate method to sample spatial data.
Therefore, to correctly analyze such interactions, a comparative analysis with multiscale
data is very important and necessary. Although it is difficult to recommend the “best”
spatial scales for the GWR model because the influences of factors vary over different
sampling scales [57], the degrees of fitting for an observation measured by the adjusted
R2 and the spatial autocorrelation of the GWR model residuals should both be considered
for the selection of a suitable block scale. In general, the suitable spatial scale in a GWR
model should not only effectively prevent the interference of random factors but also reveal
locally varying patterns of the identified relationships. Furthermore, the directions (positive
or negative) and strengths of the spatial regression coefficients produced for the GWR
models also varied across various scales and implied that spatial relationships between
land subsidence and urbanization indicators gradually became global and that the spatial
stationarity tended to be strong, which was consistent with the spatial resolution effects on
the relationships between urban heat islands and their impact factors [58,59].

In this paper, an adaptive Gaussian kernel using the golden section search method
was adopted to identify the optimal bandwidth size for a GWR model and mainly focused
on the effects of block scale [60]. Future work is needed to consider a comparative analysis
with multi-bandwidth models for GWR. In addition, we only analyzed spatially varying
relationships between land subsidence and urbanization indicators at four block scales. As
a result, it remains unknown whether there is a threshold within which scale effects are
significant. It is therefore necessary to conduct a further comparative study of the GWR
results obtained for a series of block scales [61].

5. Conclusions

In this study, the land deformation in Wuhan, the largest city in central China, obtained
from Sentinel-1 SAR time-series datasets based on the SBAS-InSAR method was presented.
We investigated the spatially varying relationships between land subsidence and urbaniza-
tion in Wuhan by using bivariate Moran’s I and GWR models. Our analysis concentrated on
a set of empirical results that support the following conclusions. The derived deformation
results showed that land subsidence was obvious and unevenly distributed in the study
area, the annual deformation rate varies from −42.85 mm/year to +29.98 mm/year, and its
average value was −1.0 mm/year. A clear spatial pattern for land subsidence in Wuhan
was mapped, and several apparent subsidence funnels identified by the LISA index were
primarily located in central urban areas. As indicated by bivariate global and local Moran’s
I, four types of urbanization indicators ISA, NTL, BKD, and RLD, were found to be signifi-
cantly spatially correlated with land subsidence at different scales, which implied that the
urbanization indicators could have an impact on the land subsidence of its surrounding
neighbors. In addition, the GWR model results showed that all urbanization indicators
were significantly associated with land subsidence across the whole study area in Wuhan,
mainly controlled by the thickness of soft soil, but the relationships were not completely
consistent among land subsidence and different urbanization indicators. The results of
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bivariate Moran’s I and GWR confirmed that the relationships between land subsidence
and urbanization varied spatially in Wuhan at multiple spatial scales. Moreover, scale
dependence existed both in bivariate Moran’s I and GWR models for land subsidence and
all urbanization indicators, however, a “best” spatial scale could not be confirmed because
the disturbances of factors vary over different sampling scales. We suggest that the results
from our study advance the understanding of the spatially varying relationships between
land subsidence and urbanization, and it is hoped that they will provide guidance for
subsidence control and sustainable urban planning.
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Abstract: Karstic terrains are usually dominated by aquifer systems and/or underground cavi-
ties. Overexploitation of groundwater in such areas often induces land subsidence and sometimes
causes sinkholes. The Cheria basin in Algeria suffers from severe land subsidence issues, and this
phenomenon has been increasing in recent years due to population expansion and uncontrolled
groundwater exploitation. This work uses GPS data and persistent scatterer interferometry synthetic
aperture radar (PS-InSAR) techniques to monitor the land subsidence rate by employing Sentinel-
1 satellite data for the period from 2016 to 2022. Our results demonstrate that the Cheria basin
experiences both uplift and subsidence in places, with an overall substantial change in the land
surface. The total cumulative subsidence over 6 years reached a maximum of 500 mm. Comparison
of land deformation between PSI and GPS showed root mean square error (RMSE) values of about
2.83 mm/year, indicating that our analyzed results are satisfactorily reproducing the actual changes.
Nonetheless, these results can be used to extract the susceptible zones for vertical ground displace-
ment and evaluate the surface deformation inventory map of the region for reducing damages (e.g.,
human losses, economic impact, and environmental degradation) that may occur in the future (e.g.,
sinkholes) and can be further utilized in perspective for a sinkhole early warning system.

Keywords: land subsidence; InSAR; karst; sinkholes; climate change; PS-InSAR
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1. Introduction

Groundwater resources are very vulnerable due to natural and anthropogenic impacts,
especially in karstic terrains of arid and semi-arid zones, due to increased requirements
caused by climate change and population expansion [1,2]. Karst landscapes are consid-
ered highly fragile settings that are severely vulnerable to sinkhole formation. Sinkhole
landforms are depression areas with subcircular shapes on a surface typically common
in carbonate and/or evaporate rocks; these terrains are characterized by minerals that
might dissolve in water and are controlled by (1) texture, (2) mechanical strength (i.e.,
rocks have lower mechanical strength and have faster and higher solubility behavior), and
(3) solubility mechanisms, etc. [3]. Typically, water molecules absorb atmospheric carbon
dioxide (CO2) and transform it into carbonic acid (H2CO3) in soils, which pushes carbonate
minerals into the leaching process. The acidic solution H2CO3 filters through the weak
areas (joints, faults, and fractures) and involves the formation of underground cavities [4,5].

Land subsidence issues have become increasingly prominent in recent years in many
parts of the world. Land subsidence is the lowering of the ground surface elevation due to
underground material movement. It occurs due to a complex process controlled by natural
or anthropogenic causes or a combination of both effects. Natural causes could be events
such as earthquakes, soil compaction, glacial isostatic adjustment, erosion, and sinkhole
formation; anthropogenic effects are activities such as the removal of water, oil, natural gas,
or mineral resources from the ground by pumping, fracking, or mining activities. Typically,
sinkhole collapse happens when the piezometric level goes down. The damage could
vary from one region to another and can be affected indirectly by infrastructure presence
and population concentrations [5]. Because of urban expansion and climate change issues,
sinkhole subsidence geohazards have been reported worldwide, including in Mexico [6],
the USA [7], Iran [8], the UAE [9], and Turkey [10].

Subsidence is a common geological hazard and can cause infrastructure damage,
ground surface ruptures, increasing flood risk, and adverse socioeconomic impacts on
communities. Detecting the spatial extent and monitoring temporal evolution is crucial
to determine the causes of subsidence and prevent activities to mitigate the negative
effects. Elevation or elevation-change measurements are fundamental to monitoring land
subsidence and have been measured by using traditional methods; Global Positioning
System (GPS) stations, leveling networks, and recently, satellite InSAR (interferometric
synthetic aperture radar) remote sensing are prominent techniques.

In recent years, InSAR has become a powerful remote sensing technique for moni-
toring global earth changes. Persistent scatterer interferometry synthetic aperture radar
(PS-InSAR), which belongs to differential interferometric synthetic aperture radar (DInSAR)
groups, is an innovative technology for surface displacement monitoring. These methods
are less affected by time and space decoherence and have low-cost advantages and high pre-
cision. Phase interferometry contains artifacts that reduce the quality of the interferograms.
A small space and temporal baseline of the C-band images were constructed to avoid and
minimize errors conserved during the acquisition time of each image [11]. However, it
is the contribution of atmospheric conditions such as temperature, vapor content, and
pressure that are converted into small-magnitude errors in interferograms [11,12].

The PS-InSAR approach was first realized by Ferretti [13]. The algorithms identify
high persistent scatterer (PS) pixels less affected by time and space decoherence, as well as
relatively stable pixels, by analysis of their amplitude scintillations in interferogram series
and time/frequency characteristics of each phase. This algorithm works better in urban
areas with a large number of artificial man-made structures that increase the identification
of scatterers. Persistent scatterer interferometry (PSI) uses phase analysis for PS pixel
identification proposed by Hooper [14]. This algorithm uses a combination of amplitude
dispersion index and phases spatial correlation to identify PS points to produce a time
series of deformation using the spatially correlated nature, rather than requiring a known
temporal dependence [14].
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The present work aims to study the subsidence in a karst semi-arid area that suffers
from severe drought and groundwater exploitation problems. Interferometry techniques
with large-scale acquisition and high accuracy provide subsidence rates and help to ex-
tract and delineate the ground movement changes registered over the study period. The
spatiotemporal land deformation distribution identified by exploring InSAR and GPS high-
lights the serious land subsidence damages that have occurred in arid and semi-arid regions.
The findings will help the local authority to improve a strategy for regional deformation
and the implementation of inventory maps to avoid human and economic losses.

2. Study Area

The Cheria basin is situated in the southwestern part of Tebessa within the northeast
province of Algeria between the latitudes of 35◦18′41,62′′ and 35◦14′51,30′′N and longitudes
of 7◦42′51,40′′ and 7◦47′34,62′′E (Figure 1). The basin is surrounded by mountain ranges
with an elevation exceeding 1000 m, with some areas at elevations of up to 1200 m, such as
Djebal Achour and Djebal Dokkan in the east; Djebal Zora and Djebal Boukammech in the
south; Djebal Troubia and Djebal Tazbent in the north; and Djebal Kamallel and Djebel El
Abtine in the west.
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Figure 1. Location map of the study area (background image: Landsat-8 OLI dated 12 September
2022). Orange stars are past sinkhole sites; B1, B2, and B3 are borehole wells where the water level
was monitored; pink rectangular boxes are the location of ground control points; and dashed white
lines are profiles selected for the analysis of PSI and GPS results.

The local geology consists of lithostratigraphic units that vary from bottom to top by
Maastrichtian limestone, Eocene limestone, and Mio-Plio-Quaternary deposits (Figure 2) [15].
The sinkhole studied is a cover-collapse type characterized by Eocene limestone layers cov-
ered with Quaternary deposits (gravel, sand, silt, and clay) (see Figure 2). They are mainly
synsedimentary subsidence types caused by the dissolution of the karstic bedrock [16]. The
tectonic system dissected by conjugation faults is controlled by the local hydrogeographic
networks, the NE–SW and the vertical NW–SE diagonal system, and the N–S (Alpine phase)
system [17]. The region has a semiarid climate, and the local precipitation is approximately
340–400 mm/year.
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Figure 2. Regional geological map of the study area showing the dominant Quaternary formation
and the Maastrichtian and Eocene formations.

The dominant type of sinkhole present in the study region is the cover-collapse
sinkhole. Cover-collapse sinkholes are one of the most dangerous types that can collapse
in minutes or even seconds, causing disastrous damages. Real damage caused by past
sinkhole collapse events is displayed in Figure 3.
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Figure 3. Sinkhole example images: (a) Draa-Douamis sinkholes 1 and 2 collapsed with a diameter of
66.47 and 24.88 m, respectively (location: see Figure 1—sinkhole sites; date: during 2004); (b) example
of sinkhole diameter enlargement in surface; (c) Harkat Bouziane sinkhole collapsed in the city
with a diameter of ~50 m and height of 2 m (location: see Figure 1—sinkhole sites; date: February
2009), destroying infrastructure; and (d) damage created by a sinkhole event (i.e., sewer network and
roads broken).

3. Data and Methods

In this paper, we focus on investigating the subsidence phenomenon and evolution
between specific periods selected based on GPS measurements and PS-InSAR techniques.
SAR images were obtained from the Sentinel 1-A and 1-B satellites between 2016 and
2022. The SAR scenes selected for the case study were carefully chosen (e.g., based on
good weather, etc.). The study area is mostly bare land with a very low percentage of
permanent vegetation, which makes it easier to obtain good SAR scenes. The Sentinel-1
short wavelength is sensitive to vegetation, which leads to serious decorrelated noise due
to vegetation changes during the revisiting period of the SAR images. The GPS datasets
were measured by a Leica 1200 GNSS system receiver with an ATX1230 antenna and
an RTX1250GG receiver.

More information about the satellite image dataset and baseline distribution related to
acquisition time is provided in Table 1.
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Table 1. Details of the Sentinel-1A and Sentinel-1B data used in this study.

Satellite Track Band Covered Period Number of Scenes

Sentinel-1A 161 C-band 03 January 2016 to
07 January 2022 50

Sentinel-1B 168 C-band 12 October 2016 to
22 October 2021 50

The phase difference between SAR images consists of measuring the ground difference
along the radar line of sight (LOS) direction. The interferometric phase comprises the
following contribution in Equation (1):

Φ = ϕorbϕorb + ϕdemϕdem + ϕunwϕunw + ϕnoiseϕnoise + ϕatmϕatm (1)

where ϕorbϕorb represents the residual orbit error caused by an inaccurate orbit sensor;
ϕdemϕdem is related to the topographic variation enhanced with physical features of the
ground surface; ϕunwϕunw is the unwrapping error and the main algorithm process applied
to recovering an unambiguous phase and correcting the residual phases (orb, dem, and
unw) for accurate high deformation results; ϕnoiseϕnoise is the residual thermal noise effect;
and ϕatmϕatm is the atmospheric errors during SAR image acquisition that are influenced
by various signals. It is the main artifact source and is generated when the microwave
passes through the tropospheric layer (i.e., elevation component due to atmospheric vertical
stratification, and turbulent component referring to horizontal changes in water vapor
distribution over short time intervals) [11,18].

Data preparation consisted of the creation of single-look master interferograms from
the N + 1 single-look complex (SLC) SAR images with the most optimal configuration.
All the other images were denoted as slaves and co-registered to generate interferograms.
Integration of external DEM SRTM 1 sec data was completed as a topographic reference,
and these data were also used to eliminate the topographic effects and geocoding. All
preprocessing steps were carried out using Gamma software (20220701) and MATLAB (9.13
R2022b). The flowchart of the overall methodology is presented in Figure 4.

The PSI method processed to find pixels not affected by noise with high phase stability
is performed using the following steps:

i. In preliminary analysis loading, persistent scatterer (PS) candidate points are se-
lected as pixels with a value of the amplitude dispersion index (ADI) that is smaller
than a threshold.

ii. Estimate phase noise means the atmospheric phase screen (APS) value is contained
on each candidate pixel in the interferogram, defined by the spatially correlated
phase and uncorrelated terrain errors. For good results, various spatiotemporal
filters are used to correct APS and achieve only the deformation part.

iii. Persistent scatterer points are selected according to the atmospheric phase screen
(APS) correction parameter and the percentage of random pixels in a scene per
density is estimated by application of a probability statistics method.

iv. The PSs selected in the previous step are weeded, removing those that are deemed
too noisy due to signal contributions from neighboring ground resolution elements.

v. The wrapped phase of the selected pixels is corrected for a spatially uncorrelated
look angle DEM error.

vi. Three-dimensional unwrapping of the above-mentioned corrected phase PS result
is used; unwrapping errors are more likely to occur in a longer perpendicular
baseline interferogram.

vii. A spatially uncorrelated look angle SCLA error was calculated in step iii and
removed in step v; in step vii, a spatial look angle error is calculated which is due
almost exclusively to a spatially correlated DEM error (this includes an error in the
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DEM itself and incorrect mapping of the DEM into radar coordinates). The master
atmosphere and orbit error phase are estimated simultaneously.

viii. Atmospheric filtering and estimation of other spatial correlation error terms are
conducted. The results are a data file containing final PS points with a deformation
velocity in the precision of mm/year representing the land deformation model of
the area of interest [14].

 

Figure 4. Flowchart depicting the overall methodology adopted in this research.

To compare these measurements with GPS vertical measurements, we transformed
SAR measurements recorded along the radar line of sight (LOS) into 3D displacement. The
velocity (VLOS) measured can be constructed from SAR image acquisition geometry using
Equation (2):

VLOS = (cosθ − sinθ cosα + sinθ sinα)

⎛⎝vU
vN
vE

⎞⎠ (2)

where θ and α are pixel-based radar incident angles and azimuth angles of the satellite,
respectively; vU , vN , and vE represent real vertical north–south direction and west–east
direction deformations, respectively. If VA

LOS and VD
LOS are the velocities along the radar

line of sight for ascending and descending tracks, Equation (2) can be rewritten into
Equation (3):

VLOS =

(
VA

LOS
VD

LOS

)
=

[
cosθA −cosα sinθA −sinα sinθA
cosθD cosα sinθD sinα sinθD

] ⎛⎝vU
vN
vE

⎞⎠ (3)
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To further simplify Equation (3) with three variables, displacements occurring along
the north–south direction cannot be measured accurately (almost parallel to the satellite
orbit). Assuming that the north–south component projection of the velocity along the LOS
radar is negligible for both ascending and descending orbit tracks, in this case, Equation (3)
can be approximated and further simplified:

VLOS �
(

VA
LOS

VD
LOS

)
=

[
cosθA −cosα sinθA
cosθD cosα sin θDD

]
∗
(

vU
vE

)
(4)

In situ dataset measurements were performed in this region for six years by manually
monitoring millimeter surface displacement in this study area (unfortunately, no permanent
GPS monitoring station exists). A total of five ground control points (GCP) were selected
and used for validation purposes of persistent scatterer results. The GPS observation
measurements were obtained with a session length of 30 min for five selected GCP points
and 10 min for each of the remaining sites (Profiles AB-CD). The periodic measurements
over an extended period are a great approach to flattening the error curve and eliminating
outliers and artifacts in GPS measurements [19] (i.e., the same concept used by InSAR time-
series analysis). The Geodetic Reference System 1980 (GRS80) was used for the ellipsoidal
heights. Furthermore, the geoid model of EGG2008 was used to convert the ellipsoidal
heights into orthometric heights.

It is important to keep in mind that GPS measurement can obtain the Earth’s surface
motion information with high precision and can directly reflect the vertical variation
characteristics of the observed object. However, measurements cannot be densely organized
on a large scale due to the critical limitations of GPS such as low spatial resolution and
high cost and time consumption [20,21]. Therefore, the PSI results were used and validated
with five monitored GPS ground control points received during the period of analysis.

Finally, to assess the discrepancy found between PS-InSAR and GPS, root mean square
error (RMSE) was used. RMSE is common and is considered an excellent general-purpose
error metric that can be used to (1) indicate the absolute fit of the model to the data and
(2) provide the average model prediction error in units of the variable of interest; RMSE
is a negatively oriented score, which means lower values are better [22–24]. RMSE can be
calculated using Equation (5):

RMSE =

√
1
n ∑n

i=1(ŷi − yi)
2 (5)

where yi is the GPS measurements, ŷi is the PS-InSAR measurements, and n is the number
of observations available for analysis.

4. Results

For the deformation monitoring in the study area, we used PS-InSAR in combina-
tion with GPS measurements, as described in Section 3. The mean velocity maps of the
final geocoded vertical and horizontal displacement generated from Sentinel-1 data are
presented in Figure 5. Color ramp distribution of the velocity maps gives a visual prelimi-
nary overview of the dominant movement (e.g., subsidence or uplift, east or west). Our
results show a vertical mean velocity with a large percentage of negative values compared
with positive values, with values ranging between −35.95 and 12.73 mm/year. On the
other hand, horizontal mean velocity shows an equal percentage of negative and positive
values, with values ranging from −22.98 to 21.85 mm/year. In the vertical mean velocity
map, negative rates indicate subsidence and positive rates indicate land uplift, whereas
in the horizontal mean velocity map, the negative values indicate deformations in the
west direction and positive values indicate deformations in the east direction. It can be
seen that the urban areas such as Cheria city are covered totally by negative values, which
indicates that the whole city subsides (e.g., a sinkhole collapsed in 2009). However, rural
areas with high-density borehole wells register the highest fluctuation of subsidence/uplift
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velocity rates (up to −35 mm/year) due to ongoing unsupervised excessive underground
water pumping.

Figure 5. Vertical and horizontal mean velocity map of the study area showing (a) vertical mean
velocity (up and down directions) and (b) horizontal mean velocity (east and west directions). (To
enhance the visibility of positive and negative values, values close to 0 were rendered transparent.)
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Five GCP points (P1, P2, P3, P4, and P5) were selected for the cumulative analysis of
ground movement in the study area during the period between 2016 and 2022 (Figure 6).
The analysis of five ground control points illustrates a high rate of vertical movement
caused by land subsidence. Overall, the PS-InSAR results are in close agreement with GPS
measurements, with a ±3 mm/year difference. Point P1 shows an aggressive land subsi-
dence at the start, reaching values greater than −275 mm, followed by a slow subsidence
of approximately 30 mm registered at the end of the observation period. Point P2 (near the
sinkhole that collapsed in 2004) shows that progressive land subsidence can reach a value
of −200 mm. At P3, the progressive land subsidence reached −140 mm, and at P4, the
uplift reached 25 mm, and huge land subsidence was registered at ~−250 mm. For P5, the
progressive subsidence reached approximately −265 mm to −275 mm.

Figure 6. Graphs of the cumulative deformation of the selected points (P1, P2, P3, P4, and P5) from
PSI and GPS results used to detect subsidence; the x-axis is time, 2016–2022, and the y-axis represents
the movement of the ground.
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To analyze the subsidence trend in the study area, two profiles (AB and CD) with
NE–SW and NWW–SEE directions were selected and plotted (see Figure 7). The trend
of cumulative vertical and horizontal ground movement profiles during the period of
the analysis was visualized to determine the changes in the study area. The fluctuation
of the vertical ground movement demonstrates that the study area suffers from a heavy
subsidence pattern with a maximum displacement rate ranging between 0 and 350 mm,
approximately. For the CD profile, the vertical ground movement shows a varying amount
of subsidence where the maximum rates are between −100 and −500 mm.

Figure 7. Cumulative vertical ground movement profiles: (a) AB and (b) CD profiles. The x-axis in
the figure represents the profile direction along NE–SW and NWW–SEE directions, while the y-axis
represents the cumulative vertical ground movement (mm). The black circle referring to selected
points A, B, C, and D through the AB profile, and 1, 2, 3 and 4 through the CD profile, are also
presented in Figure 8.
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Figure 8. (a) Positions and overview of the eight selected sample sites (A, B, C and D through the AB
profile, and 1, 2, 3 and 4 through the CD profile) from Figure 7; (b–f) represent a close-up overview of
selected sample sites (i.e., highlighted with white circles).

An overview of eight sites selected from cumulative vertical ground movement profiles
is presented in Figure 8, with personalized zoom to monitor the total displacement resulting
from over five years of analysis. For further detail, in Figure 8b,c, the selected points A
and B represent areas facing serious land subsidence highlighted in the map, with a sub-
circular shape of the total value reaching more than −350 mm. In Figure 8c,d, point C
is situated near the urban perimeter and is represented on the map by near-zero vertical
movements that indicate relatively stable zones. Point D suggests a medium to high land
subsidence, with a value reaching −270 mm; while in Figure 8e,f, points 1 and 4 refer to
ground subsidence with values between −140 and −170 mm, respectively. On the other
hand, points 2 and 3 represent areas with the highest land sinking values registered during
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the analysis period, at more than −490 mm. GPS distribution is very similar to the InSAR
deformation field.

Our vertical velocities, obtained using the GPS rapid static mode, confirm the subsi-
dence detected with InSAR.

The displacement rates derived from the PS-InSAR and GPS measurements were
compared by calculating the root mean square error (RMSE) for vertical and horizon-
tal displacement rates (Table 2). The data are in close agreement, with an accuracy of
2–3 mm/year. RMSE comparison results show 2.8374 mm/year for vertical movement
direction and 2.9155 mm/year for horizontal movement direction.

Table 2. Root mean square error (RMSE) values (in mm/year) for InSAR and GPS results.

Comparison Movement Direction RMSE (mm/Year)

InSAR vs. GPS Vertical 2.8374

InSAR vs. GPS Horizontal 2.9155

5. Discussion

Over the years, a limited focus on InSAR subsidence was given in Algeria, especially
to subsidence-related issues in karstic terrains [25]. Here, we compare the map of vertical
ground deformation rates generated by PS-InSAR with GPS measurements. The results
obtained in this research demonstrate the effectiveness of the monitoring system based on
the integration of PS-InSAR data and GPS measurements. Our results (see Figure 5) show
that the study area is largely dominated by subsidence and needs continuous monitoring
to understand the risks involved. We also noticed remarkable ground uplift at places
with deformation ranging between 0 and +12.73 mm/yr. A possible explanation for this
anomalous phenomenon could be related to the sudden hydrologic overpressure in the
karst networks, seasonal water changes, and groundwater redistribution leading to the
natural pressurization of the underground karst flow channels. These water storage losses
correlate to flexural unloading [26,27]. Previous research has found that fluid extraction
can lead to strain and an increase in pore pressure variations in the sediments [28]. Slow
land uplift has been proposed to be connected to increases in pore pressure accompanying
groundwater redistribution [29].

The reason behind the high subsidence rates detected in the study area seems to be
a combination of multiple factors. The study area has known heavy groundwater exploita-
tion in the last and present century. The main water resource for human supplies and
agricultural uses in this area is groundwater. An in situ investigation of the consumption
of underground water conducted in 2007 [15] suggests that the average consumption is
approximately 22 hm3/year. The population grew by an average of 3.7%— from 74,129
in 2008 to 96,827 in 2020—in an area of about 267 km2. Today, the study area suffers from
groundwater drawdown due to two major factors: (a) the ongoing unsupervised groundwa-
ter exploitation to fulfill the increased water demand, and (b) the severe droughts and soil
degradation affecting the area [15]. In scientific literature (e.g., [30,31]), a world map climate
classification was published which suggests that the study area is recognized as a hot desert
climate type. Global warming in semi-arid regions makes drought more severe and last
longer [32], which makes dry regions drier [15]. In the case of the study area, due to the lack
of surface water resources needed for sustaining agriculture irrigation, local farmers rely
on underground water as the only resource available. The study area is a semi-arid region
that suffers from low rainfall precipitations and extreme heat variation. Therefore, there
is huge reliance on underground water supplies for Cheria city and adjacent cities. Water
pumped from underground mostly goes to: (a) agriculture which uses a huge amount of
water in the form of primitive irrigation (see Figure 1, below)—the water used is mostly
lost to evaporation, and the remaining water either seeps underground to accelerate the
dissolution of karst formation (see Figures 2 and 3) and/or causes the swelling of clayey
formations; and (b) the local drinking water network (Cheria city and adjacent cities), and
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subsequently to poorly maintained sewer systems (most Algerian cities do not have water
treatment facilities) that usually dump water, such as irrigation water, on the surface.

Three boreholes (B1, B2, and B3; see Figure 1 for location) were monitored between
2011 and 2012 (Figure 9). The graphs in Figure 9 show that the water table declined
gradually without picking up. This comes with the knowledge that the current status of the
underground water table is at its lowest and cannot fulfill human life needs for much longer.
In the 1980s, the study area had a water table near the ground surface and even small
swamps were documented [15]. Excessive underground water pumping leads to water
table decline, compression of soils, and land sinking. In semi-arid regions, the water table
declines rack up rapidly. The drinking water crisis explodes with expanding water supply
demand. The shortage in water halts agriculture-related activities. The consumption of
huge quantities of the already dwindling water reserves creates an underground imbalance
due to the extracted water densities that existed in the karst cavities. Therefore, soils
covering these surfaces sink massively. This results in a subsidence phenomenon that will
transform into sinkholes at any moment, especially in karstic formations. Furthermore, it
was noticed that for a lot of sinkhole incidences in the region, the local authorities were not
aware of them. Small subsurface circular areas of land sink gradually, and local farmers
try to conceal them by adding soil on top in an attempt to stop land degradation and
surface sinking. Additionally, local farmers and communities are afraid of land being
seized without compensation. Algerian laws issued in 2004 concerning natural hazards
do not recognize a lot of hazards such as climate change, heatwaves, land subsidence,
etc. In addition to the lack of recognition, these laws were not updated to reflect the
results of research reported by the scientific community. Therefore, no compensation was
provided to landowners in the form of insurance or aid by local municipalities in the case
of sinkhole collapse.

 

Figure 9. Water changes of three boreholes, B1, B2, and B3, monitored between 2011 and 2012, located
in the northern part of the study area (modified after [16]).

Based on the profiles of cumulative vertical ground movement fluctuation in AB and
CD, urban areas are affected by continuous minimum rates of land deformation which
alternate between slightly up and down variations. On the other hand, rural areas are
extremely affected by maximum downward/upward movement deformation rates. This
analysis clearly shows that subsidence dominated the study area during the investigation
period, and the area surrounding the city experienced high to very high subsidence, while
the interior of the city experienced low subsidence. In detail, the rural areas suffer due to
dense illegal water boreholes being implemented.
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Comparing the GPS measurements with the PS-InSAR results (Table 2 and Figures 6–8)
shows satisfying results. PS-InSAR deformation rates are in close agreement with GPS
measurements covering the period from 2016 to 2022. The RMSE was less than 3 mm/year.
Since RMSE can range from 0 to ∞, there is no absolute good or bad threshold. Therefore,
it is recommended to assess RMSE based on the case study and the observation samples
available. The obtained RMSE value is great considering the scale of analysis, the budget
available, and time consumption. Studies (e.g., [33–40]) have obtained similar RMSEs to
this study despite the difference in the processing approach. The obtained RMSEs between
GPS and PS-InSAR deformation rates can be improved by enhancing the SAR processing
algorithms and GPS measurements.

The comparison of GPS and PS-InSAR goes beyond comparing the deformation values
from each method. Precise GPS positions can be used to enhance the deformation accuracy
of InSAR images. PS-InSAR and GPS are two different technologies to monitor land surface
deformation. Where PS-InSAR can measure changes in elevation over large areas with
high accuracy, GPS can only measure elevation changes over small areas because it is
time-consuming and requires high-cost equipment. Innovative methods of comparing
and integrating GPS and InSAR measurements will facilitate enhanced land deformation
mapping and provide a better understanding of subsidence processes.

PS-InSAR has been proven to be a very useful technique for monitoring deformations
affecting rural and urban areas and provides information for large-scale and slow surface
movement with centimeter to millimeter accuracy for hazards such as ground subsidence,
structure collapse, landslides, mining subsidence, etc. Meanwhile, our results successfully
demonstrated subsidence phenomena in the study area, but they can be further modified
with in situ data analysis and other techniques, such as SBAS or Quasi-PS. It is also
suggested that, in the future, a multi-scale (space-based and ground-based) study should
be conducted to thoroughly analyze ground subsidence to avoid serious damage in this
area. That being said, the applicability of the methodology presented here is subject to
two conditions: (1) the availability of InSAR data covering the study region with high
coherence; (2) the availability of measurements of some discrete variables highly correlated
with InSAR data. In this study, we used GPS to assess the PS-InSAR results. Piezometric
data can be also used, but the mathematical relationship with ground deformation is not
established yet. The Sentinel-1 satellites, with a short revisit time, provide greater spatial
coverage, and temporal sampling provides a great opportunity for developing countries to
evaluate and monitor natural hazards with great consistency instead of GPS observation
networks, which are very expensive and time-consuming. Our preliminary result from
Sentinel-1 data demonstrates that excellent results were achieved over a wide area with the
PS-InSAR, which is a key condition in order to apply the proposed methodology.

6. Conclusions

The availability of high-resolution InSAR images from Sentinel-1 datasets for large-
scale mapping and monitoring measurements are aimed at detecting millimeter land
deformation before and after natural hazard precursors.

The region shows an important ground deformation magnitude that refers to a dan-
gerous state of subsidence that requires local authority attention, especially since there is no
possibility for interpreting if there is a relation between the resulting vertical displacements
and the existence of underground cavities. These results can be further verified in situ with
geophysical tools.

Remote sensing techniques contribute to sinkhole hazard assessments and often
predict their occurrence as well as at-risk surfaces before collapse. This implementation
provides a crucial database that can be used not only on soil stability monitoring, but also
as a natural hazard warning system for potentially catastrophic events. Useful maps can be
generated for the Cheria basin to extract and delineate areas susceptible to land subsidence
and sinkholes. These maps can alert local authorities to the current situation and reduce
future damages.
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Abstract: Volcanic plume height is one the most important features of explosive activity; thus, it is a
parameter of interest for volcanic monitoring that can be retrieved using different remote sensing
techniques. Among them, calibrated visible cameras have demonstrated to be a promising alternative
during daylight hours, mainly due to their low cost and low uncertainty in the results. However,
currently these measurements are generally not fully automatic. In this paper, we present a new,
interactive, open-source MATLAB tool, named ‘Plume Height Analyzer’ (PHA), which is able to
analyze images and videos of explosive eruptions derived from visible cameras, with the objective of
automatically identifying the temporal evolution of eruption columns. PHA is a self-customizing
tool, i.e., before operational use, the user must perform an iterative calibration procedure based
on the analysis of images of previous eruptions of the volcanic system of interest, under different
eruptive, atmospheric and illumination conditions. The images used for the calibration step allow
the computation of ad hoc expressions to set the model parameters used to recognize the volcanic
plume in new images, which are controlled by their individual characteristics. Thereby, the number
of frames used in the calibration procedure will control the goodness of the model to analyze new
videos/images and the range of eruption, atmospheric, and illumination conditions for which the
program will return reliable results. This also allows improvement of the performance of the program
as new data become available for the calibration, for which PHA includes ad hoc routines. PHA
has been tested on a wide set of videos from recent explosive activity at Mt. Etna, in Italy, and may
represent a first approximation toward a real-time analysis of column height using visible cameras
on erupting volcanoes.

Keywords: eruption column height; image analysis; Etna volcano; visible cameras; MATLAB

1. Introduction

Multiple volcanic hazards are associated with tephra dispersal [1–3], which encourages
volcanological observatories to permanently improve their monitoring systems with the
aim of tracking the main features of an explosive eruption [4–7]. Eruption column height is
one of the most important source parameters for volcanic monitoring purposes [8,9]. In
fact, this parameter is reported in the VONA (Volcano Observatory Notices for Aviation)
messages issued in real-time by volcano observatories when an ash-producing event occurs
and/or when there is a change in volcanic behavior [10]. The VONA messages are usually
sent by fax or email by the observatory to the pertinent Area Control Centre, Meteoro-
logical Watch Office, and Volcanic Ash Advisory Centre [10]. Plume height estimation is
also essential to evaluate the mass eruption rate of an explosive event [11–14], and rep-
resents a critical factor in forecasting volcanic ash dispersion [15–17] through numerical
modeling [18–22]. Moreover, the level reached by the volcanic plume is essential in some
gas plumes and aerosol retrievals by satellite [4]. Eruption column height can be obtained
using different remote sensing techniques, including satellite [23–25], thermal or visible
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video cameras [4,26,27], radar [28–31], and Lidar [32–34]. However, in some circumstances,
discrepancies among results from different instruments can occur [35,36]. Satellite systems,
for example, may fail when the volcanic plume is not optically thick enough [4], whereas
the quality of radar retrievals could depend on different factors such as the volcanic particle
size [37].

Recent studies have demonstrated that the use of calibrated visible cameras seem
promising and is becoming a useful tool from a volcano monitoring perspective [4]. Cam-
eras in the visible band are able to detect volcanic plumes during daylight hours. It is a very
low-cost system when compared to others and allows, in case of an eruption, measurement
of the plume height directly from the images [4]. However, plume height estimation from
visible cameras is often not automatic and needs an operator to manually sign the height
variation with time. Although the error estimations may be less than 5% [4], automatic
retrievals of volcanic plume from low-cost visible cameras could reduce the time analysis
and lessen the hazard during explosive eruptions. In fact, if the plume height is retrieved
automatically, its value could be used in data assimilation procedures needed for a reli-
able forecast of ash dispersal. Nowadays, while image-processing algorithms have been
developed to detect, track, and extract the main parameters of convective plumes from
thermal cameras [38,39], automatic procedures to analyze volcanic plume height from
visible cameras are scarce [6] and they are not yet implemented for monitoring purposes.
In this sense, it is worth noting that, currently, data assimilation techniques of volcanic
plume dispersal are mainly based on satellite data [40,41] and we retain that the use of both
satellite and ground-based data could really improve the results of volcanic ash dispersal
forecasts [42].

Mount Etna (Sicily, Italy) is one of the most active volcanoes in the world, characterized
by both effusive and explosive events that can be enclosed in a range that spans from long
lasting, low intensity manifestations to paroxysmal phases with a short duration [43,44].
These eruptions may produce a high quantity of volcanic particles and, depending on the
atmospheric conditions, fine ash can reach long distances from the summit craters [45].
Moreover, such particles represent a risk for the population and buildings of the neigh-
boring areas, as well as for air traffic, airports, and other critical infrastructures [8,46].
For this reason, during the last ten years, many tools have been developed at the Istituto
Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo (INGV-OE) with the aim of
detecting the main features of volcanic plumes and the prevention of hazard from tephra
fallout [4,8,47]. In this sense, considering that column height estimates from calibrated
visible cameras were added by the volcanologist on duty in the VONA messages during
the recent Etna activity in 2021–2022, the automatic estimation of this value is a desirable
task at INGV-OE, and results can be extended to other observatories around the world.
In this paper, we present an interactive, open-source MATLAB tool designed to analyze
images of volcanic eruptions derived from visible cameras, and to automatically recognize
the temporal evolution of the volcanic plume height. Even though PHA is not an operative
instrument for monitoring purposes yet, the code presented here may represent a first
approximation toward a real-time analysis of column height using visible cameras on
erupting volcanic systems.

This paper is organized as follows: in Section 2, we briefly describe the camera network
of INGV-OE (Section 2.1) and the methodology used to detect the volcanic plume and
automatically estimate the column height (Section 2.2). In Section 3, we show the main
results focusing our attention on some test cases and on the construction of a code that is
able to analyze images with different eruption, atmospheric, and illumination conditions.
Finally, in Sections 4 and 5, we discuss the main findings, limitations, and future advances
associated with this program.
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2. Materials and Methods

2.1. Camera Network of INGV-OE and Dataset

The surveillance network of Etna, whose data are managed by the INGV-OE, includes
seismic and infrasonic stations, tiltmeters, GPS (global positioning systems), strainmeters,
UV scanners, and thermal and visible cameras [48], among other instruments installed for
monitoring purposes. In particular, the visible camera network of INGV-OE includes two
low-cost visible cameras: EBVH (Etna Bronte Visible High-definition camera) and ECV
(Etna Catania Visible camera), which sit in the west flank of Etna near the town of Bronte
and in the southern flank of Etna in Catania, respectively. These cameras (model VIVOTEK
IP8172P) present a maximum resolution of 2560 × 1920, with a field-of-view of 33◦–93◦
(vertical), 24◦–68◦ (horizontal), and 40◦–119◦ (diagonal). The cameras are calibrated in
terms of location and orientation [49]. With this information, assuming that the plume has
a negligible depth and is confined to a vertical plane that rotates according to the wind
direction, it is possible to manually estimate the height associated with each pixel of the
images and thus calculate the plume height from the record of visible cameras [4], with
uncertainties of the order of 0.5 km. Additional details can be found in Scollo et al. [4,49].
Specifically, the dataset considered in this work consists of videos recorded by the ECV static
camera for different explosive eruptions (Table 1). This dataset includes both eruptions
with optimal visibility conditions and eruptions where column height is not detectable,
even manually (Table 1).

Table 1. Dataset of videos of camera ECV considered in this work. These events are sourced from the
South East Crater (SEC).

ID Date Time (UTC) Frames Observations

V01 10 April 2011 08:00–08:15 450 Optimal atmospheric conditions. The outline of the
plume is diffuse.

V02 10 April 2011 10:30–10:45 450 Favorable atmospheric conditions.

V03 12 May 2011 03:30–03:45 450 Favorable atmospheric conditions. The outline of the
plume is diffuse. The images are particularly dark.

V04 12 May 2011 05:00–05:15 450 Favorable atmospheric conditions. The outline of the
plume is diffuse during a portion of the video.

V05 9 July 2011 14:00–14:30 900 Unfavorable atmospheric conditions. The outline of
the plume is diffuse during a portion of the video.

V06 25 July 2011 05:00–05:15 450 Partially favorable atmospheric conditions (presence of
small clouds near the plume).

V07 25 July 2011 06:45–07:00 450 Weak plume with most of the ash spreading laterally 1.
Optimal atmospheric conditions.

V08 20 August 2011 07:00–07:30 900 Partially unfavorable atmospheric conditions.

V08b 20 August 2011 07:00–08:00 61 Partially unfavorable atmospheric conditions.

V09 29 August 2011 04:00–04:15 450 Poor visibility. The outline of the plume is diffuse.

V10 29 August 2011 04:30–04:45 450 Plume height is beyond the measurement limit during
the whole video. The images are particularly reddish.

V11 8 September 2011 06:00–06:15 450 The outline of the plume is diffuse. Favorable
atmospheric conditions.

V12 8 September 2011 07:30–07:45 450 Favorable atmospheric conditions.

V13 15 November 2011 10:00–10:15 450 No visibility 2.

V14 15 November 2011 12:15–12:30 450 Unfavorable atmospheric conditions. Plume height is
beyond the measurement limit during the whole video.

V15 5 January 2012 05:45–06:00 450 The images are particularly dark. Plume height is
beyond the measurement limit during the whole video
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Table 1. Cont.

ID Date Time (UTC) Frames Observations

V16 5 January 2012 13:00–13:15 450 Weak plume with most of the ash spreading laterally 1.

V17 18 March 2012 05:00–05:15 450 Weak plume with most of the ash spreading laterally 1.

V18 18 March 2012 08:00–08:15 450 Optimal atmospheric conditions.

V18b 18 March 2012 08:00–09:00 61 Optimal atmospheric conditions.

V19 28 February 2013 10:00–10:15 450 Poor visibility. A small portion of the plume is
recognizable 2.

V20 28 February 2013 10:30–10:45 450 Poor visibility. A small portion of the plume is
recognizable 2.

V21 3 April 2013 13:30–13:45 450 Partially favorable atmospheric conditions (presence of
small clouds near the plume).

V21b 3 April 2013 13:00–14:00 61 Partially favorable atmospheric conditions (presence of
small clouds near the plume).

V22 3 April 2013 16:00–16:15 450 Weak plume with most of the ash spreading laterally 1.
The outline of the plume is diffuse.

V23 12 April 2013 10:45–11:00 450 Favorable atmospheric conditions.

V24 12 April 2013 16:00–16:15 450 Weak plume with most of the ash spreading laterally 1.
The outline of the plume is diffuse.

V25 18 April 2013 08:00–08:15 450 Weak plume with most of the ash spreading laterally 1.
The outline of the plume is diffuse.

V26 18 April 2013 10:30–13:45 5850
The video includes a period with plume height beyond
the measurement limit, while the outline of the plume

is diffuse in the final part.

V27 27 April 2013 14:30–14:45 450 Weak plume with most of the ash spreading laterally 1.

V28 27 April 2013 17:45–18:00 450 The images are particularly dark.

V29 19 April 2020 06:00–10:00 7200 Favorable atmospheric conditions.

V30 12 March 2021 06:35–12:10 361 The video includes a period with plume height beyond
the measurement limit.

1 Video employed to complement the set of calibration images used for the construction of an operative calibration
file, but it was discarded for the analysis of plume height versus time because this parameter is not considered
informative in this case. 2 Video employed to complement the set of calibration images used for the construc-
tion of an operative calibration file, but it was discarded for the analysis of plume height versus time due to
visibility limitations.

2.2. Method for the Detection of Plume Height: The Program PHA

PHA (Plume Height Analyzer) is an open-source MATLAB tool that is able to analyze
images and videos of volcanic eruptions (derived from visible cameras), with the objective
of detecting the volcanic plume and calculation of the temporal evolution of plume height.
The Image Processing Toolbox of MATLAB is required for launching the program PHA,
whose graphical interface includes six sections (see Table 2). PHA is a self-customizing
model, which means that the user must perform an iterative calibration procedure based on
the analysis of images of previous eruptions before the model can be used to automatically
detect plume height from new images. The underlying, final goal of this approach is to
create a ‘universal’ functional algorithm that would automatically work for new eruptions
(without further calibration), thus dealing with different eruption, atmospheric, and il-
lumination conditions. Such a functionality would open the doors for us to implement
real-time procedures to compute the column height of ongoing eruptions from the analysis
of visible cameras.
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Table 2. Summary of functions present in the PHA program.

Section Function Description

Fixed mask Load Load a previously created fixed mask.

Fixed mask Create
The program displays a graphical interface, where the user can draw a fixed
mask on a reference image (selected by the user). This information is then
saved in the folder MaskFiles.

Fixed mask Plot Plot the reference image and fixed mask.

Vent position Load Load a previously created vent position.

Vent position Create
The program displays a graphical interface, where the user can select the vent
position on a reference image (selected by the user). This information is then
saved in the folder VentFiles.

Vent position Plot Plot the reference image, vent position and fixed mask.

Pixel to height Load Load a previously created pixel-height conversion matrix.

Pixel to height Create

Three modalities to create a pixel-height conversion matrix are available:
-Constant, vertical gradient: the user is asked to indicate the height associated
with the vent and with the top of the reference image.
-Bilinear interpolation: a graphical interface is displayed, and the user is asked
to select a set of pixels of the image and indicate their heights. The resulting
conversion matrix is computed by fitting this information as a function of pixel
position, using a bilinear interpolation.
-Second-order interpolation: a graphical interface is displayed, and the user is
asked to select a set of pixels of the image and indicate their heights. The
resulting conversion matrix is computed by fitting this information as a
function of pixel position, using a second-order interpolation.
The resulting pixel-height conversion matrix is saved in the folder
PixelHeightFiles.

Pixel to height Plot Plot the reference image and the isolines of height, derived from the
pixel-height conversion matrix.

Calibration: Lab mask Load Load a previously created calibration function.

Calibration: Lab mask Create

An interactive, iterative procedure is launched, which samples frames from a
calibration dataset provided by the user (a single video, a folder containing
videos, or a folder containing images) and shows the application of different
threshold values in the Lab mask (see Section 2.2.2). The user is asked to
indicate the best conservative threshold value. Once the iteration is finished by
the user, the program computes the functions used to calculate the Lab mask
threshold as a function of the image properties (see Section 2.2.2). The
resulting function is saved in the folder CalibrationFiles/LabMask.

Calibration: Lab mask Improve

This routine reproduces the same process associated with the creation of a Lab
mask calibration, but the information is added to an existent Lab mask
calibration. Since the performance of this mask is strongly controlled by the
amount of data that the calibration includes, this function allows to improve
the program performance for a given static camera.

Calibration: Lab mask Merge This routine allows to merge the data contained in two or more existent Lab
mask calibrations and creates a new, likely better calibration function.

Calibration: Lab mask Test

An iterative procedure is launched that shows the application of the Lab mask,
whose threshold is computed with the loaded calibration function, on a set of
frames selected by the user (a single video, a folder containing videos, or a
folder containing images).
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Table 2. Cont.

Section Function Description

Calibration: Lab mask Compare

The user is asked to select two or more calibration functions (in order to
compare them) and a set of frames (a single video or a folder of images). Two
modalities are available:
-Plot Threshold: the program calculates the Lab mask thresholds of the
selected frames considering the different calibration functions. Then, this
information is plotted.
-Show images: an iterative procedure is launched that shows the application of
different Lab masks, whose thresholds are computed using the selected
calibration functions, on the set of frames indicated by the user.

Calibration: Default
Parameters Load

Load a previously created set of default parameters. Even though the results
presented in this paper consider the same set of default parameters, this
section allows to increase the applicability field of this code.

Calibration: Default
Parameters Create

A window is displayed, where the user can change some of the constant
parameters used in the code (e.g., maximum number of clusters in Lab mask
function). Even though the results presented in this paper consider the same
set of default parameters, this section allows to increase the applicability field
of this code.

Analysis Single video

This function allows analyzing a single video. The user is asked to provide the
frame step adopted to analyze the video and the time interval between two
consecutives frames in the video. The output is a plot of the temporal
evolution of plume height, and this information can be saved in the folder
Results.

Analysis Folder with images

This function allows analyzing a folder containing images. The user is asked to
provide the time interval between two consecutives images. The output is a
plot of the temporal evolution of plume height, and this information can be
saved in the folder Results.

Analysis Analyze manually

This function allows to select manually the pixel associated with the maximum
height on a set of frames (a single video or a folder of images). The output is a
plot of the temporal evolution of plume height, and this information can be
saved in the folder Results.

Results Single plot
This function allows plotting the results of previously analyzed videos/folders
with images. The input of this function is the output file saved by any of the
three functions of the section Analysis.

Results Compare plots
This function allows comparing the results of previously analyzed
videos/folders with images. The inputs of this function are the output files
saved by any of the three functions of the section Analysis.

For each frame analyzed (e.g., Figure 1a), the general procedure to compute the plume
height consists of a series of successive steps (Figure 1):

(a) Application of a fixed mask to identify and discard the zones of the images associated
with infrastructure (e.g., buildings, antennas, etc.) and volcano topography (Figure 1b,
see Section 2.2.1).

(b) Subsequent use of a mask to identify and discard the zones of the images associated
with the sky. This mask is mainly based on the analysis of the images in Lab scale
(Figure 1c, see Section 2.2.2) and requires the development of the model calibration.

(c) The application of three successive procedures to identify and discard clouds, includ-
ing those in contact with the plume (Figure 1d–f).

(d) A procedure to evaluate the internal variability of the non-masked zone of the images
and eventually exclude the low-variability zones.

(e) Finally, considering a pixel-to-height conversion matrix (Figure 2), the highest pixel
belonging to the plume is identified.
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Figure 1. Illustrative example of the application of the procedures used to identify the plume in the
program PHA. (a) Original image. (b) Application of the fixed mask. (c) Application of the Lab mask.
(d–f) Application of the different algorithms aimed at discarding the clouds from the image.
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Figure 2. Examples of the pixel-height conversion matrix used in this work. They are based on the
dominant wind field observed during four events of Mount Etna (see titles and Table 1) [4]. Winds
blowing to the E (to the right in the images) translate into height isocurves dipping to the W, while
when winds blow to the W (to the left in the images), the resulting height isocurves dip to the E. Data
are presented in m a.s.l.

In this section, we present in detail each one of the described steps, together with all
the interactive functions that PHA includes for their development (see Table 2).

2.2.1. Fixed Mask

Given a static camera, a fixed mask is introduced (Figure 1b) in order to discard all the
pixels of the images that are associated with infrastructure and volcano topography. This is
important to avoid processing pixels whose properties are not associated with the eruption
and/or atmospheric characteristics. Since this process must be performed only once for
each static camera, the best way to define this mask is manually. For this, PHA includes ad
hoc functions that allow creating interactively, saving, loading, and plotting the fixed mask
(Table 2).
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2.2.2. Lab Mask

We have observed that the third channel of an image in Lab scale (i.e., the color
dimension b) generally discriminates well between clear sky pixels and other zones of the
processed frames (e.g., volcanic plume and clouds; Figure 2c). The suitability of this channel
to recognize sky pixels under optimal illumination conditions is similar to that observed
by considering the subtraction of the red and the blue channels of the image in RGB scale,
which is used in the software PlumeTraP [6], while it is slightly better during sunrise and
sunset. For most frames of the studied videos, we have observed that a threshold value for
the third channel of the image in Lab scale can be set in order to create a mask to split the
image in two regions (hereafter, the Lab mask). However, it is not possible to set a single
threshold value that works for a large set of images. Instead, it depends on specific image
characteristics, which are in turn controlled by atmospheric factors as well as eruption and
illumination conditions. Due to this, we developed an iterative procedure (hereafter, the
Lab calibration) to calculate a function that, for each analyzed frame, provides the threshold
(T) used to compute the Lab mask. This calibration can be performed using a reference
video, a folder of videos, or a folder of images, and consists of an iterative procedure
where different frames are sampled and analyzed, and the user is asked to indicate the
best conservative mask (i.e., not masking the plume) from a choice of nine alternatives
(Figure 3). Let us consider a calibration procedure based on N frames. For each frame
(i = 1, . . . , N), and considering the portion of the images not masked by the fixed mask, the
algorithm saves the following information:

 

Figure 3. Illustrative example of the iterative procedure used to define the threshold value of the Lab
mask, necessary to recognize the pixels belonging to the volcanic plume as a function of the image
properties. In these images, the lightened areas correspond to pixels potentially considered as part of
the ash plume. In this case, the recommended choice is E or F.
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- Mean value of L (Lab scale, Li).
- Mean value of a (Lab scale, ai).
- Mean value of b (Lab scale, bi).
- Mean value of R (RGB scale, Ri).
- Mean value of G (RGB scale, Gi).
- Mean value of B (RGB scale, Bi).
- Threshold (Ti).

The properties of the i-th calibration image are thus given by Xi = {Li, ai, bi, Ri, Gi, Bi}
and the information provided by the user, by selecting the best conservative mask, is
given by Ti. Using Xi and distance-based criteria, calibration images are automatically
clustered. The number of clusters (M) clearly depends on N: the larger the set of calibration
images, the higher the number of clusters. The use of weighted, distance-based clustering
techniques allows automatically generating classes of images characterized by common
eruption, atmospheric, and illumination conditions. In this procedure, the distance between
the different frames is computed by adopting the vector Xi associated with each of them
to define their positions. For each cluster, a specific function is derived to calculate the
threshold (T) used in the Lab mask:

T = Fj(X) = Fj({R, G, B, L, a, b})

where j is a subscript referring to the cluster (i.e., j = 1, . . . , M). Fj is defined using a
polynomial fit computed by adopting the subset of calibration images that defines the
j–th cluster. The order of this polynomial fit depends on the amount of data available
in this cluster (first order regression for clusters with 20 data or less, and second order
regression for clusters with more than 20 data). We also assume that Fj(X) is bounded by
the minimum and maximum thresholds within the calibration images.

Thus, when a new image is analyzed, characterized by the vector Xn, the code finds
its cluster by computing the minimum distance between Xn and Xi (i = 1, . . . , N), and then
it adopts the function Fj associated with this specific cluster to calculate Fj(Xn). On the
other hand, a calibration function defined by the nearest calibration frame (in terms of the
image characteristics, that is, in terms of the vector Xi) is also present in PHA. To present
conservative results, in this work we use the more conservative choice between both the
alternatives for each frame analyzed.

The number of iterations determines the spectrum of images that the code will be
able to analyze correctly. Since this is a critical factor in the effectiveness of the presented
procedure, PHA includes a set of functions that allows creating and interactively improving
the calibration data, as well as for loading, comparing, and testing them (Table 2). We
remark that the only relevant correction needed by the Lab mask is associated with dark
zones of the plume during sunrise and sunset, but this is automatically solved with no need
of calibration. Additionally, note that this iterative procedure allows the user to indicate
the images where the plume is not recognizable, which permits the code to automatically
identify the images where the estimation of plume height is not possible using visible
cameras (e.g., cloudy conditions, night images).

2.2.3. Cloud Identification

At this point, in general, the algorithm has masked all but the plume and clouds. Three
successive procedures are then employed to discard the pixels associated with clouds:

(a) We trace a large number of segments between border points of the image (above
the vent position) including both horizontal and inclined segments. When a line
intersecting a completely masked zone is identified (i.e., with no plume or clouds), the
entire region above this line is masked, reducing the computation time and discarding
pixels associated with clouds (Figure 1d).
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(b) Then, all the not masked pixels are clustered considering a distance-based criterion,
and only the nearest cluster to the volcanic vent is conserved for the following steps
(Figure 1e).

(c) Finally, the perimeter of the non-masked region is studied to identify lobe-like ge-
ometries. When the distance (calculated through a line) between two points in the
non-masked region border is much lower than the distance calculated through the
perimeter of this region, these points are assumed to define a lobe-like geometry, and
this part of the non-masked zone is discarded. In this way, clouds superposed to the
plume tend to be discarded (Figure 1f).

Since this procedure needs the volcanic vent position as an input parameter, PHA
includes a set of functions that allow to interactively set the position of the vent (note that
the definition of vent position must be performed only once for each static camera). The
program allows plotting and loading this information as well (Table 2).

2.2.4. Internal Variability of Non-Masked Zone

At this point, the algorithm has identified a set of pixels that represent a good candidate
for the volcanic plume. However, sometimes the limits of the plume are diffuse, and thus
we need an additional criterion. Since color variability tends to be higher in the plume,
we adopted a threshold to consider the portion of the mask characterized by a large color
variability. A fixed threshold value has works for all the videos studied here, and thus
calibration is not needed. In any case, PHA includes proper functions to set different values
of threshold when it is required (e.g., for other volcanoes or other static cameras).

2.2.5. Pixel to Height Conversion

In order to calculate plume height, we need a procedure that is able to relate pixels to
plume height. This is represented by a conversion matrix with the same dimensions of the
images, indicating the height associated with each pixel of the image. In this way, the model
is able to evaluate the height of all the pixels belonging to the plume and determine the
plume height (i.e., the maximum height associated with a plume pixel). While PHA offers
different alternatives to create a conversion matrix (see Table 2), in this work we use specific
conversion matrixes associated with the wind fields observed during some of the eruptions
described here (see Section 2.1 and Figure 2). The frames studied present a maximum
measurement height of the order of 10 km a.s.l. due to limitations in the field view, which
is influenced by wind direction and intensity as well. Whereas winds blowing to the E
(to the right in the images) translate into height isocurves dipping to the W, when winds
blow to the W (to the left in the images), the height isocurves dip to the E. On the other
hand, winds blowing to the south (i.e., directly towards the ECV camera) produce more
spaced height isocurves (i.e., reduction in the measurement limit) and winds blowing to the
north translate into less spaced height isocurves (i.e., increment of the measurement limit).
Specific details about the geometric considerations needed to define these pixel-to-height
conversion matrixes can be found in Scollo et al. [4,49].

2.2.6. Results

Once the information of each frame is computed, PHA plots the temporal evolution of
height plume, excluding results considered outliers within the temporal series. Results are
also saved in MATLAB files that can be imported, plotted, and compared later using the
program PHA.

3. Test Examples and Results

3.1. Internal Calibrations

As a first step, we show examples of internal calibrations, i.e., we use a few frames of
single videos to create a calibration file and then we apply it to analyze the same videos.
We focus on three short videos with different degrees of complexity (V18, V08 and V21;
see Table 1) and a long-lasting video with significant changes in eruption and illumination
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conditions (V30; see Table 1). Note that all the calibration files and results described in
this paper are included in the Git repository https://github.com/AlvaroAravena/PHA
(accessed on 12 January 2023).

3.1.1. V18 (18 March 2012)

This eruption is part of the 25 low-explosivity events observed at Etna between January
2011 and April 2012 [50]. V18 is characterized by extremely favorable illumination and
atmospheric conditions. We performed three independent calibrations using only 5 frames
out of 450 recorded over a 15 min period (calibration files V18_a-c).

In Figure 4, we show the evolution of the Lab threshold estimated using these three
calibrations on the 450 frames of V18. We can note that the application of the different
calibration files produces reasonably similar decreasing trends for the Lab threshold. Then,
we used the same set of calibration files to analyze V18 with the pixel-to-height conversion
matrix presented in Figure 2b (see Section 2.2.5). We highlight that, due to the optimal
illumination and atmospheric conditions of V18, an even smaller number of calibration
frames seems enough to produce reproducible numerical results and similar to manual
estimates, as observed in Figure S1a in the Supplementary Material.

 

Figure 4. Threshold values for the Lab mask as a function of frame number of the video V18,
computed using three different calibrations based on five frames extracted from V18 (see legends). In
the different panels, we present the application of different fit strategies to define the threshold for
the Lab mask. Results derived from the application of clustering and polynomial fit are presented in
panel a, results in panel b are associated with a criterion of nearest value, and panel c presents, for
each frame, the more conservative choice between panels a and b (i.e., the minimum value). Note
that PHA (see Table 2) can generate this figure automatically.

The temporal evolutions of column height, calculated using the different calibration
files, are strongly consistent between them (Figure 5a), showing percentage differences of
the order of 0.2% during the video (maximum value of 1.0%). Note that similar average
percentage differences are computed when numerical results are compared with manual
estimates (Figure S1a). The results indicate a continuous increase in column height from
~6700 m up to ~8200 during these 15 min, with oscillations with a period of about 5 min
(see Supplementary Videos S1–S3 in the Supplementary Material). The regularity in
the evolution of plume height highlights the precision of this program under favorable
atmospheric and illumination conditions.

We dispose of an additional set of 61 frames for a longer period (1 h) of the same
eruption (V18b). Since a significant change in the eruption and illumination conditions
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occurs, the previous calibrations are not able to capture the characteristics of the complete
video (note that it was recorded at 8 a.m.). In fact, these calibrations only work for the first
~35 frames of the video. Instead, we created three new, independent calibrations based on
5 frames out of 61 recorded over a period of 1 h (calibration files V18b_a–c). Results are
consistent between them and show an increasing trend of plume height from ~6700 up to
more than the measurement limit (Figure 5b and Supplementary Videos S4–S6). In this
case, our calibrations produce average percentage differences of the order of 0.3% (0.5%
before reaching the measurement limit), with a maximum value of 4.1%.

Figure 5. Plume height as a function of time for some reference videos (see titles) of Mt. Etna (see
Table 1) using different files of internal calibration (see legends and Section 3.1). The measurement
limit in panel b is 9326 m a.s.l.

3.1.2. V21 (3 April 2013)

V21 is a video characterized by favorable illumination conditions and partially favor-
able atmospheric conditions due to the presence of several clouds that often cover part
of the eruption plume. In this case as well, we performed three independent calibrations
with only 5 frames out of 450 (calibration files V21_a–c), and then they were used to ana-
lyze the same video. The pixel-to-height conversion matrix is presented in Figure 2c (see
Section 2.2.5). The evolution of plume height calculated using the different calibration
files is similar (Figure 5c), showing oscillations between ~5800 and ~6800 m a.s.l. The only
significant differences between numerical results are observed in a few, specific frames near
the end of the video (differences of the order of 1000 m or less), when small clouds disturb
the plume identification for two of the calibrations (see Supplementary Videos S7–S9). On
average, the percentage differences of plume height associated with these calibrations are
of the order of 1.3%. When compared with manual estimates, the average percentage dif-
ferences of plume height are instead of the order of 3.0% (Figure S1b). Interestingly, Figure
S1b shows a regular decrease in the average percentage difference with respect to manual
estimates when the number of frames used for the Lab calibration increases, suggesting
that a calibration based on >8 frames would produce a significantly better performance.

An additional video with 61 frames over a longer period of the same eruption was an-
alyzed using three different calibrations based on only 5 frames (calibration files V21b_a–c).
A general trend of plume height increase can be observed (from ~5300 to ~6900 m a.s.l.;
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Figure 5d). The main discrepancies between the curves are product of the interference of
small clouds and the plume (instead, large clouds are typically recognized and discarded;
see Supplementary Videos S10–S12). The percentage differences between the results ob-
tained with these independent 5-frames-based calibrations are of the order of 2.8% (average
value), with a maximum value of 11.5%. Interestingly, the calibrations constructed using a
period of 15 min (i.e., calibration files V21_a–c) are able to capture well the characteristics
of the complete video V21b (Supplementary Figure S2), reflecting that the illumination
conditions are nearly constant during the 1 h video V21b (note that it was recorded at
1 p.m.).

3.1.3. V08 (20 August 2011)

V08 is also included in the sequence of 25 low-explosivity events observed at Etna
between January 2011 and April 2012 [50]. This video presents partially unfavorable
illumination and atmospheric conditions, with permanent presence of a strata of low-
altitude clouds. We constructed three independent calibrations with 5 frames each (out of
900 frames), which were used to analyze the same video (calibration files V08_a-c). On the
other hand, the matrix of pixel-to-height conversion of this video is presented in Figure 2a
(see Section 2.2.5). The results produced by PHA, highly consistent between them, are
characterized by a continuous increase in plume height up to reach the image top and thus
exceed the measurement limit (Figure 6a). The increase in plume height occurs rapidly,
at a rate of ~600 m/min, from ~4200 to ~9800 m a.s.l. Some of the calibrations differ in
specific frames during the waxing phase due to the diffuse limits of the plume in this
period (see Supplementary Videos S13–S15), while they capture well the general tendency
of plume height. In this case, on average, the percentage differences of plume height are of
the order of 0.3% (1.1% before reaching the measurement limit), with a maximum value
of 11.5%. With respect to manual estimates, the average percentage differences are of the
order of 3.0%, and we also observe a regular decrease in the average percentage difference
with respect to manual estimates when the number of frames used for the Lab calibration
increases (Figure S1c). Results suggest that, for this video, an internal calibration based on
5 frames is enough to produce reliable data of column height.

 

Figure 6. Plume height as a function of time for some reference videos (see titles) of Mt. Etna (see
Table 1) using different files of internal calibration (see legends and Section 3.1). The measurement
limit in panels a and b is 9774 m a.s.l. and that of panel c is 9517 m a.s.l.
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The same set of calibrations was able to analyze the frames of the video V08b (Table 1),
which comprises a longer period of the same eruption (Figure 6b). Results associated with
the different calibration files (see Supplementary Videos S16–S18) are strongly consistent
and capture well the characteristics of the waxing phase described in the previous paragraph.

3.1.4. V30 (12 March 2021)

V30 is a ~6-h-lasting video with strong changes in the illumination and eruption
conditions, comprising well-defined waxing and waning phases. Consequently, a larger
number of calibration frames must be considered in order to create a functional calibration
file. We constructed three independent 10-frames-based calibrations (out of 361 frames),
which were used to analyze the same video (Figure 6c and Supplementary Videos S19–S21).
Our results, obtained by adopting the pixel-to-height conversion matrix presented in
Figure 2d, show a waxing phase from a plume height of ~5200 m a.s.l. to a value beyond
the measurement limit, with an average rate of plume height increase in the order of
40 m/min, much smaller than that observed in V08. Note, however, that the waxing phase
can be divided in two steps with different variation rates of plume height (Figure 6c).
The waning phase, from beyond the measurement limit up to a plume height of ~5500 m
a.s.l., occurred at a rate of ~120 m/min and, after that, plume height decreases slowly
up to ~4700 m a.s.l. The results obtained using the different calibrations are strongly
similar, with average differences of the order of 2.0%, while average percentage differences
of the order of 7.0% are obtained when numerical results are compared with manual
estimates (Figure S1d). Note that at least 10 calibration frames are needed to obtain average
percentage differences (with respect to manual measurements) below 10% (Figure S1d).

3.2. Operational Calibration

We have shown that PHA permits to analyze videos of volcanic eruptions by means of
a fast calibration process. Although this may be useful for research and operative purposes
by itself, an autonomous operative use of PHA requires that the program can recognize the
characteristics of new images and estimate proper calibration parameters. In other words,
in order to advance toward the implementation of a real-time column height estimation
procedure using visible cameras on erupting volcanoes, we need a calibration file that
considers a large set of eruption, illumination, and atmospheric conditions. To do this,
PHA includes a set of functions that allows to create, merge, and improve calibrations by
adding new data, permitting to refine the performance of the program as new data becomes
available for the calibration as well (see Table 2).

To show the capability of the program to deal with a large calibration file and to recog-
nize different conditions simultaneously, we merged a set of calibration files constructed
using different videos (Table 1). Our dataset includes: (a) 5 frames for short-lasting videos
with a capture period of 1 min (V08b, V18b, and V21b), (b) 10 frames for long-lasting videos
with a capture period of 1 min (V30), (c) 40 frames for long-lasting videos with a capture
period of 2 s (V26 and V29), and (d) 10 frames for short-lasting videos with a capture period
of 2 s (all the other videos), totaling 375 frames. The application of a common calibration
file for a large set of videos has shown that:

(a) For eruptions with favorable atmospheric conditions and when the outline of the
plume is well defined (V02, V10, V12, V15, V18, V18b, V23, V28, V29, and V30), PHA is
able to trace accurately plume height and in some cases small-scale oscillations of this
parameter can be identified as well (Figure 7). Comparisons with manual estimates of
plume height are presented in Figure 7, where we can observe remarkably consistent
trends.

(b) For eruptions with unfavorable atmospheric conditions (e.g., small clouds interfering
the visual field; V06, V08, V08b, V14, V21, and V21b), the program is able to recognize
well the range of values of plume height and general tendencies, but small-scale
oscillations are not traced and occasional mistakes in punctual frames are observed.
However, we stress that they are typically below the intrinsic uncertainty of plume
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height estimations based on visible cameras [4], as observed in Figure 8, where we
present comparisons with manual estimates.

(c) Finally, for eruptions with plumes characterized by diffuse outlines (V01, V03, V04,
V05, V09, V11 and V26), PHA is able to trace well the range of values of plume
height and recognizes large-scale tendencies. However, the results present a typically
oscillating behavior around the manual estimates (Figure 9) and occasional mistakes
in specific frames are observed as well.

 

Figure 7. Plume height as a function of time for some reference videos (see titles) of Mt. Etna (see
Table 1), using a common calibration file (see Section 3.2). These videos are characterized by favorable
atmospheric and illumination conditions, and the plumes present a well-defined outline.
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Figure 8. Plume height as a function of time for some reference videos (see titles) of Mt. Etna
(see Table 1), using a common calibration file (see Section 3.2). These videos are characterized by
unfavorable atmospheric conditions (e.g., presence of clouds interfering with the visual field), and
the plumes present a well-defined outline.

In general terms, results are consistent with manual measurements, showing that PHA,
when an enough large number of frames are present in the calibration file, is able to deal
with different eruption, atmospheric, and illumination conditions. The average percentage
difference between manual and automatic measurements of column height is 2.70%, with a
median of 0.59% and 90th and 95th percentiles of 8.55% and 13.73%, respectively. Regarding
the absolute difference between the two estimates of column height, the average value
is 166.8 m, with a median of 34.5 m and with 90th and 95th percentiles of 548.0 m and
925.1 m, respectively.
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Figure 9. Plume height as a function of time for some reference videos (see titles) of Mt. Etna (see
Table 1), using a common calibration file (see Section 3.2). These videos are characterized by plumes
with diffuse outlines.

4. Discussion

4.1. The Program PHA

In this paper, we have presented the program PHA, which is a novel, open-source
MATLAB tool designed to analyze images from visible cameras of volcanic plumes, with
the aim of automatically recognizing the plume and estimate its maximum height as a
function of time. Due to the intrinsic variability of the images captured during volcanic
eruptions, which is a consequence of changes in eruption, illumination, and atmospheric
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conditions, PHA was conceived as a self-customizing tool. This means that, before oper-
ational use, an iterative calibration procedure must be performed, based on the analysis
of previous eruptions of the volcanic system of interest, possibly occurred under different
environmental and volcanic conditions. The algorithm created to identify the volcanic
plume largely relies on the analysis of the third channel of the images in Lab scale, which
allows recognizing and discarding pixels associated with the sky, and the application of a
series of procedures aimed at discarding clouds and determining high-color gradient zones
in the plume.

By means of a series of illustrative applications of PHA on some events at Mt. Etna,
Italy, we showed that a bounded number of frames can be used to calibrate the model and
create a functional tool that is able to process data from past eruptions and trace the plume
height automatically, with reproducible and accurate results when compared with manual
measurements (see Section 3.1). However, to create a program that is able to recognize in
real-time the characteristics of new images and estimate proper calibration parameters, a
calibration with a large set of images with different characteristics in terms of illumination,
atmospheric conditions, and eruption parameters, is needed. PHA includes a large set of
interactive functionalities to facilitate the construction of a truly operative tool in the context
of volcano monitoring, with functions to create, improve, and merge the data of different
calibration files. In this paper, these functions were used to create a calibration file based on
375 images captured by the ECV visible camera of Etna. This calibration file has been shown
to be useful to analyze videos of 23 events of Mt. Etna. Results are remarkably consistent
with manual estimations when illumination and atmospheric conditions are favorable,
while some occasional mistakes are still present when illumination and atmospheric con-
ditions are not optimal. However, even in this case, the program permits to recognize
large-scale, time-dependent tendencies of the eruptions, with differences between PHA
and manual estimates typically below the intrinsic uncertainty of these measurements [4].
This first attempt shows that PHA is potentially useful to construct a tool that is able to
analyze automatically visible camera images of Mt. Etna, with important applications for
monitoring purposes, and may represent a significant approximation toward a real-time
analysis of column height using visible cameras on erupting volcanoes.

4.2. Limitations, Strengths, and Future Advances of PHA

This tool presents the intrinsic limitations of images of visible cameras: reliable results
can be obtained exclusively during daylight hours and with a small to moderate presence
of clouds. They also present a bounded visual field, which translated into the presence
of measurement limits as those observed in the ECV visible camera of Mt. Etna (see
Figures 5–9). On the other hand, due to the frequent presence of clouds in the summit of
stratovolcanoes, this tool cannot be directly used to recognize the onset of an explosive
eruption. In fact, the current version of the code does not include an automatic procedure
to detect the absence of an ash plume and, in such a case, it will only indicate that the
plume height, if present, is less than the minimum measurement limit.

Additionally, a calibration step is strictly needed before its use and, even if this tool
can be set to analyze a posteriori the record of visible cameras from any explosive volcanic
eruption, the availability of large datasets of past eruptions is necessary to construct an
operative tool in real-time for monitoring purposes. Thus, this type of application is only
feasible in volcanoes with frequent and well-monitored volcanic activity such as Etna,
where the need of having a rapid, reliable tool to detect and measure volcanic plumes
represents an impelling necessity.

Even though PHA is still not an operative instrument at INGV-OE, the results pre-
sented in this paper are encouraging in terms of the applicability of a customizable tool to
estimate plume height as a function of time for monitoring purposes. To further improve
the performance of PHA, the inclusion of additional videos of past eruptions is needed,
as well as more code reliability testing and analysis of videos from other volcanoes with
enough eruptions recorded. Additionally, the structure of the code allows for the refine-
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ment of the model by including new variables that are able to characterize the calibration
frames (i.e., increasing the dimensions of the vector Xi; see Section 2.2.2); thus improving
the characteristics of the fit used to calculate the calibration-derived inputs. We emphasize
that this code can also be adapted to analyze images from thermal cameras, which uncovers
additional development opportunities for this code in the future.

5. Conclusive Remarks

A new open-source MATLAB tool named Plume Height Analyzer’ (PHA) able to
analyze images from visible cameras of volcanic plumes and automatically estimate its
maximum height as a function of time is presented in this paper. Although the tool uses
an iterative calibration procedure based on the analysis of previous eruptions of a given
volcano and should be tested under different environmental and volcanic conditions, it
may represent a first approximation toward a real-time analysis of column height using
visible cameras on erupting volcanoes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15102595/s1. Figure S1: Average percentage difference with
respect to manual measurements of column height for a set of results obtained with the program
PHA, as a function of the number of frames used for the construction of the calibration files adopted
(internal calibration). For each video (see titles), we created fifteen independent calibration files with
different numbers of calibration frames (from 2 to 10 in panels a-c, from 4 to 20 in panel d). In each
panel, we present the mean value (filled circles) and standard deviation (bars) associated with the
application of three independent calibration files, created using different numbers of calibration
frames (see x-axis). Figure S2: Plume height as a function of time for video V21b of Etna (see Table 1)
using different files of internal calibration (see legends and Section 3.1). Video S1: Video V18 analyzed
using the calibration file V18_a. Video S2: Video V18 analyzed using the calibration file V18_b.
Video S3: Video V18 analyzed using the calibration file V18_c. Video S4: Video V18b analyzed
using the calibration file V18b_a. Video S5: Video V18b analyzed using the calibration file V18b_b.
Video S6: Video V18b analyzed using the calibration file V18b_c. Video S7: Video V21 analyzed
using the calibration file V21_a. Video S8: Video V21 analyzed using the calibration file V21_b.
Video S9: Video V21 analyzed using the calibration file V21_c. Video S10: Video V21b analyzed
using the calibration file V21b_a. Video S11: Video V21b analyzed using the calibration file V21b_b.
Video S12: Video V21b analyzed using the calibration file V21b_c. Video S13: Video V08 analyzed
using the calibration file V08_a. Video S14: Video V08 analyzed using the calibration file V08_b.
Video S15: Video V08 analyzed using the calibration file V08_c. Video S16: Video V08b analyzed
using the calibration file V08_a. Video S17: Video V08b analyzed using the calibration file V08_b.
Video S18: Video V08b analyzed using the calibration file V08_c. Video S19: Video V30 analyzed
using the calibration file V30_a. Video S20: Video V30 analyzed using the calibration file V30_b.
Video S21: Video V30 analyzed using the calibration file V30_c.
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Abstract: Sand and dust storms are hazardous to the environment and have a significant role
in desertification. Under the influence of climate change and human activities, dust storms and
aeolian processes have been common phenomena in the Southern Balkash deserts in Kazakhstan,
Central Asia. However, knowledge gaps on spatial and temporal characteristics of dust storms and
aeolian process in the Southern Balkash deserts still exist. Therefore, in present study, meteorological
observations and numerous cartographic materials were used to identify the powerful sources with
the highest frequency of dust storms and aeolian processes in the Southern Balkash deserts. The
result showed that the Southern Balkash deserts were covered mainly by transverse parabolic sands
(48%), dome dunes (24%), and transverse dome dunes (23%), where the aeolian processes occurred
to a significant degree. Significant and strong degrees of aeolian processes occurred in most of the
Southern Balkash deserts. The eastern part of the Taukum and the northern part of the Zhamankum
and Karakum deserts were prone to aeolian processes to a substantial degree. The Moiynkum, Bestas,
Saryesikatyrau, and Taukum deserts had the most frequent storms, occuring, on average, 17 to
43 days/per year. The occurrence of dust storms has been of a stable decreasing trend since the
1990s, except for 2008–2009. Aeolian dust in the Southern Balkash deserts flowed mainly from the
western and southwestern to the eastern and northeastern. The results of the present study shed
light on the temporal and spatial characteristics of dust storms and aeolian processes in the Southern
Balkash deserts. This is of great importance in helping to monitor and predict dust storms and motion
patterns of aeolian dust in this region.

Keywords: aeolian process; sand and dust storms; soil deflation; desert; Kazakhstan; Central Asia

1. Introduction

Central Asia, located in the northern hemisphere’s temperate desert belt, is covered
mainly by drylands and is one of the most important sources of global aeolian dust and
aerosol [1,2]. Sand and dust storms are becoming more common events in the arid and semi-
arid regions of Central Asia, particularly around the desert zone, as global temperatures
rise [3–5]. Deserts in Kazakhstan and Central Asia are characterized by a continental climate
with long dry summers, strong winds, a scarcity of vegetation cover, a lack of moisture in
the soil, relatively low air humidity, frequent waterlogging of the soil, and atmospheric
droughts [6,7]. The strong winds can carry sand/dust and form dunes, mounds, and ridges,
since winds can remove sand particles of different sizes and move them during deflation
over long distances [8–11]. Desertification because of soil deflation has affected desert and
semi-desert regions in Kazakhstan and Central Asia [12,13].
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The vast “dust belt”, which is the primary permanent source of storms in Central Asia,
extends from the west to the southern deserts: the Caspian Sea deserts, the Kyzylkum,
Aralkum deserts (Aral Sea region), and Southern Balkash deserts [14]. Sandy and clayey
deserts, with an area of about 30 million ha, are mostly spread in this zone [15]. Sandy
deserts occupy about one-third of the entire desert zone. The largest include the Kyzylkum,
the Karakum, the Aralkum, the Moiynkum, the Saryesikatyrau (Southern Balkash deserts),
and the sands of the Caspian lowlands (Naryn deserts). The deserts arose tens of thousands
of years ago on the site of former (ephemeral) rivers, playas, and saline lakes [16] and are
located mainly in the lowlands [17,18]. They are often the primary and active sources of
aeolian processes as sand and dust storms of high frequencies [19–28].

Many terminal lakes in arid Central Asia have turned into deserts as a result of
climate change and human activity, including a new salt desert in the playa of the Ebinur
Lake basin, the newly formed Aralkum desert in the Aral Sea basin, and the world’s
earliest Aral-Sea-type disaster (Lop Nur) in the Tarim Basin [29–31]. Since the 1970s, a
substantial decrease in the Ile river runoff has led to a reduction in the Balkash Lake’s
water depth, which accelerated the desertification process and had devastating effects on
the diverse flora and fauna that depend on it [32]. Sand and dust storms are one of the
main signs and causes of desertification in this region. Degradation and desertification are
pervasive in the Southern Balkash deserts at present [20,33]. They have occurred mainly
because of anthropogenic activities such as irrigation and electric energy production, which
results in changes in the level of the Balkash Lake. The regulation of water resources and
irrigation has led to the reduction of groundwater level, increasing water mineralization,
and intensive soil salinization, consequently causing the growth of solonchak desert areas
and the drying of ponds, leading to the promotion of aeolian processes such as dust/salt
storms [25] and plant changes toward more xerophyte types [34–36]. This is due, in
particular, to the problem of the irrational use and management of water resources in
connection with the exploitation of resources, and the construction of technical structures
in the Balkash Lake basin that attracts great attention all over the world to the processes of
desertification [37,38]. Currently, most of the research work focuses on the change in water
resources [39–41], water hydrochemistry [42,43], and paleoenvironmental change [44,45].
Dust activities caused by environmental changes in the Balkash Lake basin have also
attracted some attention. Gholami et al. [46] identified the high susceptibility areas in
Central Asia, including Karakum, Aralkum, Kyzylkum, and arid lands around Balkash
Lake by introducing a new integrated modeling approach. Nobakht et al. [47] presented
a new inventory of dust emission sources in Central Asia using a dust enhancement
technique. They found that the higher frequency of dust storms observed in the Aral Sea
region and Balkash-Zhetysu (Zhungar) regions was due to land damage. Unfortunately,
little attention was paid to the detailed information on dust storms and aeolian processes in
the Southern Balkash deserts. Thus, knowledge of the spatial and temporal characteristics
of dust storms and aeolian processes in the Southern Balkash deserts is scarce. To bridge
the knowledge gaps, the present study aims to provide new insights into the dust storms
and aeolian processes in the Southern Balkash deserts in Kazakhstan, Central Asia.

Therefore, the primary purpose of this study was to analyze the temporal and spatial
characteristics of dust storms and aeolian processes in the Southern Balkash deserts in order
to know the modern soil deflation processes’ intensity in the desert. The novelty of this
study is reflected by the presentation of the latest information on the spatial and temporal
distribution of dust storms and the aeolian process. Firstly, the geology and geomorphology
of the Southern Balkash deserts were presented to introduce the background information,
and then we expounded the spatial and temporal characteristics of dust storms in the
Southern Balkash deserts. Finally, wind regimes and wind direction, the nexus between
soil texture and dust storm intensity, and the aeolian processes in the Southern Balkash
deserts were elaborated in the present study.
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2. Materials and Methods

2.1. Overview of the Study Area

The Southern Balkash deserts, with a vast area of about 70,000 km2, belong to sandy
deserts according to features of the formation of the deserts of the study region [12]. It
is located in southeast Kazakhstan within the shallow Balkash-Alakol depression and
in the Balkash lowland, an accumulative plain gently sloping toward the north with a
minimum absolute elevationof 340 m. It is divided in the north by the southern slopes
of the Saryarka; in the west and south by the Shu-Ile watershed plateau; and in the
southeast by the ridges of the Zhetysu Alatau (Figure 1). The desert is located in the zone
of gray soils (serozems) interspersed with locally developed, mainly takyr-like solonchak,
and meadow-boggy soils. The vegetation cover here is represented by wormwood and
feather grass. Additionally, large areas are occupied by sandy desert soils developed in
massifs of semi-fixed aeolian sands, where white haloxylon, calligonum, krascheninnikovia,
and wormwood are found. Takyr-like soils are formed in drainless basins of dried-up lakes
and are predominantly saline.

Figure 1. Desert sands and their geomorphological types in the Southern Balkash deserts.

The climate of the deserts is continental and arid [48]. The Southern Balkash is de-
scribed by large daily and annual fluctuations in air temperature and has a high solar
radiation level and a long dry summer period. The air temperature in January is an average
of −16 ◦C in the northern part, the southern part of the plain territory is −5 ◦C, and the
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mean temperature is about 20–25 ◦C; in July. In summer, the precipitation completely evap-
orates on the plain. The most significant monthly precipitation falls in spring (April–May)
and the least falls in February and August–September [20]. The water balance of Balkash
Lake mainly depends on the flow of the rivers of the Southern Balkash region, mainly from
the Ile River. The Ile River crosses the desert, flowing into the lake. Some rivers flowing
down the slopes of the Zhetysu Alatau also cross the Saryesikatyrau desert, flowing into
Balkash Lake. Other smaller rivers are lost in the sands (Figure 1).

2.2. Dust Storm and Wind Data

“Dataset on dust storm climatology and wind regime for Kazakhstan” issued by
KazHydromet (Kazakhstan) provides the dust storm and wind regime data from all the
meteorological stations within Kazakhstan, which offers great advantages for dust activity
studies. In the present study, the average monthly number of days in the dust storm data of
four stations from the above dataset, namely the Bakanas, Kuigan, Matay, and Kapshagay,
was used to characterize the variation of dust storm and wind directions in the Southern
Balkash deserts. Statistical methods were used to analyze the long-term dynamics and
seasonal frequency of dust storms by the average number of dusty days for 1971–2020 and
in different months for 1966–2003, respectively. The wind rose of the four meteorological
stations was built according to the wind direction data from 1966 to 2003 derived from the
“Dataset on dust storm climatology and wind regime for Kazakhstan”.

The spatial distribution of wind speed was based on gridded mean wind speed
data from Global Wind Atlas version 3.1. It is developed, owned, and operated by the
Technical University of Denmark (DTU) and contains all new data on wind resources
around the world. As such, it can be used to identify global, national, regional, and local
high-wind areas. Global Wind Atlas has made high-resolution climate and wind statistical
data available to users through their geoportal (http://globalwindatlas.com/, accessed
on 15 September 2021). The resolution of gridded data is 1 km [49]. The mean wind
speed calculated at a height of 100 m and every 250 m on land surfaces was used in the
present study.

2.3. Archive Cartographic Materials

Numerous archive cartographic materials with information on soil texture [50] and
plant communities [51] were selected to investigate the sources of aeolian processes and
dust storms in the Southern Balkash deserts in Kazakhstan.

Firstly, the archive cartographic materials were vectorized. Then, the spatial distribu-
tion of dust storms was analyzed using geostatistical methods in Arc Map. As a result, on
the vectorized cartographic map, the present study defined the relationship between the
origin of dust storms and soil texture with plant communities, identified the sources of sand
and dust storms shown on the map, and estimated the area of storms of different degrees.

Initial topographic information and the geomorphological types of sands were ob-
tained from Soviet topographic maps at 1:500,000 scales. The degree of manifestation of
aeolian processes and the degree of desertification were derived from the maps of the
National Atlas of Kazakhstan [52]. The overlaying of thematic layers in a GIS environment
was performed to analyze the regional distribution of and the spatial relationship bewteen
sands and aeolian processes.

3. Results and Discussion

3.1. Geology and Geomorphology of the Southern Balkash Deserts

The Southern Balkash depressions were located in the deserts that took shape in the
Neogene. Paleogene deposits are found mainly on the periphery. Paleogene and Neogene
formations lie like a mantle on the leveled surface of the Paleozoic. In the Quaternary
period, the active formation of the relief was accompanied by the accumulation and redistri-
bution of deposits. This process developed against intense tectonic movements and climate
fluctuations, which caused great diversity in the genesis of Quaternary deposits and signifi-
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cant differences in their thicknesses [53]. Modern aeolian deposits are widespread in the
Southern Balkash depression. Their composition is feldspar-quartz. Granites, amphiboles,
mica, chlorite, and epidote are found in trace levels in the sands; apatite, hematite, pyrox-
ene, and sphene are less prevalent [54]. According to the geomorphology of the sands, the
transverse parabolic sands (48%) are dominant in the region, and they cover Saryesikatyrau,
Bestas, Zhamankum, and Irizhar sands. Dome dunes (24%) cover the eastern sands, in-
cluding the Karakum and the southern part of the Saryesikatyrau. Transverse-dome dunes
cover the Taukum and Moiynkum deserts with an area of 23% to form the territory of the
Southern Balkash deserts (Figure 1).

The ridges of the Bestas sands extend in a northwesterly direction. Their height
is 6–8 m, their width is several tens of meters, and their length is up to 200 m; rarely
are ridges 8–20 m high. The ridges are slightly soddy and covered with a characteristic
powder—coarse sand [55]. The height of the ridges and mounds of the Moiynkum sands
is 2–6 m, occasionally reaching 15 m. The direction of the strike of the ridges is north and
northwest. The slopes are gentle. The structure of the ridges is the same as that in the
Bestas sands. The sands are well-fixed by vegetation. The southern shore of Balkash Lake,
along the entire lake, adjoins the coastal lacustrine-saline plain with an area of more than
27 thousand km2. The greatest width reaches 30 km. Dense crusts of salts on the surface
and vast regions of solonetzes and plump solonchaks can be sources of salt aerosols. The
aeolian relief is represented by chains of coastal dunes and dunes up to 8 m high and
sometimes form complex star-shaped dunes that are 10–15 m high [56].

3.2. Spatial and Temporal Characteristics of Dust Storms in the Southern Balkash Deserts

Sand and dust storms occurring at different frequencies and for different durations
are common in arid and semi-arid regions in Kazakhstan and Central Asia, which develop
intensive soil deflation and contribute to the spread of desertification. According to analyses
of observation data from weather stations, storms are typical almost all over Kazakhstan
with its continental climate, the high wind speed (≥6 m/s) regime, frequent soil and
atmospheric droughts, and the scarcity of vegetation cover [57]. The broad diversity
characterizes the spatial distribution of the storms in the Southern Balkash deserts.

The Southern Balkash deserts in Kazakhstan are regions with the most frequent storms.
(Figure 2). Dust storms, occurring at a frequency of more than 20 days, are common in
the coastal areas of the Balkash Lake and Ile River basin, primarily in Moiynkum, Bestas,
and western Saryesi-katyrau sands. In addition, the Taukum, Zhalkum, Irizhar, and
Saryesikatyrau deserts are subject to dust storms at a frequency of 10–20 days per year.
Mountainous areas were comparatively less prone to dust storms. The frequency of their
occurrence was <10 days/year (Figure 2). The annual amount of days with deflationary
processes in the form of storms reached 30–90 days in the Moiynkum and Taukum deserts,
decreasing to 10–20 days in the foothills of the Zhetysu (Zhungar) Alatau [36].

The Bakanas region showed a large number of storms because of takyr-like soils
containing clay particles and many silty sand sediments that are prone to the soil deflation
process. In addition, this region was affected by human activity, particularly irrigation
agriculture and the water supply for electric energy production from water reservoirs [58].
The overall dynamics of the storms have shown an increasing trend since the 1970s up to
1988 (Figure 3) and can be explained by the establishment of the Kapshagay water reservoir
in the 1970s. The Balkash Lake area has shrunk to 4700 km2 due to intensive water use
from the Ile, Karatal, and Lepsi rivers [20]. Consequently, a significant part of the coastal
area was exposed to salinity and soil degradation. Due to the regulation and reduction of
the river flows of the Ile and Karatal, many lakes are drying, including the salt lakes in the
deltas [58]. As a result, new sources of dust/sand storms, leading to high concentrations of
salt in atmospheric streams, have appeared in the deserts of the Southern Balkash. These
salts provoke the deterioration of pasture conditions, and the reduction of biodiversity,
salinity, and desertification in general.
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Figure 2. Spatial distribution of dust storms in the Southern Balkash deserts.

Figure 3. Long-term dynamics of sand and dust storms in the Southern Balkash deserts.
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The geographical location and climatic features of Kazakhstan are variable with its
large territory. Consequently, storm activities differ with annual and inter-annual variability.
For example, the spring and summer seasons are more favorable to storm outbreaks.
According to the data analysis of storms in the Southern Balkash deserts, two peaks were
detected from 1966 to 2003: in April–June and July–September (Figure 4).

Figure 4. Seasonal frequency of storms for the period 1966–2003 in the Southern Balkash deserts.

Because of the sharp rise in temperature and high wind speed in the spring [59], the
surface of southern deserts deteriorates in theintensive evaporation of humidity, which,
together with strong winds, contributes to the development of dust and sand storm phe-
nomena. As a result, the southern deserts of the Balkash (meteorological stations: Bakanas,
Kuigan, and Matay) are one of the main areas of Kazakhstan where regular storms occur,
especially in the period from April to August and April–September (Figure 4). The average
annual duration of storms for the period 1966–2003 was 43 days at the Bakanas meteorolog-
ical station, 40 days at the Kuigan station, and 28 and 17 days per year at the Matay and
Kapshagay stations, respectively.

3.3. Wind Regime and Wind Direction in the Southern Balkash Deserts

In Kazakhstan, the wind regime mostly has a continental character. It is conditioned
mainly by local barik-circulation conditions, depending on orographic features, sun ex-
posure, and topography [60]. The wind speed is variable within Kazakhstan, and it is
high mainly in the desert zone. Almost 50% of the territory of Kazakhstan has an annual
wind speed of an average of 4–5 m/s. It can reach a speed of ≥6 m/s in the Caspian Sea’s
coastal areas, mountain passes, and corridors in the south and southeast of Kazakhstan.
In the Southern Balkash deserts, wind speed ranges from 0.5 m/s in the mountainous
areas to 8 m/s toward the deserts (Figure 5). The maximum wind speeds occur in the
spring—summer period, meaning that deflation processes are intense at this time [61,62].

The aeolian process in deserts is a regular phenomenon, and the wind regime is related
to baric topography and climatic conditions. Wind regime defines the speed and direction
of the movement of wind in a particular desert area [12,20]. In the Southern Balkash
deserts, the western winds are dominant and controlled by the general circulation of air
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masses in southeastern Kazakhstan [36,56]. Consequently, the sand movement directions
are northeast, southeast, and east (the Bakanas, Matay, and Kuigan stations) (Figure 5). The
direction and speed of the movement of active dunes mainly depend on the relief, and
local orographic conditions play their role in the appearance of winds. Therefore, wind
of a westerly direction is observed at the Kapshagay station. This is due to a well-known
local easterly mountain and valley, “Shelek”, and the wind and orographic condition of
the region. It is created by transferring cold air from the part of the Ile Alatau that is a
glacierized zone in the headwaters of the Shelek River to the Ile River valley (Figure 5).
The mean annual wind speed is 8–10 m/s [63]. The character of mountain-valley winds
depends on the height of the local topography, the slope exposure, and the gorge directions.

Figure 5. Spatial wind speed and its directions in the Southern Balkash deserts.

Considering this, the direction of the wind could either coincide or not coincide with
the regular nature of the winds of the surrounding plains, i.e., they can either increase or
decrease the overall strength of the wind [20]. In addition, local air circulation in the region
prevails over the general atmospheric circulation [64,65]. That is why the local winds are
often vital in the region and steadily blowing. They are noted in the surrounding area of
mountain spurs and gorges [12].

Strong winds can erode and move a large number of small particles, deposit them
elsewhere, and form dunes in a desert or on a beach. Consequently, wind is one of the main
relief-forming factors in a sandy desert. Additionally, strong winds cause dust and sand
storms in the Taukum, Moiynkum, and Saryesikatyrau deserts, and sand with different-
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sized particles can transport from the surface and accumulate elsewhere. In deserts, winds
cross the threshold speed of 6 m/s cause sand deflation [66–68]. Windy, dry weather with a
wind speed of 6 m/s was observed on 60 to 127 days/year in the Southern Balkash deserts;
such weather occurred on 80–100 days per year in most areas of the Saryesikatyrau and
Taukum sands; the occurrence of this weather reached up to 100–120 days/year in the
southern shore of Balkash Lake [67,68].

3.4. The Relationship between Strong and Very Strong Dust Storm Origin and Soil Texture

A strong dust storm in Kazakhstan occurs when the wind speed is 10–14 m/s with
visibility from 500 m to 1000 m [69]. They last from 3 to 12 h. Storms lasting 12 h with
a wind speed of >15 m/s and a visibility decrease to ≥50 m are extreme storms [57,70].
Severe and extreme dust storms last 3.1−4 days and largely cover the Ile River valley, the
eastern half of the Moiynkum desert, and the Saryesikatyrau desert (Figure 6). These are
agricultural areas with wind speeds surpassing >8 m/s and predominantly light-composed
soils (soil particle size > 250 microns), as well as the dryness of sandy deserts with minimal
vegetation cover, result in powerful dust storms [56]. The dust storms covering the areas in
the Southern Balkash deserts can be considered in three groups of the following frequencies:
3.1–4 days (20%), 1.1–3 days (48%), and one day(32%) in the whole region of deserts.

Figure 6. The relationship between the origin of strong and very strong dust storms and soil texture.

Soil texture is a critical soil feature defining the soil surface’s resistance to wind erosion
or soil deflation. Soil textures include lightly and heavily loamy, loamy, sandy loam, sandy,
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clay, and soils of various compositions (Figure 6). As is well-known, the potential and
active sources of dust storms are distributed in soils with a light texture (sandy loam and
sandy) that are prone to soil deflation (Figure 6).

The sources of strong and very strong dust storms with frequencies of 1.1–3 days and
3.1–4 days per year are found mainly in areas with high wind speed and light-textured soils
(Figure 6). Furthermore, such places are located in regions of sandy deserts with sparse
vegetation or sometimes barren dunes. In addition, the parts were used intensively for
agricultural purposes and industrial development. Moreover, the light-textured soils or
sands with a psammophytic plant community are the source for the outbreak of aerosols
of different sizes in the atmosphere can be clearly noticed by monitoring from space
satellites [59,71].

Since the plant community plays its role in forming dust/sand storms, according
to the edaphic deserts map analysis of Middle Asia, the psammophytic vegetation is
vulnerable to dust and sand storms. Therefore, the Edaphic deserts with psammophytic
plant communities are distributed in vast sandy massifs such as the Kyzylkum, Moiynkum,
Aral Karakum, Southern Balkash deserts (Saryesiktyrau and Taukum) [51].

3.5. Aeolian Processes in the Southern Balkash Deserts

The aeolian process, closely related to weathering processes, is widely developed and
distributed in the arid zone, particularly in deserts. It first appeared in the second half
of the Middle Quaternary era [53] and continue to this day: deflationary basins are being
worked out; sandy mounds, dunes, and rows are winding up; and the most considerable
total thickness of aeolian deposits in the Southern Balkash deserts reaches 25–30 m [72,73].

Aeolian processes are actively manifested in the sandy and sandy loam deposits of the
Southern Balkash deserts, which are locally weakly fixed by vegetation. Silty sands and
light sandy loams are intensively blown and contribute to the formation of large massifs of
scattered sands in the Southern Balkash deserts. The sandy massifs of the Southern Balkash
deserts, such as the Taukum, Saryesikatyrau, and Moiynkum deserts, have an elongated
direction due to the northwestern and northeastern winds and aeolian processes that partly
took part in their formation. According to the composed map, the degree of the occurrence
of the aeolian process is significant and strong in most of the Southern Balkash deserts
(Figure 7). In the Taukum sandy massifs, aeolian processes are most active in spring [56],
and its eastern part is prone to them to a strong degree (Figure 7). As well as the northern
part of the Zhamankum sands (the left bank of the Karatal river) and Karakum sands
(eastern coast of the Balkash Lake) are subject to the aeolian process to a strong degree
(Figure 7).

The accumulation of aeolian deposits is associated with local, regional, and global
atmospheric processes (strong winds, heavy rains, etc.), and the deposits can be found ev-
erywhere [74]. Heavy rains contribute to the movement of a significant amount of fine earth
on the slopes. Erosion furrows are formed at 5–10 cm in deep and inter-ridge depressions,
and dry channels are formed at 10–20 cm. Deflation and aeolian accumulation quickly
destroy these forms of aeolian relief [75]. The intensity of the manifestation of aeolian accu-
mulation processes is clearly pronounced within the modern lacustrine sloping swampy
plain. The plain comprises lacustrine-marsh deposits, partly fine-grained silty sands over-
lain by aeolian sands. They were formed due to the wind processing of sandy beaches and
the inflow from the central parts of the Taukum sandy massif. Intense deflation zones are
confined to the elevated southeastern part of the Taukum (Figure 7). Under the influence
of southwestern and northeastern winds, sand is continuously blown and accumulates
in depressions between ridges. Local deflation processes occur in fixed transverse-dome
dunes in the Taukum and on the border of the Saryesikatyrau and Moiynkum sands.
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Figure 7. Regional division (zoning) of the aeolian processes in the Southern Balkash deserts.

4. Conclusions

In the present study, a dataset on dust storm climatology and wind regime and
archive cartographic materials, coupled with classical statistical methods and geostatistical
methods, were used to study the spatial and temporal characteristics of dust storms and
aeolian processes in the Southern Balkash deserts in Kazakhstan, Central Asia. The main
results and conclusions were drawn as follows.

Transverse-parabolic sands (48%) dominate the Southern Balkash deserts, and dome
dunes (24%) cover the eastern sands, including the Karakum and the southern part of
the Saryesikatyrau. Transverse-dome dunes cover 23% of the territory of the Southern
Balkash deserts.

Dust storms with a frequency of >20 days are distributed in the Balkash Lake and Ile
River valley coastal areas. The Bakanas region shows a large number of storms because
of takyr-like soils containing clay particles and many silty sand sediments that are prone
to the soil deflation process. The Moiynkum, Bestas, Saryesikatyrau, and Taukum deserts
are the areas with the most frequent sand and dust storms (17 to 43 days/per year). The
occurrence of and and dust storms has steadily decreased since the 1990s, except for
2008–2009. Seasonally, two peaks (April–June and July–September) of sand and dust
storms were detected between 1966 and 2003.

The sources of strong and very strong dust storms in the Southern Balkash deserts,
with a frequency of 1.1–3 days and 3.1–4 days per year, are found primarily in areas with a
high wind speed and light-textured soils. The degree of the occurrence of aeolian processes
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is significant and strong in most Southern Balkash deserts. Aeolian dust flows mainly from
the western and southwestern directions to the eastern and northeastern directions.

This study can be considered the first attempt at revealing the temporal and spatial
characteristics of dust storms and aeolian processes in the Southern Balkash deserts, which
allows an assessment of the intensity of modern soil deflation processes and predicts the
possibility of sand movement in the Southern Balkash deserts. In the future, we will
continue to carry out research on the impact of wind erosion on desertification, dust
emission flux, and the prevention of desertification in the Southern Balkash deserts by
conducting an observation and model simulation. This will be of great importance to the
monitoring and early warning of dust storms and sustainable development in this region.
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Abstract: This paper points out the shortcomings of existing normalization methods, and proposes a
brightness temperature inversion normalization method for multi-source remote sensing monitoring
of forest fires. This method can satisfy both radiation normalization and observation angle normal-
ization, and reduce the discrepancies in forest fire monitoring between multi-source sensors. The
study was based on Himawari-8 data; the longitude, latitude, solar zenith angle, solar azimuth angle,
emissivity, slope, aspect, elevation, and brightness temperature values were collected as modeling
parameters. The mixed-effects brightness temperature inversion normalization (MEMN) model
based on FY-4A and Himawari-8 satellite sensors is fitted by multiple stepwise regression and mixed-
effects modeling methods. The results show that, when the model is tested by Himawari-8 data,
the coefficient of determination (R2) reaches 0.8418, and when it is tested by FY-4A data, R2 reaches
0.8045. At the same time, through comparison and analysis, the accuracy of the MEMN method is
higher than that of the random forest normalization method (RF) (R2 = 0.7318), the pseudo-invariant
feature method (PIF) (R2 = 0.7264), and the automatic control scatter regression method (ASCR)
(R2 = 0.6841). The MEMN model can not only reduce the discrepancies in forest fire monitoring
owing to different satellite sensors between FY-4A and Himawari-8, but also improve the accuracy
and timeliness of forest fire monitoring.

Keywords: Himawari-8; FY-4A; forest fires monitoring; brightness temperature inversion; normalization;
mixed-effects model

1. Introduction

Forest fires have the characteristics of strong suddenness, strongly destructive, high
risk, and frequent occurrence. Factors such as human activities, the terrain conditions,
changes in land use, and climate will all have a certain impact on the probability of fire [1].
They are one of the most difficult and devastating natural disasters with which to deal. Fire
influences both forest structure and function [2].

Current remote sensing approaches to forest fire monitoring and detection in China
can be grouped as follows: (a) air-monitoring systems, (b) ground-monitoring systems, and
(c) space-monitoring systems. Among them, air-monitoring refers to the use of manned
aircraft or unmanned aerial vehicles (UAVs) to monitor forest fires. Its advantages are that
it can obtain high-quality internal information data of the fire site when the fire occurs,
effectively provide the trend of fire spread after a fire, and guide firefighting operations.
However, manned aerial vehicles are operated by human pilot(s) and are typically large
and expensive. Using a manned aerial vehicle puts the life of the pilot in harm’s way,
threatened by a hazardous environment and operator fatigue. Aircraft systems may sustain
with higher payloads and speed, but hovering in one place and maintaining high and low
speeds are the challenges [3]. At the same time, UAVs cannot monitor a wide range of
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areas in real time in all-weather conditions. Its main application is to guide firefighting
after a fire occurs [4]. Ground-monitoring refers to the manual monitoring of forest fires
by establishing ground observation towers or using ground measuring instruments [5].
Its advantages are low cost, accurate positioning, and real-time detection, but ground-
based measurement instruments may suffer from limited surveillance ranges and are
not suitable for very large areas such as forests [6]. Space-monitoring refers to remote
sensing monitoring of forest fires using satellites. It has the shortcomings of low spatial
resolution and it is unable to capture detailed fire data to guide firefighting. However,
its advantages are particularly obvious, and one of these advantages that its monitoring
range is particularly wide. With the rapid development of remote sensing technology, the
high temporal resolution of static satellites makes the timeliness of satellite monitoring
particularly high, and satellite monitoring can quickly locate the approximate fire point.
Effective monitoring of fire points can quickly guide the subsequent forest fire fighting.
Satellite remote sensing monitoring can greatly reduce the environmental damage and
resource loss caused by forest fires. Therefore, satellite remote sensing monitoring is an
important part of the integrated monitoring system for forest fires in the space, air, and
ground of China. The brightness temperature is a key parameter to monitor forest fires by
satellite. The monitoring of abnormally high brightness temperature points is an important
basis for determining the occurrence of fires.

At present, there are a large number of satellites monitoring forest fires and there
are abundant sources of remote sensing data. The conversion from the digital number
(DN) of a satellite image to radiance is affected by many factors, including illumination
geometry, sensor calibration, and atmospheric condition, among others. As multi-temporal
images are often acquired at different times under different atmospheric conditions, solar
illumination, sensor calibration, and view angles, radiometric correction is required to
remove radiometric distortions [7–10]. The main methods to effectively correct the ra-
diation deviation at this stage are as follows: the random forest normalization method,
pseudo-invariant feature method, multiple change detection relative radiation normal-
ization method, and automatic scattergram-controlled regression method, among others.
Zhao W [11] proposes a practical normalization method based on random forest. The
results show that the spatial pattern of normalized LST data can be significantly improved.
Unlike the previous normalization method, the proposed method is only based on satellite
observations without other auxiliary data. Therefore, this method shows good potential
for normalizing the time effects of wide-angle polar-orbiting satellite observations. The
PIF relative radiation normalization method is used to study the radiation normalization
of inter-phase remote sensing data. De Carvalho O et al. [12] proposed a new technique
for accurately selecting PIF. New sequential methods enable one to select, by different
attributes, a number of invariant targets over the brightness range of the images, and to
improve the accuracy of PIF radiation normalization. Elvidge et al. [13] proposed the
automatic scatter control and regression (ASCR) method. The relevant literature shows that
the ASCR method is simple to operate, efficient in execution, and can reduce clouds and
shadows; its radiation normalization effect is also significantly better for various commonly
used statistical methods. However, owing to ASCR requirements, the area contains a large
area of water and land features, so this method should be used in areas with less water
bodies or in multi-temporal images. When the water body has undergone major changes,
the accuracy of the calculation results will be difficult to guarantee, and cannot reflect the
advantages of ASCR. Aiming at the shortcomings of the existing method, Himawari-8
and FY-4A are unified to the same or similar radiative benchmarks, then the mixed-effects
brightness temperature inversion normalization model is established by considering the
fixed and random effects of the model.

The MEMN method not only meets the requirements of radiation normalization, but
also eliminates the influence of solar azimuth angle and solar zenith angle, meeting the
requirements of observation angle normalization. At the same time, the MEMN method can
reduce the influence of the studied satellites owing to the difference in sensor sensitivity,
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the difference in solar zenith angle and solar azimuth angle, and the satellite in-orbit
state characteristics, among others, and improves the accuracy of forest fire monitoring.
The normalized model based on geostationary satellite parameters with high temporal
resolution can greatly improve the timeliness of forest fire monitoring. It can be used for
the normalized analysis of remote sensing data from a variety of satellites, which greatly
increases the application range of remote sensing data. The MEMN method will become a
key technology for accurate monitoring of forest fires by satellite.

2. Materials and Methods

2.1. Data Introduction

Forest fire monitoring requires particularly high timeliness of remote sensing images,
Himawari-8 satellite carries the world’s advanced AHI (advanced Himawari imager). The
temporal resolution of the entire observation is 10 min once, so Himawari-8 was selected
as the normalized reference image. FY-4A is a Chinese-made geostationary satellite, but
its spatial resolution and time resolution are relatively low compared with Himawari-8,
so it makes sense to choose FY-4A as the satellite to be calibrated. Topographic factors
such as slope, aspect, and elevation are collected from the digital elevation model (DEM)
of SRTM with 90 m resolution; in the JAXA Himawari Monitor, the official website of
Himawari-8, clear sky images with low cloud content are selected, and all data used in the
experiment are remotely sensed images of the same moment. The Himawari-8 data were
downloaded from the Japan Meteorological Agency (JMA, Tokyo, Japan) in the Himawari
standard format (HSD), and the FY-4A AGRI 4 km data were downloaded from the National
Satellite Meteorological Satellite (NSM) website, which were interpolated to obtain the
same standard 2 km spatial data as Himawari-8. The purpose of interpolation of FY-4A
from 4 km to 2 km is to make the pixels contained in each grid complete pixels in statistical
data, so as to eliminate the deviation caused by statistical data. This is because the principle
of grid statistics in this paper is to count the maximum, minimum, and mean values of all
the complete pixels contained in the grid. In the subsequent analysis, the grid size is set
to 7 × 7, that is, the size of each grid is 14 km × 14 km. If the FY-4A data of 4 km spatial
resolution are used for statistics, each grid will contain the number of incomplete FY-4A
pixels, and the statistical results of the data will cause certain errors. Thus, we interpolate
FY-4A from 4 km to 2 km. The solar zenith angle and solar azimuth angle parameters were
collected from the FY-4A L1_GEO data.

The theoretical basis for satellite remote sensing fire point detection is that infrared
radiation is significantly enhanced when the material is in a high temperature combustion
state, and the fire point image element temperature is usually about 800 K. The temperature
radiation peak is located near 4 μm [14–17]. Therefore, the band near the central wavelength
of 4 μm (seventh channel of Himawari-8 and eighth channel of FY-4A) was selected for
bright temperature inversion. In this study, Hunan Province in China was selected as the
study area (Figure 1).

2.2. Data Pre-Processing

Taking into account the differences in the coordinate systems and spatial resolutions
of the above-mentioned different types of data sources, the source data are transformed
and processed first: (1) Convert the FY-4A AGRI 4 km data to the WGS84 coordinate
system, and interpolate its spatial resolution at the same time to 2 km, thus matching
the Himawari-8 data. (2) Considering that the Himawari-8 HSD data are an uncalibrated
full-disk observations, it needs to be radiometrically calibrated [18,19], involving band
clipping to obtain the brightness temperature inversion and the band required to collect
the solar zenith angle and solar azimuth angle.
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Figure 1. The map of the study area.

On the basis of the above-mentioned data preprocessing, in order to eliminate data
collection errors caused by irregular sample selection and inconsistent spatial resolution, a
collection data grid is established. The values of slope, aspect, and elevation parameters
were obtained by calculating the SRTM DEM by ArcGIS. At the same time, the cloud cover
data [20,21], emissivity parameters [22–25], and land cover types [26–28] are obtained by
raster calculation.

2.3. Determination of Model Parameters

The factors that may influence the results of brightness temperature values during
the brightness temperature inversion were analyzed. The correction coefficients of the
data were obtained from the header file of Himawari-8 data: the parameters solar zenith
angle (SOZ) and solar azimuth angle (SOA) were obtained by geometric correction and
radiometric correction; the parameters black body temperature (TBB) and surface specific
emissivity (emissivity) were obtained by brightness temperature inversion; and DEM data
were preprocessed to obtain the parameters of slope, aspect, and elevation, as well as the
longitude and latitude of each sample pixel.

The following were selected: longitude, latitude, solar zenith angle, solar azimuth
angle, slope, aspect, elevation, and emissivity as the independent variables for modeling,
and TBB was selected as the dependent variable to build the MEMN model. The correlation
analysis of each variable was performed, and the results are shown in Figure 2.

2.4. Data Collection

When collecting parameters such as latitude, longitude, slope, aspect, elevation, solar
zenith angle, solar azimuth angle, emissivity, brightness temperature, and so on, the remote
sensing data for collecting parameter values are derived from different sensors, and their
spatial resolutions are also different. In order to reduce the error, a grid data acquisition
method is proposed. Based on the principle of grid analysis, the grid is established by
ArcGIS software. Each grid contains the same number of pixels, the legal pixel is the pixel
at the centroid point of each grid, and the maximum pixel value in each grid is collected as
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the result value of the legal pixel. The maximum pixel value refers to the pixel in which
the maximum brightness temperature value is located in each grid area. The parameters
used for statistics are as follows: brightness temperature value, emissivity value, solar
altitude angle, solar azimuth angle, slope, slope direction, and elevation. The legal pixel
value is the pixel at the centroid point of each 7 × 7 grid, which is used for statistics such
as longitude and latitude. Therefore, the grid size setting determines the data collection
results. According to the analysis of the multiple linear regression result and scatter plot
analysis based on the study data, it is found that the relationship between emissivity and
brightness temperature is linear, and that emissivity is the best factor for fitting the linear
basic model of brightness temperature. Therefore, we start to set different sizes of grids
to count the brightness temperature and emissivity, and choose the most linearly related
grid as the grid to count all the modeling factor parameters. When selecting the grid size,
we set the grid to different sizes, analyze the linear correlation between emissivity and
brightness temperature under each size condition, and set the grid size under the highest
linear correlation condition as the final collection grid size used in the data. It can be seen
from Figure 3 that, when the grid is set to 7 × 7 (each grid contains 7 × 7 pixels), the
linear correlation between surface emissivity and brightness temperature is the highest.
Therefore, the 7 × 7 grid is selected as the grid for data collection.

Figure 2. The values in the graph indicate the degree of autocorrelation among the factors; the higher
absolute value indicates higher correlation, where * represents the significance of the significant
factors, each * is a 5% significance level, and more * means more significance. The diagonal line of the
grid in the figure indicates the trend of correlation; the diagonal line to the left indicates negative
correlation and the diagonal line to the right indicates positive correlation.

2.5. Classification of Model Parameters

The site of factors such as elevation, slope, and aspect is mainly based on the classifica-
tion standard of site factors of “Technical Regulations for Forest Resources Planning and
Design Investigation (GB/T26426-2010)”. On this basis, the elevation is graded per hundred
meters. All parameters are graded as in Table 1.
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(a) 3 × 3 Grid (b) 5 × 5 Grid

(c) 7 × 7 Grid (d) 9 × 9 Grid

Figure 3. The linear relationship between the statistical values of the brightness temperature and
the calculated values of the surface specific emissivity, which is the main correlation of the under-
lying model, can be seen by analyzing the statistical values for different grid size conditions. The
two possess the most relevant linear relationship when the grid of the statistics is set to Figure 2c.

Table 1. Parameter grading of the hybrid model.

Site Factors Grade Division

Elevation Level 1 per 100 m

Slope gradient [0,5]
I

[6,15]
II

[16,25]
III

[26,35]
IV

[36,45]
V

≥46
VI

Slope aspect (337.5, 22.5] (22.5, 67.5] (67.5, 112.5] (112.5, 157.5] (157.5, 202.5] (202.5, 247.5] (247.5, 292.5] (292.5, 337.5]
North slope Northeast slope East slope Southeast slope South slope Southwest slope West slope Northwest slope

2.6. Normalized Modeling

(1) Multiple linear regression. Multiple linear regression analysis can avoid the multi-
collinearity of variables or the random influence of independent variables on dependent
variables, so as to extract the independent variables of the main influencing factors to
explain the change of dependent variables [29,30].

(2) Linear mixed-effects model (LME) expression. According to the number of random
effect factors, the linear mixed-effects model (LME) is divided into two basic forms: single-
level and multi-level. This study is a relational model constructed based on a multi-level
linear model that contains two random effect factors. The general expression of the mixed
effect model is as follows [31,32]:

y = Xβ + Zα + ε (1)
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In Formula (1), y is the vector of observations; β is the fixed-effects parameter vector;
α is the random effects parameter vector; the matrices X and Z are design matrices corre-
sponding to fixed and random effects, respectively (through analysis, this research identifies
emissivity as a fixed effect and identifies slope, aspect, elevation, and solar azimuth angle
as random effects); and ε is the error vector.

2.7. Model Accuracy Evaluation

The evaluation of the regression prediction model is an indispensable step in the model
building process. The evaluation of model accuracy is carried out using the Akaike infor-
mation criterion (AIC), Bayesian information criterion (BIC), mean absolute error (MAE),
coefficient of determination (R2), and root mean square error (RMSE). These formulas are
shown respectively as follows:

AIC = −2 ln(L) + 2K (2)

BIC = −2 ln(L) + ln(n)k (3)

MAE = ∑n
i+1 |yi − ŷi|/n (4)

R2 = 1 − ∑n
i+1

(
yi − ŷi

)2
/ ∑n

i+1(yi − y)2 (5)

RMSE =
√

∑n
i+1(yi − yi)

2/(n − 1) (6)

In Formulas (2)–(6), yi is the measured value of the i-th sample, ŷi is the estimated
value of the i-th sample, y is the average measured value, n is the number of samples, K is
the number of model parameters, and L is the maximum likelihood function value of the
model. Among them, the smaller the value of AIC and BIC, the better the fitting effect of
the model. The closer the values of MAE and RMSE are to 0, and the closer the value of R2

is to 1, and the higher the accuracy of the model [33].

3. Results

3.1. Multiple Linear Regression

According to the correlation analysis, it is known that longitude, latitude, emissivity,
slope, aspect, elevation, solar azimuth angle, and solar zenith angle can be used as modeling
factors. Among them, latitude, longitude, emissivity, and TBB are highly correlated. After
analysis, the factors with a good fitting effect are selected as the independent variables of
the basic model. After classification, K-means clustering, and factors’ combination, the
remaining factors with a good fitting effect can be selected as random effects to join the
basic model. In order to determine the independent variables of the basic model, multiple
linear stepwise regression analysis of multiple independent variable factors of the basic
model is used, and the results are shown in Tables 2 and 3.

Table 2. Multiple regression model analysis of variance.

Factor Group Sum of Squares Freedom Mean Square F Value Pr > F

Longitude 7.1550 1 7.1550 7.5492 0.006372 **
Latitude 29.8800 1 29.8800 31.5249 4.534 × 10−8 **

Emissivity 220.2950 1 220.2950 232.4239 <2.2 × 10−16 ***
Residuals 280.5530 296 0.9480

Note: * represents the level of significance of the significant factor, and a higher number of * indicates a more
significant factor.
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Table 3. Multiple regression model fitting results.

Parameters Values Standard Value Value T Pr > F R2

(Intercept) 2.300 × 103 1.509 × 102 15.238 <2 × 10−16 ***

0.4731
Longitude −2.594 × 10−1 5.606 × 10−2 −4.627 5.55 × 10−6 ***
Latitude 3.305 × 10−2 7.204 × 10−3 4.588 6.61 × 10−6 ***

Emissivity −2.280 × 103 1.496 × 102 −15.245 <2 × 10−16 ***

Note: * represents the level of significance of the significant factor, and a higher number of * indicates a more
significant factor.

Latitude, longitude, and emissivity are factors that have significant effects on TBB,
which can be used as independent variables to fit the basic model. In stepwise regression
analysis, when longitude and latitude are used as the fixed factors of the basic model, the
accuracy of the basic model is low. At the same time, when longitude and latitude are used
as fixed factors to fit the mixed-effects model, the accuracy of the model is only slightly
improved, and it is not convenient for the practical application of the model. In order to
simplify the model form, it can be seen from Tables 2 and 3 that the value of F and value of
T of emissivity are obviously optimal. Therefore, without considering the longitude and
latitude as the fixed factor of the basic model and the random effect of the mixed-effects
model, the emissivity is determined to be the independent variable of the basic model
for fitting.

3.2. Determination of the Basic Model

Fitting the basic model, the results are shown in Table 4.

Table 4. Results of the basic model fit.

Parameters Values
Down
Limit

Up Limit

Fitting
Data

R2 MAE RMSE

a −1747.4422 −1978.5302 1516.3542
0.4244 0.7907 1.0142b 1745.5010 1517.2530 1973.7489

The specific form of the basic model is determined by Table 4 as follows:

TBB = −1747.44 × EMS + 1745.50 (7)

In Formula (7), TBB is the value of brightness temperature and EMS is the emissivity
value of the main correlation factor.

3.3. Fitting the Mixed-Effects Model

Taking into account the slope, aspect, elevation, solar zenith angle, and solar azimuth
angle will affect the true brightness temperature value. Based on the fixed linear model,
slope, aspect, elevation, solar zenith angle, and solar azimuth angle are taken as random
effects to introduce different combination positions of model parameters a and b. The
mixed-effects model is fitted after introduction, and the results are summarized in Table 5.

According to the evaluation indexes in Table 5, it can be known that, when fitting
the site type (LDLX) combined with slope, aspect, and elevation, and SOA and SOZ as
random effects into the fixed model, the accuracy of the model is improved. The amount
of AIC and BIC decreased. Among them, M2, M6, and M10 are the model results and
evaluation when the random effects LDLX, SOZ, and SOA are added to parameter b of the
fixed model, respectively. Obviously, when LDLX and SOA are used as random effects, the
accuracy of the model is improved greatly, and when SOZ is used as a random effect, the
accuracy of the model is improved slightly. Among them, M4, M8, and M12 are the model
results and evaluation when the random effects ldlx, soz, and soa (LDLX, SOZ, and SOA
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are clustered by the K-means method) are added as random effects to parameter b of the
fixed model. It can be seen that, when ldlx and soa are used as random effects, the accuracy
of the model is greatly improved, and soz is the result of singular fitting. After the analysis,
soz is not considered as a random effect, and ldlx and soz are determined as random effects
of the MEMN model.

Table 5. Linear mixed effects model parameter estimates.

Random
Factor

Model
Parameter

Combination
R2 AIC BIC RMSE MAE

LDLX
M1 a 0.5181 865.8 880.6 0.9314 0.7206
M2 b 0.5181 865.8 880.6 0.9314 0.7205

ldlx
M3 a 0.6640 754.4 769.2 0.7752 0.5794
M4 b 0.6640 754.4 769.2 0.7752 0.5794

SOZ
M5 a 0.4452 867.8 882.6 0.9959 0.7751
M6 b 0.4454 867.8 882.6 0.9957 0.7749

soz M7 a Singular fit
M8 b Singular fit

SOA
M9 a 0.5194 867.0 881.8 0.9306 0.7289

M10 b 0.5196 867.0 881.8 0.9305 0.7288

soa M11 a 0.7942 632.7 647.6 0.6067 0.4381
M12 b 0.7942 632.7 647.6 0.6067 0.4381

Ldlx + soa

M13 a + a 0.8418 590.4 609.0 0.5321 0.3977
M14 b + b 0.8418 590.4 609.0 0.5321 0.3977
M15 b + a 0.8418 590.4 609.0 0.5321 0.3977
M16 a + b 0.8418 590.4 609.0 0.5321 0.3977

Note: The parameter combinations a and b refer to the mixed-effects model construction by adding random effects
to each parameter separately.

According to Table 5, we selected M14 as the optimal model. Analysis of the evaluation
indicators of the M14 model shows that the coefficient of determination R2 increased from
0.4244 to 0.8418, an increase of 98.35%; the MAE decreased from 0.7907 to 0.3977, a decrease
of 49.37%; and the RMSE decreased from 1.0142 to 0.5321, a decrease of 47.52%. The
R2 displays a significant improvement, and MAE and RMSE are significantly reduced.
Therefore, the determined model form is as follows:

TBBij = a × EMSij +
(
b + bi + bj

)
+ εij (8)

In the formula, TBBij is the brightness temperature value of the i-th grade site type
and j-th grade solar azimuth angle. EMSij is the emissivity value for the i-th grade site type
and the j-th grade solar azimuth angle. bi is the random effect parameter of the site effect,
and bj is the random effect parameter of the solar azimuth angle effect. bi ∼ N(0, ψ1),ψ1 is
the design matrix of the random effect parameter of the site; and bj ∼ N(0, ψ2),ψ2 is the
design matrix of the random effect parameters of the solar azimuth angle. eij is the error
term of the i-th grade site type and j-th grade solar azimuth angle.

It can be seen from Figure 4 that, compared with the basic model, the prediction value
of the mixed-effects model is less discrete, and the residuals of the mixed-effects model are
more concentrated on both sides of the X axis. To sum up, the model based on the random
effects of ldlx and soa groups can display greatly improved accuracy.
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Figure 4. The orange diamond indicates the dispersion of the mixed-effects model predictions, and
the black circle indicates the dispersion of the basic model predictions.

3.4. Comparison of the Accuracy of Normalization Methods

The data used in the model evaluation are the Himawari-8 and FY-4A image data
at 06:30 (UTC) on 10 December 2019 in Hunan Province in China. The measured values
of factors such as emissivity, solar zenith angle, slope, aspect, elevation, and brightness
temperature are collected. The predictive values of brightness temperature are calculated
by the MEMN model and the RF model in the literature [6]. The accuracy between the two
models was compared and evaluated based on three indicators: coefficient of determination
(R2), mean absolute error (MAE), and root mean square error (RMSE).

The radiance of the reference image Himawari-8 (Figure 5a) is quite different from
the image FY-4A (Figure 5b), which is the image to be corrected. The normalized image
(Figure 5c) is obtained after normalization by the RF method. At the same time, the
normalized image (Figure 5d) is obtained by the MEMN method.

The pixel values of normalized images were statistically analyzed. Figure 6 is the
linear correlation comparison chart between the MEMN method and RF method. Table 6
shows the comparison of the model accuracy evaluation index of two methods. It can be
seen that the accuracy of the MEMN method is better than that of the RF method.

Table 6. Comparison of evaluation indicators for different normalization methods.

Brightness Temperature Inversion
Normalization Method

R2 MAE RMSE

MEMN Method 0.8045 0.4657 0.5648
RF Method 0.7318 0.5583 0.6817
PIF Method 0.7264 0.5603 0.7155

ASCR Method 0.6841 0.6193 0.7882
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(a) Refer to Himawari 8 B7 image (b) To be corrected FY 4A B8 image

(c) Radiation Normalized Image By MEMN (d) Normalized Image By RF

(e) Radiation Normalized Image By PIF (f) Normalized Image By ASCR

Figure 5. Original image and normalization results of different methods (mid-wave infrared channel).
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(a) MEMNmethod (b) RF method

(c) PIF method (d) ASCR method

Figure 6. Comparison of the accuracy of the mixed-effects model normalization method with the
random forest normalization method.

3.5. The Results of Fire Detection Verification

In order to verify the improvement of the effect of the MEMN method on the fire
monitoring of the original image, we selected the FY-4A raw data, the Himawari-8 raw
data, and the data processed by the MEMN method to identify the fire in Hunan Province
at a certain time using the corresponding fire discrimination algorithm, and compared it
with the fire situation published in China at that time to verify the accuracy. The results are
analyzed in Figure 7. Figure 7a shows the fire point determined by the forest and grassland
fire information sharing platform in China. Figure 7b shows the fire point of FY-4A raw data
determined by the decision tree fire point recognition algorithm [34] based on FY-4A B8 and
FY-4A B12. Figure 7c shows the fire point of Himawari-8 raw data determined by the LSA
SAF Meteosat fire point recognition algorithm [35] based on Himawari-8 B7 and Himawari-
8 B14. Figure 7d shows the fire point of FY-4A and Himawari-8, which is normalized by
the MEMN method and then determined by the fire point recognition algorithm.

Table 7 show that, compared with the number of fires in Hunan Province on 10
December 2019 counted by the National Forest Grassland Fire Prevention and Extinguishing
Information Sharing Platform, the fire detection rate of forest fires in FY-4 A original remote
sensing image is 54.5%, and the fire detection rate of forest fires in Himawari-8 original
remote sensing image is 72.7%. The fire detection rate of forest fires in remote sensing
images normalized by the MEMN method is 90.9%. The MEMN normalization method has
greatly improved the accuracy of forest fire monitoring.
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(a) Official fire point statistics
(b) FY 4A original image monitoring fire

point

(c) Himawari 8 original image monitoring
fire point

(d) MEMN normalized image monitoring
fire point

Figure 7. Comparison of the fire point monitoring results of different images.

Table 7. Comparative analysis of the fire detection rate.

Actual Number of Fire Points Number Detected Fire Detection Rate

FY-4A original image 11 6 54.5%
Himawari-8 original image 11 8 72.7%
MEMN normalized image 11 10 90.9%

4. Discussions

Aiming to address the problems that the single normalization scale leads to insufficient
accuracy of multi-source sensor forest fire monitoring and the low temporal resolution
of polar orbit satellite sensor leads to a lack of timeliness in forest fire monitoring, this
article extracts and analyzes the influencing factors of brightness temperature in Hunan
Province in China, introduces the regression prediction method of the mixed-effects model,
constructs the normalized brightness temperature inversion model based on Himawari-8
and FY-4A, and verifies the model. The main conclusions are as follows.

(1) The MEMN model based on Himawari-8 solves the problems of the single fac-
tor and weak adaptability of model parameters in traditional methods such as the RF
method, PIF method, and ASCR method. The grid data acquisition method is used to
solve the problem of irregular sample selection and determine the modeling parameter
values of each sample. Then, the basic model was fitted by multiple stepwise regres-
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sion: TBB = −1747.44 × EMS + 1745.50. Finally, the random effects site type (ldlx)
and solar azimuth angle (soa) are added to the foundation after classification, cluster-
ing, and combination. Then, the MEMN model based on Himawari-8 is established:
TBBij = a × EMSij +

(
b + bi + bj

)
+ εij. The results of the accuracy evaluation and appli-

cability test show that the MEMN model based on Himawari-8 has higher accuracy, and
the determination coefficient is 0.8418 after introducing the random effect group of site
type (ldlx) and solar azimuth angle (soa).

(2) Taking the normalized model of Himawari-8 as a reference and using the data
collected by FY-4A to evaluate the accuracy of the model, the result showed that R2 reached
0.7542. Comparing the results calculated by the random forest normalization method of
the literature [6] to the data of the same period, the indicators of the MEMN method are
better than those of the RF method. This result means that the MEMN method based on
Himawari-8 is more applicable to the FY-4A sensor, and the normalized effect is better.

(3) The MEMN method has the following advantages. First, it considers more param-
eters, more standardized sample selection, and relatively high accuracy. Second, it can
meet the requirements of observation angle normalization and radiation normalization
at the same time. Finally, the model has good ability to divide the terrain and radiation
errors equally, as well as to reduce the infrared radiation difference between different
satellite sensors.

The key technology of this study is to combine the mixed-effects model with the
normalization method. After analysis, the radiation normalization parameter is regarded
as the fixed effect of the mixed-effects model, and the observation angle normalization
parameter is regarded as the random effect, so as to realize the image normalization research
that meets the two scales at the same time. The results have certain theoretical significance
for the improvement of the normalization method, and have practical value for improving
the accuracy and timeliness of forest fire monitoring.

5. Conclusions

In this paper, two geostationary satellite normalization models with different spatial
resolution and time resolution are constructed, and the effect is ideal. This model is
suitable for the normalization between single-phase cross-sensors. The construction of the
normalized model of a multi-temporal cross-sensor and multi-temporal single sensor is still
to be studied and analyzed. It is possible to combine the multi-temporal cross-sensor and
multi-temporal single sensor. The construction of the mixed-effects model of the sensor is
the main research direction in the next step.
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Abstract: Tropical cyclones (TCs) can have profound effects on the dynamics of forest vegetation that
need to be better understood. Here, we analysed changes in forest vegetation induced by TCs using
the normalized difference vegetation index (NDVI). We used an accurate historical database of TC
tracks and intensities, together with the Willoughby cyclone model to reconstruct the 2D surface
wind speed structure of TCs and analyse how TCs affect forest vegetation. We used segmented linear
models to identify significant breakpoints in the relationship between the reconstructed maximum
sustained wind speed (Wmax) and the observed changes in NDVI. We tested the hypothesis that
the rate of change in damage caused by TCs to forest and recovery time would increase according
to Wmax thresholds as defined in the widely used Saffir–Simpson hurricane wind scale (SSHWS).
We showed that the most significant breakpoint was located at 50 m/s. This breakpoint corresponds
to the transition between categories 2 and 3 TCs in the SSHWS. Below this breakpoint, damages
caused to forest vegetation and the time needed to recover from these damages were negligable. We
found a second breakpoint, with a sharp increase in damages for winds >75 m/s. This suggested that
extremely intense tropical cyclones, which might be more frequent in the future, can cause extreme
damages to forest vegetation. Nevertheless, we found high variation in the observed damages and
time needed to recover for a given Wmax. Further studies are needed to integrate other factors
that might affect the exposure and resistance to TCs as well as forests’ capacity to recover from
these disturbances.

Keywords: tropical cyclones; damages; forests; maximum sustained wind speed; normalized
difference vegetation index; recovery time; Saffir–Simpson hurricane wind scale; South Pacific
Islands

1. Introduction

Tropical cyclones (TCs), also referred to as hurricanes in the North Atlantic and
Northeast Pacific and typhoons in the Northwest Pacific, generate high speed winds and
heavy rainfalls over large areas. Immediate impacts of TCs on forests can be particularly
devastating with damages ranging from defoliation to extensive trunk snapping or tree
uprooting. Most studies focused on the local- or landscape–scale damages caused by
a single TC (e.g., [1–9]). Analyses of the impacts of multiple TCs on larger regional or
global scales are needed to better understand how forests respond to these large–scale
disturbances in the context of changing TCs intensity [10].

Increasingly available and accurate remote–sensed vegetation index time series and TC
trajectories and characteristics databases now allow to analyse the impacts of TCs on forests
and their recovery at large spatio–temporal scales (e.g., [11–13]). Maximum sustained wind
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speed (Wmax) appears to be a key parameter to predict changes in vegetation indices. Yet,
the direct relationship between local Wmax and the observed vegetation indices dynamics
has, to our knowledge, not been explored. We suggest that this could be tackled using
simple cyclone models that allow reconstructing the 2D wind speed structure (e.g., [14])
from TC characteristics available in TC databases.

The Saffir–Simpson Hurricane Wind Scale (SSHWS, [15]) is one of the most commonly
used TC classifications. It uses Wmax to anticipate the potential damages caused by
TCs. SSHWS ranges from category 1 TCs (Wmax between 33 and 42 m/s) which are
predicted to mostly damage foliage, to category 5 TCs (Wmax ≥ 70 m/s) which are
predicted to cause extensive snapping or uprooting of shrubs and trees (Table 1). On
top of that classification, category 3 or higher TCs (Wmax ≥ 50 m/s) are considered as
major TCs that can cause devastating to catastrophic damages (https://www.nhc.noaa.
gov/aboutsshws.php, accessed on 22 February 2022). Yet, to our knowledge, the potential
damages anticipated by the SSHWS have not been confronted concerning actual damages
on a regional scale and on multiple storms over a long time period.

Table 1. Saffir–Simpson hurricane wind scale (SSHWS).

Category Sustained Wind Speed (m/s)

ine 5 (major) ≥70
4 (major) 58–70
3 (major) 50–58

2 43–49
1 33–42

Tropical Storm (TS) 18–32
Tropical Depression (TD) <17

Here, we used high–resolution historical database of TC tracks and intensities (IB-
TrACS, [16]), together with the Willoughby cyclone model [17] to reconstruct the 2D surface
wind speed structure of TCs to analyse how TCs affect forest vegetation. Our analyses
cover six archipelagos of the south–west Pacific region over the 2000–2020 period. Our
understanding of the impacts of TCs on forests in the islands of this region is relatively
poor as most studies in this region have been conduced in Australia and on a global scale
most studies have focused on the most intense cyclones in the North Atlantic Basin and
to a lesser extent in the North West Pacific Basin [18]. We expect that damage caused by
TCs to forests and the time needed to recover from these damages would increase with
increasing Wmax. We test the hypothesis that the rate of change in damage caused by TCs
to forests and the recovery time would increase according to Wmax thresholds as defined
in the SSHWS. More particularly, we expect that winds generated by major, category 3 or
higher, TCs would result in particularly intense damages.

2. Materials and Methods

2.1. Study Area

The study area encompasses 76 islands in six archipelagos (New Caledonia, Vanuatu,
Fiji, Samoa, Tonga, Wallis and Futuna) located in the South West Pacific basin in longitude
152.3° E–162.5° W and latitude 10.0° S–30.0° S. Small islands, i.e., those less than 5 km long
and/or wide were omitted. In this region, TCs mostly occur between November and May
during austral summer [19]. On average, 6–8 tropical storms occur in the South West Pacific
Basin between November and May with a peak of activity in February–March [20]. There
are 2 to 5 tropical storms per decade on land for the considered islands with maximum
cyclone densities west of Vanuatu and north of New Caledonia extending into the Coral
Sea, between 10° S and 25° S fading off toward Samoa [21].
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2.2. Forest Vegetation

Changes in forest vegetation induced by TCs were analysed using the Normalized
Difference Vegetation Index (NDVI), one of the most widely used satellite–based vegetation
indices [22]. Chlorophyll pigments contained in leaves are responsible for photosynthesis
and absorb red light (RED), whereas healthy leaf tissues reflect strongly in the near infrared
region (NIR) of the light spectrum. The NDVI is computed as the normalized ratio between
RED and NIR reflected by the vegetation and captured by the sensor of the satellite
(Equation (1)). The NDVI ranges from −1 to 1 and is positively correlated with the density
and health of the vegetation (i.e., the higher the NDVI, the denser or healthier the vegetation)
with negative NDVI values corresponding to water areas.

NDVI =
ρ(NIR)− ρ(Red)
ρ(NIR) + ρ(Red)

∈ [−1 : 1] (1)

We used the NDVI from the MOD13Q1 products supplied by the MODIS (Mod-
erate Resolution Imaging Spectroradiometer) sensor that was launched by NASA on-
board the Terra satellite in 1999. The MOD13Q1 products have provided NDVI values
every 16 days since February 2000 at a 250 m pixel spatial resolution. We extracted
NDVI of forested areas using the “tree cover, broadleaved, evergreen, closed to open
(>15%)” vegetation class from the global land cover map produced by the European Spa-
tial Agency (https://www.esa.int/Applications/Observing_the_Earth/Space_for_our_
climate/ESA\_global_land_cover_map_available_online, accessed on 22 February 2022)
and resampled at 250 m to match the NDVI resolution. Prior to the analyses, all pixels
covered by clouds or water were removed using the pixel reliability files provided by
MOD13Q1.

2.3. Tropical Cyclones

We used the Saffir–Simpson hurricane wind scale (SSHWS, Table 1, [15]) to clas-
sify TC intensities. TC trajectories and characteristics were extracted from the IBTrACS
database ([16], https://www.ncdc.noaa.gov/ibtracs/, accessed on 22 February 2022). This
database provides the positions of each TC center and their maximum 10 min–sustained
wind speed (Wmax) every 6 h. We only considered cyclones reaching category 1 or higher
(Wmax ≥ 33 m/s). A total of 74 TCs with Wmax ≥ 33 m/s crossed the studied area between
2000 and 2020 (Figure 1).

Figure 1. Trajectories of all tropical cyclones reaching category 1 or higher (i.e., Wmax ≥ 33 m/s) at
some point on their tracks between 2000 and 2020 in the South West Pacific Basin.

Following Vincent et al. [23], we then used the Willoughby cyclone model [17] to
reconstruct the 2D idealized surface wind speed structure generated by each TC over
the 20 year period studied (2000–2020). The Willoughby model (Equation (2)) allows to
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reconstruct at a given time (t) the 2D surface wind speed structure of a TC based on both
the latitude of its center (Φ) and the maximum sustained wind speed (Wmax) as provided
by the IBTrACS database.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) RMW = 46.4e−0.0155Wmax+0.0169|φ|
(b) nn = 2.1340 + 0.0077Wmax − 0.4522ln(RMW)− 0.0038|φ|
(c) XX1 = 287.6 − 1.942Wmax + 7.799ln(RMW)− 1.819|φ|
(d) XX2 = 25
(e) AA = 0.5913 + 0.0029Wmax − 0.1361ln(RMW)− 0.0042|φ|
( f ) Wr = Wmax|( r

RMW )nn| i f r ≤ RMW

(g) Wr = Wmax((1 − AA)e−| r−RMW
XX1 | + AAe

−| r−RMW
XX2 |

)
i f r ≥ RMW

(2)

In Equation (2) RMW is the radius of maximum wind (i.e., the distance r from the
center where wind speed reaches Wmax), Wr is the radial wind speed generated at distance
r from the center of the TC.

The Willoughby model generates an exponential increase in wind speed from the
center of the TC (the “eye”) to the RMW where winds reach their maximum speed (Wmax,
Figure 2). Beyond RMW, wind speed decreases exponentially as a function of Wmax and
Φ. According to this model, the most powerful TC over the studied area and study period
(i.e., the category 5 TC Winston in 2016) generated winds ≥ 17 m/s up to 250 km off the
TC center. Because TCs can move fast, we performed a linear interpolation of the original
six–hour Φ and Wmax provided by the IBTrACS database to reconstruct the 2D surface
wind speed structure of each TC every 15 min at a 250 m spatial resolution. Finally, we
computed for each TC the maximum speed of winds that affected each pixel.

Figure 2. Example of 2D surface wind speed structure reconstructed using the Willoughby model
(Equation (2) (f and g)) for category 1 tropical cyclone Mick (3–5 December 2009), category 3 tropical
cyclone Ivy (21–28 February 2004), and category 5 tropical cyclone Winston (7 February–3 March
2016). Vertical dotted lines represent RMW, the distance r from the center of the tropical cyclone
where winds reach their maximum speed (Wmax.)

2.4. Analysis

We analysed the damages caused by TCs to forest vegetation and the recovery time
from these damages. For each forest pixel exposed to wind generated by a category 1
or greater TC, we computed the damage caused by the cyclone passages as the relative
changes in NDVI:
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ΔNDVIti = [(NDVIti − NDVIt0)/NDVIt0]× 100 (3)

where NDVIt0 is the NDVI value measured just before the passage of the TC at t0, NDVIti
is the NDVI value measured at ti just after the passage of the TC with i starting at the
first NDVI acquisition date after the passage of the TC and then every 16 days over the
following year.

Recovery times from these damages were estimated as TR, the time ti needed to
recover at least 95% of the pre–cyclone NDVI value (NDVIt0). Many ΔNDVIti values were
missing because of the lack of acquisition or because of the presence of clouds. We filled in
missing values using the linear interpolation function na.approx from the zoo R package.

We then used two types of model to predict damages (ΔNDVIt1 ) and recovery time
(TR) as a function of the maximum sustained wind speed (Wmax): (i) Segmented linear
models with fixed Wmax breakpoints corresponding to the boundaries of the categories of
the Saffir–Simpson hurricane wind scale (hereafter, SSHWS model), and (ii) segmented
linear models with free number and location of Wmax breakpoints (hereafter, optimized
model). For the optimized models, we tested different numbers of breakpoints ranging
from 1 to 5 breakpoints and then kept the models that minimized the Bayesian information
criterion (BIC), i.e., the models that exhibited the best compromise between the number of
parameters and likelihood. Segmented linear models were adjusted using the segmented
function of the segmented R package [24] and BIC values were computed using the BIC
function available in the R base package. We tested the significance of the presence of
breakpoints (i.e., the presence of a non-constant regression parameter in the linear predictor)
using the davies.test function [24].

Reconstructed Wmax and observed ΔNDVIt1 are available online (http://preditropic.
ird.nc, accessed on 22 February 2022). Moreover, it let the user forecast the ΔNDVIt1
following a simulated TC based on the optimized model.

3. Results

According to the 2D reconstruction of the wind speed structure of TCs, almost all forest
pixels (95.6%) located in the studied area were exposed at least once to maximum sustained
wind speed ≥ 33 m/s over the last 20 years (Table 2). A third of these forest pixels (33.1%)
were exposed at least three times to such wind speeds (Table 2). Most intense TCs are
relatively infrequent. Only 29 TCs reached categories 4 or 5 and less than a quarter (21.3%)
of the forest pixels were exposed at least once to maximum sustained wind speed ≥ 58 m/s
(category 4). This proportion fell down to 5% when we only considered category 5 cyclone
winds (i.e., ≥70 m/s, Table 2).

For both damages and recovery time, optimized segmented linear models (for which
the number and position of breakpoints were optimized) performed much better than
SSHWS segmented linear models (for which the number and position of breakpoints were
fixed following the SSHWS), with ΔBIC = −28.35 and −44.33, respectively (Tables 3 and 4).
In both cases the optimized models identified two significant breakpoints. The first break-
points, located at 50.00 m/s for damages as swhown in Figure 3a and 50.48 m/s for recovery
time as shown in Figure 3c, corresponded to the transition between category 2 and 3 TCs.
Below 50.00 m/s observed damages were negligible (�1% decrease in NDVI on average)
and the corresponding recovery time was less than two weeks.
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Table 2. Coverage of forest pixels exposed to different intensity and frequency of TCs between 2000
and 2020. For instance, in the first row we can read that most forest pixels (95.6%) were exposed to
at least one category 1 or higher TC and in the third row that a third of forest pixels (33.1%) were
exposed to at least three category 1 or higher TCs.

Maximum Sustained Wind Speed Frequency Coverage (%)

≥33 m/s (Cat. 1 or higher)

At least once 95.6
At least twice 71.0
At least 3 times 33.1
At least 4 times 9.9
At least 5 times 1.0
At least 6 times 0.0

≥43 m/s (Cat. 2 or higher)

At least once 73.4
At least twice 22.3
At least 3 times 2.0
At least 4 times 0.0

≥50 m/s (Cat. 3 or higher)
At least once 43.1
At least twice 3.9
At least 3 times 0.0

≥58 m/s (Cat. 4 or higher)
At least once 21.3
At least twice 0.3
At least 3 times 0.0

≥70 m/s (Cat. 5) At least once 5.4
At least twice 0.0

Table 3. Summary and performances of the segmented linear models explaining the variation in
the damages (ΔNDVIt1) as a function of Wmax. In the SSHWS model the breakpoints were fixed
using the Saffir–Simpson hurricane wind scale boundaries. In the optimized model the location and
number of breakpoints were optimized.

Model BIC Beakpoints
Davies Tests

Slope
Best at p-Value

SSHWS 252.07 43.00 34.00 <0.001 0.02
50.00 49.78 <0.001 −0.24
58.00 69.00 0.08 −0.90
70.00 75.00 <0.001 −1.13

−1.78

Optimized 223.72 50.00 51.78 <0.001 −0.08
75.70 74.22 <0.001 −1.05

−7.45

Table 4. Summary and performances of the segmented linear models explaining the variation
recovery time (TR) as a function of Wmax. In the SSHWS model the breakpoints were fixed using the
Saffir–Simpson hurricane wind scale boundaries. In the optimized model the location and number of
breakpoints were optimized.

Model BIC Beakpoints
Davies Tests

Slope
Best at p-Value

SSHWS 376.03 43.00 34.00 0.008 0.49
50.00 51.22 <0.001 −0.10
58.00 69.00 <0.001 4.14
70.00 77.00 <0.001 3.64

6.35

Optimized 331.73 50.48 52.22 <0.001 0.42
76.64 77.00 <0.001 3.80

51.56
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For Wmax greater than 50 m/s, observed damages to forest vegetation started to
increase with an average at ∼1% of NDVI loss for each 1 m/s increase in Wmax (Figure 3a).
This increase in damages resulted in a sharper increase in recovery time with an average
rate of almost four days per 1 m/s increase in Wmax (Figure 3c). Another breakpoint
was identified within the category 5 TC category at 75 m/s (75.70 m/s for damages and
76.64 m/s for recovery time). Above this breakpoint, damages and recovery times sharply
increased. On average >40% decrease in NDVI and >150 days of recovery time were
observed for the strongest winds (78 m/s).

We observed high deviations around these trends. Standard deviation for the observed
damages was about 20% and tended to slightly decrease with increasing wind speed
(Figure 3b). Standard deviation in recovery time was about 30–35 days below 50.00 m/s,
but then sharply increased reaching on average ∼90 days for category 5 TCs (Figure 3d).
Furthermore, over 20% of the studied pixels did not recover after one year.p y

Figure 3. Mean and standard deviation of relative change in NDVI (ΔNDVIt1) (a,b) and recovery
time (TR) (c,d) as a function of maximum sustained wind speed (Wmax). Values in bold represent the
average for each TC category (SSHWS). Blue lines correspond to piecewise linear regressions with
breakpoints based on the SSHWS TC classification and yellow lines correspond to piecewise linear
regressions with optimized breakpoints minimizing the Bayesian Information Criterion.

One important outcome of our modelling is the production of spatial maps of damage
and recovery time. An example is illustrated in Figure 4 which shows the observed and
best-modelled (optimized model) damages and recovery caused by the category 5 TC
Winston (2016) on Viti Levu (Fiji).
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Figure 4. Example of relative change in NDVI observed after tropical cyclone Winston on Viti Levu
in Fiji (a), reconstructed maximum sustained wind speed (b), predicted changes in NDVI (c) using
the optimized models, and predicted recovery time (d). Winston severely impacted Viti Levu with
wind gusts up to 78 m/s between 19 and 20 February 2016.

4. Discussion

Our results partly support the use of the Saffir–Simpson hurricane wind scale (SSHWS)
to anticipate the damages caused by TCs to forest vegetation. Simpson [15] suggested
that winds < 50 m/s mostly resulted in minor defoliation and we indeed found that
such winds resulted in negligible damages to forest vegetation (�1% decrease in NDVI).
Our modelling showed that the most significant breakpoint was located at 50 m/s. This
breakpoint corresponded to the transition between category 2 and 3 TCs identified by
Simpson [15] above which trees start to experience major damages including extensive
defoliation, branch breaking, tree uprooting, and bole snapping. This is in agreement with
field observation in the south-west Pacific. For instance, forest plots located on Tutuila
(American Samoa) and exposed to winds of 12–14 m/s generated by TC Heta (2003–2004)
exhibited < 5% uprooting or bole snapping for trees larger than 10 cm [25]. Forest plots
located on a neighboring island (Ta’u) exposed to reconstructed wind of 60–62 m/s from
the TC Olaf (2005) exhibited from 20% to almost 100% uprooting or bole snapping for trees
larger than 10 cm depending on the species [5]. Intermediate damages were observed on the
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island of Vava’u (Tonga) with about 20% uprooting or bole snapping for trees larger than
10 cm in forest plots affected by reconstructed wind of 51 m/s from TC Waka (2001) [26].

Model optimization highlighted another significant breakpoint located around 75 m.s,
i.e., within the highest category of the SSHWS (that begins at 70 m/s for category 5). When
this breakpoint was reached, sharp increases in both the damages caused by TCs and the
recovery time were observed. These high intensity winds (>75 m/s) resulted on average in
a reduction in NDVI greater than 40%. While this breakpoint relies only on a few points,
it feeds the debate about updating TC intensity scales to better fit increasing TC intensity
(e.g., [27,28]). Indeed, such extremely intense TCs occurred during the last decade and
may reflect the possible intensification of these disturbances under human–induced global
warming (e.g., [10,29]). For instance, after typhoon Haiyan (2013), one of the most intense
TCs ever recorded worldwide, severely impacted the Philippines, Lin et al. [30] suggested
creating a new category 6 for TCs generating winds ≥ 80 m/s. However, based on the most
recent analyses [10], it is not clear that increased TC intensities have indeed occurred during
the past 40 years (1979–2017) in the Western Pacific. On the same line, while Winston (2016)
generated sustained wind speed > 80 m/s in the South Pacific, i.e, one of the strongest
winds on record in the South Pacific, it remains to be explored whether such intensity
records may increase in the future under global warming.

Reconstructed maximum wind speed was a good predictor of observed mean damages
caused by TCs and mean recovery time. However, we observed large variations around
mean trends. These large variations may be partly explained by the topography of the
studied mountainous islands. Indeed, wind exposure varies greatly with topographical
position, which result in very patchy damages in topographically complex areas [3,8,31].
The TC regime could also play a role in the effects of these disturbances on forests. Forests
that have been historically exposed to frequent intense TCs are likely to be acclimated or
adapted to these disturbances and thus could be more resistant to TCs than forests that have
been historically rarely exposed to these disturbances [13]. Different levels of resistance of
different forest types also probably explain the large variation in observed damages for a
given maximum sustained wind speed. For instance, for a given wind speed, damages are
expected to be lower in dry forests than in wet forests because dry forests are shorter [32]
and composed of species that have on average harder wood than in wet forests [33]. Indeed,
shorter tree height and higher wood density can provide higher mechanical resistance
to wind and are often associated with less important cyclone–induced damages [5,18,34].
Finally, large variation in the observed damages for a given maximum sustained wind
speed could be explained by different TC translation speeds with slower TCs (longer
residence time) which should be more destructive than faster ones [35].

Variation in recovery time substantially increased with maximum sustained damage,
especially after category 3–5 TCs. Below category 3 cyclones, damages mostly consisted
in defoliation and recovery in production of new leaves. However, category 3 and more
cyclones caused greater damages such as branch breaking, uprooting, and bole snapping.
Several processes allowed recovery from these damages, including growth of surviving
trees, growth of new trees from seed or sapling banks, and growth of new trees from new
colonization events. Resprouting of surviving trees, i.e., the production of new vegetative
growth from above or below ground dormant buds, is often observed after disturbances by
TCs [36–38]. Resprouting capacity probably varies depending on habitat type and species
composition. For instance, dry forest species might be better resprouters than wet forest
species [39]. The rapidity of the establishment of new trees should be affected by the
amount of forest and its spatial configuration. For the same level of damages, we expect
that recovery time would be shorter in more forested and less fragmented landscapes
compared to less forested and more fragmented ones. However, we cannot know whether
the recovery in NDVI was due to the growth of trees or other growth forms. Likewise, we
cannot know whether the recovery in NDVI was due to the growth of native species or to
the establishment of non–native, potentially invasive, species. Invasion by non–native plant
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species following disturbance by TCs [40] which can slow down or block forest recovery is
also more likely in more fragmented areas [41].

5. Conclusions

We found that damages caused to forest vegetation by TCs based on NDVI changes
were negligible for winds <50 m/s, i.e., for category 1–2 TCs (SSHWS). This is consistent
with recent conclusions reached by Peereman et al. [13] on global mangroves. Above this
breakpoint, reduction in NDVI increased linearly with increasing wind speed which likely
resulted from increasing major damages to vegetation, including branch breaking, tree
uprooting, and bole snapping. A second breakpoint, with a sharp increase in damages for
winds > 75 m/s suggested that extremely intense TCs can cause extreme damages to forest
vegetation. While reconstructed maximum sustained wind speed was a good predictor of
damages and recovery time, we observed large variations in the resistance and recovery
of vegetation for a given wind speed. We hypothesize that these variations can be further
explored by integrating other spatial factors such as topographical exposure, forest types,
TC regime, and landscape structure as well as more detailed surface wind structures that
are not represented in analytical models. Such enhanced wind structures may come from
the recent advances on very intense wind retrievals from satellite imagery [42]. Whether
the frequency of intense TCs will increase compared to weaker cyclones under climate
change needs further investigations, especially in the South Pacific [10] and will require
further advances in climate cyclone modelling in the future scenario [43]. Finally, we found
that >20% of the studied forest pixels did not fully recover their pre–cyclone NDVI values
after one year. Further studies are needed to assess whether or not these areas can recover
to a forest state in a longer time period or whether they may shift toward non–forest states.
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The following abbreviations are used in this manuscript:

ESA European Space Agency
IBTrACS International Best Track Archive for Climate Stewardship
NASA National Aeronautics and Space Administration
NDVI Normalized Difference Vegetation Index
NIR Near Infrared Region
MOD13Q1 MODIS vegetation index product (NDVI and EVI)
RMW Radius of Maximum Wind
SSHWS Saffir–Simpson Hurricane Wind Scale
TC Tropical Cyclone
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