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Araújo de Queiroz Palácio and José Bandeira Brasil
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The agricultural sector uses the largest share of freshwater, accounting for over 70% of
the global freshwater withdrawals, and this proportion can be up to 90% in arid and semi-
arid regions [1]. Irrigation uses most of the agricultural water withdrawal and contributes
greatly to global food security. Irrigation water diverted or pumped from water sources
(rivers, reservoirs, and groundwater aquifers, etc.) is conveyed to croplands through ar-
tificial canals or pipe systems, which has a great impact on the hydrological processes in
an irrigation district. Consequently, agricultural hydrological processes on the cropland
and irrigation district scales are complicated due to the integrated impacts of natural and
anthropogenic factors. Salt transport and balance associated with hydrological processes
are also key factors influencing crop production on irrigated land. Modeling water flow
and salt transport in croplands [2] and irrigation districts [3] has been a major topic in agri-
cultural hydrology, which provides the basis for the spatiotemporal allocation of irrigation
water for greater water use efficiency, crop yields, and/or benefits [4].

In recent decades, with the increasing water requirements for domestic and industrial
uses, the water available for agriculture and natural ecosystems has been decreasing in most
parts of the world, which has been further intensified by climate change. A systemic study
on hydrology and water resources in agriculture and ecology will provide a basis for food
security and ecosystem security. The main research fields cover water–heat–salt–nutrients
transport in the soil–plant–atmosphere continuum (SAPC), agro-hydrological modeling,
evapotranspiration modeling in croplands and irrigation district scales, eco-hydrology,
water–salt balance and non-point source contamination modeling in an irrigation district,
the high-efficient use of water resources for agriculture, interactions among water, agricul-
ture, and natural ecosystems, and remote sensing applications in agricultural and ecological
hydrology.

This Editorial refers to the topic “Hydrology and Water Resources in Agriculture
and Ecology”. This topic highlights new opportunities and challenges for hydrological
modeling and the high-efficient use of water resources in agriculture and ecology in a
changing environment.

Seventy manuscripts were submitted for the topic, and all of them were subject to the
rigorous review process of participating journals. After the review and revision processes,
28 papers were finally accepted for publication and inclusion in this topic, including 10 in
Hydrology, 6 in Remote Sensing, 4 in Sustainability, and 8 in Water.

As shown in Table 1, the contributions are diverse in the research fields, types of
study areas, and geographical regions. The research fields can be classified into crop water
requirement (four contributions), drought assessment (three), ecohydrology and environ-
mental hydrology (three), river hydrology (three), forest hydrology (two), groundwater

Remote Sens. 2024, 16, 238. https://doi.org/10.3390/rs16020238 https://www.mdpi.com/journal/remotesensing
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(two), soil water (two), channel leakage (one), cropland hydrology (one), drainage (one),
hydrodynamics (one), hydropedology (one), nutrient loss (one), soil physics (one), water
balance (one), and water footprint (one).

Table 1. Analysis of the published papers on this topic.

No. Journal Research Field Focus
Type of

Study Area
County
/Region

1 Water River hydrology Impacts of climate change and
human activities on streamflow River Basin China

2 Water Groundwater Recharge channels for sowing
water in mountain aquifers Mountain range Spain

3 Remote Sensing Drainage
Effect of controlled tile drainage
on growth and yield of spring

barley

Experimental
fields Czech

4 Remote Sensing Environmental
hydrology

Relationship between
hydrological connectivity and

water quality
River Basin China

5 Sustainability Ecohydrology
Relationship of zooplankton

population growth and
environmental factors

Reservoir China

6 Hydrology Hydropedology
Impact of hydropedological

characteristics on streamflow in
mountain catchments

Mountain
catchments South Africa

7 Water Cropland
hydrology

Effects of straw mulching on
runoff and soil loss in slope

farmland

Experimentalsoil
tank China

8 Remote Sensing River hydrology

Impact of land use/cover
changes on water balance

components in plateau
watersheds

River Basin Pakistan

9 Remote Sensing Drought
assessment

Impact of drought on summer
maize yield Region China

10 Hydrology Crop water
requirement

Water footprint assessment for
irrigated paddy cultivation Irrigation Scheme Sri Lanka

11 Hydrology River hydrology Trends and variabilities in
rainfall and streamflow River Basin Sri Lanka

12 Remote Sensing Drought
assessment

Remote sensing-based drought
monitoring River Basin Kingdom of

Saudi Arabia

13 Sustainability Hydrodynamics Selection of operation mode for
irrigation canal headwork

River and
canal section China

14 Remote Sensing Ecohydrology
Relationship between

hydrological processes and
ecological evolution

River Basin China

15 Water Crop water
requirement

Estimation methods for daily
crop coefficient of winter wheat Lysimeter China

16 Hydrology Soil physics
Interaction of

soil–water–atmosphere on soil
crack characteristics

Experimental plot Brazil

17 Water Drought
assessment

Drought assessment for spring
maize Region China

18 Hydrology Forest
hydrology

Rainfall partitioning in Amazon
Forest Experimental plot Brazil

2
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Table 1. Cont.

No. Journal Research Field Focus
Type of

Study Area
County
/Region

19 Sustainability Nutrient
loss

Potential runoff loss risk of
nutrients in surface water of

saline–alkali paddy
Mesocosm China

20 Hydrology Crop water
requirement

Sensitivity of reference
evapotranspiration to

meteorological variables
Island USA

21 Water Soil water Water and salt transport in
freeze–thaw soil Lysimeter China

22 Hydrology Forest
hydrology

Hydrological properties of litter
in different vegetation types Forest Brazil

23 Hydrology Soil water Photovoltaic-powered soil
moisture sensor Cropland Brazil

24 Hydrology Water balance
Large-area water budget

analysis and drought
monitoring

Countries USA & Horn of
Africa

25 Hydrology Groundwater Evolution of tunneling
hydro-technology Globe Globe

26 Sustainability Channel leakage Model for estimating channel
leakage Channel reach China

27 Water Water footprint Water footprint of animal
breeding industry Country China

28 Water Reference evapo-
transpiration

Reference evapotranspiration
estimation method Lysimeter USA

The study areas range from experiment sites (lyismeter and experimental plot),
river/channel reach, administrative/geographic region, and countries to groups of coun-
tries or the globe that cover the globe (one contribution), one country group (one), and nine
countries (twenty-six), including Brazil (four), China (thirteen), Czech (one), the Kingdom
of Saudi Arabia (one), Pakistan (one), South Africa (one), Spain (one), Sri Lanka (two), and
the USA (two).

Moreover, the methods used in these 28 contributions cover laboratory/field exper-
iment analysis, statistical and regression analysis, and conceptual and physical-based
hydrological models used in the cropland, regional, watershed, and country scales. There
are 27 research papers and 1 review paper (contribution 25) among the 28 published papers
on this topic.

Among the 28 contributions, contributions 1 and 11 fall within the scope of river
hydrology. Contribution 1 analyzed the spatiotemporal variations of air temperature,
precipitation, and potential evapotranspiration in the upper Yongding River Basin in North
China based on historical data and assessed the impacts of climate change and human
activities on streamflow using the double mass curve method and the Budyko framework
for actual evapotranspiration estimation. The results show that human activities contribute
more to streamflow changes than climate change in the two studied sub-watersheds.
Contribution 11 analyzed the trend of change points in rainfall and streamflow in the
Nilwala River Basin of Sri Lanka and explored their linkages. The results are helpful for
water resources and hydropower planning.

Contributions 2 and 25 fall within the scope of groundwater. Contribution 2 presented
an example of nature-based solutions for water scarcity problems in the Sierra Nevada
Range of Spain, a system that uses recharge channels for sowing water in mountain aquifers
that is harvested downstream. The authors postulated that this system can be an effective

3
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adaptation measure to climate change in similar regions. Contribution 25 reviewed the
history of tunneling hydro-technology for groundwater development across the globe over
the past several thousand years and discussed emerging trends and challenges of tunneling
hydro-technologies in the future.

Contribution 3 evaluated the effect of controlled tile drainage (CTD) on the growth
and yield of spring barley at a study site in Central Bohemia, Czech Republic, in 2021 based
on vegetation indices calculated from unmanned aerial vehicle (UAV) imagery. The results
indicate that CTD can improve spring barley development and grain yield due to higher
soil moisture than free tile drainage practice.

Contribution 4 assessed the hydrological connectivity and its influence on water
quality in the Bosten Lake Basin of Northwest China. The results indicate that improved
hydrological connectivity is beneficial to improving water quality.

Contributions 5 and 14 fall within the scope of ecohydrology. Contribution 5 analyzed
the relationship between zooplankton population growth and water environmental factors
based on monitoring data in the Shanxi Reservoir in Southeast China. The results show
that zooplankton can be taken as an integrated indicator for the assessment of the water
environment and ecosystem health. Using an improved SWAT model and comprehensive
ecosystem quality (EQ) assessment model, Contribution 14 analyzed the distribution and
evolutionary characteristics of hydrological process factors and EQ in the Ulagai River
Basin of Northeast China and identified their synergy relationships.

Contribution 6 analyzed the hydropedological characteristics of three mountain catch-
ments in South Africa and their influence on the flow dynamics of the soils. The results
indicate that the drying and wetting cycles of a wetland system have a great influence on
the baseflow connectivity and the overland flow during wetter periods.

Contribution 7 explored the influences of rainfall pattern, soil structure, and straw
mulching on near-surface hydrology and soil erosion in a slope farmland based on a
simulated rainfall experiment. The results highlight the roles of rainfall pattern and straw
mulching on runoff and soil erosion in slope farmland.

Contribution 8 simulated river flows in the Potohar Plateau of Pakistan using the
SWAT model under classified historical and projected future land use/cover maps. Water
balance analyses indicate that the land use/cover changes tend to decrease the surface
runoff and water yield due to increases in percolation, lateral flow, sub-surface flow, and
evapotranspiration.

Contributions 9, 12, and 17 fall within the scope of drought assessment. Contribution 9
obtained the loss risk curve cluster of drought frequency–drought resistance capacity–yield
loss rate for summer maize in Benbu of China, which is effective in the quantitative assess-
ment of drought disasters from a physical mechanism perspective. Contribution 12 assessed
the drought regime in the Al-Lith Watershed of the Kingdom of Saudi Arabia with Landsat-
derived indices and standardized precipitation evapotranspiration index (SPEI). The results
indicate that the vegetation health index (VHI) is more appropriate for drought assessment
in data-scarce regions. Contribution 17 developed a standardized crop water deficit index
based on SPEI and the crop water deficit index (CWDI) and assessed drought for spring
maize in the Songnen Plain of Northeast China.

Contributions 10, 15, 20, and 28 fall within the scope of crop water requirements.
Contribution 10 assessed the water footprint for irrigated paddy cultivation in the Walawe
Irrigation Scheme, Sri Lanka. The results highlight the necessity of improving irrigation
practice to reduce excess water usage in the study region. Contribution 15 compared
three methods to estimate the stage-wise crop coefficient for winter wheat in East China
based on lysimeter measurement, and appropriate method for each growth stage were
suggested. Contribution 20 analyzed the sensitivity of meteorological variables in the
Penman–Monteith reference evapotranspiration equation for Puerto Rico. Contribution
28 assessed different machine learning (ML) models for reference evapotranspiration
estimation in highly advective environments, and the genetic algorithm-optimized extreme
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learning machine performed better than other models and was recommended for reference
evapotranspiration estimation at different time scales.

Contribution 13 simulated water flow and sediment transport in rivers and canal
reaches under two operation conditions for irrigation canal headwork through hydrody-
namic and sediment modeling. Based on the simulation results, an appropriate operation
condition was recommended.

Contribution 16 assessed the soil characteristics and dynamics governing the crack
formation and healing processes and quantified the soil moisture limits on soil swelling
and shrinking in a vertic soil in a semiarid region of Brazil under natural conditions.

Contributions 18 and 22 fall within the scope of forest hydrology. Contribution 18
analyzed the dynamics and seasonality of litter stocks, water retention capacity, effective
water retention, and water content of litter in Amazonian forests. The results are helpful for
understanding the impact of sustainable forest management on the hydrological dynamics
of litter. Contribution 22 studied the hydrological properties of litter in vegetation covers of
Eucalyptus sp. plantations, agroforestry, and restoration forests, and highlighted the role of
litter composition and species-specific characteristics in the hydrological functions of litter.

Contribution 19 explored the effect of nitrogen-fertilizer types on the potential risks
of nitrogen and phosphorus losses through runoff. Carbon-based slow-release fertilizer is
recommended for the study region to control nitrogen and phosphorus losses.

Contributions 21 and 23 fall within the scope of soil water. Contribution 20 analyzed
the effect of soil texture on soil water flow and salt transport during the freezing-thawing
period with a shallow groundwater table based on a lysimeter experiment. Contribution 23
developed an automated soil water tension sensor for soil moisture measurement, which
can be used in real-time monitoring of soil moisture and is essential for precision irrigation.

Contribution 24 updated the agro-hydrologic VegET model by considering snow accu-
mulation and melt processes and analyzed water budget in the conterminous United States
and the Greater Horn of Africa. The model simulations can be used in drought monitoring
and evaluating the impact of changing environments on agriculture and water resources.

Contribution 26 developed a multiple regression model for estimating the channel
leakage process by considering the dynamic change in the main driving factors, which
provides the basis for irrigation water management and control of the channel flow.

Contribution 27 assessed the water footprint of the animal breeding industry and
driving forces at the provincial level in China and identified effective strategies for water
footprint reduction.

Several research gaps can be detected from the contributions to this topic.
First, most studies focused on only one or several agro-hydrological processes, while

few studies integrated all major hydrological processes into cropland or irrigation district
scales that are influenced by both natural and anthropogenic factors. Integrated agro-
hydrological models for the cropland and irrigation districts should be further studied.

Second, conflict between water uses for natural ecosystems and humans is unavoidable
in areas short of water resources, especially in arid and semiarid regions. How to balance
water uses in different sectors and allocate limited water resources optimally are key
challenges in water resource management.

Third, nutrient losses associated with water flow from cropland not only waste a large
amount of fertilizer and lower the nutrient use efficiency, but also result in pollution in
water bodies and groundwater aquifers, together with contaminants from other sources.
Controlling non-point source pollution from agriculture requires models for simultaneous
water flow and nutrients/contaminants transport.

Fourth, soil salinization is a major threat to crop growth and food security in salinization-
prone regions. How to regulate soil water and salt regimes in cropland/irrigation districts
through appropriate irrigation and drainage practices will provide suitable soil conditions
for crop growth and alleviate the negative influence of salt accumulation in croplands.

5
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Fifth, the combination of data-driven algorithms and physical-based models is a
new trend in hydrology and other disciplines. However, no paper used this method on
this topic.

Finally, remote sensing technology has provided numerous data for agricultural
hydrology research, especially in irrigation districts or on regional scales. Several papers on
this topic used remote sensing data in drought assessment, but the application of remote
sensing in other fields is less frequently used in this topic. More studies are expected to use
remote sensing data in agro-hydrological modeling.
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Abstract: Streamflow in semiarid areas, especially in North China, was rapidly decreasing, which
made it important to analyze the characteristics and influencing factors of streamflow. Using the
hydro-meteorological data series of 1961–2017 in the upper Yongding River Basin (UYRB) (including
the Yang River Basin (YRB) and Sanggan River Basin (SRB)), spatio-temporal variation characteristics
of air temperature, precipitation, and potential evapotranspiration (E0) were analyzed. The results
showed that precipitation has no significant trend; the temperature showed a significant increase
of 0.1–0.5 ◦C per decade; E0 showed a significant decrease of approximately −2 mm/10yr (in
18 stations); the estimated rates of streamflow change were −7 and −8 mm/10yr for SRB and YRB.
As for spatial distribution, the YRB presented a higher E0 value than the SRB; the mountain areas had
more precipitation than the plain areas. The change points of streamflow occurred in 1982 and 2003.
Both the Budyko and the DMC methods were used to evaluate the impacts of climate change and
human activities on the mean annual streamflow. In variation stage I (1983~2003), impacts of human
activities account for 90.6% and 62.7% of the mean annual streamflow changes in YRB and SRB,
respectively. In variation stage II (2004~2017), the percentages were 99.5% and 93.5%, respectively. It
is also noted that the first change point in streamflow was indeed at the beginning of China’s land
reform, when the farmers could manage their reallocated lands and, therefore, there was an increase
in agricultural water consumption. The second change point coincided with “Capital Water Resources
Planning”, including water conservation projects and irrigation district construction programs. In
general, human activities were mainly responsible for the significant decline in the annual streamflow
of UYRB. This paper will provide valuable results for water resources planning and give guidance on
the construction of water conservation function areas and ecological environment support areas in
the capital.

Keywords: streamflow; climate change; human activities; Yongding River Basin; Budyko

1. Introduction

Streamflow, a key link in the water cycle, is of great value to anthropogenic activities
and ecosystems [1]. Additionally, it can directly meet social-economic demands as well
as the needs of river ecosystems. Nevertheless, such water resources are facing various
challenges due to overexploitation and climate change [2–4], leading to diverse variation
patterns globally [5]. These phenomena are especially serious in semi-arid areas, and are
becoming a pressing topic to be addressed [6]. Streamflow in semi-arid areas has higher
spatial and temporal variability due to the complexity of rainfall [7]. Lots of researchers
have found that the streamflow in semi-arid areas is more vulnerable to climate change and
human activities [8,9]. Therefore, more attention needs to be focused on the semi-arid areas,
so as to develop the regional economy and eco-environment in a sustainable way. This
paper mainly focuses on the impacts of climate change and human activities on streamflow
in the upper Yongding River Basin (UYRB), a semi-arid basin in North China.

Water 2022, 14, 2798. https://doi.org/10.3390/w14182798 https://www.mdpi.com/journal/water
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Various methods have been applied to quantify the impacts of climate change and
human activities on streamflow, which produce lots of valuable results [10,11]. Commonly
used methods include hydrological modelling [8,12], conceptual approaches [13,14], an-
alytical approaches [15], and methods based on hydrological observed data [16,17]. All
methods mentioned above have advantages and disadvantages summarized by Dey and
Mishra [10]. The method used in this paper is based on the Budyko hypothesis (called the
Budyko method hereafter), a conceptual approach that describes the relationship between
water evaporated and energy available at a basin scale. Additionally, several functions
have been derived based on this hypothesis, from generic formulae to basin-specific ones.
The Budyko method has a relatively simple structure, and fewer data is needed compared
with the hydrological model, which has been applied to separate the influences of climate
change from human activities at home and abroad in recent years [18,19]. One of the most
popular formulae is Fu’s equation with one parameter, which is obtained by dimensional
analysis and differential derivation [20]. This research will adopt Fu’s equation to analyze
the drivers of streamflow change in the UYRB.

The Yongding River, one tributary of the Haihe River, is the mother river of Beijing, and
plays a key role in the development of Beijing City [21]. Most of the catchment, however, is
located in the UYRB controlled by Guanting Reservoir. The water scarcity in this area has
become increasingly severe [22], and several relevant studies have been conducted in this
area, which provide certain scientific guidance for improving water resource management.
The study conducted by Ren et al. [23] reveals that the increasing amount of water taken
from the river course is the direct cause leading to the observed streamflow decrease
in the northern part of China. Yang et al. [24] inferred that the key factor leading to
the streamflow decreasing in this area in the 1980s was agricultural water consumption.
Xia et al. [25] applied a modelling method to the UYRB and found that climate change and
human activities were estimated to account for 10.5–12.6% and 87.4–89.5% of the reduction
in annual runoff, respectively, indicating that human activities are the main driving factors
for the reduction in runoff. The results from Zeng et al. [26] indicate that the water resources
in the UYRB will decrease in the early 21st century and increase in the middle of the 21st
century, which will further intensify the water resources crisis. Mo et al. [27] conducted
a similar study (data 1957–2010) through an elastic coefficient method, and the results
showed that the streamflow change rate caused by climate change is 28% and 72% for
human activities. However, Zhang’s results [28] (data 1957–2010) showed that climate
change is the dominant influence factor with a contribution of 65.4%.

To sum up, the UYRB is experiencing a severe water shortage, which makes it a press-
ing topic to clarify the mechanism of the water cycle. In addition, the research mentioned
above mainly focused on the period before 2012, and some views are contradictory. To
provide guidance in the construction of water conservation function areas and in ecological
environment support areas in the capital (two areas in the capital), it is essential to conduct
further studies on the UYRB to clarify the hydrological mechanisms. The objectives of this
paper, therefore, are (1) to assess the spatial and temporal variation of hydro-meteorological
variables and (2) to quantify the impacts of climate change and human activities on stream-
flow in the UYRB.

2. Materials and Methods

2.1. Study Area

The UYRB, belonging to Haihe River Basin, covers part of Hebei Province, Shanxi
province, and the inner Mongolia Autonomous Region, with a total area of ≈ 43,000 km2

and a population of ≈ 9.13 million (2017). The study area lies at an elevation of 479–2852 m
above the mean sea level, stretching between longitudes 111◦58′–116◦22′ E and latitudes
38◦50′–41◦16′ N (Figure 1). Continental monsoon climate prevails in this area with cold dry
winters and hot rainy summers. The annual average precipitation in the basin is 389 mm
(1961–2017), approximately 75% falls in rainy months of June–September. Average annual
temperature in the study area is 6.8 ◦C (1961–2017). Main land use/land cover types (2015)
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are farmland (≈42%), grassland (≈29%), and forest (≈10%), and the forests consist mainly
of deciduous broad-leaved forests. Maize is the dominant cultivated crop in the single-crop
rotation system in the study area. Rainfall is often unable to meet crop water demand
so that irrigated lands are increasingly reliant on groundwater pumping and river water.
Hence, as the largest water user, agricultural water consumption has a significant impact
on the streamflow. There are two sub-basins in the UYRB, named Yang River Basin (YRB)
controlled by Xiangshuibu station and Sanggan River Basin (SRB) controlled by Shixiali
station (See Table 1 in detail). This paper will focus on this two sub-basins.

Figure 1. Location of the UYRB showing meteorological and hydrological stations (a) and background
topography (b,c).
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Table 1. Summary of main features of the two sub-basins in the UYRB.

Basin
Hydrological

Station
River Basin
Area (km2)

Average
Annual

Precipitation
(mm)

Average
Annual

Runoff (mm)
CV

Yang River Xiangshuibu 14600 389 27 0.59
Sanggan
River Shixiali 23300 433 24 0.59

CV = coefficient of variation for annual runoff.

2.2. Data

Data of 23 meteorological stations from China Meteorological Administration
(Figure 1) were selected (among them, 11 within the UYRB and 12 surround it), during
1961–2017 for this study, including mean daily temperature, precipitation, mean relative
humidity, mean wind speed, and sunshine duration. Then Penman–Monteith equation
was applied to obtain potential evapotranspiration using meteorological data [29]. Krig-
ing interpolation was applied to obtain the spatial distribution of hydro-meteorological
variables and the average annual values of the study area were calculated by processing
the average grid values. Daily streamflow data were collected for the same period from
two hydrological gauge stations situated at the outlets of the YRB and SRB, then, were used
to calculate the annual streamflow. The DEM data with a resolution of 30m from ASTER
GDEM was used.

2.3. Methods
2.3.1. Trend Detection

The nonparametric Mann–Kendall (M–K) test was applied to detect trends in the
hydro-climatic time series [30,31]. For the given time series X(x1, x2, ..., xn), the statistic S is
defined as:

S =
n

∑
i=2

i−1

∑
j=1

sgn
(

xi − xj
)
where sgn

(
xj − xi

)
=

⎧⎨⎩
1 xj > xi
0 xj = xi
−1 xj < xi

(1)

Its variance is as follows:

var(S) =
n(n − 1)(2n + 5)

18
(2)

The standardized statistic is:

Z =

⎧⎪⎪⎨⎪⎪⎩
S−1√
var(S)

S > 0

0 S = 0
S−1√
var(S)

S < 0
(3)

The null hypothesis of no trend is rejected if |Z| > 1.96 at a 5% significance level.
If the Z value is positive then an upward trend exists, otherwise this indicates a
downward trend.

2.3.2. Change Point Detection

The double mass curve (DMC) is a simple statistical method to detect the change
point of a hydro-meteorological data series [32]. The procedure of plotting the graph with
two variable series is as follows. Given the observed variable series Xi and Yj, the cumula-
tive amount is calculated:

X′
i =

i

∑
j=1

Xj (4)
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Y
′
i =

i

∑
j=1

Yj (5)

where Xi represents precipitation, and Yj represents streamflow. Then, plot the curve with
Xi and Yj series on the graph. Finally, the change point can be determined by the slope
change in the curve. In order to accurately determine the abrupt change time, this paper
also takes into account the field survey data and existing research, making the abrupt
change points closer to reality. Therefore, the study period can be divided into baseline and
changed period.

2.3.3. Budyko Method

The Budyko assumption describes the water-energy coupling balance in a compara-
tively long-term scale [33], to put it simply, the water evaporated in a watershed can be
expressed as the function of the climate dryness index. The calculation procedures of the
Budyko method are as follows:

The basin-scale water balance can be shown as follows:

Q = P − Ea − ΔS (6)

where Q is the streamflow depth (mm), P is precipitation (mm), Ea is the actual evapotran-
spiration (mm), and ΔS is the water storage changes in the basin (mm). According to the
Budyko hypothesis, ΔS is assumed to be zero over a comparatively long period. The actual
evapotranspiration is computed by Fu’s equation [20]:

Ea = PF(φ) (7)

F(ϕ) = 1+ϕ−1 + φα)1/α (8)

where ϕ = E0/P is the climate dryness index, E0 is potential evapotranspiration calculated
by the Penman–Monteith equation following the procedure outlined in FAO-56 [20]. α is a
model parameter fitted by long-term observed data. As one form of the Budyko theoretical
framework. Fu’s equation has been widely used to model long-term basin-scale water
balance [18,34]. A detailed description of Fu’s equation is available in [35].

The change of average annual streamflow between baseline and changed period is
calculated as:

ΔQ = Q2 − Q1 (9)

where ΔQ represents the change in average annual streamflow; Q1 and Q2 are average
annual streamflow during the baseline period and changed period, respectively. The
baseline period has no significant human activities, while the changed period is associated
with significant human activities.

The total change in the observed mean annual streamflow ΔRtotal can be decomposed
into climate variability ΔRclima and human activities ΔRhuman,

ΔRtotal= ΔRclima + ΔRhuman (10)

Precipitation and E0 directly determine streamflow in the descriptions of Fu’s equa-
tion. Therefore, the impact of climate change on streamflow can be calculated by the
following formula:

ΔRclimate =
∂R
∂P

ΔP +
∂R

∂ET0
ΔE0 (11)

where ΔP and ΔE0 are the changes in precipitation and E0, respectively. Addditionally,
the partial differential expression in Equation (11) can be derived by the combination of
Equations (6)–(8), the results are expressed as:

∂R
∂P

= Pα−1(Eα
0 + Pα)

1
α −1 (12)
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∂R
∂ET0

= Eα−1
0 (Eα

0 + Pα)
1
α −1 − 1 (13)

2.3.4. Determination of the Parameter α in Fu’s Equation

In Budyko’s original hypothesis, the Budyko curve was regarded as “universal” for
comparatively large basins on a long-term scale, which cannot be applied to small water-
sheds or watersheds with intensive impacts from human activities. Then, the Fu’s equation,
one of the most popular Budyko equations, with one parameter, was proposed: each
basin has a distinct relationship between precipitation (P), potential evaporation (E0), and
actual evapotranspiration (Ea) on a comparatively long-term scale. The parameter α of
Fu’s equation represents the integrated effects of catchment attributes (such as climate,
vegetation cover, soil properties, and catchment topography) and human activities [35,36].
That is to say, the curve shape parameter α controls how much of the available water will be
evaporated given the available energy. The relationship indicates that two factors limit the
evapotranspiration: the water supply, when ϕ > 1, and the energy supply, when ϕ < 1. α
can be estimated by minimizing the difference between water-balance-based Ea (P−Q) and
simulated Ea with Fu’s equation. The parameter α obtained through this method is also
called the “basin-specific α” [34]. Consequently, the “basin-specific” value α will provide a
good basis for applying Fu’s equation.

In this study, the parameter α was fitted through the annual observation data series
(Figure 2), and the parameter α is 2.79 and 3.35 for YRB and SRB, respectively. A larger α
indicates less water yield capacity for a basin given sufficient energy. Obviously, the water
yield capacity of YRB is larger than SRB, in other words, there will be more streamflow in
YRB given the same amount of precipitation. For both sub-basins, all annual dryness indices
(ϕ = ET0/P) are greater than one, that is to say, the limiting factor to evapotranspiration is
water supply.

Figure 2. Budyko curve showing the relation between ε (ratio of Ea to P) as a function of ϕ (E0/P)
in the YRB and SRB. The bold black lines serve as an envelope (energy limit and water limit) to the
Budyko curve family. The curve corresponds to α = 2.79 and α = 3.35 for YRB and SRB, respectively.

2.3.5. Assessing the Impacts of Climate Change and Human Activities on Streamflow by
the DMC Method

Previous studies have demonstrated that the predominant climate factor to control the
streamflow is precipitation in a closed watershed. Therefore, the DMC method, involving
two variable series, can determine the impacts of climate change and human activities on
streamflow [37]. The calculation procedure of the DMC method is as follows.

ΣR = kΣP + b (14)
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R and P are annual streamflow and precipitation (mm), respectively, in the baseline
period; k is slope and b is intercept.

δhi = R2m − R2c (15)

δci = R2c − R1m (16)

Qg = (δhi or δci)/Rd (17)

where δhi and δci are streamflow depth variation caused by human activities and climate
change, respectively (mm), Qg represents the contribution rate (%) of human activities and
climate change to streamflow reduction. R2m represents measured values in the variation
period. R2c represents calculated values in the variation period. R1m represents measured
values in the baseline period.

3. Results

3.1. Spatio-Temporal Variation Characteristics of Hydro-Meteorological Factors

The average annual precipitation (for each station) for the UYRB is 319–554 mm and
has no significant trend during 1961–2017, as shown in Figure 3a. The Z value of the M–K
test shows positive values at 14 stations and negative values at 9 stations, which are not
significant at the 5% level. Combining Figures 1b and 3a, we found that precipitation and
altitude have roughly similar distribution patterns, which means the mountain area has
more precipitation and the plain area has less. Meanwhile, the temperature at 22 stations
increased by 0.1–0.5 ◦C per decade (obtained by linear regression, not shown in this study),
which is related to the tendency of global warming.

The annual average E0 values (for each station during 1961–2017) ranged from 702
to 1112 mm/yr and have a negative trend at 18 stations, which decreased approximately
−2 mm/10yr over the study period (Figure 3b). This phenomenon is consistent with the
global evaporation paradox [38,39], which may be caused by several climatic variables. The
measured data witnessed a significant reduction in wind speed, which may have caused the
decline in the E0 value. The data on wind are not shown in this work. From the perspective
of spatial distribution, the northern part of the UYRB presents a higher E0 value, while the
southern part is relatively low.

In this study, characteristics of annual streamflow at two hydrological stations (Shix-
iali and Xiangshuibu) are described during the period 1961–2017 (Figure 4). The linear
regression analysis shows a significant decline in annual streamflow for YRB and SRB
(not shown in this work). The estimated rates of change are −7 and −8 mm/10yr for
Shixiali and Xiangshuibu, respectively, from 1961 to 2017. From the 1960s to the 1980s,
streamflow declined by 20.01% and 22.28% for Xiangshuibu and Shixiali, respectively,
and from the 1980s to the 2000s, the percentage was 68.23% and 67.77%, respectively. As
Figure 4 shows, the streamflow of both sub-basins decreased rapidly during 1961–2017,
which can be obviously divided into three stages. It is worth noting that the first decline
appeared approximately in 1985, and the second decline appeared approximately in 2003.
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Figure 3. Trend analysis of precipitation (a) and potential evapotranspiration (b) in the UYRB. The
inset shows the Z values of Mann–Kendall test.
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Figure 4. Temporal variations of annual streamflow (red line) and precipitation (blue column) for:
(a) Xiangshuibu and (b) Shixiali.

3.2. Abrupt Changes in Streamflow

As just described, the study period can be divided into three stages. In order to
determine the change points more precisely, the method of DMC was applied to examine
the change points in annual streamflow at two sub-basins (Figure 5). According to the
slope change in the curve, the first abrupt changes of these two sub-basins most likely oc-
curred in the early 1980s; this pattern can be largely attributed to the increased agricultural
water consumption [40]. The second abrupt change in the annual streamflow occurred
approximately in 2003, where the curve slope changes significantly. This change predomi-
nantly resulted from the “Capital water resources planning”, which includes large-scale soil
and water conservation practices and irrigation district construction. In general, the first
change point occurred approximately in 1980. To further prove this claim, we organized a
two-week field survey in the UYRB, obtaining the details of water consumption during
1961–2017. We found that it was in 1982 that the household contract responsibility system
was implemented in the study area, and the ‘Capital Water Resources Planning’ was mainly
constructed in 2003. Such findings were consistent with the analysis above, therefore, the
study period for both sub-basins can be divided into three periods: the baseline period
(1961–1982), the variation stage I (1983–2003), and the variation stage II (2004–2017). Pre-
vious studies often divided the period into two stages [25,40,41] with one change point.
However, we obtained two change points as mentioned above, and the first change point
in this paper is roughly consistent with previous studies. Division of study period may be
a little subjectivity in our study, nevertheless, the results conform to the region’s reality.

Figure 5. Double mass curve of the annual precipitation and runoff for: (a) Yanghe River Basin and
(b) Sanggan River Basin during the period 1961–2017.
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3.3. Effects of Climate Change and Human Activities on Streamflow

The streamflow at the two sub-basins decreased rapidly from 1961–2017, when the
streamflow of YRB decreased by 36% (stage I) and 87% (stage II), respectively, compared
with the baseline period. Additionally, the percentages for SRB are 30% (stage I) and
91% (stage II). Human activities account for most of this reduction in the mean annual
streamflow for both sub-basins (Table 2). In the variation stage I, human activities contribute
90.6% and 62.7% of the mean annual streamflow change in the YRB and SRB, respectively.
In the variation stage II, the percentages were 99.5% and 93.5%. This means that the impact
of human activities on streamflow increased during the whole period of the UYRB. In
general, the contribution rate of human activities to the streamflow of the Yang River is
higher than that of the Sanggan River. The impact of climate change on streamflow in the
study area is relatively small, which indicates intensive human activities, e.g., agricultural
water consumption.

Table 2. Effects of climate change and human activities on streamflow in the UYRB with the
Budyko method.

Watershed Period
P

(mm/Year)
E0

(mm/Year)
R

(mm/Year)
ΔRc (mm) ΔRh (mm) ΔRc (%) ΔRh (%)

Yang River
Basin

1961–1982 398 1044 42
1983–2003 380 1006 27 −1 −14 9.4 90.6
2004–2017 389 1024 5 −0 −36 0.5 99.5

Sanggan
River Basin

1961–1982 447 940 36
1983–2003 416 928 26 −4 −7 37.3 62.7
2004–2017 438 970 3 −2 −31 6.5 93.5

4. Discussion

4.1. Impacts of Climate Change and Human Activities on Streamflow by the DMC Method

To further clarify the causes of streamflow variation, the DMC method was applied to
show the correlation between cumulative annual streamflow and precipitation (Figure 5).
In general, the predominant climate variable impacting the streamflow is precipitation,
thus, the DMC was roughly a straight line given that streamflow was mainly influenced by
climate [42]. As mentioned above, there are slope changes in the DMCs, suggesting that the
relationship between streamflow and precipitation was altered by human activities. The
results estimated by the DMC method are shown in Table 3, which are roughly consistent
with the results of the Budyko method, except for a slight difference.

Table 3. Climate change and human activities on streamflow in the UYRB by the the DMC method.

Watershed Period
P

(mm/Year)
R2m (mm) R2c (mm) ΔRc (mm) ΔRc (%) ΔRh (mm) ΔRh (%)

Yang River
Basin

1961–1982 398 42 40
1983–2003 380 27 38 −3 21.4 −12 78.6
2004–2017 389 5 40 −2 5.9 −34 94.1

Sanggan
River Basin

1961–1982 447 36 36
1983–2003 416 26 34 −3 24.9 −8 75.1
2004–2017 438 3 36 −1 1.8 −32 98.2

R2m and R2c represent measured values and calculated values in changed period, respectively. ΔRh and ΔRc
represent runoff depth variation caused by human activities and climate change, respectively. ΔRh and ΔRc
represent the contribution rate (%) of human activities and climate change to runoff reduction, respectively.

By comparing the results of the two methods, it is obvious that the major climate
variable impacting the streamflow is precipitation. The minor differences between the
two methods cannot be clarified because the Budyko method describes a nonlinear re-
lationship between the streamflow and climate variables. It is hard to know how many
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variables are affecting the streamflow. It is also hard to determine the main variable. In any
case, the results obtained with the Budyko method are convincing, with a combination of
quantitative and qualitative descriptions.

The results in this paper are roughly consistent with Mo et al. [27] (data from
1957–2010), who found that the abrupt change point of the streamflow series occurred in
1983 and human activities were responsible for 72% of the total reduction in mean annual
streamflow in the UYRB. The difference may be due to the method adopted and the length
of the data series. Hou [43] also obtained a similar result, that human activities account for
80% of the streamflow change with the Budyko method. However, Zhang et al. [28] found
that climate change is the major factor influencing the streamflow in the UYRB, which is
mainly due to the data series applied (during 1957–2000).

4.2. Impacts of Human Activities on Streamflow in the UYRB

In 1978, the land reform policy was enacted in China, since then, farmers have been
progressively managing their own lands [44]. According to the field survey, it was in
1982 that the implementation of this policy in the UYRB led to a rapid increase in agricul-
tural water consumption. The rapid development of the economy also led to the rapid
increase in industrial and domestic water use, which further aggravated the reduction in
streamflow [41,43]. The “Capital water resources planning” was started in 2002, and it was
completed in 2003. The accumulated area of soil and water loss control in the study area
is 1841 km2, and the engineering measures, such as fish scale pit, horizontal ditch, and
check dam, play an important role [45]. In addition, forest and grass measures have been
extensively taken, and a large number of irrigation areas have been built [46]. According
to the field survey, flood irrigation is widely used on farmland in the YRB and SRB, up
to 600~800 m3/mu/year, which greatly reduces the streamflow. On the other hand, the
climate dryness index (ϕ = E0/P) increased from 2.627 (baseline period) to 2.648 (variation
stage I) and 2.635 (variation stage II) in the YRB, indicating a trend towards a drier climate.
The SRB is in the same situation, the value ranges from 2.105 to 2.218 and 2.188. This means
that the impact of climate change is increasing, however, covered up by the impacts of
strong human activities. Beyond question, human activities are the main driving factor of
declining streamflow in the study area, more specifically, agricultural water consumption is
the major role in the influence factors of streamflow. Beijing, the capital of China, began to
carry out systematic management of the UYRB in 2019, to restore water conservation and
ecological environmental support functions. This study can provide a valuable scientific
basis for the systematic planning of the UYRB.

5. Conclusions

This study examines the spatial distribution and temporal variation of precipitation,
potential evapotranspiration (E0), temperature, and streamflow using data series from 1961
to 2017 in the UYRB. The impacts of climate change and human activities were investigated,
and possible causes of the streamflow changes were analyzed. The conclusion of this study
can be summarized as follows:

The results from the M–K test show that a general decrease in the annual E0 (approxi-
mately −2 mm/10yr at 18 stations) and a rising temperature trend (0.1–0.5 ◦C per decade
at 22 stations) have been detected. Nevertheless, the precipitation has no significant trend.
The average annual streamflow shows a significant decrease at both YRB and SRB. From
the perspective of spatial distribution, the northern part of the UYRB presents a higher E0
value, while the southern part is relatively low. Additionally, mountain areas have more
precipitation than plain areas. Abrupt changes in streamflow occurred in 1982 and 2003,
which may be mainly caused by the implementation of land reform policy and “Capital
water resources planning”.

The impacts of climate change and human activities on streamflow were analyzed.
Additionally, consistent results were obtained from both the Budyko method and the DMC
method, in spite of a slight discrepancy between the two methods. Generally, the major
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climate variables impacting the streamflow are precipitation and human activities, where
human activities accounted for most of the streamflow changes in the YRB (>78%) and SRB
(>62%). The adoption of the household contract responsibility system in 1982 altered the
natural streamflow regimes and led to a significant decrease in streamflow. The “Capital
water resources planning” further led to a rapid reduction in streamflow circa 2003. All in
all, human activities, such as agricultural irrigation (mainly flood irrigation), soil and water
conservation measures, and the construction of water control projects seem to be the major
causes in the significant decline in the annual streamflow in the UYRB.
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Abstract: Nature-Based Solutions for Integrated Water Resources Management (NbS-IWRM) involve
natural, or nature-mimicking, processes used to improve water availability in quantity and quality
sustainably, reduce the risks of water-related disasters, enhance adaptation to climate change and
increase both biodiversity and the social-ecological system’s resilience. United Nations and the
European Commission promote their research as a cornerstone in the changeover to the Ecological
Transition. In the Sierra Nevada range (Spain) and the Andean Cordillera, there is a paradigmatic
and ancestral example of NbS-IWRM known as “careo channels” and “amunas”, respectively. They
recharge slope aquifers in mountain areas and consist of an extensive network of channels that
infiltrate the runoff water generated during the snow-thawing and rainy season into the upper parts
of the slopes. The passage of water through the aquifers in the slope is used to regulate the water
resources of the mountain areas and thus ensure the duration of water availability for the downstream
local population and generate multiple ecosystem services. This form of water management is known
as Water Sowing and Harvesting (WS&H). As shown in this work, it is a living example of a resilience
and climate change adaptation tool that can be qualified as a nature-based solution.

Keywords: careo; amuna; aquifer recharge; nature based solution; water resources management;
ecological transition

1. Introduction

Water is an irreplaceable resource for life and human development on the planet.
The 2030 Agenda for Sustainable Development, adopted by the United Nations General
Assembly, underlines the obligation to ensure the availability and sustainable management
of water for all [1]. Furthermore, sustainable water resource management is a guiding
principle within the European Union’s efforts to achieve an ecological transition towards a
circular economy. Sustainable water management depends on water availability and thus
on the rate of water renewal, which is marked by exogenous factors (e.g., the hydrological
cycle) and to whose changes it is necessary to adapt [2]. Otherwise, the unsustainable use
of water resources in economic activities may jeopardize our security and, paradoxically,
the economic development it is intended to achieve. Therefore, it is necessary to manage
water resources sustainably with solutions that involve their protection while safeguarding
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the biodiversity of dependent ecosystems and making them more resilient, thus improving
human well-being.

Nature-based solutions are “solutions to challenges facing society that are inspired
and supported by nature, are cost-effective, provide environmental, social and economic
benefits, and help build resilience” [3]. Some solutions can be found among traditional
water management practices developed by local communities in drylands (e.g., the inhab-
itants of the Alpujarras region on the slopes of the Sierra Nevada at the end of the Early
Medieval Period [4–6], or the Chavín and Wari pre-Inca cultures in Peru [7]). Such practices
aim to ensure sustainable access to water resources in times of low availability and high
demand caused by climate and social changes [8,9]. Besides, these practices boost biodi-
versity conservation [10–14] and the recognition of rural communities’ cultural identity
and role as custodians of the land [11,15,16]. However, the functioning of many of these
water management systems is threatened by globalization and or concentration in urban
areas into which people are forced to migrate from rural communities. The reallocation
of such people in urban areas may generate a significant impact on both the quantity and
quality of water resources in such zones, which are typically reflected in (1) water shortages
and (2) water quality issues because of pollution, thus aggravating both intensity and
frequency of such water shortages. Nevertheless, the impact of people’s migration on water
resources is not limited to the urban zones. In rural areas, the abandonment of practices
may result in the loss of traditional knowledge systems transmitted from generation to gen-
eration. To limit such impact at least in origin, it is essential to protect this knowledge from
oblivion, as it provides age-old solutions for sustainable management of water resources
to the recurrent problem of water scarcity, even in the most adverse social and climatic
circumstances [4,5,17,18].

We present a traditional water management system that uses recharge channels for
sowing water in mountain aquifers to be harvested later on downstream, for domestic
supply and irrigation. The maintenance of such a system whose maintenance may help in
the ecological transition. This highly efficient system [19,20] was developed independently
by local communities south of the southeast of the Iberian Peninsula and in the Andes [8,21]
to solve problems regarding scarcity. This paper describes the system functioning as a
Nature-based Solution for Integrated Water Resources Management (NbS-IWRM) and
postulates it as an adaptation measure to climate change.

2. Recharge Channels in Mountain Zones as NbS-IWRM for the Ecological Transition

The ecological transition refers to the process by which humans incorporate nature into
society [22]. More recently, in the light of global change, it has developed into a broad set of
objectives that seek the transformation of the energy, industrial, and agri-food sector [23,24]
to adjust the demand of natural resources derived from human activity to the availability
and production capacity of such natural resources. Its implementation seeks to curb the
environmental crises threatening humanity’s journey on Planet Earth.

Moreover, the European Green Deal, which is assumed as the “new growth strategy”
for the European Union (EU), is developed using the ecological transition as one of the
main drivers [25,26]. Water resource management is one of the cornerstones, both for
the conservation of the environment and as a driver of the circular economy [2]. The
sustainable management of water resources plays a crucial role in this ecological transition
towards a “green” economy within the EU, and elsewhere. The quest for a society that
is coexisting with nature without compromising our future abilities, while balancing the
needs of a steadily increasing world economy, strongly depends on whether we will be able
to adapt to the changes in the water cycle following climate change [27]. The ecological
transition in the EU has obliged to strengthen coordination across the board and integrate
all social sectors. All this is to change the management and sustainable use of land and
water resources and fight desertification, drought, and non-recoverable resource depletion.
This action is critical in the pan-Mediterranean area, where water resource availability is
decreasing alarmingly [28].
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Integrated water resource management (IWRM) is a concept that emerged in the UN’s
Mar del Plata conference of 1977 and was defined as a method to provide potable water
and sanitation facilities to all and to accelerate political will and investment in the water
sector. The transformations needed to implement such a concept were broadly envisaged
in Mar del Plata and further elaborated, along with the IWRM concept itself, in Dublin, Rio,
The Hague, Bonn Johannesburg, and Kyoto [29]. Currently, IWRM is defined as the method
to promote the coordinated development and management of water, land, and related
resources to maximize the resulting economic and social welfare equitably without compro-
mising the sustainability of vital ecosystems [30]. This concept has become a paradigm for
the UN 2030 Agenda for Sustainable Development, as Target 6.5 of the Sustainable Devel-
opment Goals calls for the implementation of IWRM at all levels by 2030. IMRW is being
embraced by many developed developing and transitional countries [31,32] This paradigm
and the climate change context have raised interest among water managers, planners,
and stakeholders in the so-called Nature-based Solutions for Water Integrated Resources
Management (NbS-IWRM) [33]. This concept consists of the application of actions that
mimic natural processes to improve water availability in quantity and quality, reduce water-
related disaster risks, enhance adaptation to climate change, and increase socio-ecosystem
resilience [34]. Contrary to this, the modern irrigation development where rainfall cannot
cover crop growth needs has evolved from the introduction of new physical structures and
equipment to a new scheme that looks for a transformation of the management of irrigation
water resources, to improve the efficiency and productivity of the resources and services
provided to the farmers [35]. This includes the Mediterranean region and other arid and
semiarid zones. Unfortunately, this concept of modernization does not respond to the
latest challenges of society, which include the depletion of resources, deterioration of the
environment, population growth, and climate change [14]. Being aware of this problem, the
United Nations Food and Agricultural Organization, the European Commission, and the
Spanish Ministry for Ecological Transition and Demographic Challenge, among others, are
promoting research on NbS-IWRM [3,36–38]. The Spanish Ministry for Ecological Transi-
tion joined World Water Day 2021 with an event entitled “Nature-based solutions for water
management in Spain: challenges and opportunities”. At this event, the Secretary of State
for the Environment underlined the need to look for nature-based solutions to improve the
use of water resources by conserving and protecting the headwaters of river basins, and/or
by regulating natural flows [39]. Such nature-based solutions can complement conventional
infrastructures and reduce the overall costs of water quantity and quality services.

Reported examples of NbS-IWRM applications around the world are scarce and
relatively recent. However, in some mountain ranges, such as the Sierra Nevada (Spain)
and the Andes (South America), there are good examples of conceivable NbS-IWRM based
on the traditional knowledge of local populations [8,40]. The concept of Water Sowing
and Harvesting (WS&H) was coined in these areas. WS&H describes the process by
which surface runoff water from both snowmelt and rainfall is collected and infiltrated
(sown) through a system of channels dug in the upper parts of the mountain basins
(Figures 1 and 2) [19,41,42], to be recovered (harvested) elsewhere, sometime later, as a
groundwater discharge, for irrigation or domestic use. The delay is due to the slow velocity
of groundwater through permeable materials. Such aquifer recharge channels are locally
known as “careo channels” in the Sierra Nevada range (Spain) and “amunas” in the Andean
Cordillera (South America). The amunas are almost identical to the careo recharge channels
in Spain, although developed independently by the pre-Inca cultures in Peru, Chavín
initially, and Wari later [7]. The water that is not sown in the area leaves it and goes to the
sea or evaporates in flat land downstream where the water cannot be recovered.
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Figure 1. Careo recharge channel in the Bérchules watershed, located at Spain’s southern slopes of
the Sierra Nevada range (Photo: Sergio Martos-Rosillo).

 

Figure 2. Example of an area where water flowing through a careo channel is released for infiltration.
The infiltration zone is 6 km from the beginning of the channel. When the photograph was taken (April
2021), a flow rate of 250 L/s infiltrated. The seepage water generates pastures in the neighboring
infiltration zones. (Photo: Blas Ramos).

The careo recharge system has at least three functions:

(i) delaying the transit time of water through the ground to maintain the flow of rivers
and springs at lower altitudes during the summers, when radiation and temperature
favor crop growth, but rainfall is scarce, and the demand for drinking water increases,

(ii) watering the vegetation on the mountain slopes (Figure 2), favoring the growth of
pastures, and enhancing biodiversity, and

(iii) improving water quality by diluting the salinity of evapo-concentrated groundwater
and filtering runoff water. Therefore, the spatio-temporal regulation of water resources
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for different uses and the associated ecosystem services qualifies this WS&H “green
infrastructure” as an NbS-IWRM [43].

The importance of the careo recharge channels and their hydrological, environmental,
and socio-economic services, belong to the ancestral knowledge and cultural heritage of the
local population, which has kept them operational in the Southwestern Iberian Peninsula
since at least the 11th century [4,5]. However, it is only very recently that water and
environmental authorities have recognized their importance. The water authorities of the
Guadalquivir River basin and of the southern basin of Andalucia (the two basins where
recharge channels play an important regulating role), the provincial administration of
Granada, the Sierra Nevada National and Natural Parks, and the Association of Historical
and Traditional Irrigation Communities of Andalusia have just started to address the careo
system by incorporating it into their planning, maintenance, and surveillance activities.
Between 2008 and 2011, the Sierra Nevada National Park and the Department of the
Environment of the Regional Government of Andalusia invested 5.3 million euros through
the project “Conservation of the traditional careo recharge channels of Sierra Nevada”.
References to the economic interest of the careo channels are also found in the 2nd Plan
for the Sustainable Development of the Natural Area for the Sierra Nevada, approved
in 2018 by the regional government as a part of the Natural Resources Management
Plan. Furthermore, at a national level, the collaboration between water management
agencies and researchers has been sought to investigate similar NbS-IWRM in Guadarrama,
Gredos and Sierra Morena ranges, and the Canary Islands. Interest in the careo recharge
channels has also increased internationally. Examples are (1) the Research Network “Water
Sowing and Harvesting in Protected Natural Areas” (https://www.cyted.org/es/syca
(accessed on 30 August 2022)), funded by the Ibero-American Programme of Science
and Technologies for Development, with additional support for training activities from
the INTERCOONENTA program of the Spanish Agency for International Development
Cooperation, which unites 76 researchers, water, and environmental planners from eight
Ibero-American countries, (2) their relevance to the Focus Group “Nature-Based Solutions
for water management under climate change” of the European Innovation Partnership for
Agricultural Productivity and Sustainability [44], and (3) by UNESCO’s Intergovernmental
Hydrological Programme as Demonstration Site in its Global Network of Ecohydrology
(http://ecohydrology-ihp.org/demosites (accessed on 31 August 2022)). This action reflects
the applicability of such an NbS-IWRM system in many mountain areas with similar climate
conditions to those prevailing in the Sierra Nevada range [45]. Such are as the southern
slopes of the Alps in France and Italy, the Dinaric Alps in Croatia, Mount Etna in Italy, the
Atlas Mountains in Morocco, the Taurus Mountains in Turkey, the Lebanese Cordillera, the
Sierra Nevada range in the United States, or the Andes Cordillera in South America.

3. Science to Understand Better Recharge Channels

The first scientific publications on the hydrology and hydrogeology of these ancestral
water recharge systems are recent. The earliest paper by Pulido-Bosch and Sbih (1995) [41]
described careo recharge channels in the southern slopes of Sierra Nevada (SE-Spain) and
measured groundwater residence times from 5 to 10 days by applying dissolved lithium
chloride (LiCl) to the water flowing in the Cástaras careo channel, which is located in
the Trevélez River basin. In the same basin, Oyonarte et al. (2022) [14] measured for the
Busquístar channel a mean infiltration rate per unit length of channel (q̂) of 9.32 L/s/km.
In the neighboring Bérchules Basin, Martos Rosillo et al. (2019) [19] obtained a q̂ value of
20.2 L/s/km in the Espino channel. Here, they measured infiltration rates up to 400 L/s
in some channel zones. In the Peruvian Andes, Cárdenas-Panduro (2020) [46] obtained
a q̂ value of 88.7 L/s/km for the Saywapata channel. Such high q̂ values evidence the
high infiltration capacity of the recharge channel system. Analyzing the importance of the
channel recharge with respect to that of the natural water cycle, Jódar et al. (2022) [20]
showed that the total channel recharge in the Bérchules watershed during the hydrological
year 2014–2015 was 3.66 hm3, which is equivalent to 70% of the river water flow at the
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outlet of the basin (5.3 hm3) and amounts 48% of the total aquifer recharge for this period
(7.62 hm3). They have demonstrated that this ancestral aquifer recharge system can double
natural recharge rates as it increases the average and base groundwater discharge of
downstream springs and the mainstream during the summer [6,20,47,48]. Yapa (2016) [21]
and Martos-Rosillo et al. (2020a) [8] described similar ancestral methods of water recharge
in the Americas since pre-Columbian times. In addition, Ochoa-Tocachi et al. (2019) [7]
studied a 1400-year-old rainfall-runoff infiltration enhancement system in the Andes, which
is based on amunas. These authors used eosine to trace the recharged water, obtaining
that groundwater is held for an average of 45 days before resurfacing, and assessed the
effects of this water management technique on the water supply of Lima using a rainfall-
runoff model. As research results are very promising, Peruvian local water planners are
encouraging the use of this green infrastructure through Mechanisms of Rewards for
Ecosystem Services, which allows financing such NbS-IWRM practiced by local peasants
but benefiting other downstream water users. However, the greater or lesser impact of these
solutions is location-specific and therefore requires deep scientific or traditional knowledge.
For instance, Somers et al. (2018) [49] measured scant recharge from recharge channels
also in the Peruvian Andes, likely because the water available for recharge in their case
study was only from rainfall runoff, which is available only a few days per year compared
with snowmelt runoff, that may last months. Nevertheless, the hydrological parameters
that control the hydrodynamic, hydrogeochemical, and isotopic responses of the slope
aquifers in the Sierra Nevada and the Andes, where traditional recharge channels remain
operational, are rather unknown.

The effects of these ancient groundwater recharge systems on terrestrial ecosystems
are various and not fully understood. Remote sensing observations show an extension of
the growing season and an increase in chlorophyll activity of vegetation in areas where
the careo recharge is conducted [50–53]. However, there are no data regarding how the
system contributes to increase vegetation productivity and carbon sequestration, nor to
characterize its role to sustain threatened drought-intolerant species associated with the
channels. Moreover, the positive or negative effects on fluvial and riparian ecosystems
appear to vary, depending on the altitude of the river reach considered. Water withdrawal
in the upper zone of the basin from the river to feed the recharge channels likely impacts
the functioning and biodiversity in the reaches immediately downstream of the diversion
site. The regulation of river flow has strong effects on the functional diversity of riparian
vegetation [54,55] and aquatic communities such as amphibians and fish [56]. Ecosystem
functioning (i.e., primary production, organic matter decomposition, nutrient cycling) can
also be impacted by the river flow regulation, particularly in streams from semiarid regions,
which are characterized by a high rainfall seasonality [57]. These alterations will worsen
in Mediterranean streams as climate change proceeds as suspected (e.g., Salinas et al.,
2018 [58]). In either case, there is a need to investigate the magnitude and positive or
negative direction of such impacts, in terms of flow regulation as a function of the relative
volume and seasonality of water withdrawal.

On the other hand, downstream reaches receiving groundwater from slope aquifers
recharged by channel recharge systems could likely provide better conditions for biodiver-
sity and ecosystem functioning and services. In these lower river reaches, groundwater
inputs produce higher discharge and relatively low water temperature, improving habitat
quality, particularly during summer, for many cold-stenothermal species typical of these
rivers (e.g., brown trout). Nevertheless, as this groundwater has passed through slopes
with agricultural use (Figure 3), it could transport nutrients (i.e., nitrogen and phosphorous)
to the river, favoring eventually eutrophication. Such effects, which may have a positive
and/or negative environmental impact, remain unknown. More research is needed to fully
understand the behavior of recharge channel systems and their impacts on the associated
downstream ecosystems.
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Figure 3. Conceptual scheme of hydrogeological behavior of the recharge with careo channels
during the snow-melting period in an idealized watershed of Sierra Nevada (Spain). The geological
substratum is made up entirely of schists, with a surface alteration zone (Author: Rocío Espín and
Sergio Martos-Rosillo).

4. Current Challenges

Demographic and climate changes are threatening the provision of ecosystem services
with foreseeable trade-offs that must be considered in the management of the territory’s
resources. One of the challenges is the exodus of the rural population and the incorporation
of new stakeholders. While farmers and shepherds were the lands, water, and careo
channel managers for centuries, current actors also seek conservation objectives, such as
biodiversity protection, ecotourism, or freshwater provision for growing populations in
the lower parts of catchments. In addition, agriculture is intensifying in some areas of the
southern slopes of Sierra Nevada (i.e., the Bérchules and Mecina watersheds) in response
to favorable market conditions. This may lead to increased demand for irrigation water
and the claim for customary water rights, with effects on the availability of water resources
similar to those reported in other regions [59,60].

Recharge channels in mountain regions have successfully overcome drastic social [4,5]
and climatic changes that have occurred in the Sierra Nevada range since the Middle
Ages [17,18]. Further back from as early as the 5th century in the Peruvian Andes [7],
recharge channels have played an important role. According to palaeoclimatic reconstruc-
tions of the last two millennia, the period from 700 to 1200 was dry and prone to severe
drought. After that, the climate became somewhat wetter (Åkesson et al., 2020 [61], and
references therein), but not very different from the current climate conditions in the Andean
Cordillera at the same latitude, where arid to hyperarid conditions still prevail [62]. The
question is how, by delving into the hydrology and hydrogeology of these systems, valuing
their ecosystem services, and understanding the effects that socio-economic changes have
on traditional organizational structures, we can adapt these WS&H systems to the current
context, harnessing their climate change adaptation values and ensuring the resilience that
they have shown historically.

The careo channels may become an adaptation measure to climate change. Delineating
their role in this regard, when implementing them in dissimilar conditions, including differ-
ent (1) climate change projections, (2) forcing levels (greenhouse gas emission pathways),
(3) socio-economic scenarios, and (4) management alternatives, vulnerability models may
be helpful (Joyce y Janowiak, 2011 [63]). They make it possible to analyze the degree to
which an ecosystem is affected by climate change and to evaluate the consequences of
different adaptation strategies. This information, together with an adequate evaluation
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and communication of the uncertainties associated with the different scenarios, is the
cornerstone for an adequate decision-making process and the implementation of the careo
channels as an effective adaptation measure.

5. Conclusions

The careo recharge as NbS-IWRM may enhance biodiversity and ecosystem function-
ing, both terrestrial and aquatic, at the basin scale. Therefore, to understand the inner
workings of the “Recharge channel-Soil-Aquifer-River” system, its social and environmen-
tal repercussions, and to maintain and replicate this NbS-IWRM system in other areas
with similar characteristics, more in-depth and multidisciplinary research is needed. This
research should provide information on (1) how to adapt the careo channels to the new
social and climatic scenarios, (2) the hydraulic and hydrogeological variables to take into
account when designing new recharge systems in other mountain areas with similar char-
acteristics, and (3) how to maximize the ecosystem services provided. This historical water
management system, based on local ecological knowledge and communal practices, in
which a balance between land and water use has been attained, should become an adap-
tation measure to climate change, but also to build a better, more secure, and equitable
future through the ecological transition path towards the objectives of the European Green
Deal. This is especially important to stabilize the rural population and to preserve the
environmental, hydrological, ecological, cultural, and economic conditions in mountainous
areas and make compatible the roles of the local economy and “nature gardeners”.
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Abstract: Controlled tile drainage (CTD) practices are a promising tool for improving water balance,
water quality and increasing crop yield by raising shallow groundwater level and capillary rise due to
drainage flow retardation. We tested the effect of CTD on growth and grain yield of spring barley, at a
study site in central Bohemia using vegetation indices from unmanned aerial vehicle (UAV) imagery
and Sentinel-2 satellite imagery. Tile drainage flow was slowed by fixed water level control structures
that increased soil moisture in the surrounding area according to the terrain slope. Vegetation indices
based on red-edge spectral bands in combination with near-infrared and red bands were selected, of
which the Normalized Red Edge-Red Index (NRERI) showed the closest relationships with shoot
biomass parameters (dry biomass, nitrogen concentration and uptake, nitrogen nutrition index) from
point sampling at the tillering stage. The CTD sites showed significantly more biomass using NRERI
compared to free tile drainage (FTD) sites. In contrast, in the period prior to the implementation of
CTD practices, Sentinel-2 satellite imagery did not demonstrate higher biomass based on NRERI at
CTD sites compared to FTD sites. The grain yields of spring barley as determined from the yield
map also increased due to CTD (by 0.3 t/ha, i.e., by 4%). The positive impact of CTD on biomass
development and grain yield of spring barley was confirmed by the increase in soil moisture at
depths of 20, 40 and 60 cm compared to FTD. The largest increase in soil water content of 3.5 vol%
due to CTD occurred at the depth of 40 cm, which also had a higher degree of saturation of available
water capacity and the occurrence of crop water stress was delayed by 14 days compared to FTD.

Keywords: controlled tile drainage; UAV images; red-edge vegetation indices; spring barley biomass;
grain yield; soil moisture

1. Introduction

In the context of more frequent periods of drought under climate change, it is desirable
to reduce water runoff from agricultural land [1–4]. Fields systematically tile-drained to
provide suitable conditions for crop production removing excess water from soil profile
usually drain water all year round, depending on topography, the crop grown and the
hydro-pedological and meteorological conditions [5–8]. Also, nutrients such as nitrogen (N)
in the form of nitrates are transported by subsurface drainage at a time when they could
be used by growing crops [9–11]. To avoid this inefficient water and nutrients runoff from
drained fields, controlled tile drainage (CTD) practices, where drainage flow is retarded by
water level control structures (WLCS), are applied especially in some parts of the North
America and Europe to retain water and nutrients in drains and related surrounding soil
for crop use [12–19]. The purpose of CTD is to increase soil moisture by capillary rise of
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the regulated drainage water in the surrounding area, being determined by terrain slope
(the so-called range of drainage flow control, RDFC). Drainage water under CTD can only
drain from the WLCS when its level reaches the height of the gate (board), inserted in
WLCS, falls over it and flows downwards in drainage manholes or outlets. Thus, CTD
is a promising approach for improving water balance, water quality and increasing crop
yields [5,12,20,21]. The agronomic and environmental benefits of CTD are associated with
an increase in soil moisture during the growing season, i.e., better availability of water and
nutrients (especially N) for the crops grown [22,23]. Likewise, the formation of an anoxic
environment in water-saturated soil for plants by CTD is reduced by diverting the water as
soon as the water level reaches a critical level set by the WLCS [5].

Drainage discharge in CTD approach can be controlled by several WLCS types; ba-
sically, with adjustable or fixed WLCS placed either at drainage outlets, in manholes or
directly on collective or conductive drains [6,15,19,21]. The adjustable WLCS pose an
advantage to readily respond to precipitation, runoff conditions and the actual crop wa-
ter requirements by setting the height of WLCS at the requested level [14]. The WLCS
with fixed height could be placed directly on drains and raise the water level according
to terrain slope. In more sloping conditions (up to 5%), more densely placed WLCS are
needed as their effect on water level rise is less than in flat areas. To assess the effect of
increased nutrient and water availability imposed by CTD practices on crop productivity,
vegetation indices as spectral reflectance indicators derived from multispectral remote
sensing can be useful to diagnose the plant nutritional status and environmental stress
symptoms [5,24,25]. Vegetation indices are mostly based on spectral reflectance in the
red (R, 630–690 nm) and near-infrared (NIR, 770–1300 nm) bands of the electromagnetic
spectrum [26]. Reflectance in the NIR spectrum is related to the plant cell walls and rises as
the amount of biomass increases, while reflectance in the R region related to the amount
of chlorophyll only in the upper leaves is very low and after reaching a certain amount
of the biomass it remains at a minimum constant level, which leads to saturation phe-
nomenon of vegetation indices [27,28]. The commonly used vegetation index associated
with R and NIR wavebands is Normalized Difference Vegetation Index (NDVI, [29]) mostly
recommended in monitoring green vegetation cover. However, when the vegetation cover
becomes dense, i.e., when the leaf area index (LAI) is higher than three, NDVI tends to
be saturated, leading to underestimated biomass yield predictions [30–33]. Saturation
effect can be reduced by using vegetation indices based on reflectance in a narrow band of
the red-edge region (RE, 700–750 nm, e.g., REIP, NDRE, NRERI and RENDVI), showing
sensitive increase corresponding strongly to vegetation chlorophyll content and the plant
N uptake [34–36]. Mittermayer et al. [37] reported REIP (Red Edge Inflection Point) as a
suitable vegetation index to identify site-specific N uptake, high N surplus as well as N loss
potential. Vegetation indices based on green reflectance, e.g., GNDVI, GRDVI or MTVI2,
also show higher sensitivity to changes in chlorophyll content [38–40].

To demonstrate the prediction of crop biomass production using vegetation indices,
yield maps produced in precision agriculture as a result of combine harvester yield sensing
system appear to be a useful tool for this purpose. In some cases, vegetation indices are
involved within the filters used for spatial interpolation of yield maps that improve the
management of soil variability on the farm [41]. Vegetation indices and yield maps were
also used to determine the spatial variability of N uptake and N balances [37].

The aim of this study was to evaluate the effect of CTD on the growth and grain
yield of spring barley at a study site in Central Bohemia in the 2021 growing season using
vegetation indices from unmanned aerial vehicle (UAV) imagery and a yield map at harvest.
We hypothesized that CTD would positively affect spring barley development and grain
yield through increased soil moisture compared to free tile drainage (FTD).
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2. Material and Methods

2.1. Study Site

We selected two experimental fields (Za Frajmankou, Pod Hvězdou) at the study site
in the Central Bohemia near the village of Hvězda-Malíkovice (50.2247167N, 13.9741050E,
Figure 1). The local climate is influenced by the rainfall shadow of the Ore Mountains and
according to Quitt [42] is classified as warm with a normal of annual rainfall of 501 mm
and air temperature of 8.6 ◦C. In 2021, annual rainfall was 471 mm (growing season 352
mm), and the average annual temperature was 8.6 ◦C (growing season 14.5 ◦C). In the
partially tile-drained field Za Frajmankou, we applied CTD practices from autumn 2020 to
spring 2021 and examined their impact by measuring soil moisture in the 2021 growing
season, when spring barley was grown there. In both fields, two UAV images were taken,
and spring barley was sampled from selected points twice during the growing season.

 

Figure 1. Experimental fields Za Frajmankou and Pod Hvězdou with soil types, sampling points,
moisture sensors, underground and manhole water level control structures (WLCS), outlet, drainage
ditch and map of the Czech Republic with marked study site. CTD—control tile drainage sites,
FTD—free tile drainage sites.

The field Za Frajmankou with an area of 14.6 ha, an average altitude of 364.6 m.a.s.l.
and a slope of 3◦ was partially tile-drained in 1962 (7.18 ha), with drainage spacing 10–14 m
and lodgement of drains 0.7–1.1 m below surface, drainage water discharging into a
drainage ditch (Figure 1). The average slope of the tile-drained area is 3.15◦ (0.04–9.10◦).
The field is soil heterogeneous with different types of Cambisols. The lower part of the
experimental field with Vertic Cambisol (Loamic) and Dystric Cambisol [43] is texturally
diverse (sandy loam, loam, clay loam, clay), predominantly under tile drainage, which
developed on sediments from the Permo-Carboniferous period. The higher parts of the
field are dominated by sandstone deposits with texturally lighter Leptic Cambisol and
Leptic Cambisol (Arenic) classified as sandy loam and loam.

The field Pod Hvězdou (7.4 ha, Dystric Cambisol), located southeast of the field Za
Frajmankou, was not drained, and was used only to expand the number of spring barley
sampling points to increase the confidence of the statistical analyses.

In both fields, N-P fertiliser (26% N, 14% P2O5) was applied on 1 April 2021 at a rate
of 350 kg/ha (i.e., 91 kg N/ha) and spring barley (variety Solist) was sown on 2 April 2021.
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2.2. Installation of a Manhole and Water Level Control Structures

The relatively low slope of the field Za Frajmankou provided suitable conditions
for slowing drainage flow with CTD practices. In autumn 2020, we installed a total of
20 underground fixed WLCS at 0.7–1.1 m depth below soil surface on selected conductive
(main) and collective drains of two drainage groups (Figure 1). The underground fixed
WLCS consists of a horizontal PVC pipe with a vertically connected branch (diameter of
110 mm), containing a 6 mm thick polypropylene gate (Figure 2). At all WLCS installation
sites, we first removed three original ceramic drainage tiles and replaced them by a PVC
drainage pipe with a branch. A gate was inserted into the top hole of the branch and
then down leakproof to the PVC pipe. The height of the gate was adjusted so that after
inserting the cap at the top of the branch (leaving ca 5 cm for water overflow), approx.
40 cm remained to the soil surface (a safe distance to ensure that the WLCS would not be
damaged by ploughing).

 

Figure 2. Underground fixed WLCS consisting of a drainage T branch (yellow), a polypropylene gate
(black) and a PVC pipe vertically connected to the T branch (grey) with a cap (brick-red); before and
after installation on tile drainage.

In autumn 2020, we built a control manhole (80 cm in diameter and 1.5 m deep), into
which drainage water was connected through 75 mm diameter PVC pipes from CTD and
FTD sites and discharged further into the drainage ditch. We installed the same fixed
WLCS as on the tile drainage along with a propeller flow meter in the manhole on the PVC
pipe bringing water from the CTD sites (Figure 3). This WLCS included a slide valve that,
when manually pulled out, would allow the groundwater level (GWL) to be lowered if
necessary (as opposed to the underground fixed CWLS). However, it was not needed to
control the water level in this way during the monitoring period. The RDFC area of 1.1 ha
(0.867 + 0.198 + 0.035, Figure 1) achieved by the installation of both the underground and
manhole WLCS and delineated by the known water level (i.e., the height of WLCS) and
contours according to DMR 5G (with the declared mean height error 0.18 m in exposed
terrain) is considered as an area affected by CTD.
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Figure 3. Fixed WLCS installed in the manhole with propeller flow meter (left) and water overflow
after a rainfall-runoff event on 14 May 2021.

2.3. Soil Moisture, Soil Texture and Soil Hydrolimits

To determine the differences in soil moisture between CTD and FTD sites, we measured
volumetric water content in the field Za Frajmankou between 19 April and 28 July 2021.
We installed a total of 25 sensors (7 sensors at a depth of 20 cm and 9 sensors each at depths
of 40 and 60 cm) at 9 locations where RDFC occurred because of increased capillary rise via
WLCS (Figure 1). At sites where WLCS were not installed, a total of 15 sensors (5 sensors
each at 20, 40, and 60 cm depths) were installed at 5 sites (Figure 1). Soil water volumetric
content was measured using the SMT-100 soil moisture probes based on a Time Domain
Transmission technology and soil water content reflectometer CS650 (Figure 4). Data were
stored in a datalogger at hourly intervals. All sensors were located at Dystric Cambisol.

 

Figure 4. Soil volumetric water sensors CS650 and SMT-100.

For each soil moisture sensor, we collected soil samples to determine the soil texture
class using the pipette method [44]. A fine particle size fraction (FPSF, %) < 0.01 mm
was used to calculate soil hydrolimits: field capacity (FC), point of decreased availability
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(PDA), permanent wilting point (WP) and available water capacity (AWC) using simple
pedotransfer functions [45]:

FC (vol.%) = 6.66 + 1.03 × (FPSF) − 0.008 × (FPSF)2 (1)

WP (vol.%) = 2.97 + 0.33 × (FPSF) − 0.0012 × (FPSF)2 (2)

AWC (vol.%) = FC − WP (3)

PDA (vol.%) = WP + % AWC (4)

FC is the water that remains in the soil after it is thoroughly saturated and free to
drain, usually for one to two days. WP is the soil moisture at which plants wilt and do not
recover if supplied with sufficient moisture. AWC is the amount of water the soil can retain,
and the crops can use. PDA is the minimum soil moisture, expressed as a percentage of
AWC, at which plants are still growing and developing successfully (50–60% of AWC for
spring barley).

The shallow GWL could have a significant influence on soil water dynamics and is
often a profound source of upward water movement by capillary rise. In tile-drained
fields across Czechia, based on the experience of the authors from many other sites, the
shallow GWL is usually 1.2–1.8 m deep, based on soil morphological and hydrogeological
conditions. However, in the trial field, the GWL was not found even at a depth of 2 m in
two pits (around the northernmost and southernmost WLCS) which were opened around
3 months prior to WLCS installation. Therefore, we did not measure the GWL depth as it
had no effect on soil moisture in the experimental field.

2.4. Point Sampling and Analysis of Spring Barley Biomass

We collected spring barley samples from the selected twenty-two points in the Za
Frajmankou and Pod Hvězdou fields (Figure 1) at tillering stage (BBCH 25-29) on 2 June
2021 and prior to harvest on 11 August 2021.

Shoot biomass taken on 2 June of 2021 from an area of 0.25 m2 was weighed before
and after drying at 105 ◦C and shoot dry weight was converted to t/ha (dry biomass).
Subsequently, the N concentration (%) in shoot dry biomass was determined according to
the Kjeldahl method [46]. Shoot N uptake was calculated as dry biomass multiplied by N
concentration. To assess plant N status, we calculated nitrogen nutrition index (NNI, [47])
as: Nact/Ncrit where Nact is the actual and Ncrit the critical concentration in dry biomass,
respectively. Critical N concentration is the minimum concentrations required to achieve
maximum shoot growth and was calculated using the power function capturing a typical
dilution curve, i.e., decreasing along with increasing shoot dry biomass. Ncrit (%) was
calculated as 5.35 B−0.442 [47], where B is shoot dry biomass (t/ha).

Prior to harvest, on 11 August of 2021, 0.2 m2 of ears were sampled from each sampling
point and then, after grain weight was obtained, grain yield (t/ha), grain N concentration
according to the Kjeldahl method (%) and grain N uptake (kg/ha) were determined.

2.5. Vegetation Indices Based on UAV and Satellite Imagery

Multispectral images for calculation of vegetation indices and assessment of crop
status were acquired by UAV imagery near to the date of plant sampling. We conducted
UAV surveys on 2 June (BBCH 25-29, tillering stage) and 30 June 2021 (BBCH 51-57, heading
stage) by DJI Phantom 4 Multispectral. This UAV is equipped by multispectral camera
which capture five narrow spectral bands—blue (B, center wavelength 450 nm), green
(G, 560 nm), R (650 nm), RE (730 nm), NIR (840 nm). Simultaneously, the intensity of
incoming radiation is recorded by light sensor installed on the upper part of the UAV for
the normalization of incoming light conditions. The survey was carried out at a flight
altitude of 140 m; based on the sensor resolution of 1600 × 1300 (2.12 MPx) the final
spatial resolution provided by images was 7.56 cm. We ensured radiometric calibration
of the multispectral camera by scanning the spectral panel Micasense CRP and using
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procedures recommended by the manufacturer. Geometric accuracy of acquired images
was guaranteed by RTK used in the UAV guidance system and by the placement of 4 ground
control points (GCPs) in the observed area.

The orthomosaic of spectral bands was created using the Agisoft Metashape software
together with the calculation of the digital surface model (DSM). As a next step, the
combined multispectral orthomosaic with all spectral bands was created, from which the
set of vegetation indices was subsequently calculated (see Table 1).

Table 1. Vegetation indices calculated from the UAV multispectral images.

Vegetation Index Equation Reference

EVI Enhanced Vegetation Index 2.5 × (NIR − R)/((NIR +
6.0 × R − 7.5 × B) + 1.0) [48]

EVI2 Enhanced Vegetation Index 2 2.5 × (NIR − R)/(NIR +
2.5 × R + 1) [49]

GNDVI Green Normalized Difference Vegetation
Index (NIR − G)/(NIR + G) [50]

SRI Simple Ratio Index NIR/R [50]
NDRE Normalized Difference Red Edge Index (NIR − RE)/(NIR + RE) [51]
NDVI Normalized Difference Vegetation Index (NIR − R)/(NIR + R) [29]
NRERI Normalized Red Edge Index (NIR − RE)/(NIR − R) [33]

Chl Chlorophyll Index (NIR − R)/(RE − R) [52]
RENDVI Red-edge NDVI (RE − R)/(RE + R) [53]

SAVI Soil Adjusted Vegetation Index 1.5 × ((NIR − R)/(NIR +
R + 0.5)) [54]

To compare crop development prior to the introduction of CTD practices, we used
freely available Sentinel-2 satellite imagery, which we obtained from ESA’s free data reposi-
tories Openhub, CollGS and Google Earth Engine for the period May to June from 2017–
2020. Subsequently, we selected cloud-free images and calculated NRERI values using the
formula given in Table 1.

2.6. Yield Maps

Crop yield maps were recorded during the harvest of spring barley on 15 August
2021 to analyze the spatial patterns within the field. Raw data were acquired by combine
harvester Claas Lexion equipped with sensor system for estimation of grain flow, grain
moisture and Differential Global Position System (DGPS) receiver. From the recorded point
data, outliers and erroneous values were filtered, followed by spatial interpolation in ESRI
ArcGIS using the kriging technique to smooth out the differences at small scale level. The
final raster dataset contains information about grain yield in 1 m spatial resolution.

2.7. Statistical Analysis

We used linear regression models to determine the relationships between vegetation
indices and shoot or grain parameters of spring barley (shoot parameters: dry biomass,
N concentration, N uptake, NNI; grain parameters: yield, N concentration, N uptake)
taken from twenty-two sampling points in the Za Frajmankou and Pod Hvězdou fields
(Figure 1). We included sampling points from the Pod Hvězdou field in models only to
provide more data to increase the power of the test. The closest relationship between
vegetation indices and shoot parameters, which was derived from a linear logarithmic
regression, was exhibited by the Normalized Red Edge-Red Index (NRERI, [33]) based on
the RE band. This vegetation index was further used to test the effect of CTD with defined
RDFC on the biomass growth and grain yield of spring barley in the Za Frajmankou field.
For this, we selected only the predominantly Dystric Cambisol, i.e., 81% of the tile-drained
area of the Za Frajmankou field outside the 29 m strip of headlands to exclude the effect of
soil type and agricultural machinery movement on crop development.
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The NRERI index from the 2 June 2021 UAV image showed a very wide range of
unrealistic values (−476.7 to +266.2) in the 1 × 1 m pixels of the selected tile-drained Dystric
Cambisol, mainly caused by the movement of agricultural machinery, low vegetation cover
or even bare soil. Hence, 6.26% of the pixels were excluded as outliers, mainly in the track
lines. No outliers were identified in the UAV image of 30 June 2021. From the Sentinel-2
imagery, from which two images of the Za Frajmankou field (21 May 2017 and 6 May 2018)
with grown winter wheat were selected for comparison before the implementation of CTD
practices, outliers of the selected tile-drained Dystric Cambisol were identified only in 2018
(9 pixels of 10 × 10 m at FTD locations).

Outliers were identified using the 25th (Q1) and 75th (Q3) percentiles and the in-
terquartile range (IQR = Q3 − Q1):

Outliers > Q3 + 1.5 × IQR or < Q1 − 1.5 × IQR (5)

To create a balanced data design, we randomly selected two thousand 1 × 1 m pixels
with NRERI values from UAV imagery or grain yield values for the CTD and FTD sites
using the R script. For Sentinel-2 images, we selected NRERI values from 88 pixels of
10 × 10 m from CTD and FTD sites. For normally distributed data (Sentinel-2 from 6 May
2018), an unpaired two-sample t-test was used to identify differences in NRERI values
between CTD and FTD sites, and in the case of non-normal data distribution detected by the
Shapiro-Wilk test (both UAV imagery and Sentinel-2 from 21 May 2017), the Mann-Whitney
U test was used as a non-parametric alternative to the independent two-sample t-test.

We used Welch’s two-sample t-test (unequal variances t-test) to test for differences in
soil moisture measured at CTD and FTD sites. Each data set contained 101 daily averages
from all measuring sensors for each depth (20, 40 and 60 cm).

We conducted all statistical analyses in the R environment [55].

2.8. Creation of Maps

We analyzed the UAV and Sentinel-2 imagery in ArcGIS software (version 10.7.1). The
images were first converted to the S-JTSK coordinate system and then cropped with the
required layers to the final image using the Extract by Mask function. The Zonal Statistics
and Zonal Statistics as Table functions were used to obtain the mean values. For subsequent
statistical analyses in the R environment (2.7.), the average pixel values of 1 × 1 m (UAV)
or 10 × 10 m (Sentinel-2) were determined by converting the rasters with the required
values to a point layer using the Raster to Point function. We added the required attributes
to the resulting layers using the join function. The average NRERI values from the UAVs
in the vicinity of the sampling points within a 2-m radius area were obtained using the
Buffer and Extract by Mask functions. Outlying points were removed from the point layer
of the Sentinel-2 image from 6 May 2018 and the UAV image from 2 June 2021, and the
layers were then converted back to a raster layer using the Point to Raster function for the
resulting visualization.

3. Results

3.1. Vegetation Indices

The three vegetation indices from UAV imagery based on reflectance in either the RE,
NIR and R regions (NRERI, Canopy chlorophyll content index Chl) or the RE and NIR re-
gions (Normalized Difference Red Edge NDRE) demonstrated the closest relationships with
all shoot parameters from point sampling. Of these, NRERI, based on linear logarithmic
regressions with the highest adjusted coefficients of determination (R2adj. in Figure 5a–d),
was selected as the best indicator of the effect of CTD on growth and grain yield of spring
barley. The outlier value of NRERI (−0.75) was not excluded as it realistically corresponded
to a site with poor stand development.
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Figure 5. Relationships between NRERI from UAV and spring barley shoot biomass parameters
((a) biomass dry weight, (b) N concentration, (c) N uptake, (d) NNI) from point sampling of Za
Frajmankou and Pod Hvězdou fields on 2 June 2021 expressed by logarithmic functions with ad-justed
coefficient of determination (R2adj.) and p-value.

NRERI values differed significantly between the two UAV images depending on the
different growth stages of spring barley (Table 2). The low, not fully established crop at the
tillering stage (2 June 2021) showed a relatively wide range of values even after excluding
outliers (−0.20–0.31). The Mann-Whitney U test revealed statistically significant differences
between NRERI values in CTD and FTD sites (p-value = 0.0006), although not very clear
visually (Figure 6a). On the contrary, considerably higher values with a relatively narrow
range even without excluding outliers (0.18–0.60) were shown by the fully established stand
at the heading stage (30 June 2021) with a height of 50–70 cm. The differences in NRERI
values between CTD and FTD sites were more pronounced compared to the previous UAV
image (p-value < 0.0001, Figure 6b), as also documented in Figure 7 (i.e., higher NRERI
in RDFC).

Table 2. Means, medians and standard deviations of NRERI from UAV images (without outliers from
2 June 2021) and grain yield from the yield map at controlled (CTD) and free (FTD) sites with Dystric
Cambisol in the Za Frajmankou field.

Date of UAV Image/Harvest
Means Medians Standard Deviations

CTD FTD CTD FTD CTD FTD

2 June 2021 (NRERI) 0.066 0.055 0.077 0.063 0.084 0.088
30 June 2021 (NRERI) 0.434 0.395 0.435 0.395 0.032 0.033

15 June 2021 (grain yield, t/ha) 7.103 6.807 7.095 6.831 0.193 0.204
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Figure 6. NRERI box plots with Mann-Whitney U test (W, p-value) at CTD and FTD sites with Dystric
Cambisol in the Za Frajmankou field from UAV imagery on (a) 2 June 2021 and (b) 30 June 2021.

Figure 7. Distribution of NRERI and point soil moisture from 40 cm at CTD and FTD sites with
Dystric Cambisol (without headlands) of the Za Frajmankou field taken by UAV on (a) 2 June 2021
(ex-cluded outliers in black)and (b) 30 June 2021.

We found no differences in NRERI values in the two selected Sentinel-2 images
between CTD and FTD sites (Figure 8), as demonstrated by the results of the Mann-Whitney
U test for 21 May 2017 (W 14 808, p-value = 0.5567) and the unpaired two-sample t-test for
6 May 2018 (t = −11,834, p-value = 0.2383).
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Figure 8. Distribution of NRERI at CTD and FTD sites with Dystric Cambisol (without headlands)
of the Za Frajmankou field taken from Sentinel-2 on (a) 21 May 2017 and (b) 6 May 2018 (excluded
outliers in black).

3.2. Grain Yield

Spring barley grain yield as determined from the yield map taken at harvest on 15
August 2021 was, like the NRERI, significantly affected by CTD (Figure 9). Table 2 shows
that grain yield at CTD sites was on average 0.3 t/ha higher than in FTD sites, which was
due to the largest and most fertile RDFC area in the western part of the field (Figure 10).

Figure 9. Box plots of grain yield with Mann-Whitney U test (W, p-value) at CTD and FTD sites with
Dystric Cambisol in the Za Frajmankou field from the yield map taken on 15 August 2021.
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Figure 10. Grain yield map of spring barley (t/ha) at CTD and FTD sites with Dystric Cambisol taken
at harvest on 15 August 2021.

Correlation analysis was chosen to investigate the relationship between grain yield/grain
N uptake and three selected vegetation indices from the sampling points. At the tillering
stage (2 June 2021), grain yield and grain N uptake were not correlated with the three
selected vegetation indices (NRERI, Chl, NDRE, Table 3). As stand development progressed
(30 June 2021), vegetation indices showed statistically significant results in relation to
grain yield. The accuracy of estimating grain N uptake using vegetation indices was also
improved, but the significance of the relationship was not demonstrated.

Table 3. Pearson’s correlation coefficients between grain yield and vegetation indices (NRERI, Chl
and NDRE) from sampling points on 2 and 30 June 2021.

Biomass Parameter Grain Yield Grain Nitrogen Uptake

Date NRERI Chl NDRE NRERI Chl NDRE

2.6.2021 0.22 0.25 0.26 0.21 0.36 0.32
30.6.2021 0.51 * 0.50 * 0.46 * 0.40 0.41 0.36

* Significance p-value < 0.05.

Correlations of the spatial distribution of NRERI and the yield map on tile-drained
Dystric Cambisol without headlands provided similar results (no correlation on 2 June 2021
and weak but statistically significant correlation on 30 June 2021, r = 0.37, p < 0.0001).

3.3. Soil Moisture Content

Soil moisture values at all depths were significantly higher at CTD sites compared
to FTD sites (Table 4, Figure 11). At 40 cm depth, differences were evident throughout
the whole study period, thus also at the time of UAV imagery, as shown in Figure 7 in
the detail of the fourteen measurement locations. At this depth at the CTD sites, the
average amount of water in AWC (AWC saturation level in Table 5) was 10.4% higher,
and soil moisture exceeding the soil hydrolimit PDA persisted 14 days longer indicating a
delayed onset of crop water stress compared to the FTD sites (Table 5). At other depths,
soil moisture exceeding PDA was 4% (20 cm) and 11% (60 cm) higher at CTD sites, but of
shorter durations of occurrence.
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Table 4. Mean soil moisture from each and all depths and Welch´s test parameters (t-test, degrees of
freedom df, p-value) at CTD and FTD sites.

Depths of Soil Moisture
Sensors (cm)

Soil Moisture (vol.%) at Sites:
t-Test df p-Value

CTD FTD

20 22.07 20.39 −2.7307 183.13 0.0069
40 25.84 22.41 −6.8521 179.64 <0.0001
60 26.07 24.25 −3.0875 146.92 0.0024

Means of all 24.66 22.35 −4.3867 166.71 <0.0001

Figure 11. Daily precipitation and soil moisture at depths of (a) 20, (b) 40 and (c) 60 cm and
(d) averaged over all depths at CTD and FTD sites.

Table 5. Mean soil hydrolimits (field capacity FC, point of decreased availability PDA, wilting point WP,
and available water capacity AWC), degree of saturation of AWC and the number of days when soil
moisture was equal to or greater than PDA and FC from each and all depths at CTD and FTD sites.

Sites
Depth
(cm)

FC
(vol.%)

PDA
(vol.%)

WP
(vol.%)

AWC
(vol.%)

AWC Saturation
Level (%)

Number of Days with Soil Moisture ≥
PDA (% over PDA) FC

CTD

20 32.6 23.4 13.0 19.6 46.4 39 (14.3) 3
40 34.3 25.0 14.5 19.7 57.3 52 (16.0) 6
60 34.1 25.6 15.9 18.2 55.8 46 (20.9) 12

Means of all 33.7 24.7 14.5 19.2 53.2 46 (17.1) 7

FTD

20 30.0 21.2 11.7 18.3 47.4 46 (10.4) 0
40 31.9 23.5 14.0 18.0 46.9 38 (7.4) 0
60 32.6 24.1 14.6 18.0 53.7 53 (9.7) 0

Means of all 31.5 23.0 13.4 18.1 49.3 46 (9.3) 0

The largest increase in soil moisture content, along with its differences at all depths
between CTD and FTD sites, occurred after the heavy rains in early May 2021 (Figure 11).
Soil moisture was maintained above PDA until the end of May (at 20 cm) or the end of
the first decade of June (at 40 and 60 cm). After a rainfall of 47 mm during 11–15 May,
soil moisture exceeded even FC values at CTD sites, which remained at 60 cm until May
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24, 2021. During this period, water flowed into the manhole through the drainage pipes
and flow rates of up to 1.5 l/s were recorded through the WLCS installed in the manhole
(Figure 3). This was the only case in the study period where water flowed through the
WLCS in the manhole. At the end of May, crop water stress (soil moisture dropped below
PDA) occurred at 20 cm depth, which extended to 40 and 60 cm depths during the first
decade of June. Soil moisture differences between the CTD and FTD sites at 20 and 60 cm
depth gradually decreased until they disappeared completely by the end of the second
decade of June. The wet period from 22 June to 28 July 2021 (total rainfall of 181 mm)
induced a renewed increase in soil moisture differences at 20 and 40 cm depth and a gradual
removal of crop water stress.

4. Discussion

Vegetation indices are useful tools of remote sensing for identifying trends in crop
biomass growth and predicting crop yields [5]. To test the effect of CTD functionality
on biomass production of spring barley in our study, we selected the vegetation index
NRERI based on spectral reflectance in R, RE and NIR bands as the best indicator of shoot
and grain production. The superiority of the NRERI index (similarly, the NRERI and Chl
indices), unlike the other indices based on other combinations of spectral bands (NDVI,
SAVI, EVI2, SRI, RENDVI, GNDVI), was due to the better relationships in the case of 2 June
2021 with all shoot biomass parameters and in the case of 30 June 2021 with grain yield
from point sampling. The advantage of reflectance in the RE band, in contrast to the R band,
is that the sensitivity of absorption to chlorophyll content is much higher (i.e., no saturation
effect, [56]) and, similarly to the NIR band, a positive correlation with leaf N and biomass
exists [57–60]. The combination of RE and NIR bands is recommended for estimating higher
biomass with LAI > 2–3, but also to provide insight into N nutritional status (N content, N
uptake, NNI) [61–64]. Thus, the NRERI vegetation index provided an opportunity in our
study to show the link between biomass development and the N nutritional status of the
crop as well as the prediction of grain yield. Similarly, Klem et al. [65] found that NRERI,
as affected by water deficit, is the best estimator of N status in both leaves and grain of
winter wheat. Klem et al. [66] also confirmed the suitability of RE reflectance for estimating
the N nutritional status of malting barley, the accuracy of which can be further improved
by using an artificial neural network based on multiple spectral reflectance wavelengths.
Holub et al. [67] reported that at the completed heading stage of winter wheat, the NRERI
index, as the only one based on reflectance in the R, RE and NIR spectra, had the greatest
potential for estimating grain N uptake.

CTD practices increase crop yields by improving soil moisture availability along with
the retention of mineral N available to plants [5,14,68,69]. The beneficial effect of CTD
practices on soil water availability for spring barley was clearly reflected in a higher degree
of saturation of AWC compared to FTD sites. Also, Wesström et al. [70] found increased soil
water storage due to CTD in southern Sweden, which they attributed to reduced drainage
outflow compared to FTD. Spring barley has a weaker root system than other cereal crops,
and most of its roots (ca. 90%) are distributed at a depth of 30–50 cm depending on soil
type, with the highest density at depths up to 10 cm [71–73]. Increased soil water supply at
40 cm in relation to CTD practices, which in our case was maintained throughout the study
period, demonstrated an improved water supply to barley roots even when water did not
flow through the WLCS in the manhole but was only retained in the drainage pipes. This
was highly desirable and clearly contributed to increased grain yield.

The probability of retaining plant-available soil water due to CTD is lower in our
drier study site than in humid sites, but even a small increase in soil water availability
associated with the elimination of drainage runoff is important for stabilizing or slightly
increasing crop yields. For instance, Dou et al. [74] identified a delay in groundwater
table decline through CTD (drainage depth of 40 cm) in a dryland area, which allowed
sunflower to use groundwater at later growth stages, resulting in yield and water use
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efficiency improvements of 4.52–11.14% and 1.16–10.8%, respectively. Accordingly, the
grain yield of spring barley in our study was increased by 4% in relation to CTD.

The prediction of grain yield from the early shoot biomass parameters (2 June 2021)
from sampling points was not demonstrated, which contrasts with Křen et al. [75] who
estimated grain yield of spring barley based on a strong correlation with dry weight of
above-ground biomass per unit area at the early growth stage BBCH 25 (r = 0.81). Similarly,
the use of selected vegetation indices from the early growth stage for estimating grain yield
was not beneficial in our case. As stand development proceeded to the heading stage, the
selected vegetation indices based on RE region predicted grain yield at a significant level.
Likewise, Erdle et al. [76] demonstrated a close correlation of RE-based vegetation index
REIP at later stages of winter wheat development with grain yield. Consistently, Klem
et al. [65] considered NRERI, which was measured at the early milk ripening stage, as the
best indicator of grain yield in winter wheat. Also, qualitative parameters of harvested
crops can be assessed by UAV survey, as shown on the prediction of nutritional values of
silage maize using NDVI and NDRE indices by [77].

This study also confirmed the role of UAV multispectral imaging in the monitoring
of crop stand and identification of spatial differences in vegetation parameters. The main
advantages of UAV in the comparison to the satellite remote sensing, such as free available
Sentinel-2 data, are the ultra-high spatial resolution of acquired multispectral data at the
few centimeters scale and high operability of drones, which results in the better timing of
the survey independent on the cloud condition. Further research is needed for development
of collaborative smart drones for fully automated observations [78].

5. Conclusions

The use of vegetation indices from UAV imagery based on a combination of R, RE,
and NIR wavebands appears to be a suitable method for determining the effect of CTD on
biomass growth and N nutritional status of spring barley, as well as for predicting grain
yield. CTD practices have shown a distinctly positive impact on biomass development
and increased grain yield, as evidenced by increased soil water storage and delayed crop
water stress, especially at 40 cm depth. Although this paper describes the results of a field
experiment from only one growing season, the effect of CTD on increased biomass growth
was clearly demonstrated by Sentinel-2 imagery from before WLCS installation, when there
were no differences between CTD and FTD sites. As showed in many other regions, and
now also for the Central Europe, the CTD could be thus considered as a measure with a
substantial potential to mitigate or delay crop water stress, enhance crop yields, and reduce
the undue water loss from the landscape.
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Abstract: Hydrological connectivity directly affects aquatic ecological processes, water environment
and wetland ecological security, which is essential to the stability of arid ecosystems. However,
the mechanism between hydrological connectivity and water-related environment has not been
revealed completely. To address these issues, we use a landscape connectivity approach to assess the
connectivity of water patches for analyzing the hydrological connectivity of the Bosten Lake Basin
(BLB), as well as its response to human activities and climate change, based on the Joint Research
Centre (JRC) global surface water dataset. It shows that the integral index of connectivity (IIC) of
the BLB is low (ranging from 0 to 0.2) from 1990 to 2019, with an increasing interannual trend. The
connectivity is higher in wet periods and in oases compared with dry periods and high-altitude
mountain regions. Correlation and regression analyses indicate that hydrological connectivity has a
strong correlation (r > 0.5, p ≤ 0.05) with water area and water level. The interannual and seasonal
trends of eight hydrochemical indices in the Bosten Lake have been investigated to systematically
elaborate the complex relationships between hydrological connectivity and water quality in the BLB.
Results indicated that better hydrological connectivity can improve water quality, and the minimum
of pollutants were observed in high hydrological connectivity period, covering approximately 75%
of the high-water quality period. These findings could provide scientific support for the water
management in the BLB.

Keywords: hydrological connectivity; water quality; arid region; Bosten Lake; inland river-lake systems

1. Introduction

Rivers fluctuate back and forth between dry and wet periods in arid regions [1]. The
emergence and disappearance of water patches provide necessary connectivity for river and
lake ecosystems, which also provide connecting pathways for biological habitats in both
space and time. However, climate change and human activities bring great uncertainty to
the hydrological processes and ecological changes in arid zones [2–5], which may increase
the extreme precipitation and the degree and frequency of droughts [6]. Thus, they will
change the flow state and river morphology of inland rivers [7,8], and weaken or even
isolate the hydrological connectivity processes between rivers and lakes [9,10]. That will
lead to deterioration of hydrological environment and water quality as well as a rapid
decline in essential ecosystem services [11], such as lake shrinkage, water pollution, and
loss of biodiversity [12–14].

Hydrological connectivity is widely defined as the water-mediated transfer of ma-
terial, energy, and/or organisms within or between elements of the water cycle [15–18].
Recently, with the concept of hydrological connectivity having attracted much attention
among geoscientists [19,20], theories and methods related to landscape connectivity have
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been introduced into hydrology and widely used in current hydrological connectivity
studies [21–23]. Hydrological connectivity describes the connectivity of lake ecosystems to
terrestrial ecosystems through sedimentation, soil leaching, diffusion in wetlands, lake and
river inputs (receiving water) and outputs (discharging water) [24–26]. The ability of water
to exchange pollutants between different water patches depends on their connectivity with
each other, and the rate of water exchange depends on the degree of connectivity between
patches [25,27–30]. Hydrological connectivity determines the ability of species spread and
gene flow [31,32], which is an important driver for maintaining healthy ecosystem function
and social development in arid areas [33–35], and it is also important to protect biodiversity
and maintain the stability as well as the integrity of natural ecosystems [36].

The fragmentation of water systems in arid inland river basins has caused the de-
cline in hydrological connectivity, which has directly resulted in deterioration of water
environment and ecological conditions. Previous studies have investigated the effects of
topography, geomorphology, and human activities on hydrologic connectivity by means of
graph theory, hydrologic models, and connectivity indices [21,25,37–39]. However, the rela-
tionships between fragile and irreversible ecosystems and hydrological connectivity in arid
zones are still unclear due to discontinuous monitoring data and incomplete monitoring
networks [6]. Meanwhile, only a few studies have focused on the correlation between water
quality and hydrological connectivity [25,29,40], and they all concentrate on the relation-
ship between hydrological connectivity and a single environmental factor [37,41–43]. Few
studies attempt to explore the complex relationship between hydrological connectivity and
multiple environmental factors [27,44,45]. Therefore, it is particularly urgent to investigate
the response between water quality and hydrological connectivity in arid areas.

The Bosten Lake, together with the Kaidu River and the Konqi River, constitutes the
Bosten Lake Basin (BLB), which is a typical inland river basin in the arid zone and one of
the headwaters of the Tarim River Basin, the largest inland river basin in China [46,47].
With climate change and increased human activity, the Bosten Lake has gradually become a
mesotrophic lake due to extensive salinization caused by large-scale agricultural irrigation
and water diversion projects for industrial development [28,48,49]. To enhance the capacity
of the water environment, a series of water system connectivity projects was implemented
in recent years to improve the water quality of the Bosten Lake. As most of the surrounding
tributaries of the lake are seasonal rivers, and the change in hydrological connectivity
may have a significant impact on the Bosten Lake, which connects with the upstream and
downstream of the basin, but these effects have never been assessed. Therefore, this study
aims to (1) assess the interannual and seasonal variability characteristics of the connectivity
among water patches in the BLB from 1990 to 2019; (2) analyze the characteristics of
hydrochemistry changes; (3) clarify the relationship between hydrological connectivity
and its water-related environmental effects. It is intended to provide a comprehensive
framework to explain the hydrological connectivity and ecological response. The results
of the study can provide a reference for the implementation of hydraulic engineering in
inland river basins of arid regions, which is important for maintaining the stability of
oasis-desert ecosystems and the integrity of river functions, and promoting the sustainable
development of the region.

2. Material and Methods

2.1. Study Area

The BLB mainly includes the Kaidu River, the Konqi River, and the Bosten Lake, which
is the largest inland freshwater lake in China [50]. The basin is located in the arid and semi-
arid region in China. It spans an area of approximately 90,944.24 km2 [51]. The total annual
precipitation is only 76.1 mm; however, evaporation amounts to 2000 mm year−1 [50]. A
total of 65% of rainfall and 70% of evaporation happen between May and August [52]. As
shown in Figure 1, the watershed has a complex topography, with mountains, oases, and
desert interspersed, which is representative of a typical mountain-oasis-desert complex
ecosystem. Based on the extent and characteristics of the study area, we divided it into three
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sub-basins: the upper and middle reaches of the Kaidu River (KDH), the lower reaches of
the Kaidu River and upper reaches of the Konqi River (KKH), and the middle and lower
reaches of the Konqi River (KQH). In terms of primary topographical features, KDH is a
high-altitude mountainous area, KKH is a densely populated area, and KQH includes part
of the desert area.

Figure 1. Location and overview of the Bosten Lake Basin. Scale and overview of the whole Bosten
Lake Basin (a), location of the catchment within Tarim River Basin (b), enlarged view of the Bosten
Lake (c).

2.2. Data
2.2.1. Remote Sensing Data

JRC Yearly Water Classification History, v1.3 (JRC-Yearly), and JRC Monthly Water
Classification History, v1.3 (JRC-Monthly) are used to extract the yearly and monthly
surface water body information. Both datasets contain information on the location and
temporal distribution of surface water from 1984 to 2020, which provides statistical data
about the extent and variability of these water surfaces [53]. These data were generated
based on Landsat 5–8 imagery data, using expert systems, visual analytics, and evidential
reasoning to classify each pixel individually as water body or non-water body. The results
were then collated into monthly-scale for two time periods to detect water body changes,
which are widely used in studies related to terrestrial hydrology [54,55].

The JRC Yearly Water Classification History, v1.3 (JRC-Yearly) collection preserves
yearly water body distributions from 1984 to 2019 and contains 36 images in total, which
has a spatial resolution of 30 m. Among them, there are many missing patches in the study
area before 1990, so we selected all the 30 images based on the JRC-Yearly from 1990 to 2019
to identify the water area in the BLB. The JRC-Yearly dataset classifies land as permanent
water, seasonal water, and others throughout the year.

The JRC Monthly Water Classification History, v1.3 (JRC-Monthly) collection preserves
monthly water body distributions from 1984 to 2020 and contains 442 images in total, which
have a spatial resolution of 30 m. Among them, monthly-scale water bodies have a large
number of missing cases prior to 2000, and open water bodies in November-March show
as ice in BLB [51], resulting in a large bias in water area statistics. To avoid large biases
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skewing our results, we extracted the distribution of the water area for the months of
April to October from 2000 to 2019 based on the JRC-Monthly. The JRC-Monthly The
JRC-Monthly dataset classifies land as water, not water and others for the month.

2.2.2. Ecological and Hydrochemical Data

The water level and water quality data for the Bosten Lake were provided by the
Bosten Lake Administration of Bayingol Mongolian Autonomous Prefecture (Xinjiang).
The hydrological data includes the Bosten Lake level (BLL) data from 1990 to 2019. To
investigate the relationship between hydrological connectivity and the water environmental
quality of the Bosten Lake comprehensively, eight pollutions indices from 2001 to 2019
are collected from the local ecological and environmental bureau. The eight indices are:
dissolved oxygen (DO), permanganate index (CODMN), chemical oxygen demand (COD),
five-day biochemical oxygen demand (BOD5), total phosphorus (TP), total nitrogen (TN),
ammonia nitrogen (NH3-N), and total dissolved salts (TDS) or mineralization.

2.2.3. Hydro-Meteorological Data

The hydro-meteorological data used in this study are from the Terra Climate (TC)
dataset (http://www.climatologylab.org/, accessed on 1 September 2021). Three variables
are selected: temperature (TMP), actual evapotranspiration (ETa), and precipitation (PREC).
The TC dataset, which compiles global land surface monthly-scale climate data covering
1958–2019, is a high-precision climate dataset with 4 km (1/24 degree) spatial resolution.
It combines the high spatial resolution WorldClim dataset with the low spatial resolution
CRU Ts4.0 and the Japanese 55-year Reanalysis (JRA55) meteorological data [56].

2.2.4. Socioeconomic Data

The population data come from the WorldPop Global Project Population Data
dataset [57]. By using a machine learning approach that decomposes the population
size into 100 × 100 m grid cells, it generates data on the spatial distribution of the global
population from 2000–2021 utilizing the relationship between population density and a
series of geospatial covariate layers.

Croplands data have been derived from MCD12Q1.006 MODIS Land Cover Type
Yearly Global 500 m (MCD12Q1 V6) [58], which has a spatial resolution of 0.5 km. This
dataset contains global land cover types for 2001–2020 and is based on MODIS Terra and
Aqua reflectance data derived from a supervised classification.

Details of the data source for this article can be found in Supplementary Materials
Table S1.

2.3. Data Processing
2.3.1. Hydrological Connectivity Index

According to the landscape connectivity theory (Figure 2), the integral index of con-
nectivity (IIC) is used to evaluate the hydrological connectivity of BLB using Conefor
Sensinode 2.6 and ArcGIS 10.2 software [59,60]. The interannual hydrological connectivity
(Yearly-IIC) is calculated based on the permanent water patches in JRC-Yearly datasets,
and the seasonal hydrological connectivity (Monthly-IIC) is calculated using the water
patches in JRC-Monthly datasets. The interannual variability of hydrological connectivity
(dIIC) serves as an index to identify the significant patches of water [22]. The threshold
value for Conefor Sensinode 2.6 is determined in Supplementary Materials Text S1 and
Supplementary Materials Figure S5.
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Figure 2. Different cases illustrating these two connectivity indexes. (a) Larger IIC: any two nodes
are connecting. (b) Smaller IIC: pairwise connecting. (c) Larger dIIC for bule node: key node.
(d) Smaller dIIC for bule node: non-key node.

Calculation of hydrological connectivity index. The integral index of connectivity
(IIC) value is used to assess complex traffic topological networks, which is widely ap-
plied in the evaluation of landscape connectivity [22,61–63]. Since the index is highly
sensitive to connectivity, it has also been widely used in previous studies on hydrological
connectivity [22,64–66]. Therefore, IIC and dIIC are used to assess the dynamics of interan-
nual hydrological connectivity dynamics of the BLB from 1990 to 2019 and the seasonal
hydrological connectivity dynamics from 2000 to 2019 for April to October, respectively.

The IIC indicates the integral index of connectivity of the basin which is based on a
binary connectivity model, indicating direct connectivity or disconnection and intuitive
structural connectivity between two patches. The higher the connectivity of the study area,
the higher the IIC value. The connectivity index is calculated as:

I IC =
∑n

i=1 ∑n
j=1

ai × aj
1 + nlij

A2
L

=
∑n

i=1 ∑n
j=1 ai × aj × P∗

ij

A2
L

, (0 ≤ IIC ≤ 1) (1)

where, n is the total number of water patches; ai and aj represent the area of patch i and j,
respectively; nlij denotes the number of links in the shortest path between patch i and j; and
AL the area of the BLB. P∗

ij is the maximum multiplication probability of all possible paths
between patches i and j. P∗

ij = 0 means that the two patches are completely isolated from
each other. The values of IIC range from 0 to 1: when IIC = 0, there is no connection between
patches; when IIC = 1, the whole landscape is actually one habitat patch. Meanwhile, in
order to analyze the relationship between hydrological connectivity and water-related
environment, we divided the years into high hydrological connectivity years (i.e., IIC is
above the mean value) and low hydrological connectivity years (i.e., IIC is above the mean
value) from 1990 to 2019.

Although, the IIC can assess the overall degree of hydrological connectivity, it lacks
the ability to assess the importance of individual water patches [67]. Therefore, to identify
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the importance of specific patches in the BLB and better support water conservation, the
contribution of each node to the overall index was measured by removing each specific
node and recalculating the IIC [22] to take into account the percentage loss. The calculation
is as follows:

dI IC =
I IC − I IC′

I IC
× 10 (2)

where, I IC and dI IC′ correspond to the I IC value before and after the removal of a certain
patch, respectively.

The Jenks natural breakpoint method [68] has been used to classify the important
index of water patches for each year, and the dIIC is classified in six levels as unimportant
(I. 0~0.99), low importance (II. 1~4.99), medium importance (III. 5~9.99), high importance
(IV. 10~14.99), higher importance (V. 15~19.00) and highest importance (VI. 20~100). Based
on the grading results of dIIC, the image maps of each year are superimposed by ArcGIS10.2
software raster calculator and classified into five categories, which are less important (im-
portance index fluctuates between gradient I and II), important (importance index fluctuates
between gradient II and III), more important (importance index fluctuates between gradient
III and IV), very important (importance index fluctuates between gradient IV and V), and
most important (importance index is between gradient V and VI).

2.3.2. Statistical Analysis

For discussing the effect of water abundance and depletion patterns on interannual
and seasonal hydrological connectivity, based on the runoff data of the Kaidu River outlet,
the years were classified into wet year, dry year, and normal year according to the typical
year method (Table S2).

Trend analysis was performed using Sen’s slope estimator and Pearson correlation
in this study. Sen’s slope estimator is often used in trend analysis of long time series data
as a robust non-parametric statistical method of trend calculation that is computationally
efficient and insensitive to measurement errors and outliers [69]. Pearson correlation was
used to analyze the relationship between two different factors. Standard deviation (SD)
and coefficient of variation (CV) were used to characterize the data’s degree of dispersion.

The multiple stepwise regression model (MSRM) is used to quantify the effects of
climate factors and human activities on IIC [70,71]. Slope > 0 is defined as positive correla-
tion and slope < 0 is defined as negative correlation (95% confidence level). The MSRM
equation is shown below:

I IC = aX1 + bX2 + cX3 + dX4 + eX5 + k (3)

where, X1 is the total annual precipitation (mm), X2 is the average annual temperature
(◦C), X3 is the total annual actual evapotranspiration (mm), X4 is the croplands area (km2),
X5 is the average annual total population (person), and k is a constant.

3. Results

3.1. Characteristics of Multi-Scale Changes in Hydrological Connectivity
3.1.1. Inter-Annual Variation Characteristics of Hydrological Connectivity

The hydrological connectivity of the BLB basin in the past 30 years is low overall, with
an annual average yearly-IIC index of only 0.169. In addition, three obvious fluctuating
trends have emerged (Figure 3a) in three distinct corresponding periods. First, the yearly-
IIC index increased at 0.004/yr from 1990 to 2000, giving an average yearly-IIC of 0.170.
Secondly, from 2000 to 2007, it decreased at a rate of 0.008/yr, with an average yearly-IIC of
0.164, and then plunged to a 30-year low value of 0.146 in 2007, which was 13.59% lower
than the average. In the third period (2007 to 2019), the yearly-IIC index increased again at
0.005/yr, with an average yearly-IIC of 0.173, which is the highest mean value among the
three periods. It reached a maximum in 2018 of up to 0.203, which is 19.68% higher than
the yearly mean value.
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Figure 3. (a) Time series, trends, and staged changes of yearly-IIC of the Bosten Lake Basin from
1990–2019; (b) The discrete situation of IIC in the Bosten Lake Basin from 1990–2019; (c) IIC departures
in the Bosten Lake Basin, 1990–2019, based on the average of 30-year period; (d) the distribution
of yearly-IIC index in different years. The top and bottom of boxes represent the 75th and 25th
percentiles, respectively, while the top and bottom whiskers represent the 90th and 10th percentiles,
respectively. Solid red lines in the boxes are median values and dotted red lines represent mean value.

Yearly-IIC in BLB has four phases of fluctuation with surpluses and deficits in the
range of ±0.03 over the last 30 years (Figure 3c). The yearly-IIC shows two high value
phases (1997–2003, 2014–2019) and two low value phases (1990–1996, 2004–2013). In 1990–
1996 and 2004–2013, the yearly-IIC index was lower than the 30-year average value, and the
average deficit was −0.114. These two periods had an average value of yearly-IIC of 0.161
and 0.156, respectively. On the other hand, 1997–2003 and 2014–2019 were above-average
periods of higher hydrological connectivity. The average surplus of these two phases was
0.149, and the mean values of yearly-IIC were 0.181 and 0.191, respectively.

The hydrological connectivity of the BLB has obvious spatial heterogeneity. The
annual average yearly-IIC of KDH, KKH and KQH are 0.021, 0.032 and 0, respectively
(Supplementary Figure S2). The yearly-IIC of KQH is almost zero, which is due to the
prominent disconnection of the Konqi River channel [72] and serious desertification down-
stream, which resulted in few and scattered patches of water. The average annual IIC of
KKH is higher than that of KDH and less discrete, which is mainly because KDH is a high-
altitude mountainous area with unstable connectivity of water patches and is vulnerable to
climate change factors, while KKH is an oasis area with more stable and higher connectivity
of water patches under human management.

Figure 3d shows that the yearly-IIC is the largest in wet years (0.185) and the smallest
in dry years (0.163). These data indicate that the hydrological connectivity of the basin was
influenced by runoff, the hydrological connectivity was higher in wet years than in dry
ones, but the variability of the yearly-IIC index is higher in wet years.
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3.1.2. Seasonal Variations in Hydrological Connectivity

As shown in Figure 4a,c, there was a clear seasonal pattern in the hydrological con-
nectivity of BLB, with an average monthly-IIC value of 0.157 from April to October. The
average monthly-IIC was highest in April at 0.159 and lowest in October at 0.151. Monthly-IIC
was increased at a rate of 0.0011/yr in October, while the rest of the months experienced a
decreasing trend, with hydrological connectivity decreased the most (−0.0026/month) in May.

Figure 4. (a) Distribution of monthly-IIC; (b) Monthly-IIC under different seasons for different year
types; (c) Box plot of monthly-IIC distribution from April to October in 2000 to 2019; (d) Monthly-IIC
Distribution boxplots from April to October in 2000 to 2019. The meaning of the boxes and lines are
the same with Figure 3d.

The interannual trend of monthly-IIC is similar to yearly-IIC, a ‘U’ shaped trend has
been observed between 2000 and 2019 (Figure 4d), the data show that the monthly-IIC is
lower than the yearly-IIC. To be specific, the lowest monthly-IIC value of 0.114 occurring
in 2010, and the maximum value occurs in 2019 with an average monthly-IIC of 0.195. In
seasonal (Figure 4b), it can be found that the monthly-IIC reached 0.160 in spring, which is
higher than summer (monthly-IIC = 0.155) and autumn (monthly-IIC = 0.154). Furthermore,
monthly-IIC is higher in wet years (yearly-IIC = 0.182) than in dry years (yearly-IIC = 0.144).
The highest monthly-IIC occurred in the spring during the wet period (monthly-IIC = 0.190)
and the lowest in the fall during the dry period (monthly-IIC = 0.139).

The monthly-IIC in the BLB is higher in the wet period than that in the dry, and higher
in spring than in summer and autumn. The reason for this phenomenon may be that
with the increase in temperature during the year, the water flux in the basin gets larger
and vegetation grows vigorously, leading to an increase in evapotranspiration and soil
evaporation, which may in turn reduce the hydrological connectivity.
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3.1.3. Identification of Key Nodes in Hydrological Connectivity

As shown in Figure 5, the key nodes of hydrological connectivity BLB were mainly
distributed around the Bosten Lake and the upper reaches of the Kaidu River. The dIIC
value of the Bosten Lake is always more than 99, which is the largest hydrological connec-
tivity node in the BLB. The Bosten Lake is the central node of the water network which is of
great significance to the regional ecological environment. The other key nodes are primarily
distributed along the Kaidu River, mainly in the small Yuldus wetland and the large Yuldus
wetland, with an average dIIC of 4.142. The small Yuldus wetland and the large Yuldus
wetland, important biodiversity reserves in the BLB, have a particularly prominent water
conservation function.

Figure 5. Distribution of key hydrological connectivity nodes in BLB.

3.2. Characteristics and Dynamics of Water Quality in the Bosten Lake

Increased hydrological connectivity will promote water exchange capacity, which
will enhance the water cycle and improve the water quality. The water environmental
quality of the Bosten Lake shows an overall improvement from 2001 to 2019 (Figure 6).
Specifically, all indicators reveal improved quality of the Bosten Lake (except for TN), with
the compliance rate of all indicators up to the Chinese Environmental Quality for Surface
Water III Standard (Standard-III) (Tables S3 and S4), except for TDS, COD and TN.

Among these indices, the annual average concentration of COD is 23.41 mg/L (Figure 6b),
which already exceeds the Standard III (≤20 mg/L), the attainment rate only 36.84%.
The maximum value was as high as 28.68 mg/L in 2013, and only in 2006 and 2018
were the concentrations lower than 20 mg/L. The annual average concentration of TN
was 0.83 mg/L, which achieved the Standard-III, and the attainment rate is 94.74%; the
concentration was only exceeded in 2011, with a concentration of 1.01 mg/L (Figure 6c).

The water environmental quality of the Bosten Lake varies under different hydrological
connectivity periods (Figure 7a). The annual average concentrations of DO, CODMN, BOD5,
TP, TN, NH3-N and TDS in high hydrological connectivity periods are smaller than those
in low periods, and the dispersion of BOD5, TP, NH3-N and TDS has a higher degree
(CV > 20%) (Table S5). However, the maximum value and the CV (CV = 9–58%) of CODMN,
COD, BOD5, TN and TDS in high hydrological connectivity periods are larger than those
in low hydrological connectivity periods (Figure 7a). The reason is that water movement
is enhanced during high hydrological connectivity, leading to an increase in the water
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quality exchange capacity, which results in fluctuating changes in water quality indices and
a subsequent increase in the dispersion of water quality indicators. Among them are COD
and TDS, which have the lowest rate for fulfilling the Standard III. Most of their compliance
occur in high hydrological connectivity (75%). Moreover, only in one year (2011) during
the low hydrological connectivity periods did TN not reach the standard.

Figure 6. Interannual variation curves of eight water quality indicators, (a) DO and CODMN (b) COD
and BOD5 (c) TP and TN (d) NH3-N and TDS, where the dashed lines represent the Class III standard
values and freshwater standard values (TDS) of each indicator.

There are pronounced seasonal differences in the water environmental quality of the
Bosten Lake. As shown in Figure 7b, concentrations of CODMN, COD, BOD5, TN, NH3-N
and TDS were higher in autumn and summer than in spring, while DO concentrations
were slightly higher in spring than in summer and autumn. This indicates that seasonal
water quality was significantly better in the spring when hydrological connectivity was
higher than in the summer and autumn when it was lower. The seasonal variation of
TP was more discrete than the rest of the indicators, with CVs as high as 99%, 61%,
and 80% in spring, summer, and autumn, respectively, which indicates that the higher
the inter-seasonal hydrologic connectivity, the higher the variability of hydro-chemical
concentration. The seasonal variation of NH3-N varies greatly (CV > 50%), while that
of DO, COD, TN and TDS is less so (CV < 20%). From these data, we can see that the
water quality of the Bosten Lake during high hydrological connectivity periods is better
than during lower hydrological connectivity periods. However, the degree of dispersion is
higher, and the seasonal variations in hydrological connectivity majorly impact the quality
of the water environment.

60



Remote Sens. 2022, 14, 4977

Figure 7. (a) Box line diagrams of 8 water quality indicators during high connectivity (green) and low
connectivity (yellow) periods, respectively, dots represent the average concentration of each indicator
per year; (b) Boxplots of 8 water quality indicators during May to October, respectively, where May is
spring (red), June–August is summer (green), and September–October is autumn (blue). The meaning
of the boxes and lines are the same with Figure 3d, dots represent the average concentration of each
indicator per mounth.

3.3. Hydrological Connectivity and Its Water-Related Environmental Relationship
3.3.1. Anthropogenic and Climatic Drivers for IIC Dynamics

The results of the multi-step regression model used to quantify the effects of climate
change and human activities on hydrological connectivity in the BLB are shown in Table
S6. IIC is significantly and positively correlated with precipitation (PREC) (p < 0.05) and
Population (POP) (p < 0.05). With the increase of PREC, water patch area of the basin
increases, which obviously resulted in an increase in the inter-patch connectivity. As the
regional population increases, the government has implemented a series of water projects
and management measures (Table S7) in order to achieve sustainable water resources in
the region, which may contribute to a positive correlation between population and hydro-
logical connectivity. Simultaneously, IIC is significantly negatively correlated with actual
evapotranspiration (ETa) (p < 0.05) and cropland (p < 0.05), which is also attributed to the
increase in water consumption, decrease in water patch area and increase in fragmentation.
The absolute value of the correlation coefficient between ETa and IIC is greater than the
other indexes (Table S6), which indicates that the connectivity of water patches is mainly
negatively influenced by ETa in BLB, which is different from the humid area [73–75]. The
water resources in inland river basins in arid zones are formed in the mountainous areas,
and precipitation in plains, which is almost not hydrologically significant, is too subtle
to recharge the streamflow. Temperature (TEM) is negatively correlated with IIC, but not
statistically significant.
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3.3.2. Relationship between Water Quality and Hydrological Characteristics

To examine the interactions between hydrological related characteristics and hydro-
chemistry, a correlation study has been conducted in this paper (Figure 8). The results
show that CODMN, BOD5, TP, TN, and TDS are significantly negatively correlated with IIC
(p ≤ 0.05), while DO is significantly positively correlated with IIC. The results indicated
that the increase in hydrological connectivity improves water quality. At the same time, the
area of total water body (TWA) and the area of the Bosten Lake area (BLA) have significant
negative correlations (p ≤ 0.05) with CODMN, BOD5 and TP, whereas the Bosten Lake level
(BLL) has significant positive correlations (p ≤ 0.05) with CODMN, COD, BOD5, TN and
TDS, indicating that hydrological connectivity increases with increases in watershed area
and lake level, thus improving the water environment quality.

Figure 8. Correlation test of each index. IIC: integral index of connectivity; TWA: total water area;
BLA: Bosten Lake area; BLL: Bosten Lake level.

Overall, there is a strong correlation between the water quality of the water environ-
ment and the hydrological characteristics. The results show that DO has a very strong
positive correlation with IIC and the Bosten Lake area (BLA), (|r| > 0.6, p ≤ 0.05); CODMN
has a very strong negative correlation with IIC, BLA and the Bosten Lake level (BLL)
(|r| > 0.6, p ≤ 0.05); BOD5 and TP have a very strong negative correlation with IIC, total
water area (TWA) and BLA, (|r| > 0.6, p ≤ 0.05); TN has a very strong negative correlation
with BLL (|r| > 0.6, p ≤ 0.05); TDS has a very strong negative correlation with IIC, BLA
and BLL (|r| > 0.6, p ≤ 0.05); and TDS has a very strong negative correlation with IIC,
BLA and BLL (|r| > 0.6, p ≤ 0.05). Furthermore, the results indicate that there is a strong
negative correlation between TDS and IIC, and between BLA and BLL (|r| > 0.6, p ≤ 0.05).
This shows that the quality of the water environment will be effectively improved with
increases in hydrological connectivity and water body area.

The changes and interactions between water environmental quality indicators are
more complex, as shown by the significant negative correlations between DO and CODMN,
BOD5, TN, TDS (p ≤ 0.05) and negative correlations with COD and TP. The correlations with
NH3-N are weak and statistically insignificant. CODMN has a strong positive correlation
with COD, BOD5, TN, and TDS (|r| > 0.6, p ≤ 0.05); COD has a strong positive correlation
with TN, NH3-N, and TDS (p ≤ 0.05); BOD5 has a strong positive correlation with TP, TN,
and TDS (|r| > 0.6, p ≤ 0.05); and TN has a strong positive correlation with TDS (|r| > 0.6,
p ≤ 0.05). This phenomenon indicates that the increase in DO has a positive effect on the
self-cleaning ability of the water environment. All the other water quality indicators show a
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synergistic effect, such that when one water quality indicator starts to deteriorate, it causes
the deterioration of other indicators as well.

4. Discussion

4.1. Anthropogenic and Climatic Drivers for Hydrological Connectivity Dynamics

Previous studies [73,75] have demonstrated that hydraulic measures such as river
dredging and land use changes are the main drivers of hydrological connectivity changes.
According to the statistics (Figure S3), the population and cropland in BLB increased
continuously from 2001 to 2019, which likewise increased water consumption and affected
terrestrial water storage [76]. This, in turn, had an impact on hydrological connectivity.
Table S7 shows that most of the BLB channels have been dredged after 1990, and that
several artificial channels have been built since 2000 to satisfy the increasing irrigation
demand. The construction of these channels has increased the flow paths and significantly
improved the possibility of water system connectivity.

Ecological water conveyance, as an effective measure to restore and protect the natural
vegetation and water environment in inland river basins, is commonly used in northwest
China [76–78]. Around 2010, several water system connectivity projects and hydraulic facili-
ties were carried out in the BLB, including artificial dredging and construction channels and
water transfer projects. All these hydraulic measures have effectively increased the water
system connectivity in the basin, and improved the fractal structure of the water system
and artificial water system connectivity. It has enabled the basin to achieve supplementary
water resources and boost the complementary water resources between river-lake and
reservoir. These water management measures have enhanced of the exchange of water and
matter within and outside the water system, leading to an improvement of the carrying
capacity of water resources in the basin, and an increase in the stability of the water system
network. In cases where protective behaviors are stronger than destructive behaviors, the
hydrological connectivity of the basin will improve. Otherwise, the connectivity will be
reduced. Therefore, regulating all types of water use activities and construction projects in
inland river basins in arid zones is essential, which can improve the structure and pattern
of hydrological connectivity, as well as the function and connectivity of river and lake
systems.

Our results show that the increase in hydrological connectivity caused by precipitation
and temperature is not significant in the arid zone. The increase in TMP accelerate glacier
melt, which led to an increase in runoff and hydrological connectivity to some extent. In
contrast, ETa has a negative impact on the watershed, which will reduce hydrological
connectivity.

Beel’s [78] argued that the increase in river function in summer and autumn in the
Arctic highlands could increase terrestrial hydrological connectivity. However, we find that
the seasonal variation in hydrological connectivity is higher in spring than in summer and
autumn (Figure 4), as surface water in the arid inland river basins is mainly influenced by
ETa. Hydrological connectivity is higher in spring with snowmelt, but as temperature rises,
vegetation grows and regional evapotranspiration increases, the water flux becomes larger,
resulting in an amount of water surface evapotranspiration and the connectivity of water
patches is reduced.

4.2. Ecological and Hydrochemical Characteristics of Lakes in Response to Hydrological
Characteristics

As illustrated in Figure 8, there is a strong positive relationship among hydrological
connectivity, water body area, lake area and water level. When the water level of the lake
increases, the water area likewise increases, and as total water body area increases, there is
an obvious increase in hydrological connectivity. As the largest throughput freshwater lake
in China, the Bosten Lake is a broad and shallow basin, with rises in water level, the surface
area of the lake will increase, isolated patches of water will be connected with each other,
thus increasing hydrological connectivity [79,80]. However, as the lake area increases, the
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evaporation of water from the lake surface will increase, as well as the ineffective water
loss of the lake. While when the water level is too low, the exposed surface area increases,
and the large area of exposed fine sand of the lake basin, that is in the northwest and south
shore of the lake, will directly aggravate the wind and dust storms around the Bosten
Lake, and affect the environment suitable for people to live. Therefore, there may be an
inverted U-shaped relationship between hydrological connectivity, lake level, water area,
and ecology that is similar to an environmental Kuznets curve [40].

As the biggest inland freshwater lake in China, the largest hydrologically connected
node in the basin (Figure 5), the soil salinization in the surrounding areas is seriously
overloaded with nutrients. Despite the local government implementing a series of water
conservation policies and projects, it still has not been able to change the fact that the
Bosten Lake is gradually transforming into a micro-salt lake (TDS > 1000 mg/L) [2,28,81].
The continued increase of salinity not only adversely affects the lake ecosystem, regional
ecology and water resources utilization, but also has become a serious environmental
problem in the lake itself [48]. Our study found that between 1990 and 2019, the Bosten
Lake had met freshwater standards for TDS concentrations twice only—in 2016 and 2019
(TDS ≤ 1000 mg/L) (Figure 6d).

From 2016 to 2020, in response to the problems of broken streams and deteriorating
water environment around the Bosten Lake, along with poor water circulation and water
environment quality in the northern part of the lake, three water system connection projects
were implemented. A total of about 4.79 × 108 m3 (Table S7) of water was ecologically
transferred to the Bosten Lake, which provided an important basis for the improvement
of the lake’s water environment quality. According to the correlation test (Figure 8), TDS
shows a strong negative correlation with IIC, BLA, and BLL (|r| > 0.6, p ≤ 0.05). This
phenomenon suggests that the hydrological connectivity, BLL and BWA play an important
role in the dynamics of lake water salinity. Our results also show that from 2007 to 2014,
hydrological connectivity increased (Figure 4a), while BLL decreased (Figure S1). At the
same time, however, TDS also increased (Figure 6d). The correlation between TDS and BLL
was greater than that between IIC and BLA based on the correlation test, indicating a more
significant regulation of TDS by BLL [28,47]. This may be because as the lake level increases,
the decrease in hydrochemical concentration caused by the increase in lake volume is more
efficient than that of water exchange. However, the existing hydrological connectivity
evaluation models lack the representation of hydrological connectivity processes, so it is
difficult to reveal the kinetics of water exchange quantitatively, which will be the focus of
our next research. Also, we will improve the method of assessing hydrological connectivity,
which is influenced by the area of water bodies and the distance of patches.

5. Conclusions

In this study, we applied the concept of landscape connectivity and used landscape
graph theory to evaluate the connectivity characteristics of water patches in BLB from
1990 to 2019, and analyzed the water quality changes in Lake Bosten over the last 20 years,
emphasizing the regulation effects of hydrological connectivity on water quality. The results
indicate that the hydrological connectivity of BLB is low (IIC = 0 ~ 0.2025, IICMAX = 1) and
cyclical, and the hydrological connectivity is higher in oasis than mountain and desert
areas. At the same time, the water resources in inland river basins in arid zones are
formed in mountainous areas, and precipitation in plains is almost not hydrologically
significant. Temperature (TEM) is negatively correlated with IIC, but not statistically
significant. Furthermore, seasonal hydrological connectivity is highest in spring and lowest
in autumn.

From 2000 to 2019, the water environmental quality of the lake gradually improved,
and the pollution indicators mainly related to TDS, COD and TN. Most importantly,
there is a significant negative correlation between CODMN, BOD5, TP, TN, and TDS and
IIC (p ≤ 0.05), and DO was significantly positively correlated with IIC, and the annual
average concentrations of CODMN, BOD5, TP, TN, NH3-N and TDS in high hydrological
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connectivity periods are smaller than those in low periods, and most of their compliance
periods occur during high hydrological connectivity (75%), it can be found that hydrological
connectivity plays a key role in improving the water quality of the Bosten Lake, the
minimum value have occurred during periods of high hydrological connectivity.
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Abstract: Integrated assessment of the water environment has become widespread in many rivers,
lakes, and reservoirs; however, aquatic organisms in freshwater are often overlooked in this pro-
cess. Zooplankton, as primary consumers, are sensitive and responsive to changes in the water
environment. Water and zooplankton samples were collected on-site at Shanxi Reservoir quarterly
to determine 12 water environmental indicators and to quantify the abundance of zooplankton
of Cladocera, Copepoda and Rotifera by using the ZooScan zooplankton image-scanning analysis
system, combined with OLYMPUS BX51 using machine learning recognition classification. The aim
was to explore the relationship between water environmental factors and zooplankton through their
spatial and temporal heterogeneity. Through principal component analysis, redundancy analysis and
cluster analysis, variations in the factors driving zooplankton population growth in different seasons
could be identified. At the same time, different taxa of zooplankton can form clusters with related
water environmental factors during the abundant water period in summer and the dry water period
in winter. Based on long-term monitoring, zooplankton can be used as a comprehensive indicator for
water environment and water ecological health evaluation, as well as providing scientific support for
regional water resources deployment and management.

Keywords: Cladocera; Copepoda; freshwater reservoir; water environment; Rotifera; ZooScan

1. Introduction

Water is one of the most important natural resources on which all life depends. The
earth’s freshwater resources play an important role in the survival of mankind, the devel-
opment of society, and contemporary progress that cannot be ignored [1,2]. In recent years,
however, increasing population and climate change have caused serious pollution and
damage to limited freshwater resources [3,4]. Therefore, many water-poor countries around
the world, like China, have adopted the construction of reservoirs to collect, store, and
utilize their limited freshwater resources [5]. Freshwater reservoirs not only provide water
for drinking, agricultural irrigation, and industrial production for nearby residents, but
also prevent flooding by regulating the water level downstream through storage and dis-
charge processes [6], and generating electricity through the drainage process can effectively
reduce the production of greenhouse gases in the thermal power generation process [7].
Nevertheless, due to human activities, the water environment of freshwater reservoirs in
different regions of the world has deteriorated to different degrees [8], which makes the
monitoring of the water environment of freshwater reservoirs and the water environment
and ecological restoration of freshwater reservoirs a hot topic of current research [9,10].
As freshwater reservoirs are closely related to human production and life, they have been
attracting the attention of scholars worldwide in recent years. For a long time, people
have been monitoring the water environment and water ecology of freshwater reservoirs
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through various water environment indicators to ensure water safety and avoiding the
crisis caused by water pollution and water environment degradation [11,12]. With the de-
velopment of science and technology, more and more intelligent equipment and high-tech
research methods are applied to water environment monitoring. Sagan, et al. [13] used the
potential of remote sensing and the limitations of spectral indices, bio-optical simulations,
machine learning, and cloud computing to monitor inland water quality. Shi, et al. [14] used
spectroscopic analysis and ultra-high resolution mass spectrometry to monitor dissolved
organic matter in wastewater and drinking water treatment.

In addition to conventional water quality indicators, the inclusion of zooplankton-like
ecological indicators is an important reference for the comprehensive consideration of
the health of the water environment. Zooplankton is an important part of aquatic ecosys-
tems [15,16]. Zooplankton is mostly in the second trophic level of the food web and is
the key intermediate link in the transfer of material and energy from primary produc-
ers to higher trophic levels [17]. The ecological niche of zooplankton and its specificity
has led many researchers to work on integrating it with water environmental indicators.
Sousa, et al. [18] found that water quality changes had a significant effect on zooplankton
community structure. Due to the widespread use of zooplankton to monitor water quality
in productive life as well as in scientific research, in 2011 scholars called for the inclusion of
zooplankton in the ecological quality assessment of lakes according to the European Water
Framework Directive (WFD) [19]. With further research, it was found that the changes
in zooplankton abundance are not only directly related to water environment indicators,
but also respond to some extent to changes in the abundance of phytoplankton such as
algae [20,21]. Zooplankton species composition and quantity changes are not only the basic
content of water ecological health research but can also accurately reflect the quality of
the water ecological environment [22,23]. Its biodiversity index is one of the important
evaluation indicators of water ecological environment health [4,24].

With the development of computer and electronic technology, more and more re-
searchers rely on the ZooScan zooplankton image scanning and analysis system for scien-
tific and rapid identification, measurement, and identification of zooplankton in the water
body [25,26]. Naito, et al. [27] used ZooScan, Optical Plankton Recorder (OPC), and micro-
scopic study methods to study the sea surface zooplankton respectively, and ZooScan has
significant advantages among these three quantitative methods. Wang, et al. [28] studied
the spatial variation of the size structure of medium-sized plankton and its relationship
with environmental factors with the help of the ZooScan system. Maas, et al. [29] used
image-based observation systems in marine ecosystems, and with the help of ZooScan,
the ecological zonation of zooplankton can be quantitatively analyzed. Noyon, et al. [30]
scanned mesozooplankton samples by ZooScan to get the distribution of medium-sized
zooplankton communities on the Agulhas Bank in autumn to predict scale structure and
production. Garcia-Herrera, et al. [31] used ZooScan in combination with the web-based
platform EcoTaxa 2.0 system to study differences in integrated zooplankton abundance,
biovolume, and biomass. In addition, the microscope enables accurate species identification
and classification of zooplankton [32].

The present study area was conducted in a mountainous riverine freshwater reservoir
located in a subtropical monsoonal zone with a mild climate in southeastern China. The
study area is in a typhoon area with many inhabitants, and the water environment and
water ecology are affected by the combination of extreme typhoon climate and surface
pollution from residential areas [33]. During the rainy season, the initial rainwater is mixed
with surface pollutants from residential areas into the reservoir due to the catchment effect
of the valley [34]. The typhoon season causes drastic changes in the water environment in
the reservoir due to the wind disturbance effect [35]. The study area is the main freshwater
water source in southern Zhejiang province, which assumes multiple roles as drinking
water, domestic water, and industrial water [36], so it is of great importance to maintain
water security, guarantee the sustainability of water resources use, and protect the water
environment and water ecological stability of the study area.
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In this study, zooplankton was linked to its surroundings based on the most important
theory in ecology (ecological niche theory) [37], and the spatial and temporal heterogeneity
of typical freshwater zooplankton and common water environmental indicators was used
to analyze mountain river-type reservoirs. Zooplankton, as an integral part of freshwater
aquatic ecosystems, plays an important role in the monitoring and assessment of the water
environment [38]. However, studies of the spatial heterogeneity of freshwater zooplankton
communities and their correlation with the water environment often take researchers a
great deal of time due to the lack of rapid and accurate plankton statistics [39]. Therefore, a
systematic study on the spatial distribution of ecological niches of freshwater zooplankton,
with the help of OLYMPUS BX51 and ZooScan, a zooplankton image acquisition and
analysis system, and an artificial intelligence recognition and classification system, will help
to enhance the dimensions of freshwater water environment monitoring. It can also help
to explore the spatial and temporal heterogeneity of zooplankton and water environment,
identifying the response mechanism of water environment changes to specific zooplankton,
and providing new ideas for the sustainable and healthy operation and maintenance of the
same type of freshwater reservoirs.

2. Materials and Methods

2.1. Description of the Study Area

Shanxi Reservoir (latitude 27◦36′–27◦50′; longitude 119◦47′–120◦15′), a large fresh-
water reservoir in the south of Zhejiang Province, is in the upper reaches of the Feiyun
River, a typical river-type reservoir. It has a total reservoir capacity of 1.82 × 109 m3 in a
rainfall catchment area of 1529 km2, controlling nearly 80% of Wenzhou’s water resources,
providing 1.34 × 109 m3 of freshwater to Wenzhou’s urban area every year, supplying five
million people in the water supply area and providing 2.20 × 105 kW of peaking power to
Wenzhou’s power grid, with obvious environmental and economic benefits. The Shanxi
Reservoir is located in the subtropical monsoon climate zone, with an average multi-year
precipitation of 1843.3 mm and an average multi-year temperature of 18.7 ◦C.

2.2. Sampling

For this study, based on the habitat and ecological characteristics of zooplankton [30],
four seasons were selected for sampling; in April (spring), July (summer), October (autumn)
in 2021, and January (winter) in 2022. As shown in Figure 1, 25 monitoring points were set
up in the study area, according to the distribution of the main Shanxi Reservoir area and
the tributary catchment area. According to the width of the section of different monitoring
points set up with the bank perpendicular to the monitoring section, each monitoring
section selected the mid-point and near-shore points for sampling.

According to the experience of relevant researchers, the distribution of the thermocline
in lakes or oceans is generally used to determine the depth of samples to be collected at
the corresponding sampling sites [40–42]. Water samples were collected from the upper
layer (1 m), middle layer (4–7 m), and lower layer (10–20 m) using a 5 L water collector,
considering the distribution of the thermocline in the study area.

Water environment indicators were obtained as follows. For the collected water
samples on-site using DS5X (Hach Corporation) to measure water temperature (Tem), pH,
dissolved oxygen (DO), electrical conductivity (EC), oxidation-reduction potential (ORP),
and chlorophyll a (Chl-a), which are conventional indicators. For each layer of the sample
retention volume of 10 L of water samples for the determination of routine water pollution
indicators in the laboratory; according to the national standard (GB11892-89) [43] for the
determination of permanganate index (CODMn) of environmental water quality. For the
determination of total phosphorus (TP), the ammonium molybdate spectrophotometric
method was used according to the national standard (GB11893-89) [44]. According to this,
the determination of total nitrogen (TN) was carried out by UV spectrophotometric method
using alkaline potassium persulfate elimination. The determination of ammonia nitrogen
(NH3-N) in water samples was made according to the national standard (HJ535-2009) [45].
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Figure 1. Sampling points in the Shanxi reservoir.

The zooplankton samples were obtained as follows: 10 L of water samples were
collected from each layer, filtered using a 64μm pore size filter according to the national
standard (SCT9402-2010) [46], the filter rinsed to obtain about 250 mL of zooplankton
concentrate, and formaldehyde solution with a volume fraction of 5% was added for
sample fixation. Zooplankton samples were classified and data collected in the laboratory
using ZooScan, a zooplankton image acquisition system, in combination with imageJ image
processing software and EcoTaxa 2.0 image analysis and processing website. Considering
the accuracy of the ZooScan system for zooplankton monitoring and the related habits of
zooplankton [47], the identification of zooplankton in the study area was completed with
the assistance of OLYMPUS BX51 in this study.

2.3. Data Processing

In order to investigate the response between zooplankton and the water environment
in Shanxi Freshwater Reservoir, the study area was divided into six sub-regions: the Shanxi
Reservoir (SR), the Huangtankeng Stream (HS), the Xuezuokou Stream (XS), the Jujiangxi
Stream (JS), the Sanchaxi Stream (SS), and the Hongkouxi Stream (HXS) according to the
characteristics of the catchments in the study area. The screening of three representative
zooplankton species based on the collected zooplankton samples gave results on the
spatial and temporal heterogeneity of zooplankton in freshwater reservoirs. The results of
the spatial and temporal heterogeneity of the water environmental factors of freshwater
reservoirs were obtained by dividing them according to their physical, chemical, and
ecological properties.

As the data in this study came from field sampling, there were a certain number of
outliers, and to ensure better representativeness, the abnormal data were not presented.
Correlations between three representative zooplankton species and 14 water environmental
factors were analyzed using SPSS25 and Origin2021 using ANOVA and W-MERT methods
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respectively [48], and principal component analysis (PCA) was performed on each area of
freshwater reservoirs in the study area to ensure that covariance matrices were characteris-
tically decomposed with no or little loss of information, and multiple water environmental
factors were generalized into representative major influences [49,50]. In addition, the
relationship between zooplankton and water environmental factors was studied using
detrended correspondence analysis (DCA) and redundancy analysis (RDA) using Canoco
5 software [51]. A cluster analysis, based on Euclidian distance, was used to check how
Cladocera, Copepoda, and Rotifera were distributed along the study area using the sam-
pling points and seasons of the reservoir as attributes [52]. A chi-square test was performed
on the data for the water environment factors. One-way analysis of variance (ANOVA) was
used for the normally distributed factors Tem, CODMn, pH, and TN to obtain significant
differences in the spatial and temporal distribution of TN (ANOVA, p < 0.05). A Welch’s
mean equality robustness test was applied to the non-normally distributed factors with
uneven variances [53]. Finally, the results of spatial and temporal heterogeneity analysis of
zooplankton and water environment factors were combined with data analysis methods
to obtain the status of zooplankton and water environment in Shanxi Reservoir and to
analyze their causes, and to explore the response relationship between typical zooplankton
and water environment indicators.

3. Results

3.1. Spatial and Temporal Heterogeneity of Reservoir’s Water Environment

The variability of 12 water environmental factors in different areas of Shanxi Reservoir
in terms of water temperature (Tem), electrical conductivity (EC), dissolved oxygen (DO),
redox potential (ORP), pH, picocyanobacteria (PCY), turbidity (Tur), chlorophyll α (Chl-a),
total nitrogen (TN), permanganate index (CODMn), total phosphorus (TP) and ammonia
nitrogen (NH3-N) are presented in Table 1. After chi-square test and Welch’s mean equality
robustness test, significant differences in the spatial and temporal distributions of EC, ORP,
PCY, Chl-a, TP, and NH3-N (W-MERT, p < 0.05) were obtained. The 12 water environmental
factors are further classified and discussed concerning their different properties.

3.1.1. Physicochemical Indicators of Water Bodies

The physical and chemical properties of water bodies are the basic components of the
water environment and are a fundamental indication of the health of the water environment.
Water temperature (Tem), turbidity (Tur), electrical conductivity (EC), pH, dissolved oxygen
(DO), and redox potential (ORP)—these physical and chemical properties of water bodies
are the basic components of the water environment and are a fundamental indication of
the health of the water environment.

The study area is generally characterized by high water temperatures in summer and
low water temperatures in winter. Combined with Figure 2 and the results presented by the
data, the temporal and spatial differences in turbidity (Tur) and electrical conductivity (EC)
in the study area were significant. The pH of the water bodies in the study area fluctuated
significantly more in spring and summer than in autumn and winter, and the values
increased significantly in summer. The spatial and temporal variability of dissolved oxygen
(DO) in the water bodies of the study area was greatest in summer. The redox potential
(ORP) also produced significant fluctuations and differences during the summer months.
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Table 1. Water Environment in the Study Area.

Water
Environment

Region Shanxi
Reservoir

(SR)

Huangtankeng
Stream

(HS)

Xuezuokou
Stream

(XS)

Jujiang
Stream

(JS)

Sanchaxi
Stream

(SS)

Hongkouxi
Stream
(HKS)

Tem
(◦C)

15.30~31.22 ˆ 15.47~29.08 15.59~30.91 15.84~31.00 15.84~31.00 16.21~31.02
(22.67 ± 5.06) * (22.39 ± 5.11) (22.80 ± 5.34) (23.43 ± 4.99) (22.95 ± 4.96) (23.90 ± 6.06)

EC
(mS/cm)

31.16~47.60 40.70~66.60 31.42~46.20 32.90~70.00 35.13~52.20 37.40~47.40
(42.60 ± 4.05) (50.60 ± 4.11) (41.01 ± 5.08) (46.71 ± 10.37) (43.19 ± 5.32) (44.70 ± 4.88)

DO
(mg/L)

5.07~8.16 5.14~8.32 5.84~7.69 5.25~7.75 5.26~8.48 6.08~8.48
(6.78 ± 0.86) (6.88 ± 1.06) (6.99 ± 0.70) (6.84 ± 0.81) (7.02 ± 0.82) (7.30 ± 1.00)

ORP
(V)

0.19~0.46 0.34~0.52 0.18~0.44 0.14~0.43 0.16~0.46 0.20~0.43
(0.37 ± 0.07) (0.40 ± 0.05) (0.37 ± 0.08) (0.33 ± 0.10) (0.35 ± 0.11) (0.35 ± 0.10)

pH 6.43~8.17 6.81~7.88 6.49~8.23 6.54~8.02 6.68~8.13 7.15~8.10
(7.21 ± 0.43) (7.29 ± 0.30) (7.20 ± 0.50) (7.34 ± 0.43) (7.36 ± 0.49) (7.43 ± 0.45)

PCY
(×103 cell/L)

0.38~19.38 0.38~19.37 0.53~3.99 0.67~19.38 0.74~10.03 0.95~4.90
(2.05 ± 1.56) (2.05 ± 1.56) (2.02 ± 1.47) (5.27 ± 4.74) (3.87 ± 3.04) (3.33 ± 1.71)

Tur
(NTU)

1.10~8.00 3.40~6.20 2.60~5.30 1.50~7.95 1.70~11.10 1.90~9.90
(4.34 ± 1.75) (4.71 ± 0.89) (4.36 ± 0.87) (4.14 ± 1.79) (5.13 ± 2.55) (5.44 ± 3.62)

Chl-a
(mg/L)

0.60~4.16 1.24~13.66 0.63~7.54 0.50~4.79 1.20~6.28 1.05~3.58
(1.71 ± 1.11) (4.09 ± 3.50) (2.13 ± 2.43) (2.31 ± 1.52) (2.85 ± 1.61) (2.43 ± 1.25)

TN
(mg/L)

0.10~0.63 0.30~0.67 0.2282~0.4754 0.14~0.47 0.07~0.46 0.17~0.49
(0.38 ± 0.12) (0.44 ± 0.12) (0.35 ± 0.065) (0.33 ± 0.096) (0.31 ± 0.14) (0.36 ± 0.14)

CODMn
(mg/L)

0.37~2.00 0.72~2.30 0.73~1.88 0.75~1.80 0.63~1.70 0.78~1.89
1.36 ± 0.43 (1.58 ± 0.53) (1.42 ± 0.37) (1.42 ± 0.35) (1.35 ± 0.43) (1.53 ± 0.51)

TP
(μg/L)

6.10~128.40 4.40~40.00 6.10~128.40 6.50~36.00 8.30~38.80 10.60~30.30
(23.90 ± 23.80) (20.90 ± 12.30) (23.91 ± 23.82) (22.90 ± 9.50) (23.20 ± 11.10) (21.30 ± 9.70)

NH3N
(μg/L)

13.10~174.30 7.90~235.10 11.80~118.60 10.20~155.80 3.20~143.00 3.00~170.00
(50.20 ± 42.40) (78.30 ± 74.90) (37.70 ± 36.30) (52.40 ± 54.30) (60.30 ± 46.10) (76.20 ± 66.50)

ˆ indicates the range of an indicator. * Mean values and standard deviations (SD) are shown in parentheses.

  
(a) (b) 

 
(c) (d) 

Figure 2. Plumbline diagrams of the spatial and temporal distribution of physical and chemical
properties of water bodies in the study area in different seasons: (a) Spring; (b) Summer; (c) Autumn;
(d) Winter.
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3.1.2. Biological Indicators of Water Bodies

Similar to chlorophyll a (Chl-a), which is mainly derived from phytoplankton in the
water, PCY values reflect the abundance of picocyanobacteria, which are typical of primary
producers in the water environment of the study area.

According to the results of the Welch’s mean equality robustness test (W-MERT), Chl-a
(W-MERT, p = 0.0001367 < 0.05) and PCY (W-MERT, p = 2.6499 × 10−13 < 0.05) showed
highly significant differences in spatial and temporal distributions. In terms of temporal
distribution, Chl-a and PCY were significantly less in winter than in other seasons; in terms
of spatial distribution, Chl-a and PCY in spring showed higher levels in Huangtankeng
Stream and Jujiangxi Stream than in other study areas. However, the Chl-a in summer
showed a higher phenomenon in the Shanxi Reservoir than in the tributaries. In contrast,
PCY was further elevated in number but spatially distributed more evenly than Chl-a.

3.1.3. Pollution Indicators of Water Bodies

Ammonia nitrogen (NH3-N) reflects the elemental nitrogen in water in the form
of NH3 and NH+

4 . Total nitrogen (TN) contains various forms of nitrogen in the water
body, and various forms of phosphorus elements in the water body are indicated by total
phosphorus (TP). NH3-N, TN, and TP are mainly from domestic sewage and agricultural
surface source pollution, and are important indicators of the health of water bodies. The
permanganate index is a common indicator of oxidizable pollutants in water bodies. In
terms of spatial and temporal distribution, TN (ANOVA, p = 0.0089 < 0.05), NH3-N (W-
MERT, p = 0.006 < 0.05), and TP (W-MERT, p = 0.016 < 0.05) showed highly significant
differences in spatial and temporal distribution.

In Figure 3, the amount of NH3-N in the water was significantly more in summer
than in other seasons. TN and TP were higher than the yearly average in spring and
summer, and CODMn was significantly less in winter than in other seasons. In addition, TN
and NH3-N showed an increase in summer and a higher level in autumn. For the spatial
distribution of pollution indicators, both TN and NH3-N showed extreme values in the
Huangtankeng Stream, and fluctuated more between sub-regions within the same season;
both CODMn and TP showed extreme values in the Shanxi Reservoir, but TP fluctuated
more than CODMn within each sub-region.

3.2. Spatial and Temporal Heterogeneity of Reservoir’s Zooplankton

Through microscopic examination of zooplankton samples using OLYMPUS BX51,
combined rapid statistical and technical work with the ZooScan zooplankton image scan-
ning analysis system, 46 genus of zooplankton were identified at the genus level in accor-
dance with the Atlas of Major Freshwater Zooplankton of Zhejiang Province (Drinking
Water Sources) [54]. The detailed composition, frequency of recurrence and degree of
dominance are shown in Table 2.

According to the data in Table 2, three of the genus Sinocalanus, Sinodiaptomus and
Nitocra are prominent in terms of dominance of Copepoda, and Cladocera’s Macrothrix,
Daphnia, Bosmina and Diaphanosoma all have a numerical dominance of more than 4%,
significantly more than the other species, which further suggests that it is Cladocera and
Copepoda that dominate the study area. Combining the information in Figure 4, in terms of
temporal distribution, the number of zooplankton in the water column showed a gradual
increase from spring to autumn and reached a maximum in summer and autumn, with a
significant decrease after winter. In spring, the abundance of Cladocera fluctuated more in
different subregions than Rotifera and Copepoda. All three orders in the same sub-region
showed a greater increase in zooplankton abundance in summer compared to spring, with
the mean abundance reaching its highest throughout the year. Copepoda was the dominant
species within each subregion in summer under its abundance. The abundance of Cladocera
in each subregion decayed with the onset of autumn but was generally much higher than in
spring. The abundance of Rotifera and Copepoda in the Huangtanke Stream and Sanchaxi
Stream sub-regions showed an increase compared to summer. The zooplankton abundance
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of the three orders showed a dramatic decrease in winter. The abundance of Rotifera and
Cladocera in the Shanxi Reservoir sub-region decreased dramatically and was lower than
the spring average. The abundance in the tributary sub-region decreased but overall was
higher than the spring average. The Copepoda, the typical dominant zooplankton species
in the study area during summer and autumn, had higher mean values in the study area
than in spring, even though its abundance showed a dramatic decrease in winter.

 
(a) 

 
(b) 

 
(c) (d) 

 
(e) (f) 

Figure 3. Stacked bar charts of the spatial and temporal distribution of water environmental factors:
(a) Chl-a; (b) PCY; (c) NH3-N; (d) TN; (e) CODMn; (f) TP.
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Table 2. The species composition and individual dominance of the study area.

Categories
(Orders)

Name of the
Species (Genus)

Frequency of
Recurrence *

Degree of
Dominance

Name of the
Species (Genus)

Frequency of
Recurrence

Degree of
Dominance

Rotifera

Asplanchna 100% 2.60% Keratella 40% 0.20%
Polyarthra 80% 4.31% Testudinalla 40% 0.60%
Trichocerca 60% 0.25% Filinia 40% 0.53%
Gastropus 60% 0.44% Ascomorpha 40% 0.33%
Mytilina 60% 0.49% Eosphora 40% 0.63%

Brachiomus 60% 3.07% A.fissa 20% 0.02%
Cephalodella 60% 3.72% Rotaria 20% 0.26%
Pompholyx 60% 1.16% Epiphanes 20% 0.42%
Synchaeta 60% 0.34% Euchlanis 20% 0.02%
Notholeca 40% 0.74% Ploesoma 20% 0.06%

Copepoda

Nitocra 100% 6.90% Paracyclops 80% 2.58%
Sinocalanus 100% 11.80% Mesocyclops 80% 1.99%

Sinodiaptomus 100% 9.00% Heliodiaptomus 80% 5.39%
Cyclops 100% 1.51% Onchocamptus 60% 0.15%

Tropocyclops 80% 2.12% Limnoithona 60% 1.06%
Themocyclops 80% 2.23% Neodiaptomus 60% 1.64%

Canthocamptus 80% 1.47% Macrocyclops 40% 0.05%
Mongolodiaptpmus 80% 1.00%

Cladocera

Macrothrix 100% 4.20% Diaphanosoma 60% 5.60%
Daphnia 80% 6.12% Camptocercus 40% 0.49%

Bosminopsis 60% 1.37% Leydigia 20% 0.24%
Chydorus 60% 3.54% Alona 20% 0.32%

Simocephalus 60% 2.11% Moinodaphnia 20% 0.08%
Bosmina 60% 6.92%

* Probability of being observable in a single survey cycle.

 
(a) 

Figure 4. Cont.
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(b) 

 
(c) 

Figure 4. Three-dimensional dotted waterfall maps of the spatial and temporal distribution of
plankton and images from OLYMPUS BX51 and ZooScan scans of (a) Cladocera; (b) Copepoda;
(c) Rotifera.

In terms of spatial distribution, the following results can be obtained by comparing
typical zooplankton abundances at different times during the same season. In spring,
the average number of Rotifera in Shanxi Reservoir was lower than in the other five sub-
regions. By contrast, the average number of Cladocera and Copepoda was higher than in
the other five sub-regions. In summer, the average number of Rotifera and Cladocera in
Shanxi Reservoir was lower than in the other five sub-regions, and the average number
of Copepoda remained higher than the other five sub-regions. The average number of
zooplankton decreased slightly in autumn compared to summer and generally showed a
lower average number in Shanxi Reservoir than in the sub-region. The average number of
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zooplankton decreased further in winter, and the average number of Rotifera and Copepoda
in Shanxi Reservoir was lower than the other five sub-regions, whereas the average number
of Cladocera remained higher than the other five sub-regions.

3.3. Relationships between Water Environmental Factors and Zooplankton
3.3.1. Principal Component Analysis (PCA)

Due to the large number of water environmental factors involved in this study, in order
to facilitate the study of the response relationship between water environmental factors and
zooplankton, after using the KMO (Kaiser-Meyer-Olkin) test for judgement (0 < 0.735 < 1),
the dimensionality of the water environmental factors could be reduced using principal
component analysis [55,56], and the loadings plot for the principal component analysis and
the ellipses corresponding to the four 95% confidence levels for spring, summer, autumn
and winter are shown in Figure 5.

Figure 5. Loadings of principal component analysis of water environment factors.

For the water environment, the PCA of the 12 correlated variables resulted in three
principal components (PC) that had eigenvalues >1 and accounted for 49.10% of the
variance in the data. The first principal component (PC1) eigenvalue was 2.71 with a
contribution rate of 22.60%, which accounted for the largest proportion of the variance,
indicating that it had the strongest ability to combine the original variables. The water
environment factors pH, Chl-a, CODMn, and Tem had larger weight coefficients, and pH
had the largest weight coefficient and, very significantly, was positively correlated with
the other three variables (p < 0.01). Therefore, PC1 could be synthesized as a chemical
biological factor in water bodies. The second principal component (PC2) with an eigenvalue
of 1.95 and a contribution of 16.22%, had the highest EC weight and the second highest
TN weight. Very significantly, they were positively correlated (p < 0.01), so PC2 could be
resolved as a physiochemical factor. The third principal component (PC3) had the largest
Tur and TP weight, so PC3 could be resolved as a contamination risk factor.

3.3.2. Redundancy and Correlation Analysis

Before the constrained ranking analysis, the detrended correspondence analysis (DCA)
of the principal water environmental factors was conducted. The results of the DCA analy-
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sis of the principal water environmental factors in all four seasons showed that the gradient
length was less than 3, so the choice of redundancy analysis (RDA) was more reason-
able [53]. Three major zooplankton taxa were used as forecast objects in the redundancy
analysis, as well as eight principal water environmental factors as forecast factors. Clusters
were determined based on a similarity matrix using Euclidian distance, with distances cal-
culated by group-average sorting and ranked similarities. The water environmental factors
involved in the analysis were screened using a Monte Carlo Permutation test (p < 0.05) and,
combined with the results of the principal component analysis, the water environmental
factors with explanatory value for each season were identified as Tem, Chl-a, pH, NH3-N,
Tur, DO, TP and EC in spring, Tur, NH3-N, pH, Chl-a, DO, TP, EC, in summer ORP, EC, TN,
pH, Chl-a, CODMn, DO, Tem in autumn, EC, Tur, pH, Chl-a, CODMn, Tem, DO in winter.

In spring, the eigenvalues for the first two axes of the RDA analysis were 0.247 and
0.121. From Figure 6a, it can be seen that EC, TN, CODMn, and NH3-N were positively cor-
related with Cladocera and Copepoda. The pH, Chl-a, and Tem were positively correlated
with Rotifera, and ORP was negatively correlated with Rotifera. Cladocera formed good
clusters with pH, Chl-a and EC, and Copepoda formed good clusters with Tur, TP and DO
together with Rotifera. As the time enters summer, the total variation by RDA was 18.47,
where the explanatory variables account for 62.80%. The pH, Chl-a, Tur, TP, Tem were
positively correlated with Copepoda and Rotifera, and EC, TN were negatively correlated
with them. pH, Chl-a, EC, TN, Tem were positively correlated with Cladocera. As shown
in Figure 6b, Cladocera, Copepoda and Rotifera together formed good clusters with pH,
Chl-a, Tur, TP, Tem. The three populations formed clusters with pH, Chl-a, Tur, TP, and
Tem in summer to the results presented in the clustering heatmap in Figure 6b. In autumn,
the eigenvalues for the first two axes of the RDA were 0.454 and 0.112, explaining 95.2% of
the zooplankton variation. The pH, EC, Chl-a, TN, CODMn, Tem, NH3-N were positively
correlated with Copepoda and Rotifera. pH, Chl-a, CODMn were positively correlated
with Cladocera and EC, TN were negatively correlated with it. Cladocera, Copepoda, and
Rotifera together formed good clusters with pH, Chl-a, TP, Tem, DO in Figure 6c. In winter,
the species-environment correlation coefficients for RDA analysis were 0.757 and 0.419,
respectively, indicating a significant correlation between water environmental factors and
zooplankton. tur and TP were positively correlated with Cladocera, whereas EC, TN and
CODMn, which were negatively correlated with Cladocera, were positively correlated with
Copepoda and Rotifera. In addition, NH3-N was positively correlated with Copepoda, and
pH and Chl-a were positively correlated with Rotifera. In Figure 6d, Cladocera, Copepoda
and Rotifera together formed good clusters with Tur, TP and DO.

 

(a) 

Figure 6. Cont.
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(b) 

 
(c) 

 

(d) 

Figure 6. Plot of principal components with zooplankton redundancy analysis and clustering heatmap
in different seasons: (a) Spring; (b) Summer; (c) Autumn; (d) Winter.
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4. Discussion

The significant differences between the water level variation, water flow, and water
connectivity of river-type reservoirs and natural water bodies lead to the aquatic ecosystems
of river-type reservoirs being different from those of natural water bodies, and these
differences also make the aquatic environment of reservoirs very fragile [50]. Because of
this, a comprehensive evaluation of the water environment of river-type reservoirs and the
health of the water ecology is essential to ensure water security and protect the ecosystem.

4.1. Factors Influencing Zooplankton Distribution

Our study found that the Shanxi Reservoir, a source of drinking water, is at some
risk of contamination at certain times and locations. In fact, damming not only changes
the connectivity of the river, but also alters the hydrodynamic conditions of natural water
bodies, affecting their renewal cycles and making them more vulnerable to eutrophication
risks [57,58]. Unlike previous studies [36], our study found that the PCY values in Huang-
tankeng Stream and Jujiang Stream in the study area were too high in summer, and the
higher the PCY value, the greater the risk of algal blooms. According to research [59], local
algal blooms will form in subtropical reservoirs when the density of blue-green algae is
steadily higher than 50,000 cells/L. In Figure 3a,b, peaks in Chl-a and PCY are observed
in Huangtankeng Stream and Jujiangxi Stream in spring and summer. And pH in these
regions tended to be lower than in other regions during the same season. This is because,
in addition to the obvious regional differences in pH distribution due to zonal factors, the
horizontal distribution of pH is not entirely uniform in the same lake or water body due to
environmental conditions such as incoming runoff, intensity of water exchange, and the
number of biological populations in the lake [60]. Generally, in freshwater bodies, the pH
level is related to the free carbon dioxide and dissolved carbonate ions in the lake water.
Where the free carbon dioxide is high, the pH is low; the pH is correspondingly high in
lakes with high content of bicarbonate ions and carbonate ions [61]. At the same time, lake
algae generally consume free carbon dioxide in the water during their photosynthesis, in-
creasing in pH response [62]. Our study also found that Tur and EC showed a large number
of variations between seasons and spaces, as presented in Table 1 and Figure 2. Since the
conductive particles in water bodies are mainly K+, Na+, Ca2+, Mg2+, Cl−, SO2−

4 , HCO2−
4

and CO2−
3 , the total amount of these ions is close to the degree of mineralization of the

water body, so the electrical conductivity is a side reflection of the degree of mineralization
of the water body [63]. Turbidity can visually reflect the degree of turbidity of water bodies,
which is mainly caused by insoluble sediment, humus, planktonic algae, colloidal particles,
and other substances in the water bodies [64,65]. Dissolved oxygen did not show a large
variability in spatial distribution in our study area, but showing fluctuations between
seasons. Oxygen in water comes mainly from atmospheric dissolution and photosynthesis
by aquatic organisms, and its content in water is influenced by temperature [66]. Notably,
as presented in Figure 3c,d, our study found a high degree of variability in the spatial
and temporal distribution of ammonia and total nitrogen, and the detection of ammonia
and total nitrogen indicators compensated for the lack of relevant studies conducted by
researchers on phytoplankton groups in the same area [36]. Nitrogenous compounds in
natural water bodies often exist in three forms: ammonium nitrogen, nitrite nitrogen, and
nitrate nitrogen, all of which can be used by aquatic organisms. When the water body is
polluted or aquatic organisms die, organic nitrogen undergoes a series of decomposition to
ammonia nitrogen form, then ammonia nitrogen is further oxidized to nitrite and finally to
nitrate form [67]. Temperature is likewise an indicator of the large spatial and temporal
variability within our study area. For the northern hemisphere, the lowest water tempera-
ture often occurs in January to February and the highest water temperature often occurs in
July to August each year. The physiological and biochemical reactions in organisms change
with temperature [68]. Within the appropriate temperature range, the physiological and
biochemical reactions in organisms are accelerated with the increase in temperature, which
promotes growth and development.
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The results of our study indicate that the factors limiting the increase in zooplankton
abundance in spring are mainly Tem and nutrient salts, which can be represented by PC1,
PC2 in Figure 5. Comparing the observed data with the results of the RDA analysis, it
is easy to see that the abundance of Rotifera is well explained by pH, Chl-a, and Tem,
and that the abundance of Cladocera and Copepoda increases with EC, TN, NH3-N. In
contrast to the previous study [69], the main factors limiting the increase in zooplankton
abundance during summer are nutrient salinity, PCY and DO. The abundance of Rotifera
and Copepoda increases with increasing pH, Chl-a, Tur, TP, Tem, and decreases with
increasing EC, TN. The situation in autumn and winter is similar to previous studies [70],
the main factors limiting the increase in zooplankton abundance in autumn are nutrient
salinity and DO, which can be expressed by PC1, PC2. The abundance of Cladocera
increases with pH, Chl-a. Similarly, within the appropriate range, increases in pH, EC,
Chl-a, TN, CODMn, Tem, NH3-N result in a growing number of Copepoda and Rotifera.
The main factors limiting the increase in abundance conferred on the animals in winter
are nutrient salinity and PCY. The pH, Chl-a, EC, TN, and Tem predicted the abundance
of Copepoda and Rotifera, and EC, TN, Tur, and TP were good predictors of Cladocera
abundance. Another important finding was that zooplankton populations are influenced
by different water environmental factors in different seasons, and they can also form good
clusters with the corresponding water environmental factors under different conditions.
Comparing the observed data with the results of the cluster analysis, it is easy to see that
in spring the three zooplankton species form clusters with different water environmental
factors, with Rotifera forming good clusters with NH3-N and DO, Cladocera with Tur, and
Copepoda with EC, pH, and TP. In summer, when environmental conditions are favorable,
the three zooplankton species form good clusters with pH, Chl-a, Tur, NH3-N, and DO. In
autumn, the three zooplankton species form good clusters with pH, Chl-a, CODMn, ORP,
and DO. In winter, when environmental conditions were harsh, the three zooplankton
species formed good clusters with Tur, TP, Tem, Chl-a, and NH3-N, respectively.

4.2. Variation of Zooplankton Distribution

As shown in Table 2, we identified a variety of zooplankton in the study area, including
20 genus of Rotifera, 15 genus of Copepoda and 11 genus of Cladocera, all of which
are common freshwater zooplankton in southeast China [71]. Although Rotifera species
were more abundant, the crustaceans (Copepoda and Cladocera) were overwhelmingly
dominant in terms of the number of individuals (79.8% of the microscopic samples), with a
total of 30 genus with a reproduction rate of 60% or more, including 9 genus of Rotifera,
14 genus of Copepoda and 7 genus of Cladocera. The number of species with a numerical
dominance of more than 1% was 5 genus of Rotifera, 13 genus of Copepoda, and 7 genus of
Cladocera, respectively.

Previous research has focused more on zooplankton as indicators of water quality
and for ecological assessment [19]. The formation of clusters between zooplankton and
water environmental factors could be of interest in the future for ecological restoration
and environmental monitoring. Similar to the results of other related studies [59,72], the
nutrient levels in the study area were lower in spring than in summer and autumn, and
levels of the water environment factors PCY and Chl-a, which measure biological indicators,
were low in spring, suggesting that the primary producers, picocyanobacteria, as well as
other algae, were less abundant in the water column. Tur, also a measure of suspended
matter in the water column [65], was lower in spring than in other seasons, suggesting
that the low levels of suspended particulate matter and organic detritus, in the water
column limited the food sources of Copepoda and Cladocera, thus making differences in
zooplankton abundance on a spatial scale less pronounced in spring.

The water temperature and solar radiation in the study area were significantly higher
in summer and autumn than in spring and winter, and the suitable water temperature and
solar radiation provided a good environment for the growth and development of algae,
the producers located in the first trophic level in the study area [73]. Along with the algal
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blooms, Chl-a and PCY that could be detected in the water environment factors are in-
creasing and zooplankton that feeds on algae and their metabolites are experiencing a peak
in growth and reproduction [71], making the abundance of the three typical zooplankton
species reach their maximums in spring and summer. The higher NH3-N content in the
sub-regions of Huangtankeng Stream and Jujiangxi Stream provided sufficient nutrients
for the growth and development of algae, making the Chl-a content in the sub-region of
Huantankeng Stream much higher than that in other sub-regions, and likewise making
the PCY content in the sub-region of Jujiangxi Stream much higher than that in other
sub-regions.

In our study, variations of physicochemical indicators changed considerably with the
seasons. The water temperature in autumn is between spring and summer, with more
nutrient salts than in spring, making it more suitable for the growth and reproduction
of producers such as algae. The values of PCY and Chl-a were correspondingly lower in
Jujiangxi Stream, which had less TN and NH3-N, and higher in Huangtangkeng Stream,
which had more TN and NH3-N. In the Shanxi Reservoir, which has a high TN content,
the PCY values were higher than in the other sub-regions. Cladocera also occurs in
abundance in the Jujiangxi Stream and Huangtangkeng Stream, areas of fertile water.
Algae-feeding Copepoda were more abundant in Shanxi Reservoir, Jujiangxi Stream, and
Huangtangkeng Stream than in the other sub-regions. Copepoda, which has a wide range
of food sources [74], was significantly more abundant in Huangtankeng Stream than in the
other regions.

Biological indicators in the study area were lower in winter than in summer and
autumn, due to the amount of solar radiation, PCY and Chl-a were the lowest throughout
the year. The life activities of aquatic organisms in the water column are somewhat
restricted at this temperature [73], and the PCY and Chl-a in the water column are reduced
to their lowest values throughout the year. Similarly, the decomposition of microorganisms
is also restricted due to the temperature, causing the NH3-N content in the water column
to decrease to some extent. More Copepoda spend the winter in the Sanchaxi Stream
and Hongkouxi Stream, where Chl-a levels are high, and Cladocera spend the winter in
sub-regions with slow flow conditions and rich nutrient salinity.

5. Conclusions

In the study area of Shanxi Reservoir, zooplankton showed the same spatial and tempo-
ral heterogeneity as the water environmental factors. Freshwater zooplankton, represented
by Cladocera, Copepoda, and Rotifera showed not only clear seasonal differences in time,
but also spatially variable response relationships with changes in key water environmental
factors such as Tem, DO, nutrient salinity and EC. The main response relationships between
water environmental factors and zooplankton exist in different seasons as follows. In
spring, Tem and TP affect the number of Cladocera. EC, pH, and Tem affect the number
of Copepoda, and pH, EC, and Chl-a affect the number of Rotifera. In summer, Tur, TP,
and DO affect the abundance of Copepoda and Rotifera, and NH3-N affects the amount of
Cladocera in the water. In autumn, Tem has an effect on the numbers of all three. Cladocera
will be affected mainly by DO, and pH, EC will affect Copepoda numbers. Rotifera will
also be affected mainly by EC in autumn. In winter, EC, pH, DO, TP affect the numbers
of Copepoda and Rotifera. EC and Tur affect the number of Cladocera. Meanwhile, the
three zooplankton species formed good clusters with pH, DO, Chl-a, and NH3-N during
the summer months in abundant water, and with Tem, Tur, TP, and NH3-N during the
winter months in dry water. This correspondence between zooplankton and relevant water
environment factors in the respective seasons can be used not only to predict trends in
water environment development but also as a key indicator of regional water environment
deployment in the process of water diversion and storage during periods of abundance
and drought.

Overall, the observations and analyses in this study suggest that temperature is a
key factor influencing the differences in the spatial and temporal distribution of water
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environment and water ecology in riverine reservoirs. On the one hand, water temperature
is a direct reflection of the intensity of solar radiation on the water body, and changes
in water temperature can lead to changes in DO, EC, ORP, pH, Chl-a, PCY and other
physicochemical and biological indicators. On the other hand, in the catchment area of
river-type reservoirs, the change of temperature also indicates the change of seasons, which
fits with the growth and development cycle of economic crops near the catchment area
and economic fish in the reservoir. Nutrients such as nitrogen and phosphorus, as well
as organic pollutants, will enter the reservoir with surface runoff, causing changes in
chemical indicators. Changes in physical and chemical indicators will cause changes in
biological indicators.

Due to the time and scale constraints, the analysis method in this study affected the
generalizability of the results to a certain extent. In future studies, the assessment of the
water environment and water ecological health of river-type reservoirs requires not only
data support for a longer time series, but also data mining and the establishment and
validation of models with relevant data in order to provide constructive evaluation and
analysis of the water environment and water ecological health of other reservoirs with
similar conditions using accurate and generalized models.
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Abstract: It has long been recognised that the role of soils is critical to the understanding of the way
catchments store and release water. This study aimed to gain an understanding of the hydropedologi-
cal characteristics and flow dynamics of the soils of three mountain catchment areas. Digital soil maps
of the hydropedological characteristics of the catchments were interpreted and a conceptual response
of these watersheds to precipitation was formed. This conceptual response was then tested with
the use of site-specific precipitation and streamflow data. Furthermore, piezometers were installed
in soils classified as the interflow hydropedological soil group as well as the saturated responsive
hydropedological soil group and water table depth data for the three catchments were analysed.
Climatic data indicated that there is a lag time effect in the quantity of precipitation that falls in the
catchment and the corresponding rise in streamflow value. This lag time effect coupled with data
obtained from the piezometers show that the various hydropedological soil groups play a pivotal
role in the flow dynamics. Of importance is the unique influence of different wetland systems on
the streamflow dynamics of the catchments. The drying and wetting cycles of individual wetland
systems influenced both the baseflow connectivity and the overland flow during wetter periods.
They are the key focus in understanding the connectivity between the hydropedological flow paths
and the contribution of soil water to the stream networks of the three catchments.

Keywords: hydropedology; soil science; catchment hydrology; hydropedology soil maps; soil
flow paths

1. Introduction

Understanding how catchments store and release water and the resulting ecosys-
tem services they provide is a crucial element in improving the management of these
resources [1]. It has long been recognised that the role of soils is critical to these processes.
The study of hydropedology as an intertwined branch of soil science and hydrology is
used at multiple scales to gain a better understanding of the variability of saturated and
unsaturated surface and subsurface environments and how these influence rainfall-runoff
processes [2]. Hydropedology has therefore gained popularity in establishing the role of
soils in the storage, flow dynamics and connectivity between hillslopes and streams of
watersheds [3,4].

Soils are three-dimensional bodies in the landscape with different arrangements of
vertical horizons and lateral variability of soil properties [5]. Ref. [6] showed that the quan-
tity and type of soil macropores are variable across short distances, but spatial patterns of
preferential flow at the landscape scale are far from being completely random. They instead
show a clear pattern comprised of recognizable diagnostic soil horizons, soil materials, and
pedons which all display characteristic flow and transport arrangements. Soil water pro-
cesses can therefore be described in terms of content (volumetric or gravitational), potential
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(matric, osmotic, and gravitational potentials) and movement (subsurface flows in quantity
or in speed). All of these descriptions are variable in time and space, creating multiple
differences in the temporal structure of how precipitation moves through a landscape and
is then discharged [7].

Despite these variations in soil patterns, the range of specific soil types within a
catchment is generally restricted based on location [8]. This distribution of different soil
characteristics over a landscape is the key to connecting the pedon scale to the landscape
scale [2,9]. These soil patterns are expressed in the different soil forms identified within a
catchment area. The periodicity of water movement through a soil causes distinct processes
of oxidation and reduction. For example, the vertical and lateral percolation of water
through a soil profile can cause the leaching out of iron and manganese, creating a unique
set of characteristics that pertain to a particular soil form. In other areas, where there is
excess water, soil forms are expressed by an accumulation of organic matter and/or a
reduction process within the soil horizons. These specific morphological features in the
soil profile are indicators of landscape processes including percolation, lateral flow, and
water storage [10]. These different types of flow paths within a catchment area may be
isolated or connect the flow paths to a stream network [11]. Thus, the characteristics of a
soil profile can be utilised to gain an understanding of hydrological dynamics at landscape
scale. A further contributing factor is soil thickness, as this is a key factor in the storage
and redistribution of rainfall within the soil profile. It therefore plays an important role
in controlling the types of various runoff processes and is often a decisive factor in the
processes that generate baseflow as well as overland flow [12].

In mountainous regions, changes within the landscape occur over short distances,
and this creates a marked internal (i.e., subsurface) heterogeneity within soils, as well as
heterogeneity in the catchment conditions. This makes it difficult to determine the direct
measure of how much water is stored within particular areas of the catchment as well as the
internal flow dynamics [1]. This is particularly so given the added interrelated influence
of climate, geology, topography, and vegetation characteristics on the flow dynamics of
these watersheds [3]. The understanding of these processes is important as mountainous
headwater catchments provide key water-related services for downstream ecosystems, and
the regulation of streamflow by these catchments is highly influenced by their capacity to
store and release water [1]. Recent studies have shown that the way in which water is stored
and transferred within catchment areas is furthermore a crucial link in generating both
base flows and storm flows during precipitation events as well as influences the sediment
yield [3,13].

In South Africa, the uKhahlamba-Drakensberg Mountain range is one such area in
which the spatial heterogeneity of catchments allows for the study of these various processes
over a relatively short distance. Utilising this area, one can gain a deeper understanding of
the way in which soil landscape functions control the movement of water in these areas
and influence streamflow discharge. This is an initial and important component in under-
standing how streamflow discharge from these areas impacts the downstream ecosystems.

The aims of this chapter are therefore to gain an understanding of the hydropedological
characteristics and flow dynamics of the soils of three mountain catchments within the
uKhahlamba-Drakensberg Mountain range. This is achieved through (1) interpreting
hydropedological soil maps to conceptualize the hydrological functioning of the catchments
in terms of dominant flow paths and storage mechanisms and how these influence the
streamflow dynamics and (2) to test the conceptual understanding of the hydropedological
character of the catchment areas through a series of site-specific measurements taken within
the catchment areas.

2. Materials and Methods

2.1. Study Area

The Cathedral Peak experimental research catchment site forms part of the uKhahlamba-
Drakensberg escarpment within the Ezemvelo KZN Wildlife Maloti-Drakensberg Park.
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The Park is a World Heritage Site and is situated in the northern part of the uKhahlamba-
Drakensberg escarpment, KwaZulu-Natal, South Africa. The South African National
Environment Observatory Network (SAEON) undertakes the monitoring of the catchment
site. There are fifteen research catchments within this site, and these are situated at the
head of three isolated Little Berg spurs and are underlain by basaltic lavas, which overlie
Clarens Sandstone [14,15]. The catchment areas are mainly covered by mesic grasslands of
the uKhahlamba Basalt Grassland vegetation type interspersed with Northern Afrotem-
perate Forest patches and wetlands [16,17]. The fifteen catchments range in altitude from
1820 m.a.s.l. to 2463 m.a.s.l. Topography varies from relatively flat to very steep (1–39◦)
with the aspect ranging from north to south facing [18].

Three catchments were selected from the fifteen for this study and are named CP-III,
CP-VI, and CP-IX (Figure 1). These catchment areas have similar soil properties, but
different historic and current land management practices. General details of the three
catchments as well as the climatic hydrologic properties during the study period are
provided in Table 1. The study period was from September 2019 to June 2021.

Table 1. General details of the three catchment areas during the study period (adapted from [19]).

Catchment
Name

Size (ha)
and Altitude Range

(m.a.s.l.)

Rainfall Dynamics
during Study Period

Streamflow Discharge
Dynamics during

Study Period
Description of Catchment

C
P-

II
I

138.9
1847–2323

Mean (mm) 4.34
Max (mm)

65.23
Min (mm)

0.00
Annual PCP

2019—1095 mm
2020—1572 mm
2021—1664 mm

Mean (mm): 2.33
Max (mm): 13.39
Min (mm): 0.22

The catchment is degraded as a result
of a forestry experiment in which

Pinus patula was planted throughout
the catchment in the 1950s and 1960s

as well as accidental fires which led to
the removal of these trees in 1981. The

catchment was rehabilitated with
Eragrostis curvula following the

removal of the trees [15]. There is,
however, erosion throughout the

catchment area, with large portions of
the catchment covered by Pteridium

sp. (Bracken).

C
P-

V
I

67.7
1844–2073

Mean PCP (mm) 3.62
Max PCP (mm)

65.28
Min (PCP) (mm)

0.00
Annual PCP

2019—829 mm
2020—1261 mm
2021—1472 mm

Mean (mm): 1.84
Max (mm): 18.90
Min (mm): 0.00

This catchment is covered by mesic
grassland of the uKhahlamba Basalt

Grassland type which is burned
biennially during spring. CP-VI is

considered the core catchment with
focused, detailed monitoring ongoing

in this catchment. A full array of
evaporation, soil moisture and

groundwater monitoring is
undertaken.

C
P-

IX 64.5
1823–1966

Mean PCP (mm) 3.70
Max PCP (mm)

68.34
Min (PCP) (mm)

0.00
Annual PCP

2019—884.94 mm
2020—1274 mm
2021—1378 mm

Mean (mm): 1.28
Max (mm): 11.81
Min (mm): 0.09

This catchment has been completely
protected from fire since 1952 but has

experienced accidental burns and
wildfires in some years. As a result of

fire exclusion, this catchment is
dominated by woody scrub (Leucasidea

serica and Buddleia salvifolia).
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Figure 1. Locality of the catchments selected for the study.

2.2. Climate and Hydrological Monitoring

The Cathedral Peak research catchments fall within the summer rainfall region of South
Africa. The mean annual precipitation (MAP) for the area is approximately 1400 mm with
a gradient of increasing rain between the south-eastern areas (which receive approximately
1300 mm) to the western areas (receive approximately 1700 mm). CP-III has a MAP of
1564 mm, CP-VI has a MAP of 1340 mm, and CP-IX has a MAP of 1257 mm [15]. Rainfall
is measured with tipping bucket rain gauges installed in the mid position of each of the
catchments. Half of the rainfall events in the catchments are brought about by localised
thunderstorms which fall during the spring and summer months (September to March),
with occasional snowfall received during winter (May to August). The clouds forming these
thunderstorms come from the west of the catchment areas. Orographic rainfall produced
from clouds forming in the east of the catchments also creates longer periods of softer
rainfall which can fall for several days [14–17]. Mean monthly temperatures range from
17.1 ◦C to 10 ◦C with frost common in autumn and winter (April to August) [15,17,18,20].

Streamflow monitoring was initiated in the three catchment areas during the late
1940’s and 1950’s [15]. At the outlet of each catchment, a concrete weir and stilling hut
with 90-degree V Notches were installed. These V Notches are 45.72 cm deep and are
surmounted by 1.82 meter-wide rectangular notches of varying depth. Details of how
early measurements were taken, error checked and processed are given in [15]. The water
stage-height at each weir is currently monitored using an Orpheus Mini (Ott Hydromet
GmbH, Kempten, Germany) at CP-VI weir and a CS451 Stainless steel SDI-12 Pressure
Transducers with CR200 loggers at weirs CP-III, CP-VI, and CP-IX [15].

Catchment-specific rainfall and streamflow data were therefore utilised for this study
period (September 2019 to June 2021). However, in CP-III and CP-IX accidental fires, weir
silting, and equipment problems have led to periods of missing streamflow discharge
data. In CP-III there is no streamflow discharge data between February and November
2020, while in CP-IX there is no streamflow discharge data in October 2019 as well as
between August and November 2020. These periods of missing data were removed from
the database.

2.3. Hydropedology and Soil Mapping

The development of hydropedology studies in South Africa has led to the classification
of hydropedological soil types and how these are distributed down a hillslope catena [21].
A digital soil mapping exercise was undertaken for the three catchment areas utilising these
hydropedological soil classifications [22]. The procedure used for the digital soil maps
(DSMs) is detailed in [19] and is briefly described here. The soils of the three catchment
areas were mapped and classified as per the South African classification system [23] and
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then regrouped into hydropedological soil types, namely shallow recharge soils, deep
recharge soils, interflow soils, and saturated responsive soils. The dominant properties of
these soils are provided in Table 2.

Table 2. Dominant properties of the dominant hydropedological soil groups [19].

Hydropedological Soil Group Characteristics of the Soils

Recharge Shallow

These are soils that are freely drained and do not show any
indication of saturation. They are typically shallow in nature
(<500 mm). The freely drained B horizon merges with
fractured rock or a lithic horizon. These soils typically occur
on steeper convex slopes in the higher lying or steeper parts
of the catchments.

Recharge Deep

These are soils that are freely drained and do not show any
indication of saturation. They are typically deeper than the
Recharge Shallow Soils (>500 mm). The freely drained B
horizon merges into fractured rock or a lithic horizon. These
soils where identified throughout the catchments on gentler
convex and concave slopes and away from wetlands and
watercourses.

Interflow

These soils have a freely drained upper solum which overlies
relatively impermeable bedrock. Hydromorphic properties
are identified at this interface and signify periodic saturation
associated with a water table. They typically occur on gentler
concave slopes in areas delineated as wetlands as well as
adjacent to watercourses.

Responsive Saturated

These soils display morphological indications of long-term
saturation. They characteristically respond quickly to rainfall
events and generate overland flow as they are typically close
to saturation during the wet season and therefore any
additional precipitation will flow overland due to saturation
excess. These soils were identified in the valley bottom
positions of the catchments, in permanently saturated
wetlands. They typically occur on gentle concave slopes.

The ArcSIE (Soil Inference Engine) version 10.2.105 was used to create the DSMs. A
rules-based approach was first utilised based on knowledge of the catchments as well
as the outcomes of the creation of Digital Terrain Models (DTMs) with the following
environmental control variables applied to the rules: wetness index, slope, elevation, and
planform curvature. The rules applied were aimed at producing the optimal relationships
between soil type and a particular DTM [24,25]. The initial maps created following the rules-
based approach were then validated based on the information gained during soil surveys
undertaken within each of the catchment areas. The maps were refined according to the
validation points taken during these surveys. The final hydropedological soil group maps
are displayed in Figure 2. The performance of the ArcSIE interface to create the combined
hydropedological maps for each of the catchments was analysed using the Kappa coefficient
of agreement. The Kappa coefficient for CP-III is 0.57, for CP-VI is 0.59, and for CP-IX is
0.74, showing that there are some discrepancies between the hydropedological soil maps
created and the site-specific soils identified within the catchment areas.

2.4. Dominant Hydropedological Soil Groups of the Catchments

Comparison of the hydropedological soil group maps revealed that each catchment
had a different percentage of the various hydropedological soil groups. This is based
on the different topographies of the catchments as well as the various soil characteristics
of each hydropedological soil group [19]. Table 3 gives an indication of the dominant
hydropedological soil groups in CP-III, CP-VI, and CP-IX.
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Figure 2. Location of the piezometers in relation to the hydropedological soil group in (a) CP-III,
(b) CP-VI, and (c) CP-IX.

Table 3. Percentage of the catchment area covered by each hydropedological soil group.

CP-III CP-VI CP-IX

Hydropedological
soil group Percentage of catchment covered by each hydropedological soil group

Recharge Shallow 18.3 17.1 27.6
Recharge Deep 43.3 33.8 38.4

Interflow 24.1 28.7 15.9
Responsive Saturated 14.3 20.4 18.1

As shown in Table 3, CP-III, CP-VI, and CP-IX are dominated by the recharge deep
hydropedological soil group (43.3, 38.8 and 38.4% of the catchment area, respectively),
followed by the interflow soil group in CP-III (24.1%) and CP-VI (28.7%), and the recharge
shallow group in CP-IX (27.6%). CP-VI has a greater area classified as responsive saturated
soils (20.4%) as compared to CP-III (14.3%) and CP-IX (18.1%).
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By utilising the hydropedological soil group maps as well as the dominant groups
identified in each catchment, a theoretical interpretation of the various flow paths for each
catchment was identified and described.

2.5. Piezometer Installations

Piezometers were installed within the three catchments: six piezometers in CP-III,
twelve in CP-VI, and nine in CP-IX. The piezometers were installed in clusters of two or
three within a location, with this location chosen to represent the upper, mid, and lower
portions of the catchments. Furthermore, the position of the piezometers was chosen within
wetland and seepage areas of the catchments. In CP-III, all piezometers were, however,
installed in the lower sections of the catchment area as a result of a lack of seepage areas
within the upper portions of the catchment. This is due to the shallow nature of soils within
the upper reaches of this catchment.

Soil profiles were dug using an extension Dutch auger to refusal with signs of a
gleyic or gley horizon noted within the profiles. These horizons display gleying and are
considered indicators of the redox state of the soil. Gley horizons are recognised by low
chroma grey matrix colours which may contain blue or green tints. The gleyic horizon
displays low chroma, grey and light-yellow colours, with the morphology of this horizon
indicating less reduction and shorter duration of water saturation compared to the gley
horizon [21]. A PVC pipe with slits cut around the end of the pipe to a height of 30 cm
were then installed into the auger holes. The diameter of the PVC pipe utilised ensured a
close fit with the hole. The piezometers were then capped, and measurements taken once a
month between January 2019 to June 2021; however, due to a drought within the region, the
majority of piezometers only received water in September 2019 and thus this was chosen
as the start point for comparison of water levels.

As a result of the drought conditions, some of the piezometers had to be discontinued,
and thus water was sampled and water heights were recorded each month in five piezome-
ters in CP-III, seven piezometers in CP-VI, and seven piezometers in CP-IX (Figure 2). The
height of the water within the piezometer was calculated from the surface of the soil to the
depth of the water table.

3. Results and Discussion

3.1. Conceptual Response Based on Hydropedological Interpretations

From the hydropedological soil maps created for each catchment coupled with the
descriptions of these dominant soil groups, the principal hillslopes and flow paths could be
conceptually described. These conceptual descriptions were used as a working hypothesis
of the catchments’ function. The conceptual descriptions are then evaluated against site-
specific measurements.

When precipitation falls in the upper reaches of the three catchment areas, it will enter
the hydropedological recharge soil group. The dominant flow direction in recharge soils is
the vertical flow of water through and out of the profile into the underlying bedrock. In
the three catchment areas, this hydropedological soil group is separated into the recharge
shallow soils and the recharge deep soils. Recharge shallow soils occur in the steeper areas
of the catchments, and this forms their shallow nature (<500 mm). In this soil group, the
freely drained B horizon merges with fractured rock or a lithic horizon. The recharge deep
soils are similar to the recharge shallow soils, but the thickness of the profile is far greater
(>500 mm). This is largely due to their position within gentler topographical areas of the
catchments. Water that moves through these soils would recharge the deeper aquifers
associated with the catchment areas, or if it encounters less permeable rock such as non-
weathered and compacted sandstone or basaltic outcrops; it will flow laterally, and recharge
shallow aquifers associated with seasonal hillslope seepage areas.

Interflow soils located downgradient of the recharge soils are associated with two
dominant flow paths. Precipitation would first flow vertically through the free-draining
upper profile of these soils before it encounters relatively impermeable bedrock. Hydro-
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morphic properties have developed at this point in the soil profile, signifying periodic
saturation associated with a water table. At this soil, bedrock interface water will move
laterally into the stream network or downgradient.

The responsive saturated soils are located in the permanently saturated wetlands of
the catchment areas. These soils show morphological evidence of long periods of saturation
such as a gleyed matrix as well as mottling. They are close to saturation, particularly during
the wet season, and once saturated and incapable of attenuating any more water they will
generate overland flow to the stream network.

3.2. Precipitation and Streamflow Dynamics

Precipitation data for CP-III, CP-VI, and CP-IX during the study period September
2019 to June 2021 showed that precipitation largely falls within the spring–summer months
(September to March) with little to no rain within the autumn and winter months (April
to August) (Figure 3). There is a decline in annual rainfall from CP-III to CP-VI to CP-
IX. Furthermore, a greater quantity of precipitation was recorded in all three catchments
for the spring–summer season of 2020–2021 (CP-III = 1492 mm, CP-VI = 1307 mm and
CP-IX = 1045 mm) as compared to the same season within the preceding year (2019–2020) as
a result of the drought conditions experienced in 2019 (CP-III = 1150 mm, CP-VI = 842 mm,
and CP-IX = 771 mm).

Figure 3. Depictions of the relationship between precipitation and streamflow discharge for:
(a) CP-III; (b) CP-VI; (c) CP-IX.

Streamflow discharge values, like the precipitation values, were highest during the
spring–summer months, and lowest during the autumn–winter months. Streamflow
discharge for the study period also varied between catchment areas, with the greatest
values obtained in CP-VI (ranged from 0.0 mm to 18.89 mm), followed by CP-III (ranged
from 0.2 mm to 13.39 mm) and CP-IX (ranged from 0.0 mm to 11.81 mm).
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The correlation between rainfall and streamflow values is non-linear, particularly
during the drier period associated with the drought conditions in 2019 as well as the
seasonal variations in the quantity of rainfall received. This is due to a lag time effect in the
quantity of precipitation that falls in the catchment and the corresponding rise in streamflow
value that is noticeable when comparing daily precipitation and daily streamflow discharge
values within all three catchment areas over the study period. As shown in Figure 3, a lag
time effect occurs in all three catchments from when a rainfall event occurs to when there
is a corresponding increase in streamflow discharge. This lag time differs depending on
the pre-rainfall event hydrological conditions of the catchment. For example, following
the end of the drought conditions experienced in the catchment areas in 2019, the first
large rainfall event took place between 06/02/2020 and 11/02/2020 in which 153.67 mm
fell into the CP-VI. Given the largely desiccated conditions of the soils within CP-VI at
the time, there is little effect of this rainfall event on the streamflow discharge values
during the same time period (streamflow discharge has a combined value of 15.34 mm
over the 5 days). No corresponding increase in streamflow discharge takes place during
the time of the rainfall event as well as within the following month after the rainfall event.
When a similar rainfall event took place in CP-VI but during the wetter season from
01/01/2021 to 06/01/2021, in which 138.94 mm of rain fell, there was a corresponding
increase in streamflow discharge approximately 1 month after the event from 29/01/2021 to
04/02/2021 (streamflow discharge has a combined value of 65.34 mm for the time period).

In CP-IX, a similar trend was noticed. Just after the drought of 2019, the same larger
rainfall event between 06/02/2020 and 11/02/2020 in which 139.45 mm fell had little
effect on the streamflow discharge both at the time of the event and within the following
month after the event. Again, the desiccated soils were becoming saturated before they
could contribute to the streamflow. During the same rainfall event as in CP-VI, which
occurred between 01/01/2021 to 06/01/2021 in which 136.91 mm of rain fell, there was
a corresponding increase in the streamflow discharge approximately one month after the
event where the streamflow discharge had a combined value of 45.43 mm for the time
period from 29/01/2021 to 04/02/2021. Given the wetter time in which the storm event
occurred, the soils in the catchment were already partially saturated, thus storm events
which occurred during this time could lead to oversaturation of the wetlands and the
subsequent creation of overland and shallow subsurface flow which contributed to the
increase in streamflow discharge values.

Given the limited streamflow data available for CP-III, obtaining correlation examples
between rainfall and streamflow discharge were not possible. However, a similar trend
was noted in comparison to CP-VI and CP-IX, particularly in the time after the drought
period. Following the drought period, a rainfall event occurred between 03/12/2019
and 06/12/2019 in which 69.08 mm of rain fell. Little effect on the streamflow discharge
was observed during the event as well as within the following month after the event.
The wetlands in this catchment were, as in CP-VI and CP-IX, becoming saturated again.
However, unlike CP-VI and CP-IX, once the wetlands were saturated, the corresponding
rise in streamflow discharge values following a rainfall event responded at a much quicker
rate. For example, a rainfall event takes place from 28/12/2020 to 15/01/2021. There is
an immediate increase in streamflow discharge values both during the event and in the
following days after the event, with the streamflow values peaking (13.39 mm) on the
29/01/2021 following a 60.45 mm rainfall event the preceding day.

So, while the hydrological preconditions of the soil groups in all three catchments play
a pivotal role in the storage and runoff dynamics of the catchment areas, in CP-III there is a
far more immediate response in streamflow discharge following a rainfall event. This could
be attributed to the topography of the catchment, the streamflow network or the shallower
soils within this catchment, which have largely been created as a result of erosion brought
about by the use of the catchment as a Pinus patula plantation.
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3.3. Piezometer Data and Flow Paths

The water table height within the areas where piezometers were installed varied
throughout the study period and was dependent on the depth of the soil profile, the
location of the piezometer within the catchment (i.e., the topographical position) as well
as seasonal climatic variations. Average depths to the water table showed that, following
the end of the drought conditions, the saturated responsive soils became saturated and
remained so throughout the study period, while the depth to the water table within the
interflow soil group showed greater variation in all three catchment areas. The three
catchment areas are explained in more detail in the following sections.

3.3.1. CP-III

In CP-III, the average depth to the water table for the saturated responsive soil group
decreased from 530 mm following the end of the drought in September 2019 to 70 mm
in November 2019 and remained between 30 mm and 150 mm for the rest of the study
period depending on the seasonal variations in the rainfall received. In comparison, the
average depth to the water table for the interflow soil group remained at a depth of
1200 mm until January 2020 where it decreased to 768 mm and then increased again to
over 1000 mm during the drier period of 2020 (March to September). Following the onset
of the spring rains in October 2020, the average depth to the water table decreased to
900 mm where it fluctuated throughout the wetter summer period (between 800 mm and
1100 mm) depending on the rainfall received. With the onset of the drier autumn to winter
period from April 2021, the depth to the water table increased again (1100 mm to 1200 mm)
(Figure 4).

Figure 4. Comparisons of piezometer data installed in the (a) interflow soils, (b) saturated responsive
soils, (c) monthly streamflow discharge and (d) monthly rainfall CP-III.

Individual piezometers followed a similar pattern to the average depth to the water
table with the piezometers located in the saturated responsive soil group becoming satu-
rated in December 2019 and remaining at or near saturation for the entire study period,
depending on the seasonal rainfall received. This saturation level showed that when rainfall
was received in the catchment, the wetland systems became oversaturated and contributed
more to overland and shallow subsurface flow toward the stream network (Figure 4). With
regards to the piezometers installed in the interflow soil group, C3-2 and C3-3 (average
water depth is 1051 mm and 985 mm, respectively), which were situated higher in the
catchment, received more water compared to C3-1 (average water depth of 1241 mm).
C3-1 is situated in close proximity to the stream network. All three piezometer locations
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are associated with deep water table depths, and this could be attributed to this location
contributing more to the baseflows of the stream discharge values and not to overland flow.
The more water in C3-2 (average depth of 1051 mm) and C3-3 (average depth of 985 mm)
compared to C3-1 (average depth of 1241 mm) shows a down gradient flow path from the
upslope recharge soil group through the interflow soils where the piezometers are located,
and then laterally into the stream network.

Given the quicker rate at which the streamflow discharge values responded to rainfall
events, particularly once the wetland systems were saturated, and taking into account
the deep-water table depths of the interflow soils as well as the small size of the wetland
systems in which the saturated responsive soil piezometers were located, it is apparent that
infiltration of precipitation does not occur on the recharge soils during larger rainfall events
but that rather overland or shallow subsurface flow occurs and water reaches the streamflow
network at a much quicker rate. This is most likely a result of erosion, particularly from the
upper reaches of the catchment, and the resultant shallow nature of these recharge soils and
therefore the reduced recharge properties that these soil profiles display. Figure 5 shows a
diagram of these flow paths during both the drier and wetter seasons.

Figure 5. Flow path diagrams for (a) the drier periods and (b) wetter periods for CP-III.

3.3.2. CP-VI

In this catchment, the average depth to the water table within the piezometers installed
in the saturated responsive soils decreased from 720 mm in December 2019 following the
onset of rains after the drought period and fluctuated between 200 mm and 18 mm for
the remainder of the study period. The average depth to the water table for the interflow
soil group fluctuated between 700 mm (December 2019) and 287 mm (December 2020).
The average depth to the water table for the interflow soil group furthermore fluctuated
depending on the rainfall conditions, with an increase in the depth during the drier autumn
to winter months and a decrease in depth in the wetter spring to summer months (Figure 6).

As can be seen in Figure 6, each piezometer had a varied fluctuation in the depth to the
water table, with some piezometers remaining more saturated compared to others. In the
saturated responsive soil group, the C6-7 piezometer remained more saturated compared
to the remaining piezometers in this group, particularly during the drought conditions. The
C6-3, C6-9, and C6-10 piezometers which are situated higher in the catchment compared to
the C6-7 piezometer became far drier during the drought conditions. With the onset of rains
and the end of the drought period, these piezometers became saturated and then fluctuated
slightly depending on the seasons and associated rainfall conditions. Once saturated,
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during rainfall events, the wetlands in which the piezometers were located would become
oversaturated and contribute to overland and shallow subsurface flow (Figure 7).

Figure 6. Comparisons of piezometer data installed in the (a) interflow soils, (b) saturated responsive
soils, (c) monthly streamflow discharge and (d) monthly rainfall in CP-VI.

Figure 7. Flow path diagrams for (a) the drier periods and (b) wetter periods for CP-VI.
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Individual piezometers in the interflow soil group also responded differently. Sat-
uration content of the piezometers decreased from C6-8 to C6-6 to C6-11, with the C6-8
piezometer consistently more saturated than the C6-6 and C6-11 piezometers. This piezome-
ter was situated in close proximity but outside of the permanently saturated areas of the
C6-7 piezometer. The C6-6 piezometer was furthermore located on the edge of the same
wetland system. The C6-11 piezometer was located at the lower end of the catchment,
adjacent to the weir and remained drier throughout the study period in comparison to the
other interflow piezometers.

These saturation levels of the piezometers show that the interflow soils largely con-
tribute to the baseflow of the streams following a downgradient movement of water
from the higher reaches of the catchment before moving laterally into the stream network
(Figure 7). During the drought, the wetland system located where the piezometers C6-6,
C6-7, and C6-8 (average depth to water table from September 2019 to February 2020 was
436 mm) were installed attenuated more water compared to other wetland systems (aver-
age depth to water table from September 2019 to February 2020 was 682 mm) within the
catchment. Water moved downgradient from the upper reaches of the catchment and was
attenuated within this wetland before moving further downgradient toward the outlet of
the catchment area. This movement of water within the drier phase of the study period
contributed to the baseflow of the stream network. Once the rains began, the wetland in
which the C6-6, C6-7, and C6-8 piezometers were installed became wetter (average depth
to water table increased to between 50 mm and 270 mm in January 2020) at a quicker rate
than other wetlands within the catchment and started contributing to overland and shallow
subsurface flow. The wetlands in which C6-3, C6-9, and C6-10 piezometers were installed
became saturated in January/February 2020 (average depth to the water table increased
to between 10 mm and 210 mm in February 2020) and then contributed to overland and
shallow subsurface flow (Figure 7).

3.3.3. CP-IX

In CP-IX, the average depth to the water table for the saturated responsive soil group
decreased from 487 mm to 102 mm following the onset of the rains by January 2020. The
average depth to the water table then remained between 200 mm and 75 mm depending
on the seasonal variation of rainfall received. The average depth to the water table for the
piezometers installed in the interflow soil group also decreased following the onset of rains
from 1000 mm in September 2019 to 326 mm in January 2020. The fluctuation of the average
depth to the water table then also followed the seasonal variation in the rainfall received,
but this variation was more pronounced in comparison to the saturated responsive soil
group (depths ranged from 636 mm at the start of spring in October 2020 to 211 mm in
February 2021) (Figure 8).

The depth to the water table was different in the individual piezometers. In the
saturated responsive soil group, C9-3 remained more saturated even during the drought
conditions compared to the other piezometers (water table depth remained at 10 mm until
January 2020), followed by C9-4 (water table depth fluctuated between 400 mm and 75 mm
until January 2020). C9-5 and C9-9 dried out in comparison and became saturated again in
January 2020 with a decrease in water table depth from 750 mm to 140 mm in C9-5 and a
decrease from 630 mm to 185 mm in C9-9 (Figure 8).

Piezometers located in the interflow soil group had a greater depth to the water table
during the drought conditions, with this depth decreasing following the onset of rains until
they reached a peak depth in January and February 2020. The C9-1 and C9-2 piezometers
(average water table depth of 330 mm and 460 mm, respectively) which are situated higher
up in the catchment remained more saturated compared to C9-6 (average water table depth
of 797 mm) which is situated mid catchment.

As was the case in CP-III and CP-VI, the interflow soils contribute more to the lateral
flow of water in the sub-horizons of the soil profile (average water table depth ranges
from 1000 mm) and the base flow of the streams within the catchment. The saturated
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responsive soils, which become saturated and remain so, contribute both to the baseflow of
the streams and storm flow in the form of overland and shallow subsurface flow once they
become saturated. Figure 9 shows a diagram of these flow paths during both the drier and
wetter seasons.

Figure 8. Comparisons of piezometer data installed in the (a) interflow soils, (b) saturated responsive
soils, (c) monthly streamflow discharge and (d) monthly rainfall in CP-IX.

Figure 9. Flow path diagrams for (a) the drier periods and (b) wetter periods for CP-IX.
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3.4. Catchment-Specific Attributes Affecting the Hydropedological Flow Paths

Data obtained from the climatic and hydrologic variables (rainfall and streamflow
discharge) as well as the piezometers shows that water moves through the soils of the
catchment areas before contributing to the streamflow. The various hydropedological soil
groups which affect the flow rates of water before it contributes to streamflow therefore
play a pivotal role in the flow dynamics of the catchment areas.

These hydropedological soil groups were mapped following a digital soil mapping
process, and while this allowed us to gain a general understanding of the dominant flow
paths of these catchment areas, the more detailed investigation of the climatic, hydrologic
and water table depth fluctuations have shown that the hydropedological characteristics of
the catchment areas are both specific to the catchment and created as a result of various
interrelated factors.

The various interactions between the flow dynamics of the hydropedological soil
groups of an area and how they become disconnected and reconnected to each other during
drying and wetting cycles is unique to the various landscapes in which the flow paths are
situated. A number of studies have been conducted in a variety of landscapes [10,26,27].
However, studies conducted in mountainous landscapes highlight the effect of the lower
reaches of catchment areas continuously receiving water from the steeper surrounding hill-
slopes and these flow dynamics contributing to the baseflow of streams. During the wetter
periods, the connectivity between the various hydropedological soil groups becomes more
established and this allows for the generation of greater overland and shallow subsurface
fluxes of water, particularly during larger rainfall events. These flows contribute to peaks
within the streamflow hydrographs during storm events [4,28,29].

The connectivity between the hydropedological soil groups is furthermore influenced
by the topography of the mountain catchments. In CP-VI for example, the wetland in
which the C6-6, C6-7, and C6-8 piezometers were installed and that remained more sat-
urated when compared to other wetland systems in the catchment is situated in an area
with a gentler slope as well as a concave landform. Various studies have shown similar
findings with catchment areas that have gentler terrain resulting in poorer drainage con-
ditions and therefore the storage of higher volumes of water. Areas with steeper terrain
increase the hydraulic gradients of the soils thus increasing the flow between the different
hydropedological soil groups and reducing the storage capacity of these soils [1,29]. This
influence of topography on the flow dynamics should be studied further within these
research catchments.

A further effect on the hydropedological characteristics of the catchment areas is both
the historic and current land management practices. The hydropedological dynamics of
a site in a certain time is not the result of present processes and events but is related to
and strongly influenced by the land use management history as well as the natural plant
succession patterns [30].

In CP-III, the historic use of the area as a Pinus patula plantation and the subsequent lack
of rehabilitation has led to a decrease in basal cover and erosion, particularly in the upper
reaches of this catchment. This erosion has created shallower soils and therefore reduced
the storage capacity and infiltration rates of the recharge hydropedological soil group.
This reduced infiltration capacity has likely changed the flow dynamics of the catchment
compared to what would have been historically present, and this is evident in the quicker
response of the streamflow discharge values following a rainfall event during the wetter
periods of this study. The impact of erosion on the hydropedological characteristics of a
catchment area has been highlighted in other studies, with [31] identifying that soils with a
degraded structure tend to have increased bulk density and consequently a decrease in soil
porosity. This impacts the water movement in the soil profile, having knock-on effects at
the landscape scale. Ref. [12] showed that rainfall infiltration into shallower soils will reach
the bedrock interface quickly and flow along this interface as preferential flow. The slope
runoff from these areas will therefore appear to occur as subsurface stormflow (i.e., similar
to overland flow) but occurring at the shallow soil/bedrock interface. In areas of thicker
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soil profiles, as is the case in CP-VI and CP-IX, rainfall infiltration into the deeper recharge
soils will supply the stream network largely as shallow groundwater and contribute more
to the baseflow.

The erosion of the upper reaches has also led to deeper deposition areas within the
lower reaches of CP-III. It is within these deposition areas that the interflow soil group
piezometers were installed. When comparing the depth to the water table in all interflow
soil group piezometers from the three catchment areas, CP-III has the deepest water table
depths. This is due to the burying of the original soil profile by sediment which has been
eroded from the top of the catchment; this has implications for the flow dynamics of
this area of the catchment. Refs. [32,33] showed that in areas of deposition, soil particles
have been mixed, causing changes in the pore structure of the soil matrix resulting in
pore clogging and the reduction in the soil hydraulic capabilities. Thus, in these areas of
CP-III, there is likely to be a slow reconnection of the subsurface flow paths following dry
periods and these flow paths reconnecting to the stream network. This is demonstrated
by the fact that the interflow soil group piezometers located in the depositional areas
did not have a substantial increase in water table depth throughout the study period in
comparison to the interflow soil group piezometers in CP-VI and CP-IX. They are thus
likely to contribute slowly to the baseflow of the stream network and not to the stormflow
peaks of the hydrograph of this catchment even following large rainfall events.

CP-VI is managed as a mesic grassland interspersed with wetland systems, while
the fire exclusion since 1952 in CP-IX has led to this catchment becoming a woody dom-
inated area. When comparing CP-VI and CP-IX, fluctuations in the average water table
depths of the saturated responsive soil groups show that in both catchments the wetland
areas dried out to an extent during the drought period, and these became re-saturated in
January/February 2020 and then remained saturated throughout the study period. The
wetlands in both catchments contributed to shallow sub-surface flow and at times overland
flow depending on rainfall conditions. The average water table depth of the interflow
soil group also followed similar patterns when comparing the two catchment areas. The
effect of plant cover on the hydropedological characteristics of catchment areas has been
reported in different environmental settings [11,30,34–36], with these studies showing that
woody cover areas have greater infiltration rates compared to pasture areas and that tree
canopies can reduce the interception of rainfall within catchment areas, influencing infiltra-
tion rates within soils [36]. These studies were conducted in commercial plantations, fallow
pastures, and old wood forests. The results of this study suggest that the flow dynamics
of each catchment area are not a product of land cover but a factor of a combination of
interrelated components.

The pivotal role that the wetland systems play in the streamflow dynamics of the catch-
ment areas has been highlighted in this study. The drying and wetting cycles of individual
wetland systems as well as specific saturation zones of these wetlands influenced both the
baseflow connectivity and the overland flow during wetter periods. Ref. [37] identified
similar findings utilising remote sensing techniques to show how a wetland system has
different internal saturation compartments and how these both differ in saturation content
depending on the climatic conditions and in providing lateral flow and overland flow to
downgradient environments. Ref. [29] furthermore utilised isotopes to show that baseflow
within the stream network consists predominantly of pre-event water (or dryer cycles)
with larger rainfall events (particularly during the wetter cycles) displacing this water
within the wetland systems and moving it as overland flow to the stream networks. The
contribution of wetland systems to the stream network is therefore a heterogeneous and
complex interaction of the soil physical properties, the climatic conditions, and the land
management of an area. This has an impact on areas within the catchments classified as
saturated responsive soils as these areas do not always contribute to overland flow, but
rather the timing of their contribution to both baseflow and overland flow is specific to the
wetland system, its location within the catchment, and climatic variables. Future isotopic
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studies within the Cathedral Peak research catchments are recommended to help gain a
deeper understanding of flow dynamics from the wetland systems to the stream networks.

4. Conclusions

This study has highlighted the effects of climate, hydrologic conditions, land man-
agement and soil properties on the hydropedological characteristics of three montane
catchment areas. The results suggest that a number of factors which are interrelated play a
key role in determining the flow paths and the connection between flow paths in these areas.
These factors are dominated by antecedent soil moisture, rainfall intensity, the duration of
dry and wet periods as well as the depth of soil profiles.

The conceptual interpretation of the hydropedological flow paths of each catchment
area following the creation of the digital soil maps provided a general understanding of the
flow paths and storage areas of these watersheds. However, utilising catchment-specific
climate and streamflow data coupled with water table depth measurements as well as an
understanding of how historic and current land management practices have influenced
the soil properties, we were able to gain a more accurate interpretation of the response of
each hydropedological soil group following a rainfall event. The dominant role of wetland
systems and how these have drying and wetting cycles (the average water table depth
ranged from 520 mm to 20 mm in CP-III, from 720 mm to 28 mm in CP-VI and from
487 mm to 51 mm in CP-IX) are the key focus in understanding the connectivity between
the hydropedological flow paths and the contribution of soil water to the stream networks
of the three catchments.

Given the importance of small mountain watersheds in maintaining water supplies to
downgradient systems, the understanding of how streamflow is generated and maintained
in these headwater catchments is of importance. This is particularly so in understanding
the importance of the water storage capacity and water flux rate of the wetlands of the
catchments in creating a buffering capacity against hydroclimatic variability which is
becoming an ever-increasing reality [33]. The health of the wetland systems in storing water
during droughts and their capacity to become saturated quickly and then contribute to the
stream network is an important consideration in the ecological services these mountain
headwater catchments provide.
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Abstract: Slope farmland is prone to soil erosion, especially in sub/tropical regions. However, our
understanding of near-surface hydrology characteristics and their controlled factors in red soil sloping
farmland remains limited. Here, we conducted simulated rainfall experiments to assess the impact
of rainfall pattern, straw mulching, and soil structure on near-surface hydrological processes of red
soil sloping farmland of southern China. Results showed that: (1) short duration-high intensity rain
caused greater surface runoff and sediment production than did long duration-low intensity rain,
whereas the variation pattern of subsurface flow exhibited the opposite trend; (2) tillage behavior
could weaken the surface runoff intensity and promote the development of subsurface flow; (3) straw
mulching increased the water infiltration rate and associated subsurface flow production (increased
by 1.33~12.71 times), and thus reduced the surface runoff production (reduced by 99.68~100%). These
findings highlight the crucial roles of rainfall pattern and straw mulching in regulating the spatial
distribution pattern of rainwater and suggest that straw mulching can effectively reduce soil erosion
via accelerating water infiltration and subsurface flow form in slope farmland of soil erosion in
southern China.

Keywords: slope farmland; simulated rainfall; subsurface flow; soil structure; rape straw mulching

1. Introduction

Cultivated land is a scarce resource for the survival of people in various developing
countries, including China [1,2]. As an important part of cultivated land, slope farmland
has attracted more and more attention. However, due to unreasonable land use, the soil
and water loss of slope farmland has been aggravated, making slope farmland become
an important source of soil and water loss in many regions [3–5], which has become an
ecological environment and agricultural resource problem that has attracted much attention
worldwide. To ensure the normal life needs of people in hilly areas of developing countries,
it is urgent to control soil erosion in sloping farmland.

Soil structure is an important factor affecting the near-surface hydrology of sloping
farmland. Some scholars had preliminarily discussed the influence of soil configuration
in black soil [6], purple soil [7,8] and karst topography [9] on near-surface hydrology. For
example, in the report of Zhang [9], the surface runoff in the karst area after rainfall was
less, and it was usually characterized by full runoff. Subsurface flow and deep leakage
are important hydrological processes in the region. Zhang [6] found that in the black soil
region, the soil layer was thick, the vertical stratification was obvious, the upper layer was
loose, the lower layer was dense, and the infiltration performance was poor. The special soil
configuration was easy to form the upper stagnant water. Long [7] found that the purple
soil area had steep slope, thin soil layer, high gravel content, large porosity and strong
infiltration capacity. Subsurface flow occurs in the middle and late stages of rainfall after soil

Water 2022, 14, 3388. https://doi.org/10.3390/w14213388 https://www.mdpi.com/journal/water
108



Water 2022, 14, 3388

saturation, and the runoff yield was large. However, the response of near-surface hydrology
to rainfall caused by special tillage soil structure was still unclear. Long-term tillage of red
soil slope farmland makes the surface soil loose and permeable. The bottom soil of the
tillage layer was compacted by tillage equipment, which increased soil density and thus
reduced soil permeability. Porosity, especially the content of macropores, is low, and the
permeability is significantly lower than that of the loose plow layer, forming a typical soil
structure of “upper loose-lower tight” [10]. Under sufficient precipitation and special soil
configuration, red soil slope farmland makes the development of subsurface flow more
active. In some extreme rainfall events, the outflow of subsurface flow even exceeds the
surface runoff, which dominates the rainfall-flow process on the slope [11]. Surface runoff
and subsurface flow of sloping farmland are important components of watershed runoff,
and directly affect the hydrological process of the whole watershed [12,13]. Both of them
play an equally important role in soil erosion.

As one of the measures to control soil erosion, straw mulching cannot only improve
soil properties but also play an active role in reducing the surface erosion of sloping
farmland [14–16]. Some scholars had preliminarily discussed the hydrodynamic process of
straw mulch. Compared with bare land, straw mulching can increase surface roughness [17],
significantly reduce flow velocity [18,19], reduce runoff [20,21], and reduce sediment.
For example, Prosdocimi [21] reported a significant decrease in soil erosion rates due to
reduced surface runoff due to straw mulching. Straw can affect the process of surface
runoff and sediment production by increasing the roughness of the surface. Mulumba [22]
and Guo [23] showed that straw mulching could effectively reduce surface temperature
and water evaporation. Straw mulching can reduce soil bulk density and significantly
promote soil water use efficiency [24]. In addition, straw mulching can also protect the soil
surface from the splashing effect caused by raindrops, prevent the crusting effect of the soil
surface during rainfall, and reduce the surface runoff and the amount of sediment covered
by runoff [25,26]. However, few studies have considered the interaction between straw
mulching on surface runoff and subsurface flow.

The southern red soil region is an important food production area in China, and it is
also one of the most densely populated areas. As an important cultivated land resource
in the region, slope farmland accounts for 26.3% of the cultivated land area there [27].
However, due to the unique natural conditions (such as subtropical monsoon rainfall
patterns and landforms, soil parent materials, etc.) and social factors, this region has
become one of the regions with serious soil and water loss in China, and agricultural
development is greatly restricted. In recent years the region has used a series of means
to solve the problem of soil and water loss, and has achieved remarkable phased results.
However, there is still insufficient research on the response of near-surface hydrology to
rainfall under straw mulching on sloping farmland in this region. Because of this, the
purpose of this study is (1) to explore the influence of different rainfall patterns on near-
surface hydrology and soil erosion; (2) to explore the influence of slope farmland soil
structure on near-surface hydrology and soil erosion; and (3) to explore the impacts of
straw mulching on near-surface hydrology and soil erosion for different rainfall patterns.

2. Materials and Methods

2.1. Study Site

The experiment was performed in the simulated rainfall hall of Jiangxi Soil and Water
Conservation Ecological Science and Technology Park (115◦43′42′′, 29◦16′55′′) from July
to October 2020. The science and technology park is located in the south of Dean County,
Jiujiang City, Jiangxi Province. The study site is located in the small watershed of Yangou
and the west bank of Boyang River in the Poyang Lake system (Figure 1). This site belongs
to the subtropical monsoon climate zone with abundant rainfall. The average annual
rainfall is 865.6~1807.7 mm, accounting for nearly 50% of the annual rainfall from June to
October. The annual average temperature is 16.7 ◦C, annual sunshine hours range from
650~2100 h, the frost-free period 245~260 d, the soil parent material is Quaternary red clay,
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and the zonal vegetation is subtropical evergreen broad-leaved forest. The landform in the
region is shallow hilly land with an elevation of 30~100 m and a slope of less than 25◦. The
science and technology park is located in the red soil center of China, and the terrain and
soil conditions are typically representative.

Figure 1. Location map of test area (a) Location of Jiangxi Province in China; (b) Location of De’an
County in Jiangxi Province; (c) The location relationship between the test site and Yangou watershed,
De’an County and Poyang Lake.

2.2. Test Materials

In this experiment, we used the steel soil tank with 1.5 m × 0.5 m × 0.5 m
(length × width × height) to collect surface runoff, subsurface flow, and deep leakage in
soils (Figure 2). According to the field investigation, the test slope was treated as 10◦ [28,29],
representing the slope of most red soil slope farmland. The filling soil was a typically
quaternary red soil collected from the study area (Table 1). The soil was naturally dried
and screened to remove plant roots and gravel for standby. A layer of 5 cm thick graded
gravel was filled at the bottom of the soil tank, and a layer of geotextile was covered on the
gravel to prevent the loss of the upper soil and facilitate water permeability.

Table 1. Basic physical and chemical properties of soils.

Sand/(%) Silt/(%) Clay/(%) pH Organic Matter/(g kg−1)

13.700 53.055 33.245 5.533 13.24
Note: Sand (2.0 mm ≥ D > 0.02 mm). Silt (0.02 mm ≥ D > 0.002 mm). Clay (D < 0.002 mm).

In this study, the soils with the same bulk density were regarded as homogeneous soils
(HoS) and filled uniformly to 5~45 cm of the soil tank. However, heterogeneous soils (HeS)
were composed of two soil layers with different bulk densities. The details are exhibited
in Table 2. For each treatment, soil was filled into the soil tank every 5 cm. And breaking
the soil surface before filling the next layer. The soil moisture content of the soil tank test
was controlled at 10 ± 1%, and the test was carried out after the completion of the soil
tank filling.

Table 2. Backfilling bulk density of soil tank.

Soil Depth/(cm) HoS/(g cm−3) HeS/(g cm−3) HeS + SM/(g cm−3)

0~15 1.10 1.10 1.10
15~40 1.10 1.45 1.45

Note: HoS, Homogeneous soil. HeS, Heterogeneous soil. HeS + SM, Heterogeneous soil + Straw mulch.

Oilseed Rape (Brassica napus L.), as a common oil crop in the south of China, is widely
planted in red soil sloping fields. Rapeseed leaves a large amount of straw after harvesting,
which is an excellent material for straw mulching. The rape straw was taken from the rape
planted in the slope farmland of the study area, and naturally dried after mature harvest.
Before the experiment, the rape straw was crushed to 5~10 cm for covering. The covering
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amount was 10 t hm−2, and the soil tank area in this experiment was 0.75 m2. Straw laying
thickness was about 3–5 cm.

Figure 2. Experimental demonstration and soil tank schematic. (a) Uncovered soil tank. (b) Soil tanks
during rainfall experiment. (c) Straw–covered soil tank. (d) Schematic diagram of steel soil tank.

2.3. Test Method

To simulate natural precipitation, this work was conducted in a rainfall hall, in which
effective rainfall area, rainfall height, and rainfall evenness were 786 m2, 18 m, and 0.85,
respectively. The whole rainfall hall was divided into four independent rainfall test areas,
of which areas 1, 2 and 3 were the lower spraying area, and area 4 was the side spraying
area. The whole process of this test was completed in zone 2, which adopts FULLJET
rotary down jet nozzle. The variable range of rainfall intensity in the spraying area is
10~200 mm h−1.

Under the condition of consistent total rainfall control, two typical rainfall patterns in
the southern red soil region were selected for the simulation test [30]. Rainfall pattern A
was designed to simulate the rainfall with short duration-high intensity rain in summer,
which lasts 1.5 h, and the rainfall intensity was 90 mm h−1. Rainfall pattern B was designed
to simulate the rainfall with long duration-low intensity rain in spring, which lasted for
4.5 h and the rainfall intensity was 30 mm h−1. The designed rainfall field of this test was
3 (treatment) × 3 (repeat) × 2 (rain pattern) = 18. In the actual process of the test, there
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were 18 rainfalls, including 0 invalid rainfalls and 18 effective rainfalls. The test results
were taken as the average of three repetitions.

In this experiment, water samples were collected every three minutes from the begin-
ning of the rainfall and measured until the end of surface runoff. Among them, due to the
mixed sediment in the surface runoff sample, the samples were weighed and filtered with
a fast filter paper. The paper-wrapped sediment was put into the oven, the temperature
of the oven was set to 105 ◦C, and the sediment was baked for more than 8 h and read
after drying.

2.4. Analysis Method

All statistical analyses were performed with R version 4.1.1 [31], and the accepted
significance level was set at α = 0.05. A one-way ANOVA of Tukey’s HSD comparison was
used to determine the differences in the runoff, sediment yield, and subsurface flow among
different treatments with the ‘agricolae’ package. Excel 2019 and Origin pro 2022 were used
to process data and draw charts.

3. Results

3.1. Surface Runoff Generation Characteristics

Analysis of surface runoff start time and flow under straw mulching on red soil slope
farmland is shown in Table 3. It can be seen that the surface runoff generation time of HoS
(homogeneous soil) and HeS (heterogeneous soil) was similar under long duration-low
intensity rain. The runoff generation time was ranked as HoS < HeS < HeS + SM from early
to late. HoS and HeS began to produce runoff after 157.00 min and 160.42 min, respectively,
and the HeS + SM with straw mulch did not produce surface runoff. The total surface
runoff yields of HoS and HeS were 15.72 L and 9.83 L, respectively. The surface runoff of
HoS was 1.6 times higher than HeS. The peak flow and average flow showed the same
regularity. When the short duration-high intensity rain, the surface runoff of red soil slope
land was faster, and the order was HoS < HeS < HeS + SM from early to late. HoS and HeS
started runoff at 6.18 and 7.83 min after the beginning of rainfall, respectively. HeS + SM
began runoff at 19.03 min. By comparing the two rainfall patterns, we can see that the short
duration-high intensity rain causes early surface runoff generation, large total runoff, and
high peak flow. Straw mulching significantly reduced surface runoff in red soil slopes.

Table 3. Effect of straw mulching on surface runoff of Red Soil Sloping Farmland.

Rain Pattern Test Treatment
Runoff

Generation Time/(min)
Total Flow/(L) Peak Flow/(mL) Average Flow/(mL)

Long duration
-low intensity

HoS 157.00 ± 4.25 a 15.72 ± 1.60 a 740.00 ± 3.00 a 413.71 ± 21.05 a

HeS 160.42 ± 3.35 a 9.83 ± 1.63 b 500.00 ± 45.00 b 265.54 ± 7.65 b

HeS + SM / 0 0 0

Short duration
-high intensity

HoS 6.18 ± 0.03 c 81.41 ± 3.82 a 3300.00 ± 155.00 a 3015.19 ± 127.41 a

HeS 7.83 ± 0.31 b 66.70 ± 7.52 b 2800.00 ± 55.00 b 2382.14 ± 90.60 b

HeS + SM 19.03 ± 1.20 a 0.21 ± 0.02 c 18.00 ± 5.00 c 9.22 ± 0.84 c

Note: For the same column, different lowercase letters indicate significant differences among different treatments
under the same rain pattern (p < 0.05). ± denotes standard deviation. HoS, Homogeneous soil. HeS, Heteroge-
neous soil. HeS + SM, Heterogeneous soil + Straw mulch.

It can be seen that the surface runoff intensity of HoS was greater than that of HeS
under the long duration-low intensity rain (Figure 3a). Generally, the runoff intensity of
Hos and HeS increased during rainfall. The runoff intensity reached its peak at the end
of rainfall, and the runoff immediately ended after the end of rainfall. Differently, under
short duration-high intensity rain (Figure 3b), the runoff intensity of soil tanks without
straw mulching increased rapidly after runoff generation and formed superosmotic runoff.
Between 20~25 min after the beginning of rainfall, the runoff intensity stabilized until the
end of rainfall. Straw mulching leads to low surface runoff intensity and stable runoff yield
on red soil slope.
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Figure 3. Surface runoff process under different rainfall patterns (a) Long duration-low intensity rain;
(b) Short duration-high intensity rain. HoS, Homogeneous soil. HeS, Heterogeneous soil. HeS + SM,
Heterogeneous soil + Straw mulch.

3.2. Sediment Yield Characteristics

The soil loss analysis of red soil slope farmland under straw mulching conditions was
shown in Table 4. We can know that the total erosion of HoS was 1.4 times of HeS at long
duration-low intensity rain. However, due to the large surface runoff of HoS, the sediment
concentration was diluted, and the sediment concentration of HoS was 0.8 times that of
HeS. Under short duration-high intensity rain, the total erosion amount was 1.2 times that
of HeS. The sediment concentrations of the two were close, and HoS was 0.98 times that of
HeS. It is worth noting that the total amount of soil erosion caused by short duration-high
intensity rain was 12.12~12.39 times that of long duration-low intensity rain, and the peak
erosion reached 35.29~44.29 times. In the case of constant rainfall, short duration-high
intensity rain can form greater soil erosion.

Table 4. Effect of straw mulching on soil loss in red soil sloping farmland.

Rain Pattern Test Treatment
Sediment

Concentration (g L−1)
Total

Sediment Yield (g)
Peak

Sediment Yield (g)
Average

Sediment Yield (g)

Long duration
-low intensity

HoS 2.58 ± 0.06 a 40.43 ± 5.94 a 1.54 ± 0.05 a 1.19 ± 0.041 a

HeS 3.23 ± 0.19 a 28.25 ± 3.17 b 1.19 ± 0.03 a 0.94 ± 0.039 a

HeS + SM 0 0 0 0

Short duration
-high intensity

HoS 5.96 ± 0.23 b 490.06 ± 20.08 a 54.35 ± 1.40 a 17.50 ± 1.07 a

HeS 6.09 ± 0.02 a 406.52 ± 10.70 a 52.70 ± 0.95 b 14.52 ± 0.50 b

HeS + SM 0 0 0 0

Note: For the same column, different lowercase letters indicate significant differences among different treatments
under the same rain pattern (p < 0.05). ± denotes standard deviation. HoS, Homogeneous soil. HeS, Heteroge-
neous soil. HeS + SM, Heterogeneous soil + Straw mulch.

The analysis of soil loss processes caused by different rainfall patterns on sloping arable
land was shown in Figure 4. We know that the erosion amount of red soil slope fluctuates
with the continuous rainfall under the long duration-low intensity rain (Figure 4a). At the
same rainfall time, the erosion amount generated by HoS was lower than that generated by
HeS. Under short duration-high intensity rain, the trend of the HoS and HeS erosion process
line was close (Figure 4b). Erosion of HoS and HeS increased rapidly from the beginning of
runoff to peak in about 20 min and then decreased rapidly. The runoff intensity tends to
level off until the end of the rainfall, about 50 min after the start of the rainfall.
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Figure 4. Surface sediment production process under different rain patterns (a) Long duration-low
intensity rain; (b) Short duration-high intensity rain. HoS, Homogeneous soil. HeS, Heterogeneous
soil. HeS + SM, Heterogeneous soil + Straw mulch.

3.3. Subsurface Flow and Deep Infiltration Characteristics

Analysis of the beginning time and flow rate of subsurface flow in red soil sloping
farmland under straw mulching was shown in Table 5. It can be seen that under long
duration-low intensity rain, the runoff generation time of subsurface flow of HoS and HeS
was earlier than that of surface runoff. The subsurface flow of HoS was 14.5 min earlier
than that of surface runoff, and the subsurface flow of HeS was 19.19 min earlier than that
of surface runoff. The total flow in soil from high to low was HeS + SM > HeS > HoS, but
the peak flow production was HeS + SM > HoS > HeS. Under long duration-low intensity
rain, the beginning time of HoS leakage (40 cm) runoff was close to that subsurface flow.
However, the leakage of HeS and HeS + SM was significantly different from the runoff
generation time of subsurface flow. The time of subsurface flow and leakage of HeS + SM
was earlier than that of HeS. We found that the total runoff showed HeS + SM > HeS > HoS
in the long duration-low intensity rain. This indicates that the flow rate was positively
correlated with the flow time. Under short duration-high intensity rain, the runoff genera-
tion time of subsurface flow was later than that of surface flow, and the runoff generation
time from early to late was HoS < HeS < HeS + SM, which was opposite to that under long
duration-low intensity rain. The total flow of subsurface flow was inversely proportional
to the runoff generation time, which was HoS < HeS < HeS + SM. Straw mulch had a great
influence on leakage. The leakage runoff of the soil tank covered by straw mulch started
early and the runoff was large.

The response process of subsurface flow to different rainfall patterns in red soil
sloping farmland under straw mulching was shown in Figure 5. We can see that the
HeS + SM flow generation time was the earliest (Figure 5a). With continuous rainfall,
the runoff intensity was increased. Runoff intensity was proportional to time. The runoff
intensity was proportional to time until the peak intensity is reached at the end of rainfall,
and then rapidly decreased to the end of runoff. The runoff generation time of HoS was
close to that of HeS. After HoS began to produce runoff, the runoff intensity increased
rapidly, reached the peak at 169.50 min, and then decreased rapidly. The runoff stopped
at 208.5 min. The runoff intensity increased rapidly after the beginning of HeS runoff,
remained stable at about 180 min, and gradually decreased to the end of rainfall after
210 min. Under the condition of short duration-high intensity rain, the runoff intensity
of HoS and HeS was higher than that of HeS + SM at the beginning of runoff generation
(Figure 5b). The runoff generation time of HeS + SM was relatively late. With continuous
rainfall, the runoff intensity of subsurface flow increased and reached the peak intensity
at the end of rainfall.
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Figure 5. Subsurface flow process under different rainfall patterns (a) Long duration-low intensity
rain; (b) Short duration-high intensity rain. HoS, Homogeneous soil. HeS, Heterogeneous soil.
HeS + SM, Heterogeneous soil + Straw mulch.

4. Discussion

4.1. Effects of Rainfall Pattern on Near-Surface Hydrological Process and Soil Loss

In this study, the surface runoff generated by short duration-high intensity rain in
uncovered sloping farmland was 5.18~6.79 times that of long duration-low intensity rain,
and soil erosion was 12.12~14.39 times as much. For short duration-high intensity rain,
the surface runoff accounted for 66~80% of the total rainfall water, and the surface runoff
caused by long duration-low intensity rain accounted for only 10~16% of the rainfall water
(Figure 6). Previous [32,33] studies showed that short duration-high intensity rain is an
important rainfall pattern that causes erosion in various regions compared to long duration-
low intensity rain. Ma [34] found that the mean runoff depth of short duration-high
intensity rain was 3.4 times that of long duration-low intensity rain. Short duration-high
intensity rain is the main pattern of rainfall that causes runoff development on purple
soil slopes. Fang [32] analyzed natural rainfall and found that the total runoff caused
by short duration-high intensity rain was the highest among all rainfall patterns in karst
areas. Ma [33] reported that the rill erosion of red soil slope farmland occurred in the
33rd minute under the condition of heavy rain and heavy rain, and in the 160th minute
under the condition of light rain and heavy rain. Generally, short duration-high intensity
rain in a certain period rainfall, more than surface soil moisture infiltration rate to form
surface runoff. The water not absorbed by the soil forms surface runoff, which takes away
the surface soil and leads to soil erosion. Therefore, short duration-high intensity rain is
more likely to cause soil erosion than long duration-low intensity rain under the same
value of rainfall.

Different rainfall patterns have a great influence on subsurface flow beginning time
and runoff yield. Specifically, the subsurface flow of long duration-low intensity rain
started earlier than that of short duration-high intensity rain. Moreover, the subsurface flow
produced by long duration-low intensity rain was 1.80~4.43 times that of short duration-
high intensity rain in uncovered sloping farmland. Long duration-low intensity rain
produced a subsurface flow of 2~4% of total rainfall, while short duration-high intensity
rain produced 0~2% (Figure 6). We believe that in long duration-low intensity rain, the
rainfall intensity per unit time is small, and the water has sufficient time to infiltrate, thus
forming subsurface flow. In short duration-high intensity rain, the infiltration rate of
surface soil was lower than that of rainfall intensity, forming infiltration excess runoff [35].
Moreover, short duration-high intensity rain forms surface crusts after raindrops hit the
surface soil [36,37], further reducing the soil infiltration rate and subsurface flow. This is
consistent with most previous studies [38]. These findings indicate that long duration-low
intensity rain is more likely to promote the development of subsurface flow than short
duration-high intensity rain.
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Figure 6. Surface runoff and subsurface flow under different rainfall patterns. HoS, Homogeneous
soil. HeS, Heterogeneous soil. HeS + SM, Heterogeneous soil + Straw mulch. (The proportion is less
than 1%, and the figure is not marked).

4.2. Effect of Soil Structure on Near-Surface Hydrological Process and Soil Loss

In red soil slope farmlands, soil structure is an important factor affecting surface
runoff and erosion [39]. Our results showed that the surface runoff generated by HeS
(heterogeneous) was lower than that done by HoS (homogeneous), regardless of rainfall
pattern. Because the surface infiltration rate of soil with heterogeneous is higher than
that of homogeneous soil. Part of the water was absorbed by the surface soil infiltration,
thereby reducing the generation of surface runoff. This is consistent with previous research
results [40]. Nanda [40] report that the spatial heterogeneity of soil properties affects the
spatial distribution of runoff. Relatedly, less surface runoff can cause less erosion. This
is consistent with our results that HeS has lower surface soil erosion than HoS. These
phenomena indicate that the soil structure of red soil slope farmland can effectively reduce
the yield of surface runoff and weaken the surface erosion caused by rainfall.

The subsurface flow is also affected by the soil structure. Different from surface
runoff, the subsurface flow of HeS was 2.53~6.23 times of HoS under two rainfall patterns.
Under HeS conditions, the proportion of subsurface flow in rainfall water increased by
about 2%. Soil structure increases the flow of subsurface flow, which was consistent with
previous studies [41]. Soil heterogeneity caused by long-term tillage of sloping farmland
can effectively reduce the intensity of surface runoff [42]. When the water infiltrates into
the heterogeneous soil, it encounters the plow pan with poor permeability, forming a lateral
subsurface flow. This will reduce the water pressure in the surface soil, increase the water
infiltration rate and reduce the surface runoff. Aldo [41] report that heterogeneity is more
sensitive to rainfall inputs. The increase of subsurface flow and saturation is faster than
that of a homogeneous case. In summary, the soil structure of red soil slope farmland
can increase the water infiltration rate and increase the proportion of subsurface flow in
the overall water. Therefore, soil structure can affect near-surface hydrology, reduce soil
erosion, and achieve the effect of water and fertilizer conservation.
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4.3. Effect of Straw Mulching on Near-Surface Hydrological Process and Soil Loss

Straw mulching is an effective means of dealing with soil erosion caused by rainfall.
Straw mulching reduced 99.7% (Long duration-low intensity rain)~100% (Short duration-
high intensity rain) surface runoff and 100% surface erosion under different rainfall
patterns, respectively. Compared with bare land, surface runoff and erosion in straw
mulching experiments decreased significantly, which was similar to the results of several
authors [43–46]. Misagh [43] found that a higher straw application rate would produce
less runoff and reduce soil erosion. Wang [44] also found that straw mulching had a
significant effect on the average infiltration rate, cumulative runoff and cumulative
sediment yield on the slope. We believe that the physical and biochemical properties of
surface soil change when the straw is covered on sloping farmland. Straw mulching can
reduce the impact of rainfall on surface soil and reduce surface crust. Straw mulching
can also reduce surface soil temperature [47], decrease soil bulk density [48,49], increase
soil porosity [50] and increase soil water storage. For example, Liu [47] proposed that
soil porosity gradually increased with the continuous coverage of straw. Increasing soil
porosity can improve soil infiltration, thus affecting surface runoff and subsurface flow.
These results suggest that straw mulching can regulate the formation of surface runoff
and reduce surface soil erosion.

In this study, the subsurface flow was significantly affected by straw mulching
(Table 4). Specifically, in long duration-low intensity rain, the initial runoff time of sub-
surface flow caused by straw mulching was 39.73 min earlier than that without mulching,
and the total subsurface flow runoff increased by 33.42%. After straw mulching, the
proportion of total precipitation in subsurface flow runoff increased by 1~25%, and the
amount of deep leakage also increased by 6~41% (Figure 6). These findings indicate that
straw mulching can effectively promote the development of subsurface flow [38]. The
report of Gao [46] suggested that straw mulching could significantly increase subsurface
flow under various rainfall intensities. Duan [38] reported that straw mulching signifi-
cantly reduced surface runoff and significantly increased subsurface flow at a depth of
30 cm. Different from the previous research results, in short duration-high intensity rain,
straw mulching increased the total amount of subsurface flow runoff to 12.71 times, but
the initial runoff time-lagged 10.02 min. We believe that heavy rainfall has compacted
and splashed the surface of sloping farmland without straw mulching in this experiment.
This leads to the change of surface micro-topography, and some surface soil forms a
crust effect. Therefore, a large amount of water carried by rainfall cannot be infiltrated,
forming runoff on the surface. Due to the large surface runoff water potential, the water
rapidly infiltrates the large gap to form a preferential flow, and the subsurface flow is
formed at the change of soil structure. Straw mulching reduced the splash erosion of
raindrops on surface soil, resulting in loose surface soil and a high infiltration rate. More-
over, straw mulching reduced the flow velocity of surface runoff and made it infiltrate
nearby. The straw mulching treatment made the surface soil moisture reach saturation
before the formation of subsurface flow, resulting in the formation of subsurface flow
later. Straw mulching enables the water carried by short duration-high intensity rain
to be fully fixed by the surface soil. After the surface soil is saturated, subsurface flow
is formed to recharge groundwater resources. This plays a positive role in water and
fertilizer conservation and reduces soil erosion in slope farmland.

This study provides theoretical support for the application of straw mulching on red
soil slope farmland. The protective effect of rape straw mulching on the surface soil of red
soil slope farmland under short duration-high intensity rain was proposed, which was
conducive to the popularization and application of this measure. However, the conclusion
of this study was only obtained under the condition of single rape straw coverage and
slope, which may vary with different coverage and slope. It will be the focus of our future
research to select different coverage and find the optimal straw coverage of red soil slope
farmland to expand the application scope and practicability of the research results.
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5. Conclusions

In this study, the effects of rainfall pattern, soil structure, and straw mulching on
near-surface hydrology and erosion were investigated in the sloping cropland of red soil.
The main conclusions are as follows: (1) The intensity of surface runoff formed by short
duration-high intensity rain is greater than that of long duration-low intensity rain, and
the surface soil is more eroded. At the same time, short duration-high intensity rain is not
conducive to the development of subsurface flow and cannot make full use of the water
brought by rainfall; (2) Under the two rainfall patterns, the surface runoff intensity of HeS
(heterogeneous) is smaller than that of HoS (homogeneous), while the subsurface flow
runoff intensity is the opposite. This shows that the soil structure of red soil slope farmland
can affect the development process of near surface hydrology, increase the infiltration of
rainfall water, and reduce the surface runoff and erosion of the slope; (3) After mulching
with rape straw, the intensity of surface runoff decreased significantly, and the intensity of
subsurface flow increased significantly. The improvement of coverage on short duration-
high intensity rain is particularly evident. Straw mulching can make the precipitation water
fully fixed by the surface soil, which is conducive to the absorption and utilization of water
by crops, and reduce the loss of soil. These findings will help to understand the impact
of rainfall on the near-surface hydrology of sloping farmland in red soil and provide a
theoretical basis for production practice.
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Abstract: Land Use/Land Cover (LU/LC) change is among the dominant driving factors that
directly influence water balance by transforming hydrological responses. Consequently, a thorough
comprehension of its impacts is imperative for sustainable water resource planning and development,
notably in developing worlds such as Pakistan, where agriculture is a major livelihood. This research
intends to assess the continuing changes in LU/LC and evaluate their probable repercussions on the
hydrological regime of the Potohar Plateau. The maximum likelihood classification (MLC) algorithm
for land use classification of the high-resolution satellite imageries, the Cellular-Automata Markov
Chain Model (CA-MCM) for the projection of LU/LC maps, and the Soil and Water Assessment
Tool (SWAT) in tandem with SWAT-CUP for hydrological modeling were employed in this research.
The high-resolution climatic dataset (10 × 10 km) was used in SWAT. The LU/LC analysis revealed
a continual propagation of agricultural and built-up lands at the detriment of forest and barren
land during the last three decades, which is anticipated to continue in the future, too. Hydrological
model calibrations and validations were performed on multi-basins, and the performance was
evaluated using different statistical coefficients, e.g., the coefficient of determination (R2), Nash–
Sutcliffe Efficiency (NSE), Kling–Gupta Efficiency (KGE), and Percent Bias (PBIAS). The results
yielded that the model performed very well and demonstrated the model’s robustness in reproducing
the flow regime. The water balance study revealed that the anticipated LU/LC changes are projected
to decrease the mean annual surface runoff, water yield, and streamflow due to an increase in
percolation, lateral flow, sub-surface flow, and evapotranspiration. More significant variations of the
water balance components were observed at the sub-basin level, owing to the heterogeneous spatial
distribution of LU/LC, than at the basin level. The outcome of this study will provide pragmatic
details to legislative bodies to develop land and water management ameliorative strategies to harness
hydrological changes sustainably.

Keywords: LU/LC; MLC; CA-Markov; SWAT; Potohar Plateau; water balance; Indus basin

1. Introduction

Sustainable management of watersheds and environmental systems is receiving thriv-
ing attention from local, continental, and intercontinental institutes because they are es-
sential for ecosystem preservation, poverty alleviation, and food security in developing
countries, where agriculture is a major livelihood [1]. Additionally, Sustainable Devel-
opment Goals (SDGs) specify essential socioeconomic, environmental, and hydrological
processes characterized by performance indices [2].

Numerous unidentified anthropogenic biomes affect ecosystems at various spatial-
temporal scales. The cumulative effects of environmental change, which integrates multi-
scale climate change (CC), and disruptions to natural and socio-ecosystems, alter and

Remote Sens. 2022, 14, 5421. https://doi.org/10.3390/rs14215421 https://www.mdpi.com/journal/remotesensing
122



Remote Sens. 2022, 14, 5421

deteriorate ecosystem characteristics [3]. Climate change and LU/LC seem to be the most
overriding drivers of the hydrological processes, impacting flow regimes and water balance
components in watersheds worldwide [4]. LU/LC change is a significant attribute of
global environmental change due to its diverse implications. LU/LC change is intrinsically
accompanied by an expansion of economic activities, machine-intensive agriculture, un-
regulated infrastructural sprawl, and a substantial demographic transition from remote
rural areas to urban centers, a characteristic feature of LU/LC change in the Anthropocene
era [5]. Furthermore, interactions between these parameters at the basin scale might
thus have a confounding impact, resulting in spatial-temporal variation of hydrological
components [6,7].

Changes in LU/LC are the most prominent driving agents of hydrological variation at
spatio-temporal scales. Various researchers have identified the effects of LU/LC change on
the flow regime. For example, an increase in flow during the wet season and a decrease in
flow during the dry season in Hoeya River Basin, Korea, from 1975–2050 were attributed to
urban sprawl [8]. The growth of agricultural and built-up lands at the cost of vegetation in
the Andassa watershed, Ethiopia, from 1985 to 2045 caused an increase in annual surface
runoff and water yield [9]. An increase in infrastructural development and agricultural
activities in the upper Athi basin of the Nairobi metropolitan area from 1985 to 2055
corresponds to the increasing surface runoff and evapotranspiration [7]. Other studies in
the East African watershed [10], Big Sioux River watershed [11], Krishna river basin [12],
Xinanjiang basin [13], and Bhavani basin [14] have also revealed significant implications of
LU/LC changes to exacerbate hydrological components. [15] The quantification of water
balance helps to better comprehend the dynamics of physical processes in the upper Chao
Phraya River Basin, Thailand. The author of [16] evaluated the trends in the various
hydrological variables to rationalize the intensification of the global hydrological cycle.
Other studies in Peninsular India [17], 32 global basins [18], and 24 global basins [19]
presented uncertainties in the quantification of water balance.

Spatio-temporal LU/LC projections are useful tools for identifying the relationships
between different simulated changes in LU/LC dynamics and their underlying causes [20].
The CA-Markov Chain Model (CA-MCM) embedded into MOLUSCE was applied to
project changes in LU/LC to 2050 and performed very well with a kappa coefficient of 0.72
in the Astore watershed [21]. Other studies such as those in the Nashe basin, Ethiopia [22],
the Wuhan metropolitan area, Central China [23], Pu county, Shanxi province, Chinese
Loess Plateau [24], the city of Faisalabad, Pakistan [25], Heihe river basin China [26], and
in Shiyang river basin, China [20] have recommended an integrated CA-Markov model for
LU/LC projection.

Hydrological models are essential in quantifying the implications of LU/LC changes
in water balance [12]. The SWAT model was recommended since it had been commonly
employed in large-scale modeling and simulations to evaluate the plausible ramifications
of land management practices and LU/LC changes related to hydrologic components.
Previous investigations have suggested the efficacy of the SWAT model in quantifying the
implications of LU/LC changes on hydrological components. For instance, studies in the
Potohar Plateau [27], in Europe [28], Ib river watershed, India [29], the Upper Sind river
basin, India [30], Tons river basin, India [31], Ghataprabha basin, India [32], and in the
eastern Baltic Sea region [33] have recommended the SWAT model to simulate the water
balance components of the basins.

Multiple research works have been carried out to investigate the implications of climate
change on flow regimes since the publication of the 5th Assessment Report of IPCC [34].
Investigations on the Haro and Soan Basin have noted that climate change will, in turn,
intensify uncertainties regarding water availability [35,36]. However, the degree to which
the flow regime responds to LU/LC change has not been thoroughly studied, and this
response differs between watersheds and LU/LC scenarios. Due to demographic growth,
agricultural and built-up lands have significantly increased, causing a dramatic change in
flow regime at spatial-temporal scales. To manage water resources sustainably, it is crucial
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to evaluate how climate change will alter the hydrological processes and how different
LU/LC scenarios will impact the flow regime [13]. Though a number of researchers have
identified the heightened problem of LU/LC change [11] and have investigated LU/LC
changes in the region [37,38], there is a lack of quantifying the impact of these changes on
the hydrological regime. Thus, this research is one of the few to evaluate the LU/LC change
implications on hydrologic components in a vast rainfed agricultural-dominated region,
which might be essential for sustainable LU/LC planning and water resource management.

The study targeted formulating a pivotal framework to comprehend historical and
projected LU/LC changes and their implications on water balance in the Plateau. Specifi-
cally, the historical LU/LC maps projected by CA-MCM were employed to drive the SWAT
model to simulate flow regimes under changing scenarios. With this in mind, the overarch-
ing objectives of this research are: (1) To assess the spatiotemporal LU/LC changes in the
Plateau, (2) To setup and parameterize a high-resolution hydrological model, and (3) To
quantify spatiotemporal water balance under changing LU/LC scenarios. Using the results
of this study, water managers and policymakers would be able to develop ameliorative
strategies to mitigate water availability on spatial and temporal scales.

2. Materials and Methods

2.1. Study Area

The Potohar Plateau is the largest rainfed tract in Pakistan and is situated in the
northern Punjab province, which is in the northeastern part of Pakistan. The Plateau
consists of five administrative units, namely Attock, Chakwal, Jhelum, Rawalpindi, and
Islamabad Capital Territory. Its area is approximately 22,254 km2 with an elevation of 133
to 2221 m a.m.s.l. The region geographically lies in Sindh Sagar Doab, which is bound
by the Indus River on the west and the Jhelum River on the east and stretches southward
from the foothills of the Himalayas to the salt range [27]. The region’s topography is highly
undulating, which is constituted by rolling plains in the east, lofty mountains to the west,
and dissected ravine belts (Figure 1). The Potohar Plateau mainly includes six river basins,
namely Bhuna, Haro (the hatched portion incorporated in hydrological modeling, which
lies outside the Potohar Plateau), Kahan, Kanshi, Reshi, and Soan. Out of six river basins,
only three gauged river basins, i.e., Soan, Haro, and Kanshi (Figure 2), have been analyzed
to simulate the hydrological regime under current and projected LU/LC [39].

The climate of the Plateau varies from semi-arid to sub-humid, with scorching sum-
mers and relatively cold winters. Generally, moist and sub-humid climates predominate in
the northern portion of the region, whereas dry and semi-arid environments predominate
in the central and southern regions, respectively. The yearly precipitation varies from
1750 mm in the northwest to 450 mm in the southwest. Precipitation distribution in the
region is bi-modular in nature because of two precipitation patterns, i.e., westerlies and
Monsoon. The westerly aggravation triggers the first peak, while Monsoon triggers the
second peak of higher magnitude. The temperature ranges from 4 to 40 ◦C, but it can
increase beyond its normal limits due to natural processes and non-environment-friendly
anthropogenic activities [40–42].

The Potohar Plateau is the fastest-growing region of Pakistan, with a population of
around 12 million in 2017 [43]. Due to the rapid economic and demographic growth, water
is becoming increasingly scarce due to the increasing water demands. Therefore, it is
imperative to determine the LU/LC changes and their hydrological implications.
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Figure 1. Study area map of the Potohar Plateau with the topography, hydrometric stations, meteoro-
logical stations, and gridded virtual stations.

Figure 2. Delineated watersheds of Potohar Plateau with hydrometric stations.
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2.2. Datasets

Datasets required for the setup of a hydrological model are geo-hydro-climatic datasets,
for instance, soil map, topography (Figure S2), i.e., Digital Elevation Model (DEM), land
use map, climatic data, namely precipitation, maximum and minimum temperature, and
hydrometric data such as streamflow data (Table S2). The concise description and sources
of these datasets are displayed in Table 1.

Table 1. Details of geo-hydro-climatic input datasets.

Data Type Data Name Description Time Resolution Source

Spatial Data

DEM ALOS PALSAR NA 12.5 × 12.5 m NASA Earth-Data [44]

LU/LC
Landsat 5, 7 1990, 2000, 2010 30 × 30 m USGS [45]
Sentinel-2A 2020 10 × 10 m USGS [45]

Soil Map DSMW NA 30 Arc Second FAO [46]

Hydro-Climatic Data

Climatic Data
Precipitation 1991–2019 10 × 10 Km Submitted and

Unpublished [47]

Temperature 1991–2019 10 × 10 Km Submitted and
Unpublished [47]

Hydrometric Data Flow Data 1991–2007 NA Surface Water Hydrology
Project (WAPDA) [48]

2.3. Methodological Framework

The primary goal of the research is to estimate the implications of LU/LC changes
on water balance under historical and projected scenarios, and the detailed methodology
employed for this research is given in Figure 3. This study is structured into four major
components: (a) To perform supervised classification of satellite imagery for historical
LU/LC, (b) To project LU/LC, (c) To set up a hydrological model, (d) To quantify water
balance under LU/LC scenarios.

 

Figure 3. Methodological framework of the study.
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2.4. Cellular Automata Markov Chain Model (CA-MCM)

The Cellular Automata Markov Chain Model (CA-MCM) is a widely accepted LU/LC
change modeling algorithm for projecting spatiotemporal changes. The CA-MCM combines
Cellular Automata (CA, a spatial model) and the Markov Chain (MCM, a quantitative
temporal model) to project LU/LC change trends and characteristics over time. The
rationale for integrating the models is that the MCM describes the likelihood of cells
changing from one form to another but does not provide spatial distribution. Therefore, to
distribute the projected changes spatially, the MCM is hybridized with CA [20,23,24].

MCM is a stochastic model that utilizes two historical LU/LC maps, which are the
main inputs for determining the transition area matrix and transition probabilities ma-
trix [49]. For instance, it will provide information on how many cells are likely to transform
from one LU/LC class to another based on a transition probability matrix [22,50]. MCM
is based on Bayes’ Equation (1) to project LU/LC change, and P is determined using
Equation (2):

S(t+1) = Pmn × S(t) (1)

P =

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

P11 P12 P13 . . . P1n
P21 P22 P23 . . . P2n
P31 P32 P33 . . . P3n

...
...

...
...

...
Pm1 Pm2 Pm3 . . . Pmn

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣
(2)

where {0 ≤ Pmn ≤ 1 and ∑
j
m,n=1(Pmn) = 1 (m, n = 1, 2, 3, . . . , j)}.

MCM is unable to recognize spatial variability in LU/LC due to a spatial constraint.
So, by coupling MCM with CA, spatial and temporal LU/LC changes can be simulated.
CA can be expressed as Equation (3):

S(t,t+1) = f
{

P(t), N
}

(3)

where St and St+1 are the LU/LC condition at the time of t and t + 1, respectively; P is the
transition probability matrix, j is the number of LU/LC classes, N is the cellular field, and f
is the transformation rule of cellular states [13,22,51].

2.5. SWAT Model

SWAT is a physically based, continuous time series, a semi-distributed hydrological
model that functions on sub-daily/daily time steps. It was devised to determine the
influence of land management strategies on water, sediment, and agricultural chemical
yields over extended time periods in a large-scale, complex watershed with heterogeneous
soil, slope, and LU/LC scenarios [2,34,52]. The SWAT model simulates a hydrological cycle
using the water budget Equation (4):

SWf = SWi +
t

∑
n=1

(
Rday − Qsurface − Wseep − EET − Qgw

)
(4)

The SWAT model employs the Soil Conservation Service curve number (SCS-CN) to
characterize the surface runoff [52], which can be defined as Equation (5):

Qsurface =

(
Rday − Ia

)2

Rday − Ia + S
, Ia = λS (5)

where SWf is the final water content of the soil, SWi is the initial soil water content, t is
time (days), Rday, Qsurface, EET, Wseep, Qgw, Ia, and S are the daily amount of precipitation,
surface flow, evapotranspiration, percolation, return flow, initial abstraction, and the
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retention parameter after runoff begins, respectively; all the parameters are measured in
mm of H2O. When Ia is taken to be 0.2S, Equation (6) becomes:

Qsurface =

(
Rday − 0.2S

)2

Rday + 0.8S
, for P > 0 else Q = 0 (6)

The retention parameter fluctuates geo-spatially owing to the changes in LU/LC, soil,
slope, and soil water content, and it may be computed using Equation (7) [31,53,54].

S =
25, 400

CN
− 254 (7)

Evapotranspiration of the basin is evaluated using the Penman–Monteith method,
which can be defined as Equation (8).

λ ∗ ET =
Δ(Rn − G) + ρacp ∗

(
es−ea

ra

)
Δ + γ∗

(
1 + es

ra

) (8)

where Rn, G, es − ea, ρa, rs, ra, cp, and g are the lateral flow, transmission losses, net
radiation, soil heat flux, air vapor pressure deficit, mean air density, surface resistance,
aerodynamic resistance, the specific heat of air, and psychrometric constant, respectively.

2.6. Evaluation of Historical Land Use/Land Cover

The assessment of LU/LC was accomplished by employing four satellite imagery, three
(3) from Landsat with a spatial resolution of 30 m and one (1) from Sentinel with a spatial
resolution of 10 m, namely, Landsat-5 TM 1990, Landsat-7 ETM+ 2000, Landsat-7 ETM+
2010, and Sentinel-2A 2020, respectively (Table S1). Landsat 7 ETM+ had scan line errors
which were collected after 31 May 2003 due to a malfunction of the scan line corrector (SLC).
Firstly, these scan line errors were corrected using the Landsat tool. After this operation, the
next step was to perform the supervised classification, which was executed using Imagine
ERDAS software. For this purpose, more than 700 training samples were acquired to create
signature files that were further used to execute supervised classification based on the
Maximum Likelihood Classification (MLC) algorithm [34,35]. After successful classification,
the accuracy assessment of the classified images was performed using the ground truth data.
For this purpose, 100 points for each LU/LC type were taken using Google Earth maps
and satellite imageries. After ground truthing, Imagine ERDAS automatically calculated
the kappa coefficient, overall, producer’s and user’s accuracy.

2.7. Land Use/Land Cover Projection

CA-MCM is available in MOLUSCE (Modules for Land Use Change Simulations), an
extension of QGIS, and is a comprehensive model that projects the trends and geospatial
configuration of LU/LC classes based upon historical LU/LC thematic maps, transition
probability matrices, and suitability matrices [34,55]. Before proceeding towards the pro-
jection of LU/LC, inputs were required. The first input was the creation of three discrete
LU/LC classified maps, two maps for the preparation of the transition probability matrix,
and one map to validate the model. The other input was the driving parameters, which
include the spatial and socio-economic factors (Table S4). Several parameters can control
the growth in each LU/LC class, and these parameters can interact and establish an intricate
relationship. Thus, major driving parameters such as topography, aspect, slope, Euclidean
distance from roads, Euclidean distance from railways, Euclidean distance from water
bodies, gross domestic product (GDP), and population density (Figure S1) were chosen
depending on their availability and impact on LU/LC changes [14,24,56]. These driving
factors were used to prepare the suitability matrix. The classified LU/LC maps of 2000 and
2010 were employed to generate a transition probability matrix and driving parameters to
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create a suitability matrix. MLP-ANN algorithm used these matrices to project the LU/LC
map of 2020. This projected map was validated with a supervised classified LU/LC 2020
map [14,57]. After successful validation, the trained model was used to project LU/LC to
2030, 2040, and 2050.

2.8. Setup, Sensitivity Analysis, Calibration and Validation of SWAT

A SWAT model was employed to simulate the implications of the historical and
projected LU/LC change scenarios on water balance components in the Potohar Plateau.
The Arc-SWAT 2012 model delineated the whole region into three major river basins,
namely Soan, Haro, and Kanshi. These basins were divided into multiple sub-basins by
choosing a threshold value of 5005 hectares. Since these sub-basins had heterogeneity, they
were further segmented into hydrologic response units (HRUs) associated with distinct
sets of topography, soil, and LU/LC class with the threshold value of 10%, 20%, and 10%,
respectively, as put forth by Kiprotich [7]. These HRUs were homogeneous geospatial
units with identical hydrological and geomorphological characteristics. In our case, this
region had 3 river basins, 57 sub-basins, and 486 HRUs for the baseline model. The model
performed a simulation using high-resolution gridded climatic data such as precipitation,
and minimum and maximum temperature for a span of 29 years (1991–2019), encapsulating
a spin-up period of an initial three years [28,58–60].

The SWAT model was refined by coupling it with SWAT Calibration and Uncertainty
Programs (SWAT-CUP). The SUFI-2 algorithm enables parameterization using sensitivity
analysis, calibration, and validation [61,62]. In order to carry out this operation, available
observed data was divided into three-time windows, with the middle time window used
for model calibration and rest two windows used for backward and forward validations.
These windows were defined such that the monthly average and standard deviation were
nearly equal for all the windows.

Based on past research on similar catchments, thirty-eight of the most influential
parameters were chosen for sensitivity analysis. Global Sensitivity Analysis (GSA) was
employed to perform sensitivity analysis. The sensitivity of the parameters was determined
using a multiple regression approach that regresses Latin hypercube-generated parameters
against an objective function. Due to the diverse number of parameters, the calibration
process becomes complex and computationally extensive. So, to reduce the number of
parameters, local sensitivity analysis was also performed, which not only reduced the
number of parameters but also provided upper and lower bounds for an expeditious cali-
bration process [63,64]. In order to analyze the SWAT performance during the simulation,
we applied four statistical performance indicators given in Table 2 [52,65].

Table 2. List of employed statistical parameters.

Coefficient Formula Performance Rating

R2: Coefficient of determination R2 =
[∑n

i=1(Qobs,i−Qobs)(Qsim,i−Qsim)]
2

∑n
i=1(Qobs,i−Qobs)

2
∑n

i=1(Qsim,i−Qsim)
2

0 ≤ R2 ≤ 1
>0.5 Satisfactory

>0.65 Good

NSE: Nash–Sutcliffe Efficiency NSE = 1 − ∑n
i=1(Qobs−Qsim)2

∑n
i=1(Qobs,i−Qobs)

2

0 ≤ NSE ≤ 1
>0.5 Satisfactory

>0.65 Good

KGE: Kling–Gupta efficiency KGE = 1 −
√
(r − 1)2 + (α− 1)2 + (β− 1)2

0 ≤ KGE ≤ 1
>0.5 Satisfactory

>0.65 Good

PBIAS:
Percent bias PBIAS = 100 × ∑n

i=1 (Qobs−Qsim)i
∑n

i=1 Qobs,i

−∞ ≤ PBIAS ≤ +∞
<±25 Satisfactory

<±15 Good
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3. Results

3.1. Spatio-temporal Changes in Historical LU/LC

The LU/LC maps were classified into five classes, i.e., water bodies, agricultural
lands, forest lands, barren lands, and built-up lands. Principally, it was conceived that
there was an escalating anthropogenic biome in the region owing to the infrastructural
development and high land-intensive agriculture, and abatement of barren and forest
lands, resulting in a major loss of natural cover. The spatiotemporal distribution of LU/LC
change in the Plateau is depicted in Figure 4. It demonstrates that built-up lands were
drastically increased in the northern areas by transforming agricultural, forest, and barren
lands into non-porous lands between 1990 and 2020 (Figure 5). Concurrently, barren land
was converted to machine-intensive agricultural land in the central and southern areas.
A similar scenario prevailed in the subsequent decades, with the sprawl of unregulated
settlements and agricultural activities at the detriment of barren and forest lands.

Figure 4. Spatio-temporal variation of LU/LCs, historical and projected.
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Figure 5. Calibration and validations of stream flows, Soan River Basin.

The historical LU/LC change (Table 3) was dominated by the change in a barren land
with a total loss of 7895.47 km2, followed by urban and agriculture. Agricultural land
and built-up land exhibited an increasing trend gaining 6864.94 km2 and 1585.67 km2,
respectively, while water changed the least. The highest decline in barren lands was
primarily owing to the proliferation of agricultural and built-up lands. The agricultural
lands were expanded to fulfill the agrarian needs and generate livelihood for the increasing
population, while the built-up lands were expanded to accommodate migration from rural
communities to major urban centers.

Table 3. Historical LU/LC composition in the Plateau.

LU/LC
Classified 1990 Classified 2000 Classified 2010 Classified 2020

Km2 % Km2 % Km2 % Km2 %

Water Bodies 252.04 1.08 316.56 1.36 324.59 1.40 338.76 1.46
Agriculture Lands 5790.60 24.91 6631.58 28.58 11,102.87 47.85 12,655.54 54.43

Forest Lands 2859.59 12.30 2786.42 12.01 2585.14 11.14 2478.51 10.66
Barren Lands 14,086.34 60.59 13,159.87 56.71 8637.84 37.23 6190.87 26.63

Built-up Lands 260.79 1.12 309.55 1.33 553.63 2.39 1585.67 6.82

However, the LU/LC change is trivial compared to the Plateau’s total geographical
area. This signifies that the LU/LC change has been more substantial at the sub-basin
level than at the Plateau level. At the Plateau level, positive LU/LC changes in one class
have been counterbalanced by negative LU/LC changes in another class. For example,
an increase in agricultural activity has been observed in central and downstream areas,
simultaneously, the transition of agricultural land to built-up land in upstream areas led
to a decline in agricultural land within the Plateau. The findings of this research are
congruent with those of others conducted on and around the Plateau. For instance, in
the Potohar Plateau, [37,38] concluded that there was a dramatic increase in agricultural
and infrastructural development. The authors of [57] also summarized that the built-up
land are increasing, which is causing the loss of vegetation cover in the northern part of
the region.

3.2. Accuracy Assessment of Supervised Classified LU/LC Maps

Accuracy assessment was used to determine the reliability of classified images. In
this regard, a confusion matrix was employed to determine the correctness of the classified
image. Randomly selected sampling points were analyzed on the classified maps from
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Google Earth maps and mosaicked satellite imagery as a reference. Around 500 ground
truthing points for each classified image, with 100 sampling points for each class, were
selected to validate images from 1990, 2000, 2010, and 2020. The results (Table S3) exhibit
that the average kappa coefficient and overall accuracy for 1990, 2000, 2010, and 2020 maps
were 0.79, 0.81, 0.82, and 0.84; 83.8%, 85.2%, 85.88%, and 87.8%, respectively. The producer’s
accuracy ranged between 75% and 94%, while the user’s accuracy ranged between 79%
and 97%. According to Monserud and Landis [66,67], a Kappa coefficient above 0.75 is
an acceptable indicator of the classified image. Therefore, the outcome of the assessment
demonstrated that the classified image and ground truths were in good agreement.

3.3. LU/LC Projections

LU/LC maps of 2000 and 2010 functioned as observed data for training the CA-MCM,
whereas the LU/LC map of 2020 was utilized to evaluate the reliability of the projected
map for 2020. A comparative analysis of classified and projected LU/LC maps for 2020
was conducted. The pictorial comparison demonstrates that the CA-MCM was an effective
LU/LC projection tool for the Potohar Plateau (Figure 4). An assessment of conformity
between classified and projected maps for 2020 was performed to ascertain the adaptability
of the deployed model to reliably simulate the distribution of LU/LC changes (Table S7).
The Kappa coefficient (K) was determined to comprehend the resemblance between the
classified and projected LU/LC maps for 2020. Since all the K statistics (Koverall = 0.77,
Khistorical = 0.79, and Klocal = 0.82) have been above the value of 0.75 [63,64], the CA-MCM
trained for LU/LC projection was deemed to be acceptable.

Furthermore, since the hydrological model was taken into account to estimate the
implications of LU/LC change on the water balance of the study area, a comparison
between the simulations performed using the classified LU/LC 2020 map, and the CA-
MCM projected LU/LC 2020 map (Figure S4) was necessary. The graphical analysis reveals
that the flow regime simulated by the SWAT model at the river basins changed minimally
for the two employed LU/LC maps (Figure S3), restating the good match between the
classified and simulated LU/LC maps. The trained CA-MCM was then utilized to project
LU/LC maps for 2030, 2040, and 2050 (Table 4).

Table 4. Future projected LU/LC composition in the Plateau.

LU/LC
Projected 2020 Projected 2030 Projected 2040 Projected 2050

Km2 % Km2 % Km2 % Km2 %

Water Bodies 334.69 1.46 353.53 1.52 350.57 1.51 348.44 1.50
Agriculture Lands 12,439.41 54.43 12,831.91 55.19 13,040.56 56.09 14,586.03 62.74

Forest Lands 2335.59 10.66 2314.06 9.95 2189.18 9.42 2054.69 8.84
Barren Lands 6289.47 26.63 5119.34 22.02 4043.06 17.39 1522.11 6.55

Built-up Lands 1800.17 6.82 2630.50 11.31 3627.24 15.60 4738.08 20.38

The LU/LC change detection of the Potohar Plateau indicates that agricultural lands
hold the dominant portion of the area (Figure 4). From the analysis, it is clear that the study
area has assimilated significant LU/LC change, and the dominant LU/LC change has
occurred in the expansion of built-up and agricultural lands. Additionally, LU/LC change
has been occurring at the expense of a reduction in barren and forest lands (Figure S2).

3.4. Hydrological Model Calibration and Validation

The initial SWAT model setup utilizing default parameter ranges was unable to suc-
cessfully simulate the flow regime at all hydrometric gauges because the base flow and
peak flow were overestimated. As a result, parameter calibration was required to precisely
model the hydrologic regime. A global sensitivity analysis (GSA) for the simulated flow
was undertaken using a monthly hydrometric flow to recognize the most sensitive pa-
rameters which affect model response. Incipiently soil, groundwater, evapotranspiration,
surface runoff, and geomorphology parameters were considered, and 29 parameters were
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recognized as sensitive parameters. The greater the absolute value of the t-stat and the
lower the p-value, the more sensitive a parameter, and the sensitivity ranks of parameters
after GSA are shown in Table S5. Subsequently, the calibration was performed incorporat-
ing 29 parameters [28,63], which was laborious and computationally intensive. Therefore,
local sensitivity analysis (LSA) was also performed, reducing the number of parameters
to 22 and providing upper and lower bounds for swift calibration (Table S6). The model
was calibrated to flow series from 1998 to 2003. The calibrated and validated parameter
values were integrated into the SWAT database to estimate the implications of LU/LC on
the water balance.

The SWAT model performed well during calibration (1998–2003) and validation
(1994–1997 and 2004–2007) windows. According to the visual analysis of the stream flows
(Figures 5, S5 and S6) and statistical evaluation of the model using R2, NSE, KGE, and
PBIAS with reference to criteria defined by Moriasi [65], all hydrometric gauges demon-
strated good or very good performance during calibration and validation windows, and
the statistical performance indices are shown in Table 5. Furthermore, R-factor and p-value
statistics criteria are governed by Karim Abbaspour’s [61] model exhibits a good agreement
with the calibration and validations. Overall, the performance rating indices computed
during the calibration and validation windows confirmed that the model performed quite
well [27,68], which suggests that it has the potential to model the implications of LU/LC
changes on the hydrological regime.

Table 5. Statistical performance of model during calibration and validation windows.

River Basin
Calibration Backward Validation Forward Validation

R2 NSE KGE PBIAS R2 NSE KGE PBIAS R2 NSE KGE PBIAS

Soan 0.81 0.79 0.77 9.8 0.78 0.76 0.75 −12.9 0.78 0.76 0.76 −17.8
Haro 0.80 0.77 0.78 8.7 0.76 0.74 0.76 8.7 0.76 0.76 0.77 12.7

Kanshi 0.77 0.79 0.73 19.7 0.77 0.74 0.74 14.7 0.75 0.74 0.73 10.6

3.5. Plausible Impacts of LU/LC Changes on Hydrological Regime

Four supervised classified LU/LC maps of the Potohar Plateau (1990, 2000, 2010, and
2020) and three future projected LU/LC maps (2030, 2040, and 2050) were deployed in the
calibrated SWAT model under the assumption that the climate was immutable. The impact
of LU/LC alterations on the hydrological responses was assessed using a baseline model
over the span of 29 years (1991–2019), including a three-year spin-up period (1991–1993)
and with varied LU/LC maps, for instance, LU/LC 2000, LU/LC 2010, LU/LC 2020,
LU/LC 2030, LU/LC 2040, and LU/LC 2050.

The hydrological regime was investigated in terms of how hydrological processes
respond to evapotranspiration, water yield, surface, and sub-surface flows, as exhibited in
Table 6. As a consequence of the anticipated drastic transformation of LU/LC from 1990
to 2020, mean annual evapotranspiration (+11%) and groundwater flow (+15%) tend to
increase, while mean annual surface flow (−19%) and total water yield (−12%) decreased.
Nevertheless, the rate of increase and decrease is proportional to the rate of change in
LU/LC. In general, the exacerbating ramifications of the LU/LC changes are accompanied
by increased agricultural and built-up lands in conjunction with decreased forest and
barren lands.

According to the LU/LC scenarios, agricultural lands are anticipated to increase from
24.91% to 62.74%, while built-up lands are expected to increase from 1.12% to 20.38%,
leading to an increase in evapotranspiration (+15.54%) and a decrease in surface runoff
(−24%), as shown in Table 7 [12,51]. In the research area, from 1990 to 2050, agricultural
expansion (+37.84%) dominated infrastructural development (+19.26%). Therefore, it may
neutralize the implications of built-up lands on hydrological components, decreasing
surface flow. The expansion of machine-intensive agriculture with the loss of barren land
may be the cause of the flow reduction.
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Table 6. Mean annual water balance components of the river basins.

Components (mm) 1990 2000 2010 2020 2030 2040 2050

Precipitation 845.80 845.80 845.80 845.80 845.80 845.80 845.80
Surface Runoff 394.09 372.96 348.94 319.82 309.34 307.98 303.33

Evapotranspiration 406.65 419.67 433.96 452.66 464.60 468.66 471.80
Percolation 52.83 54.32 63.55 72.60 73.22 74.94 76.08

Groundwater Flow 38.43 39.45 42.71 44.35 44.73 46.61 48.02
Return Flow 5.14 6.59 6.94 7.04 7.15 7.32 8.61
Lateral Flow 8.63 9.43 9.46 9.70 10.03 10.09 10.16
Water Yield 432.87 419.37 402.11 378.84 366.61 366.27 357.95

Table 7. Comparison between water balance components under LU/LC scenarios.

Components
(mm)

Baseline Scenario
(1990)

Recent
Scenario (2020)

Mid-Century
Scenario

(2050)

Baseline to
Recent

(%)

Recent to
Mid-Century

(%)

Surface Runoff 394.09 319.82 303.33 −74.28
(−18.85%)

−16.49
(−5.15%)

Evapotranspiration 406.65 452.66 471.80 46.01
(11.31%)

19.14
(4.23%)

Water Yield 432.87 378.84 357.95 −54.03
(−12.48%)

−20.90
(−5.52%) *

* The number in parentheses indicates a percent change.

4. Discussion

The integration of LU/LC with the SWAT model can enhance the performance of the
model in simulating the processes happening in the basins. In this study, the impacts of
LU/LC changes on water balance were estimated for the Potohar Plateau. In this context,
supervised classification was performed using ERDAS Imagine for the satellite imageries
for the years 1990, 2000, 2010, and 2020. Subsequently, the future of LU/LC was projected
using CA-MCM for the years 2030, 2040, and 2050. After that, the SWAT model was set up
for the base year and then calibrated and validated to enhance its efficiency of the model.
A SWAT model with optimized parameters was utilized to quantify the plausible impact of
LU/LC changes in the water balance on the sub-basin level.

The analysis of LU/LC maps of 1990, 2000, 2010, 2020, 2030, 2040, and 2050 revealed
that an increase in agricultural and built-up areas from 24.91% to 54.43% and 1.12% to 6.82%
and likely to be increased to 62.74% and 20.38%, respectively, in the mid-century due to an
increase in demographic and socio-economic growth. The LU/LC analysis also showed
that a decrease in forest and barren lands from 12.30% to 10.66% and 60.59% to 26.63% are
likely to be increased to 8.84% and 6.55%, respectively, as presented in Tables 3 and 4. The
authors of [37] showed that there is an increase in agricultural and built-up areas from 11%
to 29% and 6% to 11%, respectively, while forest and barren areas reduced from 69% to
43% and 16% to 10%, respectively, in the Simly watershed. The researchers of [69] also
showed that there is an increase in agricultural and built-up areas from 33.44% to 63.1%
and 1.77% to 5.78%, respectively, while forest and waste lands reduced from 29.81% to
11.32% and 9.27% to 2%, respectively, in the Narmada watershed. This built-up area and
forest shift are more prominent in the northern regions and urban centers, especially in
the twin cities. Similarly, an augmentation in agriculture and the associated loss of barren
land in the central and southern regions of the Plateau as shown in Figure 4. An analysis
from the authors of [38] showed similar patterns in the Potohar Plateau, confirming that
there is an increase in agriculture in the central and south-eastern regions and increased
urbanization in north-western and developed areas. The findings of other studies in the
Astore basin, Pakistan [21], Bogota basin, Colombia [3], Ganga basin, India [4], and Geba
catchment, Ethiopia [70] are also in agreement with this study.
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Hydrological models are crucial for evaluating the implications of LU/LC changes
on water balance. The model is selected in conformity with the problem complexity, data
availability, computing cost, and model robustness [12,27,68]. A comparison of different
hydrological models was conducted on those models that are suitable for evaluating the in-
fluence of LU/LCC on the water balance. The SWAT model was the best for the punctilious
modeling of LU/LC changes on the flow regime. The SWAT model was also recommended
since it had been commonly employed in large-scale modeling and simulations to eval-
uate the plausible ramifications of land management practices and LU/LC changes on
the hydrologic components [52,62]. In this study, the SWAT model setup for the baseline
scenario was calibrated for the period 1998 to 2003, backward validated from 1994–1997,
and forward validated from 2004–2007, as this approach was followed by Dahri et al., 2021.
The result of statistical indices, i.e., R2, NSE, KGE, and PBIAS for calibration and validation
windows ranged between 0.75–0.81, 0.74–0.79, 0.73–0.78, and −17.8–+14.7%, respectively.
Overall, the performance rating indices computed during calibration, and validation win-
dows revealed that the model performed quite well [52,62,65], which suggests that it has
the potential to model the implications of LU/LC changes on the hydrological regime.

The quantitative analysis of water balance components revealed that the decrease in
surface runoff and water yield from 394.09 mm to 319.82 mm and 432.87 mm to 432.87 mm
are likely to be increased to 303.33 mm and 357.95 mm, respectively, in mid-century due
to LU/LC changes [4,71]. It also showed an increase in evapotranspiration, percolation,
groundwater flow, and lateral flow from 406.65 mm to 452.66 mm, 52.83 mm to 72.60 mm,
38.43 mm to 44.35 mm, and 8.63 mm to 9.70 mm, and are likely to be increased to 471.80 mm,
76.08 mm, 48.02 mm, and 10.16 mm, respectively, as presented in Table 6 [51,72]. The
potential of the model to simulate the geospatial distribution of hydrological components
provides a substantial contribution to sustainable watershed management. At HRU and sub-
basin level, the spatial distribution of hydrological components, namely evapotranspiration,
water yield, surface runoff, percolation, lateral flow, and groundwater flow, have been
computed as shown in Figures 6, 7 and S7–S10. Evapotranspiration of the Plateau was lesser
in the northern parts and higher in the central and southern parts (Figure 7). Conversely,
besides climatic and orographic variations, surface runoff, and water yield had a high
concentration in the northern region due to the transformation of agricultural and forest
lands into built-up land, while a lower concentration was found in the central and southern
regions due to the conversion of barren land into agricultural land (Figures 6 and S7).

Figure 6. Spatial and temporal distribution of variations in simulated surface runoff.
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Figure 7. Spatial and temporal distribution of variations in simulated evapotranspiration.

The decreased surface runoff may be accompanied by an increase in evapotranspi-
ration, percolation, lateral flow, and decreased runoff, signifying the augmentation of
soil water storage. Groundwater flow varied comparatively less in the proximity of the
northern districts and higher in the southern districts. An increase in groundwater flow
was simulated on plain terrain, and there was relatively no change in the hilly terrain
(Figure S8). Unlike surface runoff, the lateral flow was higher in plain terrain and low
infiltration areas. The southern region was found to contribute significant lateral flow to
streamflow. Seasonal streamflow variability was also evaluated for the wet and dry seasons
(Figure S11). The streamflow was slightly increased in the wet season and decreased in the
dry season under the LU/LC scenarios. This increase and decrease in flow might be due to
increased urbanization and agricultural activities, respectively. However, it was concluded
from the quantitative outputs of the SWAT model that the implications of LU/LC changes
were more pronounced at the sub-basin level than at the basin level [4,64,73,74]. The
findings are in agreement with other studies conducted in watersheds around the globe.
For instance, [72] in the Nam Rom catchment, Vietnam concluded that LU/LC changes
have reduced surface runoff and increased evapotranspiration. The authors of [51] in the
Beiluo river basin on the Loess Plateau of China found that on an annual scale, surface
runoff and water yield may gradually decrease, but evapotranspiration may increase. The
authors of [69] also showed a decline of surface runoff and water yield but higher ET due
to the presence of more vegetation and forest areas between 1990–2050 in the Narmada
river basin, India, which was attributed to the LU/LCC of the catchment.

Despite the fact that the Soan, Haro, and Kanshi river basins encompass 78% of the
Potohar Plateau, this still does not meticulously characterize the Plateau, as it constitutes
three other river basins. Further studies on the other river basins are required to completely
comprehend the dynamics of water balance components in the Plateau. Overall, the SWAT
model simulated the flow regimes and water balance components efficiently. However, the
accuracy of the simulations is constrained by the coarse resolution of soil data, uncertainties
in hydrometric data [75], unavailability of reservoirs data (small dams), evapotranspiration
data, and groundwater flow data for the calibration and validation of the model, these
should be incorporated in subsequent studies. Moreover, climate change impacts should
also be studied in conjunction with LU/LC changes to develop rational strategies for
sustainable water management.
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5. Conclusions

The enclosed research executed a methodical framework that comprised LU/LC
scenarios, hydrological modeling, and quantification of hydrological components alteration
in the Potohar Plateau, which were attributed to the effects of human-induced LU/LC
changes. Seven distinct LU/LC scenarios were accomplished and evaluated by means of
the hydrological SWAT model. Furthermore, the outcomes of each scenario were compared
to those of the baseline scenario. According to historical LU/LC maps from 1990 to
2020, anthropogenic pressure increased agriculture and built-up lands by 29.52 and 7.7%,
respectively, while barren and forest lands decreased by 33.96 and 1.64%, respectively.
LU/LC projections for 2030, 2040, and 2050 were simulated using CA-MCM, which showed
an increase in agricultural and built-up lands with decreased barren and forest lands.
Among all LU/LC scenarios from 1990 to 2050, it is anticipated that the agricultural and
built-up lands will have the greatest proliferation.

The hydrological regime was modeled through the SWAT model, which was then
compared to observed hydrometric flows. The SWAT model was calibrated and validated
by simulating flow time series from 1994 to 2007. After calibration and validations, the
obtained results of the four most recommended coefficients R2, NSE, KGE, and PBIAS for
calibration ranged between 0.77–0.81, 0.77–0.79, 0.73–0.78, and +9.8–+19.7%, respectively,
while for forward and backward validation, values ranged between 0.75–0.78, 0.74–0.76,
0.73–0.77, and −17.8–+14.7%, respectively. The result of statistical indices and visualization
of streamflow yields a good degree of agreement between the simulated and observed
flow regimes, which indicates that the calibrated model, in conjunction with optimized
parameters, has the ability to simulate the water balance under LU/LC scenarios.

A distinct outcome of this study is that the transformation in intrinsic water balance
and flow regime is substantially sensitive to alteration in LU/LC. The analysis signifies
that the influence of LU/LC change has been diverse for peculiar river basins and more
prominent at the sub-basin level. The anticipated results indicate that LU/LC attributes
to dramatic decrease of surface runoff and water yield by 19% and 12%, respectively,
which is expected to exacerbate. Conversely, there is an increase in groundwater flow,
lateral flow, and evapotranspiration of 15%, 12%, and 11%, respectively, largely due to the
transformation of barren land into agricultural land.

The findings of this study lead to a greater comprehension of the plausible effects
of LU/LC changes on water balance in the Potohar Plateau, which will substantially aid
decision-makers in planning and executing potential adaptation strategies for watersheds
under changing LU/LC scenarios. Moreover, the methodological framework of this re-
search can be useful for any other watershed to evaluate the effects of anthropogenic biomes
on the hydrological regime.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14215421/s1, Figure S1. Spatial maps of driving parameters
of LU/LC change, Figure S2. Temporal variance of LU/LC, historical and projected, Figure S3. Soil
map of Potohar Plateau, Figure S4. Streamflow Evaluation of Classified and Simulated LU/LC 2020,
Figure S5. Calibration and validations of stream flows, Haro River Basin, Figure S6. Calibration
and validations of stream flows, Kanshi River Basin, Figure S7. Spatial and temporal distribution
of variations in simulated water yield, Figure S8. Spatiotemporal patterns of percolation under
LU/LC scenarios, Figure S9. Spatiotemporal patterns of groundwater flow under LU/LC scenarios,
Figure S10. Spatiotemporal patterns of lateral flow under LU/LC scenarios, Figure S11. Seasonal
variation of flow regime under LU/LC scenarios at different hydrometric stations, Table S1. De-
scription of satellite imagery acquisition, Table S2. Details of hydrometric data acquisition, Table
S3. Driving factors used to prepare the suitability matrix for LU/LC projection, Table S4. Accuracy
assessment of historical LU/LCs, Table S5. Global sensitivity values and ranks, Table S6. List of
most sensitive parameters with best-fitted values, Table S7. Quantitative analysis of classified and
simulated LU/LC 2020.

137



Remote Sens. 2022, 14, 5421

Author Contributions: Conceptualization, S.A.; data curation, M.I. and M.W.K.; formal analysis,
Z.H.D.; investigation, M.I.; methodology, S.A. and Z.H.D.; resources, I.A.R. and M.W.K.; software,
M.A. and M.I.; writing—original draft, M.I. and S.A.; writing—review and editing, K.A. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data sharing is not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Idrissou, M.; Diekkrüger, B.; Tischbein, B.; de Hipt, F.O.; Näschen, K.; Poméon, T.; Yira, Y.; Ibrahim, B. Modeling the Impact of
Climate and Land Use/Land Cover Change on Water Availability in an Inland Valley Catchment in Burkina Faso. Hydrology 2022,
9, 12. [CrossRef]

2. Ha, L.T.; Bastiaanssen, W.G.M.; Van Griensven, A.; Van Dijk, A.I.J.M.; Senay, G.B. Calibration of Spatially Distributed Hydrological
Processes and Model Parameters in SWAT Using Remote Sensing Data and an Auto-Calibration Procedure: A Case Study in a
Vietnamese River Basin. Water 2018, 10, 212. [CrossRef]

3. Clerici, N.; Cote-Navarro, F.; Escobedo, F.J.; Rubiano, K.; Villegas, J.C. Spatio-temporal and cumulative effects of land use-land
cover and climate change on two ecosystem services in the Colombian Andes. Sci. Total Environ. 2019, 685, 1181–1192. [CrossRef]

4. Anand, J.; Gosain, A.; Khosa, R. Prediction of land use changes based on Land Change Modeler and attribution of changes in the
water balance of Ganga basin to land use change using the SWAT model. Sci. Total Environ. 2018, 644, 503–519. [CrossRef]

5. Ellis, E.C.; Beusen, A.H.; Goldewijk, K.K. Anthropogenic Biomes: 10,000 BCE to 2015 CE. Land 2020, 9, 129. [CrossRef]
6. Verburg, P.H.; Neumann, K.; Nol, L. Challenges in using land use and land cover data for global change studies. Glob. Chang. Biol.

2011, 17, 974–989. [CrossRef]
7. Kiprotich, P.; Wei, X.; Zhang, Z.; Ngigi, T.; Qiu, F.; Wang, L. Assessing the Impact of Land Use and Climate Change on Surface

Runoff Response Using Gridded Observations and SWAT+. Hydrology 2021, 8, 48. [CrossRef]
8. Kim, J.; Choi, J.; Choi, C.; Park, S. Impacts of changes in climate and land use/land cover under IPCC RCP scenarios on streamflow

in the Hoeya River Basin, Korea. Sci. Total Environ. 2013, 452–453, 181–195. [CrossRef]
9. Gashaw, T.; Tulu, T.; Argaw, M.; Worqlul, A.W. Modeling the hydrological impacts of land use/land cover changes in the Andassa

watershed, Blue Nile Basin, Ethiopia. Sci. Total Environ. 2018, 619–620, 1394–1408. [CrossRef] [PubMed]
10. Baker, T.J.; Miller, S.N. Using the Soil and Water Assessment Tool (SWAT) to assess land use impact on water resources in an East

African watershed. J. Hydrol. 2013, 486, 100–111. [CrossRef]
11. Neupane, R.P.; Kumar, S. Estimating the effects of potential climate and land use changes on hydrologic processes of a large

agriculture dominated watershed. J. Hydrol. 2015, 529, 418–429. [CrossRef]
12. Chanapathi, T.; Thatikonda, S. Investigating the impact of climate and land-use land cover changes on hydrological predictions

over the Krishna river basin under present and future scenarios. Sci. Total Environ. 2020, 721, 137736. [CrossRef]
13. Guo, Y.; Fang, G.; Xu, Y.-P.; Tian, X.; Xie, J. Identifying how future climate and land use/cover changes impact streamflow in

Xinanjiang Basin, East China. Sci. Total Environ. 2019, 710, 136275. [CrossRef]
14. Kamaraj, M.; Rangarajan, S. Predicting the future land use and land cover changes for Bhavani basin, Tamil Nadu, India, using

QGIS MOLUSCE plugin. Environ. Sci. Pollut. Res. 2022, 2022, 1–12. [CrossRef]
15. Abhishek; Kinouchi, T.; Abolafia-Rosenzweig, R.; Ito, M. Water Budget Closure in the Upper Chao Phraya River Basin, Thailand

Using Multisource Data. Remote Sens. 2021, 14, 173. [CrossRef]
16. Huntington, T.G. Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol. 2006, 319, 83–95. [CrossRef]
17. Kinouchi, T. Synergetic application of GRACE gravity data, global hydrological model, and in-situ observations to quantify water

storage dynamics over Peninsular India during 2002–2017. J. Hydrol. 2021, 596, 126069. [CrossRef]
18. Pan, M.; Sahoo, A.K.; Troy, T.J.; Vinukollu, R.K.; Sheffield, J.; Wood, A.E.F. Multisource Estimation of Long-Term Terrestrial Water

Budget for Major Global River Basins. J. Clim. 2012, 25, 3191–3206. [CrossRef]
19. Abolafia-Rosenzweig, R.; Pan, M.; Zeng, J.; Livneh, B. Remotely sensed ensembles of the terrestrial water budget over major

global river basins: An assessment of three closure techniques. Remote Sens. Environ. 2020, 252, 112191. [CrossRef]
20. Wang, Q.; Guan, Q.; Lin, J.; Luo, H.; Tan, Z.; Ma, Y. Simulating land use/land cover change in an arid region with the coupling

models. Ecol. Indic. 2020, 122, 107231. [CrossRef]
21. Haleem, K.; Khan, A.U.; Ahmad, S.; Khan, M.; Khan, F.A.; Khan, W.; Khan, J. Hydrological impacts of climate and land-use

change on flow regime variations in upper Indus basin. J. Water Clim. Chang. 2021, 13, 758–770. [CrossRef]
22. Leta, M.; Demissie, T.; Tränckner, J. Modeling and Prediction of Land Use Land Cover Change Dynamics Based on Land Change

Modeler (LCM) in Nashe Watershed, Upper Blue Nile Basin, Ethiopia. Sustainability 2021, 13, 3740. [CrossRef]
23. Wang, Q.; Wang, H. An integrated approach of logistic-MCE-CA-Markov to predict the land use structure and their micro-

spatial characteristics analysis in Wuhan metropolitan area, Central China. Environ. Sci. Pollut. Res. 2022, 29, 30030–30053.
[CrossRef] [PubMed]

138



Remote Sens. 2022, 14, 5421

24. Huang, H.; Zhou, Y.; Qian, M.; Zeng, Z. Land Use Transition and Driving Forces in Chinese Loess Plateau: A Case Study from Pu
County, Shanxi Province. Land 2021, 10, 67. [CrossRef]

25. Tariq, A.; Shu, H. CA-Markov Chain Analysis of Seasonal Land Surface Temperature and Land Use Landcover Change Using
Optical Multi-Temporal Satellite Data of Faisalabad, Pakistan. Remote Sens. 2020, 12, 3402. [CrossRef]

26. Zhao, M.; He, Z.; Du, J.; Chen, L.; Lin, P.; Fang, S. Assessing the effects of ecological engineering on carbon storage by linking the
CA-Markov and InVEST models. Ecol. Indic. 2018, 98, 29–38. [CrossRef]

27. Rahman, K.U.; Shang, S.; Shahid, M.; Wen, Y. Hydrological evaluation of merged satellite precipitation datasets for streamflow
simulation using SWAT: A case study of Potohar Plateau, Pakistan. J. Hydrol. 2020, 587, 125040. [CrossRef]

28. Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and wa-
ter quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015,
524, 733–752. [CrossRef]

29. Singh, L.; Saravanan, S. Simulation of monthly streamflow using the SWAT model of the Ib River watershed, India. J. Hydro-
Environ. Res. 2020, 3, 95–105. [CrossRef]

30. Narsimlu, B.; Gosain, A.K.; Chahar, B.R. Assessment of Future Climate Change Impacts on Water Resources of Upper Sind River
Basin, India Using SWAT Model. Water Resour. Manag. 2013, 27, 3647–3662. [CrossRef]

31. Kumar, N.; Singh, S.K.; Singh, V.G.; Dzwairo, B. Investigation of impacts of land use/land cover change on water availability of
Tons River Basin, Madhya Pradesh, India. Model. Earth Syst. Environ. 2018, 4, 295–310. [CrossRef]

32. Tanksali, A.; Soraganvi, V.S. Assessment of impacts of land use/land cover changes upstream of a dam in a semi-arid watershed
using QSWAT. Model. Earth Syst. Environ. 2020, 7, 2391–2406. [CrossRef]

33. Tamm, O.; Maasikamäe, S.; Padari, A.; Tamm, T. Modelling the effects of land use and climate change on the water resources in
the eastern Baltic Sea region using the SWAT model. CATENA 2018, 167, 78–89. [CrossRef]

34. Getachew, B.; Manjunatha, B.; Bhat, H.G. Modeling projected impacts of climate and land use/land cover changes on hydrological
responses in the Lake Tana Basin, upper Blue Nile River Basin, Ethiopia. J. Hydrol. 2021, 595, 125974. [CrossRef]

35. Nauman, S.; Zulkafli, Z.; Bin Ghazali, A.H.; Yusuf, B. Impact Assessment of Future Climate Change on Streamflows Upstream of
Khanpur Dam, Pakistan using Soil and Water Assessment Tool. Water 2019, 11, 1090. [CrossRef]

36. Usman, M.; Ndehedehe, C.; Manzanas, R.; Ahmad, B.; Adeyeri, O. Impacts of Climate Change on the Hydrometeorological
Characteristics of the Soan River Basin, Pakistan. Atmosphere 2021, 12, 792. [CrossRef]

37. Butt, A.; Shabbir, R.; Ahmad, S.S.; Aziz, N. Land use change mapping and analysis using Remote Sensing and GIS: A case study
of Simly watershed, Islamabad, Pakistan. Egypt. J. Remote Sens. Space Sci. 2015, 18, 251–259. [CrossRef]

38. Tariq, A.; Riaz, I.; Ahmad, Z.; Yang, B.; Amin, M.; Kausar, R.; Andleeb, S.; Farooqi, M.A.; Rafiq, M. Land surface temperature
relation with normalized satellite indices for the estimation of spatio-temporal trends in temperature among various land use
land cover classes of an arid Potohar region using Landsat data. Environ. Earth Sci. 2019, 79, 40. [CrossRef]

39. Waseem Ghani, M.; Arshad, M.; Shabbir, A.; Shakoor, A.; Mehmood, N.; Ahmad, I. Investigation of Potential Water Harvesting
Sites at Potohar Using Modeling Approach. Pakistan J. Agric. Sci. 2013, 50, 723–729.

40. Khan, M.T.; Shoaib, M.; Hammad, M.; Salahudin, H.; Ahmad, F.; Ahmad, S. Application of Machine Learning Techniques in
Rainfall–Runoff Modelling of the Soan River Basin, Pakistan. Water 2021, 13, 3528. [CrossRef]

41. Hussain, F.; Nabi, G.; Wu, R.-S. Spatiotemporal Rainfall Distribution of Soan River Basin, Pothwar Region, Pakistan. Adv. Meteorol.
2021, 2021, 6656732. [CrossRef]

42. Nusrat, A.; Gabriel, H.F.; e Habiba, U.; Rehman, H.U.; Haider, S.; Ahmad, S.; Shahid, M.; Jamal, S.A.; Ali, J. Plausible Precipitation
Trends over the Large River Basins of Pakistan in Twenty First Century. Atmosphere 2022, 13, 190. [CrossRef]

43. Final Results (Census-2017)|Pakistan Bureau of Statistics. Available online: https://www.pbs.gov.pk/content/final-results-
census-2017 (accessed on 2 August 2022).

44. ALOS PALSAR—ASF. Available online: https://asf.alaska.edu/data-sets/sar-data-sets/alos-palsar/ (accessed on 13 August 2022).
45. USGS.Gov|Science for a Changing World. Available online: https://www.usgs.gov/ (accessed on 13 August 2022).
46. FAO/UNESCO Soil Map of the World|FAO SOILS PORTAL|Food and Agriculture Organization of the United Nations. Available

online: https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/ (accessed
on 13 August 2022).

47. Muhammad, W.K.; Shakil, A.; Zakir, H.D.; Zain, S.; Khalil Ahmad, F.K.M.A. Development of High Resolution Daily Gridded
Precipitation and Temperature Dataset for Potohar Plateau of Indus Basin. Remote Sens. 2022, in press.

48. Water & Power Development Authority. Available online: http://www.wapda.gov.pk/ (accessed on 31 August 2022).
49. Firozjaei, M.K.; Sedighi, A.; Argany, M.; Jelokhani-Niaraki, M.; Arsanjani, J.J. A geographical direction-based approach for

capturing the local variation of urban expansion in the application of CA-Markov model. Cities 2019, 93, 120–135. [CrossRef]
50. Tadese, S.; Soromessa, T.; Bekele, T. Analysis of the Current and Future Prediction of Land Use/Land Cover Change Using

Remote Sensing and the CA-Markov Model in Majang Forest Biosphere Reserves of Gambella, Southwestern Ethiopia. Sci. World
J. 2021, 2021, 6685045. [CrossRef] [PubMed]

51. Yan, R.; Cai, Y.; Li, C.; Wang, X.; Liu, Q. Hydrological Responses to Climate and Land Use Changes in a Watershed of the Loess
Plateau, China. Sustainability 2019, 11, 1443. [CrossRef]

52. Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven,
A.; Van Liew, M.W.; et al. SWAT: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491–1508. [CrossRef]

139



Remote Sens. 2022, 14, 5421

53. Shahid, M.; Rahman, K.U.; Haider, S.; Gabriel, H.F.; Khan, A.J.; Pham, Q.B.; Pande, C.B.; Linh, N.T.T.; Anh, D.T. Quantitative
assessment of regional land use and climate change impact on runoff across Gilgit watershed. Environ. Earth Sci. 2021,
80, 743. [CrossRef]

54. Abbas, T.; Nabi, G.; Boota, M.W.; Hussain, F.; Faisal, M.; Ahsan, H.; Lahore, T.; Lahore, T. Impacts of Landuse Changes on Runoff
Generation in Simly. Sci. Int. 2015, 27, 4083–4089.

55. Dibaba, W.T.; Demissie, T.A.; Miegel, K. Watershed Hydrological Response to Combined Land Use/Land Cover and Climate
Change in Highland Ethiopia: Finchaa Catchment. Water 2020, 12, 1801. [CrossRef]

56. Zhang, S.; Yang, P.; Xia, J.; Wang, W.; Cai, W.; Chen, N.; Hu, S.; Luo, X.; Li, J.; Zhan, C. Land use/land cover prediction and analysis
of the middle reaches of the Yangtze River under different scenarios. Sci. Total Environ. 2022, 833, 155238. [CrossRef] [PubMed]

57. Hakim, A.M.Y.; Baja, S.; Rampisela, A.D.; Arif, S. Spatial dynamic prediction of landuse/landcover change (case study: Tamalanrea
sub-district, makassar city). IOP Conf. Ser. Earth Environ. Sci. 2019, 280, 012023. [CrossRef]

58. Anand, J.; Gosain, A.; Khosa, R.; Srinivasan, R. Regional scale hydrologic modeling for prediction of water balance, analysis
of trends in streamflow and variations in streamflow: The case study of the Ganga River basin. J. Hydrol. Reg. Stud. 2018,
16, 32–53. [CrossRef]

59. Desai, S.; Singh, D.; Islam, A.; Sarangi, A. Multi-site calibration of hydrological model and assessment of water balance in a
semi-arid river basin of India. Quat. Int. 2020, 571, 136–149. [CrossRef]

60. Nusrat, A.; Gabriel, H.; Haider, S.; Ahmad, S.; Shahid, M.; Jamal, S.A. Application of Machine Learning Techniques to Delin-
eate Homogeneous Climate Zones in River Basins of Pakistan for Hydro-Climatic Change Impact Studies. Appl. Sci. 2020,
10, 6878. [CrossRef]

61. Abbaspour, K.C. Swat-Cup 2012. In SWAT Calibration Uncertain. Program—A User Man; Swiss Federal Institute of Aquatic Science
and Technology: Dübendorf, Switzerland, 2012; p. 106.

62. Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling hydrology and
water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [CrossRef]

63. Shrestha, M.K.; Recknagel, F.; Frizenschaf, J.; Meyer, W. Assessing SWAT models based on single and multi-site calibration for the
simulation of flow and nutrient loads in the semi-arid Onkaparinga catchment in South Australia. Agric. Water Manag. 2016,
175, 61–71. [CrossRef]

64. Zhang, H.; Wang, B.; Liu, D.L.; Zhang, M.; Leslie, L.M.; Yu, Q. Using an improved SWAT model to simulate hydrological
responses to land use change: A case study of a catchment in tropical Australia. J. Hydrol. 2020, 585, 124822. [CrossRef]

65. Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and Water Quality Models: Performance Measures and Evaluation
Criteria. Trans. ASABE 2015, 58, 1763–1785. [CrossRef]

66. Monserud, R.A.; Leemans, R. Comparing global vegetation maps with the Kappa statistic. Ecol. Model. 1992, 62, 275–293. [CrossRef]
67. Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159–174. [CrossRef] [PubMed]
68. Syed, Z.; Ahmad, S.; Dahri, Z.H.; Azmat, M.; Shoaib, M.; Inam, A.; Qamar, M.U.; Hussain, S.Z.; Ahmad, S. Hydroclimatology of

the Chitral River in the Indus Basin under Changing Climate. Atmosphere 2022, 13, 295. [CrossRef]
69. Kundu, S.; Khare, D.; Mondal, A. Individual and combined impacts of future climate and land use changes on the water balance.

Ecol. Eng. 2017, 105, 42–57. [CrossRef]
70. Gebremicael, T.; Mohamed, Y.; Van der Zaag, P. Attributing the hydrological impact of different land use types and their long-term

dynamics through combining parsimonious hydrological modelling, alteration analysis and PLSR analysis. Sci. Total Environ.
2019, 660, 1155–1167. [CrossRef]

71. Spruill, C.A.; Workman, S.R.; Taraba, J.L. Simulation of daily stream discharge from small watersheds using the SWAT model.
Am. Soc. Agric. Biol. Eng. 2000, 1, 1431–1439. [CrossRef]

72. Son, N.T.; Le Huong, H.; Loc, N.D.; Phuong, T.T. Application of SWAT model to assess land use change and climate variability
impacts on hydrology of Nam Rom Catchment in Northwestern Vietnam. Environ. Dev. Sustain. 2022, 24, 3091–3109. [CrossRef]

73. Garg, V.; Aggarwal, S.P.; Gupta, P.K.; Nikam, B.R.; Thakur, P.K.; Srivastav, S.K.; Kumar, A.S. Assessment of land use land cover
change impact on hydrological regime of a basin. Environ. Earth Sci. 2017, 76, 635. [CrossRef]

74. Samal, D.R.; Gedam, S. Assessing the impacts of land use and land cover change on water resources in the Upper Bhima river
basin, India. Environ. Chall. 2021, 5, 100251. [CrossRef]

75. Dahri, Z.H.; Ludwig, F.; Moors, E.; Ahmad, S.; Ahmad, B.; Ahmad, S.; Riaz, M.; Kabat, P. Climate change and hydrological regime
of the high-altitude Indus basin under extreme climate scenarios. Sci. Total Environ. 2021, 768, 144467. [CrossRef]

140



Citation: Cui, Y.; Tang, H.; Jin, J.;

Zhou, Y.; Jiang, S.; Chen, M. System

Structure–Based Drought Disaster

Risk Assessment Using Remote

Sensing and Field Experiment Data.

Remote Sens. 2022, 14, 5700.

https://doi.org/10.3390/rs14225700

Academic Editors: Songhao Shang,

Magdy Mohssen, Qianqian Zhang,

Dongqin Yin and Hamza Gabriel

Received: 29 September 2022

Accepted: 9 November 2022

Published: 11 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing 

Article

System Structure–Based Drought Disaster Risk Assessment
Using Remote Sensing and Field Experiment Data

Yi Cui 1,2, Huiyan Tang 1,2, Juliang Jin 1,2,*, Yuliang Zhou 1,2, Shangming Jiang 3 and Menglu Chen 1,2

1 School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
2 Institute of Water Resources and Environmental Systems Engineering, Hefei University of Technology,

Hefei 230009, China
3 Key Laboratory of Water Conservancy and Water Resources of Anhui Province, Water Resources Research

Institute of Anhui Province and Huaihe River Commission, Ministry of Water Resources, Hefei 230088, China
* Correspondence: jinjl66@hfut.edu.cn

Abstract: With the impacts of climate change and human activities, agricultural drought disaster
losses have increased remarkably. Drought disaster risk assessment is a prerequisite for formulating
disaster reduction strategies and ensuring food security. However, drought disaster risk is a complex
system, and quantitative assessment methods reflecting the risk formation mechanism are still rarely
reported. This study presented a chain transmission system structure of drought disaster risk, which
meant that drought disaster loss risk R was derived from drought hazard H by the transformation of
drought disaster vulnerability V. Based on this point, firstly, a drought hazard curve between drought
intensity and drought frequency was established using remote sensing data and the copula function.
Then, a crop loss calculation approach under various drought events and drought resistance capacity
scenarios was achieved by two-season field experiments and the AquaCrop model. Finally, a loss
risk curve cluster of “drought frequency–drought resistance capacity–yield loss rate” was proposed
by the composition of the above two quantitative relationships. The results of the case study for
summer maize in Bengbu City indicated that the average yield loss rate under 19 droughts occurring
during the growth period of maize from 1982 to 2017 was 24.51%. High risk happened in 1988, 1992,
1994, 2001, and 2004, with the largest loss rate in 2001, up to 65.58%. Overall, droughts with a return
period less than two years occurred frequently during the growth period of summer maize in Bengbu,
though the loss risk was still controllable. In conclusion, the results suggest that the loss risk curve
provides a new effective method of drought disaster risk quantitative assessment from a physical
mechanism perspective, which lays a scientific foundation for decision-making in risk management.

Keywords: drought disaster risk assessment; disaster loss risk curve; system structure; GSMaP
precipitation product; AquaCrop model; field experiment; scenario simulation

1. Introduction

Food security is an important issue internationally [1]. Drought disaster is one of the
natural disasters that has the widest range of influence and causes the largest agricultural
losses [2]. Nearly half of the countries in the world suffer from drought disasters [3]. In
recent years, with global climate change and the effect of human activities, the frequency,
intensity, and influence of drought disaster has witnessed a significant increase [4,5]. Corre-
spondingly, the drought disaster losses and risk have remarkably increased, which poses a
serious threat to world food security and agricultural sustainable development. Risk man-
agement is an effective means of dealing with extreme climate events, and risk assessment
is the scientific foundation for risk management [6]. Therefore, the quantitative assessment
of drought disaster risk is of great significance to improving human’s ability to cope with
drought, reducing agricultural losses and guaranteeing food security.
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Drought disaster risk assessment is a difficult issue and a hot spot in the current
research field of natural disasters [7]. At present, there are three main assessment meth-
ods [8,9]: (1) probability statistics–based method [10,11], (2) comprehensive evaluation–
based method [12,13], and (3) system structure–based method [14,15]. Furthermore, the
drought disaster risk assessment method from a system structure perspective can reflect the
element structure and relational structure of drought disaster risk systems. It can simulate
various uncertainties in the process of drought disaster risk formation. Therefore, this
method has become the main direction of drought disaster risk study.

Drought disaster risk in this study is defined as the quantitative relationship between
the possibility of future drought events with different intensities and the corresponding
possible losses of drought disaster-bearing bodies. Further to the perspective of the drought
disaster risk system structure, drought disaster loss risk (R) is a system output resulting
from system input, i.e., the hazard of drought disaster–causing factor (H) by system
transformation, i.e., the vulnerability of the drought disaster–bearing body (V), expressed
as R = f (H, V) [16,17]. Thus, it can be considered that drought disaster risk has a chain
transmission system structure, which consists of the element structure of H, V, and R and the
relation structure among these three. Drought hazard can be described quantitatively by the
relation curve between drought intensity and the occurrence frequency of the corresponding
drought event [18,19]. Drought disaster vulnerability can be described quantitatively by
the relation curve between drought intensity and the corresponding losses of the disaster-
bearing body [20,21]. Therefore, the drought disaster loss risk curve between drought
possibility and the corresponding losses is obtained from the transformation of the drought
hazard curve through to the drought disaster vulnerability curve. This loss risk curve
method can fully reflect the drought disaster risk system structure and the risk formation
mechanism [22]. However, there are a few studies focusing on this. In addition, the scenario
simulation of crop modelling is an effective approach to establishing the drought disaster
loss risk curve [23,24]. Crop models simulate the growth process of crops under drought
stress by using statistical and dynamic methods, which can reveal the quantitative response
relationship of crop growth and yield formation to drought.

AquaCrop is a crop model developed by the FAO in 2009 based on the water driving
principle [25]. Due to advantages such as few input parameters, simple interface, strong
intuition, and high precision, the AquaCrop model has been used in crop yield simula-
tion [26], crop response to drought [27], and irrigation system optimization [28]. At present,
crop models such as DSSAT [15], EPIC [23], and APSIM [24] are used for drought disaster
risk assessment. Nevertheless, there are few studies on the application of the AquaCrop
model, with its stronger adaptability and higher efficiency in drought disaster risk.

Maize is one of the worlds’ three major food crops [29]. With the upgrading of the
industrial structure and the improvement of people’s living standards, the proportion of
maize as fodder and industrial product has gradually increased [30]. Thus maize production
plays a key role in global food security and industrial development [31]. According to the
statistics released by the FAO, China’s maize yield in 2020 was 2.61 × 1011 kg, accounting
for 22.90% of the world’s total maize yield and ranking No. 2 in the world [32,33]. However,
maize requires a large amount of water during the growth period, and the main water
source is precipitation. Therefore, precipitation has a great influence on the growth and
yield of maize. China is located in the southeast of Eurasia; it has a significant monsoon
climate and extremely uneven interannual and annual distributions of precipitation [22,34].
Moreover, due to the high temperature, strong evaporation, and frequent droughts during
the growth period of summer maize, drought disaster has become an important factor
affecting China’s maize production [35,36]. To sum up, the drought disaster risk assessment
method based on the system structure is less reported; there is a lack of studies on risk
assessment that combine the scenario simulation of crop models with the disaster loss risk
curve. In addition, the quantitative assessment of maize drought disaster risk in China’s
major production areas is urgently needed. Therefore, this study chose Bengbu City in the
Huaibei Plain of Anhui Province in China as the study region. Using the field experiment
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data of summer maize implemented at Xinmaqiao Agriculture and Water Conservancy
Comprehensive Experimental Station in Bengbu during 2018 and 2019 seasons, this study
calibrated and verified the parameters of the AquaCrop model. Furthermore, drought index
SPI and run theory were used to identify the drought events and characteristic variables
during the growth period of summer maize in Bengbu from 1982 to 2017. Run theory is
a method of time series analysis. For SPI series, the drought processes were identified by
truncation level. The length of negative run (when SPI value was lower than the truncation
level) was drought duration, and the degree of negative run (the cumulative deviation of
SPI value below the truncation level) was drought intensity. Moreover, the copula function
was applied to calculate the drought frequency of double variables. Then, the calibrated
AquaCrop model was used to simulate the yield of maize under normal and drought
conditions in various irrigation scenarios. Finally, the drought disaster loss risk curve
between drought frequency and the corresponding yield loss rate of maize under different
drought resistance capacities were established, and the drought disaster risk of summer
maize in Bengbu was assessed quantitatively to provide decision support for guaranteeing
regional maize production and food security.

2. Materials and Methods

2.1. Study Area

Bengbu City is the central city in Northern Anhui Province, China (32◦43′N–33◦30′N,
116◦45′E–118◦04′E) (Figure 1), with a land area of 5.95 × 103 km2 and a population of
3.30 million. Meanwhile, Bengbu is a major production area of maize, belonging to
the Huang-Huai-Hai planting region, as well as an important commodity grain base in
China [37], with a cultivated area of 3.79 × 105 hm2. According to statistics, in 2020,
the sown area of summer maize in Bengbu was 1.31 × 105 hm2 and the yield was
6.57 × 108 kg [38]. Furthermore, the summer maize in this region is mainly rain-fed. How-
ever, because Bengbu is located in the transition zone between temperate and subtropical
monsoon climates, the annual distribution of precipitation is extremely uneven. Meanwhile,
the monsoon climate causes a large inter-annual variation and frequent droughts [22,39,40].
For instance, during July and August 2013, the precipitation was 91% less than that of a
normal year. There were 4.26 × 104 hm2 of crops suffering from drought, which accounted
for 13.62% of the planting area [41]. In addition, from September to November 2019, there
was high temperature and little precipitation. Most regions suffered from mild drought,
while some suffered from moderate drought. The affected area was 9.87 × 104 hm2, and the
area not sown was 1.05 × 104 hm2 [42]. Therefore, assessing the summer maize drought
disaster risk in Bengbu City is of great significance for stable grain production.

 
Figure 1. Location of Bengbu City in Anhui Province, China.
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2.2. Establishment of Summer Maize Drought Disaster Risk Assessment Model

The establishment of the summer maize drought disaster risk assessment model in
Bengbu City is as follows (Figure 2):

Summer maize drought disaster risk quantitative assessment in Bengbu City of Anhui Province, China

Summer maize drought disaster assessment method based on AquaCrop model and loss risk curve
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Figure 2. Establishment of summer maize drought disaster risk assessment model in Bengbu City.

(a) Drought frequency calculation

A standardized precipitation index with one-month SPI1 was chosen as the drought
index. Based on the precipitation data in Bengbu City from 1982 to 2017, the SPI1 values
were obtained. Furthermore, run theory was used to identify the drought events during
the growth period of summer maize for each year. The two variables of drought duration
and drought intensity were extracted. Then, the copula function was used to calculate
the drought frequency corresponding to the joint probability distribution of duration
and intensity.

(b) Drought resistance capacity simulation

The irrigation water amount at each growth stage of maize was selected as a quantita-
tive index describing drought resistance capacity. Various irrigation scenarios were set to
simulate different resistance capacities combined with the actual irrigation schedule.

(c) AquaCrop model parameter calibration
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The measured field experiment data of summer maize conducted in 2018 and 2019
were used to calibrate and verify the key parameters of the AquaCrop model, so as to ensure
the simulation precision of maize growth, development, and yield formation in Bengbu.

(d) Summer maize drought loss assessment

The drought loss of summer maize was represented by the yield loss rate. According
to the identified drought events during the growth period of maize, the meteorological
data in the year corresponding to each drought event and various irrigation scenarios were
input into the calibrated AquaCrop model. Then, the yields of maize with different drought
resistance capacities in the drought year were obtained, and the yield loss rate relative to
the yield in normal year was assessed.

(e) Summer maize drought disaster loss risk curve establishment

The drought disaster loss risk in this study referred to the crop yield loss rate under a
certain level of drought disaster–causing factors and a certain level of drought resistance
capacity (assuming that the crop was fully exposed to a drought environment). The loss
risk curve of drought frequency–drought resistance capacity–crop yield loss rate was
established to quantitatively assess the drought disaster risk of summer maize in Bengbu.

2.3. Remote Sensing Data and Techniques

The daily precipitation data from 1982 to 2017 in Bengbu City were mainly from the
ground-based Bengbu National Meteorological Station, which can be accessed from https:
//data.cma.cn (accessed on 12 September 2020). In addition, the missing and abnormal
observations from the meteorological station were replaced with the corrected remote
sensing data, guaranteeing the precision of precipitation data and drought disaster risk
assessment results.

NASA (National Aeronautics and Space Administration) and JAXA (Japan Aerospace
Exploration Agency) jointly implement the Global Precipitation Measurement (GPM).
The satellite precipitation products under the GPM have a wider coverage and a higher spa-
tial and temporal resolution; the satellite data and inversion algorithm used are enhanced
compared with previous products, and the accuracy is improved. Furthermore, JAXA
develops the Global Satellite Mapping of Precipitation (GSMaP), which fully integrates the
observation data of GPM satellites and continuously optimizes the inversion algorithm,
with the precision and resolution being further improved. In addition, GSMaP_Gauge is
a high precision product with 1 h and 0.1◦, which is adjusted by the Climate Prediction
Center (CPC) precipitation gauge dataset (daily precipitation data derived from more
than 30,000 gauges worldwide). This study replaced the missing and abnormal precipi-
tation observations from the Bengbu National Meteorological Station with the matching
GSMaP_Gauge product, which can be accessed from https://sharaku.eorc.jaxa.jp/GSMaP/
(accessed on 26 May 2022). Hence the remote sensing techniques provide an effective
precipitation data supplement of the ground-based meteorological station, which greatly
supports and promotes the drought identification and drought disaster risk quantitative
assessment in this study.

2.4. Drought Frenquency Calculation

Bengbu City mainly belongs to the rain-fed agricultural region; thus, the meteoro-
logical drought index was more appropriate to reflect drought events. In this study, the
standardized precipitation index with one-month SPI1 [39] was selected as the drought
index. Then, the run theory [15] was used to identify the drought events during the growth
period of summer maize, and the drought duration and drought intensity of each event
were extracted.

The process of drought event identification using SPI1 and run theory is as follows
(Figure 3); there were three truncation levels, R0, R1, and R2, set in the process.
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Figure 3. Drought event identification process based on standardized precipitation index (SPI) and
run theory.

(1) When the SPI value was lower than R1, it was preliminarily determined that a drought
event occurred in this month (such as a, b, c, e, f, and h in Figure 3). Otherwise, there
were no droughts (such as g).

(2) Then, for the drought event that lasted for only one month, when the SPI value was
less than R2, it was finally considered that there was a drought event in that month
(such as b and f ). Otherwise, there were no droughts (such as a).

(3) Furthermore, for two adjacent drought events with an interval of only one month,
when the SPI value in the month of the interval was lower than R0, these two adjacent
droughts were merged into one event. The drought duration was the sum of these
two drought durations plus 1; the drought intensity was the sum of two drought
intensities (such as c, d, and e). Otherwise, there were two independent droughts
(such as f and h).

Drought duration and drought intensity can generally be described by exponential
distribution and gamma distribution, respectively. However, some studies have indicated
that the fitting effects of exponential and gamma distributions were not adequate [43,44].
Therefore, in this study, the empirical frequency of drought duration and drought intensity
were calculated by the formula of mathematical expectation, and the P-III distribution
function was used to fit the empirical frequency points.

The probability density function of P-III distribution is shown as follows [39]:

f (x) =
βα

Γ(α)
(x − a0)

α−1e−β(x−a0) (1)

where α, β, and a0 are the parameters of the probability density function of P-III distribution,
which were obtained by the population parameters [39]:⎧⎪⎪⎨⎪⎪⎩

α = 4
C2

s
β = 2

CvCsx

a0 = x
(

1 − 2Cv
Cs

) (2)

where x, Cv, and Cs are the mean value, coefficient of variation, and coefficient of skew for
the drought characteristic variable series (drought duration or intensity), respectively.
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The G-H (Gumbel-Hougaard) function [45] in Archimedean copula was used to
describe the correlation between drought duration and drought intensity. The copula joint
distribution function is shown by the following formula [45,46]:

Cθ(u, v) = e{−{[− ln (u)]θ+[− ln (v)]θ}
1
θ } (3)

where u = FT(t), v = FD(d), and FT(t) and FD(d) are the probability distribution functions of
drought duration and drought intensity, respectively. θ (θ ≥ 1) is the parameter of the G-H
function and was calculated as follows [45,46]:

θ =
1

1 − τ
(4)

where τ is the Kendall rank correlation coefficient, and its calculation formula is as fol-
lows [45,46]:

τ =
2

n(n − 2) ∑
k>j

sgn
[(

tk − tj
)(

dk − dj
)]

(5)

where tk, dk and tj, dj represent the duration and intensity of the k-th and the j-th drought
events, respectively. sgn(z) represents a sign function, that is, when z > 0, sgn(z) = 1, when
z = 0, sgn(z) = 0, and when z < 0, sgn(z) = −1 [45,46].

When the drought duration was longer than t and the drought intensity was larger
than d, the corresponding probability of exceedance was as follows [46]:

P(T > t ∩ D > d) = 1 − FT(t)− FD(d) + Cθ(t, d) (6)

In addition, when the drought duration was longer than t or the drought intensity
was larger than d, the corresponding probability of exceedance was as follows [46]:

P(T > t ∪ D > d) = 1 − Cθ(t, d) (7)

2.5. Summer Maize Field Experiments

The field experiments were conducted at Xinmaqiao Agriculture and Water Conser-
vancy Comprehensive Experimental Station (33◦09′N, 117◦22′E) in 2018 and 2019. This sta-
tion was located in Xinmaqiao Town, Bengbu City, with an average altitude of 19.7 m,
average temperature of 14.3 ◦C, average precipitation of 911 mm, and average evaporation
of 917 mm. In each year, the experiment was implemented in a field with an area of about
600 m2, and the field was divided into three plots (10 m × 15 m) for repeated tests. To avoid
the influence caused by lateral migration of water, a 3 m long isolation zone was set between
plots. The summer maize was sown on 15 June 2018 and 12 June 2019, and the variety was
“Longping 206”. Furthermore, according to the field planting density of summer maize in
the Huaibei Plain, the density in each plot was 65,000 plants/hm2. The application rate of
compound fertilizer was 750 kg/hm2, and the urea was 300 kg/hm2.

The field experiments aimed to verify the simulation effect of the growth and yield
formation process of summer maize under natural drought conditions by the AquaCrop
model. Therefore, in the experiments during the 2018 and 2019 seasons, a completely
rain-fed mode without irrigation for summer maize was designed. The soil in the field
tillage layer was the typical Shajiang black soil of the Huaibei Plain [22]. In addition, during
the experiment period, the field management measures in all experimental plots were
consistent, so as to ensure the normal growth and development of summer maize plants.

According to the growth records of summer maize at the station over many years,
and the studies on growth stage division of maize [30,35,36], the whole growth period of
summer maize in the experiments was divided into four stages, i.e., the seedling stage,
jointing stage, tasseling stage, and filling and ripening stage. Moreover, the whole growth
process of maize was monitored, and some plants with uniform growth were randomly

147



Remote Sens. 2022, 14, 5700

selected at each stage from each plot for destructive tests. The test items are described
as follows.

2.5.1. Canopy Cover Degree

The WinFOLIA leaf image analysis system (Version: 2007b Basic, Regent Instruments
Inc., Canada, Quebec, QC) and a scanner (CanoScan LiDE 90, Canon Inc., Que Vo, Vietnam)
were used to scan the leaf area per maize plant sample. The leaf area index of the whole
plant was obtained by accumulation. The average value of leaf areas for all samples in a
plot was regarded as the leaf area index per plant. Furthermore, the canopy cover degree
of each maize plant is shown as follows:

CC = 1.005 ×
[
1 − e(−0.6LAI)

]1.2
(8)

where LAI and CC represent the leaf area index and canopy cover degree per plant.

2.5.2. Aboveground Biomass

The bottom of the maize stem was cut off to obtain the complete aboveground part.
Each part (leaf, stem, spike, and seed) was separated and cleaned and put into a drying
oven at 105 ◦C for one hour. The sample was dried at 80 ◦C until the weight was constant.
Then, an electronic balance (TD30K-0.1, Tianjin Balance Instrument Co., Ltd., Tianjin, China)
was used to weigh the total amount of aboveground dry matter for each plant. The average
value of all samples in each plot was the aboveground biomass.

2.5.3. Seed Yield

All maize fruits in each plot were taken down and put into a numbered yarn bag and
then were exposed uniformly outdoors until the weighs were constant. After the extraction
of maize seeds, an electronic balance (TD30K-0.1, Tianjin Balance Instrument Co., Ltd.,
Tianjin, China) was used to weigh the total amount of seeds in each plot. The average value
of all samples in each plot was the seed yield of maize.

2.6. Summer Maize Drought Loss Assessment
2.6.1. Input of AquaCrop Model

The input parameters of the AquaCrop model mainly included meteorological param-
eters, crop parameters, soil parameters, and field management parameters.

(a) Meteorological parameters

Meteorological parameters mainly included daily maximum air temperature, mini-
mum air temperature, precipitation, CO2 concentration, and reference crop evapotranspira-
tion ET0. The daily meteorological data in this study were obtained from the automatic
meteorological station at Xinmaqiao station. The daily maximum and minimum air temper-
ature during the whole growth period of summer maize at the station in 2018 and 2019 are
shown in Figure 4. Furthermore, ET0 was obtained by the “ET0 calculator” recommended
by the FAO [25]. The parameters required for the calculator, including daily maximum and
minimum air temperature, relative humidity, wind speed, and hours of sunshine, were
also provided by the automatic meteorological station. The daily precipitation and ET0
during the whole growth period of maize in 2018 and 2019 are shown in Figure 5. The CO2
concentration was obtained from the data of Mauna Loa CO2 in the AquaCrop model [25].

(b) Crop parameters
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(a) (b) 

Figure 4. Daily maximum and minimum air temperature during the whole growth period of summer
maize at the experimental station. (a) 2018 season; (b) 2019 season.

  
(a) (b) 

Figure 5. Daily precipitation and reference evapotranspiration during the whole growth period of
summer maize at the experimental station. (a) 2018 season; (b) 2019 season.

Crop parameters were determined according to the crop types (C3 or C4 crops, grain,
tuber, or vegetable crops) and the actual situation of crop planting. These mainly included
planting density, growth stage, canopy expansion, and root growth parameters, as well as
those parameters that reflected the influences of various stress conditions (water, fertility,
and temperature) on crop growth. The AquaCrop model manual provides the reference
values or reference range of some physiological parameters for summer maize [25,47].
Specifically, for some physiological parameters that did not change with the planting
time and location, this study adopted the reference values in the manual. However, for
those that changed with the planting conditions, this study further calibrated and verified
them based on the data of summer maize field experiments, i.e., the localization of the
AquaCrop model.

(c) Soil parameters

Soil parameters mainly included the number of soil layers as well as the thickness,
texture, and physical and chemical properties of each layer. The experimental soil in this
study was Shajiang black soil, a kind of medium and low yield field soil with poor physical
and chemical properties, adhesive texture, and permeability [22]. The summer maize
selected in this study had a developed root system. In addition, a previous study reported
that the proportion of maize root weight in the soil layer of 0–10 cm is 75.6%, and 94.4%
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of root weight is distributed in the tillage layer of 0–40 cm [48]. Some have proposed that
the maize root is mainly distributed in the soil layer of 0–40 cm, with little in the layer of
60–80 cm [49]. Some have found that the root system of maize during the seedling stage is
distributed in a shallow soil layer, mainly between 0–20 cm. After the jointing stage, the
root quickly reached about 100 cm underground during the tasseling stage [50]. Therefore,
this study set three soil layers in combination with previous studies of the properties of
Shajiang black soil [51,52] and input the soil parameters into the AquaCrop model (Table 1).

(d) Field management parameters

Table 1. Main soil parameters input into AquaCrop model.

Soil Layer Thickness
Bulk Density

(g cm−3)
Wilting Water

Content (cm3 cm−3)
Field Capacity

(cm3 cm−3)
Saturated Water

Content (cm3 cm−3)

1 0–40 cm 1.18 0.13 0.33 0.42
2 40–80 cm 1.35 0.14 0.35 0.39
3 80–120 cm 1.48 0.17 0.37 0.41

Field management parameters included field management and irrigation management
measures. Field management measures included fertilization level, farmland coverage,
and covering materials, which were input according to the actual experimental situation.
Irrigation management measures included irrigation method and irrigation schedule. In
this study, the field experiments of maize were conducted under rain-fed conditions without
irrigation; thus, the irrigation management parameters did not need to be set.

2.6.2. AquaCrop Model Parameter Calibration

The AquaCrop model manual listed the reference values or reference range of some
physiological parameters of summer maize. However, some parameters that changed
with planting conditions needed to be optimized according to the actual experimental
situation. In this study, the data of maize field experiments in the 2019 season were used
for calibration of AquaCrop model parameters, and those in 2018 were used for parameter
verification. The process of AquaCrop model parameter calibration is shown in Figure 6.

In the process of AquaCrop model parameter calibration (Figure 6), canopy cover de-
gree, aboveground biomass, and seed yield were selected as the objective functions. Firstly,
the required meteorological parameters, soil parameters, field management parameters,
and appropriate initial values of partial crop parameters referring to the AquaCrop model
manual [47] were input into the model. Then, the values of crop parameters were adjusted
continuously until the simulated canopy cover degrees approached the field measured re-
sults. Secondly, the remaining crop parameters were input and adjusted until the simulated
aboveground biomass and seed yield were close to the measured values.
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Initial canopy cover degree Maximum canopy cover degree Canopy growth rate Canopy decline rate

Canopy growth parameter

Simulated aboveground biomass and seed yield of summer maize by AquaCrop model

Measured aboveground biomass and seed yield of summer maize by field experiments

Reference harvest index Harvest index Influence coefficient of canopy premature senescence on harvest index

Harvest index parameter

Localization of AquaCrop model parameters for summer maize in Bengbu City
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Influence coefficient of drought stress during filling and ripening stage on harvest index

Simulated results are close to measured values

Simulated results are not 
close to measured values

Simulated results are not 
close to measured values

Simulated results are close to measured values

Figure 6. Process of AquaCrop model parameter calibration and verification.

Partially calibrated crop parameters in the AquaCrop model are shown in Table 2.
Other crop parameters adopt the reference values given in the AquaCrop model manual.
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Table 2. Partially calibrated crop parameters input into AquaCrop model.

Parameter Type Parameter Meaning Unit Value

Canopy

initial canopy cover degree % 0.35
soil cover degree of single plant when

germination rate reaches 90% cm2 per plant 5.0

planting density plant per hm2 0.65 × 105

canopy growth rate % per day, relative increase in canopy cover 14.2
maximum canopy cover degree % 78

canopy decline rate % per day, relative decrease in canopy cover 12.5

Crop transpiration crop transpiration coefficient 1.00

Doot zone
maximum effective root depth m 1.20

root zone expansion rate cm per day 1.9

Yield
reference harvest index % 48

duration of harvest index day 35
duration of flowering period day 13

Drought stress

lower threshold for influence coefficient of
drought stress on canopy growth 0.12

upper threshold for influence coefficient of
drought stress on canopy growth 0.70

influence coefficient of drought stress on
stomatal control 5.5

influence coefficient of drought stress on
canopy senescence 3.5

upper threshold for influence coefficient of
drought stress on pollination 0.68

2.6.3. Validity Test of AquaCrop Model

To reasonably evaluate the fitting degree between the simulated results of the cali-
brated AquaCrop model and the field measured values, relative error (RE) and root mean
squared error (RMSE) were used to quantify the simulation accuracy of the AquaCrop model:

RE =
OVn − SVn

OVn
× 100% (9)

RMSE =

√√√√√ N
∑

n=1
(OVn − SVn)

2

N
(10)

where OVn and SVn are the measured and simulated values of canopy cover degree
(aboveground biomass or seed yield), respectively. N is the number of maize samples.

2.6.4. Summer Maize Yield Loss Rate Calculation

The average value of many years for each meteorological parameter from the Bengbu
National Meteorological Station was used as the input under normal meteorological con-
ditions, while the meteorological data in each year corresponding to the actual drought
events (during the growth period of summer maize) was used as the input under drought
conditions. Meanwhile, combined with the irrigation scenarios that had been set, various
irrigation management measures were input into the calibrated AquaCrop model to simu-
late the maize yields under normal and drought conditions. Thus, the yield loss rate LS of
maize under different drought resistance capacities is calculated as follows:

LS =
YN − YD

YN
× 100% (11)

where YN is the summer maize yield under the normal meteorological conditions, and YD is
the maize yield under the actual drought events and different drought resistance capacities.
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2.7. Summer Maize Drought Diasater Loss Risk Curve Establishment

In this study, the summer maize drought disaster loss risk curve was a set of curves
between drought frequency and the corresponding maize yield loss rate under various
drought resistance capacities (Figure 7). According to the water requirement characteristics
and irrigation schedule of summer maize in Bengbu City, the amount of irrigation water,
which was 0%, 50%, and 100% of the actual irrigation quota, was set and input into
the calibrated AquaCrop model to simulate the maize yields under different resistance
capacities during the same drought event period. Furthermore, the “drought frequency–
drought resistance capacity–yield loss rate” summer maize drought disaster loss risk curve
was established using the following formula:

LS = a ln(P) + b (12)

where P is the drought frequency, and a and b are the parameters of summer maize drought
disaster loss risk curve.

 
Figure 7. Drought disaster loss risk curve between drought frequency and the corresponding crop
yield loss rate under various drought resistance capacities.

3. Results

3.1. Drought Frequency Analysis

The drought index SPI1 and run theory were used to identify the drought events
in Bengbu City from 1982 to 2017, and 19 drought events during the growth period of
summer maize were selected. Then, the drought duration and drought intensity of each
event were extracted. The empirical frequency points of drought duration and drought
intensity of these 19 drought events were fitted, the results are shown in Figure 8 and
Table 3. The degree of fitting between the P-III distribution curve and empirical frequency
points were both higher than 0.90, indicating that the P-III distribution curve method had
a good fit with the univariate probability distributions of drought duration and drought
intensity for the drought events during the growth period of summer maize in Bengbu City.
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(a) (b) 

Figure 8. P-III distribution curves of drought duration and drought intensity for drought events
during the growth period of summer maize in Bengbu. (a) Drought duration; (b) drought intensity.

Table 3. P-III function parameters of drought duration and drought intensity for drought events
during the growth period of summer maize in Bengbu.

Drought Characteristic Variable
Drought Duration Drought Intensity

Mean
Value

Cv Cs R2 Mean
Value

Cv Cs R2

P-III function parameter value 2.46 0.48 0.87 0.96 1.95 0.55 2.65 0.93

The joint probability distribution function for drought duration and drought intensity
was calculated by the G-H copula as shown in Figure 9; θ = 1.02.

 
Figure 9. The joint probability distribution of drought duration and drought intensity for drought
events during the growth period of summer maize in Bengbu.

The drought duration–drought intensity joint probability was the x-coordinate, and
the drought intensity of the corresponding drought event was the y-coordinate. The power
function, exponential function, and semilogarithmic function were used to fit the relation-
ship, and the results are shown in Table 4. The degree of fitting of the semilogarithmic
function was relatively high (R2 = 0.94). Therefore, semilogarithmic function was selected
to establish the quantitative relationship between drought duration–drought intensity joint
drought frequency and drought intensity for 19 drought events during the growth period
of summer maize in Bengbu City, i.e., drought hazard curve, as shown in Figure 10.
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Table 4. Parameters of drought hazard curve in Bengbu.

Function Type

Power Fucntion
D = aPb

Exponential Function
D = aebP

Semilogarithmic Function
D = aln(P) + b

a b R2 a b R2 a b R2

Function parameter value 8.17 −0.44 0.91 3.51 −0.02 0.83 −1.02 5.49 0.94

 

Figure 10. The drought hazard curve between drought frequency and drought intensity in Bengbu.

From Figure 10, as the drought duration–drought intensity joint frequency increased,
drought intensity declined. There was a strong correlation between these two. Among
19 drought events during the growth period of maize in Bengbu from 1982 and 2017,
there were 15 events whose drought frequency was between 0.2–0.8. Furthermore, the
drought intensity was basically below 2.0; the events whose intensity were larger than 3.0
were fewer. This reflected that droughts occurred frequently during the growth period of
summer maize in Bengbu, with most of them mild droughts with low intensity. These were
consistent with the drought identification results in Cheng et al. [37] and Duan et al. [39].

3.2. AquaCrop Model Simulation Analysis
3.2.1. Canopy Growth Process Simulation Analysis

Canopy cover degree was used to describe the growth of summer maize leaves.
The canopy cover degree of maize measured in the field experiments and the simulated
results of the AquaCrop model are shown in Figure 11. According to Figure 11a, the canopy
growth processes of maize plants under natural conditions without irrigation in 2018 and
2019 were basically consistent, and the maximum canopy cover degree in 2019 was slightly
higher than that in 2018. In addition, the calibrated AquaCrop model accurately simulated
the dynamic change of canopy cover degree with the growth of maize plants in 2018 and
2019. From Figure 11, the degree of fitting for low canopy cover was slightly worse than
that in the second stage, i.e., the stable stage, which was the rapid growth period of the
canopy. This was mainly influenced by the canopy growth rate in the AquaCrop model
parameters. Furthermore, there were only a few observed canopy cover degrees during
the seedling and tasseling stages in 2018, which also caused a certain impact on simulation
accuracy. The RMSE of simulated canopy cover degree relative to the measured values
in the field experiments in 2018 and 2019 was 0.067 and 0.079, respectively. In addition,
there was a satisfactory correlation between the simulated and measured values (R2 = 0.99)
(Figure 11b). The linear regression fitting function passed through the point of origin,
while the simulated results were overall less than the observed values, especially during
the period of low canopy cover. Therefore, it is considered that a good degree of fit was
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achieved between the simulated canopy growth by the AquaCrop model and the field
measured results.

  
(a) (b) 

Figure 11. Simulated canopy growth processes of summer maize during 2018 and 2019 seasons in
Bengbu by the calibrated AquaCrop model. (a) Results comparison; (b) results correlation.

3.2.2. Aboveground Biomass Accumulative Process Simulation Analysis

The aboveground biomass accumulative process of plants is an important index to
measure the productivity and development of maize. From Figure 12a, after parameter
localization, the AquaCrop model well simulated the aboveground biomass accumula-
tive process of summer maize plants in 2018 and 2019. As the number of planting days
increased, maize plants gradually grew up, and the total amount of aboveground biomass
continuously increased. Moreover, the accumulative rate firstly increased and then declined.
Similar to canopy growth, the accumulative process of aboveground biomass under natural
conditions without irrigation in 2018 and 2019 was basically consistent in the early growth
period. However, when the maize plant grew to about 80 days, the aboveground biomass
in 2019 was larger than that in 2018 until harvest. The RMSE of simulated aboveground
biomass by the AquaCrop model relative to the field observed values in 2018 and 2019
was 0.755 and 0.966, respectively. There was a satisfactory correlation between simulated
and measured results (R2 = 0.99), and the linear regression fitting function passed through
the point of origin (Figure 12b). This indicated that there was an accurate fitting between
the simulated accumulative process of aboveground biomass for summer maize by the
AquaCrop model and the measured values in field experiments.

  
(a) (b) 

Figure 12. Simulated accumulative processes of aboveground biomass for summer maize during
2018 and 2019 seasons in Bengbu by the calibrated AquaCrop model. (a) Results comparison;
(b) results correlation.
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3.2.3. Yield Simulation Analysis

The comparison between the simulated aboveground biomass at harvest and yield
per unit area obtained by the AquaCrop model and the field observed values is shown in
Table 5. The simulated aboveground biomass and yield in 2018 were both lower than those
in 2019, which accorded with the measured results in field experiments. Furthermore, the
relative error (RE) between the simulated and measured values of aboveground biomass
at harvest in 2018 and 2019 were 1.38% and 1.79%, respectively, and the RE of yield per
unit area was 0.67% and 0.31%. Overall, the simulated results were slightly larger than
the measured values. The relative errors were quite small, indicating that the calibrated
and verified AquaCrop model well simulated the growth and yield formation process of
summer maize in Bengbu, and the crop parameters after localization were reasonable and
accurate. Therefore, the drought disaster loss simulation of summer maize in Bengbu can
be effectively implemented based on the calibrated AquaCrop model.

Table 5. Comparison between simulated aboveground biomass at harvest and yield per unit area by
the calibrated AquaCrop model and field measured values of summer maize during 2018 and 2019
seasons in Bengbu.

Simulation Variable

2018 Season 2019 Season

Simulated
Value

Measured
Value

Relative
Effor (RE)

Simulated
Value

Measured
Value

Relative
Effor (RE)

Aboveground biomass at
harvest (t hm−2) 11.33 11.49 1.38% 12.17 12.39 1.79%

Yield per unit area (t hm−2) 5.50 5.54 0.67% 5.86 5.88 0.31%

3.3. Summer Maize Drought Loss Simulation Analysis
3.3.1. Determination of Data under Normal Meteorological Conditions

The daily maximum and minimum temperature under normal meteorological con-
ditions took the average values of daily data from the Bengbu National Meteorological
Station from 1982 to 2017. The daily reference crop evapotranspiration was calculated by
the “ET0 calculator”; the required parameters took the average values of daily data from the
Bengbu Station from 1982 to 2017. CO2 concentration was obtained from the data of Mauna
Loa CO2 in the AquaCrop model. In addition, the daily precipitation was constructed from
each month during the growth period of summer maize from the Bengbu Station from 1982
to 2017 combined with the corrected GSMap_Gauge precipitation product. Taking June
as an example, the average value of monthly precipitation in June from 1982 to 2017 was
obtained, and the precipitation in June of each year was compared with the average value;
the daily precipitation that was closest to the average value was selected as the data under
normal meteorological conditions. The daily maximum and minimum air temperature, pre-
cipitation, and reference crop evapotranspiration under normal meteorological conditions
during the growth period of summer maize are shown in Figure 13.
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(a) (b) 

Figure 13. Daily maximum and minimum air temperature, precipitation, and reference evapotran-
spiration under normal meteorological conditions during the growth period of maize in Bengbu.
(a) Maximum and minimum air temperature; (b) precipitation and reference evapotranspiration.

3.3.2. Summer Maize Yield Loss Simulation Analysis

The data under the normal meteorological conditions were input to the calibrated
AquaCrop model, and the yield per unit area of summer maize under normal meteorolog-
ical conditions in Bengbu was obtained. Then, the meteorological data under the actual
drought events during the growth period of maize from 1982 to 2017 were input into
the AquaCrop model, and the yield per unit area of maize during each drought period
was obtained. Furthermore, compared with the yield under the normal meteorological
conditions, the corresponding yield loss rate caused by each drought event was determined,
as shown in Table 6.

Table 6. Simulated yield losses of summer maize under each drought event in Bengbu from 1982 to
2017 by the calibrated AquaCrop model.

Drought Event
Yied Per Unit Area during

Drought Period/t hm−2
Yield Loss Per Unit

Area/t hm−2 Yield Loss Rate/%

Year Month

1983 June, July, August 5.199 0.739 12.44
1985 August 4.967 0.971 16.35
1986 August 5.183 0.755 12.71
1987 September 5.098 0.840 14.14
1988 June, July, August 3.233 2.705 45.55
1992 June, July, August 3.557 2.381 40.10
1994 June, July, August 3.375 2.563 43.16
1996 August 4.897 1.041 17.53
1998 September 4.266 1.672 28.16
1999 September 5.246 0.692 11.65
2000 July, August 4.741 1.197 20.15
2001 June, July, September 2.044 3.894 65.58
2004 June, July, August 4.373 1.565 26.35
2010 July 4.715 1.223 20.59
2011 June, July 4.836 1.102 18.56
2012 June, July 4.579 1.359 22.88
2014 July 5.167 0.771 12.98
2015 July 5.094 0.844 14.21
2016 August, September 4.598 1.340 22.56

Mean value 4.483 1.455 24.51
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The average yield per unit area under drought events for summer maize in Bengbu
was 4.483 t/hm2, and the yield loss was 1.455 t/hm2. The average yield loss rate per unit
area was 24.51%, which accounted for approximately 1/4 of the total yield. This reflected
that droughts caused a severe impact on the summer maize growth in Bengbu, resulting in
significant yield losses. In addition, serious yield reduction happened in 1988, 1992, 1994,
2001, and 2004, which is in agreement with the findings of Zhang et al. [53], Sun et al. [54],
and Gao et al. [40]. The largest yield loss rate was in 2001, at up to 65.58%. According to the
historical drought data in Bengbu, the period of 1990–1992 was three continuous drought
years, 1994–1995 were the most severe drought years, and 2000–2001 was another period of
serious drought, following 1978 and 1994 [15]. For instance, in 2001, the precipitation in
Anhui Province was low; the flood season encountered an empty plum rain period [55]. On
27 July, the upstream water level of Bengbu Sluice declined to the lowest value for the same
period in history [40]. The government of Bengbu City took emergency measures and gave
priority to the urban water supply, which caused a great reduction of maize production.
This indicates that the maize yield losses simulated by the AquaCrop model were basically
consistent with the actual drought situations in agricultural production for Bengbu.

3.4. Summer Maize Drought Disaster Risk Loss Curve Analysis

According to the analysis of crop irrigation experiments in the Huaibei Plain of Anhui
Province, water consumption during the growth period of the main crops in this region,
such as maize [56], wheat [57], and soybean [58], were basically equal to the mean annual
precipitation in the same period. However, due to the uneven distribution of precipitation,
additional irrigation was required in most cases. Based on the experiments of crop water
production function conducted at Xinmaqiao station from 1996 to 2001, some studies
established models of optimal irrigation schedules for the four main crops in various types
of hydrological years in the Huaibei Plain of Anhui Province [56]. The optimal irrigation
schedule of summer maize in Bengbu City is shown in Table 7.

Table 7. Optimal irrigation schedule and economical irrigation quota of summer maize in Bengbu.

Hydrological
Year Type

Irrigation
Times

Irrigation Amount at Each Growth Stage/mm
Total

Irrigation
Amount/mm

Total Water
Consumption/mm

Economical
Irrigation

Quota/mm
Seedling

Stage
Jointing

Stage
Tasseling

Stage

Filling and
Ripening

Stage

50%
(wet year)

0 0 0 0 0 0 375
451 0 45 0 0 45 405

75%
(normal year)

0 0 0 0 0 0 320

125
1 0 0 45 0 45 365
2 0 90 0 0 90 405
3 35 45 45 0 125 425

95%
(dry year)

0 0 0 0 0 0 250

225

1 0 0 45 0 45 300
2 0 45 45 0 90 345
3 0 45 90 0 135 390
4 0 135 45 0 180 435
5 0 135 90 0 225 470
6 45 90 135 0 270 500

From Table 7, the irrigation times and irrigation amounts during the growth period of
summer maize increased with the reduction of precipitation, which can effectively increase
the water supply and reduce the adverse impact on maize plants in drought years. For the
hydrological years of 50%, 75%, and 95%, the corresponding economical irrigation quota
of summer maize in Bengbu was 45 mm, 125 mm, and 225 mm, respectively. The optimal
irrigation schedule of maize indicated that the irrigation time was basically concentrated in
the jointing and tasseling stages. This reflected that the precipitation during this period in
Bengbu was relatively low and could not meet the large water demand of maize plants for
growth and development. In addition, the jointing stage and the tasseling stage were two
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key stages in which the growth of maize was quite sensitive to drought stress. The maize
drought sensitivity results are consistent with the study of Wei et al. [59].

Based on the above research results and Industry Water-use Quota for Anhui Province
(DB34/T 679—2019) and considering the practical field planting situation of summer
maize in the Huaibei Plain of Anhui Province, the irrigation management measures in the
AquaCrop model were set. Specifically, the irrigation method was flood irrigation, and
irrigation dates were July 5 (jointing stage) and August 5 (tasseling stage). Moreover, three
irrigation levels, which were 100% irrigation (45 mm on each irrigation date), 50% irrigation
(22.5 mm on each irrigation date), and without irrigation, were set. Correspondingly, three
irrigation scenarios (100%, 50%, and without drought resistance capacity scenarios) were
arranged, as shown in Table 8. Consequently, the meteorological data of each actual drought
event during the growth period of summer maize were input to the calibrated AquaCrop
model to obtain the yield loss rates caused by each event under various irrigation levels.
Then, the semilogarithmic function was adopted to fit the summer maize drought disaster
loss risk curve between drought frequency and the corresponding yield loss rate under
different irrigation levels (i.e., different drought resistance capacities) in Bengbu, as shown
in Figure 14 and Table 9.

Table 8. Irrigation scenarios set for simulating different drought resistance capacities.

Irrigation Scenarios Irrigation Times

Irrigation Amount at Each Growth Stage/mm
Total Irrigation

Amount/mmSeedling Stage Jointing Stage Tasseling Stage
Filling and

Ripening Stage

Without drought
resistance capacity 0 0 0 0 0 0

50% drought
resistance capacity 2 0 22.5 22.5 0 45.0

100% drought
resistance capacity 2 0 45.0 45.0 0 90.0

 

Figure 14. Summer maize drought disaster loss risk curve in Bengbu City.
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Table 9. Function parameters of summer maize drought disaster loss risk curve in Bengbu City.

Drought Resistance
Capacity Level

LS = aln(P) + b

Without Drought Resistance
Capacity

50% Drought Resistance
Capacity

100% Drought Resistance
Capacity

a b R2 a b R2 a b R2

Function parameter value −15.37 78.55 0.94 −12.81 63.27 0.95 −11.43 51.64 0.94

According to Table 9, the semilogarithmic function was used to fit the quantitative
relationships between drought frequency and the corresponding yield loss rate of maize
under different irrigation levels, and the determination coefficients R2 were all higher than
0.90. This indicates that there was a significant correlation between the drought frequency
of the identified drought events during the growth period of summer maize in Bengbu
and the corresponding yield loss rate simulated by the calibrated AquaCrop model. From
Figure 14, as the drought frequency declined, the yield loss rate of maize continuously
increased. That is, the drought disaster loss risk of maize continuously increased with the
increase of drought hazard; the quantitative relationship between these two as fitted by
the semilogarithmic function is reliable and precise, which reflects the drought-causing
disaster mechanism and the system structure of drought disaster risk.

From Figure 14, the loss risk curve of maize without irrigation was significantly higher
than that with irrigation, and the curve with 100% irrigation was lower than that with
50% irrigation. That is, under the same drought hazard, as the drought resistance capacity
increases, the loss risk reduces significantly, which is in accordance with the physical
mechanism of drought disaster risk [9,22]. This suggests that irrigation during the drought
period can effectively relieve the yield loss of maize, and the stronger the drought resistance
capacity, the smaller the loss [59]. For the droughts with frequency between 0.2–0.8, 100%
irrigation reduced the yield loss rate to below 10%. Especially when the drought frequency
was higher than 0.8, 100% irrigation basically prevented the drought loss. This indicates
that for the droughts with high frequency and low intensity, adding timely irrigation is
of great significance for avoiding yield loss of summer maize [30]. Nevertheless, for the
droughts with frequency lower than 0.2, the loss reduction effect of irrigation was far less
than that for droughts with high frequency. This phenomenon may be related to the fact
that the irrigation water amount for summer maize set in this study is lower than the
economical irrigation quota in Table 7, which cannot compensate for the water demand of
plants after suffering from drought stress. Alternatively, this may be due to the fact that the
drought intensity is too high and that drought stress causes irreversible damage to summer
maize plants; thus, the loss mitigation effect of irrigation decreases. These are consistent
with the compensation effect of irrigation for different drought degrees in the studies of
Cui et al. [58,60].

For droughts with frequency between 0.3–0.5, as seen in Figure 14, the yield loss rate
also increased with the adding of drought frequency, which was related to the occurrence
time and intensity of drought events. For the identified drought events in Bengbu City,
some differ in the occurrence time but have similar drought frequency between 0.3–0.5.
However, the sensitivity of maize growth and development to drought stress at different
growth stages is markedly different, so that the recovery effects of irrigation at different
stages are different. These are in accordance with the phenomenon that the maize sensi-
tivity to drought stress at different growth stages is significantly different, as obtained by
Wang et al. [20] and Wei et al. [59]. Therefore, although there is similar drought frequency
with various occurrence times, the yield losses are different. As a whole, the curves under
three irrigation levels still meet the physical mechanism of drought disaster risk. That is,
under the same drought resistance capacity, as the drought frequency increases, the yield
loss declines.
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4. Discussions

Drought disaster risk has a clear chain transmission system structure, which includes
an element structure of drought hazard (H), drought disaster vulnerability (V), and drought
disaster loss risk (R), and a relation structure that R is derived from H by the transformation
of V. For the specific functional relationship, the drought disaster loss risk curve between
drought frequency and crop losses is obtained from the transformation of the drought
hazard curve between drought frequency and drought intensity, by the drought disaster
vulnerability curve between drought intensity and crop losses (Figure 15). Moreover,
drought intensity is the key intermediate variable in the process. Hence, the established
loss risk curve in this study fully reflects the formation mechanism of drought disaster risk.

 
(a) (b) (c) 

Figure 15. Chain transmission process of drought disaster loss risk curve. (a) Drought hazard curve;
(b) drought disaster vulnerability curve; (c) drought disaster loss risk curve.

The loss risk curve established in this study provides effective support for the system
structure of drought disaster risk, i.e., the drought hazard is transformed into drought
disaster loss risk by the vulnerability of the drought disaster–bearing body. This is the
same as the chain transmission theory of drought disaster risk proposed by Jin et al. [61].
Furthermore, this study shows that the semilogarithmic risk curve between drought fre-
quency and the corresponding yield loss rate quantitatively describes the drought disaster
risk and basically agrees with the relevant research on drought disaster risk assessment by
Zhang et al. [14], Yin et al. [23], and Wang et al. [24]. In addition, from the perspective of
practical significance, in Figure 14, the x-coordinate represents drought frequency, and the
y-coordinate represents crop yield loss rate under different irrigation levels, which visually
reflects the physical meaning of drought disaster risk [15,22]. Moreover, Figure 14 can be
used to quickly estimate the possible yield loss of summer maize in various drought and ir-
rigation scenarios, which provides a scientific guarantee to conduct a reasonable assessment
of drought loss and an effective response to drought disaster risk for Bengbu City.

The drought disaster risk curve cluster under various drought resistance capacities
built in this study can accurately evaluate the potential losses when encountering droughts
with different frequencies in the future. Then, appropriate drought resistance measures can
be taken in advance or not, according to the acceptable drought disaster risk (crop yield
loss rate) threshold, which provides key decision support for risk prevention and control
and effectively reduces losses. Furthermore, this curve cluster is a fundamental work for
assessing drought disaster risk under the actual drought resistance capacity.

In fact, the drought resistance capacity is generally not constant but decreases with the
increase of drought severity. The lower the drought frequency, the lower the available water
resource amount, and the weaker the drought resistance capacity. Therefore, to assess the
drought disaster risk under an actual drought resistance capacity, firstly, the quantitative
relationship between drought resistance capacity and drought frequency should be built.
For a given frequency, the actual resistance capacity can be obtained. Then, according
to the established loss risk curve cluster under various resistance capacities in this study
(Figure 7), the crop yield loss rate under the given frequency and resistance capacity can
be obtained by interpolation. Thus, the loss risk curve between drought frequency and
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the corresponding crop yield loss rate under the actual drought resistance capacity is
established, which may represent important future work on the basis of this study.

Precipitation is the most direct drought disaster-inducing factor and is usually adopted
to construct the drought index; thus, the precision of precipitation data markedly affects the
results of drought event identification and drought disaster risk assessment. Normally, pre-
cipitation data use the observations from ground-based meteorological stations. However,
due to the influences of geographic, economic, external environment, and other factors,
the station network is usually sparsely and unevenly distributed, lacking good temporal
continuity and spatial consistency. In addition, precipitation has a large variability of tem-
poral and spatial distributions and a strong uncertainty, especially for extreme precipitation
events, such as droughts. Therefore, for the ground-based meteorological station, it is
difficult to provide precipitation information with high temporal and spatial resolutions in
a large range. The missing and abnormal precipitation observations from meteorological
stations are usually difficult to obtain by spatial interpolation. Thus, when the available
stations are sparse, the calculated drought index according to the station observations
cannot accurately depict the actual drought situations on a regional scale. In recent years,
with the rapid development of remote sensing and data inversion techniques, a range
of precipitation products based on satellite remote sensing inversion have been released,
which have a wide scale coverage and high temporal and spatial resolutions. These remote
sensing data effectively make up for the lack of ground station spatial distribution, provide
a new data source for the calculation of drought index, which improves the precision of
drought identification and drought disaster risk assessment.

This study replaced the missing and abnormal precipitation observations from 1982 to
2017 in Bengbu City from the Bengbu National Meteorological Station with the corrected
GSMaP_Gauge satellite products. According to the results of drought event identification
(Figure 8 and Table 3) and the drought hazard curve (Figure 9), the adjusted GSMaP_Gauge
data were well matched with the ground station observations. The fused precipitation data
were accurately used to identify the drought process combined with drought index SPI
in Bengbu. This may be due to the fact that the GSMaP_Gauge is a satellite precipitation
product adjusted by the CPC global gauge dataset. Therefore, the satellite remote sensing
data play an important role in this study. GSMaP_Gauge provides a valid precipitation data
source for supplementing the Bengbu station, which lays the data foundation for system
structure–based drought disaster risk quantitative assessment in Bengbu. In addition,
this study verifies the effectiveness of fusion between station precipitation data and the
GSMaP_Gauge product, providing an effective way to further conduct regional or large-
scale drought disaster risk study using remote sensing data.

This study uses the field experimental data, meteorological data, and soil and crop
parameters provided by Xinmaqiao station to calibrate the AquaCrop model and then
calculate the drought disaster loss risk of summer maize in Bengbu City. Firstly, the
Xinmaqiao experimental station (33◦09′N, 117◦22′E) is located in the center of Bengbu City
(32◦43′N–33◦30′N, 116◦45′E–118◦04′E) (Figure 16), close to the Huaihe River; it has the
typical climate characteristics of temperate and subtropical monsoon transition zones, like
Bengbu. Specifically, the mean monthly precipitation and reference crop evapotranspiration
in Xinmaqiao station and Bengbu City are highly consistent (Figure 17). Meanwhile, the
main daily meteorological indexes during the growth period of summer maize (June to
September) for the 2018 season in Xinmaqiao station are all very close to those in Bengbu
(Figure 18). Furthermore, the soil (Shajiang black soil) and maize variety (Longping 206)
used in Xinmaqiao station are the main types in Bengbu. Therefore, it can be considered
that the data provided by Xinmaqiao station are representative for the whole Bengbu area.
In addition, if the experimental conditions are sufficient, multiple stations’ data will be
further applied to the drought disaster risk assessment of Bengbu City in future work.
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Figure 16. Location of Xinmaqiao experimental station in Bengbu City.

  
(a) (b) 

Figure 17. Comparison between mean monthly precipitation and reference evapotranspiration in
Xinmaqiao station and Bengbu City. (a) Precipitation; (b) reference evapotranspiration.
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(a) (b) 

  
(c) (d) 

Figure 18. Correlations between main daily meteorological indexes during the growth period
of summer maize for the 2018 season in Xinmaqiao station and Bengbu City. (a) Maximum air
temperature; (b) minimum air temperature; (c) precipitation; (d) reference evapotranspiration.

Based on the reference values of maize crop parameters in the AquaCrop model
manual [47], this study further adopts two-season field experiment data to calibrate and
verify partial crop parameters, which change with the actual planting conditions (Table 2).
Firstly, the simulated canopy cover degree (Figure 11), aboveground biomass (Figure 12),
and biomass yield (Table 5) of summer maize in Bengbu using the calibrated parameters
indicate that the simulated results are all highly consistent with the field measured values;
the simulation accuracy meets the requirements. Furthermore, the simulated yield losses of
maize caused by severe droughts in Bengbu from 1982 to 2017 (Table 6) are all in accordance
with the historical drought situations [41,55] and relevant studies [40,52,53]. In addition,
the calibrated maize crop parameters in this study (Table 2) are basically consistent with the
studies of Han et al. [62], Wolka et al. [63], and Wu et al. [64], who obtained the parameters
by field experiments in the Heihe River Basin of China, the BokoleKartha watershed of
southwest Ethiopia, and Wuwei City of northwest China, respectively. Therefore, it can be
considered that the obtained crop parameters of summer maize for the AquaCrop model in
Table 2 are reasonable. Moreover, these parameters can be further verified and modified by
continuous field experiments in future work.

The crop parameter of maximum canopy cover in the AquaCrop model for summer
maize in this study is 78%. First, the simulated canopy cover degrees are highly consistent
with the field measured results (Figure 11). Then, the measured samples of maize maximum
canopy cover degree in 2018 and 2019 seasons are only 80.15% and 85.00%, respectively.
The field experiments in this study are conducted under a rain-fed condition; the water
demand of maize plants cannot be fully met. According to the measured gravimetric soil
water content during the growth period of maize (Figure 19), the values are basically lower
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than 75% field capacity (19.65%). Furthermore, the measured yields per unit area in 2018
and 2019 seasons are 5.54 t/hm2 and 5.88 t/hm2 (Table 5), respectively, which are both
less than that under normal meteorological conditions (5.94 t/hm2). This reflects that
there is significant drought stress for maize plant growth in the experiments, resulting
in a maximum canopy cover degree of only about 80%. Similar results were proposed
by Abedinpour et al. [65], who found that the maximum canopy cover degree of maize
decreased with the declining of soil water content in New Delhi, India; those under
full irrigation and rain-fed conditions were about 90% and 80%, respectively. Moreover,
the maximum canopy cover parameter of 78% may be related to the planting density,
meteorological conditions, and maize variety [66]. A relatively low maximum canopy cover
parameter of maize in the AquaCrop model was also obtained in some studies. Nyakudya
et al. [66] calibrated the parameter of maximum canopy cover CCx for rain-fed maize in
a semi-arid region of Zimbabwe by field experiments in various sites, and the CCx in
the Magaranhewe site and Chongma site was 70% and 65%, respectively. Ran et al. [67]
presented that the calibrated CCx for summer maize in an arid region of northwest China
during the 2012 and 2013 seasons was 85%, and the field measured maximum canopy cover
degree was about 80%. Furthermore, in the study of Li et al. [68], the calibrated CCx for
summer maize in the Shijin irrigation district of North China was 80%. Therefore, it can be
considered that the CCx of 78% for maize in this study is reasonable.

 
Figure 19. Field measured gravimetric soil water content during the growth period of summer maize
in 2018 season.

5. Conclusions

In this study, the drought events and characteristic variables during the growth period
of summer maize in Bengbu from 1982 to 2017 were identified, and the drought frequency
of double variables was calculated. In addition, the AquaCrop model was used to simulate
the yield loss of maize based on field experiments in 2018 and 2019. Finally, the loss risk
curves between drought frequency and the corresponding yield loss rate under different
drought resistance capacities were established. The conclusions are as follows:

(1) The P-III distribution curve method well fitted the univariate probability distributions
of drought duration and drought intensity. Furthermore, the semilogarithmic function
quantitatively described the drought hazard curve between drought duration–drought
intensity joint drought frequency and drought intensity. Among 19 drought events,
there were 15 events whose drought frequency was 0.2–0.8. Moreover, the drought
intensity was basically below 2.0; the events whose intensity was larger than 3.0 were
less. Therefore, droughts occurred frequently during the growth period of summer
maize in Bengbu, though most of them were mild droughts with low intensity.

(2) The RMSE of simulated maize canopy cover degree by the AquaCrop model relative
to the field measured results in 2018 and 2019 was 0.067 and 0.079, respectively.
The RMSE of aboveground biomass was 0.755 and 0.966. In addition, the relative error
(RE) between the simulated and measured aboveground biomass at harvest in 2018
and 2019 was 1.38% and 1.79%, respectively. The RE of yield per unit area was 0.67%
and 0.31%. Therefore, the optimized crop parameters were effective; the calibrated
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AquaCrop model accurately simulated the growth and yield formation process of
summer maize in Bengbu.

(3) The simulated average yield loss per unit area under 19 drought events identified dur-
ing the growth period of summer maize in Bengbu from 1982 to 2017 was 1.455 t/hm2,
and the yield loss rate was 24.51%. Droughts caused a severe impact on the summer
maize production in Bengbu, resulting in significant yield losses. In addition, serious
yield reduction happened in 1988, 1992, 1994, 2001, and 2004, and the largest yield
loss rate was in 2001, at up to 65.58%. Therefore, the simulated yield losses were
consistent with the actual drought situations in maize production for Bengbu.

(4) The semilogarithmic function accurately depicted the summer maize drought disaster
loss risk curve in Bengbu City. Under the same drought hazard condition, as the
drought resistance capacity increased, the maize loss risk reduced significantly. Fur-
thermore, for the droughts with frequency between 0.2–0.8, 100% irrigation reduced
the yield loss rate of maize to below 10%. Especially when the frequency was higher
than 0.8, 100% irrigation basically prevented the loss. Therefore, for the droughts
with high frequency and low intensity in Bengbu, adding timely irrigation was a
key measure to reduce the yield loss of maize. Nevertheless, for the droughts with
frequency lower than 0.2, the loss reduction effect of irrigation was far less than that
for the droughts with high frequency. This study provides an effective approach for
quantifying the regional drought disaster loss risk and supporting the decisions of
regional drought disaster risk management.
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Abstract: Water footprint (WF) is a comprehensive summation of the volume of freshwater consumed
directly and indirectly in all the steps of the production chain of a product. The water footprint
concept has been widely used in agricultural water resources management. Water for irrigation is
supplied in Sri Lanka to farmers at no cost, and thus the question is arising, whether the current
management strategies the authorities and the farmers follow are appropriate to achieve productive
water utilization. Therefore, this study aims at evaluating the water footprint of rice production in an
irrigation scheme in the dry zone of Sri Lanka, the Walawe irrigation scheme. Due to the unreliability
of the rainfall in the study area paddy cultivation depends entirely on irrigation, thus, the WFblue, in
other terms the volume of water evaporated from the irrigation water supply is considered as the total
WF (WFtot) in this study. Actual crop evapotranspiration (equivalent to ETblue) was estimated based
on the Penman-Monteith (P-M) model integrating effective rainfall, and crop coefficient published
in Sri Lankan Irrigation Design Guidelines. The study spanned for three irrigation years from
2018–2021. Actual irrigation water issued to the field was estimated based on the data recorded by
the government body responsible for irrigation water management of the area—Mahaweli Authority
of Sri Lanka. The total volume of percolated water was computed employing the water balance
method while assuming runoff is negligible. Results show that the average annual WFblue found to
be 2.27 m3/kg, which is higher than global and national WFtot. As the crop yield in the study area
(6.5 ton/ha) is also higher than the global (4.49 ton/ha) and national (3.5 ton/ha) yields, a conclusion
was drawn that the irrigation water usage (CWUTblue) in the area may be significantly higher. It was
then noted the higher CWUTblue was due to relatively higher evapotranspiration in the area. Thus, it
is vital to reduce excess water usage by shifting irrigation practices from flooded irrigation to the
System of Rice Intensification (SRI).

Keywords: blue water footprint; rice production; evapotranspiration; irrigation water management

1. Introduction

Agriculture, the main consumer of freshwater globally [1,2] plays a major roll in fresh-
water scarcity [3]. About 70% of total direct extractions and 90% of indirect consumption
(e.g., evapotranspiration) of the freshwater resources are accounted for agricultural water
demand, which is predicted to be increased by 55% over the next three decades [2] due
to factors such as rapid population growth, economic development, urbanization and
climatic changes [3]. Therefore, both future food and water security are at risk. This neces-
sitates increased crop water use efficiencies and sustainable irrigation water management.
Characterisation and quantification of both direct and indirect water use in agriculture are
paramount to managing agricultural water allocations sustainably to ensure future water
security [4].

The concept of water footprint (WF) has been considered a valuable tool by many
scholars recently [2,5] in estimating water consumption in agriculture. WF of a product is
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the comprehensive summation of the volume of water consumed directly and indirectly in
all the steps of the production chain of a product. WF is an indicator that characterises con-
sumed water volumes by source and polluted volumes by type of pollution and specifies
all the components of consumed water spatially and temporally. WF has three components:
Blue WF (WFblue), Green WF (WFgreen), and Grey WF (WFgrey), which, respectively refer to
total evapotranspiration from water withdrawn from surface and groundwater resources
(in other terms evaporation from irrigated water), total evapotranspiration from rainwa-
ter utilised in crop production and volume of freshwater required to dilute the load of
pollutants to the agreed maximum permissible levels [6].

Rice is one of the major crops that feed the global population, with a total annual
production of approximately 600 million metric tons, of which about 30% being produced
in the South Asian region [7]. In South Asia, a larger portion of agricultural WF could
be attributed to paddy due to two factors: (1) rice, being the staple food of South Asians,
needs significantly higher production than any other single crop, and (2) rice, being a
water intense crop, requires paddy fields to be saturated (in many cases this is achieved by
flooding the fields). There are two major rice production systems namely wetland systems
and upland systems. Wetland systems can either be rainfed or irrigated. In South Asia, rice
occupies about 30–35% of all the irrigated croplands [8], which has shown a substantial
expansion over the last few decades [9]. In order to feed the rapidly growing population
in the region more rice needed to be produced. Since the rainwater is already scant and
unreliable in the study area, with the impacts of climate change, it could be expected have
even higher dependability on irrigated rice production. Hence, the pressure on the water
resources in the region will be on the rise, as the total the WF of irrigated rice is almost two
times that of rain-fed rice [10], demanding a comprehensive and continuous assessment of
WF of paddy for efficient irrigation water resources management in the region.

Sri Lanka (refer to Figure 1) an island nation in the Indian Ocean, located between
5◦ N to 10◦ N latitudes and 79◦ E to 82◦ E longitudes, with a total geographical area of
65,610 km2, is home to approximately 21 million people. Although Sri Lanka represents
only a tiny portion of South Asia in terms of both the landmass and the population, because
of relative similarities between the rest of the South Asian countries in terms of irrigation
practices; policies; socio-economic and environmental conditions, this case study has a
considerable potential for up- and out scaling of findings in the region. Although Sri
Lanka has agriculture-based economy and some areas in the country are facing water
scarcity, there seemed to be little or no attempts in Sri Lanka to evaluate WF, which allows
sound overall assessment of water utilizing in crop production as the first step to a proper
irrigation water management. This study was formulated to address this identified and
vital research gap.

Approximately, 10% of the total land area of Sri Lanka (7080 km2) has been allocated
as Paddy fields [11]. Sri Lanka records the highest annual rice yield (about 3885 kg/ha) in
South Asia [9]. However, the current rice yields are already reaching the maximum yield
that could be achieved with the current sown area, which does not seem to be extending [12].
In Sri Lanka, rice is produced in two cultivation seasons namely, namely Yala (April to
August) and Maha (November to March next year), which are synonymous with two
monsoons: Southwest monsoon (SWM) from March to September and Northeast monsoon
(NEM) from December to February [13]. So that, the irrigation year spans from October to
September of next year. There are two major climatic zones delineated based on the spatial
heterogeneity of rainfall. The two zones, i.e., the Wet zone, and Dry zone, are separated
by the 2000 mm annual average rainfall isohyet. Paddy cultivation in Sri Lanka is broadly
categorised as (1) wet zone paddy and dry zone paddy based on the local agroecology and
(2) low land paddy and upland paddy based on the topography. About 60% of the annual
rice production is coming from the dry zone, which receives most of its rain from NEM [14].
Therefore, for this study, a dry zone irrigation scheme was selected to evaluate the WFblue
of paddy cultivation in the dry zone of Sri Lanka.

172



Hydrology 2022, 9, 210

Figure 1. Cultivated area fed by Chandrikawewa Branch Canal. Source: ESRI ArcGIS Basemap.

173



Hydrology 2022, 9, 210

2. Study Area

The case study was conducted in an irrigation scheme named, Walawe Special Area
of which the administrative activities are being carried out by the Mahaweli Authority
of Sri Lanka (MASL), which plays a key role in managing large reservoirs and irrigation
distribution systems in Sri Lanka. Walawe Special Area is located in the Walawe river basin
in the dry zone of Sri Lanka. “Chandrika wewa” is one of the three major reservoirs in
the Walawe basin with a capacity of 27 million cubic meters (MCM). Chandrika wewa
has three main canals, namely the right bank canal, left bank canal, and branch canal,
irrigating downstream paddy fields. Paddy fields of 1549 ha which are located between
6◦12′00′′ N to 6◦17′00′′ N and 80◦50′00′′ E to 80◦54′00′′ E) and being fed by branch canal
of Chandrika wewa were considered for this study (refer to Figure 1). Irrigation water is
supplied to paddy fields by 30 sub canals, both lined and unlined and all having 1 m width,
connected to the branch canal of Chandrika wewa (Refer to Table 1 for more details on
canals). Discharge from each canal is quantified by measuring water level at the gate to
each canal and substituting to a discharge equation derived and calibrated for the scheme.
The area is characterised by an average annual rainfall of 1120 mm, with a majority coming
from NEM, a flat terrain, with elevation ranging between 60–70 m, and reddish-brown
soil. Reddish brown soil shows low hydraulic conductivity values of its bottom layers
suggesting possible impedance to water movement under saturation. The profile saturated
hydraulic conductivity range between 0.4 and 2.1 cm/hr. The bulk density values range
from 1.06 gcm3 to 2.15 gcm3 at 10–20 cm soil depth and from 1.07 gcm3 to 2.18 gcm3 at
40–50 cm depth with averages of 1.68 gcm3 and 1.69 gcm3, respectively.

Table 1. Details of canals in the study area—length and command area of each canal; number water
supplying days per week during the crop growth stage as per MASL rotation plan. L—lined canals,
UL—unlined.
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D1 598 6.5 2 15 L D16 FC1 12 24.7 2 16 L
D2 482 10.4 2 19 UL D17 2068 48 2 25 L
D3 543 48.8 3 20 L CW FC1 581 8.4 2 12 L
D4 695 14.4 3 20 L CWFC2 244 10 2 12 UL

D5 FC1 20 28.9 3 20 UL CWFC3 385 11.2 2 15 UL
D6 3181 208.6 4 27 L D18 361 38.4 3 12 L

D7 FC1 12 27 2 20 UL CWFC4 639 11.1 2 12 UL
D8 2205 149.5 4 28 L CWFC5 425 10.5 2 12 UL
D9 530 36.9 3 23 UL D20 2769 131 4 22 UL

D10 4922 234.5 5 28 L CWFC6 217 4.7 2 10 UL
D11 587 27.7 3 15 L CWFC7 388 7.2 2 12 UL
D12 782 27.8 3 15.5 L CWFC8 693 13 2 15 UL
D13 600 22.6 3 15.5 L CWFC9 306 6.1 2 15 UL
D14 140 28.4 3 15 L D21 742 50.7 3 18 UL
D15 3448 233.6 5 26 L D22 2687 68.4 3 27 UL
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2.1. Irrigation Water Allocation

As per ID-SL guidelines, in each cultivation season, the total crop production process
can be broadly categorised into two major stages: Land Preparation and Crop growth.
The crop growth stage can be further divided into four substages: initial stage; crop
development stage; mid-season (mid) stage and late stage. Table 2 shows the duration (in
weeks) of each stage for 105 days of paddy cultivation in both seasons. As per MASL, water
is issued continuously (24 h everyday) via all sub canals during the Land Preparation, so
that the issued water would amount to a field water depth (FWD) of 5 inches (122.5 mm)
over 7 days standing in the field. During the crop growth period, irrigation water is
supplied according to a rotation plan (given in Table 1 and the same for Yala and Maha
seasons) implemented by MASL. The rotation plan is prepared, so that irrigation water
issued would sum up to an FWD of 73.5 mm over 7 days during the initial and mid stages,
and 49 mm over 7 days for crop development and late stages in both Yala and Maha seasons.
These are the depths of water needed to meet the water output from the irrigation system
as evapotranspiration during each stage. Thus, the actual water issued to a canal is greater
than FWD by 60–70% after accounting for canal losses and field percolation losses.

Table 2. Duration (in weeks) of land preparation stage and each crop growth stage for 105 days
paddy cultivation in Yala and Maha seasons. Lp—Land preparation stage, Initial—Initial stage, Crop
dev.—Crop development stage, Mid—Mid season stage and Late—Late stage.

Stage

Number of Weeks

Yala Maha

Apr May Jun Jul Aug Nov Dec Jan Feb Mar

Lp 4 4
Initial 3 3

Crop dev. 1 3 1 3
Mid 1 4 1 4
Late 3 3

3. Methodology

3.1. Estimation of Water Footprint

WF of a crop product can be expressed in terms of water volume per unit time of
production process (m3/yr) or water volume per unit mass of product (m3/kg) [5]. Due
to the unreliability of the rainfall in this study area (Walawe irrigation scheme), rainfed
irrigation is uncommon, hence all the paddy fields are irrigated—supplemental irrigation.
However, as per MASL, all the water requirement of paddy cultivation is released from
Chandrika Wewa according to the rotation plan. Thus, it is reasonable to state that paddy
cultivation in the study area is based entirely on irrigation, which also means a loss of
green water component. Therefore, from the three components of water footprint; WFblue,
WFgreen, and WFgrey, this assessment used WFblue, which refers to the volume of water
evaporated from the irrigation water supply is considered as the total WF (WFtot) in this
study. The WFblue for rice in the study area was calculated as water volume per unit mass
of product as shown in Equation (1), where WFblue is the blue water footprint (m3/kg),
CWUAblue is the crop blue water use per area (m3/ha) and Y is the crop yield for rice
production in the study area (kg/ha). The WFblue was estimated for the three most recent
irrigation years (2018/19, 2019/20, 2020/21). As per MASL, the average seasonal crop yield
of rice in the study area was 6500 kg/ha in all three irrigation years.

WFblue =
CWUAblue

Y
(1)

CWUAblue was calculated as in Equation (2), where CWUTblue is the total crop blue
water use in the field (m3) and A is the cultivation area (ha). The CWUTblue was considered
as the summation of evapotranspiration from the paddy fields and evaporation from
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canal water surfaces. CWUTblue for each stage was computed using the relationship
given by Equation (3), where i is the index denoting a canal, ETblue is the blue water
evapotranspiration (mm/day), Ai is the command area (ha) under the canal i, digit 10 is
the unit conversion factor, n is the number of days in each stage, Ec is the evaporation from
a water surface (mm/day), Li is the length of the canal i, Li is the length of the canal i and
mi is the number of days irrigation water issued via the canal i during a given stage. Pan
(Class A) evaporation values recorded in 2018, 2019, 2020 and 2021 at the nearest weather
station (Hambantota), which were obtained from the Department of Meteorology of Sri
Lanka, were considered as Ec.

CWUAblue =
CWUTblue

A
(2)

CWUTblue =
30

∑
i=1

{
(ETblue × Ai × 10 × n) +

(
Ec

1000
× Li × Wi × mi

)}
(3)

Total ETblue for a given stage was estimated using Equation (4), where ETc is the
actual crop evapotranspiration (mm/day), which was estimated by using Equation (5)
and Pe f f is the effective rainfall (mm/day), estimated based on the relationship explained
in Ponrajah [15], which provides the guidelines for irrigation designs in Sri Lanka and
hereinafter referred to as ID-SL guidelines (as expressed in Equation (6)).

ETblue = ETc − Pe f f (4)

ETc = kc × ETo (5)

where, kc is the crop coefficient for a given stage and ETo is the potential crop evapotranspi-
ration (mm/day). kc values were abstracted from the ID-SL guidelines; kc = 1.00, 1.00, 1.15,
1.20 and 0.90 for Land Preparation, initial, crop development, mid-season and late stages,
respectively. ETo was estimated using the Penman-Monteith (P-M) model standardized
by Food and Agricultural Organization (FAO) [16]. Reason for this selection is that the
FAO P-M model considered to be applicable worldwide without any extra adjustment to
its parameters [16].

Pe f f =

{
0.67(R−25.4)

30 , R > 25.4
0, R ≤ 25.4

(6)

where R is the monthly rainfall (mm/month) and digit 30 the unit conversion factor.
Equation (7) is the FAO P-M model as expressed in [17].

ETo =
0.408Δ(Rn − G) + γ 900

T+273 U2(es − ea)

Δ + γ(1 + 0.34U2)
(7)

where, ETo is the total daily PET (mm/day), Δ is the slope of saturation vapour pressure
curve (kPa ◦C−1), Rn is the net incoming radiation (kPa), G is the soil heat flux (MJ m−2),
γ is the psychrometric constant (kPa ◦C−1), T is the average daily temperature (◦C), U2 is
the wind speed at 2 m height (m s−1), es and ea are the saturation vapour pressure (kPa)
and the ambient vapour pressure (kPa), respectively. Rainfall and hydro-meteorological
data required by FAO P-M model (i.e., solar radiation, wind speed, relative humidity and
temperature) were obtained from the Department of Meteorology of Sri Lanka for the years
2018, 2019, 2020 and 2021. Figure 2 provides a comparison of Ec and ETo. Ec is lower than
ETo, and this is in agreement with the findings of Abeysiriwardana [16] who have reported
a similar relationship over the whole Sri Lanka. Furthermore, Nandagiri and Kovoor [18]
have identified similar relationship between the two parameters in several south Indian
states with both paraments ranging within the same range estimated in this study.
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Figure 2. Temporal variations of ETo estimated by FAO P-M model, Ec and effective rainfall.

3.2. Computation of Total Irrigation Water Issued

In order to find the fraction of CWUTblue in the total crop water use, the total irrigation
water issued (CWUTtot) via the canals were computed. To account for canal losses (evap-
oration + percolation) and field percolation losses, FWDs (Section 2.1) were multiplied by
respective loss factors relevant to the stage of the cultivation process. Thus, the total IWS from
a canal for crop production in a given cultivation season was estimated as in Equation (8).

(CWUTtot)i = Ai ×
{

5

∑
j=1

(
Uf

)
j
× nj × FWDj

}
× 10 (8)

where, i is the index denoting a canal, (CWUTtot)i is the total irrigation water issued via
the canal i for crop production (m3), Ai is the area cultivated under the canal i (ha), j is
the index denoting a stage in crop production cycle, Uf is the loss factor for stage j, n is
the number of weeks in the stage j, FWD is the required field water depth in the stage j
(mm/week) and digit 10 is the unit conversion factor. Uf for land preparation stage is 1.15
and for all the crop growth stages 1.42 (factors used by MASL for estimating discharge
volumes).

3.3. Comparison of Irrigation Water Issued and Irrigation Water Requirement Estimated Based on
Irrigation Guidelines for the Crop Growth Period

Further, to quantify excess irrigation water usage for paddy production, a comparison
was made between the actual irrigation water issues and design irrigation requirement
(DIR), which was estimated as per the ID-SL guidelines. Equations (9)–(13) describe the
estimation of irrigation requirements and these equations are expressed in this paper as
described in the ID-SL guidelines [15].

ETc = n × 7 ETo

30
× kc (9)

FIR =
ETc

Ea
(10)

Pe =
0.67 × (R − 1)× 7

30
(11)
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IR =
FIR − Pe

Ec
(12)

where, ETc is crop water requirement (mm), n is the number of weeks in the respective stage,
ETo is reference crop evapotranspiration (mm/month), kc is the crop factor which is specific
for the crop and growth stage, FIR is the field irrigation requirement (mm), Ea is application
efficiency (%), Pe is effective rainfall (mm/week), R is the monthly 75% probable rainfall
(mm), IR is the irrigation requirement (mm/week) and Ec is the conveyance loss (%). ETc is
defined as the “depth of water needed to meet the water loss through evapotranspiration”
(ID-SL guidelines). Monthly ETo, R values (Table 3), and kc values for each stage (Table 4)
were extracted from the ID-SL guidelines. Ea for lowland farms and Ec for a supply canal
are given as 60% and 70%, respectively (ID-SL guidelines).

DIRi = Ai ×
{

5

∑
j=1

nj × IRj

}
× 10 (13)

Finally, the total design irrigation water requirement (DIR) of a given canal for a given
season was calculated as per Equation (8), where i is the index denoting a canal, A is the
cultivated area under the canal i (ha), j is the index denoting a stage in crop production
cycle, n is the number of weeks in the stage j and digit 10 is the unit conversion factor.

Table 3. Reference crop evapotranspiration values and monthly 75% probability rainfall. Source:
ID-SL guidelines [14]. All the values are given in inches in the source, and the values are converted to
SI units by multiplying by 25.4.

Month
ETo

(mm/month)

75% Probable
Rainfall

(mm/Month)
Month

ETo
(mm/Month)

75% Probable
Rainfall

(mm/Month)

January 96.520 304.8 July 154.94 12.7
February 114.300 114.3 August 161.29 12.7

March 129.032 88.9 September 161.29 50.8
April 129.032 114.3 October 129.032 152.4
May 135.382 38.1 November 91.44 228.6
June 148.336 12.7 December 91.44 330.2

Table 4. Crop growth stages and crop factors for lowland paddy.

Initial Development Mid Late

kc 1.00 1.15 1.20 0.90

No of days 30
(21)

40
(21)

45
(21)

20
(14)

4. Results

4.1. Water Footprint and Crop Water Use

Using the data collected from MASL, the crop water use and water footprint were
calculated for the study period. Stagewise, Seasonal, and annual CWUAblue estimates are
given in Table 5. When each stage was considered separately, mid-season stage required
the highest CWUAblue in both seasons in all three irrigation years. This can be associated
with ETblue and kc. Mid stage of Yala is in July and that of Maha season is in February. Both
months have highest ETblue values with respect to the other months in respective season.
Additionally, the kc is highest in the mid stage.
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Table 5. Stagewise, Seasonal, and annual crop blue water usage per area.

Year

CWUAblue (m3/ha)

Stage
Seasonal Annual

Lp Initial Crop Dev Mid Late

2018/19 Yala 1471.9 788.0 1556.0 2630.9 1277.2 7724.0
15,265.5Maha 1396.9 713.1 1780.8 2477.7 1172.9 7541.4

2019/20 Yala 2045.5 1063.0 1823.4 2618.4 766.1 8316.4
15,101.8Maha 1399.7 572.9 1855.5 2009.3 948.1 6785.4

2020/21 Yala 1759.8 930.5 1708.2 2449.7 829.6 7677.8
13,977.1Maha 1292.6 500.3 1497.7 2096.2 912.4 6299.3

The initial stage had accounted for the lowest CWUAblue in the Maha season in
all three years, whereas, in the Yala season, association of the lowest CWUAblue with
cultivation stages was not consistent. CWUAblue of land preparation stage and Late stage
were recorded to be higher in the Yala all the time. Though CWUAblue of other stages did
not exhibit a similar trend, when the total seasonal CWUAblue considered, CWUAblue of
Yala always exceeded that of Maha. This can be clarified by comparing (1) total ETo in
Yala season (893.68 mm) and Maha Season (810.78 mm) and (2) total Pe f f in Yala Season
(109.97 mm) and Maha (177.43 mm). It is clear when the entire season is considered
Maha records lesser ETo and higher Pe f f , making it the wetter season of the two. Thus,
requirement for irrigation is lower in Maha, hence lower CWUAblue. As per Figure 2,
estimated ETo follows a similar pattern in all three irrigation years; however, the Pe f f
displays great differences in each year, and has resulted in above mentioned inconsistencies
in CWUAblue values. Average annual CWUAblue of the study area was 14,781.4 m3/ha,
with the lowest (13,977.1 m3/ha) was recorded in 2020/21, which can be explained by the
fact that the said irrigation year was wetter than the other two years.

Table 6 tabulates seasonal and annual WFblue of rice in all three years. Annual WFblue
were calculated to compare our results with previous studies. Though the annual figures
in this study is for an irrigation year defined earlier, estimating annual figures provide
a common base to compare with the available literature as cultivation seasons in other
countries may differ to those of Sri Lanka. Except in Maha 2020/21, WFblue ranges between
1.0–1.3 m3/kg. Considering all three Yala seasons and all three Maha seasons, the average
Yala and Maha WFblue were found to be 1.22 m3/kg and 1.06 m3/kg, respectively. Average
annual WFblue of rice production in the study area was 2.27 m3/kg. The spatial variability
of WF within the scheme was not significant in all three years in all three years. When WF
was estimated separately for each canal, maximum and minimum WF values varied only
percentages less than 1% in both seasons.

Table 6. Seasonal and annual blue water foot print for rice production.

Year Season WFblue (m3/kg)

2018/19
Yala 1.19

Maha 1.16
Annual 2.35

2019/20
Yala 1.28

Maha 1.04
Annual 2.32

2020/21
Yala 1.18

Maha 0.97
Annual 2.15

4.2. Total Irrigation Water Issued and Percolation

Seasonal and annual total irrigation water supplied (CWUTtot) to the entire com-
mand area, which includes both blue water and percolated water, are given in Table 7. As
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CWUTtot, duration of each stage and cultivated land area under each canal remain the
same for both seasons, the CWUTtot, values are the same for both seasons. As per Table 7,
the maximum CWUTtot over a stage was 9.049 million m3 and has been issued for the
land preparation stage, while the minimum CWUTtot was recorded during a late stage at
3.352 million m3. Total CWUTtot for the entire cultivated land during the initial, crop devel-
opment stage and mid stages are 5.028 million m3, 4.469 million m3, and 8.380 million m3,
respectively. Accordingly, the CWUTtot for the entire command area under consideration,
was 30.279 million m3, hence resulted in CWUAtot of 19,547 m3/ha. CWUAtot of each sub
canal was found to be as same as the total command area (19,547 m3/ha).

Table 7. Seasonal and annual total irrigation water supplied (blue water plus percolated water) to the
total command area fed by all the 30 canals considered. Lp—Land preparation stage, Initial—Initial
stage, Crop dev.—Crop development stage, Mid—Mid season stage and Late—Late stage.

CWUTtot (BW + Percolation)

Lp Initial Crop Dev Mid Late Total

10
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3

10
3
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ha
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3
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10
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3
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3/

ha

10
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3
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3
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10
6
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3

10
3

m
3/

ha

Yala 9.049 5.842 5.028 3.246 4.470 2.885 8.380 5.410 3.352 2.164 30.280 19.550
Maha 9.049 5.842 5.028 3.246 4.470 2.885 8.380 5.410 3.352 2.164 30.280 19.550

Annual 18.099 11.680 10.056 6.492 8.939 5.771 16.761 10.820 6.704 4.328 60.559 3.910

Assuming no runoff occurred (this is the actual field situation according to MASL),
the total amount of water percolated CWUTper was estimated as the difference between
CWUTtot and CWUTblue. The annual CWUTtot, CWUTblue and CWUTper are given in
Table 8. Considering the annual estimated percolated amount, the annual average per-
colation rates were calculated to be 6.53, 6.57 and 6.88 mm/day, respectively in 2018/19,
2019/20 and 2020/21 irrigation years, resulting in average percolation rate of 6.66 mm/day.

Table 8. Summary of annual total irrigation water supply, total annual blue water volume, total
volume of irrigated water that percolated annually and average percolation rate. Notations are as
same as described in the text.

Year
CWUTtot
(106 m3)

CWUTblue
(106 m3)

CWUTper

(106 m3)

Average Annual
Percolation Rate

(mm/Day)

2018/19 60.559 23.646 36.913 6.53
2019/20 60.559 23.393 37.167 6.57
2020/21 60.559 21.651 38.909 6.88

4.3. Comparison of Irrigation Water Requirement and Issued

A summary of design irrigation requirement (DIR) estimated based on the ID-SL
guidelines is shown in Table 9. During the Yala season, DIR varies from the lowest of
3.840 million m3 during the land preparation stage to a maximum of 8.258 million m3

during the mid-season stage. When Maha season is considered, the minimum DIR, which
is 0.395 million m3 is recorded in the crop development stage while the maximum DIR of
2.587 million m3 is recorded in the late stage. For all crop growth stages except the initial
stage, DIR values in the Maha season are relatively lower than those of the Yala season.
Yala season total DIR 29.03 million m3 exceeds the Maha season total DIR (7.37 million m3)
by nearly four times.
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Table 9. Summary of design irrigation requirement estimated based on ID-SL guidelines and summed
up stagewise, seasonally and annually. Lp—Land preparation stage, Initial—Initial stage, Crop dev.—
Crop development stage, Mid—Mid season stage and Late—Late stage.

DIR (BW + Percolation) (106 m3)

Lp Initial Crop Dev Mid Late Total

Yala 3.840 3.931 7.277 8.285 5.721 29.028
Maha 2.428 5.077 0.395 1.455 2.587 7.3722

Annual 6.268 4.439 7.672 9.713 8.308 36.400

Figure 3 illustrates a comparison of the stagewise breakdown of CWUTtot and DIR
estimated based on, in Yala and Maha, respectively. It was evident that the total CWUTtot
values were higher than DIR, in all stages of Maha. However, during crop development
and late stages in Yala, the CWUTtot values are lesser than DIR. Furthermore, the seasonal
sum of CWUTtot (Table 5) is always greater than DIR (Table 9). Annual CWUTtot is almost
twice the DIR.

 

Figure 3. Stage wise comparison of total irrigation water issued to the field and the computed
irrigation water requirement based on ID-SL guidelines.

5. Discussion

When having a Look at previous studies which focused on estimating the WFtot
of crops, some researchers ([10,19,20]) have considered all three components of WFtot
(WFgreen, WFblue and WFgrey) while some others ([21–23]) have omitted WFgrey. WFgreen
and WFblue have always been quantified [24]. However, since this study area receives
only a very little rainfall compared to the rest of the country and the cultivation in the
area largely depends on irrigation, it can be assumed that the green water component
associated with the rice production in the study area is minimal compared to blue water
fraction. This assumption was later confirmed by estimated ETc and Pe f f values, of which
the relationship can be expressed as ETc � Pe f f . Based on the same assumption this study
evaluated only the WFblue of rice production in the area. Therefore, despite the fact the
WFtot should be slightly higher than the WFblue, the study considered computed WFblue as
the WFtot when comparing the results of this study with the previous studies conducted
worldwide. As mentioned by some researchers intensified precipitation do not change the
WFblue substantially, with only about 1% change in WFblue when the rainfall increased by
200 mm, neglecting WFgreen component under this study can be justified [5]. Though the
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Pe f f estimated under this illustrated significant variations in the three years considered,
CWUTblue did not fluctuate as much over the three years, showcasing a lesser correlation
between Pe f f and CWUTblue, hence, further supporting the study procedure.

As per the literature, the WFtot of rice production ranges mostly between 1.0 to
2.0 m3/kg [5], with some outliers going high about 6 m3/kg [20] and low about
0.8 m3/kg [25]. Average Yala, Maha, and Annual WFblue of rice production in the present
study area were found to be 1.22, 1.06, and 2.27 m3/kg, respectively. Thus, it can be seen
that, in the study area, the WFtot of rice production in Yala and Maha falls within said range,
and the annual WFtot is about 11% higher. Mekonnen and Hoekstra [10] have found the
global annual WFtot (including WFgrey. WFgreen and WFblue) of rice as 1.673 m3/kg, which
is about 1.4 times lesser than the WFtot of rice production in the study area of the present
study. WFblue component in the global annual WFtot was only about 0.341 m3/kg. Thus the
global annual WFblue was about 85% lesser than the annual WFblue in the study area. The
average rice yield in the study area is about 6.5 ton/ha, which is nearly 1.5 times higher
than the global irrigated rice yield is 4.26 ton/ha [10]. Therefore, the substantial difference
in global and study area annual WFblue is due to a significantly large irrigation water usage
in the study area. As the study area is characterised by a tropical climate (all year long high
temperature, humidity, and wind) and receives approximately 12 h of direct sunlight all
year long with the sun rising directly above Sri Lanka twice a year, the evapotranspiration
in the study area experiences high ETo (6.8–5.00 mm/day). The irrigation practice in the
study area can be labelled as full irrigation, where full evapotranspiration demand is met,
no water stress occurs and the highest ETc compared to other irrigation methods takes
place [26]. This evapotranspiration demand is fully met via flooded paddy fields, which
enhances the rate of evapotranspiration. As WF is influenced to a larger extent by the
irrigation practice rather than agro climate [10], said irrigation practice in the study area
may play a huge role in higher WFblue in the area compared to the global WFblue.

A past study conducted in Indonesia resulted in WFtot of 3.473 m3/kg [19]. Though
this figure is 53% higher than the WFtot of present study area, given that Indonesia is also a
tropical island, it can be expected to have similar crop water demand as in Sri Lanka. How-
ever, Bulsink et al. [19] claimed only about 21% of WFtot was WFblue (0.733 m3/kg) and the
majority of WFtot (around 73%) was composed of WFgreen. This suggests that in Indonesia
paddy cultivation is mainly rainfed, which is true for the wet zone of Sri Lanka., However,
it is in contrast to the dry zone of Sri Lanka, where with the less frequent, less reliable little
rain, farmers tend to irrigate the paddy fields instead of utilising the direct rain. Thus,
it would be reasonable to compare WFgreen (which have been considered as WFtot) com-
puted by [19] with current study′s WFblue (which was considered as WFtot in the area). As
per this study in Indonesia, WFgreen was 2.528 m3/kg in their study area, which was only
about 11.4% higher than the WFblue of the present study area [9]. Crop yield in Indonesia is
below the global yield [5], hence explain the slightly larger WF. WFtot (WFblue + WFgreen)
computed by [22] for Thailand (2.005 m3/kg) was about 11.7% lower than the outcome of
the present study. They also found that the WFgreen was higher than the WFblue. Although
Thailand has similar temperature and evapotranspiration as in Sri Lanka, the difference
can be the differences in the distribution of rainfall, the length of growing periods, size of
the cultivated areas and agricultural practices.

As stated in Chapagain and Hoekstra [7], average WFtot of Sri Lanka was 1.32 m3/kg
and average rice yield was 3.5 ton/ha—both values are considerably lower than this
study’s estimates and data provided by MASL. As per Chapagain and Hoekstra [7], out
of the average WFtot, only about 44% is WFblue and 47% is WFgreen. These percentages are
surprising, as only a small fraction (30%) of Sri Lankan rice production depends entirely
on the rain (rainfed) [11]. In other terms it would be expected to have the larger faction
from WFblue. Since Chapagain and Hoekstra [7] have conducted their study for 2000–2004,
the discrepancies between the national values obtained by Chapagain and Hoekstra [7]
and regional values obtained by this study area may be expected due to many reasons
including: (1) increase in total cultivation area, (2) enhanced crop yield and (3) increased
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evapotranspiration due climate changes. On further note, the seasonal WFblue in the study
area (Yala–1.22 m3/kg and Maha—1.06 m3/kg) however were closer to the national value of
1.32 m3/kg, with only 7.6% and 20% of deviations in Yala and Maha, respectively. Whereas
the annual WFblue in the study area exceeded the national value by 72%. In addition to
aforementioned, another reason for this may be because in some areas rice cultivation
is taken place only in one season (Yala or Maha), whereas in the study area fields are
cultivated in both seasons.

WFtot and composition of three components (Blue, Green, and Grey) show great
differences in different studies [5,10,24]. In addition to before mentioned reasons, the
identified differences could be due to various other factors including the type of models
used for computations, period considered, crop parameters, climate [10], geographical and
geomorphological conditions [23]. The variations also can be due to different crop yield
which might have been strongly influenced by factors such as seed quality, agricultural
practices, nutrition and fertilizer application. Though many studies [10,19,22] have noted
that WFgreen was greater than WFblue, a study [7] showed that in countries like the USA and
Pakistan, which depend entirely on irrigation for rice cultivation, WFblue is noticeably larger
than WFgreen. This strengthens the argument of the current study, i.e., the contribution from
rainfall can be neglected, hence WFblue can be considered as WFtot with much confidence.

Different studies have used various methods and models to estimate WFblue and
WFgreen, however the widely applied method was Penman-Monteith (P-M)
equation [19,20,22], under which it was assumed that crop water requirements can be
satisfied [5]. Without following previous studies, [5] have measured field water balance
and claimed their estimations of WF are closer to the actual situation on the ground than
previous studies. Following the widely applied method, this study employed FAO P m
method to estimate CWUTblue. However, the actual total water use in any crop production
is the WF plus percolation [7]. As WF concepts considers only the loss of freshwater to
the catchment and percolation is not really a loss, percolated amount is never considered
under WF. In this study, based on the data provided by MASL, the actual amount of
irrigation water issued to the field (CWUTtot) was estimated. Then, based on CWUTtot
and CWUTblue, field percolation volume (CWUTper) and average percolation rate were
also computed. The average percolation rate (6.66 mm/day) in the area is well below the
range (10 mm/day–20 mm/day) which percolation rate can be expected to vary in reddish
brown soil [27]. This supports the assumption of not occurring runoff in the fields, as
the percolation rate still can escalate—also explains the highest percolated volume in the
wettest irrigation year (2020/21).

Previous studies [2,28] have discussed the sustainability and unsustainability of WFblue
of crop production. The sustainability indicator is the ratio between the total WFblue and
blue water availability [2]. Since, in this study area, Chandrika wewa is not only collecting
rainwater but receiving transboundary inflow from another large reservoir located in
the wet zone, which hardly undergoes water stresses. This water trade between the two
basins is irregular making the computation of blue water availability extremely complex.
Therefore, this study did not attempt to find the sustainability indicator of rice production
in the area.

As annual WFtot (or WFblue) in the study area slightly surpasses global and national
annual WFtot and some occasions, annual WFtot of nearby countries. Therefore, the study
proposes to implement water saving measures in the study area for more sustainable
agriculture in the area. Given the higher evapotranspiration in the area, the application of
the System of Rice Intensification (SRI) is highly recommended. Unlike flooded irrigation,
SRI suggests only keeping the soil moisture at saturation level all the time instead of
standing water in the field [7]. Unlike flooded irrigation, SRI suggests only keeping the
soil moisture at saturation level all the time instead of standing water in the field [7].
In addition to SRI, several other methods such as drip irrigation, rainwater harvesting
and alternate wetting and drying (AWD) have been applied worldwide as water saving
methods [29]. Most of these methods, do not reduce the potential evapotranspiration, but
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allow utilization of seasonal rainfall [29], which in this study area goes to waste. Although
WF is an excellent tool for overall assessment of water utilization and the need for water
saving, as it only accounts for evaporation, evaluation of aforementioned water saving
methods is not feasible with WF concept alone. Thus, it requires shifting to or combining
WF concept with other methods such as water balancing to estimate other component of
local water budget. On further note, this requirement is also one of the identified research
gap in Sri Lankan context and would be a part of the future extensions of this project.
Change of cultivation calendar and introduction of less water demanding variants of rice
are also recommended to save water use. Additionally, it was also observed that the
computation of actual irrigation water discharges (CWUTtot) does not incorporate actual
meteorological and percolation data. Instead, the practice is to issue the same amount of
water each year each season, indicating poor management of irrigation water. Thus, it
is highly recommended to use field observed meteorological and percolation data when
preparing an irrigation water release schedule. This action in fact could reduce the CWUTtot.
Further, the comparison of total water issued (CWUTtot) and estimated total irrigation
water requirement (DIR) displayed significant variations, suggesting a necessity for re-
evaluation of the parameter (such as ET0, kc, duration of stages and loss coefficients) given
in the ID-SL guidelines, as it is the only guideline in the country to be used in irrigation
water management practices. In addition, as mentioned earlier, due to the limitations
inherited by WF method, it should be supplemented with other approaches to estimate the
efficiencies of each and every changes made to the irrigation scheme.

6. Conclusions

WFblue of rice production in an irrigation scheme in the dry zone of Sri Lanka was
calculated based on FAO P-M model. The actual irrigation water issued from the reservoir
was computed based on the MASL records. The volume of irrigated water percolated
was estimated based on the water balance method. Irrigation water requirement was
estimated following the guidelines of Sri Lanka ID-SL guidelines. Three recent irrigation
years 2018/19, 2019/20, and 2020/21 were considered in this study and the averaged
WFblue of rice for three years was about 2.27 m3/kg. As the rice production in the study
area entirely depends on irrigation, assuming WFgreen is negligible, WFblue was considered
as the WFtot, which was larger than the global and national WFtot of rice as noted by
previous other studies. This outcome was attributed to relatively high evapotranspiration,
much lower effective rainfall in the area, and the irrigation practice (full and flooded).
Therefore, the study highlights the requirement of changing irrigation practice in to System
of Rice Intensification to reduce the ETblue. Though, no clear pattern of annual WFtot
could be observed, the findings revealed no significant variations to WFblue in wetter
years. Furthermore, CWUTblue shows only slight variations in the study years, whereas
effective rainfall (Pe f f ) fluctuates significantly during the study period. Thus, the study
found no correlation (qualitatively) between the effective rainfall (Pe f f ) and CWUTblue, and
concluded that if the rice production is 100% irrigated, there would be no considerable
effects of rainfall on the WFblue of rice production. The average percolation rate was about
6.66 mm/day, which is below the capacity of the soil type in the area. Thus, it was confirmed
that no overflow of irrigated water happened in the field. However, the estimated annual
irrigation requirement was substantially lesser than the actual annual irrigation water
releases. This indicates that either there is an excessive wastage of freshwater or there is a
need to revise ID-SL guideline parameters or both.

It is recommended to change the rotation system to match seasonal needs and consid-
ering climate conditions such as rainfall instead of adhering to same pattern both seasons.
To reduce water losses through percolation, the study recommends all the canals to be lined
in the future, however this may result in other implications on the surrounding ecosystems.
Common water savings methods such as rainwater harvesting, drip irrigation, SRI and
AWD are suggested by this study. As a further improvement to the current project, it is
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planned at supplementing WF concept with water balancing to evaluate efficiencies of
proposed water savings method.
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Abstract: Rainfall is one of the dominating climatic parameters that affect water availability. Trend
analysis is of paramount significance to understand the behavior of hydrological and climatic vari-
ables over a long timescale. The main aim of the present study was to identify trends and analyze
existing linkages between rainfall and streamflow in the Nilwala River Basin (NRB) of Southern
Sri Lanka. An investigation of the trends, detection of change points and streamflow alteration,
and linkage between rainfall and streamflow were carried out using the Mann–Kendall test, Sen’s
slope test, Pettitt’s test, indicators of hydrological alteration (IHA), and Pearson’s correlation test.
Selected rainfall-related extreme climatic indices, namely, CDD, CWD, PRCPTOT, R25, and Rx5,
were calculated using the RClimdex software. Trend analysis of rainfall data and extreme rainfall
indices demonstrated few statistically significant trends at the monthly, seasonal, and annual scales,
while streamflow data showed non-significant trends, except for December. Pettitt’s test showed
that Dampahala had a higher number of statistically significant change points among the six rainfall
stations. The Pearson coefficient correlation showed a strong-to–very-strong positive relationship
between rainfall and streamflow. Generally, both rainfall and streamflow showed non-significant
trend patterns in the NRB, suggesting that rainfall had a higher impact on streamflow patterns in the
basin. The historical trends of extreme climatic indices suggested that the NRB did not experience
extreme climates. The results of the present study will provide valuable information for water
resource planning, flood and disaster mitigation, agricultural operations planning, and hydropower
generation in the NRB.

Keywords: Mann–Kendall test; Nilwala River Basin; indicators of hydrological alteration (IHA);
Pettitt’s test; rainfall trends

1. Introduction

Climate is a key factor that affects environmental systems, socioeconomic conditions,
and water resource availability [1]. The changes in rainfall patterns will directly affect
streamflow and thereby domestic, agricultural, and industrial water needs [2]. More-
over, streamflow will also be affected by anthropogenic activities [2,3], such as land-use
change, operation of dams and reservoirs, and direct water extraction from surface water
and groundwater systems [4]. Hence, identifying and analyzing the long-term trends of
meteorological and hydrologic data will be useful for water resource planning and man-
agement [5], flood protection and disaster mitigation [3,6], and agricultural operations [2].
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Trend analysis will be valuable to eliminate errors in approximations in designing hydraulic
structures under assumed fixed hydrometeorological variables [2].

Many studies in different geographic regions of the world were directed toward
identifying trends and variabilities in rainfall and streamflow and their associated link-
ages [2,3,6–11]. Mersin et al. [10] stated that the variations in the frequency and magnitude
of rainfall caused biotic and abiotic disturbances in the environment. Kastridis et al. [11]
investigated the relationship between climate and tree growth for a tree species called A.
Borisii-regis in the Mediterranean. They found that rainfall was the key driving factor for
tree growth during the study period. Ademe et al. [2] demonstrated that the change in the
water flow of the Birr River in Ethiopia was not only influenced by the change in rainfall
but was also due to changes in land cover and land use, as well as human interventions,
such as upstream water abstraction. In another study by Chaluka et al. [3], it was found that
changes in rainfall influenced the alterations in streamflow patterns. Bellabas et al. [8] used
a climate elasticity model and a hydrologic model to examine the effects of anthropogenic
activities and changes in climate on streamflow. The results revealed that anthropogenic
reasons were the dominant causes for the alterations in streamflow. In contrast to the
above results, several others, such as Hannaford [12] and Wang et al. [13], found that the
variations in rainfall significantly influenced streamflow patterns. Moreover, studies such
as those by Azari et al. [14], Dey and Mishra [15], and Xu et al. [16] found that climate
change had impacts on streamflow changes to varying degrees. Most of the trend analysis
studies [2,3,17] used the Mann–Kendall test and Sen’s slope estimator to study rainfall and
streamflow trends. Pettitt’s test was used for the detection of changing points in a hydrome-
teorological time series [18–21]. Other trend analysis methods, such as Spearman’s rho and
the linear regression test, were used by Fentaw et al. [9] and Coloiero [22]. However, some
of these should be performed under certain assumptions, for instance, when the data is
normally distributed and there are specific criteria on the length of the data series [22]. The
indicators of hydrologic alteration (IHA) are commonly used to identify the hydrological
impacts of human activities and to provide recommendations for environmental flow
management [23–25].

Sri Lanka is an agrarian country that is highly dependent on rainfed and irrigation
water. According to the Annual Report of the Central Bank of Sri Lanka, in 2021, the
agriculture sector contributed 6.9% of the gross domestic product. Nearly 27.3% of Sri
Lankans’ engage in the agricultural sector as their livelihood. Sri Lanka experiences two
major monsoon periods, which are the northeast monsoon (NEM; December to February)
and the southwest monsoon (SWM; May to September). The two inter-monsoon periods
are the first inter-monsoon (FIM; March to April) and the second inter-monsoon (SIM;
October to November) [26].

Several studies, including Abeysingha [27], Perera et al. [28], Alahacoon and Ediris-
inghe [29], and Ruwangika et al. [30], studied rainfall and streamflow trends in Sri Lanka.
These studies identified an increasing rainfall trend over the country that was most
prominent in the eastern, southeastern, north, and north–central areas. Jayasekara and
Abeysingha [17] found that there was a significant association between streamflow and rain-
fall variations for 70% of gauging stations in the Kelani River Basin. Chathuranika et al. [26]
found that the climate and streamflow conditions of the Nilwala River Basin are expected to
change in the future relative to the current conditions. Even though rainfall and streamflow
trends studies were carried out in Sri Lanka, a handful of them focused on extreme rainfall
indices, while none of the document studies used IHA parameters to assess the shifts in
hydrologic regimes. Rainfall and streamflow trends and variabilities and their existing
linkages have not been assessed for the Nilwala River Basin (NRB), which is one of the
major river basins in the southern part of the island. Therefore, this study aimed to analyze
long-term rainfall and streamflow trends, detect change points, and identify hydrological
variables and their linkage over the NRB. The findings of this study will be helpful for both
public and private sectors that are involved in water resource planning and development,
disaster management, agricultural development, etc.
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2. Materials and Methods

2.1. Study Area

The Nilwala River Basin (NRB) is in the southern part of the country between latitudes
5◦55′ N and 6◦13′ N and between longitudes 80◦25′ E and 80◦38′ E [4]. The river originates
from Panilkanda in Deniyaya at an altitude of 988 m above the MSL (mean sea level),
flows about 72 km through agricultural, urban, and other land uses, and finally drains
into the Indian Ocean in Matara [31]. The total basin area is about 1010 km2. The annual
discharge of the river is more than 800 million cubic meters (MCM). The mean annual
precipitation of the upper part of the NRB is about 3000 mm, while in the lower part, it is
about 1900 mm [26]. Figure 1 demonstrates rainfall and hydrological stations in the NRB.

 

Figure 1. Location map of Nilwala River Basin with rainfall and hydrological stations.

2.2. Rainfall and Streamflow Data
2.2.1. Observed Data

Daily observed rainfall data from 1991–2014 (24 years) for six stations, namely, Dampa-
hala, Kamburupitiya, Kekenadura, Kirama, Goluwawatta, and Deniyaya, were collected
from the Department of Meteorology of Sri Lanka. Daily observed discharge data for the
Pitabeddara hydrological station was collected from the Department of Irrigation of Sri
Lanka for the same period.

2.2.2. Gridded Data

Missing rainfall data were filled using two versions of the Asian Precipitation-Highly Re-
solved Observational Data Integration towards Evaluation of Water Resources (APHRODITE)
products, namely, V1101_MA and V1901_MA, with the same resolutions of 0.25◦ × 0.25◦.
APHRODITE products are available in three main geographical domains: Monsoon Asia
(MA), Middle East (ME), and Russia (RU) (http://aphrodite.st.hirosaki-u.ac.jp/, accessed
on 2 August 2022) [26]. The high temporal and spatial resolution in APHRODITE when
compared with other gridded-based products and well-developed quality control methods
influenced researchers to use this gridded product. Yatagai et al. [32], Yatagai et al. [33],
and many other studies used APHRODITE data products for climatological studies, to
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validate satellite data, and to downscale low-resolution model data. Table 1 provides the
general information of the stations used in the present study.

Table 1. General information of the stations used.

Station Latitude (N) Longitude (E) Elevation (m.a.s.l) Period Missing %

Meteorological stations

Dampahala 6.27 80.64 176

1991–2014

1991–2014

25.03
Kamburupitiya 6.08 80.56 244 5.91

Kekenadura 5.97 80.57 49 3.49
Kirama 6.22 80.67 122 3.79

Goluwawatta 6.10 80.48 16 17.10
Deniyaya 6.33 80.55 399 24.66

Hydrological station
Pitabaddara 6.20 80.48 27 0.205

2.3. Methodology

Initially, the data quality and consistency were checked, and missing rainfall data
were filled in using the APHRODITE precipitation data. Both hydrological and meteo-
rological data were categorized into monthly, seasonal, and annual timescales. Mann–
Kendall, modified Mann–Kendall, Sen’s slope estimator, and Pettitt’s tests were per-
formed to identify the trends in the rainfall data and streamflow data to compute their
magnitudes and to detect change points in the time series data using XLSTAT software
(available at https://www.xlstat.com/en/, accessed on 5 August 2022) [34]. In addi-
tion, 5 extreme rainfall indices were calculated using the RClimdex software (available at
https://www.climdex.org/, accessed on 9 August 2022) [35] and computed trends and
magnitudes were found using MK and Sen’s slope tests. The correlation between rainfall
and streamflow was analyzed using Pearson’s correlation coefficient. Thereafter, indica-
tors of hydrological alteration (IHA) software was used to analyze the variations of the
16 selected hydrological parameters. Figure 2 below demonstrates the overall methodology
of the study.

Figure 2. Overall methodology.
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2.4. Trend Analysis Methods
2.4.1. Mann–Kendall Test

The non-parametric Mann-Kendall test [36,37] was used to identify the rainfall trends.
The Mann–Kendall test static S was calculated using the following Equations (1) and (2):

S = ∑n−1
i=1 ∑n

j=i+1 sgn
(

xj − xi
)
, (1)

sgn
(

xj − xi
)
=

⎧⎨⎩
+1 i f xj > xi
0 i f xj = xi
−1 i f xj < xi

(2)

where xj and xi are the data values at times j and i (j > i) and n is the length of the data series.
The Mann–Kendall Z statics and the variance Var(S) were calculated using the follow-

ing Equations (3) and (4):

Z =

⎧⎪⎪⎨⎪⎪⎩
s−1√
Var(S)
0

s+1√
Var(S)

, i f

⎡⎣S > 0
S = 0
S < 0

⎤⎦ (3)

The Mann–Kendall test accepts the null hypothesis if −Z ≤ Zcr ≤ Z is the critical
value of the normalized statics Z at a 5% confidence level. The negative and positive values
of Z and S statistics indicate decreasing and increasing tendencies, respectively.

Var(S) =
1

18
[n(n − 1)(2n + 5)] (4)

2.4.2. Modified Mann–Kendall Test

Importantly, the influence of the accuracy of values in time series data on each other
is highly affected by the serial correlation. The serial correlation is present in hydrologic
data sets, such as streamflow and water levels [38–41]. The presence of a positive serial
correlation will increase the ability to show trends from a certain level other than the
actual status, and sometimes it shows trends that have no significant trends in the actual
scenario [42]. Therefore, a serial correlation check should be conducted before applying
the MK test. If a serial correlation is present, the modified Mann–Kendall test proposed by
Hamed and Rao [42] should be applied to the time series data to eliminate the effects of
serial correlation. Trend analysis of the hydrological data was checked using the modified
Mann–Kendall (MMK) test and the modified variance can be calculated using the following
Equations (5) and (6):

Var(S)∗ = Var(S)
n

n∗′ (5)

where Var(S)* is the modified variance and the correction factor n/n∗′ is given by the
following Equation (6):

n
n∗′ = 1 +

2
n(n − 1)(n − 2)

n−1

∑
j=1

(n − k)(n − k − 1)(n − k − 2)rR
k′ (6)

where n is the actual number of observations, n∗ is the effective number of observations
to count for the auto-correlation data, and rR

k′ is the lag k autocorrelation coefficient of the
rank of data.

2.5. Sen’s Slope Estimator

Sen’s slope estimator [43] is also a non-parametric test that is widely used to compute
the magnitude of trend series. The slope of the data series is computed using the following
Equations (7) and (8):
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Ti =
Xj − Xk

j − k
Fori = 1, 2, 3 . . . N (7)

β =

⎧⎪⎨⎪⎩
TN+1

2
N is odd

1
2

(
TN
2

+
TN+1

2

)
N is even

(8)

where xj and xi are data values at the time j and k (j < k). N is the number of data pairs
(xj, xk), 1 ≤ j < k ≤ n. β defines Sen’s slope value. Positive β values signify an increasing
trend and negative β values signify a decreasing trend

2.6. Change Point Detection

The nonparametric Pettitt’s test developed by Pettitt [44] was used to identify abrupt
changes in time rainfall data within the study area. The method was derived using the
Mann–Whitney statistic Ut, n and two test samples from the same population, namely,
x1, . . . , xt and xt+1, . . . , xn. The test statistic Ut, n can be obtained using the following
Equations (9) and (10):

Ut, n = Ut−1, n +
n

∑
J=1

sgn
(

xt − xj
)

(9)

where t = 2, 3, . . . , n; n is the length of the time series; and

If
(

xt − xj
)
> 0, sgn

(
xt − xj

)
= 1

If
(

xt − xj
)
= 0, sgn(xt − x) = 0

If
(

xt − xj
)
< 0, sgn

(
xt − xj

)
< −1

(10)

The test statistic quantifies the number of times when the first sample exceeds the
second sample. The null hypothesis test indicates there are no changes in the data series,
while the alternative hypothesis indicates the existence of changing points in the data
series. The commonly used 5% significant level was used for the analysis. The test statistic
Kn and the associate probability P used in the test can be obtained using the following
Equations (11) and (12), respectively:

Kn = max1≤t≤n|Ut, n| (11)

P ∼= 2exp

{
−6(Kn)

2

(n3 + n2)

}
(12)

2.7. Indicators of Hydrological Alteration (IHA)

IHA software was developed by the US Nature Conservancy to measure the extent
of hydrological changes due to climatic and human influences [21]. This tool has the
ability to calculate 33 IHA parameters under five categories: magnitudes of monthly water
conditions, magnitude and duration of annual extreme water conditions, the timing of
annual extreme water conditions, frequency and duration of high/low pulses, and rate/
frequency of water condition changes. A 5% significance level p-value was used to evaluate
and compare the parameters’ consistency.

2.8. RClimdex

RClimdex software was developed and maintained by Xuebin Zhang and Feng Yang
at the Climate Research Branch of the Meteorological Service of Canada and designed to
obtain 27 climate extreme indices that are recommended by the Expert Team for Climate
Change Detection Monitoring and Indices (ETCCDMI) [4]. This study used five selected
extreme precipitation indices: consecutive dry days (CDD), consecutive wet days (CWD),
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annual total wet day precipitation (PRCPTOT), number of days above 25 mm (R25), and
maximum 5-day precipitation amount (Rx5) [45].

3. Results and Discussion

3.1. Correlation between Observed and APHRODITE Data

Since rainfall was missing from some of the rainfall stations, gridded precipitation
data were used to fill them. To check the reliability, the correlation coefficient was calcu-
lated between the observed data and APHRODITE products V1901 (from January 2004 to
March 2015) and V1101 (from February 1991 to September 1991). The longest and continu-
ous data periods that were common for both the observed and APHRODITE data were
selected on this basis. The results of the correlation are shown in Table 2 below. Most of the
stations showed a moderate-to-very-strong relationship in the correlation analysis. Hence,
we could justify the use of APHRODITE data for our study. The types of correlations
were classified as per the rule of thumb for interpreting the correlation coefficient. The
classification for the Pearson correlation coefficient was as follows: a positive very strong
correlation was 0.8–1.0, a positive strong correlation was 0.6–0.8, a positive strong moderate
correlation was 0.4–0.6, a positive moderate correlation was 0.2–0.4, and a positive weak or
insignificant correlation was 0–0.2 [3].

Table 2. Results of correlation check—observed data vs. APHRODITE data.

Station
V1901 (January 2004–March 2005) V1101 (February 1991–September 1991)

Correlation Correlation Type Correlation Correlation Type

Dampahala 0.47 Positive moderate 0.12 Positive weak
Kamburupitiya 0.79 Positive very strong 0.69 Positive strong

Kekenadura 0.85 Positive very strong 0.61 Positive strong
Kirama 0.28 Positive weak 0.02 Positive weak

Goluwawatta 0.77 Positive very strong 0.38 Positive moderate
Deniyaya 0.45 Positive moderate 0.75 Positive very strong

3.2. Trend Analysis of the Rainfall

Trend analysis was carried out for the monthly, seasonal, and annual scales using
Mann–Kendall and Sen’s slope tests. The significant trends are denoted in bold font in
Table 3. Dampahala station showed significant increasing trends in March, September,
November, and December, with magnitudes of 12.2 mm/yr, 8.96 mm/yr, 14.26 mm/yr,
and 11.65 mm/yr, respectively. Kamburupitiya showed significant decreasing trends of
3.97 mm/yr in July. Kirama demonstrated significant decreasing trends in April, June, and
July, with magnitudes of 7.23 mm/yr, 4.63 mm/yr, and 4.61 mm/yr, respectively. Deniyaya
also revealed a significant 13.83 mm/yr decreasing trend in May, while Kekenadura and
Goluwatta did not show any significant trends at the monthly scale. In general, most
of the stations showed decreasing patterns at the monthly scale. Interestingly, Deniyaya
showed only decreasing trends and Dampahala showed only increasing trends. Dampahala
showed a significant increasing trend of 73.85 mm/yr, while Deniyaya showed a significant
decreasing trend of 70.3 mm/yr at the annual scale. At the seasonal scale, Dampahala
station revealed significant increasing trends during the NEM and FIM, with magnitudes
of 23.43 mm/yr and 17.42 mm/yr, respectively. During the SWM, Kamburupitiya, Kirama,
and Deniyaya showed significant 16.83 mm/yr, 11.68 mm/yr, and 33.19 mm/yr decreasing
trends, respectively. During the SIM period, only the Deniyaya station revealed a significant
decreasing trend, with a magnitude of 13.89 mm/yr. The highest magnitudes of increasing
trends at the monthly (November) and annual scales and for the NEM and FIM were
identified in the Dampahala station. Deniyaya exhibited the highest significant decreasing
trends at the monthly (May) and annual scales and for the SWM and SIM. Other stations,
except for Dampahala, experienced decreasing trends at the monthly and annual scales
and for the SWM and FIM.
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3.3. Trend Analysis of the Streamflow

Trend analysis of the streamflow at the Pitabeddara hydrologic station was computed
for the monthly, seasonal, and annual scales. According to the results in Table 4, only one
significant trend was observed, which was in December with a magnitude of 0.59 m3s−1/yr.
During the other months, non-significant increasing and decreasing trends were observed.
Significant trends were not observed on the annual or seasonal scale. However, non-
significant increasing trends were observed for the annual scale and the NEM and FIM.
Non-significant decreasing trends during the SWM and SIM were seen.

Table 4. Trend analysis results for the streamflow data.

Timescale Kendall’s Tau p-Value Sen’s Slope Trend Type

January 0.152 0.298 0.17 NSIT
February 0.123 0.399 0.13 NSIT

March 0.217 0.137 0.25 NSIT
April 0.123 0.399 0.15 NSIT
May −0.058 0.691 −0.15 NSDT
June −0.080 0.567 −0.15 NSDT
July −0.130 0.372 −0.18 NSDT

August −0.051 0.728 −0.02 NSDT
September −0.014 0.921 −0.10 NSDT

October −0.196 0.067 −0.30 NSDT
November 0.101 0.487 0.26 NSIT
December 0.319 0.029 0.59 SIT

Annual 0.094 0.519 0.10 NSIT
NEM 0.275 0.059 0.31 NSIT
FIM 0.203 0.165 0.20 NSIT

SWM −0.159 0.275 −0.12 NSDT
SIM −0.036 0.804 −0.03 NSDT

* NSIT refers to a non-significant increasing trend, NSDT refers to a non-significant decreasing trend, SIT refers to
a significant increasing trend, SDT refers to a significant decreasing trend.

3.4. Trend Analysis of the Extreme Rainfall Indices

Five selected extreme rainfall indices, namely, consecutive dry days (CDD), consecu-
tive wet days (CWD), annual total wet day precipitation (PRCPTOT), number of days above
25 mm (R25), and maximum 5-day precipitation amount (Rx5), were computed using the
RClimdex software. According to the results shown in Table 5, Dampahala station revealed
significant increasing trends in PRCPTOT and R25, with magnitudes of 74.55 mm/yr and
1.64 days/yr. In Deniyaya, significant decreasing trends in PRCPTOT and R25 were ob-
served, with magnitudes of 71.75 mm/yr and 1.33 days/yr. Kamburupitiya showed a
0.7 days/yr significant decreasing trend for CWD. No significant trends were observed for
the Kekenadura, Kirama, and Goluwatta stations for CDD, CWD, PRCPTOT, and R25.

Table 5. Trend analysis results for the extreme rainfall indices.

Station Extremes Kendall’s Tau p-Value Sen’s Slope Trend Type

Dampahala

CDD −0.115 0.440 −0.14 NSDT
CWD −0.268 0.070 −0.38 NSDT

PRCPTOT 0.312 0.034 74.55 SIT
R25 0.396 0.007 1.64 SIT

Kamburupitiya

CDD 0.129 0.384 0.20 NSIT
CWD −0.462 0.002 −0.70 SDT

PRCPTOT −0.145 0.338 −14.53 NSDT
R25 0.106 0.471 0.23 NSIT
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Table 5. Cont.

Station Extremes Kendall’s Tau p-Value Sen’s Slope Trend Type

Kekenadura

CDD −0.172 0.243 −0.31 NSDT
CWD −0.061 0.688 0.00 No trend

PRCPTOT 0.065 0.677 5.60 NSIT
R25 0.030 0.842 0.00 No trend

Kirama

CDD 0.128 0.384 0.57 NSIT
CWD −0.282 0.065 −0.12 NSDT

PRCPTOT −0.058 0.713 −8.45 NSDT
R25 −0.022 0.881 0.00 No trend

Goluwatta

CDD −0.069 0.637 −0.10 NSDT
CWD −0.134 0.369 −0.15 NSDT

PRCPTOT −0.174 0.248 −18.10 NSDT
R25 −0.274 0.065 −0.60 NSDT

Deniyaya

CDD 0.101 0.500 0.09 NSIT
CWD −0.044 0.765 −0.04 NSDT

PRCPTOT −0.454 0.002 −71.75 SDT
R25 −0.442 0.003 −1.33 SDT

* NSIT refers to a non-significant increasing trend, NSDT refers to a non-significant decreasing trend, SIT refers to
a significant increasing trend, SDT refers to a significant decreasing trend.

Tables 6 and 7 present the trend results of Rx5. According to the trend results of
Rx5, significant increasing trends in March, September, and December were found for the
Dampahala station, with values of 5.76 mm/yr, 4.92 mm/yr, and 5.25 mm/yr. Kamburupi-
tiya revealed a 3.38 mm/yr significant increasing trend in December, while in the annual
scale analysis, Kamburupitya revealed a significant decreasing trend, with a magnitude of
3.63 mm/yr. Kirama and Goluwatta stations also revealed decreasing trends in July and
May, with magnitudes of 3.34 mm/yr and 4.0 mm/yr, respectively. Deniyaya revealed a
comparatively high number of significant decreasing trend events in February, April, May,
June, and November, and at the annual scale, with magnitudes of 4.24 mm/yr, 3.13 mm/yr,
5.24 mm/yr, 4,88 mm/yr, 4.81 mm/yr, and 6.45 mm/yr respectively. Generally, Rx5 showed
more significant decreasing trends in both monthly and annual scales at most stations.

Table 6. Trend analysis results for the extreme rainfall indices (Rx5).

Timescale

Dampahala Kamburupitiya Kekenadura

p-Value
Sen’s
Slope

Trend
Type

p-Value
Sen’s
Slope

Trend
Type

p-Value
Sen’s
Slope

Trend
Type

January 0.082 2.64 NSIT 0.642 0.56 NSIT 0.607 0.54 NSIT
February 0.314 2.48 NSIT 0.903 0.12 NSIT 0.215 1.49 NSIT

March 0.002 5.76 SIT 0.710 0.39 NSIT 0.228 1.10 NSIT
April 0.132 4.51 NSIT 0.096 −2.56 NSDT 0.508 −0.81 NDIT
May 0.096 3.05 NSIT 0.268 −1.99 NSDT 0.145 −2.45 NDIT
June 0.338 1.88 NSIT 0.143 −2.58 NSDT 0.864 0.27 NSIT
July 0.607 0.70 NSIT 0.447 −0.44 NSDT 0.079 −1.46 NDIT

August 0.442 1.38 NSIT 0.607 0.75 NSIT 0.124 1.56 NSIT
September 0.008 4.92 SIT 0.447 −1.43 NSDT 0.359 −1.78 NDIT
October 0.070 2.56 NSIT 0.710 −0.35 NSDT 0.785 −0.22 NDIT

November 0.078 3.87 NSIT 0.573 −0.59 NSDT 0.921 0.07 NSIT
December 0.007 5.25 SIT 0.030 3.38 SIT 0.192 2.16 NSIT

Annual 0.244 4.32 NSIT 0.030 −3.63 SDT 0.228 −1.11 NDIT

* NSIT refers to a non-significant increasing trend, NSDT refers to a non-significant decreasing trend, SIT refers to
a significant increasing trend, SDT refers to a significant decreasing trend.
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Table 7. Trend analysis results for the extreme rainfall indices (Rx5).

Timescale

Kirama Goluwatta Deniyaya

p-Value
Sen’s
Slope

Trend
Type

p-Value
Sen’s
Slope

Trend
Type

p-Value
Sen’s
Slope

Trend
Type

January 0.385 1.35 NSIT 0.788 −0.25 NSDT 0.508 −1.10 NDIT
February 0.901 0.12 NSIT 0.750 −0.98 NSDT 0.027 −4.24 SDT

March 0.413 0.80 NSIT 0.980 −0.01 NSDT 0.070 −3.19 NDIT
April 0.160 −2.68 NSDT 0.980 0.09 NSIT 0.050 −3.13 SDT
May 0.901 0.27 NSIT 0.014 −4.00 SDT 0.024 −5.24 SDT
June 0.130 −1.62 NSDT 0.447 −1.65 NSDT 0.050 −4.88 SDT
July 0.003 −3.34 SDT 0.607 −0.95 NSDT 0.172 −1.08 NDIT

August 0.766 0.31 NSIT 0.941 −0.05 NSDT 0.087 −2.05 NDIT
September 0.290 −1.57 NSDT 0.107 −3.35 NSDT 0.286 −1.59 NDIT
October 0.677 0.78 NSIT 0.175 −2.68 NSDT 0.941 0.11 NSIT

November 0.862 0.10 NSIT 0.314 −2.32 NSDT 0.039 −4.81 SDT
December 0.160 1.84 NSIT 0.673 0.66 NSIT 0.862 0.62 NSIT

Annual 0.209 −1.41 NSDT 0.070 −5.52 NSDT 0.014 −6.45 SDT

* NSIT refers to a non-significant increasing trend, NSDT refers to a non-significant decreasing trend, SIT refers to
a significant increasing trend, SDT refers to a significant decreasing trend.

3.5. Change Point Detection in the Rainfall Data

Pettitt’s test results, which showed statistically significant changes at the annual and
seasonal scales, are shown in Figure 3. Most stations did not show significant increasing or
decreasing changes at both scales. The annual scale results of the Pettit’s test at Dampahala
revealed a significant increasing shift in the year 1998 and Deniyaya revealed a significant
decreasing shift in the year 2000. However, the Dampahala station showed significant
increasing shifts in 1998 during the NEM, FIM, and SIM. Moreover, Kamburupitiya and
Deniyaya showed significant decreasing changes in 1998 and 1999, respectively.

Table 8 shows a few significant changes in the monthly Pettitt’s test results for the
Dampahala, Kamburupitiya, Kirama, and Deniyaya rainfall stations. The Dampahala
station revealed significant increasing changes during March, September, and December
in 1999, 1999, and 1997, respectively. The Kamburupitiya station revealed a significant
decreasing shift in July 1998. Moreover, the Kirama station showed significant decreasing
shifts in June 2000 and July 2005, and the Deniyaya station showed a significant decreasing
change in October 1997.

Table 8. Pettitt’s test results of monthly rainfall data.

Station Month p-Value Change Point Shift

Dampahala
March 0.014 1999 Upward

September 0.040 1999 Upward
December 0.020 1997 Upward

Kamburupitiya July 0.031 1998 Downward

Kirama
June 0.013 2000 Downward
July 0.007 2005 Downward

Deniyaya October 0.034 1997 Downward

3.6. Linkage between Rainfall and Streamflow

Pearson’s correlation was used to analyze the relationship between rainfall and stream-
flow during 1991–2014 at the monthly, annual, and seasonal timescales. Considering the
contribution of rainfall to the Pitabeddara streamflow station, only the Dampahala, Ki-
rama, and Deniyaya stations were chosen to find the existing linkages between rainfall and
streamflow. The results of the correlation analysis are given in Table 9.
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Figure 3. Pettitt’s test results of the annual and seasonal rainfall data: (a) Deniyaya annual,
(b) Dampahala annual, (c) Dampahala SIM, (d) Dampahala NEM, (e) Dampahala FIM, (f) Kam-
burupitiya SWM, and (g) Deniyaya SWM.

The Pearson correlation results indicated that February, March, May, and September
showed positive very strong correlations, while January, June, November, and December
showed positive strong correlations between rainfall and streamflow. Moreover, at the
monthly scale, April, July, and October showed positive strong moderate correlations
between rainfall and streamflow, while August had a positive moderate correlation. The
annual scale results showed a positive strong moderate correlation between rainfall and
streamflow. At the seasonal scales, a positive very strong correlation was observed for the
NEM, and the FIM showed a positive strong moderate correlation. Both the SWM and SIM
periods showed positive strong correlations between the rainfall and streamflow data.
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Table 9. Pearson correlation results.

Timescale Correlation Linkage between Rainfall and Streamflow

January 0.79 PSC
February 0.85 PSVC

March 0.85 PSVC
April 0.40 PSMC
May 0.85 PSVC
June 0.72 PSC
July 0.46 PSMC

August 0.33 PMC
September 0.80 PSVC

October 0.56 PSMC
November 0.61 PSC
December 0.71 PSC

Annual 0.55 PSMC
NEM 0.81 PSVC
FIM 0.58 PSMC

SWM 0.62 PSC
SIM 0.67 PSC

PSC—positive strong correlation; PVSC—positive very strong correlation; PSMC—positive strong moderate
correlation; PMC—positive moderate correlation.

3.7. Indicators of Hydrological Alteration (IHA)

According to the literature based on the NRB, no major obstruction or dam was
built. However, we decided to investigate the changes in the flow regime before and after
2003. This year was selected purely arbitrarily. Two-period parametric analysis was used
in this IHA method. The pre-impact period was chosen from 1991–2003 and the post-
impact period was selected from 2004–2014. This section discusses 16 selected hydrological
parameters out of the 33 that fall under the main IHA parameter groups of magnitude and
duration of annual extreme water conditions, timing of annual extreme water conditions,
and frequency and duration of high and low pulses. According to the IHA analysis, the
mean annual flow during the post-impact period increased slightly from 15.87 m3s−1

to 16.23 m3s−1. Table 10 given below demonstrates the statistics for the pre-impact and
post-impact periods for the selected IHA parameters.

Table 10. IHA results.

IHA Parameters

Means Coefficient of Variation

Pre-Impact Post-Impact
Deviation
Factor (%)

Pre-Impact Post-Impact
Deviation
of C.V (%)

Magnitude and Duration (IHA
Group 2)

1-day minimum 2.375 2.322 −2.223 0.4769 0.3378 −29.17
3-day minimum 2.466 2.424 −1.71 0.4594 0.3298 −28.22
7-day minimum 2.766 2.723 −1.564 0.449 0.3073 −31.56
30-day minimum 4.171 4.224 1.266 0.4171 0.3226 −22.67
90-day minimum 6.564 7.762 18.26 0.3865 0.2785 −27.96
1-day maximum 189.2 136.3 −27.94 0.5865 0.3681 −37.24
3-day maximum 129.9 89.85 −30.82 0.7325 0.4233 −42.21
7-day maximum 82.79 63.03 −23.87 0.5919 0.334 −43.56

30-day maximum 43.27 40.66 −6.036 0.3191 0.3589 12.48
90-day maximum 28.46 27 −5.138 0.2447 0.2198 −10.2
No. of zero days 0 0 - 0 0 -
Baseflow index 0.1722 0.1737 0.8578 0.401 0.3362 −16.14

Timing (IHA Group 3)
Date of each annual 1-day minimum 113 199.5 47.24 0.1857 0.2228 19.96
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Table 10. Cont.

IHA Parameters

Means Coefficient of Variation

Pre-Impact Post-Impact
Deviation
Factor (%)

Pre-Impact Post-Impact
Deviation
of C.V (%)

Date of each annual
1-day maximum 211.5 261.5 27.28 0.2693 0.2606 −3.227

Frequency (IHA Group 4)
No. of low pulses in each year 14.54 13.36 −8.081 0.2731 0.4628 69.54
No. of high pulses in each year 12.54 13.73 9.481 0.4253 0.3092 −27.29

Although notable changes were not observed for minimum flows in IHA group 2,
maximum flows decreased significantly during the post-impact period. For instance,
the 1-day maximum, 3-day maximum, and 7-day maximum flows decreased by 27.94%,
30.82%, and 23.87%, respectively. The only notable change in minimum flow was the 90-day
minimum flow with an increase of 18.26%.

Results of the IHA group 3 parameters in Table 9 showed that the annual 1-day
minimum flow was recorded on the 113th Julian date in the calendar for the pre-impact
period and the 119th and 120th days for the post-impact period; this showed that the date
shifted a little bit forward in the post-impact period. Julian’s date of each annual 1-day
maximum for the pre-impact was recorded during the 211th and 212th days, and for the
post-impact period, it was recorded during the 261st and 262nd days.

According to the results in Table 10 under the IHA group 3 category, 14.56 low pulses
were found in the pre-impact period, which decreased to 13.36 per year during the post-
impact period. The coefficient of variation for the low pulses was increased by 69.54%
from the pre-impact to post-impact period. The number of high pulses for each year in
the pre-impact period was found to be 12.54 per year, which increased in the post-impact
period up to 13.73 per year. The deviation of the coefficient of variation also decreased by
27.29% from the pre-impact to post-impact period.

3.8. Discussion

According to the results found in the present study, most of the stations showed
decreasing rainfall trend patterns at the monthly scale. Generally, the annual scale and the
FIM and SWM exhibited decreasing rainfall trend patterns, NEM exhibited an increasing
tendency and SIM exhibited average results. A previous study that was carried out during
1987–2017 by Nisansala et al. [46] reported similar results for the NEM, SWM, and SIM
seasons. Wickramagamage [47] also reported an increasing rainfall trend during the NEM
season and decreasing trends in the SWM for Sri Lanka during 1981–2010. However,
Nisansala et al. [46] and Wickramagamage [47] also showed different results compared
with the present study at the annual and seasonal scales for rainfall trends by showing
an increasing tendency. In the present study, the Dampahala station showed increasing
trends for rainfall, while all the other stations showed decreasing trend patterns. Similar
to the present study, contrasting directions of the magnitude of trends in nearby stations
of the same basin were reported by Khaniya et al. [48] and Pawar and Rathnayake [49].
These contrasting results might have been because of local rainfall events. Mehta and
Yadav [50] demonstrated that the magnitude of climate variability change across spatial
scales. According to the results of the present study, the streamflow trend analysis did not
show significant trends, except in December. However, non-significant increasing trends
were demonstrated at the annual scale and the NEM and FIM, but not for the SWM SIM.
Dinethra and Basnayake [51] showed that the discharge of the Nilwala River increased
during 2004–2013. When considering the extreme rainfall indices, they also showed few
significant trends. However, extreme rainfall indices trend patterns also showed similar
contrasting results, especially for the Dampahala and Deniyaya stations. These contrasting
results might have been due to variations in elevations, as explained by Bizuneh [52]. The
NRB comprises lowlands and mountains. Due to the windward and leeward sides of the
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mountains, these types of contrasting results in the direction of rainfall trends can happen.
This is because the windward side normally receives higher rainfall, while the leeward side
of the mountain gets lower rainfall. Considering rainfall, extreme rainfall, and streamflow
trend results, we concluded that rainfall was not only the influencing factor for the changes
in streamflow patterns for the NRB. Other factors, such as the density of physical features,
watershed characteristics, and vegetation cover, can be influential as well [2].

4. Conclusions

The main objective of this study was to analyze the trends that were present in the
rainfall and streamflow records and to identify the correlation between the rainfall and
streamflow over the Nilwala River Basin. Six rainfall stations and one hydrological gauge
station were chosen based on the data availability. There was a considerably good correla-
tion present between the rainfall and streamflow in the upper Nilwala Basin, indicating that
rainfall was the main driver for the changes in the streamflow. This study showed that the
NRB did not face extreme climatic events from 1990 to 2014. Variations in the topographical
features in the basin might lead to contrasting results in rainfall trends within the NRB.
Five out of six stations showed decreasing trends in rainfall, suggesting that, in general,
rainfall had been decreasing during the 25 years between 1990 and 2014. The insignificant
trends in rainfall and streamflow suggested that the climate and hydrologic regimes were
not altered during this period. Future research is advocated for in the NRB considering that
other possible factors, such as the impacts of land-use change, could also be influential.
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Abstract: Precise assessment of drought and its impact on the natural ecosystem is an arduous task
in regions with limited climatic observations due to sparsely distributed in situ stations, especially
in the hyper-arid region of Kingdom of Saudi Arabia (KSA). Therefore, this study investigates the
application of remote sensing techniques to monitor drought and compare the remote sensing-
retrieved drought indices (RSDIs) with the standardized meteorological drought index (Standardized
Precipitation Evapotranspiration Index, SPEI) during 2001–2020. The computed RSDIs include
Vegetation Condition Index (VCI), Temperature Condition Index (TCI), and Vegetation Health Index
(VHI), which are derived using multi-temporal Landsat 7 ETM+, Landsat 8 OLI/TIRS satellites, and
the Google Earth Engine (GEE) platform. Pearson correlation coefficient (CC) is used to find the
extent of agreement between the SPEI and RSDIs. The comparison showed CC values of 0.74, 0.67,
0.57, and 0.47 observed for VHI/SPEI-12, VHI/SPEI-6, VHI/SPEI-3, and VHI/SPEI-1, respectively.
Comparatively low agreement was observed between TCI and SPEI with CC values of 0.60, 0.61, 0.42,
and 0.37 observed for TCI/SPEI-12, TCI/SPEI-6, TCI/SPEI-3, and TCI/SPEI-1. A lower correlation
with CC values of 0.53, 0.45, 0.33 and 0.24 was observed for VCI/SPEI-12, VCI/SPEI-6, VCI/SPEI-3,
and VCI/SPEI-1, respectively. Overall, the results suggest that VHI and SPEI are better correlated
drought indices and are suitable for drought monitoring in the data-scarce hyper-arid regions. This
research will help to improve our understanding of the relationships between meteorological and
remote sensing drought indices.

Keywords: drought assessment; meteorological drought; remote sensing drought indices;
standardized drought indices; Landsat; Google Earth Engine

1. Introduction

It is challenging to precisely monitor and evaluate the onset, intensity, frequency, per-
sistence, and propagation of drought because of its complex nature, especially in hyper-arid
regions characterized by data scarcity [1,2]. Drought is a frequently occurring hydrom-
eteorological phenomenon [3], which is the direct cause of drought disasters and the
second most detrimental natural hazard that causes social and economic instability after
floods [4]. Drought events are categorized into four categories based on the affected sec-
tors [5] including meteorological, hydrological, agricultural, and socio-economic droughts.
Meteorological drought is characterized by an extended period of below-average precipita-
tion (i.e., precipitation deficit) in relation to the region’s average precipitation. In contrast,
agricultural drought could be described as a drought resulting from soil moisture content
below the level required for plant growth and development [6–9]. Hydrological drought
refers to a decrease in the quantity of water both on surface and groundwater resources due
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to insufficient precipitation for an extended period [10]. Socio-economic drought focuses
on the consequences of drought on water resources, agriculture, and industries [11,12].

Several approaches have been developed over the last few decades to monitor and
statistically describe droughts, including the development of both standardized and un-
standardized drought indices used in meteorology, hydrology, and agriculture [1–3]. In the
past, drought monitoring methods were based on measurements taken at stations/gauges
on the ground, such as the Palmer drought Severity Index (PDSI) [4], the Standardized
Precipitation Index (SPI) [5], and the Standardized Precipitation Evapotranspiration Index
(SPEI) [6]. Traditional approaches for assessing and monitoring drought depend on the
in situ precipitation records, which are usually inaccurate and constrained both in time
and space [7,8]. The sparse distribution of in situ weather stations per unit area and the
associated uncertainties hinders the precise estimation of drought, which is most often
for areas in arid and hyper-arid regions. Other natural impediments, such as mountains
and dune fields, can also contribute to the said problem [9]. El Kenawy and McCabe [10]
have confirmed these flaws in the meteorological network over Kingdom of Saudi Arabia
(KSA). However, with the advancements in remote sensing and earth observation technolo-
gies (e.g., the launch of the National Aeronautics Space Administration (NASA) Landsat
series in 1972) at the end of the 20th century, the way for drought monitoring has been
changed [11]. In addition, there is an increasing curiosity and understanding regarding the
climate change due to rising temperatures. This has led geospatial scientists to conclude
that remote sensing must play a crucial role in delivering the data necessary to assess
ecosystem conditions and monitor extreme climatic changes at both spatial and temporal
scales [12–15].

Remote sensing (RS) products not only provide meteorological data but also monitor
changes in the variables at the earth’s surface such as the health of plants and the amount
of available water, and provide a wide range of contextual data for monitoring drought [11].
RS and Geographic Information Systems (GIS) have made it easier for people to look at the
world with sensors and see how it changes over time [16]. The main benefit of using RS
and GIS techniques is the availability of continuous data over large areas in both space and
time, which significantly contributed to the data scarcity issues as we might face in arid
regions like KSA [17,18].

With the advancement of RS and GIS techniques, several remote-sensing-based
drought indices are proposed and evaluated to monitor drought, including the Normalized
Difference Vegetation Index (NDVI) [19], the Temperature Condition Index (TCI) [20,21],
the Vegetation Condition Index (VCI) [22], and the Vegetation Health Index (VHI) [23,24].
TCI, VCI, and VHI are also characterized as vegetation indices since they describe the
vegetation condition in a specific area, classify it into different drought classes, and are
commonly employed as drought monitoring indices [25–27]. VCI is widely used to detect
changes in vegetation from significantly worse to favorable conditions [20,28]. TCI detects
vegetative stress induced by high temperatures and heavy moisture [29–31]. VHI, on the
other hand, is the combination of TCI (temperature) and VCI (vegetation condition) that
describes vegetation health [32,33].

Recently, the Google Earth Engine (GEE), a cloud-based geospatial data monitoring
platform that calculates and presents raw and processed satellite-based datasets [33–35], is
extensively used in various hydro-meteorological applications. Since its introduction in
2010, GEE capabilities have been tested in a variety of applications, including vegetation
mapping and monitoring [36,37], land use/land cover change mapping [38,39], and flood
mapping [40,41]. Furthermore, with a substantial volume of freely available satellite
imageries and direct image processing, GEE has been proposed for time series analysis of
drought in several studies [37,42,43]. Most of the researchers used the Moderate Resolution
Imaging Spectroradiometer (MODIS) satellite dataset and GEE algorithms to monitor
drought using the Remote Sensing-retrieved Drought Indices (RSDIs) [44–46]. Meanwhile,
Pham and Tran [34] analyzed the temporal distribution of drought conditions in Vietnam
using different Landsat-derived drought indices, which are calculated from Landsat-8

205



Remote Sens. 2023, 15, 984

satellite data in the GEE platform. Benzougagh et al. [47] also used the GEE algorithm and
a combination of Landsat-8 and Sentinel-2 datasets to monitor drought in Morocco. The
above studies showed that Landsat-derived indices provide helpful spatial information
for assessing drought conditions from the region to the country scales. The main theme of
this research is to address the data scarcity issues in Lith watershed. There are four gauges
in the watershed which are not sufficient to represent the variations in climate. Therefore,
different remote sensing techniques should be applied to cope with data scarcity issues and
thus we computed different remote sensing indices using the GEE.

Owing to the condition of data scarcity and minimal application of RS, GIS, and GEE
applications in drought monitoring in KSA, this study aims: (1) to calculate the spatial ex-
tent of drought in the arid basin (Al-Lith watershed) using Landsat 7 and Landsat 8 datasets
from 2001 to 2020; (2) to characterize the spatiotemporal pattern of drought conditions
by SPEI, VCI, and TCI, and VHI using GEE; and (3) to compare the reliability of various
drought indices (particularly SPEI with RSDIs) in drought monitoring by calculating the
Pearson correlation coefficient (CC). The findings in this research will assist urban planners
and environmental scientists in making decisions and implementing policies to mitigate
drought in the Al-Lith watershed, particularly and other similar areas around the globe
in general.

2. Study Area

The Al-Lith watershed is located between 20◦00′N to 20◦15′N longitude, and 40◦10′E
to 40◦50′E latitude in the Makkah region of KSA, with elevation ranges from 0 to 2663 m
above mean sea level (shown in Figure 1). The Al-Lith watershed has a total area of about
3262 km2. The maximum temperature in Al-Lith is observed in July with an average of
41.9 ◦C, followed by June and August with the average temperatures of 41.3 ◦C and
41.2 ◦C, respectively [48]. A minimum of 20.0 ◦C temperature is observed in January.

Figure 1. Geographical location of the Al-Lith Watershed: (a) Kingdom of Saudi Arabia; (b) Makkah
Region; and (c) the Al-Lith Watershed.

The amount of precipitation in the Al-Lith Watershed varies with location and year.
The average annual precipitation is 104.3 mm, with 145.2 mm, 167.7 mm, 56.7 mm, and
47.6 mm at stations TA-109, TA-233, J107, and J108, respectively. TA-109 and TA-233 are on
the upstream side of the Al-Lith Watershed, whereas J107 and J108 are on the downstream
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side, as shown in Figure 1c. The rainy season from November to January contributed
to 55% of annual precipitation, while the dry season from June to August contributed
only 15%.

3. Data and Methods

The methodology used in this study is categorized into; (i) meteorological data ac-
quisition, (ii) satellite data retrieval, (iii) meteorological drought monitoring using SPEI,
(iv) drought monitoring using remotely sensed drought indices (i.e., VCI, TCI, and VHI),
(v) temporal and geospatial analyses of the above indices using GEE, and (vi) correlation
between SPEI and remote sensing drought indices. The workflow for this study is shown
in Figure 2.

Figure 2. Methodological framework used in this study.
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3.1. Meteorological Data Acquisition

This study utilized the daily precipitation and temperature data from the Ministry of
Water Environment and Agriculture (MEWA). The data for four meteorological stations
(J107, J108, TA109, and TA233, as shown in Figure 1) located in the Al-Lith watershed was
collected spanning the period from 2001 to 2020.

3.2. Satellit Data Acquisitions

Landsat-7 and 8 Level 1 images at different dates were downloaded from the USGS
Earth Explorer data portal between 2001 and 2020 for the study area. During the study
period, Landsat-7 ETM+ data was acquired for the period of 2001–2012, while Landsat-8
OLI data was used for the period of 2013–2020. Images downloaded from the USGS Earth
Explorer website were already georeferenced and projected in WGS UTM Zone 37 N for
the Al-Lith watershed. However, no images were available for path 169 and row 046
on Earth Explorer, so the time series analysis for that specific location was done using
Google Earth Engine. Table 1 shows the specifications, including sensors information,
spatial and temporal resolutions, path, and rows for Landsat 7 and Landsat 8 satellites in
Al-Lith watershed.

Table 1. Specification of Landsat Satellites over Al-Lith watershed.

Satellite Sensor Spatial Resolution Temporal Resolution Paths Row Years

Landsat 7 ETM+ 30 m 16days 169 45 2001–2012
Landsat 8 OLI+ 30 m 16days 169 46 2013–2020

3.3. Standard Precipitation Evapotranspiration Index (SPEI)

SPEI is the new and comprehensive drought index proposed by Vicentro et al. [6] and
is used in this study to monitor meteorological drought. The SPEI is based on precipitation
(P) and potential evapotranspiration (PET) and represents the fundamental calculation of
the climate’s water balance at various time scales. The PET can be calculated using many
methods like Thornthwaite, Penman–Monteith, and Hargreaves. However, we used the
Hargreaves equation in this study to calculate the PET because of less data requirement [49]
suggested by many authors when solar radiation, relative humidity, and wind speed
datasets are not available [50,51].

PETi = 0.0135KT(T + 17.78)(Tmax − Tmin)
0.5Ra (1)

where T, Tmax, and Tmin are the average, maximum, and minimum temperature in ◦C,
respectively; Ra is the extraterrestrial radiation (mm/day); and KT is an empirical coefficient
(KT = 0.162 for “interior” regions and KT = 0.19 for coastal regions). Allen [52] also specified
a criteria for calculating the observational coefficient as KT = 0.17.

The monthly water balance (WB) equation is given by Equation (2), which is obtained
by subtracting the calculated PET form monthly precipitation data:

WBi = Pi − PETi (2)

where P is precipitation, and i shows the particular month.
Mostly, the SPEI is computed by first standardizing the differences in precipitation

and PET values using the log-logistic probability distribution function. The log-logistic
distribution function is given below by Equation (3):

f(x) =
β

α

(
x − γ

α

)β − 1
[

1 +

(
x − γ

α

)β
]−2

(3)
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where α is the scale parameter, β is the shape parameter, γ is the beginning parameter,
and x is the mean of the series of CWB values in each period. Then SPEI can be calculated
from [6]

SPEI = W − Co+C1W + C2W2

1 + d1W + d2W2+d3W3 (4)

where W =
√−2Ln(P) for p ≤ 0.5, and P is the probability of exceeding a determined

WB value. The constants are C0 = 2.515517, C1 = 0.802853, C2 = 0.010328, d1 = 1.432788,
d2 = 0.189269, and d3 = 0.001308 [6].

SPEI can be estimated at different time scales (1, 3, 6, and 12 months) at each sta-
tion. SPEI-1 is calculated by taking the monthly precipitation and temperature. SPEI-3
is calculated by taking the mean of the three months (moving averaging of three-month
precipitation and temperature inputs). Similarly, the remaining 6- and 12-month indices can
be calculated. SPEI-1 is useful to study the short-term variations in drought frequency and
severity, SPEI-3 and SPEI-6 are usually used to monitor the seasonal variations in drought,
while SPEI-12 is useful to study the annual trend of drought. How severe a drought is can
be estimated using the index, which compares actual precipitation to the amount of water
lost through evaporation and transpiration, over a given period of time.

The severity of drought determined by the numeric values of SPEI, which is divided
into different categories following McKee et al. [5] and Vicentro et al. [6] and are shown in
Table 2.

Table 2. Division of drought severity based on SPEI values (after [6]).

SPEI Categories

>2 Extremely wet
1.50 to 1.99 Severely wet
1.00 to1.49 Moderately wet

−0.99 to 0.99 Nearly Normal
−1.49 to −1.0 Moderately drought
−1.99 to −1.5 Severe drought

<−2 Extreme drought

3.4. Remote Sensing-Derived Indices
3.4.1. Vegetation Condition Index (VCI)

The Vegetation Condition Index (VCI) is considered a step forward in analyzing
vegetation conditions, particularly in non-homogeneous environments [53]. VCI can extract
the impact of weather on plants while removing the ecosystem signal from NDVI [54] and
is defined as follows:

VCIk
ij = 100 ∗

NDVIk
ij − min

(
NDVIk

i

)
max

(
NDVIk

i
)− min

(
NDVIk

i
) (5)

where VCIk
ij and NDVIk

ij indicate VCI and NDVI values at pixel k, in i-th month, for the

year j. The max
(

NDVIk
i

)
and min

(
NDVIk

i

)
shows the maximum and minimum values

of NDVI in the period. The VCI values range from 0 to 100, where VCI values below
40 indicate drought conditions in the area (presented in Table 3) [45,55–57]. NDVI is
calculated using the red and near-infrared (NIR) bands and is given by [19].

NDVI =
NIR − RED
NIR + RED

(6)
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Table 3. Different drought categories for RSDIs (modified from [58]).

VHI/VCI/TCI Values Drought Class

0 to 10 Extreme Drought
10 to 20 Severe Drought
20 to 30 Moderate Drought
30 to 40 Mild Drought

More than 40 No Drought

3.4.2. Temperature Condition Index (TCI)

The Temperature Condition Index (TCI) considers that a drought occurrence will
reduce soil moisture and increase land surface thermal stress, i.e., there will be a higher
land surface temperature (LST) in drought periods compared to normal ones. A high LST
during the growing season of crops implies unfavorable or drought conditions, whereas
a low land surface temperature suggests predominantly favorable conditions [31]. TCI is
connected to the responsiveness of vegetation to any unfavorable changes in temperature.
The following expression demonstrates the calculation of TCI [20]:

TCIk
ij = 100 ∗

max
(

LSTk
i

)
− LSTk

ij

max
(

LSTk
i
)− min

(
LSTk

i
) (7)

where TCIk
ij and LST k

ij indicate TCI and LST values at k pixel, in i-th month, for the year j.

The min
(

LSTk
i

)
and max

(
LSTk

i

)
shows the minimum and maximum values of LST in the

period. TCIk
ij values vary from 0 to 100, indicating stress to good thermal conditions of the

vegetation, as shown in Table 3. To calculate LST the following steps are used [59].

Lλ= ML·QCAL+AL (8)

where Lλ is the Top of Atmosphere (TOA) spectral radiance
(

Wm−2sr−1 mm−1
)

, ML is
the band-specific multiplicative rescaling factor from the metadata, AL is the band-specific
additive rescaling factor from the metadata, and QCAL is the quantized and calibrated
standard product pixel values (DN). All of these variables can be retrieved from the
metadata file of Landsat 8 data.

TOA to brightness temperature can be calculated using the following Equation (9) [60,61]

BT =

⎛⎝ K2(
ln
(

K1
L

)
+1

)
⎞⎠− 273.15 (9)

where K1 and K2 are band specific thermal conversion constants and can be found from
metadata of the image.

The proportion of vegetation (Pv) is calculated by using the following Equation (10) [62]

Pv = square
(

NDVI − NDVImin

NDVImax − NDVImin

)
(10)

The emissivity is calculated using the following Equation (11) [63,64]

ε = 0.004 ∗ Pv + 0.986 (11)

Finally, the LST was derived using the following Equation (12) [65]

LST =
BT

(1 + [(λBT/ρ) ln ε ])
(12)
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where λ is the effective wavelength (10.9 mm for band 10 in Landsat 8 data) and ε is
the emissivity.

ρ = h
c
σ
= 1.438 × 10−2mK (13)

where σ is the Boltzmann constant (1.38 × 10−23 J/K), h is Plank’s constant (6.626 × 10−34 Js),
and c is the velocity of light in a vaccum (2.998 × 108 m/s).

3.4.3. Vegetation Health Index (VHI)

The following equation is used to compute the VHI index, which is the weighted sum
of VCI and TCI and is a useful source of information regarding the stress on vegetation by
droughts. Gidey et al. [55] reported that the coefficient of the VHI equation was kept at 0.5
due to a lack of more precise information on the influence of VCI and TCI on the VHI.

VHI = aVCI + (1 − a)TCI (14)

where a = 0.5 (the same contribution of VCI and TCI). Droughts based on VHI are classified
into five categories, following to the recommendations of Kogan [53]. Table 3 shows
different drought conditions based on VCI, TCI, and VHI values.

3.5. Pearson Corerlation Coefficient

The linear relationships between RSDIs and the meteorological drought index (SPEI)
were evaluated on a 1-, 3-, 6-, and 12-month time scales in Wadi Al-Lith from 2001 to 2020 by
utilizing the Pearson Correlation Coefficient (CC). The Standardized Anomaly Index (SAI)
was used to discover anomalies in RSDIs by calculating a standardized deviation from the
long-term mean. Then, the anomalies of RSDIs are compared with SPEI at different time
scales to analyze the correlation between them. The following equation is used to calculate
the SAI [66,67].

SAIi =
xi − x

σ
(15)

where xi, x, and σ represents the values of RSDIs at any month, the long-term mean, and
the standard deviation, respectively.

4. Results

4.1. Evaluation of Drought Indices

The meteorological drought index (SPEI) at different time scale, i.e., 1-, 3-, 6-, and
12-months and RSDIs (i.e., VCI, TCI, and VHI) are used to analyze the drought sever-
ity/condition on both spatial and temporal scale from 2001 to 2020 in the Al-Lith watershed.

4.1.1. SPEI

Figure 3 shows the SPEI time series at different time scales (i.e., 1-, 3-, 6-, and
12-months) at stations J107, J108, TA-109, and TA-233 from 2001 to 2020 in the Al-Lith
watershed. Figure 3a shows that more severe and extreme drought events are observed
by SPEI-3, followed by SPEI-12 and SPEI-6, whereas SPEI-1 shows moderate to severe
drought conditions. However, high fluctuations are observed in SPEI-1 and SPEI-3 time
series compared to SPEI-6 and SPEI-12. Moreover, the time series analyses depict severe to
extreme drought events in 2002, 2003, 2007, 2011, 2015, 2017, and 2019 (Figure 3a). Overall,
the time series plot shown in Figure 3b demonstrates more severe to extreme drought
events in 2003, 2007, 2009, 2012, 2016, 2019, and 2020. Further, drought at stations TA109
(Figure 3c) and TA233 (Figure 3d) are more severe at 3- and 12-month time scales followed
by SPEI-6 and SPEI-1. Extreme and severe drought events at station TA109 are observed
in 2002, 2007, and 2012. Likewise, severe to extreme drought events at station TA233 are
observed in 2005, 2006, 2009, 2012, and 2019. Overall, the results (Figure 3a–d) demonstrate
significant numbers of extreme and severe drought events in 2002, 2007, 2009, 2012, 2015,
and 2019 in the Al-Lith watershed.
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(a) (b) 

 
(c) (d) 

Figure 3. Time series analysis at four stations of the AlLith watershed on different time scales of SPEI
(1-, 3-, 6-, and 12-month) at (a) J107, (b) J108, (c) TA109, and (d) TA233.

4.1.2. VCI

Figures 4 and 5 show the spatial and temporal distribution of VCI from 2001 to 2020
in the Al-Lith Watershed, which is calculated from the NDVI, shown in Figure A1 in
Appendix A. The spatial distribution maps of VCI (Figure 4) indicate that 2001, 2002, 2004,
2007, 2008, 2010, and 2011 are the extreme drought years in the study period. In contrast,
more wet conditions (relatively less drought) are observed in 2005, 2006, 2009, and 2016.
Furthermore, it should be noted that drought is relatively more severe in northern areas of
the Al-Lith watershed compared to southern areas.
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Figure 4. (a–s) Spatial distribution of VCI in Al-Lith Watershed retrieved from Landsat Satellites for
the period of 2001–2020.
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Figure 5. Time series plot of VCI in Al-Lith Watershed extracted using Google Earth Engine and
Landsat Satellite datasets.

The time series of VCI extracted using the GEE (shown in Figure 5) illustrate that
the mean VCI values range from 20.3 to 64.7 during the study period. According to the
VCI time series plot, the Al-Lith watershed experienced minimum VCI values (severe
and extreme drought events) in 2001, 2002, 2003, 2007, 2008, and 2010, in the first decade.
Similarly, the minimum VCI values in the second decade are observed in 2013, 2015, 2016,
and 2019. In other words, the VCI time series demonstrates that 2001, 2002, 2008, 2015, and
2018 are the extreme drought years.

4.1.3. TCI

Figures 6 and 7 show the spatial distribution and time series plot of TCI in the Al-Lith
watershed spanning a period of 2001–2020 retrieved from Landsat satellites and GEE,
respectively. As shown in Figure 6, the minimum TCI values are observed in 2001, 2003,
2005, 2006, 2009, 2011, 2013, 2015, 2017, 2018, and 2020. The temperature in the study area
is increasing over time (Figure A2 in the Appendix A), therefore, the results show more
severe TCI in the last decade compared with first decade. Since the Al-Lith watershed is
located in a hyper-arid region, where the maximum temperature reaches above 40 ◦C and
annual precipitation is usually less than 10 mm, the TCI will have a significant impact and
contribution to VHI index. TCI has a similar spatial distribution trend to that of VCI, i.e.,
TCI is more severe in northern areas of Al-Lith compared with southern areas, except for a
few years (2002, 2004, 2010, and 2014, as shown in Figure 6).

The spatial distributions of VCI and TCI are different in some periods, such as the
year 2001 (Figures 4a and 6a), which is mainly caused by different views of these indices in
describing the drought. VCI is calculated from NDIV and considers only the vegetation
factor, while TCI is calculated from LST and is an integrated results of many factors,
including vegetation, precipitation, topography, elevation, soil, and meteorology.

The time series plot of TCI for the Al-Lith watershed is shown in Figure 7. TCI values
show that the Al-Lith watershed experienced frequent severe and extreme drought events
in 2001, 2002, 2004, 2005, 2007, 2008, 2013, 2014, 2015, 2017, 2019, and 2020. Overall, the
mean TCI values across different years ranges from 13.79 to 89.6 in the study area.
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Figure 6. (a–s) Spatial distribution of TCI in Al-Lith Watershed retrieved from Landsat Satellites for
the period of 2001–2020.
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Figure 7. Time series plot of TCI in Al-Lith Watershed extracted using Google Earth Engine and
Landsat Satellite datasets.

4.1.4. VHI

The spatial distribution and time series plot of VHI across the Al-Lith watershed ex-
tracted from Landsat satellite imageries and GEE, respectively, is shown in Figures 8 and 9.
Figure 8 depicts that 2001, 2002, 2004, 2007, 2008, 2010, 2015, 2018, and 2019 are the severe
drought years across the Al-Lith watershed. However, it should be noted that drought
estimates using VHI depict that drought is more severe in the first decade than the second
one. Furthermore, the figure also shows that drought is more severe in the downstream
region rather than upstream region of the Al-Lith watershed. Since VHI is a more compre-
hensive drought index than VCI and TCI, the VHI shows that downstream areas of the
Al-Lith watershed is more vulnerable to drought, and thus, it is advised to devise robust
mitigation plans to encounter the adverse impacts of drought on available water reserves
and agriculture in the downstream region of the Al-Lith watershed.

The time series plot of the VHI, extracted from GEE (shown in Figure 9), illustrates that
the mean VHI values range from 21.03 to 61.05 during the entire study period. According
to the VHI time series plot, the Al-Lith watershed experienced the minimum VHI values
(severe and extreme drought events) in 2002, 2004, 2007, 2008, 2010, 2012, 2013, 2014, 2015,
and 2017–2020. It is worth mentioning that intensity and frequency of severe drought
events are significantly increased in the second decade, particularly after 2017.

The maximum, minimum, and average values of VCI, TCI, and VHI across the Al-Lith
watershed on an annual scale from 2001 to 2020 are shown in Table 4. Table 4 shows extreme
droughts in 2002, 2008, 2015 while moderate droughts in 2001, 2003, 2006, 2009, 2010, 2013,
and 2018 for VCI. Similarly, the extreme (severe) drought events for TCI are observed in
2001, 2013, 2014, 2017, 2019, and 2020 (2002, 2004, 2005, 2007, 2008, 2010, 2012, 2015, 2016,
and 2018). On the other hand, no extreme drought events are observed for VHI whereas
severe drought is observed in 2004, 2007, 2012, 2013, and 2017–2020).
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Figure 8. (a–s) Spatial distribution of VHI in Al-Lith Watershed retrieved from Landsat Satellites for
the period of 2001–2020.
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Figure 9. Time series plot of VHI in Al-Lith watershed extracted using Google Earth Engine and
Landsat Satellite datasets.

Table 4. Minimum, Maximum, and Mean values of VCI, TCI, and VHI (2001–2020).

Year
VCI TCI VHI

Min Max Average Min Max Average Min Max Average

2001 19.68 93.97 56.83 0.52 89.56 45.04 20.82 33.25 27.03
2002 3.97 61.56 32.76 11.72 89.96 50.84 21.40 60.44 40.92
2003 19.66 53.78 36.72 33.92 98.52 66.22 30.33 69.27 49.80
2004 25.67 50.46 38.06 14.52 96.92 55.72 18.05 62.71 40.38
2005 25.43 46.15 35.79 16.69 95.98 56.33 22.65 62.72 42.68
2006 17.82 58.64 38.23 23.71 99.66 61.68 23.18 54.33 38.76
2007 26.00 64.52 45.26 10.79 95.35 53.07 19.54 81.81 50.68
2008 9.43 60.51 34.97 13.86 74.83 44.34 20.73 56.22 38.48
2009 16.68 55.61 36.15 25.00 90.24 57.62 27.42 73.19 50.30
2010 19.22 57.58 38.40 19.05 82.41 50.73 21.84 66.87 44.35
2011 23.02 52.94 37.98 20.87 90.94 55.91 22.77 61.23 42.00
2012 26.26 60.52 43.39 16.34 87.25 51.80 19.11 25.87 22.49
2013 16.03 49.03 32.53 2.58 97.19 49.88 16.45 53.90 35.17
2014 25.19 74.14 49.67 4.00 89.60 46.80 20.09 70.41 45.25
2015 3.48 54.69 29.09 11.43 94.88 53.15 21.03 58.64 39.83
2016 33.81 80.14 56.98 13.70 88.10 50.90 29.60 70.72 50.16
2017 22.56 54.46 38.51 2.49 71.84 37.17 17.72 60.16 38.94
2018 10.74 85.96 48.35 16.37 84.06 50.21 14.01 86.04 50.03
2019 28.06 84.65 56.35 9.40 96.63 53.02 19.99 75.30 47.65
2020 33.25 94.75 64.00 8.87 78.69 43.78 13.98 79.95 46.96

2001–2020 20.30 64.70 42.50 13.79 89.63 51.71 21.04 63.15 42.09

4.2. Correlation between SPEI, VCI, TCI, and VHI

The Pearson Correlation Coefficient (CC) between the meteorological drought index
(SPEI) and RSDIs (VCI, TCI, and VHI) is calculated in the Al-Lith watershed from 2001 to
2020 and presented in Table 5. TCI and VHI have shown good agreement with SPEI in the
study period, where a CC value of 0.64 is observed between the two indices, as illustrated
in Table 5. VHI and VCI show reasonable agreement with each other where a CC value of
0.51 is observed between the two indices. However, the correlation drops significantly to a
CC value of 0.39 between VCI and TCI.
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Table 5. Correlation matrix between Remote sensing and meteorological drought indices based on
GEE) and stations data over the Al-Lith watershed from 2001–2020.

VHI TCI VCI SPEI-1 SPEI-3 SPEI-6 SPEI-12

VHI 1.00 0.64 0.51 0.47 0.57 0.67 0.72
TCI 0.64 1.00 0.39 0.37 0.42 0.61 0.60
VCI 0.51 0.39 1.00 0.24 0.33 0.45 0.53

Further, the analyses are further extended and the correlation between SPEI and RSDIs
is investigated at different time scales (1-, 3-, 6-, and 12-month). The results (Table 5) show
that SPEI-12 strongly correlates with VHI, where a CC value of 0.72 is observed between
VHI and SPEI-12. VHI also has a strong correlation with SPEI-6 (CC equals 0.67), which
drops significantly to 0.47 with SPEI-1. In contrast to VHI, a lower correlation is observed
between VCI and SPEI. The maximum and minimum CC is observed between VCI/SPEI-12
and VCI/SPEI-1, respectively. TCI shows a moderate correlation with SPEI, where the
maximum correlation (with CC of 0.61) is observed between TCI/SPEI-6, followed by
TCI/SPEI-6.

From Table 5, the correlation between VHI/VCI/TCI and SPEI increases with time
scales of SPEI. In the calculations of VHI, TCI, and VCI, monthly data are used. However,
the vegetation growth is related with wet/drought conditions of both the present month
and previous months of vegetation growth, or even months before vegetation growth.
Consequently, vegetation growth regime and vegetation index are more closely related
with wet/drought conditions of longer time scales, and VHI, TCI, and VCI, closely related
with vegetation index, all tend to have a stronger correlation with SPEI over a longer
time frame.

5. Discussion

Drought catastrophes not only significantly affect the current agricultural productivity,
human life, and economic development, but can potentially worsen climate conditions and
exacerbate land desertification for a long period. Therefore, it is of utmost importance to
investigate the causes of drought disasters, conduct in-depth analyses of their spatiotempo-
ral characteristics, and employ scientific strategies for their prevention and management.
The research on the disaster caused by drought is still in its infancy since researchers
typically only look at one drought index at a time rather than the cumulative effects of
numerous drought indices. Unlike previous studies, this study examined the spatial and
temporal changes of various drought indices while taking precipitation, vegetation index,
and surface temperature into account in the Arid region of KSA from 2001–2020.

The current study is an attempt to evaluate and correlate in situ meteorological drought
(SPEI) and remote sensing-retrieved drought indices (VCI, TCI, and VHI) in the western
region of KSA (the Al-Lith watershed) from 2001 to 2020. RSDIs are retrieved from Landsat
7 and Landsat 8 satellite datasets, and the GEE platform. The evaluation of in situ SPEI
against the RSDIs is very time consuming in KSA because of the very limited availability of
in situ climate data and the sparse distribution of weather stations. The climate data from
weather stations is usually incomplete, with several missing observations and significant
uncertainties [10,68,69]. The variations in temperature, precipitation, evaporation, etc., are
hardly captured by the in situ data owing to the limited stations, its sparse distribution, and
incomplete data [70]. Temperature in KSA are rising, droughts are getting worse, and nearly
70% of the country is affected by severe and frequent drought events [69,71]. For instance,
the Al-Lith watershed has experienced severe drought events over the past 20 years,
consistent with numerous regional and global assessments [25,44,69,72–75]. Therefore, it is
of utmost importance to precisely estimate the increasing severity of drought using various
indices, especially the RSDIs, to address the data scarcity issues and its contribution to the
uncertainties in drought estimation.
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GEE and the long-term continuous observations from the Landsat satellite datasets
enabled us to compare the RSDIs (VCI, TCI, and VHI) with meteorological drought (SPEI).
Many studies used GEE and Landsat satellite data to monitor droughts in different regions
worldwide [63,72–74] by using VCI, TCI, and VHI. VHI is used to monitor agricultural
drought and is suggested by many authors for drought monitoring [20,31,44,58,75]. Accord-
ing to Choi et al. [76], VHI reflects the anomalies in both vegetation cover and temperature.
Table 5 illustrates that VHI showed good agreement with VCI, but the correlation is slightly
weaker with TCI. VCI and TCI also play a critical role in drought monitoring because both
indices depend on ecological conditions and weather-induced changes, respectively. VCI
depends on the maximum and minimum NDVI, which reflects the regional vegetation
health. On the other hand, TCI is based on the minimum and maximum of LST, i.e., more
dependent on temperature. The results of VCI, TCI, and VHI indicate that the watershed
experienced severe drought in 2001, 2003, 2007, 2008, 2013, 2014, 2017, and 2019, among
other studied years.

Table 5 shows that SPEI and VHI show a strong correlation with each other in the
study area, while the correlation is moderate to weak between SPEI/TCI and SPEI/VCI,
respectively. Gidey et al. [44] found a very strong correlation between the meteorological
drought index (SPI) and RSDIs (VCI/TCI/VHI) while studying the statistical relationship
between meteorological and RSDIs in Northern Ethiopia. Del-Toro-Guerrero et al. [66]
reported a very strong correlation between SPI and VHI annually while studying the
surface reflectance derived indices for drought monitoring. Almeida-Ñauñay et al. [77]
studied the impact of the meteorological and RSDIs in semi-arid Mediterranean Grass Land
using station and satellite remote sensing data. They reported a good correlation between
VHI and SPEI, which support the findings of this study.

Overall, this study utilized Landsat satellite data and generated time series analysis
on GEE to investigate the spatial and temporal distribution of drought in the hyper-arid
and data scarce regions of KSA. This study combined the meteorological and remote
sensing indices for monitoring drought in an arid region. The results showed that VHI is a
more robust drought index, showing a good correlation with station-based meteorological
drought index (SPEI), and thus is more robust to represent drought over KSA. In other
words, RSDIs have the capability to represent the drought condition comparatively well
compared with station-based estimated drought. This research gives a clear picture of
the drought assessment, which can be helpful for the policymakers, researchers, and
government to take proper action for drought mitigation.

6. Conclusions

This study assessed the spatial and temporal distribution of droughts, including
meteorological drought estimated through SPEI (SPEI-1, SPEI-3, SPEI-6, and SPEI-12) and
remote sensing-retrieved drought indices (RSDIs, including VCI, TCI, and VHI). Moreover,
the SPEI and RSDIs are correlated with each other at different time scales (i.e., 1-, 3-, 6-,
and 12-month) using the Pearson correlation coefficient. The Standardized Anomaly Index
(SAI) was used to calculate the anomalies for RSDIs and compared with SPEI at 1-, 3-,
6-, and 12-month time scales. The analyses are carried out over the hyper-arid region of
KSA having limited in situ weather stations from 2001 to 2020. Our major findings are
stated below.

(1) SPEI results showed that significant number of severe and extreme drought events
are observed in 2002, 2007, 2009, 2012, 2015, and 2019. High fluctuations in drought severity
are observed at smaller time scales (i.e., SPEI-1 and SPEI-3) compared with SPEI-6 and
SPEI-12. However, interesting observations are observed at station J108 where drought is
more severe at smaller time scales (SPEI-1) than larger times scales. Overall, the results
showed significant regional variations in drought severity owing to regional changes
in climate.

(2) VCI showed that northern areas of the Al-Lith watershed are prone to drought,
particularly in 2001, 2002, 2004, 2007, 2008, 2010, and 2011. The spatial distribution of
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VCI depicted extreme drought events in 2001, 2002, 2004, 2007, 2008, 2010, and 2011. VCI
ranged from 20.3 to 64.7, where extreme (severe) drought events were observed in 2002,
2008, and 2018 (2001, 2003, 2006, 2009, 2010, 2013, and 2018).

(3) Based on the results of TCI, the Al-Lith watershed was prone to droughts in 2001,
2003, 2005, 2006, 2009, 2011, 2013, 2015, 2017, 2018, and 2020. Droughts were more intense
in the second decade compared to the first decade. Time series plot of TCI showed that TCI
values range from 10.60 to 91.34, where minimum TCI values are frequently observed in
the last decade. Overall, the Al-Lith watershed was vulnerable to droughts in 2001, 2002,
2004, 2005, 2007, 2008, 2013, 2014, 2015, 2017, 2019, and 2020.

(4) VHI results depicted severe drought events in 2001, 2002, 2004, 2007, 2008, 2010,
2015, 2018, and 2019. The values of VHI ranged from a minimum of 19.47 to a maximum of
64.22. The VHI time series depicted severe and extreme drought events in 2002, 2004, 2007,
2008, 2010, 2012, 2013, 2014, 2015, and 2017–2020.

(5) The correlation analyses showed that VHI has a good correlation with VCI, with an
average CC value of 0.51. On the other hand, a minimum correlation with CC value of 0.39
is observed between VCI and TCI. Highest correlation among RSDIs is observed between
VHI and TCI, with a CC value of 0.64.

(6) The correlation between SPEI (at 1-, 3-, 6-, and 12-month) and RSDIs showed a
good agreement between VHI/SPEI-12 and VHI/SPEI-6 with average CC values of 0.74
and 0.67, respectively. The correlation got weaker at smaller time scales, i.e., the average
CC value between VHI/SPEI-3 and VHI/SPEI-1 are 0.42 and 0.37. A lower correlation of
SPEI is observed with VCI, where the maximum CC value of 0.52 is estimated between
VCI/SPEI-12 followed by 0.36 between VCI/SPEI-6. Further, a moderate correlation is
observed between TCI and SPEI.

To conclude, droughts were monitored both from in situ data acquired from MEWA
and remote sensing techniques. The comparison and correlation between in situ drought
index (SPEI) and RSDIs indicated that RSDIs are accurate enough to represent drought
conditions in hyper-arid regions like KSA. Contrasting results are observed for VCI and
TCI, i.e., more severe droughts in the south than north as well as more severe droughts
were observed in the first decade than the second because of interpolation and time series
data, which is averaged for the whole Al-Lith watershed which does not represent the real
scenario. Moreover, the remote sensing technology is found to be very useful in regions
with limited weather stations and data availability. Therefore, the findings of this study
are critical to our understanding of the nature of droughts in arid and hyper-arid regions.
Prospective researchers will find useful information in the study’s findings for resolving
local and regional drought issues and in devising plans for drought mitigation.
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Appendix A

Figure A1. Variation trends in temperature from 2001–2020 at stations (a) TA 109, (b) TA 233, (c) J107,
and (d) J108.

Figure A2. Cont.
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Figure A2. Spatial distribution of NDVI in Al-Lith Watershed retrieved from Landsat Satellites for
the period of 2001–2020 (a–s).
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Abstract: Irrigation water for agriculture in Ningxia during the summer is primarily sourced from
the Yellow River self-flow irrigation region. However, the water conveyance system in this region
is significantly influenced by hydrodynamic factors, morphological factors, human factors, and the
infrastructure used for social purposes, all of which directly impact the irrigation water utilization
coefficient. In order to improve the irrigation water utilization coefficient, reduce suspended sediment
deposition in the water conveyance channels, and mitigate negative effects on the water supply
system, this study implemented a sediment diversion system at the channel head. This is expected
to increase water usage efficiency to a certain degree. Using actual data on hydrodynamic factors
from the Shizuishan section of the Yellow River in Ningxia, a two-dimensional numerical simulation
was performed, and a two-dimensional hydrodynamic model and sediment model of the Shizuishan
section of the Yellow River in Ningxia were developed using MIKE 21. The water conveyance
method at the channel head was simulated under two different operating conditions. Results
indicated that compared to operating condition 1, operating condition 2 had a beneficial effect on
diverting and reducing sediment at the fish mouth of the channel head: the sediment accumulation
thickness of one day in operating condition 1 was 0.16 m, 0.003 m, 0.15 m, and 0.21 m under actual
flow, scenario 1, scenario 2, and scenario 3, respectively; whereas in operating condition 2, the
sediment accumulation thickness of one day was 0.11 m, 0.001 m, 0.09 m, and 0.12 m under the
same conditions, respectively. Additionally, as the computation period lengthened, the sediment
accumulation thickness of operating condition 2 was significantly smaller than that of operating
condition 1. In conclusion, operating condition 2 is superior for the design of the channel head in the
Yellow River self-flow irrigation region.

Keywords: the Yellow River Irrigation District; numerical simulation; river erosion; sediment
movement; diversion channel

1. Introduction

Agricultural modernization in Ningxia has led to the need for more diverse and
stronger infrastructure in irrigation areas. As the focus of irrigation construction shifts,
there is a need to improve quality and efficiency. One challenge in these areas is the
low water level and high sand content of the Yellow River, which causes sediment accu-
mulation in the channels of self-flow irrigation areas and decreases the irrigation water
utilization coefficient. Researchers from within and outside China have studied the water
and sediment movement in these sedimentary basins to develop models and management
strategies that aim to improve the irrigation water utilization coefficient and enhance the
ecological environment.

At the head of the diversion channel are critical hydraulic structures that serve several
purposes. On one hand, they divert water from rivers into channels to fulfill the needs of
water resource projects such as irrigation, hydropower generation, and domestic water
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supply [1,2]. On the other hand, they prevent the entry of coarser sediment particles into
bends, thus reducing erosion and sedimentation, and ensuring normal bend operation. As
a result, numerous scholars have conducted extensive research on the specific hydrody-
namic and sediment transport characteristics of headworks bends, as well as the evolution
patterns of the riverbed [3,4]. Sediment in channels is a significant factor that controls the
morphological and hydraulic characteristics of the riverbed [5,6], and the grain size of the
sediment significantly affects water flow resistance, sediment transport, and the intensity
of riverbed erosion [7,8]. Furthermore, the sediment transport capacity of rivers can vary
with changing downstream hydraulic conditions, and the difference in sediment transport
capacity during flood events can cause changes in riverbed material. In turn, changes
in riverbed material can result in irregular fluctuations in the bed surface and sediment
transport, which are mechanisms of sediment transport in rivers [9–12].

As the mechanisms of river sediment transport continue to be studied by researchers,
Bognold [13] developed equations for the calculation of suspended sediment and bedload
sediment transport rates, which have significantly advanced our understanding of water
and sediment dynamics. Chen et al. [14] conducted an analysis of annual runoff and
sediment sequences, providing insight into the downstream impacts of water conservancy
projects, including gradual weakening of runoff and sedimentation from upstream to
downstream. An et al. [15] examined hydrodynamic data from the segment of the Yellow
River Basin spanning from Ningxia to Inner Mongolia since the 1960s, determining that
channel erosion and sedimentation are primarily the result of both mainstream and tributary
processes. Krishnappan et al. [16] investigated the relationship between sediment particle
size and settling velocity in the sedimentation process; smaller-grained sediments in rivers
are more susceptible to deposition and accumulation due to their reduced volume, which
results in a lower level of erosive force exerted by the water flow. The river current is
composed of two water layers with varying velocities, with higher water speeds leading
to smaller suspended particle sizes. As the particle size decreases, the likelihood of its
being transported and subsequently deposited by the water flow increases. Therefore,
smaller-grained sediment is more readily deposited and accumulated in rivers. Finally,
Jin et al. [17] analyzed sediment initiation and water flow sediment carrying capacity, and
investigated the advancement patterns of sediment in the Yellow River irrigation area.

With the advancement of computational capabilities and the integration of modern
technologies, computer-aided visualization techniques have been employed to investigate
the hydrodynamic behavior and sediment transport characteristics in irrigation chan-
nels [18–20]. In this context, Soulis [21] conducted a study on the Mornos drainage canal in
Athens, utilizing numerical simulations to reproduce the mechanisms of channel damage
in vulnerable areas. Oyarce [22] employed computational fluid dynamics (CFD) models to
numerically evaluate the hydrodynamic characteristics of agricultural drainage channels
with varying geometries, and analyzed the temporal variations in flow direction, velocity,
relative soil moisture content and head pressure during the drainage process. Alomari [23]
conducted physical experiments to investigate the effects of the channel angle on erosion
and deposition in rivers at angles of 30◦, 45◦, 60◦, 75◦, and 90◦. The results indicated that
as the angle of the channel increased, the thickness of the deposited sediment decreased,
with the smallest amount observed at 90◦. However, it was observed that solely altering
the angle of the channel had a limited impact on the hydrodynamic characteristics within
the channel, and was not found to be an effective means of reducing sedimentation and
erosion. The utilization of fish mouth diversion structures at the Dujiangyan irrigation
hub leverages the principle of fish mouth diversion to optimize the distribution of water
flows [24]. This study aims to investigate the impact of the bedform on sediment transport
in the river channel and to adjust unfavorable flow conditions by changing the hydraulic
characteristics of the river through the construction of fish mouth engineering. The Yellow
River engineering channel serves as the subject of this study and the characteristics of fish
mouth diversion and sedimentation at Dujiangyan are taken into consideration. Numerical
simulation methods are employed to design various operating scenarios. The scouring and
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silting characteristics are analyzed under different conditions, reflecting different periods
of water and sediment characteristics as well as incoming water and sediment conditions.

The integration of SMS software and MIKE21 software can enhance the efficiency
and accuracy of river flow and hydrodynamic simulations [25]. In this study, the SMS
software was utilized to partition the grid of the study region under various operational
conditions. The generated grid files were imported into the MIKE 21 software, where the
water dynamics and sediment transport modules were coupled to simulate the evolution
of channel sediment. The sediment accumulation patterns were analyzed and the changes
in channel sediment under different scenarios and operational conditions were compared
in order to identify the optimal operational condition.

2. Materials and Methods

2.1. Introduction to the Study Area

The Yellow River Diversion Project is a significant engineering project aimed at ensur-
ing the ecological water use of the people living along the route. The annual average flow
of the Yellow River in Ningxia can reach 4 billion m3, with the majority of this water being
used for agricultural irrigation. The irrigation period during the summer and autumn
lasts approximately 40–50 days, while the winter period lasts approximately 10–15 days,
resulting in a total irrigation period of approximately 50–60 days per year. The study area
is located in the Shizuishan section of the Yellow River in Ningxia, with a length of 4 km
(as depicted in Figure 1a). In order to measure the hydrodynamic elements of this region,
acoustic Doppler profilers, GPS-RTK systems, and laser grain size distribution instruments
were utilized on 20 October 2017, 20 October 2018, 20 October 2019, and 20 October 2020.
The present study utilizes data collected on October 20, 2020, as an example, with the
MIKE21 software being utilized to interpolate and generate a 3D view of the region based
on the measurements taken at 10 different cross-sections (as shown in Figure 1b).

 
(a) (b) 

Figure 1. Diagram of measurement area, (a) Section division of measurement area; (b) 3D view of
measurement area.

2.2. Mathematical Modelling

The present study employs a grid-based approach to evaluate the hydrodynamic
characteristics of a water intake channel in different operating conditions. Surface Water
Modeling System (SMS) software was utilized to partition the research region into grids,
which were subsequently imported into MIKE 21 for analysis using the hydrodynamic
module and sediment transport module. The sediment transport module is based on the
calculations from the hydrodynamic module.

The present study employs a two-dimensional hydrodynamic model and a non-
viscous mud–sediment coupling model to investigate the study region numerically. The
model is founded upon the incompressible Reynolds-averaged Navier–Stokes equations,
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comprising the continuity equation, the x direction momentum equation, and the y direction
momentum equation.

Hydrodynamic module principle
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The momentum equation in the Y direction is
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where t represents the time variable, while h is the total water depth. The x and y variables
represent the coordinates in a Cartesian coordinate system. The u and v variables represent
the velocity components in the x and y directions, respectively. S refers to the source term,
while f denotes the Coriolis force. The g represents the acceleration due to gravity. The
variable d denotes the static water depth, while represents the density of water. Sxx, Sxy,
and Syy represent the components of the radiation stress, and Us and Vs represent the flow
velocities of the water flow associated with the source term.

The non-cohesive sediment transport calculation is based on a two-dimensional hy-
drodynamic model that considers a single flow event. The calculation employs compre-
hensive sediment transport theory to determine the concentrations of suspended and bed
load sediments.

Control equation of sediment transport model:
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where c is the average sediment concentration in the water depth direction (kg/m3), h is
the water depth (m), Dx and Dy are the dispersion coefficients in the x and y directions,
respectively (m2/s), QL is the single wide source term flow in the horizontal direction
(m3/s/m3); this source can be from a single location, such as a stream or river, or from
multiple locations that contribute to the sediment transport in a similar manner; CL is the
source sediment concentration, g/m3, and S is the scouring/silting item (representing any
additional sources or sinks of sediment) kg/m3/s.

2.3. Model Establishment and Parameter Calibration

Terrain data for the study region were processed using SMS software, with boundary
attributes defined as open and land boundaries. The upstream open boundary extended
701 m in length and contained 48 nodes, while the downstream open boundary was 1004 m
long with 78 nodes. The study region was divided into 15,665 unstructured triangular
grid cells, with a grid resolution of 10 m and a minimum angle of 30◦, as depicted in
Figure 2. Elevation data were based on the 1985 Chinese elevation datum and the 1954
Beijing coordinate system was used for plane coordinates.

In the hydrodynamic module, the annual coefficient of the eddy flow is 0.28; the
roughness coefficient of the river bed is calculated using the Manning coefficient, resulting
in a value of 36 m1/3/s. In the sediment module, flocculation settling is selected as the
settling velocity for the suspended sediment, with a rate of 0.01 kg/m3 and a density of
2650 kg/m3 for the sediment.
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(a)  (b)  

Figure 2. Schematic diagram of the gridding of the measurement area, (a) Schematic of grid division
in upstream study area; (b) Schematic of grid division in downstream study area.

2.4. Model Validation

The present study aims to assess the hydrodynamic and sedimentary characteristics
of the Shizuishan section of the Yellow River using the hydraulic and sediment modules,
respectively, in 2.2.2 and 2.2.3 as of 20 October 2020. The hydraulic data used in this study
were obtained from in situ measurements carried out in the study area. The flow velocity
and direction were determined through the use of acoustic Doppler profilers, the sediment
concentration was estimated using laser particle size distribution instruments, and the
water surface elevation was determined using GPS-RTK measurements. The upstream
flow rate was set to 1861.5 m3, based on the measured data, and the downstream elevation
was set to 1092.3 m. For the sediment module, the upstream sediment concentration was
1.25 kg/m3, and the median grain size was 0.15 mm.

The present study validated the hydrodynamic elements and sediment content of
cross-sections CS4, CS5, CS6, and CS7, as the design of the water channel is situated
between cross-sections CS5 and CS6. The results, shown in Figure 3a, demonstrate that
the simulated flow velocity exhibits a similar trend to the measured flow velocity, with a
maximum deviation of 0.37 m/s. Similarly, the sediment content in Figure 3b exhibits a
maximum deviation of 0.21 kg/m3. These results indicate that the model used in this study
is reliable for simulation purposes, as the fitting error is minimal for both flow velocity and
sediment content.

  
(a) (b) 

Figure 3. Typical section simulation validation chart, (a) Typical section flow velocity validation chart;
(b) Typical section sediment concentration validation chart.
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3. Results

3.1. Experimental Design
3.1.1. Design for Working Conditions

To mitigate the negative impact of sediment on channel sedimentation in self-flow
irrigation areas, two different operating conditions were designed based on the principle
of fish mouth diversion and sediment reduction at the Dujiangyan water conservancy
hub. A fish mouth is a specialized architectural structure designed to manage the velocity
and orientation of fluidic currents (as shown in Figure 4). This study investigated the
utilization of the fish mouth with a diminutive arch-shaped geometrical configuration,
situated near the concave bank of the river channel, thus segmenting the river into an
internal and external flow path. The fluidic flow entering the arch-shaped space through
the upper portion of the fish mouth experienced a reduction in velocity, while the fluidic
flow entering through the lower portion produced a robust fluidic current. Consequently,
the fish mouth serves as a means to optimize fluidic distribution and effectively modulate
fluidic velocity and orientation. Using MIKE 21 software, the erosion dynamics of the two
operating conditions under similar upstream hydrodynamic conditions were simulated.
Operating Condition 1 consisted of a direct water channel with a sediment blocking crest
at the head (as depicted in Figure 4a), 100 m wide, and a channel 800 m long and 20 m
wide with a longitudinal gradient of 1‰. The head of the channel employed a leaky bucket
design to increase the drainage volume. Operating Condition 2 was similar to Condition 1,
but with the addition of a fish mouth at the head of the channel. The sediment blocking
crest connected to the natural river channel was 150 m wide and the outlet was 100 m wide.
The fish mouth was located on the upper side of the bend of the leading river and was
followed by a flying sand weir (as depicted in Figure 4b), 1093 m in elevation and 50 m
wide. The fish mouth divided the flow into inner and outer sections, with the inner section
being 150 m wide and the outer section being 100 m wide.

The design area was gridded using SMS software (as shown in Figure 5). In Condition
1 (as depicted in Figure 5a), the node spacing within the channel was set at 10 m, with a
closer spacing of 5 m at the channel head to enhance the fidelity of this region. In Condition
2 (as shown in Figure 5b), the node division within the channel remained unchanged,
but the node spacing in the vicinity of the fish mouth was decreased to 5 m in order to
accurately reproduce the hydrodynamic and erosion dynamics in this area.

  
(a) (b) 

Figure 4. Design diagram of operating conditions, (a) Design schematic diagram of Operating
condition 1; (b) Design schematic diagram of Operating condition 2.
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(a) (b)

Figure 5. Design area grid division map, (a) Grid division of water diversion channel; (b) Grid
division of fish mouth.

3.1.2. Scenario Setting

According to the temporal distribution of irrigation in the Shizuishan section of the
Yellow River in Ningxia, flow is typically concentrated from July to October and ranges
from 1000 to 2000 m3/s. However, runoff exhibits dynamic changes due to climatic factors.
Therefore, this study establishes three scenarios based on variations in the runoff: Scenario
1 with a flow of 1000 m3/s, Scenario 2 with a flow of 1500 m3/s, and Scenario 3 with a flow
of 2000 m3/s.

3.1.3. Fish Mouth Flow Field Distribution

To investigate the spatial distribution of the water flow near a fish mouth, a simulation
was conducted to examine the flow field at the fish mouth and the head of a channel under
measured flow rates. As illustrated in the flow field vector distribution in Figure 6, the
flow field in the outer river exhibits a lower intensity compared to that in the inner river,
with flow velocities ranging from 0.2 to 0.48 m/s in the outer river and 0.8 to 0.9 m/s in
the inner river, indicating that the outer river exhibits lower kinetic energy and weaker
sediment-carrying capacity. At a discharge of 1861.5 m3/s, the water surface elevation
near the sand-ejecting weir is 1092.8 m and a vortex–like backflow is formed between the
upstream and the head of the channel. Upon a further increase in the flow rate to the critical
value, the water flow overflows the sand-ejecting weir and the sediment is entrained and
transported downstream. Condition 2 reproduces the operation of the Dujiangyan water
conservancy hub, including the functions of water diversion from the outer river and water
discharge from the inner river in an artificial channel, which can be utilized for the purpose
of simulation in this study.

Figure 6. Vector map of flow distribution at the fish mouth.
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3.2. Erosion of Diversion Channels at Different Times

The channel elevation and distribution of sediment concentration can effectively reflect
the erosion behavior under different operating conditions during simulation. In this study,
we simulated the changes in channel elevation and sediment concentration of the measured
stream flow under different operating conditions for a one-day erosion period. As shown
in Figure 7a, both operating conditions 1 and 2 are in a state of sedimentation, and the
sediment thickness increases with the narrowing of the channel in the transitional zone.
However, at the junction between the transitional zone and the 20 m rapid channel, the
increase in hydrodynamic forces causes a sudden decrease in sediment thickness, followed
by an increase. The flow then gradually penetrates deeper into the channel, leading to a
decrease in sediment thickness. The trend of elevation change under operating conditions
1 and 2 is consistent, but the sediment thickness under operating condition 1 is consistently
higher than under operating condition 2. As shown in Figure 7b, the distribution of
sediment concentration in the channel under operating conditions 1 and 2 exhibits some
variations, but the sediment concentration under operating condition 1 is consistently
higher than under operating condition 2 throughout the channel.

  
(a) (b) 

Figure 7. Erosion change map of rivers, (a) Elevation change map of channels; (b) Sediment content
change map of channels.

This study conducted statistical analysis on the average height variation and sediment
concentration along the channel within the study region, as illustrated in Figure 8. The
maximum accumulation thickness under Condition 1 was 0.16 m, while the maximum
accumulation thickness under Condition 2 was 0.115 m. The accumulation thickness was
relatively similar in the area adjacent to the transitional zone and the linear segment, but
the accumulation thickness in the broader region under Condition 2 was significantly lower
compared to that under Condition 1. Additionally, the maximum sediment concentration
under Condition 1 was 1.39 kg/m3, which was significantly higher than the maximum
sediment concentration of 0.477 kg/m3 under Condition 2. Therefore, it can be inferred that
Condition 2 effectively reduced the channel accumulation during a one-day calculation
period when the flow rate was 1861.5 m3/s.
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(a) (b) 

Figure 8. Erosion change map of irrigation channels, (a) Elevation change map of irrigation channels;
(b) Sediment content distribution map of irrigation channels.

3.3. Erosion of Diversion Channels for Different Scenarios

Based on long–term observations of water and sediment movement in the Yellow
River in Ningxia, one–day erosion and sedimentation simulations were conducted for
different flow scenarios (as illustrated in Figure 9). The results showed that the channel
is in a state of sedimentation for all three scenarios (as illustrated in Figure 9a), with the
sedimentation thickness first increasing and then decreasing. In addition, the sedimentation
thickness of condition 1 is greater than that of condition 2 under the same scenario, and
the sedimentation thickness of the channel increases with the increase in flow under the
same condition. The maximum sedimentation thickness of condition 1 is 0.21 m in scenario
3, which is significantly larger than the maximum sedimentation thickness of 0.12 m in
scenario 3 for condition 2. The minimum sedimentation thickness of condition 1 in scenario
1 is 0.003 m, but it is still larger than the minimum sedimentation thickness of 0.001 m
in scenario 1 for condition 2. The sand content of the channel exhibits a similar trend to
that of erosion and change (as illustrated in Figure 9b), with the maximum sand content
for condition 1 being 1.74 kg/m3 at the flow of scenario 3 and the minimum sand content
being 0.38 kg/m3 at the flow of scenario 1. The maximum sand content for condition
2 is 0.65 kg/m3 at the flow of scenario 3, and the minimum sand content is 0.03 kg/m3

at the flow of scenario 1. These findings suggest that condition 2 can effectively reduce
the sedimentation thickness and sand content of the channel in the three scenarios to
some extent.

  
(a) (b) 

Figure 9. Chart showing the changes in erosion caused by different channels in different scenarios,
(a) Erosion depth of channels; (b) Graph of sediment concentration change in a channel.
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3.4. Erosion of the Diversion Channel under Different Scenarios at the Same Time

In this study, the erosion characteristics of an irrigation area with long-term drainage
were simulated under various operational conditions for a period of three days. The
results showed that both operational conditions were in a state of sedimentation under
different scenarios (as illustrated in Figure 10a). In the same scenario, the erosion thickness
along the channel’s straight segment exhibited a sinusoidal decline, with the sedimentation
thickness of operational condition 1 being greater than that of operational condition 2 and
exhibiting larger fluctuations. In scenario 3, the maximum erosion thickness and maximum
erosion difference for operational conditions 1 and 2 reached their maximum values: the
maximum erosion thickness for operational condition 1 was 0.37 m, with a maximum
erosion difference of 0.25 m; the maximum erosion thickness for operational condition 2
was 0.28 m, with a maximum erosion difference of 0.23 m. In scenario 1, the maximum
erosion thickness and maximum erosion difference for operational conditions 1 and 2 were
at their minimum values: the maximum erosion thickness for operational condition 1 was
0.18 m, with a maximum erosion difference of 0.15 m; the maximum erosion thickness for
operational condition 2 was 0.13 m, with a maximum erosion difference of 0.12 m. The
sand content in the channel was found to vary as shown in Figure 10b, reaching a peak near
the intersection of the gradient section and the straight section before decreasing steadily.
The sand content was found to be similar to the value calculated for one day.

  

(a) (b) 

Figure 10. Chart showing the changes in erosion caused by different channels at different times and
in different scenarios, (a) Erosion depth of channels; (b) Graph of sediment concentration change in
a channel.

As the calculation time increases, the sediment accumulation thickness for both work-
ing conditions exhibits an upward trend, while the sediment content in the channel becomes
increasingly stable.

4. Discussion

The present study performed a working condition design for the new water con-
veyance channel at the Shizuishan section of the Yellow River in Ningxia, China. Coupled
simulation calculations were then conducted for various working conditions under various
scenarios. The results showed that, compared to working condition 1, working condition 2
had three impacts on the self-irrigation area of the channel head: (1) the fishtail diverter
divided and sieved the water, introducing outer river water with a lower sand content into
the water supply system; (2) it decreased the flow rate of the channel head, weakening
the water’s sand-carrying capacity and thus reducing the sand content of the channel;
and (3) it changed the hydrodynamic and erosion power changes, ultimately reducing
channel sediment accumulation. The fishtail diverter in working condition 2 was found to
be significantly more effective at preventing sediment accumulation and reducing sand
compared to traditional Yellow River self-flow channel heads. Under scenarios 1, 2, and 3,
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the maximum expected thickness was reduced by 0.05, 0.14, and 0.09 m, respectively, over
a period of three days of erosion. Therefore, it can be concluded that working condition 2
can effectively improve channel sediment accumulation in the irrigation area.

Fish mouths impede the flow of streamflow to some extent [26–29], and there are
significant differences in the hydrodynamic elements of the inner and outer rivers of the
canal. This is due to the fact that the fish mouth causes the outer riverbed of the canal to
sink, while the inner river rises. According to the principle of hydrodynamic circulation,
surface water containing a small amount of sediment flows towards the concave bank, that
is, towards the inner river, and enters the canal via the sand-blocking weir. On the other
hand, bottom water with a high concentration of sediment flows towards the convex bank,
or the outer river, and the sediment is transported into the natural river along the outer
river [30,31]. However, over time, sediment will also accumulate in the inner river due to
canal irrigation. The water in the inner river flows towards the sand-blocking weir with a
high impact force and, due to the top-support effect, forms a vortex near the sand-throwing
weir. The sediment in the water is then ejected from the sand-throwing weir and discharged
into the river through the outlet. When the water volume is high, the water level will
surpass the sand-throwing weir and the sediment will flow over it, exiting the outlet at
a fast speed. The Dujiangyan Irrigation System employs the hydraulic design of a fish
mouth to effectively manage sediment transport, thereby preventing the siltation of the
Inner River and maintaining balance. This system’s design has demonstrated potential
for scientific research and application in various fields [25]. In addition, contemporary
irrigation systems in Africa [32] as well as ancient irrigation system in the Central Negev
desert [33] employ the mechanism of fish mouth structures to achieve equilibrium between
water and sediment.

Therefore, in this study, we apply the aforementioned bend circulation principle to
the design of the head of the canal in the self-flow irrigation area of the Yellow River in
Ningxia, in order to ensure the long-term operation of the water supply system.

The MIKE 21 software is capable of simulating the movement of water and sediment
with high accuracy. The two-dimensional water-sediment coupling model can accurately
depict the movement state of natural rivers through a mathematical model, simulating
the intricate details of the movement of hydrodynamic elements in channels and thus
enabling the visualization of the temporal variation of hydrodynamic elements in the canal
under different hydrological conditions. However, this study also has some limitations.
Firstly, the hydrodynamic elements of the river undergo changes after the addition of the
canal, and field measurements are necessary to assess the changes in the movement of
the natural river under different operating conditions. Secondly, the design in this study
is based on the results of numerical simulation and lacks experimental validation from
actual engineering projects. Therefore, in the forthcoming work it will be necessary to
monitor the actual hydrodynamic elements after the construction of the canal head under
the two operating conditions to ensure that the design of operating condition 2 is effective
in reducing sediment in the canal.

5. Conclusions

The current study aims to simulate the construction of a new channel in the Yellow
River irrigation area using MIKE 21 modeling. Based on observed hydrodynamic data
from the Shizuishan section of the Yellow River in Ningxia, a mathematical model was
developed and its accuracy was verified. The design of the channel’s entrance, referred to
as “Work Condition 1” and “Work Condition 2”, was also carried out, and simulation cal-
culations were performed on the flow under different scenarios. The following conclusions
were obtained:

1. The fish mouth design utilizes the principle of bend circulation to divide the river into
inner and outer channels. The inner channel exhibits higher flow velocity and higher
sediment concentration compared to the outer channel, which has lower flow velocity
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and lower sediment concentration. This design effectively reduces the hydrodynamic
conditions and subsequently lowers the sediment-carrying capacity of the water flow.

2. Simulation calculations using a one-day time frame reveal that under different scenar-
ios, the maximum sediment accumulation thickness for channel condition 1 is 0.21 m,
while channel condition 2 exhibits a maximum sediment accumulation thickness of
0.12 m. These results demonstrate a significant reduction in sediment for channel
condition 2.

3. As erosion time increases, both channel conditions exhibit sediment accumulation.
However, when the calculation time and scenarios are held constant, the sediment
accumulation thickness of channel condition 1 consistently exceeds that of channel
condition 2.

Therefore, after the establishment and verification of the accuracy of the physical
model for channel condition 2 at the head of the channel, it can potentially be applied
in the construction of the head of the self-flowing irrigation channel in the Yellow River
Irrigation District.
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Abstract: Global warming and human activities are complicating the spatial and temporal rela-
tionships between basin hydrologic processes and ecosystem quality (EQ), especially in arid and
semi-arid regions. Knowledge of the synergy between hydrological processes and ecosystems in
arid and semi-arid zones is an effective measure to achieve ecologically sustainable development.
In this study, the inland river basin Ulagai River Basin (URB), a typical arid and semi-arid region
in Northern China, was used as the study area; based on an improved hydrological model and
remote-sensing and in situ measured data, this URB-focused study analyzed the spatial and temporal
characteristics of hydrological process factors, such as precipitation, evapotranspiration (ET), surface
runoff, lateral flow, groundwater recharge, and EQ and the synergistic relationships between them.
It was found that, barring snowmelt, the hydrological process factors such as precipitation, ET,
surface runoff, lateral flow, and groundwater recharge had a rising trend in the URB, since the 20th
century. The rate of change was higher in the downstream areas when compared with what it was
in the upstream and midstream areas. The multi-year average of EQ in the basin is 53.66, which
is at a medium level and has an overall improving trend, accounting for 95.14% of the total area,
mainly in the upstream, downstream southern, and downstream northern areas of the basin. The
change in relationship between the hydrological process factors and EQ was found to have a highly
synergistic effect. Temporally, EQ was consistent with the interannual trends of precipitation, surface
runoff, lateral flow, and groundwater recharge. The correlation between the hydrological process
factors and EQ was found to be higher than 0.7 during the study period. Spatially, the hydrological
process factors had a synergistic relationship with EQ from strong to weak upstream, midstream, and
downstream, respectively. In addition, ecosystem improvements were accelerated by government
initiatives such as the policy of Returning Grazing Land to Grassland Project, which has played an
important role in promoting soil and water conservation and EQ. This study provides theoretical
support for understanding the relationship between hydrological processes and ecological evolution
in arid and semi-arid regions, and it also provides new ideas for related research.

Keywords: hydrological processes; ecosystem quality; synergistic effect; arid and semi-arid regions;
Ulagai River Basin

1. Introduction

Global climate change and human-activity-induced changes in water resources have
had a tremendous consequence on the ecological environment and socioeconomics, thus
attracting attention from the international community [1,2]. This is particularly obvious
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in arid and semi-arid regions with fragile regional ecosystems [3–5]. The evolution and
relationship between hydrological processes and ecosystems in arid and semi-arid regions
in a continuously changing environment is not clearly understood. The present research
on hydrology–ecology mainly focuses on the relationship between a certain hydrological
process factor and an ecological indicator, without focusing on the relationship between
the linkage between the whole hydrological process factor and the ecosystem quality.
Therefore, it is particularly important to understand the relationship between the whole
hydrological processes and ecosystem quality (EQ) in arid and semi-arid regions and to
design related policies. The results of the study can deepen the understanding of the
relationship between hydrological processes and ecosystems in arid and semi-arid regions
and provide a reference for the sustainable use of water resources and environmental
protection in the region.

As arid and semi-arid regions are deeply inland and far from the ocean, not only is
data about them deficient but the measurement data from meteorological and hydrological
stations in regions such as the Ulagai River Basin and Xilin River Basin are lacking, [6].
Therefore, hydrological models and remote-sensing monitoring have become important
monitoring tools. The Soil and Water Assent Tool (SWAT) model is a semi-distributed
hydrological model developed by the United States Department of Agriculture and the Agri-
cultural Research Service. The SWAT model can simulate the hydrological cycle of a basin
and quantify the response of basin hydrological processes to changing environments [7].
This model is popular given its systematic and precise simulation and computational capa-
bilities. Forecast simulations have been performed in several basins around the world, and
they have achieved excellent results [6,8]. For example, Idrees et al. [9] used a modified
SWAT model to simulate the extent of changes in hydrological process factors for different
land-use types. The results of their study showed that the conversion of barren land to agri-
cultural land had resulted in a decrease in surface runoff and water production, whereas the
groundwater flow, lateral flow, and evapotranspiration (ET) had increased. Luan et al. [10]
used the SWAT model to evaluate the impact of land use on hydrological processes (ET
and streamflow) in the river suite irrigation area. They also evaluated dispersion and river
flow, using the SWAT model.

Being a major data source for the study of several ecological and environmental issues,
such as grassland degradation and soil sanding, remote-sensing data facilitate the quick
identification of spatial and temporal changes as they relate to environmental quality [9].
Xiao et al. [11] used remote-sensing data concerning biomass and vegetation cover to study
if and how the status of EQ in Inner Mongolia changed from 2000 to 2010 and explore
whether and how it was affected by climate change and human activities. Wei et al. [12]
explored the spatial and temporal characteristics of environmental evolution in inland river
basins in the arid regions of Northwest China with the help of integrated remote-sensing-
related indicators. However, previous studies have mostly focused on specific years and
mostly taken into account aspects such as ecosystem service function, stability evaluation,
ecosystem health evaluation, and ecosystem pattern. Only a few of these studies have
carried out an integrated evaluation of EQ changes in arid and semi-arid regions over a
long period. Recently, national and international researchers conducted several studies on
the relationship between the hydrological cycle and EQ [13,14]. Zhang et al. [15] conducted
a quantitative study of the relationships among soil, groundwater depth, and vegetation
in terms of how these relationships have implications for EQ changes and found that the
community cover, community height, leaf projection cover, and leaf area index (LAI) had
all decreased significantly with increasing groundwater depth. Hao et al. [16] analyzed the
different ecosystems of Inner Mongolia to which different grazing ban policies applied and
found that the trend of positive influences of precipitation on these ecosystems had begun
to weaken because of overgrazing. Liu et al. [17] analyzed the effect of different vegetation-
change scenarios on ET in the Mongolian Plateau and discovered that ET increased with an
improvement in vegetation. It was also found that changes in terrestrial ecosystem quality
are strongly related to the relevant hydrological process factors such as precipitation, ET,
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and groundwater [18–20]. However, most of the existing studies have focused on the
relationship between singular hydrological process factors and ecosystems. The research
on the synergistic evolution of overall hydrological processes and ecosystems in arid and
semi-arid regions is scarce.

Located in XilinGol League, Inner Mongolia, China, the Ulagai River Basin (URB)
is a typical inland river basin in an arid and semi-arid region. As the second largest
inland river basin in China, it is also an important livestock base and green ecological
barrier [20]. The URB is subject to natural conditions and has a fragile ecological system,
which is particularly sensitive to changing environmental conditions [21]. Due to climate
change causing an increase in precipitation, temperature, and ET and the continuing
influence of reclamation, irrigation, and grazing, a gradual increase has been observed in
water shortage, river disruption, sanding of grasslands, and salinization in the URB. This
poses a great threat to extant water resources and ecological balance in arid and semi-arid
regions [21,22]. Moreover, some studies have shown that arid and semi-arid regions, such
as the Mongolian Plateau, may experience more pronounced rises in temperature and
more frequent droughts, leading to further water scarcity and deteriorating EQ [23,24].
Against the backdrop of global warming and the impact of human activities, the synergistic
evolution of hydrological processes and EQ in the URB needed to be analyzed, for such
an analysis could provide a basis for the conservation of water resources and sustainable
ecological development of inland river basins in arid and semi-arid regions.

Although some progress has been made in the study of a certain hydrological process
factor and ecosystem, relatively few studies have been conducted on the synergistic relation-
ship between the whole hydrological cycle process and EQ. Specifically, this study aimed
to achieve the following: characterize the evolution of the hydrological process factors in
the inland river basins of arid and semi-arid regions from 2001 to 2019; comprehensively
evaluate EQ of inland river basins in arid and semi-arid zones from 2001 to 2019; and
explore the characteristics and differences in the synergistic evolution of the hydrological
process factors and EQ in different river sections in the inland river basins of arid and
semi-arid zones. The findings of this study can deepen the awareness of eco-hydrological
processes and evolution patterns in semi-arid inland river basins, thereby providing an
empirical basis for the sustainable use of water resources and ecological protection in
semi-arid inland river basins.

2. Materials and Methods

2.1. Study Area

The URB is located at the junction of three leagues: XilinGol League, Xing’an League,
and Tongliao City in Inner Mongolia in China. Its geographical location falls between
116◦20′ and 119◦59′E and 44◦02′ and 46◦42′N. The total basin area is 38,549.25 km2, making
it the largest inland river basin in Inner Mongolia and the second largest in China [25]. The
annual average temperature here is about −0.9 ◦C, and the annual average precipitation is
250–400 mm, with the precipitation showing a decreasing trend from east to west. The URB
terrain is at a higher elevation on its southern side than it is on its northern side, sloping
from southeast to northwest, whereas the basin’s average elevation is 990 m. The basin is
composed of the Ulagai River, Gori Khan River, and Sayarchen Gorak River, and the multi-
year average runoff from 2001 to 2019 was 1.28 m3/s. The URB’s vegetation type is mainly
grassland, with meadow grassland in the northeast, typical grassland in the southwest,
and a transition zone between the two parts [25–27]. To analyze the hydrological situation
and EQ of the URB’s different river sections, the river was divided into the following three
sections: upstream (above the Ulagai reservoir), midstream (Ulagai reservoir to Hushao
Temple), and downstream (Hushao Temple to Solinnur, Figure 1b). The 35 subbasins (sub)
divided by the SWAT model are defined as upstream, midstream, and downstream by
location (Figure 1d).
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Figure 1. Overview map of (a) geographic location, (b) elevation, (c) land use/cover, and (d) subbasin
delineation of the URB.

2.2. Data Sources

In this study, the Digital Elevation Model (DEM), land use/cover, soil, meteorology,
and in situ measured runoff data were used to construct the SWAT hydrological model for
the URB (Table 1). The DEM data were obtained from NASA with a spatial resolution of
30 m. Furthermore, to effectively characterize the surface cover changes—for instance, the
degradation of grassland caused by overgrazing—the land-use/cover data were obtained
via a secondary classification system for 2000, 2010, and 2020, with a spatial resolution of
1 km. The data were downloaded from the Environmental Resources and Data Center of
the Chinese Academy of Sciences. Soil data were obtained from the Harmonized World
Soil Database, with a spatial resolution of 1 km. Weather data were provided by the China
Meteorological Data Network, with regard to daily precipitation, maximum/minimum
temperatures, wind speeds, and relative humidity from 1981 to 2020 for the URB and
12 adjoining meteorological stations. The SWAT model employed multi-objective calibra-
tion, using measured runoff, field sampling, and Moderate Resolution Imaging Spectrora-
diometer (MODIS) snow cover and ET data. The measured runoff data were monthly runoff
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data, which were obtained by collating data between 1981 and 2000 from the Nunaimiao
hydrological station and between 2004 and 2012 from the Ulagai reservoir inlet hydrological
station. Field sampling data were converted into runoff based on the field measurements
of water level and cross-section. The remote-sensing snow cover and ET data were selected
from MODIS MOD10A1 and MOD16A2 products from 2001 to 2019, respectively, both
having a spatial and temporal resolution of 8 days/500 m.

Table 1. Introduction to basic data sources.

Usage Data Name Data Type Resolution Source

For building
SWAT model

ASTER DEM Raster 30 m NASA (http://www.nasa.gov
(accessed on 15 February 2020))

Soil types Raster 1 km HWSD (http://westdc.westgis.ac.cn/data/
(accessed on 15 February 2020))

Land-use/cover Raster 1 km

Environmental Resources and Data Center of
Chinese Academy of Sciences

(http://www.resdc.cn
(accessed on 15 February 2020))

Meteorology Station Daily scale
China Weather Data Network

(http://data.cma.cn
(accessed on 15 May 2021))

Measured runoff Station Daily scale Hydrological Yearbook of Inner Mongolia
Autonomous Region

Snow cover Raster 500 m/8 days MODIS MOD10A1
ET Raster 500 m/8 days MODIS MOD16A2

For evaluating
ecosystem quality

GPP Raster 500 m/8 days MODIS MOD17A2
NDVI Raster 1 km/30 days MODIS MOD13A3
LAI Raster 500 m/8 days MODIS MOD15A2

LCT Raster 500 m/year
MODIS MCD12Q1

(https://lpdaacsvc.cr.usgs.gov/appeears/
(accessed on 15 May 2021))

Population
Density Raster 1 km

Demographic Data Network
(https://www.worldpop.org/

(accessed on 25 May 2021))

Additionally, remote-sensing data, basic geographic information, and socioeconomic
data were selected to evaluate the spatial and temporal variation characteristics of EQ in the
URB from 2001 to 2019 (Table 1). Among these, remote-sensing data mainly included gross
primary productivity (GPP), normalized difference vegetation index (NDVI), LAI, and land-
cover type (LCT) data from 2001 to 2019. The MODIS MOD17A2, MOD13A3, MOD15A2,
and MCD12Q1 products were selected and downloaded free of charge from the NASA Land
Processes Distributed Data Archive Center, respectively. The spatiotemporal resolutions of
MOD17A2, MOD13A3, and MOD15A2 products were 8 days/500 m, 30 days/1 km, and
8 days/500 m, respectively. The basic geographic-information data were vector boundary
layers of the URB, and the socioeconomic data focused on population density, based on the
population data network, with a spatial resolution of 1 km.

2.3. Methods
2.3.1. SWAT Model

The SWAT model is a long-time basin-distributed hydrological model [18]. It has been
extensively used for the simulation and prediction of hydrological processes at the basin
scale, with excellent simulation results [28]. In this study, the improved SWAT model by
Meng [29] and Luo [30], including an improved snowmelt module and subbasin partition-
ing, was used to enhance the model simulation accuracy by adding cumulative temperature
determination conditions to separate rainfall and snowfall types, while also adding land-
use/cover-change nodes to the basin partitioning. The SWAT model automatically divides
the URB into 35 subbasins and 76 hydrological response units. The model warm-up period
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for this study area was 1976–1980, the calibration period was 1981–2000, and the validation
period was 2001–2012.

The SWAT model can be used to simulate hydrological processes at three times scales,
such as daily, monthly, and annual, and the monthly scale is used in this study. The SWAT
model determines the basin boundary and divides subbasins by analyzing the slope, slope
direction, and elevation of the DEM (Digital Elevation Model) of the study area. On this
basis, the hydrological processes under different land-use types and different soil types
under climate change are simulated based on the input hydrometeorological data, land-
use types, and soil data [10]. To improve the model accuracy, the SUFI-2 algorithm of
SWAT-CUP software was used in this study for analyzing model parameter sensitivity
and uncertainty [10]. The Nash–Sutcliffe efficiency (NSE), percentage bias (PBIAS), and
coefficient of determination (R2) were used to evaluate the model simulation accuracy. The
evaluation index equations are as follows [10]:

NSE = 1 −
∑ (Q i

obs − Qi
sim

)2

∑ (Q i
obs−Qmean)2 (1)

PBIAS =
∑(Q i

obs − Qi
sim

)
∑ Qi

obs ∗100 (2)

R2 =
n
(

∑ Qi
obsQi

sim − ∑ Qi
obs ∑ Qi

sim
)2[

n ∑
(
Qi

obs
)2 − (

∑ Qi
obs
)2
][

n ∑
(
Qi

sim
)2 − (

∑ Qi
sim

)2
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where Qi
obs is the measured value in m3/s, Qi

sim is the simulated value in m3/s, Qmean is
the measured average value in m3/s, and n is the measured data amount.

The simulation results were again validated with MODIS snow cover and ET data to
meet multiple objectives. These results were also evaluated using PBIAS and R2.

2.3.2. Ecosystem Quality Assessment

In this study, ecosystem quality (EQ) was comprehensively assessed through three
components: ecosystem productivity index (EPI), ecosystem stability index (ESI), and
ecosystem bearing capacity index (EBCI). The EPI, ESI, and EBCI were constructed based
on multisource data, such as remote-sensing data and socioeconomic data from 2001 to
2019, and were later assigned weights of 0.40, 0.28, and 0.32, respectively, using the entropy
value weighting method [31]. A comprehensive EQ evaluation model for the URB was
established by the weighted summation method [32]. To better reflect the spatial and
temporal variation characteristics of EQ caused by the hydrological process factors and
external factors, EQ was normalized, and the range of values was delineated at (10,100). Its
computation is in Equations (4)–(7), which are as follows:

EPIt,k =

⎧⎨⎩
10 Gt,k ≤ Gmin

10 + (Gt,k − Gmin)× a Gmin< Gt,k< Gmax
100 Gt,k ≥ Gmax

a =(100 − 10)/(Gmax−Gmin)

(4)

where EPIt,k is the dimensionless index of productive capacity in year t of image k, and its
larger value indicates a higher level of ecosystem productive capacity; Gt,k is the total GPP
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in year t of image k; Gmax and Gmin are the upper and lower limits of the GPP multi-year
average, respectively; and a is the stretching constant.

ESIt,k =

⎧⎨⎩
10 cvt,k ≥ cvmax

10 + (cvmax − cvt,k)× a cvmin < cvt,k < cvmax
100 cvt,k ≤ cvmin

a =(100 − 10)/(cvmax − cvmin)

(5)

where ESIt,k is the stability index of the image element k in year t—the larger the value, the
higher is the stability of the region; cvt,k denotes the coefficient of variation of the annual
mean value of GPP in year t of the image element k; cvmax and cvmin are the upper and
lower limits of the multi-year mean coefficient of variation of GPP, respectively; and a is
the stretching constant.

EBCIt,k =

⎧⎨⎩
10 EHIt,k ≤ EHImin

10 + (EHIt,k − EHImin)× a EHImin< EHIt,k< EHImax
100 EHIt,k ≥ EHImax

a =(100 − 10)/(EHImax − EHImin)

(6)

where EBCIt, k is the stability index of the image element k in year t—the larger the value,
the higher is the stability of the region; EHIt,k denotes the coefficient of variation of the
annual mean value of GPP in year t of the image element k; EHImax and EHImin are the
upper and lower limits of the multi-year mean coefficient of variation of GPP, respectively;
and a is the stretching constant.

EQ =
n

∑
i=1

wi × yi (7)

where EQ is the EQ index; yi represents EPI, ESI, and EBCI indices; and wi is the weight of
each index.

The Natural Break clustering method was then used to classify EQ into the following
five levels: (I) 0–45 as the lowest level, (II) 45–50 as the lower level, (III) 50–55 as the medium
level, (IV) 55–65 as the higher level, and (V) 65–100 as the highest level, taking into account
the URB’s actual situation and the degree of influence of each index on the ecosystem.

2.3.3. Trend Analysis

This study employed the unidimensional linear regression method to analyze the
spatial and temporal trends of the URB’s hydrological processes and EQ from 2001 to 2019.
The calculation equation [33] is shown below:

Slope =
n ∑n

i=1(iEQi)− ∑n
i=1 i ∑n

i=1 EQi

n ∑n
i=1 i2 − (∑n

i=1 i)2 (8)

where n is the length of study, EQi is the mean value of EQ in year i, and Slope indicates the
trend of change. If Slope > 0, the EQ is increasing; otherwise, it is decreasing. If Slope = 0,
the EQ remains unchanged.

2.3.4. Analysis of Synergistic Effects

(a) Gray correlation analysis

The gray correlation analysis determines whether the relationship between sequences
is close or not, mainly through the similarity of their curve geometries [34]. If the curves are
more similar, the correlation between the series is greater, and if it is the other way around,
the correlation is lower. This method is frequently used in the analysis of influence factors
because it is less demanding and less computationally intensive than the mathematical
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and statistical methods. This method was used in this study to calculate the correlation
between the hydrological process factors and EQ. The calculation formula is as follows:

γoi =
1
n

n

∑
k=1

ξoi(k) (9)

ξoi(k) =
min

i
min

k
Δoi(k)+ρ max

i
max

k
Δoi(k)

Δoi(k)+ρ max
i

max
k

Δoi(k)

Δoi = |xo
′(k)− xi

′(k)|, i = 1, 2, . . . , m; k = 1, 2, . . . , n
(10)

where γoi is the gray correlation degree, ξoi is the gray correlation coefficient, and ρ is the
discrimination coefficient.

(b) Pearson correlation analysis

The Pearson correlation analysis between the URB’s EQ and hydrological process
factors from 2001 to 2019 was conducted at the subbasin scale. Moreover, the correlation
coefficients were tested for significance to reflect the degree of spatial and temporal correla-
tion between EQ changes and hydrological process factors and identify the response of EQ
to changes in the hydrological process factors. The calculation equation [35] is as follows:

r =
∑n

i=1
(
EQi − EQ

)
(yi − y)√

∑n
i=1

(
EQi − EQ

)2
√

∑n
i=1(yi − y)2

(11)

where r is the correlation coefficient between EQ and the hydrological process factors; EQi
and yi are the mean values of EQ and the hydrological process factors in year i, respectively;
EQ and y are the mean values of EQ and the hydrological process factors in 19 years,
respectively; and i represents the number of years. If r > 0, the EQ and the hydrological
process factors are positively correlated and vice versa; the larger the r, the stronger the
correlation between them.

3. Results

3.1. SWAT Model’s Performance in the URB

As shown by analyzing the SWAT model simulation results, the evolutionary trends
of runoff simulated values and measured values were generally consistent (Figure 2a). The
model captured the seasonal variation characteristics of runoff, which are higher in summer
and absent in winter, in the basin. The runoff from 1981 to 2000 was much higher than that
from 2001 to 2012. The highest value, up to 134 m3/s, was generated in 1998. The NSE, R2,
and percentage bias (PBIAS) for the calibration periods were 0.62, 0.62, and 18.8%, and for
the validation periods, they were 0.71, 0.72, 8.5%, respectively. In this study, the validation
period captured the peak runoff better compared to the calibration period. This may be due
to the fact that the runoff variation in the study area during the calibration period is more
drastic and the runoff process is more complex than that in the validation period, so the
simulation results in the validation period are better than those in the calibration period.
Moreover, the model-extracted snow area and ET matched the curve trend of MODIS snow
and ET, and the correlation coefficients of both were higher than 0.8 (Figure 2b,c).

247



Remote Sens. 2023, 15, 1785

 

Figure 2. Comparison of SWAT model simulation results and measured discharged (a), MODIS snow
cover (b), and evapotranspiration (c) in the URB.

3.2. Spatiotemporal Change Characteristics in the URB’s Hydrological Process Factors

Upon analyzing the changes in the URB’s hydrological process factors during 2001–2019,
it was found that precipitation, ET, surface runoff, and lateral flow showed a non-significant
increasing trend at the rates of 1.24 mm/yr, 1.66 mm/yr, 0.47 mm/yr, and 0.056 mm/yr,
respectively (Figure 3a–d). Groundwater recharge showed a significant increasing trend
at a rate of 0.18 mm/yr (p < 0.1), while snowmelt showed a non-significant decreasing
trend at a rate of 0.01 mm/yr (Figure 3e). Precipitation, surface runoff, lateral flow, and
groundwater recharge all peaked in 2012, while evaporation and snowmelt peaked in 2013.

Figure 3. Characteristics of interannual variation in the URB’s hydrological process factors from 2001
to 2019: (a) precipitation, (b) ET, (c) surface runoff, (d) lateral flow, (e) groundwater recharge, and
(f) snowmelt.
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Great spatial heterogeneity was observed in the spatial distribution and variation rates
of the URB’s different hydrological process factors (Figure 4). The annual total precipitation
in the upstream region of the basin was 457.48 mm, and it gradually decreased from east to
west; the overall precipitation variation rate was high, with the fastest variation reaching
up to 2.033 mm/yr in the upstream, followed by that in the downstream (1.601 mm/yr;
see Figure 4a). The ET in the southern part of URB reached 272.79 mm, while the ET in
the northwestern part was lower at 261.74 mm, showing a decreasing trend from south
to north. The rate of change was faster in the URB’s upstream and southern parts and
slower in its northern and downstream parts (Figure 4b). The runoff deep high value
of the URB’s runoff was mainly concentrated in the wetland area, decreasing from the
wetland to the surrounding area. The rate of change varied similarly, with the downstream
wetland area increasing at a rate of 8.23 mm/yr (Figure 4c). The lateral flow in the high-
elevation area was higher than that in the low-elevation area; the lateral flow gradually
increased from the URB’s wetland to the surrounding area, and the change rate showed the
same spatial distribution characteristics as the lateral flow did (Figure 4d). Groundwater
recharge reached 3.12 mm in the URB’s upper and western parts and was lower in the
URB’s southern and northern parts (1.5 mm); the rate of change was also faster in the higher
groundwater recharge areas (Figure 4e). Snowmelt was observed more in the URB’s upper
and middle reaches, with the highest value being up to 16 mm. Snowmelt in the middle
and south of the lower reaches was less than 6.27 mm. This shows a distribution pattern
of gradual decrease from the URB’s northeast to southwest, with the rate of decrease of
snowmelt being higher in the middle (Figure 4f). Overall, the precipitation and snowmelt
in the URB’s upper and middle reaches were high and the runoff depth was small; for the
downstream region, it was just the opposite, and the rate of change in the downstream was
higher than that in the upstream.

Figure 4. Spatial distribution and change rate of the URB’s hydrological process factors, 2001–2019:
(a) precipitation, (b) ET, (c) runoff depth, (d) lateral flow, (e) groundwater recharge, and (f) snowmelt.
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3.3. Spatiotemporal Change Characteristics of the URB’s EQ

The URB’s EPI showed a significant increasing trend, at a rate of 0.43/yr from 2001 to
2019 (p < 0.01). EPI’s highest and lowest values were 46.60 and 31.33, which appeared in
2012 and 2007, respectively (Figure 5a). The multi-year mean value was 41.01, indicating
that the URB’s overall EPI was low. The higher EPI areas were mainly distributed across
the arable land dominant upstream and the downstream southern woodland coverage
areas. Most areas in the middle and downstream areas had a lower EPI. The area of Level I
accounted for 74.7% of the total area; Level II accounted for 11.51%; and Levels III, IV, and
V accounted for 7.42%, 5.31%, and 1.08%, respectively (Figure 5b).

Figure 5. Interannual variation of the URB’s EPI, ESI, and EBCI from 2001 to 2019 (a); the spatial
distribution of EPI level (b); the spatial distribution of ESI level (c); and the spatial distribution of
EBCI level (d).

The URB’s ESI showed a non-significant increasing trend at a rate of 0.12/yr during
the study period. The ESI was the highest in 2007, with a value of 73.43, and lowest in
2011, with a value of 63.79 (Figure 5a). The multi-year average ESI value reached 67.85,
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which is at a high level overall. As seen in Figure 5c, the URB’s ESI from 2001 to 2019
had only two levels, Levels IV and V, with area ratios of 14.95% and 85.05%, respectively.
Level V was mainly distributed in the downstream area, where grassland cover chiefly
prevailed, whereas Level IV was mainly distributed in the upstream area, where arable
land chiefly prevailed.

The URB’s EBCI showed a non-significant increasing trend at a rate of 0.74/yr. Over
the last 19 years, the highest value of EBCI was 88.09, which occurred in 2012, and the lowest
value was 24.24 in 2007 (Figure 5a). The multi-year average value was 57.45, which is at a
higher level. The higher EBCI areas were mainly spread over the upstream and downstream
southern areas. On the other hand, the EBCI value in the downstream northwestern area
was lower, which is similar to the spatial distribution characteristics of the EPI (Figure 5d).

As shown in Figure 6a, the EQ of the URB from 2001 to 2019 showed an overall
distribution pattern of high in the northeast and southwest and low in the northwest. The
best EQ levels were concentrated in the upstream and downstream southern areas of the
URB, whereas the worst EQ areas lay in and around the wetlands of the downstream area.
The highest area percentage at the medium level (III) was 51.97%, mainly in the central part
of the URB downstream dominated by grass cover, which was followed by the higher level
(IV) area percentage of 32.54, mainly in the upstream and midstream areas of the basin and
the southern downstream parts.

Figure 6. Ecosystem quality levels (a) and its area proportion in different river segments (b) in the
URB from 2001 to 2019.

Statistics about area percentages at different EQ levels, across different reaches of the
basin, revealed that levels III and IV have been dominant over the last 19 years. However,
the difference in EQ among the reaches was relatively significant (Figure 6b). The areas
of levels III and IV decreased gradually from the upstream to the downstream of the
URB, whereas the areas of levels I and II increased subsequently. Moreover, the level
IV area in the URB upstream had the highest proportion of 89.96%, whereas the level
III area in the downstream region occupied the highest proportion of 54.80%. Thus, the
upstream and midstream areas are at a high level, whereas the downstream area is at an
intermediate level.

The URB’s EQ showed a significant increasing trend at a rate of 0.39/yr from 2001
to 2019 (p < 0.01; see Figure 7a). EQ was the highest in the year 2012 at 64.91, fluctuating
widely before and after. It was the lowest in 2007, at 40.99. The overall EQ was seen to be
at a higher level between 2012 and 2017. Its multi-year average was 53.66, indicating that
the URB’s overall EQ is at a medium level. The URB’s overall EQ showed an increasing
trend (slope > 0) over the last 19 years, accounting for 95.14% of the total study area.
Within this area, 19.75% was dominated by a significant increase (p < 0.05), mainly in the
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upstream and northern parts of the downstream. On the other hand, 4.86% of the URB
showed a decreasing trend (p < 0.05), scattered across the southern and western parts of
the downstream. On account of various river channels, EQ in the URB upstream increased
significantly, whereas downstream EQ increased non-significantly, but a few downstream
areas still showed decreasing trends (Figure 7b).

Figure 7. Interannual trends (a) and spatial distribution (b) of ecological quality in the URB from
2001 to 2019.

3.4. Synergy Relationships between the URB’s Hydrological Process Factors and EQ

First, we analyzed the synergy between the hydrological process factors and EQ,
using the gray correlation method. It was found that a high synergy existed between the
URB’s hydrological process factors and EQ during the study period, with correlations
ranging between 0.7 and 0.95, along with large differences between different river sections
(Figure 8a). The correlations of ET, precipitation, and lateral flow with EQ in the last
19 years were 0.95, 0.91, and 0.90, respectively. Taking 2012, the year with the largest EQ
fluctuations, as a reference point, the synergy between EQ and the hydrological process
factors was found to be high until 2012, with a mean value of 0.89, but decreased later,
with a mean value of 0.83. The synergy between EQ and precipitation was found to be the
highest in 2007 and the lowest in 2017 for ET. Moreover, surface runoff, lateral flow, and
groundwater recharge mainly occurred during the early part of the study period; snowmelt
was mainly concentrated toward the latter part (Figure 8b). The synergy between the
hydrological process factors and EQ at the subbasin scale is in Figure 8c, with synergy
coefficients higher than 0.8. The areas with lower synergy were mainly located west and
south of the downstream regions. The synergy between the hydrological process factors
and EQ decreased from the upstream to the downstream regions, according to varied river
sections (Figure 8d).

Second, we analyzed the synergistic effects of the hydrological process factors and
EQ through Pearson correlation analysis. Between 2001 and 2019, except for individual
subbasins where ET was negatively correlated with EQ (e.g., Subbasins 11 and 13), all
ET-EQ correlations were positive. Moreover, a large spatial heterogeneity was observed
in the synergy (Figure 9). The synergistic relationships between precipitation, evapotran-
spiration, surface runoff, lateral flow, and groundwater recharge and EQ are stronger in
the northwestern part of the downstream of the basin and in the southern part of the
upstream—both around 0.5. However, the synergistic effect of the two is weaker in the
southern part of the downstream. The synergistic coefficient between lateral flow and EQ
in the lower reaches of the basin reached around 0.7. The synergy between snowmelt and
EQ in the northwest region of the downstream basin was 0.37, while that in the upstream
was only 0.1. In general, the synergy between the hydrological process factors and EQ was
found to be stronger in the downstream basin and weaker in the upstream basin during
2001–2019.

252



Remote Sens. 2023, 15, 1785

Figure 8. Synergy of hydrological process factors and EQ in URB (a), the most synergistic hydrological
process factors (b), spatial distribution of average synergy between hydrological process factors and
EQ in subbasins (c), and synergy between hydrological process factors and EQ system in different
river sections (d).

Figure 9. Synergy relationships between the URB’s hydrological process factors and EQ: (a) precipita-
tion, (b) ET, (c) runoff depth, (d) lateral flow, (e) groundwater recharge, and (f) snowmelt.
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To gain deeper insights into the key hydrological process factors that account for
EQ improvements in the URB, we further compared the synergistic coefficients of the
hydrological process factors with EQ in each subbasin. As seen in Figure 10, EQ had
the highest synergy with groundwater, lateral flow, ET, and snowmelt in the basin. The
synergy between EQ and lateral flow is high in most parts of the basin, with the highest
value of 0.626. It passed the significance test, accounting for 53.37% of the total basin area,
mainly concentrated downstream. This was followed by groundwater, which accounts for
22.5% of the total basin area, and is mainly concentrated in the Southeastern URB. ET was
most synergistic in the central part of the downstream area. The strongest synergy with
snowmelt was mainly seen in the southern part of the downstream area. In general, the
strongest synergistic hydrological process factors in the URB’s upstream and midstream
areas were relatively singular and mainly related to groundwater. However, the strongest
synergistic factors in the URB downstream area were more diverse.

Figure 10. Spatial distribution of the URB’s strongest synergistic hydrological process factors for
EQ changes.

4. Discussion

4.1. Intrinsic Mechanisms of Change in the Synergistic Relationship between the URB’s
Hydrological Process Factors and EQ

Regional climatic changes and surface cover can effectively alter the distribution
and balance of water and energy at the surface, thus affecting hydrological processes [3].
Precipitation, as the main source of hydration in arid and semi-arid regions, has a self-
evident influence on hydrological processes [15]. The URB has experienced a warming
and wetting trend from 2001 to 2019, with an increase in precipitation and that peaked
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in 2012 [36]. ET, surface runoff, lateral flow, and groundwater recharge also showed an
increasing trend, and all of them peaked during the peak precipitation year or the year after.

The overall EQ trend in the URB is improving, showing an increasing trend from
2001 to 2012 and a decreasing trend from 2012 to 2019. Taking 2012, the year with large
fluctuations in EQ, as the point, it was found that the synergy between EQ and hydrological
process factors was high until 2012, with a mean value of 0.89, and then the synergy
decreased, with a mean value of 0.83. As shown in the figure, from 2012 to 2019, the average
correlations between ET, groundwater recharge, lateral flow, precipitation, and surface
runoff and EQ have all decreased compared to 2001–2011. In particular, the average changes
in lateral flow, precipitation, and surface runoff are large (Figure 11). This suggests that the
climate and hydrology condition are not the only forces affecting EQ that were improved
in this inland river basin and that there may be external drivers as well. Over the entire
study period, EQ was consistent with the trends of the hydrological process factors such as
precipitation, surface runoff, lateral flow, groundwater recharge, and snowmelt. In the arid
and semi-arid regions, where water resources are scarce, increased precipitation results in a
rise in the hydrological process factors such as surface runoff and groundwater recharge.
This, in turn, provides more water for vegetation growth and can appropriately alleviate
the stress caused earlier by water scarcity [35,37,38]. Additionally, the acceleration of the
water circulation increases the activity of soil microorganisms to a certain extent, promotes
vegetation nutrient absorption, and provides better growth conditions for vegetation [36].
In spatial terms, the URB’s EQ is consistent with the spatial distribution characteristics of
the precipitation changes there; thus, the precipitation in the region influences its EQ [36].

Figure 11. Interannual synergistic relationship between hydrological process factors and EQ.

The URB is covered mainly by grassland cover types, which are strongly dependent
on hydrological processes [37]. The degree of synergy between the URB’s hydrological
process factors and EQ over the last 19 years was higher than 0.7. The synergy between
the two was lower in the western and southern parts of downstream URB. This synergy
coincides chiefly with EQ decline areas, indicating that EQ decline is influenced by external
factors other than the hydrological process factors. The synergy between the hydrological
process factors and EQ gradually decreased from upstream to downstream areas, indicating
that the URB’s EQ is affected more by external disturbances in the downstream areas than
those in the upstream areas. The highest synergy was seen between the improvement of
EQ and the groundwater, lateral flow, ET, and snowmelt. The increasing trend of ET, a
water-consumptive state in the hydrological cycle, may harm vegetation [15,39]. However,
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the increase in precipitation, runoff, and groundwater recharge in the URB was larger
than the increase in ET during the study period, thus offsetting the water loss while still
increasing the amount of water available for vegetation [40,41].

4.2. Extrinsic Disturbances Affecting Changes in the Synergistic Relationship between the URB’s
Hydrological Processes and EQ

In the context of the URB warming and humidifying, EQ was dominated by a non-
significant increase from 2001 to 2019. Even under supportive conditions for vegetation
growth, EQ degradation still occurred in the southern and northwestern parts of the down-
stream region of the URB. Moreover, the results of this study showed that the correlation
between the URB’s hydrological process factors and EQ was relatively high until 2012 and
decreases afterward. This suggests that climatic and hydrological conditions are not the
only forces affecting improved EQ in this inland river basin and that external drivers may
be behind it as well.

The rapid economic development and continuous population increase led to urban
expansion and increased industrial and mineral land use, and road construction gener-
ates ecological problems such as increased water consumption and the destruction of
grasslands [42]. This study collected data about population and socioeconomic indicators
(primary, secondary, and tertiary industries) from the statistical annals of the URB, during
2001–2019, in an attempt to explore the link between the hydrological process factors and
EQ (Figure 12) and found that the population and socioeconomic indicators in the URB
showed an increasing trend. In particular, the secondary sector surged in 2010 and reached
its peak in 2012. This might have been the main reason for the slight decrease in EQ and
increase in the correlation with the URB’s hydrological process factors after 2012. On the
one hand, the construction of hydraulic reservoirs and industrial mines has contributed
to the socioeconomic development of the region; on the other hand, the construction of
factories and reservoirs has cut off the main streams of the river basin and occupied a
large area of grassland, increasing the conflict between man and nature [15]. To achieve
sustainable ecological development, the Inner Mongolia Autonomous Region has taken
corresponding ecological restoration measures, such as the Beijing–Tianjin Sand Source
Control Project, the Natural Forest Protection Project, and the policy of Returning Grazing
Land to Grassland Project, mainly by reducing livestock and resting grazing [43,44]. As
seen in Figures 12b and 13, the trends of gradual reduction of total livestock, reduction of
arable land area, and subsequent increase of grassland, as well as forest land area, from 2001
to 2019 confirm the effective implementation of this series of measures. This has improved
the carrying capacity of grasslands to some extent, by reducing the consumption of water
resources and the burden on grasslands [45]. Ecological protection measures taken by the
government have accelerated EQ improvement, as well as soil and water conservation, in
the URB.

 
Figure 12. Economic indicators (a) and population (b) of the URB.
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Figure 13. Land-use/cover net change in the URB in different periods: (a) 2000–2005, (b) 2005–2010,
(c) 2010–2015, and (d) 2015–2020.

5. Conclusions

This study was based on the improved SWAT model and comprehensive EQ assess-
ment model. It analyzed the spatial and temporal distribution and evolutionary charac-
teristics of the URB’s hydrological process factors and EQ and identified their synergy
relationships and their internal and external change-driving mechanisms. The main conclu-
sions of this study are as follows:

(1) Besides snowmelt, the URB’s hydrological process factors, such as precipitation,
ET, surface runoff, lateral flow, and groundwater recharge, are all on the rise; the
change rate of the downstream hydrological process factors is higher than that of the
upstream factors.

(2) During 2001–2019, the URB’s EPI, ESI, and EBCI showed an increasing trend. The EPI
and EBCI were higher in the upstream and southern part of the downstream, whereas
the ESI of the downstream is higher than that of the upstream. The multi-year average
value of the URB’s EQ was 53.66, which is a medium level. The overall EQ trend
improved, accounting for 95.14% of the total basin area, of which, of these, 19.75%
were dominated by significant increases, mainly in the upstream and northern part of
the downstream.

(3) The synergistic relationship between the hydrological process factors and EQ is strong.
The degree of synergy between the URB’s EQ and the hydrological process factors
was higher than 0.7 during the study period. Moreover, this relationship showed
obvious spatial heterogeneity, with a decreasing distribution pattern from upstream to
downstream areas. The URB’s EQ improved with an increase in precipitation, surface
runoff, lateral flow, and groundwater recharge. Furthermore, the ecological protection
measures proposed by the government have accelerated the improvement of the
ecosystem, which plays an important role in promoting soil and water conservation
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and EQ. Local governments should continue to strengthen the implementation of
ecosystem protection strategies.

Overall, this study focused on the whole hydrological cycle process and evaluated EQ
in an integrated way, with three aspects, i.e., EPI, ESI, and EBCI. On this basis, we analyzed
the synergistic evolutionary relationship between hydrological processes and EQ in arid
and semi-arid regions. This study contributes to theoretical support for understanding the
synergistic relationship between ecological changes and hydrological processes in arid and
semi-arid regions and provides new ideas for related studies. In this study, the external
drivers of hydrologic processes and EQ were not discussed comprehensively. Therefore,
the quantitative effects of industrial and mining exploitation, agricultural irrigation, and
extreme weather on the relationship between hydrological processes and ecosystem quality
should be considered in future studies.
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Abstract: Various methods have been developed to estimate daily crop coefficients, but their per-
formance varies. In this paper, a comprehensive evaluation was conducted to estimate the crop
coefficient of winter wheat in four growth stages based on the observed data of weighing-type lysime-
ters and the high-precision automatic weather station in the Wudaogou Hydrological Experimental
Station from 2018 to 2019. The three methods include the temperature effect method, the cumulative
crop coefficient method, and the radiative soil temperature method. Our results suggest that the
performance of these methods was different in each individual growth stage. The temperature effect
method was better in the emergence-branching (RMSE = 0.06, r = 0.80) and heading-maturity stages
(RMSE = 0.16, r = 0.94) because the temperature is suitable for crop growth during most of these two
periods. The cumulative crop coefficient method was better in the greening-jointing (RMSE = 0.16,
r = 0.88) and heading-maturity stages (RMSE = 0.20, r = 0.91) because this method is closely related
to crop growth, which is vigorous during these two stages. The radiative soil temperature method
was better in the emergence-branching (RMSE = 0.20, r = 0.35) and branch-overwintering stages
(RMSE = 0.25, r = 0.52) as the energy balance can be ensured by the relatively high level of the effec-
tive energy during these periods. By comparing the estimation accuracy indices of the three methods,
we found that the temperature effect method performed the best during the emergence-branching
stage (RMSE = 0.06, MAE = 0.06, r = 0.80, dIA = 0.88), branch-overwintering stage (RMSE = 0.13,
MAE = 0.11, r = 0.44, dIA = 0.55), and heading-maturity stage (RMSE = 0.16, MAE = 0.13, r = 0.94,
dIA = 0.97), while the cumulative crop coefficient method performed best during the greening-jointing
stage (RMSE = 0.16, MAE = 0.13, r = 0.88, dIA = 0.89). Based on this result, an integrated modelling
procedure was proposed by applying the best method in each growth stage, which provides higher
simulation precision than any single method. When the best method was adopted in each growth
stage, the estimated accuracy of the whole growth process was RMSE = 0.13, MAE = 0.09, r = 0.98,
dIA = 0.99.

Keywords: crop coefficient; multiple methods; difference research; temperature effect method;
cumulative crop coefficient method; radiative soil temperature method

1. Introduction

According to data released by the Food and Agriculture Organization (FAO), the FAO
Food Price Index in 2021 reached a 10-year high, and the incidence of moderate or severe
food insecurity in the world increased from 22.6% in 2014 to 30.4% in 2020. In 2020, an
estimated 720 to 811 million people, or 9.5 to 10.7 percent of the global population, will
face food insecurity [1]. Agricultural irrigation accounts for 87% of total water use [2], but
water resources are increasingly in short supply under the pressure of climate change and
population growth [3]. Accurate estimation of crop water demand is of great significance
for rational allocation of water resources.

Water 2023, 15, 1395. https://doi.org/10.3390/w15071395 https://www.mdpi.com/journal/water
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Wheat is one of the main crops grown and eaten worldwide [4]. From 2011 to 2020,
the global average annual planting area reached 219 million hectares, with an annual yield
of 733 million tons [5]. Wheat is the second main crop in China [6]; the wheat output of
China accounts for approximately 18% of the world’s output (ranking first in the world),
and the sown area accounts for approximately 10% of that of the world [7]. Winter wheat
is sown from October to November and harvested from May to June of the following
year. Planting is performed in dry conditions with little rainfall. Accurate estimation
of the daily evapotranspiration and crop coefficient of winter wheat is conducive to the
formulation of accurate irrigation schemes to improve the yield of winter wheat and save
water resources [8].

Evapotranspiration is an important link in the hydrological cycle and is involved in
the surface energy balance and water balance [9]. The crop coefficient is the ratio of actual
evapotranspiration and reference evapotranspiration of crops, reflecting the influence of
soil, vegetation, and hydrometeorological conditions on evapotranspiration and is often
used to calculate crop water requirements [10]. Finding a suitable crop coefficient estimation
method is of great significance for further estimating actual evapotranspiration, making
irrigation plans, and efficiently utilizing water resources.

Domestic and foreign scholars have performed much research on crop coefficient
estimation methods. In the crop coefficient estimation method recommended by FAO,
the basic crop coefficient constant is obtained by plotting tabulated values and drawing
the crop coefficient curve with a simplified straight-line connection at each growth stage.
Finally, the daily crop coefficient value is modified according to wind speed and humidity.
This method has been widely adopted and is very convenient for practical application.
Er-Raki et al. [11] directly used the basic crop coefficient provided by the FAO Irrigation
and Drainage Paper No. 56 (FAO-56) to calculate the soil surface vegetation coverage.
Vu et al. [12] compared the crop coefficient recommended by the FAO-56 with the field
monitoring value and found that the applicability of the recommended value of FAO-56
was affected by crop variety and growth stage. Ali et al. [13] simulated the Kc curve using
four crop coefficient estimation methods, including the FAO-56 recommendation method.
Many scholars estimate the crop coefficient according to the crop growth character index
and calculate the crop coefficient by measuring the leaf area, plant height, vegetation index,
etc. The daily scale is usually obtained by linear interpolation. This method of estimation
has strong physical significance and high accuracy. Spiliotopoulos et al. [14] estimated
crop coefficients based on the vegetation index using mapping ET of high resolution and
internalized calibration models. Zhang et al. [15] established two Ks regression models
for crop coefficient inversion and found that the model established by TCARI/RDVI had
a better correlation with the crop coefficient. Park et al. [8] estimated crop coefficients for
cropland and mixed forest based on the normalized vegetation index, leaf area index, and
soil moisture.

The above methods use the same method to estimate the crop coefficient at each growth
stage, but the growth of crops at different growth stages and the hydrometeorological
factors closely related to their growth are different. It is difficult to obtain satisfactory
results with a single method, so it is necessary to select the best method to estimate the
crop coefficient at different growth stages. Based on the temperature effect, Wang et al. [16]
established a daily crop coefficient estimation model of winter wheat and summer maize
with a high fitting degree and found that the estimation effect of each growth stage was
different. Tang et al. [17] conducted a remote sensing study by UAV and found that
there was a good linear correlation between biomass and the cumulative crop coefficient
and cumulative transpiration in different treatment areas. Kool et al. [18] evaluated the
dual source energy balance (TSEB) model using net radiation, soil heat flux, and surface
temperature. Paulino et al. [19] proposed an empirical model based on linear multiple
regression to estimate the number of fruits per plant of two sweet oranges and concluded
that the estimates of the model varied greatly in the three growth stages. At present, most
related studies from both China and abroad focus on crop coefficient estimation methods.
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Few studies have compared the differences in crop coefficient estimation methods in
different growth stages and provided the best estimation methods in each growth stage. In
this paper, we attempt to select three methods, the temperature effect method, cumulative
crop coefficient method, and radiative soil temperature method, to compare and analyse
their estimation results to provide the best estimation method of crop coefficients in different
growth stages and provide a basis for the accurate calculation of evapotranspiration in each
growth stage.

2. Materials and Methods

2.1. Experimental Area Profile

The measured experimental data of the Wudaogou hydrological experimental station
were used. The station is located in Guzhen County (33◦09′ N, 117◦21′ E), Bengbu City,
Anhui Province, in the southern Huaibei Plain, covering an area of 27,000 square meters. It
is affected by a subtropical humid monsoon climate and temperate subhumid monsoon
climate, with rain and heat at the same time. The rainfall in the area where the experimental
station is located varies greatly from year to year and is unevenly distributed within the
year. A total of 61.8% of the annual rainfall is concentrated in the flood season (from June
to September). The main soil types in the experimental area are sandy ginger black soil
and yellow tidal soil, and the main crops are wheat, corn, and soybean. There are 62 sets
of nonweighing ground lysimeters and 10 sets of large-scale weighing lysimeters in the
station, which can record submersible evaporation, soil moisture, and evapotranspiration.
A high-precision weather station is set up about 50 m south of the weighing lysimeters to
automatically monitor net radiation, soil heat flux, air temperature, wind speed, and other
hydrometeorological elements every 10 min.

According to the measured hydrometeorological data from 1986 to 2021, the average
annual temperature is 15.2 ◦C, the average annual rainfall is 929.5 mm, the average annual
flood season rainfall is 582.4 mm, the average annual evaporation is 931.9 mm, the average
annual relative humidity is 79.28%, the average annual sunshine duration is 1723.6 h, the
average annual wind speed is 1.6 m/s, the annual average surface temperature is 18.4 ◦C,
the annual average soil temperature at 10 cm is 16.6 ◦C, the maximum temperature is
41.5 ◦C, and the minimum temperature is −22.7 ◦C.

2.2. Experimental Facilities and Data Selection

The difference in the three crop coefficient estimation methods at different growth
stages and daily scales was studied by using a large-scale lysimeter. The winter wheat
relies on rainfall. The lysimeter model is FR101A, the resolution is 0.025 mm, the soil
column height is 4.0 m, the diameter area is 2.0 square meters, and the weight data are
automatically collected every 10 min. The depth of the groundwater level in the shallow
buried area of the Huaibei Plain is 1 to 3 m [20], and the root system of winter wheat is
concentrated within 1 m [21]. Therefore, experimental data from a lysimeter with a burial
depth of 1.0 m and measured data from high-precision weather stations were selected from
11 November 2018 to 4 June 2019.

2.3. Division of Growth Stages

According to the actual growth status of winter wheat, the whole growth process
can be divided into four stages: emergence-branching stage, branch-overwintering stage,
greening-jointing stage, and heading-maturity stage. The classification of the stages is
based on the characteristics of the crops in each stage. The parameters of each stage are
shown in Table 1.
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Table 1. Growth stage division of winter wheat.

Stage of Growth Emergence-Branching Branch-Overwintering Greening-Jointing Heading-Maturity

Date 2018/11/11–2018/12/1 2018/12/2–2019/2/21 2019/2/22–2019/4/19 2019/4/20–2019/6/4
Number of days 21 82 57 46
ET0 at this stage 21.80 mm 67.80 mm 216.48 mm 220.67 mm

Proportion of total ET0 4.14% 12.87% 41.10% 41.89%
Average daily ET0 1.04 mm 0.83 mm 3.80 mm 4.80 mm

2.4. Crop Coefficient, Actual Evapotranspiration, and Reference Evapotranspiration

The crop coefficient is divided into a single crop coefficient and a double crop coeffi-
cient. The single crop coefficient involves fewer factors and has higher estimation accuracy,
so the single crop coefficient is selected. According to the definition of the crop coefficient,
the calculation method is shown in Equation (1):

Kc =
ET
ET0

(1)

where Kc is the crop coefficient; ET is the actual evapotranspiration (mm); and ET0 is the
reference evapotranspiration (mm).

The actual evapotranspiration (ET) of winter wheat is automatically recorded by a
large weighing lysimeter, and the difference between the total weights of two adjacent
collections is the actual evapotranspiration of the stage. The basic principle is shown in
Equation (2):

P + I + Eg = Pa + ET + R + ΔS (2)

where P is the rainfall (mm); I is the irrigation water volume (mm); Eg is the diving
evaporation (mm); Pa is the deep leakage rate (mm); ET is the actual evapotranspiration
(mm); R is the volume of runoff (mm); and ΔS is the soil storage variable (mm).

Xu et al. [22] studied East China and concluded that the FAO-56 Penman–Monteith
formula was the best method to calculate the daily reference evapotranspiration. The
reference evapotranspiration is calculated by Equation (3):

ET0 =
0.408Δ(Rn − G) + γ 900

T+273 u2(es − ea)

Δ + γ(1 + 0.34u2)
(3)

where ET0 is the reference evapotranspiration (mm × d−1); Rn is the net surface radiation
(MJ × m−2 × d−1); G is the soil heat flux (MJ × m−2 × d−1); T is the average daily
temperature (◦C); u2 is the average wind speed at 2 m above the ground (m × s−1); es is
the saturated vapour pressure (kPa); ea is the actual vapour pressure (kPa); Δ is the slope of
the saturated vapour pressure and temperature curve (kPa × ◦C−1); and γ is the dry and
wet table constant (kPa × ◦C−1). Data are from a high precision weather station.

The change curves of actual evapotranspiration and reference evapotranspiration are
shown in Figure 1.

2.5. Crop Coefficient Estimation Method and Evaluation Indices
2.5.1. Temperature Effect Method

The temperature effect model proposed by Huang et al. [23] effectively simulated the
dynamic process of crop growth and development. Wang et al. [16] used the model structure
to construct the calculation formula of the crop coefficient considering the temperature of
three basis points, as shown in Equation (4):

Kc = K0e−(
T−T0
β )

2

(4)

where Kc is the crop coefficient; K0 is the crop coefficient at the optimum temperature;
T is the average temperature (◦C); T0 is the optimum temperature for physiological and
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ecological processes such as crop growth and photosynthesis (◦C); and β is the parameter
to be estimated.

Figure 1. The variation of the actual evapotranspiration (ET) and reference evapotranspiration (ET0).

Since an invalid temperature is not conducive to crop growth, the average temperature
T is calculated using the eliminating invalid temperature method [24,25], where invalid
temperature values above the upper limit and below the lower limit are discarded, as
shown in Equation (5):

T =
T′

x + T′
n

2
(5)

The specific calculation method of each parameter in Equation (5) is

T′
x = max

(
Tx, Tupper

)
, T′

n = min
(
Tn, Tupper

)
, Tx = max(Tmax, Tbase), Tn = max(Tmin, Tbase) (6)

where Tupper is the upper limit temperature (◦C), which is 30 ◦C and Tbase indicates the
lower limit temperature (◦C), which is 3 ◦C [26–28].

The optimal values of unknown parameters K0, T0, and β were determined by SPSS
software combined with the least squares method and sequential quadratic programming.
First, the logarithm of Equation (4) can be obtained:

ln(Kc) = ln(K0)− T2
0

β2 +
2T0

β2 × T − 1
β2 × T2 (7)

Setting y = ln(Kc), x = T, a1 = ln(K0)− T2
0

β2 , a2 = 2T0
β2 , and a3 = − 1

β2 , Equation (7) is
converted to

y = a1 + a2 × x + a3 × x2 (8)

Let Y =

⎡⎢⎣y1
...

yn

⎤⎥⎦, A =

⎡⎣a1
a2
a3

⎤⎦, and X =

⎡⎢⎣1 x11 x21
...

...
...

1 x1n x2n

⎤⎥⎦; if there are n samples in the whole

growth process, then Equation (8) can be expressed as

Y = AX (9)

The unknown parameter values in the whole growth process were estimated by
combining the least square method:

Â =
(

XTX
)−1

XTY (10)
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The inverse solution is:

K̂0 = e
â0− â1

2

4−â2 , T̂0 = − â1

2 × â2
, β̂ =

√
− 1

â2
(11)

The obtained value of Equation (11) is set as the initial value, the sequential quadratic
programming method is used to solve the optimal value of each parameter by SPSS software,
and the objective function is set as

min
m

∑
i=1

(
K̂c − Kci

)2 (12)

The constraint conditions are Tbase < T0 < Tupper, 0 < K0 < 3, and β > 0.

2.5.2. Cumulative Crop Coefficient Method

Many scholars have used cumulative evapotranspiration [29] and cumulative growth
days [30] when estimating crop coefficients and evapotranspiration; in this study, we
attempted to use cumulative crop coefficients. The cumulative crop coefficient refers to the
cumulative value of the crop coefficient since the day of planting and only considers the
days after seeding. This method does not require data on hydrometeorological elements
and crop growth traits and is convenient for use in areas where observation conditions and
crop growth data are scarce.

The curves of the cumulative crop coefficient and days after seeding of winter wheat
are shown in Figure 2, showing an approximately elongated “S” shape. The daily growth
value of the cumulative crop coefficient is that of the daily crop coefficient, which increases
first and then decreases with time after seeding. The cumulative crop coefficient model
was constructed as follows:

Kc cumulative = a + b × cos(c × D) + d × sin(c × D) (13)

where Kc cumulative is the cumulative crop coefficient value, D is the number of days after
seeding, and a, b, c, and d are unknown parameters.

Figure 2. Correlation curve between cumulative crop coefficient and days after seeding.

For each growth stage, the least square method was used to estimate the values of
unknown parameters a, b, c, and d. According to the definition of the function, its derivative
is the daily value function of the crop coefficient, and the value of the crop coefficient on
day D can be obtained by substituting D into it. The derivative of Equation (13) with respect
to D can be obtained as follows:

Kc = −b × c × sin(c × D) + d × c × cos(c × D) (14)
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2.5.3. Radiative Soil Temperature Method

According to the study of Zhao et al. [31], there is a strong positive correlation between
the crop coefficient and evapotranspiration and a significant positive correlation between
evapotranspiration and effective energy. Effective energy (Rn-G) refers to the difference
between net radiation and soil heat flux, showing a trend of being smaller at the emergence-
branching and branch-overwintering stages and gradually increasing at the greening-
jointing and heading-maturity stages (Figure 3). During the whole process of winter wheat
growth, the correlation coefficient between the crop coefficient and effective energy reached
0.75, showing a strong correlation. The correlation coefficient between the crop coefficient
and soil temperature from 0 to 160 cm decreased from 0.66 to 0.70 with increasing depth, as
shown in Figure 4.

Figure 3. The variation of the effective energy (Rn-G).

Because FAO-56 notes that the penetration depth of temperature waves in soil is 0.1
to 0.2 m at a daily scale, soil temperatures at 0 and 10 cm were selected. The following
mathematical model was constructed involving radiation and soil temperature:

Kc = me(Rn−G−n| D0
D10

|) (15)

where D0 is the surface temperature (◦C); D10 is the soil temperature of 10 cm (◦C); and
m and n are unknown parameters. The meanings of the other symbols are the same as
described previously.

Parameter calibration was realized by the particle swarm optimization algorithm.
After finding the unknown parameter values corresponding to the daily scale data of each
group in the whole growth process, the best unknown parameter of each growth stage
was obtained by taking the average value. The particle swarm optimization algorithm
is a random optimization method based on swarm intelligence proposed by Kennedy
and Eberhart [32]. Each particle represents a candidate solution, and the problem is
solved through assessment of the simple behaviour of individual particles and information
interaction within the group.
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Figure 4. Correlation between crop coefficient and soil temperature from 0 to 160 cm(a to h in the
figure represent the deepening of soil depth).

When solving the optimization problem, each particle has two state quantities, position
and velocity, and the fitness value determined by the objective function. The flight process
of the particle is the search process of the individual. In each iteration, individual particles
record the best solution found as the current individual extreme value and share it with
other particles. The best of all individual extreme values is the extreme value of the current
group. All particles adjust their speed and position according to their current individual
extreme value and the current group extreme value of the whole particle swarm [33].
Optimization was achieved using MATLAB software programming.

According to the properties of the model, in the two-dimensional solution search space,
there is a particle swarm composed of 500 particles. The position of the particle swarm of
the k-th iteration in the solution space is assumed to be expressed as Equation (16), and the
flight velocity is expressed as Equation (17):

Xk
i =

(
Xk

i1, Xk
i2

)
, i = 1, 2, . . . , 500 (16)

Vk
i =

(
Vk

i1, Vk
i2

)
, i = 1, 2, . . . , 500 (17)
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At this time, the best individual historical position of the jth (j < 500) particle is(
Xk

mj1, Xk
mj2

)
, and the best historical position of the particle swarm is

(
Yk

m1, Yk
m2

)
. Then, at

the k + 1 iteration, the velocity and position update formula of the particle is as follows:⎧⎨⎩Vk+1
j1 = w × Vk

j1 + c1 × r1 ×
(

Xk
mj1 − Xk

j1

)
+ c2 × r2 ×

(
Yk

m1 − Xk
j1

)
Vk+1

j2 = w × Vk
j2 + c1 × r1 ×

(
Xk

mj2 − Xk
j2

)
+ c2 × r2 ×

(
Yk

m2 − Xk
j2

) (18)

{
Xk+1

i1 = Xk
i1 + Vk+1

j1

Xk+1
i2 = Xk

i2 + Vk+1
j2

(19)

w = wmin + (wmax − wmin)× ger − times
ger

(20)

where w is the inertia weight, representing the influence of the current speed on the next
movement; c1 and c2 are the learning factors, which measure the influence of the current
individual historical optimal position and group historical optimal position on the next
movement; r1 and r2 are random numbers from 0 to 1; wmin is the initial inertia weight with
a typical value of 0.4; wmax is the inertia weight under the maximum number of iterations
with a typical value of 0.9; ger is the maximum number of iterations; and times indicates
the current iteration times.

2.5.4. Indices of Evaluation

The evaluation indices include the root mean square error (RMSE), mean absolute
error (MAE), correlation coefficient (r), and consistency index (dIA), which are used to
evaluate the error and consistency between the estimated value and the measured value of
each estimation method. See Equation (21) to Equation (24) for the calculation formula of
each index.

RMSE =

√
∑n

i=1(xi − yi)
2

n
(21)

MAE =
∑n

i=1|xi − yi|
n

(22)

r =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2

(23)

dIA = 1 − ∑n
i=1(xi − yi)

2

∑n
i=1(|xi − y|+ |yi − y|)2 (24)

where xi is the estimated value of Kc; yi is the actual value of Kc; i is the sample ordinal
number, i = 1, 2, . . . , n; x is the mean value of Kc’s estimation; y is the mean value of Kc;
and n is the number of samples of the estimated value.

Generally, the closer the root mean square error RMSE and mean absolute error MAE
are to 0, the smaller the error and the greater the accuracy. The closer the correlation
coefficient r and the consistency index dIA are to 1, the closer the estimated value of the
model is to the actual value, and the stronger its estimation ability is.

3. Results

Based on the observation data of the large weighing lysimeter and the data of the high-
precision weather station from 2018 to 2019, the parameters of the three crop coefficient
estimation models were calibrated. The unknown parameter values obtained by each
method under different growth stages are shown in Table 2.
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Table 2. Values of unknown parameters in different growth stages and methods of winter wheat.

Method Temperature Effect Cumulative Crop Coefficient Radiative Soil Temperature

Parameter K0 T0 β a b c d m n

Emergence-branching stage 1.24 3.00 18.84 158.62 −7.17 0.07 6.54 4.19 5.87
Branch-overwintering stage 1.96 3.00 12.42 216.22 −79.90 0.01 60.00 0.26 3.21

Greening-jointing stage 2.14 20.95 6.61 180.23 −382.33 −0.01 26.25 0.41 5.62
Heading-maturity stage 2.39 20.37 5.16 227.91 0.02 −0.05 43.52 6.16 8.81

3.1. The Differences and Causes of Crop Coefficient Estimation by Different Methods

The results of the three methods for estimating winter wheat crop coefficients are
shown in Figures 5 and 6. The results of the temperature effect method were better in the
emergence-branching and heading-maturity stages, followed by the greening-jointing and
branch-overwintering stages. The reason was that there were fewer ineffective temperatures
below 3 ◦C and above 30 ◦C during the emergence-branching and heading-maturity stages,
and crop growth was not inhibited by ineffective temperatures. The cumulative crop
coefficient method was better in the greening-jointing and heading-maturity stages but
worse in the emergence-branching and branch-overwintering stages. The reason was that
the cumulative crop coefficient method is closely related to crop growth [17], the leaf index
in the greening-jointing and heading-maturity stages was larger [34,35], and crop growth
and development were vigorous. The radiative soil temperature method was better in the
emergence-branching and branch-overwintering stages but worse in the greening-jointing
and heading-maturity stages. The reason was that the effective energy cannot maintain
a high level during the greening-jointing and heading-maturity stages, and the balance
between energy and soil temperature was difficult to ensure.

Figure 5. Results of three methods for estimating winter wheat crop coefficients.

3.2. Determination of The Best Estimation Method for Each Growth Stage

The accuracy of the results of the three methods in each growth stage are shown in
Table 3 (in this table, “TE” means the temperature effect method, “CCC” means the cumu-
lative crop coefficient method, and “RST” means the radiative soil temperature method).
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Figure 6. The estimated crop coefficient and actual crop coefficient during four growing stages.

Table 3. The estimated precision index value of the results of three methods in each growth stage.

Stage Emergence-Branching Stage Branch-Overwintering Stage Greening-Jointing Stage Heading-Maturity Stage

Index RMSE MAE r dIA RMSE MAE r dIA RMSE MAE r dIA RMSE MAE r dIA

TE 0.06 0.06 0.80 0.88 0.13 0.11 0.44 0.55 0.23 0.18 0.70 0.83 0.16 0.13 0.94 0.97
CCC 0.08 0.07 0.57 0.69 0.13 0.12 0.36 0.51 0.16 0.13 0.88 0.89 0.20 0.16 0.91 0.94
RST 0.20 0.19 0.35 0.51 0.25 0.22 0.52 0.61 0.93 0.79 0.70 0.49 1.10 0.91 0.43 0.49

The estimation results were compared, and the best estimation method was selected
according to the following steps. In the first step, the root mean square error, RMSE, and
mean absolute error, MAE, were compared, and the method with the smallest error was
selected. In the second step, when the difference in the root mean square error and mean
absolute error between multiple methods are no more than 0.03, the correlation coefficient
r and consistency index dIA are compared in turn to select the method with the strongest
estimation ability. In the third step, if the difference between the correlation coefficient and
consistency index is less than 0.03, then the cumulative crop coefficient method should be
directly adopted according to the principle of minimum required observations if it is still in
the option list. Otherwise, the most appropriate method should be adopted in combination
with the graph.

According to the above criteria, the temperature effect method during the emergence-
branching stage was the best (RMSE = 0.06, MAE = 0.06, r = 0.80, dIA = 0.88), followed by
the cumulative crop coefficient method, and the radiative soil temperature method was
inferior. The temperature effect method during the branch-overwintering stage was the
best (RMSE = 0.13, MAE = 0.11, r = 0.44, dIA = 0.55), followed by the cumulative crop
coefficient method, and the radiative soil temperature method was inferior. The cumulative
crop coefficient method during the greening-jointing stage was the best (RMSE = 0.16,
MAE = 0.13, r = 0.88, dIA = 0.89), followed by the temperature effect method, and the
radiative soil temperature method was inferior. The temperature effect method during
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the heading-maturity stage was the best (RMSE = 0.16, MAE = 0.13, r = 0.94, dIA = 0.97),
followed by the cumulative crop coefficient method, and the radiative soil temperature
method was inferior.

The estimated accuracy index of the whole growth process when a single method or
the best method is used in each growth stage is shown in Table 4. When a single method
was used in each growth stage, the cumulative crop coefficient method was the best method
for estimating the whole growth process (RMSE = 0.25, MAE = 0.20, r = 0.93, dIA = 0.96),
followed by the temperature effect method, and the radiative soil temperature method
was inferior. When the cumulative crop coefficient method and temperature effect method
were used, the correlation coefficient and consistency index of the whole growth process
estimation results were both greater than 0.80, which met the accuracy requirements of
estimation and could be used for crop coefficient estimation. When the radiative soil
temperature method was used, the correlation coefficient and consistency index of the
whole growth process estimation results were only 0.50 and 0.69, respectively, which could
not meet the requirement of estimation accuracy.

Table 4. The estimation precision index values of the whole growth process.

Method Root Mean Square Error Mean Absolute Error Correlation Coefficient Consistency Index

TE 0.34 0.25 0.87 0.93
CCC 0.25 0.20 0.93 0.96
RST 0.79 0.58 0.50 0.69

The best 0.13 0.09 0.98 0.99

When the best method was used in each growth stage, the four precision indices were
better than when a single method was used; the root mean square error and mean absolute
error were 0.13 and 0.09, and the correlation coefficient and consistency index reached 0.98
and 0.99, far greater than 0.80. The best method has higher estimation ability and accuracy
than the single method and can be used for crop coefficient estimation.

4. Conclusions and Discussion

1. The results of the temperature effect method were better in the emergence-branching
and heading-maturity stages, followed by the greening-jointing and branch-overwintering
stages. The reason was that the ineffective temperature was lower during the emergence-
branching and heading-maturity stages, and crop growth was not inhibited. The cumulative
crop coefficient method was better in the greening-jointing and heading-maturity stages
but worse in the emergence-branching and branch-overwintering stages. The reason was
that the cumulative crop coefficient method is closely related to crop growth, and the crops
grew vigorously during the greening-jointing and heading-maturity stages. The radiative
soil temperature method was better in the emergence-branching and branch-overwintering
stages but worse in the greening-jointing and heading-maturity stages. The reason was
that the effective energy could not maintain a high level during the greening-jointing and
heading-maturity stages, and the energy balance was difficult to ensure.

2. The temperature effect method during the emergence-branching stage was the best,
followed by the cumulative crop coefficient method, and the radiative soil temperature
method was inferior. The temperature effect method during the branch-overwintering
stage was the best, followed by the cumulative crop coefficient method, and the radiative
soil temperature method was inferior. The cumulative crop coefficient method during the
greening-jointing stage was the best, followed by the temperature effect method, and the
radiative soil temperature method was inferior. The temperature effect method during the
heading-maturity stage was the best, followed by the cumulative crop coefficient method,
and the radiative soil temperature method was inferior.

3. When a single method was used in each growth stage, the cumulative crop coeffi-
cient method was the best, followed by the temperature effect method, and the radiative
soil temperature method was inferior. The cumulative crop coefficient method and temper-
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ature effect method meet the accuracy requirements of estimation, but the radiative soil
temperature method could not meet the accuracy requirements of estimation. The root
mean square error, RMSE = 0.13; mean absolute error, MAE = 0.09; correlation coefficient,
r = 0.98; and consistency index, dIA = 0.99 were all better than the single method when the
best method was used in each growth stage. The best method had higher estimation ability
and accuracy than the single method.

To improve upon the results presented in this paper, the adaptability of different crop
coefficient estimation methods in other areas needs to be further explored. In addition,
the daily crop coefficient estimation is only discussed under the condition of 1 m burial
depth. The difference in the estimation effect of different methods under different burial
depths needs to be further studied. In addition to crop growth traits, there is also the
standard crop coefficient stage division table recommended by the FAO. Different division
methods also have a certain impact on the accuracy of estimation. In the future, more
crop coefficient estimation methods can be considered to provide more options for crop
coefficient estimation.
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Rn-G Effective energy
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CCC Cumulative crop coefficient method
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Abstract: Soil’s physical and hydrological properties influence the proper modeling, planning, and
management of water resources and soil conservation. In areas of vertic soils subjected to wetting
and drying cycles, the soil–water–atmosphere interaction is complex and understudied at the field
scale, especially in dry tropical regions. This work quantifies and analyzes crack development under
field conditions in an expansive soil in a semiarid region for both the dry and rainy seasons. Six 1 m2

plots in an experimental 2.8 ha watershed were photographed and direct measurements were taken
of the soil moisture and crack area, depth and volume once a week and after a rainfall event from
July 2019 to June 2020. The rainfall was monitored for the entire period and showed a unimodal
distribution from December to May after five months without precipitation. The cracks were first
sealed in the plots with a predominance of sand and when the soil moisture was above 23% and had
an accumulated precipitation of 102 mm. The other plots sealed their cracks when the soil moisture
was above 32% and with an accumulated precipitation in the rainy season above 222 mm. The cracks
redeveloped after sealing upon a reduction of 4% in the soil moisture. The depth of the cracks showed
a better response to climatic variations (total precipitation, soil moisture and continuous dry and
wet days). The higher clay content and the higher plasticity index plots developed more cracks with
greater depth and volume.

Keywords: vertic soils; crack dynamics; tropical dry regions; semiarid

1. Introduction

Arid and semiarid ecosystems account for approximately 29.8% of the Earth’s sur-
face [1]. Global warming and associated climate changes may increase the risk of extreme
phenomena—droughts and heavy rains, which directly affect hydrological processes [1,2].
Forecasts of more extreme climate regimes will make arid and semiarid ecosystems become
more vulnerable, with the possibility of increasing the total area of dry land globally [3].

Soil’s physical, chemical and biological characteristics [1,4–7] influence runoff, infiltra-
tion and evapotranspiration [2,6,7], and some expansive clays (e.g., montmorillonite) swell
and shrink during the wetting and drying processes [2,8], affecting the hydrologic processes.

Changes in the water content in expansive soils can significantly alter the hydrome-
chanical behavior of a soil. These effects mainly include: (1) voluminous change due
to swelling and shrinkage, and (2) variation in mechanical behavior, such as strength (or
stress) and compression [8]. Soils and clay minerals absorb water and expand upon wetting,
and they shrink and form desiccation cracks as they dry. Cracks modify the processes of
infiltration, flow, evapotranspiration, and redistribution of water in the soil profile [4,6,9],
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and they also form preferential flow channels with faster transport of water and nutrients
(solutes) that negatively affect irrigation and soil fertilization for agricultural use [5,10].

The expansion/contraction characteristic of these soils has implications for distinct
fields—in geotechnical engineering, where the formation of crack networks can destroy
the integrity of the soil structure, damaging road structures and other civil construction
infrastructures [7,11]; and in agriculture, where soil cracks may impose limitations on crop
production [12], promote physical damage to plant roots, encourage the vertical movement
and leaching of dissolved nutrients beyond the root zone, provide extra surface for moisture
loss, and even promote rill erosion.

Drought-induced cracks in the soil are usually complex network structures. The
accurate acquisition of cracks’ morphometric data is not only a prerequisite for obtaining
the relevant crack networks’ geometric parameters, but also a basis for better understanding
the cracks’ development mechanism and defining procedures to promote or minimize soil
cracks [13,14].

Research on cracks in expansive soils has been mostly conducted in controlled en-
vironments for the quantification of the geometry of a single crack and the morphology
of crack networks [1,2,5,15,16], and not so much in field-scale studies to understand the
dynamics of the cracks through in situ observations of the soil surface [2,8,16]. Changes in
the hydraulic properties of expansive soils (e.g., soil moisture) under field conditions may
help explain the response of soil cracks’ properties to climate dynamics in time [2,5].

The objectives of this study were to (a) assess and quantify the soil characteristics and
dynamics that govern the crack formation and healing processes under natural conditions;
and (b) quantify the soil moisture limits on the response of soil swelling and shrinking in
the wet and dry seasons in a vertic soil in a semiarid region under natural conditions.

2. Materials and Methods

2.1. Study Area

The experimental area is a 2.8 ha first-order catchment with a 5.6% slope. The soil has
a depth of 2.0 m and is classified as vertisol, with a predominance of expansive 2:1 clay
minerals from the montmorillonite group [17]. It is located in a representative fragment
of a seasonally dry tropical dry forest in northeastern Brazil (Figure 1) under vegetation
regeneration after clearing, burning and planting pasture in 2010.

Figure 1. Study area location.

The climate is classified as a subtropical steppe (BSh—low-latitude semiarid or dry),
according to Köppen’s classification. With an aridity index of 0.48, it has a mean an-
nual potential evapotranspiration of 2113 mm year−1 and a mean annual precipitation of
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997 ± 300 mm. Some 89% percent of the annual rainfall is concentrated in the wet semester
of December to May (Figure 2) [18,19].

Figure 2. Mean rainfall; potential evapotranspiration; minimum, maximum and average tempera-
tures; and average number of dry days for the wet and dry seasons in the study area from 1980 to 2020.
PPT is the average monthly rainfall (mm); PET is the average monthly potential evapotranspiration
(mm); Tmin, Tmax, and Tmed are the average monthly minimum, maximum, and mean temperatures
(◦C), respectively, for the study period; and NDD is the seasonal average number of dry days from
1980 to 2020.

Soil samples were collected with a sampling probe for textural classification and
determination of the physical characteristics at each plot. A cluster analysis was performed
on the soil characteristics to explore the naturally occurring groups using the software IBM
SPSS Statistics 27.

2.2. Monitoring

Rainfall was assessed using a Ville de Paris rain gauge. The soil moisture content
was determined weekly and after a rainfall event by means of the gravimetric method
in triplicate. Soil samples were collected outside the border of each plot, as this border
sampling pattern better estimates the soil moisture of the plot without compromising its
soil structure.

The soil cracks were monitored at six 1 m2 (1 m × 1 m) randomly located experimental
plots (Figure 1) for one year—1 July 2019 to 30 June 2020 (Figure 3). All the vegetation
inside and around the plots was removed before the field measurements (at least weekly),
keeping the plots free of vegetation for the entire period of study to minimize the soil
structure changes.

The crack monitoring consisted of the in situ location of the cracks and the measure-
ment of their respective depth. Cracks were identified with the aid of a 0.05 m × 0.05 m
net placed over the 1 m2 experimental plots, totaling a mesh of 400 points (Figure 4). The
crack depth was measured using a 4 mm diameter rod and a ruler at the intersection of
each crack and the 0.05 m × 0.05 m net (Figure 4).

278



Hydrology 2023, 10, 83

Figure 3. Monthly development of soil cracks in an experimental plot.

 

Figure 4. Crack monitoring in situ.

2.3. Crack Morphology and Dynamics

The recognition of individual cracks and the assessment of the respective surface area,
average width, and length was performed using the software Crack Image Analysis System
Version 2.32 (CIAS) [20] based on the in situ acquired images (Figure 5). A Sony® DSC-H9
camera placed on a tripod always at the same location collected the plot images. Photogra
hic images were taken at the best light hours (between 12:00 and 1:00 p.m.), except on rainy
days, when photos were taken after the end of the event or on the next morning.
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Figure 5. Methodology for image collection, correction and parameter calculation.

The volume of the cracks was computed using the crack average depth obtained via
the in situ monitoring and the area was assessed using the CIAS software Version 2.32, as
proposed by [21]. The soil crack area density (Dc) (Equation (1)) was evaluated using the
method proposed also by [21]. The level of development (Table 1) was based on [16]:

Dc =
ac

At
∗ 100 (1)

where ac is the crack area (m2) and At is the total area (1 m2).
The crack area velocity represents the rate of development of the crack area in both the

swelling and the shrinking stages. The assessment of the temporal and spatial variability of
the cracks’ swelling and shrinking included the crack area formation velocity and associated
correlations with climate factors, soil moisture and soil characteristics. We assumed the
linear variation of the parameters (Dc, depth, and soil moisture) with time between field
monitoring visits. All the analyses were based on the average depth, total area and total
volume of the cracks at each plot.
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Table 1. Soil cracks’ level of development based on the crack area density.

Dc Intervals Levels of Development

Dc ≤ 5% Feeble
5 < Dc ≤ 10 Light
10 < Dc ≤ 22 Medium
22 < Dc ≤ 27 Intensive

Dc > 27 Extremely intensive

3. Results

3.1. Field Data

A total rainfall of 869 mm distributed in 54 events (Figure 6) was recorded during the
study period (19 July–20 June). Only three rainfall events occurred in the dry season, with a
total of 9 mm that led to no runoff. The wet season had seven runoff events in both February
and March and one runoff event in May. February showed 23% of the rainfall of the wet
season (12 events), and March concentrated 33% of that rainfall (17 events). The cracks were
sealed for 16 days in March and opened after 2 consecutive days without precipitation.

Figure 6. Rainfall and runoff events in the study period.

The total sealing of the cracks occurred on 18 February 2020, with an accumulated
rainfall of 236 mm, of which 75% of the rainfall events were less than 10 mm and 52% less
than 5 mm. During the first surface runoff event of the year (5 February 2020), the cracks
were not totally sealed, although there were no surface cracks upon the occurrence of the
other runoff events.

The spatial variability of the soils in the catchment was highlighted by the plots’
physical soil properties (Table 2). Plots P3 and P6 stood out for the sand content (above
40%), classifying them as sandy clay loams—SCL (Table 2). The plasticity index (PI) and
liquid limit (LL) in both plots showed the lowest values, as well as the base saturation
(percentage of cation exchange capacity occupied by base cations) due to the sand content
of these soils.

A cluster analysis of the soil properties of the experimental plots revealed two groups:
one formed by the clay loam plots (CL) and the other formed by the sandy clay loam plots
(SCL). This was confirmed by the significant difference (p-value < 0.05) in the physical
parameters between the soils in plots P3 and P6 and the others (Figure 7). The P3 and P6
plots were more distant from the stream (Figure 1), suggesting that there was transport of
finer particles to the lower zone (i.e., stream).
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Table 2. Soil properties of the experimental plots.

Soil Properties
Experimental Plots

P1 P2 P3 P4 P5 P6

Grain size analysis
Sand (%) 21 26 41 22 27 44
Silt (%) 43 46 33 41 41 36
Clay (%) 36 28 26 37 32 20
Organic matter (%) 0.8 1.5 1.3 1.4 1.9 2.2
Base saturation (%) 92 95 84 95 92 89
pH 6.6 7.1 6 6.8 6.6 6.7
Specific gravity 2.79 2.57 2.53 2.53 2.48 2.52
Liquid limit (%) 43 38 28 42 40 33
Plastic limit (%) 14 27 21 32 26 27
Plasticity index 30 12 7 10 14 7
Textural
classification Clay loam Clay loam Sandy clay loam Clay loam Clay loam Sandy clay loam

Figure 7. Cluster analysis results concerning the plots’ soil characteristics. CL represents the clay
loam cluster and SCL represents the sandy clay loam cluster.

3.2. Crack Morphology

The crack depth in the clay loam plots varied from zero (no surface cracks) to a
maximum depth of 0.12 m to 0.22 m (Figures 8 and 9). The maximum values were observed
in P1, closer to the outlet, where the soil showed greater plasticity (Table 1).
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Figure 8. CL cluster plots P1 and P2—monthly Dc, area, depth, soil moisture and rainfall.

On the sandy clay loam plots, the cracks’ depth varied from zero (no surface cracks)
to 0.06 m (P3), as evidenced by Figure 10. The cracks showed an approximately constant
value of 0.04 m after confirmation of the dry season in July–August and remained constant
until the beginning of the rainy season in December. The plots with the least Dc and crack
volume variability were the sandy clay loam plots—P3 and P6 (Figure 10), which also
showed a lower fine particle percentage (<60%), a lower plasticity index (7.0), and a liquid
limit below 33% (Table 2).

Based on the number of soil cracks and the respective morphometric characteristics, we
observed a greater number, depth, and volume at the end of the dry season (Figures 8–10),
as expected. The deepest cracks and higher Dc and crack volume were recorded in the
CL group plots (P1—downstream and P5—upstream), as well as the greatest variability in
these parameters. The smallest variability in the depth of the cracks, Dc and crack volume
occurred in the sandy clay loam plots, with the lowest fine particle contents (P3 and P6).
The lowest monthly mean values were recorded in the P6 plot—0.035 m and 0.0013 m3 for
the crack depth and crack volume, respectively (in the dry period).
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Figure 9. CL cluster plots P4 and P5—monthly Dc, area, depth, soil moisture and rainfall.

In the dry period, the crack depth varied from 0.034 m to 0.225 m (both in plot P1) in
the clay loam plots (Figures 8 and 9), whereas in the sandy clay loam plots, the variation
was smaller—0.026 m to 0.066 m (both in plot P6) (Figure 10). For a small variation in the
soil moisture content, there was a quick response from the crack depth in the clay loam
plots when compared to the sandy clay loam plots, which showed little response.

The rainfall accumulation until February was 87.1 mm, which was not enough to
totally close the cracks—the crack depth was higher in the clay loam plots than in the sandy
loam plots. Even though there was precipitation in the wet season after March, the wettest
month of the year, the monthly rainfall decreased, with an increasing response from the Dc
at all the plots (Figures 8–10).
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Figure 10. SCL cluster plots P3 and P6—monthly Dc, area, depth, soil moisture and rainfall.

3.3. Crack Dynamics

The Dc showed a significant logarithmic correlation with the soil moisture content
(p < 0.001) in all the plots of the CL group (Figure 11). The SCL group (Figure 12) did not
show a significant correlation (p < 0.001) in either plot.

The SCL cluster plots showed an initial crack sealing process (Dc = 0) 70 days after the
beginning of the rainy season, with a cumulative rainfall of 102 mm and a soil moisture
content above 23% (Figures 10 and 12). As for the CL group (Figures 8 and 9), the sealing
only occurred 87 days after the beginning of the rainy season, with a total cumulative
rainfall of 222 mm, a soil moisture content above 32% (Figure 11), and after a rainfall event
of 52.4 mm. There seemed to be no pattern in the response of the soil crack area to a soil
moisture content of up to 7% in the SCL and 13% in the CL plots, respectively.
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Figure 11. Soil moisture vs. Dc for the CL cluster plots P1, P2, P4 and P5.

Figure 12. Soil moisture vs. Dc for the SCL cluster plots P3 and P6.

A closer look at the swelling and shrinking behavior of the soil highlighted a remark-
able difference between the CL plots and the SCL plots—a maximum value of the soil crack
area density of 0.37 m2 in the CL plots against 0.10 m2 in the SCL plots, and crack occurrence
up to a soil moisture content of 43% in the CL against 27% in the SCL (Figure 13a,b).

The limit to the crack opening and sealing on the drying and wetting cycles showed a
difference of 6% in the soil moisture content—when drying, the CL plots started opening
cracks at a soil moisture below 43%, whereas as it reached a soil moisture content of 37%
upon wetting, the cracks were sealed. Similar behavior was observed in the SCL plots,
with a smaller difference of 3% in the soil moisture content, which began the crack opening
process at a soil moisture content below 27% when drying and a soil moisture content
below 24% when wetting (Figure 13c,d).
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Figure 13. Crack area density: (a) for wetting soil—CL; (b) for drying soil—CL; (c) for wetting
soil—SCL; and (d) for drying soil—SCL.

The crack area opening/closing response velocity (Figure 14) in the CL was below
0.1 m2 day−1 and in the SCL below 0.06 m2 day−1 (just above half the response velocity of
the CL). The fastest response time of the crack opening/sealing to the soil moisture was
below 45% in the CL and below 28% in the SCL. There was a remarkable difference in the
crack response in the soils with finer particles above 70% (CL) relative to the soil moisture
despite the clay content, both upon the drying and wetting cycles.

Figure 14. Velocity of crack opening/closure (m2/day) in the (a) CL and (b) SCL plots.

4. Discussion

4.1. Crack Morphology

The swelling and shrinking processes in expansive clay soils showed sensitivity to the
fine particle content. The limits of the soil moisture content on the soil crack formation and
sealing were significantly different for the clay loams and sandy clay loams, as were the
crack area density limits [22].

The shrinking of expansive clays during dry periods and swelling with the occurrence
of wet days [23] promote an increase/decrease in the depth, intensity, and volume of
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cracks (Figures 6 and 8–10). After a rainfall event, both in the wet and dry seasons, the
clay swelling process began in the surface layers as the hydrostatic forces increased [2],
promoting the sealing of micro cracks even before the surface runoff process began. At
the onset of the surface runoff, the cracks were not all sealed (Figures 6 and 8–10), and the
deeper cracks acted as preferential flow paths [4,15], which influenced solute transport—the
faster water and dissolved solutes flowed through the preferential paths with reduced
soil sorption opportunities by the clay particles, promoting considerable water loss and
groundwater pollution, as suggested by [24].

The smaller pores in the soils with higher clay contents promoted the development
of high soil suction pressure [25] and cohesion [26], which led to crack formation. Water
sorption by the clay particles at the deepest parts of the cracks promoted their closure in
an upward movement and the reduction of the depth of the cracks throughout the rainy
season (Figures 8–10).

The clay content in itself did not explain the different behavior of the crack area forma-
tion as a function of the soil moisture in this study—all the plots had a montmorillonite
clay content above 30%. However, the behavior of the Dc as a function of the soil moisture
(Figures 11 and 12) was different for both the sandy loam and the clay plots, which differed
due to the fine particles content, liquid limit and plasticity. Such evidence resulted in the
different volume of cracks between plot P1, with a higher volume and greater plasticity,
and P4 and P5 (Figures 8–10), with lower volumes and lower plasticity indexes, although
these plots, P1, P4 and P5, presented similar texture [2].

The process of crack sealing occurred gradually and inversely to the soil moisture
content (Figures 8–10). From the beginning of the rainy season and until the total closure of
the cracks, they generated preferential flow paths [4], depending mostly on the cumulative
rainfall and depth of the event.

The expansion/contraction of the cracks in the soil was more sensitive in the wetting
than in the drying process (Figure 13a,b). The SCL plots showed little response to crack
formation for soil moisture contents between 5% and 25%, and no defined pattern relative
to soil moisture contents below 5%. The CL plots showed a higher crack formation/sealing
sensitivity for soil moisture contents between 13% and 42%, and no defined pattern relative
to soil moisture contents below 13%. The expansion/shrinkage processes may respond
differently to different climatic conditions due to the intrinsic soil characteristics, such as
the granulometry and plasticity [2,27,28].

4.2. Crack Dynamics

The reduction of 4% in the soil moisture (Figures 8–10) was enough for the emergence
of cracks. As cracks formed, soil water evaporated in two dimensions—vertically via
the soil surface and horizontally through the walls of the cracks [2], provided there was
available water. As the water availability decreased, the velocity of the crack formation
remained constant for both the clay loams and sandy clay loams, although it was faster in
the clay loam plots (Figure 14). The swelling and shrinking processes occurred at a faster
pace in the clay loam plots [1,26], as stressed by the different soil sealing time (Figures 8–10),
suggesting correlation with their higher plasticity index (Table 1).

The degree of development of the cracks in the CL plots recorded a medium level of
development for the Dc (Table 1), evidencing that the reduction of moisture in soils with
higher rates of plasticity resulted in initially mild and then pronounced deformations when
compared with the less plastic soils (SCL) [2,8]. The lower fine particle content in plots P3
and P6 (Table 2) reduced the degree of self-healing, as governed by the soil plasticity, which
determines the potential for soil expansion and contraction [26].

It is known that the Dc decreases with the addition of water to the soil. During the
dry season in this region, the possible sources of water entry into the soil are the processes
of capillary rise and/or condensation of water vapor during the early morning hours [29].
The process of capillary rise was discarded, since there was no reduction in the depth of
the cracks (Figures 8–10), evidencing a surface phenomenon.
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Although there were no records of isolated precipitation events during the dry season
(July to December) (except for three events > 10 mm, Figure 6), in August and September
there was a reduction in the value of the Dc (Figures 8–10). The increase in the soil
surface moisture content was believed to be the result of dew formation in other semiarid
regions [1,30,31]. The process of increasing the soil moisture via the condensation process in
the months with the lowest minimum temperatures is supported by [29] in an area adjacent
to the studied watershed, raising the soil moisture at night by as much as 5%, which may
be responsible for the reduction of the Dc (Figures 8–10).

The CL group presented an extremely intensive level of development (Figures 8 and 9),
suggesting a need for greater initial abstractions to seal the surface cracks (Figures 6 and 8–10).
There seemed to be a greater risk of soil and aquifer contamination during the drying
process as the total crack area and depth were greater, offering preferential flow paths and
a reduced opportunity for the adsorption of fertilizers by plants [24].

The sealing and formation of cracks in the SCL plots occurred at soil moisture contents
above 25% and 27% in the wetting and drying processes, respectively. In the CL plots, these
values were 38% and 43%, respectively. These results highlighted the hysteresis of these
processes in both soil types, which may have occurred due to the fact that there was no
increase in the soil moisture in the drying process and an increase and decrease in the soil
moisture in the wetting processes. The soil moisture losses were mainly due to evaporation
that occurred in two dimensions: horizontally via the soil surface and vertically from the
walls of the cracks [4] and the rainfall events (Figure 6).

5. Conclusions

The intensity of the occurrence, maximum depth and volume of cracks vary according
to the texture, limits of plasticity and soil liquidity. A lower fine particle content reduces
the cracks’ healing process, which is governed mostly by the soil plasticity. Higher fine
particle contents lead to larger occurrence, depth and volume despite the clay content if
associated with greater plasticity.

Cracks form after two consecutive dry days even during the wet season. The expan-
sion/contraction of cracks in the soil is more sensitive in the wetting than in the drying
process. Clay loams and sandy clay loams show different limits on the soil moisture content
to start the opening and the sealing processes of crack formation.

There is no pattern in the response of crack formation to soil moisture contents below
5% and 13% for sandy clay loams and clay loams, respectively. The process of capillary
rise impact on crack healing may be discarded, evidencing it being a surface phenomenon.
There is a greater risk of soil and aquifer contamination during the drying process.
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Abstract: With the intensification of global warming, food production will face serious drought
risk. In view of the insufficient applicability of the existing crop drought index, a standardized crop
water deficit index (SCWDI) was constructed based on the construction idea of the standardized
precipitation evapotranspiration index (SPEI) and the crop water deficit index (CWDI) in this study.
On this basis, the spatial and temporal characteristics of spring maize drought in Songnen Plain were
explored by the slope trend analysis and Morlet wavelet analysis methods. The results show the
following: (1) Compared with the existing drought index, the SCWDI shows obvious advantages
in drought monitoring of spring maize. (2) In the whole growth stage of spring maize, the change
trend of SCWDI was small in the temporal series (−0.012/10a). Spatially, the drought trend of spring
maize was mainly decreasing (−0.14~0/10a). The drought frequency of spring maize in each growth
stage was mainly light drought in most regions. (3) The three main drought cycles of spring maize
in Songnen Plain were 29 years, 10 years, and 4 years. In the next few years, the drought of spring
maize in Songnen Plain was controlled by the first main cycle, and the drought years may increase,
which should be prevented. The research was expected to provide technical support for crop drought
monitoring and agricultural disaster prevention.

Keywords: spring maize; drought; climate change; Songnen Plain; Northeast China

1. Introduction

Global warming is an obvious issue and the frequency and extent of extreme weather
are also increasing [1–7]. Owing to its wide range and long duration, drought has become
one of the most significant natural disasters facing humankind [8–10]. According to re-
search and analysis, global economic losses caused by drought every year are incalculable,
and the total number of people affected by drought has exceeded other natural disasters,
affecting more than 120 countries and regions [11,12]. The United Nations report shows that
the number and duration of global droughts have increased by 29% since 2000. The report
estimates that, between 1998 and 2017 alone, global economic losses caused by drought
amounted to USD 124 billion, and drought has affected at least 1.5 billion people [13].
Agriculture is more vulnerable to drought disasters because of its high sensitivity and
vulnerability to drought [14]. According to statistics from the Food and Agriculture Orga-
nization of the United Nations, drought caused a huge loss of USD 29 billion in the global
agricultural sector in 2005–2015 [15]. Some studies have shown that, if effective measures
are not taken to deal with the risk of drought disasters, the area of global crop drought
will increase significantly by the end of this century and food security will be seriously
threatened [16,17]. At present, how to effectively reduce the loss of agricultural production
caused by drought and further improve the ability of agriculture to resist risks have become
key issues of urgent concern for countries and regions around the world [18,19].

In agricultural drought, the drought index plays an important role in reducing and
preventing the adverse effects of drought on crops [20,21]. Owing to the long time and
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high precision of ground observation data, various types of drought indexes have been
derived, which are widely used in agricultural drought monitoring, such as precipitation
anomaly in percentage (Pa), relative moisture index (MI), standardized precipitation index
(SPI), standardized precipitation evapotranspiration index (SPEI), crop water deficit index
(CWDI), and crop water deficit abnormal index (CWDIa), among others [22]. However,
owing to the different construction principles of each index, there are different applications
in drought monitoring [23]. Pa and MI only consider the impact of drought on crops
in the current period, but lack consideration of early precipitation, so accurate drought
information may not be obtained in time, with poor sensitivity [24]. Under global warming,
the rise in temperature has become one of the significant factors aggravating the drought
process. However, Pa, MI, and SPI only consider precipitation, which may be inferior in
some regional drought monitoring [25,26]. Although SPEI makes up for the disadvantages
of SPI, it fails to take the crop coefficient into account when calculating the potential
evapotranspiration and cannot accurately reflect the water deficit of crops [27–29]. CWDI
and CWDIa consider the water demand characteristics of crops and can accurately evaluate
the water status of crop growth in different growth stages in combination with the growth
stage of crops [30,31]. However, the drought standards of CWDI and CWDIa in different
regions are inconsistent, with poor universality [32]. In view of the shortcomings of the
above drought indexes, how to modify it to improve its effectiveness and universality still
needs further exploration.

Songnen Plain, located in Northeast China, is the most important grain-producing
area in China. The cultivated land area of Songnen Plain accounts for more than 50% of the
land area of Songnen Plain and about 8% of the total cultivated land area in China. It is a
typical agricultural farming area [33,34]. The northeast region is one of the regions with
the most significant temperature increases in China. Since the 21st century, the drought
trend in the northeast region has become increasingly serious, posing a potential threat
to the growth of maize, rice, soybean, and other major crops [35]. The main grain crops
in Songnen Plain are spring maize, which accounts for 72.88% of the total grain output in
the region [36,37]. The increase in drought frequency in the future will seriously threaten
the stability of corn output in the region. Therefore, the prevention and mitigation of
spring maize drought in Songnen Plain plays an important role in ensuring the sustainable
stability of its agricultural economy and the national food security [38,39].

In view of the above analysis, the spatial and temporal characteristics of spring maize
drought in Songnen Plain of Northeast China were analyzed on the basis of the revised
crop drought index. The main objectives of this study were as follows: (1) to construct
a new crop drought index and improve the applicability of crop drought index; (2) to
compare the effect of the newly constructed drought index and other drought indexes in
drought monitoring of spring maize; and (3) to investigate the spatio–temporal variations
in spring maize drought in Songnen Plain based on the newly constructed drought index.
It is expected that this study will provide ideas for the construction of crop drought indexes
in the future, as well as provide a scientific basis and technical means for the prevention of
crop drought in Songnen Plain of Northeast China.

2. Materials and Methods

2.1. Study Area

Songnen Plain (121◦40′ E~128◦30′ E, 42◦50′ N~49◦12′ N) is located in Northeast
China [33]. It is a plain formed by the alluvial deposits of Songhua River and Nenjiang
River. Together with Sanjiang Plain and Liaohe Plain, they form the three major plains in
Northeast China. The total area of Songnen Plain is about 224,000 km2, including mainly
the southwest of Heilongjiang Province and the northwest of Jilin Province (Figure 1).
Songnen Plain belongs to a typical temperate continental monsoon climate, with four
distinct seasons. Its average annual temperature is between 2 ◦C and 6 ◦C, showing a
gradually increasing trend from north to south; the annual precipitation of the whole
region is between 400 mm and 600 mm, showing a decreasing trend from southeast to
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northwest [40]. Songnen Plain has a high concentration of precipitation, which is common
in summer, accounting for about 70% of the annual precipitation. This distribution of
precipitation means that drought and flood disasters can form very easily. The cultivation
method of crops in Songnen Plain is generally one crop per year. It is an important grain
production area and commodity grain production base in China, and plays a pivotal role in
the social and economic development of Northeast China [41].

Figure 1. The location of Songnen Plain in Northeast China and distribution of meteorological
stations.

2.2. Data and Processing

To calculate the drought index of spring maize, the daily meteorological data from
51 meteorological stations in Songnen Plain from 1981 to 2018 were obtained, and the
data included average temperature, precipitation, average relative humidity, average
pressure, sunshine hours, and average wind speed, among others. All data were from the
China Meteorological Data Network (http://data.cma.cn/), accessed on 1 October 2022.
The data have been repeatedly revised and supplemented by the China Meteorological
Administration. For some missing data, linear interpolation is carried out in this study to
improve the integrity and continuity of the data series to a certain extent [42].

In the study, the growth stage of spring maize was taken as the research period.
Therefore, we obtained the growth stage data of spring maize from the agricultural meteo-
rological station in the study area. According to the literature [43], five growth stages of
spring maize were established, i.e., the sowing to seedling stage, the seedling to jointing
stage, the jointing to heading stage, the heading to milk mature stage, and the milk mature
to mature stage. For convenience of expression, we named the whole growth stage and
the five growth stages A0, A1, A2, A3, A4, and A5, respectively. To verify the validity of
the drought index, we also obtained the drought disaster data of spring maize in typical
drought years in the study area. All data were also from the China Meteorological Data
Network (http://data.cma.cn), accessed on 23 October 2022.

The normalized difference vegetation index (NDVI) can provide vegetation greenness
information. When drought occurs, the value of NDVI will change, which better reflects
the crop stress information. In the study, we obtained the MODIS NDVI data, which are
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provided by NASA (http://earthdata.nasa.gov), accessed on 11 November 2022 [44,45].
The vegetation condition index (VCI) was obtained through standardized processing, so as
to test the validity of the drought index.

In addition, the administrative division data, DEM, and other basic data in the study
were provided by the Data Center for Resources and Environmental Sciences, at the Chinese
Academy of Sciences (http://www.resdc.cn/), accessed on 10 October 2022.

2.3. Methods
2.3.1. Construction of the SCWDI

Based on the construction principle of CWDI and SPEI, this study took the accumulated
water deficit as the basic quantity and assumed that it follows the log-logistic probability
function distribution of three parameters. Then, the accumulated water deficit was fitted
and normalized and the standardized crop water deficit index (SCWDI) was constructed.

The specific calculation process was as follows:
Step 1: Calculate the water demand of crop in a growth stage. The formula is as follows:

ETc = Kc × ET0 (1)

where ETc is crop water demand (mm); ET0 is the reference evapotranspiration (mm) [46,47];
and Kc is the crop coefficient in a growth stage [48].

Step 2: Calculate the accumulated water deficit on a daily scale in a certain growth
stage. The details are as follows:

ICWD,i = a × CWDi + b × CWDi−1 + c × CWDi−2 + d × CWDi−3 + e × CWDi−4 (2)

where ICWD,i is the accumulated water deficit on the i-th day in a growth stage (mm); CWDi,
CWDi−1, CWDi−2, CWDi−3, and CWDi−4 are the water deficit (mm) of the i, i−1, i−2, i−3,
and i−4 stages, respectively (i.e., the first 1–10 D, the first 11–20 D, the first 21–30 D, the
first 31–40 D, and the first 41–50 D, respectively); and a, b, c, and d are weight coefficients,
which are 0.3, 0.25, 0.2, 0.15, and 0.1, respectively. In the study, it was assumed that there
is no irrigation in the study area and the influence of surface runoff and groundwater is
ignored; that is, the crop water deficit is the difference between the accumulated water
demand of crops and the accumulated precipitation.

Step 3: Establish the multi-year daily scale cumulative water deficit sequence of a
certain growth stage, and set the cumulative water deficit (ICWD) data sequence as follows:
x = { x1, x2, . . . , xn} .

Step 4: Follow the principle of SPEI construction, use the log-logistic probability
distribution function F(x) with three parameters to fit the data series, and finally carry out
normal normalization.

Set the cumulative probability such that the fitting distribution function is greater than
any ICWD value as P = 1 − F(x), then the standardized crop water deficit index (SCWDI)
corresponding to a certain growth stage can be obtained:

SCWDI =

⎧⎨⎩W − C0−C1W−C2W2

1+d1W+d2W2+d3W3 P ≤ 0.5 W =
√−2 ln P

C0−C1W−C2W2

1+d1W+d2W2+d3W3 − W P > 0.5 W =
√−2 ln(1 − P)

(3)

where C0 = 2.515517, C1 = 0.802853, C2 = 0.010328, d1 = 1.432788, d2 = 0.189269, and
d3 = 0.001308. According to the SPEI drought grading standard [28], SCWDI can be divided
into five grades, i.e., no drought (SCWDI < 0.5), light drought (0.5 < SCWDI ≤ 1), moderate
drought (1 < SCWDI ≤ 1.5), severe drought (1.5 < SCWDI ≤ 2), and extreme drought
(SCWDI > 2).

In this study, the six commonly used drought indexes (Pa, MI, SPI, SPEI, CWDI,
and CWDIa) were also calculated to compare and verify the effectiveness of SCWDI. The
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specific calculation methods of the six drought indexes can be obtained in the corresponding
literature [49–54].

2.3.2. Morlet Wavelet Analysis

Wavelet analysis is based on various wavelet transforms. It is an analysis method
with an adjustable time-domain window and frequency-domain window. In the analysis of
climate change, wavelet analysis can fully show the variety of change information hidden
in the time series and predict the future change trend [55]. In recent years, wavelet analysis
has been widely used in the analysis and prediction of drought periodicity [56]. In the
study, Morlet wavelet transform was used to analyze the periodicity of drought, which is
mainly realized by matlab2016 software.

2.3.3. Other Methods

In the study, the ANUSPLIN interpolation method was used for the spatial interpo-
lation of the drought indexes in the study area [57]. The Pearson correlation coefficient
(R) was calculated to study the relationships among the drought indexes. The changes in
drought in spring maize were analyzed by the slope trend analysis method [58–60].

3. Results

3.1. Applicability Analysis of the SCWDI
3.1.1. Feasibility of SCWDI Construction

The SCWDI was constructed on the premise that the cumulative crop water deficit fol-
lows the three-parameter log-logistic function distribution. Whether or not the cumulative
crop water deficit followed the log-logistic function distribution needs to be tested.

In this study, the empirical distribution was used as a reference and the normal
distribution was used as a comparison to test whether the accumulated crop water deficit
follows the log-logistic distribution. Taking the jointing to heading stage of spring maize as
an example, we calculated the time series of the accumulated water deficit of spring maize
in this stage (A3) at typical stations (Keshan station, Qiqihar station, Nong’an station, and
Lishu station) in Songnen Plain. As the density curve of the actual data series can intuitively
represent the data distribution, it was taken as an empirical density function. Then, by
calculating the key parameters of the normal distribution and log-logistic distribution of
the actual data series, the respective density curves were drawn (Figure 2a). We can see
that the three-parameter log-logistic density curve is closer to the empirical density curve
than the normal distribution density curve.

Figure 2. Cont.
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Figure 2. Comparison of three function fitting curves of crop water deficit sequence: (a) density
curves and (b) distribution curve.

Similarly, from the distribution curve (Figure 2b), the coincidence degree of the three
parameter Log-logistic distribution curve and the empirical distribution curve was rela-
tively high. So the time series of cumulative crop water deficit of spring maize in Songnen
Plain obeyed three parameter Log-logistic distribution, and it was feasible to fit and stan-
dardize it.

3.1.2. Comparison of Different Drought Indexes in Time Series

The commonly used drought indexes (Pa, MI, SPI, SPEI, CWDI, and CWDIa) in the
study area from 1981 to 2018 were calculated to test the applicability of SCWDI. Among
these indexes, SCWDI has the same meaning as CWDI and CWDIa. The larger the index
value, the more serious the drought. However, it is opposite to the meaning of Pa, MI, SPI,
and SPEI, that is, the smaller the index value, the more serious the drought.

From the perspective of time series (Figure 3), although there were differences in
each drought index, it can reflect the dry and wet state of spring maize in different years
at various growth stages. The drought period shown by SCWDI was consistent with
other drought indexes and can reflect the typical drought years, such as 1982, 1989, 2001,
2004, 2007, 2017, and so on. However, there were differences in the monitoring results
of each index. In 1982, the drought severity period of spring maize reflected by SCWDI
was consistent with that reflected by SPI and CWDIa; in 1989, it was consistent with the
drought period reflected by MI, CWDI, and CWDIa; in 2001, it was consistent with the
drought period reflected by CWDI and CWDIa; in 2004, it was basically consistent with
other drought indexes except that it was different from MI; in 2007, it was consistent with
the drought period reflected by SPI, SPEI and CWDIa; and in 2017, it was consistent with
the drought period reflected by SPI and CWDIa. In general, the drought periods identified
by SCWDI in the drought monitoring of spring maize can be consistent with the commonly
used drought index.
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Figure 3. Comparison of different drought indexes in time series: (a) Pa; (b) MI; (c) SPI; (d) SPEI;
(e) CWDI; (f) CWDIa; and (g) SCWDI.

3.1.3. Comparison of Different Drought Indexes in Space

Taking the typical drought year 2007 as an example, the applicability of SCWDI was
analyzed in space, and the growth state of spring maize during drought was characterized
by the vegetation state index (VCI) (Figure 4). In the A1 stage, the vegetation index of spring
maize was generally low, and the VCI may be low. The VCI in the northwest of Songnen
Plain was relatively low and may be subject to drought stress. The drought distribution
identified by Pa, SPI, SPEI, and SCWDI was similar to that of VCI. In the A2 stage, the VCI
in the West and north of Songnen Plain was low, and the drought distribution identified by
CWDIa and SCWDI was similar to that of VCI. In the A3 stage, the VCI in the west and
north of Songnen Plain was low, and the drought distribution identified by SPEI, CWDI,
CWDIa, and SCWDI was similar to that of VCI. In the A4 stage, the VCI in the east and
west of Songnen Plain was low, and the drought distribution identified by SPI, SPEI, and
SCWDI was similar to that of VCI. In the A5 stage, the VCI in the east of Songnen Plain was
low, and only the drought distribution identified by SCWDI was similar to that of VCI. In
general, compared with other drought indexes, SCWDI had a greater advantage in drought
monitoring of spring maize at various growth stages.
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Figure 4. Comparison of different drought indexes in space.

299



Water 2023, 15, 1618

3.2. Spatial and Temporal Variation in Spring Maize Drought in Songnen Plain
3.2.1. Temporal Variation in Spring Maize Drought

The temporal variation in spring maize drought at each growth stage in Songnen
Plain from 1981 to 2018 was analyzed. In the A1 stage (Figure 5a), SCWDI also showed
a decreasing trend (−0.026/10a), with a small range. The driest year was 2017. On the
interdecadal scale, it showed a trend of first increasing, then decreasing, and then increasing.
In the 2010s, there were many relatively dry years. In the A2 stage (Figure 5b), SCWDI
showed a significant decreasing trend (−0.204/10a) (p < 0.05), and the driest year was 2001.
On the interdecadal scale, SCWDI increased first and then decreased. The driest years were
the mostly in the 1990s, and the drought has been relatively alleviated in recent years. In
the A3 stage (Figure 5c), SCWDI showed a decreasing trend (−0.104/10a), and 1982 was
the driest year; the change trend on the decadal scale was similar to that in the A2 stage.
In the A4 and A5 stages (Figure 5d,e), the change trend of SCWDI was similar, showing
an increasing trend (0.128/10a and 0.145/10a). In the A4 stage, the driest year was 1982
and, in the A5 stage, the driest year was 2007. On the interdecadal scale, SCWDI in both
stages showed a trend of first increasing and then decreasing. The two stages in the 2000s
showed relative drought, while the drought in recent years has been relatively alleviated.
From 1981 to 2018, the drought index (SCWDI) of spring maize in the whole growth stage
showed a decreasing trend with a small slope (−0.012/10a) (Figure 5f). The driest year
was 1982. On the interdecadal scale, SCWDI showed a trend of first increasing and then
decreasing. In the 2000s, it was relatively dry. In recent years, the drought of spring maize
has been alleviated.

Figure 5. Temporal variation characteristics of SCWDI in different growth stages of spring maize:
(a) the sowing to seedling stage; (b) the seedling to jointing stage; (c) the jointing to heading stage;
(d) the heading to milk mature stage; (e) the milk mature to mature stage; and (f) the whole
growth stage.
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3.2.2. Spatial Variation in Spring Maize Drought

The drought characteristics of spring maize in Songnen Plain were analyzed in spatial.
In the A1 stage (Figure 6a), the drought of spring maize in various regions of Songnen
Plain showed an increasing trend (0~0.24/10a) or decreasing trend (−0.29~0/10a), of which
the decreasing trend of drought was mainly distributed in Suihua City, Harbin City, and
Changchun City, and the increasing trend of drought was mainly in other regions. In the A2
stage (Figure 6b), the drought of spring maize in the whole area of Songnen Plain showed
a decreasing trend (−0.53~0/10a), and the significant areas were mainly distributed in
the eastern and central parts of Songnen Plain. In the A3 stage (Figure 6c), the drought of
spring maize in most areas of Songnen Plain showed a decreasing trend (−0.25~0/10a),
and the increasing trend was mainly distributed in Siping City (0~0.18/10a). In the A4
stage (Figure 6d), the drought trend of spring maize in most areas of Songnen Plain mainly
increased (0~0.45/10a), and a significant increase was distributed in the southwest. The
drought of spring maize in the northwest of Suihua City showed a decreasing trend. In the
A5 stage (Figure 6e), the drought trend of spring maize in most areas of Songnen Plain also
increased (0~0.44/10a), and the drought reduction trend was sporadically distributed. In
the whole growth stage (Figure 6f), the drought trend of spring maize in Songnen Plain
was mainly decreasing (−0.14~0/10a), and the drought of spring maize in the south and
southwest showed an increasing trend (0~0.21/10a).

 

Figure 6. Spatial trend of SCWDI in different growth stages of spring maize: (a) the sowing to
seedling stage; (b) the seedling to jointing stage; (c) the jointing to heading stage; (d) the heading to
milk mature stage; (e) the milk mature to mature stage; and (f) the whole growth stage.

We also analyzed the spatial characteristics of drought frequency of spring maize in
Songnen Plain. In the A1 stage (Figure 7a), the drought frequency range of spring maize in
Songnen Plain was 16.3–41.8%, and the areas with high drought frequency were mainly
distributed in the north and northwest. Most of the spring maize in Songnen Plain was
dominated by light drought. The frequency of medium drought was relatively high in
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the central and southern regions, and the heavy drought was mainly distributed in the
surrounding areas of Songnen Plain. In the A2 stage (Figure 7b), the drought frequency
range of spring maize in Songnen Plain was 23.3–35.6%, and the drought frequency was
high in most areas. The whole area of spring maize in Songnen Plain was dominated by
light drought, while the frequency of medium drought was high in the central part and the
heavy drought was mainly distributed in the west and east. In the A3 stage (Figure 7c), the
drought frequency range of spring maize in Songnen Plain was 25.2–33.1%, and the areas
with high drought frequency were mainly distributed in the northwest and east. In most
areas of Songnen Plain, spring maize was mainly subject to light drought, and there were
more areas with a relatively high frequency of medium drought and heavy drought. In the
A4 stage (Figure 7d), the drought frequency range of spring maize in Songnen Plain was
17.3–48.8%, and the areas with high drought frequency were mainly distributed in the west.
Songnen Plain was mainly characterized by light drought. There were many areas with
relatively high moderate drought, and the frequency of heavy drought in the northwest and
southeast was relatively high. In the A5 stage (Figure 7e), the drought frequency range of
spring maize in Songnen Plain was 16.7–36.6%. The drought frequency in the whole region
was relatively high, mainly light drought. The regions with a relatively high frequency of
medium drought were mainly distributed in the middle, and the northern and southern
regions had a relatively high frequency of heavy drought. In the whole growth stage
(Figure 7f), the drought frequency range of spring maize in Songnen Plain was 18.7–35.8%,
and the areas with a high drought frequency were mainly distributed in the northwest.
Most areas of Songnen Plain were dominated by light drought. The frequency of moderate
drought was relatively high in the central and southern regions and the frequency of severe
drought was relatively high in the northwest and southeast.

 

Figure 7. Spatial distribution of drought frequency in different growth stages of spring maize: (a) the
sowing to seedling stage; (b) the seedling to jointing stage; (c) the jointing to heading stage; (d) the
heading to milk mature stage; (e) the milk mature to mature stage; and (f) the whole growth stage.
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3.3. Periodic Variation in Spring Maize Drought in Songnen Plain

Wavelet analysis can better show the time–frequency characteristics and periodicity
of data series and is widely used in research. By analyzing the periodicity of spring
maize drought, we can better understand the law of drought change and perform the
corresponding disaster prevention and early warning measures. In this study, Morlet
wavelet transform was used to analyze the drought of spring maize in the whole growth
stage from 1981 to 2018 in Songnen plain to obtain the periodic characteristics of drought
(Figure 8).

Figure 8. Periodicity characteristics of drought in the whole growth stage of spring maize in the
Songnen Plain from 1981 to 2018: (a) the real part contour of wavelet coefficients; (b) wavelet variance;
and (c) wavelet coefficients.

The strength of the drought signal was usually expressed by the size of the wavelet
coefficient. In the contour of the wavelet coefficient, if the center was positive, the period
was dry; if it was negative, the period was light. In the whole growth stage of spring
maize, according to the contour map of the wavelet coefficient (Figure 8a), the drought of
spring maize in Songnen Plain was obvious in three time scales of 4–6 years, 9–12 years,
and 24–32 years. On the time scale of 24–32 years, some cycle centers were not completely
closed, and the periodicity was obvious. Before 1986, in 1996–2006, and after 2015, the
wavelet real part was positive, indicating that the drought of spring maize in Songnen Plain
was more significant in this period. In 1987–1995 and 2007–2014, the wavelet real part was
negative, indicating that the drought of spring maize in Songnen Plain was less significant
in this period. On the time scale of 9–12 years, the periodic signal before 2012 was strong
and the periodic signal after 2012 was weak. Before 2012, there were mainly five periods
with more drought and four periods with less drought. On the time scale of 4–6 years, the
periodic performance was unstable, with obvious performance during 1985–2012 and weak
performance before 1985 and after 2012. The main time scale (i.e., the main period) was
mainly determined from the maximum value of small wave variance. It can be seen that the
three main time scales of drought in the whole growth period of spring maize in Songnen
Plain were 29 years (the first main period), 10 years (the second main period), and 4 years
(the third main period) (Figure 8b). In the study, the first two main cycles were often used
to reflect the change in regional drought. By drawing the time–frequency diagram of the
first main cycle and the second main cycle (Figure 8c), it can be seen that the first main
cycle was periodic and stable, mainly experiencing two dry and wet cycles. After 2018, the
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third drought will be more significant than in previous years. The second main cycle was
periodically stable before 2012 and then weakened. It experienced five dry and wet cycles
in total. After 2018, there may be years with less drought. By superimposing the two main
cycles, the two main cycles of 1981–1983, 2000–2003, and 2015–2017 fluctuated in positive
phases, indicating that the drought was serious in these periods. The two main cycles of
1990–1993 and 2011–2014 fluctuated in negative phases, indicating that the drought was
weak in these periods. From the drought cycle in recent years, the second main cycle of
drought in the whole growth stage of spring maize in Songnen Plain was weakened, mainly
controlled by the first main cycle, and the drought years may increase.

4. Discussion

The impact of drought on agricultural production is incalculable, and seriously re-
stricts agricultural production and human life. Actively carrying out the monitoring and
risk assessment of drought on agricultural production has important practical significance
for reducing the loss from drought disasters and ensuring food security [39,41,52]. The com-
monly used drought index has played a great role in crop drought monitoring [22,24,28,31].
However, owing to the different construction principles, each index has different appli-
cability in regional drought monitoring [32,52]. In this study, we can see that there were
certain differences in analyzing the spatial and temporal changes in spring maize drought
using different drought indexes. According to the previous analysis, the newly established
index (SCWDI) was only consistent with some drought indexes in drought monitoring of
spring maize. To further explore the relationship between SCWDI and common drought
indexes (Pa, MI, SPI, SPEI, CWDI, and CWDIa), we calculated the correlation coefficient
between SCWDI and common drought indexes in different growth stages of spring maize
(Figure 9).

Figure 9. Correlation between SCWDI and the commonly used drought index in different growth
stages of spring maize: (a) the sowing to seedling stage; (b) the seedling to jointing stage; (c) the
jointing to heading stage; (d) the heading to milk mature stage; (e) the milk mature to mature stage;
and (f) the whole growth stage.
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In the A1 stage (Figure 9a), the correlation coefficient between SCWDI and each index
was above 0.67 and significantly correlated, among which the correlation coefficient with
CWDI and CWDIa was the highest, and the correlation coefficient was 0.92. In the A2
stage (Figure 9b), SCWDI was significantly correlated with each index, and the correlation
coefficient with CWDI was 0.97. In the A3 stage (Figure 9c), the correlation between SCWDI
and each index was significant, and the correlation coefficient was high, among which
the correlation with CWDI and CWDIa was the best, and the correlation coefficient was
0.92. In the A4 stage (Figure 9d), the correlation between SCWDI and each index was also
significant, among which the correlation with CWDI and CWDIa was the best, and the
correlation coefficient was 0.95. In the A5 stage (Figure 9e), the correlation between SCWDI
and each index was significant, among which the correlation with CWDI and CWDIa was
the best, and the correlation coefficient was 0.95. In the whole growth stage (Figure 9f), the
correlation between SCWDI and each index was significant, and the correlation coefficient
was high, of which the correlation with CWDI was the best, and the correlation coefficient
was 0.98. From the above analysis, it can be seen that SCWDI has a good correlation with
the commonly used drought indexes (Pa, MI, SPI, SPEI, CWDI, and CWDIa), which can
comprehensively contain some information of each drought index and has great advantages
in drought monitoring.

To further reflect the applicability of SCWDI in drought monitoring, we collected
actual drought events in a typical drought year (2007) to verify the feasibility of SCWDI. Ac-
cording to the actual drought event records in 2007 (Table 1), in the A1 stage, light drought
occurred in Zhaoyuan and Lishu, moderate drought occurred in Songyuan and Changling,
and drought mainly occurred in the south of Songnen Plain, which was consistent with
the description of SCWDI. In the A2 stage, light drought occurred in Zhaoyuan and Lishu,
moderate drought occurred in Changling, and drought mainly occurred in the south of
Songnen Plain, which was also consistent with the description of SCWDI. In the A3 stage,
Qinggang, Yushu, and Shuangyang suffered light drought and Songyuan, Changling, and
Lishu suffered moderate drought, and these areas also suffered drought in the drought dis-
tribution described by SCWDI. In the A4 stage, moderate drought occurred in Wudalianchi,
Qianguo, Qing’an, Longjiang, Wuchang, and Suiling and severe drought occurred in fufu,
Tailai, Songyuan, Zhaoyuan, and Changling. SCWDI showed that drought occurred in
these areas. In the A5 stage, Wuchang suffered from light drought; Songyuan suffered from
moderate drought; and Zhaoyuan, Changling, and Fuyu suffered from severe drought.
In the drought distribution indicated by SCWDI, these regions all suffered from different
degrees of drought. In general, SCWDI has certain applicability in drought monitoring of
spring maize in Songnen Plain.

Table 1. Drought disasters of spring maize in Songnen Plain in typical drought years.

Growth Stage Drought Grade Drought Range

A1
Light drought Zhaoyuan, Lishu

Moderate drought Songyuan, Changling

A2
Light drought Zhaoyuan, Lishu

Moderate drought Changling

A3
Light drought Qinggang, Yushu, Shuangyang

Moderate drought Songyuan, Changling, Lishu

A4
Moderate drought Wudalianchi, Qianguo, Qing’an, Longjiang,

Wuchang, Suiling

Severe drought Fuyu, Tailai, Songyuan, Zhaoyuan,
Changling

A5
Light drought Wuchang

Moderate drought Songyuan
Severe drought Zhaoyuan, Changling, Fuyu
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In practice, the process of crop drought is complex [4,48,52,53]. The drought index
may have some shortcomings, but it can also play a certain role. Owing to the long
time series and high accuracy of meteorological observation data, this study described
more meteorological drought indexes, and soil relative humidity was also a commonly
used agricultural drought monitoring index, which can also characterize the drought
characteristics of crops [14]. Considering that the time and space of the soil relative
humidity data in the existing area are not continuous, and it cannot well express the
spatial and temporal characteristics of drought, it is rarely used in this study [61]. In
future research, more applicable soil humidity data will be collected to further verify the
applicability of the drought index constructed in this study.

5. Conclusions

In this study, a new crop drought index (SCWDI) was developed and its applicability
was tested. On this basis, the spatial and temporal characteristics of spring maize drought
in Songnen Plain were explored. The main findings were as follows:

(1) It was feasible to construct the standardized crop water deficit index (SCWDI) by
combining the ideas of CWDI and SPEI. Compared with the commonly used drought
indexes (Pa, MI, SPI, SPEI, CWDI, and CWDIa), SCWDI had great advantages in
drought monitoring of spring maize.

(2) In the whole growth stage of spring maize, the change trend of SCWDI in Songnen
Plain was small in the temporal series (−0.012/10a). Spatially, the drought trend
of spring maize was mainly decreasing (−0.14~0/10a), while the drought of spring
maize in the south and southwest showed an increasing trend (0~0.21/10a). The
drought frequency of spring maize in each growth stage was mainly light drought
in most regions. In the whole growth stage, the moderate drought frequency in the
central and southern regions was relatively high and the severe drought frequency in
the northwest and southeast was relatively high.

(3) In terms of periodicity, in the whole growth stage of spring maize, the three main
drought cycles in Songnen Plain were 29 years, 10 years, and 4 years. In the next few
years, the drought of spring maize in Songnen Plain was controlled by the first main
cycle, and the drought years may increase.

The drought monitoring of crops was very complicated. Our research improved the
applicability of the drought index on the basis of the existing drought monitoring and
provided ideas for the construction of the drought index in the future. As SCWDI had only
been verified in Songnen Plain, its universal applicability still needs to be studied, and
future work will be carried out in other regions.
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Abstract: This study aimed to investigate how sustainable forest management can affect litter
hydrological properties. We investigated the net precipitation, litter mass, water-holding capacity,
effective water-holding and retention capacity, maximum water retention and water content in
unlogged and logged forests over 13 months in the Amazon Forest, where reduced-impact logging is
allowed. The mean litter mass was similar for unlogged and logged forests. The litter water-holding
capacity was 220% for unlogged and 224% for logged forests, and for fractions followed: unstructured
> leaves > seeds > branches for both forests. The effective water-holding capacity was 48.7% and
49.3% for unlogged and logged, respectively, and the effective water retention was 10.3 t·ha−1 for
both forests. The effective water retention in the rainy and dry seasons accounted for 12.5 t ha−1 and
7.2 t ha−1 for unlogged and logged, respectively. The maximum water retention was slightly greater
for logged forests (16.7 t ha−1) than unlogged (16.3 t ha−1). The litter water content had 40% less water
in the dry season than in the rainy in both forests. In general, there were no significant differences
in litter storage and hydrological properties between stands. This suggests that reduced-impact
logging did not significantly affect the hydrological dynamics of the litter layer in the Amazonian
forests studied.

Keywords: forest hydrology; logging concessions; reduced-impact logging; selective logging;
stemflow; Jamari National Forest

1. Introduction

Litter studies are mainly related to stocks, decomposition, and biogeochemical cy-
cles [1–4]. However, it is important to highlight that litter also acts as an insulating layer that
protects the water and soil loss [5,6], making it essential for regulating surface hydrological
processes [7] as a stage in the forest hydrology dynamics. Although the role in mediating
the impact of raindrops, reducing, delaying, or often eliminating surface runoff and soil
erosion [8–10] is recognized, the relevance of litter is still often underestimated in forest
hydrology [6,8,11], especially in tropical forests.

Rainfall interacting with the forest canopy can take multiple paths, with some being
intercepted and evaporated, while others reach the soil through throughfall and stemflow,
constituting the net precipitation. However, before the net precipitation can contribute
to soil moisture, it must cross the intermediate layer of litter. The litter layer can either
retain the net precipitation without allowing it to reach the soil, initiate surface runoff,
or facilitate infiltration into the soil. For example, it can protect soil water from wind
and radiation-induced evaporation, thereby minimizing soil evaporation by 26.1–53.8%
and reducing the surface runoff by 71.1–90.5% in a Pinus tabulaeformis plantation [8]. The
forest litter layer is thus a key factor for water conservation in forest ecosystems. The
retention of water in the litter layer is essential for hydrological modeling, as it can alter the
amounts of water available for infiltration and/or runoff [7,12,13]. However, it depends
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on the physical-chemical composition of the material [14], which is influenced by the
forest’s age and type, as well as climatic conditions. Understanding the structure and
composition of the litter in the forest ecosystem is therefore crucial for determining the
best way to manage the system, contributing to soil and water conservation. This is
especially important in areas where exploration activities are carried out—like in Amazon
forest—although the litter hydrological properties have not yet been quantitatively reported
to the authors’ knowledge.

Given the escalating rates of deforestation in tropical forests, particularly in the Ama-
zon, it is crucial to conduct more studies on the ecosystem services provided by these
forest environments. The Amazon Forest is globally significant, acknowledged for its
environmental services, biological diversity, carbon sinks, and as a regulator of climate
through its contribution to biogeochemical cycles [15,16]. However, the current situation is
concerning, as the environmental impacts generated by human exploitation of the Amazon
are imperiling its vast biodiversity reserves and globally important ecosystem services [17].
Deforestation in the Amazon hit a 15-year high in 2022, with a record 10,573 km2 of defor-
estation between January and December [18]. In 2020, Brazil, which occupies 60% of the
Amazon Forest [19], produced an estimated 29.2 million m3 of tropical industrial round-
wood, excluding plantations [20]. Given that current Brazilian law allows a maximum of
30 m3 ha−1, timber-harvesting activities affect a substantial area every year. To control
the predatory exploitation of forests, the conservation potential of managed production
tropical forests has promoted the implementation of timber harvesting practices generally
referred to as ‘low-impact’ or ‘reduced-impact’ logging (RIL) [21]. Managers and certifiers
widely recognize RIL as a sustainable and environmentally friendly approach to harvesting
primary tropical forests [22]. This practice is a rational model of forest exploitation that aims
to reduce environmental impacts by aligning natural resource conservation with forestry
and the intensity of the impacts is related to the number and volume of trees removed
from the natural ecosystems [23]. However, the impacts of RIL activities on tropical-forest
ecosystem services, such as hydrological processes, are still understudied. To establish
ecologically and economically productive harvesting cycles, a more detailed understanding
of the effects of RIL on ecohydrological processes is also necessary.

This study was conducted in Jamari National Forest, a conservation unit whose
primary objective is the sustainable multiple use of natural resources and scientific re-
search [24], where sustainable forest management is allowed through RIL. As RIL is one
of the most important sustainable economic activities in tropical forests, understanding
these impacts is essential to evaluate RIL as a sustainable solution. Thus, to investigate
how sustainable forest management actions can affect the hydrological processes of the
forest, this study aims to test the following hypothesis: changes in vegetation structure
by sustainable forest management activities will alter the composition of litter fractions,
which in turn affects the water retention capacity of litter. To test this hypothesis, the study
aims to (1) understand the dynamics and seasonality of litter stocks, (2) the water retention
capacity of litter, and (3) evaluate the effective water retention and water content of litter
in unlogged and logged (RIL) Amazonian forests. The goal of this study is to provide a
scientific basis for understanding sustainable forest management actions in the Amazon
and their impact on the hydrological dynamics of litter and water conservation.

2. Materials and Methods

The study site is located southwest of the Jamari National Forest (JNF) at the Forest
Management Unit III (FMU-III). The physiognomic-ecological classification shows the pre-
dominance of Dense Tropical Rain Forest, with Open Rain Forest, characterized by spaced
trees forming a canopy of 40 m in height [25]. The JNF area has a rainy tropical climate
(Aw according to the Koppen classification) (Brazilian Forest Service 2019), precipitation
from 1800~2200 mm y−1. The weather in Amazon is well defined [26] with two distinct
periods: rainy (from October to April) and dry (from June to August); May and September
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are transition months. The mean air temperature is 24~26 ◦C, and the relative humidity is
80~90%.

Open precipitation, net precipitation, and litter yield were studied for 13 months (from
October 2019 to October 2020) on three plots of 20 × 20 m at unlogged and logged forest
stands (total per stand: 1200 m2) at FMU-III. The general characteristics of the stands are
listed in Table 1, as also the methodology and the name of the tree species/family for
each stand are in Tables S2 and S3, respectively. The unlogged forest (UF) (9◦24′53.15′′ S
and 63◦04′29.48′′ W) represents vegetation that retains the characteristics of primary for-
est and logged forest (LF) (9◦23′27.52′′ S and 63◦02′27.08′′ W) in which the silvicultural
system adopted is polycyclic with 25-year cutting cycles, a maximum cutting intensity
of 25 m3 ha−1 year−1, and minimum cutting diameter equal to or greater than 50 cm, as
determined by law no. 11.284/2006 [27,28]. The UF is located at UAP-18 and LF is located
at UAP-11 which was exploited in 2018. UAP means the Units of Annual Production, i.e.,
subdivision of the Forest Management Area, designated for logging within one year [29].

Table 1. Forest structure in the studied stands (UF—unlogged and LF—logged forest), Jamari
Na-tional Forest, Rondônia, Brazil.

Parameters

Forest Structure

D [cm] Ht [m] CA [m2] Vc [m3]
Tree Density
[trees ha−1]

UF LF UF LF UF LF UF LF UF LF

Min 12.7 12.7 12.0 9.0 7.2 0.4 8.0 1.3

1625 * 1450 *
Max 111.5 140.8 28.0 36.0 199.7 284.8 795.4 1512.8

Means 21.8 29.0 17.4 17.3 41.4 49.9 133.7 161.6
SD 18.0 24.5 3.5 4.9 37.5 58.8 154.5 284.0

D = diameter at breast height; Ht = tree height; CA = crown area; Vc = crown volume. * Indicates differences
between means (p < 0.05).

Rain gauges were installed outdoors, 50 m from each other in places free of treetops
and other forest structures. Throughfall was monitored by 7 rain gauges randomly installed
inside each plot, totaling 21 rain gauges per stand. To measure stemflow volume [L tree−1],
collectors were installed in 60 trees with a diameter of breast height [D] > 10 cm. Stemflow
collars were constructed by wrapping individual tree stems with a polyurethane gutter,
fixed at 1.3 m from the ground. Water running down the stem was captured by these gutters,
then drained by a 16 mm hose (5/8 inch) connected to 20 L collection bins. Event stemflow
volumes [L tree−1] were calculated by each tree’s projected canopy area [m2 tree−1]. Open
precipitation, throughfall and stemflow samples were measured in the field in a measuring
cylinder (1-L, at 0.5-L graduation) or in a graduated bucket (20-L, at 0.5-L graduation).
Net precipitation [NP, mm] per plot was found by summing throughfall to stemflow and
represents the portion of open precipitation that reaches the soil surface.

Litter samples were collected from a 100 × 100 cm litter square [30], which was
partitioned into 4 quadrants. Collection was random and only materials in one quadrant
(50 × 50 cm) were collected. A total of 390 litter bags per stand (3 plots × 10 random
quadrants × 13 months) were collected. In the laboratory, soil was sieved and removed
from the litter samples, which were classified into four fractions: branches, leaves, seeds
and unstructured material. Monthly and annual litter yields were estimated by summing
the fractions. The fresh mass [FM, g] for each fraction was determined on a suitably
accurate scale [0.01 g] and rehydrated through immersion in water for 90 min. After this,
the litter fractions were deposited on sieves and drained for 30 min for further humid litter
mass [HM, g] determination. Subsequently, the amount of litter dried mass [DM, g] was
determined by oven-drying samples at a forced circulation oven at 70 ◦C, until reaching
constant mass. Finally, the equations applied to calculate the hydrological properties of
litter can be found in Table 2.
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Table 2. Hydrological properties of litter applied to unlogged and logged litter from Amazon Forest,
Rondônia, Brazil.

Hydrological Properties Equation Notes

Water-holding capacity
[WHC, %] [30–32] WHC = (HM−DM)

DM × 100
HM = humid litter mass, g; DM = dry

mass, g

Effective water-holding capacity of the
litter under ambient conditions

[EWC, %]
EWC =

[
FM−DM

FM

]
× 100 FM = fresh mass, g; DM = dry mass, g

Litter effective water-retention capacity
[Weff, t ha−1] Weff =

(0.85∗WHC−EWC)×M
100

WHC = water-holding capacity, %;
EWC = effective water-holding capacity;

%M = is the unit litter mass (t·ha−1)

Maximum water-retention capacity
[Wmax, t ha−1] Wmax = WHC×M

100
WHC = water-holding capacity, %; M = is

the unit litter mass (t·ha−1)

Litter water content
[WC, gwater kglitter

−1] WC =
[

FM[g]−DM[g]
FM[kg]

]
FM = fresh mass, g; DM = dry mass, g

The differences in the litter stocks and hydrological properties were tested for homoscedas-
ticity of variance using the Bartlett test and for normality using Lilliefors (Kolmogorov–Smirnov)
test for statistical analysis. Analysis of variance was applied to normal data using the Student’s
t-test at a 5% probability level. Data that did not meet ANOVA assumptions were subjected to
a non-parametric Mann-Whitney test. The analyses were performed at BioEstat 5.3 [33] and
@Minitab 17. For further examination of seasonal changes, monthly groups were created from
the data.

3. Results

3.1. Hydrometeorological Observations and Litter Accumulation

There was no significant difference in the mean open precipitation between UF
(1868 mm) and LF (1771 mm) (p = 0.316). Similarly, there was no significant difference in
the mean net precipitation between UF (2106 mm) and LF (1680 mm) (p = 0.082). The net
precipitation in UF was 13% higher than the open precipitation, and 25% higher than LF
(Figure 1). It is worth noting that there was no rainfall in July (see Supplementary Materials
Table S3). Seasonally, the lowest accumulations were observed in the dry period (May to
September), representing approximately 9.6% and 8.6% of the open precipitation recorded
in UF and LF, respectively.

Figure 1. Open precipitation [R, mm] and net precipitation [NP, mm] partitioning in the dry and
rainy season at unlogged and logged forests, Flona of Jamari, Rondônia—Brazil.

The monthly accumulated litter ranged from 3.8 to 12.2 Mg ha−1 in UF and from 4.9
to 13.3 Mg ha−1 in LF (Figure 2, Supplementary Materials Table S4), and no significant
differences were observed between stands (p-value = 0.974). The number of fractions varied
for both forests, with branches being the most abundant fraction (40% for UF and 38% for
LF), followed by leaves (33% for UF and 37% for LF), unstructured (20% for UF and 19% for
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LF) and seeds (3% and 2% for UF and LF, respectively). Despite no significant differences
between fractions and seasons, it was observed that the highest litter mean accumulation
was in the rainy season, with 69.1% (8.3 ± 2.3 t ha−1) for UF and 67.3% (8.1 ± 2.9 t ha−1)
for LF. During the dry season, the accumulated litter decreased by 28% (6.0 ± 1.4 t ha−1)
and 22% (6.3 ± 1.3 t ha−1) for UF and LF, respectively. The accumulation of all fractions
was lower during the dry season.

Figure 2. Monthly litter and fractions accumulation (dry mass) for total period, rainy and dry seasons
at unlogged (UF) and logged forest (LF), Jamari National Forest, Rondônia—Brazil.

3.2. Litter-Water Interactions

Despite the lowest variation in water-holding capacity for UF (153–271%) than LF
(140–332%), both stands showed similar properties (p-value = 0.856), even when consid-
ering different fractions and seasons (Figure 3; Supplementary Materials Table S3). The
mean water-holding capacity was 220 ± 43.7% for UF, distributed in unstructured material
(320 ± 65.9%) > leaves (271 ± 79.6%) > seeds (222 ± 99.7%) > branches (136 ± 34.7%). Mean-
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while, the mean WHC was slightly higher for LF at 224 ± 58.7%, and its fractions were ranked
as follows: unstructured material (309 ± 67.8%) > leaves (283 ± 88.1%) > seeds (213 ± 99.5%)
> branches (145 ± 43.3%). Regarding seasons, both stands showed the highest WHC during
the rainy season, in which the litter from LF had the capacity to hold more water than UF,
although only branches in the rainy season showed the highest WHC for LF.

Figure 3. Monthly litter and fractions water-holding capacity for total period, rainy and dry seasons
at unlogged (UF) and logged forest (LF), Jamari National Forest, Rondônia—Brazil.

The mean effective water-holding [EWC, %] was similar for both stands (p = 0.775)
(UF = 48.7 ± 61.8% and LF = 49.3 ± 54.2%) (Figure 4). In general, both the annual and
seasonal water content of litter did not differ significantly between stands but showed
that litter contains more water during the rainy season. In the dry season, EWC was
41% and 35% lower than rainy for UF and LF, respectively. The Weff ranged from 6.4
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to 16.5 and 5.6 to 19.1 t·ha−1 for UF and LF, respectively (Supplementary Materials
Table S5). The mean did not differ between the stands (p = 0.935) and represented 10.3 t·ha−1

month−1 for both. In the same way, for both stands, the rainy and dry seasons accounted
12.5 t ha−1 month−1 and 7.2 t ha−1 month−1, respectively. The Wmax varied from 9.7 to
25.7 t·ha−1 and from 8.2 to 28.7 t·ha−1 for UF and LF, respectively, and did not differ
significantly between stands (p = 0.916). The mean Wmax was slightly greater for LF
(16.7 ± 1.5 t ha−1) than UF (16.3 ± 1.0 t ha−1). The rainy season was 45% (20.1 ± 4.5 t ha−1

month−1 and 20.6 ± 5.2 t ha−1 month−1 for UF and LF, respectively) higher than dry sea-
son (11.1 ± 1.1 t ha−1 month−1 and 11.2 ± 1.2 t ha−1 month−1 for UF and LF, respectively).
During the study period, the litter WC ranged from 162 to 634 gwater kglitter

−1 for UF and
from 176 to 696 gwater kglitter

−1 for LF and did not show significant differences (p = 0.809)
between forests. The dry season had 40% less water than the rainy in both forests.

Figure 4. Monthly (a) effective water-holding capacity (EWC, %), (b) effective water-retention capacity
(Weff, t ha−1), (c) maximum water-retention capacity (Wmax, t ha−1), (d) and litter water content (WC,
gwater kglitter

−1) in unlogged and logged forest. Jamari National Forest, Rondônia, Brazil.

4. Discussion

Net precipitation is an important variable to analyze the hydrological processes in
forest ecosystems. This parameter corresponds to the total amount of open precipitation
that reaches the ground after crossing various barriers. The results of this study showed
that a larger volume of water—in addition to rainfall—reached the forest floor in the
unlogged forest. This behavior has already been observed in the Amazon rainforest by
other studies [34,35] and may correspond to the input of water from fog—which, being
a horizontal movement, is not quantified by rain gauges. On the other hand, when fog
condenses as it interacts with the surface of leaves, branches, and trunks, it contributes
to the throughfall and stemflow, thus justifying the higher amount of water within the

316



Hydrology 2023, 10, 97

forest when compared to open precipitation. The study of net precipitation is important in
hydrological research because it allows for the analysis of the amount of precipitation that
reaches the soil surface and interacts with the ecosystem. This is especially critical in forest
ecosystems, where various barriers, such as vegetation, topography, and fog, can alter the
amount and distribution of water that reaches the soil. Understanding the dynamics of net
precipitation can help us better comprehend hydrological processes in forest ecosystems
and, consequently, promote their conservation and management more effectively. In this
case, the reduced logging practices did not affect the distribution of net precipitation.

The mean annual litter deposition in the studied forest was similar to that reported
for primary and successional stages of forests in the Brazilian Amazon [23,36,37]. The
highest rates of litter deposition were observed during the rainy season and disagree
with other studies [1,23,38] indicating that litterfall is not solely controlled by rainfall
seasonality (rainy or dry season). Seasonal variation in litterfall production resulted in large
variations in the amount of litter on the soil, with litter peaks occurring in several months
of the year [39]. Factors such as forest structure, including age, species, soil nutrients, air
temperature, luminosity, wind, and soil water, also play a role in litter deposition [3]. While
leaves are typically reported as the predominant fraction in Amazon forests [1,40,41], the
accumulation of branches was found to be more prevalent than leaves in the studied forest,
which is consistent with observations in a Semideciduous Seasonal Forest [42,43]. The high
amount of branches during the rainy season (October to April) may be attributed to the
mechanical energy imposed by the wind during the rains, as well as the weight gain of
the branches due to waterlogging, making them more susceptible to fall and consequently
increasing their production at the onset of the rainy season.

The minor impacts of reduced-impact logging may minimize the effects on vegetation
cover and, consequently, on litter deposition [23]. This is particularly important to maintain
water conservation in sites under sustainable forest management and the results showed
that reduced-impact logging did not affect the effectiveness per unit of mass litter in
retaining water. Both stands showed higher water-holding capacity during the rainy
season than the dry season, which is expected given the higher rainfall and humidity
during the wet season. This similarity in hydrological properties between the stands
could be explained by the similarity in the litter composition, such as the leaves, branches,
seeds and unstructured materials. Despite the greater accumulation of branches in both
sites, the highest rates of litter water-holding capacity were observed in the unstructured
fraction. In fact, the water-holding capacity does not only depend on the amount of organic
material, but also on the degree of decomposition of its fractions. The high-water retention
rates observed in the amorphous fraction are due to the lower surface adhesion of this
material [44,45]. This means that the greater the degree of litter decomposition, the greater
the specific surface area, and consequently, the greater the potential for water retention
compared to other more superficial and less decomposed fractions. The fact that the leaf
fraction has a lower rate of water-holding capacity compared to the unstructured fraction
can be understood as a function of the lower surface adhesion or leaf adsorption, which
depends on aspects related to the leaf fraction itself, such as leaf area, structure, relief, shape,
surface/weight ratio, and organic composition [45,46]. In relation to the branch fraction,
which presented the lowest water retention rates, this is due to the nature of the woody
material, which is more hydrophobic and presents less water absorption. These branches
are mostly made of xylem with thick fibers and a relatively stable structure between cells,
which is difficult for water absorption although the internal tubular structure is rich [47].

It is important to highlight that litter water-holding capacity reflects the water-holding
condition in the laboratory, i.e., in the ideal state and the maximum capacity of water
retention [30,48]. The effective water retention was also similar between the unlogged
and logged stands, indicating that both stands were able to retain a significant amount
of water and that the water retention capacity of litter was not significantly affected by
RIL. As reported by [49,50], Weff defines the effective interception of precipitation by litter,
which is an important hydrological property that can be used to consistently evaluate the
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potential to absorb rainfall and reduce surface runoff [31,37]. The Weff is also affected by
the water content of litter, litter storage, and the nature of rainfall [27,40,45]. Our study
shows that, regardless of the RIL management, the mean annual capacity of litter in the
Amazon Forest to retain water was lower than that observed in Eucalyptus mangium and
Eucalyptus robusta but greater than Hevea brasiliensis [32]. On the other hand, Wmax, a
measure of rainfall absorption, was higher than Eucalyptus robusta [32], and, especially in
the rainy season, higher than Hevea brasiliensis [32]. If we consider that 1 mm of rainfall is
equivalent to 1 t·ha−1 [32,49], the litter from unlogged or logged forests has the potential
to intercept up to a mean of 12.5 mm and 7.2 mm of rainfall at the rainy and dry season,
respectively, and a mean of 10.5 mm per year. In fact, the studied forest can retain in the
litter the 3335 kg ha−1 and 3433 kg ha−1—of water per month in unlogged and logged
forests, respectively. Considering no statistical differences between unlogged and logged
forests, the water content in the litter represented 3752 kg ha−1 and 2317 kg ha−1 per month
during the rainy and dry seasons, respectively.

Studies investigating the patterns of litter and its fractions under field conditions to
determine their effective capacity in retaining water are necessary, especially in complex
and important environments undergoing accelerated changes, such as the Amazon biome.
Although there are studies on litter production in different environments, there is a lack
of knowledge on the water retention capacity of litter in field conditions. Research on the
ecohydrological functions of litter in the water balance of forest ecosystems is essential [51].
The findings of this study have important implications for sustainable forest management
in the Amazon. The results suggest that RIL can maintain the water retention capacity of
litter, which is an important component of the hydrological cycle in tropical forests. This
information can be used to develop more effective and sustainable forest management
practices that maintain the ecological and economic values of tropical forests. It is important
to note that while this study provides valuable insights into the impacts of RIL on the litter
hydrological processes of tropical forests, further research is needed to fully understand
the effects of RIL on other ecosystem services, such as carbon sequestration, biodiversity
conservation, and soil erosion control. Additionally, more studies are needed to evaluate
the long-term sustainability of RIL and its ability to maintain the ecological integrity of
tropical forests.

5. Conclusions

The minor impacts of reduced-impact logging may minimize the effects on litter
deposition, which is particularly important to maintain hydrological processes in sites
under sustainable forest management. The litter water-holding capacity between unlogged
and logged forests was similar, and the litter water dynamics kept the same properties.
The results of the study indicate that both unlogged and logged forests have similar water-
holding capacities, effective water holding and retention, maximum water retention and
water content. Although there were some slight differences in the mean water-holding
capacities of fractions, the overall differences between the two stands were not significant.
The effective water retention was similar in both stands, and the Weff and Wmax did not
differ significantly between the two stands. These findings suggest that sustainable forest
management activities through reduced-impact logging did not significantly affect the
hydrological dynamics of the litter layer in the Amazonian forests studied. More studies
are needed to investigate the patterns of litter and its fractions under field conditions
to determine its effective capacity to retain water, especially in complex and important
environments such as the Amazonian biome. Understanding the ecohydrological functions
of litter in the water balance of forest ecosystems is crucial for the management and
conservation of these ecosystems.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/hydrology10040097/s1, Table S1. Dendrometry attributes applied
for the characterization of the forest structure. Table S2. Families and forest species observed at
unlogged (UL) and logged (L) plots at Jamari National Forest, Rondônia, Brazil. P1/P2/P3—plots at
unlogged forest; P4/P5/P6—plots at logged forest. Table S3: Statistical analyses for open rainfall
and net precipitation in the Unlogged (UL) and Logged (L) at Jamari National Forest, Rondônia,
Brazil. Table S4: Litter fractions descriptive analyses for unlogged (UL) and logged (L) at Jamari
National Forest, Rondônia, Brazil. Table S5: Effective litter water-holding capacity [EWC, %], water-
holding capacity [WHC, %], litter effective water-retention capacity [Weff, t ha−1], maximum retention
capacity [Wmax, t ha−1] and water content [WC, gwater kglitter

−1] for unlogged (UL) and logged (L) at
Jamari National Forest, Rondônia, Brazil.
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Abstract: As the saline-alkali paddy area continues to grow, the nutrient (e.g., nitrogen (N) and
phosphorus (P)) runoff loss is becoming more serious in the world. The N-fertilizer application affects
the nutrient runoff loss risk in paddy. Selecting suitable fertilizer types to reduce nutrient loss is
beneficial to agricultural sustainability. However, the effects of N-fertilizer application in saline-alkali
paddy are not clear. This study measured the N and P concentration of surface water in saline-alkali
paddy, using various N—fertilizer treatments (i.e., urea (U), urea with urease—nitrification inhibitors
(UI), organic–inorganic compound fertilizer (OCF), carbon—based slow—release fertilizer (CSF),
and no N fertilization (CK)). Based on the structural equation model, both phosphate (PO4

3−-P) and
total−P (TP) concentrations had a positive influence on total-N (TN) concentration regardless of
N−fertilizer types applied. Potential risks of ammonia—N (NH4

+—N) and nitrate—N (NO3
−—N)

runoff losses were reduced in UI treatment, but the TN and TP losses were increased. At the panicle-
initiation fertilizer stage, the NO3

−−N, TN, and TP concentrations in CSF and OCF treatments were
lower than U. The CSF application can control the TP runoff loss risk during the rice-growing season.
UI should not be suggested for the control of nutrient runoff loss in saline-alkali paddy.

Keywords: saline-alkaline paddy; nitrogen fertilizer; nitrogen forms; runoff loss risk; phosphorus loss

1. Introduction

In recent years, the method of planting crops on saline-alkali lands to improve the
property of saline-alkali soil has become increasingly common, but it has also brought
about some agricultural pollution problems [1,2]. Especially in paddy fields, saline-alkali
soil, typically with high salinity and/or high pH, can cause the nitrogen (N) content in the
soil to be lower than that in non-saline-alkali soil, which requires more nutrient input to
ensure a high yield. According to the statistics of the Food and Agriculture Organization of
the United Nations (FAO) [3], the average seasonal N application rate adopted in China was
225 kg/ha, which was higher than the optimum N rate of 200 kg/ha suggested by Ju et al.
(2009) [4], the optimum N rate calculated from the average of economic N rates from field
experiments. A large amount of N has been lost due to the excessive and/or unreasonable
application of N fertilizers, resulting in a series of environmental problems (e.g., nonpoint
source pollution) [5,6]. The prevention and control of agricultural nonpoint source pollution
have become an important environmental problem in the world [7,8]. More than 60% of
surface water environmental problems are caused by agricultural activities in China [9].
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An important source of agricultural nonpoint source pollution is the loss of N, phosphorus
(P), and other nutrients from paddy fields [8,9]. Properties of saline-alkali soil (e.g., high
salinity and pH) would cause N loss and phosphate recalcitrance [10]. Although P is not
easy to lose from water, the improvement measures (e.g., drainage and salt washing after
the reclamation of paddy fields) will aggravate the soil P loss via runoff in paddy fields [11].
At present, the area of saline-alkali paddy fields is expanding all over the world, and the
degree of soil salinization is rising [8]. Therefore, the N and P losses from saline-alkali
paddy fields have also attracted much attention.

Runoff loss is one of the main pathways of N and P losses in paddy fields [5,9].
Since the 1990s, N and P runoff losses from farmland have increased by 46% and 30%,
respectively, resulting in an increasing nutrient (e.g., N and P) export to surrounding
water bodies, thereby posing a threat to the aquatic ecosystems [12]. Fertilization intensity,
fertilization types, and annual precipitation have effects on N and P runoff losses in paddy
fields [5,11]. The application of fertilizer can increase the N and P concentration of saline-
alkali paddy water; the potentiality of N and P runoff losses from the paddy soils owing to
different fertilization types has not been investigated clearly. In addition, there is a coupling
relationship between N and P [9]. The application of N fertilizers can stimulate the P
release in the soil. In the process of topdressing, it will stir the topsoil of the paddy fields
to release P in the soil, which will change the P concentration in the surface water. The
concentrations of N and P in surface water can serve as an indirect indicator of potential
nutrient runoff loss risk in paddy fields [9], as they are direct sources of nutrients in surface
runoff [13]. Thus, it is of great significance to study the changes in N and P concentrations
in surface water after fertilization for the prevention and control of N and P runoff losses in
paddy fields.

Due to the complexity of N and P pollutants along the surface runoff, crop growth, and
development and regionality, although the studies on the loss factors of N and P via surface
runoff in paddy fields have been reported, the study on the control of field fertilization on
the pollution runoff loads of N and P is still in the exploratory stage [5,8,9]. Zhao et al. [14]
found that applications of organic and organic–inorganic compound fertilizers (OCF)
reduced the N loss by 21.86% and 30.41%, respectively, compared with urea (U). Cui
et al. [9] believed that the application of organic fertilizer could effectively reduce N loss
but increase P loss. The studies on N and P losses via surface runoff are mainly based
on non-saline-alkali paddy fields [5,14], while there are few studies on the saline-alkali
paddy fields in Northeast China. Due to the unique properties of the saline-alkali soil, the
response of different N—fertilizer types to N and P losses in saline-alkali paddy fields may
be different from non-saline-alkali paddy fields. Therefore, this study set five treatments
with different N—fertilizers to study the effect of nutrient runoff loss risk in saline-alkali
paddy fields. The main objectives of this study were: (1) to explore the dynamic changes
in various N and P forms in surface water of saline-alkali paddy fields under different
N—fertilizer applications, and (2) to clarify the effect of N—fertilizer types on the potential
risks of N and P runoff losses. This study will provide a theoretical reference for the
sustainable development of the rice planting industry and provide an efficient strategy for
formulating reasonable nonpoint source pollution control in saline-alkali paddy fields.

2. Materials and Methods

2.1. Experimental Design and Operation

Fifteen paddy mesocosms were established in a mobile intelligent canopy. The size
of each mesocosm was 64 cm length × 49 cm width × 36 cm height, which was set up by
the polyethylene material. This experiment was operated from 31 May to 15 October 2021,
with a daily temperature of 2–30 ◦C and a relative humidity of 46–99%. The saline-alkali
paddy soil used in this study was randomly collected from nine saline-alkali paddy fields
(45◦34′18–33′ ′ N, 123◦54′25–42′ ′ E) in Baicheng City, Western Jilin Province, China. The
physical and chemical properties of saline-alkali paddy soil are described in Table S1 of
Supplementary Materials.
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Five N−fertilizer treatments, with three replicates per treatment, were carried out
in fifteen paddy mesocosms at the basal fertilizer (BF) stage. There were four treatments
with different N fertilizers, i.e., U, urea with urease-nitrification inhibitors (i.e., 1% N-(N-
butyl)thiophosphoric triamide (NBPT) and 1% 3,4-dimethylpyrazole phosphate (DMPP),
refer to UI), OCF and carbon (C) based slow-release fertilizer (refer to CSF), and one
treatment without additional N fertilizer as control (refer to CK). The organic–inorganic
compound fertilizer (OCF) has 12% N and 3% K2O, containing 20% organic matter, which
comes from Chinese herbal materials. The carbon-based slow-release fertilizer has a pro-
portion of N, P2O5, and K2O with 24:8:10, containing 10% biochar. At the BF stage, these
N−fertilizer types used were selected by the field investigation in Western Jilin, China.
Urea was used at tillering fertilizer (TF) and panicle-initiation fertilizer (PIF) stages. The
total N fertilizers were applied at 200 kg N/ha (i.e., 6.27 g N/mesocosm), which was
consistent with the actual amount of N fertilizer applied by local farmers in all treatments
(excluding CK); the ratio of three N—fertilizer application ratios with of BF, TF, and PIF was
5:3:2. Table 1 describes the specific application of different N fertilizers in each treatment.
Along with the N fertilizer applied at the BF stage, ammonium phosphate (18% N and 46%
P2O5) and potassium sulfate (50% K2O) were employed as phosphate and potash fertilizers
before rice transplanting, respectively. The total phosphate and potash fertilizers during
the entire rice−growing season were 70 kg P2O5/ha (i.e., 2.20 g P2O5/mesocosm) and
90 kg K2O/ha (i.e., 2.82 g K2O/mesocosm), respectively. The selections of N, phosphate,
and potash fertilizers were based on the field survey of saline-alkali paddy fields in West-
ern Jilin Province, China. The BF was mixed completely with the collected saline-alkali
paddy soil on 30 May 2021, and then each mesocosm was initiated flooded. Dongdao
4 (Oryza sativa L.), a saline-alkali-resistant rice variety, was transplanted into all paddy
mesocosms on 31 May 2021. The same agricultural management, including irrigation, was
performed in all paddy mesocosms. Each paddy mesocosm was regularly irrigated with the
same amount of water, which was maintained at a water depth of 3–5 cm by intermittent
irrigation before crop harvesting. In this study, no precipitation occurred, and insecticides
and pesticides were not applied during the whole experiment period.

Table 1. Application of N fertilizer at different stages in each treatment.

Treatments

Basal Fertilizer Stage (BF)
Tillering Fertilizer Stage

(TF)
Panicle-Initiation

Fertilizer Stage (PIF) Total N
Amount
(kg N/ha)N-Fertilizer Types

Amount
(kg N/ha)

Other N
Source

Amount
(kg N/ha)

N-Fertilizer
Types

Amount
(kg N/ha)

N-Fertilizer
Types

Amount
(kg N/ha)

CK – –

Ammonium
phosphate

(18% N and
46% P2O5)

27.40 – – – – 27.40

U Urea (46%) 72.60 27.40 Urea 60 Urea 40 200

UI Urea (46%) with 1%
NBPT and 1% DMPP 72.60 27.40 Urea 60 Urea 40 200

OCF
Organic–inorganic

compound fertilizer
(12% N and 3% K2O)

72.60 27.40 Urea 60 Urea 40 200

CSF
C-based slow-release

fertilizer (N:P2O5:K2O
= 24:8:10)

83.50 16.50 Urea 60 Urea 40 200

2.2. Sampling and Chemical Analyses of Surface Water

During the 137-day experiment, the sampling was conducted in a total of 34 days,
including Day 0, 1, 3, 5, 7, and 10 at each initial fertilization and every 5–7 days thereafter.
The fertilization dates of BF, TF, and PIF were 30 May, 13 June, and 10 August 2021,
respectively. A 100 mL polyethylene sampling bottle was used to collect the surface water
sample from each mesocosm on each sampling day. Surface water samples collected from
all treatments were tested for electrical conductivity (EC) and pH using a quality analyzer
(Bante ™, Shanghai, China). The concentrations of ammonia—N (NH4

+—N), nitrite—N
(NO2

−—N), nitrate-N (NO3
−—N), total—N (TN), phosphate (PO4

3−—P), and total-P (TP)
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concentrations were analyzed via the automatic chemical analyzer (Mode Smartchem
200, Italy).

2.3. Statistical Analysis

All experimental data were graphically interpreted using Origin 2021 software (Origin-
Lab Corporation, Northampton, MA, USA). Statistical analysis was performed using SPSS
22.0 software (IBM Corporation, New York, NY, USA). All experimental data were reported
as means and standard deviations of three independent replicates (mean ± SD). The result
of the one-way analysis of variance (ANOVA) was used to determine the significance of the
difference between treatments. Levene’s test was used to test the homogeneity of variances,
and the least significant difference (LSD) was used to perform the multiple comparisons of
mean values. A p-value less than or equal to 0.05 was considered significant in all analy-
ses. The correlation between N and P in water parameters was described using Pearson
correlation analysis. Principal component analysis (PCA) with the correlation matrix was
also carried out with Origin 2021 software. The variables used in PCA were the values of
pH and EC and the concentrations of NH4

+—N, NO2
−—N, NO3

−—N, TN, PO4
3—P, and

TP. Amos 24.0 software (AMOS IBM, USA) was utilized to conduct a structural equation
model (SEM).

3. Results

3.1. EC and pH of Surface Water in Saline-Alkali Paddy Fields

The EC and pH values in surface water of all treatments had a violent fluctuation
trend during the entire rice-growing season (Figure 1). At the BF stage, the highest average
EC value in surface water was observed in OCF treatment, followed by CSF, UI, U, and CK
treatments. Compared to CK (1.07 ± 0.55 mS/cm), the EC values in UI (1.67 ± 0.98 mS/cm),
OCF (1.89 ± 1.15 mS/cm), and CSF (1.70 ± 0.70 mS/cm) treatments demonstrated a
statistically significant (p < 0.05) increase, respectively. The average EC values at the TF
stage were CK < OCF < U < CSF < UI, and at PIF stage were CK < U < CSF < OCF < UI.
The UI treatment at both TF and PIF stages had significantly (p < 0.05) higher average
EC values than all the other four treatments. The average pH values at the BF stage were
CK < CSF < UI < U < OCF, at the TF stage were U < CK < OCF < CSF < UI, and the
UI treatment (8.57 ± 0.38) at the TF stage had a statistically significant (p < 0.05) higher
pH value than U (8.24 ± 0.43) and CK (8.31 ± 0.25) treatments, respectively. At the PIF
stage, the average pH values were U < CSF < CK < OCF < UI and the UI treatment had
a significant (p < 0.05) higher average pH value than all the other four treatments. The
average pH value in OCF treatment (8.53 ± 0.38) was significantly (p < 0.05) higher than U
(8.16 ± 0.33) and CSF (8.18 ± 0.29), respectively.

3.2. Dynamic Changes in Different N Forms in Surface Water as Rice Grows

Regardless of the N—fertilizer types, the NH4
+—N concentrations in surface water

of all N—fertilizer treatments were higher than CK (Figure 2a). At the BF stage, the
changing trend of NH4

+—N concentration showed a gentle fluctuation, and the average
NH4

+—N concentrations were CK < UI < CSF < U < OCF. The OCF treatment was found
to be significantly (p < 0.05) different from all the other four treatments in the average
NH4

+—N concentrations. The NH4
+—N concentrations in surface water of all N—fertilizer

treatments exhibited an increase–decrease trend after applying TF and PIF, respectively.
At the TF stage, the peak values of all N—fertilizer treatments occurred from Day 3 to
Day 5 after fertilizer application (i.e., from 16 to 18 June 2021). The average NH4

+−N
concentrations were CK < UI < U < OCF < CSF. The CSF, OCF, and U treatments had
significant (p < 0.05) differences with UI and CK treatments, respectively. At the PIF stage,
the peak values of all N—fertilizer treatments occurred from Day 1 to Day 5 after fertilizer
application (i.e., from 10 to 14 August 2021), and the average NH4

+—N concentrations
were CK < UI < OCF< CSF < U. The difference in the average NH4

+—N concentrations
between CK and all N—fertilizer treatments was significant (p < 0.05) (Table 2).
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Figure 1. The EC (a) and pH (b) values in surface water of different N−fertilizer treatments during
the rice-growing season. BF (blue background): basal fertilizer stage; TF (yellow background):
tillering fertilizer stage; PIF (green background): panicle-initiation fertilizer stage. Data presented as
mean ± standard deviation (n = 3).

For all N—fertilizer treatments, the concentrations of both NO2
−—N and NO3

−−N
in surface water were decreased gradually over time in all N-fertilizer treatments at the BF
stage (Figure 2b,c). At the BF stage, the average NO2

−—N and NO3
−—N concentrations

in all N—fertilizer treatments were higher than CK. At TF and PIF stages, both NO2
−—N

and NO3
−—N concentrations in surface water of most N—fertilizer treatments (except UI)

had an increase–decrease trend, which was the same as NH4
+—N. As shown in Table 2,

the U, CSF, and OCF treatments at the TF stage had significantly (p < 0.05) higher average
NO2

−—N and NO3
−—N concentrations than UI and CK treatments, respectively (Table 2).

At the PIF stage, the average concentrations of both NO2
−—N and NO3

−—N followed the
order of CK < UI < OCF < CSF < U, respectively. Therein, the U and CSF treatments of
average NO2

−—N and NO3
−—N concentrations were significantly (p < 0.05) greater than

UI and CK, respectively.
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Figure 2. Concentrations of NH4
+—N (a), NO2

−—N (b), NO3
−—N (c), and TN (d) in surface water

of saline-alkali paddy fields with different N-fertilizer treatments during the rice-growing season.
BF (blue background): basal fertilizer stage; TF (yellow background): tillering fertilizer stage; PIF
(green background): panicle—initiation fertilizer stage. Data presented as mean ± standard deviation
(n = 3).

Table 2. The average concentrations of various N forms in surface water of saline-alkali paddy fields
with different N fertilizers.

Treatments N Forms BF Stage (mg/L) TF Stage (mg/L)
PIF Stage

(mg/L)

CK

NH4
+—N 0.38 ± 0.31 0.21 ± 0.17 0.16 ± 0.22

NO2
−—N 0.03 ± 0.04 0.07 ± 0.07 0.07 ± 0.08

NO3
−—N 1.26 ± 0.95 0.58 ± 0.55 0.44 ± 0.26

TN 3.62 ± 1.41 3.44 ± 1.80 4.51 ± 4.13

U

NH4
+—N 1.09 ± 0.88 4.22 ± 5.60 6.29 ± 11.32

NO2
−—N 0.06 ± 0.07 1.10 ± 1.27 0.27 ± 0.44

NO3
−—N 1.44 ± 1.12 2.11 ± 1.87 1.26 ± 1.23

TN 6.16 ± 2.95 45.58 ± 47.26 52.40 ± 109.58

UI

NH4
+—N 0.60 ± 0.34 1.11 ± 0.83 4.73 ± 6.43

NO2
−—N 0.06 ± 0.10 0.12 ± 0.16 0.11 ± 0.14

NO3
−—N 1.62 ± 1.61 0.53 ± 0.52 0.62 ± 0.34

TN 15.02 ± 12.20 125.89 ± 149.86 63.32 ± 98.96

OCF

NH4
+—N 1.93 ± 1.71 4.55 ± 5.93 5.77 ± 8.42

NO2
−—N 0.08 ± 0.10 0.81 ± 1.10 0.19 ± 0.20

NO3
−—N 1.53 ± 1.56 1.37 ± 1.34 0.83 ± 0.60

TN 6.63 ± 4.83 49.54 ± 54.56 28.31 ± 45.80

CSF

NH4
+—N 0.89 ± 0.66 4.49 ± 5.88 6.15 ± 10.96

NO2
−—N 0.09 ± 0.10 0.59 ± 0.58 0.22 ± 0.22

NO3
−—N 1.88 ± 1.64 1.63 ± 1.94 0.91 ± 0.55

TN 8.77 ± 4.73 46.85 ± 54.60 32.15 ± 71.15
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The variation trend of TN concentrations in surface water of all treatments was consis-
tent with NH4

+—N during the entire rice—growing season (Figure 2d). The peak values of
all N-fertilizer treatments occurred from Day 0 to Day 7 after TF application (i.e., from 13
to 20 June 2021) and on Day 1 after PIF application (i.e., 10 August 2021). At the BF stage,
the highest average TN concentration was found in UI treatment in surface water, followed
by CSF, OCF, U, and CK treatments. At the TF stage, the average TN concentrations were
CK < U < CSF< OUF < UI (Table 2). The highest average TN concentrations at both BF and
TF stages were observed in UI treatment, and the differences between UI and the other four
treatments were significant (p < 0.05). At the PIF stage, the average TN concentrations were
CK < OCF < CSF< U < UI; therein, UI treatment had higher average TN conventions than
CK and OCF, respectively.

3.3. Concentrations of PO4
3−—P and TP in Surface Water

The change trends of PO4
3−—P concentrations in surface water of all N—fertilizer treatments

are shown in Figure 3a. At the BF stage, the changes in PO4
3−—P concentrations in UI and

OCF treatments were greatly influenced compared with U and CSF, respectively. At both BF and
TF stages, the average PO4

3−—P concentrations were CK < CSF < U < OCF < UI, and the UI
and OCF treatments had significant (p < 0.05) differences with U, CSF, and CK treatments,
respectively. At the PIF stage, the UI treatment (0.19 ± 0.16 mg/L) had a significant
(p < 0.05) higher average PO4

3−—P concentration compared with OCF (0.11 ± 0.12 mg/L),
U (0.07 ± 0.07 mg/L), and CK (0.07 ± 0.08 mg/L), respectively. During the entire rice-
growing season, all N-fertilizer treatments had higher TP concentrations than CK in surface
water (Figure 3b). At the BF stage, the highest average TP concentration was observed in UI
treatment, followed by OCF, U, CSF, and CK treatments, and the UI treatment was found
to be significantly different (p < 0.05) from all the other four treatments. At both TF and
PIF stages, the average TP concentrations were all CK < CSF < OCF < U < UI. The average
TP concentration in the surface water of UI treatment (0.98 ± 1.01 mg/L) at the TF stage
was significantly (p < 0.05) increased with CSF (0.31 ± 0.23 mg/L), OCF (0.46 ± 0.49 mg/L)
and CK (0.25 ± 0.22 mg/L), respectively.

3.4. Correlation Analysis between N and P in Surface Water of Saline-Alkali Paddy Fields

During the entire rice−growing season, the correlation coefficients between EC, pH,
and the concentrations of various N and P forms in surface water were changed by applying
different N fertilizers in saline-alkali paddy fields, and some directions were converted
(Figure 4). Moreover, the positive correlation intensity between pH and EC in all N-
fertilizer treatments was increased compared with CK. The negative correlation intensity
between pH and TP was reduced. Compared with CK treatment, the negative correla-
tion between EC and NH4

+—N concentration was converted to a positive correlation by
different N-fertilizer applications, with the intensities of UI < OCF < U < CSF. There was
a positive correlation between NH4

+—N and TN concentrations in all treatments, with
UI < CK < U < OCF < CSF intensities. Compared with CK treatment, the negative cor-
relation between NO2

−—N and NO3
−—N concentrations was turned into a positive

correlation by applying different N fertilizers, with the intensities of UI < OCF < U < CSF.
There was a positive correlation between NO3

−—N and PO4
3−—P concentrations with

UI < CSF < CK < OCF <U intensities. The positive correlation intensities between PO4
3−—P

and TP concentrations were CK < U < CSF < OCF < UI.
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Figure 3. Concentrations of PO4

3−—P (a) and TP (b) in surface water of different N—fertilizer
treatments during the rice-growing season. BF (blue background): basal fertilizer stage; TF (yellow
background): tillering fertilizer stage; PIF (green background): panicle—initiation fertilizer stage.
Data presented as mean ± standard deviation (n = 3).

The results of PCA clearly showed the variations in EC, pH, and various N and
P forms in surface water of saline-alkali paddy ecosystems with different N—fertilizer
applications, and the first and second principal components jointly explained 41.9–52.8%
(Figure 5). In the first and second principal components, for CK treatment (Figure 5a),
there was a higher correlation between pH and NO2

−—N compared with the other indices,
while EC had a higher correlation with TN. For U treatment (Figure 5b), pH had a higher
correlation with NO2

−—N, NO3—N, and PO4
3−—P, while EC had a higher correlation

with NH4
+—N, TN, and TP, respectively. For UI treatment (Figure 5c), pH had no higher

correlation with all indices, while EC had a higher correlation with NH4
+—N and TN. For

OCF treatment (Figure 5d), pH and EC had higher correlations with NH4
+—N, NO2—N,

and TN, respectively. For CSF treatment (Figure 5e), pH had a higher correlation with
NO2

−—N and NO3
−—N, while EC had a higher correlation with NH4

+—N, TN, PO4
3—P,

and TP.
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Figure 4. Correlations of pH, EC, and various forms of N and P in surface water of saline-alkali
paddy fields with different N-fertilizer applications ((a): CK, (b): U, (c): UI, (d): OCF, and (e): CSF)
during the entire rice—growing season (n = 102). * and ** represent significance at p < 0.05 and
0.01, respectively.
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Figure 5. Principal component analysis (PCA) of N and P indices in surface water of saline-alkali
paddy fields with different N-fertilizer application ((a): CK, (b): U, (c): UI, (d): OCF, and (e): CSF)
during the entire rice—growing season (n = 102).
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3.5. Multiple Interaction Pathways among NH4
+-N, TN, and Physiochemical Parameters

To further understand causal relationships among NH4
+—N, TN, and physiochemical

parameters in surface water of saline-alkali paddy fields during the entire rice—growing
season, regardless of the N—fertilizer types, the interaction model among detected factors
was established (Figure 6). Based on the SEMs, pH presented a significant negative influence
on NH4

+—N (β = −2.054, p < 0.01) and TP (β = −0.151, p < 0.05), respectively. On the
other hand, a significant positive influence was observed on NO2−—N (β = 0.177, p < 0.01)
and PO4

3−—P (β = 0.084, p < 0.05). For EC, a significant positive influence was observed
on NH4

+—N (β = 1.652, p < 0.001), NO2
−—N (β = 0.143, p < 0.001), TN (β = 19.172,

p < 0.001), PO4
3−—P (β = 0.079, p < 0.001), and TP (β = 0.087, p < 0.01), respectively,

while a significant negative influence (β = −0.148, p < 0.001) was observed on NO3
−—N.

For NH4
+—N, there was a significant positive influence (β = 3.366, p < 0.001) on TN.

The NO2
−—N had a significant positive influence (β = 2.144 and 1.285, p < 0.001) on

NH4
+-N and NO3

−—N, while a significant negative influence on PO4
3−—P (β = −0.128,

p < 0.001) and TP (β = −0.141, p < 0.05), respectively. For NO3
−-N, there was a significant

positive pathway on NH4
+—N (β = 0.667, p < 0.05), PO4

3−—P (β = 0.078, p < 0.001), and
TP (β = 0.057, p < 0.05), respectively. The PO4

3−-P presented a significant positive influence
(β = 1.151, p < 0.001) on TP. Meanwhile, TP had a significant positive (β = 0.954, p < 0.05)
pathway on NH4

+—N.

Figure 6. Simplified structural equation models (SEMs) representing hypothesized causal relation-
ships among NH4

+—N, TN, and physiochemical parameters in surface water of saline-alkali paddy
fields during the entire rice-growing season. *, ** and *** represent the significant levels of p < 0.05,
0.01, and 0.001, respectively. Chi-Square: the difference between the expected covariance matrix
and the covariance matrix of the data; P: the significance of fit index; GFI: the goodness of fit index;
CFI: the Bentler’s comparative fit index; RMSEA: the root mean square error of approximation. The
numbers on the arrows indicate the strength of the relationships between variables and are used to
analyze causal relationships.
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4. Discussion

The runoff caused by drainage is one of the ways of nutrient (e.g., N and P) loss during
the rice-growing season [15,16]. The main reason for agricultural nonpoint source pollution
is N and P returning to the surface water with runoff [9]. The N and P concentrations in the
surface water of paddy fields determine the nutrient supply level of rice growth [17,18].
The paddy field is in the state of soaking for a long time after fertilization. During rainfall
and/or over−irrigation, the surface water in paddy fields is usually discharged randomly,
which not only causes the runoff loss of nutrients but also increases the potential risk
of agricultural nonpoint source pollution [5,19–21]. Thus, the study on the dynamic
characteristics of N and P in surface water is significant for clarifying the law of N and P
runoff losses in paddy fields to protect the surface water environment.

The dynamic changes in N and P concentrations in surface water of paddy fields can
reflect the adsorption and/or fixed saturation of nutrients by the paddy soil [22]. Most
N fertilizers are easily transported to adjacent water bodies with rainfall and/or artificial
irrigation runoff due to their high solubility in flooded paddy fields. Based on statistical
data, about 7% of the N fertilizer utilized within Chinese agricultural practices is lost via
surface runoff and subsurface leaching [23]. In addition, the concentrations of TP and
PO4

3−−P in surface runoff were significantly correlated with the respective P forms in
the field ponding water [24]. Therefore, the N and P concentrations in surface water can
reflect the potential of nutrient loss from paddy fields. Fertilizers are the main source of N
and P in the surface water of paddy fields. During the initial stage of fertilization, the N
and P losses in paddy fields are significantly higher than those in unfertilized fields [9]. In
this study, after just fertilization, regardless of the fertilization stages, the concentrations of
various N and P forms in the surface water of paddy fields were increased compared with
CK (Figures 2 and 3), indicating a potential risk of nutrient loss at the beginning of each
fertilization stage. Application of suitable fertilizer types, reasonable control of fertilization
amount, and improvement of the fertilizer utilization rate of crops are necessary measures
to reduce nutrient loss via runoff in paddy fields [25–27]. Moreover, as the fertilizers with
the largest amount, the rational selection of N−fertilizer types is the key to controlling
the N loss via runoff in paddy fields [25]. Due to the physiological response of plants, the
supply of N can increase the absorption and utilization of P by plants [28]. NH4

+−N can
promote the absorption of P by rice and the transport of P to the aboveground tissues,
while the P absorbed by rice is mainly accumulated in the root system when NO3

−−N is
applied [28]. Thus, the selection of N fertilizer also plays an important role in improving
the P absorption capacity of crops and avoiding the risk of P runoff loss in paddy fields.
Compared with non−saline-alkali paddy fields, the soil physicochemical properties and
biological processes of saline-alkali paddy fields are vulnerable to the negative effects of
high salinity and pH, resulting in more nutrient loss via runoff [29,30]. The interaction and
relationship between N and P in the surface water of saline-alkali paddy fields are also
influenced by the N—fertilizer types (Figures 4 and 5). Therefore, selecting the appropriate
N fertilizer for application is the key to controlling the N and P losses via runoff in saline-
alkali paddy fields.

The concentrations of various N forms in the surface water of saline-alkali paddy fields
were normally high in the initial stage of each fertilization stage and gradually decreased
to a low value by the end of each fertilization stage, regardless of the types of N fertilizer
applied (Figure 2). This result is almost similar to Xue et al. [21], who reported the highest
N concentration mainly occurred from Day 0 to Day 10 after applying N fertilizers and then
declined to a low value after 10 days. Both NH4

+−N and NO3
−−N are the main forms

of N loss via runoff in paddy fields, which are the available N that can be directly used
by rice [8,17]. The concentrations of both NH4

+−N and NO3
−−N in the surface water of

paddy fields are affected by the N−fertilizer types, which can affect the N content of rice
growth supplied by paddy soil. For the UI treatment of this study, the application of UI
can inhibit the U hydrolysis and promote crop growth [31,32]; thus, the average NH4

+—N
concentration in surface water of UI treatment at each fertilization stage was observed to
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be lower than U treatment (Figure 2a). At both TF and PIF stages, the average NO3
−—N

concentrations in UI treatment were significantly (p < 0.05) reduced compared with U
(Figure 2c). These results suggested that the potential risks of NH4

+−N and NO3
−−N

runoff losses in saline-alkali paddy fields can be effectively controlled by the addition
of inhibitors. Meanwhile, the concentrations of NO3

−−N in OCF and CSF treatments at
the initial stage of topdressing (i.e., on Day 0 to Day 20 of TF and PIF stages) were lower
than U, and the average NO3

−−N concentrations in OCF and CSF treatments at both TF
and PIF stages were reduced compared with U (Figure 2c). Furthermore, both CSF and
OCF applications significantly (p < 0.05) decreased the average NO3

−−N concentrations in
surface water at the PIF stage, which proved that both OCF and CSF have the potential to
reduce the risk of NO3

−−N runoff loss in saline-alkali paddy fields at the PIF stage.
TN is the sum of soluble−N and granular−N in the surface water of paddy fields, so

the TN loss via runoff is the largest among different N forms [8]. Effectively controlling
the TN runoff loss is one of the main tasks to effectively control the N loss in paddy fields.
The TN concentration in the surface water of paddy fields is affected by N−fertilizer
types, fertilization methods and fertilizing times, etc. [9,33]. In this study, regardless of
N−fertilizer types, the average TN concentration at the BF stage by the deep placement of
N fertilizer was lower than those at topdressing stages (i.e., TF and PIF stages) using the
throwing method (Figure 2d). This result revealed that the deep placement of N fertilizers
can effectively control TN loss via runoff in paddy fields, which was consistent with Min
et al. [33]. Regardless of fertilization stages, the application of UI increased the average TN
concentration compared with all the other treatments (Figure 2d). However, the average
NH4

+−N, NO2—N, and NO3
−−N concentrations in surface water of UI treatment were

all lower than all the other N-fertilizer treatments at the topdressing stages (Figure 2a–c).
These results indicated that the UI addition can increase the risk of TN runoff loss in
saline-alkali paddy fields, and organic-N accounted for the main contribution. The reasons
for these results may be as follows: (1) for UI treatment, the urease inhibitor (i.e., NBPT) can
effectively inhibit the hydrolysis of U and control the speed of U conversion to NH4

+—N, so
the U as organic—N remains in the soil may be directly dissolved in surface water of paddy
fields [31,32]; (2) after the nitrification process was inhibited by the nitrification inhibitor
(i.e., DMPP) in UI treatment, U can remain in the paddy soil in the form of NH4

+-N for
a long time, avoiding the appearance of high NO2

−−N and NO3
−−N concentrations,

and reducing the runoff losses of both NO2
−−N and NO3

−−N [34,35]; (3) the addition
of inhibitors reduces the activity of relevant functional microorganisms (e.g., nitrifying
bacteria) and enzymes (e.g., urease), and even leads to their death [35,36], which may
cause the increase in organic−N in saline-alkali paddy fields. Therefore, although the UI
application can effectively control the risk of inorganic-N (i.e., NH4

+−N, NO2—N, and
NO3

−—N) loss via runoff, there is a serious potential risk of TN runoff loss.
The loss of P, which is one of the necessary nutrients for rice growth, occurs mainly in

the form of dissolved P via surface runoff in paddy fields [37]. The PO4
3−−P and TP con-

centrations in the surface water of saline-alkali paddy fields showed remarkable variation
among the different N-fertilizer treatments (Figure 3). Regardless of the fertilization stages,
the average PO4

3−−P and TP concentrations in the surface water of UI treatment were
also higher than all the other N-fertilizer treatments (Figure 3), which was consistent with
the result of TN (Figure 2d). Based on the SEMs, both PO4

3−—P and TP concentrations in
surface water had a positive influence on TN concentration regardless of N−fertilizer types
applied at the BF stage (Figure 6). Meanwhile, the TN concentration in the surface water
of UI treatment positively correlated with TP (Figure 4c). These results indicated that the
UI application also has the potential risk of P loss via surface runoff in saline-alkali paddy
fields. The PO4

3−—P and TP concentrations in surface water can promote the increase
in TN concentration, thus simultaneously causing the risk of TN runoff loss. For OCF
treatment, the average PO4

3−—P and TP concentrations were decreased with increasing
fertilization times. Therein, the average TP concentration in OCF treatment at the BF stage
was higher than U, while the average TP concentrations at TF and PIF stages were lower
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than U. These results indicated that the application of OCF can increase the P concentration
in surface water of saline-alkali paddy fields in the early rice-growing season and generate
a potential risk of P runoff loss, which are similar to the results of Zanon et al. [16] and
Cui et al. [9]. For CSF treatment, the application of CSF can control the dissolution rate
of nutrients so that the nutrient release rate of fertilizer is consistent with the nutrient
absorption law of crops, thus improving crop nutrient use efficiency and reducing the risk
of nutrient loss [38,39]. In this study, regardless of the fertilization stages, the average TP
concentration in CSF treatment was reduced compared with U (Figure 3b), indicating that
CSF can control the potential risk of P runoff loss in saline-alkali paddy fields. In summary,
CSF is a better choice for avoiding the potential risk of P loss via runoff in saline-alkali
paddy fields during the entire rice—growing season, but UI should not be suggested for
the control of P runoff loss.

5. Conclusions

This study investigated the dynamic characteristics of different forms of N and P
concentrations in surface water of saline-alkali paddy fields under different N−fertilizer
applications and revealed their potential risk of nutrient loss via runoff. Based on the
SEMs, there was a direct and/or indirect relationship among various forms of N and P in
saline-alkali paddy fields. The N-fertilizer types can affect the interaction and relationship
between N and P in the surface water of saline-alkali paddy fields, resulting in different
potential risks of N and P losses via surface runoff. Comprehensively considering the
average concentrations and variation laws of N and P in each fertilization stage, the
application of UI can effectively control the potential risks of NH4

+—N and NO3
−—N

losses via surface runoff, but increase the risks of TN and TP losses, indicating that UI is
not suitable in saline-alkali paddy fields for controlling nutrient loss via runoff. The OCF
application increased the N and P concentrations in surface water of saline-alkali paddy
fields at the BF stage, thus enhancing the potential risk of nutrient loss via surface runoff
compared with U. Meanwhile, OCF had a good potential to control N and P runoff losses at
PIF stage. CSF is a good choice to control the risk of TP loss via runoff in saline-alkali paddy
fields regardless of the fertilization stages and has an effective potential for controlling the
risk of N runoff loss at the PIF stage.
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Abstract: Spatiotemporal variations in reference evapotranspiration (ETo) are sensitive to the me-
teorological data used in its estimation. The sensitivity of the ASCE standardized ETo equation to
meteorological variables from GOES-PRWEB dataset was evaluated for the island of Puerto Rico. Is-
land wide, ETo is most sensitive to daily mean relative humidity (RHmean), followed by solar radiation,
daily maximum (Tmax) and minimum (Tmin) air temperatures, and wind speed with average absolute
relative sensitivity coefficients (SCs) of 0.98, 0.57, 0.50, 0.27, and 0.12, respectively. The derived SCs
guided the prioritization of bias correction of meteorological data for ETo estimation from two down-
scaled climate models (CNRM and CESM). The SCs were applied to evaluate how meteorological
variables contribute to model errors and projected future changes in ETo from 1985–2005 to 2040–2060
at irrigated farms in the south. Both models project a 5.6% average increase in annual ETo due to
projected increases in Tmax and Tmin and a decrease in RHmean. Despite ETo being most sensitive
to relative changes in RHmean, the contributions from RHmean, Tmax, and Tmin to future changes in
ETo are similar. CESM projects increases in ETo in March, November, and December, increasing the
potential for crop water stress. Study limitations are discussed.

Keywords: evapotranspiration; evaporation; transpiration; water use; water balance; Puerto Rico;
sensitivity analysis; climate change; WRF; GOES-PRWEB

1. Introduction

Accurate quantification of evapotranspiration (ET) is critical to water resource man-
agement and planning, especially in the semi-arid southern part of the island of Puerto Rico
where agriculture is dependent on irrigation. Currently, the island only produces 15% of
the food consumed by residents [1]. Compared to most of the U.S., where agricultural
irrigation was the primary freshwater withdrawal in 2015, irrigation withdrawals from
surface water and groundwater sources in Puerto Rico accounted for only about 12% of the
total freshwater withdrawals in 2015 [2]. Because agricultural production has declined since
the 1960s and urbanization encroached into agricultural lands, an increasing proportion
of the island’s surface-water withdrawals have been for domestic water supply. In the
south, canals that were built primarily to supply irrigation water to agricultural lands are
now increasingly being used for public water supply. Increasing competition among water
users has limited the capacity for recovery of the agricultural sector [3] by reducing the
availability of water supplies for future agricultural production [4]. This may hinder the
island’s attempts to achieve food sovereignty which is also being threatened by climate
change [5].

The island has historically been subject to periods of drought which have adversely
affected the agricultural sector. Since the turn of the century, an extreme drought occurred
during 2014–2016 and severe drought conditions occurred again in 2019–2022 [6]. A
2013–2016 Caribbean-wide drought was partly linked to 2015–2016 El Niño conditions,
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but analysis by Herrera et al. [7] suggests that climate change may have accounted for
~15–17% of the drought severity and/or ~7% of its spatial extent. Downscaled climate
models project increased drought intensity and frequency in the future as a result of climate
change [8,9]. Therefore, understanding potential future changes in rainfall and actual ET
from crops is critical for water managers and planners to better prepare for the future.
Actual ET depends on various factors, including atmospheric evaporative demand, which
is quantified via reference evapotranspiration (ETo), soil water availability, crop physiology,
and crop management factors.

The American Society of Civil Engineers (ASCE) has defined a standardized grass-
reference Penman–Monteith (P-M) evapotranspiration equation [10] to estimate ETo on
a daily timestep for short grass. When applied on a daily timestep, the ASCE standard-
ized ETo equation is the same as the Food and Agriculture Organization paper number
56 (FAO-56) P-M equation [11]. Understanding spatiotemporal variations in ETo requires
understanding the sensitivity of standardized equations to each meteorological variable
used in its estimation. For this purpose, a sensitivity analysis of the ASCE standardized ETo
equation is performed for Puerto Rico. This involves the computation of non-dimensional
relative sensitivity coefficients (SCs) of the ASCE standardized ETo equation to each of the
basic meteorological variables used in its estimation. When combined with a measure of the
variability or measurement/estimation error in the basic meteorological variables, the SCs
could be used to define monitoring priorities among the variables. ETo may be sensitive to
a particular variable but if that variable varies little in time and if it can be measured or
estimated precisely, then the variable will not influence ETo estimates significantly.

Gong et al. [12], and McKenney and Rosenberg [13] discuss difficulties in comparing
results of ETo sensitivity analysis from the literature, including the use of different ETo
models, parameterizations and meteorological variables, spatiotemporal scales, climatic
settings, and SC definitions (i.e., absolute versus relative). The studies discussed hereafter
are limited to those where the sensitivity of ETo to various meteorological variables was
determined based on the ASCE or the FAO-56 grass-reference P-M equations. For example,
Irmak et al. [11] performed a sensitivity analysis of the ETo equation at various U.S. locations
computing absolute SCs numerically. They found that ETo is most sensitive to vapor
pressure deficit (VPD) at all the U.S. locations evaluated, but that sensitivity to solar
radiation (Rs) dominates during the summer months at humid locations (Ft. Pierce, Florida
with ~1200 mm of annual precipitation and at Rockport, Missouri with ~800 mm of annual
precipitation). Debnath et al. [14] computed absolute SCs for ETo at five stations in different
agroecological regions of India where annual precipitation ranges from 680 to 1500 mm.
They found ETo to be most sensitive to either Rs or 2 m wind speed (u2), and least sensitive
to daily mean relative humidity (RHmean) and daily minimum air temperature (Tmin) with
significant spatiotemporal variation in SCs.

Gong et al. [12] computed relative SCs for ETo at meteorological stations in the Yangtze
River Basin in China, where annual precipitation ranges from 400 to 1600 mm [15]. They
found that RHmean was the most sensitive variable, followed by Rs, daily mean air tempera-
ture (Tmean), and u2. Seasonal and regional variations in sensitivity were observed. Further-
more, they found that the sensitivity of ETo to a meteorological variable depended on other
variables. For example, although the lower and middle regions of the Yangtze River Basins
have similar RHmean year round, the sensitivity of ETo to changes in RHmean was higher in
the Lower basin region, where wind speeds are higher. Similarly, Liu et al. [16] derived
relative SCs for ETo at meteorological stations in the Yellow River Basin in China, which is
more arid than the Yangtze River Basin and has annual precipitation of 372–671 mm. They
found that Rs was the most sensitive variable in general, followed by RHmean, Tmean, and u2
at the basin scale. Biazar et al. [17] computed relative SCs for ETo at meteorological stations
in a humid region of Iran with annual precipitation of 1000–1850 mm and relative humidity
exceeding 85% throughout the year. They found that the most sensitive parameter for ETo
was Tmax and the least sensitive was Tmin. Emeka et al. [18] evaluated the relative sensitivity
of ETo at seven distinct agroecological zones in Nigeria. They found that overall ETo was
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most sensitive to RHmean, followed by Rs, Tmax, u2, and Tmin. However, there was signifi-
cant spatiotemporal variation in sensitivity. In the south of Nigeria, which has a tropical
rainforest climate with annual precipitation of 1200–3000 mm, ETo was most sensitive to
RHmean and Rs and least sensitive to u2. Meanwhile, in the north (annual precipitation
of 400–1100 mm), the maximum sensitivity was for Tmax and the minimum for Tmin. For
the very arid region of the Ejina Oasis in northwest China (annual precipitation less than
50 mm), Hou et al. [19] found that the relative sensitivity of ETo is highest for Rs, followed
by Tmean, u2, and RHmean.

The SCs can also be used to understand past historical and projected future changes in
ETo. Luo et al. [20] performed a sensitivity analysis of the ASCE standardized ETo equation
to understand meteorological drivers of historical trends (mainly increasing) in ETo in the
Yanhe River Basin in China. Liu et al. [16] performed a sensitivity analysis of ETo in the
Yellow River Basin in China to understand temporal trends in ETo in different regions
of the basin. They found that positive trends in the upper, middle, and whole Yellow
River Basin resulted from a significant increasing trend in Tmean and a decreasing trend
in RHmean. Wang et al. [21] used sensitivity analyses to understand the causes of histori-
cal decreases in pan evaporation over China, also called the “pan evaporation paradox”.
The “pan evaporation paradox,” first discovered by Peterson et al. [22], was observed for
decades in the late 20th century in many areas of the globe and contrasts with the general
expectation that atmospheric evaporative demand would increase under climate change as
temperatures warm. Similar declining trends in reference and potential evapotranspira-
tion were observed in many areas of the globe during the same period. Wang et al. [21]
summarized the contribution of different meteorological variables to reductions in pan
evaporation observed in many regions of the globe based on the attribution method pro-
posed by Roderick et al. [23], which is essentially a sensitivity analysis of a pan evaporation
equation. Wang et al. [21] found that changes in Rs, u2, and RHmean overcompensate for the
positive contributions of increasing air temperatures on pan evaporation, which resulted
in a net decrease in pan evaporation in China and many regions of the globe. However,
an evaluation of output from general circulation models (GCMs) from the Coupled Model
Intercomparison Phase 5 indicates that the evaporation paradox will not continue into
the future, at least in China. McKenney and Rosenberg [13] show that future changes in
potential evapotranspiration derived from GCM output using different methods may vary
in magnitude and, in some cases, in sign depending on the estimation method used.

Our main objective in deriving SCs for Puerto Rico is to guide the prioritization of
bias correction of meteorological output for ETo estimation from dynamically downscaled
climate projections for Puerto Rico by Bowden et al. [9] for the historical period 1985–2005
and the future period 2040–2060. The derived SCs are also applied to evaluate the drivers
of potential future changes in ETo in Puerto Rico. Of particular interest are potential future
changes to agricultural water demand on irrigated farms and golf courses on the island,
which are a function of future projected changes in precipitation and ETo. Bias-corrected
ETo can be used to drive models (i.e., soil-moisture water-balance models [2]) to estimate
potential future changes to agricultural irrigation requirements on the island.

2. Materials and Methods

2.1. Study Area

The study area consists of the main island of the Commonwealth of Puerto Rico,
which has a wide range of climate types. Precipitation ranges from 800 mm/year in the
subtropical dry forest on the south coast to over 4300 mm/year [24] in the subtropical
rainforest of El Yunque, which is part of the Sierra de Luquillo on the northeast of the island
(Figure 1). The spatial variability of rainfall results from easterly to northeasterly winds
interacting with the local orography. Large rainfall amounts fall north [24] of the mountain
range, which runs predominantly east–west over central portions of the island known as
the Cordillera Central and the Sierra de Cayey, which runs southeastward on the eastern
side of the island. The rainfall maximum occurs over the Sierra de Luquillo mountains
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in the northeast where the El Yunque rainforest is located. A westerly sea-breeze front
develops on the western side of the island, which converges with the predominant easterly
winds, resulting in strong convection and high rainfall amounts in the northwest part of
the island. A rain shadow occurs over most of the southern coast of the island. Rainfall has
a bimodal distribution with the highest rainfall in May–early June and late July–November.
A mid-summer drought (MSD) develops in late June through early July and, based on
climate model simulations, has been found to be the combined result of increased aerosol
concentrations from Saharan dust events and changes in vertical wind shear [25].

Figure 1. Study area consisting of the main island of Puerto Rico. Elevation in meters is shown. The
white lines show the boundaries of the municipalities in Puerto Rico, and the red lines show the
boundaries of irrigated farms in 2015. Numbers indicate the location of Geostationary Operational
Environmental Satellite-Puerto Rico Water and Energy Balance (GOES-PRWEB) 1 km-scale grid
cells at which timeseries of sensitivity coefficients will be presented in detail. Base for main map
from 1:20,000 USGS Digital Line Graphs municipality boundaries. Base for inset map is from
version 1.4.0 of Natural Earth data, country boundaries 1:10 m. Both are in geographic coordinate
system and World Geodetic System 1984 datum.

Low relative humidity, high temperatures, high wind speed, and high incoming solar
radiation on the south coast result in high atmospheric evaporative demand compared
to rainfall. The south-coast region is characterized by alluvial floodplains with highly
fertile soils (mollisols), which are rich in organic matter and minerals [26]. This has made
the region suitable for agriculture, which, owing to the relatively low annual rainfall, is
dependent on irrigation. Of particular interest to water managers are potential future
changes in water availability and water use across the island [4]. There is increasing
concern about potential future conflicts among domestic and agricultural water uses on
the southern coast of the island [4]. Therefore, it is important to quantify potential future
agricultural water demand on irrigated farms and golf courses on the island, which are
predominantly located in this southern region (Figure 1; [27]). Agriculture also occurs in
the interior mountainous parts of the island, which receive high amounts of rainfall during
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the year so as not to require irrigation, but these areas may also be subjected to reductions
in rainfall in the future [9].

2.2. Data
2.2.1. Gridded Historical Data

The Geostationary Operational Environmental Satellite-Puerto Rico Water and En-
ergy Balance (GOES-PRWEB) dataset [28] provides daily gridded data for water and
energy budget components at a 1 km resolution over Puerto Rico for the period 2009–2020.
GOES-PRWEB provides estimates of daily rainfall, actual evapotranspiration, reference
evapotranspiration (ETo) based on the FAO-56 (or ASCE) P-M equation (Equation (1) in
Section 2.3), as well as data for five basic meteorological variables that are used in estimat-
ing ETo: daily maximum (Tmax) and minimum (Tmin) air temperature at 2 meter height,
daily mean relative humidity (RHmean), daily mean incoming solar radiation at the land
surface (Rs), and 2 m-height wind speed (u2). Appendix S1 in Supplementary Materials
summarizes the GOES-PRWEB computation of ETo from these five basic variables. GOES-
PRWEB estimates actual ET based on the surface energy balance equation, as described
by Harmsen et al. [28]. The GOES-PRWEB estimated ETo and its driving meteorological
variables have been validated by Mecikalski and Harmsen [29] and Harmsen et al. [28,30]
at a few stations on the island, supporting the use of GOES-PRWEB ETo in this study. For
this study, GOES-PRWEB data for the period 2009–2017 is used.

The high-resolution regional statistical downscaled GPCC v7 for the Caribbean dataset
(Herrera-Ault; [7,31]) provides estimates of monthly potential evapotranspiration based
on the FAO-56 P-M equation [32] at an approximate resolution of 4 km. Although these
data are referred to as potential evapotranspiration, Herrera and Ault [31] mention that
this dataset refers to evapotranspiration from an idealized grass surface, that is, ETo. ETo
data from this dataset show higher values than GOES-PRWEB from December to April and
lower values than GOES-PRWEB the rest of the year. Besides Tmax and Tmin, Herrera-Ault
does not provide data for the remaining variables required for ETo estimation using the
FAO-56 P-M equation. This lack of availability of all the meteorological data needed for ETo
estimation makes it impossible to investigate the causes of the differences in seasonality
between the two datasets.

2.2.2. WRF Dynamically Downscaled Climate Change Projections

Bowden et al. [9] used the Weather Research and Forecasting (WRF) model to dy-
namically downscale historical (1985–2005) and future climate projections (2040–2060)
for Puerto Rico and the U.S. Virgin Islands under the greenhouse gas emission scenario
RCP8.5 for two GCMs from the Coupled Model Intercomparison Project phase 5 (CMIP5):
(1) the Community Climate System Model (CCSM4 or CESM) and (2) the Centre National
de Recherches Météorologiques-CERFACS (CNRM). Hourly output from the innermost
model domain (domain 3 at 2-km resolution) was downloaded from the Bowden et al. [33],
converted from Greenwich Meridian Time to local time (Atlantic Standard Time), and the
five basic daily meteorological variables used for ETo estimation in GOES-PRWEB were
computed and bilinearly interpolated to the 1-km GOES-PRWEB grid. Appendix S2 in
Supplementary Materials has a description of the computation of daily meteorological data
from hourly data.

2.3. Methods

Actual ET depends on various factors, including atmospheric evaporative demand,
soil water availability, crop physiology, and management practices. Absent actual ET
data, crop potential evapotranspiration (ETc) is often computed based on the potential
evapotranspiration from a reference crop, typically grass or alfalfa, which is called reference
evapotranspiration. Grass reference evapotranspiration is denoted as ETo and refers to a
crop assumed to be 0.12 m in height, with an albedo of 0.23 and a daily surface resistance
of 70 s/m [10]. Crop coefficients (Kc) are often used as multipliers to convert ETo to ETc
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(i.e., ETc = Kc ETo). ETo accounts primarily for weather conditions (i.e., atmospheric evapo-
rative demand), and Kc accounts for the characteristics of a specific crop with respect to
the reference grass under fully watered conditions [32]. Therefore, the crop coefficients
incorporate many factors that distinguish a particular crop from the reference grass, includ-
ing planting date, plant growth stage, leaf area, albedo or reflectivity, canopy resistance,
soil and climate conditions, evaporation from soil, and crop management practices, among
others [32]. In conditions of insufficient rainfall or irrigation and a deficit in soil moisture,
the actual combined soil evaporation and plant transpiration (actual ET) will be lower than
ETc. GOES-PRWEB estimates actual ET based on the surface energy balance equation, as
described by Harmsen et al. [28]. In modeling applications, where actual ET cannot be esti-
mated a priori but depends on the simulated hydrology, actual ET is often estimated from
ETo using modified crop coefficients, which not only account for crop-type differences but
also for water availability. Water stress coefficients, which are often defined as a function of
soil water content and/or depth to the water table, can be applied as multiplicative correc-
tion factors to the standard crop coefficients for well-watered conditions [32] to estimate
actual ET.

The ASCE standardized grass-reference Penman–Monteith evapotranspiration equa-
tion [10] for short grass on a daily timestep is given by:

ETo =
0.408 Δ (Rn − G) + γ 900

T+273 u2(es − ea)

Δ + γ(1 + 0.34u2)
, (1)

where ETo is the daily reference evapotranspiration (mm/day), Rn is the net radiation at the
crop surface (MJ/m2/day), G is the soil heat flux density at the soil surface (MJ/m2/day),
which is generally small compared to Rn beneath a fully vegetated reference surface, and
hence, neglected for daily timesteps, T is the mean daily air temperature at 2 meters (◦C),
u2 is the mean daily wind speed at 2 meters (m/s), es is the saturation vapor pressure at
2 meters (kPa), ea is the mean actual vapor pressure at 2 meters (kPa), Δ is the slope of
the saturation vapor pressure–temperature curve (kPa/◦C), and γ is the psychrometric
constant (kPa/◦C). Appendix S1 summarizes how each of these variables are estimated
from five basic meteorological variables defined hereafter and available in GOES-PRWEB.
When applied on a daily timestep, the ASCE standardized ETo equation is the same as the
Food and Agriculture Organization paper number 56 (FAO-56) P-M equation [11].

A sensitivity analysis was performed for the ASCE ETo equation to determine the
sensitivity of ETo to each of the five basic meteorological variables listed above. Neglecting
higher-order terms, the sensitivity of ETo to changes (or errors) in each of the individual
basic meteorological variables is quantified by means of non-dimensional relative sensitivity
coefficients [34]:

SVi =
∂ETo

∂Vi
× Vi

ETo
, (2)

where Vi is one of five basic meteorological variables (Tmax in ◦C, Tmin in ◦C, RHmean in %,
Rs in MJ/m2/day, or u2 in m/s), i is the index for the variable (1–5), SVi is the relative SC for
variable Vi, and ∂ETo

∂Vi
is the partial derivative of ETo with respect to Vi. A positive (negative)

SC for a variable indicates that ETo will increase (decrease) as the variable increases and
can be visualized as the slope of the tangent at the origin of the sensitivity curve. The
derivatives, ∂ETo

∂Vi
, were derived analytically (Appendix S3 of the Supplementary Materials)

and also derived numerically, and their linearity assessed by computing and plotting the
percentage change in ETo due to +/− 5, 10, 15, 20, and 25% change in Vi alone. This is done
by changing the value of the variable of interest at each particular location on each day by
a given percentage while keeping the remaining variables fixed at their observed value and
computing the resulting change in ETo as a percentage. For RHmean, only negative percent
changes were evaluated in order to keep it from exceeding 100%. It is expected that the
analytically derived SCs will be closest to those derived based on +/− 5% perturbations
for a particular variable. The range of variation in a meteorological variable over which
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the slope of the sensitivity curve is linear is also assessed. The larger the range of linearity,
the smaller the error incurred when applying the point SCs over large changes in the
meteorological variable.

The SCs are estimated based on daily GOES-PRWEB gridded meteorological data
for the period 2009–2017 and averaged for each day or month of the year to obtain the
average annual cycle of the SCs for each variable of interest at each grid cell. Timeseries of
average SCs by day of the year will be presented at four representative locations on the
island (Figure 1) that capture most of the distinct patterns of variation in the SCs as well as
maps of long-term monthly average SCs.

When combined with a measure of the variability or measurement/estimation error
in the basic meteorological variables, the SCs could be used to define monitoring priori-
ties among the variables. The SCs could also be used to guide the prioritization of bias
correction of meteorological output for ETo estimation from climate models. When com-
bined with projections of the percent change in the basic meteorological variables, the SCs
can aid in understanding past trends and future projected changes in ETo derived from
observations and climate model output. Based on the chain rule, which helps differentiate
composite functions, the combined contributions of fractional changes or errors in the basic
meteorological variables to fractional changes or errors in ETo can be approximated by:

dETo

ETo
= ∑i

(
SVi ×

dVi
Vi

)
+ error = ∑i

(
∂ETo

∂Vi
× Vi

ETo
× dVi

Vi

)
+ error, (3)

where error is the approximation error.
An example application of the SCs and Equation (3) to understanding biases and

potential future changes in ETo from 1985–2005 to 2040–2060 based on the dynamically
downscaled climate projections for Puerto Rico by Bowden et al. [9] will be presented
in this paper. Of particular interest are potential future changes to agricultural water
demand on irrigated farms on the island, which are a function of future projected changes
in precipitation and evaporative demand (ETo). As of the year 2015, most irrigated farms
are located in the fertile semi-arid southern coast of Puerto Rico (Figure 1; [27]). The
average annual cycle of the SCs and the contribution of projected changes in each of the
basic meteorological variables to projected changes in ETo were calculated for all model
grid cells whose center is located within a 2015 irrigated farm. No comprehensive gridded
meteorological dataset including daily data for all the basic meteorological variables used
in estimating ETo has been located for the simulated historical period 1985–2005; therefore,
GOES-PRWEB data for 2009–2017 is used to examine potential biases in ETo calculated
from downscaled model output and the contribution of individual meteorological variables
to those biases.

Finally, the Pearson correlation coefficient (r) between long-term monthly average maps of
SCs, the five basic meteorological variables, the aerodynamic and energetic components of ETo
and their fractions (ETo,energetic, ETo,aerodynamic, ETo,energetic fraction, ETo,aerodynamic fraction, respectively,
given by Equations (S1.1)–(S1.5) in the Supplementary Materials), rainfall, and elevation
will be presented. The Pearson correlation coefficient is a measure of the strength of the
linear association between two sets of data and will be used here to better understand how
different variables affect or are correlated with ETo. Because the correlation coefficient is
calculated between all the monthly maps, it captures both temporal and spatial correlations
between the different fields. In the discussion, the correlation (or anti-correlation) between
variables is considered moderate for absolute values of r of 0.50–0.69, high for absolute
values of r of 0.70–0.89, and very high for absolute values of r of 0.90–1.00.

3. Results

Spatiotemporal variations in rainfall, ET, and other components of the hydrologic
cycle in Puerto Rico will be presented as maps and seasonal and annual plots. Results
of the sensitivity analysis will be presented as long-term (2009–2017) monthly average
maps of SCs and timeseries of SCs at various locations. Results from the application of
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SCs to understand model biases and projected future changes in ETo based on dynamically
downscaled climate model output will also be presented.

3.1. Spatiotemporal Variations in Rainfall and ET

On the basis of GOES-PRWEB data [28], it was found that annual rainfall (Figure 2a)
and annual actual ET (Figure 2b) are similar in magnitude across large portions of the
island. About 65% of rainfall on average island wide, and upwards of 90% in the south
coast, returns to the atmosphere as evapotranspiration on an average year (Figure 2c).
Only a small fraction of annual rainfall recharges the shallow aquifer (Figure 2e), while the
fraction of annual rainfall that generates runoff is higher in areas with higher rainfall, such
as on the central northwest part of the island and on the Sierra de Luquillo in the northeast
(Figure 2f). Annual atmospheric evaporative demand, as quantified by ETo, is more than
twice as high as annual rainfall over the south coast of Puerto Rico (Figure 2d), where
agriculture has to rely on irrigation to meet the atmospheric evaporative demand. Low
relative humidity, high temperatures, high wind speed, and high incoming solar radiation
on the south coast result in high ETo compared to rainfall.

 

Figure 2. (a) Annual rainfall (mm/year); (b) annual actual ET (mm/year); (c) ratio of annual actual ET
to rainfall; (d) ratio of annual Penman–Monteith ETo to rainfall; (e) ratio of annual aquifer recharge to
rainfall; and (f) ratio of annual runoff to rainfall for Puerto Rico based on Geostationary Operational
Environmental Satellite-Puerto Rico Water and Energy Balance (GOES-PRWEB) data for 2009–2017.
The black lines show the location of the municipalities in Puerto Rico.
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Figure 3a,b illustrate the annual cycle of monthly rainfall and ETo and Figure 3c
illustrates the interannual variability of ETo at the 2015 irrigated farm locations. The
bimodal distribution of rainfall is evident in Figure 3a, with the highest rainfall in May–
early June and late July–November. The mid-summer drought (MSD) that develops in late
June through early July is also evident. The annual cycle of monthly ETo. (Figure 3b) from
GOES-PRWEB with peak values in July appears to match station-based estimates of ETo in
Harmsen et al. [35] better than the Herrera-Ault ETo which peaks in March. This justifies
our use of GOES-PRWEB ETo in this study.

Figure 3. (a) Annual cycle of rainfall (mm/mo.); (b) annual cycle of ETo (mm/mo.); (c) annual ETo

(mm/year) from Geostationary Operational Environmental Satellite-Puerto Rico Water and Energy
Balance (GOES-PRWEB), Herrera-Ault dataset, and WRF dynamically downscaled climate models at
the 2015 irrigated farm locations.

3.2. Sensitivity Coefficients

Sensitivity coefficients for ETo, with respect to each of the five basic meteorological
variables, were computed analytically and numerically at each GOES-PRWEB grid cell for
each day in the period 2009–2017. Maps of the long-term (2009–2017) monthly average
sensitivity coefficients derived analytically are shown in Figures 4–8. The maps derived
numerically for a +/− 5% change in each meteorological variable (not shown) are very
similar, corroborating the analytical calculations. The SC for RHmean is negative because
an increase in atmospheric water content reduces ETo. To make the SC for RHmean of
comparable magnitude to the SC of the other meteorological variables, it is multiplied by
−1 in Figure 4. Island wide, ETo is most sensitive to RHmean, followed by Rs, Tmax, Tmin, and
u2, with average absolute relative SCs of 0.98, 0.57, 0.50, 0.27, and 0.12, respectively. This
overall ranking of sensitivities is similar to that found by Emeka et al. [18] based on relative
sensitivities for the tropical rainforest climate of southern Nigeria, where precipitation
ranges from 1200 to 3000 mm per year, similar to the range of annual precipitation in Puerto
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Rico (Figure 2a). The only exception is that in southern Nigeria, ETo was found to be most
sensitive to Rs followed by RHmean in the non-monsoon season. The ranking of sensitivities
also agrees well with that obtained by Gong et al. [12] for the Yangtze River Basin in China,
especially during winter when the sensitivity to RHmean is higher than that of Rs and Tmean.
Annual precipitation ranges from 400 in the upper Yangtze River Basin to 1600 mm in the
lower basin [15]. Only the middle and lower portions of the Yangtze River Basin have
annual precipitation comparable to that of some regions in Puerto Rico (Figure 2a).

Figure 4. Long-term (2009–2017) monthly average sensitivity coefficients, multiplied by −1, for mean
relative humidity (RHmean). The black lines show the location of the municipalities in Puerto Rico.
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Figure 5. Long-term (2009–2017) monthly average sensitivity coefficients for solar radiation (Rs). The
black lines show the location of the municipalities in Puerto Rico.
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Figure 6. Long-term (2009–2017) monthly average sensitivity coefficients for daily maximum air
temperature (Tmax). The black lines show the location of the municipalities in Puerto Rico.
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Figure 7. Long-term (2009–2017) monthly average sensitivity coefficients for daily minimum air
temperature (Tmin). The black lines show the location of the municipalities in Puerto Rico.
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Figure 8. Long-term (2009–2017) monthly average sensitivity coefficients for 2 m wind speed (u2).
The black lines show the location of the municipalities in Puerto Rico.
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Timeseries of SCs by day of the year averaged over the period 2009–2017 at the chosen
four GOES-PRWEB grid cell locations (cells 2, 16, 28, 45; Figure 1) are shown in Figure 9.
In addition, the average timeseries of SCs for the location of the farms as of 2015 shown
in Figure 1 is also shown in Figure 9. The SC for RHmean (Figures 4 and 9) dominates
the sensitivity of ETo throughout most of the island, except for the western side of the
island (cell 28 in Figures 1 and 9), where the SC for Rs is as or more dominant during
the summer. The SC for RHmean has a large amplitude annual cycle, especially along the
Cordillera Central mountains and the Sierra de Luquillo with larger values and less day-
to-day variability in the dry season than in the wet season. Coastal areas including the
2015 irrigated farm locations have a lower relative sensitivity to RHmean, with a less marked
annual cycle than interior areas.

Higher SCs for Rs are apparent (Figure 5) along an interior band that goes from
the northwest to the southeast on the island and generally coincides with more humid
regions (Figure 2a), consistent with the findings of Tabari and Talaee [36] for Iran and
Emeka et al. [18] for Nigeria. ETo is relatively less sensitive to Rs along the northeast coast
and especially along the south coast. Although a clear seasonal cycle of higher relative
sensitivity to Rs during the summer months is evident (Figures 5 and 9), its amplitude is
much smaller than that of RHmean. Although, overall, the SCs for Rs and Tmax are quite close
on an island-wide basis (0.57 and 0.50, respectively), their spatial and temporal patterns
are generally opposite (Figures 5, 6 and 9). ETo is relatively less sensitive to Tmax along
interior mountainous regions of the island and during the summer months, and more
sensitive along coastal areas, especially in the southern and western coasts during the dry
season months. Seasonal variations in the relative sensitivity to Tmax are relatively minor,
especially in mountainous areas (cell 45 in Figures 1 and 9). Minimal spatial and temporal
variation in the SCs for Tmin was found, with only slightly lower values in the western
interior areas of the island from January to April and slightly higher values in coastal areas
to the east (Figure 7).

Many similarities in the spatial and temporal patterns of SCs to u2 (Figure 8) and
the spatial and temporal patterns of SCs to Tmax (Figure 6) were found. However, ETo is
much less sensitive to relative changes in u2 than in Tmax (Figure 9). The relative sensitivity
of ETo to changes in Tmax and u2 is lower along humid and warm interior mountainous
regions of the island and during the rainy summer months, and higher along coastal areas,
especially in the southern coast during the dry season months. These findings are consistent
with those of Emeka et al. [18] for Nigeria and Tabari and Talaee [36] for Iran. The lower
sensitivity of ETo to changes in wind speed in humid and warm environments compared to
its higher sensitivity in hot and dry environments is explained by Allen et al. [32]. In humid
and warm conditions, such as in the interior mountains, the wind (no matter how intense)
can only replace saturated air at the vegetation’s surface with air from above that is only
slightly less saturated, thereby limiting potential increases in evapotranspiration. Increases
in wind speed may, in fact, increase sensible heating more than evapotranspiration in these
humid and warm environments, resulting in slightly negative SCs for u2 at times (Figure 8
and cell 16 in Figure 9). In contrast, in hot and dry environments, such as the island’s
south coast, increases in wind speed can increase the evapotranspiration rate more since
the atmosphere is thirstier and has more energy available.

Figure 10 shows the percent change in ETo due to +/− 5, 10, 15, 20, and 25% changes
in basic meteorological variables at selected GOES-PRWEB grid cell locations shown in
Figure 1 and the average at the 2015 irrigated farm locations. The larger relative sensitivity
of ETo to changes in RHmean compared to other variables is evident in the larger slope for the
RHmean line. Linearity in the SCs is observed over the tested range of percentage changes
in the basic meteorological variables at all grid cells, which means that the application of
the SC values at the origin over a relatively wide range of changes in the meteorological
variables is appropriate.
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Figure 9. Daily timeseries of sensitivity coefficients (SCs) at: (a–d) representative GOES-PRWEB grid
cell locations (Figure 1) and (e) average at grid cells associated with the 2015 irrigated farm locations.
Markers are shown every 5 days. Cell 2 is on the southwest coast; cell 16 is located near the Sierra de
Cayey; cell 28 is on the west coast; cell 45 is located near the Sierra de Luquillo.
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Figure 10. Percentage change in ETo due to +/− 5, 10, 15, 20, and 25% change in basic meteorological
variables at: (a–d) representative GOES-PRWEB grid cell locations (Figure 1) and (e) average at grid
cells associated with the 2015 irrigated farm locations.
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The Pearson correlation matrix is presented between long-term monthly maps of basic
meteorological variables, their SCs, components of ETo, rainfall, and elevation (Table 1).
The SC for RHmean has not been multiplied by −1 when calculating correlations. To aid in
the discussion, Figures S1–S11 show maps of the long-term monthly average for the basic
meteorological variables, rainfall, and components of ETo. The SC for RHmean (Figure 4
shows the SC for RHmean multiplied by −1) is highly anti-correlated to RHmean (Figure S1),
specifically to the spatial pattern in RHmean. In other words, ETo is most sensitive to changes
in RHmean in areas where RHmean already tends to be high and limiting, such as in the
high-elevation areas of the Cordillera Central and the Sierra de Luquillo, where it exceeds
about 82% on average (Figure S1). In these areas, lower Rs (Figure S2) also results in a
lower contribution from ETo,energetic (Figure S7). The absolute value of the SC for RHmean
is also highest in winter when aerodynamic effects become more important due to lower
solar radiation. RHmean is highly anti-correlated to ETo,aerodynamic and ETo,aerodynamic fraction, as
expected, since an increase in RHmean decreases the VPD and reduces these terms. RHmean
is also highly correlated to elevation (Figure 1) and highly anti-correlated to Tmax reflecting
the higher RHmean and the lower Tmax in the interior mountainous areas, and the opposite
trends in coastal areas. RHmean is also highly anti-correlated to the SCs for Tmax and for
u2. This is expected since these three variables act synergistically to increase ETo,aerodynamic,
especially during winter.

The SC for Rs (Figure 5) is generally higher along the higher-elevation interior areas
and moderately correlated to Rs (Figure S2). They are highly correlated in time (i.e., months
with lowest Rs are also the months with lowest SC for Rs) but somewhat anti-correlated in
space (i.e., areas with the lowest Rs in the interior mountains have the highest SC for Rs).
The SC for Rs is moderately correlated to ETo,energetic (Figure S7), especially in time. The
sensitivity to Rs is highest from northwest to southeast interior areas, especially in summer
when Rs and ETo,energetic are at their highest and tend to dominate over aerodynamic effects
(Figures S9 and S10). In winter, the aerodynamic term dominates more, so that Rs is not
as important in driving ETo on the southwest coast for example (Figure 5). As expected,
ETo,energetic (Figure S7) is very highly correlated to Rs and to elevation since Rs is moderately
anti-correlated to elevation (Figure 1) due to the common presence of clouds at higher
elevations. Rs is moderately correlated to Tmax and Tmin. This is most evident in the
interior mountainous areas where Rs, Tmax, and Tmin tend to be the lowest. Rs is moderately
correlated to the SC for RHmean (Figure 4) since Rs tends to be higher along coastal areas
where the SC for RHmean is higher (less negative).

Rainfall from GOES-PRWEB was only found to be moderately correlated to the SC for
Rs and ETo,energetic fraction. The correlation between rainfall and elevation was found to be
quite low at only 0.02. Figure 2a shows two distinct areas of high rainfall—in the Sierra de
Luquillo on the eastern side of the island, and in the northwest central part of the island
(Figure 1). The spatial variability of rainfall results from easterly to northeasterly winds
interacting with the local orography. However, rainfall appears to occur predominantly on
the windward side of the mountains and not exactly at the locations with highest elevations.
Even in the Sierra de Luquillo, the expectation of higher rainfall at higher elevations may not
hold. Based on a relatively large set of rain gauges, Murphy et al. [37] found that the long-
held assumption of precipitation increasing consistently with elevation within the Sierra de
Luquillo does not hold. They found that leeward (western) watersheds in the mountains
generally receive lower mean annual precipitation than windward (eastern) watersheds.
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Table 1. Pearson correlation coefficient (r) matrix between long-term monthly maps of basic mete-
orological variables, their sensitivity coefficients (SCs), components of ETo, rainfall, and elevation.
ETo is the reference evapotranspiration, RHmean is the daily mean relative humidity, Rs is the daily
incoming solar radiation, Tmax is the daily maximum air temperature, Tmin is the daily minimum air
temperature, and u2 is the 2 m wind speed. ETo energ. (frac.) and ETo aero. (frac.) are the energetic and
aerodynamic ETo components (and their fractions), respectively.

Variable RHmean Rs Tmax Tmin u2 SC RHmean * SC Rs SC Tmax SC Tmin SCu2

RHmean 1 −0.29 −0.72 −0.49 −0.02 −0.73 0.47 −0.69 0.07 −0.80

Rs −0.29 1 0.54 0.57 0.30 0.56 0.55 −0.07 0.25 −0.26

Tmax −0.72 0.54 1 0.88 0 0.76 −0.01 0.67 0.31 0.51

Tmin −0.49 0.57 0.88 1 0.22 0.51 0.06 0.49 0.70 0.33

u2 −0.02 0.30 0 0.22 1 −0.39 −0.25 0.08 0.55 −0.01

SC RHmean * −0.73 0.56 0.76 0.51 −0.39 1 0.18 0.33 −0.17 0.34

SC Rs 0.47 0.55 −0.01 0.06 −0.25 0.18 1 −0.64 −0.01 −0.83

SC Tmax −0.69 −0.07 0.67 0.49 0.08 0.33 −0.64 1 0.20 0.86

SC Tmin 0.07 0.25 0.31 0.70 0.55 −0.17 −0.01 0.20 1 0.04

SC u2 −0.80 −0.26 0.51 0.33 −0.01 0.34 −0.83 0.86 0.04 1

ETo energ. −0.30 0.96 0.65 0.65 0.10 0.66 0.62 −0.05 0.23 −0.23

ETo aero. −0.86 0.48 0.72 0.67 0.49 0.49 −0.44 0.67 0.31 0.66

ETo energ. frac. 0.68 0.24 −0.30 −0.23 −0.39 −0.04 0.94 −0.77 −0.16 −0.90

ETo aero. frac. −0.68 −0.24 0.30 0.23 0.39 0.04 −0.94 0.77 0.16 0.90

Rainfall 0.27 0.17 0.17 0.19 −0.32 0.15 0.60 −0.27 0.05 −0.38

Elevation 0.78 −0.65 −0.92 −0.92 −0.10 −0.66 0.68 −0.85 −0.47 −0.84

Variable ETo energ. ETo aero. ETo energ. frac. ETo aero. frac. Rainfall Elevation

RHmean −0.30 −0.86 0.68 −0.68 0.27 0.78

Rs 0.96 0.48 0.24 −0.24 0.17 −0.65

Tmax 0.65 0.72 −0.30 0.30 0.17 −0.92

Tmin 0.65 0.67 −0.23 0.23 0.19 −0.92

u2 0.10 0.49 −0.39 0.39 −0.32 −0.10

SC RHmean * 0.66 0.49 −0.04 0.04 0.15 −0.66

SC Rs 0.62 −0.44 0.94 −0.94 0.60 0.68

SC Tmax −0.05 0.67 −0.77 0.77 −0.27 −0.85

SC Tmin 0.23 0.31 −0.16 0.16 0.05 −0.47

SC u2 −0.23 0.66 −0.90 0.90 −0.38 −0.84

ETo energ. 1 0.42 0.32 −0.32 0.33 −0.88

ETo aero. 0.42 1 −0.72 0.72 −0.32 −0.80

ETo energ. frac. 0.32 −0.72 1 −1 0.56 0.77

ETo aero. frac. −0.32 0.72 −1 1 −0.56 −0.77

Rainfall 0.33 −0.32 0.56 −0.56 1 0.02

Elevation −0.88 −0.80 0.77 −0.77 0.02 1

* The SC for RHmean has not been multiplied by −1 when calculating correlations.

The SC for Tmax (Figure 6) is higher along the low-elevation coastal areas, especially
along the south coast, and it is moderately correlated to Tmax (Figure S3). They are highly
correlated spatially; however, they appear anti-correlated in time. That is, the cooler winter
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months with lower Tmax show a higher sensitivity to Tmax as the energetic term decreases
and the aerodynamic term’s importance increases, especially along the southwest coast
(Figures S9 and S10). Tmax (Figure S3), Tmin (Figure S4), and elevation (Figure 1) are very
highly correlated due to lower temperatures in the interior mountain regions. Tmax stays
relatively high in the southwest coast year-long, whereas Tmin is reduced during winter and
early spring in the area, resulting in a higher daily temperature range in the area in winter
and early spring. Tmax is moderately to highly correlated to both ETo,energetic (Figure S7) and
ETo,aerodynamic (Figure S8) because it affects both terms; however, it appears to affect ETo and
especially the aerodynamic component more in the winter when it acts synergistically with
u2 and RHmean to increase it, especially along coastal areas. Tmax is also highly correlated
to the SCs for RHmean (Figure 4) and has a moderate correlation to the SC for u2 (Figure 8).
This is expected since these three variables act synergistically to increase ETo,aerodynamic,
especially during winter. The SC for Tmin (Figure 7) is highly correlated to Tmin (Figure S4).
The correlation is stronger in time than in space. Tmin is moderately correlated to both
ETo,energetic (Figure S7) and ETo,aerodynamic (Figure S8) since it affects both terms.

The SC for u2 (Figure 8) is generally higher along coastal areas and has no corre-
lation to the spatial pattern in u2 (Figure S5). As expected, u2 is moderately correlated
to ETo,aerodynamic (Figure S8); u2 is also moderately correlated to the sensitivity coefficient
for Tmin (Figure 7). The SCs for Rs (Figure 5) and for Tmax (Figure 6) are moderately anti-
correlated. This is especially true in time (i.e., in winter months, the SC for Rs decreases
while the SC for Tmax increases, especially in coastal areas), but also to a lesser extent in
space (i.e., interior areas have the highest SCs for Rs and the lowest SC for Tmax). The SCs
for Rs (Figure 5) and for u2 (Figure 8) are highly anti-correlated. This is especially true in
time (i.e., in winter months, the SC for Rs decreases while the SC for u2 increases, especially
in coastal areas), but also to a lesser extent in space (i.e., interior areas have the highest
SCs for Rs and the lowest SC for u2). The SCs for Tmax (Figure 6) and for u2 are highly
correlated in both space and time. The SC for RHmean (Figure 4) is moderately correlated
to ETo,energetic (Figure S7) and has a moderate correlation to ETo,aerodynamic (Figure S8). The
SC for Rs (Figure 5) is moderately correlated to ETo,energetic (Figure S7) and very highly
correlated to ETo,energetic fraction (Figure S9), as expected.

3.3. Application

Timeseries of SCs are presented by day of the year (Figure 9e) at the GOES-PRWEB
grid cells at the 2015 irrigated farms, most of which are located along the south coast
(Figure 1). Compared to interior areas, the areas including the 2015 irrigated farm locations
show a lower relative sensitivity to RHmean (Figure 4) with a less marked annual cycle.
ETo is also relatively less sensitive to Rs (Figure 5) in these areas, especially during winter
months when ETo becomes more sensitive to relative changes in Tmax (Figure 6). The
relative sensitivity of ETo to changes in u2 is lower than for other variables but higher
along the southern coast than in other areas, especially during the dry season. In hot
and dry environments, such as the south coast, increases in wind speed can increase the
evapotranspiration rate more since the atmosphere has a lower moisture content and more
energy available.

The lowest ETo,energetic fraction (Figure S9) and the highest ETo,aerodynamic fraction (Figure S10)
occur in the south coast of Puerto Rico. This is due to this region having the highest Tmax
(Figure S3) and the lowest RHmean (Figure S1) (which results in a high VPD) combined
with moderate wind speeds in this area (Figure S5). These factors result in comparatively
high ETo,aerodynamic (Figure S8) and ETo,aerodynamic fraction (Figure S10) compared to other areas.
The low RHmean and relatively low cloudiness on the south coast also traps less longwave
radiation in the atmosphere, reducing the net radiation, which would tend to reduce the
energetic term. However, this effect appears to be counteracted by higher Rs (Figure S2)
due to the lower cloudiness for a net result of higher incoming net radiation and higher
ETo,energetic (Figure S7) compared to other areas.
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3.3.1. Causes of Errors in Reference ET Estimated from Model Output for 1985–2005

Combining the average SCs at the 2015 irrigated farm locations on a monthly basis
(Figure 11a) with the percent error in the simulated basic meteorological variables for the
period 1985–2005 with respect to GOES-PRWEB for 2009–2017 according to Equation (3)
gives the total contribution of each variable to errors in estimated ETo for the two down-
scaled GCMs (Figure 11b,c). The individual lines in these plots show the product of the
SC for a particular basic meteorological variable times the percent error in the variable,
which gives the contribution of that variable to the total error in ETo as a percentage. The
brown line shows the total computed error in ETo ( dETo

ETo
in Equation (3), as a percentage),

and the black line shows the sum of the contributions from all the five basic meteorological
variables to the total error in ETo (∑i

(
∂ETo
∂Vi

× Vi
ETo

× dVi
Vi

)
in Equation (3)). The difference

between the black and brown lines is the approximation error (error in Equation (3)). The
individual error components add up to large negative monthly biases in ETo of up to
−21.1% for CNRM and −12.3% annually. The largest and most consistent contributors
to those negative biases appear to be the well-documented [9] cold model biases for both
Tmax and Tmin. However, biases in all five meteorological variables act synergistically to
result in a large underestimation of ETo during October–December in CNRM. Despite ETo
being most sensitive to relative errors in RHmean than in the other variables, smaller relative
biases in RHmean in CNRM compared to other variables resulted in a smaller contribution
of RHmean to errors in ETo.

In CESM, the cold biases for Tmax and Tmin are compensated by positive contributions
to ETo bias from other meteorological variables during certain parts of the year, resulting in
overall lower annual bias (−0.5%) than CNRM, and monthly biases ranging from −9.8% to
7.2%. Therefore, only bias correcting model output for precipitation and temperature, as
is commonly done due to the widespread availability of observational gridded datasets
for these two variables, is not always appropriate. Here, it would decrease the biases in
ETo for CNRM but increase them for CESM. Although the existence of a cold bias in the
downscaled models has been identified in other studies, it is important to note that some
of the apparent errors in the other variables may be due to the different periods being
compared between the model historical simulation and the observations.

3.3.2. Causes of Changes in Reference ET Estimated from Model Output for 2040–2060

The monthly SCs at the 2015 irrigated farm locations (Figure 11a) were also combined
with the percent change in the simulated basic meteorological variables from 1985–2005
to 2040–2060 to obtain the total contribution of each variable to projected changes in
ETo for the two downscaled GCMs (Figure 11d,e). The individual lines in these plots
show the product of the SC for a meteorological variable times the percent change in
the variable from 1985–2005 to 2040–2060, which gives the contribution of that variable
to the total change in ETo as a percentage. The brown line shows the total computed
change in ETo ( dETo

ETo
in Equation (3), as a percentage), and the black line shows the sum

of the contributions from all five basic meteorological variables to the total change in
ETo (∑i

(
∂ETo
∂Vi

× Vi
ETo

× dVi
Vi

)
in Equation (3)). The difference between the black and brown

lines is the approximation error (error in Equation (3)). Both models project an overall
5.6% increase in annual ETo mainly due to projected increases in Tmax and Tmin and a
decrease in RHmean; however, the seasonality of the changes is different between the two
models, as shown in Figure 11d,e. The projected decline in RHmean indicates a sub-Clausius–
Clapeyron relationship (i.e., humidity increasing at rates lower than the 7% predicted by
the Clausius–Clapeyron relationship; [38]) for the region which, together with the projected
reductions in rainfall, may be a result of decreased moisture convergence into the region
during the period 2040–2060. Despite ETo being most sensitive to relative changes in RHmean
than in the other variables, smaller relative changes in RHmean in both models compared
to Tmax and Tmin, result in similar contributions to changes in ETo from the three variables.
The contribution of increases in u2 to increases in ETo is also positive but minor. CNRM
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shows small changes in Rs during most months, while CESM shows a small decrease in Rs
during most of the year. CESM projects larger increases in ETo during March, November,
and December, increasing the potential for crop water stress during those times.

 

Figure 11. (a) Timeseries of SCs at the 2015 irrigated farm locations. (b,c) Average percent error in
ETo estimated for the period 1985–2005, contributions from the basic meteorological variables, and
their sum for CNRM and CESM, respectively. (d,e) Average percent change in ETo from 1985–2005
to 2040–2060, contributions from the basic meteorological variables, and their sum for CNRM and
CESM, respectively.
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3.4. Limitations

Some key factors that were not considered in the application of the derived SCs to
understanding potential future changes in ETo (and ETc) include increases in stomatal
resistance and increases in photosynthesis in C3 plants and in C4 plants under drought [39]
due to projected increases in atmospheric CO2 concentrations (CO2). These changes in
plant physiology may counteract some of the expected increases in ETc from increased
evaporative demand (ETo) due to higher temperatures [40]. Changes in stomatal resistance
due to increases in CO2 can be informed by free-air carbon dioxide enrichment (FACE)
experiments [39] and could be applied as modifications to the crop potential transpira-
tion term to obtain estimates of ETc under future conditions, as in Kruijt et al. [41] and
Scarpare et al. [42]. However, crop growth models are needed to better understand poten-
tial future changes in ET due to changes in plant biomass from increased photosynthesis
and other factors, such as changes in stomatal resistance due to meteorological changes
and changes in soil moisture, changes in planting dates and speed of plant growth, and
feedbacks between these factors. For example, Scarpare et al. [42] used the CropSyst model
to investigate potential future changes in ETc for five major irrigated crops in the Columbia
Basin for 15 bias-corrected and statistically downscaled GCMs under the CMIP5 RCP8.5
scenario. Full irrigation was assumed to avoid crop water stress. For the 2090s, they
found that changes in ETc ranged from −12.5% to +14.3% depending on the crop and the
interplay of different meteorological, crop, and management factors. The application of
a crop growth model to estimate changes in ETc for the main crops in Puerto Rico would
help clarify potential future changes in agricultural irrigation requirements and aid water
management planning efforts.

Additional sources of uncertainty include the effect of neglecting changes in soil heat
flux density at the soil surface and changes in water heat flux density over areas with
ponding water, which may be important during advective conditions such as cold fronts.
In addition, there is an assumption that GOES-PRWEB meteorological and ETo data are
reasonably accurate compared to observations, which may not necessarily be the case given
that some of the data are derived from climate models, as described in Harmsen et al. [28].
As previously mentioned, the GOES-PRWEB estimated ETo, and its driving meteorological
variables have been validated by Mecikalski and Harmsen [29] and Harmsen et al. [28,30]
at a few stations on the island. The GOES-PRWEB precipitation and Tmax and Tmin fields
have also been validated at stations throughout the island. However, efforts to validate the
GOES-PRWEB dataset in a more comprehensive manner have been limited in particular
by the lack of homogeneous, high-quality humidity, solar radiation, and wind speed data
at a large number of stations on the island. For solar radiation in particular, some of the
existing station data can show sensor issues, such as change points and drifts. In addition,
at stations along the interior of the island, the upper envelope of daily solar radiation values
is often well below a reasonable clear-sky radiation curve for the time of year, indicating
that the station may be shaded by the local canopy or nearby obstructions (buildings,
topographic features) for the majority of the year.

Similar concerns occur for wind speed data and are exacerbated by the lack of doc-
umented (changes in) sensor heights at meteorological stations. The sensitivity of ETo to
changes in RHmean has been found to increase with increasing wind speed [12]. This is
consistent with our finding of moderate autocorrelation between SC for RHmean and u2
(r of −0.39 in Table 1) which means that as u2 increases, the SC for RHmean becomes more
negative (i.e., the absolute of the SC for RHmean increases). Therefore, errors in u2 from
GOES-PRWEB may affect the relative ranking of SCs across meteorological variables. In
particular, an overestimation of u2 in GOES-PRWEB would result in an overestimation of
the SC for RHmean, which was found to be the meteorological variable with the highest rela-
tive sensitivity. For this reason, in Appendix S5, wind-speed records at stations throughout
the island were compared with GOES-PRWEB wind speeds at the grid cell closest to each
station (Table S1 and Figure S12). When sensor height information is available at a station
(Table S1), it was used to convert the wind speeds to 2 m heights using the relationship
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in [10] for consistency with u2 from GOES-PRWEB. Generally, wind sensors are installed
at meteorological stations at 2 to 10 m heights, for which conversion factors to 2 m (based
on [10]) range from 1 to 0.75, respectively. Therefore, when sensor height information is
not available, a discrepancy of up to about 25% between station wind speeds and u2 from
GOES-PRWEB can be expected on average.

Figure S12b shows that the percent difference between GOES-PRWEB u2 and sensor
wind speed (converted to 2 m when possible) ranges between −23% and 225%. Notably,
16 out of 22 stations have percent differences between +/− 35%, which appear reasonable.
However, high percent differences are observed at some stations along the southwest
and southeast coasts and along the interior of the island. Furthermore, some of these
stations with the higher percent differences are relatively close to other stations with lower
percent differences, such as at the Yabucoa stations for example. These large discrepancies
in percent differences within short distances may be due to various reasons, including
incorrect measurement units, coordinates, or sensor height reported for the station, station
sheltering, comparison of 1 km wind speeds from GOES-PRWEB versus point values, and
large gradients occurring within small areas. The Global Wind Atlas [43] is a web-based
application that provides estimates of wind speed for wind power generation worldwide.
It uses the WRF model to downscale reanalysis data in the ERA5 dataset from the European
Centre for Medium-Range Forecasts (ECMWF; [44]). The resulting 3 km wind speeds are
then generalized and applied to a microscale modeling system to determine local wind
climates at 250 m resolution at heights ranging from 10 to 200 m. The microscale model
considers orography, roughness and roughness-change effects, including speed-up effects
as the wind moves up a mountain or hill. The Global Wind Atlas shows a large gradient in
the annual average 10 m wind speed from coastal to offshore areas of Puerto Rico and high
variability in wind speeds over mountainous areas resulting from changes in roughness
and orography. The 1 km GOES-PRWEB dataset is not expected to capture these localized
changes. This likely explains the large changes in wind speed performance over small
distances and the overestimation of wind speeds in GOES-PRWEB at interior stations.

Due to the uncertainty in wind speeds and the potential for its overestimation in
GOES-PRWEB at some station locations, a sensitivity analysis was performed on the SCs
where GOES-PRWEB u2 was multiplied by factors equal to 0.67 and 0.5 to counteract
possible overestimation of wind speeds in GOES-PRWEB by 50% and 100%, respectively.
This sensitivity analysis represents the worst-case scenario, where it is assumed that the
GOES-PRWEB u2 is overestimated island wide, when Figure S12 shows that is clearly not
the case. Results from this sensitivity analysis are shown in Appendix S5, where Figure 9 is
recreated for the two factors (Figures S13 and S14; Table S2). As the wind speed is reduced,
the SC for RHmean decreases and the SC for Rs increases. At some locations, such as cells
16 and 45 (Figure 1), the SC for RHmean remains mostly larger than the SC for Rs throughout
the year when 0.67 u2 is used (Figure S13), but only in the winter months when 0.5 u2 is
used (Figure S14). In the case when 0.67 u2 is used, the SC for RHmean becomes comparable
to the SC for Rs at many locations throughout the island, whereas when 0.5 u2 is used, it
becomes smaller than the SC for Rs, as reflected in the island-wide average SCs (Table S2).

As observed in Figure 3c, it was also found that the standard deviation of annual
ETo at the location of 2015 irrigated farms and golf courses is much higher for GOES-
PRWEB (97.0 mm/year for 2009–2017) than for the two downscaled climate models
(35.7 and 35.6 mm/year for CESM, and CNRM, respectively, in the period 1985–2005) and
the Herrera-Ault dataset (24.6 mm/year for 1985–2005). The larger interannual variability in
GOES-PRWEB ETo may be due to the switch of datasets used in its derivation, as described
by Harmsen et al. [28]. As previously discussed, the annual cycle of station-based estimates
of ETo appears to match that of GOES-PRWEB better than that of Herrera-Ault (Figure 3b),
with peak values in July as in GOES-PRWEB rather than in March as in Herrera-Ault. Since
the exact magnitude of interannual variability of ETo in the study area is unknown, and the
downscaled climate models show interannual variability within the range of the two obser-
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vational datasets, it may be sensible to bias correct model-based ETo using GOES-PRWEB
on monthly timescales only (i.e., no corrections for interannual variability).

4. Discussion

It was found that the SC for RHmean dominates the sensitivity of ETo throughout most
of the island, even more so than the SCs for Rs and Tmax. This is because the high relative
humidity over most of the island currently limits ETo and there is plenty of energy (Rs
and Tmax) available for ETo in most areas during most of the year. The SC for RHmean has
a large-amplitude annual cycle, especially along the Cordillera Central mountains and
the Sierra de Luquillo with larger values and less day-to-day variability in the dry season
than in the wet season. Coastal areas, including the 2015 irrigated farm locations, show
a lower relative sensitivity to RHmean, with a less marked annual cycle than interior areas.
The overall ranking of sensitivities found in our study (SC for RHmean > SC for Rs > SC for
Tmax > SC for Tmin > SC for u2) is similar to that obtained for the tropical rainforest climate
of southern Nigeria [18] and for the Yangtze River Basin in China [12]. However, the SCs
are not very meaningful on their own unless combined with a measure of the variability
measurement/estimation error or changes in the basic meteorological variables with time.

Our main objective in deriving SCs for Puerto Rico was to guide the prioritization of
bias correction of meteorological output for ETo estimation from dynamically downscaled
climate projections, which can then be used to drive a soil-moisture water-balance model [2]
for estimating future agricultural irrigation requirements on the island. This objective was
met by applying the SCs to understand the sources of error and potential future changes
in ETo estimated from downscaled model output at the 2015 irrigated farm locations. The
results illustrate how the ranking of variable importance may change when the SCs are
combined with estimates of error or change in meteorological variables. For example,
despite ETo being most sensitive to relative errors in RHmean, relative biases in RHmean in the
CNRM model are small compared to other variables. This results in a smaller contribution
of RHmean to errors in CNRM-estimated ETo. Similarly, despite ETo being most sensitive to
relative changes in RHmean than in the other variables, smaller relative future changes in
RHmean compared to Tmax and Tmin in both climate models result in similar contributions to
future changes in ETo from the three variables.

For the period 2040–2060, it was found that both climate models project an overall
5.6% increase in annual ETo over the 2015 irrigated farm locations with respect to the
historical period 1985–2005. This increase in ETo is primarily a result of projected increases
in Tmax and Tmin and a decrease in RHmean, with differences in the seasonality of changes
between the two models. Absent compensatory increases in rainfall and/or a compensatory
decrease in ETo due to stomatal closure as CO2 increases, the future increase in ETc resulting
from the 5.6% increase in ETo may have to be met by an additional volume of irrigation.
Future research could attempt to estimate the additional agricultural irrigation requirements
and their sensitivity to various bias-correction choices.

Various limitations of the current study are highlighted in the results. They include
uncertainties in the stomatal and plant-growth responses to projected increases in atmo-
spheric CO2, uncertainties in crop suitability under climate change, the effect of neglecting
changes in soil and water heat fluxes in the ETo equation, and the lack of sufficient meteo-
rological data at weather stations to corroborate meteorological data and ETo estimates and
the derived sensitivity coefficients. The development of reliable homogeneous spatially
distributed long-term observational datasets of meteorological and hydrological variables
is imperative for improving the understanding of drivers of hydrological processes, evalu-
ating model performance, and for bias correction of model output.
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Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/hydrology10050101/s1, Appendix S1: Aerodynamic and
energetic components of the ASCE standardized reference evapotranspiration (ETo) equation;
Appendix S2: Computation of daily meteorological variables from hourly WRF output; Appendix S3:
Analytical sensitivity coefficient equations; Appendix S4: Maps of long-term (2009–2017) monthly
average meteorological variables and ETo components; Appendix S5: Performance of GOES-PRWEB
wind speed at 2 meters and sensitivity to errors in wind speed; Figure S1: Long-term (2009–2017)
monthly average mean relative humidity (RHmean); Figure S2: Long-term (2009–2017) monthly
average incoming solar radiation (Rs); Figure S3: Long-term (2009–2017) monthly average max-
imum air temperature (Tmax); Figure S4: Long-term (2009–2017) monthly average minimum air
temperature (Tmin); Figure S5: Long-term (2009–2017) monthly average wind speed (u2); Figure S6:
Long-term (2009–2017) monthly average daily rainfall rate; Figure S7: Long-term (2009–2017)
monthly average energetic component or reference evapotranspiration (ETo,energetic); Figure S8:
Long-term (2009–2017) monthly average aerodynamic component of reference evapotranspira-
tion (ETo,aerodynamic); Figure S9: Long-term (2009–2017) monthly average energetic fraction of ref-
erence evapotranspiration (ETo,energetic fraction); Figure S10: Long-term (2009–2017) monthly average
aerodynamic fraction of reference evapotranspiration (ETo,aerodynamic fraction); Figure S11: Long-term
(2009–2017) monthly average daily evapotranspiration (ETo); Figure S12: (a) Location of stations with
homogeneous wind speed data in Puerto Rico; (b) Percent difference, and (c) coefficient of determina-
tion (R2), between GOES-PRWEB and station wind speeds converted to 2-m height according to [10]
when sensor elevation data are available; Figure S13: Daily timeseries of sensitivity coefficients (SCs)
with wind speed multiplied by 0.67; Figure S14: Daily timeseries of sensitivity coefficients (SCs) with
wind speed multiplied by 0.5; Table S1: Stations with homogeneous wind speed data in Puerto Rico;
Table S2: Island-wide average absolute relative SCs for case with original GOES-PRWEB 2 m wind
speeds and wind speeds multiplied by factors equal to 0.5 and 0.67. References [45–50] are cited in
the supplementary materials.
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Abstract: Research on the variation in soil water, heat, and salt in unsaturated zones during the
freeze–thaw process has great significance in efficiently utilizing water resources and preventing
soil salinization. The freeze–thaw field experiment was carried out with the lysimeter as the test
equipment to analyze characteristics of the soil freeze–thaw process, profile water content, main
ion content, and salt content of three textured soils with the groundwater table depth of 0.5 m. The
results showed that the soil temperature gradient and freezing depth were greater as the average
soil particle size increased. The increment of water content at the depth of 0 to 30 cm in sandy loam
and loamy sand decreased by 40.20~93.10% and 28.14~65.52% compared with that in sandy soil, and
the average increment of salt content at the depth of 0 to 30 cm decreased as the average soil particle
size increased during the freeze–thaw period. The average content of Ca2+, Na+, Cl−, and SO4

2− in
loamy sand and sandy soil decreased by 4.37~45.50% and 22.60~70.42% compared with that in sandy
loam at the end of the freeze–thaw period, and the correlation between soil salt content and water
content decreased with the increase in the average soil particle size. The research results can provide
a theoretical basis for soil salinization prevention and crop production in shallow groundwater areas.

Keywords: freeze–thaw period; ion content; soil salt content; soil texture

1. Introduction

Most of the northern regions of China are seasonally frozen soil areas, where the
transformation of phreatic water in the shallow groundwater zone is unusually strong [1].
The salt in the groundwater is transported to the unsaturated zone as the phreatic water
migrates upward under the action of the soil water potential gradient during the freezing
process [2]. It is easy to form soil salinization due to drought and intense evaporation in
winter and spring [3,4]. The redistribution of water and salt in shallow groundwater areas
caused by freezing and thawing processes is one of the main causes of soil salinization [5,6].
Salinized land is widely distributed in the world, and there are many types of it due to
different soil textures and hydrological characteristics between regions [7]. Soil salinization
not only affects the balance of the ecological environment but also restricts the virtuous
cycle of the natural environment [8] and limits crop growth and production [9]. Therefore,
the in-depth study of the migration law of water and salt in the unsaturated zone of soils
with different textures in shallow groundwater areas under freeze–thaw action can provide
a theoretical basis for the prevention of soil salinization in different regions, which has
great significance for the efficient utilization of water resource and agricultural production
in seasonally frozen soil areas.

The migration of soil salt under freeze–thaw action is the result of the combined
action of water convection, concentration gradient, and temperature gradient [5]; soil
salt moves convectively along with soil water under the action of the matrix potential
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gradient and temperature gradient, and it diffuses under the action of the concentration
potential gradient. Scholars have explored the transport law of soil salt in the unsaturated
zone during the freeze–thaw period through experimental research [10,11] and numerical
simulation [12–14]. It was found that surface mulching [15,16], autumn irrigation [13], and
barrier measures [17] could inhibit the accumulation of soil salt on the surface, while soil
bulk density [18], initial soil salinization degree [19], the freeze–thaw cycle [20], particle
gradation [21], and initial soil water content [22] also affected the variation in salt content
in the soil profile during the freeze–thaw period.

Soil texture affects soil hydraulic properties [23] and thermal conductivity [24], which
relate to the distribution of soil water, heat, and salt. In non-freeze–thaw periods, a lot
of research has been carried out on the effect of soil texture on soil salt transport under
different experimental conditions [25–28], under the condition of salt water irrigation, the
soil texture affected the process of salt stress [29], and soil salt content was significantly
affected by clay content [30]. The thickness of the interlayer [31], the constitution of the
soil layer [26], and the soil texture under the intermittent irrigation condition [32] also
affected the migration and distribution of water and salt in the soil. In addition, soil texture
affected the degree of retardation of salt on water migration, and the inhibition effect of
salt on evaporation was stronger in homogeneous soil than that in heterogeneous soil [33].
However, the transformation of phreatic water and the corresponding salt transport become
extremely complex in the freeze–thaw period; quantitative analyses of the influence of soil
texture on soil salt content and the correlation between soil water and salt at different depths
have yet to be performed, but some research has been conducted on the transformation
of phreatic water [34,35]. The inadequate understanding of the law of salt transport in
different textured soils during the freeze–thaw period prompted this study.

The freeze–thaw cycle of soil is a complex process, accompanied by physical, chemical,
and mechanical effects such as heat conduction, water phase change, solute transport,
etc. The distribution of soil pollutants [36–41] and the climate types in different regions
and different periods in the same region are complex and variable, and therefore, outdoor
experiments and numerical simulations are conducted more frequently to monitor and
simulate the transport process of water and solute in freeze–thaw soils under conditions
of natural environmental change. Multiple sets of outdoor experiments were carried out
during a freeze–thaw period in this paper. Only by comprehensively understanding the
migration path and evolution law of soil salt in unsaturated zones of different textured soils
can we grasp the dynamics of soil salt migration in different regions and make reasonable
use of and improvements in salinized land.

An experimental study on the variation in soil water, heat, and salt in the unsaturated
zone of shallow groundwater areas under freeze–thaw action was carried out; the study
discussed the spatial and temporal variation in soil temperature and soil water content,
analyzed the effect of soil texture on the migration of soil anions, cations, and salt during
the freeze–thaw period, and explored the correlation between soil salt content and water
content at different depths via Pearson correlation analysis, all of which revealed the
characteristics of variation in water content and salt content in different textured soils and
provided a basis for the rational planning and utilization of salinized land.

2. Materials and Methods

2.1. Experimental Conditions

The field experiment was carried out from November 2020 to March 2021 at the
Taigu Water Balance Experimental Field of the Hydrology and Water Resources Sur-
vey Station in the Jinzhong Basin, Shanxi Province (Figure 1), geographically located
at 112◦30′32.58′′ E and 37◦26′11.74′′ N, with an altitude of 777.0 m and a ground slope of
0.3%. The area is characterized by a continental semi-arid climate, with an annual average
temperature of 9.95 ◦C, annual precipitation of 415 mm, mainly concentrated in June to
September, and an annual average water surface evaporation of 1627.9 mm. The annual
average freezing depth is 34~70 cm, the historical maximum freezing depth is 92 cm, the
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annual average relative humidity is 74%, the annual average wind speed is 0.9 m/s, and the
annual average frost-free period is 200 days. The variation in daily average air temperature,
relative humidity, precipitation, wind speed, and solar radiation during the experimental
period is shown in Figure 2.

Figure 1. Location of Taigu Water Balance Experimental Field. (a) Field station and (b) automatic
weather station.

2.2. Experimental Methods

The experimental equipment consisted of lysimeters (Figure 3), which were cylindrical
in cross-section with a cross-sectional area of 0.5 m2, and the interval between different
lysimeters was 0.5 m. The lysimeter was filled with three representative homogeneous
soils in Taiyuan Basin, which were classified as sandy loam, loamy sand, and sandy soil
according to the USDA classification system. The physical parameters of three textured
soils are shown in Table 1, and the soil surface was exposed to the atmosphere. Mariotte
bottles were used to control the groundwater table depth to maintain 0.5 m in the lysimeter
system and were recharged with local groundwater.

Table 1. Main physical parameters of soils with different textures.

Soil Texture

Mass Percentage of Different Textured Soils
(%) Maximum Capillary

Height (cm)
Specific Yield

(m3/m3)
Bulk Density

(g·cm−3)
Clay Silt Sand

Sandy Loam 16.4 27.5 56.1 185 0.08 1.45
Loamy Sand 7.3 7.5 85.2 77 0.18 1.55
Sandy Soil 4.1 5.9 90 60 0.21 1.59

(1) The monitoring of soil temperature profile
The soil temperature was monitored by thermistors embedded before winter at depths

of 0 cm, 5 cm, 10 cm, 20 cm, 30 cm, 40 cm, and 50 cm, respectively, and the soil temperature
was monitored at intervals of 5~7 days at around 9 a.m. from 1 November 2020 to 6 March
2021. The relationship between the thermistor value and soil temperature is shown in
Equation (1).

T =
B

ln Rx
R25

+ B
298.15

− 273.15, (1)
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where T is the soil temperature, ◦C; Rx is the measured thermistor value, Ω; R25 is the
thermistor value at a temperature of 25 ◦C, Ω; and B is a constant, generally taken to
be 3950.

 

Figure 2. Meteorological conditions during the experimental period. Variations in (a) average air
temperature, (b) relative humidity, (c) precipitation, (d) wind speed, and (e) solar radiation from
November 2020 to March 2021.
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Figure 3. Schematic diagram of the lysimeter.

(2) The monitoring of soil water content and salt content
The monitoring depth of soil water content, anion and cation content, and salt content

was the same as that of the soil temperature profile. Soil samples were obtained at different
depths using a soil drill and then sealed in aluminum boxes; each soil sample was placed
in an oven and then dried at a constant temperature of 105 ◦C for 8 h to obtain the soil
water content. The soil solution was configured using deionized water according to a
soil-to-water ratio of 1:5 after drying, and the clarified soil extract obtained after shaking
and filtering was used to measure the soil ion content, among which the content of K+,
Ca2+, Na+, and Mg2+ was determined using an atomic spectrophotometer (TAS-990AFG)
(Beijing Purkinje GENERAL Instrument Co., Ltd., Beijing, China) under the following
conditions: wavelength ranged from 190 to 900 nm; grating scribing was 1200 or 1800;
and the accuracy and repeatability of wavelength was ±0.25 nm and 0.15 nm, respectively.
The content of Cl−, NO3−, and SO4

2− was determined via ion chromatograph (883 Basic
IC plus) (Metrohm China, Hong Kong, China), which consists of iCulumn, iPump, and
iDetectror: the pump speed of iPump ranged from 0.001 to 20 mL/min, the measurement
range and accuracy of the iDetectror was 0~15,000 μs/cm and 0.0047 ns/cm, respectively.
The content of HCO3− and CO3

2− was determined by titration. The soil salt content
was the sum of each ion content. The absorbance of potassium, sodium, calcium, and
magnesium ions was measured at wavelengths of 766.4 nm, 589.0 nm, 422.7 nm, and
285.2 mm, respectively, to obtain the standard curve. Then, a 10.00 mL sample was
taken into the colorimetric tube, and 0.50 mL of cesium nitrate solution (China National
Pharmaceutical Group Shanxi Co., Ltd., Taiyuan, China) (K+, Na+) or 0.2 mL of lanthanum
nitrate solution (China National Pharmaceutical Group Shanxi Co., Ltd., Taiyuan, China)
(Ca2+, Mg2+) was added to measure the absorbance of each ion, and the ion concentration
was obtained by comparing the standard curve. The determination range of K+, Na+, Ca2+,
and Mg2+ was 0.01~4.0, 0.01~4.0, 0.1~6.0, and 0.01~0.6 mg/L, respectively, and that of Cl−,
NO3−, and SO4

2− was 0.1~12, 0.02~10, and 0.2~12 mg/L, respectively.

2.3. Grey Relation Analysis

The correlation analysis in grey system theory is a new method of factor analysis,
which mainly analyzes the degree of correlation between various factors in the system by
comparing the geometric relationship of system data sequences [42,43].

(1) Original data transformation. Because each sequence has different dimensions
and orders of magnitude, in order to obtain correct analysis results, the original data
should be dimensionless to facilitate the analysis and calculation, and the standardized
transformation is used in this paper; that is, the average value and standard deviation of
each sequence are first calculated, and the average value of each original data is subtracted
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from the original data and then divided by the standard deviation. The new data sequences
x0(k) and xi(k) obtained are standardized sequences.

(2) Correlation coefficient calculation. The calculation formula is as follows (Equation (2)):

δi(k) = r(x0(k), xi(k)) =
min
i∈m

min
k∈n

|x0(k)− xi(k)|+ ρmax
i∈m

max
k∈n

|x0(k)− xi(k)|
|x0(k)− xi(k)|+ ρmax

i∈m
max
k∈n

|x0(k)− xi(k)| , (2)

where δi(k) is the relative difference between the comparison curve xi and the reference
curve x0 at the kth moment, that is, the correlation coefficient of the data series of xi and x0
at the kth moment. The value of ρ, which is the resolution coefficient, is generally between
0 and 1, where ρ = 0.5 in the article.

(3) Correlation degree calculation. With the calculation formula for the correlation
coefficient, according to the grey correlation space, the calculation formula for correlation
degree is shown in Equation (3).

ri =
1
n

n

∑
k=1

δi(k), (3)

where ri is the correlation degree between two sequences, and N is the number of
each subsequence.

2.4. Pearson Correlation Analysis

The Pearson correlation coefficient is used to reflect the degree of linear correlation
between two random variables and describe the trend of two sets of linear data changing
together. The value range is between −1 and 1. Given two random variables, the Pearson
correlation coefficient is equal to the covariance of the two variables divided by the standard
deviation of the two variables (Equation (4)). SPSS 19.0 is used to calculate the Pearson
correlation coefficient in this article.

ρX,Y =
cov(X, Y)

σXσY
=

E[(X − μX)(Y − μY)

σXσY
, (4)

where Cov(X,Y) is the covariance between X and Y; and σX and σY are the standard deviation.

3. Results

3.1. Freeze–Thaw Processes of Different Textured Soils

Soil freezing and thawing processes significantly affect the migration and distribution
of water and salt in the soil. According to the freeze–thaw characteristic of soil (Figure 4),
the freeze–thaw process was divided into three stages [44,45]: unstable freezing stage,
stable freezing stage, and thawing stage, as shown in Table 2. The representative 1 day
of three freeze–thaw stages, which was 18 November 2020 (D1), 9 January 2021 (D2), and
13 February 2021 (D3), respectively, was selected to analyze various characteristics of water
content and salt content in the soil profile during the freeze–thaw period.

Table 2. Division of soil freeze–thaw period.

Soil Freezing and Thawing
Stage

Soil Texture

Sandy Loam Loamy Sand Sandy Soil

Unstable Freezing Stage From 18 November to
5 December 2020

From 18 November to
3 December 2020

From 18 November to
3 December 2020

Stable Freezing Stage From 6 December 2020 to
12 January 2021

From 4 December 2020 to
9 January 2021

From 4 December 2020 to
10 January 2021

Thawing Stage From 13 January to
13 February 2021

From 10 January to
14 February 2021

From 11 January to
15 February 2021
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Figure 4. Soil freezing and thawing processes in (a) sandy loam, (b) loamy sand, and (c) sandy soil.

As the average soil particle size became larger, the porosity was smaller, and the
thermal conductivity increased [21], which made the soil temperature drop quickly and
led to a greater freezing depth. With the decrease in air temperature and the accumulation
of negative surface temperature, sandy loam, loamy sand, and sandy soil began to freeze
and entered the unstable freezing stage on November 18. The average freezing rate was
0.36~0.56 cm·d–1 with a short-term freeze–thaw cycle in the surface soil, and the maximum
freezing depth of three kinds of soils reached 6.5 cm, 7.5 cm, and 9 cm in the unstable
freezing stage. When entering the stable freezing stage in December, the average rate of
frozen layer development downward was 0.98 cm·d−1, 1.01 cm·d−1, and 1.11 cm·d−1,
respectively, and the maximum freezing depths of three textured soils in the freezing period
reached 41.3 cm, 42.5 cm, and 46 cm on 12 January, 9 January, and 10 January, respectively.
The soil entered the thawing stage with the increase in air temperature, part of the thawing
water recharged the phreatic water downward under the action of gravity potential, while
another part migrated to the surface under the action of evaporation. Sandy loam, loamy
sand, and sandy soil thawed completely on 13 February, 14 February, and 15 February, with
the average thawing rate of 1.18~1.29 cm·d−1.

During the freezing and thawing process, the maximum temperature gradients in the
profile of three kinds of soils were observed when the freezing depth reached the maximum,
which was 0.167 ◦C/cm, 0.172 ◦C/cm, and 0.178 ◦C/cm, respectively, indicating that the
temperature gradient was greater, and the driving force of water and salt transport became
stronger as the average soil particle size increased.

3.2. Characteristics of Water Transport in Different Textured Soils

The maximum rising height of capillary water in sandy loam, loamy sand, and sandy
soil was 187 cm, 77 cm, and 60 cm, respectively, and the capillary water could reach the
frozen layer. The water content of sandy loam increased at the depth of 10 to 50 cm, but
decreased slightly at the depth of 0 to 10 cm under the effect of soil evaporation [46] in the
process of D1 to D2 (Figure 5). On D2, the capillary water gathered at the freezing front
under the blocking effect of the frozen layer [47], resulting in the greatest increment of the
water content at a depth of 40 cm in the sandy loam. During the process of D2 to D3, the
soil water mainly moved to the depth of 0 to 20 cm as the frozen layer thawed in both
directions. The soil water content at the depth of 20 to 50 cm on D3 was 1.01~5.74% lower
than that on D2, with the largest decrease in soil water content at the depth of 30 cm.

The water content of loamy sand increased by 0.37~33.33% at the depth of 5 to 50 cm
in the process of D1 to D2 and increased by 0.0067~0.093% in the soil profile from D2 to D3.
On D2 and D3, the soil water content increased with the increase in depth, and the loamy
sand was almost saturated at the depth of 40 cm, while the soil water content was only
0.006% at the depth of 0 cm on D2, and the surface was seriously dry.

The water content of sandy soil increased at the depth of 0 to 50 cm during the process
of D1 to D2 and D2 to D3 due to the continuous hydraulic link and the transformation of
phreatic water throughout the whole freeze–thaw process [34], with the greatest increase at
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the depth of 5 cm. The water content in the sandy soil increased with the increase in depth
during the freeze–thaw process and was greatest at the end of the thawing period, with the
average soil water content in the sandy soil increasing by 18.46% and 0.19% compared with
that in sandy loam and loamy sand, respectively.

 

Figure 5. Vertical distribution characteristics of water in different textured soils during the freeze–
thaw period.

3.3. Characteristics of Ion Content Variation in Different Textured Soils

The phreatic water continuously migrated upwards under the action of the soil water
potential gradient, and the soil in the unsaturated zone continued to freeze from D1 to
D2 in the shallow groundwater area. The lower edge of the frozen layer in sandy loam,
loamy sand, and sandy soil was within the maximum rising height of the capillary water,
so variation characteristics of soil ions content were closely related to the migration of
groundwater and soil ions were redistributed in the profile.

3.3.1. Correlation Analysis between Soil Salt Content and Ions

The monitoring result of ion content in soil extract showed that the contents of soluble
K+, Mg2+, NO3

−, and CO3
2− in the soil were very low, making the measurement error

larger; therefore, only variations in Na+, Ca2+, Cl−, SO4
2−, and HCO3

− were analyzed
in the article. The correlation between salt content and ions in three textured soils was
analyzed by Grey Relation Analysis.

Na+ and HCO3
− had high relativity with soil salt content in sandy loam (Table 3),

with correlation coefficients of 0.9 and 0.909, respectively, indicating that Na+ and HCO3
−

were the most abundant ions in groundwater. However, the correlation coefficient between
Ca2+, SO4

2− and Cl− and salt content was 0.73~0.817, showing that the content of Ca2+,
SO4

2−, and Cl− in groundwater was second only to Na+ and HCO3
−. Na+ had a good

correlation with Cl−, SO4
2−, and HCO3

−. Ca2+ had a good correlation with SO4
2− and

HCO3
− because Ca2+ was easy to precipitate with SO4

2− and HCO3
−. It can be seen

that the main salt composition in sandy loam was Na2SO4, NaCl, NaHCO3, CaSO4, and
Ca(HCO3)2.

Table 3. Correlation coefficients between salt content and ions in sandy loam.

Ionic Species Soil Salt Content Na+ Ca2+ Cl− SO4
2− HCO3

−

Soil Salt
Content 1

Na+ 0.9 1
Ca2+ 0.817 0.694 1
Cl− 0.73 0.749 0.749 1

SO4
2− 0.806 0.798 0.833 0.847 1

HCO3
− 0.909 0.772 0.82 0.442 0.516 1
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Soil salt content was highly correlated to Na+, HCO3
−, and SO4

2− in loamy sand
(Table 4) with correlation coefficients of 0.99, 0.995, and 0.873, respectively. The correlation
between Na+ and HCO3

− was the highest followed by the correlation between Ca2+ and
Cl− and HCO3

−. It can be seen that the main salt composition in loamy sand was NaHCO3,
Na2SO4, CaCl2, and Ca(HCO3)2.

Table 4. Correlation coefficients between salt content and ions in loamy sand.

Ionic Species Soil Salt Content Na+ Ca2+ Cl− SO4
2− HCO3

−

Soil Salt
Content 1

Na+ 0.99 1
Ca2+ 0.694 0.591 1
Cl− 0.531 0.477 0.729 1

SO4
2− 0.873 0.872 0.616 0.49 1

HCO3
− 0.995 0.986 0.712 0.484 0.823 1

The salt content in sandy soil was highly correlated to Na+, HCO3
−, and SO4

2−
(Table 5) with correlation coefficients of 0.990, 0.989, and 0.874, respectively. The correlation
between Na+ and HCO3

− was the highest with a correlation coefficient of 0.988, followed
by the correlation between Ca2+ and SO4

2−. It was shown that the main salt component in
the sandy soil was NaHCO3, Na2SO4, and CaSO4.

Table 5. Correlation coefficients between salt content and ions in sandy soil.

Ionic
Species

Soil Salt
Content

Na+ Ca2+ Cl− SO4
2− HCO3

−

Soil Salt
Content 1

Na+ 0.99 1
Ca2+ 0.608 0.493 1
Cl− 0.719 0.692 0.644 1

SO4
2− 0.874 0.884 0.752 0.659 1

HCO3
− 0.989 0.988 0.536 0.651 0.593 1

According to the correlation analysis between salt content and ions in three different
textured soils, it was shown that the correlation coefficient between soil salt content and
Na+ and HCO3

− in sandy loam, loamy sand, and sandy soil was higher than 0.9, and the
correlation between Na+ and HCO3

− was better, so NaHCO3 was the main component of
salt in three kinds of soils. Na+, Cl−, and HCO3

− migrate easily with water, while Ca2+

and SO4
2− do not. As the average soil particle size increased, the pore diameter in the soil

increased, the suction of soil particles to soil salt decreased, the migration ability of Ca2+

and SO4
2− increased, and the main salt composition in the soil changed, with calcium salts

changing from CaSO4 and Ca(HCO3)2 to CaSO4, and sodium salts changing from Na2SO4,
NaCl, and NaHCO3 to NaHCO3 and Na2SO4. Since Na+ and HCO3

− were the main ions
in the soil, the most abundant sodium salt in sandy soil was still NaHCO3, although the
content of SO4

2− increased.

3.3.2. Characteristics of Ca2+ Content Variation

In the process of D1 to D2, the variation in Ca2+ gradually decreased with the increase
in soil particle size (Figure 6), which in loamy sand and sandy soil was 12.36~67.38%
and 53.88~97.47% lower than that in sandy loam at the depth of 0 to 50 cm. On D2, the
distribution characteristic of Ca2+ in the sandy loam was similar to that in the sandy soil,
and the content of Ca2+ decreased continuously at the depth of 0 to 30 cm and increased at
the depth of 30 to 50 cm. The content of Ca2+ in loamy sand increased with the increase in
depth from 5 to 30 cm and tended to be stable at the depth of 30 to 50 cm.
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Figure 6. Vertical distribution characteristics of Ca2+ in different textured soils during the freeze–
thaw period.

From D2 to D3, the content of Ca2+ in three textured soils increased in the vertical
profile. The content of Ca2+ in sandy loam increased by a smaller amount of 4.53~20.58%
at the depth of 0 to 10 cm, and the increase of Ca2+ content increased with depth within
the range of 10 to 50 cm, with the increase at the depth of 10 cm being 6% of that at the
depth of 50 cm. The content of Ca2+ in loamy sand increased by 1.84~74.04%, and the
amplitude on the surface was the largest. The content of Ca2+ in sandy soil increased
by 27.83~218.92% with the greatest increment at the depth of 10 cm. At the end of the
thawing stage (D3), the content of Ca2+ in sandy loam was 0.0347~0.0611 g·(100 g)−1, with
a decrease of 41.90~58.21% and 48.61~60.23% in the loamy sand and sandy soil, respectively.
The content of Ca2+ in different textured soils was less than that of other ions, the reason
was that soluble SO4

2− was easy to combine with Ca2+ to form sulfate precipitate CaSO4.

3.3.3. Characteristics of Na+ Content Variation

From D1 to D2, Na+ mainly accumulated at the depth of 10 to 30 cm in sandy loam
(Figure 7), while at the depth of 0 to 5 cm in loamy sand, and it migrated from the depth of
5 to 30 cm to both sides in sandy soil, the average content of Na+ at depths of 0 to 5 cm and
30 to 50 cm increased by 24.13% and 15.82%, respectively. On D2, the content of Na+ was
the highest at the depth of 20 cm in sandy loam, and the Na+ in the loamy sand and sandy
soil accumulated on the surface.

 

Figure 7. Vertical distribution characteristics of Na+ in different textured soils during the freeze–
thaw period.

From D2 to D3, Na+ migrated with water from the thawing front to the non-frozen
layer on both sides with the thawing of the frozen layer. Na+ in sandy loam, loamy sand,
and sandy soil migrated from depths of 8 to 30 cm, 15 to 30 cm, and 5 to 15 cm to both
sides, respectively. On D3, the content of Na+ was the highest at a depth of 50 cm in sandy
loam, and Na+ accumulated on the surface of loamy sand and sandy soil. The average
content of Na+ at the depth of 0 to 50 cm in sandy soil was the lowest at 0.084 g·(100 g)−1,
which was 22.60% and 19.07% lower than that in sandy loam and loamy sand, respectively.
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Excessive Na+ content can lead to the dispersion of soil particles and aggregates, resulting
in a decrease in soil pore diameter and permeability.

3.3.4. Characteristics of Cl− Content Variation

In the process of D1 to D2, the increment of Cl− content at the depth of 10 to 30 cm
was the most in sandy loam (Figure 8), which was 51.56~61.44%; however, Cl− was mainly
accumulated at the depth of 30 to 50 cm on D2. The Cl− content in loamy sand increased
throughout the vertical profile, with the largest increment and the highest Cl− content on
D2 at the depth of 0 cm. Cl− in sandy soil migrated to the depth of 0 to 35 cm from D1 to
D2; however, the average content of Cl− at the depth of 30 to 50 cm increased by 39.51%
compared with that at the depth of 0 to 30 cm on D2.

 

Figure 8. Vertical distribution characteristics of Cl− in different textured soils during the freeze-
-thaw period.

In the process of D2 to D3, Cl− in sandy loam mainly migrated to depths of 0 to 10 cm
and 20 to 50 cm. Cl− in loamy sand mainly accumulated at the depth of 0 to 20 cm, which
made the average content of Cl− in this depth increase by 39.51%. Cl− in sandy soil mainly
migrated at the depth of 0 to 10 cm, and Cl− content at the depth of 10 to 50 cm decreased
by 0.65~9.53%. On D3, the content of Cl− in sandy loam increased with the increase in
depth from 5 to 50 cm. Cl− was mainly distributed at the depth of 0 to 20 cm in loamy
sand, and was gathered at depths of 0 to 10 cm and 30 to 50 cm in sandy soil. The average
content of Cl− in sandy loam was the highest, with a decrease of 17.96% and 64.96% in
loamy sand and sandy soil, respectively.

3.3.5. Characteristics of SO4
2− Content Variation

In the D1 to D2 stage, SO4
2− in sandy loam mainly accumulated in the frozen layer at

the depth of 5 to 40 cm, the average content of SO4
2− in this depth was 12.37% and 12.42%

higher than that at depths of 0 to 5 cm and 40 to 50 cm at the end of the freezing stage
(Figure 9). The SO4

2− in loamy sand mainly aggregated at the depth of 0 to 20 cm, and
the content of SO4

2− was basically unchanged at the depth of 20 to 50 cm. The content of
SO4

2− in sandy soil increased by 16.74~105.60% at the depth of 5 to 50 cm, with the highest
SO4

2− content of 0.046 g·(100 g)−1 at a depth of 50 cm on D2.
In the process of D2 to D3, SO4

2− in sandy loam mainly accumulated at depths of 0 to
10 cm and 30 to 50 cm with the thawing of the frozen layer. The content of SO4

2− increased
in the profile of loamy sand. SO4

2− in sandy soil mainly migrated to the depth of 22 to
50 cm, and the maximum increment of SO4

2− was 38.75% at a depth of 30 cm. On D3, the
content of SO4

2− was the highest at a depth of 50 cm in sandy loam and sandy soil, and
SO4

2− was mainly concentrated at the depth of 0 to 10 cm in loamy sand. The content of
SO4

2− in the profile of sandy soil was lower than that of sandy loam. The average content
of SO4

2− in sandy loam was the highest, which was 0.115 g·(100 g)−1, while that in loamy
sand and sandy soil decreased by 23.55% and 70.42%.
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Figure 9. Vertical distribution characteristics of SO4
2− in different textured soils during the freeze–

thaw period.

3.3.6. Characteristics of HCO3
− Content Variation

During the process of D1 to D2, the solubility of Ca(HCO3)2 increased with the
decrease in soil temperature, and the content of HCO3

− at the freezing front was higher,
resulting in the movement of HCO3

− from the area of high concentration to the area of
low concentration, and the HCO3

− content in the frozen layer decreased. HCO3
− in sandy

loam mainly migrated from the depth of 5~40 cm to both sides from D1 to D2 (Figure 10),
the average content of HCO3

− at the depth of 10 to 30 cm was the lowest, which was
36.72% and 18.34% lower than that at depths of 0 to 10 cm and 30 to 50 cm on D2. HCO3

−
in loamy sand mainly migrated from the depth of 0~20 cm to the bottom, and the content
of HCO3

− at the depth of 20 to 50 cm increased by 2.51~20.43%. HCO3
− in sandy soil

mainly migrated from the depth of 5~30 cm to both sides, and its average content decreased
by 27.70%.

 

Figure 10. Vertical distribution characteristics of HCO3
− in different textured soils during the

freeze–thaw period.

In the process of D2 to D3, the solubility of Ca(HCO3)2 decreased with the increase
in soil temperature, and some HCO3

− precipitated in the form of crystals. The content of
HCO3

− increased in the soil profile of sandy loam, with the greatest increase of 146.21%
at a depth of 10 cm, the content of HCO3

− in loamy sand remained basically unchanged,
and HCO3

− in sandy soil accumulated at the depth of 5 to 50 cm, with an increase in the
content of 17.20~95.45%. At the end of the thawing stage, the content of HCO3

− in sandy
loam decreased with the increase in depth from 10 to 50 cm. The HCO3

− in loamy sand
was gathered at the depth of 20 to 50 cm, accounting for 69.63% of the ion content in the
whole soil profile. The content of HCO3

− was the least on the surface of sandy soil and
remained basically unchanged with increasing depth from 5 to 50 cm. The average content
of HCO3

− in loamy sand was the smallest, which was 29.50% and 4.65% lower than that in
sandy loam and sandy soil, respectively.
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3.4. Characteristics of Soil Salt Content Variation

From D1 to D2, the depth of the frozen layer increased, and the salt in three textured
soils gathered to the surface and the soil at deeper depths, which mainly migrated from the
middle frozen layer at the depth of 5~30 cm to both sides in the sandy loam (Figure 11);
accumulated at depths of 0 to 5 cm and 20 to 50 cm in the loamy sand, with an increase in
the soil salt content of only 2.08~6.11% at the depth of 5 to 20 cm; and migrated from the
depth of 3~30 cm to both sides in sandy soil. On D2, the salt content on the surface was
largest in the sandy loam, loamy sand, and sandy soil, which was 0.36~0.51 g·(100 g)−1.
The salt content in the profile of sandy soil was 0.20~0.36 g·(100 g)−1, which increased by
41.67~95% and 33.33~55% in sandy loam and loamy sand, respectively.

 

Figure 11. Vertical distribution characteristics of soil salt in different textured soils during the
freeze–thaw period.

From D2 to D3, the salt content in the sandy loam at the depth of 0 to 50 cm increased
by 13.69~51.71% with the thawing of the frozen layer and strong soil evaporation; the salt
in the loamy sand accumulated at depths of 0 to 20 cm and 30 to 50 cm; differently from
sandy loam and loamy sand, the salt content on the surface of sandy soil decreased, and the
soil salt mainly gathered at the depth of 5 to 50 cm. On D3, the salt content in the soil profile
of sandy loam was 0.52~0.65 g·(100 g)−1, with the greatest soil salt content at a depth of
50cm. The average salt content at the depth of 10 to 20 cm was the smallest in the loamy
sand, which was 20.16% and 6.37% lower than that at depths of 0 to 10 cm and 20 to 50 cm.
The average salt content of the sandy soil at the depth of 30 to 50 cm increased by 15.01%
compared with it at the depth of 0 to 30 cm.

At the end of the thawing period, the salt content of three textured soils at the depth
of 5 to 50 cm gradually decreased as the average soil particle size increased, but the surface
salt content in the loamy sand was the largest, the average soil salt content of sandy loam,
loamy sand, and sandy soil was 0.58, 0.44, and 0.35 g·(100 g)−1, respectively, and the degree
of soil salinization gradually decreased. Among them, both sandy loam and loamy sand
were severely salinized soil, while sandy soil was moderately salinized soil.

4. Discussion

Crop production plays a vital role in ensuring food security, providing livelihoods
and supporting economic development, and many researchers have discussed different
aspects of crop productions [48–51]. However, soil salinity poses a significant threat to
crop production. Salinity negatively impacts plant growth and productivity [52,53]. High
salt levels hinder water uptake by plant roots, leading to water stress and reduced crop
yields. Excess salts can cause toxicity, damaging plant tissues and disrupting important
physiological processes such as nutrient uptake and photosynthesis. Additionally, salinity
alters soil structure, reducing its fertility and nutrient availability, further impairing crop
growth. Managing and mitigating soil salinity is essential to safeguard crop production,
maintain food supplies, and sustain agricultural livelihoods.
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4.1. Correlation Analysis between Soil Water and Salt

In the seasonally frozen soil area, the migration of phreatic water and soil water
driven by gravity potential, matrix potential, and temperature potential [2,54], makes a
concomitant migration of salts dissolved in water, resulting in the redistribution of soil
salt and the change in solute potential in the soil profile. There was a positive correlation
between soil water content and electrical conductivity [55], and the transport of water and
salt in the soil was not synchronized due to convection and diffusion [56]. The correlation
between soil water and salt varies in different textured soils. Pearson correlation analysis
was performed on the linear relationship between water and salt in the soil at different
depths based on the monitoring data of soil water content and soil salt content (Figure 12).

 

Figure 12. Correlation coefficients between salt content and water content at different depths of
(a) sandy loam, (b) loamy sand, and (c) sandy soil. W10, W20, and W40 are the soil water content at
the depth of 10 cm, 20 cm, and 40 cm, respectively, and S0, S10, S20, and S40 are the soil salt content
at the depth of 0 cm, 10 cm, 20 cm, and 40 cm, respectively.

The correlation coefficient between soil water content at depths of 10 cm, 20 cm, and
40 cm and soil salt content at depths of 0 cm, 10 cm, 20 cm, and 40 cm was greater than
0.6 in sandy loam, which indicated that the soil salt content increased with the increase
in soil water content, and soil salt mainly migrated with soil water convectively, which
was consistent with previous research results [57,58]. However, soil salt content and water
content did not increase synchronously, and there was a depth difference between their
corresponding depth when the correlation was higher; for example, correlations between
soil salt content at a depth of 0 cm and soil water content at a depth of 10 cm, and between
soil salt content at a depth of 20 cm and soil water content at a depth of 40 cm, were
higher. The distribution of soil salt depends on the salt migration caused by convection
and diffusion [59].

The correlation coefficient between soil salt content at depths of 10 cm, 20 cm, and
40 cm and soil water content at a depth of 10 cm in loamy sand was less than 0.6, and
the correlation was significantly lower than that in sandy loam, due to the greater water
migration in loamy sand than that in sandy loam, and the soil water content at a depth
of 10 cm was greatly affected by soil evaporation. The correlation coefficient between soil
salt content at depths of 0 cm, 10 cm, 20 cm, and 40 cm and soil water content at depths of
20 cm and 40 cm was greater than 0.6.

The correlation coefficient between soil water content at depths of 10 cm, 20 cm,
and 40 cm and soil salt content at a depth of 10 cm in sandy soil was less than 0.6, and
the correlation was further weakened compared with that in loamy sand. In summary,
the correlation between soil salt content and water content gradually weakened with the
increase in average soil particle size. The soil with larger particles has stronger water
and salt transport capacity [60]. In the thawing stage, soil water and salt migrated to the
surface. Under the action of soil evaporation, the soil water content decreased, and the
salt accumulated on the surface, so the correlation between soil water content and soil salt
content was weaker.
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4.2. Effect of Freeze–Thaw Process on Water and Salt Transport in Different Textured Soils

The distribution of soil water has an important influence on salinization prevention.
The influence of management system [61], initial water content [62], and loess interlayer [63]
on water migration, and the correlation between soil texture and soil water content in non-
freeze–thaw periods [64] were researched. In the freeze–thaw period, the interlayer with
fine particle inhibited the water migration in the soil [65]. For homogeneous soil, average
particle size, and inhomogeneity coefficient of the sandy soil affected the soil moisture [34].

At the end of the thawing period, the water content in three textured soils increased
compared with that at the begin of the freeze–thaw period at the depth of 0 to 40 cm,
among which the increment of water content at the depth of 0 to 30 cm in sandy loam and
loamy sand decreased by 40.20~93.10% and 28.14~65.52% compared with that in sandy
soil (Table 6). Soil texture is closely associated with soil hydraulic properties [66] and
temperature gradient [67]. Since phreatic water and soil water in the deeper depth are
transported to shallow soil through the capillary, the variation in water content in the
soil profile is affected by both the rising height and transport capacity of capillary water.
Soil with a smaller average particle size has a stronger water holding capacity [68], but
its hydraulic conductivity is smaller, making the soil water conductivity and permeability
weaker, and the transport capacity of capillary water smaller. Among three textured
soils, sandy loam has the largest rising height of capillary water; however, the maximum
rising heights of capillary water in three kinds of soils are greater than 50 cm, the water
transported upwards in sandy loam, loamy sand, and sandy soil can reach the frozen layer,
and continuous hydraulic links can be formed. Therefore, the migration of soil water and
phreatic water during the freeze–thaw period is mainly affected by the transport capacity
of capillary water and temperature gradient. With the increase in groundwater table
depth, the rising height of capillary water becomes the main factor affecting the phreatic
evaporation and soil water content [34], and the temperature gradient is the principal factor
affecting water and salt transfer in red silty clay [5]. The porosity of sandy soil is smaller,
and the thermal conductivity is larger [69], which makes the temperature gradient larger,
further leading to a greater freezing depth and soil water potential gradient, as well as a
stronger driving force for water migration, but the maximum temperature gradient of three
kinds of soils is 0.167~0.178 ◦C/cm, and the difference in temperature gradient is small. The
transport capacity of capillary water is the main factor influencing the water transport. The
particle size of sandy loam is smaller and the hydraulic conductivity is weaker, the amount
of water transport is smaller under the same conditions, but the increment of water content
in sandy loam at a depth of 40 cm was the largest, because the water holding capacity of
sandy loam is stronger, and the specific yield is smaller [70]. When the thawing water in
the frozen layer migrates downward under the action of gravity, it is easier to remain in the
soil, and the gravity water is more easily lost from soil with a larger particle size [71]. The
water content of the three textured soils at a depth of 50 cm was basically unchanged, and
all fluctuated around the saturated water content.

Table 6. Variations in soil water content and salt content during the freeze–thaw period.

Depth
(cm)

Soil Water Content (%) Soil Salt Content (g·(100 g)−1)

Sandy
Loam

Loamy
Sand

Sandy
Soil

Sandy
Loam

Loamy
Sand

Sandy
Soil

0 0.004 0.020 0.094 0.184 0.242 0.063
5 0.119 0.143 0.199 0.182 0.100 0.026

10 0.058 0.083 0.173 0.146 0.088 −0.019
20 0.006 0.086 0.120 0.122 0.009 −0.021
30 0.018 0.035 0.058 0.195 0.050 0.154
40 0.048 0.009 0.012 0.198 0.124 0.181
50 −0.016 0.010 0.004 0.330 0.057 0.128
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During the freezing process, the phreatic water migrated upward under the action
of the soil water potential gradient, so that the salt in the phreatic water and soil at a
deeper depth was brought to the frozen layer [72]. The salt content in the sandy loam
was larger, which reduced the freezing point of the soil and prolonged the freezing time
of the soil [73]. The soil salt content increased in the freezing stage [74]; however, the
one-way freezing experiment in the column with red silty clay found that salt content in
the frozen soil changed little, while the soil water content increased more [5]. At the end
of the thawing stage, the salt content of sandy loam and loamy sand in the soil profile
increased compared with that at the beginning of the freeze–thaw period, while the salt
content of sandy soil decreased at the depth of 10 to 20 cm. Under the same water content,
the water migration ability of the sandy soil is stronger for the smaller matrix suction [75]
and the larger specific yield [34]. In the thawing stage, the thawing water of the sandy
soil migrated downward quickly and resulted in a decrease in soil salt content at the
depth of 10–20 cm. The thickness and texture of the interlayer could affect the change
in soil salt content [76,77], the finer soil formed a thinner salt shell and had a stronger
evaporation capacity [25], and the bulk density of paddy and natural land changed in
the freeze–thaw period [18]. Soil deformation led to the change in soil hydrothermal
properties [78]; however, the frost heave was not obvious in this experiment. The influence
of soil texture on soil salt migration is mainly controlled by the soil water migration. As
the average soil particle size increases, the number of macropores increases, the amount of
soil water migration becomes greater [79], and the migration ability of soil salt becomes
stronger. At the same time, the capacity of adsorbing soil ions varies with the size of soil
particles [80], the increase in fine particles weakens the permeability of soil, making the
downward migration of water and salt decrease, and therefore, the capacity of adsorbing
soil ions is smaller with a larger soil particle size. The variation in salt content in the sandy
loam at the depth of 5 to 50 cm was the greatest, and the variation in loamy sand was
larger than that in sandy soil at the depth of 5 to 10 cm. However, the variation in sandy
soil was much larger than that in loamy sand at the depth of 20 to 50 cm due to the larger
pores and better conductivity in sandy soil [81], which is conducive to the formation of
preferential flow; the salt dissolved in soil water is gradually brought to the soil at deeper
depth with the downward migration of thawing water. In contrast, the complex porous
geometric structure formed by fine pores and the adsorption on charged aggregates will
hinder ion migration in loamy sand. The average increment of salt content for sandy loam,
loamy sand, and sandy soil in the tillage layer with the depth of 0 to 30 cm was 0.166, 0.098,
and 0.041 g·(100 g)−1, respectively, and the freeze–thaw process had the least effect on
salinization in sandy soil. The effect of freezing and thawing processes on salt transport
can be weakened by changing the hydraulic characteristics of frozen soil, such as surface
coverage or plowing before freezing [82].

5. Conclusions

The effect of soil texture on the distribution characteristics of water, heat, and salt
in the soil profile during the freeze–thaw period was quantitatively analyzed through a
freeze–thaw field experiment. The main conclusions were as follows:

The soil temperature decreased quicker, and the freezing depth was greater as the
average soil particle size increased. The increment of soil water content increased with
the increasing average soil particle size at the depth of 0 to 30 cm during the freeze–thaw
period, and the average water content in sandy soil at the depth of 0 to 50 cm was 18.46%
and 0.19% higher than that in sandy loam and loamy sand at the end of the thawing
stage, respectively.

NaHCO3 was the main salt composition in the soil. The average content of Ca2+, Na+,
Cl−, and SO4

2− in loamy sand and sandy soil decreased by 4.37~45.50% and 22.60~70.42%
compared with that in sandy loam, respectively, and the average soil salt content decreased
with the increase in soil particle size at the end of the thawing stage. The average increment
of salt content at the depth of 0 to 30 cm in sandy loam and loamy sand increased by
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304.88% and 139.02% compared with that in sandy soil during the freeze–thaw period;
that is, the freeze–thaw process had the least effect on soil salinization in sandy soil. The
correlation between soil salt content and water content decreased with the increase in soil
particle size.

The effects of different treatments on water and salt transport in different textured
soils during freeze–thaw periods need to be further studied, which can provide a basis for
the management and efficient utilization of salinized land.
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Abstract: This study investigated the hydrological properties of litter in different vegetation cover
types, including Eucalyptus sp. plantation, Agroforestry, and Restoration Forest. The research focused
on evaluating litter accumulation, composition, water holding capacity, and effective water retention.
The results revealed variations in litter accumulation among the stands, and especially Eucalyptus
sp., which had a higher proportion of branches compared to leaves. The water holding capacity of
the litter differed among the stands. Agroforest and Restoration Forest showed higher litter water
capacities than Eucalyptus sp. The composition and decomposition stage of the litter fractions influ-
enced their water retention capabilities, with leaves exhibiting superior water retention. In contrast,
branches had lower water absorption due to their hydrophobic nature. Despite these differences, the
effective water retention, which indicates the ability of litter to intercept precipitation, was similar
among the stands. The findings highlight the importance of considering litter composition and
species-specific characteristics in understanding the hydrological functions of litter. This knowledge
contributes to effective conservation and management strategies for sustainable land use practices
and water resource management. Further research is recommended to expand the study’s scope to
include a wider range of forest types and natural field conditions, providing a more comprehensive
understanding of litter hydrological functions and their implications for ecosystem processes.

Keywords: forest hydrology; ecohydrology; litter water conservation; soil and water conservation;
soil management; soil moisture

1. Introduction

Litter plays a vital role in nutrient cycling and organic matter decomposition, with
notable relevance for global biogeochemical cycles. It refers to the layer of organic or de-
composing material present on the forest floor, consisting of a diverse range of components
such as leaves, branches, flowers, fruit, seeds, and animal residue. The composition and
characteristics of litter are influenced by various factors. For instance, in different types
of ecosystems, such as tropical rainforests [1–5] or temperate forests [6–9], the dominant
tree species and their specific leaf traits can significantly affect litter composition and de-
composition rates [2,10]. Additionally, forest disturbances, such as logging or fire events,
can alter litter dynamics and nutrient cycling processes [11–13]. As litter decomposes, it
releases nutrients into the soil, which are then taken up by plants, contributing to their
growth and overall ecosystem productivity [14–18]. Furthermore, litter provides habitat
and food sources for a wide range of organisms [19,20], playing a crucial role in supporting
biodiversity within the ecosystem.

From a hydrological perspective, the litter acts as sponge layer, separating precipitation
from mineral soil, mediating rainfall splash impact, and reducing or often eliminating
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overland flow and soil erosion from the forest floor [21,22]. This has implications for
infiltration during and after rainfall [2,23]. Understanding the interactions between rainfall,
vegetation, and litter on the soil surface is of great importance to forest hydrologists and
researchers interested in the partitioning and disposition of rainfall [6,24,25]. The water
balance of an ecosystem involves many processes, including the interception of rainfall
by vegetation, the portion of rainfall that passes through gaps in the canopy (throughfall),
and the water that flows down the trunks or stems of trees (stemflow) [26–29]. The latter
two represent the portion of rainfall that reaches the soil and interacts with a boundary
layer between the soil surface and its interior [4,5], known as litter [2,23]. Additionally, the
presence of a litter layer serves to minimize water evaporation from the soil, aiding the
preservation of moisture within the topsoil [30]. However, it is important to note that water
retention in the litter layer is an essential hydrological indicator in forest hydrology, and a
significant portion of the precipitation may be retained by the litter layer, influencing both
evaporation and soil–moisture dynamics [31–34].

Soil water conservation capacity involves various natural processes, land management
practices, and the characteristics of the landscape that influence water infiltration, retention,
and storage in the soil. This conservation capacity is crucial for sustaining ecological
balance, agricultural productivity, and mitigating the negative impacts of water-related
issues such as erosion, flooding, and drought. Conserving water and soil resources is
essential for sustainable land management, agriculture, and overall environmental health.
Implementing practices that enhance water and soil conservation capacity helps protect
ecosystems, support biodiversity, and secure the availability of clean water for human and
ecological needs. However, it is not possible to generalize the hydrological properties of
litter independently of vegetation type (e.g., forest or agriculture crop) or structure. The
dynamics of litter water interception vary depending on factors such as stand species
composition, thickness, storage, water holding capacity, and degree of decomposition,
which contribute to different levels of rainfall interception [4,6,35]. As litter has close
contact with soil, the water and soil conservation capacity of a forest is also influenced by
factors such as forest type, management practices, soil bulk density, and porosity [4,5,36].
Therefore, in the practice of forestry production on agricultural land, in addition to the state
of litter coverage, we should also consider the differences in litter caused by the presence
of different tree species. While numerous studies have investigated the impact of litter on
hydrological processes, insufficient attention has been paid to the hydrological properties
of litter under natural conditions, and especially different vegetation types or management.

In this study, our objective was to assess the water holding characteristics of litter
and the physical properties of soil in three vegetation types: Eucalyptus sp. plantation,
Agroforestry, and Restoration Forest. We aimed to investigate the impact of vegetation
cover on litter water conservation. Our hypotheses were as follows: (1) litter hydrological
properties exhibit variations among different vegetation types and (2) soil water content,
bulk density, and resistance to penetration are influenced by litter hydrological properties.
To the best of the authors’ knowledge, this is the first study to compare different vegetation
types, incorporating various management techniques. A comprehensive understanding of
the role of litter in ecosystem water balance and nutrient cycling is crucial for evaluating
ecosystem functioning, carbon sequestration, and sustainable land management practices.
Further research in this field can offer valuable insights into the intricate relationships
between precipitation, vegetation, and ecosystem processes, thereby contributing to the
development of effective conservation and management strategies.

2. Materials and Methods

2.1. Study Sites

The experimental site is located at the Federal University of São Carlos—Sorocaba,
Brazil (23◦35′07′′ S, 47◦31′03′′ W, Figure 1), representing three different soil coverings or
vegetation types: EU: a stand of Eucalyptus sp. (6 years old); AF: a biodiverse succes-
sional agroforestry system including trees from the Atlantic Forest, Musa spp. (Banana),
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and some leguminous species such as Cajanus cajan (Feijão guandú), with exotic species
(Brachiaria sp.) controlled through weeding (established 6 years ago); and RF: Restoration
Forest including tree species from the Atlantic Forest and Cerrado (10 years old). Table 1
presents information on the stands. The plots were located 100 m from each other. The
mean altitude is 580 m AMSL, and the climate is classified as Cwa or temperate, with dry
and hot summers [37,38]. Mean annual temperature is 22 ◦C and mean annual rainfall
is 1311 mm [39]. This site is in a transition region between the Atlantic Plateau and the
Paulista Peripheral Depression. It comprises the following soil types: Red Yellow Dys-
trophic Argisol and Red Dystrophic Latosol [40]. Biotic and abiotic variables were collected
simultaneously, allowing a reliable comparison between stands. Three 10 × 10 m plots
were established in each stand, and data on throughfall, litter production, hydrological
properties, soil bulk density, resistance penetration, and water content were monitored for
8 months, from December 2020 to July 2021.

Figure 1. Studied site location at the Federal University of São Carlos—experimental site. Sorocaba,
Brazil.

Table 1. Basic information on the sample sites.

Information
Eucalyptus sp.

(EU)
Agroforest

(AF)
Restoration Forest

(RF)

Density [trees ha−1] 1667 1250 1667

Management 3 × 2 m planting system.
Established in 2014.

Trees on 4 × 2 m, with Musa spp.
(Banana) and leguminous species

between rows. Exotic species
controlled through weeding.

Established in 2014.

3 × 2 m planting system.
Established in 2010.

Diameter at breast height
[m] 13.5 ± 0.1 14.6 ± 1.5 13.8 ± 2.6

Height [m] 21.5 ± 0.3 8.2 ± 0.2 10.3 ± 0.1
Litter thickness [cm] 1.3 ± 0.1 2.0 ± 0.1 1.5 ± 0.1

Slope aspect N-NW N-NW N-NW
Slope (◦) 10.0% 10.3% 10.2%

388



Hydrology 2023, 10, 165

2.2. Rainfall and Throughfall

The total rainfall data [R, mm] during the experiment were collected from the weather
station located at the experimental site. Throughfall data were obtained using 6 rain gauge
collectors positioned 1.20 m above the forest floor in each plot. The collectors were placed
under the trees, along the center of the planted row, with a 3 m distance between each other.
Throughfall values were obtained following [4,27,41]. Each sampling consisted of one or
more consecutive rainfall events. An event is defined as rainfall of at least 1 mm in depth
preceded by a dry period of a minimum of 12 h. Sample collections were performed as
soon as possible after the end of rainfall.

2.3. Determination of Litter Hydrological Properties

Litter samples were collected from a 100 × 100 cm litter square divided into 4 quad-
rants. The collection process followed a random sampling method [4,5], where one quad-
rant measuring 50 × 50 cm was randomly chosen for material collection on the forest floor.
The collected samples were then immediately placed in plastic bags and transported to
the laboratory. Each stand yielded a total of 240 litter bags (3 plots × 10 random quad-
rants × 8 months). In the laboratory, the litter samples were sieved to remove soil (mesh
6—3 mm, approximately) and then sorted into four fractions: branches, leaves, seeds, and
unstructured material. The monthly and annual litter yield was estimated by summing
the fractions. The fresh mass [FM, g] of each fraction was determined using an accurate
scale [0.01 g] and rehydrated through immersion in water for 90 min. Subsequently, the
litter fractions were placed on sieves and drained for 30 min to determine the humid litter
mass [HM, g]. The dried mass [DM, g] of the litter was then determined by oven-drying
the samples at 70 ◦C until a constant mass was achieved. Finally, the litter hydrological
properties were calculated as shown in Table 2.

Table 2. Litter hydrological properties studied.

Indicator Description Equation

Water holding capacity
[WHC, %] is the amount of water that can be preserved in litter WHC =

[
HM−DM

DM

]
× 100

Effective water holding capacity
[EWC, %]

is the water holding capacity of litter under ambient
conditions [5,9] EWC =

[
FM−DM

FM

]
× 100

Effective water retention capacity
[Weff, t ha−1]

is the maximum amount of rainwater that can be
retained by the litter layer in the forest in the

natural field environment. Is numerically smaller
than water retention capacity [42]

Weff =
(0.85×WHC−EWC)×M

100
M = is the unit litter mass, t ha−1

Maximum water retention capacity
[Wmax, t ha−1]

is the maximum amount of water that can be
retained after removing the amount of water

contained in the litter under normal conditions [42]

Wmax = WHC×M
100

M = is the unit litter mass, t ha−1

2.4. Soil Physical Properties

Soil bulk density and soil water content were determined by collecting three random
samples from the 0 to 20 cm soil profiles in each plot (three plots per stand). Undisturbed
samples were obtained using 100 cm3 metallic volumetric rings. The weight of the samples
was measured using a precision scale. The determination of these attributes was carried
out using the thermogravimetric method, which involves weighing the freshly collected
samples and then drying them in a forced circulation oven at 105 ◦C for 24 h. Soil bulk
density (BD, g cm−3) was calculated as the ratio of the dry soil mass (Ms, g) to the ring
volume (V, m3). Soil water content (SWC, %) was measured gravimetrically and expressed
as a percentage of the weight of soil water to the weight of dry soil (g). Soil resistance to
penetration (SRP, MPa) was assessed using Digital Falker PLG1020 Penetrograph, with
three repetitions per plot, resulting in a total of nine measurements per stand. BD, SWC,
and SRP were measured monthly, simultaneously with the collection of litter samples.
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2.5. Statistical Analysis

To assess the homoscedasticity of variance in litter stocks and hydrological properties,
the Bartlett test was employed. Additionally, the normality of the data was evaluated using
the Lilliefors (Kolmogorov–Smirnov) test for statistical analysis. For normally distributed
data, analysis of variance (ANOVA) with a significance level of 5% (Student’s t-test) was
conducted. The non-parametric Mann–Whitney test was used for data that did not meet
the assumptions of ANOVA. The statistical analyses were performed using BioEstat 5.3 [43]
and @Minitab 17.

3. Results

3.1. Weather Conditions

Accumulated rainfall throughout the research period was 667 mm; that is, approxi-
mately 55% of the annual precipitation. Mean temperature was 21.6 ± 3.5 ◦C, 5% higher
than the normal recorded temperature (20.6 ◦C). The highest mean temperature was
recorded in January (24.1 ◦C) and the lowest in July (15.1 ◦C) (Figure 2). The mean air
humidity was 80.3 ± 1.4%. Throughfall (TF) in the Eucalyptus sp. (EU), Agroforestry (AF),
and Restoration Forest (RF) areas was 395, 412, and 471 mm, respectively.

Figure 2. Mean air temperature and humidity (a), rainfall (b), throughfall in Eucalyptus sp. (EU),
Agroforest (AF), Restoration Forest (RF), and total rainfall (R) during period of study (c).

3.2. Litter Accumulation and Composition

The mean litter accumulation ranged from 5.4 to 8.3 t ha−1 in the EU, 4.2 to 11 t ha−1 in
the Agroforestry (AF) area, and 3.5 to 8.0 t ha−1 in the Restoration Forest (RF) area. Among
the different components, branches accounted for 39% of the total litter in the EU, while
leaves were the predominant fraction in the AF area (44%) and the RF area (47%). Seeds
represented the lowest fraction in all stands, with percentages of 3.4% in the EU, 9.3% in
the AF, and 3.2% in the RF. Although the litter accumulation was similar among the stands,
there were significant differences in the mass of leaf and branch fractions (Figure 3).

3.3. Hydrological Properties of Litter

The total litter water holding capacity (WHC) differed between the Eucalyptus (EU)
area and the Agroforestry (AF) and Restoration Forest (RF) areas (Table 3). The order of
WHC was EU < RF < AF, with AF and RF having 1.33 and 1.30 times the water holding
capacity of EU, respectively. The WHC for the unstructured fraction was similar among the
stands, and it increased in the following order: RF < AF < EU. EU had the lowest values for
leaves, branches, and seeds. The water holding capacity of leaves and seeds was similar
between AF and RF, while branches showed significant variation among the three stands
(p < 0.05). Although the mean effective water holding capacity (EWC, %) was similar
among the stands (p > 0.05), the EWC was consistently higher for RF, followed by AF > EU,
for total litter as well as for the unstructured fraction, leaves, branches, and seeds.
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Figure 3. Mean litter accumulation, unstructured, leaves, branches, and seeds in Eucalyptus sp. (EU),
Agroforest (AF), and Restoration Forest (RF). Different lowercase letters mean significant differences
(p < 0.05).

Table 3. Water holding capacity [WHC, %], effective water holding capacity [EWC, %], effective
water retention [Weff, t ha−1], and maximum retention capacity [Wmax, t ha−1].

Stand Total Unstructured Leaves Branches Seeds

Water holding capacity [WHC, %]

Eucalyptus sp. 164 ± 6.8 a 228 ±16 a 193 ± 28 a 94 ± 3.8 a 141 ± 8 a
Agroforest 218 ± 12 b 222 ± 20 a 272 ± 32 b 200 ± 19 b 179 ± 15 b
Restoration 212 ±14 b 220 ± 18 a 265 ± 15 b 160 ± 24 c 204 ± 39 b

Effective water holding capacity [EWC, %]

Eucalyptus sp. 23 ± 3 a 25 ± 4 a 26 ± 2 a 17 ± 2 a 24 ± 2 a
Agroforest 25 ± 3 ab 25 ± 3 a 28 ± 3 a 28 ± 2 b 27 ± 2 a
Restoration 34 ± 4 b 34 ± 5 a 33 ± 3 a 35 ± 3 b 36 ± 3 a

Different lowercase letters in the same column mean significant differences (p < 0.05).
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The maximum water holding capacity (Wmax) was significantly different only between
EU and AF, ranging from 10.3 t ha−1 (AF) to 31.7 t ha−1 (RF) (Figure 4). In EU and RF, the
Wmax was 1.6 and 1.4 times that of AF, respectively. The Wmax of the unstructured layer
varied among the stand types, with AF (4.3 ± 0.7 t ha−1) < RF (12.1 ± 1.5 t ha−1) < EU
(16.3 ± 1.2 t ha−1). There was a significant difference in the Wmax of leaves between EU
and AF (p < 0.05), with the order being EU (4.1 ± 0.36 t ha−1) < RF (5.5 ± 1.0 t ha−1) < AF
(8.2 ± 1.3 t ha−1). RF had the highest Wmax for branches, followed by AF and EU. Seeds
showed the order of Wmax as AF < RF < EU, with significant differences between AF and
RF for branches and seeds.

Figure 4. Litter maximum water retention capacity [Wmax, t ha−1] and effective water
retention [Weff, t ha−1].

The effective water retention capacity (Weff) of litter did not differ among stands and
ranged from 5.6 t ha−1 for EU to 18.3 t ha−1 for AF (Figure 3). The mean Weff followed the
order: EU (8.3 ± 0.5 t ha−1) < RF (8.7 ± 1.0 t ha−1) < AF (11.6 ± 1.7 t ha−1). For all stands,
leaves had the highest Weff, followed by the unstructured fraction, branches, and seeds.
The Weff for litter was similar among stands. The Weff for the unstructured fraction ranged
from 2.0 t ha−1 to 5.3 t ha−1 for EU, from 1.7 t ha−1 to 6.6 t ha−1 for AF, and from 1.6 t ha−1
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to 4.6 t ha−1 for RF. The mean Weff for the unstructured fraction was similar among stands,
following the order: RF < AF < EU. Significant differences were observed between leaves
for EU × AF and RF. The mean Weff for leaves followed the order: EU (2.8 ± 0.4 t ha−1)
< RF (4.8 ± 0.8 t ha−1) < AF (5.7 ± 1.2 t ha−1). For branches, Weff was similar between
EU and AF, and followed the order: RF (0.7 ± 0.1 t ha−1) < EU (1.7 ± 0.1 t ha−1) < AF
(2.0 ± 0.3 t ha−1). Weff for seeds was similar among stands, increasing in the order of: EU
(0.2 ± 0.02 t ha−1) < RF (0.3 ± 0.07 t ha−1) < AF (0.6 ± 0.3 t ha−1).

3.4. Soil Physical Properties

There were no significant differences in the mean values of soil bulk density (BD), soil
retention potential (SRP), and soil water content (SWC) among the stands (Figure 5). The
BD was 1.0 ± 0.05 g cm−3 for all three stands. EU had the highest SRP (5.1 ± 1.5 MPa),
followed by RF (4.9 ± 1.3 MPa) and AF (4.6 ± 1.2 MPa). The mean SWC was highest in
RF (19.0 ± 3.7%), followed by AF (16.9 ± 3.5%) and EU (15.1 ± 3.1%). Soil water content
ranged from 2.4% to 34.0% in EU, from 1.6% to 36.6% in AF, and from 2.5% to 40.3% in RF.

Figure 5. Soil bulk density [BD, g cm3], soil resistance of penetration [SRP, MPa], and soil water
content [SWC, %] in Eucalyptus sp. (EU), Agroforest (AF), and Restoration Forest (RF). Different
lowercase letters in the same column mean significant differences (p < 0.05).

4. Discussion

4.1. Hydrological Properties and Water Retention Capacity of Litter

Litter serves as a crucial component in the hydrological cycle within ecosystems [8,44,45]
and it also plays a significant role in various soil management practices and vegetation
covers [45]. In our study, the litter mass of Eucalyptus sp. was above the average of other
studies, although it varied within the range reported in the literature. For example, it
exceeded the average deposition of 6.33 Mg ha−1 at 14 years of age [46] but was lower than
the 16.6 t ha−1 at 7 years of age [47]. Compared with other forest types, the average litter
mass of Eucalyptus sp. and Agroforest was higher than that of approximately 46-year-old
Cerrado (5.5 t ha−1) [4], while the latter was similar to the litter mass of Restoration Forest.
It is worth noting that the composition and dynamics of litter formation can vary depending
on the species present in the study area. In this case, the Eucalyptus sp. planting consisted
of trees of the same species, while the Agroforest and Restoration Forest were composed
of a diversity of plants species. This difference in species composition likely contributed
to the higher proportion of branches in the litter of Eucalyptus sp. compared with other
studies where the leaf fraction was more dominant [10,48].

The results demonstrate variations in litter hydrological properties among the different
vegetation types. Understanding the hydrological properties of litter fractions is essential,
as it influences the overall water holding capacity of the litter layer. The water holding
capacity of litter depends not only on the quantity of organic material deposited but
also on the composition and degree of decomposition of its fractions. Litter layers with
higher decomposition levels have a larger specific surface area, enhancing their water
retention potential [5,49,50]. It is important to note that water holding capacity reflects the
ideal water holding condition and may not fully represent litter interception under field
conditions [4,5,7]. The water holding capacity of the litter was found to differ significantly
between the stands, with Agroforestry and Restoration Forest showing higher capacity
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compared with Eucalyptus sp. This variation can be attributed to differences in litter
composition, particularly the proportion of leaves and branches. The water holding capacity
of the unstructured fraction of Eucalyptus sp. was relatively high due to its lower surface
adhesion [51,52], resulting in greater water retention rates. In contrast, in Agroforest
and Restoration Forest, the leaf fraction exhibited the highest water holding capacity due
to its higher surface adhesion. The composition and decomposition stage of the litter
fractions, particularly the higher proportion of branches in Eucalyptus sp., influenced the
water holding capacity. The hydrophobic nature of branches limited their water absorption
capacity, while leaves showed higher surface adhesion and superior water retention. Stems
or branches, mainly composed of xylem with thick fibers and a relatively stable structure
between cells, have limited water absorption capacity despite the presence of an internal
tubular structure [24]. Additionally, the hydrophobic nature of branches is a well-known
characteristic that can also be attributed to the presence of lignin in their composition [53,54].
Lignin, being a complex aromatic polymer, contributes to the structural integrity of plant
cell walls and imparts rigidity to woody tissues. As a hydrophobic substance, lignin
naturally repels water [53–57]. It is important to note that the lignin content can vary
not only between different tree species [53] but also between different parts of the same
tree, such as leaves, stems, and branches. Moreover, the proportion of branches in the
litter layer can vary depending on the tree species composition and forest management
practices. This variability can influence the overall water holding capacity of the litter and
its hydrological functions in different ecosystems. Overall, for all stands, the water holding
capacity was lower than that observed for Amazon Forest [5] and Cerrado under various
stages of regeneration [4]. Notably, the water retention rates of Eucalyptus sp. in this study
were lower than those reported in other Eucalyptus sites [48].

Despite differences in water holding capacity, the effective water retention capacity
(Weff) of the litter was found to be similar among the stands. The similarity in Weff indicates
that Eucalyptus sp., Agroforest, and Restoration Forest have the ability to effectively retain
water, contributing to enhanced rainwater storage within the ecosystem. This fact may
explain the similarity in soil bulk density, soil resistance to penetration, and soil water
content among the studied sites, although the water retention capacity was higher for
Agroforest. This suggests that the hydrological properties of litter did not have a direct
impact on soil physical properties in the studied stands. However, it is important to
note that in this study, the soil physical properties were investigated at the topsoil level
(0–20 cm for soil bulk and water content and 0–60 cm for resistance of penetration), and
these properties can vary according to the soil profile [58–60]. Nevertheless, as reported
by [36,61], Weff defines the effective interception of precipitation by litter, which is an
important hydrological property that can be used to consistently evaluate the potential to
absorb rainfall and reduce surface runoff [9,42,61]. Effective water retention is influenced
by factors such as litter water content, storage capacity, and rainfall characteristics [5].
Our study shows that the mean annual capacity of litter for both stands to retain water
was higher for both sites than that observed for acacia–grass forest, eucalyptus–grass
forest, and bamboo–grass forest [61]. However, Eucalyptus sp., Agroforest, and Restoration
Forest were lower than Acacia mangium and higher than Hevea brasiliensis [9]. Moreover,
Agroforest was Weff slightly higher than Amazon Forest [5]. However, the Wmax, which
measures the rainfall absorption capacity, was higher in Eucalyptus sp., Agroforest, and
Restoration Forest compared with previous studies on acacia–grass forest, eucalyptus–grass
forest, and bamboo–grass forest [61]. It was also higher than Eucalyptus robusta [9] but
lower than Acacia mangium [9]. Moreover, Wmax for Eucalyptus sp. and Restoration Forest
was higher than Amazon Forest [5]. Considering that 1 mm of rainfall is equivalent to
1 t ha−1 [9,61], the litter in Eucalyptus sp., Agroforest, and Restoration Forest could intercept
an average of 26 mm, 16 mm, and 23 mm of rainfall, respectively, during the studied period.
Considering the effective water retention for the studied period, Eucalyptus sp., Agroforest,
and Restoration Forest intercepted a mean of 8.3, 11.6, and 8.7 mm of rainfall, respectively.
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4.2. Implications for Ecosystem Functioning

It is important to highlight that a previous study conducted on Pinus tabulaeformis
plantations revealed that around half of the throughfall was retained in the soil without any
litter mass. In the litter-covered treatments, this proportion ranged from 77.0% to 87.9% [44],
indicating that the presence of litter significantly enhanced rainwater storage [62]. These
findings highlight the importance of considering litter composition and species-specific
characteristics when assessing the hydrological functions of litter. The variations in litter
hydrological properties observed in this study have important ecological implications for
ecosystem functioning and water resource management. The higher water holding capacity
of Agroforestry and Restoration Forest litter implies that these stands can retain more
water, which has implications for water availability within the ecosystem. Increased water
retention can lead to enhanced soil moisture, providing a vital water resource for plants and
microorganisms, especially during dry periods. Restoration Forest, which exhibited higher
effective water retention capacity, can serve as a valuable model for ecosystem restoration
efforts. Restoring degraded areas with diverse native tree species can improve litter hy-
drological properties, leading to enhanced ecosystem services and ecological functionality.
Agroforestry systems, with their capacity for higher water retention, can be integrated into
water-sensitive agricultural practices to improve water availability for crops and reduce
water-related risks, such as soil erosion and flooding. This improved water availability can
contribute to the overall productivity and resilience of the ecosystem. Furthermore, litter
acts as a natural barrier against soil erosion by reducing the impact of rainfall and slowing
down or preventing surface runoff. The ability of Agroforestry and Restoration Forest
to retain more water in their litter layers can be particularly beneficial in mitigating soil
erosion and preserving soil health. Regarding biodiversity support, litter provides a habitat
and food source for various organisms, supporting biodiversity within the ecosystem.
The differences in litter composition and hydrological properties among the stands can
influence the diversity and abundance of soil-dwelling organisms, contributing to overall
ecosystem biodiversity.

Finally, the results obtained in this study provide valuable insights into the hydro-
logical properties of litter in the specific stands investigated. However, further research is
needed to expand the scope of the study and examine a wider range of forest types and
species to obtain a more comprehensive understanding of litter hydrological functions.
Additionally, field conditions and natural variability should be considered to better as-
sess the actual litter interception and water retention capacities of different ecosystems.
Such knowledge can contribute to improved water resource management and the devel-
opment of sustainable land use practices that consider the hydrological role of litter in
ecosystem functioning.

5. Conclusions

This study provides valuable insights into the hydrological properties of litter in
different vegetation cover types, highlighting variations in water holding capacity and
effective water retention among Eucalyptus sp., Agroforestry, and Restoration Forest. The
results revealed variations in litter accumulation, composition, water holding capacity, and
effective water retention among the stands. The litter accumulation in Eucalyptus sp. had
a higher proportion of branches compared to leaves. The water holding capacity of the
litter varied among the stands, with Agroforest and Restoration Forest exhibiting higher
capacities than Eucalyptus sp. Leaves showed higher surface adhesion and superior water
retention, while branches exhibited lower water absorption due to their hydrophobic nature.
Despite differences in water holding capacity, the effective water retention, which defines
the effective interception of precipitation by litter, was similar among the stands. Moreover,
litter hydrological properties did not affect soil bulk density, soil retention potential, and soil
water content. These findings emphasize the importance of considering litter composition
and species-specific characteristics when assessing the hydrological functions of litter. The
results contribute to our understanding of the intricate relationship between vegetation
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cover, litter properties, and water balance in ecosystems. This knowledge can aid in the
development of effective conservation and management strategies for sustainable land
use practices, carbon sequestration, and water resource management. Further research is
recommended to broaden the scope of the study, encompassing a wider range of forest
types and species, as well as considering field conditions and natural variability. This
would provide a more comprehensive understanding of litter hydrological functions and
their implications for ecosystem processes.
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Abstract: The objective of this study was to develop and calibrate a photovoltaic-powered soil
moisture sensor (SMS) for irrigation management. Soil moisture readings obtained from the sensor
were compared with gravimetric measurements. An automated SMS was used in two trials: (i) okra
crop (Abelmoschus esculentus) and (ii) chili pepper (Capsicum frutescens). All sensors were calibrated
and automated using an Arduino Mega board with C++. The soil moisture data were subjected
to descriptive statistical analysis. The data recorded by the equipment was correlated with the
gravimetric method. The determination coefficient (R2), Pearson correlation (r), and root mean square
error (RMSE) were adopted as criteria for equipment validation. The results show that our SMS
achieved an R2 value of 0.70 and an r value of 0.84. Notably, there was a striking similarity observed
between SMS and gravimetric data, with RMSE values of 3.95 and 4.01, respectively. The global model
developed exhibited highly efficient outcomes with R2 (0.98) and r (0.99) values. The applicability of
the developed SMS facilitates irrigation management with accuracy and real-time monitoring using
digital data. The automation of the SMS emerges as a real-time and precise alternative for performing
irrigation at the right moment and in the correct amount, thus avoiding water losses.

Keywords: tensiometer; soil moisture; solar energy; automation
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1. Introduction

Water resource management and increasing freshwater productivity are among the
most effective options for conserving water resources, especially in irrigated agriculture [1–5].
In terms of water use, irrigated agriculture is the largest consumer of freshwater [6,7]. Given
these aspects and issues, improving water use efficiency and irrigation water savings will
enhance the effects and factors related to irrigation management. Technologies in the research
field are essential in contributing to water management and soil conservation [8,9].

The expansion and diffusion of new technologies, along with the growth of the
technology market, have led to dependence on and increased demand for technologies
in the agricultural sector. They are essential in managing inputs used in the agricultural
and livestock markets, such as controlling the amount and timing of water to be applied to
the soil [10–12]. The increasing demand for water use in irrigated crops over the last three
decades has constantly raised awareness about the rational use of water resources [13–16].

Therefore, effective irrigation management is crucial and aims to apply the exact
amount of water that the plant needs at the right time [17,18]. However, it is important
to know and monitor variables such as soil moisture. The methods used to determine
soil moisture can be classified as direct and indirect [19–23]. Direct methods are those
that quantify soil moisture by weighing (e.g., gravimetric), and indirect methods, through
reflectance, neutron moderation, and soil stress (e.g., frequency domain reflectometry—FDR,
time domain reflectometry—TDR, and tensiometers) [24,25]. Furthermore, methods that
measure the tension generated by water retained in soil particles have evolved and adapted
to technological advancements [26–29].

Among the methods that offer ease of application and indirect measurement, the
tensiometric method stands out [30–32]. In irrigation management, a moisture sensor can
be used, which is designated as the primary device for measuring the matric potential of
water in the soil, which can be converted into current soil water content [33–35].

The development of tensiometers has emerged, intending to expand their operating
range and, most importantly, meet the technological advancements in irrigation manage-
ment [31,36,37]. The creation of digital reading systems that allow precise, effective, and
rapid measurement of the matric potential of water in the soil has become essential [28,31].
Currently, developed sensors are installed directly in the soil and, with the aid of reading
equipment, enable the collection of soil moisture data, analyzing the interrelationships be-
tween soil and water, thus allowing greater control, precision, and savings during cultivation.

With the advancement of digital agriculture 4.0, there has also been a greater diffusion
of automation, especially in irrigated systems, due to the search for technological alter-
natives that help achieve greater control and productivity, generate higher profitability
and sustainability, and reduce labor costs [38,39]. The integration of embedded sensors
for data collection automation has become an accessible and viable alternative for advanc-
ing agriculture, which, along with other technologies, assists in real-time data collection,
processing, analysis, and transfer of crop status, resulting in quick and cautious decision-
making [10,40,41]. In addition, the use of the Internet of Things (IoT), data analytics, sensor
nodes, and solar energy contribute to technological development and are growing in the
rural environment. These elements lead to savings and income, reduce energy consumption
from conventional sources, and significantly contribute to the sustainability of productive
rural activities.

Considering the above, the applicability of digital agriculture 4.0 in crop management
further contributes to meeting the water needs of crops, optimizing water use, and ad-
vancing technological advancements in irrigated systems, assisting in quick and precise
irrigation management decision-making.

Therefore, the objective was to develop a soil water tension sensor for moisture
determination, powered by solar energy, with automation using Arduino programming
techniques calibrated by determining soil moisture through the oven drying method for
different crops.
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2. Materials and Methods

2.1. Study Dynamics and Characterization

An automated soil water tension sensor (using a pressure sensor) was developed to
estimate soil moisture. Temperature and air humidity sensors were also integrated into the
system, which was powered by a photovoltaic module. The negative pressure is related
to the operating principle of the pressure sensor. The sensor assumes that the soil has
a pressure of −100 kPa, and when the sensor is inserted into the soil, it calculates the
pressure differential, allowing for the collection of data on water retention in the soil, like
the operating principle of manual tensiometers. The design of the moisture sensor was like
the one developed by Livingston [42], with precision technologies [43,44].

The soil moisture readings estimated by the sensor were compared with measurements
obtained through the gravimetric method [45]. For calibration purposes, the sensor was
used in two experiments in a protected environment. The first experiment involved okra
[Abelmoschus esculentus (L.) Moench] subjected to 5 irrigation levels (50%, 75%, 100%,
125%, and 150%) determined based on crop evapotranspiration (ETc), with a surface drip
irrigation system employed. The second experiment involved chili pepper [Capsicum
frutescens (L.)] subjected to 4 irrigation levels: 50%, 75%, 100%, and 125% of ETc, with two
drip irrigation systems: surface and subsurface. Both experiments were conducted in 15-L
pots filled with clayey Red Latosol soil, which was sieved and homogenized. A localized
drip irrigation system with 90% water application efficiency and a pressure of 8 m water
column with a flow rate of 1.40 L h−1 was used for irrigation. It is worth mentioning that
the moisture and temperature sensors were calibrated using meteorological data obtained
from the thermohygrometer in the greenhouse of the State University of Goiás—UEG,
Santa Helena University Unit.

2.2. Assembly of the Automated Moisture Sensor

The moisture sensor has a structure similar to a conventional tensiometer [42]. It
consists of a polyvinyl chloride (PVC) pipe with dimensions of 60 cm × 5 cm, as shown in
Figure 1. The components include:

• A set of photovoltaic modules (12 V each);
• A temperature and humidity sensor (DHT11);
• A pressure sensor (BMP280);
• A LCD display with 16 × 2 blue backlight (2-lines × 16-characters);
• An Arduino Mega board;
• Rechargeable battery with a voltage of 9 V and 250 mAh.

A set of 12 V (3 Watts) solar panels was necessary to power all the components and
charge the battery in the system. All the data generated by the sensors were displayed
on the LCD screen (Figure 1), located on the surface of the moisture sensor and directly
connected to a breadboard. The LCD has 16 columns by 2 rows, a blue backlight, and white
writing.

The temperature sensor element is an NTC transmitter, and the humidity sensor is
of the DHT11 type. The internal circuit reads the sensors and communicates with an 8-bit
microcontroller through a one-way serial signal, both connected to a controller. The protocol
used to transfer data between the microcontroller and DHT11 involves a single-wire bus
(ELETROGATE, 201-A). The ambient temperature and humidity sensor (Figure 1) was
positioned near the LCD screen, requiring direct contact with the environment, and should
not be enclosed.

According to Table 1, the equipment used for assembling and programming the
moisture sensor, the number of necessary units, the unit price, and the total price to
produce the equipment are presented.

The connections with the Arduino board were made through the Serial Data Line and
SCL (Serial Clock Line) pins, allowing various ports on the Arduino board to easily connect
to the other sensors used (Figure 2). The connection was made using the I2C module,
linking the I2C screen to the Arduino Mega board.
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Figure 1. A graphical representation of the solar-powered soil moisture sensor and its main components.

Table 1. Parts used to assemble the humidity sensor, followed by price and technical specifications.

Quantity Description Unit Amount (USD) Total Amount (USD) Specifications

1 Arduino maker kit 70.64 70.64 Includes 136 pieces.

1
Pressure and
Temperature Sensor
(BMP280)

3.10 3.10

Operating voltage: 3 V;
Current consumption: 2.7 μA;
Interfaces: I2C and SPI;
Pressure measurement range: 300–1100 hPa (equivalent
+9000 to −500 m above/below sea level);
Accuracy: ±0.12 hPa (±1 m equivalent);
Temperature range: −40 to 85 ◦C;
Temperature accuracy: ±1.0 ◦C.

1
Corrosion Resistant
Soil Moisture Sensor,
Arduino, Model S12

9.35 9.35

Operating voltage: 3.3 to 12 V DC input;
Current: less than 20 mA; less than 30 mA (output);
Output: Digital and analogue;
Probe dimensions: 60 × 19 × 9 mm;
Module dimensions: 36 × 15 × 7 mm;
Probe cable length: 1 m.

1
Room temperature
and humidity sensor
(DHT11)

2.68 2.68

Power 3.0 to 5.0 VDC (5.5 VDC maximum);
Humidity measurement range: 20 to 95% RH;
Temperature measurement range: 0◦ to 50 ◦C;
Humidity measurement accuracy: ±5.0% RH;
Temperature measurement accuracy: ±2.0 ◦C.

1 Hikari Power-30
Soldering Iron 6.84 6.84 -

1 Transparent Organizer
Box 5.17 5.17 -

1
Telijia 31-Piece
Precision Wrench Kit
(TE-6036)

4.14 4.14 -

4 Solar Panel System (12
V-3 W) 15.57 62.26 12 V-3 W-250 mA Photovoltaic Solar Energy Board Panel

Cell, with 20 cm soldered wire, dimensions 145 × 145 mm

1 Elgin 12 V
Rechargeable Battery 37.41 37.41 Blister with 1 rechargeable battery 12 V 250 mAh.

3 Tin Solder Wire Cobix
Tube (1 mm, 22 g) 3.26 9.79 -

1

I2C Serial Module for
16 × 2 Blue Backlight
LCD Display for
Arduino

8.21 8.21 The I2C module operates with a minimum supply voltage
of 5 V.
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Table 1. Cont.

Quantity Description Unit Amount (USD) Total Amount (USD) Specifications

1 Ethernet Shield
W5100 24.94 24.94

Supply Voltage: 3 to 5 VDC;
Communication: SPI;
Operating temperature: −40 to 85 ◦C;
Indicators: TX, RX, COL, FEX, SPD, LNK;
Current: 100 mA;
Support: Full-duplex and half-duplex, Auto MDI/MDIX,
ADSL connection;
Works directly with the official Arduino library;
TX/RX RAM Buffer: 16 kBytes;
Dimensions: 55.8 × 68.58 × 1.6 mm;
Datasheet: W5100 Ethernet Shield Module.

1 Fiberglass Structure 124.69 124.69 -

1 Lenovo Ideapad 330
laptop 519.55 519.55 -

Total amount 835.55 888.77

Figure 2. Connection of the LCD screen to the Arduino Mega board.

2.2.1. Arduino Board

All the sensors were calibrated and controlled using an Arduino Mega board (Figure 3),
and the programming language used was C++. The software used was the Arduino IDE.
The modules directly connected to the board are the soil moisture sensor, air humidity
sensor, air temperature sensor, and pressure sensor.

After the testing phases, the Arduino Mega board was permanently connected to the
soil moisture sensor structure, containing the programming for all the sensors and the
memory for intelligent joint operation (Figure 4). All the information was displayed on the
LCD screen (Figure 1).

2.2.2. Soil Moisture Sensor

The soil moisture sensor was calibrated using a potentiometer for dry and wet soil
conditions. The data readings were performed in Siemens, the standard unit of electrical
conductivity in the International System of Units (SI). The threshold between dry and wet
soil conditions was compared and adjusted using the potentiometer present in the sensor,
regulating the digital output D0.
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Figure 3. Arduino Mega 2560 board.

Figure 4. Soil collection flowchart, construction, and programming of the soil moisture sensor.

The soil moisture sensor was connected to a digital port of the Arduino board, providing
information between high and low states, i.e., dry and wet soil, respectively. The verification
limits could be adjusted through a potentiometer located on the sensor body (ELETROGATE,
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201-C). The moisture sensor was positioned at the bottom in direct contact with the soil, and
through electrical conductivity and the connection with the voltage sensors, it was possible
to quantify the water content in the soil and assist in irrigation management.

The accuracy of the soil moisture sensor was assessed based on the gravimetric method,
with readings and calibration performed using the standard oven-drying method through
linear regressions.

2.2.3. BMP280 Pressure Sensor

The pressure sensor was programmed to perform negative readings to verify the
pressure difference generated by water loss in the soil. The BMP280 sensor is factory-
configured to read pressure data in hectopascals (hPa), so the conversion of the data is
necessary since the conventional tensiometer reads in kilopascals (kPa). The sensor has a
reading range of 0 to −1100 hPa.

The pressure sensor was positioned on the surface of the moisture sensor to measure air
pressure data, with its lower probe in contact with the soil to measure the pressure generated
by water retention in the soil and obtain a pressure result based on the difference between
the two. The pressure sensor reads the pressure difference between the environment and
the force of water retention in the soil. The soil moisture sensor was calibrated through
analyses conducted with soil samples in the laboratory using the standard oven-drying
method [46].

After converting the units of measurement, it was necessary to configure the mea-
surement range of the pressure sensor. The Arduino Mega board was used to program
the pressure sensor to work in conjunction with the moisture sensor. Both sensors were
configured using a numerical scale, where a pressure of 0 kPa indicates saturated soil and a
scale reaching −100 kPa means the soil is very dry. All this information was outputted by
the programmed system and displayed on the LCD screen (Figure 1).

The pressure sensor was programmed to work together with the moisture sensor
so that the readings would provide soil moisture information under different moisture
conditions. The pressure sensor was integrated inside the PVC tube to read pressure
differences between the soil and air. The soil moisture and air temperature sensors are
precise sensors with low power consumption. The sensor came pre-programmed and
pre-configured from the factory. Additionally, the sensor was directly connected to the
Arduino Mega board to be powered by the same source as all the other sensors.

2.2.4. Photovoltaic Modules

The photovoltaic modules were connected using standard power supply cables, with
connections made to the GND (power ground) and VCC (positive power supply) terminals.
The cables were connected to the battery and integrated into the moisture sensor structure,
allowing excess energy generated by the solar panel to be stored for future use during
periods of low solar radiation. This reduced the need for battery replacement.

2.2.5. DHT11 Ambient Relative Humidity and Temperature Sensor

The DHT11 (Figure 1) consists of two sensors: a temperature sensor (NTC thermistor)
and a humidity sensor (HR202). The internal circuitry reads the sensors and communicates
with a microcontroller via a one-way serial signal. Its temperature readings range from 0
to 50 ◦C, and its humidity readings range from 20 to 90%. The DHT11 sensor for relative
humidity and air temperature has a simple 3-pin connection, facilitating programming
and connectivity with other sensors. It has two power supply pins and one pin for data
decoding between the sensor and the Arduino board.

2.3. Statistical Modeling and Validation of Moisture Sensor
2.3.1. Descriptive Statistics

The soil moisture data from the moisture sensor and the gravimetric method were
subjected to descriptive statistical analysis to obtain the mean, median, minimum, maxi-
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mum, standard deviation (SD), and coefficient of variation (CV, %). The percentage value
of CV was categorized as low (CV < 12%), medium (if CV = 12–24%), and high (when
CV > 24%) [47]. The normality test using the Kolmogorov–Smirnov test was applied to
the studied variables, with a significance level (alpha) of 0.01. Descriptive statistics were
performed using R software version 4.0.3 [48].

2.3.2. Regression Analysis

To validate the developed moisture sensor, the recorded data from the device were
correlated with the gravimetric method to estimate soil moisture. The coefficient of deter-
mination (R2), Pearson correlation (r), and root mean square error (RMSE) were adopted as
criteria for equipment validation. Finally, an analysis of variance (ANOVA) of the estab-
lished models for pepper and okra crops was conducted, with a significant F-value at a 1%
probability and a p-value less than 0.01 (p < 0.01) for the validation of the established model
and moisture sensor. The statistical modeling was performed using R software version
4.0.3 [48].

3. Results and Discussion

Based on greenhouse measurements, linear regressions were established to validate
the solar-powered moisture sensor against the gravimetric method for estimating soil
moisture in the pepper crop (Figure 5). Figure 5a shows the regression for Moisture Sensor
vs. Gravimetric validation, and Figure 5b shows the regression for Gravimetric vs. Moisture
Sensor validation. Based on the validation components, the coefficient of determination
(R2) and the Pearson correlation coefficient (r) did not change regardless of the order of the
X and Y factors. They are interpreted as the proportion of variation in Y that is explained by
the variable X and vice versa, being inversely proportional and unchangeable components,
as indicated by studies [9,49].

Figure 5. Regression models for Soil Moisture Sensor vs. Gravimetric validation and (a) Gravimetric
vs. Soil Moisture Sensor validation (b) in the pepper crop, accompanied by their respective coefficients
of determination (R2), Pearson correlation coefficient (r), and root mean square error (RMSE).

Regarding R2, it showed a satisfactory fit, with a value around 0.70, indicating that
the accuracy of the solar-powered moisture sensor represents approximately 70.75% of the
gravimetric method. On the other hand, r showed a fit of 0.84, reinforcing the accuracy
of the developed moisture sensor and the reliability of its applicability in the field and
the consumer market. Supporting the results of the present study, Thalheimer [50], who
developed a low-cost solar-powered system for measuring soil water potential, obtained
an R2 of 1, recommending the applicability of the equipment in the field.

Furthermore, the values for the root mean square error (RMSE) were low and similar
for Moisture Sensor vs. Gravimetric (Figure 5a) and Gravimetric vs. Moisture Sensor
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(Figure 5b), with values around 3.95 and 4.01, respectively. Consistent with the results of
this study, Sanches et al. [51], who developed and calibrated a low-cost, high-efficiency
automated moisture sensor for irrigation control based on real-time monitoring, observed
maximum errors of around 2.84 for the performed analyses. RMSE values are crucial for
assessing the accuracy of a model, regardless of its r and R2, as errors have a significant
influence on the spatial variability of data precision.

Table 2 presents the analysis of variance (ANOVA) for the validation of the solar-
powered moisture sensor against the gravimetric method in pepper crops under irrigation
depths of 50, 75, 100, and 125% of crop evapotranspiration (ETc). The generated model’s
F-value was found to be significant at a 1% probability level, indicating the precision and
effectiveness of the developed moisture sensor and thus recommending its applicability in
pepper cultivation. As for the p-value, it showed a satisfactory fit (p < 0.01). Silva et al. [8]
emphasize the importance of exploring the components of a regression model’s ANOVA
(F-value and p-value) for validation purposes.

Table 2. Analysis of variance (ANOVA) for regression models validating the soil moisture sensor in
pepper cultivation.

1 DF 2 SS 3 MS F Value p-Value

Model 1 1435.53 1435.53 91.92 <0.0001
Error 38 593.46 15.62

Total 39 2028.99
1 DF—Degree of freedom; 2 SS—Sum of squares; 3 MS—Mean square.

To assess the spatial distribution of soil moisture data in the treatments of 50, 75,
100, and 125% of ETc for the solar-powered moisture sensor and the gravimetric method,
descriptive statistics were performed on the collected data, obtaining the mean, median,
minimum, maximum, standard deviation (SD), and coefficient of variation (CV) (Table 3).
It can be observed that the mean and median values for all treatments in both soil mois-
ture estimation methods were close, indicating data normality, as also evidenced by the
Kolmogorov–Smirnov test at a 1% probability level for the entire dataset. Supporting the
results of this study, Silva et al. [49], through conventional statistical tests and geostatistical
modeling, stated in their study that close mean and median values are indicative of data
normality, as supported by the Kolmogorov–Smirnov test at a 1% probability level.

According to the criterion of Warrick and Nielsen [47], the CV was consistently low
(<12%) for all treatments, except for the 100% ETc treatment in the solar-powered moisture
sensor. Based on the observed results, it is possible to affirm the distribution efficiency
and uniformity of the subsurface drip system in pepper cultivation, which provides low
spatial variability of moisture, as confirmed by the SD, which was low for all treatments.
Furthermore, the values were close to the CV, substantiating the efficiency of the adopted
irrigation system [52]. Supporting the results of this study, Colak [53], who evaluated leaf
water potential in drip-irrigated bell pepper under various deficit irrigation strategies using
surface and subsurface irrigation, highlights that the subsurface irrigation system exhibits
a low CV, indicating its efficiency in water distribution and uniformity.

Figure 6a shows the regression for validating the soil moisture sensor vs. gravimetric
method, and Figure 6b presents the regression for validating the gravimetric vs. soil
moisture sensor method. Based on the pepper crop analyses, the observed results of R2 and
r for the okra crop were higher, with values around 0.98 and 0.99, respectively. These results
indicate a greater sensitivity of the gravimetric method and the solar-powered moisture
sensor in quantifying soil moisture. However, local abiotic conditions (e.g., temperature,
relative humidity, wind speed, and incident solar radiation), physical and biological soil
conditions, and the greater water demand sensitivity of the okra crop may have influenced
the results. Supporting the observed results in this study, Aliku et al. [54], who estimated
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okra crop evapotranspiration using drainage lysimeters under dry season conditions, state
that okra is one of the vegetables with the highest water demand.

Table 3. Descriptive statistics of the solar-powered soil moisture sensor and gravimetric method for
treatments with 50, 75, 100, and 125% of crop evapotranspiration (ETc) in pepper cultivation.

Variable Mean Median Minimum Maximum 1 SD 2 CV

50%

Soil moisture sensor 91.00 91.50 81.00 100.00 6.06 6.65
Gravimetric 91.19 90.05 82.82 99.93 6.68 7.33

75%

Soil moisture sensor 93.70 95.50 81.00 99.00 5.79 6.18
Gravimetric 94.22 96.17 83.04 100.02 4.94 5.24

100%

Soil moisture sensor 91.50 95.00 61.00 100.00 11.37 12.43
Gravimetric 91.67 95.25 63.24 98.29 10.66 11.63

125%

Soil moisture sensor 96.90 98.00 93.00 100.00 3.04 3.13
Gravimetric 95.38 97.07 82.04 99.82 5.40 5.67

1 SD—Standard deviation; 2 CV—Coefficient of variation.

Figure 6. Regression models for validating the soil moisture sensor vs. gravimetric method and
(a) gravimetric vs. soil moisture sensor method (b) in the okra crop are preceded by their respec-
tive coefficients of determination (R2), Pearson correlation coefficient (r), and root mean square
error (RMSE).

The RMSE values were lower compared to the measurements in the pepper crop. This
reinforces the higher efficiency of the moisture sensor in recording soil moisture in the okra
crop, making it recommended for irrigation management and accurate compared to the
gravimetric method. Additionally, we emphasize that the developed moisture sensor’s
recording efficiency for both crop management (pepper and okra) is efficient and accurate
for soil moisture between 30 and 100%.

Table 4 presents the ANOVA for validating the moisture sensor against the gravimetric
method in the okra crop under irrigation depths of 50, 75, 100, 125, and 150% of ETc. The
F-value of the generated models was significant at a 1% probability level, with a value
around 3269.20, indicating the precision and effectiveness of the developed moisture sensor
and recommending its applicability to the okra crop. As for the p-value, it showed a
satisfactory fit (p < 0.01).
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Table 4. Analysis of variance (ANOVA) of regression models for validating the soil moisture sensor
to okra crop.

1 DF 2 SS 3 MS F Value p-Value

Model 1 5445.47 5445.47 3269.20 <0.0001
Error 38 63.30 1.67

Total 39 5508.76
1 DF—Degrees of freedom; 2 SS—Sum of squares; 3 MS—Mean square.

From the descriptive statistics (Table 5), it can be observed that the mean and median
values are close, which, as discussed earlier, is indicative of data normality, as evidenced by
the Kolmogorov–Smirnov test at a 1% probability level for the entire dataset. According to
the criterion of Warrick and Nielsen [47], the CV ranged from moderate (CV = 12–24%) to
high (CV > 24%), reinforcing the high water sensitivity of the okra crop and resulting in
greater soil moisture variability.

Table 5. Descriptive statistics of the solar-powered soil moisture sensor and the gravimetric method
for treatments with 50, 75, 100, 125, and 150% of crop evapotranspiration (ETc) for the okra crop.

Variable Mean Median Minimum Maximum 1 SD 2 CV

50%

Soil moisture sensor 64.50 63.00 49.00 89.00 15.92 24.68
Gravimetric 64.52 63.37 48.74 86.92 14.40 22.31

75%

Soil moisture sensor 55.00 56.00 45.00 65.00 7.35 13.36
Gravimetric 55.41 56.73 45.15 65.76 7.69 13.88

100%

Soil moisture sensor 55.50 55.00 40.00 66.00 8.14 14.67
Gravimetric 56.31 55.79 41.69 66.15 7.65 13.58

125%

Soil moisture sensor 49.25 49.00 31.00 65.00 13.01 26.42
Gravimetric 49.77 49.10 31.78 65.41 13.01 26.15

150%

Soil moisture sensor 47.38 44.00 37.00 63.00 9.10 19.21
Gravimetric 47.75 43.99 37.58 65.13 9.79 20.50

1 SD—Standard deviation; 2 CV—Coefficient of variation.

Regarding the minimum and maximum values, it can be observed that the okra crop
requires a greater amount of water compared to the pepper crop. In the okra crop, the
lowest observed soil moisture value was 31%, while the maximum was 89% (Table 5). In
the pepper crop, these moisture values were higher, in the range of 61% to 100%, for the
lowest and highest values, respectively. Therefore, it is evident that the okra crop requires
more water than pepper.

To establish a global model for soil moisture estimation and test the sensitivity of
moisture sensor estimates in both crops, Figure 7 presents the validation established for the
global model. The global model proved to be more efficient than the model and validation
established for the pepper crop (Figure 5), with an R2 of 0.98 and an r of 0.99, making it the
most satisfactory validation for the explored dataset. Based on these results, the use of the
moisture sensor in the field is recommended for both pepper and okra crops.

Based on the RMSE, it was found to be low, indicating a satisfactory fit of the moisture
sensor with the gravimetric method, with a value of around 3.00762%. With a low margin of
error, good coefficient adjustments (R2 and r), and finally, a significant F-value and p-value
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at a 1% probability level, as observed in Table 6, the use of the solar-powered moisture
sensor for characterizing soil moisture in pepper and okra crops is recommended.

Figure 7. Global regression model for validating the soil moisture sensor vs. gravimetric method,
preceded by their respective coefficients of determination (R2), Pearson correlation coefficient (r), and
root mean square error (RMSE).

Table 6. Analysis of variance (ANOVA) of the global regression model.

1 DF 2 SS 3 MS F Value p-Value

Model 1 36,268.22 36,268.22 4009.39 0.001
Error 79 705.57 9.04

Total 80 36,973.79
1 DF—Degrees of freedom; 2 SS—Sum of squares; 3 MS—Mean square.

4. Conclusions

The solar-powered moisture sensor developed proved to be effective in characterizing
soil moisture and was properly validated against the gravimetric method for soil moisture
estimation. The parameters of coefficient of determination, Pearson correlation, and root
mean square error were satisfactory for both pepper and okra crops, as well as for the
global model.

The applicability of the developed moisture sensor will facilitate precise irrigation
management by providing real-time and digital data, as most commonly used methods
require time for moisture estimation and/or method calibration.

The automation of the soil moisture sensor emerges as a real-time alternative for
irrigating at the right moment and in the right amount, thus avoiding water waste.

The solar powered soil moisture sensor is efficient and accurate. However, the present
equipment has some limitations, the main one being the need for calibration, when using
it in a soil with physical-chemical characteristics different from those used in this study.
Therefore, it is recommended to calibrate the soil moisture photovoltaic sensor, depending
on whether soils with different characteristics are used in this study.
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Abstract: We enhanced the agro-hydrologic VegET model to include snow accumulation and melt
processes and the separation of runoff into surface runoff and deep drainage. Driven by global
weather datasets and parameterized by land surface phenology (LSP), the enhanced VegET model
was implemented in the cloud to simulate daily soil moisture (SM), actual evapotranspiration
(ETa), and runoff (R) for the conterminous United States (CONUS) and the Greater Horn of Africa
(GHA). Evaluation of the VegET model with independent data showed satisfactory performance,
capturing the temporal variability of SM (Pearson correlation r: 0.22–0.97), snowpack (r: 0.86–0.88),
ETa (r: 0.41–0.97), and spatial variability of R (r: 0.81–0.90). Absolute magnitudes showed some biases,
indicating the need of calibrating the model for water budget analysis. The seasonal Landscape
Water Requirement Satisfaction Index (L-WRSI) for CONUS and GHA showed realistic depictions of
drought hazard extent and severity, indicating the usefulness of the L-WRSI for the convergence of
an evidence toolkit used by the Famine Early Warning System Network to monitor potential food
insecurity conditions in different parts of the world. Using projected weather datasets and landcover-
based LSP, the VegET model can be used not only for global monitoring of drought conditions, but
also for evaluating scenarios on the effect of a changing climate and land cover on agriculture and
water resources.

Keywords: VegET model; soil moisture; actual evapotranspiration; runoff; land surface phenology;
drought; water budget

1. Introduction

Large-area modeling of rainfall–runoff processes has been an important component of
many environmental assessments, particularly for flood early warning [1,2], drought moni-
toring and impact assessment [3,4], water accounting [5], and hydrologic studies [6–10].
Although hydrologic models vary in their degree of complexity in terms of model com-
ponents and parameters, the fundamental principle remains the same in that all models
are designed to conserve mass through water budget accounting at all time scales over a
defined volume. By its nature, large-area rainfall–runoff modeling benefits from spatially
distributed inputs and parameters. As the primary driver for all hydrologic models is
precipitation, the availability of global satellite-based gridded precipitation data allows
model implementation over large basins, continents, and the globe [11–13]. Similarly,
model-assimilated gridded datasets are available for potential evapotranspiration [14–17],
another key input to hydrologic models. Based on the purpose and desired accuracy,
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hydrologic models are parameterized to account for water storage and flux quantities over
the landscape. Almost all hydrologic models define the soil moisture storage capacity
using parameters such as water holding capacity (WHC) derived from soil texture prop-
erties [18,19]. More comprehensive models also include snow and canopy interception
storage terms [7,8,20]. In addition to storage terms, flux-controlling parameters (surface
runoff, drainage, and evapotranspiration) are mainly tied to land cover, soil properties, and
climatic factors.

The purpose and availability of data may determine the complexity of the model from
short time interval (minutes) flood prediction models to monthly water balance models
such as the U.S. Geological Survey (USGS) water balance model [21]. Simple models with
one-dimensional (vertical) accounting of fluxes are well suited for drought monitoring
and basin-scale water budget studies at longer time scales. For agricultural drought moni-
toring purposes, simple bucket models that only account for the root-zone water balance
status have been used by various modeling groups [3,4,22,23] with numerous simplifying
assumptions. One of the early models is the Water Requirement Satisfaction Index (WRSI)
by the Food and Agriculture Organization (FAO) [4] that parameterizes the seasonality of
crop water use (actual evapotranspiration, ETa) using published crop coefficients (Kc) [24].
The WRSI model is based on the ratio of ETa (as a result of precipitation over a season) to
an ideal water requirement of a well-watered crop, which is defined by the potential ET (at-
mospheric demand) and the seasonally prescribed Kc. Because of the difficulty in defining
Kc values over large areas due to unknown crops and/or unreliability of published values
outside of their experimental region/continent, the VegET model incorporated land surface
phenology (LSP) derived from remotely sensed Normalized Difference Vegetation Index
(NDVI) [3]. Evaluation and application of the VegET model showed good performance for
ETa [25] and runoff estimation [26].

The original version of the VegET model [3] did not include snow accumulation
and snowmelt processes, which limited its representation in snow-influenced landscapes
for simulating soil moisture and runoff using the principle of saturation excess [27,28].
Furthermore, the previous version of the VegET model did not partition runoff into surface
runoff and deep drainage. The main objectives of this study are to (1) describe the updated
components and parameterizations to the VegET model, (2) evaluate the performance of
the VegET model using independent data for soil moisture, snowpack, ETa, and runoff, and
(3) demonstrate the applications of the updated VegET model for drought monitoring and
early warning.

2. Materials and Methods

2.1. Study Area and Data Sources

The updated VegET v2.0 model [29] was implemented over the conterminous United
States (CONUS) and the Greater Horn of Africa (GHA) (Figure 1), making use of Open
Source Python libraries and leveraging a combination of cloud computing and local servers
at the USGS Earth Resources Observation and Science (EROS) Center.

The model uses different input datasets including precipitation, reference ET, air
temperature, and soil properties. The data for the CONUS are described in Table 1.
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Figure 1. Study areas including the conterminous United States (CONUS) and the Greater Horn of
Africa (GHA) using Normalized Difference Vegetation Index (NDVI) to capture the spatial distribu-
tion of relative vegetation productivity for July 2018.

Table 1. Characteristics of model inputs and parameters for the conterminous United States (CONUS).

Parameters Spatial Resolution
Temporal
Resolution

Source

Precipitation 4000 m Daily, 1980–current gridMET [30]

Land Surface Phenology 1000 m 16 days (Terra),
2003–2017 *

MODIS NDVI [31]
(MOD13A2.061)

Reference Evapotranspiration 4000 m Daily, 1981–2010 * gridMET [30]
Air Temperature 4000 m Daily, 1984–2017 * gridMET [30]
Soil Properties 90 m Static gNATSGO [32,33]
Interception 250 m Static MODIS VCF [34] (MOD44B.061)

* Median climatology generated from the specified time period.

The precipitation, reference evapotranspiration (ETo), and air temperature (Ta) were
downloaded from the Gridded Surface Meteorological (gridMET) website [30] and con-
verted from the native netcdf format to geotiff. The air temperature data (daily minimum,
maximum, and average) also were converted from Kelvin (K) to degree Celsius (◦C) and a
median climatology was created from 1984 to 2017. The land surface phenology (LSP) is
based on the Moderate-Resolution Imaging Spectroradiometer (MODIS) NDVI provided by
National Aeronautics and Space Administration (NASA) Land Processes Distributed Active
Archive Center (LP DAAC). A daily median climatology NDVI for 2001–2019 (19 years)
was established with linear interpolation from the 16-day dataset. The soil properties
included WHC (also referred to as available water holding capacity, AWC), field capacity
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(FC), and soil porosity (POR). The WHC represents the difference between FC and the wilt-
ing point (WP). Detailed information on the soil data can be found in [33]. The schematic
representation of the WHC and associated parameters are shown in Figure 2.

Figure 2. Schematic representation of the updated VegET model (v2.0) [29]. The Soil Water Store is
defined by two major sections: “gravity water” is filled once the soil moisture is above field capacity
(FC) and “plant available water” is the section between FC and permanent wilting point (WP). VCF:
vegetation continuous field, P: precipitation, Peff: effective precipitation, SWE: snow water equivalent,
Ta: air temperature; ETo: reference ET, Rn: net radiation, U: wind speed, RH: relative humidity,
ρ = air pressure, Kcp: landscape water use coefficient, LSP: land surface phenology, Ks: soil stress
coefficient, WHC: water holding capacity, MAD: maximum allowable depletion, SM: soil moisture,
SAT, soil saturation, SATfc: volume between SAT and FC, L-WRSI: landscape Water Requirement
Satisfaction Index.

The interception fraction layer was created from the MODIS Vegetation Continuous
Fields (VCF: [35]) in proportion to a pixel’s percentage of tree, herbaceous, and bare
coverage using Equation (1) [3]:

Interception = 0.15 × Tcover + 0.1 × Hcover + 0.0 × Bcover (1)

where Tcover is the tree cover layer (%) with a maximum interception of 15%; Hcover is the
herbaceous cover layer (%) with a maximum interception of 10%; and Bcover is the bare
ground cover layer (%) with no interception.

Input datasets for GHA are described in Table 2. The precipitation data source is
Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) [36], which uses
remote sensing data in combination with station information to create a dataset suitable
for crop monitoring and hydrologic applications. The LSP was created using MODIS
NDVI (Aqua and Terra) to generate a 15-year median climatology (2003–2017) and then
interpolated linearly from the 8-day time step to daily. The reference evapotranspiration
(ETo) was obtained from NOAA [37]. Air temperature (minimum, maximum, and mean)
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was sourced from Climatologies at High resolution for the Earth’s Land Surface Areas
(CHELSA); the monthly climatology from 1981 to 2010 was interpolated linearly from
monthly to daily and converted from K to ◦C units. The soil property raster data were
provided by the International Soil Reference and Information Centre (ISRIC—World Soil
Information) through their Soil Data Hub [38]. A list of soil parameters was extracted
to generate WHC, FC, and POR: AWCh3_M_Sl6_250m_II.tif, (WWP_M_sl6_250m_II.tif
and AWCh3_M_Sl6_250m_II.tif), and AWCtS_M_sl6_250m_ll.tif. POR layer was used to
represent the soil saturation (SAT) level. To convert the raster data from volumetric percent
representation (m3/m3) to depth (mm) per meter root-zone, they were multiplied by a unit
conversion factor of 10 ((soil raster × 1000)/100). Additionally, the SAT value was capped
to not be lower than FC. Interception was determined using Equation (1).

Table 2. Characteristics of model inputs and parameters for the Greater Horn of Africa (GHA).

Parameters Spatial Resolution
Temporal
Resolution

Reference

Precipitation 0.05◦ Daily; 1981—current CHIRPS [36]
Land Surface Phenology 1000 m Every 8 days (Aqua and Terra); 2003–2017 * MODIS NDVI [31]
Reference Evapotranspiration 0.625◦ × 0.5◦ daily; 1981–2010 * NOAA ETo [37]
Air Temperature 1000 m Monthly; 1981–2010 * CHELSA [39]
Soil Properties 250 m Static ISRIC [38]
Interception 250 m Static MODIS VCF [34]

* Median climatology generated from the specified time period.

2.2. Model Formulation
2.2.1. Original Model Setup

The original VegET model by [3] was developed to timely process and integrate
readily available global weather and remote sensing datasets using water balance modeling
techniques for drought monitoring purposes. ETo, a soil stress coefficient (Ks), and a
phenology-based crop coefficient (Kcp) are used to determine daily soil moisture, runoff
(R), and ETa using the root-zone as the control volume (Figure 2). The soil water level is
determined using a daily soil water balance using Equation (2).

SMi = SMi−1 + Pe f f i − ETai (2)

where SM is soil moisture (mm), Peff is effective precipitation (mm), ETa is simulated actual
evapotranspiration (mm) and i represents the current day and i–1 represents the previous
day. ETa is calculated using Equation (3) as follows:

ETa = Kcp × Ks × ETo (3)

where Kcp is the LSP-derived landscape “crop” coefficient (-); Ks is soil water stress
coefficient (-), and ETo is the grass reference ET (mm).

The innovation in the VegET model is on the calculation of Kcp, which is comparable
to the Kc that is widely used by agronomists [40]. The key difference between the two pa-
rameters is that Kcp is derived from remotely sensed data as opposed to region-specific
field experiments for Kc. Kcp represents both the spatial and temporal dynamics of the
landscape water-use pattern on a grid basis. LSPs are characterized and converted into
Kcp parameter functions for each modeling grid from NDVI climatology datasets with
the assumption that the LSP climatology represents the target vegetation condition of the
landscape where water requirement is met by precipitation. Thus, ETa is calculated using
the modified version of the classical crop coefficient approach [24] using the LSP-derived
crop coefficient.

Ks is determined from a soil water balance model such as the one developed by [22] for
USGS Famine Early Warning Systems Network (FEWS NET) applications using Equations (4)
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and (5). The dimensionless Ks coefficient varies from 0 to 1 depending on the soil water
level in the root zone and is calculated as:

Ks =
SMi

MAD
; SMi < MAD (4)

Ks = 1.0; SMi ≥ MAD (5)

where SMi is the soil water of current time step in depth unit (mm); MAD (mm) is the max-
imum allowable depletion level of soil water in the root zone below which the vegetation
ETa is less than “potential” and will be constrained by the availability of soil water.

Although MAD varies by crop/vegetation type, a nominal value of 50% of the WHC
can be used for most generalized crops, such as cereals and natural vegetation. Thus, MAD
was estimated as 50% of the WHC (i.e., 0.5 × WHC). More discussion on the setup and
application of the soil water balance model for operational crop monitoring is available
in [22].

The model estimates a combined surface runoff and deep drainage based on the
principle of saturation excess where soil water in excess of the WHC is considered to be
unavailable for plant use in the root zone; thus, SMi is set to a maximum of WHC and a
minimum of 0 during the modeling time step.

R = SMi − WHC; SMi > WHC (6)

R = 0; SMi ≤ WHC (7)

where R is total runoff (surface runoff and deep drainage); WHC is soil water holding
capacity (mm), i.e., the difference between FC and WP (Figure 2).

2.2.2. Model Updates

The original VegET model has been updated with improved parameterization to be
more inclusive of hydrologic processes and for computing efficiency. The new modifications
to the model include the incorporation of snowpack and snowmelt processes and the
separation of runoff into surface runoff and deep drainage. Furthermore, parameterization
of the LSP has been simplified to use a set of linear equations without the need to specify
the minimum and maximum Kc that was part of the original formulation.

Figure 2 shows the schematic representation of the updated VegET v2.0 model [29].
Interception losses are first estimated to determine effective precipitation using the MODIS
VCF (Equation (1)). Effective precipitation (Equation (2)) is split into rain and SWE (snow
water equivalent) to enter the Soil Water Store (soil moisture) or Snow Water Store (snow-
pack) based on a temperature-index (Equations (10)–(13)) approach [41]. MODIS NDVI is
used to create the LSP for the Kcp function (Equations (8) and (9)). Rn (net radiation), Ta
(air temperature), U (wind speed), RH (relative humidity), and ρ (atmospheric pressure)
are parameters used to estimate ETo (reference ET). Kcp and Ks are critical parameters to
calculate outfluxes: surface runoff, deep drainage, and ETa. The Soil Water Store is defined
by the soil-texture properties. Saturation (SAT), defined in the model, is equivalent to soil
porosity (POR) from the soils database [38]; FC defines the maximum amount of water
retention by the soil matrix that is available to plants; and WP (permanent wilting point)
represents the water retention level at which point plants are unable to access moisture.
WHC (difference between FC and WP) is the readily available water for plant access, but
plant stress occurs in proportion to the remaining soil moisture (SM) once SM reduces
below the MAD limit (Equations (4) and (5)). Runoff (R) is generated once SM is in excess
of WHC (Equations (6) and (7)). All SM in excess of SAT will be surface runoff, but SM
that is within SATfc (between SAT and FC) will be split into surface runoff and deep
drainage (Equations (17)–(20)). L-WRSI (Landscape-Water Requirement Satisfaction Index)
is determined using ETa and landscape water requirement (ETc) (Equations (21) and (22)).
The VegET model is initialized with empty (0) amounts for SM and snowpack with a one
complete year spin-up period.
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Land Surface Phenology and Landscape Coefficients (Kcp)

The crop coefficient (Kc) determines the ideal (water unlimited condition) demand of
the crop based on the type and stage of the crop [24]. In VegET, the crop water requirement
(demand) is replaced with the landscape water requirement. The traditional tabular Kc by
Allen et al. [24] is replaced by the phenology-based Kc known as Kcp. The main assumption
is that the NDVI-derived Kcp represents the landscape “crop” water requirement in regions
where a major land cover change does not occur for a large area. For example, the Land
Change Monitoring, Assessment, and Projection (LCMAP) group indicates a less than 1%
land cover change per year on average over the CONUS [42]. For drought monitoring pur-
poses where the VegET is applied, the main goal is to determine if the precipitation amount
and distribution meet the average demand of the landscape. The use of a climatology
NDVI creates smoother and more realistic seasonal water use patterns compared to Kc, but
it may underestimate the demand during years of vigorous vegetation activity. However,
its effectiveness for drought monitoring would not be affected under such favorable wet
conditions. Figure 3 illustrates the development and seasonal progression of LSP-based
Kcp derived from climatology NDVI and its schematic Kc equivalent.

Figure 3. Schematic representation of (a) the traditional crop coefficient (Kc) and (b) the land surface
phenology (LSP) (Kcp) coefficient.

The Kcp in the VegET model is estimated as:

Kcp = 1.25 × NDVI + 0.20; NDVI > 0.4 (8)

Kcp = 1.25 × NDVI; NDVI ≤ 0.4 (9)

where the NDVI threshold of 0.4 is based on vegetation sparsity classification by [43] and a
similar application in [3].

Equation (8) is similar to the one proposed by [44] when Kc is designed to be used
in combination with grass reference ETo. The conditional elimination of the 0.2 intercept
in Equation (9) is based on observations of overestimation of ETa over sparsely vegetated
surfaces [3].

Snowpack and Snowmelt

The updated VegET model accounts for snowpack and snowmelt processes using air
temperature-based empirical equations by [41]. A given day’s precipitation is split into
rainfall and snow water equivalent based on air temperature thresholds.

rain f rac = 1.0; Tavg > 6.0 ◦C (10)

rain f rac = 0.0; Tavg < 0.0 ◦C (11)

rain f rac =
1

12
(
Tavg − 0.0

)
; 0.0 <= Tavg <= 6.0 ◦C (12)
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where rain f rac is the rain fraction of precipitation that falls as rain (as opposed to snow)
based on daily average air temperature Tavg for that day. If Tavg for a given day is below

0 ◦C, all precipitation is assumed to fall as snow ( rain f rac = 0
)

; if Tavg is above 6 ◦C all

precipitation is assumed to be rainfall ( rain f rac = 1
)

; if Tavg is between 0 and 6 ◦C, the rain
fraction is interpolated using Equation (12).

The rainfall and snow (snow water equivalent, SWE) components are then partitioned
as follows:

SWE =
(

1 − rain f rac

)
× Pe f f (13)

where SWE is the snow water equivalent (mm) and Pe f f (mm) is the effective precipita-
tion (precipitation minus canopy interception losses), determined using the interception
parameters from Equation (1). The rainfall component is simply a product of the rain f rac
and Pe f f while SWE is the difference between Pe f f and the rainfall (rain) component
(Equations (10)–(12)).

The consideration of the timing of accumulation and melting of snow is useful for re-
gions where snowpack (Snow Water Store) retains the precipitation instead of immediately
releasing it as runoff during a cold season. The snowpack accumulates and melts based
on the addition of new SWE and melting of snowpack using a daily snowpack (Snowpack)
balance. The daily snowmelt is calculated based on the melt (mm) rate as:

melt = 0.06
(

T2
max −Tmax × Tmin

)
; Snowpack ≥ melt (14)

melt = Snowpack; Snowpack < melt (15)

where 0.06 is the melt factor (mm/◦C 2), Tmax is the daily maximum air temperature (◦C),
and Tmin is the daily minimum air temperature (◦C). The equation was adapted from [41].
All snow related parameters such as snowpack and melt are expressed in SWE forms.

Snowpack, i = Snowpack, i−1 + SWEi − melt i (16)

where Snowpack, i is the current snowpack in SWE unit (mm); Snowpack, i−1 is the previous
day’s snowpack (mm); SWEi is the additional fresh snow in SWE unit (mm) and melt i is
today’s snowmelt in SWE unit (mm) on the current day (i).

Deep Drainage and Surface Runoff Partitioning

The original VegET model estimates total runoff without the separation of quick flow
(surface runoff) and deep percolation (deep drainage). A simple approximation coefficient
is used to differentiate the quick flow (part of the total runoff that joins the stream network
as overland flow) from the deep drainage (part of the flow that may combine interflow and
deep percolation to groundwater). Although the separation of surface runoff and deep
drainage does not affect the soil moisture and ETa estimation, the potential application of
the VegET runoff in flood and streamflow simulation could benefit from this separation.
VegET does not have a flow routing routine; therefore, runoff from one pixel does not affect
soil moisture and evapotranspiration (ET) on nearby pixels. It is important to note that the
VegET model is more optimized to simulate ET; thus, its use for hydrologic applications
would benefit from more investigation, evaluation, and refinement.

In the updated VegET model, the deep drainage (dd) amount is estimated as the
difference between total runoff (R) (Equations (6) and (7)) and surface runoff (srf) as follows:

dd = R − sr f (17)
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where R is determined as daily SM in excess of the soil water holding capacity; sr f is
estimated based on the daily soil water, a quick-flow (qc)/drainage (dc) coefficient, soil
saturation (SAT), and field capacity (FC) parameters (Figure 2):

SAT f c = SAT − FC (18)

sr f = qc × R; R ≤ SAT f c (19)

sr f = R − SAT f c + qc × SAT f c; R > SAT f c (20)

where SATfc is the difference between SAT and FC; qc is the quick flow coefficient, which
is a complement to the drainage coefficient (dc) as qc = 1 − dc. In this study, a uniform
value of 0.35 is used for qc as a first approximation; however, this partitioning coefficient is
expected to vary by soil type and topography, and thus a calibration procedure is required
to estimate this coefficient more accurately.

2.2.3. Evaluation Data

The VegET model output parameters were evaluated using limited illustrative data
from the Soil Climate Analysis Network (SCAN) [45] measurements for soil moisture,
snow measurements from SNOpack TELemetry (SNOTEL) [46], AmeriFlux Network and
FluxNet 2015 [47,48] measurements for ETa, and runoff data from the USGS [49] (Figure 4).

 

Figure 4. Location map for Soil Climate Analysis Network (SCAN) sites, SNOTEL (SNOpack
TELemetry) sites, AmeriFlux Tower sites, and eight-digit Hydrologic Unit Code (HUC8) in the
conterminous United States for water year 2012 evaluation. The map shows the Upper Mississippi
River Basin used for the detailed water budget analysis. GA: Georgia, KS: Kansas, MN: Minnesota,
NE: Nebraska, NM: New Mexico, OK: Oklahoma, TX: Texas.

Evaluation for Soil Moisture

One of the outputs of the VegET model is the daily soil moisture for a 1 m (39.4 inch)
root zone. VegET SM was evaluated at three SCAN sites (Table 3) administered by the
Natural Resources Conservation Service (NRCS) of the U.S. Department of Agriculture
(USDA) [45]. Data for the growing season of May to September 2019 were used. The
daily soil moisture measurements for five different depths (2 inches, 4 inches, 8 inches,
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20 inches, and 40 inches) were averaged and converted from volumetric water content
(m3/m3) percentage to depth of water per meter depth (mm/m) with a unit conversion
factor of 10.

Table 3. Summary of the Soil Climate Analysis Network (SCAN) soil moisture sites [45] used for
evaluation.

Site ID Name State Location (Latitude, Longitude in Degrees) Time Period

2002 Crescent Lake #1 Minnesota 45.42◦, −93.95◦ October 1993 to current

2022 Fort Reno #1 Nebraska 35.33◦, −98.02◦ November 1998 to current

2168 Jornada Exp Range New Mexico 32.56◦, −106.70◦ October 2009 to current

Evaluation for Snow Water Equivalent

SNOTEL site measurements [46] were used to evaluate the simulated SWE by compar-
ing the model output with in situ observations listed in Table 4. The time period used for
evaluation was 2015–2020. SNOTEL data of SWE were converted from inches to mm prior
to analysis and the comparison.

Table 4. Summary of the SNOpack TELemetry (SNOTEL) snow sites [46] used for evaluation.

Site ID Site Name Elevation (m) Location (Latitude, Longitude in Degrees) Time Period

982 Cole Canyon 5910 44.48◦, −104.42◦ 2000 to current

409 Columbine Pass 9171 38.42◦, −108.39◦ 1985 to current

1034 Sierra Blanca 10268 33.40◦, −105.80◦ 2002 to current

Evaluation for Actual Evapotranspiration

The ETa results from the VegET model were evaluated using eddy covariance (EC) flux
tower data from the AmeriFlux network [47]. For this evaluation, three EC towers were
selected (Table 5) across the CONUS for availability of data to represent rainfed systems
simulated by VegET. The locations of the towers are shown in Figure 4. Monthly data were
obtained from the FLUXNET2015 dataset [48].

Table 5. Summary of AmeriFlux EC sites [47] used for actual evapotranspiration (ETa) evaluation.

Site ID Name Name Landcover Location (Latitude, Longitude in Degrees) Time Period Available

US-AR1 ARM USDA Grassland 36.43, −99.42 2003–2021

US-Ne3 Mead Rainfed crop 41.12, −96.44 2001–2020

US-Var Vaira Ranch–Ione Grassland 38.41, −120.95 2000–2014

Evaluation for Runoff

The VegET runoff (R) was evaluated against independent runoff obtained from the
USGS WaterWatch [49] at 8-digit hydrologic unit code (HUC8) scale [50] across the CONUS
(Table 6). The runoff data are generated from historical flow observations at the USGS
streamgage locations, drainage basin boundaries of the streamgages, and the HUC8 bound-
aries [51]. The daily VegET runoff were summed by water year and the pixel values were
spatially averaged within the HUC8 boundaries to obtain a single value and compared
with the runoff (non-spatial single value) for water years 2012 (dry year), 2016 (wet year),
and 2018 (average year). The HUC8s with high runoff values from the USGS WaterWatch
were excluded from the comparison. For example, runoff more than 40% of precipitation
(R/P > 40%) with potential regional groundwater flow contributions and possibility of
watershed water balance closure issues [52,53].
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Table 6. Summary of runoff data source [49], spatial and temporal resolution, study years, and
number of HUC8 watersheds applied for evaluation.

Spatial Resolution
Temporal
Resolution

Study
Years

Number of HUC8s
(R/P * ≤ 0.40)

HUC8 scale
Water year (October
1–September 30)

2012 (dry),
2016 (wet),
2018 (average)

1762 (1441)
1762 (1432)
1762 (1396)

*: R/P refer to the ratio of runoff (R) to precipitation filter for number of HUC8 watersheds in bracket.

3. Results and Discussion

3.1. Water Balance Components

The VegET model produces several parameters, fluxes, state variables, and indices
including interception losses, rainfall, snow water equivalent, snowpack, snow melt, soil
moisture, surface runoff, deep drainage, actual evapotranspiration, landscape water require-
ment, and the drought monitoring product L-WRSI [54]. Figure 5 provides an illustrative
overview of the model inputs, outputs, and parameters for a flux tower location in Minnesota.

Figure 5. VegET model input and output parameters for a pixel at the AmeriFlux station in Minnesota
(US-Ro1) for 2018. (a) Normalized Difference Vegetation Index (NDVI) and precipitation; (b) soil
moisture (SM), snowpack (Snowpack), surface runoff (srf), and deep drainage (dd); (c) actual ET (ETa),
reference ET (ETo), and landscape water requirement (ETc).

Figure 5a shows precipitation and NDVI as a reference for providing an overview of
the water supply and vegetation demand over the year. Precipitation is the main input and
NDVI is an important rate controlling parameter representing the state of vegetation and its
water use phenology. Figure 5b includes soil moisture level, snowpack, deep drainage, and
surface runoff. The soil moisture (SM) shows a steady increase once snowpack decreases
due to melt and additional rainfall and remains high for much of the spring with small
variability around 150 mm, which is close to WHC = 160 mm. We note that no runoff
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component is generated during the summer, which requires SM to exceed the WHC.
SM shows a substantial reduction in mid-August due to reduced precipitation events
in frequency and magnitude, which leads to a reduction in ETa (Figure 5c). When SM
reduces below the MAD level (half of WHC), ETa (green line, Figure 5c) will be lower than
landscape water requirement (ETc) (Figure 5c), which leads to a deficit. The ETc is created
as the product of ETo (Figure 5c) and Kcp.

VegET takes spatially explicit inputs and parameters and produces spatially explicit
outputs, making it useful to create a continuous surface for agro-hydrologic applications.
The annual ETa maps for CONUS are shown in Figure 6, in which water years 2012, 2016,
and 2018 represent a drier year, a wetter year, and an average year, respectively. The
drier landscape responses (ETa < 400 mm/yr) are noticeable for 2012 in large parts of
Nebraska, Kansas, and Texas where drought conditions were reported by the U.S. Drought
Monitor [55].

Figure 6. VegET annual actual evapotranspiration (ETa) for the years (a) 2012, (b) 2016, and (c) 2018.
Brown colors with low ETa dominate low-precipitation and sparsely vegetation regions in contrast
with green and blue tones on well-vegetated and precipitation-rich regions.

The calculation of ETa depends heavily on SM because reduction from ETa begins
when SM falls below the MAD level. Due to differences in soil texture, maps of normalized
SM as percentage of the WHC across the CONUS is shown in Figure 7 for selected days
(1 October, 1 January, 1 April, and 1 July) during water year 2018. In this example, the
relative SM in the soil started out low in October after the end of the growing season
and increased over the next months until April. In July, SM showed a general reduction,
especially in the southwestern CONUS.
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Figure 7. VegET relative soil moisture as percentage of water holding capacity (WHC) for (a) 1 October
2017, (b) 1 January 2018, (c) 1 April 2018, and (d) 1 July 2018.

The major improvement in VegET v2.0 model [29] is the inclusion of the snowpack
and snowmelt processes. Figure 8 shows the state of snowpack based on the simple
temperature-index algorithm to accumulate and melt the snow. As expected, the largest
coverage of snowpack was observed on 1 January (Figure 8b) and the least snow was on
1 October after the summer (Figure 8a). Because of the simplicity of the model, only the
relative magnitudes are reliable, which is sufficient for drought monitoring purposes. These
maps are useful when comparing relative snowpack build-up and timing of melt across
regions and years.

Figure 8. VegET snowpack as snow water equivalent (SWE) (mm) for (a) 1 October 2017, (b) 1 January
2018, (c) 1 April 2018, and (d) 1 July 2018. October shows the least amount of snow spatial coverage
with January showing the largest areal extent.
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3.2. Evaluation

Although VegET products are not calibrated with independently measured datasets
and are not expected to be highly accurate in magnitude, the relative distribution in time
and space can be evaluated. Illustrative comparisons with in situ observations for soil
moisture, snowpack, ETa, and runoff are presented below.

3.2.1. Soil Moisture (SM)

VegET estimates SM for the entire 1 m (39 inch) depth root zone; SM represents
the readily available water for plants, i.e., with a soil suction pressure between FC and
WP. Comparisons with observed measurements from three different sites in the SCAN
network are illustrated in Figure 9 for the growing season from 1 May to 30 September
2019. The sites located from north to south have different characteristics for soil properties
and precipitation. Crescent Lake #1 (Figure 9a), Minnesota, received about 900 mm of
precipitation in 2019 with a WHC = 70 mm. The temporal patterns of observed and
simulated SM show a strong agreement (Pearson correlation r = 0.82). However, the
observed SM shows a much higher magnitude. This can be attributed to the fact that
the simulated SM only accounts for the amount of water between FC and WP with any
moisture above FC (gravity water) that is assumed to be excess and would drain from the
root-zone as runoff. The Fort Reno site (WHC = 190 mm) in Oklahoma (Figure 9b) portrays
similar strong temporal agreement (r = 0.97), with observed SM showing much higher
magnitudes and comparable decreasing rates during the growing season with limited
precipitation events and amount. At the drier (~400 mm annual precipitation) New Mexico
site (WHC = 140 mm), not only the temporal agreement is weak (r = 0.22), in contrast to
the other two sites, the observed SM is lower than the simulated SM. This is probably due
to overestimated WHC (140 mm) data used in the model, causing even greater estimation
than the Minnesota (Figure 9a) site (WHC = 70 mm). This highlights the importance of
acquiring accurate quality soils data for hydrologic modeling.

Despite the differences in absolute magnitude, the simulated SM shows satisfactory
performance in terms of capturing the temporal variability, which is key for ETa estimation
and drought monitoring applications.

3.2.2. Snow Water Equivalent (SWE)

Snow water equivalent (SWE) of snowpacks at three SNOTEL sites over six years
(2015–2020) was used for evaluation. Generally, agreement is good (r: 0.86–0.88) on the
timing and duration of SWE accumulation at the three sites (Figure 10). Although the
magnitude is reasonable at the Cole Canyon site (Figure 10a), bias is large at Columbine
Pass (Figure 10b). The Sierra Blanca (Figure 10c) site shows a good agreement on timing and
mixed results on bias in water-year 2016, with a reasonable agreement during 2017–2020.
The difference in magnitude can be partially attributed to errors in gridMET dataset used
in VegET, which underestimated precipitation by as much as 200 mm for a calendar year
at Columbine Pass. Furthermore, any differences between actual air temperature and
simulated air temperature could cause discrepancy in the timing of melt and magnitude
of snowpack. In winter, the average temperature input in the VegET model exceeded the
average temperature recorded by SNOTEL by 1.5 ◦C at Cole Canyon, whereas Columbine
Pass temperature input into VegET was warmer by 7.7 ◦C on average, which explains some
of the differences in snow accumulation between the two sites.

Although large biases in snowpack SWE magnitude exist at a few sites such as
Columbine Pass (Figure 10b), the consistent performance of VegET for timing and du-
ration makes it useful for monitoring water availability in areas of the world with limited
in situ observations. Moreover, relative variations in SWE are more important than actual
magnitudes for predicting relative changes in river flows for irrigation. The simplified
snow module in VegET can be used to provide valuable and timely insight into yearly
changes and trends in snow accumulation and melt over watersheds and regions as well as
to generate future scenarios with projected climate datasets.
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Figure 9. Three Soil Climate Analysis Network (SCAN) sites showing daily simulated (VegET
model) and observed soil moisture (SM) [45] along with precipitation for the growing season (May–
September) in 2019. (a) Crescent Lake # 1, water holding capacity (WHC) = 70 mm; (b) Fort Reno
#1, WHC = 190 mm; and (c) Jornada Exp Range, WHC = 140 mm. The maximum magnitude of
the simulated SM corresponds to field capacity (FC) of the soil. The observed SM is not confined
to a maximum of FC and thus could include gravity water between soil saturation (SAT) and FC.
Temporal-pattern comparison is more meaningful than absolute magnitudes.

3.2.3. Actual Evapotranspiration (ETa)

VegET ETa was compared to EC ETa over several years (Figure 11) using monthly
ETa data obtained from the FLUXNET2015 dataset [48] for the following sites: US-AR1
(2009–2012), US-Ne3 (2009–2012), and US-Var (2009–2012). Because of the strong connection
between ETa and biomass/yield, the performance of VegET ETa is crucial for accurate
biomass estimation and drought monitoring.
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Figure 10. SNOpack TELemetry (SNOTEL) sites showing daily observed [46] and simulated (VegET
model) snowpack as snow water equivalent (SWE) (mm) for 2015/2016 to 2019/2020 at (a) Cole
Canyon, (b) Columbine Pass, and (c) Sierra Blanca.

Although the general seasonal pattern of VegET shows good agreement with the
observed ETa, there are some seasonal inconsistencies in the two sites (US-AR1 and US-
Ne3). VegET ETa captures well the winter and spring ETa at all sites but tends to show
a relatively dry condition compared to the observed ETa in the summer during reduced
precipitation periods at US-Ne3 and US-AR1. One explanation is that the footprint of the
EC tower may include ETa from landscapes that have access to additional sources of water
such as groundwater by deep-rooted trees or from nearby irrigated fields, especially for
the Nebraska site (Figure 11b). The Oklahoma grassland site (US-AR1, Figure 11a) shows
reasonable agreement in 2009 and 2010 but showed an out-of-phase behavior in 2011 and
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2012. There was a reduction in precipitation during the summer of 2012, which is reflected
in VegET ETa, but the EC tower shows a high ETa, contrary to the expected drought-year
response. Furthermore, the EC data for the winter months of 2009 (January–March) show
unrealistically high values compared to other years, casting doubt on the accuracy of the
EC data from this site.

Figure 11. Monthly traces of observed [48] and simulated (VegET) ETa time series at three eddy
covariance (EC) flux sites during 2009 to 2012: (a) US-AR1 (grassland), (b) US-Ne3 (rainfed crop), and
(c) US-Var (grassland). Daily data were aggregated to monthly for clarity of display and interpretation.

The simulated ETa from VegET corresponds consistently to precipitation, usually
exhibiting increases in ETa with a month lag, after peak precipitation in the summer
(Figure 11a–c). Except for US-Var (Figure 11c), the peak seasonal ETa from VegET generally
lags behind the peak ETa recorded by the EC tower. This is reflected in the lower r statistic
in the comparison of US-AR1 and US-Ne3 (r = 0.41 and r = 0.76, respectively) (Figure 11a,b)
relative to US-Var (r = 0.97) (Figure 11c), where it performs favorably in both pattern and
magnitude. A further investigation with more sites would be useful to help understand
and characterize the spatiotemporal dynamics of the performance of the simulated ETa.

The monthly temporal patterns of simulated ETa at point locations and the annual ETa
maps over CONUS are consistent with seasonal and regional patterns of vegetation and
precipitation in the CONUS. This reinforces the proposed application of the VegET model for
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quantifying green-water ETa (from precipitation and soil moisture), which is an important
parameter in the determination of net irrigation water use (blue water) as the difference
between total ETa from energy balance models and VegET ETa as suggested by [25].

3.2.4. HUC8 Runoff

Although the main purpose of the VegET model is to estimate precipitation-driven
landscape ETa to develop an integrated drought monitoring product L-WRSI, one byprod-
uct of VegET is runoff, which can be evaluated with independent data sources. The annual
total runoff from VegET was compared with the model-assimilated observed runoff from
the USGS WaterWatch [49] to evaluate the performance of VegET runoff in capturing the
spatial variability across HUC8 watersheds over three years. Correlation coefficients above
0.80 for all water years show a reasonable performance of VegET runoff for capturing the
spatial dynamics. The VegET runoff values are lower than WaterWatch runoff values for
the filtered HUC8s (R/P ≤ 0.40) for all water years as shown in Figure 12. The underestima-
tions of VegET are within 5% (≤7 mm/yr) for water years 2012 and 2016, and within 15%
(≤24 mm/yr) for water year 2018 (Figure 12, Table 7). The root mean square error (RMSE)
values are relatively high with an average of 62%, indicating uncertainties over individual
HUC8s while capturing the overall spatial dynamics. The performance of the VegET model
improved substantially for runoff estimation when the R/P ≤ 0.40 was applied (Table 7).
With the R/P (≤0.4) filter, the model bias reduced for all three water years with the largest
reduction of 15.6% (from −20.2% to −4.6%) for 2012 (dry year) and the least of 9.2% (from
−23.9% to −14.6%) for 2018 (average year).

Figure 12. Scatterplot showing the relationship between simulated (VegET) and observed (Water-
Watch [49]) annual runoff at eight-digit hydrologic unit code (HUC8) scale for three water years (2012,
2016, 2018) using N number of watersheds across the conterminous United States.

Figure 13 shows major water balance components for the Upper Mississippi River
Basin including precipitation, actual evapotranspiration, and runoff, along with their
monthly variations for the water year 2012. Areas of higher precipitation correspond with
higher VegET-simulated ETa and R, as expected, capturing the general spatial distribution
of major fluxes. Additionally, seasonal runoff dynamics compare well between VegET
(simulated) and WaterWatch (observed) in relative terms, with higher runoff during spring
(March-May) and peak runoff in May (both for VegET and WaterWatch). However, there is
a large difference in the monthly R values between the observed and simulated, indicating
that calibrating the model and improving the parameterization of the runoff are warranted.
The combined ETa and R account for about 93% of water year total precipitation, with the
remaining fraction attributed to interception (~8%) and change in storage (~−1%).
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Table 7. Summary statistics of eight-digit hydrologic unit code (HUC8) annual runoff comparison
between simulated (VegET) and observed (WaterWatch [49]) for three water years (2012, 2016, 2018),
without filter and with filter (excluding HUC8s when runoff (R) and precipitation (P) ratio is greater
than 0.40.

Statistics
Without Filter With Filter (R/P ≤ 0.40)

2012 2016 2018 2012 2016 2018

N (HUC8) 1762 1762 1762 1441 1432 1396

r (correlation coefficient) 0.90 0.88 0.90 0.82 0.81 0.82

WaterWatch runoff (mm/yr) 216 297 267 128 205 165

VegET runoff (mm/yr) 173 253 203 122 198 141

Bias (mm/yr) −44 −44 −64 −6 −7 −24

Relative bias (%) −20.2 −14.8 −23.9 −4.6 −3.4 −14.6

RMSE (mm/yr) 144 163 157 85 127 107

Relative RMSE (%) 66.5 54.9 58.9 66.9 62.2 64.9

Figure 13. Major water balance components for the Upper Mississippi River Basin for water year 2012
(a) precipitation (P) from gridMET [30], (b) actual evapotranspiration (ETa) from VegET, (c) surface
runoff (R) from VegET, and (d) monthly P, ETa, and runoff (simulated R (VegET) and observed R
(WaterWatch).

Despite the bias and uncertainty, the overall performance of the VegET runoff is
satisfactory for an uncalibrated model. Potential sources of errors could be attributed to the
gridded precipitation input and model parameters. For example, if gridded precipitation is
lower than the actual amount fallen over a basin, the VegET runoff will certainly be lower
than the observed. The relative accuracy of VegET runoff is not critical for the estimation of
ETa as ETa is assigned a priority in the calculation using the saturation excess principle, i.e.,
runoff is generated once the root-zone is filled with enough soil moisture.

The annual runoff comparison provided good results with percent bias less than 15%
(with R/P ≤ 0.40 filter) for all water years. The percent bias is acceptable considering
these are an uncalibrated results from a simple bucket model to handle complex physical
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processes that are often unique to each watershed. It is possible that the performance of
VegET model varies across HUC8 watersheds, and the single threshold (R/P ≤ 0.40) filter
applied to the CONUS-scale study may not represent the water balance characteristics of
each watershed. However, the VegET model can be calibrated and optimized when finer
scale spatial information is needed.

4. Case Study Applications

The spatially explicit Landscape Water Requirement Satisfaction Index (L-WRSI) is
an indicator of landscape performance akin to the well-established WRSI for monitoring
crop production based on the availability of precipitation and soil moisture to meet crop
or landscape water requirements (ETc) during the growing season [22]. L-WRSI can be
estimated as the ratio (%) of seasonal ETa to the seasonal ETc. Similar calculations are used
for L-WRSI where Kcp is used instead of Kc to define the landscape water requirement
phenology as follows:

L-WRSI = ∑ ETa
∑ ETc

× 100 (21)

ETc = Kcp × ETo (22)

where ∑ ETa is the sum of ETa (mm) for the selected time period (month, season, year);
∑ ETc is the sum of the landscape water requirement (mm) for the selected time period and
denotes landscape-specific ETo after an adjustment is made to the reference crop ETo by the
use of the LSP coefficient (Kcp). Kcp values define the seasonal water requirement patterns
of the landscape.

Figure 14 illustrates the concept of the L-WRSI. The gray (ETc) and green (ETa) lines are
the two components creating the L-WRSI. The difference between the two lines indicates the
water deficit during insufficient precipitation, which leads to the reduction in the L-WRSI
from 100%. The annual (January–December) and seasonal (May–September) cumulative
deficit are represented by L-WRSI values of 85 and 89, respectively, i.e., 85% and 89% of
the median landscape water requirement, met by precipitation, for the year and the season
in 2018. The main deficit in the growing season was observed in July with a relatively
low amount of precipitation. However, the 11% deficit for the season may not necessarily
reflect an actual water deficit that would lead to a proportional yield reduction due to
uncertainties in model inputs and assumptions; however, the relative magnitude in space
and time could be used for drought monitoring and early warning by comparing the index
across years and regions.

Figure 14. Illustration of the Landscape Water Requirement Satisfaction Index (L-WRSI) concept
using daily precipitation (P), reference ET (ETo), actual evapotranspiration (ETa), and landscape water
requirement (ETc) for a pixel near the AmeriFlux Station (US-Ne3) for 2018. Seasonal (89%) and annual
L-WRSI (85%) indicate some level of dryness during the growing season and through the year.
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The L-WRSI values for the CONUS and GHA were calculated and used to illustrate
their agro-hydrologic applications for drought monitoring. L-WRSI is an integrated index
that includes precipitation, atmospheric demand, phenology, and soil properties.

4.1. CONUS

Figure 15 shows seasonal L-WRSI for three years, namely 2012, 2016, and 2018. L-WRSI
less than 100 indicates some form of water stress. Generally, L-WRSI > 95 is considered
optimal and less than 80 indicates a serious precipitation shortfall that may lead to a
substantial biomass and yield reduction for crops. A crop WRSI < 50 indicates crop failure
and need for irrigation to grow crops. It is important to note that L-WRSI is calculated based
on availability of moisture in the 1 m root-zone and does not take into account potential
access to groundwater by deep-rooted trees and shrubs. This is one explanation why
L-WRSI shows lower values (Figure 15) during the growing season in the southeast (e.g.,
Georgia), where the vegetation demand could be partially met by groundwater resources
for the tree-dominated landscapes. It also explains the supplemental irrigation requirement
for growing crops during the growing season in the region.

Figure 15. Growing season (May–September) Landscape Water Requirement Satisfaction Index
(L-WRSI) for the conterminous United States for (a) 2012, (b) 2016, and (c) 2018. Values close to 100
(green) show availability of enough precipitation to meet crop requirements during the growing
season. L-WRSI < 50 (brown tones) indicate severe moisture deficit in the top 1 m root zone to
meet the expected water requirement of the landscape. The index does not account for access to
groundwater or irrigation water applications.
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For the country-wide assessment, L-WRSI was grouped into four qualitative cat-
egories of Good (L-WRSI > 95%), Fair (80–95%), Poor (50–80%), and Severe Damage
(L-WRSI < 50%). A summary of the L-WRSI by croplands [56] of the CONUS (Figure 16)
shows the drought year of 2012 had 66% of the CONUS under severe damage whereas 2016
and 2018 experienced severe damage to a lesser extent (26–27%). The extent observed in
2016 and 2018 may represent the areas that normally require irrigation for crop production.
Such kind of metric would allow the expression of the impact of a drought year relative to
a normal year. In this case, one could say the 2012 damage was twice as severe as that of
2018 (an average precipitation year).

Figure 16. Summary of seasonal Landscape Water Requirement Satisfaction Index (L-WRSI) for crop
areas by four broad categories for the conterminous United States (CONUS). The rectangular charts
illustrate the percentage of the CONUS area that falls within the classes of Good (L-WRSI > 95%),
Fair (80–95%), Poor (50–80%), and Severe Damage (L-WRSI < 50%) for each year.

4.2. GHA

L-WRSI was generated for the Greater Horn of Africa where frequent droughts create
serious food insecurity challenges (Figure 17). In the GHA region, the L-WRSI is combined
with other drought monitoring products such as NDVI and hydrologic indicators to develop
the convergence of evidence framework needed for food insecurity assessment by FEWS
NET. Figure 17 shows 3-month L-WRSI ending on the named month. For example, January
2018 L-WRSI comprises the ratio of ETa to ETc for the months of November 2017, December
2017, and January 2018. The spatial distribution of L-WRSI in the different seasons shows
the complex nature of precipitation and vegetation pattern in the region. L-WRSI values
can be summarized by district or watershed over a historical period to understand the
relative performance of the landscape across regions and time periods.

 

Figure 17. Landscape Water Requirement Satisfaction Index (L-WRSI) distribution in the Greater
Horn of Africa using 3-month moving total for ETa and ETc during 2018. L-WRSI spatial patterns
reflect the growing season dynamics across the region.

As opposed to the existing WRSI product of FEWS NET [22] for crop monitoring,
the current continuous 3-month L-WRSI brings enhanced features of (1) the L-WRSI is
continuous in space because the Kcp is generated from the NDVI-based LSP and does
not depend on crop types or growing regions where the Kc is applied, (2) L-WRSI does

435



Hydrology 2023, 10, 168

not require estimation of start-of-season and end-of-season layers, which could introduce
additional sources of uncertainty, making year-to-year comparison more reliable, and
(3) because of the daily, year-round modeling, any desired time period can be simulated in
the world instead of pre-specified seasons for a given region.

5. Conclusions

The main objective of this study is to present the updated agro-hydrologic VegET v2.0
model [29] along with performance evaluation results and drought monitoring applications
over the conterminous United States and Greater Horn of Africa. A successful integration of
a simple temperature-index based snowpack and melt process algorithm has been adapted
to work with the VegET model.

Limited evaluation results indicate an encouraging performance in terms of capturing
the timing and duration of snow accumulation and melt. Evaluation of soil moisture,
ETa, and runoff estimations were reasonable in terms of capturing relative differences in
space and time, indicating the usefulness of the model for drought monitoring purposes
across diverse ecosystems using the highly integrated L-WRSI product. The operational
implementation of the L-WRSI in the Greater Horn of Africa by the Famine Early Warning
System Network can be expanded to a global coverage due to the readily available nature
of gridded weather datasets and remotely sensed model parameters.

The spatiotemporal patterns of VegET ETa indicate that VegET could be used for
the determination of net irrigation water use (blue water) when combined with energy
balance models that estimate total ETa by quantifying the green water contribution from
precipitation and soil moisture.

With continued evaluation and improvement, the VegET model can also be used to
help improve flood forecasting because of the unique inclusion of the readily available land
surface phenology (LSP) that accounts for vegetation dynamics in hydrologic modeling,
without requiring specification of land cover types.
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Abstract: Water tunnels are one of the oldest hydro-technologies for extracting water resources
and/or transmitting them through water distribution systems. In the past, human societies have
used tunneling for various purposes, including development, as a measure to enable underground
resource extraction and the construction of transportation networks in challenging landscapes and
topographies. The development of hydro-technology potentially involves the construction of tunnels
to feed aqueducts, irrigation and waste water systems. Thus, the ability to make and maintain
tunnels became an important component in creating lasting and sustainable water systems, which
increased water supply and security, minimized construction costs, and reduced environmental
impact. Thus, this review asks how, when and why human societies of the past included tunneling for
the development of lasting water supply systems. This review presents a comprehensive overview
across time and space, covering the history of tunneling in hydro technology from antiquity to the
present, and it ponders how past experiences could impact on future hydro-technological projects
involving tunneling. A historical review of tunnel systems enhances our understanding of the
potential, performance, challenges, and prospects associated with the use of hydro-techniques. In
the past, as the different examples in time and space demonstrate, tunneling was often dedicated
to solving local problems of supply and disposal. However, across the world, some features were
repeated, including the need for carving through the living rock or digging to create tunnels covered
with stone slabs. Also, the world-wide use of extensive and costly tunnel systems indicates the high
level of investment which human societies are willing to make for securing control over and with its
water resources. This study helps us to gather inspiration from proven technologies of the past and
more recent knowledge of water tunnel design and construction. As we face global warming and
its derivate problems, including problems of water scarcity and flooding, the ability to create and
maintain tunnels remains an important technology for the future.
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1. Prolegomena

By studying the past we learn about the present and are planning anything for the future.

Andreas N. Angelakis

Traditional water tunnels were constructed mainly for the exploitation of groundwater
in arid and semi-arid regions. These technologies presented major achievements in this
scientific field throughout the millennia [1]. It is not easy to study past water tunnels
and demonstrate their sustainability. However, Barghouth and Al-Sa’ed [2] presented
an overview of the sustainability of ancient water supply systems in Jerusalem from the
Chalcolithic period (ca 4500–3200 BC) to the present. Ancient evidence and landscape set-
tings indicated that water resources management in Jerusalem was based on underground
hydro-structures. Sustainable water supply facilities were erected, consisting mainly of
well-developed water tunnels or other, similar underground hydro-technologies, to supply
the town and its agricultural developments, showing that irrigation was practiced for many
centuries in that area.

Another example from India demonstrates how traditional water tunnels have been
used for centuries to tap into groundwater resources, particularly in arid and semi-arid
regions, described in this manuscript in detail. These hydro-technologies have been a
significant achievement in the field of water management, and their sustainability can be
observed through the ages. The Indus Valley Civilization in ancient India had an extensive
network of underground channels, which are called karez there. Details are provided on
those underground aqueducts which, in some parts of the world, are named qanats [3].
They are also known as foggaras and khettaras, and were used mainly for irrigation and
other purposes [4]. In modern times, India has made significant progress in tunneling
engineering. For example, the Mumbai Metro Rail Project has included the construction
of a 33.5 km long underground section, which was dug using tunnel boring machines
(TBMs) to reduce the cost and duration of tunneling while minimizing environmental
impact [5]. Furthermore, the Chenani–Nashri Tunnel, India’s longest tunnel, was built
using the New Austrian Tunneling Method (NATM), a sustainable and adaptable approach
to tunneling that minimizes resource consumption while enhancing worker safety [6,7].
As India continues to invest in infrastructure, it is anticipated that it will make further
strides in tunneling engineering, contributing to sustainable development in the country.
In addition, tunnels for drainage purposes were developed in central Greece from the end
of the Bronze Age. It should also be noted that sometimes tunnels were surface-cut and
covered for crossing a watershed, and “valley-side” tunnels were built to pass steep rock
walls or to protect an aqueduct in unstable geology. Also, the shafts-and-galley technique
was developed, which is known as qanat [8,9]. These are, moreover, discussed in the
main text.

The sustainability of ancient water supply systems in India can be seen in the karez
system, which is prevalent in the western regions of the country. The karez system dates
back to the 2nd century AD at least; it is an underground water management system
that collects water from mountain springs and channels it through a series of tunnels to
irrigate agricultural land [10]. Similarly, in the southern state of Tamil Nadu, a network of
underground tunnels known as “Eri-pattu” has been used since ancient times to provide
irrigation to paddy fields. These tunnels collect rainwater during the monsoon season and
store it underground, providing a year-round supply of water for irrigation [11]. In recent
times, modern technologies such as bore wells and tube wells have become more prevalent
in India, but traditional water tunnels are still used in many parts of the country, especially
in rural areas. These hydro-technologies have played a crucial role in sustaining agriculture
and ensuring the availability of water for domestic use [12].
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This paper deals with the construction of water tunnels throughout history [13–15].
It focuses on major water tunnels built as excavation structures in solid rock or sediment,
meant to transport flowing water, and it excludes tunnel-like structures built by an excava-
tion of a trench from the surface and the insertion of pipes or masonry-covered channels,
such as the main structure of many aqueducts and drains.

This review study is divided into six sections, which include geographical and
chronological developments as well as observations on various types of tunneling hydro-
technologies and practices. Section 1, the prolegomena, is an introduction to the subject.
Section 2 elucidates the distinct histories of tunneling hydro-technologies from the pre-
historic to the Medieval Era. Section 3 deals with tunneling hydro-technologies in the
Early and Mid-Modern periods, and Section 4 discusses tunneling hydro-technologies in
contemporary times. Section 5 deals with emerging trends and possible future challenges
of tunneling hydro-technologies and practices. Finally, Section 6, the epilogue, comprises
conclusive remarks and highlights.

2. Tunneling: From the Prehistoric to Early Medieval Era (ca 7600 BC–1453 AD)

2.1. Persian and Other Prehistoric Civilizations (ca 7600–110 BC)

Located in an arid and semi-arid region of Asia, ancient Persia (today, Iran) was a
dry country that had always faced water shortage problems. Ancient dams, irrigation
canals, and qanats show the long-lasting struggle of people to deal with drought. To satisfy
the increasing demand for water due to the increasing population, Persians invented a
new system to bring groundwater to the surface using gravitational force. This tunneling
system, which is called qanat, is still in use and some of them date back 3000 years. Today,
there are about 32,000 qanats in Iran, which provide about 10 billion m3/yr. Qanat was
introduced to other regions of the world (e.g., Japan, Egypt, Oman, Spain, and Chile),
and it is thus considered the main contribution of Persians to hydraulic practices. Qanat
has a main sloping tunnel and many shaft wells, which together bring water from a high
mountain region to low-elevation lands. Compared to deep wells, qanats are cost-efficient
and long-lasting in transferring water without requiring energy. They also balance natural
inflow and outflow [16,17].

Although thousands of years have passed since then, this method is still used in an
important proportion of rural, urban, and agricultural water supply. Using this method,
Persians/Iranians have been successful in the development of the sustainable exploitation
of groundwater and have withstood the drought conditions in Iran [16,18].

The construction of the qanat was undertaken by skilled laborers and exclusively
with hand labor. The process was initiated by the search for an appropriate mother well
(probably near mountainous areas). For this purpose, some test wells were dug and checked
for the groundwater level. After decisions were made about the mother well location, paths
towards irrigated lands were defined on the ground. Then, the work team began digging
the main tunnel. To be able to work underground (having enough oxygen, sending out
the unnecessary soil, and going out and coming back to the tunnel) vertical shafts were
established over the path. A schematic process of a qanat construction is shown in Figure 1.

The elements of a qanat can be defined as follows [16,17]:
Appearance: The place where water comes into view on the surface (tunnel reaches the

Earth’s surface).
Tunnel: The canal, with a section resembling a horseshoe inside the ground, featuring

a gentle slope for water conveyance from the aquifer to the appearance.
Wet zone: The infiltrating walls inside the gallery of a qanat. The discharge rate is

directly dependent upon the wet zone. Indeed, this is part of the tunnel which goes below
the groundwater table.

Dry zone: A portion of the gallery between the wet zone and the appearance. The canal
was gradually cut deeper due to the decline of the water table.

Shaft: The dry vertical wells situated across the gallery facilitated soil extraction as
well as ventilation and dredging. The distance between the two shafts was based on the
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depth of the qanat and the air passage. The nearer the shafts were to the mother well, the
deeper they were.

Mother well: The furthest, water-infiltrating well is called the mother well.

 
Figure 1. Schematic vertical cross-section of qanat construction (adapted from [3]).

Qanat has many advantages, namely, securing water for irrigation and household
consumption in arid regions, balancing the use of groundwater, and low maintenance and
operation costs. At the same time, qanats are vulnerable to floods and earthquakes, and
they cannot be used for exploiting water from deep layers. Also, in comparison to wells,
qanats are more lasting and sustainable and have no energy cost for exploiting water.

Qanat routes need to be regularly cleaned and maintained because they are subjected
to damage and destruction by flash floods. To prevent shafts from being filled with sand,
they are covered with stone slabs or other objects. One of the famous qanats in Iran is
shown in Figure 2 (i.e., Kish qanat).

  
(a) (b) 

Figure 2. The Kish qanat: (a) the appearance and (b) view of the main tunnel.

2.2. Early Ancient Egyptians and Other Civilizations (ca 4000–30 BC)

In Egypt, one of the oldest civilizations, the River Nile has been the main source of
freshwater, supplying about 97% of its water resources. Even places far away from the
Nile conveyed its water through open and closed aqueducts. The type of aqueduct used in
early Egypt was a very basic structure. It consisted of an open canal excavated between the
Nile River and the location which required the water, made from stones. Open and closed
aqueducts were applied commonly in pyramids that were constructed by pharaohs close
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to the Nile shoreline. The aqueducts transmitted water to the bottom of these pyramids.
They linked the base of the pyramid and the Nile bed with a huge open canal controlled by
massive doors of stone that allowed water to pass from the Nile. For example, under the
Giza pyramids, the openings and passageways for water transferring are equal to the size
of a football playing area. In addition, many vertical openings and aqueducts were used to
control the Nile flood, as these openings were lower than the Nile level and sunk the water
into the aqueducts underneath the pyramids [19].

Egyptians also used underground aqueducts to deliver the Nile water to the temples.
For example, in 57 BC, Ptolemy III built the Edfu temple, in which there was a room called
the chamber of the Nile where the priests of the temple obtained the holy water of the
Nile. This chamber received Nile water through a stone-built tunnel with a length of one
kilometer up to the Nile shoreline. The Dendera temple also featured a similar chamber
and stone tunnel [20].

The Persians invaded Egypt in 525 BC and introduced the technology of the long
underground aqueducts. For example, they constructed what they called a quant, or
aqueduct, to deliver water to the Kharga Oasis 200 km west of the Nile. The aqueduct was
constructed from a slightly sloping pathway underground, which connected with many
vertical shafts [21]. Another good example of the digging of an underground aqueduct
can be found at the Bahariya Oasis, where many sites display remains of this aqueduct.
Moreover, in the northeastern part of the Sinai peninsula, there is a spring called Ain EI
Gudeirat, which supplied spring water from an aqueduct that was built hundreds of years
ago and recently watered olive trees at a daily rate of 1500 m3 [22,23].

In Alexandria, a city in the northwest part of Egypt, the Greek engineer Archimedes
supervised the construction of an overturned (or inverted) siphon to transfer water for
kilometers and hundreds of meters of hydraulic heads. These pipes were mostly made of
stone and helped transfer Nile water in aqueducts across valleys to the city [24]. A map of
ancient Alexandria with a channel of the Nile Delta is shown in Figure 3.

 

Figure 3. Map of Ancient Alexandria.
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It should be noticed that an Inverted siphon Is not a siphon but a term applied to pipes
that must dip below an obstruction to form a “U” shaped flow path. Large inverted siphons
are used to convey water being carried in canals or flumes across valleys, for irrigation or
gold mining. These siphons were developed in Classical times; however, the Romans used
inverted siphons of lead pipes to cross valleys that were too big for the construction of an
aqueduct (e.g., Aspendos aqueduct) [3].

2.3. Ancient India (ca 3300–185 BC)

India has a rich history of tunneling and hydro-technology dating back to the prehis-
toric era. Some of the earliest examples of tunneling in India can be found in the Indus
Valley Civilization, which existed from approximately 3300 BC to 1300 BC. One of the oldest
known tunnels is the Khandagiri–Udayagiri cave complex in Odisha, which was hidden
by sandstone cliffs during the Maurya period (321–185 BC), and was used for residential
spaces and places of worship [25]. During the Mauryan Empire (321–185 BC), tunnels were
used to irrigate farmland and supply water to the growing population. These types of
caves are a series of rock-cut Jain and Buddhist temples that were built by carving into the
hillside, creating a network of tunnels and chambers.

During the Indus Valley Civilization, underground drainage systems were constructed
to manage water supply and mitigate floods. The Great Bath in Mohenjo-Daro is a re-
markable example of their expertise in hydro-engineering. This rectangular pool, built
around 2600 BC, was constructed using waterproof bricks and a complex system of water
channels and drains [26]. The Harappan city of Dholavira also has a sophisticated water
management system that included a series of underground tunnels and reservoirs [27]
(Figure 4). The Indus Valley people were innovative in their approach to tunneling and
used it as a means of managing water supply and creating efficient irrigation systems.

  
(a) (b) 

Figure 4. Underground tunnels and reservoirs in the Harappan city of Dholavira: (a) the southern
and (b) the eastern views [28].

Finally, there is limited evidence of tunneling in ancient India. However, the Mauryan
Empire (321–185 BC) made significant advancements in tunneling technology. Tunnels
were used for irrigation, with some examples being the Pataliputra irrigation tunnels in
present-day Bihar, India. Additionally, the construction of Emperor Ashoka’s rock-cut
edicts, dating back to the 3rd century BC, required extensive tunneling and carving into
solid rock [29].

2.4. Minoan and Mycenaean Civilizations (ca 3200–1050 BC)

Most Minoan aqueducts transported water through open channels, but a few examples
of covered surface channels have survived. In Knossos, water was transported by closed
terracotta pipes and/or open or covered channels of various dimensions through a gravity
aqueduct about 0.7 km long [30] (Figure 5).

445



Hydrology 2023, 10, 190

 
Figure 5. Part of the Knossos palace aqueduct [22].

An advanced hydraulic tunneling technique was introduced by the Minyans of main-
land Greece in about 1300 BC, using tunnels for drainage purposes. One prominent example
of this is the Akraifnio drainage tunnel, which drained Lake Kopais and used the land
for agriculture (Figure 6). The tunnel has a height of 1.8 m and a width of 1.5 m. Sixteen
vertical shafts were excavated along the axis of the tunnel, and through those the tunnel
was excavated [8].

Figure 6. Longitudinal section of the Kopais Minyans tunnel (“Commas” represent here the “dots”).

Several studies on the ancient Kopais drainage system have been carried out by several
researchers [31–34]. According to Knauss [32], Minyans attempted to gain land from Kopais
Lake in two main phases. The first phase used earth dams to protect irrigated polders
against floods. After a dam’s failure, a second system was developed. The second attempt
was based on a 25 km long canal that guided water from the Kopais basin to the natural
sinkholes located in the north-eastern part of the area.

The construction of the drainage of Lake Kopais was stopped at the end of the era of
Alexander the Great due to the end of the funding of the project. Alexander’s engineer had
begun the construction of a tunnel that would lead the water of the lake to the sea. The
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construction method used the technique of that period: the excavation of vertical shafts,
followed by horizontal excavation and the connection of the vertical shafts at the bottom
level [35].

2.5. Babylonian, Assyrian, and Other Asian Civilizations

Ancient Babylonian and Assyrian civilizations had advanced knowledge of tunneling
and hydro-technology, building elaborate underground aqueducts, tunnels, and canals to
manage water supply and irrigation.

The Sultanate of Oman is an arid region, and ever since its early history the country
has depended on groundwater as a freshwater resource. They used surface and under-
ground tunnels to convey water horizontally via gravity from groundwater into valleys for
irrigation and drinking purposes. They called these tunnels and aqueducts ‘Aflaj’, and they
had a long history dating back several thousands of years in Oman [36]. Aflaj is defined as
the plural of the term ‘Falaj’, which refers to a channel supplied by a groundwater source.
The term Falaj is Arabic and means ‘to divide or split’ [37]. Establishing Aflaj helped
ancient Omanis to provide freshwater for communities for different purposes. Omanis
classify Aflaj as Ghaily, Daudi, and Ayni. Ghaily Falaj is seasonal, as it relies on a shallow
underground source that stops in dry periods. The Daudi provides permanent water flow
via the top surface of the valley being used as a transferring channel. The Ayni Falaj derives
its water from natural springs and the water is usually hot because it comes from very deep
layers [38].

2.6. Iron Age (ca 1050–750 BC)

During the Iron Age in India (ca 1200–750 BC), tunneling technology was used pri-
marily for mining and transportation purposes. The Khetri Copper Mines in Rajasthan,
India, dating back to the 8th century BC, are an excellent example of ancient Indian mining
operations that utilized tunnels. These tunnels were excavated to extract copper ore from
the mines and transport it to smelting facilities. The technology used during this period was
primitive, with hand tools being the primary means of excavation. However, the expertise
of ancient Indian miners and tunnelers cannot be underestimated, as evidenced by the vast
network of interconnected tunnels that were constructed during this period [39].

2.7. Archaic, Classical, and Hellenistic Periods (ca 750 BC–31 BC)

One of the oldest tunnels in the world was built below Jerusalem in the 8th century
BC from the Gihon karst spring to the Siloam pool [40,41]. Known as Hezekiah’s tunnel
(Figure 7), this 500 m long structure was built by drilling from the spring and the destination
pool in two directions (counter-excavated tunnel), meeting in the middle. The tunnel still
carries water.

The technologies of hydraulic tunneling developed by prehistoric civilizations were
further developed and improved during historical times. Allegedly, in late Archaic Samos,
Greece, the engineer Eupalinus constructed the prestigious and renowned tunnel bear-
ing his name, the Eupalinos or Eupalinian aqueduct (Greek: Eυπαλίνιoν óρυγμα, i.e.,
Efpalinion orygma). The evidence of the historian Herodotus for the construction of the
tunnel (Histories, 3. 60) potentially connects the construction of the tunnel with the tyrant
Polycrates (ruled 540–522 BC). The aqueduct is 1036 m in length and runs through Mount
Kastro, and was built to provide fresh water for the island’s main city. The tunnel is the
second known tunnel in history to have been excavated from both ends (Ancient Greek:
μϕίστoμoν, i.e., amphistomon, having two openings), and the first with a geometry-

based approach in doing so [19]. The tunnel is inscribed on the UNESCO World Heritage
List along with the nearby Pythagoreion and Heraion of Samos, and it was designated as
an International Historic Civil Engineering Landmark in 2017 [42]. Today, the tunnel is a
popular tourist attraction and can be visited through its southern entrance. A view of a
section of the tunnel and a frequently used entrance is depicted below in Figure 8.
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Figure 7. Hezekiah’s tunnel. This tunnel still carries water (Photo Cees Passchier).

  
(a) (b) 

Figure 8. Eupalinion orygma: (a) a view of the orygma and water channel, and (b) a frequently
used entrance.

Engineer Eupalinos made an effort to have the two construction teams meet either
horizontally or vertically by the employment of the following techniques:

(a) In the vertical plane, at the start of work, Eupalinos leveled around the mountain,
probably following a contour line to ensure that both tunnels were started at the
same altitude. He increased the possibility of the two tunnels meeting each other, by
increasing the height of both tunnels at the point near the join. In the north tunnel,
he kept the floor horizontal and increased the height of the roof by 2.5 m, while in
the south tunnel he kept the roof horizontal and lowered the level of the floor by
0.6 m (Figure 8a). His precautions as to vertical deviation proved unnecessary, since
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measurements show that there was very little error. At the meeting point, the closing
error in altitude for the two tunnels was a few millimeters [43].

(b) In the horizontal plane, Eupalinos calculated the expected position of the meeting
point in the mountain. Since two parallel lines never meet, an error of more than 2 m
horizontally meant that the north and south tunnels would never meet. Therefore,
Eupalinos changed the direction of both tunnels, as shown in the picture (the north
tunnel to the left and the south tunnel to the right) (Figure 9b). This gave a catching
width that was wider by 17 m so that a crossing point would be guaranteed, even if
the tunnels were previously parallel and far away. They thus meet at nearly a right
angle [43].

 
(a) 

 
(b) 

Figure 9. Eupalinos increased the possibility of the two tunnels (right and left sites) meeting each
other: (a) in the horizontal plane and (b) in the vertical plane.

It should be noticed that the water channel used for water transfer was constructed at
the bottom of the rock-cut tunnel shown in Figure 8a. The rock-cut tunnel was a working
gallery from which the workers could lay the lower-lying terracotta conduit, which still
functioned in the time of Herodotus. Later, presumably due to blockage of the pipes, the
pipeline was broken open and the water allowed to overflow into the rock-cut channel.

Previously, scholars have used John Camp’s study [44] of the wells of the Athenian
Agora and their alleged origin in droughts in the ca 8th and 4th centuries as the impetus
for the development of underground aqueducts in mainland Greece. This is a likely
supposition; however, the builders of the first, major aqueducts, the so-called ‘tyrants’ of
the later Archaic age in the south and eastern parts of mainland Greece and in the Aegean
islands, may have had other ambitions as well. The autocratic rulers of the late archaic
period probably acknowledged the importance of well-functioning water supplies, both as
a means to support the growing populations of cities and as a way to rally support behind
their rule ‘outside the law’.

Chiotis and Marinos [9] pointed out that the aqueducts from the ca 6th through the 4th
centuries fell into versions, which were either surface-cut and covered channels as in the
Peisistratean and Acharnian aqueducts or shafts-and-galley techniques, as in the aqueducts
of Aegina and Megara. Furthermore, Chiotis and Marinos [9] pointed out the important
discussion of whether there might be a link between these aqueducts and the Persian qanats
developed during the Achaemenid Empire (538–323 BC). Basically, and unlike the qanats,
which collect water from a mother well, Greek aqueducts of the shafts-and-galley type
collect water, ’mostly all along their course in temperate areas.’ Different types of climate,
geology, and topography inspired different strategies of technological development.

The mid-sixth century tyrants, the Peisistratids, who governed Athens after the reform
period of Solon in 594 BC, have frequently been associated with improvements in the
Athenian water supply. The historian Thucydides (2.15.5) attributed alterations to the
fountain ‘Enneacrounos’, or ‘Nine Pipes’ to ‘the tyrants’. Later this famous fountain
appeared under the name of the nymph Callirrhoe—‘Fairwater’ ([45], 294, et passim).
Otherwise, the literature evidence is silent about the construction works of the Peisistratids,
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and we have to rely on the archaeological evidence for more information about the water
supply and construction of tunnels in this period (see further [46–48]).

The city-state of Megara, a western neighbor to Athens, saw an erratic political de-
velopment in the late archaic age, beginning with the tyrant Theagenes, and an oligarchy
followed by democracy in the 5th century. The engineer Eupalinos originated from Megara,
and it has been suggested that his water-technological interest may have originated in the
city’s solutions to water management. A fountain was fed with water from an aqueduct
covered with long intersected roof gallery sections ([49]).

The construction of the ancient aqueduct of the Aegean island Naxos, Greece, late
in the 6th century BC, may have happened either during the tyranny of Lygdamis or the
succeeding brief interval of democracy on the island. The aqueduct ran over 11 km on
hillsides at the upper limit of fertile land and consisted of socket-jointed clay pipes of a
diameter of ca 0.30 m buried in a ditch ca 1 m underground [50] (Figure 10). Its inclination
varied from 0.01 to 0.04%.

 
Figure 10. Naxos tunnel [50].

Most of the examples of hydraulic tunneling described above were constructed to
facilitate the water supply of urban centers, and there seems to have been a keen inter-
est among tyrants, but also later, in democratic Athens, to engage in these projects. As
mentioned above, such interest was probably due to the support expected from the popula-
tion. Furthermore, tunneling associated with water management is probably also found in
association with intensive agricultural strategies applied during the Classical Period (ca.
480–323 BC). Some years ago, Moreno [51] argued that an example existed in the Attic deme
(local parish) of Euonymon on the southwestern coast of the peninsula. Here, Moreno
argued that intensive farming, combining terracing of farmland with extensive tunneling,
providing irrigation for the crops and ensured the basis of a lucrative trade in cash crops for
nearby Athens. Other types of agriculture of a more extensive nature undoubtedly existed
in other locations in Attica, but the southernmost deme of Atene (contra [52], but see [53]),
may have shared features with the up-coast example of Euonymon; however, irrigated
water of Athens may have been supplied by open conduits.

2.8. Roman Period (31 BC–476 AD)

In the Mediterranean part of the Roman Empire, tunnels were built for (a) the drainage
of basins and lakes; (b) the extraction of water from a nappe (spring tunnels); (c) the
transport of water in aqueducts; (d) the servicing of harbors, related to silting problems;
and (e) for mining gold.
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2.8.1. Drainage Tunnels

Some tunnels built in Roman times constitute attempts to drain lakes and use the
land for agriculture [14]. The longest Roman tunnel built for drainage is the Lake Fucino
tunnel, with a length of 5650 m [54–58]. It was ordered by the emperor Claudius and was
built by 30,000 slaves in 11 years in the qanat mode through 40 vertical access shafts. The
older drainage tunnels of Lakes Nemi and Albano [13,59–61] were meant to stabilize the
level of the lakes rather than drain them. They contained screens to block debris from
entering the tunnel. Drainage tunnels from the Roman period are also known in Greece
(Lake Kopais), Turkey, and France. In Turkey, the 250 m-long Bezirgan tunnel near Kalkan
drained a polje [62]. In France, the Étang de Clausonne tunnel drained a shallow lake [63]
(Figure 11). This lake blocked the passage of the Nîmes Roman aqueduct that had to be
built below the level of the lake, which therefore had to be drained. The drainage tunnel is
adjacent to an aqueduct tunnel (Figure 11).

  
(a) (b) 

Figure 11. Drainage tunnel of the Étang de Clausonne, France: (a) upstream entrance of the drainage
tunnel, originally protected by a metal grille; (b) downstream aspect of the drainage tunnel (left) built
to make the Nîmes Roman aqueduct channel (right) pass below the Étang de Clausonne. Only the
aqueduct tunnel has carbonate deposits. Water was flowing in opposite directions in the two tunnels.
Sernhac, France (Photos Cees Passchier).

2.8.2. Spring Tunnels

Tunnels dug into solid rock to access groundwater were built to provide water for
many ancient aqueducts. They have been thoroughly studied by speleologists in Italy [64],
where more than 140 such spring tunnels from Etruscan, Greek, and Roman construction
have been described in the “ancient aqueducts of Italy” project [64]. These are complex
structures meant to capture enough water to fill an aqueduct downstream. Some are
similar in purpose to qanats, but were built by driving a horizontal shaft into the rock
without the help of vertical access shafts. Longer spring tunnels, however, were built as
proper qanats, with vertical access shafts from which the tunnel was dug in two directions.
Examples are tunnels for the Roman aqueducts of Xanthos (Figure 12), Turkey [65]; Sexi,
Spain [66–68]; Zadar [69,70] and Novalja, Croatia [71]. There are also several examples
in the middle east, especially in Syria [72,73]; in Northern Africa [74]; and, curiously, in
western Germany [14,15,75]. A unique case is the tunnel that was excavated to tap the
underground water source of Uxellodunum during a siege in the Gallic wars to force the
inhabitants to surrender [76].
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(a) (b) 

  
(c) (d) 

Figure 12. Spring tunnel of the Xanthos aqueduct, Turkey. The tunnel was partially dug into the rock
and extended with ashlars and cover stones. The channel is deepened, leaving a footpath along the
side for access: (a) inside, looking to the exterior; (b) inside, looking towards the spring; (c) exterior.
The structure is still in use to provide water for irrigation. (d) Branching tunnel of Novalja, Croatia.
The tunnel was bifurcated to access two springs (Photos Cees Passchier).

2.8.3. Aqueduct Tunnels

Aqueduct tunnels can be divided into “transfer tunnels” needed to cross below hills
and mountains (Figures 13–17), and “valley-side” tunnels built to pass steep rock walls
or to protect an aqueduct in unstable geology (Figure 18). Transfer tunnels exist both in
the counter-excavated mode, digging from two entrances to a meeting point, or, more
commonly, in qanat mode (Figures 13 and 14), starting with vertical shafts dug from the
surface downwards to a common level, after which the shafts are connected by horizontal
tunnel segments. Counter-excavated tunnels have only one meeting point, while qanat-
type tunnels have as many meeting points as there are shafts (Figure 14). Transfer tunnels
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of both types are among the longest tunnels built in the ancient world. They include the
aqueduct tunnel of Bologna (18 km long) [15]; the Vernelles tunnel in the Traconnade tunnel
of Aix-en-Provence, which passes below a watershed (>8 km long—[14,77]); the Forino
tunnel of the Aqua Augusta near Naples (>6 km long [78,79]); the 4 km long Annio Novus
tunnel of Valle Barberini [80–82]; and the 5 km long tunnel of Cella in Spain [83]. Some
other tunnel examples are from Jerusalem and Side (both over 2 km long: [14]); Paterno
(1903 m: [78]); Syracuse (1385 m: [15]); Lyon (Mornant tunnel in the Gier aqueduct of
Lyon, France, 825 m long: [84]); and several shorter tunnels near Naples [78,85]. A famous
aqueduct tunnel of 428 m long exists in Saldae, Algeria [14,86]. This tunnel was described
on the gravestone of Nonius Datus, a Roman engineer who specialized in the building of
water tunnels. He was asked to solve a problem with this counter-excavated tunnel since
the workers passed each other without meeting [14,15]. This is one of the few reports we
have of Roman tunnel building written by one of the engineers responsible.

Another interesting tunnel is the 230 m long Bullica tunnel of the Marcia aqueduct,
Rome, which consisted of a service tunnel wide enough for carts, from which a lower-lying
aqueduct tunnel could be accessed, connected to the access tunnel by shafts (Figure 17c) in
the sidewall [81].

Transfer tunnels as mentioned above either had water running on the bare rock if the
rock was impermeable, or, more commonly, were plastered (Figure 15b) or had a regular
excavated or masonry gutter or even a vaulted channel built inside them (Figure 16).
Tunnel workers used oil lamps set in niches to light the workforce, and for maintenance.
Commonly, a pilot tunnel was dug first, which was then extended and widened downwards
(Figure 15a). Tunnels usually have a rounded vault, but they may also have a flat roof
(Figures 14d and 17c).

  
(a) (b) 

Figure 13. Qanat-mode tunnels and shafts: (a) tunnel and (b) vertical access and building shaft with
niches for working crews, Tiermes, Spain (Photos Cees Passchier).
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(a) (b) 

  
(c) (d) 

Figure 14. The meeting point between two excavation sections in several tunnels: (a) the Chelva
tunnel, Spain, with horizontal offset. The view is towards the end of a section of the gallery that
meets another one at the right-hand side (person visible). (b) A similar meeting point, with a major
horizontal offset and small vertical offset, Chelva aqueduct. (c) The meeting point of the aqueduct
tunnel of Tiermes, Spain, with a vertical offset. (d) Meeting point with vertical offset in the Sernhac
tunnel of the Nîmes aqueduct. The tunnel has a flat roof because of the strong horizontal stratification
(Photos Cees Passchier).
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(a) (b) 

Figure 15. Water tunnels: (a) tunnel with a pear-shaped profile at Uxama, Spain. This tunnel was
probably first dug as a narrow structure, represented by the top, but later widened in its lower part
to lower the water level and make access for cleaning crews easier [87]. (b) Tunnel of the Cahors
aqueduct, Spain, where a tunnel was made narrower and trapezoidal by inserting wedge-shaped
masses of mortar (Photos Cees Passchier).

  
(a) (b) 

Figure 16. Conduits built into an aqueduct tunnel: (a) Sernhac tunnel, France; a masonry channel
was built into the tunnel for passage of the Nîmes aqueduct (Photo (a)—Cees Passchier). (b) Cave de
Curée, with a vaulted aqueduct channel in the tunnel, part of the Gier aqueduct of Lyon, France—
(http://www.romanaqueducts.info/, accessed on 15 August 2023).
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(a) (b) (c) 

Figure 17. Constructions improving the shape of aqueduct tunnels: (a) masonry wall section in a
tunnel where the sidewall was broken out. Traconnade aqueduct of Aix-en-Provence (France). (b) A
vault structure over a tunnel that was dug from the top and then closed with a vault. Traconnade
aqueduct, quarry of Santa Anna, Peyrolles. This tunnel is visible in profile, since it was later cut
by a quarry. (c) Bullica tunnel, a maintenance tunnel of the Marcia aqueduct, with access shafts to
the narrow aqueduct tunnel that runs at a deeper level. The metal bars are modern, but in ancient
times a wooden beam would have been placed above the shaft to allow workers to descend and clean
(Photos Cees Passchier).

  
(a) (b) 

Figure 18. Valley-side tunnels with “windows” from which the tunnel was excavated: (a) Chaves
aqueduct, Spain, and (b) Galermi aqueduct, Sicily (Photo Cees Passchier).
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Since tunnels were not meant to be seen except by maintenance crews, they were
purely functional structures and their architectural design was not significant. Therefore,
traces of their construction and maintenance are usually well preserved, making it possible
to see how they were built. In many tunnels, there are still traces of meeting points where
two galleries, dug from opposite sides, met at an angle, or different altitudes (Figure 14).

Although most tunnels have remained unchanged and even lack a constructed water
channel, modifications were sometimes made, either widening or narrowing a tunnel
(Figure 15). There are also supporting structures, such as a masonry vault or sections of
wall-filling in cavities or broken-out sections of tunnel wall (Figure 17a,b).

Many aqueducts have “valley-side tunnels”, most built along steep vertical cliffs,
which had to be passed (Figure 18). The technique to build them usually involved “hori-
zontal shafts” or windows cut into the wall of the cliff, probably by workers suspended
from above, and then connecting the shafts as in qanat construction. Tunnels of this type
are known from Chelva, Spain; Galermi, Sicily, and Cella, Spain (Figure 18). A variation
of this type of tunnel, the Gadara tunnel in Jordan, was built by excavating sloping shafts
with staircases into the side of a valley, which were then connected [88,89]. This produced
the longest tunnel of the ancient world, with a minimum length of 107 km and 2900 access
shafts, supplying the city of Gadara with water from springs in Syria. This tunnel was
probably built instead of a normal aqueduct channel at the surface to avoid problems of
land sliding in the local soft, crumbling limestone [85,88].

2.8.4. Harbor-Related Tunnels

Harbor-related tunnels, built to either divert rivers away from a harbor or to regulate
the flow of water into a harbor, are known from Seleucea, Turkey, and Cosa, Italy. The
Çevlik tunnels of Seleucia Pieria, with a total length of 875 m [90–92], are part of a flood
diversion system including dams and channels to keep flood water away from the harbors
of Antiochia, the third largest city in the Roman Empire. In Cosa, a smaller structure, the
“Tagliata Etrusca”, was dug to avoid the silting of the harbor (Figure 19).

 
Figure 19. Tagliata Etrusca, Ansedonia. A tunnel and gallery cut into the rock to modify currents in
the harbor of Cosa, meant to avoid silting (Photo Cees Passchier).
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2.8.5. Tunnels Associated with Mining

A special application of water tunnels is those built to support the mining of metals,
especially gold. In Spain, the 120 m long Montefurado tunnel (Figure 20a) was built in the
time of Trajan to breach a meander of the river Sil and divert it, so that the riverbed could
be explored for gold [93]. At the Las Medulas gold mines (Figure 20b), the largest in the
Roman Empire [94], tunnels were dug into gold-bearing gravels not to extract the gold,
but to assist in the mining process. These tunnels were dug close to the rock wall of the
mine, but had no exit; a dammed supply of water upstream was channeled into the tunnels
at high velocity, “fracking” the gold-bearing rocks (Figure 20b–d), while continued flow
eroded the rock. This is a unique way of using water tunnels in the Roman world.

  
(a) (b) 

  
(c) (d) 

Figure 20. Tunnels related to gold exploration: (a) Tunnel of Montefurado, dug to change the course
of the river Sil for gold exploration. (b) Water tunnels in Las Medulas, Spain. At the top, one of the
original tunnels dug for “fracking” the conglomerate; at the bottom, one of the larger washed-out
tunnels. (c) Typical wash-out tunnel of the Las Medulas system. (d) Tunnel fragments are left in a
pillar of conglomerate, while the surrounding area has been mined; Montefurado, Spain (Photos
Cees Passchier).
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During the Roman period in India (31 BC–476 AD), tunneling technology was used
mainly for water management and irrigation purposes. A notable example is the Kaveri
Delta system, which dates back to the 1st century AD and features a network of tunnels
and canals that were used to divert water from the Kaveri River for agricultural irrigation.
The technology used during this period was advanced, with sophisticated engineering
techniques being employed for tunnel excavation and maintenance. Additionally, the
ancient Indian system of step-wells, such as the Rani ki vav in Gujarat, was also constructed
during this period and utilized tunneling techniques for water storage and distribution [95].

2.9. Byzantine Period (ca 330–1453 AD)

The Byzantine Empire, which replaced the Roman Empire in Anatolia and the east-
ern Mediterranean, continued the tradition of building advanced water infrastructure,
including water tunnels, to supply fresh water to cities and settlements. Istanbul (formerly
known as Constantinople) struggled with water problems throughout its history and made
enormous efforts to obtain water from nearby locations. After the city was declared the
capital of the Roman Empire, Emperor Constantine built the longest line of tunnels in
the Roman Empire, which began in Isırancalar (Figure 21) [96]. It is believed that the
construction of this line was started by Constantine between 324 and 337 and completed
by later emperors [97]. In a study on this subject, the length of this water supply line,
determined through field and map work carried out by [98] between 1993 and 1996, was
given as 242 km [99], which is 2.5 times longer than the longest Carthaginian water supply
tunnel built by the Romans, with a length of 91 km [100]. Later, Valens (364–378) had
a water pipeline built to bring water from the Halkalı area [101]. It is also known that
Theodosius (379–395) had an aqueduct built to bring water from the Belgrade Forest [102].

 

Figure 21. Map showing the locations of cisterns and water channels in Constantinople [97].
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Among other water tunnels in this region is the first canal and bridge system, which
was completed in 373 AD, and which brought water from the important springs in Dana-
mandra and Pınarca. This system had a total length of 268 km and included an estimated
130 new bridges, varying in size from single-arch to larger-than-average double-arch
bridges. All of the enclosed water channels were constructed of mortar-covered stone
blocks that were 1 m wide and 1.6 m high, with an arched top. Within the city, the
Bozdoğan Bridge (or Valens Aqueduct), with its eighty arches and a length of 971 m, is
considered one of the longest water bridges in the Roman world. But that is not all; they
built this water channel up to a length of 494 km. With a height of 2 m and a width of
1.6 m, these new tunnels are larger than those built in the first phase [97]. The final water
tunnel in Constantine is the Ballıgerme, a wide channel spanning a deep gorge above the
Karaman Dere (Figure 22). Both the upper and lower canals then run along the south side
of the valley, winding around the elevated ridge crossed by the Anastasian Wall to the
southeast [101].

 

Figure 22. Tunnel near Ballıgerme Hill Farm [101].

Another tunnel in Anatolia is the Kemer dam, including a water tunnel. It is located
near the ancient city of Aspendos in the province of Antalya. The Kemer dam and tunnel
is a remarkable Byzantine water project. The tunnel was built to carry water from the
Koprüçay River to the city of Aspendos. It was built according to the Roman technique,
which typically used stone or rock tunnels. The interiors were often lined with a layer of
waterproof mortar or concrete to prevent water leakage and erosion. Another water tunnel
is the Perge water tunnel [103]. The ancient city of Perge, also in Anatolia, had a Roman
water tunnel system. This tunnel, like others in the region, was used to transport water
to the city from distant sources. This tunnel was part of a larger aqueduct system that
transported water. The tunnel was often dug by hand, with workers using tools such as
picks and chisels. The Perge was constructed with a gradual slope or incline. This slope
allowed gravity to move the water through the tunnel without the need for pumps or
mechanical devices. There are also tunnels from the Byzantine period and underground
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aqueducts in Cappadocia, which is known for its unique underground cities. These tunnels
were used for protection and as a source of water in times of conflict or siege [104–107].

There are many long-distance waterways in the Turkish Aegean and Mediterranean
regions. These systems include spring water collection chambers, lead, stone, and clay
pipes of various sizes, rock-hewn and masonry canals, tunnels over 2 m high, inverted
siphons with pressures up to 190 m for lead pipes and 155 m for stone pipes, and aqueducts
up to 40 m high. One of the longest Roman water transport routes, at 100 km, leads to
Phoceia (Foça). In addition, lengths of 65 km at Pergamon (Bergama), 30 km at Smyrna
(İzmir), and 42 km at Ephesus are among the most fascinating examples of various water
supply systems in the ancient world. The 3.3 km long stone pipe siphon of the Karapınar
water conduit to Smyrna can withstand water pressure of 155 m, while the lead pipe siphon
of the Madradağ water conduit to Pergamon can withstand water pressure of up to 190
m. These siphons, dating from the late decades of the first millennium BC Hellenistic
period, functioned at some of the highest pressures ever recorded in antiquity. The stone
siphon at Aspendos is the longest in Turkey, on arches at 1.7 km. The Soma transport to
the demolished aqueduct of Pergamon across the Karkassos (Ilyas) stream would have
been 40 m high, making it the second-highest Roman aqueduct after the Pont-du-Gard
of Nîmes. Another tunnel system and river detour from the Roman period is the Çevlik
Tunnel. Its construction took place between the first and second centuries AD. The 875 m
long system had a capacity of 70 m3/s. It included two tunnel segments, 90 and 30 m long.
The dimensions were in the range of 6–7 m, and the cross sections were either semicircular
or trapezoidal. It was the largest structure at that time. The 250 m long Bezirgan tunnel
near Kalkan, which is 1.1 m wide and 2.2 m high, serves as a floodwater conduit for the
Karst polje [107].

3. Water Tunnelling in Early and Mid-Modern Times (ca 1453–1850 AD)

During medieval times in India (ca 476–1400 AD), tunneling technology was used for
water supply, irrigation, and transportation. Notable examples include the Anicut Dam in
Tamil Nadu, the Patal Bhuvaneshwar Cave in Uttarakhand, and the Rani-ki-Vav stepwell
in Gujarat. These structures and tunnels demonstrate India’s engineering capabilities and
played an important role in the development of hydro-technology infrastructure during
this period.

In Egypt’s capital, Cairo, the Citadel Aqueduct was constructed at the beginning of the
13th century by Ayyubid sultans and then completed by the Mamluk State to convert Nile
water into a new castle. The aqueduct started from the Nile shoreline, where water was
raised by successive waterwheels, and ran into the aqueduct to the Citadel. The aqueduct
was raised by a tower of arches constructed from masonry. It was still used during the
Ottoman period. Many aqueducts that remain near the Citadel can be seen today, such as
the impressive hexagonal tower used for water intake [108,109].

The damage and deterioration of the Constantinople water system that occurred
during the Roman period were aggravated by the Latin occupation in 1204, after which
the water system became virtually unusable. When Constantinople fell into the hands
of the Ottomans in 1453, extensive repairs and additions were made to the system. The
Kırkçeşme waterways, originating from the Belgrade forests, are among the most important
water sources of Constantinople. In connection with the structures built between 1554
and 1564, 33 arches of different sizes were constructed [110]. The Uzun, the Kovuka, the
Moğlova, and the Güzelce aqueducts are the longest ones, with 711 m each. The sixteen
different waterways that make up the Halkalı waterways were built between 1453 and 1755.
In Constantinople’s past, water and the relative architectural structures were considered
very valuable, since the city is shaped by water and filled with life through its dams,
arches, fountains, water fountains, spa, and cisterns [101,111]. The Mazul aqueduct, the
Kara aqueduct, the Turuncluk aqueduct, and the Bozdogan (Valens) aqueduct, which
is now known as one of the arches of the Halkalı Canal and was later restored by the
Ottoman Empire, are important Roman aqueducts built in Constantinople in the fourth

461



Hydrology 2023, 10, 190

century [96,101]. The Mâzul aqueduct, commonly referred to as the Mâzul aqueduct, was
built around the same time in Constantinople and spans the Uzuncaova stream in the
Military District [96]. It was the first aqueduct that transported the water of the Halkalı
River. It was built of two stories of limestone blocks and has a height of 19 m and a length
of 110 m, containing 13 arches in the upper row and 7 arches in the bottom [96]. After its
restoration by Fatih Sultan Mehmed, it was used during the Turkish era and again during
the time of Constantine V (741–775) [112]. During the Ottoman era, many dams, aqueducts,
rivers, fountains, and basins were rebuilt and new fountains and baths were constructed.

The Halkalı waterways, constructed separately in the 16th century, the Kırkçeşme
waterways, built during the Kanuni period, the Taksim Waters, built between 1731 and
1839, and the still-operating Hamidiye and Kayışdağı are the four main categories of water
facilities built during the Ottoman period in Constantinople [96,98,99]. With these main
water supply lines, there is no place in Constantinople where water does not reach [96]. The
cargo of the new waterways built or repaired by Fatih Sultan Mehmet consisted of water
from the Istranca Mountains, Belgrade Forest, and real sources. Later, new additions were
made to the Marmara Region water facilities, which were named Halkalı waterways due to
various sources near Halkalı Village, by many rulers and statesmen [113]. These waterways
are Fatih (1453–81), Turunçlu (1453–81), Mahmut Paşa (1453–73), Mustafa III (1757–74),
Bayezid (1481–1512), Kocamustafa Paşa (1511–12), Süleymaniye (1557), Mihrimah (1565),
Ebussuud (1545–74), Cerrahpaşa (1598–99), Sultanahmet (1603–17), Murat IV (Palace foun-
tains) (1623–40), Köprülü (1656–61), Mahmut I (1730–54), Hekimoğlu Ali Paşa (1732–50),
Kasım Ağa, and Nuruosmaniye (1748–55). These waterways were used to supply water
to mosques, imamates, fountains, and barracks outside the city. The daily output of these
facilities is 4335 m3 [96]. There are four large aqueducts in the Halkalı waterways facilities:
Mazul, Kara, Ali Paşa, and Bozdoğan aqueducts [106]. Mazul aqueduct and Bozdoğan
aqueduct were built during the Roman era, and later on water aqueducts were constructed
over the Halkalı waterways such as Fatih, Turunçluk, and Mahmutpaşa [96,101]. During
the reign of Beyazit II, there were 33 water aqueducts, including monumental arches,
such as Beyazit waterways, Kırkçeşme waterways, Uzun aqueduct, Kırık aqueduct (Eğri
aqueduct, Kovuk aqueduct), Güzelce aqueduct, Moğlova aqueduct, and Paşa aqueduct
(Balıkzade aqueduct) [96].

The Kırkçeşme waterways facility collected water from the Alibey and Kağıthane
streams, which was then stored in reservoirs and transported to the city through Eğrikapı.
Because durable pipes capable of withstanding high pressure were not available at the
time, aqueducts were built in valleys and water was transported through them [96]. Uzun
aqueduct is the longest arch of all the lines, with a height of 26 m and a length of 711 m. The
arches are 4.5–4.6 m wide on the upper row and 3.7–5.2 m wide on the lower row [96]. Kırık
aqueduct, also known as Eğri or Kovuk aqueduct, is a three-story arch 35 m high and 342 m
long [114]. The Moğlova aqueduct, which is considered an architectural masterpiece of the
Kırkçeşme waterway facilities, is a two-story arch that is 35 m high and 258 m long [110].
The geometric structure of the arches is a great engineering achievement. To prevent the
arches from tipping over, the base of the legs was widened in the shape of a pyramid so
that the arches could be kept unusually thin. To allow the upper part of the lower arch to
be used like a bridge, a passage was created through the legs, cleverly connected to the
slopes. The legs were given a special shape towards the source to prevent the water from
forming a depression in front of them due to the flow [98,99,106]. The Mağlova aqueduct
has the largest arch span after the Pont-du-Gard aqueduct in France [114].

The Güzelce aqueduct, across the Cebeciköy Stream, is another aqueduct of the
Kırkçeşme waterway infrastructure [96]. Again, Mimar Sinan used a trapezoidal wall
system and two-sided buttresses to strengthen the legs. It has 11 openings on the upper
floor and 8 openings in the basement, with an opening width of 5.6–6.1 m [114]. It is a
two-story building. To resist lateral forces (earthquakes, wind), the legs of this arch were
trapezoidal in shape and reinforced with buttresses [98,99,106]. Other important single-
story arches include the Kara aqueduct, the Develioğlu aqueduct, the Vâlide aqueduct,
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and the Alacahamam aqueduct, which was built on a branch of the Cebeciköy stream.
The Ali Paşa aqueduct is another arch built under Mimar Sinan. This trapezoidal, two-
story aqueduct has a length of 102 m and a height of 16.4 m. The Ali Paşa aqueduct has
13 openings, with a width of 5 m each [96]. During the Ottoman period, aqueducts were
built in different parts of the empire. In Constantinople, about forty significant examples
are known [110]. The Kırkçeş me water conduit, which is the most important water network
in the city, has thirty-five arches, six of which are two- or three-story monumental examples.
This water conduit, dating back to the time of Theodosius I (379–395), was destroyed
during attacks from the West at the beginning of the 7th century. This facility was almost
completely rebuilt by Mimar Sinan between 1554 and 1563 [106,110]. During the reign
of Sultan Süleyman the Magnificent, water was brought to the city from sources such as
Taşmüsellim, Hıdırağa villages, and the Kurtalçağı stream in the northeast of Edirne in the
name of Haseki Hürrem Sultan [115,116].

Although not mentioned in the records, it is accepted that these facilities, including
the Hançerli, Ortakçı, Arap, Çifte, Kurt, Yedigöz, Hıdırağa, Üçgöz, Oğlanlı, and Hasanağa
aqueducts, were built by Mimar Sinan around 978 (1570–71) during the construction of the
Selimiye Mosque and Complex. The Governor of Edirne, İzzet Paşa, repaired these water
structures, which were made of cut stone and consisted of pointed arches in a single row,
in 1890 after they had been damaged over time [110]. The double-decker aqueduct built
in Kavala, Greece, during the reign of Sultan Süleyman the Magnificent is notable among
the monumental aqueducts built during the Turkish period in the Balkans. The lower
arches were made wider than the upper ones, and lightning holes were drilled between
the upper arches. The Mustafa Paşa aqueduct, a 3800 m structure with fifty-five arches
in the northwest of Skopje, transports water from Banya Mountain. Bricks were used in
the arches, which were constructed with cut stone and sandstone [110]. One of the most
important bridges on the Taksim water system, which was built during the reign of Sultan
Mahmud I, is the Mahmud I Bridge, which has 21 arches and is 400 m long [96,106,117].
Two rows of arches are only present in the portion that is built along the river.

Another structure with double rows of arches, known as the Ali Paşa Bridge or the
Şirin aqueduct, is located on a tributary of the Ayvalı River near the military field. The
Avasköy Bridge (also known as Yılanlı aqueduct or Tekaqueduct), was constructed nearby
by renowned Ottoman architect Mimar Sinan. Eleven arches make up this bridge, which
is constructed of limestone [118]. The Kumrulu Bridge (also known as Akyar Bridge),
which has a single arch and is located on the Süleymaniye road, the Kara aqueduct Bridge,
with three arches, and the Paşa Bridge, which carries the Turunçlu water to the city at
the intersection of the Beyazıt aqueduct, are ordinary water bridges [110]. Also, another
aqueduct was constructed by the Grand Vizier Safranbolulu İzzet Mehmed Paşa, and it
supplies water to Safranbolu. It is made of mortar and rubble stone, measures 116 m long
and 60 m high, and has one major and five tiny arches [110]. The single-pointed arch of the
Akdere aqueduct, with a width of 4.10 m and an opening of 1.10 m, traverses the valley as
the Kırkgöz water is transported from the Pınarbaşı water source to Kahramanmaraş. The
arch, which has a cut stone roof and a base made of rubble stone, is in ruins [110].

India’s history of tunneling and hydro-technology continued to evolve and advance
throughout the medieval period, with notable examples including the complex water
supply system of the Qutb Minar complex in Delhi, built by the Mamluk dynasty in the
mid-13th century AD. During the early and mid-modern times in India (ca 1400–1850 AD),
tunneling technology continued to play a vital role in the country’s hydro-technology
infrastructure. A notable example is the Rajon Ki Baoli stepwell in Delhi, built during the
16th century AD. This impressive structure includes a series of underground tunnels and
chambers that were used for water storage and purification (Delhi Tourism and Transporta-
tion Development Corporation). Another significant example is the Brihadeeswarar Temple
in Tamil Nadu, built during the 11th century AD, which features a series of underground
channels that collect and distribute water for the temple’s use (Archaeological Survey
of India).
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Furthermore, the Mughal Empire, which ruled over India during the 16th and 17th
centuries, contributed considerably to the development of tunneling technology in the
country. The Mughals constructed several underground water channels, known as “qanats,”
to provide water for their gardens, palaces, and cities. One notable example is the Shalimar
Bagh garden in Srinagar, which features a network of underground channels that collect
and distribute water from a nearby spring (India Water Portal). Overall, during the early
and mid-modern periods in India, continued innovation and developments in tunneling
technology were achieved, thus supporting the country’s growing hydro-technology needs.

4. Tunneling in Contemporary Times (1853 AD–Present)

In contemporary times (1853 AD-present), tunneling technology in India has continued
to evolve and expand, playing a significant role in the country’s infrastructure development.
A major project is the Kaleshwaram Lift Irrigation Project in Telangana, which includes
the construction of a network of tunnels to transfer water from the Godavari River to
drought-prone regions of the state (India Today). Another notable example is the Chenani–
Nashri Tunnel in Jammu and Kashmir, which is the longest road tunnel in India, measuring
9.2 km, and was constructed to provide all-weather connectivity between the two regions
(National Highways Authority of India). Additionally, tunneling technology has been
used in the construction of metro rail systems in cities such as Delhi, Mumbai, Kolkata,
and Bengaluru, to alleviate traffic congestion and provide fast and efficient transportation
(The Indian Express Journalism of Encourage, 2017). These projects show that tunneling
technology continues to be a critical tool for meeting India’s growing infrastructure needs
in contemporary times.

A big project was constructed in the area in the Southeastern Anatolia region of
Turkey, which includes the provinces of Adıyaman, Batman, Diyarbakır, Gaziantep, Kilis,
Mardin, Siirt, Şanlıurfa, and Şırnak, defined as the “GAP Region” (Southeastern Anatolia
Project) [119]. The GAP “Southeastern Anatolia” project is one of the most significant
water-based development projects in the world in terms of size and impact, and the largest
integrated water resources project in Turkey. Irrigation systems and drainage requirements
in the Tigris and Euphrates basins have been studied on a project-by-project basis as part of
GAP. Numerous studies have been conducted to examine the water resources, irrigation
systems, and water distribution methods based on the data and field observations collected
during these studies in terms of current demands, as well as drainage requirements and sys-
tems, water control structures, covers, and efficient water use [119]. This region, bordering
Syria to the south and Iraq to the southeast, comprises 20% of Turkey’s irrigable 8.5 million
hectares of land and consists of large plains in the river basins of the lower Tigris and
Euphrates rivers in the GAP region. Within GAP, 22 dams, 19 hydropower plants, and an
area of 1,762,000 hectares have been planned for economically viable irrigated agriculture,
with a total installed capacity of over 7476 megawatts and an annual electricity production
of 27 billion kilowatt hours [119]. One of these structures is the Şanlıurfa irrigation tunnel.
The Şanlıurfa tunnels are located in the Southeast Anatolia region of Turkey. They consist
of two parallel tunnels with a total length of 26.4 km, running from the Atatürk Dam
reservoir to 5 km northeast of Şanlıurfa. The tunnels are among the longest irrigation
tunnels in Turkey and worldwide. Construction began in 1981 and the tunnels, which are
among the largest structures in the GAP, were planned to irrigate about 476,000 hectares of
land, including about 358,000 hectares of land by gravity and 118,000 hectares of land by
pumping. The water tunnels consist of two circular concrete-lined tunnels, each 7.62 m in
diameter and 26.4 km long. The total length of the tunnels, including the transport and
connecting tunnels, is 57.8 km. The water taken from the Atatürk reservoir through the
tunnels, amounting to 328 m3/s, is to be transferred to the Harran and Mardin plains. In
the system consisting of two parallel tunnels, the distance between the tunnels from axis to
axis is 40 m. A connecting tunnel has been opened between the tunnels every 500 m so that
the excavated material can be easily transported outside, and the excavation and concreting
work can be carried out simultaneously. There are 52 connecting tunnels in total. Good
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ventilation is very important in such a long tunnel. For this purpose, the chimneys in the
middle of the connecting tunnels were opened to supply both tunnels. There is a chimney
approximately every 1500 m, the depth of which varies between 65.24 m and 207.95 m. The
total number of stacks is 23. The tunnels are laid out according to the direction of water
flow [120].

In Athens, the capital city of Greece, a contract was signed between the Greek Gov-
ernment, the Bank of Athens, and the American firm ULEN in 1952, for the financing and
construction of the new water supply project. The first major work was the construction of
the Marathon Dam (1926–1929). The dam is 54 m high and 285 m long and it is considered
unique because it is entirely paneled externally with Pentelikon white marble. The Boyati
Tunnel, 13.4 km long, 2.6 m wide, and 2.1 m high, was constructed to transport water
from the Marathon impounding reservoir to a new water treatment plant in Athens [8].
In 1956, the water from the Yliki Lake was added to the system, and in 1981, the Mornos
dam and aqueduct were inaugurated. The Mornos dam is one of the highest earth dams in
Europe, with a height of 126 m. The Mornos aqueduct, which transports water from the
Mornos reservoir to Athens, is the second longest aqueduct in Europe. It has a total length
of 188 km, made up of 15 tunnels of 71 km in length and 3.2 m in diameter, 12 siphons
(7 km), and 15 canals (110 km). The first time that a TBM was used in Greece for the
excavation of the Gkiona Tunnel, 14.75 km in length [121]. Finally, the last major work,
which provided Athens with additional water in 2001, was the Evinos River diversion to
the Mornos impounding reservoir, consisting of the Evinos Dam and a diversion tunnel.
Works began on the Evinos in 1992 and were completed in 2001. The major structures of the
project are a 120 m high earth-fill dam, with a dam volume of 12 million m3, a total barrage
capacity of 120 million m3, and the 29.4 km long Evinos–Mornos tunnel, with a 4.2 m
excavation diameter and a 3.50 m internal diameter [8]. The tunnel is one of the longest
hydraulic tunnels in the world realized using the TBM method. The adverse geological
conditions, the high cover, and the short construction schedule were a great challenge
for the successful construction of this tunnel [122]. The tunnel was completed in just two
years, which is considered to be a significant achievement given the project scale. The area
covered by this major project is shown in Figure 23.

 

Figure 23. Schematic representation of the Athens water supply system in modern times [123].
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In the contemporary time the hydrological tunneling has increased significantly in
both size and number. A few more examples, indicating their size, are the following:

(a) The Delaware aqueduct in the New York City water supply system. It was constructed
between 1939 and 1945 and carries approximately half of New York City’s water
supply of 4,900,000 m3/d. At 4.10 m wide and 137 km long, the Delaware Aqueduct is
the world’s longest tunnel. It takes water from the Rondout, Cannonsville, Neversink,
and Pepacton reservoirs on the west bank of the Hudson River through the Chelsea
Pump Station, then into the West Branch, Kensico, and Hillview reservoirs on the east
bank, ending at Hillview in Yonkers, New York [124].

(b) The Metropolitan Area Outer Underground Discharge Channel is an underground
water infrastructure project in Kasukabe, Saitama, Japan. It is the world’s largest
underground flood water diversion facility, built to mitigate the overflowing of the
city’s major waterways and rivers during rain and typhoon seasons [125]. It is located
between Showa and Kasukabe in Saitama prefecture, on the outskirts of the city of
Tokyo in the Greater Tokyo Area. Construction started in 1992 and was completed by
early 2006.

(c) In China, a secretive 500 km long irrigation project being built to divert snowmelt
from the Altay Mountains to desert areas in its restive Xinjiang region has developed
a too-much-of-a-good-thing problem. Workers keep tapping into gushing flows of
groundwater, which has slowed construction to a crawl. It was based in part on
the 2000-year-old karez system designed by Uyghurs in Turpan, and China began
constructing the 514 km long project years ago, in what is reportedly the longest
underground irrigation canal system in the world [126]. The project comprises three
deeply dug tunnels, the longest of which is the 280 km long Kashuang Tunnel—
twice as long as the Delaware Aqueduct, the main channel supplying water to New
York City.

5. Emerging Trends of Tunneling Aqueducts

Governments and municipal authorities, faced with the problems of providing in-
frastructure within and between densely populated megacities, have acknowledged the
importance of tunnels for the installation of underground transport corridors, sewerage
systems, and utilities. Nowadays, many tunnels are constructed with advanced mechanical
TBMs that have been progressively replacing the older drill and blast methods. TBMs can
excavate a full circular face to the diameter of the machine, typically from 2 to 12 m, at
astonishingly rapid rates when rock mass conditions are excellent. Even so, and despite
dramatic improvements in TBM technology [127,128] TBMs are still not good at coping
with rapidly changing or poor geologic conditions that can delay or stop the machines,
thus increasing risks and costs to the tunnel project [129].

Studies of tunnel projects in the United States [130] have demonstrated that predesign
investigations along the tunnel route using geological mapping and core drilling from
the surface can mitigate these risks and reduce costs. These direct exploration methods
may be enhanced with appropriate geophysical techniques (e.g., electrical and seismic
imaging) to investigate the interval between boreholes or in difficult or complex areas
(e.g., [131,132]). These studies may benefit global underground engineering researchers
for hazard prediction and in establishing early warning systems [133]. In general, we
are seeking to advance the application of geophysical methods to solve problems facing
remediation professionals concerning fractured-rock aquifers. To this end, we (a) provide
an overview of geophysical methods applied to the characterization and monitoring of
fractured-rock aquifers; (b) review case studies showcasing different geophysical methods;
and (c) discuss best practices for method selection and rejection based on synthetic modeling
and decision support tools [134].

Emerging trends in tunneling aqueducts in India focus on sustainability, cost-effectiveness,
and innovation. An interesting example of such trends is the use of micro-tunneling,
a trenchless technology used to construct small-diameter tunnels for water supply and
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drainage systems (Indian Geotechnical Society). This technique has been utilized in the
construction of the Ganga–Krishna–Pennar–Link Project, a massive water supply project
aimed at transferring water from the Ganges and Godavari rivers to water-deficit regions
in the southern part of the country. Another emerging trend is the use of pre-cast tunnel
segments, which can be quickly and efficiently assembled on-site, reducing construction
time and costs (NBM&CW). These segments have been used in the construction of the
Mumbai Metro Line 3 tunnel, a massive underground rail project that will significantly
improve transportation in the city. Overall, these emerging trends in tunneling aqueducts
demonstrate how innovative technology and sustainable practices are being used to meet
India’s growing infrastructure needs.

6. Epilogue

It is obvious that the irrigation canals used in modern agriculture still follow the basic
technical concepts used in ancient times for the construction of aqueducts. In the past,
water sources were usually located outside the cities. Therefore, water was transported
through open channels, tunnels, pipes made of various materials, and channels carved into
rocks and covered with a lid. Water was transported either under pressure or using gravity
in tunnels, galleries, and canals. In gravity conveyance, maintaining the head of the water
is critical. In an open channel, gallery, or pipe, water flows freely according to gravity. Since
there is no pressure or very little pressure as the elevation rises ahead of the waterway, the
pipes are thin. For clay pipes, the thickness is 1–2 cm. In different regions, these pipes are
called by different names, including “künk”, “pöhrek”, and “terracotta” (in Italian).

The “inverted siphon” method, also referred to in the literature as “reverse siphon”,
was historically used to cross valleys as an alternative to aqueducts. In certain cases, the
inverted siphon and the aqueduct were built together, reducing the height of the arch
to save costs. These pipelines were built using elements such as earth, stone, and lead.
Aspendos in Attalya illustrates these practices: water was transported to the city’s reservoir
through two towers 65 m high, which were located 924 m apart from each other. Between
these towers, there is a water channel, in ruins, 45.00 m high. In Aspendos, both a stone
pipe network and an aqueduct were used. The siphon has a depth of about 20 m, and the
diameter of the stone pipe is 30 cm.

The United Nations and other organizations encourage the revitalization of tradi-
tional water harvesting and supply technologies in arid areas because they consider it
important for sustainable water utilization. A qanat as a tunneling system is a gently
sloping subterranean conduit, which taps a water-bearing zone at a higher elevation than
cultivated lands. It is used to provide a reliable supply of water to human settlements
or for irrigation in hot, arid, and semiarid climates and allows the population to live in
a desert area. A qanat system has a significant impact on the lives of water users, as it
allows those living in a desert environment adjacent to a mountain watershed to create
a large oasis in an otherwise stark environment. The advantages of transporting water
underground in the qanat system are obvious, given that qanats are subterranean tunnels
that tap the groundwater and lead the water entirely by gravity. As they are often dug into
the hard subsoil and, when necessary, lined with relatively impermeable clay hoops, there
is little seepage, no change in the water table, no water logging, and no evaporation during
transit. The rate of water flow in a qanat is controlled by the level of the underground
water table and it therefore exploits groundwater as a renewable resource. Thus, qanats
are environmentally sustainable water harvesting and conveyance tunneling techniques
through which groundwater can be obtained without causing damage to the tapped aquifer
in arid regions ([17,135–137]).

The importance of the Kopais project, which was perceived by ancient Greeks, was
also recognized in modern times; thus, the drainage of Kopais was among the first land
reclamation projects carried out, during the second half of the 19th century, by the newly
established Greek state. In this case, a tunnel and a network of ditches were created that
sent the waters of the lake to an adjacent lake (Lake Yliki). Modern engineers went further,
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as they identified the peculiarity of the soil in the Kopais plain, which has an impermeable
layer at a shallow depth (~2.00 m) and above it a layer of sand that is under the surface
organic layer and a layer of marl. The impervious layer and the sand layer make it possible
to apply subirrigation with the use of drainage ditches during the summer. Thus, a network
of earthen ditches has been created that drain the area in the winter to Yliki Lake, and in
the summer water from Yliki is pumped and led to the ditches. Initially, the system was
designed wisely: a suitable level was kept in each ditch, and the plants were irrigated with
the sub-irrigation system. Later, pumping with individual pumping stations and sprinkler
irrigation was preferred, which is energy-consuming [35].

According to Sir Winston Leonard Spencer-Churchill (1874–1965), “the more you look
back in the past, the more you see into the future”. Furthermore, an analysis of ancient tunneling
techniques and applications can provide many practical solutions invented in the past
that can be applied in the modern world. Our ancestors had no access to engines and
modern techniques, but they used simple, energy-saving means. Their inventions and
practical applications can therefore find a place in a new, environmentally conscious, and
energy-conservative world.

In conclusion, tunneling dates back to prehistoric times, with the use of hydro-
technology playing a critical role in creating sustainable systems in tunneling. Many
ancient civilizations, such as the Ancient Egyptians, Greeks, Romans Persian, and others
used tunnelling, from the simplest form of aqueducts, such as ditches cut into the earth,
up to complex structures including horizontal and vertical tunnels. These tunnels were at
a lower level than the reservoir and relied on a gravity hydraulic system for transferring
and distributing water without employing any extra energy, which may cause negative
impacts on the environment. From ancient water management systems to modern tun-
neling engineering, India has made significant strides in enhancing safety, minimizing
costs, and reducing environmental impact. As India continues to invest in infrastructure,
it is anticipated that it will make further strides in tunneling engineering, contributing to
sustainable development in the country.
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62. Baykan, O.; Alkan, A.; Bacanli, Ü.G.; Baykan, N.; Öziş, Ü. Testing Flood Estimation Methods on Acient Closed Conduits. In

Proceedings of the International Balkans Conference on Challenges of Civil Engineering, BCCCE, EPOKA University, Tirana,
Albania, 19–21 May 2011.

63. Fabre, G.; Fiches, J.-L.; Marchand, G.; Mathieu, V.; Pey, J. Entre Gardon et Vistre, clausonne, l’étang, ses drainages et l’aqueduc
antique de Nîmes. Bull. L’école Atl. Nîmes 2011, 29, 147–204.

64. Parise, M.; Galeazzi, C.; Germani, C.; Bixio, R.; Del Prete, S.; Sammarco, M. The map of ancient underground aqueducts in Italy:
Updating of the project, and future perspectives. In Proceedings of the International Congress in Artificial Cavities “Hypogea
2015”, Italy, Rome, 11–17 March 2015; pp. 235–243.

65. Burdy, J.; Lebouteiller, P. L’aqueduc romain de Xanthos. Anatol. Atl. Eski Anadolu 1998, 6, 227–248. [CrossRef]
66. Grewe, K. Die römische Wasserleitung nach Almunecar (Spanien). Der Vermess. 1983, 34, 217–221.
67. Grewe, K. Die römische Wasserleitung von Almuñécar. Antike Welt 1991, 22, 49–53.
68. López, E.S. El acueducto de sexi firmum iulium (almuñécar, granada). Cuad. Prehist. Arqueol. Univ. Granada 2011, 21, 127–158.
69. Ilacovac, B. Wasserbauliche Anlagen des Altertums am Kopaissee. Mitteilungen Leichtweiss-Inst. Wasserbau Tech. Univ. Braunschw.

1981, 71, 275–298.
70. Manenica, H. Urbanizacija Izmed̄u Raše i Krke u Vrijeme Ranog Principata; Faculty of Philosophy in Zagreb Postgraduate Study of

Archeology, University of Zagreb: Zagreb, Croatia, 2015.
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116. Zeybekoğlu, D.; Çakır, H.K.; Özenç, A. Analysis of water scales in Edirne. Trak. Univ. J. Sci. 2007, 8, 29–33.
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Abstract: Aiming at the problem that the existing channel leakage calculation methods generally
ignore the dynamic changes of influencing factors, which leads to a large calculation error, this study
attempts to utilize the machine learning method to accurately calculate the channel leakage loss
under the dynamic changes in the influencing factors. By using the machine learning method to
analyze the impact of dynamic changes in the flow rate and soil moisture content over time on the
channel leakage loss in the water transmission process and quantify the impact of the selected factors
on the leakage loss, a dynamic simulation model of the multi-parameter channel leakage loss was
constructed, and a test was carried out in the irrigation area to verify the accuracy of the model. The
test results are as follows: the actual leakage loss of the U1 channel is 1094.03 m3, the simulated value
of the model is the 1005.24 m3, and the error between the simulated value and the measured value is
8.12%; the total leakage of the U2 channel is 1111.24 m3, the simulated value of the model is 1021.1 m3,
and the error between the simulated value and the measured value is 6.31%. The experimental results
show that the use of machine learning to construct a dynamic simulation model of channel leakage
loss under the comprehensive consideration of the dynamic change in influencing factors over time
has a better effect, and the calculation accuracy is high.

Keywords: channel; leakage loss; machine learning; multifactor; leakage test

1. Introduction

At present, the contradiction of water use in China’s irrigation areas is becoming more
and more acute, and problems such as serious waste of irrigation water resources and
low utilization efficiency still exist. According to statistics in 2020, the water utilization
coefficient of the backbone canal system in China’s large irrigation districts was only
0.643 [1]. It has been shown that leakage from canals at the dry and branch levels is an
important cause of irrigation water losses during the irrigation process [2]. Because the
channel leakage rate is affected by flow rate, water depth, wetted perimeter, channel length,
lining conditions, soil factor, water transfer time and other factors, and the current practice
of using various types of empirical formulas to estimate the leakage loss of different types
of channels, but the empirical formulas are generally only selected flow rate, depth of
water, wet week, and flow rate of one or more influencing factors as a variable to calculate
the leakage amount of the channel. Considering fewer factors and ignoring the dynamic
changes of each factor over time, this leads to a large error between the results of empirical
formulas and the actual leakage loss, which affects the accurate management of water
resources in irrigation districts. Therefore, it is of great significance to construct a multi-
parameter dynamic formula for calculating the channel leakage rate to accurately calculate
the channel leakage loss and to strengthen the strict management of water resources in
irrigation districts in China.

The research methods of channel leakage loss mainly focus on empirical formulas,
numerical simulation [3], and two aspects. In the research of empirical formulas of channel
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leakage, foreign scholars put forward a variety of empirical formulas, including the Davis-
Wilson formula, Kosgakov formula, etc., where the Davis-Wilson formula, which uses the
wetted perimeter of the channel, water level, and flow rate as variables, is mostly used to
calculate channels with liners. However, Kausgakov’s formula, which uses flow and soil as
variables, is mostly used to make calculations for leakage in earthen channels [4–7]; due to
the simplicity and ease of use of empirical formulas, various types of empirical formulas
are generally used in practice nowadays to calculate leakage loss losses [8–11]. However,
the empirical formulas generally use only one or several channel physical properties
and different permeability coefficients as variables for calculation, with fewer factors to
consider and poorer calculation accuracy. Shah et al. [9] and Zhang et al. [10] showed that
the calculated values of Kausgakov’s formula were 1.5- and 2.5-times higher than the actual
values, and Akkuzu found that the leakage losses estimated by Moritz’s and Davidson-
Wilson formulas are much lower than the measured values [11], The empirical formula
has been improved by some scholars in China. Men Baohui [12] and others improved
the empirical formulas by using the method of integration; Xie Chongbao [13] and others
combined different empirical formulas to propose improved empirical formulas that are
related to both channel cross-section size and soil type; Wang Bingchuan [14] et al. derived
the improved formula by integrating Korsgakov’s formula. It is found that the numerical
simulation method to calculate the leakage loss of the channel has a better effect, and the
object of the study can be either the whole channel or part of the channel section, which
has a wider range of applications. The use of computer programming calculations can be
quickly obtained as results, the calculation accuracy is higher than the empirical formula,
intuition, better expandability than the field test, easy to understand, and later analysis. In
the numerical simulation study of channel leakage loss, Zhang Fan [15] et al. proposed a
method for estimating channel leakage loss by using a statistical method. The established
numerical simulation model is about 10% more accurate than traditional leakage calculation
methods. Liao Xiangcheng [16] et al. introduced the concept of pre-influence water content
of channel soil, and they proposed a method for calculating the permeability coefficient and
index of the soil of the canal bed. By improving the calculation formula, the leakage loss
calculation error was reduced to less than 20%. At present, most of the research on channel
leakage loss stays in static calculation, and the way and degree of influence of the dynamic
changes of each influencing factor on the channel leakage loss have not been clarified,
which affects the precise control of the channel water transfer process in irrigation districts.

In this study, we attempted to use a machine learning method to calculate the channel
leakage loss under the dynamic change of influencing factors by constructing a dynamic
simulation model of multi-parameter channel leakage loss. In this study, we will quantify
the influence of each influential factor on leakage loss by comprehensively considering
the dynamic changes of some factors in the channel water delivery process, compare with
the empirical formulas by constructing a machine learning model, and further explore
the changes of channel leakage loss in different time periods by combining numerical
simulation and field tests in a long time series, and the results of this study will help
the irrigation district to clarify the leakage status of each channel and provide a basis for
realizing precise control of channel water transfer.

2. Materials and Methods

2.1. Research Area

Wharf irrigation area district is located in the southeast of Linyi City, Shandong
Province (Figure 1). The designed irrigation area is 19,667 hectares, belonging to the tem-
perate monsoon zone of semi-humid transitional climate. The average annual temperature
of the irrigation area is 13.3 ◦C, the annual sunshine hours are 2460 h, and the average
rainfall is 840.3 mm per year. The main crops are wheat, rice, corn, and peanuts. There
are 3 trunk canals and 24 branch canals in the irrigation area, and the types of canals are
unlined earth canals, among which there are 12 branch canals under the first trunk canal,
controlling the irrigated area of 13,367 hectares. There are 8 branch canals under the second
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trunk canal, controlling an irrigated area of 4633 hectares, and there are 4 branch canals
under the third trunk canal, controlling an irrigated area of 1667 hectares. The irrigation
district canal system project was built a long time ago. The aging and degradation problem
is serious, a lot of the canal section channel has collapsed, siltation is present, channel water
transfer capacity is seriously insufficient, irrigation water utilization coefficient is only 0.44
or so, and irrigation water resources are seriously wasted.

 

Figure 1. Geographical location of irrigation district.

2.2. Pilot Program

In this study, two sections of channels with pile numbers 7 + 320 to 8 + 520 and
14 + 070 to 15 + 270 were selected as test channels for dynamic simulation of seepage loss
in 1 main canal. Among them, the design flow rate of the channel in the section from pile
No. 7 + 320 to 8 + 520 is 14.7 m3/s, the soil type is medium loam with average permeability,
and the design flow rate of the channel in the section from pile No. 14 + 070 to 15 + 270
is 13.9 m3/s, and the soil type is light loam with high permeability. Both sections of the
channel are 1 km long, trapezoidal cross-section unlined earth channels; the bottom of the
channel is relatively flat, and the length of the channel meets the requirements of the test.
Detailed information of the test channel is shown in Table 1. The object of this study is the
channel as a whole, without distinguishing the differences between the various segments
of the channel, and we only need to measure the leakage loss of the test channel as a
whole, so the test selected the dynamic water method to measure the real leakage loss
of the channel, through the channel to the test channel, and measure the upstream and
downstream flow rate loss within a specified period of time to calculate the actual leakage
loss of the channel, and the actual leakage loss of the channel is calculated. This test was set
up in the upstream and downstream speed measurement section 8 speed lines, with speed
measurement method using the five-point method. Five points were set up near the water
surface, 0.2-times the lateral water depth, 0.6-times the lateral water depth, and 0.8-times
the lateral water depth. Near the bed of the canal, the length of the flow velocity meter
speed measurement was set to 80 s, the test lasted for 15 h of water conveyance, and the
measurement interval was 1 h.
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Table 1. Detailed information of experimental channels.

Channel
Number

Length
(m)

Bottom
Width

(m)

Superelevation
(m)

Flow
Velocity
(m3/s)

Designed
Discharge

(m3/s)
Soil Texture

Water
Permeability

Roughness
Factor

Gradient
Cross-

Section
Form

U1 1000 6 0.5 0.852 14.7

medium
frequency

transformer
loam

general 0.02 1/5000 trapezium

U2 1000 6 0.5 0.827 13.9 light flux
loam strong 0.02 1/5000 trapezium

2.3. Data Sources
2.3.1. Soil Data

The soil medium is defined as the soil present in the uppermost layer of the ground.
The top weathered portion of the unsaturated zone with substantial biological activity is
represented by the soil medium [17]. It has been shown that different soils have different
permeability [18,19], and for more clay-heavy soils, the smaller the pore space between the
soil particles, the coarser the soil texture; the larger the pores between the soil particles,
the stronger the gravitational force on the soil, and the greater the rate of soil leakage [20].
The soil in the irrigation area is mostly sandy loam, with soil particle sizes ranging from
0.02 mm to 0.2 mm, with soil pore ratios ranging from 0.79 to 0.87, vertical permeability
coefficients ranging from 0.00019 to 0.00026, and sand content, percolation losses, water
retention, and aeration properties being relatively average. The data were obtained from
the local irrigation district administration.

2.3.2. Channel Data

Channel data were obtained from local irrigation district authorities (Table 2).

Table 2. Irrigation district channel information.

Name of Branch Canal Length (m) Cross-Section Form Bottom Width (m) Depth (m)

No.1 branch canal 7320 trapezium 6 0.5
No.2 branch canal 3270 trapezium 6 0.5
No.3 branch canal 2250 trapezium 6 0.5
No.4 branch canal 1100 trapezium 6 0.5
No.5 branch canal 60 trapezium 6 0.5
No.6 branch canal 4550 trapezium 6 0.5
No.7 branch canal 3930 trapezium 6 0.5
No.8 branch canal 1250 trapezium 6 0.5
No.9 branch canal 100 trapezium 6 0.5

No.10 branch canal 2640 trapezium 5 0.5
No.11 branch canal 10 trapezium 5 0.5
No.12 branch canal 470 trapezium 5 0.5

2.4. Model Building

Meta-regression is a statistical method based on mathematical statistics to find an
approximate mathematical expression to describe the correlation between several variables.
The establishment process includes three parts: regression factor correlation analysis, model
establishment, and goodness-of-fit test. The regression model of random variable Y and
general variable X can be expressed as:

Y = β0 + β1X1 + β2X2 + . . . + βkXk (1)

In the formula, β0 is a constant term; β1, β2, . . . βk are regression coefficients; Y is the
dependent variable; X1, X2, . . . Xk are k precisely measurable independent variables.

Correlation analysis is used to determine whether there is a relationship between
two or more variable elements, the form of expression of the correlation relationship, the
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closeness, and the direction of the correlation relationship. It is a method for analyzing
causal variables and expressing them with indicators.

rxy =
Sxy

SxSy
(2)

In the formula, rxy is the sample correlation coefficient; Sxy is the sample covariance;
Sx is the sample standard deviation of X; Sy is the sample standard deviation of y.

The goodness of fit of the model can be tested using the adjusted coefficient of deter-
mination R2̄̄ :

R2 =
SSR
SST

=
SST − SSE

SST
(3)

R2̄̄ = 1 −
SSR

n−k−1
SST
n−1

= 1 − R2 ×
(

n − 1
n − k − 1

)
(4)

In the formula, R2 is the sample determinable coefficient; R2̄̄ is the adjusted coefficient
of determination; SST is the sum of square of total deviation; SSR is the sum of regression
squares; SSE is the sum of squared residuals; the value of the coefficient R2̄̄ is 0 ≤ R2̄̄ ≤ 1.
The closer the R2 value is to 1, the higher the goodness of fit of the equation, and the better
the model effect.

2.4.1. Correlation Analysis of Influencing Factors

In the actual water conveyance process, factors, including soil factors, channel char-
acteristics, lining conditions, nature of lining materials [21], groundwater, time factors,
specific physical methods [22], and other factors, will have an impact on the channel leakage
loss, and these factors are related to each other, interact with each other, and it is difficult
to make a clear distinction in practice [23]. Figure 2 shows the results of the correlation
analysis of leakage influencing factors selected in this study.

Figure 2. Influencing factors of channel leakage.

In this study, based on the existing channel water transmission data in the irrigation
area, the physical properties of the channel were analyzed and selected to include five
factors, namely, channel length, bottom width, superelevation, gradient, and roughness.
The hydraulic properties included three factors, namely, water level, flow rate, and ground-
water level. The soil factors were selected to include three factors, namely, void ratio of the
soil, vertical permeability coefficient, and soil water content, with a total of eleven factors
to be analyzed in the correlation analysis. The results of the bivariate Pearson test for
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correlation between factors are shown in Figure 3. The results of correlation analysis show
that, except for the two factors of channel length and bottom width, all other factors have
strong correlation with seepage loss, so multiple regression analysis can be carried out.

Figure 3. Correlation analysis.

2.4.2. Dynamic Simulation Model of Channel Leakage Rate Based on Multiple Regression

Table 3 shows an attempt to model multiple regressions based on available channel
water delivery data. In a multiple regression model, the magnitude of the regression
coefficient indicates the magnitude of the effect of the factor on the regressed factor, i.e.,
the degree of sensitivity of the factor. After analyzing model 3 through the test factor
containing channel physical conditions, water factor, and soil moisture, three parts of the
factors, in line with the requirements of the selection of factors in this study, selecting the
factors with significance less than 0.05, can be seen. The vertical seepage loss coefficient
has the greatest impact on seepage loss, the regression coefficient of 89.54, followed by the
gradient, roughness factor, the soil void ratio, soil water content, water level, groundwater
level, the flow rate, and regression coefficients (46.1030, 0.7470, −0.0370, −0.0320, 0.0070,
−0.0010, and 0.0004, respectively). Therefore, in this study, the optimal linear regression
equation was established with the channel leakage loss (Y) as the dependent variable, and
gradient, roughness factor, water level, flow rate, groundwater level, soil void ratio, vertical
permeability coefficient, and soil water content as the regressor as follows: Y = −0.004 +
89.54X0 + 46.103X1 + 0.747X2 − 0.037X3 − 0.032X4 + 0.007X5 − 0.001X6 + 0.0004X7.
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Table 3. Multiple standard regression analysis of channel leakage rate and its influencing factors.

Model Non-Standardized Coefficient Standardized Coefficient t Significance

B STDERR Beat

1

(constant) 0.011 0.368 - 28.682 0.689
length 3.14 × 10−5 0.598 0.037 0.366 0.723

flow rate 0 0.211 0.944 9.25 0.587
soil water content 0.219 0.109 0.293 2.017 0.083

water level 0.015 0.852 0.188 0.124 0.006

2

(constant) 0.009 0.027 - 0.343 0.764
length 5.02 × 10−4 0.397 −0.06 −0.399 0.728

superelevation −0.034 0.029 −0.808 −1.188 0.357
roughness factor 0.47 0.259 0.627 1.816 0.211

drawdown −0.023 0.246 −0.032 −0.095 0.933
flow rate 0.001 0.514 1.603 2.027 0.18

3

(constant) −0.004 0.01 - −0.355 0.029
length 2.54 × 10−4 0.652 −0.03 −0.273 0.83

gradient 46.103 22.298 1.081 2.068 0.047
roughness factor 0.747 0.252 0.997 2.963 0.039

water level 0.007 0.004 1.138 1.66 0.031
flow rate 0.0004 0.323 0.847 1.152 0.014

groundwater level −0.001 0.981 −0.178 −1.027 0.048
soil void ratio −0.037 0.028 −0.557 −1.303 0.028

vertical permeability
coefficient 89.54 41.917 1.218 2.136 0.020

soil water content −0.032 0.019 −0.292 −1.652 0.033

3. Results

3.1. Parametric Simulation Results

The reliability of the developed multiple regression model was verified and tested for
significance using SPSS 27 software, and Table 4 shows the model test table. From Table 4,
the adjusted R2 is 0.982, and the model Durbin–Watson coefficient is 2.732, which indicates
that the model has a good regression effect.

Table 4. Model verification.

Model Summary

Model R R2 Adjusted R2 Errors in Standard Estimates Debin-Watson Coefficient

1 0.999 0.998 0.982 0.000262 2.732

3.2. Experimental Validation

In the actual water transfer process, the two factors of channel flow and soil water
content have the characteristics of changing with the change in the water transfer time. This
leads to the fact that ignoring the dynamic characteristics of channel leakage losses in the
calculation can lead to a large error between the calculation results and the actual leakage
rate. Figure 4 shows the flow rate in the channel during the test period measured using the
flow meter and the soil moisture content from 10 cm to 20 cm in the channel measured via
the real-time monitoring system in the field. The analysis shows that soil water content and
flow rate change significantly with water delivery time in the two test channels. The flow
varied between 13.14–13.158 m3·s−1 and 13.139–13.156 m3·s−1, and the soil water content
varied between 0.135–0.241 m3·m−3 and 0.119–0.24 m3·m−3, respectively. The results of
this measurement are consistent with the results of a study by Ruixuan Li [24] et al.
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Figure 4. Dynamic monitoring of selected factors: (a) dynamic monitoring of soil water content;
(b) dynamic monitoring of flow.

3.2.1. Dynamic Simulation of Channel Leakage Rate

The data on gradient, roughness, flow rate, and soil moisture content are brought into
the regression model to calculate the simulated value of the seepage rate. The actual leakage
rate of the test channel was measured using the dynamic water method. In addition, in
order to verify the accuracy of the model, the Kausgakov empirical formula to calculate
the channel leakage loss was selected as a comparison, and the comparison of the actual
leakage rate, the model simulation value, and the calculated value of the empirical formula
is shown in Figure 5.

Figure 5. Dynamic simulation of leakage rate: (a) dynamic simulation of leakage rate in channel U1;
(b) dynamic simulation of leakage rate in channel U2.

From the results of the calculations, it is clear that there is a large difference between
the channel leakage rates calculated using model simulations and empirical formulas, Kaus-
gakov’s empirical formula for calculating seepage rate using soil permeability parameters,
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soil permeability index, and flow rate. Due to the empirical formulas consideration of
fewer factors and ignoring the dynamic changes in the influencing factors, the result was
the calculation of its results and the actual leakage rate, being closer only at the beginning
of the water transfer. Afterwards, with the increase in the water transmission time, some
of the factors affecting leakage change dynamically, and the error between the calculated
value of the empirical formula and the actual leakage rate becomes bigger gradually. At
the beginning of water transfer U1, the U2 channel empirical formula seepage rate calcu-
lation value and the actual seepage rate error are only 1.01% and 3.66%. After that, with
the increase in the water transmission time, some of the factors affecting leakage change
dynamically, and the error between the calculated value of the empirical formula and the
actual leakage rate gradually becomes larger; the error reaches 92.98% and 114.31% at 15 h.

The model simulation value and the actual seepage rate change trend are more con-
sistent. They are presented in the early stage of water transmission seepage rate with a
rapid decrease, slowly declining in the middle of the seepage rate and gradually tending
to stabilize the change trend. The leakage rate of the U1 channel decreases rapidly from
1 h to 5 h, and after 5 h, the leakage rate decreases gradually and finally reaches a steady
seepage state around 10 h. The average relative error between the simulated and measured
values was 6.45%. The U2 channel shows a faster decreasing trend in terms of the change
in seepage rate than the U1 channel in 1–4 h due to better soil permeability. The seepage
loss gradually decreases after 4 h and finally reaches a steady seepage state around 7 h, and
the average relative error between the simulated and measured values is 7.04%.

3.2.2. Leakage Loss Simulation

Based on the dynamic simulation model of channel leakage rate, the regression equa-
tion was transformed by fitting the flow rate and soil water content elements into a function
about time t using the data fitting method. Using SPSS software to fit the data to the flow
rate and soil moisture content gives the fitted equation for soil moisture content in channel
U1 as follows: I1 = 0.162 + 0.0315t − 0.0027t2 + 0.000078079t3. The equation fitted to the soil
water content of channel U2 is I2 = 0.0794 + 0.0452t − 0.0042t2 + 0.00013092t3, where I is the
soil water content and t is the water delivery time. The U1 channel flow fitting equation
is as follows: Z1 = 13.1362 + 0.0056t − 0.00053505t2 + 0.000016834t3. The U2 channel flow
fitting equation is Z2 = 13.1349 + 0.0065t − 0.00066221t2 + 0.000021699t3, where Z is the
channel flow and t is the water delivery time.

Bringing the fitted equation into the U1 channel leakage loss multiple regression equa-
tion transforms the regression equation into Y1 = 0.02014048 + 0.00100576 + 0.000086186t2

− 0.00000249179t3. The multiple regression equation for U2 channel leakage loss can be
transformed into Y2 = 0.02278316 + 0.0014438t + 0.000134135t2 − 0.00000418076t3, where Y
is the channel leakage rate and t is the water delivery time.

Establishing the integral model, the data will be brought into the calculation and can
be obtained after the model simulation value, the model simulation value, and empirical
formula calculated value. The actual leakage loss comparison is shown in Figures 6 and 7.

From the simulation results, it is clear that the simulated value of U1 channel leakage
in 1–5 h is 328.8 m3, and the actual leakage loss is 471.2 m3; the error of both is 30.22%. The
Kausgakov empirical formula results in 587.97 m3, which is 24.78% error from the actual
leakage loss. In 5–10 h, the leakage simulation value is 296.22 m3, the actual leakage loss is
312.86 m3, and the error of both is 5.32%. The Kausgakov empirical formula calculates the
result as 587.97 m3, and the actual leakage loss error is 87.93%. At the end of the 10–15 h,
the leakage simulation value is 290.76 m3, the actual leakage loss is 309.97 m3, and the error
of both is 6.2%. The Kausgakov empirical formula calculated results for 587.97 m3, and
the actual leakage loss error is 89.69%. The U2 channel in the 1–4 h leakage simulation
value is 295.83 m3, the actual leakage loss ois425.72 m3, and the error of the two is 27.8%.
The Kausgakov empirical formula calculated results for 491.56 m3, and the actual leakage
loss error is 21.16%. In 4–7 h, the leakage simulation value is 197.14 m3, the actual leakage
loss is 192.03 m3, and the error of the two is 2.66%. The Kausgakov empirical formula
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calculates the results as 320.58 m3, and the actual leakage loss is 66.94% error. At the end
of 7–15 h, the leakage simulation value is 505.34 m3, the actual leakage loss is 513.49 m3,
and the error of both is 1.59%. The Kausgakov empirical formula calculates 854.89 m3, and
the actual leakage loss error is 66.49%. From the simulation results, it can be seen that the
established model has a good effect on the simulation of seepage loss in all seepage stages
of the channel.

Figure 6. Dynamic simulation of leakage at various stages: (a) dynamic simulation of leakage in
channel U1; (b) dynamic simulation of leakage in channel U2.

Figure 7. Comparison of total leakage.

During the test period, the total actual leakage of the U1 channel was 1094.03 m3, the
model simulation value was 1005.24 m3, and the value calculated using the Kausgakov
empirical formula was 1763.92 m3. The error between the simulated and measured values
was 8.12%, while the error between the empirical and measured values was 61.23%. The
total amount of actual leakage of the U2 channel was 1111.24 m3, the model simulation
value was 1021.1 m3, and the value calculated using the Korsgakov empirical formula was
1667.03 m3. The error between the simulated value and measured value was 6.31%, while
the error between the empirical value and measured value was 50.02%, and compared with
the measured value, the model simulation value was more accurate than the result of the
empirical formula calculation.
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4. Discussion

The following results were obtained according to the research objectives set at the
beginning of this study. On the one hand, the regression results showed that the vertical
seepage velocity coefficient and soil pore ratio had a greater influence on the calculation of
channel seepage loss, and both factors belonged to soil properties, which indicated that the
soil properties had a higher degree of influence on the channel seepage loss, which was
consistent with the conclusion in a study by Li Hongxing [18] et al. On the other hand,
the test results show that in the actual water conveyance process, the channel bed soil
water content and channel flow rate are dynamically changing with time. The dynamic
change in the soil water content and channel flow rate will directly affect the infiltration
capacity of the channel bed soil, but the channel bed soil water content and channel seepage
rate show the opposite change trend, which is similar to the conclusion of the study by
Li Mingyang [25] and others. The flow rate, although the change amplitude is small, still
has a large impact on the channel seepage loss, which is similar to the conclusion of the
study by Kratz et al. [26]. However, in the course of the experiment, there were cases of
low precision in individual data, which may have been influenced by the precision of the
real-time soil moisture monitoring instrument. Therefore, in future tests, the influence
of various monitoring systems in the field for the test should first be considered, and the
measurement interval can be set shorter to obtain more continuous real-time data and
improve the accuracy of the data. In addition, the precipitation during the test period will
affect the channel flow, soil moisture content, and other factors. A subsequent study should
fully consider the interference of precipitation on the test. The precipitation factor can
be used as a regression factor for regression analysis through the regression coefficient to
quantify its impact on the channel seepage.

5. Conclusions

In this study, a dynamic simulation model of multi-factor channel leakage loss was
constructed through a machine learning method, and a dynamic simulation test of leakage
loss was carried out in the irrigation area to verify the model accuracy, aiming at accurately
calculating the channel leakage loss under the dynamic change in the influencing factors,
providing effective support for the irrigation area to accurately control the process of chan-
nel water conveyance. The research results show that under the conditions of considering
the dynamic changes of some influencing factors in the water transfer process and quantify-
ing the degree of influence of multi-factors, the dynamic simulation and calculation model
of multi-factor channel leakage loss constructed by using the machine learning method has
a better calculation effect than the traditional empirical formula. The model constructed
using the machine learning method has higher computational accuracy than the traditional
empirical formula. In addition, the model can simulate the dynamic trend of seepage loss
more intuitively, which can provide an effective method for irrigation districts to determine
the seepage characteristics of the channel, so as to provide strong support for the realization
of the precise control of the channel water transfer process.
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Abstract: Agriculture significantly contributes to the global water footprint (WF) with the animal
breeding industry accounting for over 33% of agricultural water consumption. Since 2000, rapid
development in animal breeding has intensified the pressure on water resources. Forecasts indicate a
projected 70% increase in freshwater usage in the meat industry by 2025 compared to 2000, particularly
in developing countries, such as China, yet comprehensive studies regarding China’s animal breeding
industry WF remain limited. This study aimed to assess the variations in the green, blue, and gray
WF of pork, beef, milk, eggs, and chicken meat across 31 provinces in China from 2000 to 2017.
Additionally, a driving force analysis using the Kaya equation and LMDI method was conducted.
Findings revealed that the total WF of animal products increased from 1049.67 Gm3 (in 2000) to
1385.05 Gm3 (in 2017) in China, and pork exhibited a significantly higher WF compared to other
animal products, contributing 64.49% to China’s total animal product WF. The sharp rise in the green
WF demonstrated regional disparities in water consumption efficiency within the animal breeding
industry. The increase in the blue WF was associated with rising livestock numbers and China’s
efforts to conserve water. The increase in the gray WF indicated that increased consumption of
animal products heightened wastewater treatment pressures, particularly in economically developed
provinces. The augmentation in China’s animal product WF was primarily influenced by policy
and economic effects, with increased agricultural equipment funding and enhanced production
efficiency identified as effective strategies for WF reduction. This study suggests that the promotion
of technology, combined with scientific policies, can alleviate the pressure on water resources in the
animal breeding industry in developing countries.

Keywords: water footprint assessment; animal products; agricultural water consumption; logarithmic
mean divisia index (LMDI); driving force analysis; Kaya equation

1. Introduction

Agriculture represents a major contribution to the water footprint (WF) of humanity,
and most of this contribution is linked to the animal breeding industry, which represents
more than 33% of agricultural water consumption [1]. There is more pressure on water
resources caused by the animal breeding industry. The growing need for livestock products,
their substantial water usage, and their significant direct influence on aquatic environments
have placed immense pressure on finite water resources. [2]. Predictions show that fresh-
water consumption in the meat industry will have a 70% increase by 2025 compared to

Water 2023, 15, 4264. https://doi.org/10.3390/w15244264 https://www.mdpi.com/journal/water
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2000 [3]. Since the beginning of the new century, significant advancements in the animal
breeding industry have been witnessed in developing nations. There is an imperative to
enhance water productivity within this sector to mitigate its impact on water resources and
the environment, thereby fostering the sustainability of animal production.

The WF [4] stands as a comprehensive indicator assessing both water consumption and
its environmental ramifications. It quantifies direct and indirect water use by source and
identifies polluted water according to the type of pollution, offering distinct spatiotemporal
trends that reveal the impact of diverse human activities on water resources [3]. The water
usage within the animal breeding industry is elucidated through the evaluation of the WF
of animal products. This term encompasses the complete amount of direct and indirect
freshwater utilized and contaminated due to livestock feeding practices. Direct water
usage incorporates water utilized for drinking and for services like cleaning sheds [5].
Additionally, it encompasses water utilized to mitigate pollutant concentrations arising
from animal excreta, commonly referred to as the gray WF. Indirect water consumption
is the WF generated in the process of feed production over the lifetime of livestock. The
green WF denotes the usage of green water, specifically rainwater that does not transform
into runoff. Meanwhile, the blue WF signifies the consumption of blue water resources,
including surface and groundwater, throughout the livestock product supply chain. Lastly,
the gray WF quantifies water pollution, signifying the volume of freshwater needed to
assimilate a pollutant load based on natural background concentrations and established
ambient water quality standards [5].

The WF of animal products has been widely studied worldwide and provides the basis
for the projections of global future demand for animal products [1,6–9]. Technology and
economic development levels and populations are not considered for different countries at
the global level. Therefore, the national WF of animal products has recently begun to be
intensively analyzed. Most of these studies analyzed the environmental impact of a single
WF of animal products in developed countries [2,8–16]. However, the WF of a single animal
product has little impact on water resources for a country. The WF of the entire animal
breeding industry enables an analysis of the future development of the industry and the
impact on the development of a country. There are limited studies that are representative
for developing countries, such as China, which is the one of the biggest producers of
animal products in the world. China accounted for 46.25% of global pork and 39.13% of
egg production in 2017 [17]. The main animal products consumed in China are pork, eggs,
milk, poultry meat and beef. The production of these animal products in 2017 was 36.10%,
45.05%, 323.44%, 77.66%, and 25.56% higher than that in 2000, respectively. Water scarcity
limits the expansion of animal production. Therefore, large quantities of animal products
must be imported into China. China imported 3048.61 thousand tons of meat products in
2018 [17]. However, few studies have examined the driving forces of growth in the WF
of the animal breeding industry in China. China’s demand for animal products is rapidly
increasing with economic development, which corresponds to a highly uneven agricultural
development. For its future sustainable development, it is necessary to investigate the
impact of the WF of the animal breeding industry on China’s water resources.

The driving force of agricultural water consumption has become a major concern. The
impact of population, economic, and intensity effects on agricultural water consumption
has been widely analyzed [18–25]. Most of these studies ignored the impact of agricultural
machinery inputs, the degree of farm automation, and the efficiency of farm production on
the WF of animal products. China has continued to increase its investment in agricultural
machinery and improve farming automation in recent years. The impact of these factors on
the WF of animal products should be examined.

The present paper quantified and evaluated the interannual variations in the blue,
green, and gray WFs of pork, eggs, milk, poultry meat, and beef in 31 provinces in China
from 2000 to 2017. A driving force analysis was performed by combining a Kaya equa-
tion with the logarithmic mean division index (LMDI) method. Clearly, analyzing the
variations and driving forces of the WF under changing economic conditions is important
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for the efficient utilization of regional water resources and for water management and
allocation strategies.

2. Materials and Methods

2.1. Animals and Animal Products

In this study, our focus includes pigs, dairy cattle, beef cattle, broiler chickens, and
laying hens, along with their respective products such as pork, milk, beef, chicken meat,
and eggs. These animal categories represent significant segments within China’s live-
stock industry, and we have extensively analyzed their WF variations and impact on
water resources.

2.2. WF of Animal Products

The WFs of pork, beef, milk, eggs and chicken meat are estimated in this paper. The
WF of animal products for category a in province p (WF; m3) reflects the feed, drinking
water, and service water consumed [1],

WF[a, p] = WF f eed[a, p] + WFdrink[a, p] + WFserv[a, p] (1)

where WFfeed [a,p], WFdrink [a,p], and WFserv [a,p] represent the WF of animal products for
category a in province p related to feed, drinking, and service water, respectively. Service
water refers to the water used for maintaining cleanliness and cooling in animal buildings.
For beef cattle, pigs, and broiler chickens—animals that yield products after slaughter—we
ascertain the WF of the animal at the conclusion of its lifetime, subsequently distributing
the total WF among the different products (such as meat and leather). In the case of dairy
cattle and layer chickens, the process of determining the animal’s WF per year (averaged
over its lifetime) and relating this annual animal WF to its average annual production (milk,
eggs) is more direct [1].

The WF of animal products related to their feed was calculated as follows (the water
used to mix the feed was ignored):

WF f eed[a, p] =
∑n

i=1

(
Feed[a, c, p]× WFprod[c]

)
+ WFmixing[a, p]

Pop[a, p]
(2)

Feed [a, c, p] denotes the yearly consumption of feed ingredient c by animal category a in
province c (m3/y), WFprod [c] stands for the WF of feed ingredient c (m3/ton), WFmixing [a, p]
signifies the water volume consumed during the feed mixing process for animal category a
in province p (m3/y/animal), and Pop [a, p] represents the annual count of slaughtered
animals or the number of milk- or egg-producing animals in a year for animal category a in
province p [1].

The calculation of WFdrink and WFserv is as follows:

WFdrink =
Drink[a, p]
Pop[a, p]

(3)

WFserv =
∑n

i=1 Serv[a, c, p]
Pop[a, p]

(4)

where Drink [a, p] represents the annual amount of drinking water consumed by animal
category a in province c (m3/y) and Serv [a, c, p] is the water consumed to keep the animal
building clean and cool c for animal category a in province p (m3/y).

2.3. Driving Force Analysis

The driving force analysis was extended to identify the factors influencing the increase
in the WFs. While the Kaya equation is commonly employed in analyzing the driving forces
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of carbon emissions and energy consumption [19,25,26], this paper expands its application
to decompose the WF as follows.

WF = ∑i
WFi

Yi
· Yi
FARM

· FARM
MAC

·MAC
EXPa

·EXPa

EXP
· EXP
GDP

·GDP
P

· P
W

· W
Wa

·Wa (5)

where WFi, Yi, FARM, MAC, EXPa, EXP, GDP, P, W, and Wa represent the WF of animal
product i, the yield of animal product i, the number of farms, the number of agricultural
machines and China’s financial expenditure on agriculture, total financial expenditure,
GDP, populations, water resources, and agricultural water, respectively. The ten driving
forces are defined in Table 1.

Table 1. Ten driving forces of the WF of animal products in China.

Effect Decomposition Symbol Explanation

Technology Effects

WFi/Yi A Unit WF content
Yi/FARM B Farm production efficiency

FARM/MAC C Degree of automation on farms
MAC/EXPa D Funding for agricultural equipment

Policy Effects EXPa/EXP E National agricultural inputs
EXP/GDP F Scale of national financial expenditure

Economic Effects GDP/P G Agricultural earnings per capita

Endowment Effects
P/W H Per capita water resources

W/Wa I Utilization of water resources in agriculture
Wa J Water consumption in agriculture

The study then utilizes the LMDI decomposition method to quantitatively assess
the contribution of each influencing factor [27,28]. The LMDI method boasts several
advantages, including complete decomposition without residual, a strong theoretical
foundation, adaptability, ease of use, and a straightforward interpretation of results [19].
This model aids in analyzing the driving factors within the Kaya equation and their
subsequent effects. In accordance with the LMDI method, there exists a variation in the WF
between the base year and year t, as illustrated in Equation (6).

ΔWF = WFt − WF0 = ΔWFA + ΔWFB + ΔWFC + ΔWFD + ΔWFE + ΔWFF + ΔWFG + ΔWFH + ΔWFI + ΔWFJ (6)

where

ΔWFA = q × ln
(

At

A0

)
(7)

ΔWFB = q × ln
(

Bt

B0

)
(8)

ΔWFC = q × ln
(

Ct

C0

)
(9)

ΔWFD = q × ln
(

Dt

D0

)
(10)

ΔWFE = q × ln
(

Et

E0

)
(11)

ΔWFF = q × ln
(

Ft

F0

)
(12)

ΔWFG = q × ln
(

Gt

G0

)
(13)
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ΔWFH = q × ln
(

Ht

H0

)
(14)

ΔWFI = q × ln
(

It

I0

)
(15)

ΔWFJ = q × ln
(

Jt

J0

)
(16)

A, B, C, and D are labeled technology effects, E and F are policy effects, G is the
economic effect, and H, I, and J are the endowment effects. After conversion through the
application of the LMDI model, the proportion of each of these ten effects is obtained in the
explanation for changes in the WF of animal products. If an effect’s value is negative, it
implies a positive driving factor contributing to the reduction in the WF. The greater the
absolute value of this effect, the more pronounced its positive impact as a driving factor.
Conversely, a positive effect value indicates a negative driving factor. The magnitude of
this effect’s value signifies the extent of the impact caused by the driving factor.

q is the logarithmic weight and can be calculated using Equation (17).

q =
WFt − WF0

ln
(

WFT
)
− ln

(
WF0

) (17)

2.4. Data

The daily drinking water consumed, daily service water consumed, and feed com-
position of animals were obtained from Chapagain and Hoekstra [6]. The WF of feed
ingredients was obtained from published articles [29,30]. For each province, the annual
number of slaughtered animals and production of animal products were obtained, and
the number of livestock farms, agricultural machines, financial expenditure on agriculture,
total financial expenditure, GDP, populations, water resources, and agricultural water for
China were obtained from the National Bureau of Statistics of China.

3. Results and Discussion

3.1. Provincial WF of Animal Products in China
3.1.1. Green, Blue and Gray WF of Animal Products

The green WF of animal products is shown in Figure 1. The results show that a
dramatic rise occurred from 2000 to 2017, with a fluctuation of approximately 31.59%.
The green WF grew in most provinces, with the exception of Beijing (−45.70%), Shanghai
(−63.17%), and Zhejiang Province (−22.57%). The growth rate during the period between
2008 and 2017 (11.53%) was lower than that during 2000–2008 (17.99%), indicating that the
demand for animal products is gradually being met as the number of livestock and poultry
animals raised in most provinces increases in China.

The regional disparities in the green WF of animal products highlight the diverse
efficiency levels in water consumption across provinces within the animal breeding indus-
try. These WFs exhibited notable variations among provinces and underwent significant
changes from 2000 to 2017. In 2000, Shandong (67.19 Gm3), Hunan (64.79 Gm3) and Hebei
(64.45 Gm3) had higher green WFs, whereas Sichuan (73.95 Gm3) and Henan (70.67 Gm3)
had the largest green WFs. In 2008, Henan had the largest green WF (86.19 Gm3). In 2017,
Shandong (93.86 Gm3) surpassed Henan (91.03 Gm3) and had the largest green WF. Beijing,
Shanghai, and Zhejiang had a lower green WF in 2017 than in 2000.
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Figure 1. Green WF of animal products in China.

Figure 2 shows the variations in the blue WF of animal products in China over
2000–2017. The blue WF increased by 33.12% during 2000–2017. The blue WF increased in
all provinces with the exception of Beijing (−48.69%), Hebei (−0.37%), Shanghai (−67.43%),
and Zhejiang (−22.18). The growth rate of the blue WF during 2000-2008 (17.04%) was
higher than that during 2008–2017 (13.74%). On the one hand, the increase in the number
of livestock and poultry animals led to a larger blue WF, while on the other hand, it can be
seen that China made many efforts to save water.

Figure 2. Blue WF of animal products in China.
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Differences in the water conservation capacity across provinces are reflected in the
depletion of the blue WF in 2000, 2008, and 2017. In 2000, Henan (9.74 Gm3), Hebei
(9.53 Gm3), and Hunan (9.37 Gm3) had larger blue WFs, whereas Sichuan (10.82 Gm3) and
Shandong (10.33 Gm3) had the largest blue WFs. In 2008, Sichuan had the largest blue WF
(12.56 Gm3). In 2017, Shandong (14.95 Gm3) surpassed Henan (14.26 Gm3) to have the
largest blue WF.

This analysis revealed a notably higher WF for pork compared to other animal prod-
ucts. Pork production contributed significantly to the overall WF of animal products in
China, accounting for 64.49%. This dominance of the WF of pork highlights its substantial
impact on water resources, emphasizing the importance of reducing its water consumption
for ensuring the sustainability of water resources in China. The green and blue pork WF
was averaged at 705.9 Gm3 per year, which is much larger than the 225.8 Gm3 per year in
Xie’s study [3]. These numbers may be interpreted as the difference between the number of
stocked and slaughtered pigs in China. The pork WF may be overestimated, but the annual
water consumption of the stocked pigs was not ignored.

The WFs of all five animal products in this study were higher than those in published
studies [1,3,8,12–14]. This study concluded that the total WF of animal products needs to
encompass all the water consumed by animals annually. The substantial water consump-
tion by living animals should not be disregarded and needs consideration in assessing
water resources.

The green and blue WFs are interconnected. Typically, the green WF from feed crop
production does not have a notably adverse environmental impact. Nevertheless, globally,
minimizing the green WF might be crucial in decreasing the blue WF in crop production.
Enhancing rainwater efficiency, such as augmenting yields per unit of rainwater, holds the
potential to decrease the blue WF associated with feed crops.

The large animal population requires a greater capacity for manure treatment, es-
pecially in the northern provinces of China (Figure 3). In 2017, Shandong (12.89 Gm3),
Henan (12.60 Gm3), Sichuan (11.80 Gm3), and Hunan (10.38 Gm3) had the highest gray
WFs, accounting for 37.39% of the total. In contrast, Tibet had the highest growth rate
(227.62%) of the gray WF during 2000–2017.

Figure 3. Gray WF of animal products in China.
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The total gray WF increased by 33.12% in 2017 compared to 2000. These results
are different from the gray WF estimated by Zhang [19], who indicated that the volume
of agricultural gray WF remained relatively stable and only slightly increased during
2003–2015. The differences in the gray WF may be explained by the contradiction between
technical progress and consumption growth. The increased gray WF of agriculture was
curbed with technical progress in pollution treatment, in recent years. The increased
gray WF of animal products indicates that the consumption growth of animal products
increased the pressure on wastewater treatment while offsetting the benefits of technical
progress. Hence, the gray WF of animal products emerges as a pivotal factor in wastewater
management across China. It becomes imperative to enhance the discharge norms for
pollutants in the animal breeding sector, especially in economically advanced provinces.
Implementing effective strategies to diminish wastewater production on farms and to
curtail fertilizer usage in feed crop cultivation remains essential.

3.1.2. Changes in the Total WF in Different Regions of China

For descriptive purposes, China was divided into seven regions based on its live-
stock characteristics (Figure 4): Qinghai–Tibet Plateau (QTP, Tibet, and Qinghai), Inner
Mongolia-Xinjiang Region (IXR, Inner Mongolia, and Xinjiang), Loess Plateau (LP, Shaanxi,
Ningxia, and Gansu), Southwest Mountain Region (SMR, Yunnan, Guizhou, Sichuan, and
Chongqing), Northeast Region (NER, Liaoning, Jilin, and Heilongjiang), Northern China
Region (NCR, Beijing, Tianjin, Hebei, Shandong, Henan, Shanxi, Jiangsu, Shanghai, and
Anhui), and Southeast region (SER, Zhejiang, Fujian, Guangdong, Guangxi, Hunan, Hubei,
Jiangxi, and Hainan).

 

Figure 4. Seven regions in China.

Figure 5 shows the total WF for the different livestock animal compositions for the
seven regions in 2000, 2008 and 2017. The NCR had the highest WF. The average total WFs
of animal products in 2000, 2008, and 2017 were 15.00 Gm3 year−1, 17.67 Gm3 year−1, and
19.50 Gm3 year−1, respectively. The WF of pork accounted for 54.43%, 51.18%, and 54.49%
of the total WF in 2000, 2008 and 2017, respectively. The WF of animal products in most
regions showed an increasing trend over the period 2000–2017, except for the IXR region.
In 2000–2017, the consumption structure of animal products in the LP, SMR, NER, NCR,
and SER regions was dominated by pork, and the total WF of pork increased by 33.28%
from 678.5 Gm3 year−1 to 904.3 Gm3 year−1, whereas beef had the largest WF in the QTP
region, accounting for 62.43% on average.
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Figure 5. Total WF in different regions of China in 2000, 2008, and 2017.

The contribution of animal products to the total WF varied considerably between
different regions. Some provinces produced enormous WFs of animal products and ranked
within the top three in 2000, 2008, and 2017. Their enormous WFs were induced by rapid
socioeconomic development. These regions are densely populated and have a higher
demand for animal products [24,31]. Specifically, a large amount of animal products
were produced and consumed in these regions compared to other regions. Provinces in
the NCR and NER heavily rely on locally sourced water-intensive animal products and
predominantly export feed crops. These areas face severe water stress and grapple with a
substantial water scarcity challenge, considering the massive demand for water resources.
In these provinces, the animal breeding industry plays a vital role in mitigating the strain
on water resources and ensuring sustainable development. Tailoring their development
strategies based on local water availability becomes crucial. Therefore, adjusting trade
dynamics and relocating a portion of animal product and crop production to regions
endowed with abundant water resources could alleviate water scarcity and optimize water
utilization in these regions.

The high WF observed in developed areas can be attributed to several factors. Firstly,
developed regions often have higher livestock production, leading to increased water
consumption due to larger herd sizes and more intensive farming practices. Secondly,
these areas tend to rely on more resource-intensive production systems, such as confined
animal feeding operations (CAFOs), which require significant water inputs for maintaining
livestock health and hygiene. Additionally, the increased use of feed with higher WFs and
the reliance on processed feeds might elevate the overall WF in these developed regions.
Moreover, the higher demand for animal products in developed areas might drive the need
for larger-scale production, contributing to increased water usage throughout the livestock
farming process. Lastly, the presence of more advanced but water-consuming technologies
and infrastructure in these regions could also contribute to the higher WF associated with
livestock farming.

3.2. Driving Force Analysis

In this study, an analysis of the driving forces behind the total WF was conducted.
Utilizing the LMDI model, the factors influencing the total WF for each province were
categorized into four effects: the technology effect (A, B, C, D), policy effect (E, F), economic
effect (G), and endowment effect (H, I, J) (Figure 6).
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Figure 6. Driving forces of the WFs of animal products in different periods in China.

The results show that G, F, and E were the three most significant driving forces of the
total WF increase in the Chinese animal breeding industry. The other driving forces of the
increase in the total WF included C, H, and I. The six driving forces contributed 2482.41,
801.97, 696.62, 154.02, 66.29 and 50.93 Gm3 to the Chinese breeding industry. D was the
leading factor in the decline in the total WF, followed by B, A, and J. The four driving forces
contributed −2650.51, −1023.00, −237.86, and −5.49 Gm3 to the total WF of the Chinese
breeding industry, respectively.

We decomposed the total WF of the Chinese breeding industry into two different
periods to explore the driving forces of the total WF. During 2000–2008, the overall WF
increased by 187.11 Gm3, and C and G had a decisive effect on the increase in WF. The other
important driving forces of the increase in total WF were the change in E and F, whereas H
and I only marginally affected the total WF. B and D were the leading factors in the decline
during this period.

In contrast to the 2000–2008 period, the increase in the total WF of the breeding industry
at the national level and the effects of its driving forces differed significantly between 2008
and 2017 in China. B contributed to the increase in total WF, but the positive effects of B
notably changed in the two periods. This change may be due to a mismatch between the
production of animal products and the increased number of farms. This study finds that
D promoted a decline in the total WF during the two periods. The extent of the decrease
in 2008–2017 was larger during the two periods since a greater increase in D occurred in
2008–2017. This demonstrates that increased funding for agricultural equipment is effective
in reducing WFs. Moreover, G, F, and E were promoted to increase the total WF over the
two periods. This promotion could be due to rapid economic growth and a continued rise
in the demand for animal products in China. E and F indicate that policy effects may be
beneficial to the development of the Chinese breeding industry, while water consumption
also increased. The effects of B and C notably changed in the two periods. The change in
B occurred because farming productivity was lower during 2008–2017 than in 2000–2008.
For example, between 2008 and 2017, the number of farms increased significantly, but
the increase in the production of animal products was modest, making 2008–2017 less
productive than 2000–2008. The change in C was due to the development of automation on
farms. The increase in agro-mechanical equipment has increased the level of automation in
farming, and the high level of automation helps to reduce water consumption.
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Enhancing farm production efficiency stands as a viable option to alleviate the pre-
vailing pressure on water resources. Namely, the yield of animal products increased under
the same conditions of breeding and water consumption, which slowed the expansion
of animal breeding scale and reduced water consumption. Despite the advancements
witnessed in China’s farm production efficiency within the animal breeding industry over
the study period, it remained relatively lower in comparison to other industrialized nations,
signifying the need for further enhancement. During the past two decades, the substantial
expansion of China’s animal feeding industry has largely met the demand for animal
products among its populace. Efforts are needed create a resource-saving farming model to
reduce water consumption while improving production efficiency in the future.

The main drivers behind the increase in the Chinese WF of animal products from
2000 to 2017 were the policy and economic effects, and the technology effects were the
main driver of the reduction. Funding for agricultural equipment is increasing via national
agricultural inputs and encouraging input from practitioners. The development of the
animal breeding industry may be promoted, and the WF of animal products will be
reduced. It is more scientific and reasonable to reduce the WF in this manner rather than
changing people’s consumption habits and continuously expanding the importation of
animal products.

3.3. Comparative Analysis

Published studies [2,3,10] broadly addressed the WF of livestock; they mainly concen-
trated on the overall water resource consumption in specific countries (Korea, the United
States) or regions. In contrast, our study focused specifically on the WF of livestock farm-
ing in distinct regions of China, undertaking regional and temporal analyses to deeply
investigate the variations in WFs across different provinces from 2000 to 2017. This detailed
approach provided more specific and concrete data support for managing water resources
in the Chinese livestock industry. By conducting an in-depth analysis of the changes in the
WF of China’s specific regions, including comparisons between different provinces and
the impact of various farming scales, our paper provided more precise, practical recom-
mendations and guidance for managing the WF of the livestock industry in specific regions
of China.

3.4. Limitations

The study faces certain limitations that could impact the accuracy and comprehen-
siveness of our findings. Firstly, the diverse regional characteristics of China, including
varying climates, economies, and populations, pose a challenge in obtaining representative
data for each region, potentially leading to an overestimation of WFs for animal products.
Furthermore, our research focused on only five animal species, neglecting other commonly
consumed varieties like sheep and duck meat. Expanding the scope of animal products
examined could provide a more comprehensive understanding. Additionally, our emphasis
on the green WF, while crucial, highlights the necessity to investigate factors influencing
water use in the cultivation of feed crops. Future studies should consider delving into the
WF of feed crops to offer a more holistic perspective on the overall water impact associated
with animal product production.

4. Conclusions

In this study, the WFs of the animal breeding industry were estimated in 31 provinces
of China. A driving force analysis of the WF was also conducted by combining a Kaya
equation and the LMDI method. The main conclusions were drawn as follows.

The total WF of the animal breeding industry has risen due to the economic devel-
opment of developing countries. The national total WF of animal products increased
31.95%, from 1049.67 Gm3 in 2000 to 1385.05 Gm3 in 2017. The WF of pork constituted the
major portion of the total WF in most provinces, consequently being the primary factor
contributing to the overall WF increase.
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Economically developed regions had higher WFs than less developed regions. The
eastern regions of China are more economically developed than the western regions, and
the total WF of the animal breeding industry in the eastern regions is higher.

Increasing the funding for agricultural equipment, integrating more small farms,
improving production efficiency, and increasing the automation of farms may effectively
reduce the WF of animal products.
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Abstract: Accurate estimation of reference evapotranspiration (ETr) is important for irrigation plan-
ning, water resource management, and preserving agricultural and forest habitats. The widely
used Penman–Monteith equation (ASCE-PM) estimates ETr across various timescales using ground
weather station data. However, discrepancies persist between estimated ETr and measured ETr

obtained from weighing lysimeters (ETr-lys), particularly in advective environments. This study
assessed different machine learning (ML) models in comparison to ASCE-PM for ETr estimation in
highly advective conditions. Various variable combinations, representing both radiation and aerody-
namic components, were organized for evaluation. Eleven datasets (DT) were created for the daily
timescale, while seven were established for hourly and quarter-hourly timescales. ML models were
optimized by a genetic algorithm (GA) and included support vector regression (GA-SVR), random
forest (GA-RF), artificial neural networks (GA-ANN), and extreme learning machines (GA-ELM).
Meteorological data and direct measurements of well-watered alfalfa grown under reference ET
conditions obtained from weighing lysimeters and a nearby weather station in Bushland, Texas
(1996–1998), were used for training and testing. Model performance was assessed using metrics such
as root mean square error (RMSE), mean absolute error (MAE), mean bias error (MBE), and coefficient
of determination (R2). ASCE-PM consistently underestimated alfalfa ET across all timescales (above
7.5 mm/day, 0.6 mm/h, and 0.2 mm/h daily, hourly, and quarter-hourly, respectively). On hourly
and quarter-hourly timescales, datasets predominantly composed of radiation components or a
blend of radiation and aerodynamic components demonstrated superior performance. Conversely,
datasets primarily composed of aerodynamic components exhibited enhanced performance on a
daily timescale. Overall, GA-ELM outperformed the other models and was thus recommended for
ETr estimation at all timescales. The findings emphasize the significance of ML models in accurately
estimating ETr across varying temporal resolutions, crucial for effective water management, water
resources, and agricultural planning.

Keywords: machine learning; genetic algorithm; advective environments; radiation components;
aerodynamic components; reference evapotranspiration

1. Introduction

Evapotranspiration (ET) is a significant factor in the hydrological cycle and is fre-
quently used to calculate hydrological losses through several important processes that
take place between the ground and the atmosphere. It is essential for the optimal design
of irrigation schedules [1], management of regional water resources [2], and estimation
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of different hydrological processes [3]. ET has a significant impact on several terrestrial
ecosystem processes as well as pertinent characteristics, such as soil water content and
energy balances [4]. Considerable progress in estimating ET and understanding the mech-
anisms of its ongoing variations in daily, annual, and inter-annual timescales has been
made through numerous studies, motivated by the early awareness of the importance of
water as an essential resource for life sustainability on earth. Despite the findings in these
studies, the complex and nonlinear processes that dominate evapotranspiration have made
its estimation a great challenge, partly due to several influencing factors, such as landform,
geomorphological, soil moisture, and vegetation traits [5–7]. In this context, the precise
estimation of ET is still of particular importance for careful water resource management.

An overview of the evolution of ET-estimating methods during the previous century
was discussed in Ref. [8], and these methods are often classified as direct and indirect. Direct
methods, such as lysimeters and micrometeorological techniques, demand special construc-
tion and high maintenance, which is expensive. Indirect methods, on the other hand, are
less expensive and time-saving and are in some contexts regarded as suitable alternatives
to the direct ones. The indirect methods are commonly classified into water-balance-based,
radiation-based, mass-transfer-based, and temperature-based models [9]. Because it consid-
ers both aerodynamic and thermodynamic factors, the FAO Penman–Monteith (FAO-PM)
model for calculating the ET of a reference short (grass) crop continues to be the most
extensively used indirect method for ETr estimation in a variety of regions and climates [10].
The Food and Agriculture Organization (FAO) approved the equation after determining
that it accounts for all the variables influencing evapotranspiration and fixes most of the
flaws in the other empirical techniques.

The Penman–Monteith Equation was slightly modified and standardized by the Amer-
ican Society of Civil Engineers (ASCE) for both tall crop (alfalfa) (ETrs) and short crop
(clipped grass) surfaces with similar parameterizations as the FAO-PM for computation of
the equation components after national and international discussions on the adoption of a
taller reference crop [11]. The result was the ASCE-PM equation, and it was formulated
to allow calculations for both daily and hourly or shorter time steps [12]. The complexity
involved in the calculations of all the required inputs in the ASCE-PM is a disadvantage for
its application, which could lead to significant errors [13]. Another drawback in using the
ASCE-PM is the difficulty in obtaining the extensive weather data needed and the absence
of adequate historical records for each study location, which are crucial aspects for calculat-
ing reliable ETr estimates [4]. This can be particularly challenging in developing countries,
where there are limited meteorological stations and a scarcity of weather data records.

Reference evapotranspiration depends on latitude, altitude, and several climatic vari-
ables, such as relative humidity, air temperature, soil temperature, wind speed, net radi-
ation, and dew point temperature [14]; several researchers have utilized a combination
of these different parameters to model ETo using machine learning models at daily and
monthly timescales to overcome the identified limitations and difficulties of traditional
methods [15]. CatBoost, generalized regression neural network (GRNN), and the random
forest (RF) models were evaluated for estimating daily ETo in the arid and semi-arid regions
of northern China, using limited meteorological data with eight different combinations
of inputs [16]. It was found that CatBoost demonstrated superior performance and was
identified as the most effective method for estimating ETo. The efficiency of extreme learn-
ing machines (ELM) was compared to the empirical Penman–Monteith equation and the
feedforward backpropagation (FFBP) in predicting ETo for three meteorological stations
in Iraq, utilizing meteorological data from thirteen years (2000–2013) as inputs [5]. They
concluded that the ELM model demonstrated efficiency, simplicity, high speed, and good
generalization performance for ETo estimation. Four different variants of an extreme learn-
ing machine (ELM) model optimized using bio-inspired search algorithms were evaluated
to estimate daily reference evapotranspiration (ETr) across various regions in China using
data from eight meteorological stations [1]. The results highlighted the effectiveness of bio-
inspired optimization algorithms, particularly the FPA and CSA algorithms, in enhancing
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the performance of the conventional ELM model for daily ETo prediction. Kernel-based
(Gaussian process regression (GPR), support vector regression (SVR)) and deep learning
methods (Broyden–Fletcher–Goldfarb–Shanno artificial neural network (BFGS-ANN)) were
compared to long short-term memory (LSTM) for estimation of monthly reference evapo-
transpiration using minimal meteorological parameters in ten different combinations [17].
The results showed that all four methods predicted ETo amounts with acceptable accuracy
and error levels.

Due to consistent climatic changes and the complexity of the evapotranspiration
process that leads to its high variability in time and space, in this study, modeling the
ETr was extended to quarter-hourly and hourly timescales. Meteorological data at high
temporal resolution has become easier to collect due to the recent advancements in the
development of automatic weather stations [18]. This, in turn, boosts the estimation of ETr
at such resolutions, which is commonly used for calibrating surface energy balance models
in the determination of geospatial evapotranspiration from drone imagery or satellite
images [19,20]. Therefore, assessing the performance of the ASCE-PM at timescales lower
than the daily interval is increasingly becoming necessary.

To the best of our knowledge, there are no studies that have evaluated the use of ML
models for the estimation of ETr at lower timescales, such as hourly or quarter-hourly
with varied meteorological input data. In addition, studies that evaluated ETr at a daily
timescale mostly considered parameters directly measured from weather stations. This
is desirable for the estimation of reference evapotranspiration in areas with incomplete
meteorological data [9]. However, the sensitivity of ETr to different meteorological variables
(directly measured or those calculated from directly measured) has been studied [21,22],
and they were all found to influence the energy budget of the surface [23]. Changes in
wind speed produced the largest decrease in ETr, followed by vapor pressure, net radiation,
and mean temperature [21]. Also, computed ETr was found to be most sensitive to net
radiation, followed by vapor pressure deficit and wind travel transfers; the contribution
of the aerodynamic and net radiation components to the ETr value varied throughout the
year [24]. The difference in the contribution of these components could be attributed to
the difference in climates [8]. Therefore, it is evident that for proper evapotranspiration
estimation, proper assessment of all meteorological parameters (directly measured or not)
is necessary. In this study, we combined directly measured weather parameters with
subsequently calculated parameters for ETr estimation using machine learning models.

Advantages of ML include the ability to use reduced data inputs, capturing non-
linearity in the data inputs, and utilizing the computing power of modern-day computer
systems to analyze big data. Collectively, these factors have made ML algorithms attractive
options for estimating ETr. The choice of the best possible algorithm and the choice of
adequately representative variables are among the challenging aspects of any ML task [25].
Moreover, the performance of ML algorithms strongly depends on the size and structure
of available data [25]. To improve performance, several bio-inspired algorithms, such as
GA, are coupled with ML models to find the optimal set of parameters during model
training [1,5]. This is because default optimization algorithms, such as backpropagation,
are often trapped in the local minima, several parameters influence its speed and robust-
ness, and its best parameters appear to vary from problem to problem [26]. Unlike the
backpropagation technique that always adjusts weights towards the descending direction
of the error function, GA is a parallel stochastic optimization algorithm good at global
searching. The drawback of GA is its slowness during model training due to its exploration
mechanism through reproduction, crossover, and mutation, as well as searching for optimal
solutions from random genes [27,28]. Nonetheless, GA provides multiple optimal solutions
from the search space, and has thus gained prominence in recent years. For evapotran-
spiration studies, ML models coupled with GA were found to perform better than the
corresponding single models [29–32]. Therefore, in this paper, GA was utilized to optimize
ML models and compared to standardized ASCE-PM for ETr estimation on daily, hourly,
and quarter-hourly timescales considering different input meteorological variables.
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2. Materials and Methods

2.1. Lysimetric and Weather Data Collection

A research study was set up for the actual estimation of alfalfa reference evapotranspi-
ration in Bushland, Texas, facility of the USDA Agricultural Research Service Conservation
and Production Research Laboratory, in 1996. Bushland has a semi-arid climate that is im-
pacted by local and regional advection events [33]. The site was subdivided into two square
fields, designated northeast (NE) and southeast (SE), each measuring ~5.0 ha. Monolithic
weighing lysimeters (NE and SE) with 3 m × 3 m surface dimensions and 2.4 m deep were
located at the center of each of the two fields. These were used for the direct measurement
of ETr-lys. The details about the study area and the lysimeter’s site in Bushland (35◦11′
N, 102◦6′ W, and 1170 m above MSL) can be found in Refs. [34,35]. Alfalfa was seeded in
the two fields, which were irrigated simultaneously by a Lindsay lateral move sprinkler
system to maintain a well-watered condition. Experiments were conducted for 4 years from
1996 through 1999 [36], but the data for the year 1999 were omitted in this study because
reference conditions for a tall reference crop (alfalfa) were not always met [10]. The leaf
area index (LAI), growth stage, and plant height were measured periodically between and
at each harvest in each field (Figure 1). The whole planting and agronomic management of
alfalfa crops during the four-year growing period were described in Ref. [36], and the data
and metadata are available in Ref. [37].

Figure 1. Alfalfa harvesting patterns and days when alfalfa height and LAI measurements were
taken for growing seasons from 1996 to 1998.

The methodology for meteorological data acquisition was extensively described in
Refs. [35,36] and are available in Ref. [38]; therefore, only the measured variables and other
noteworthy points will be presented in this work. Meteorological measurements were
made at 5 s intervals and reported as quarter-hourly averages. This meteorological data,
including the mean air temperature at 2.0 m height, mean relative humidity at 1.8 m height,
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mean wind speed at 2.0 m height, and mean solar irradiance were necessary to obtain the
ETr calculated in this study.

2.2. Data Processing

Lysimeter and meteorology data were processed and analyzed under three different
timescales: quarter-hourly, hourly, and daily. Only the days when alfalfa height was at least
0.5 m were used in this study in accordance with reference conditions for a tall reference
crop (alfalfa) [10]. Also, days were not considered if irrigation or rainfall affected the
accuracy of the water balance calculations for measured ETr or if the crop was lodged or
badly watered. Figure 2 shows the Kc values for the days selected in this study. Note that
the Kc values were often >1, which indicates that alfalfa ET under reference conditions
exceeded the ASCE 2005 PM reference ET in the advective environment of Bushland.

Figure 2. Kc values for the days when reference conditions were met for alfalfa growing period
(1996–1998).

ETr-lys values from the NE and SE lysimeters were averaged for each of the data points
to obtain the full ETr-lys dataset under the quarter-hourly timescale. The hourly ETr-lys
was computed as the sum of four (4) consecutive quarter-hourly readings, while the same
number of readings were averaged to obtain the mean hourly values of the meteorological
variables (air temperature, wind speed, solar radiation, relative humidity). On the daily
timescale, the daily ETr-lys was computed as the sum of all ninety-six (96) consecutive
quarter-hourly readings, while the meteorological variables were extracted as follows; the
maximum and minimum values of temperature and relative humidity were taken as the
maximum and minimum of the 15 min average values for a given day, respectively. The
ninety-six (96) consecutive quarter-hourly readings were averaged to obtain the mean daily
values of the meteorological variables (wind speed, solar radiation, temperature). This
resulted in daily meteorological data, including maximum temperature (Tmax), minimum
temperature (Tmin), mean wind speed (u2), maximum relative humidity (RHmax), minimum
relative humidity (RHmin), and mean solar radiation (Rs).
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2.3. Calculation of Parameters for Reference Evapotranspiration Estimation

Equation (1) presents the form of the ASCE-PM by Ref. [12] for different time steps.
The constants Cd and Cn for each of the timescales are shown in Table 1.

ETrs =
0.408Δ(Rn − G) + γ Cn

T+273 u2(es − ea)

Δ + γ(1 + Cdu2)
(1)

where ETrs is the standardized reference crop evapotranspiration for a tall surface (mm d−1

for daily time steps or mm h−1 for hourly time steps); Rn is the net radiation at the crop
surface (MJ m−2 d−1 for daily time steps or MJ m−2 h−1 for hourly time steps); G is the
soil heat flux density at the soil surface at the daily (MJ m−2 d−1) and hourly (MJ m−2 h−1)
basis; T is the mean daily or hourly air temperature at 1.5 to 2.5 m height (◦C); u2 is the mean
daily wind speed at 2 m height (m s−1); es is the saturation vapor pressure at 1.5 to 2.5 m
height (kPa); ea is the mean actual vapor pressure at 1.5 to 2.5 m height (kPa); Δ is the slope
of the saturation vapor pressure–temperature curve (kPa ◦C−1); γ is the psychrometric
constant (kPa ◦C−1); Cn is the numerator constant that changes with reference type and
calculation time step; and Cd is the denominator constant that changes with reference type
and calculation time step (s m−1).

Table 1. Parameters of the ASCE-PM at different timescales.

Version Time Step Cn Cd rs (m s−1)

ASCE-PM

Tall reference (0.5 m high)
Daily 1600 0.38 45
Hourly (daytime) 66 0.25 30
Hourly (nighttime) 66 1.7 200

The ASCE-PM reference evapotranspiration was calculated using REF-ET software
(Version 4.1.4.22) [39], which calculates ETo and ETr for grass and alfalfa as short and tall
reference crops, respectively, on different timescales. It can be used to calculate reference
evapotranspiration on monthly, daily, and hourly or less timescales, and it has been adopted
in several studies [40,41]. The calculated ETrs values from the software were compared to
the outputs of ML models at daily, hourly, and quarter-hourly timescales.

2.4. Machine Learning Algorithms and Optimization

Four ML models with different operation principles were used in this study to estimate
ETr: random forest (RF), extreme learning machine (ELM), support vector regression
(SVR), and artificial neural network (ANN). These models have gained prominence in
evapotranspiration studies in recent years [42,43]. ELM is different from ANN and SVR,
as it does not require iterative training, and its hidden layer parameters are randomly
selected [1]. It was first proposed by Ref. [44] and has received wide applicability due to
its fast convergence speed, strong generalization ability, and no local extrema [45]. RF is a
tree-based approach that manages high-dimension regression problems, where the final
decision results via a bagging procedure. The structure of each of these models is shown in
Figure 3, but a further detailed description of the definitions and principle of operation is
out of the scope of this paper; it has been extensively discussed elsewhere [46–49].
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Figure 3. Structure of the machine learning models: ANN (a), SVR (b), ELM (c), and RF (d).

2.4.1. Genetic Algorithm

The GA is a widely used optimization technique that has shown promise in agri-
cultural studies for fine-tuning the parameters of ML models [50]. It is an evolutionary
algorithm used to search for optimized solutions to the natural evolutionary process
through simulation [1]. Several evapotranspiration studies indicated that coupling GA
with machine learning models, such as ANN, SVR, and ELM, yields better results than the
single models [29–32]. An extensive overview of the implementation of a genetic algorithm
including potential integration with ML models was provided in Ref. [51]. In this study, its
integration with ML models is demonstrated in Figure 4. Across all models, the population
size, mutation probability, crossover probability, and the number of generations of the GA
were set to 50, 0.2, 0.3, and 5, respectively. Also, input features were normalized within the
range of [–1, 1] using the Mix and Max method [4].

For the SVR model, the radial basis function was used as the kernel function, and
the regularization parameter and kernel parameter (gamma) were optimized with them
ranging from 5 to 1000, and from 0.05 to 0.99, respectively.

For the RF models, the maximum depth of the tree (max_depth), the number of
features (max_features), the minimum number of samples required to be at a leaf node
(min_samples_leaf), the minimum number of samples required to split an internal node
(min_samples_split), and the number of trees in the forest (n_estimators) were optimized
ranging from 5 to 500, from 2 to 6, from 5 to 20, from 5 to 20, and from 1 to 500, respectively.

The weight matrix and bias vector of the ELM were randomly generated and the
activation function was set to sigmoid. The hidden units and the regularization parameters
were optimized from 5 to 1000 and from 0.02 to 0.9, respectively. Detailed descriptions of
the ELM parameters used in this study are extensively discussed in [44].
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Figure 4. Flow diagram for tuning the hyperparameters of the machine learning models.

The ANN model consisted of an input layer, a hidden layer, and the output layer. The Rec-
tified Linear Unit (ReLu) was taken as the activation function. The neg_mean_squared_error
and neg_mean_absolute_error of the scikit-learn package in Pyhtonv3.8 were used as the
loss functions. The number of neurons and hidden layers were both optimized ranging
from 3 to 100, while the learning rate was optimized from 0.01 to 0.3. Additional parameters
were taken as the default values in the scikit-learn package.

2.4.2. k-Folds Cross Validation

The k-fold cross-testing approach was used during this phase to train and test the
models. The meteorological dataset was randomly divided into training and testing
datasets, each with 80% and 20% of the total data, respectively. The training dataset was
then equally divided into five folds, of which four were utilized to train the models and
one for model testing. To make sure that each fold was used at least once for model
testing, the procedure was carried out five times. The performance of each of the model
hyperparameters was assessed by the resulting error. The errors of the five trials were
averaged as the expected generalization error. The parameters that provided the minimum
average error were returned as the tuned hyperparameters.

2.4.3. Arrangement of Datasets for Machine Learning Models

The datasets for ML models were arranged to reflect the impacts of aerodynamic and
radiation components on ETr (Figure 5). Aerodynamic components are represented by wind
speed, relative humidity, and vapor pressure deficit (VPD), while radiation components
are represented by net radiation (Rn), solar irradiance (Rs), air temperature, vapor pressure–
temperature curve (Δ), and the relative cloudiness (Rs/Rso).
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Figure 5. Representation of radiation and aerodynamic components for ETr estimation.

Further considerations included the simplicity of measuring the weather parameters,
the ease of calculation of the intermediate parameters, and the completeness of the climatic
variables. Parameters u2, Rs, and the means, minimums, and maximums of temperature
and relative humidity can be directly measured by weather stations. Parameters that are
calculated from the directly measurable variables include the VPD, the Rs/Rso, the Δ, and
the Rn. The requirement for the calculation of all these parameters for ETr estimation
has been cited as one of the challenges of the ASCE-PM that could lead to significant
errors [13]. Such errors could be reduced by determining the most crucial parameters
that influence evapotranspiration for a given area through machine learning algorithms.
For this, eleven DTs were considered for the daily timescale, while seven input datasets
(DTs) were considered for the hourly and quarter-hourly timescales, as shown in Table 2.
On a daily timescale, DT3, DT5, and DT10 contain all or the majority of the aerodynamic
components, while DT1, DT4, DT7, and DT8 provide a good mix of both aerodynamic
and radiation components. The presence of aerodynamic components is reduced in DT6,
DT9, and DT11. Among these datasets, all the parameters in DT8 can be directly measured
from a weather station, followed by DT3 and DT4, which have additional parameters that
require computation. The need for computation is increased in DT1 and DT5. A similar
arrangement was followed at hourly and quarterly timescales, however, in this case, the
minimums and maximums of relative humidity and temperature were replaced by their
mean values. The calculation of all the parameters we included in our datasets is defined
and extensively explained in Ref. [12]. Rs/Rso represents relative cloudiness and can be
derived from pyranometer data and calculated Rso values [52]. The calculation of VPD
requires air temperature and relative humidity, while Δ requires air temperature. The
net radiation indicates the amount of solar irradiance absorbed by vegetation, and it is
commonly calculated from the short and long-wave radiation components (Equation (2)) at
either a daily, hourly, or lower timescale.

Rn = Rns − Rnl (2)

where Rns and Rnl are net short-wave and net outgoing long wave radiation in MJ m−2

d−1/h−1, respectively.
The equation for Rns (Equation (3)) does not differ based on timescale, while that of

Rnl (Equations (4) and (5)) differs based on the timescale considered [12].

Rns: daily: and hourly (1 − α)Rs (3)

Rnl: daily : σ fcd(0.34 − 0.14
√

ea)

[
T4

K max + T4
K min

2

]
(4)

Rnl: hourly : σ fcd(0.34 − 0.14
√

ea)T4
K hr (5)
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where α (0.23) is albedo [dimensionless], Rs is incoming solar radiation [MJ m−2 h−1/d−1],
σ (2.042 × 10−10) is Stefan–Boltzmann constant [MJ K−4m−2 h−1/d−1], fcd is a cloudiness
function [dimensionless] calculated from the relative solar radiation (Rs/Rso), ea is actual
vapor pressure [kPa], TKhr is mean absolute temperature during the hourly period [K], and
TK max and TK min are the maximum and minimum absolute temperatures during the 24-h
period [K], respectively.

Table 2. Parameter combinations at different timescales used for training machine learning models.

Daily

Factor DT1 DT2 DT3 DT4 DT5 DT6 DT7 DT8 DT9 DT10 DT11

VPD × × × × ×
Δ × × ×

Rn × × × ×
u2 × × × × × × × × ×

Rs/Rso × × × × × × ×
Tmean × × × ×

RHmean × × × × ×
RHmax ×

Rs × × × × ×
RHmin ×
Tmax × × × ×
Tmin × × × ×

Quarter-hourly and Hourly

VPD × × × ×
Δ × × ×

Rn × × × ×
u2 × × × × × × ×

Rs/Rso × × × ×
Rs × ×

Tmean × × × ×
RHmean × × × × ×

2.5. Evaluation Metrics

The competency of the ASCE-PM, GA-SVR, GA-ANN, GA-ELM, and GA-RF models
for estimating ETr-lys at daily, hourly, and quarter-hourly timescales was assessed by com-
paring the estimated ET from each model with the ET measured using the lysimeters and
quantified using four commonly used statistical indices, i.e., the coefficient of determination
(R2) [1], the mean bias error (MBE) [53], the mean absolute error (MAE), and the root mean
squared error (RMSE) [54], which can be expressed as follows:

R2: 1 − [∑n
i=1 (yi − yi)(xi − xi)]

2

∑n
i=1(yi − yi)

2∑n
i=1 (xi − xi)]

2 (6)

RMSE:

√
∑n

i=1 (y i − xi)
2

n
(7)

MAE:
∑n

i=1 |y i − xi|
n

(8)
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MBE:
∑n

i=1 (y i − xi)

n
(9)

Note: yi denotes estimated ETr, and xi denotes the observed ETr.

3. Results and Discussion

3.1. Comparison of the Estimation Accuracy of the ASCE-PM and Machine Learning Models at a
Daily Timescale

The estimated ETr using ASCE-PM (ETrs) and that from ML models was compared
to that from weighing lysimeters (ETr-lys) on a daily timescale. Table 3 indicates that
DT3, DT4, and DT6 provided the best-performing estimators of ETr-lys across the different
ML models. However, Figure 6 illustrates that the ASCE-PM equation performed better
than these models (considering R2) but tended to underestimate ETr-lys (slope of 0.91,
MBE = −0.43 mm/day) for values from 7.5 mm day−1 and greater. Also, the residual
plot in Figure 7b shows that the largest errors occurred at approximately > 7.5 mm day −1

but, generally, the equation seems to persistently underestimate ETr-lys throughout all
estimates. Underestimation or overestimation of ETr-lys by the different variants of the
Penman–Monteith equation due to low and high evaporative demands has been reported
in earlier studies, and it was attributed to the difference in local climatic conditions and
lysimetric measurement errors. Due to the semi-arid climate and relatively large wind
speeds at Bushland [33], the slight deviations between ETrs and ETr-lys could be attributed
to the advective transport that adds energy, thus increasing the ETr-lys in the reference
alfalfa fields, in agreement with Ref. [55]. Such underestimations were reported from other
highly advective environments [56].

Table 3. Statistical indicators for machine learning ETr estimations at a daily timescale (fit linear
equations representing the slope and intercept for each respective model are presented in italics).

Daily

DT1 DT2 DT3 DT4 DT5 DT6

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

ANN
0.83 1.12 0.79 0.76 1.41 0.84 0.83 1.17 0.86 0.91 0.84 0.58 0.82 1.19 0.90 0.87 1.01 0.74

0.93x + 0.53 0.94x + 0.52 0.97x + 0.31 0.90x + 0.70 0.83x + 1.10 0.95x + 0.26

ELM
0.85 1.02 1.03 0.68 0.99 0.68 0.89 0.91 0.61 0.90 0.85 0.56 0.80 1.20 0.90 0.88 0.93 0.61

0.87x + 1.07 0.90x + 0.79 0.97x − 0.03 0.93x + 0.41 0.93x + 0.31 0.95x + 0.26

SVR
0.79 1.24 0.81 0.77 1.28 0.79 0.87 0.95 0.69 0.88 1.92 0.63 0.74 1.39 1.11 0.84 1.07 0.80

0.92x + 0.50 0.89x + 0.84 0.93x + 0.35 0.89x + 0.82 0.78x + 1.57 0.88x + 0.76

RF
0.83 1.06 0.92 0.86 0.99 0.98 0.85 1.12 1.04 0.89 0.83 0.73 0.81 1.21 1.14 0.85 0.90 0.83

0.82x + 1.22 0.97x + 0.24 1.01x + 0.34 0.98x + 0.37 0.74x + 2.15 0.97x + 0.45

DT7 DT8 DT9 DT10 DT11 ASCE-PM

ANN
0.83 1.21 0.86 0.89 0.93 0.70 0.62 1.67 1.30 0.77 1.31 0.85 0.83 1.27 0.99 0.94 0.75 0.57

0.99x + 0.17 0.94x + 0.34 0.63x + 2.76 0.86x + 0.98 0.83x + 1.43 0.91x + 0.30

ELM
0.83 1.09 0.79 0.88 0.92 0.69 0.63 1.63 1.31 0.81 1.17 0.73 0.81 1.17 0.91

0.96x + 0.31 0.85x + 1.09 0.68x + 2.46 0.92x + 0.56 0.83x + 1.50

SVR
0.81 1.18 0.82 0.87 0.98 0.68 0.43 2.03 1.51 0.73 1.39 0.90 0.66 1.57 1.08

0.92x + 0.71 0.88x + 0.81 0.435x + 4.42 0.85x + 1.15 0.65x + 3.02

RF
0.91 0.95 0.86 0.89 0.93 0.89 0.73 1.37 1.40 0.84 1.07 1.12 0.83 1.17 1.06

0.94x + 0.38 0.97x + 0.46 0.92x + 0.79 0.83x + 0.84 0.82x + 1.22
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Figure 6. Relationship between ASCE, machine learning algorithms, and ETr-lys at daily timescale
for days when reference conditions were met. (a) GA-ELM-DT3, (b) ASCE-PM, (c) GA-ANN-DT4,
(d) GA-ELM-DT6.

Figure 7. Residual plots for ASCE and machine learning algorithms at a daily timescale. (a) GA-ELM-
DT3, (b) ASCE-PM, (c) GA-ANN-DT4, (d) GA-ELM-DT6.
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Comparison of the ETr from ML models with the ETr-lys shows that the underesti-
mation was reduced, most significantly for GA-ELM, when applied to DT3 (slope = 0.97,
MBE = −0.25) and DT6 (slope = 0.95, MBE = −0.19) (Figure 6a,d). It also demonstrates that
GA-ELM can reduce the positive offset and slope, similar to Refs. [22,57], who found ELM
to be suitable for reference evapotranspiration estimation. The best-performing model (GA-
ANN-DT4, considering R2) had a smaller slope (0.90), although it reduced underestimation
(MBE = −0.15). According to RMSE values shown in Table 3, ASCE-PM performed better
than both the SVR and RF models for the majority of the datasets. These models performed
close to the ASCE-PM with RMSE values of 0.98 and 0.93 for the GA-SVR and GA-RF
models, respectively, for the DT8. However, the high positive offsets, 0.81 and 0.46 for the
GA-SVR and GA-RF, respectively, indicate the poor performance of the models as compared
to that of ASCE-PM (0.30). The statistical parameters shown in Table 3 give a clear idea
about the interaction of the meteorological variables used in estimating ETr-lys across the
different models. Based on these results, u2 was involved in all the best-performing datasets
(DT3, DT4, and DT6); therefore, it can be concluded that it is one of the most relevant esti-
mators for daily ETr-lys in this region and that accurate estimates of ETr-lys might not be
achieved without the inclusion of this parameter. Also, the inclusion of VPD and Rs/Rso
in DT3 led to improved slope and offset values compared to those of DT4 for GA-ELM,
GA-ANN, and GA-SVR. In DT6, when Rn was excluded from the inputs, it did not affect the
performance of the ML models. This result presents an opportunity for estimating ETr-lys
without the long Rn calculations and could suggest that in dry and advective environments,
radiation components might primarily contribute to pressure deficit through temperature
changes, but aerodynamic components play a major role in driving evapotranspiration.
This might affirm the relevancy of the inclusion of aerodynamic components in ML models
in advective environments for daily ETr-lys calculations.

Values of RMSE and MAE for GA-ELM-DT4 and GA-ELM-DT5 confirm that the
inclusion of Δ, VPD, and Rs/Rso in DT5 decreased the model accuracy from a MAE
of 0.56 mm/day and RMSE of 0.85 mm/day to a MAE of 0.90 mm/day and RMSE of
1.20 mm/day (Table 3). Removing Δ in GA-ELM-DT3 and replacing it with Tmean and Rn
reduced the MAE from 0.90 mm/day to 0.61 mm/day. A similar trend is observed in all
the datasets where it was included (DT1, DT2). The effect of the inclusion of Rs/Rso (an
indication of cloudiness) can also be assessed by looking at the values of MAE and RMSE
for DT7 and DT8 in Table 3. It is evident that across all models, the MAE and RMSE for
DT7 ranged from 0.79 mm/day to 0.86 mm/day and from 0.95 mm/day to 1.21 mm/day,
respectively, which are larger than the range for DT8 (0.68 mm/day–0.89 mm/day and
0.92 mm/day–0.98 mm/day, respectively). Therefore, this suggests that Δ and Rs/Rso
might not be suitable for daily ETr-lys estimation in the advective environment tested.

It is observed from Table 3 that replacing the maximums and minimums of relative
humidity and temperature with their mean values for DT6 and DT7 slightly improved
the RMSE values. However, when the Rs/Rso was excluded as shown for DT8, the RMSE
and MAE were improved. This means Rs/Rso might not be suitable as a direct input into
ML models for daily ETr estimation for the conditions of this study. MAE and RMSE
values for DT4 and DT8 indicate that Rn and Rs might have a similar effect on the daily
ETr-lys estimation and can be used interchangeably. Hence, precautions should be taken
into consideration for deploying ML models in locations such as the Bushland, TX station
when records of both Rn and Rs are missing. Among all the ML models tested, GA-ANN
subjected to DT4 produced the largest R2 value (0.91), while the GA-ELM applied to DT8
produced the slope closest to unity and the smallest offset. Figure 7a,c,d also reveals that
residuals for the GA-ELM and GA-ANN were persistently close to the zero line, which
indicates that these models can reduce underestimation or overestimation of ETr-lys.
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Overall, the results indicated that on a daily timescale, ML models can give better
estimates of ETr-lys than the ASCE-PM under the tested conditions, and we can learn
some things about the importance of the various input parameters on the accuracy of the
equations. This is important since weather data are normally collected with missing data,
which is sometimes estimated or imputed [58]. Therefore, the relevance of the parameters
indicates how much effort should be expended to replace or estimate missing data based on
the prevailing local conditions. For instance, if accurate estimates of ETr-lys can be obtained
without a particular parameter, no effort would be required to impute its missing values.

3.2. Comparison of the Estimation Accuracy of the ASCE-PM and Machine Learning Models at
Hourly and Quarter-Hourly Timescale

Table 4 gives the performance of the ML models across the different datasets for hourly
and quarter-hourly timescales. Residual plots for the best-performing ML models and
ASCE-PM are shown in Figure 8. Residuals for all ML models in Figure 8a,c,d indicate more
points close to the zero line as compared to the ASCE-PM plot (Figure 8b). The errors appear
to increase at about 0.6 mm/h. A similar trend is observed in Figure 9b, where the slope
of the straight line coincides sensibly with the bisector up to about 0.6 mm/h, indicating
the method’s success for that set of values. However, the method slightly underestimates
ETr-lys above this value, although the overall MBE was calculated as −0.008 mm/h. Our
results agree with the findings of other previous studies [56]. In contrast, some studies
have had results slightly different from ours, where grass reference (ETr) was evaluated
and compared with measurements from a lysimeter [59]. In that paper, the ASCE-PM
overestimated lysimeter measurements by 4% for values above 0.45 mm/h. The behavior
of the ASCE-PM might vary depending on the reference crop considered and the study
site [36].

Table 4. Statistical indicators for machine learning ETr-lys estimations at the hourly and quarter-
hourly timescales (fit linear equations representing the slope and intercept for each respective model
are presented in italics).

Hourly

DT1 DT2 DT3 DT4 DT5 DT6 DT7

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

ANN
0.94 0.09 0.06 0.94 0.09 0.06 0.96 0.08 0.05 0.96 0.08 0.05 0.89 0.12 0.08 0.94 0.09 0.06 0.96 0.07 0.04

0.90x − 0.010 1.03x + 0.020 0.91x + 0.030 0.99x − 0.010 0.82x + 0.030 0.99x + 0.050 1.02x + 0.010

ELM
0.97 0.06 0.04 0.97 0.06 0.04 0.97 0.06 0.04 0.97 0.06 0.04 0.93 0.10 0.06 0.97 0.06 0.04 0.97 0.06 0.04

0.98x + 0.011 0.98x + 0.010 0.98x + 0.009 0.98x + 0.011 0.98x + 0.010 0.95x + 0.255 0.98x + 0.011

SVR
0.97 0.07 0.04 0.97 0.06 0.04 0.97 0.06 0.04 0.97 0.06 0.04 0.93 0.10 0.06 0.97 0.06 0.04 0.97 0.07 0.04

0.98x + 0.012 0.98x + 0.009 0.98x + 0.009 0.984x + 0.012 0.94x + 0.023 0.98x + 0.011 0.98x + 0.011

RF
0.97 0.07 0.04 0.97 0.06 0.04 0.97 0.06 0.04 0.97 0.07 0.04 0.93 0.10 0.06 0.97 0.07 0.04 0.97 0.07 0.04

0.97x + 0.012 0.97x + 0.011 0.97x + 0.012 0.97x + 0.012 0.91x + 0.030 0.97x + 0.013 0.97x + 0.013

Quarter-Hourly

ANN
0.91 0.03 0.02 0.94 0.02 0.02 0.94 0.02 0.01 0.94 0.02 0.02 0.87 0.03 0.02 0.94 0.02 0.02 0.92 0.03 0.02

1.030x + 0.0066 1.004x + 0.0004 1.015x − 0.0004 0.944x + 0.0084 0.892x + 0.0115 0.881x + 0.0114 0.806x + 0.0089

ELM
0.95 0.02 0.01 0.96 0.02 0.01 0.96 0.02 0.01 0.95 0.02 0.01 0.91 0.03 0.02 0.96 0.02 0.01 0.95 0.02 0.01

0.956x + 0.0038 0.959x + 0.0034 0.959x + 0.0035 0.956x + 0.0038 0.906x + 0.008 0.960x + 0.0035 0.955x + 0.004

SVR
0.95 0.02 0.01 0.96 0.02 0.01 0.96 0.02 0.01 0.95 0.02 0.01 0.91 0.03 0.02 0.96 0.02 0.01 0.95 0.02 0.01

0.960x + 0.0034 0.969x + 0.0031 0.969x + 0.0032 0.959x + 0.0035 0.913x + 0.0067 0.969x + 0.0032 0.957x + 0.004

RF
0.96 0.02 0.01 0.96 0.02 0.01 0.96 0.02 0.01 0.96 0.02 0.01 0.92 0.03 0.02 0.96 0.02 0.01 0.95 0.02 0.01

0.957x + 0.0036 0.956x + 0.0037 0.953x + 0.0039 0.958x + 0.0036 0.915x + 0.0072 0.957x + 0.0037 0.955x + 0.004
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Figure 8. Residual plots for ASCE and machine learning algorithms at hourly timescale. (a) GA-ELM-
DT2, (b) ASCE-PM, (c) GA-ANN-DT3, (d) GA-ELM-DT7.

For the ML models GA-ELM-DT2, GA-ELM-DT3, and GA-ELM-DT7, the residuals
were close to zero and slopes (Figure 9a,c,d) close to unity, indicating that the models
performed quite well. It can be perceived from Table 4 that these models performed better
than the ASCE-PM, considering all statistical parameters. The MAE and RMSE for ASCE
were 0.36 and 0.24, respectively, lower than values for DT7, where all models performed
better than the ASCE, with ranges for MAE and RMSE being 0.04 mm/h–0.05 mm/h
and 0.06–0.07 mm/h, respectively. Considering the effect of the different variables on
the model’s performance, results for DT4 show that excluding Δ, VPD, and Rs/Rso led
to a reduction in the slope. However, when the data for the three variables were present
in DT5 and data for Rn and Tmean were absent, the slopes were still reduced across all
models. This indicates that Tmean and Rn could be major contributing factors as direct
inputs for hourly ETr estimation using ML models. The contribution of Rn to hourly ETr-lys
estimation can be further assessed by looking at the results for DT4 and DT7. The consistent
MAE, RMSE, and slope values for all the evaluated models indicate that Rs and Rn can
be used interchangeably as direct inputs to the ML models. In fact, when data for both
variables were absent in DT5, the worst estimates were observed from the ML models. The
performance of ML models on DT4 is encouraging and indicates a potential for estimating
hourly ETr with directly sensed meteorological data.
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Figure 9. Relationship between ASCE, machine learning algorithms, and ETr-lys at hourly timescale.
(a) GA-ELM-DT2, (b) ASCE-PM, (c) GA-ELM-DT3, (d) GA-ELM-DT7.

It can be perceived from both Figures 10a and 11a that the ASCE-PM produced
biased estimates at the quarter-hourly timescale (slope of 0.93, MBE = −0.0012 mm/h),
tending to underestimate ETr-lys. On the other hand, the residuals for the best-performing
models (Figure 10b,c) appear to be close to the zero line, and the R2 values in both cases
(Figure 11b,c) are larger than that for the ASCE-PM (Figure 11b).

 

Figure 10. Residual plots for ASCE and machine learning algorithms at quarter-hourly timescale.
(a) ASCE-PM, (b) GA-ANN-DT2, (c) GA-ELM-DT7.

515



Water 2024, 16, 12

 

Figure 11. Relationship between ASCE, machine learning algorithms and ETr-lys at quarter-hourly
timescale. (a) ASCE-PM, (b) GA-ELM-DT2, (c) GA-ELM-DT7.

An improved performance can be observed from the best-performing ML models
(GA-ELM-DT2, GA-ELM-DT7) with residuals (Figure 10b,c) close to the zero line and slopes
(Figure 11b,c) close to unity. Additionally, all the other models tested (GA-SVR, GA-RF)
performed better than ASCE-PM, as shown by the statistical parameters in Table 4. The
MAE and RMSE for ASCE were 0.36 and 0.24, respectively, higher than values for all models
and across all datasets that ranged from 0.01 to 0.02 mm/h and from 0.02 to 0.03 mm/h,
respectively. The superiority of ML models for quarter-hourly ETr-lys estimation provides
an opportunity to use more high temporal resolution data for ETr-lys estimation.

Some relevant findings have emerged from the results shown above. The adopted
machine learning algorithms are a powerful tool for the prediction of reference evapotran-
spiration at lower timescales. Starting from the parameters that are directly sensed, as in
DT8, to a combination with parameters calculated from them, as in DT2, and other datasets,
it is possible to obtain prediction models characterized by very high accuracy. Mean tem-
perature, as well as net solar radiation, play a significant role in influencing the various
processes of the hydrological cycle. These parameters appear to be relevant for modeling
at hourly or quarter-hourly timescales; therefore, a data-driven model that considers the
above two factors most likely leads to satisfactory results. However, in the absence of net
radiation measurements or in case the resources for its long calculations are limiting, it is
still possible to build a reliable prediction model of ETr-lys with the aid of the machine
learning algorithms, based only on solar radiation, mean temperature, wind speed, and
relative humidity data. This would especially be desirable for remote sensing applications
in data-scarce environments. The use of climatic data that are not very recent may appear
to be a limitation of this study. However, the ability to interpret patterns in past climatic
data will be crucial to climatic forecasting, and ML models have been deemed necessary.

3.3. Transferability of the Developed Machine Learning Models

Developing models for reference evapotranspiration estimation requires an under-
standing of how the different features contribute to the model estimations. This is necessary,
especially for data-scarce environments, where the most dominant variables can be uti-
lized to provide real-time ETr-lys estimates through ML algorithms. Our investigation of
the different parameter combinations and contributions to ETr-lys estimation at different
timescales indicated that ML models can perform better than ASCE-PM while utilizing
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fewer data inputs to achieve reasonable results. If the estimated ETr-lys values are accept-
able representations of ETrs, then the improved accuracy on shorter timescales is especially
relevant for remote sensing of ET since daily or weekly ET is extrapolated from ETrs es-
timates from the small time window that the images were taken, and thus, improved
estimates on these shorter timescales could improve the overall accuracy of these methods.

However, the use of the models from this study could be limited to the study region
and to places that have similar climatic conditions. Areas with similar climatic conditions
might experience similar patterns of the meteorological parameters, producing similar
variability as our results. Still, it is necessary to create similar or novel ML models using
different parameter combinations to investigate their performance in other regions. More-
over, based on the target application, the timescale of the required data might be different
from region to region. The models developed here showed the potential of capturing
variability even at small timescales (quarter-hourly), which is a common temporal resolu-
tion for weather data collection in many regions. The necessity to test different models at
different timescales is paramount for a given region. In fact, different regions have been
found to suit different empirical models for ETr computation, primarily based on local
climatic conditions.

In the case that the models of the current study are transferred to other regions, proper
training of the models is required as well as paying extra attention to the underfitting
and overfitting phenomena commonly experienced during ML model training. Future
developments of this study will concern coupling the ML models, surface energy balance
models, and satellite imagery to improve the estimation of ETr. Increasing the spatial scale
of ETr estimation would be necessary to enhance water management and planning.

4. Conclusions

Machine learning models (GA-ELM, GA-SVR, GA-RF, and GA-ANN) were inves-
tigated in modeling lysimeter-measured reference evapotranspiration (ETr-lys) at daily,
hourly, and quarter-hourly timescales using various input combinations of radiation and
aerodynamic components for a highly advective environment. The results were compared
with those of the standardized Penman–Monteith Equation (ASCE-PM). Based on the
comparison results, it was observed that machine learning models yielded more accurate
ETr-lys estimates compared to ASCE-PM across all timescales. ASCE-PM consistently
underestimated ETr-lys at all timescales. Radiation components, as well as a combination
of radiation and aerodynamic model inputs, demonstrated superior performance at the
hourly and quarter-hourly timescales. Conversely, datasets primarily characterized by
aerodynamic components performed better at the daily timescale. The results indicate that
machine learning models can effectively replace ASCE-PM for ETr-lys estimation in highly
advective environments. Moreover, different climatic variables exert varying influence on
model performance at a given timescale based on local weather conditions. This approach
can be integrated to enhance the accuracy of ETr-lys estimation at hourly or quarter-hourly
timescales, which is crucial for precise geospatial ET estimation using land surface energy
balance models. Additionally, the same approach could be applied in similar advective
environments to evaluate the impact of meteorological parameters on ETr estimation. This
is imperative for ensuring precise ETr estimation for agricultural water management.
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