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1. Introduction

With the development of Earth observation techniques, vast amounts of remote sens-
ing data with a high spectral–spatial–temporal resolution are captured all the time, and
remote sensing data processing and analysis have been successfully used in numerous
fields, including geography, environmental monitoring, land survey, disaster management,
mineral exploration and more. For the processing, analysis and application of remote
sensing data, there are many challenges, such as the vast amount of data, complex data
structures, small labeled samples and nonconvex optimization. In recent years, the con-
vergence of computational intelligence (CI) and remote sensing has ushered in a new era
of possibilities for understanding and harnessing the wealth of information that Earth
observation satellites provide. Computational intelligence methods, such as deep neural
networks, evolutionary optimization and swarm intelligence, have demonstrated remark-
able capabilities in unveiling intricate patterns within satellite images, time series data and
multispectral/hyperspectral information. In the future, CI will produce effective solutions
to the challenges in remote sensing.

2. Recent Research and Progress

This Topic series aims to highlight the latest research and advances in the application
of computational intelligence in the field of remote sensing. In total, this Topic series
contains 12 papers written by research experts on topics of interest. Based on the synthesis
of these latest achievements, they can be categorized into four sections: computational
intelligence methods in hyperspectral remote sensing images; object detection techniques
in remote sensing images; deep learning approaches in remote sensing image classification
and intelligent optimization and control in satellite image applications.

2.1. Computational Intelligence Methods in Hyperspectral Remote Sensing Images

This section consists of three papers. The first paper is written by A.C.P. Silva,
K.T.Z. Coimbra, L.W.R. Filho, G. Pessin and R.E. Correa-Pabón. They mainly explore
the possibility of applying machine learning models to monitor the quality of iron ore [1].
The second paper, written by W. Shuai, F. Jiang, H. Zheng and J. Li, mainly proposes a
new method with high processing efficiency for change detection in remote sensing im-
ages, called MSGATN [2]. The last work studies SAR image segmentation based on fuzzy
c-means and is by J. Zhu, F. Wang and H. You. Experiments show that the framework can
achieve more than 97% segmentation accuracy [3].

2.2. Object Detection Techniques in Remote Sensing Images

The following three papers mainly utilize deep learning techniques to solve prac-
tical problems in the field of remote sensing image object detection. The first paper,
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by R. Chen and S. Liu et al., proposes an effective infrared object detection method
based on source model guidance [4]. They show two explicit examples based on Cen-
terNet and YOLOv3, respectively, and experimentally demonstrate that the method can
achieve powerful performance with limited samples. The second paper, by L. Yu and
X. Zhou et al., proposes a method for boundary-aware salient object detection in optical
remote sensing images [5]. The method uses a graph convolutional network-based feature
extraction module and a boundary-aware attention-based module to improve the accuracy
and robustness of boundary-aware salient object detection. The third paper, by F. Zhou
and H. Deng et al., studies deep learning-based aircraft detection [6]. The paper proposes
an enhanced YOLOv5 model in which a ConvNext-based feature extraction module and a
Transformer-based feature fusion module are used to improve the detection performance.

2.3. Deep Learning Approaches in Remote Sensing Image Classification

This section includes three papers. The first paper is authored by H. Toriya and
A. Dewan et al., who primarily explore the key point matching problem in image features.
They propose using a deep neural network (DNN) to construct an image translator and
introduce a new edge enhancement filter methodology within the conditional generative
adversarial network (cGAN) structure to tackle this issue [7]. The second paper, written by
Z. Wei and Z. Zhang, describes a network built on multi-level strip pooling and a feature
enhancement module (MSPFE-Net). Here, deep learning is effectively applied to address
the challenge of road extraction [8]. In the third paper, L. Zeng and Y. Huo et al. develop the
high-quality seed instance mining (HSIM) module, alongside the dynamic pseudo-instance
label assignment (DPILA), to address the issue of weakly supervised detection in remote
sensing images [9].

2.4. Intelligent Optimization and Control in Satellite Image Applications

This section includes three state-of-the-art papers for reference focusing on different
research directions in satellite images. The first paper is authored by T. Zheng, Y. Dai,
C. Xue and L. Zhou. They propose a method for solving near-lossless hyperspectral data
compression using recursive least squares. They use the linear combination of previous
pixels to predict the target pixel values while using a recursive least squares filter to
iteratively update the weight matrix for prediction, which effectively removes spatial
and spectral redundancy information [10]. The second paper is written by N. Andrijević,
V. Urošević, B. Arsić, D. Herceg and B. Savić. This paper designs a time prediction model
for bee influx and outflow in a bee colony ecosystem with a large number of sensors by
simulating the correlation between the environment and bee colony activity to simulate the
bee colony ecosystem [11]. L. Li, D. Yin, Q. Li, Q. Zhang and Z. Mao propose a verification
method for ultraviolet imagers using the seeker optimization algorithm. This method can
effectively use ultraviolet imagers to conduct authenticity check studies on ocean surface
radiation data [12].

3. Discussion

The papers provide an exchange platform for researchers in the field of remote sensing
images, covering topics such as hyperspectral remote sensing image processing, remote
sensing image classification, segmentation, object detection and intelligent optimization
and control in satellite image applications. These themes represent a series of key issues in
the field of remote sensing images. The research papers in this journal not only delve into
these issues, but also propose new methods and ideas, providing strong support for future
research directions.

In this issue of the journal, we have seen a series of important developments in the
field of hyperspectral remote sensing image processing. Researchers have utilized the rich
information of hyperspectral data to not only improve the performance of segmentation,
but also provide new tools for application fields such as resource management and envi-
ronmental monitoring. In addition, remote sensing image classification, segmentation and
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object detection have always been research hotspots. Research in this journal shows that
deep learning technology has made significant progress in the application of these tasks.

The papers in this research Topic showcase the innovative and influential contribu-
tions of researchers in this field. Researchers have not only delved into various issues,
but also proposed many new methods and technologies, demonstrating the potential of
computational intelligence in advancing our understanding of remote sensing images and
providing strong support for future research directions. In the future, we can look forward
to more interdisciplinary cooperation, combining remote sensing image research with
application fields such as environmental science, agriculture and urban planning to solve
complex real-world problems. We encourage readers to further explore the cutting-edge
research and novel applications presented in these papers to provide new impetus for
scientific and technological innovation.
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Specific Windows Search for Multi-Ship and Multi-Scale Wake
Detection in SAR Images

Kaiyang Ding †, Junfeng Yang †, Zhao Wang, Kai Ni , Xiaohao Wang and Qian Zhou *

Division of Advanced Manufacturing, Shenzhen International Graduate School, Tsinghua University,
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Abstract: Traditional ship identification systems have difficulty in identifying illegal or broken ships,
but the wakes generated by ships can be used as a major feature for identification. However, multi-
ship and multi-scale wake detection is also a big challenge. This paper combines the geometric and
pixel characteristics of ships and their wakes in Synthetic Aperture Radar (SAR) images and proposes
a method for multi-ship and multi-scale wake detection. This method first detects the highlight pixel
area in the image and then generates specific windows around the centroid, thereby detecting wakes
of different sizes in different areas. In addition, all wake components can be located completely based
on wake clustering, the statistical features of wake axis pixels can be used to determine the visible
length of the wake. Test results on the Gaofen-3 SAR image show the special potential of the method
for wake detection.

Keywords: ship wake; wake detection; specific windows; multi-ship; multi-scale; Gaofen-3

1. Introduction

With the development of the marine industry, there are many ports, a huge increase of
ships, complicated waterways and rapidly changing sea conditions in marine countries in
the world, which greatly increases the risk of ship encounters. Moreover, the exploitation
of marine resources has also caused problems such as illegal invasion, illegal fishing and
illegal smuggling. Therefore, more and more attention has been paid to marine ship
monitoring in the whole sea area. SAR has been widely used in ship detection [1,2], oil
spill detection [3], change detection [4–7] and other fields [8,9] and plays an important role
in ship detection due to its wide observation range, short observation period, strong data
timeliness and high spatial resolution [10]. At present, SAR image ship detection includes
ship body detection and ship wake detection. Compared with the detection of ship body
alone, the detection of wake is more valuable in terms of detectability and researchability.
First, the wake lasts for a long time: under certain conditions, the wake on the sea can
stretch over tens of kilometers, which is often dozens of times the length of the ship [11,12].
In addition, wakes generated by ships in different motion states have different geometric
and pixel features. Detection of wakes can not only locate ship targets indirectly, but also
determine their sailing speed, track, ship type and other information according to the
geometric features of the wakes [13–15].

In fact, the linear structure is the main feature of each wake component in the SAR
image. These linear features have a certain length and width, and there are narrow regions
of bright or dark. Therefore, wake detection can proceed from this linear feature and
transform the problem into one of line detection. The Radon transform (RT) or Hough
transform (HT) has shown excellent performance in this field [16,17]. In addition, the
limited regional characteristics of ship wakes can be transformed into a target detection
problem; the rapidly developing deep learning method has also been applied to wake

Remote Sens. 2022, 14, 25. https://doi.org/10.3390/rs14010025 https://www.mdpi.com/journal/remotesensing
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detection. Kang et al. [18] detected ships as well as wakes from SAR images using deep
learning based on Convolutional Neural Networks (CNN). The detection rates under
adverse weather conditions were 68.4% and 60.0%, respectively. However, deep learning
methods usually require a large amount of data support, and there are not enough open
wake data sets hindering the rapid development of this method [19,20]. Therefore, most
of the current research is based on the traditional wake detection method of RT or HT.
Considering that SAR images are seriously disturbed by speckle noise or clutter, a lot of
work is focused on image data preprocessing to make the wake characteristics more obvious.
Jin et al. [21] proposed a spatial wavelet correlation technique for ship wake detection.
After multi-scale edge extraction and spatial correlation, the wake is extracted effectively
and the edge of the wake is sharpened significantly. Courmontagne et al. [22] introduced
Stochastic Matched Filtering into wake detection, and Arnord-Bos et al. [23] applied it to
maximize the signal-to-noise ratio after processing. Biondi [24] considered the polarization
information of SAR images and adopted Low-rank Plus Sparse Decomposition followed
by RT to perform clutter suppression and extract the interesting wake components. Yang
et al. [25] constructed the wake structure dictionary in an analytical way and decomposed
the image into structural components including ship wake and sea texture components,
which suppressed the marine clutter noise in a disguised way and had a significant effect
on ship wake detection in SAR images with complex backgrounds. Additionally, much
research is devoted to improving these traditional methods to make them have better
applicability and robustness. Copeland et al. [26] proposed line RT: intensity integration is
done on short segments instead of on the whole image, which can detect and locate wakes
that are obviously smaller than the image dimension. There are also some scholars who
use local RT, or a combination of sliding windows for global wake detection [27,28] so as to
realize the detection of local short wake. However, this kind of local processing algorithm
often consumes a lot of time and computation power, which is not conducive to the real-
time detection of wake. Apart from these methods, the circular scanning method [29],
the image energy method [30] and the pixel screening method [31,32] also have good
performance in the field of wake detection.

Many of the above algorithms are essentially wake extraction under the condition
of known wake. However, the actual situation is often that we cannot know how many
ships and wakes are contained in the SAR image, and the scale of the wakes cannot be
determined in advance. In real SAR ocean background images, a single image may contain
many wakes of different sizes and positions, and the wakes usually occupy a small area.
Therefore, most of these algorithms cannot effectively deal with the problem of multi-ship
and multi-scale wake detection in unfamiliar images. This article from the ship and its
wake pixel features and geometric characteristics, puts forward the Specific Window Search
method for wake detection, a series of search windows with different sizes and orientations
are generated around the highlighted pixel (ship or other man-made objects) field of the
image. Each window is scored based on improved RT to screen out the area containing
wake components and determine whether the highlighted pixel point in the center is a ship.
Then, the turbulence and Kelvin wakes are located by clustering analysis of the candidate
locations based on the geometric characteristics of wakes in the region containing wakes.
Finally, we extract the pixels on the main axis of the retrieved wake and determine the
beginning and end points of the wake based on statistical analysis characteristics and pixel
gradient characteristics. As we know, separately detecting ships or wakes can only locate
the position or judge the passage of the ship. Only by paired detection of ship and wake
can we make better use of their geometric relationship to conduct parameter inversion
research [33,34]. This is also the core of the algorithm, which uses highlighted pixels to
quickly locate the wake, and the detected wake lines help to determine whether the center
is a ship. We have applied the algorithm to SAR images collected by Gaofen-3 [35] and
tested multiple images with different backgrounds and styles in the data set to complete
wake line localization and length measurement. The main contributions of this paper are
as follows:

5



Remote Sens. 2022, 14, 25

1. A specific window search method different from pre-selected box generation and
sliding window search is proposed for the multi-ship and multi-scale wake detection
problem. Search sub-windows are generated based on a limited number of highlighted
pixel regions in the image, thus greatly reducing the area to be detected.

2. Combining the geometric features of the ship and the wake, we develop the correlation
detection of the ship and the wake, which are detected in pairs rather than separately,
and help in the inversion of the ship navigation information.

3. Based on the angle characteristics between wake components, a new clustering
method is proposed to locate different wake components (turbulence and Kelvin
wake) of the same ship, and measure the shortest visible length of the wake.

4. We create SAR wake data set containing different types of Gaofen-3 and validate our
method on these data.

The rest of the paper is organized as follows. Section 2 introduces in detail the specific
window search detection algorithm we propose, including the wake location strategy and
wake length measurement method. Section 3 presents the Gaofen-3 SAR data and analyzes
the results through several groups of experiments and comparison. Section 4 concludes the
paper with a summary and puts forward some suggestions for future development.

2. Materials and Methods

In this section, we will show the ship and its wake characteristics in SAR images, detail
our specific window search algorithm for wake detection and propose some strategies for
getting as many potential locations as possible. Our search algorithm has the following
design considerations:

First of all, it is necessary to capture all the ship wakes, which are the identity features
generated by the movement of the ship. Accurately identifying all the wake features is the
main goal of the algorithm.

Second, the scale of the wakes generated by ships are not the same under different
motion states, which are affected by the ship’s speed and shape as well as the sea conditions.
The acquisition of wakes of all different scales is helpful for the subsequent inversion of
ship motion information.

Finally, our algorithm is different from the traditional sliding window search algorithm.
The goal of a specific window search is to generate a certain number of windows under a
specific target, so as to locate the actual position of the wake. This set size is much smaller
than the traditional algorithm, so the efficiency of our algorithm will be greatly improved.

2.1. Specific Windows Search by Highlighted Pixel Points

Wakes generated by ships during navigation can generally be divided into Kelvin
wakes, internal wave wakes, turbulent wakes and V-narrow wakes, and they show different
geometric characteristics [36], as shown in Figure 1a. Actually, ship wakes in SAR images
are mainly turbulent wakes and Kelvin wakes, with Kelvin wakes accounting for about
17% of wakes. Turbulent wakes are the most common wake type and exist in almost all
ship wakes [37]. They are characterized by dark or bright narrow lines that stretch for tens
of kilometers in length; these ships generally show the highlight point or region.
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(a) (b) 

Figure 1. Various wakes of ships and their geometric relations: (a) The geometry of the wake pattern
produced by ships; (b) The relationship between ship direction and wake region: I, II, III and IV
represent the wake region caused by the maximum Doppler shift in four directions, α and α’ are the
angle of two tracks respectively.

In addition, due to the ship’s movement and the SAR system, a Doppler shift effect
will appear in the imaging process, resulting in a special geometric relationship between
the ship and the wake [38,39], as shown in Figure 1b. In the imaging mode of the ascending
left view, the ships travel toward each other in 2 tracks with different angles and 4 different
directions. The regions where wakes are generated (shown by turbulent wakes) are divided
into four different regions. Taking a ship heading northeast, as an example, the ship target
is located in the coordinate center, and its turbulent wake must be generated in area I.
Therefore, unlike other targets on the sea surface, the pixel features and spatial geometric
features of ship targets and wakes are very obvious. It is precisely by combining the
pixel and geometric features between the ship and the wake that we use the highlight
pixel algorithm to form the basis of our specific window search, so as to avoid irrelevant
interference features and improve the specificity of the target search. The core idea of the
specific window search is to generate a specific window based on the highlighted pixels for
the target search. The steps of specific window generation are as follows:

The first thing we need to do is to detect the location or potential location of the ships.
However, in addition to ship targets, artifacts on the sea surface, islands and other speckle
noises are also displayed in the highlighted pixel areas. Therefore, we need to do image
preprocessing to eliminate the influence of these non-ideal factors. In this way, the real
position of the ship can be determined as accurately as possible, and the computational
load of the subsequent algorithm can be reduced.

We preset a constant false alarm rate and obtain all potential ship target areas through
the pixel filtering algorithm. Then, for the potential target points, the method adopted
in this paper is performing morphological processing on the binarization target image to
eliminate discrete noise points and enhance the potential ship target area.

After obtaining the position of the potential ship target, according to the geometric
relationship between the ship and the wake in the SAR image described above, specific
windows are successively generated around the centroid of the highlighted pixel area of the
ship target in order to cover different areas where the ship wake exists. Figure 2 shows an
example of the specific window, and the corresponding specific window can be generated
similarly for multiple wakes.
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Figure 2. Schematic diagram of Specific Window distribution.

The length of the subwindow is set as a multi-scale window, so that wakes of different
lengths can be detected. In addition, to cover the offset d due to the Doppler shift, an
overlap width of 2d is set between the windows. The offset d can be calculated by [40,41]:

d =
vmRs cos θin

Vs
(1)

where vm denotes the maximum velocity of the ship, Vs is velocity of the satellite, Rs is the
slant range distance and θin is the incidence angle. These satellite-related parameters used
in the experiment are all from Gaofen-3.

Each detection window is represented by a subwindow in the set Wi = {wi
j,k} and

the corresponding score si
j,k. The scoring rules will be described in detail below, where i

represents the set of windows generated by the i-th pixel pi = (xi, yi), and (j, k) = ({S1, S2,
S3}, {±π/4, ±3π/4}) determine the scale and orientation of subwindow respectively.

The key problem of the algorithm is to find the location and measure the length of
the wake. Therefore, some strategies are designed to make the location and length more
accurate.

2.2. Wake Localization Strategy

The size and location of the window covering the object varies in the image. However,
within a set of windows in a highlighted pixel area, some windows cover objects more
accurately than others. An appropriate window facilitates subsequent standardization of
wake features with varying scales. In the wake localization stage, for each subwindow, we
evaluated the possibility of a window covering an object by an improved RT, based on its
internal pixel integration, while considering its position and size [16]. The localization stage
includes first determining the window orientation, that is, finding the window directions
that can accurately cover the wake position in the four directions, and then accurately
marking the wake position of each scale or each component in the window.

In order to avoid the influence of the highlighted pixel region on the subwindow pixel
integration, we mask these regions with the average pixel μ(wi

j,k) of the sea clutter in the
window. For the window set Wi, the minimum scale window determines the shortest wake
that can be detected, the Local Difference Radon transform in this scale window set wi

k
is used as its score to eliminate the fake ship highlight pixels and determine the window
orientation. The probability score si

k of each direction window is expressed by:

si
k = max Ri

k (2)
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where, Ri
k represents the Difference Radon transform. Although the actual ship wake may

be bright or dark lines, its average pixel is different from sea clutter; local pixel difference
processing can increase the contrast between wake and clutter, and, at the same time, it is
convenient to capture the position of the wake at the peak in the Radon domain, which is
defined as:

Ri
k =

∫ ∫
wi

k

∣∣∣ f (x, y)− μ(wi
k)
∣∣∣δ(ρ − xcosθ − ysinθ)dxdy (3)

The maximum value of si
k is taken as the score of the i-th window set. When the

root location of the subwindow is the fake highlight pixel centroid without wakes, the
score is approximately zero. If the value is much larger than zero, the subwindow is
judged to contain wakes. Thus, the subwindow containing the wake can be selected and its
orientation can be determined, the corresponding (i, k) is shown in Equation (5).

si = max
k=±π/4,±3π/4

si
k (4)

wi
k ⇐

{
(i, k)

∣∣∣max(maxRi
k) � 0, i = 1, 2, . . . , n, k = ±π/4,±3π/4} (5)

After completing this step, the wakes in the image are positioned by a series of sub-
windows of different sizes, as shown in Figure 3a. In addition, due to imaging conditions,
different wakes formed by the same ship may show different lengths in the actual SAR
image [13,42], as shown in Figure 3b.

  
(a) (b) 

Figure 3. Fine detection of wakes from the same ship: (a) Wakes of different scales and their detection
subwindows; (b) turbulence wakes and Kelvin wakes of different lengths in SAR images.

In order to accurately locate wakes at various scales and ensure that different wake
components generated by the same ship can be detected, we modified Equation (3) by
adding scale factors to standardize it; Sj represents window scale.

Ri
j(ρ, θ) = Ri

j(ρ, θ)/Sj (6)

We then need to set the appropriate threshold Tw to mark all the qualified position
information (ρ,θ); Tw is usually set to Rm/

√
2, which is given by the length relation between

the Kelvin wake and the turbulent wake. Rm is the maximum value in the Radon domain.

(ρ, θ) = arg Ri
j(ρ, θ)) > Tw (7)
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Since the number of wakes in the subwindow is unknown and the wake component
is not a line but a channel of bright/dark pixels, the position set in Equation (7) is some
cluster of points, {(ρ1,θ1), (ρ2,θ2), . . . , (ρN,θN)}.

We cluster the polar coordinate points belonging to the same wake into one category,
so that all wakes can be retrieved, and the position of the line can be accurately located.
Here, the angle is used as the criterion to distinguish different wakes. For each two detected
lines, if Equation (8) is satisfied, then the two lines are different wakes.

|θm − θn|>Φ/2 (8)

In fact, the wake has a certain width, and a single wake also corresponds to several
extreme points, that is, several lines. For each two lines, if Equation (9) is satisfied, we
consider that they to belong to the same wake.{ |θm − θn|< ε

|ρm − ρn|< w
(9)

where, Φ is the angle between the turbulent wake and the Kelvin wake and ε and w are
small values which can be set according to the actual situation.

At this point, we can divide the peak point set into different subsets which represent
the point clusters corresponding to different wakes and then calculate the center of each
point cluster, which is the precise position of each wake, where the center of the Ni-th
cluster is:

(ρ, θ)Ni =
Ni

∑
1
(ρ, θ)/Ni (10)

2.3. Wake Scale Measurement

In the following, we measure the visible length of the positioned wake. In reality, the
duration of wake formed by ship and its speed determine the length of wake, which can
also be affected by external factors such as sea conditions [42]. The process from wake
formation to being submerged in the sea clutter is represented in the SAR image as the
gradient change of the pixel gray level on the wake line [36].

Measuring the length of the wake is determining the start and end positions of the
wake. Unlike sea clutter, the wake area has obvious pixel characteristics. In order to
separate the wake pixels from the sea clutter pixels, the statistical pixel characteristics of the
sea clutter in the corresponding subwindow are selected as the parameters to distinguish
the wake lines from the sea clutter [20].

μw =
∑N

i=1 ∑N
j=1 f (i, j)

N × N
(11)

σw =

√
∑N

i=1 ∑N
j=1 ( f (i, j)− μw)

2

N × N
(12)

where μw is the mean gray value of the image, σw is the gray standard deviation of the
image, and f (i, j) represents the gray value of image pixels.

A set of pixel points gn is extracted along the axis where the wake is located. Clutter
noise existing on the wake axis causes disorganized changes of pixel gradient on the axis.
Therefore, this group of one-dimensional data is processed to ensure the smoothness of
pixel values on wake lines. The processed data Gn was used to draw the gradient diagram of
its wake axis, as shown in Figure 4. The decision rule based on the statistical characteristics
of pixel gray scale is: { |Gi − μw|≥ tσw

Dend = 0
, i ∈ [1, 2, . . . n] (13)
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Figure 4. Pixel variation trend diagram of wake axis.

The pixel segment conforming to Equation (13) is considered a wake line. Here, t can
be adjusted according to different sea conditions and imaging modes, Di = Gi+1 − Gi-1
represents the gradient of the wake axis and Dend is the gradient of the two ends of the
wake. When the gradient is zero, the wake is submerged in sea clutter, which is the shortest
wake detected.

3. Results

This paper uses the position generated by the specific window search to perform
multi-ship and multi-scale wake detection. We will introduce in detail the wake SAR image
data set used for the experiment and the execution process of wake detection and analyze
the results. The detailed steps of the experiment are as follows, Algorithm 1:

Algorithm 1: Specific Windows Search for Wake Localization and Length Detection

Input: The input is a marine SAR image with ships and their wakes, as well as a variety of other
noise.
Process:

1. After preprocessing, obtain the center of the highlighted region p = {(x1, y1), (x2, y2), . . . , (xn,
yn)}.

2. Generate a series of bounding boxes W = {W1, W2, . . . , Wn} around the center of mass, then
calculate the average value of pixels in each box and mask the highlighted pixel area, where
the Wi represents the set of windows around the i-th region, which contains windows of
different scales and locations.

3. Repeat step 4 for p = 1, ..., n.

4. Perform the Radon-based algorithm for each window in the wi
j,k. Select the peak points in

the Radon domain. Use the clustering algorithm to select the congregate points which are
very close. Calculate the gravity centers of the selected clusters.

5. For all labeled locations, measure the wake length.

Output: The output is a set of ship wake line positions with the wake lengths.

3.1. Data Set

Our data set comes from SAR images of offshore China taken by Gaofen-3 satellite, a
C-band multi-polarization SAR satellite launched by China in 2016. The orbit parameters
and load indexes of Gaofen-3 are shown in Table 1 [35].
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Table 1. Orbit parameters and load indexes of Gaofen-3 satellite.

Satellite Item Parameters

Gaofen-3

Orbit Sun-synchronous orbit
Orbit altitude 755 km

Orbit inclination 98.5◦

Revisit period <3 days (Dual-side Looking)
<1.5 days (Single-side Looking) 1

Frequency band C-band
Incidence angle 10◦–60◦

Signal bandwidth 0–240 MHz
Polarization Single/Dual/Full

Imaging modes 12
Spatial resolution 1–500 m

Swath width 10–650 km
1 10 m resolution, 100 km mapping bandwidth, 90% real-time observation area.

The imaging modes of the wake SAR images in the data set were Ultra-Fine Strips
(UFS) and Fine Strips (FS) [35]. The detailed information of the data set SAR images is
listed in Table 2.

Table 2. The detailed information of the wake data set.

Imaging Mode Resolution(m) Incidence Angle (◦)

UFS 3 × 3 20–50
FS-I 5 × 5 19–50
FS-II 10 × 10 19–50

In these images, samples containing more than two wakes are manually identified
and collected, and then the locations of wakes are marked so as to build the multi-ship and
multi-scale data set for algorithm testing, as shown in Figure 5.

 
(a) (b) (c) (d) 

Figure 5. Creation of multi-ship and multi-scale wake data sets: (a) SAR images; (b) preselect the
images with ship wakes; (c) crop sub-images with multiple ships and multiple wakes; (d) labeled
sub-images.

3.2. Experimental Results

We selected a 700 × 700 pixel-sized sample with multi-scale and multi-wake in the
Gaofen-3 data set, see Figure 6, and the imaging mode was ascending left view. There are
three visible wakes in the image, among which Wake #2 is small and difficult to find. The
Kelvin wake and turbulent wake in Wake #3 are visible. This image is used as an example
to demonstrate the performance of the algorithm.
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Figure 6. Representative SAR images of ship wakes.

Since we do not need to determine whether the highlights are ship targets at this
stage, we use simple morphological processing instead of the complex traditional CFAR
algorithm to obtain the highlighted pixels, and the results are shown in Figure 7a. As we
can see, although the ship target of Wake #2 is only a few pixels, we can still locate the
pixels, which is helpful for the subsequent wake localization.

For these highlighted areas detected, specific windows are generated in their centers
and the windows containing the wake are identified. We take Wake #3 with Kelvin wake
and turbulent wake as an example for coarse detection and precise location of wake.

In Figure 7b, Radon domain results of the four subwindows show that the maximum
score can be obtained at the lower left corner, so it is confirmed that this subwindow
contains wake. After standardization, the wake lines corresponding to these preliminary
candidate points are shown in Figure 7c. In the stage of fine positioning of each component
of the wake, the maximum peak point was taken as the first clustering center [43], and the
rest of the clustering centers were determined by geometric and angular relations of the
wake; we set ε as 5◦ and ω as 3 pixels. The results are shown in Figure 7d. It can be shown
that the turbulent wake and one Kelvin arm were well detected, while the other Kelvin arm
failed to be located due to weak features.

Figure 7e shows the measurement results of wake length. Parameter t is first se-
lected within a reasonable range according to experience, and then manually adjusted and
gradually optimized. Here, t is set to 0.35.

Figure 7f is the recognition result of You Only Look Once (YOLO) algorithm [44]. It
can be seen that the short wakes have missed detection due to the extremely weak wake
characteristics, and the other two wakes were detected with high confidence. It is worth
mentioning that, under the condition of no ship target information, for the multi-ship and
multi-scale wake detection task, our traditional method can also achieve the results of deep
learning methods, and doesn’t need a lot of data set as a support. Compared with direct
wake line positioning of our algorithm, the wake bounding-box of YOLO requires further
line detection in the local area. In short, our algorithm could match the detection effect of
the latest deep learning method. (It should be noted that the deep learning method here is
based on the standard YOLOv3 network training result. This result is only a preliminary
attempt of wake detection using deep learning. We have also conducted new research in
the follow-up, and the research results will be announced later.)

In current target detection tasks, the confusion matrix is often used to define some
indicators to quantitatively analyze the performance of the algorithm. For ship wake
detection, we also define the corresponding 2×2 Confusion Matrix, as shown in Table 3.
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(a) (b) 

  
(c) (d) 

   

(e) (f) 

Figure 7. Detection results: (a) Highlight area centroid detection results; (b) Radon-based results of
subwindows with wakes; (c) Candidate position of wake line after standardization; (d) Fine position
of each wake component; (e) The final result; (f) The YOLO algorithm detection result.
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Table 3. Confusion Matrix.

Wake Detection Prediction = 1 Prediction = 0

Actual = 1 TP FN
Actual = 0 FP TN

In the table, TP represents true positive, that is, the detected wake is a true wake; FP
stands for a false positive, that is, a fake feature is detected as a wake; FN stands for a
false negative, which means that the ship pixel is detected but the wake position is not
correctly located; TN stands for true negative, which means that the highlighted pixels of
fake-ships are detected and removed. We set the rate of Precision and Recall to evaluate
the performance of wake detection:

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

In addition, our method can measure the length of visible wake, and Intersection-over-
Union (IoU) is a very appropriate indicator to evaluate our detection results and analyze
the degree of coincidence between the prediction wake line and the actual wake line. As
shown in Figure 8a, the rectangle with the wake line as the diagonal can be considered as
its position box, so that the wake detection results can be evaluated in terms of area; IoU
can be expressed as:

IoU =
Intersection

Union
(16)

   
(a) (b) (c) 

Figure 8. Schematic diagram of IoU principle of wake detection: (a) The actual box (Black) and
prediction box (Blue) of the wake line; (b) Intersection area of actual and prediction boxes; (c) Union
area of actual and prediction boxes.

That is, the ratio of the intersection area to the union area.
We selected 30 SAR images with multi-ship and multi-scale wakes for the experiment,

including 75 visible wakes. The YOLO algorithm was also introduced for comparison, and
the experimental results are listed in Table 4.

Table 4. Quantitative comparison results (Shown as average values).

Wake Detection Our Method YOLO

Precision 0.91 0.94
Recall 0.89 0.87

IoU 0.82 0.74

From the table data, it can be concluded that, compared with the advanced deep learning
algorithm YOLO, the lower Precision of our method is due to some false detection caused by
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the lower highlight pixel threshold; the higher Recall indicates that the method can basically
not miss the visible wakes or different wake components. In particular, IoU is an evaluation
indicator that other traditional methods do not have, and here we achieve even better results
than YOLO, which is due to the difficulty of obtaining the pixel-level feature differences of
the wake in the feature extraction part of YOLO. Overall, the algorithm can achieve nearly the
same level of results as the advanced deep learning algorithm YOLO.

Part of the representative multi-ship and multi-scale ship wake detection results under
optimal parameters are shown in Figure 9. It is not difficult to see that Figure 9a is a
single dark wake, and this method can accurately locate the wake line and measure the
length. Figure 9b–d are all bright wakes with complex backgrounds or speck noise, among
which Figure 9b is a short wake with interference of other linear structures. The Pixel-
based approach of the algorithm greatly reduces the range of the search area, and the local
processing method can effectively avoid the influence of useless areas on the Region of
Interest (ROI), achieving good detection results. Figure 9c shows the wake of two ships
sailing in a single line, the algorithm can effectively detect the two collinear wakes, rather
than just one line running through the whole picture. Figure 9d has multiple wakes with
relatively close distances and the results show that mutual interference between the wakes
can be avoided. It should be pointed out that there is some highlighted region of the
detected fake-ship as shown in Figure 9b,d (the white arrow), which can be removed by
the algorithm through the subsequent discrimination principle, and other wakes can be
accurately detected. In fact, the result of missed detection is much more serious than false
wake alarms, and we try to ensure that all potentially highlighted pixels are detected, even
at the cost of extra computation.

    

    

    

    
(a)  (b)  (c)  (d) 

Figure 9. Some SAR samples and detection results of the ship wake: (a) Single wake; (b–d) Multiple
wakes.
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The above test cases show that there are still missed detections of multi-mode wakes
and some small wakes. In order to reduce false detections and missed detections, we still
need further improvement in the algorithm. Moreover, the parameter setting of the wake
measurement part of the algorithm is conservative, so the statistical characteristics of the
wake and sea clutter need to be more deeply explored in the wake measurement part.

4. Discussion

Multi-ship and multi-scale wake detection tests are performed using the collected
Gaofen-3 SAR data. Despite not having a priori ship positions, the results show that
the method has good capabilities for test samples with multiple wakes. Especially for
some local small-sized wakes, which can also be accurately and completely located. In
addition, we compared the results of the proposed algorithm and the YOLO algorithm,
and, in terms of recognition accuracy, the method almost achieves the effects of the deep
learning algorithm without a large amount of training data as the basis. However, some
very small-sized ships only exist as a single pixel in the SAR image, and their wakes are tiny
and fuzzy. Most algorithms can hardly achieve good results for this type of wake detection.
This is also a limitation of this algorithm because it is difficult to determine whether these
bright spots are ships or speckle noise.

In fact, our specific window search method provides a new solution in which ships
and wakes are detected as a partner instead of being detected individually and unrelatedly.
The performance of the algorithm for multi-ship and multi-scale wake detection can be
intuitively displayed in both the Radon domain and image domain. Future research work
should focus on the detection of very small wakes and the detection of wakes in more
complex environments. We need to further improve our detection logic or solve speckle
noise suppression more deeply.

5. Conclusions

This paper proposes a specific window search method for rapid detection of multi-ship
and multi-scale wakes in SAR images. We have observed that in SAR images, such as
the Gaofen-3 offshore China data set we use, there are often multiple wakes of different
positions and lengths within a certain range, and the wake targets always appear as line
features occupying a small area. Therefore, the single wake extraction algorithm can
never capture all possible ship wake positions. Aiming at the problem of multi-ship
and multi-scale wake detection, we introduce a specific window search method, which
is different from most pre-selection box generation methods for target detection, and is
also different from the sliding window style global scan search. Considering the strong
geometric correlation between ships and wakes and their typicality in pixels, we generate
a specific search sub-window based on the highlighted pixel area in the image, so that
the area that needs to be detected is greatly reduced. Through the localized Radon-based
enhancement algorithm, the real ship target area can be screened out, and the sub-window
that is bounding the wake can be determined. Subsequently, combined with the geometric
angle relationship, our method can accurately locate the wake axis, capture the different
components of the wake and then cluster the candidate wakes point clusters so as to
reconstruct all the wakes. Finally, through empirical analysis of multiple samples, and
based on pixel statistics, the shortest visible length of the wake can be measured.
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Abstract: To support the application of ocean surface radiance data from the ultraviolet imager
(UVI) payload of the HY-1C oceanographic satellite and to improve the quantification level of ocean
observation technology, the authenticity check study of ocean surface radiance data from the UVI
payload was conducted to provide a basis for the quantification application of data products. The
UVI load makes up for the lack of detection capabilities of modern ocean remote sensing satellites
in the ultraviolet band. The UVDRAMS (Ultra-Violet Dual-band RadiAnce Measurement System)
was used to verify the surface radiance data collected at 16 stations in the study area and the pupil
radiance data collected by the UVI payload to establish an effective radiative transfer model and
to identify the model parameters using the seeker optimization algorithm (SOA). The study of the
UVDRAMS measurement system based on the SOA algorithm and the validation of the sea surface
radiance of the UVI payload of the HY-1C satellite shows that 97.2% of the incident pupil radiance
of the UVI payload is contributed by the atmospheric reflected radiance, and only 2.8% is from
the real radiation of the water surface, while the high signal-to-noise ratio of the UVI payload of
the HY-1C ocean satellite can effectively distinguish the reflectance of the water body. The high
signal-to-noise ratio of the UVI payload of the HY-1C ocean satellite can effectively distinguish the
amount of standard deviation in the on-satellite radiation variation, which meets the observation
requirements and provides a new way of thinking and technology for further quantitative research in
the future.

Keywords: HY-1C; sea surface radiance; SOA algorithm; synchrotron radiation transfer model;
UVI; validation

1. Introduction

The ocean plays an important role in global climate and weather change, and marine
remote sensing (RS) satellites can be used for effective observation of the marine envi-
ronment and climate [1]. The continuous development of marine RS satellites enables
them to play an increasingly important role in marine disaster prevention and reduction,
environmental protection, marine ecology, marine rights protection, resource development,
and many other fields [2–4]. The acquisition of marine RS data is a complicated process
that is affected by many factors, such as atmospheric radiation transmission characteristics,
the RS operating environment, the RS working state, the state of the observed target, etc.
To improve the quantification level of marine observation technology and to judge whether
the RS data received by the marine RS sensor meet the design requirements and whether
the RS inversion products can accurately and truly reflect the actual situation, the validation
method of the marine satellite payload needs to be studied [5].
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The quantitative application of RS data is an important issue that needs to be solved
for the further development of RS technology [6]. The development of quantitative RS
technology calls for higher requirements for determining the accuracy of satellite RS
data and the quality of products. This requires not only the continuous improvement and
development of new RS devices to improve the accuracy of quantitative RS but also accurate
calibration of the radiation measurement results of RS devices and checking whether the
products of RS data accurately reflect the geophysical parameters detected. Therefore,
the validation of RS data is put forward as necessary to study. At present, there are two
main methods of validation. One is a direct test [7], that is, to obtain the true value of the
ground via synchronous ground measurements with a satellite-borne remote sensor and to
compare and analyze the data results with RS data. The other is the indirect test method [8],
including cross-validation, which uses other verified satellite products of known accuracy
to test satellite products, space–time analysis, the process model, etc.

Due to the serious air pollution problems in some Asian countries, S. V. V. Arun
Kumar et al. [9] cross-verified the distribution data on chlorophyll A in the Arabian Sea
with SeaWiFS, MODIS-Aqua, MODIS-Terra, and MERIS, and analyzed the differences in the
data in different sea areas. In recent years, scientists have also carried out much verification
work on RS data from the payload of the GOES-16 geostationary orbit weather satellite,
which was launched in 2016. Bartlett B et al. [10,11] used a novel geospatial database and
image abstraction techniques to conduct a detector-level in-depth analysis of data from
target sites on the Advanced Baseline Imager (ABI) of GOES-16 to provide independent
verification of the SI traceability of its spectral radiation observations. Additionally, they
established a new performance benchmark for NOAA’s next-generation geostationary
observation instrument products. In 2016, ESA launched the Sentinel-3A/B satellite, which
is equipped with the OLCI (Ocean Land Color Instrument) and SLSTR (Sea and Land
Surface Temperature Radiometer) to measure sea temperature, sea color, sea level height,
and sea ice thickness. The measured data can be used to monitor the Earth’s climate change,
marine pollution, and biological productivity. Jungang Yang et al. [12] verified the accuracy
and long-term stability of Sentinel-3A SWH by double cross-verifying Sentinel-3A SWH
data with NDBC buoy data and Sentinel-3A SWH data with Jason-3 data. In December
2017, Japan’s newest generation of the Earth Environment Change Observation Satellite
(GCOM) was equipped with a multi-wavelength optical radiometer (SGLI) [13], which has
a central wavelength of 380 nm and a bandwidth of 10 nm on the ultraviolet spectrum.
After its successful launch, the in-orbit test was conducted [14–16].

In the processing of satellite data, many novel algorithms have also been introduced.
Tian, H et al. [17], used the optical image data of Landsat-7 and -8 and Sentinel-2 optical
images and used the decision tree classification method to classify winter crops at the
pixel level. The overall classification accuracy rate reached 96.22%, making a significant
contribution to the rapid and accurate mapping of winter crops. Tian, H. et al. [18] used
Sentinel-2, Landsat-8, and Sentinel-1 RS image data to distinguish garlic from winter wheat.
Through the cross-coupling of these three satellite data sets to carry out classification
extraction, the results show that, compared with single satellite data, the mixed processing
of multi-source satellite RS data significantly improves classification accuracy. Anahita
Modabberi et al. [19] used the MODIS-Aqua Chl-a data from 2003 to 2017 in the study of
eutrophication in the Caspian Sea and innovatively introduced the pod algorithm to extract
the dominant features. The research showed that the degradation of the Caspian Sea was
significantly accelerated.

These satellite payloads have certain limitations in the observation of ocean RS. Due
to the limitation of the observation spectrum of the detectors, the working bands of these
satellite payloads are basically distributed in visible light, near-infrared, and other similar
bands and lack the ability to observe the optical characteristics of ocean water bodies in
the ultraviolet band. Only the SGLI payload carried by the GCOM launched by Japan
has observation capabilities in the near-ultraviolet and 380 nm bands. On 7 September
2018, China launched a new generation of ocean RS satellites (HY-1C) [20]. The load of the

21



Electronics 2023, 12, 2766

ultraviolet imager (UVI) carried on the HY-1C ocean satellite uses a large-field combined
ultraviolet transmission optical system and an ultraviolet GaN focal plane detector. It has a
resolution of 500 m, a huge width of 2900 km, a high signal-to-noise ratio of 1000 times, and
a dynamic response that is 1.2 times the solar dual width. It expands the spectrum coverage
of satellites; has an ultraviolet dual band (345 nm~365 nm and 375 nm~395 nm) [21,22];
improves the capabilities of atmospheric correction, CDOM, and carbon cycle monitoring;
and provides new means of detecting offshore oil spouts. It is the first time China has used
ultraviolet technology to carry out space and marine civilian RS applications.

Limited by the spatial resolution and spectral differences, this also creates another
problem. The UVI payload carried on HY-1C cannot be indirectly cross-validated with
the observation data of other satellite payloads. To evaluate the authenticity and accuracy
of the RS data of ocean surface radiance under a UVI load and the degree of how well
the sensor design index meets the requirements, a direct authenticity test was conducted
on the ocean surface radiance RS data of the UVI load. In this paper, the ocean surface
radiance data was collected by the Ultraviolet Dual-band Radiance Measurement System
(UVDRAMS) in September 2018 from 16 stations in the study area, where the main per-
formance and parameters of the UVDRAMS were consistent with the UVI load, and the
entrance pupil radiance data were collected by the UVI load. The satellite–ground syn-
chrotron radiation verification was carried out, the satellite–ground synchrotron radiation
transmission model was established, and the model parameters were identified using the
seeker optimization algorithm (SOA) [23]. According to the established satellite-to-ground
synchrotron radiation transfer model, the contribution components of the entrance pupil
radiance of the UVI load were analyzed, and it was judged whether the signal-to-noise
ratio index of the HY-1C ocean satellite’s UVI load can meet the observation requirements
to provide further information for the future. Carrying out this quantitative research has
laid a technical foundation.

In the study of this paper, the UVI load makes up for the lack of detection capabilities of
modern ocean RS satellites in the ultraviolet band. Through the ocean in situ synchronous
observation experiment combined with the SOA algorithm, a set of exploratory satellite-to-
earth synchrotron radiation transmission models is established, and through this model,
the authenticity of the UVI load data is checked.

2. The Validation Method of the HY-1C Satellite’s Ultraviolet Imager

2.1. The Validation Method Principle

An authenticity check is an independent method to obtain the reference data repre-
senting the ground truth value and to realize the accuracy verification and uncertainty
evaluation of RS data or products through comparing and analyzing RS data or products.
Broadly speaking, the authenticity check includes checking the authenticity of satellite
loads, RS common products, and RS application products [24].

After converting the digital quantities output from the remote sensors into radiometric
quantities by calibration, the required physical parameters must be extracted from these
radiometric quantities [25]. To determine whether the geophysical information obtained
from satellite data correctly reflects the objective existence, i.e., the quality of the satellite
data product, it must be evaluated using an independent method, such as performing a
veracity test [26,27]. The flow chart of the validation method principle used in this paper is
shown in Figure 1.

Satellite products and field-measured data have different temporal-spatial sampling
characteristics, and it is necessary to determine a reasonable temporal-spatial window
according to the spatial resolution of satellite products, as well as the temporal-spatial
variation and uniformity of water bodies, and calculate the mean value of effective pixels
in the spatial window and the mean value of pixels in the time window. The mean value
of the effective on-site measurement is used as a matching data pair and included in the
verification data set. In this experiment, we use the time window of the HY-1C satellite
transit to conduct an ocean on-site observation experiment to obtain the ocean surface
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ultraviolet radiance Ls f c, and at the same time, collect this UVI load entrance pupil radiance
data Lsat within a period of time. According to the principle of atmospheric radiative
transfer, an atmospheric radiative transfer model is constructed.

 
Figure 1. Flowchart of the principle of obtaining and validating the sea surface radiance.

2.2. Modeling of Satellite–Ground Synchrotron Radiation Transport

In the ultraviolet spectral range, it is known from radiative transfer theory that the
surface is assumed to be a Lambertian surface, that the downward atmospheric thermal
radiation is isotropic, and that the spectral radiation received by the satellite is the total
contribution of the interaction between the solar spectral radiation, the atmosphere, and
the terrestrial target [28]. The first component is the thermal radiation emitted by the
object target, the magnitude of which is determined by the emissivity of the object’s
surface and the atmospheric transmittance between the target and the satellite; the second
component is the reflected radiation from the object target to the total radiation of the
downgradient atmospheric radiation, the ambient background radiation, and the thermal
radiation component of the solar incidence, which is normally neglected; and the third
component is the atmospheric uplink radiation between the object and the satellite, which
is related to the content and physical state of the absorbing gas in the atmosphere. In
the case of ocean observations, the observational model is simplified, and the radiance
observed in space by the UVI payload is shown in Equation (1) [29].

Lsat = t × Ls f c + Lskytop =
Lsky_trans

Lsky
× Ls f c + Lsky_re f (1)

where Lsat is the radiance received by the pupil of the satellite load sensor; t is the total
atmospheric transmittance, which is determined by the skylight upward radiation Lsky and
the skylight upward radiation through the atmosphere Lsky_trans; Ls f c is the in situ measured
radiance from the sea surface upwards; and Lsky_re f is the atmospheric reflected radiance.

Assuming that the nature of the thermal radiation Ls f c is uniform in waters of a
similar sea state in the ocean, then by accurately measuring the surface upward radiance
and performing simultaneous verification analysis with the incoming pupil radiance Lsat
collected by the UVI load, t and Lsky_re f can be obtained. For the determination of the
pupil radiance Lsat of the UVI payload, a look-up table of radiance and sensor DN values
was established by integrating sphere radiometric calibration before the satellite launch,
and the pupil radiance Lsat can be obtained from the corresponding DN values of the
UVI payload. The sea surface ultraviolet radiance measured synchronously on site is the
basis for the verification of satellite–terrestrial synchrotron radiation, and for in situ optical
measurements of ocean waters, in situ observations using the above-water method [30] can
yield the sea surface upward radiance Ls f c and the skylight upward radiation Lsky of the
UV band. The total atmospheric transmittance t and atmospheric reflectance Lsky_re f are
obtained by fitting the ocean radiance data from multiple regional stations into Equation (1).
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The synchrotron radiation transport model was converted to form a one-dimensional
linear regression equation, as shown in Equation (2).

y = ax + b (2)

where y represents Lsat; a represents the total atmospheric transmittance; x is the in situ
measured radiance Ls f c from the sea surface upwards; and b is the atmospheric reflected
radiance Lsky_re f . The in situ observation data from some stations are selected and combined
with the satellite-based simultaneous RS data, and the optimal solutions for a and b can be
obtained by fitting and optimizing with the intelligent optimization algorithm.

2.3. Synchrotron Radiation Transmission Model Parameter Identification Method Based on
SOA Algorithm

The seeker optimization algorithm (SOA) simulates the random search behavior of
humans and directly applies the intelligent search behavior of humans to the search for
optimization problem solutions [31]. In optimization calculations, human random search
behavior can be understood in this way: in the search process of continuous space, there
may be a better solution around the solution, and the optimal solution may exist in the
neighborhood of the better solution. Therefore, when the searcher is in a better position,
they should search in a smaller neighborhood. When the searcher is in a poor position,
they should search in a larger neighborhood [32,33]. To this end, the SOA uses fuzzy
logic that effectively describes the natural language and uncertain reasoning to model the
above search rules and determine the search step size. The SOA obtains social experience
and cognitive experience through social learning and cognitive learning, respectively,
and determines the direction of the individual search by combining the self-organizing
aggregation behavior of intelligent groups, self-centered egoistic behavior, and human
pre-action behavior [34].

The uncertain reasoning behavior of the SOA uses the approximation ability of the
fuzzy system to simulate human intelligent search behavior and to establish the connection
between perception (objective function value) and behavior (step size) [35]. The Gaussian
membership function is used to represent the fuzzy variable of the search step size, as
shown in Equation (3):

uA(x) = exp
[
−(x − u)2/2δ2

]
(3)

where uA is the Gaussian membership degree, x is the input variable, and u and δ are
membership function parameters.

The fuzzy variable “small” of the objective function adopts a linear membership
function so that the membership degree is directly proportional to the order of the function
values, i.e., the maximum membership value umax = 1.0 in the best position, the minimum
membership value umin = 0.0111 in the worst position, and so on for other positions. This
can be expressed by Equations (4) and (5):

ui = umax − s − Ii
s − I

(umax − umin), i = 1, 2, · · ·, s (4)

uij = rand(ui, 1), j = 1, 2, · · ·, D (5)

where ui is the membership degree of the objective function value i; uij is the membership
degree of the objective function value i in the j-dimension search space; Ii is the sequence
number of xi(t) after the population function values are arranged in descending order; and
D is the dimension of the search space.

After obtaining the membership degree uij, the step size can be obtained according to
the behavior of uncertain reasoning, as shown in Equation (6):

αij = δij

√
− ln
(
uij
)

(6)
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where αij is the search step size of the j-dimension search space, and δij is the parameter of the
Gaussian membership function, whose value can be determined by Equations (7) and (8):

→
δij = ω · abs

(→
x min −→

x max

)
(7)

ω = (Tmax − t)/Tmax (8)

where xmin and xmax are the positions in the same subgroup with the minimum and
maximum functional values, respectively; ω is the inertia weight, which decreases linearly
from 0.9 to 0.1 with the increase in evolutionary algebra; t and Tmax are the current iteration
number and the maximum iteration number, respectively; and the function abs(·) takes the
absolute value of each entry.

Through the analysis and modeling of human egoistic behavior, altruistic behavior,

and pre-acting behavior, the egoistic direction
→
d i,ego, altruistic direction

→
d i,alt, and pre-

acting direction
→
d i,pro of any i-th search individual are obtained, respectively, as shown in

Equations (9)–(11):
→
d i,ego(t) =

→
p i,best −

→
x i(t) (9)

→
d i,alt(t) =

→
g i,best −

→
x i(t) (10)

→
d i,pro(t) = xi(t1)− xi(t2) (11)

The searcher considers all factors and determines the search direction by using a
randomly weighted geometric average of the three directions, as shown in Equation (12):

→
d i(t) = sign

(
ω
→
d i,pro + ϕ1

→
d i,ego + ϕ2

→
d i,alt

)
(12)

where
→
x i(t1) and

→
x i(t2) are the best positions in

{→
x i(t − 2),

→
x i(t − 1),

→
x i(t)

}
; gi,best is the

best position based on the collective history of the neighborhood where the i-th search
individual is located and pi,best is the best position that the i-th search individual has
experienced thus far; sign(·) denotes the sign function of each dimension of the input
vector; ϕ1 and ϕ2 are real numbers uniformly and randomly selected in the known interval
[0, 1]; and ω is the inertia weight, which decreases linearly from 0.9 to 0.1 with the increase
in evolutionary algebra.

After determining the search direction and step size, the position is updated, as shown
in Equations (13) and (14):

Δxij(t + 1) = αij(t)dij(t) (13)

xij(t + 1) = xij(t) + Δxij(t + 1) (14)

3. Marine In Situ Observation Field Test Verification

The Ultraviolet Dual-band Radiance Measurement System (UVDRAMS), developed
by the Shanghai Institute of Technical Physics, Chinese Academy of Sciences, is used in
this marine observation experiment. Its main performance and parameters are consistent
with the UVI load. The UVDRAMS has an ultraviolet dual band (345 nm~365 nm and
375 nm~395 nm), high sensitivity, and a large dynamic range. It has two dynamic ranges,
covering 0.4~0.5 times the solar constant and up to 1.2 times the solar constant. The
two dynamic ranges can simultaneously obtain high signal-to-noise ratio observation data.
The performance parameters are shown in Table 1.
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Table 1. The specifications of UVDRAMS.

Ultraviolet Dual-Band Radiance Measurement System

Detector spectrum B1 (345 nm~365 nm) B2 (375 nm~395 nm)
Center wavelength 355 nm 385 nm

SNR >1000 (typical radiance of
7.5 mW·cm−2·um−1·sr−1)

>1000 (typical radiance of
6.1 mW·cm−2·um−1·sr−1)

Dynamic range (mW·cm−2·um−1·sr−1)
High dynamic of 35.6
Low dynamic of 17.5

High Dynamic of 36.1
Low Dynamic of 18.6

FOV 23◦
Angular resolution 0.68 mrad

Absolute radiometric calibration accuracy <5%

The module structure of the UVDRAMS is shown in Figure 2.

Figure 2. The module structure of UVDRAMS.

The schematic diagram of the UVDRAMS marine observation process [36] is shown in
Figure 3.

 

Figure 3. Schematic diagram of sea surface observation.

To ensure the validity and stability of the observation results, the sea area of the
observed experiment needs to be relatively stable in space and time [37–40]. The main site
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of the observation experiment is located in the northern South China Sea (E107.5◦~113.5◦,
N16◦~20◦) around Hainan Island, China. It covers coastal turbid water and offshore
clean water with a maximum depth of more than 1000 m. In situ sea surface radiation
measurements were carried out from 12 September to 14 October 2018 from Zhoushan
Island, Zhejiang, China, to the test site in the northern South China Sea. The observation
time point was selected to be 0.5 h before and after the transit of HY-1C, and the time
correlation of the observation data was maintained. To increase the number of simultaneous
observation tests and obtain more observation data, observation tests were also carried out
along the route. A total of 17 observation tests were carried out throughout the voyage
when the weather and sea conditions allowed. There were 3 stations in the East China Sea
area and 13 stations in the South China Sea area around Hainan Island. Specific test site
statistics and experimental sea areas are shown in Table 2 and Figure 4.

Table 2. The experiment results at each station.

Study Area
Geographical Location
(Longitude, Latitude)

Lsfc (mW·cm−2·um−1·sr−1) Lsky (mW·cm−2·um−1·sr−1)

Average
Radiance

Standard
Deviation

Average
Radiance

Standard
Deviation

DH01 N30.40.36 E122.53.91 0.774 0.067 9.613 0.168
DH02 N24.07.60 E118.24.71 0.592 0.020 9.244 0.285
DH03 N20.22.07 E112.19.64 0.619 0.019 10.532 0.261
NH09 N19.05.92 E110.58.47 0.552 0.038 12.685 0.307
NH13 N18.51.01 E113.18.96 0.673 0.017 9.747 0.257
NH20 N18.30.37 E110.19.33 0.491 0.008 11.203 0.309
NH23 N17.08.93 E112.15.54 0.567 0.019 8.655 0.104
NH31 N17.49.63 E108.31.49 0.574 0.024 11.199 0.308
NH39 N18.26.43 E108.18.35 0.632 0.011 11.304 0.295
NH46 N17.57.27 E109.59.37 0.426 0.008 11.604 0.306
NH50 N17.27.18 E109.25.79 0.681 0.006 13.475 0.351
NH53 N17.32.77 E111.58.88 0.741 0.009 9.357 0.168
NH61 N18.16.17 E111.14.60 0.635 0.021 9.929 0.229
NH66 N17.54.06 E108.49.02 0.618 0.025 9.901 0.215

Figure 4. The study area (3 stations in the East China Sea area and 13 stations in the South China Sea
area around Hainan Island). In the figure, the red × is represent our observation sites).
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4. Results and Discussion

4.1. Data Analysis of Marine Field Observations

In total, 17 simultaneous observations were made by the UVDRAMS in the East China
Sea and South China Sea, and 14 effective samples of the UV bispectral RS reflectance
were obtained from sampling stations. To ensure the stability of data quality, 10 sets of
observation experiments were carried out at each sampling site. In each window time,
we will continuously conduct 10 sets of experiments to obtain data, with an interval of
2 min each time, and 10 sets of observation data were obtained and 100 image pixels (pixels
250–350) in the middle of the field of view of the UVDRAMS were selected for analysis to
reduce the incident energy inhomogeneity caused by the opening problem at both edges of
the field of view. The following analysis was also based on these image points.

Taking the observation data of station NH50 (17◦27′11′′ N, 109◦25′47′′ E), a typical
station located in the northern part of the South China Sea, as an example, the measured
UV spectral radiance associated with the ocean water body is shown in Figure 5.

 

Figure 5. The UV spectral radiance of NH50.

The RS reflectance curves of the NH50 station, calculated from the RS reflectance
model analysis, are shown in Figure 6.

 

Figure 6. The RS reflectance of NH50.
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The test results showed that the average RS reflectance of the NH50 station was
0.063 sr−1 in the B1 spectral band and 0.007 sr−1 in the B2 spectral band. For the single-
observation data, the RS reflectance varied little among the pixels with good consistency.

The water observation results of all the observation stations are demonstrated in
Table 2, where the geographic latitude and longitude of each station and the Ls f c and Lsky
required in the transmission model are included.

4.2. Analysis of the Synchronous Observation Data with the UVI Load

Based on the distribution of the sea observation stations shown in Figure 4, the
simultaneous observation data of satellite loads at multiple stations were analyzed. The
on-satellite observation data of the large clear area with less cloud coverage around the
stations were selected according to the precise latitude and longitude information, and
10 groups of DN values from 100 × 100 pixel positions within the sensor’s field of view
in the relevant sea area were selected, and Lsat was calculated. The original in-orbit UV
images of sea observation with the HY-1C UVI load are shown in Figure 7.

Figure 7. The UV image of the sea surface.

The on-satellite pupil radiance Lsat of the sea surface in the cloud-free area around
Hainan Island was selected and analyzed. The statistical results of these 100 images show
that the average radiance of Lsat is 5.964 mW·cm−2·um−1·sr−1, and the standard deviation
of Lsat is 0.983.
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The distribution results are shown in Figure 8. It was found that the distribution of
pupil radiance in the clear and cloud-free environment obtained from the satellite load
observations was highly concentrated.

 

Figure 8. The distribution results of UVI.

4.3. Analysis of the Satellite–Ground Synchrotron Radiation Data Based on the SOA Algorithm

The 140 sets of upward radiance data from all 14 observation stations and the corre-
sponding UVI load radiance data received at the entrance pupil of the synchronous transit
sensor are shown in Figure 9.

Figure 9. Sea surface radiance data of 14 observation stations and corresponding UVI load pupil
radiance data.

In the data analysis of this experiment, the average value of the data of each site was
calculated, the surface upward radiance data from 12 of the 14 observation stations and
the radiance data received by the pupil of the UVI load synchrotron transit sensor were
selected, and the SOA algorithm was employed for iterative fitting.
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Assuming that the population size of the SOA algorithm is 50, the maximum number
of iterations is 50, the space dimension is 2, the maximum membership degree is 0.95, the
minimum membership degree is 0.0111, the maximum weight is 0.9, and the minimum
weight is 0.1 (Equation (2)). The range of a and b is [0, 10]. The core problem of the
optimization algorithm is to select the objective function:

F =

√
∑(Lsat(i)− Lsat ′(i))2

N
(15)

where F is the root mean square error between the model Lsat and the actual Lsat, and N
is the number of data samples. The change curve of the objective function based on the
number of iterations is shown in Figure 10.

 

Figure 10. The change curve of the objective function based on the number of iterations.

The best fitting value of F is 1.2212, and thus, the optimal solution is a = 0.6002 and
b = 5.7993.

Then, the synchrotron radiation transmission model could be obtained as shown in
Equation (16):

Lsat = 0.6002 × Ls f c + 5.7993 (16)

where the atmospheric transmittance is 60.02% and the atmospheric reflected radiance is
5.7993 mW·cm−2·um−1·sr−1.

The distribution and fitted curves of the raw sea surface radiance data observed by
the UVDRAMS are shown in Figure 11.

The radiance data from the other two stations, station NH09 and station NH23, were
analyzed for validation analysis. The original radiance data, validation radiance data
distribution, and fitted curves of UVDRAMS observations are shown in Figure 12.

From Figure 11, we calculated that the coefficient of determination R-squared of the
fitted line is 0.4719, the Pearson correlation coefficient is 0.69, and the root mean square
error (RMSE) is 0.1456. The Pearson correlation coefficient, also known as the simple
correlation coefficient, is used to study the degree of linear correlation between variables
and quantitatively describes the degree of correlation between variables. In this paper, we
calculated the Pearson correlation coefficient to be 0.69. In statistics, we generally regard
the correlation coefficient between 0.6 and 0.8 as a strong correlation, which verifies the
validity of our fitting curve.

In addition to the SOA algorithm, we also used several other commonly used heuristic
search algorithms, such as genetic algorithm (GA), ant colony optimization (ACO), and
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simulated annealing (SA) algorithms, to fit the experimental data and compare the RMSE
of the fitted curve, R-squared, and Pearson’s r. The results are shown in Table 3. As can be
seen from Table 3, the SOA algorithm is the algorithm with the best fitting effect.

 

Figure 11. The UVDRAMS data distribution and the fitting curve.

 

Figure 12. The raw data, validation data distribution, and the fitted curve plots (the coefficient of
determination R-squared is 0.4719, Pearson’s r is 0.69, and the RMSE is 0.1456).

Table 3. Comparison results of SOA algorithm and other heuristic search algorithms.

RMSE R-Squared Pearson’s r

SOA 0.145 0.47 0.69
GA 0.227 0.34 0.58

ACO 0.186 0.38 0.62
SA 0.317 0.28 0.53

In Figure 11, it can be seen that the difference between the measured radiance values
of station NH09 and the fitted values of the UV radiative transfer model is 2.7%, and the
difference in that for station NH23 is 3.4%, respectively. The results verified the validity of
the UV radiative transfer model.

From the fitted straight line in the figure, it can be seen that 97.2% of the incident
pupil radiance of the UVI load is obtained due to the contribution of atmospheric re-
flected radiance, and only 2.8% is obtained from the surface radiation of the water body.
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The average standard deviation of the in situ observed radiance at the sea surface is
0.015 mW·cm−2·um−1·sr−1, and the inverse variation of the observed data at the water
surface is 0.009 mW·cm−2·um−1·sr−1 after the attenuation of the atmospheric passage rate.
The signal-to-noise ratio of the RS sensor must be at least 640 to effectively distinguish the
standard deviation of water body reflectivity in the on-satellite radiation variation, whereas
the UVI payload of the HY-1C ocean satellite is designed to have a signal-to-noise ratio of
more than 1000 to meet the observation requirements.

Authors should discuss the results and how they can be interpreted from the perspec-
tive of previous studies and the working hypotheses. The findings and their implications
should be discussed in the broadest context possible. Future research directions may also
be highlighted.

5. Conclusions

To improve the quantification of ocean observation technology and support the ap-
plication of RS data of ocean surface radiance from the HY-1C oceanographic satellite’s
ultraviolet imager (UVI) payload, a veracity check study of RS data of ocean surface
radiance from the UVI payload was conducted.

Using the ocean surface radiance data from 14 stations in the study area that were
obtained with the UVDRAMS, as well as the UVI load synchronous observation radiance
data combined with the SOA algorithm for identification, optimization, and fitting, a
satellite-to-ground synchrotron radiation transfer model was obtained.

The model shows that the coefficient of determination between the fitted curve and
the actual observed value is 0.4719, and the square root mean error (RMSE) is 0.1456. The
difference between the in situ observed ocean surface radiance values at the two validation
sites and the modeled radiance values is 2.7% and 3.4%, respectively, which verifies the
validity of the satellite–ground synchrotron radiation transport model.

Our study shows that 97.2% of the incident radiance of the UVI payload is contributed
by the atmospheric reflected radiance, and only 2.8% is from the real radiation on the
surface of the water body. The signal-to-noise ratio index of >1000 of the HY-1C ocean
satellite’s UVI payload can effectively distinguish the standard deviation of the reflectivity
of the water body in the on-satellite radiation variation, which fully meets the observation
requirements. This paper provides preliminary quantified baseline data and a sea surface
UV synchrotron radiation measurement solution for verifying the UVI payload of the HY-
1C ocean satellite platform and lays a technical foundation for further quantified research
in the future.
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Abstract: Aircraft detection in remote sensing images is an important branch of target detection due to
the military value of aircraft. However, the diverse categories of aircraft and the intricate background
of remote sensing images often lead to insufficient detection accuracy. Here, we present the CNTR-
YOLO algorithm based on YOLOv5 as a solution to this issue. The CNTR-YOLO algorithm improves
detection accuracy through three primary strategies. (1) We deploy DenseNet in the backbone to
address the vanishing gradient problem during training and enhance the extraction of fundamental
information. (2) The CBAM attention mechanism is integrated into the neck to minimize background
noise interference. (3) The C3CNTR module is designed based on ConvNext and Transformer to
clarify the target’s position in the feature map from both local and global perspectives. This module
is applied before the prediction head to optimize the accuracy of prediction results. Our proposed
algorithm is validated on the MAR20 and DOTA datasets. The results on the MAR20 dataset show
that the mean average precision (mAP) of CNTR-YOLO reached 70.1%, which is a 3.3% improvement
compared with YOLOv5l. On the DOTA dataset, the results indicate that the mAP of CNTR-YOLO
reached 63.7%, which is 2.5% higher than YOLOv5l.

Keywords: remote sensing images; aircraft detection; YOLOv5; ConvNext; Transformer

1. Introduction

With the help of advanced satellite remote sensing technology, many high-resolution
remote sensing images have been produced, which often contain a wealth of informa-
tion. These images also provide rich materials for the research of target detection, so the
detection methods of remote sensing targets have become a hot topic for scholars [1,2].
Among all types of targets, aircraft have high mobility and are of great value in various
fields, especially in the military. Therefore, studying the detection methods of aircraft
targets in remote sensing images is significant. However, it is still a challenging task be-
cause of the top–down view of remote sensing images, which can only acquire the upper
surface features of objects, and due to many aircraft types being highly similar to each
other, as well as satellite photography being susceptible to external factors such as weather,
light, shadows and so on [3,4].

In recent years, deep learning algorithms have become the prevailing method for target
detection due to advances in computer techniques. Target detection using deep learning
algorithms can be categorized into two types: single-stage target detection algorithm,
and two-stage target detection algorithm. The single-stage algorithm treats target detection
as a combination of regression and classification tasks, while the two-stage algorithm first
generates a collection of candidate regions and then identifies and classifies the target object
based on these regions [5]. Two-stage algorithms, including R-CNN [6], Fast R-CNN [7],
Faster R-CNN [8], and Cascade R-CNN [9], tend to have higher accuracy but suffer from
high computational requirements due to the large number of candidate frames, leading
to lengthy training periods and slow detection speeds. In contrast, the detection accuracy
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of single-stage algorithms is typically lower than the two-stage algorithms; however,
the detection speed is substantially faster. Notable examples of single-stage algorithms are
YOLO [10], SSD [11], Retinanet [12], and FCOS [13].

Numerous studies have explored the application of deep learning algorithms to detect
aircraft targets in remote sensing images. For instance, Liu proposed a two-stage algorithm
that utilizes the Harris operator to detect corners, clusters them using mean drift clustering
to generate small yet precise candidate regions, and subsequently identifies the aircraft’s
region by leveraging a CNN model, resulting in enhanced detection accuracy [14]. In the
DPANet, Shi introduced a deconvolution module to extract external structural features of
the aircraft, which was followed by a position attention mechanism to extract internal struc-
tural features, which reduced the false detection rate and improved detection precision [15].
Wu optimized Mask R-CNN by combining self-calibrated convolution with ResNet in the
backbone, thus making the features more discriminative and resulting in improved network
accuracy [16]. For his part, Ji expanded on Fast R-CNN by incorporating a multi-angle
change module that extracts target features from multiple viewpoints, thereby reducing
the false detection rate. Furthermore, he employed a box detection post-processing method
with a majority voting strategy to further minimize the likelihood of misjudgment [17].
Although these algorithms are two-stage and possess unique accuracy advantages, they are
still more complex relative to one-stage algorithms. Therefore, many researchers continue
to focus on one-stage algorithms, particularly based on the YOLO series. For example,
Cao improved the YOLOv3 model by adding a detection scale with a smaller perceptual
field and using L2 regularization to combat overfitting [18]. Zhou devised the Deeper
and Wider Module (DAWM), which drew inspiration from the Inception–ResNet model.
Incorporating the DAWM architecture into YOLOv3 effectively mitigated the impact of
background noise and further advanced network performance [19]. Luo added center and
scale calibration at the beginning and end of the batch normalization layer in YOLOv5 to ad-
dress the problem that the batch normalization layer ignores the representation differences
between instances, enabling features to be corrected, which has improved the performance
of the overall network [20]. Liu proposed the YOLO-extract algorithm, which removed
feature layers and prediction heads in YOLOv5 with suboptimal feature extraction ability
and replaced them with a new feature extractor possessing stronger feature extraction
capabilities. This modification resulted in improved accuracy and reduced computational
costs [21]. Notwithstanding the above advances in aircraft target detection algorithms,
some algorithms fail to fully utilize global and local information of remote sensing images,
resulting in aircraft target misdetection. To address this shortcoming, we require a novel
aircraft target detection algorithm for remote sensing images that leverages global and local
information more efficiently.

In this paper, we present CNTR-YOLO, which is an improved version of YOLOv5. We
have made several modifications to enhance network performance. Firstly, we introduced
the Dense module based on DenseNet to reinforce the feature extraction capability of the
backbone. By reusing features, this module mitigates the loss of valid information. Secondly,
we added the CBAM attention module to the neck to produce attention maps iteratively
across both channel and spatial dimensions. This module assists in identifying areas with
aircraft targets in images while reducing the impact of background noise interference.
Lastly, in order to make full use of global and local information in remote sensing images,
we established the C3CNTR module by combining the Transformer Block and ConvNext
Block. This novel design is placed before the detection head of YOLOv5 and leverages the
Transformer Block for processing global information and the ConvNext Block for processing
local information.

Our contributions can be summarized as follows:
1. We propose a single-stage object detection algorithm to improve the accuracy of

aircraft detection in remote sensing images.
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2. For the first time, we design a structure that combines a convolutional network and
Transformer in YOLOv5 to assist the prediction head, maximizing the utilization of local
and global feature information.

3. We validate some effective measures to improve the performance in YOLOv5, such
as using DenseNet to improve feature extraction and the CBAM attention mechanism to
reduce interference from background information.

2. Related Work

In this section, we provide an overview of the key components of our proposed
algorithm. Specifically, we discuss YOLOv5, Transformer, and ConvNext.

2.1. YOLOv5

YOLOv5 was released in 2020 by Ultralytics LLC and was built upon the foundation
of YOLOv3 [22]. YOLOv5 rectified the earlier issue of faster detection speed at the expense
of accuracy. It also improved real-time performance and simplified the network struc-
ture. Comprised of a backbone, neck, and head, YOLOv5 features five models, ranging
from YOLOv5n to YOLOv5x based on the network depth. Despite YOLOv5x exhibiting
marginally superior detection accuracy compared to YOLOv5l, the latter delivers faster
speeds and requires fewer hardware resources. Therefore, we conduct research based
on YOLOv5l.

Figure 1 illustrates the architecture of YOLOv5. The feature extraction network of
YOLOv5 is composed of a CSPDarkNet53 network [23] and an SPPF layer. The neck utilizes
a PANet [24] structure, and the head is a YOLO detection head that comprises a convolution
layer and a prediction component. In YOLOv5, the C3 module is one of the most frequently
applied modules. The structure of the C3 module, as shown in Figure 2, consists of three
convolutional modules and a Bottleneck. The Bottleneck is a residual block that possesses
faster computation speeds than the residual block of ResNet [25]. Furthermore, it enables a
deeper network architecture while reducing computational parameters.

Figure 1. The architecture of YOLOv5.
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Figure 2. The structure of C3 module.

While YOLOv5 has demonstrated excellent performance across various vision tasks,
its direct application to aircraft target detection in remote sensing images falls short of
satisfactory outcomes. Thus, this paper introduces several improvements to enhance its
performance in this domain.

2.2. Transformer

In recent years, Transformer [26] has achieved significant success in the field of natural
language processing (NLP). As the size of the convolutional kernel constrains its ability to
acquire local representations, researchers have looked to extend Transformer’s functionality
to computer vision. To this end, Dosovitskiy et al. proposed the Vision Transformer (ViT)
methodology [27], which leverages Multiple Self-Attention (MSA) to capture long-range
feature dependencies within internal information.

The details of the ViT methodology can be succinctly summarized as follows. Firstly,
a two-dimensional image is converted into several one-dimensional sequences. Location
encoding is then incorporated to provide information on the image’s spatial position.
Subsequently, the sequences, with learnable location encoding, are passed through the
Transformer encoder, which calculates global attention and extracts features via the multi-
headed attention module. Lastly, the MLP layer yields the prediction categories.

Several researchers have already integrated Transformer with YOLOv5. For example,
in the detection of targets during UAV shooting scenes, Zhu replaced the Bottleneck in
the C3 structure of the original YOLOv5 with the Transformer Block to create the C3TR
module [28]. Figure 3 displays the structure of the C3TR module. Transformer’s unique
properties enable the C3TR module to capture global information and abundant contextual
information from features.

Figure 3. The structure of the C3TR module; Tr Block stands for Transformer Block.

39



Electronics 2023, 12, 2671

Target detection in remote sensing images presents unique challenges compared to
UAV shooting scenes, including larger shooting distances, smaller objects, and a single
angle of aircraft targets (which are mostly vertical). Given these difficulties, it is crucial to
explore alternative approaches to integrate Transformer and address these complexities.

2.3. ConvNext

In the realm of computer vision, ViT has swiftly replaced convolutional networks as
the state-of-the-art approach for image classification models. On the other hand, FAIR’s
ConvNext [29], which relies entirely on standard convolutional networks, offers comparable
accuracy and generalizability to Transformer.

ConvNext does not introduce significant innovations to the overall network architec-
ture or construction ideas. Instead, it makes some modifications to the existing ResNet
network by incorporating some advanced concepts of Transformer. These changes aim to
combine the advantages of both convolutional neural networks (CNNs) and Transformer
networks, which ultimately leads to improved CNN performance.

In contrast to Transformer, ConvNext, built using convolutional networks, exhibits a
greater capacity to capture local information. This ability plays a pivotal role in detecting
high-resolution remote sensing images. The present study proposes a novel joint design
that integrates the strengths of both Transformers and ConvNext to improve detection per-
formance.

3. Theoretical Model

To address the challenges associated with detecting aircraft targets in remote sensing
images, we developed CNTR-YOLO based on YOLOv5. In this section, we first present
the architecture of CNTR-YOLO. Subsequently, we elaborate on the critical components of
CNTR-YOLO, including the C3CNTR module, Dense module, and CBAM attention module.

3.1. Overview of CNTR-YOLO

The architecture of the proposed CNTR-YOLO module is shown in Figure 4. Com-
pared with YOLOv5, CNTR-YOLO has a total of seven differences. First, we replaced a C3
module with a Dense module at the end of the Backbone, then inserted a CBAM attention
module after each of the first three C3 modules in the neck, and finally, the C3CNTR module
is inserted before the detection head.

3.2. C3-ConvNext-Transformer (C3CNTR) Module

To enhance YOLOv5’s understanding of global and local information, we have drawn
inspiration from the success of incorporating Transformer in YOLOv5 and designing the
C3TR module in reference [28]. In light of this experience, we introduce ConvNext and
Transformer to develop the C3CNTR module. ConvNext enhances the utilization of local
information, while Transformer improves the utilization of global information. Figure 5
illustrates the structure of the C3CNTR module.
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Figure 4. The architecture of CNTR-YOLO.

Figure 5. The structure of C3CNTR; CN Block stands for ConvNext Block.

3.2.1. Transformer Block

In the Transformer Block shown in Figure 6, we employ a classic Transformer Encoder
architecture. In contrast to the standard convolutional network, this architecture utilizes
certain special operations that will be elaborated on shortly.
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Figure 6. The structure of Transformer Block.

1. Flatten

A Flatten operation is located at the outset of the Transformer Encoder and serves to
convert two-dimensional feature maps into one-dimensional sequences of feature maps.
Given an input feature map X ∈ RH×W×C , it becomes X′ ∈ RN×C after Flatten, where
N = H × W .

2. Multi-head attention

Multi-head attention is a global operation that allows the Transformer Encoder to
discover correlation information on a feature’s entire range. The feature map undergoes
conversion into Q, K, V ∈ RN×C with different linear mappings following Flatten and
LayerNorm to serve as input for multi-head attention. Comprising several single-head
attentions, multi-head attention executes one operation on Q, K, V with each single-head
attention. The output expression of the i-th single-head attention is as follows:

Outputi = SiVi (1)

Si = so f tmax(QiKT
i ) (2)

where Qi , Ki , Vi is the multiplication of Q, K, V and the i-th single-head attention’s weight
matrix, while Si ∈ RN×N represents the attention matrix, revealing the correlation between
each element of the feature map and other elements. Outputi refers to the feature that
consolidates global information. After each single-head attention completes its operation,
the resulting outputs are unified via the concatenation layer. The ultimate output expression
is shown as follows:

Outputall = Concat(Output1, . . . , Outputh) (3)

where h is the number of multi-head attention heads.
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3. FFN

The output of multi-head attention advances to FFN once it undergoes LayerNorm.
FFN refers to a Feed-Forward Network that essentially comprises two fully connected
layers; one of which has Relu activation, while there is a Dropout between the two layers.
The expression for FFN processing is shown below:

FFN(x) = max(0, xW1 + b1)W2 + b2 (4)

where x is the sequence of input feature maps, W1 and b1 are the weights and offsets of the
first fully connected layer, and W2 and b2 are the weights and offsets of the second fully
connected layer.

3.2.2. ConvNext Block

The ConvNext Block’s structure is shown in Figure 7, which adopts the standard
ConvNext network structure.

Figure 7. The structure of ConvNext Block.

While ConvNext is essentially a convolutional network, its design delineates some
similarities to Transformer, which are elaborated upon below.

1. DW Conv

A group convolution employs multiple groups of convolutional filters for convolution.
On the other hand, DWConv (depthwise convolution) refers to a special group convolution
in which the number of groups equals the number of channels. Similar to multi-head
attention in Transformer, depthwise convolution plays a pivotal role in ConvNext’s ar-
chitecture. Depthwise convolution, akin to the weighted sum operation in multi-head
attention, performs operations on a channel-by-channel basis, amalgamating information
only in the spatial dimension. The combination of depthwise convolution and 1 × 1 convo-
lution allows for a separation of the spatial and channel dimensions of the feature maps.
Each operation, by mixing information either across the spatial dimension or channel
dimension, is performed independently, which is analogous to Transformers. Comprised of
only pure convolutional networks, ConvNext’s global perceptual field differs from that of
Transformers. To compensate for this limitation, ConvNext uses 7 × 7 convolution kernels
in depthwise convolution.

2. Inverted Bottleneck

The ConvNext Block culminates in an inverted bottleneck, which is a design element
also found in Transformer. In Transformer Encoder, a crucial design specification entails
incorporating an inverted bottleneck at the end, amplifying the hidden dimensions of
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the two fully connected layers in FFN to four times the input dimensions. Following
the advent of Transformer, various cutting-edge convolutional networks adopted the
inverted bottleneck design, such as MobileNetV2 [30]. Similar in approach to Transformer,
ConvNext creates the Inverted Bottleneck at the end via two 1 × 1 convolutions. The role
of 1 × 1 convolution is commensurate to that of a fully connected layer. The first 1 × 1
convolution expands the input channel four times, while the latter restores the number of
input channels. The authors of ConvNext have also validated that this design enhances
network performance across multiple tasks, encompassing classification and detection.

3.3. Dense Module

Toward the end of the feature extraction network, we exchanged a C3 module for a
Dense module, aiming to heighten the network’s efficiency in utilizing feature information.
The Dense module follows the structure of C3, as depicted in Figure 8, and it contains the
architecture of DenseNet [31], which is delineated in Figure 9.

Figure 8. The structure of the Dense module.

Figure 9. The structure of DenseNet.

DenseNet melds concepts from ResNet and Inception networks [32], possessing four
fundamental benefits, comprising: retaining low-latitude features; enhancing feature reuse;
mitigating the gradient disappearance problem; and considerably diminishing the number
of parameters. Its architecture principally incorporates numerous DenseNet Blocks and
Transition Blocks, and we select two and one, respectively, for each. A DenseNet Block
with N layers of convolution possesses N(N + 1)/2 connections, with each layer’s input
deriving from all previous layers’ output, which is a stark contrast to the N connections
in a traditional convolutional neural network with N layers. This unique connection
methodology in a DenseNet Block optimizes a better utilization of features and obviates the
need for learning a considerable mass of irrelevant feature information, thereby preventing
gradient explosion and diminishing the likelihood of overfitting. Elevated feature extraction
in the network is achieved while reducing computation and the number of parameters.
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Assuming N convolution layers exist in a Dense Block, the expression for the n-th layer of
output is as follows:

xn = fn([x1, x2, . . . , xn−1]) (5)

where fn represents the nonlinear operation at the n-th layer, and [x1, x2, . . . , xn−1] repre-
sents the operation of concatenating all the outputs before the n-th layer. Concatenation
is distinguishable from residual connection, the latter which simply adds the values of
two features together. Whereas concatenation, by comparison, increases the number of
channels to enable preservation of the previous feature information in its entirety. To en-
sure consistency in the number of channels of input features across each DenseNet Block,
a Transition Block is implemented to restore the number of channels in the output feature
from the previous DenseNet Block.

3.4. CBAM

The Convolutional Block Attention Module (CBAM) [33] comprises two sub-modules:
the Channel Attention Module (CAM) and the Spatial Attention Module (SAM). Through
its attention mechanism, CBAM simultaneously regulates the channel and space features,
thus enabling the network to capture a comprehensive range of information contained in
the feature map. Illustratively, Figure 10 below depicts the diagram of CBAM.

Figure 10. The structure of CBAM attention module.

The input feature map will first pass through the CAM. At the beginning of CAM is a
global max pooling layer and a global average pooling layer. These two pooling layers will
pool the feature maps based on height and width to obtain two 1 × 1 × C feature maps (C
is the number of channels), and then, the obtained feature maps will be fed into a two-layer
MLP network, which is shared by the two input features. The MLP-processed feature maps
are summed element-wise, and finally, the sigmoid activation function is used to generate
the channel attention feature. The channel attention feature will be multiplied element-wise
with the input feature map to obtain the input feature map of SAM.
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In SAM, first, the input feature map from CAM will undergo a channel-based global
maximum pooling and global average pooling to obtain two H × W × 1 feature maps; H
and W are the height and width of the feature maps, respectively. Then, the two feature
maps are concatenated in the channel dimension, and the number of channels of the
feature map is doubled. Next, the number of channels of the feature map is reduced by a
convolutional layer followed by a sigmoid activation function, which generates a spatial
attention feature. Finally, the spatial attention feature is multiplied based on element-wise
with the input features of SAM to obtain the final features generated by CBAM.

4. Experiments

In this section, we first introduce the dataset used in the experiments, namely the
MAR20 dataset. Subsequently, we also explain the evaluation metrics and implementation
details of the experiments. The experiments can be broadly summarized as the comparison
of CNTR-YOLO with other algorithms alongside the ablation study.

4.1. Dataset

The MAR20 dataset [34], presently the largest dataset for remote sensing military
aircraft target recognition, is utilized in this paper to validate the proposed algorithm’s per-
formance. The dataset contains 3842 images and 22,341 instances of mostly 800 × 800 pixels
gathered from 60 military airports across the United States, Russia, and other countries
using Google Earth. The MAR20 dataset specifically includes 20 aircraft models, with six of
them being the Russian SU-35 fighter, TU-160 bomber, TU-22 bomber, TU-95 bomber, SU-34
fighter-bomber, and SU-24 fighter-bomber. The remaining 14 aircraft models include the
U.S. C-130 transport, C-17 transport, C-5 transport, F16 fighter, E-3 AWACS, B-52 bomber,
P-3C ASW, B-1B bomber, E-8 joint battlefield surveillance aircraft, F-15 fighter, KC-135
air refueling aircraft, F-22 fighter, F/A-18 combat attack aircraft, and KC-10 air refueling
aircraft. These aircraft model types are denoted with abbreviations A1 to A20. The dataset
is split into a training set of 1331 images and 7870 instances and a testing set of 2511 images
and 14471 instances, as shown in this paper’s experimentation.

The DOTA dataset [35] is a large remote sensing image dataset consisting of 2806 high-
resolution images obtained from Google Earth and multiple satellite sensors with image
sizes ranging from 800 × 800 pixels to 4000 × 4000 pixels. In comparison to the MAR20
dataset, DOTA includes a more comprehensive range of object categories, including Plane,
Baseball diamond, Bridge, Ground field track, Small vehicle, Large vehicle, Ship, Tennis
court, Basketball court, Storage tank, Soccer ball field, Roundabout, Harbor, Swimming
pool, and Helicopter. Due to the large size of the DOTA dataset images, they cannot be
directly used for training neural networks. Therefore, we divided the images into sub-
images of size 608 × 608 pixels at intervals of 100 pixels. The sub-images were randomly
extracted in an 8:1:1 ratio to create the training set, validation set, and testing set.

4.2. Evaluation Metrics

We adopt commonly used evaluation metrics, namely P (precision), R (recall), mAP
(mean average precision), and mAP0.5 (mean average precision at IOU = 0.5) in the experi-
ments. Specifically, the expressions for P and R are defined as follows:

P =
TP

TP + FP
(6)

R =
TP

TP + FN
(7)

In this regard, TP represents the number of positive samples that were correctly
identified, FP represents the number of negative samples that were identified as positive
samples, and FN represents the number of positive samples that were identified as negative
samples. Based on P and R, we can compute AP (average precision), mAP, and mAP0.5
as follows:
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AP =
∫ 1

0
P(R)d R (8)

mAP =
1
N

N

∑
i=1

APi , IOU = 0.5 : 0.05 : 0.95 (9)

mAP0.5 =
1
N

N

∑
i=1

APi , IOU = 0.5 (10)

where N represents the number of classifications of the targets.

4.3. Implementation Details

The implementation of CNTR-YOLO utilizes PyTorch (version v1.8.0) as the under-
lying framework, and the operating system used is Ubuntu 20.4. An NVIDIA RTX3060
GPU with 12 GB memory served as the platform for training and testing. During train-
ing, an SGD optimizer was used with the momentum and weight decay set to 0.937 and
0.01, respectively. A warmup strategy was employed to enhance the training process’s
stability. The learning rate gradually decreased at a rate of 0.01 for the first three epochs
and continued training with 0.001. Moreover, the images were resized to 640 × 640 pixels,
and considering the hardware limitations, the batch size was set to 2.

The other models, including Faster R-CNN, YOLOv4, YOLOv5m, YOLOv5l, and YOLOv5x,
were tested and trained under the same settings as CNTR-YOLO, with images also resized
to 640 × 640 pixels during training. Notably, we adopted the default settings of each
model’s referenced research articles concerning other parameters.

4.4. Experimental Results

In line with the implementation settings in Section 4.3, we evaluate CNTR-YOLO on
P, R, mAP, mAP0.5, and Latency. To show the advantages of the proposed algorithm, we
compare it with Faster R-CNN, YOLOv4, YOLOv5m, YOLOv5l, and YOLOv5x. We first
present experimental results on the MAR20 dataset, and then, to demonstrate the robustness
of the proposed algorithm, we also show experimental results on the DOTA dataset.

4.4.1. Experimental Results on the MAR20 Dataset

The overall comparison results are shown in Table 1. The comparison results of
different categories are shown in Table 2.

Table 1. Comparison results of CNTR-YOLO and other algorithms on the MAR20 dataset.

Method P (%) R (%) mAP0.5 (%) mAP (%)
Latency

(ms)

Faster R-CNN 77.3 73.6 82.7 57.1 83.6
YOLOv4 83.3 79.5 86.6 64.3 12.8

YOLOv5m 85.7 80.3 87.6 65.7 11.0
YOLOv5l 85.2 83.4 88.5 66.8 19.3
YOLOv5x 86.6 85.9 89.7 68.0 37.5

CNTR-YOLO 88.9 87.5 91.1 70.1 33.5

Table 1 presents the comparative results of six target detection algorithms using dif-
ferent metrics. CNTR-YOLO outperforms the others in terms of P, R, mAP0.5, and mAP.
Specifically, CNTR-YOLO attains mAP0.5 and mAP scores of 91.1% and 70.1%, respectively,
which are 1.4% and 2.1% higher than YOLOv5x, and 2.6% and 3.3% higher than YOLOv5l.
In addition, CNTR-YOLO’s mAP is 13.0% and 5.8% higher when compared against other
non-YOLOv5 series algorithms, Faster R-CNN and YOLOv4, respectively. Notably, the pro-
posed algorithm distinguishes different types of aircraft features with remarkable accuracy,
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achieving a recall rate of 87.5%, which is 4.1% and 1.6% higher than YOLOv5l and YOLOv5x,
respectively. This ability significantly reduces recognition errors compared to other algo-
rithms. Despite a 14.2 ms higher inference time than YOLOv5l, CNTR-YOLO’s improved
detection performance still ensures that it is 4.0 ms faster than YOLOv5x.

Table 2. Comparison results of CNTR-YOLO and other algorithms on various categories of MAR20
dataset (mAP).

Class
Faster

R-CNN
YOLOv4 YOLOv5m YOLOv5l YOLOv5x

CNTR-
YOLO

A1 63.7 67.5 70.9 73.1 72.8 74.0
A2 67.5 75.3 75.7 77.9 77.6 80.9
A3 70.9 76.0 77.3 78.6 78.2 81.9
A4 66.8 71.9 73.4 76.3 75.2 75.3
A5 65.5 68.7 72.0 72.1 73.1 73.8
A6 55.8 68.5 70.8 71.6 69.4 74.7
A7 45.6 55.0 58.7 61.3 62.8 68.8
A8 59.7 67.0 67.8 70.5 70.4 72.2
A9 62.8 68.3 69.4 69.6 70.5 71.8

A10 50.1 59.3 59.2 62.5 64.6 66.5
A11 57.4 66.1 66.1 68.4 71.0 72.0
A12 40.1 43.2 45.2 48.0 48.7 46.7
A13 50.5 57.6 59.1 59.2 61.0 61.2
A14 26.6 32.0 31.6 33.0 37.4 42.7
A15 51.8 61.4 66.5 65.0 65.3 68.2
A16 58.9 64.1 67.2 63.3 69.2 74.5
A17 69.5 67.4 68.1 70.1 72.5 71.1
A18 65.9 71.5 71.4 73.0 72.7 74.0
A19 63.4 72.9 71.2 75.2 75.0 77.0
A20 63.5 71.6 72.5 73.1 73.7 74.8

Table 2 illustrates the mean average precision of the six methods across the twenty
classifications in the MAR20 dataset. Overall, CNTR-YOLO outperforms the other five
algorithms in most categories, with only three categories being inferior to YOLOv5l or
YOLOv5, but the gaps are all within 2%. Notably, in category A14, where each method
had the lowest mAP, CNTR-YOLO surpasses YOLOv5l and YOLOv5x by 9.7% and 5%,
respectively. Additionally, CNTR-YOLO exhibits a significant performance advantage
of 11.2% and 5.3%, respectively, over YOLOv5l and YOLOv5x in category A16. This
gap is the largest among all categories. A comparison of the detection results between
CNTR-YOLO and YOLOv5l on the same image is illustrated in Figure 11. CNTR-YOLO
correctly identifies all instances, whereas YOLOv5l misidentifies an aircraft of A16 in the
bottom right corner as belonging to A18. These two categories are visually similar from
the perspective of remote sensing satellites (vertical direction), but CNTR-YOLO with its
stronger detail discrimination ability can identify them correctly.
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(a) (b)
Figure 11. The detection results on one image of the test set of the MAR20 dataset: (a) detection result
of YOLOv5 (b) detection result of CNTR-YOLO.

4.4.2. Experimental Results on the DOTA Dataset

Similarly, we show the general comparison results on the DOTA dataset in Table 3
and then show the comparison results on the specific categories in Table 4.

Table 3. Comparison results of CNTR-YOLO and other algorithms on the DOTA dataset.

Method P (%) R (%) mAP0.5 (%) mAP (%)
Latency

(ms)

Faster R-CNN 75.9 71.8 75.8 53.7 84.5
YOLOv4 80.2 75.7 80.3 59.3 13.3

YOLOv5m 82.9 78.8 81.8 60.6 11.6
YOLOv5l 82.8 80.3 82.4 61.2 20.0
YOLOv5x 83.3 82.1 83.6 62.0 38.2

CNTR-YOLO 85.1 84.3 85.2 63.7 34.1

Table 4. Comparison results of CNTR-YOLO and other algorithms on various categories of DOTA
dataset (mAP).

Class Faster R-CNN YOLOv4 YOLOv5m YOLOv5l YOLOv5x CNTR-YOLO

Plane 69.1 75.6 78.6 79.7 80.5 83.2
Basketball diamond 58.2 64.0 64.6 65.2 67.6 72.8

Bridge 33.6 37.3 38.8 39.1 39.5 40.1
Ground track field 55.5 63.7 64.7 65.0 67.1 66.9

Small vehicle 49.4 54.0 53.8 55.6 56.1 59.3
Large vehicle 66.9 72.8 73.8 74.9 76.8 76.5

Ship 63.7 70.1 69.8 72.5 73.0 74.1
Tennis court 84.9 89.2 91.2 90.6 92.0 91.9

Basketball court 70.5 75.1 76.5 77.0 78.4 79.1
Storage tank 57.6 64.4 66.9 67.7 68.1 70.4

Soccer ball field 24.3 28.2 28.5 28.9 28.3 30.1
Roundabout 46.2 52.9 55.8 55.3 56.1 57.5

Harbor 60.7 65.9 66.5 67.5 67.4 68.7
Swimming pool 48.9 55.3 56.6 57.1 57.3 58.9

Helicopter 16.3 20.7 22.3 22.1 22.6 25.5

From Table 3, it can be observed that on the DOTA dataset, the proposed algorithm
yields superior mAP0.5 and mAP compared to other algorithms. This indicates the robust-
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ness of the proposed algorithm. When compared to YOLOv5l, CNTR-YOLO achieves 2.8%
and 2.5% higher mAP0.5 and mAP, respectively. When compared to YOLOv5x, CNTR-
YOLO achieves 1.6% and 1.7% higher mAP0.5 and mAP, respectively. In comparison to
other algorithms, CNTR-YOLO outperforms them to a greater extent. The inference time
results are very similar to those shown in Table 1, which is reasonable.

From Table 4, we can find that CNTR-YOLO outperforms other algorithms in most
categories, which indicates that the proposed algorithm has a certain universality in the
target detection of remote sensing images. Specifically, in the category of Plane, which
represents the Aircraft considered in this paper, CNTR-YOLO yields mAP values of 83.2%
that are 2.7% and 3.5% higher than those of YOLOv5x and YOLOv5l, respectively. This
indicates that the proposed algorithm has superior performance in Aircraft detection
compared to other algorithms on the DOTA dataset.

4.5. Ablation Study

The improvements of CNTR-YOLO include the substitution of a C3 with a Dense mod-
ule, the application of the CBAM attention module, and the introduction of the C3CNTR
module. These measures provide different levels of enhancements to YOLOv5l, which we
will evaluate in this section. Although adding a small-scale detection head is common in
YOLO-related object detection studies, such as TPH-YOLO, the approach is not utilized
in this paper. The reason for this omission will be explained below. Furthermore, since
C3CNTR is an improvement of C3TR, we will also inspect the enhancement effect of C3TR
on the network (at the same position where C3CNTR is implemented). This assessment is
essential to differentiate the performance variations between the two. The experimental
results are displayed in Table 5, where the “tiny head” represents the small target detection
head. It should be noted that to save table space, the suffixes “module” or “attention
module” in the nouns of the tables are omitted in this paper.

Table 5. Results achieved by YOLOv5 combining different modules on the MAR20 dataset.

Method P (%) R (%) mAP0.5 (%) mAP (%)

YOLOv5l 85.2 83.4 88.5 66.8
+tiny head 84.5 82.9 88.1 66.6

+Dense 87.0 84.8 89.8 68.0
+Dense+CBAM 87.5 85.3 89.9 68.2

+Dense+CBAM+C3TR 88.1 86.9 90.6 69.3
+Dense+CBAM+C3CNTR 88.9 87.5 91.1 70.1

Table 5 indicates that adding a small-scale target detection head reduces all metrics.
This outcome is due to the majority of instances in the MAR20 dataset not being smaller
than 32 × 32 pixels. Consequently, this approach is not employed in this paper. After in-
corporating the Dense module, all the performance metrics improved noticeably, and the
mAP rose by 1.2% compared to YOLOv5l. Following the integration of the CBAM attention
module, there were slight enhancements in all measures, resulting in a 0.2% increase in
the mAP. In addition to these enhancements, the introduction of C3TR and C3CNTR pro-
duced different outcomes. While C3TR produced an increase of 1.1% in the mAP, C3CNTR
resulted in a 1.9% increase, indicating that C3CNTR outperforms C3TR. Finally, after im-
plementing all the improvements, CNTR-YOLO experiences a 3.3% enhancement in the
mAP compared to YOLOv5l.

Regarding the use of attention mechanisms, several alternatives to CBAM were in-
vestigated, including Coordinate Attention (CA), Squeeze-and-Excitation Attention (SE),
Normalization-based Attention (NAM), and Efficient Channel Attention (ECA); however,
none of them achieved the anticipated outcome. After conducting experiments, we present
the comparison results of the CBAM attention module and the aforementioned four alterna-
tives on the MAR20 dataset in Table 6. It is worth noting that the experiments were based
on the YOLOv5l+Dense module and represented by YOLOv5l*.
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Table 6. Results achieved by YOLOv5 combining different modules on the MAR20 dataset; tiny head
means small target detection head and Dense means Dense module.

Method P (%) R (%) mAP0.5 (%) mAP (%)

YOLOv5l* 87.0 84.8 89.8 68.0
+CA 86.3 84.2 89.3 67.7
+SE 86.5 84.4 89.5 67.8

+NAM 87.0 84.6 89.7 68.0
+ECA 87.1 84.9 89.8 68.1

+CBAM 87.5 85.3 89.9 68.2

Table 6 reveals that CA and SE did not enhance the network’s performance; instead,
they caused a decline of 0.3% and 0.2% on mAP, respectively. NAM maintained the same
level of performance, while ECA and CBAM elevated mAP by 0.1% and 0.2%, respectively.

5. Conclusions

In this paper, we propose the CNTR-YOLO algorithm for detecting aircraft targets in
remote sensing images by improving the existing YOLOv5 algorithm. Our work includes
the first attempt to combine a convolutional network and Transformer to design a new
module in YOLOv5 as well as validates some improved measures to help YOLOv5 achieve
better performance in aircraft detection. Specifically, our proposed C3CNTR module
absorbs the local observation capability of ConvNext and the global analysis capability of
Transformer, making a greater contribution to improving detection accuracy compared to
the C3TR module that uses only Transformer. Next, during the feature extraction stage,
the Dense module significantly improves the network’s exploitation of features by utilizing
multiple connections between convolutional layers, also avoiding the problem of gradient
vanishing. Finally, we integrate the CBAM attention module to reduce interference from
background information on the network, allowing the network to focus more on valuable
areas and further improve the detection accuracy of the network. The mAP of the proposed
CNTR-YOLO is 3.3% higher than YOLOv5l on the MAR20 dataset and exceeds other
comparative methods, such as Faster R-CNN and YOLOv4. The results on the DOTA
dataset show that the mAP of CNTR-YOLO reached 63.7%, also surpassing other compared
methods. Particularly, for the specific category of Plane (which refers to aircraft in this
paper), CNTR-YOLO achieved an mAP of 83.2%, which is 3.5% higher than YOLOv5l. This
also reflects that our proposed algorithm has a certain robustness.
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Abstract: An enhancement generator model with a progressive Wasserstein generative adversarial
network and gradient penalized (PWGAN-GP) is proposed to solve the problem of low recognition
accuracy caused by the lack of rice disease image samples in training CNNs. First, the generator
model uses the progressive training method to improve the resolution of the generated samples step
by step to reduce the difficulty of training. Second, to measure the similarity distance accurately
between samples, a loss function is added to the discriminator that makes the generated samples
more stable and realistic. Finally, the enhanced image datasets of three rice diseases are used for
the training and testing of typical CNN models. The experimental results show that the proposed
PWGAN-GP has the lowest FID score of 67.12 compared with WGAN, DCGAN, and WGAN-GP.
In training VGG-16, GoogLeNet, and ResNet-50 with PWGAN-GP using generated samples, the
accuracy increased by 10.44%, 12.38%, and 13.19%, respectively. PWGAN-GP increased by 4.29%,
4.61%, and 3.96%, respectively, for three CNN models over the traditional image data augmentation
(TIDA) method. Through comparative analysis, the best model for identifying rice disease is ResNet-
50 with PWGAN-GP in X2 enhancement intensity, and the average accuracy achieved was 98.14%.
These results proved that the PWGAN-GP method could effectively improve the classification ability
of CNNs.

Keywords: image data augmentation; small sample; progressive WGAN-GP; rice disease; CNN

1. Introduction

Rice is one of the most important food crops worldwide, especially in Asian countries,
where it plays a crucial role in diets. According to statistics, more than 3 billion people
rely on rice as their primary source of food, and rice production accounts for nearly 20% of
the world’s total grain output. Additionally, rice is a major export commodity for many
countries and regions and has significant impacts on local economies and trade [1]. Rice
disease is one of the main factors affecting the high quality, efficiency, and yield of rice, so
the recognition of rice diseases is an important method to protect food security.

The traditional method of rice disease recognition relies on visual observation and
monitoring by plant protection specialists. However, this method requires experienced
rice specialists, and long periods of monitoring are costly on large farms. The shortage
of rice specialists, especially in developing countries, prevents effective and timely rice
disease control.

With the development of artificial intelligence technology, researchers at home and
abroad have successfully applied machine learning methods to the automatic recognition
and identification of crop diseases. For example, image processing-based techniques have
been used for rice disease detection and recognition with high recognition accuracy [2,3]
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involving support vectors [4,5], k-Nearest Neighbor [6], and decision trees [7]. Nevertheless,
these methods have disadvantages, such as difficulties in implementation for large-scale
training samples and solving multiple classification issues and sensitivity to the selection
of parameters, which hinder the further improvement of the recognition effect. Significant
breakthroughs in deep learning have been achieved with better results in recent years,
which include convolutional neural (CNNs) networks [8,9] and migration learning [4,10]
for image recognition.

Recently, deep learning has become a key technology for big data intelligence [11]
and has been successfully applied to tasks of plant disease identification and classification.
Compared with classical machine learning methods, deep learning has a more complex
model structure with more powerful feature extraction capabilities. In [12], depthwise
separable convolution was proposed for crop disease detection. Experimentally tested on a
subset of the PlantVillage dataset, Reduced MobileNet achieved a classification accuracy of
98.34%, with a lower number of parameters than VGG and MobileNet. In [13], aiming at
low power consumption and low performance of small devices, a depth-wise separable
convolution (DSC)-based PLD (DSCPLD) recognition framework was proposed, which
was tested on rice disease datasets, and the accuracy of using S-modified MobileNet and
F-modified MobilNet reached 98.53% and 95.53%, respectively. In [4], the model for the
classification of rice leaf disease images by ResNet-50 combined with the SVM method
achieved an F1 score of 98.38%. In [14], to improve the accuracy of existing rice disease
diagnosis, VGG-16 and GooLeNet models were used to train on a dataset of three painless
species of diseases, and the experimental results showed that the average classification
accuracies of VGG-16 and GoogLeNet were 92.24% and 91.28%, respectively. In [15], the
authors constructed a novel rice blast recognition method based on CNN to identify 90%
of diseased leaves and 86% of healthy leaves, respectively. Although the above methods
achieve accurate recognition of rice diseases, deep learning techniques need to include large
datasets that satisfy various criteria to obtain better recognition results. Note that using
limited image datasets for training can lead to the overfitting of model training [16]. That is
to say, training dataset size has a large impact on deep learning-based disease recognition
methods, and their performance will be severely degraded in the case of small samples,
uneven data distribution, etc. [17,18].

A strategy to solve the data shortage is to convert the original data to generate artifi-
cial data, which is usually called data augmentation. Data augmentation is achieved by
executing geometric transformations, noise addition, interpolation, color transformation,
and other operations on the original data. Common structures in convolutional neural
networks include pooling layers, strided convolutions, and downsampling layers. When
the position of the input image changes, the output tensor may change drastically. There-
fore, convolutional neural networks may misclassify images that have undergone image
processing transformations. This type of transformation can be used to enhance small
sample image datasets. However, this data augmentation method does not increase the
diversity of image features in the original dataset but only exploits the design flaw of
convolutional neural networks [19]. Methods based on deep learning provide an effective
and powerful way to learn the implicit representation of data distribution. Inspired by the
zero-sum game in game theory, the Generative Adversarial Networks (GAN) model has
been proposed in [20], which can learn how to approach the true distribution of data and
has powerful capabilities in image generation. The original GAN suffers from the problems
of difficult convergence, training, and control of the model. To deal with these problems, the
Wasserstein Generative Adversarial Network (WGAN) has been proposed in [21] to solve
the difficulty of training the original GAN. WGAN training is more stable and theoretically
solves the pattern collapse and the gradient disappearance. Whereas WGAN causes issues
such as gradient explosion when generating data due to direct weight cropping, which
makes the model training unstable. Wasserstein Generative Adversarial Network with
Gradient Penalized (WGAN-GP) was developed in [22], a generative adversarial network
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that controls the gradient by gradient penalty to settle the matters of gradient explosion
and pattern collapse.

At present, GAN has been employed effectively in the field of data enhancement. A
method has been put forward in [23] based on deep learning for tomato disease diagnostics
that uses the conditional generative adversarial network (CGAN) to produce synthetic
images of tomato plant leaves. The recognition accuracy of this method in the classification
of tomato leaf images into 5, 7, and 10 categories is 99.51%, 98.65%, and 97.11%, respectively.
An infrared image-generation approach was designed in [24] depending on CGAN. This
method can generate high-quality and reliable infrared image data. In [25], a model
combining CycleGAN and U-net has been constructed and applied to a small dataset of
tomato plant disease images. The results show that the model is better than the original
CycleGAN. A fault recognition mechanism was presented in [26] for bearing small samples
based on InfoGAN and CNN. The extracted time-frequency image features are input into
InfoGAN for training to expand the data. Tested on the CWRU dataset, the results show
that this method is better than other algorithms and models. In [27] a strategy was raised
relying on a WGAN combined with a DNN. The cancer image is expanded by GAN to
improve the classification accuracy and generalization of DNN. The results show that
the classification accuracy of DNN using WGAN is the highest in comparison with other
methods. CycleGAN has been put to use in [28] to retreat the CT segmentation task domain
dataset for enhancement. The results display that the Dice score on the kidney increases
from 0.09 to 0.66, and the effect is significant, while the improvement is small on the
liver and spleen. However, WGAN-GP is still not effective at generating high-resolution
images. Therefore, Tero Karras proposed Progressive GAN (ProGAN) in [29], a growing
GAN-derived model, which generates very low-resolution images first, and then gradually
increases the generated resolution during training to generate high-resolution images stably.
In [30], a Dual GAN was proposed for generating high-resolution images of rice disease,
which is used in the field of data enhancement. Dual GAN uses WGAN-GP to generate
rice disease images, and Optimized-Real-ESRGAN is used to improve image resolution.
The experimental results show that the accuracy of ResNet-18 and VGG-11 is improved by
4.57% and 4.1%, respectively. In [31], a novel neural network-based hybrid model (GCL)
is proposed. CGL includes GAN for data enhancement, CNN for feature extraction, and
LSTM for rice disease image classification. The experimental results show that the proposed
method can achieve 97% accuracy for disease classification. In [32], a new convolutional
neural network was proposed for the identification of three rice leaf diseases, using a
GAN-based technique to augment the dataset. The experimental results showed that the
proposed method achieved an accuracy of 98.23%. The above studies can show that GAN
application is effective for data enhancement in small sample datasets, but the resolution
and stability of the current generation are yet to be improved.

To alleviate the lack of image data on rice diseases, we introduce a Progressive WGAN-
GP, which is based on the WGAN-GP model and combines a progressive training method.
This model is applied to rice disease image data augmentation to increase the accuracy
of the recognition model in small-sample datasets. By analyzing the three diseases in the
collected dataset as well as the open-source dataset, the experimental results show that the
method has good robustness and generalization ability and has a fine recognition effect
under small sample conditions. The main contributions of this paper are twofold. (1) The
progressive training method is introduced into the WGAN-GP model. In the field of rice
disease image generation, the generation performs better than WGAN-GP, WGAN, and
Deep convolutional GAN (DCGAN). (2) The experimental results show that the PWGAN-
GP method can not only generate high-quality images of rice diseases but also apply the
generated images to the CNNs training by blending the dataset with real images, which
can improve the performance of CNNs, and obtain a higher recognition accuracy than
other methods.

The remainder of this paper is organized as follows. In Section 2, we describe the
source and the pre-processing of the data. Section 3 presents the theory related to PWGAN-
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GP. Section 4 describes the experimental setup of the PWGAN-GP for the application
problem of rice disease image generation as well as recognition. Section 5 analyzes the ex-
perimental data of image generation and the comparison with other methods. Conclusions
are given in Section 6.

2. Dataset

The image dataset used in this paper is shown in Figure 1. The rice disease image (I)
is obtained from an experimental farm field at Heilongjiang Bayi Agricultural University.
The device used to capture these rice images is a Redmi K30 Pro phone. The image dataset
includes rice leaf blast, rice leaf blight, rice leaf brown spot, and healthy rice leaf to increase
the diversity of rice disease image samples that are captured separately under different
cycles of rice growth, weather conditions, and lighting conditions. The rice disease image
datasets (II) [33], (III) [34], and (IV) [35] are from open-source databases available on the
web. Database (II) contains 3355 images with 4 categories and an image resolution of
2798 × 2798 pixels; database (III) contains 120 images with 3 categories and an image
resolution of 3081 × 897 pixels, and database (IV) contains 2800 images with 5 categories
and an image resolution of 256 × 256 pixels. Since the open-source database contains a
variety of categories of images, this experiment eliminates the images whose categories are
not consistent with the research direction of this paper.

Figure 1. Images of rice diseases collected.

The dataset for this experiment consists of four sources, each with a high resolution
from different sources, and in addition, there are differences in the methods of acquisition,
which result in a non-uniform style of the dataset. Therefore, data pre-processing of the
dataset is required. Duplicate, blurred, and images with insignificant disease characteristics
are removed from the dataset. The number of categories in the pre-processed image dataset
is shown in Table 1.
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Table 1. Details of the rice leaf disease dataset.

Categories Numbers

Blast 1654
Brown Spot 1570

Blight 1396
Healthy 2563

The workflow of the process of data segmentation and augmentation is shown in
Figure 2. We randomly shuffled the order of the original dataset and split 80% of the
image samples as the training set for data augmentation and image recognition, while the
remaining 20% of the image samples served as the test set for an independent performance
evaluation of the data-augmented image recognition. It is important to note that the data in
the test set do not participate in the data augmentation phase in order to ensure the fairness
of the test. The detailed numbers of training and test sets are shown in Table 2.

Figure 2. Dataset split strategy.

Table 2. Details of the rice leaf disease train and test dataset.

Categories Train Dataset Test Dataset

Blast 1323 331
Brown Spot 1256 314

Blight 1116 280
Healthy 2050 513

3. Methodology

3.1. GAN

GANs can be trained to generate high-quality images by learning the data distribution
from the training set. GANs consist of two parts, one is the generator (G), and the other is
the discriminator (D). The generator accepts the noise vector and generates samples. Then
generates samples and real samples together to input into the discriminator, which needs
to distinguish the real samples from the generated samples accurately. In the process of
confrontation between the two models, the generated samples will be more realistic. At the
same time, the discriminator’s discriminatory ability will be enhanced. The generator and

58



Remote Sens. 2023, 15, 1789

discriminator will eventually game each other to reach the state of Nash equilibrium [20].
Because the samples generated by the GAN belong to the same labeled class as the original
samples, they can be used for image dataset expansion. The objective function of the GAN
is shown in Equation (1).

min
G

max
D

V(D, G) = Ex∼pdata(x) [log(D(x))] + (1)

Ez∼pθ(z)[log(1 − D(G(z)))]

where pdata(x) is the probability distribution of the real image and θ(z) is the input noise
distribution of G. G and D fight against each other, with G continuously improving its
ability to capture the true sample distribution and generate higher-quality images, and D
improving its ability to discriminate the generated images. The original GAN has been
shown to provide a more realistic output compared to other generative image algorithms.

However, there are three major problems with the original GAN as follows: (1) the loss
function values of the generative and discriminant models are unstable during training,
which indirectly leads to the instability of the generated images; (2) the original GAN
architecture is prone to pattern collapse, where the generative model finds a limited range
of samples from the original data that may result in the discriminator not being able to
continue being effectively trained. In addition, the images generated by the generator lack
diversity; and (3) adjusting the hyperparameters of the traditional GAN makes it very
difficult to make the model converge.

3.2. WGAN

In [21], the theory related to Jensen-Shannon has been analyzed, which concludes that
it is not reasonable to use Jensen-Shannon to measure the distance of disjoint parts between
distributions. To improve the quality of the images generated by GAN, instead of using
Jensen-Shannon, it is pointed out to use the Wasserstein distance measure as the distance
between the generated data and the real data distribution. The definition of the Wasserstein
distance is shown in Equation (2).

W(Pr, Pg) = in f
γ∈∏(Pr ,Pg)

E(x,y)∼γ[‖x − y‖] (2)

where Pr is the distribution of the real data, Pg is the distribution of the generated data, and
γ ∈ ∏(Pr, Pg) is the joint distribution of Pr and Pg. The loss function of WGAN is shown in
Equation (3).

L(D) = Ez∼Pz [ fw(G(z))]− Ex∼Px [ fw(x)] (3)

where z is the input noise and x is the real input image. G(z) is the image generated by
the received noise as the input of the generator. Ez∼Pz describes the probability distribu-
tion of the noise, Ex∼Pr denotes the probability distribution of the real image. fw is the
discriminator neural network containing parameter w in WGAN. The discriminator uses
gradient clipping (weight clipping) so that the discriminator satisfies the condition of the
Lipschitz constraint and restricts parameters w of the neural network fw to be in a certain
range [−c, c].

The discriminator of WGAN does not directly distinguish between the generated
sample and the real sample but measures the difference by calculating the Wasserstein
distance. Therefore, as the value of the loss function decreases, the Wasserstein distance
between the real sample and the generated sample approaches zero, meaning that the
generated sample is closer to the real sample distribution. However, the use of gradient
clipping in the WGAN may cause the weights to converge to the two extremes of the
clipping range, leading to gradient explosion, gradient disappearance, an unreasonable
generation along with the samples, and other side effects, as shown in Figure 3 [22].
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Figure 3. Weight clipping.

3.3. WGAN-GP

The WGAN-GP model has been proposed to solve this problem by allowing the
discriminator to learn smoother decision boundaries through gradient penalty [22], as
shown in Figure 4, and the gradient penalty implemented by WGAN-GP can satisfy the
Lipschitz constraint. The loss function of WGAN-GP is shown in Equation (4).

Figure 4. Gradient penalty.

L(D) = E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)] + (4)

λ E
x̂∼Px̂

[(‖�x̂D(x̂)‖2 − 1)2]

where E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)] is the loss function of WGAN, x̃ ∼ Pg is the sampling of the

generated data, and x ∼ Pr is the sampling of the real data. λ E
x̂∼Px̂

[(‖�x̂D(x̂)‖2 − 1)2] is

the gradient penalty term, x̂ is the random noise therein, x̂ ← εx + (1 − ε)x̃ with random
numbers ε ∼ U[0, 1].

3.4. Progressive Training

In the traditional training GAN model, the structure of the generative and discrimi-
native models is kept constant, and the resolution of the target images generated by the
model is fixed. Due to the ’zero-sum game’ characteristic of GAN, it is very difficult to
train the model, and increasing the resolution of the generated images will further increase
the training difficulty. In [29], a progressive training approach was proposed the key is
to gradually increase the structure of the generative and discriminative models, starting
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from low resolution, and after the training is stable, adding new layers to the generative
and discriminative models, these layers will gradually model the details of the image. This
both speeds up the training and stabilizes it greatly, resulting in clear and high-quality
generated images.

3.5. Residual Block

The depth of a neural network has a large impact on the performance of the model,
and as the depth increases, the model usually has better performance. However, as the
network deepens, it is prone to the accuracy rising to a peak and then falling, a problem
often called gradient degradation. In [36], the ResNet was proposed, and the key structure
of the model is the residual block. The residual block makes features passing features,
allowing subsequent network layers to pass less influence and uses all-equal mapping
to pass inputs directly to outputs, ensuring the stable performance of the network. The
structure of the residual module is shown in Figure 5.

Figure 5. Residual block.

3.6. Progressive WGAN-GP

The Progressive WGAN-GP (PWGAN-GP) model consists of two parts: the generator
and the discriminator. The generator consists of a residual block, an upsampling layer, and
a LeakyReLU activation layer. The residual block of the generation model is responsible
for generating image features, and the upsampling layer is responsible for scaling up the
image size. The discriminant model consists of a residual module and a downsampling
module. The residual module of the discriminator is responsible for extracting the image
features, and the downsampling layer is responsible for reducing the image size. The loss
function of WGAN-GP is used. In the training of the model, the residual block layer in the
generator and discriminator increases step by step, and the size of the generated samples
also increases. The training starts by generating a low-resolution 4 × 4 of the target image,
and when the value of the loss function decreases to a stable state, it indicates that the
training is completed at that stage. Next, the structure of the production model and the
discriminant model is increased by one layer to continue the training. This is repeated to
reach the preset target image resolution of 256 × 256. The training process is shown in
Figure 6. A detailed description of this model is shown in Tables 3 and 4.
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Table 3. Generator-related parameters of PWGAN-GP.

Layer Name Activation Function Output Tensor

Latent vector - 512 × 1 × 1
Residual block LeakyReLu 512 × 4 × 4

Upsample - 512 × 8 × 8
Residual block LeakyReLu 512 × 8 × 8

Upsample - 512 × 16 × 16
Residual block LeakyReLu 512 × 16 × 16

Upsample - 128 × 32 × 32
Residual block LeakyReLu 128 × 32 × 32

Upsample - 64 × 64 × 64
Residual block LeakyReLu 64 × 64 × 64

Upsample - 32 × 128 × 128
Residual block LeakyReLu 32 × 128 × 128

Upsample - 16 × 256 × 256
Residual block LeakyReLu 16 × 256 × 256

Conv 1 × 1 - 3 × 256 × 256

Table 4. Discriminator-related parameters of PWGAN-GP.

Layer Name Activation Function Output Tensor

Intput image - 3 × 256 × 256
Conv 1 × 1 LeakyReLU 16 × 256 × 256

Residual block LeakyReLU 32 × 256 × 256
Downsample - 32 × 128 × 128

Residual block LeakyReLU 64 × 128 × 128
Downsample - 64 × 64 × 64

Residual block LeakyReLU 128 × 64 × 64
Downsample - 128 × 32 × 32

Residual block LeakyReLU 256 × 32 × 32
Downsample - 256 × 16 × 16

Residual block LeakyReLU 512 × 16 × 16
Downsample - 512 × 8 × 8

Residual block LeakyReLU 512 × 8 × 8
Downsample - 512 × 4 × 4

Avg pool, fc 1, softmax - 1 × 1 × 1

Figure 6. PWGAN-GP model.
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Since a new layer is added at the end of each training phase, the new layer is still in
the initialization state and cannot be directly added to the training; otherwise, it will affect
the well-trained parameters as well. In this paper, the parameters of the old layer are fused
into the parameter parameters of the new layer by a fusion mechanism. The formula is
shown in (5).

Output = α × Lnew + (1 − α)× Lold (5)

Output is the output of the new layer, α is the fusion coefficient factor, Lnew is the parameter
of the new layer, and Lold is the parameter of the old layer. The model multiplies the
parameters of the old layer by (α − 1) plus the parameters of the new layer by α. The value
increases from 0 to 1 one by one as the number of training increases. α takes values in the
range [0, 1]. The structure is shown in Figure 7.

Figure 7. New layer fusion.

3.6.1. Residual Block

The residual block needs a convolutional layer to extract features of the input and
differentiate the generated image and the real image. The convolutional layer applies
the convolutional kernel and the activation function to calculate the feature map. The
mathematical definition is shown in Equations (6) and (7).

yl
j = f (zl

j) (6)

zl
j = ∑

i∈Mj

xl−1
i × kl

ij + bl
j (7)

where zi
j is the output of the feature map in the l-th layer, f (·) is the LeakyRelu activation

function, zl
j is the weight value of the j-th channel in the l-th layer, xl−1

i is the feature map

of the (l − 1)-th layer, Mj is the subset of the input feature map, and kl
ij is the convolution

kernel matrix in layer l, ∗ means the Convolution operation, bi
j means the bias term[37].

This paper uses a residual block with two layers of the same design. It includes a
convolutional layer with a 4 × 4 convolutional kernel, the batch normalization layer, and
the LeakyReLU activation layer. The structure is shown in Figure 8.
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Figure 8. Two-layer residual block.

3.6.2. Upsampling

In this model, the Upsampling layer uses Transposed Convolution represented in deep
learning as an inverse process of convolution. This approach can recover the image size
and project the feature mapping to a higher dimensional space instead of recovering the
original values. Transposed Convolution depends on the size of the convolution kernel
and the size of the output. The formula for calculating the tensor size of outputs is shown
in Equation (8).

o′ = i′ + (k − 1)− 2p (8)

where o′ represents the output size of the Transposed Convolution, i′ denotes the size of
the input Transposed Convolution, k depicts the size of the Transposed Convolution kernel,
and p means the padding size when operating the tensor [38].

3.6.3. Batch Normalization Layer

Batch Normalization is a technique used in deep learning to improve the performance
and stability of neural networks. The goal of Batch Normalization is to address the problem
of internal covariate shift, which occurs when the distribution of the inputs to a layer
changes during training. This can lead to slow convergence or even failure to converge.
By normalizing the inputs to each layer, Batch Normalization can reduce the internal
covariate shift and accelerate the training process [39]. The calculation formula of Batch
Normalization is shown in Equations (9)–(12).

μB ← 1
m

m

∑
i=1

xi (9)

σ2
B ← 1

m
(

m

∑
i=1

xi − μB)2 (10)

x̂i ← xi − μB√
σ2
B + ε

(11)

yi ← γx̂i + β (12)

where m is the set batch size, xi stands for the data of each batch, and μB represents the
mini-batch mean. σ2

B means mini-batch variance. x̂i indicates normalized. yi reflects the
output of Batch Normalizing Transform, γ is the equation coefficient, and β is the bias
term [40].
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3.6.4. LeakyReLU

The activation function is essentially the introduction of nonlinear factors into the
neural network, through which the neural network can fit various curves. If the activation
function is not used, the output of each layer will be a linear function of the input of the
previous layer. By introducing a nonlinear function as the activation function, the output
will be able to approximate any function. LeakyReLU is an activation function specifically
designed to solve the Dead ReLU problem [41]. The mathematical description is shown in
Equation (13).

LeakyReLU =

{
x, x > 0

αx, x ≤ 0
(13)

The LeakyReLU function adjusts the zero-gradient problem for negative values by giving a
very small linear component of x to the negative input multiplied by 0.01, usually with a
value of α of about 0.01. Its function range is negative infinity to positive infinity.

3.7. Traditional Image Data Augmentation

CNN is a powerful model for abstracting features from unstructured data, but they
do not have image invariance because of the down-sampling operation that changes the
image [42]. Then, the performance of neural networks can be improved by performing
some transformations on the dataset to generate a large number of diverse samples to
make the neural networks have good robustness. This is realized using data expansion
and increasing the number of training sessions is necessary. For the network to obtain
invariance to the affine transformation of the samples, the network is usually trained using
the Traditional image data augmentation (TIDA) approach. We use rotation, translation,
scaling, brightness adjustment, contrast adjustment, and adding noise to transform the
images. The transformed images are used to perform data augmentation on the original
dataset and are compared with GAN data augmentation methods, as shown in Figure 9.

Figure 9. TIDA approach, where (a) is the original image, (b) rotation, (c) panning, (d) scaling,
(e) brightness adjustment, (f) contrast adjustment, and (g) adding noise.

4. Experiment

In this paper, we validate the effectiveness of the generated data in two aspects as
follows: (1) evaluating the quality of the generated data; and (2) assessing the impact of the
generated data on the performance of the deep learning model.
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4.1. Experimental Setup

The experimental environment is 15 vCPU Intel(R) Xeon(R) Platinum 8358P CPU @
2.60 GHz processor, 32 G memory, RTX A5000 (24 GB) dual graphics card, Ubuntu 20.04,
PyTorch 1.10.0, CUDA 11.3 deep learning platform. The proposed experimental framework
is shown in Figure 10.

Figure 10. Flow chart of the experimental framework.

4.2. Evaluation Metrics

To verify that the PWGAN-GP network designed in this paper can perform the task of
generating rice leaf disease images well, an experiment is set up to compare three classical
generative adversarial models, i.e., WGAN, WGAN-GP, and DCGAN. The hyperparame-
ters of the generative adversarial model are set to 20,000 epochs, the number of batches per
batch is 128, and the learning rate is set to 0.0002. The Fréchet Inception Distance (FID) [43]
metric is used to measure the similarity between the rice leaf disease images generated by
the above models and the real images, and the lower the FID score means the two datasets
have more similar distributions. The FID score is defined as shown in Equation (14).

FID =
∥∥μx + μg

∥∥+ Tr(∑x +∑g − 2
√

∑x × ∑g) (14)

where μx and Σx are the mean and covariance matrices of the 2048-dimensional feature
vector set output by the real image collection in Inception-v3, respectively. μg and Σg are
the mean and covariance matrices of the 2048-dimensional feature vector set output by
the generated image collection in Inception Net-v3, respectively. Tr denotes the trace of
the matrix.

4.3. Training Process

A random noise z is used as the input of the PWGAN-GP network, and the network is
set to train for 20,000 epochs. To be able to monitor the training of the WGAN-GP network
in a prompt manner and to evaluate the generation capability, the generated data are
stored once every 200 epochs during the training process. Then, the FID score is used to
measure the generated samples. The generator of PWGAN-GP generates a large number
of high-quality generation samples, which are merged with the original samples for data
augmentation. To verify the effectiveness of the data samples generated by the proposed
framework, we test the data-augmented samples with the classical classification model.
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To verify the effectiveness of PWGAN-GP for rice disease image data augmentation,
the original data are randomly divided into a training set and a test set at a ratio of 8:2. The
training set is used to train the WGAN-GP model and measure the generation quality of
the model by the FID score. The generator of PWGAN-GP is applied to generate an image
dataset with a similar distribution to the real image sample. Then, the generated image
samples and original training set are mixed to enhance the performance of the CNN model.

4.4. Performance of the Data Augmentation Model

To verify the effectiveness of the rice leaf disease images generated by GANs on
the original image dataset enhancement, classical CNN models such as VGG-16 [44],
GoogLeNet [45], and ResNet-50 [46] are selected to test the enhanced dataset with accuracy
as the main evaluation index of the test. In addition, three enhancement levels (i.e., X1, X2,
and X3) are set to analyze the effect on the ratio of the original data to the generated data,
where X0 is the original data, X1, X2, and X3 (1:10, 1:20, and 1:30) indicate 10-fold, 20-fold,
30-fold augmentations based on the original data, respectively.

5. Results and Discussion

In this section, experimental results on the quality of the generated data shown can
demonstrate the difference between the samples generated by PWGAN-GP and other
generative adversarial models and the impact of the enhancement ratio on the original data
samples on the absorption of the neural network classification. Finally, the advantages of
PWGAN-GP compared to TIDA methods are also discussed, and validation of the CNN
model after data augmentation is tested.

5.1. Generating Image Quality

As the data in Table 5 show, the average FID score of the WGAN is the highest, which
indicates that the WGAN has the worst effect on the quality of the generated rice disease
image dataset. The FID score of DCGAN decreases by 31.69 compared to the WGAN and
is 20.66 higher compared to WGAN-GP, so the image generation effect of DCGAN is better
than the WGAN and weaker than WGAN-GP. Dual GAN’s FID score is close to that of
WGAN-GP. The FID score of PWGAN-GP is the smallest among the comparison models,
so the generation effect is also the best.

Table 5. Generation Result Evaluation of GANs by FID score.

Method Blast Brown Spot Blight Healthy
FID Score
Average

WGAN 118.42 133.71 137.51 131.84 130.37
DCGAN 95.37 107.26 101.68 90.39 98.68

Dual GAN 70.13 86.78 92.24 64.20 78.34
WGAN-GP 75.18 84.96 79.33 72.61 78.02

PWGAN-GP 62.11 71.24 74.38 60.73 67.12

The details of the rice leaf disease-generated image are shown in Figure 11. It can be
seen that the image generated by the original GAN has artifacts, the overall image is blurred,
the edges of the leaf in the complex background are not clear, and, most importantly, the
detail characteristics of the disease spots are seriously lost. Although the image clarity of
the samples generated by Dual GAN is better than that of WGAN-GP, excessive processing
of leaf and disease textures leads to excessive detail loss, so the generation effect is not
improved. The details of the leaf and disease spots of PWGAN-GP-generated images are
substantially improved and close to the real sample, but there are problems of distortions
and local blurring. The training results of PWGAN-GP are shown in Figure 12. The image
generated by PWGAN-GP has a stable structure with clear edges, most of the details of
the lesions are preserved, and the overall sharpness of the image is further improved.

67



Remote Sens. 2023, 15, 1789

Therefore, the PWGAN-GP-generated rice leaf disease images are the best among the
selected GAN models.

Figure 11. Comparison of generated samples.

Figure 12. The images generated by PWGAN-GP.

Although the GAN model has strong feature-learning capabilities, it requires a lot
of computational power and a longer training time. The training time for PWGAN-GP,
WGAN-GP, DCGAN, and WGAN is shown in Table 6.

Table 6. Time spent on model training.

Method Training Time (h)

WGAN 45
DCGAN 52

WGAN-GP 59
PWGAN-GP 88
Dual GAN 97

PWGAN-GP training requires a certain number of samples, and when the training
set is too small, PWGAN-GP training will be affected, and it cannot produce effective
images. The training dataset is reduced to 20%, 40%, 60%, and 80% for testing, and the
experimental results are shown in Figure 13. As the dataset is reduced, the generated
samples are distorted, blurred, and color confused.
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Figure 13. Effect of reducing the number of training sets on PWGAN-GP.

5.2. Performance of the Data Enhancement Model

The results of the tests using the VGG-16, GoogLeNet, and ResNet-50 models with
different levels of enhancements to the original data are shown in Tables 7–9. The first row
of each table shows the performance of the baseline model, and the next rows represent
the accuracy values for enhancement levels X1, X2, and X3. The bolded numbers show the
highest accuracy values for a single category in the test results. The last row of the table
shows the maximum accuracy improvement compared with the benchmark model. The
numerical units in the table are expressed using percentages. The experimental results
display that the VGG-16, GoogLeNet, and ResNet-50 models show a significant increase
in classification accuracy for different disease categories, including healthy leaves, after
data augmentation. The data visualization is shown in Figure 14. Among them, ResNet-50
has the highest increased accuracy of 14.04%, 13.13%, 12.41%, and 12.18%, respectively,
compared to the original data. In addition, the best enhancement intensity is X2 (1:20) for
the three models, which has the best effect on the accuracy increase for the deep learning
classification model.

Table 7. The effect of the strength of data enhancement on the accuracy of the VGG-16 model (%).

Level Blast Brown Spot Blight Healthy

X0 83.21 79.76 80.11 82.62
X1 88.48 85.81 87.83 91.97
X2 93.77 89.28 91.35 90.31
X3 90.52 88.31 89.7 88.27

Max. Improve 10.56 9.52 11.24 9.35

Table 8. The effect of the strength of data enhancement on the accuracy of the GoogLeNet model (%).

Level Blast Brown Spot Blight Healthy

X0 83.62 82.53 82.73 84.17
X1 94.84 94.03 93.84 94.16
X2 96.26 94.85 94.91 95.37
X3 95.53 95.01 94.69 95.21

Max. Improve 12.64 12.48 12.18 11.20

Table 9. The effect of the strength of data enhancement on the accuracy of the ResNet-50 model (%).

Level Blast Brown Spot Blight Healthy

X0 84.21 82.09 83.53 85.07
X1 96.77 94.74 95.48 96.81
X2 98.25 95.22 95.94 97.19
X3 97.63 94.44 94.23 96.98

Max. Improve 14.04 13.13 12.41 12.18
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Figure 14. The effect of the level of data enhancement on the accuracy of neural network models.

The experimental results of the effects of different data enhancement methods on the
training accuracy of neural networks are shown in Tables 10–12. The experiments of training
neural network classification models using the original data directly with the enhanced
dataset are compared between adopting the TIDA method and adopting the PWGAN-GP
data enhancement method. The experimental results show that the TIDA method and the
PWGAN-GP data augmentation method have a significant increase in the classification
accuracy of VGG-16, GoogLeNet, and ResNet-50. The TIDA method increased by 7.24%,
8.52%, and 10.08%, respectively, over the situation without data augmentation in the
average accuracy metrics of the three models. It can be shown that the data augmentation
of the TIDA method can improve the recognition accuracy and generalization ability of
the classical CNN models to some extent. PWGAN-GP increased by 10.44%, 12.38%, and
13.19%, respectively, over the situation without data augmentation. PWGAN-GP increased
by 3.2%, 3.86%, and 3.11%, respectively, over the TIDA method. It can be seen that PWGAN-
GP can significantly increase the accuracy and improve the generalization ability of the
classical CNN model compared with the TIDA method. A visual analysis of the impact of
data augmentation is shown in Figure 15 on the accuracy of the neural network model.

Table 10. Impact of data augmentation on the accuracy of the VGG-16 model (%).

Method Blast Brown Spot Blight Healthy Avg.

Actual data 83.21 79.76 80.11 82.62 81.03
TIDA 88.15 88.04 88.71 89.16 88.27

PWGAN-GP 93.77 89.28 91.35 90.31 91.47

Table 11. Impact of data enhancement on the accuracy of the GoogLeNet model (%).

Method Blast Brown Spot Blight Healthy Avg.

Actual data 83.62 82.53 82.73 84.17 82.96
TIDA 91.44 90.57 91.43 92.46 91.48

PWGAN-GP 96.26 94.85 94.91 95.37 95.34

Table 12. Impact of data enhancement on the accuracy of the ResNet-50 model (%).

Method Blast Brown Spot Blight Healthy Avg.

Actual data 84.21 82.09 83.53 85.07 83.28
TIDA 93.12 93.31 93.18 93.83 93.36

PWGAN-GP 98.25 95.22 95.94 97.19 96.47
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Figure 15. Impact of data enhancement on the accuracy of neural networks.

To obtain the best hyperparameters for ResNet-50 on rice disease identification, rele-
vant validation experiments were conducted on learning rate, batch size, and optimizer.
The hyperparameters of the experiment are shown in Table 13. The test results of hyper-
parameter selection experiments are shown in Figure 16. It can be seen that ResNet-50
performs best when the learning rate is 0.005, the batch size is 128, and the optimizer is
RMSProp. The training under the optimal hyperparameter condition is shown in Figure 17.
The accuracy of Resnet-50 is improved to 98.14%.

Table 13. Hyper-parameter details of ResNet-50.

Hyperparameter Condition

learning rate 0.001, 0.005, 0.01, 0.05, 0.1
batch size 16, 32, 64, 128, 256
optimizer SGD, Adam, RMSProp

Figure 16. Hyperparameter optimization of ResNet-50.

Figure 17. ResNet-50 training chart under optimal hyperparameter.

From Table 2, it can be seen that the test set is also imbalanced due to imbalanced
datasets. An imbalanced test dataset may affect the test results of the model. Therefore,
we adjusted the number of all categories in the test set to 280, manually simulated a
balanced test set, and used the ResNet-50 with PWGAN-GP data augmentation to test. The
experiment was repeated five times to find the average; its performance on balanced and
imbalanced datasets is shown in Table 14 and Figure 18. The experimental results show that
the performance of the enhanced ResNet-50 model on balanced and imbalanced datasets is
close. Therefore, imbalanced test sets have little impact on test results.

71



Remote Sens. 2023, 15, 1789

Table 14. The influence of the imbalanced datasets on ResNet-50 testing.

Dataset Type Average Accuracy (%)

Balanced dataset 98.04
Imbalanced dataset 98.33

Figure 18. Confusion matrix for the effect of imbalanced test set on ResNet-50 test results.

Complex situations, such as overlapping disease features, exist in natural environ-
ments [47]. In order to test the recognition effect of the data augmentation model under
complex disease feature conditions, we selected samples with complex backgrounds from
the field-collected rice dataset as the test set, as shown in Figure 19. The number of test sets
is shown in Table 15.

Figure 19. Datasets in complex environments.

Table 15. Details of the datasets in complex environments.

Categories Numbers

Blast 56
Brown Spot 62

Blight 60
Healthy 60

From Table 16, ResNet-50 without data augmentation had a minimum accuracy of
81.55% in a complex background, indicating weak generalization of the model with insuffi-
cient data. The accuracy of ResNet-50 with TIDA is 94.84%, and the accuracy of ResNet-50
with PWGAN-GP is the highest, reaching 97.03%. The model is shown to have good gener-
alization. Under the condition of overlapping features, the main convolutional outputs and
feature maps of each layer during the inference of ResNet-50 are shown in Figure 20.

Table 16. ResNet-50 testing in the dataset of complex environments.

Model Average Accuracy (%)

ResNet-50 81.55
TIDA+ResNet-50 94.84

PWGAN-GP+ResNet-50 97.03
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Figure 20. ResNet-50 forward propagation feature map.

6. Conclusions

To solve the problem of low accuracy caused by the lack of rice disease image datasets
in training CNNs, PWGAN-GP is proposed to generate rice leaf disease images in this
paper. First, we use the progressing training method to train the generator model and
discriminator model, and a loss function is added to the discriminator model. It has been
concluded that the PWGAN-GP network is the best to generate rice leaf disease images
compared with WGAN, DCGAN, and WGAN-GP. Second, the experimental results show
that the accuracy of VGG-16, GoogLeNet, and ResNet-50 using PWGAN-GP is 10.44%,
12.38%, and 13.19% higher than those without PWGAN-GP. Compared with a traditional
image data augmentation method, the accuracy is increased by 3.2%, 3.86%, and 3.11%,
respectively. The accuracy of CNNs can be maximized under the condition of X2 (1:20)
enhancement intensity. Finally, under hyperparameter optimization, the ResNet-50 with
PWGAN-GP achieved 98.14% for identifying three rice diseases. In addition, we also tested
the performance of ResNet-50 in some scenarios, and the results were good. Therefore, it
has been shown that PWGAN-GP has better image generation ability and improves the
classification ability of CNNs.

At present, the model proposed in this paper also has the problem of long training time
and slow convergence. In future work, we will solve these two problems by optimizing
model parameters and combining deep learning with control theory [48–52].
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Abstract: With the process of increasing urbanization, there is great significance in obtaining urban
change information by applying land cover change detection techniques. However, these existing
methods still struggle to achieve convincing performances and are insufficient for practical appli-
cations. In this paper, we constructed a new data set, named Wenzhou data set, aiming to detect
the land cover changes of Wenzhou City and thus update the urban expanding geographic data.
Based on this data set, we provide a new self-attention and convolution fusion network (SCFNet)
for the land cover change detection of the Wenzhou data set. The SCFNet is composed of three
modules, including backbone (local–global pyramid feature extractor in SLGPNet), self-attention and
convolution fusion module (SCFM), and residual refinement module (RRM). The SCFM combines
the self-attention mechanism with convolutional layers to acquire a better feature representation.
Furthermore, RRM exploits dilated convolutions with different dilation rates to refine more accurate
and complete predictions over changed areas. In addition, to explore the performance of existing
computational intelligence techniques in application scenarios, we selected six classical and advanced
deep learning-based methods for systematic testing and comparison. The extensive experiments on
the Wenzhou and Guangzhou data sets demonstrated that our SCFNet obviously outperforms other
existing methods. On the Wenzhou data set, the precision, recall and F1-score of our SCFNet are all
better than 85%.

Keywords: computational intelligence; land cover/land use; change detection; self-attention; remote
sensing images

1. Introduction

With the development of economy and science and technology, China’s urbanization
process has achieved a continuously significant increase [1]. One of the main features of
the continuous acceleration of urbanization is the rapid expansion of urban land types
and scales caused by the increase in urban population [2]. Therefore, the timely and
effective detection of urban land use/cover changes has potential value for practical ap-
plications, such as dynamic monitoring of geographic conditions [3], urban development
planning [4], and urban expansion trend analysis [5,6]. In this context, change detec-
tion techniques based on multi-temporal remote sensing images were applied to obtain
quantitative or qualitative information on land use and land cover changes [7–10].

In recent decades, many change detection techniques have made remarkable progress.
In the early stage, change detection can be achieved in two steps, i.e., difference image
generation and difference image segmentation. Common difference image generation
methods include image difference [11,12], image ratio [13,14], and change vector analysis
(CVA) [15–17]. Difference map segmentation can usually be achieved by choosing a suitable
threshold (e.g., Otsu [18]), or by using clustering algorithm (e.g., k-means [19,20], fuzzy
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c-means [21], support vector machine (SVM) [22]). Accordingly, many methods have
been widely used in practical applications [23]. For example, a method based on spectral
CVA is applied to extract the change information of Wuhan city [24]. In [25], change
detection and geographic information system based on remote sensing is used to analyze
the land use changes during fifteen-year time period of 1991–2006; The change detection
based on CVA is employed to acquire change information in Himachal Pradesh, India [26];
In [5], the author promoted a modified ratio operator to generate a change image; Urban
change information can be obtained by using this method based on multitemporal synthetic
aperture radar (SAR) images in Beijing and Shanghai, China; A land cover change detection
method based on SVM was developed to map urban growth in the Algerian capital [27].
Various applications can be found in [28,29]. Although these approaches have been used in
practical applications, they still require manual re-editing due to their low accuracy and
efficiency. Moreover, with the popularization of very-high resolution (VHR) remote sensing
images and rapid urban expansion, there is an urgent need to propose more timely and
effective change detection methods to obtain more accurate information on land use and
land cover changes [8,14].

With the popularity of deep learning (DL) technology in the field of computer vision,
the technology has attracted continuous attention in the field of remote
sensing [30–32]. Many DL-based methods have been applied to many remote sensing tasks,
such as: change detection [33,34], hyperspectral classification [35,36], remote sensing scene
classification [37], semantic segmentation [38], and object detection [39], etc. Under this
situation, DL-based change detection has made some progress [40,41]. In the early stage,
DL was used to achieve difference image segmentation in change detection due to its
excellent classification performance. Zhao et al. proposed a deep neural network to classify
the difference image into a binary change map [42]. Lei et al. promoted a change detection
network for landslide inventory mapping [43]. The method was first to generate a differ-
ence image, and it was denoised by multivariate morphological reconstruction. Then, a
fully convolutional network within pyramid pooling was devised to segment the difference
image into a change map. In the following years, in order to avoid the noise introduced
by traditional difference image generation methods, many DL-based methods are further
proposed for change detection. For example, Gong et al. presented a novel DL-based
change detection method, which can omit the process of a difference image generation.
This method can effectively avoid using the traditional difference image generation method
and reduce its adverse effect on the change map. Similarly, Lv et al. employed a dual-path
fully convolutional network to directly obtain the landslide map without calculating the
change magnitude image. The landslide mapping performance of this method was verified
on real landslide sites on Lantau Island in Hong Kong, China. Although these DL-based
methods have achieved significantly better performance than traditional methods, these
methods are still limited by the amount of experimental data in the data set and are difficult
to extend to various practical applications on a large scale.

In recent years, more advanced DL-based end-to-end change detection methods have
been proposed to alleviate the limitation of the amount of data [40]. These methods
usually implement end-to-end change detection by treating the change detection task as
a semantic segmentation task. In [44], three architectures based on a fully convolutional
network are presented for end-to-end change detection, including fully convolutional
early fusion (FC-EF), fully convolutional Siamese concatenation (FC-Siam-Conc), and fully
convolutional Siamese difference (FC-Siam-Diff). According to this, many researchers
have proposed many advanced end-to-end change detection networks based on these
architectures. In recent years, to further expand the application of DL-based change
detection, many researchers have constructed and open-sourced many advanced change
detection networks and the large data sets of many different application scenarios. For
instance, Ji et al. opened a data set, named the WHU data set, which includes a high-
quality multi-source data set for building extraction, building instance segmentation and
building change detection [45]. Meanwhile, the paper proposed a Siamese U-Net (SiUnet)
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for building extraction [45]. The network can also provide competitive results on the
WHU data set. Chen et al. released a large-scale data set, named LEVIR-CD [46], which is
composed of 637 Google Earth remote sensing image pairs of 1024 × 1024 (0.5 m/pixel).
In [46], a Siamese spatial-temporal attention neural network is also devised and applied to
the LEVIR-CD for building change detection. Similar large-scale data sets are S2looking
in [47]. After that, many new models were proposed for these data sets. An attention-
guided change detection network is devised for these data sets in [48], and devoted to
achieve a better accuracy of building change detection. Liu et al. designed a Siamese local–
global pyramid network (SLGPNet) and transfer learning for building change detection,
which achieves excellent performance in detecting building changes [49]. The above studies
have shown that deep learning-based change detection methods have made some progress
in urban scenarios, especially building change detection. However, only developing a
building change detection approach cannot satisfy the change detection requirements of
urban land use and land cover in complex urban scenarios.

Recently, to further promote the practical application of DL-based change detection
methods [50,51], some general urban change detection data sets containing changes in
different ground objects were created and released. In [52], a Google Earth data set was
published, which is a more challenging data set as it covers various changes in different
cities in China (Beijing, Shenzhen, Chongqing, Wuhan, and Xi’an). Moreover, the paper
also provided a deeply supervised image fusion network for this Google Earth data set and
obtained a better detection performance. In addition, Peng et al. created a publicly VHR
Google Earth data set (named Guangzhou data set), which covers the suburban areas of
Guangzhou City [53]. For the Guangzhou data set, the changes are mainly caused by the
urbanization process in China in the past decade, mainly including the following changes:
buildings, waters, roads, farmland, bare land, forests, ships, etc. As the above large-scale
urban change detection data set becomes available, more state-of-the-art (SOTA) methods
have been proposed for the change detection task of complex urban scenes. For instance, a
high-frequency attention Siamese network was proposed in [54], which can improve the
performance by exploiting a high-frequency attention block; In [55], Fang et al., designed
an SNUNet, which combines the Siamese network and the NestedUNet. The SNUNet
can perform better than other SOTA change detection methods on a large-scale change
detection data set with season-varying. In addition, transformer-based networks have
reached SOTA performance in computer vision. Recently, transformer-based networks have
attracted the attention of many researchers in the field of remote sensing, especially change
detection. In this context, some transformer-based change detection networks have been
proposed. A bitemporal image transformer (BIT) was developed for change detection [56],
which can capture the contextual information within the spatial-temporal domain. This
network can accomplish the SOTA performance compared to several recent attention-based
models. Similar methods can be found in [57,58].

Despite the fact that these methods achieved convincing performance in many public
urban change detection data sets, they currently face some limitations. Firstly, almost all of
these SOTA approaches rely on a large number of labelled samples for network training.
Secondly, in general, the performance of each method on different data sets is still not
sufficiently stable. Finally, there is a lack of reliability validation for using these methods in
practical applications. In this situation, two key points need to be noticed in the practical
application of change detection [59].

• The usability and generalization of DL-based change detection methods in practical
application scenarios still need to be verified.

• It is potentially meaningful to flexibly and comprehensively use one or more of the
existing methods to meet the goal of real-change detection application scenarios.

In this paper, we create a new and challenging urban change detection data set
oriented by practical applications, named the Wenzhou data set. The purpose of the
Wenzhou data set is to achieve geographic surveying and mapping dynamic update by
urban change detection, thereby providing a solid geographic information basis for the
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development of Wenzhou’s “smart city”. Driven by this purpose, we systematically test and
compare the existing popular SOTA approaches using the Wenzhou data set, including two
classical methods (FC-EF [44] and FC-Siam-Conc [44]) and four SOTA methods (SiUnet [45],
SNUNet [55], SLGPNet [49], and BIT [56]). In addition, in order to meet the performance
requirements of the Wenzhou data set in practical applications, we propose a self-attention
and convolution fusion network (SCFNet) by combining multiple existing change detection
networks or modules. The SCFNet consists of three modules. First, the backbone network
of our SCFNet is the local–global pyramid feature extractor in SLGPNet [49], which can
effectively capture multi-scale features. Then, a self-attention and convolution fusion
module (SCFM) [60] is employed to replace the position attention module in the backbone
network. The SCFM aims to capture the non-local features. Finally, a residual refinement
module (RRM) [61] is deployed after the output of our backbone network. The RRM is
composed of multiple residual convolutions with different dilation rates, which can refine
the initial change results at the original image scale. The significant contributions of this
paper are summarized as follows:

(1) We created a new and challenging Wenzhou change detection data set, which is mainly
used to acquire timely and effective land cover changes induced by urbanization in
Wenzhou city, China. Based on the Wenzhou data set, we systematically tested the
adaptability and performance of some existing popular and SOTA change detection
approaches.

(2) We constructed a self-attention and convolution fusion network (SCFNet) for land
cover change detection, which can integrate multiple existing change detection net-
works or modules to enhance the performance of the model further. The constructed
SCFNet can basically meet the practical application requirements of land cover change
detection in Wenzhou city, China.

(3) Compared with other SOTA methods, experiments on our created Wenzhou data
set demonstrated that our SCFNet can acquire better and more balanced precision
and recall. That is, the precision and recall both reach an accuracy of more than
85%. Furthermore, the effectiveness of our SCFNet is also validated on the public
Guangzhou data set and achieves a good performance.

The rest of this paper is arranged as follows. In Section 2, the materials and method-
ology are described in detail. Section 3 presents the experiments and results. Finally, the
conclusions and future works are provided in Section 5.

2. Materials and Methodology

In this section, we present a detailed presentation of the materials and methodol-
ogy used in this study. First of all, the details of the study area and data set are de-
scribed in Section 2.1. Subsequently, in Section 2.2, the methodology is introduced in
detail. In particular, an overview of the constructed SCFNet is provided in Section 2.2.1.
Sections 2.2.2 and 2.2.3 illustrate the SCFM and the RRM, respectively.

2.1. Study Area

In this paper, we chose Wenzhou city as the study area, as shown in Figure 1. Wenzhou
city is located in the middle of the coastline of the Pacific Rim (approximately 18,000 km)
in mainland China, in the southeast of Zhejiang Province. The urban area of Wenzhou is
approximately 1054 square kilometers, with mountains, forests, water bodies, and various
surface types. In recent years, with the rapid and stable development of Wenzhou’s urban-
ization process, the urban landscape of Wenzhou city has undergone tremendous changes.
Consequently, the research and application of the DL-based land cover change detection
approach is performed to provide a geographic information basis for Wenzhou’s “smart
city” construction, natural resource management, and urban geographic dynamic update.
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Figure 1. The spatial location of the study area of Wenzhou City, China.

In this study, we selected some representative areas (as shown in the rectangular area
in Figure 1) from Wenzhou City to create our data set, named Wenzhou data set. Some
representative examples of this data set are presented in Figure 2. The Wenzhou data
set was captured between 2017 and 2021 by an aviation aircraft equipped with a Digital
Mapping Camera III at an altitude of approximately 4.44 km. The spatial resolution was
0.2 m/pixel after re-sampling. This data set covers an area of approximately 112.026 square
kilometers. The purpose of our created Wenzhou data set was to update the geographical
data of urban expansion. Hence, it is mainly focused on land cover from natural objects
to become related to urban construction areas (such as the changes in natural objects into
buildings, bridges, roads, and other places related to urban expansion, without paying
attention to changes in waters etc.). It is worth mentioning that the core changing features
are built-up areas because of urbanization. The main challenges and requirements of this
data set lie in the four following aspects.

(1) Bi-temporal images of the Wenzhou data set were collected from multiple periods
(from 2017 to 2021). This may increase the difficulty of change detection since the
bi-temporal images are shot under different atmospheric conditions, such as the sun
height and moisture, etc.

(2) The changes in the built-up area of the Wenzhou data set are complex. Due to a large
number of demolition and reconstruction projects in the Wenzhou urban area, the old
and new houses in the old urban area and “urban villages” alternate, and high-rise
buildings and low-rise buildings coexist. These conditions make land cover change
detection in the Wenzhou data set more challenging.

(3) Since the primary type of change in the Wenzhou data set is a built-up area, and other
types of changes are relatively small, this may lead to an imbalance in the number of
different types of ground objects.

(4) To avoid secondary manual editing in practical applications, DL-based change detec-
tion methods require both precision and recall to be higher than 85%.

To sum up, according to the above characteristics, the Wenzhou data set is very suitable
for systematically testing existing DL-based change detection methods. Furthermore, there
is potential value in providing a reliable and satisfying solution for the Wenzhou data
set. Hence, this study will further promote the practical application of DL-based change
detection methods.
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Figure 2. Some representative examples of the Wenzhou data set. (a1,a2) T1-time image, (b1,b2) T2-
time image, and (c1,c2) ground truth image. White: changed pixels; Black: unchanged pixels.

2.2. Methodology

In this section, the proposed method is demonstrated in detail in three different parts.
In the first part, the overall framework of SCFNet is briefly illustrated. In the second part, a
mixed module of self-attention and convolution, SCFM, is introduced in detail. Finally, an
employed performance refinement module, RRM, is illustrated in the third part.

2.2.1. Overview of Self-Attention and Convolution Fusion Network

A proper backbone is significant for correctly detecting building changes in the remote
sensing data that are not perfectly orthophotos. Through extensive experiments, we
found it difficult for many conventional state-of-the-art deep neural networks to acquire
acceptable results over the new constructed data set. To tackle non-orthophoto bi-temporal
images and the corresponding annotations, we employed a modified Siamese local–global
pyramid network (SLGPNet) [49], which has been tested in similar tasks, as the backbone
of the proposed SCFNet. The SLGPNet utilizes two different feature pyramids to better
capture the local and global relationships between building objects over bi-temporal images,
resulting in excellent results. Based on this fact, the encoder and decoder of SLGPNet are
exploited in our work to acquire more accurate annotations of changed buildings over the
study area. Additionally, another two network modules, SCFM and RRM, are introduced
in the proposed network for finer performance.

Given the information below, the proposed method can be explained as follows: As
shown in Figure 3, the bi-temporal remote sensing images are firstly concatenated and
input into the local–global pyramid encoder to acquire the deep representative change
information. Then, we exploit SCFM to refine the extracted feature through the fusion of
the self-attention mechanism and convolutional layers. At the decoding stage, deep change
information is gathered and integrated layer-by-layer. Finally, the change map is acquired
after being refined by RRM.
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Figure 3. A brief illustration for proposed SCFNet. The SCFM and RRM indicate the self-attention
convolution fusion module (SCFM) and residual refinement module (RRM), respectively.

2.2.2. Self-Attention and Convolution Fusion Module

The fusion of self-attention and convolutional layers have been proven helpful for
deep learning-based image processing [60]. Inspired and encouraged by its success, similar
techniques are introduced in the proposed method for better feature representation. In the
SCFNet, the SCFM is employed to replace a self-attention-based module in the SLGPNet
to better capture the semantic and location mapping of varied buildings in the study area,
since there is an extra convolution path in the SCFM compared to the replaced module.
Additionally, the SCFM can contribute to overcoming a specific challenge of the proposed
data set, which is the commonly occurring non-orthophoto data. That is because there is
a learnable shift operation-based convolution path in SCFM, which has the potential to
better fit the non-orthophoto data set through the feature-level shift. As a result, the SCFM
is introduced for a better feature representation and a finer annotation of non-orthophoto
change information, and its brief process is depicted in Figure 4. With the illustration in
Figure 4, the SCFM can be better described in the mathematical style below.

Conv 1x1

Conv 1x1

Conv 1x1

3x[head,C/head,H,W]

      
        (a)Convolutional Path

CAT

      
        (b)Attention Path

    C
on

v 1
x1

 

Q  QQ

KKK

VVV

Shift Operation with 
Multiple Convolution 

Groups

Multi-head 
Self Attention

[C,H,W]

[C,H,W]

[C,H,W][C,H,W] [C,H,W]

α 

β 

Legend

              Concatenation          Learnable Parameter α          Learnable Parameter β           Feature Summation

       Query Features for Self-attention        Key Features for Self-attention         Value Features for Self-attention

CAT α β 

Q    Q   Q K     K V      V

Figure 4. A brief illustration of the employed SCFM.

Firstly, the input feature maps of SCFM, Finput ∈ R
Cinput×H×W , comes from and was

processed by the previous encoder layers of SCFNet, where H × W, and Cinput are the
spatial and channel sizes of Finput, respectively. Then, Finput are transformed into three
different parts with the size of Rhead×Coutput/head×H×W , which can be described as follows:

FQ = Reshape
(

conv1
1×1
(

Finput
))

(1)

FK = Reshape
(

conv2
1×1
(

Finput
))

(2)
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FV = Reshape
(

conv3
1×1
(

Finput
))

(3)

where
{

convi
1×1|i = 1, 2, 3

}
and Reshape indicates the convolutions with the kernel size of

1 × 1 and a shape transformation from Coutput × H × W to head × Coutput/head × H × W,
respectively. The head represents the head number of multi-head attention in the SCFM,
which is a fixed number of 4 in our method. At the next stage of SCFM, these features
will be processed by two different paths, i.e., (a) convolutional path and (b) attention path,
which can be illustrated as follows:

(a) Convolutional Path: In this path, features will be firstly gathered and projected
by a feature concatenation and a 1 × 1 convolution, respectively. Then, a learnable shift
operation will be conducted to the extracted feature maps, which is a multi-group convo-
lutional layer with a set of reinitialized kernels. In this case, the extracted feature maps
will firstly be shifted to several different fixed directions for a wider but rough cognition
of non-orthophoto building objects. Then, the shift operation can be adjusted to a finer
condition with these learnable kernels during supervised learning. The output of the
convolutional path, Fconv ∈ R

Coutput×H×W , can be represented as follows:

Fconv = shi f t_operation
(

conv4
1×1
(
CAT

(
FQ, FK, FV

)))
(4)

where CAT indicates the feature concatenation, and conv4
1×1 represents a 1× 1 convolutional

layer. The shi f t_operation denotes the multi-group convolutional layer with the kernel size
of 3.

(b) Attention Path: In the attention path, the extracted query, key, and value features
are processed by a multi-head self-attention mechanism for a better feature representation,
which can be briefly denoted as follows:

Fatt = sel f _attention
(

FQ, FK, FV
)

(5)

in which Fatt ∈ R
Coutput×H×W is the output of attention path in SCFM, and sel f _attention

indicates the aforementioned multi-head self-attention with the head number of 4. Notably,
positional encoding is also utilized in this stage for better location mapping.

With the output of both paths acquired, two learnable parameters are employed to
generate Fo ∈ R

Coutput×H×W , and the final output of SCFM can be represented as:

Fo = α ∗ Fconv + β ∗ Fatt (6)

where α and β are the learnable adjustment parameter for convolutional and attention
paths, respectively. They are utilized to acquire a more stable and reliable output for SCFM.

2.2.3. Residual Refinement Module

In the proposed data set, large-scale building change areas are almost everywhere,
which can be discovered in Figure 2. However, the predicted annotations can be incomplete
for the deep learning-based method. More than that, in the application scene of this work,
the completeness and correctness of the detected change areas are equally significant.
Driven by this additional requirement, the RRM, which is inspired by [61], is introduced in
the proposed method for more complete land cover detection. As shown in Figure 5, the
RRM employs a series of dilated convolutions to refine the raw output of SCFNet to seek
more complete annotations, which can be represented as outlined below.

Let F0 ∈ R
H×W be the raw output waiting for the refinement of RRM, where H,W de-

notes the height and width, respectively. Then, a set of extracted features,
{

Fi ∈ R
32×H×W}

where {i = 1, 2, 3, 4, 5}, can be denoted as:

Fi+1 = dilated_convi
3×3(Fi) (7)
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where dilated_convi
3×3 indicates 3 × 3 convolutions with different dilation rates. Then,

these features are gathered and fused by a feature-wise summation and a convolutional
layer, which can be demonstrated as:

Fm = conv3×3(F1 + F2 + F3 + F4 + F5) (8)

Finally, the refined output Fro can be acquired as:

Fro = Fm + F0 (9)
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Figure 5. The structure of the RRM.

3. Experiments and Results

3.1. Experimental Settings
3.1.1. Data Set Descriptions

Wenzhou Data Set: For our created Wenzhou data set, to adapt the memory of the
graphics card, the images for the entire study area are cropped into 4442 non-overlapping
pairs of 512 × 512 pixels. We randomly divided all images into a training set (3554 tiles), a
validation set (117 tiles), and a testing set (771 tiles). As such, all models were systematically
tested and evaluated on the Wenzhou data set.

Guangzhou Data Set: This data set focuses on the land cover changes that occurred
in the suburban areas of Guangzhou City, China, which share some similarities with the
application scene in Wenzhou. Both of them depict the urbanization process that happened
around the urban area. The remote sensing data of the Guangzhou data set is captured by
Google Earth, between 2006 and 2019, with a spatial resolution of 0.55 m. In detail, it has
19 VHR bi-temporal image pairs with the sizes ranging from 1006 × 1168 to 4936 × 5224,
which includes a large number of complicated scenes in different areas around Guangzhou.
In our experiments, they are cropped into 3130 non-overlapping image pairs with the size
of 256 × 256. We used 2191 of them for training. Furthermore, the rest of them are utilized
as the testing data.

3.1.2. Evaluation Metrics

In the experiments, four widely used evaluation metrics were selected for the quan-
titative assessment and comparison of land cover change detection, including Precision,
Recall, F1 − Score, and intersection over union (IoU) [49,54,56]. These four evaluation
metrics can be calculated by the following formula.

Precision =
TP

TP + FP
(10)
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Recall =
TP

TP + FN
(11)

F1-Score =
2 × Precision × Recall

Precision + Recall
(12)

IoU =
TP

TP + FP + FN
(13)

where TP, TN, FP, and FN denote true positive pixels, true negative pixels, false positive
pixels, and false negative pixels, respectively. The confusion matrix can obtain TP, TN, FP,
and FN based on the binary classification. Here, the Precision represents the proportion
of correctly detected changed pixels among the detected as changed pixels. The Recall
represents the proportion of correctly detected changed pixels among the truly changed
pixels. The F1 − score is an indicator that takes into account both precision and recall,
because F1 can be regarded as the harmonic average of precision and recall. Additionally,
the IoU represents the ratio of the intersection and union between pixels detected as
changed and true changed pixels.

3.1.3. Benchmark Methods

To systematically evaluate and compare the performance of the existing DL-based
change detection methods and our SCFNet, six benchmark methods were selected in the
experiments. These approaches are presented as follows:

(1) FC-EF [44]: This method is a benchmark change detection model, which is a simplified
U-shaped network. It employs an early fusion strategy to fuse bi-temporal images for
change detection. This is a widespread end-to-end change detection framework.

(2) FC-Siam-Conc [44]: The model is also a U-shaped network. The difference is that it
adopts a post-fusion strategy to fuse the features of bi-temporal images. Specifically,
this model first extracts the deep features of the bi-temporal images by means of
a Siamese encoder. Then, these deep features can be fused by the concatenation
operation, and input into the decoder to obtain the change detection results. This is
another attractive Siamese-based end-to-end change detection framework.

(3) SiUnet [45]: The method is a Siamese U-Net framework for building extraction. It uses
a down-sampled counterpart of original bi-temporal images to enhance the multi-scale
features of the network, resulting in improved detection performance. To this end, we
adopted an early fusion strategy to deploy the SiUnet for the change detection task.

(4) SNUNet [55]: The model is constructed by the combination of Siamese network and
NestedUNet, which can reduce the loss of localization information [55]. This method
can achieve the SOTA performance on the CDD data set [55,62].

(5) SLGPNet [49]: This approach is an end-to-end Siamese-based building change de-
tection network, which devises a local–global pyramid structure for building feature
extraction. It obtains the best accuracy on WHU [45] and LEVIR-CD [46] data sets for
change detection.

(6) BIT [56]: The model is a SOTA transformer-based change detection network. It exploits
a transformer encoder and decoder to build the contexts within the spatial-temporal
domain for change detection. This network acquires a promising performance on the
LEVIR-CD [46], WHU [45], and DSIFN [52] data sets.

3.1.4. Implementation Details

In the experiments, all models were deployed based on the PyTorch platform. These
models were trained on an NVIDIA RTX 3090 graphics card. The hyper-parameters of these
benchmark methods are set to the optimal configuration. For our SCFNet, we employed the
Adam optimizer with a weight decay rate of 1 × 10−5, and the learning rate is initialized to
1 × 10−4. Furthermore, binary cross entropy was adopted as the loss function for network
training. The batch size of all models was set to 4 on both the Wenzhou and Guangzhou
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data sets. It is worth noting that not all models exploit a data augmentation strategy. All
models are trained and tested based on these settings for land cover change detection.

3.2. Results
3.2.1. Results on Wenzhou Data Set

As shown in Figure 6a, the confusion matrix of the proposed method is acquired on the
Wenzhou data set. This confusion matrix indicates the overall performance of our method,
especially on the changed and unchanged classes. Concretely, the quantitative results over
Wenzhou data set indicate that the proposed method achieves an overwhelming advantage
in all evaluation metrics compared to other benchmark methods, as listed in Table 1.
Especially in IoU, the proposed SCFNet achieves the best performance of 75.36%, which is
over 10% more than the second-best method. Moreover, both the Recall and Precision of
SCFNet are over 85%, which achieves the requirement of this application scene in Wenzhou.
Since our approach achieves the best recall and precision, it also has the best F1 performance
over these benchmark methods, which suggests that our method can compete with current
SOTA methods. These advantages in the Wenzhou data set can also be discovered in the
corresponding visual results, as depicted in Figure 7. Generally, the proposed method
can obtain more accurate change maps with less missed and false alarms. For example,
in the fourth pair, the proposed SCFNet almost entirely detects two build-up areas with
less false positive pixels than other methods. In this scene, BIT achieves a relatively low
false alarm level, but the missed alarm is hard to ignore. To conclude, the proposed method
outperforms these SOTA benchmark methods with significant advantages.

Figure 6. The confusion matrices of the results of the proposed SCFNet on two data sets. (a) Wenzhou
data set; and (b) Guangzhou data set.

Table 1. Quantitative comparison of different methods on the Wenzhou data set.

Methods Precision (%) Recall (%) F1-Score (%) IoU (%)

FC-EF [44] 67.14 56.24 61.21 44.10
FC-Siam-Conc [44] 52.39 53.18 52.79 35.85

SiUnet [45] 84.49 73.58 78.66 64.83
SNUNet [55] 73.83 61.33 67.00 50.38
SLGPNet [49] 78.39 75.84 77.09 62.72

BIT [56] 80.83 75.27 77.95 63.87
Proposed SCFNet 86.60 85.31 85.95 75.36
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Figure 7. The results of the different methods on the Wenzhou data set: (a) T1-time image; (b) T2-time
image; (c) ground truth image; (d) FC-EF [44]; (e) FC-Siam-Conc [44]; (f) SiUnet [45]; (g) SNUNet [55];
(h) SLGPNet [49]; (i) BIT [56]; and (j) proposed SCFNet.

3.2.2. Results on Guangzhou Data Set

As shown in Figure 6b, the confusion matrix of the proposed SCFNet is obtained on
the Guangzhou data set, which shows the overall accuracy. In addition, the quantitative
experimental results on the Guangzhou data set are listed in Table 2. In the aspects of main
evaluation metrics, i.e., F1 and IoU, the proposed SCFNet still has significant advantages
compared to other benchmark methods, which are over 1%. In terms of precision and recall,
the performance advantages of SCFNet are not that significant. However, the proposed
SCFNet can have both higher precision and recall, which can be challenging for other
methods, thus contributing to the best F1 of SCFNet. In contrast, although BIT achieves
the highest precision, it fails to achieve a higher F1 and IoU, since BIT has a relatively low
recall performance. Similar conclusions can be discovered from the visual results shown
in Figure 8. For instance, the proposed method can obtain more complete and accurate
building annotations in the sixth pair of visual results over the Guangzhou data set. Gen-
erally, these visual results indicate that RRM helps the proposed method achieve a more
complete annotation of changed land cover.
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Table 2. Quantitative comparison of different methods on the Guangzhou data set.

Methods Precision (%) Recall (%) F1-Score (%) IoU (%)

FC-EF [44] 77.62 56.97 65.71 48.94
FC-Siam-
Conc [44] 83.02 55.42 66.47 49.78

SiUnet [45] 85.54 73.48 79.05 65.36
SNUNet [55] 49.17 50.00 49.58 32.96
SLGPNet [49] 85.25 80.88 83.00 70.95

BIT [56] 87.86 71.84 79.05 65.36
Proposed
SCFNet 87.35 80.96 84.03 72.46

Figure 8. The results of different methods on Guangzhou data set: (a) T1-time image; (b) T2-time
image; (c) ground truth image; (d) FC-EF [44]; (e) FC-Siam-Conc [44]; (f) SiUnet [45]; (g) SNUNet [55];
(h) SLGPNet [49]; (i) BIT [56]; and (j) proposed SCFNet.
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3.3. Ablation Study

In our SCFNet, three modules, including backbone in SLGPNet [49], SCFM, and
RRM, are integrated into the SCFNet for land cover change detection on the Wenzhou
data set. Previous experimental results show that our SCFNet can achieve a convincing
performance. In this section, we further implemented the ablation experiment on Wenzhou
and Guangzhou data sets to analyze each component’s effect in the SCFNet.

To achieve this, the quantitative results of networks with different module combina-
tions were obtained for both data sets, as listed in Tables 3 and 4. For the experimental
results in the Wenzhou data set, the accuracy obtained with the backbone alone is obviously
insufficient. When the SCFM and the backbone were combined, the four evaluation indica-
tors (precision, recall, F1-score, and IoU) were improved by 0.50%, 0.53%, 0.53%, and 0.74%,
respectively. Here, SCFM only replaced the position attention module in the backbone,
so the improvement obtained is slight. Similarly, the performance of combining the RRM
and the backbone is more prominent. For example, compared with using backbone alone,
the F1-score and IoU metrics were improved by 2.13% and 3.07%, respectively; compared
with the network combining the backbone and the SCFM, the F1-Score and IoU metrics
obtained 1.60% and 2.33% improvements, respectively. This is because the RRM can employ
a larger receptive field to refine the initial change detection maps. According to this, the
introduction of RRM can significantly improve the accuracy. Finally, when these three
modules were deployed simultaneously, our SCFNet could achieve the best performance
on four evaluation metrics. Notably, precision, recall and F1-score are higher than 85% after
the full SCFNet is implemented for the Wenzhou data set.

Table 3. Quantitative evaluation of the combination of different modules on the Wenzhou data set.

Backbone SCFM RRM Precision (%) Recall (%) F1-Score (%) IoU (%)

� 85.79 76.80 81.04 68.13
� � 86.29 77.33 81.57 68.87
� � 85.04 81.39 83.17 71.20
� � � 86.60 85.31 85.95 75.36

Table 4. Quantitative evaluation of the combination of different modules on the Guangzhou data set.

Backbone SCFM RRM Precision (%) Recall (%) F1-Score (%) IoU (%)

� 85.27 79.40 82.23 69.82
� � 84.35 82.02 83.17 71.19
� � 83.54 83.91 83.72 72.01
� � � 87.35 80.96 84.03 72.46

The experimental results on the Guangzhou data set report similar conclusions. The
SCFM and RRM successfully improved the F1-score by 0.94% and 1.49% for the bare
backbone in this data set, respectively. When used together, the complete SCFNet achieves
the best F1-score in the Guangzhou data set. In addition, for a more intuitive comparison,
Figure 9 presents the performance of different model combinations on different evaluation
metrics. Figure 9 shows that our SCFNet combined with SCFM and RRM can effectively
improve recall without reducing precision in the Wenzhou data set. To sum up, our SCFNet
consists of these two modules in the existing network that can further improve the change
detection performance.
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Figure 9. The performance comparison of the combination of different modules on different evalua-
tion indicators for two data sets. (a) Wenzhou data set and (b) Guangzhou data set.

4. Discussion

To further discover the relation between the computational cost and performance
for recent DL-based methods, we count the FLOPs and parameters (Params) of each
model in Table 5. Basically, a model with higher computational costs usually leads to
better performance. Although the proposed method has a higher computational cost, it
achieves the best performance. Moreover, our SCFNet outperforms SLGPNet with a lower
computational cost. Based on the computational cost and related performance shown in
Table 5, we systematically discuss the performance of each benchmark method as follows:

(1) FC-EF [44] and FC-Siam-Conc [44]: FC-EF [44] can achieve a better performance than
FC-Siam-Conc on the Wenzhou data set, while FC-Siam-Conc [44] has higher accuracy
than FC-EF [44] on the Guangzhou data set. Overall, these two models performed
poorly on both the Wenzhou and Guangzhou data sets. This is because the capacity of
these two models is too small to handle complex data sets.

(2) SiUnet [45]: it achieves the second- and third-best performance on Wenzhou and
Guangzhou data sets, respectively. The SiUnet [45] exploits the down-sampled coun-
terpart of the original bi-temporal images as a branch of the Siamese network, en-
hancing the network’s ability to represent multi-scale features. Hence, SiUnet [45] is a
simple and effective model for the Wenzhou and Guangzhou data sets compared with
other benchmark methods. This strategy is worthy of follow-up research.

(3) SNUNet [55]: Surprisingly, SNUNet [55] did not perform satisfactorily on the both
Wenzhou and Guangzhou data sets. Although SNUNet [55] combines the Siamese net-
work and NestedUNet to reduce the loss of localization, NestedUNet may introduce
too many shallow features leading to incorrect semantic discrimination for facing the
complex scene.

(4) SLGPNet [49]: SLGPNet [49] can reach a relatively stable accuracy on both the Wen-
zhou and Guangzhou data sets. This model is composed of a local–global pyramid
feature extractor and a change detection head. The local–global pyramid feature
extractor combines the position attention module, local feature pyramid, and global
spatial pyramid, which has a robust multi-scale feature representation ability for
change detection. However, the accuracy of this method still has some limitations
for practical applications. The reason may be that the change detection head of this
method contains only a few parameters, which makes the feature fusion of the final
bi-temporal image insufficient for change detection.

(5) BIT [56]: Furthermore, BIT [56] is a SOTA transformer-based network for change detec-
tion. This model acquires the third-best and second-best accuracy on the Wenzhou and
Guangzhou data sets, respectively. That is because BIT [56] can employ a transformer
encoder to build the context of semantic tokens and exploit a Siamese transformer
decoder to project semantic tokens into the pixel space for effective feature extraction.
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Nonetheless, BIT [56] is difficult to balance between P and R. This limits the overall
performance of BIT [56].

(6) Proposed SCFNet: Unlike the above methods, our SCFNet achieves the best perfor-
mance on the both Wenzhou and Guangzhou data sets. Moreover, our SCFNet obtains
precision and recall balanced accuracy on the Wenzhou data set, and its precision,
recall, and F1-Score are higher than 85%. The core reasons include two aspects. First,
the introduction of SCFM can improve the feature extraction capability of complex
scenes. Second, the RRM deployed in SCFNet is able to refine the initial change
results to obtain more accurate and complete change detection maps. Based on the
above discussion, there are still some limitations in extending the existing methods to
practical applications, such as the Wenzhou data set.

Table 5. Quantitative comparison of the performance (in F1-Score) and computational costs of
different models.

Models FLOPs (G) Params (M) Wenzhou (%) Guangzhou (%)

FC-EF [44] 76.68 21.55 61.21 65.71
FC-Siam-
Conc [44] 73.23 24.68 52.79 66.47

SiUnet [45] 185.08 31.05 78.66 79.05
SNUNet [55] 162.60 12.03 67.00 49.58
SLGPNet [49] 226.49 70.99 77.09 83.00

BIT [56] 17.54 3.50 77.95 79.05
Proposed
SCFNet 212.23 72.85 85.95 84.03

According to the performance of our method, the comprehensive utilization of existing
methods is an effective solution to promote DL-based change detection toward practical
application. We hope this discussion provides a meaningful reference for subsequent
related methods and applications.

5. Conclusions

This paper conducted an application-oriented study over the expanding built-up areas
of Wenzhou City, China. A large scale of high-resolution bi-temporal remote sensing data
was captured and annotated to obtain the land cover change information of Wenzhou
between 2017 and 2021. With the help of these data, a new deep learning-based approach,
SCFNet, was proposed for automatic land cover change detection over the study area.
It employs the local–global pyramid encoder and decoder to build the backbone, and
another two modules, i.e., SCFM and RRM, to further improve the performance. The
SCFM combines the self-attention mechanism with convolutional layers to acquire a better
feature representation. Furthermore, RRM employs dilated convolutions with different
dilation rates to obtain more complete predictions over changed areas. In addition, a
widely used open change detection data set, Guangzhou data set, and several current SOTA
change detection methods were utilized to test the proposed method further. Furthermore,
extensive experimental results indicated that SCFNet can outperform other benchmark
methods in both large-scale data sets, i.e., the Wenzhou and Guangzhou data sets. As for
future work, self-supervised and semi-supervised learning techniques can be utilized in
our method to reduce the dependence on large-scale annotated data, which can lower the
cost of collecting and constructing data.
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Abstract: Computational intelligence techniques have been widely used for automatic building
detection from high-resolution remote sensing imagery and especially the methods based on neural
networks. However, existing methods do not pay attention to the value of high-frequency and
low-frequency information in the frequency domain for feature extraction of buildings in remote
sensing images. To overcome these limitations, this paper proposes a frequency spectrum intensity
attention network (FSIANet) with an encoder–decoder structure for automatic building detection.
The proposed FSIANet mainly involves two innovations. One, a novel and plug-and-play frequency
spectrum intensity attention (FSIA) mechanism is devised to enhance feature representation by evalu-
ating the informative abundance of the feature maps. The FSIA is deployed after each convolutional
block in the proposed FSIANet. Two, an atrous frequency spectrum attention pyramid (AFSAP) is
constructed by introducing FSIA in widely used atrous spatial pyramid pooling. The AFSAP is able
to select the features with high response to building semantic features at each scale and weaken the
features with low response, thus enhancing the feature representation of buildings. The proposed
FSIANet is evaluated on two large public datasets (East Asia and Inria Aerial Image Dataset), which
demonstrates that the proposed method can achieve the state-of-the-art performance in terms of
F1-score and intersection-over-union.

Keywords: computational intelligence; building detection; attention mechanism; remote sensing
image

1. Introduction

With the development of satellite, aviation, and unmanned aerial vehicle (UAV)
technology, huge amounts of high-resolution (HR) remote sensing images have been
captured in a constant stream [1–3]. These HR remote sensing images have been applied
to land cover classification [4–6], change detection [7–9], target recognition [10,11], and
image restoration and registration [12,13], for example. This brings opportunities for us
to observe fine objects such as buildings, roads, vehicles, etc. Among them, buildings
are one of the most important targets in the surface coverage of remote sensing images.
Therefore, building detection or extraction has become a hot topic of study, as it plays a
crucial role in digital city construction and management [11,14,15] and sustainable urban
development [16,17], among other applications.

Although building detection has made some progress in recent years, the widespread
use of HR remote sensing images from different sensors has brought new challenges to this
task [18,19]. These challenges include mainly the following:

(a) A large number of fine ground targets can be depicted by very-high-resolution aerial
imagery, e.g., trees, roads, vehicles, and swimming pools, etc. However, these targets
often easily interfere with the identification of buildings due to their similar features
(e.g., spectrum, shape, size, structure, etc.).
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(b) In urban areas, tall buildings often have severe geometric distortions caused by
fixed sensor imaging angles. This may lead to accurate building detection becoming
challenging.

(c) With the rapid development of urbanization, many cities and rural areas are inter-
spersed with tall buildings and short buildings. Tall buildings often exhibit large
shadows when imaged by the sun. This phenomenon may not only make it difficult
to accurately detect tall buildings themselves, but may also obscure other features
(especially short buildings), thus limiting the effective detection of buildings.

Recently, deep-learning-based building detection techniques have been introduced to
alleviate these challenges to some extent [20]. State-of-the-art (SOTA) methods are able to
improve the performance of building detection through a variety of techniques, including
the introduction of multi-scale modules [21,22], edge information [23,24], and attention
mechanisms [25,26]. For instance, Ji et al. proposed a Siamese U-Net (SiU-Net) for building
extraction, which can enhance multi-scale feature extraction by adding a branch with a
small resolution downsampled input image [19]. In [27], a named Building Residual Refine
Network (BRRNet) was designed to achieve accurate and complete building extraction.
This network is composed of a prediction module and a residual refinement module. In
the prediction module, an atrous convolution is employed to capture multi-scale global
features. The residual refinement module can refine the initial result of the prediction
module, thereby obtaining a more accurate and complete building detection. Yang et al.
promoted an edge-aware network, which consists of image segmentation networks and
edge perception networks [28]. The network combines the network with edge-aware loss
to achieve better performance.

These previous networks have achieved good detection results. Some methods ef-
fectively enhance the feature characterization ability of the network by some attention
or multi-scale operations, thus improving the detection effect. Some recent approaches
propose the introduction of edge information (edge module or edge loss supervision) to
help building recognition. However, there are still some limitations to overcome. First, su-
pervised learning strategies by introducing edge loss directly outside the network structure
can lead to difficult convergence and less stable results. Second, the combination of roughly
applied edge information and convolutional networks is both difficult to be well embedded
in the neural network and prone to introduce some interference information from other
ground target edges. Finally, edge information tends to represent only high-frequency infor-
mation of buildings, whereas low-frequency information is equally important in pixel-level
prediction tasks. Therefore, enhancing both high-frequency and low-frequency information
can further improve the building feature characterization ability.

To address the aforementioned issues, our solutions are motivated by the following
two aspects. On the one hand, Zheng et al. proposed a high frequency attention Siamese
network for building change detection [29]. The study has verified that the introduction of
high frequency information can enhance the network’s ability to sense buildings. However,
introducing frequency domain information directly in the building detection task can easily
introduce interference information from other features, thus limiting the building feature
extraction. For this reason, inspired by this approach, we perform feature enhancement
by introducing the attention module of the global feature map with frequency domain
information. In particular, the average frequency spectral intensity of an image can express
the amount of high frequency information contained in the image as a whole. This can effec-
tively evaluate the features that are more conducive to building extraction. Therefore, the
introduction of average frequency spectral intensity will be beneficial to building detection
tasks. In this case, building detection performance may be further improved when both
high-frequency and low-frequency information are considered in the network. On the other
hand, atrous spatial pyramid pooling (ASPP) is often used to capture multi-scale features
in remote sensing image understanding [30,31]. However, different building features can
be obtained by using atrous convolution with different atrous rates. In this context, it
would enhance the building feature representation if the features with high response to

96



Remote Sens. 2022, 14, 5457

the building semantic features at each scale are emphasized while the features with low
response are weakened. According to these motivations, we propose a frequency spectrum
intensity attention network (FSIANet) for building detection. The major contributions of
this paper include the following three aspects:

(1) This paper proposes a novel computational intelligence approach for automatic build-
ing detection, named FSIANet. In the proposed FSIANet, we devised a plug-and-play
FSIA without the requirement of learnable parameters. The FSIA mechanism based
on frequency–domain information can effectively evaluate the informative abundance
of the feature maps and enhance feature representation by emphasizing more infor-
mative feature maps. To this end, The FSIANet can significantly improve the building
detection performance.

(2) An atrous frequency spectrum attention pyramid (AFSAP) is devised in the proposed
FSIANet. It is able to mine multi-scale features. At the same time, by introducing
FSIA in ASPP, it can emphasize the features with high response to building semantic
features at each scale and weaken the features with low response, which will enhance
the building feature representation.

(3) The experimental results on two large public datasets (Inria [18] and East Asia [19])
have demonstrated that the proposed FSIANet can achieve a more effective building
detection compared to other classical and SOTA approaches.

The remainder of this article is arranged as follows. Section 2 reviews the relevant
literature. Methodology and experiments are presented in Sections 3 and 4. Finally,
Section 6 concludes this article.

2. Related Work

In the past decade, building detection and roof extraction has been a hot research
topic in the field of remote sensing. In the early stage, some handcrafted building features
are used to implement building detection and extraction, such as pixel shape index [32],
morphological profiles [33], etc. For example, Huang et al. combined the information
of the morphological building index and the morphological shadow index for building
extraction. Other morphological building index-based methods are available in [34–36]; Bi
et al. proposed a multi-scale filtering building index to reduce the noise of building map
in [21]. Although relying on these early hand-made building features can extract buildings
from HR impacts, these methods are still poor in terms of accuracy and completeness of
building detection and extraction.

With the rapid development of deep learning technology, deep learning has been
extensively extended to the field of remote sensing. So far, deep-learning-based building
detection approaches have become the most advanced technology. In the early stage,
researchers treated the building detection task as an image segmentation task. Therefore,
semantic segmentation networks widely used in computer vision can be directly applied
to achieve building detection tasks, such as fully convolutional network (FCN) [37], U-
Net [38], SegNet [39], etc. The introduction of these deep-learning-based methods leads to a
significant improvement in the performance of building detection and extraction compared
to hand-crafted feature methods. Nonetheless, with the unprecedented increase in the
spatial resolution of images, researchers still found some new challenges, that is, buildings
with large or small scales are difficult to accurately identify due to the local receptive fields
of convolutional neural networks (CNN).

To overcome the above limitation, many multi-scale CNN have further promoted
computer vision [40]. For instance, Zhao et al. designed a pyramid scene parsing network
(PSPNet) for semantic segmentation [41]. In the PSPNet [41], a pyramid pooling module
is used to capture global features, thereby improving the multi-scale feature extraction
capability of the network. In [42], an atrous spatial pyramid pooling (ASPP) is devised to
effectively enlarge the receptive field of the network, thereby improving the multi-scale
feature representation ability of the network. These multi-scale CNN in computer vision
have also been developed in the field of remote sensing [43,44]. Wang et al. promoted a
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novel FCN for dense semantic labeling [45]. This network can effectively mine multi-scale
features by combining the advantages of both encoder-decoder and ASPP. Yu et al. applied
an end-to-end segmentation network for pixel-level building detection, which combines
the ASPP and skip connections generative adversarial segmentation network to aggregate
multi-scale contextual information [31]. Similar research also includes [46–48].

In recent years, attention mechanisms have been widely used in deep learning [9,49–51],
especially computer vision. Attention mechanisms commonly used in computer vision
and remote sensing image processing can be divided into two major categories according
to the function of the attention mechanism [52,53]: channel attention and spatial atten-
tion. Channel attention aims to enhance the feature representation ability of the network
by selecting important feature channels [54–56]. Spatial attention is able to generate an
attention mask in the spatial domain and employ it to emphasize the most task-relevant
spatial regions [57,58]. In addition to multi-scale CNN, driven by the attention mechanism,
it is another effective technique to improve the performance of building detection. For
instance, spatial and channel attention mechanisms are simultaneously used to emphasize
spatial regions and feature channels with high semantic responses to buildings, thereby
improving the capability of the building feature extraction [59]. In [60], a pyramid at-
tention network (PANet) is promoted to achieve pixel-level semantic segmentation; an
encoder-decoder network based on attention-gate and ASPP (AGPNet) is proposed for
building detection from UAV images [25]; Guo et al. [61] devised a scene-driven multi-
task parallel attention network to overcome the large intraclass variance of buildings in
different scenes; other attention-based methods are available in [62,63]. Recently, many
experts have designed some novel networks dedicated to automatic building detection and
extraction. Transformer-based methods are the latest and most compelling new network
structures. Wang et al. promoted a vision transformer network for building extraction [44].
A transformer-based multi-scale feature learning network was proposed in [64]. In addition,
a new deep architecture, named Res2-Unet, was proposed for building detection [65]. This
architecture is an end-to-end structure, which can exploit multi-scale learning at a granular
level to extend the receptive field. These methods further advance the development of
building detection.

In summary, although some progress has been made in previous work, there are still
certain limitations that need to be further addressed. In particular, there is a lack of research
on the role of frequency–domain information in building detection tasks. For one thing,
the combination of roughly applied edge information and convolutional networks is both
difficult to be well embedded in the neural network and prone to introduce some inter-
ference information from other ground target edges. For another thing, edge information
tends to represent only high-frequency information of buildings, whereas low-frequency
information is equally important in pixel-level prediction tasks.

3. Methodology

In this section, the detailed information of the proposed method will be given. First, a
brief overview of the proposed FSIANet and the overall procedure will be illustrated in
Section 3.1. Second, Section 3.2 will explain the proposed frequency spectrum intensity
attention (FSIA) mechanism in detail. Finally, the atrous frequency spectrum attention
pyramid (AFSAP) will be demonstrated in Section 3.3.

3.1. Overview of FSIANet

In Figure 1, the framework and overall inference process are illustrated. As shown in
the figure, the raw HR remote sensing data are first input into the input layer of FSIANet.
Subsequently, the initially extracted feature maps will be input into the down-sample layers
followed by FSIA. With the network going deeper, the size of feature maps will be smaller,
which contain the semantic and location information of land cover depicted on the input
HR images. Then the deepest features will be improved by the proposed AFSAP. At the
next stage, the previously extracted feature maps will be gradually gathered and processed

98



Remote Sens. 2022, 14, 5457

by the up-sample layers with FSIA. Introducing previous features can significantly improve
the performance of similar networks, which was demonstrated in [38]. During this stage,
the spatial and semantic information of different levels will be integrated and fused to
annotate building-like land cover at the output layer.

Figure 1. The brief procedure of the proposed FSIANet. The AFSAP indicates the proposed atrous
frequency spectrum attention pyramid.

3.2. Frequency Spectrum Intensity Attention

Because attention mechanisms can bring potential performance improvement for
deep-learning-based methods, they have been successfully utilized in many remote sensing
tasks. However, most of the existing attention modules can reach a satisfying performance
only after long-period training with networks. In addition, introducing frequency domain
information, which can benefit the performance [29], is usually neglected in most network-
based remote sensing methods. According to these facts, a new parameterless frequency-
aware attention mechanism can be potential beneficial for deep-learning-based methods.
To avoid these conventional problems, a novel attention mechanism, FSIA, is proposed for
a better representation of building-like objects in our FSIANet. It aims for better feature
representation without extra parameters waiting to be trained. As shown in Figure 2, the
FSIA relies on frequency domain information to evaluate the importance of each extracted
feature map and thereby enhance them accordingly. Based on the previous description, its
mathematical representation can be demonstrated as follows:

First, let FI ∈ R
C×H×W be the input features, in which C, H, and W represent the chan-

nel, height, and width sizes, respectively. The frequency spectrum of FI , FS ∈ R
C×H×W ,

can be denoted as:
FS = DCT

(
FI
)

(1)
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where DCT(·) is the channel-wise discrete cosine transformation, which acquires the
frequency domain information. Then the global frequency information vector VS ∈ R

C×1×1

can be obtained by:
VS = GAP

(
FS
)

(2)

where GAP(·) denotes the global average pooling. The global frequency spectrum intensity
of each channel can be quantified through this way. To significantly enhance the informative
feature maps, a channel-wise Softmax function is applied as follows:

VA = So f tmax
(

VS
)

(3)

where So f tmax(·) indicates the Softmax function, whereas VA ∈ R
C×1×1 represents the

channel-wise attention score. Given the attention weight VA, the final output of FSIA,
FO ∈ R

C×H×W , can be given as:

FO = FI⊗VA⊕ FI (4)

in which
⊗

and
⊕

demonstrate a channel-wise multiplication and a pixel-wise addition,
respectively. In conclusion, FSIA tries to achieve a better feature representation in a unique
parameterless pipeline, which is introduced in the frequency information. It is exploited
numerous times in the proposed method, as it can be applied to features of any spatial size.

Figure 2. The procedure of FSIA.

3.3. Atrous Frequency Spectrum Attention Pyramid

Except for the accurate semantic recognition of buildings, acquiring precise geograph-
ical locations and scales is also significant for fine building annotation in HR images.
According to existing related work, multi-scale feature pyramids can help deep-learning-
based methods better recognize land cover objects of various scales. In our work, we also
propose an attention-based feature pyramid, AFSAP, to obtain better building annotation
when dealing with multi-scale objects. Inspired by ASPP, atrous convolution with different
dilation rates and global average pooling are utilized in AFSAP to obtain the features with
different reception fields. Based on these features, proposed FSIA is employed to acquire
finer feature representation, which is able to acquire higher performance improvement
compared to bare ASPP. The detailed demonstration of AFSAP is shown in Figure 3. Its
detailed process can be represented as the following equations:
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Let FD ∈ R
C×H×W be the deepest features of FSIANet. Then the features with different

reception fields FRF
i ∈ R

256×H×W{i = 1, 2, 3, 4, 5} can be obtained as follows:

FRF
1 = Conv1

1×1

(
FD
)

(5)

FRF
2 = AsConv1

3×3

(
FD
)

(6)

FRF
3 = AsConv2

3×3

(
FD
)

(7)

FRF
4 = AsConv3

3×3

(
FD
)

(8)

FRF
5 = interpolation

(
Conv2

1×1

(
GAP

(
FD
)))

(9)

where Conv1
1×1(·) and Conv2

1×1(·) indicate the convolutional layers with the kernel size of
1 × 1, which are followed by batch normalization (BN) and ReLU function. In addition,
AsConv1

3×3(·), AsConv2
3×3(·), and AsConv3

3×3(·) represent 3 × 3 atrous convolution with
dilation rates of 6, 12, and 18, respectively. These atrous convolutional layers are also
followed by BN and ReLU. The expression interpolation(·) is the bilinear interpolation that
reverts feature size to H × W. At the next stage, these extracted features FRF

i are distilled
by FSIA and gathered in channel dimension as follows:

ḞRF
i = FSIA

(
FRF

i

)
(10)

F̃RF = Concat
(

ḞRF
1 , ḞRF

2 , ḞRF
3 , ḞRF

4 , ḞRF
5

)
(11)

With F̃RF acquired, the output of AFSAP can be represented as:

F̃D = Conv3
1×1

(
F̃RF
)

(12)

where Conv3
1×1(·) is a convolutional layer with the kernel size of 1 × 1, which is used to

integrate and refine the collected features.

Figure 3. The procedure of AFSAP.
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As a summary for AFSAP, the proposed feature pyramid can acquire better recognition
for various buildings with the help of multi-scale reception fields provided by atrous
convolutions. The proposed FSIA can facilitate and improve the feature extraction and
representation of AFSAP, which gives AFSAP the ability to outperform ASPP.

4. Experimental Results and Analysis

In this section, we first briefly introduce three benchmark datasets and measure-
ment indicators required for all experiments. The implementation details of the proposed
FSIANet are also given. Subsequently, we will show the experimental results compared
with other excellent peers. The ablation experiments of our proposed FSIANet are also
analyzed in depth.

4.1. Dataset Descriptions and Evaluation Metrics

In this paper, two commonly used building detection datasets, East Asia Dataset [19]
and Inria Aerial Image Dataset [18], are employed in the experiments to fairly validate
the effectiveness of all methods. The detailed information of these datasets is presented
in Table 1. Furthermore, some examples of these two datasets are shown in Figure 4. It is
worth noting that we have processed both benchmark datasets accordingly on the basis of
the original datasets.

(a)

(b)

Figure 4. Some examples of two benchmark datasets. (a) East Asia Dataset. (b) Inria Aerial Image
Dataset. The first row in each subplot is the aerial image tile, and the second row is the ground truth.
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Table 1. The detailed information of the two building detection datasets.

Dataset East Asia Dataset Inria Aerial Image Dataset

Year 2019 2017

Coverage 550 km2 810 km2

Size 512 × 512 pixels 5000 × 5000 pixels

Spatial Resolution 2.7 m 0.3 m

East Asia Dataset [19] is a sub-dataset of the WHU Building Dataset, which consists
of six neighboring satellite images in East Asia. The vector building map was completely
hand-drawn in ArcGIS software and contained a total of 34,085 buildings. Specifically,
3153 and 903 aerial image tiles are selected as training and test sets, respectively. This East
Asia Dataset is primarily used to evaluate and develop the generalization ability of deep
learning models to different data sources but with similar architectural styles in the same
geographic area. Therefore, this is recognized as one of the most challenging building
extraction datasets.

We perform all the experiments with a total of 180 aerial image tiles covering an area
of 405 km2 for the Inria Aerial Image Dataset [18]. It contains a total of five sub-datasets,
namely Austin, Chicago, Kitsap, Tyrol, and Vienna, each of which consists of 36 aerial
image tiles. We take the first 25 aerial image tiles and the remaining 11 aerial image tiles in
each sub-dataset as a training set and a testing set, respectively. Consistent with [19,66],
we crop all the aerial images to a size of 512 × 512 pixels. Therefore, the training and test
sets in each sub-dataset consist of 2025 and 891 aerial images, respectively. The Inria Aerial
Image Dataset was collected at different times and places. It is a very challenging task
to accurately extract buildings with huge differences in architectural style, structure, and
distribution in each place.

In terms of evaluation metrics, four commonly used building extraction indicators,
namely Precision, Recall, F1-Score, and Intersection over Union(IoU), are employed for
pixel-based evaluation to measure the performance of all methods. By convention, TP and
TN represent the number of true positive and true negative pixels, respectively; FP and
FN denote the number of false positive and false negative pixels, respectively. Based on
this, Precision refers to the percentage of area that is predicted to be correct for buildings,
which is defined as follows:

Precision(P) =
TP

TP + FP
. (13)

The value Recall represents the proportion of positive examples in the building ground
truths that is predicted to be correct, which can be calculated as follows:

Recall(R) =
TP

TP + FN
. (14)

The F1-Score, a comprehensive indicator, is the harmonic mean of precision and recall,
so it can be obtained as follows:

F1-Score(F1) =
2 × R × P

R + P
. (15)

The IoU, also a comprehensive evaluation indicator, represents the ratio of the inter-
section area over the union area between the ground truths and the building predictions,
which can be obtained as follows:

IoU =
TP

TP + FN + FP
. (16)
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4.2. Implementation Details

In order to ensure the fairness of the comparison, we reproduce all peers and conduct
all the experiments under the following execution conditions. It is worth noting that none
of the deep learning models adopt strategies such as data augmentation or pre-training
that can improve the performance of building extraction. This can ensure that the above
interference is eliminated to the greatest extent, and the reason for the improvement
is attributed to the proposed modules or strategies. Specifically, we implemented the
experiments on a NVIDIA GTX 3090 based on the Pytorch framework in CUDA 11.6. In
terms of parameter setting, we employed the Adam optimizer and the multistep learning
rate delay, where the initial learning rate is set to 0.0001. In Adam, the coefficients used
to calculate the moving average of the gradient and its square are set to 0.9 and 0.999,
respectively. In addition, the batch size is set to 4.

4.3. Comparison with Other Methods
4.3.1. Comparative Algorithms

To demonstrate the effectiveness of our proposed method, seven outstanding peers
are selected as comparative methods, and their detailed introductions are as follows:

(1) FCN8s [37] (2015): This work includes three classic convolutional neural network
characteristics, i.e., a fully convolutional network that discards the fully connected
layer to adapt to the input of any size image; deconvolution layers that increase the
size of the data enable it to output refined results; and a skip-level structure that
combines results from different depth layers while ensuring robustness and accuracy.

(2) U-Net [38] (2015): The proposed U-Net is an earlier model that applies convolutional
neural networks to image semantic segmentation, which is built on the basis of
FCN8s [37]. U-Net includes contracting paths to extract image features or context and
expanding paths for accurate segmentation.

(3) PSPNet [41] (2017): PSPNet mainly extracts multi-scale information through pyramid
pooling, which can better extract global context information and utilize both local and
global information to make scene recognition more reliable.

(4) PANet [60] (2018): PANet proposed a pyramid attention network to exploit the in-
fluence of global contextual information in semantic segmentation, combining an
attention mechanism and a spatial pyramid to extract precise pixel-annotated dense
features instead of using complex diffuse convolution and hand-designed decoder
networks.

(5) SiU-Net [19] (2019): The East Asia Dataset was released in [19]. In addition, SiU-Net is
designed with a Siamese fully convolutional network, in which two branches of the
network share weights, and the original image and its downsampled counterpart are
taken as inputs.

(6) BRRNet [27] (2020): The prediction module and residual refinement module are the
main innovations of BRRNet. The prediction module obtains a larger receptive field by
introducing atrous convolutions with different dilation rates. The residual refinement
module takes the output of the prediction module as input.

(7) AGPNet [25] (2021): This is a SOTA ResNet50-based network, which combines grid-
based attention gate and ASPP for building detection. This method is similar to ours
and is valuable for comparing methods.

(8) Res2-Unet [65] (2022): Res2-Unet employed granular-level multi-scale learning to
expand the receptive field size of each bottleneck layer, focusing on pixels in the
border region of complex backgrounds.

4.3.2. Results on the East Asia Dataset

Table 2 shows the quantitative experimental results of Precision, Recall, F1-Score, and
IoU on the East Asia Dataset. Similar to the results on the Inria Aerial Image Dataset,
FSIANet does not perform as well as other comparison algorithms on Precision, but
achieves the best results on Recall. In fact, the two are contradictory in some cases. For ex-
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ample, in the extreme case where there are only a very small number of buildings, we only
predict one result and it is accurate, then the Precision is 100%, but the Recall is very low,
and vice versa. Therefore, two composite indicators, F1-Score and IoU, should be given pri-
ority consideration. It can be concluded from Table 2 that FSIANet outperforms the SOTA
algorithm (i.e., BRRNet) by 1.88% and 2.69% on F1-Score and IoU, respectively. Similarly,
compared with AGPNet [25], the proposed FSIANet achieves 1.2% and 1.72% improvement
on F1 and IoU. The improvement of FSIANet on building detection is mainly attributed
to the FSIA mechanism based on frequency domain information, which can effectively
evaluate the information abundance of feature maps and enhance feature representation by
emphasizing more informative feature maps.

Table 2. Quantitative results on Precision, Recall, F1-Score, and IoU (in %) of different methods on
the East Asia Dataset. The best results are shown in bold.

Methods Precision Recall F1-Score IoU

FCN8s [37] 87.30 70.32 77.90 63.79

U-Net [38] 88.41 71.22 78.89 65.14

PSPNet [41] 83.66 69.97 76.20 61.56

PANet [60] 87.69 64.09 74.05 58.80

SiU-Net [19] 89.09 69.76 78.25 64.27

BRRNet [27] 83.06 78.11 80.51 67.37

AGPNet [25] 86.37 76.59 81.19 68.34

Res2-Unet [65] 84.07 69.14 75.88 61.14

FSIANet (Ours) 84.11 80.75 82.39 70.06

We also provide some visualization results in the East Asia Dataset to further illustrate
the effectiveness of our proposed FSIANet. The related visualization comparisons are
shown in Figure 5. In the case shown in Figure 5, the buildings in the yellow boxes are not
obvious, and there are trees, shadows, and other disturbances around. Algorithms such
as FCN8s and PANet have difficulty extracting the approximate building outlines. This is
largely because they focus too much on local information and are sensitive to parameters,
and their attention mechanisms lack the connection between global information. Res2-Unet,
PSPNet, and BRRNet also have certain missed detections. Compared with other methods,
the buildings extracted by FSIANet are more accurate and clear on the whole.
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Figure 5. The visualization results of the proposed FSIANet and other comparison methods on the
East Asia Dataset.

4.3.3. Results on the Inria Aerial Image Dataset

The experimental results of the four indicators on the Inria Aerial Image Dataset are
shown in Table 3. In terms of Precision, the proposed FSIANet has less obvious advantages
compared with other algorithms. However, due to the extreme imbalance of positive and
negative samples in many aerial images in the Inria Aerial Image Dataset, the proportion
of buildings in some scenes is very low. Therefore, higher accuracy does not mean that
the performance of the algorithm for extracting buildings is better. As such, the excellent
performance of FSIANet on Recall is also not convincing. Based on this, we have to
focus on the performance of the methods on two comprehensive indicators, i.e., F1-Score
and IoU. On these two metrics, FSIANet achieves the best experimental results, with an
overall improvement of 0.45% in F1-Score and 0.71% in IoU compared to the existing SOTA
methods. Specifically, the improvement of FSIANet is most obvious in the Kitsap and
Tyrol regions. It is worth noting that there is a huge gap in the distribution of aerial image
buildings in these two regions, with both dense and sparse building scenes. It can be
explained that the proposed FSIANet has strong generalization performance to apply in
various complex scenarios.

In addition to the experimental results of the quantitative analysis, we also present
some representative visualizations of the Inria Aerial Image Dataset. Figure 6 shows the
results of binary prediction visualizations of our FSIANet and seven other comparison
methods in the Austin, Chicago, Kitsap, Tyrol, and Vienna regions. As in the aerial
image example shown in Figure 6, the Inria dataset has some images with very low
proportions of buildings. For illustration purposes, we mark the more visible regions
with yellow rectangles. It can be concluded from Figure 6 that our proposed FSIANet
method outperforms other methods overall, especially in recognizing edge, tiny, and

106



Remote Sens. 2022, 14, 5457

shadow buildings. Furthermore, we can conclude from the examples of moderately dense
buildings in Austin and Vienna that FSIANet performs well in the connection of multiple
complex buildings. This is because the porous spectral attention pyramid is capable of
mining multi-scale features, which can emphasize features with high response to building
semantic features at each scale, and weakening features with low response will enhance
the representation of building features.

Table 3. Quantitative results on Precision, Recall, F1-Score, and IoU (in %) of different methods on
the Inria Aerial Image Dataset. The best results are shown in bold.

Metrics Methods Austin Chicago Kitsap Tyrol Vienna Average

Precision

FCN8s [37] 88.28 81.37 85.21 88.25 89.81 86.64
U-Net [38] 89.92 87.61 84.03 87.62 89.65 87.77
PSPNet [41] 84.58 80.57 81.01 85.57 87.47 83.84
PANet [60] 87.72 77.13 80.68 86.26 84.89 83.34
SiU-Net [19] 90.94 81.39 84.42 87.67 89.02 86.69
BRRNet [27] 89.30 87.20 80.09 83.13 88.04 85.55
AGPNet [25] 91.72 86.37 85.91 90.30 91.45 89.15

Res2-Unet [65] 86.86 79.20 77.74 85.61 86.06 83.09
FSIANet (Ours) 90.04 86.25 83.23 85.80 89.59 86.98

Recall

FCN8s [37] 87.32 79.29 70.41 80.89 83.39 80.26
U-Net [38] 87.03 73.49 73.16 83.37 85.33 80.48
PSPNet [41] 74.33 75.19 69.73 79.99 81.99 76.25
PANet [60] 74.26 66.19 65.50 75.23 79.39 72.11
SiU-Net [19] 86.39 78.27 73.55 82.27 84.60 81.02
BRRNet [27] 89.07 75.78 77.57 85.85 85.44 82.74
AGPNet [25] 86.81 78.69 76.24 82.71 85.11 81.91
Res2-Unet [65] 84.70 78.06 72.40 83.09 84.90 80.63
FSIANet (Ours) 90.30 78.75 79.39 88.35 87.01 84.76

F1-Score

FCN8s [37] 87.80 80.47 77.11 84.40 86.48 83.25
U-Net [38] 88.45 79.94 78.22 85.44 87.43 83.90
PSPNet [41] 79.12 77.79 74.95 82.69 84.64 79.84
PANet [60] 80.43 71.24 72.30 80.37 82.04 77.28
SiU-Net [19] 88.61 79.81 78.61 84.89 86.75 83.73
BRRNet [27] 89.19 81.09 79.20 84.47 86.72 84.13
AGPNet [25] 89.20 82.35 80.79 86.34 88.17 85.37
Res2-Unet [65] 85.77 78.63 74.97 84.33 85.48 81.84
FSIANet (Ours) 90.17 82.33 81.26 87.06 88.28 85.82

IoU

FCN8s [37] 78.25 67.32 62.74 73.02 76.18 71.50
U-Net [38] 79.30 66.58 64.23 74.58 77.67 72.47
PSPNet [41] 65.46 63.65 59.94 70.48 73.37 66.58
PANet [60] 67.24 55.33 56.62 67.18 69.55 63.18
SiU-Net [19] 79.54 66.39 64.76 73.74 76.61 72.21
BRRNet [27] 80.48 68.19 65.57 73.11 76.58 72.79
AGPNet [25] 80.50 69.99 67.77 75.96 78.84 74.61
Res2-Unet [65] 75.09 64.78 59.96 72.90 74.64 69.47
FSIANet (Ours) 82.10 69.97 68.44 77.08 79.02 75.32
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Figure 6. The visualization results of the proposed FSIANet and other comparison methods on the
Inria Aerial Image Dataset.
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4.4. Ablation Study

To further illustrate the effectiveness of our proposed innovations, ablation experi-
ments on the East Asia Dataset are presented in Table 4. Specifically, the introduction of the
FSIA shows much improvement in various indicators compared with only the backbone
network. The FSIA module does not require learnable parameters, and the FSIA mechanism
based on frequency domain information can effectively evaluate the informative abundance
of feature maps and enhance feature representation by emphasizing more informative fea-
ture maps. After adding the ASPP, the performance of the network is not significantly
improved or even slightly decreased. Therefore, our designed AFSAP in the network is
able to mine multi-scale features, which can emphasize features with high response to
building semantic features at each scale, while weakening features with low response can
enhance the representation of building features.

In addition, we also implemented McNemar’s test to further obviously verify the
superiority of our method. Here, McNemar’s test can be computed by Formula (17):

z =

∣∣Nij − Nji
∣∣√

Nij + Nji
(17)

where Nij denotes the number of pixels that were correctly detected in method i but falsely
detected in method j. For McNemar’s test, |z| > 1.96 indicates a significant performance
gap between the two methods [67]. McNemar’s test of the ablation study on the East Asia
Dataset is listed in Table 5. McNemar’s test results present that the proposed method has a
significant performance advantage after introducing FSIA and AFSAP.

Table 4. Ablation results on Precision, Recall, F1-Score, and IoU (in %) of our proposed FSIANet on
the East Asia Dataset. The best results are shown in bold.

Methods Precision Recall F1-Score IoU

backbone 83.52 79.04 81.22 68.38
backbone+FSIA 84.27 79.29 81.71 69.07
backbone+FSIA+ASPP 85.39 78.62 81.86 69.30
backbone+FSIA+AFSAP (Full) 84.11 80.75 82.39 70.06

Table 5. McNemar’s test of the ablation study over the proposed FSIANet on the East Asia Dataset.

FSIANet vs. Backbone vs. Backbone+FSIA vs. Backbone+FSIA+ASPP

z value 154.26 80.27 28.58

Furthermore, to illustrate the rationale for the FSIANet design, the feature maps and
discrete cosine transformation (DCT) results on the East Asia Dataset are shown in Figure 7.
Here, we define an average frequency spectrum intensity (AFSI), which is the average of the
frequency spectral values (computed by DCT) of a feature map. For AFSI, a higher value
of AFSI means that building semantic and spatial information is more closely connected.
Figure 7 mainly illustrates the visualization of the DCT in three channels of the feature map
obtained from FSIANet. For example, in Figure 7(1-1–1-3), the more information the feature
map carries, the bigger the corresponding AFSI is. This intuitively illustrates that FSIA can
emphasize features with high response to building semantic features at each scale, and
weakening features with low response will enhance the representation of building features.
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Figure 7. The feature maps and DCT results on the East Asia Dataset. Image (1): ((1-1)–(1-3)) represent
different feature maps and their corresponding DCT results, respectively; image (2): ((2-1)–(2-3))
denote different feature maps and their corresponding DCT results, respectively.

5. Discussion

From the extensive experiments conducted above, it can be concluded that the pro-
posed FSIA mechanism and AFSAP module can efficiently improve the performance of
building extraction. In this section, these contributions are further discussed.

In FSIA, we utilize DCT to evaluate how informative a feature is, and reweight the
features accordingly. Since its benefit has been confirmed in building extraction, it may
potentially improve the performance of CNN-based methods over similar tasks such as
change detection and road extraction, even more computer vision tasks. Considering that
FSIA has no supervised parameters, it can be used in any CNN-based method without
training. However, there are still several disadvantages to this distinctive attention mech-
anism. The most notable of them is that DCT can be time-consuming when processing
feature maps with large spatial sizes. This problem can be further overcome in future work
with a lightweight transformation.

6. Conclusions

In this work, efforts have been made to better tackle automatic building detection
tasks in HR remote sensing data by proposing some computational-intelligence-based
techniques. Namely, a classic encoder-decoder-like end-to-end deep convolutional neural
network, FSIANet, with two newly proposed modules, FSIA and AFSAP, is exploited.
The FSIA is able to mine useful information from the frequency spectrum of extracted
features, thus improving the global feature representation of FSIANet. Notably, it does
not need to be trained to acquire reliable ability, which is different from most of the other
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attention mechanisms. In addition, the ASPP-inspired feature pyramid, AFSAP, is utilized
to promote the detection of building-like objects. Compared to ASPP, the AFSAP can
achieve more pronounced performance improvement with the help of FSIA. As a result,
the proposed FSIANet has successfully outperformed several newly proposed cutting-edge
deep-learning-based methods in two widely used large-scale HR remote sensing building
detection datasets. For future work, more efforts can be made to expand the usage of
frequency–domain-based analysis in the deep-learning-based methods, which have the
potential to facilitate finer annotation of buildings in complicated scenes.
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AFSAP Atrous Frequency Spectrum Attention Pyramid

ASPP Atrous Spatial Pyramid Pooling

BRRNet Building Residual Refine Network

CNN Convolutional Neural Network

DCT Discrete Cosine Transformation

FCN Fully Convolutional Network

FSIANet Frequency Spectrum Intensity Attention Network

HR High-Resolution
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Abstract: The detection and counting of lunar impact craters are crucial for the selection of detector
landing sites and the estimation of the age of the Moon. However, traditional crater detection methods
are based on machine learning and image processing technologies. These are inefficient for situations
with different distributions, overlaps, and crater sizes, and most of them mainly focus on the accuracy
of detection and ignore the efficiency. In this paper, we propose an efficient lunar crater detection
(ELCD) algorithm based on a novel crater edge segmentation network (AFNet) to detect lunar craters
from digital elevation model (DEM) data. First, in AFNet, a lightweight attention mechanism module
is introduced to enhance the feature extract capabilities of networks, and a new multiscale feature
fusion module is designed by fusing different multi-level feature maps to reduce the information loss
of the output map. Then, considering the imbalance in the classification and the distributions of the
crater data, an efficient crater edge segmentation loss function (CESL) is designed to improve the
network optimization performance. Lastly, the crater positions are obtained from the network output
map by the crater edge extraction (CEA) algorithm. The experiment was conducted on the PyTorch
platform using two lunar crater catalogs to evaluate the ELCD. The experimental results show that
ELCD has a superior detection accuracy and inference speed compared with other state-of-the-art
crater detection algorithms. As with most crater detection models that use DEM data, some small
craters may be considered to be noise that cannot be detected. The proposed algorithm can be used
to improve the accuracy and speed of deep space probes in detecting candidate landing sites, and the
discovery of new craters can increase the size of the original data set.

Keywords: crater detection; image segmentation; moon; deep learning; remote sensing

1. Introduction

Impact craters constitute an important property of the lunar surface. Impact craters
provide significant information for lunar evolution [1,2]. For example, the distribution
and number of craters are often used to estimate the relative age of the Moon [3–5], and
craters also provide important landmark information to accurately guide spacecraft to
land [6,7]. The discovery of impact craters on the lunar surface is very important for
studying the Moon, for example, by using the manual analysis and comparative evaluation
of craters’ images with different features to identify the permanently shadowed lunar polar
regions [8]. In the study of crater counting, some crater catalogs have been formed manually
by planetary scientists, such as the crater catalog of the Moon (diameter 5∼20 km [9],
diameter ≥ 20 km [10]). However, the manual discovery of craters is time-consuming
and laborious, and because experts may disagree on the interpretation of image data, the
manual marking of craters also faces consistency and repeatability challenges.

Several automatic crater detection algorithms have been proposed to detect craters, and
these can be roughly grouped into two categories. The first kind of method is unsupervised-
based algorithms, which use digital image processing technology to detect craters, and the
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second kind of method is supervised-based algorithms, which employ machine learning or
deep learning to extract impact craters.

Unsupervised-based automatic crater feature extraction algorithms are mainly based
on traditional image processing methods, including Hough transforms [11–13], template
matching [14], edge detection, convex grouping [15], and other recognition techniques. For
example, the performance of a Hough transform applied to large scale crater counting
was evaluated [13] in terms of its ability to automatically detect craters down to sub-km
sizes on high-resolution images of the Martian surface. The Canny edge detector is widely
used in computer vision to locate sharp intensity changes and to find object boundaries
in an image. The combined adaptive Canny algorithm, which uses histograms of images
and multi-scale Gaussian filtering, was used in [16] to achieve a crater matching rate of
better than 85%. However, for irregular, incomplete shapes and areas with a high degree
of overlap, the detection accuracy of such methods is poor. Furthermore, Chen et al. [17]
used terrain analysis and mathematical morphology methods to identify different types
of impact craters, which fit the crater edge based on the Moon’s digital elevation model
(DEM) data. In contrast, the mathematical fitting method is more reliable than the Hough
ring transform algorithm, but its computational complexity is higher for the identification
of large, dense craters.

Automatic crater supervised-based technology has developed rapidly through ma-
chine learning and deep learning methods. Machine learning-based methods often involve
building a classifier to recognize candidate craters, and common classifiers, such as the
principal components analysis [18], decision trees technique [19], support vector machine,
and other hybrid methods [20], are used to classify candidate craters. To improve the
classification accuracy of small craters, Kang et al. [21] combined a histogram of oriented
gradient features and the support vector machine classifier to extract small-scale impact
craters from charge-coupled device images. Furthermore, based on the scale of training
samples generated from the surface imagery and digital elevation models of the Moon, [22]
proposed an active machine learning approach to automatically detect candidate craters by
training a classifier with better performance. These methods are able to recognize craters
or non-craters with a high classification accuracy. However, they need to extract features
manually when training a classifier to detect craters. For large-scale and high-density crater
detection, most of them have poor recognition accuracy and robustness. Some of them
cannot count craters or locate the positions of craters.

Deep learning, especially when based on convolution neural networks (CNNs), has
achieved great success in solving problems with image classification, image segmenta-
tion [23,24], and synthetic aperture radar (SAR) automatic object detection [25,26] in the
remote sensing fields. The CNN is a key representative network structure in deep learning
techniques. Such techniques are different from machine learning techniques, which are
more efficient and portable without a set of human-designed features [27]. Impact crater
detection based on deep learning is an important method in the vision-based navigation
systems and is used to solve the task of pinpoint landing on the Moon. Some works [28,29]
have used CNN feature extraction and standard image processing technologies to detect
and match the observed craters, which were used as visual landmark measurements by
the navigation filter. Moreover, image segmentation [23,30] and object detection methods
based on CNNs, e.g., faster region-CNN (R-CNN) [31] and mask R-CNN [32], are used to
solve crater detection problems. For example, Tewari et al. [32] utilized the mask R-CNN
framework to detect craters from optical images, digital elevation maps, and slope maps
by post-processing to eliminate duplicate craters and extract the craters’ global locations.
Moreover, to improve the detection accuracy of small-impact craters, [33] proposed an
end-to-end high-resolution feature pyramid network framework, denoted as HRFPNet.
HRFPNet uses a new backbone with a feature aggregation module to enhance the feature
extraction capability of small craters from thermal infrared imaging on Mars. However,
most object detection-based methods need to consider the generation of the number of
candidate boxes. For highly overlapping and dense craters, the quality of the generation of
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a large number of duplicate bounding boxes may affect the recognition speed and accu-
racy of crater detection. Therefore, most object detection schemes display relatively poor
performances and high levels of computational complexity in crater detection.

Crater detection is also solved as a semantic segmentation problem, in which the
rims or edges of craters can be extracted by pixel-level classification, and the crater po-
sition and size can be obtained by a post-pipeline method. For example, a semantic
segmentation method based on the fully convolutional neural network was proposed [34].
This method uses different feature maps with multi-scale receptive fields to detect multi-
scale impact craters from remotely sensed planetary images. Moreover, semantic seg-
mentation models [35–37] based on U-net [38] have been presented to detect craters.
Silburtet et al. [35] proposed DeepMoon based on the U-net network structure to recognize
lunar craters from DEM data. This method can successfully identify about 45% of newly
discovered craters in its validation data. However, the U-net network structure loses large
amounts of detailed information in the encoder of the network, which leads to poor crater
image contour recovery in the decoder process. To improve the accuracy of crater detection,
a new network structure, ERU-Net [36], introduced the deep residual network module to
improve the crater feature extraction ability. This successfully achieved a recall rate of 81.2%
and a precision rate of 75.4% in lunar crater recognition when training 30,000 DEM data
images. Furthermore, to explore craters on Mars, DeLatte et al. [37] employed segmentation
convolution neural networks based on U-net for automatic crater detection from Martian
daytime infra-red images. This method identified 65–75% of craters in common with a
human-annotated dataset, and [39] used the ResUNET [30] model to detect craters with
the global maps and infra-red imagery for Mars. However, resources in the deep space
environment are limited [40]; thus, automated crater detection methods require a balance
between model computational complexity and identification efficiency. Most of the above
methods ignore the computational complexity of the model.

The deep learning-based algorithms described above have different improved opti-
mization approaches for different crater tasks. However, the majority of object detection
schemes perform relatively poorly as they are constrained by their vanilla network archi-
tectures or semantic segmentation. By comparing the network complexity and recognition
results, it can be seen that crater detection methods based on the semantic segmentation
model are more efficient than the end-to-end object detection model. However, most
semantic segmentation-based crater detection methods mainly focus on the accuracy of
recognition and neglect the reasoning speed of the network. Moreover, due to crater images
having different distributions, degrees of overlap, and sizes on the surface of the Moon, and
because the crater data may be imbalanced, crater detection algorithms based on semantic
segmentation networks may suffer from significant performance degradation. Therefore,
achieving a fast and effective crater detection method with a high level of precision based
on a semantic segmentation model represents a challenging scenario.

To address this issue, in this study, we establish an efficient lunar crater detection
(ELCD) algorithm that addresses the requirements for accurate and fast crater detection. In
the ELCD algorithm, first, the crater edge is segmented by the attention mechanisms and
multiscale feature fusion networks (AFNet). Then, the crater position and size are extracted
by postprocessing based on the crater extract algorithm (CEA). In AFNet, a light-weight
attention mechanism is used to improve the feature extraction ability of the network, and a
new multiscale feature fusion (MFF) module is designed in the upsampling process of the
network to reduce the loss of detail in the semantic segmentation results. In addition, we
consider the crater data imbalance of the classification and distributions and design a new
crater edge segmentation loss (CESL) function for network training. The proposed loss
function improves the optimization ability and convergence speed of the network through
adaptive balance weights.
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The main contributions of the paper are as follows:

• We propose an efficient crater detection network based on a new semantic segmenta-
tion network architecture, AFNet, which uses the lightweight attention mechanism
and multiscale feature fusion module to provide better and faster detection of lunar
impact craters.

• To improve the optimization capability of the network, we present the crater edge
segmentation loss function, which considers the imbalance of classification and dis-
tributions of crater data to calculate the loss value using the different degrees of
imbalance in the data.

• The experiment is conducted on the PyTorch platform [41] with lunar DEM data to
verify the effectiveness of the ELCD. The results show that the ELCD outperforms
the state-of-the-art crater detection models in terms of its detection accuracy and
inference speed.

The rest of this paper is organized as follows: Section 2 describes the proposed
network architecture, the design of the crater edge segmentation loss function, the crater
edge extraction algorithm, and the details of the experiment. Section 3 provides the
experimental results, and Section 4 presents our discussion. Eventually, in Section 5, we
conclude our work.

2. Materials and Methods

The workflow description of two stages of the lunar crater detection method using
DEM data is shown in Figure 1. The workflow includes two parts: (i) crater edge prediction
by the semantic segmentation network AFNet and (ii) crater edge extraction with the
post-pipeline method. The details of the ELCD are as follows. The workflow input is the
lunar crater DEM image. The DEM contains abundant 3D morphology and topography
morphological characteristics, and it is insensitive to light [27]. The workflow output is
the crater’s positional information, such as its longitude, latitude, and radius, which is
determined by the crater edge extraction algorithm. First, crater images with different
degrees of size, overlap, and distribution are transferred to the crater edge segmentation
network to undergo crater edge prediction. Then, the network prediction results are
processed with a post-processing pipeline based on the match template method to obtain
the location information and radial size of craters.

Figure 1. Workflow of two stages used in the crater detection method based on the semantic
segmentation network and the crater edge extraction method. The network input is the DEM image.
The digital elevation model (DEM) image is first processed by AFNet to recognize crater edges by
pixel-level classification. Then, the prediction result of the crater images from network training is
processed by a post-processing pipeline based on the match template method to detect the location
information and radius size of craters.

2.1. AFNet

To obtain efficient crater edge prediction results, we formally describe the crater edge
detection network architecture, as shown in Figure 2. The AFNet includes three parts: the
network encoder, feature fusion, and decoder. In Figure 2, the black line is the network
encoder, the blue line denotes the process of feature fusion, and the orange line represents
the network decoder process. The network input is the gray DEM image, which has
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a fixed size of 256 × 256 pixels, and the output is the pixel-level classification for the
prediction result.

Figure 2. AFNet framework based on the improved VGG-16. The input is the DEM image transferred
to the network encoder process (green trapezoid). First, the DEM image is processed with a 1/N
downsampling rate with an attention mechanism module (pink circle) and five convolution blocks.
Then, feature maps with different resolutions are saved and fused by the multiscale feature fusion
module (blue line) with element-wise summation (green

⊕
) and the data blending block (blue

squares) through the decoder process (yellow squares) to get a more fine-grained output feature map.
The final output result denotes the network prediction results with pixel-level classification.

In encoder processing, we use the visual geometry group-16 (VGG-16) [42] as the
backbone to extract the crater features. This allows us to obtain a bigger receptive field
using fewer parameters compared with other network structures. The backbone network
includes five feature extraction blocks, denoted as L = {L1, L2, . . . , Li}, where i is the
number of feature extraction blocks. At the end of each feature extract block, we introduce
the attention mechanism module to extract the important features of the crater. In L1 and
L2, each feature extraction block contains two convolution layers: an attention machine
module and a max-pooling layer. L3, L4 and L5 contains three convolution layers, an
attention machine module, and a max-pooling layer, and all convolution layers use a 3 × 3
convolution kernel in each block.

In feature fusion, to obtain a more fine-grained feature map in the network decoder,
we designed a simple and efficient MFF to obtain more fine-grained output feature maps.
The four fusion modules f usionj are shown in Figure 2 and j = {1, 2, 3, 4}. The MFF first
uses the element wisdom summation (green in Figure 2) to fuse a low-resolution feature
map and a high-resolution feature map in each step of the upsampling process (decoder).
Then, the obtained fusion feature map is blended and transferred to the decoder process as
an input for the next step (blue squares in Figure 2).

In decoder processing, the bilinear interpolation operation is used to restore the size
of the feature maps by four decoder blocks, Decoderk, k = {1, 2, 3, 4} (yellow squares in
Figure 2). We use 2× upsampling and fuse more rice feature map information in each
decoder to restore the feature map to its original size.
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2.2. Attention Mechanism Module

The original impact craters have different density distributions, sizes, and degrees
of overlap in the different lunar regions. A description of the characteristics of crater
DEM data used in network training is given in Figure 3. When the crater DEM images
are processed by random clipping, they may have an incomplete shape. These crater
characteristics bring performance challenges to the semantic segmentation network.
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Figure 3. The different characteristics of craters on the surface of the Moon from DEM data. The top
figure is the original crater images, and the bottom figure denotes the labeled images denoted as the
ground truth. (a–c) show the distribution of sparse craters, (d–f) denote the distribution of dense
craters, (b–f) represent the different degrees of crater overlap, (c–f) show the incomplete craters.

In the encoder, to improve the feature extraction ability of the network, we introduce
the attention mechanism through efficient channel attention (ECA) [43], which is attached to
the end of each feature extraction block of the proposed network to enhance the extraction
of important features. Efficient channel attention with the lightweight module has great
potential to produce a trade-off between performance and complexity. This only involves a
handful of parameters while bringing a clear performance gain. The ECA block is termed an
attention mechanism, as shown in Figure 2 with a pink circle. In the ECA, 1D convolution
with a kernel size of 3 was used to achieve information exchange between channels. The
details of the ECA block attached to the end of the five feature blocks are given in Figure 4.
The ECA module was placed behind the activate function rectified linear unit (ReLU) in
each feature extraction block. Figure 4a denotes the location of the ECA in the feature
extraction block {L1, L2}, and Figure 4b shows the location of the ECA in the feature
extraction block {L3, L4, L5} in the decoder process of the network. The ECA can combine
the crater channel and spatial attention to enhance crater feature aggregation, which can
enhance the extraction of salient crater features.

2.3. Multiscale Feature Fusion Module

Visual features with a coarse spatial resolution can be obtained by the encoder process.
During the network encoder process, shallow crater networks can learn some local features
because of the low perception threshold, and the deeper convolution layer can obtain
more abstract features. With the deepening of the network, the receptive field of the
network becomes larger, but because of the down-sampling operation, a great deal of
detailed information may be lost. The purpose of the decoder process is to obtain a
segmented prediction image with the same input size through the upsampling operation.
Traditional segmentation networks use the simple upsampling module with skipped lateral
connections to restore the feature map, which may cause the restored feature map to lack
detailed features. To overcome the problem of poor image contour recovery in the decoder
process, we designed a simple and efficient multiscale feature fusion module to fuse more
low-layer features in each decoder block. The four multiscale feature fusion modules
f usionj, j = {1, 2, 3, 4}, are shown in Figure 5. We first obtained feature maps of different
resolutions from the network encoder process. Then, we fused two close feature maps as
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the upsampling input for the MFF to obtain an output feature map with more fine-grained
information.

(a) ECA in L1, L2

(b) ECA in L3, L4, L5

Figure 4. ECA module. (a) ECA module in L1 and L2, (b) ECA module in L3, L4, and L5.

(a) Direction Fusion

(b) Indirection Fusion

Figure 5. Multiscale feature fusion module. (a) is the direct fusion with the same feature map
resolution and size. (b) denotes indirect fusion with feature maps of two different resolutions.

The MFF included two cases, direct fusion and indirect fusion, as shown in Figure 5.
Figure 5a shows direct fusion for two feature maps of the same resolution: f usion1 −
f usion3. Figure 5b denotes indirect fusion with two different resolution feature maps:
f usion4. In direct fusion, a low-resolution feature map denoted as Lp and high-resolution
feature map represented as Hp have the same resolution. They use direct fusion by the
element summation operation to obtain the fusion feature map. However, the size of the
feature map is often different and usually has a two-fold difference in size after the encoder
process. Therefore, processing is done through the indirect fusion module. In the indirect
fusion module, the low-resolution feature map is not the same as the high-resolution feature
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map. Lp is first processed with the size alignment module to obtain the same resolution
as Hp. Then, the two maps are fused by element summation to obtain the fusion feature
map. Finally, the fusion feature map is transferred to the blending block (blue squares
in Figure 2) to obtain the final fusion output, the indirect fusion feature map denoted as
IFp or the direct fusion feature map indicated as DFp, as the branch input for upsampling
processing.

The size alignment module includes a 1 × 1 convolution kernel to reduce the dimen-
sions and a 3 × 3 convolution kernel. This stride is set to 2 to adjust the map to the same
size as Hp. The blend module contains the simple two 3 × 3 convolution kernel network
to blend the fusion results. The final fusion feature maps have richer low-layer features,
which could help us to obtain high-quality output prediction results in the encoder process.

2.4. Crater Edge Segmentation Loss Function

In the crater prediction network, crater images can be divided into foreground images
and background images by pixel-level segmentation. In a crater image, the foreground im-
age is the segmented object (crater edge), and the background image represents everything
but the object. However, most crater detection methods based on segmentation networks
use traditional loss functions, such as the cross-entropy (CE) loss function [35–37], to train
the network, and they cannot overcome the variation in size and the serious crater data
imbalance problem, resulting in a performance decrease. The CE can be computed as

CE(pi, yi) =

{
−log(pi), yi = 1
−log(1 − pi), otherwize

(1)

where pi is prediction value of the network, yi is the ground-truth, and pi ∈ [0,1], y∈ {0,1}.
However, in cross-entropy loss, the weight of each sample is the same, and the CE

loss is overwhelmed when facing the data classification imbalance. Later, the focal loss
(FL) function [44] considering the classification imbalance in dense object detection was
proposed to improve the network performance. The FL is defined as

FL(pi) = −α(1 − pi)
γlog(pi) (2)

where α is a weighting factor, α ∈ [0,1] for class 1 and 1 − α for another class; (1 − pi)
γ

denotes the modulating factor; and γ denotes the tunable focusing parameter. The FL can
balance the importance of positive and negative examples and differentiate between easy
and hard examples by modulating the two factors α, and γ.

Inspired by the FL [44], we propose a novel crater edge segmentation loss function to
optimize the proposed network. In contrast to FL, only the classification imbalance of data
was considered when designing the loss function. In this paper, two data imbalance factors
were considered, including the classification imbalance and the distribution imbalance of
crater data, and the modulating factor of the loss function was set adaptively. We first
calculated the imbalance characteristics of the crater data, which are shown in Figure 6. We
used the data imbalance ratio (IR) to represent the crater data classification imbalance. This
is the ratio between the numbers of majority class samples (background) and the minority
class samples (object). The crater classification imbalance is shown in Figure 6a. Moreover,
we counted the distribution imbalance ratio (DR) as the number of craters in each label’s
image, as shown in Figure 6b.

We set the parameters α′ and γ′ adaptively based on the DR and IR of the crater data
for the CESL. The proposed craters edge segmentation loss function can be computed as

CESL(pi) = −α′(1 − pi)
γ′

log(pi) (3)

where α′ is used to adjust the weights of different categories, and γ′ is employed to
differentiate between easy and hard examples. In this work, our goal was to accurately
detect lunar craters. Some crater images are easy to distinguish, while others are difficult
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to distinguish. Simple examples show that the distribution of some craters is sparse and
complete with little overlap, making these craters easy to detect. These crater images
are shown in Figure 3a,b. The hard example shows that, in the lunar crater image, the
distribution of craters is dense with high overlap, and the shape is incomplete. These crater
images are shown in Figure 3b,c. α′ and γ′ were calculated based on the average value in
each trained batch. IRb and DRb are the classification imbalance ratio and the distribution
imbalance ratio in the b-batch of network training.

(a) Crater Classification Imbalance (b) Crater Distribution Imbalance

Figure 6. Data distribution statistics of impact craters. We randomly generated 30,000 crater training
images to show the imbalanced distribution. (a) is the crater image classification imbalance, the
x-axis is the data imbalance ratio (IR) [45], and the y-axis denotes the frequency distribution of the
IR. (b) shows the distribution imbalance ratio (DR) of the craters, the x-axis denotes the number
of craters in each training image, and the y-axis represents the frequency distribution of the crater
number in the DEM images.

In our crater data, we found that classification imbalance was common in the training
data of each DEM image, and we calculated the max IR to be about 266 times and the
average IR to be about 26 times, as shown in Figure 6a. In the crater training image, the
densest crater image has 112 craters, and the average crater number is 20, as shown in
Figure 6b. We defined the data imbalance degree in three cases based on the imbalance
characteristics of craters, namely, low classification imbalance, median classification imbal-
ance, and high classification imbalance. To balance the proportions of the data distribution,
we calculated the ratio of three imbalance degree cases, which are more balanced when
the ratio is about 3:2:1 in the crater training data, and the range of the corresponding IR is
IR > 40, 20 < IR <= 40, and IR > 40. The value of α′ was set by the degree of imbalance,
where IRb was used to adjust the data imbalance with different weights. α′ was set as

α′ =

⎧⎪⎨⎪⎩
0.2, IRb < 20
0.3, 20 < IRb <= 40
0.4, IRb > 40

(4)

Moreover, in general, highly overlapping, dense data may have a bad effect on crater
classification. Thus, we also considered the craters’ sparse distribution characteristics to
improve the crater classification accuracy by setting the different values of γ′. The craters’
sparse distribution characteristics DR were represented by the crater number in the DEM
images. We defined DRb by the crater number in the DEM images to set γ′. The parameter
γ′ is defined as

γ′ =

⎧⎪⎨⎪⎩
2, DRb < 20
1, 20 < DRb <= 100
1.5, DRb > 100.

(5)
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2.5. Crater Extraction Algorithm

The crater image segmentation results were obtained by AFNet. The results included
activated pixels corresponding to the locations of the crater rims. We were able to extract
crater positions and sizes from the crater image segmentation results through the post-
pipeline method with the crater extraction algorithm based on the template matching
method. Most impact craters are circular on the lunar surface. The craters are detected by
the ring feature in the extraction algorithm. However, for overlapping craters, traditional
methods (such as Hough transform, Candy) [46] cannot detect rings in the segmentation
results efficiently. We used the more efficient match template algorithm in scikit-image [47]
(an image processing library implemented in Python programming language) to extract
crater positions. This method was used in [36,37] for crater edge extraction.

The proposed CEA received the prediction map I of the crater segmentation network
and output the crater evaluation results. The crater extraction pipeline process is as follows.
First, a prediction result is filtered by the binary threshold β, described as

pi =

{
1, pi ≥ β

0, pi < β
(6)

where pi is the pixel intensity. pi is set to 1 when pi is greater than β; otherwise, pi is set to
0. Then, the match template algorithm is applied to match the crater over a radius range
with a maximum radius rmax and minimum radius rmin. The match template threshold Pm
is used to choose the high confidence target. Lastly, an evaluation of whether the crater is
correctly identified is carried out.

We detected the minimum radius rmin of the craters as 5 km and the maximum radius
rmax as 40 km from the network prediction result by the CEA. This algorithm iteratively
slides generated rings through the target, and it calculates the match threshold at each
(x, y, r) coordinate to eliminate false target results, where (x, y) is the centralization of the
generated ring, and r is the radius. Any (x, y, r) ring with a match probability greater
than Pm is classified by the coordinate and radius constraints to get the correct crater,
expressed as

[(xi − x̃j)
2 + (yi − ỹj)

2]/min(ri, r̃j)
2 < Dx,y (7)

|ri − r̃j|/min(ri, r̃j) < Dr (8)

where (xi, yi) is the position of the crater ci extracted from the prediction image I, xi, yi are
the latitude and longitude of I, respectively, and ri is the radius of the crater ci. For the
ground-truth image Ĩ, (x̃i, ỹi) presents the position corresponding to the crater ci, x̃i is the
latitude of the crater, ỹi is the longitude of the crater, and the radius of crater ci is r̃i. Dx,y
is the error threshold of the longitude and latitude, and Dr is the radius error threshold.
When the detection crater meets these limits, it is regarded as the correct crater; otherwise,
it is considered a false crater.

The pseudo-code of the efficient lunar crater detection ELCD algorithm includes
crater edge prediction by the semantic segmentation network AFNet and the post-pipeline
method with CEA, as described in Algorithm 1.

The input of the network contains the test DEM data Y with a pixel size of 256 × 256
for the DEM image, the number of batch image processes |Z(k̃)|, the crater classification
number Nclass, the trained network model M, and the ground-truth of the crater image Ỹ.
The outputs are the position and size of the crater and the evaluation of the crater detection
results. First, the batch data Y(i) of crater images in test set Y are transferred to the trained
model M by the AFNet to obtain the prediction results preddem of the network. Then, the
prediction feature map preddem is processed by binary threshold processing β, using the
match template threshold Pm to filter out matching craters. The correctly identified craters
are evaluated by the error constraints shown in Equations (7) and (8), and the results of the
evaluation are counted using statistical functions Count(). Finally, the position and size of
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the crater Pos and the evaluation results Det of the correctly identified craters are obtained
using the mean results for the test crater DEM data Y.

Algorithm 1: Efficient Lunar Crater Detection Algorithm
Input :

A set of DEM images, test dataset Y;
Each batch test data Y(i) has |Z(k̃)|DEM images;
Each DEM image yi ∈ Y(i) has a size of 256 × 256 pixels;
The category of pixel segmentation is Nclass ;
The trained network model M;
The ground-truth in the test dataset Ỹ;
Output :

the information about the position and size Pos, and the crater detection results Det;
begin

Ẑ = [];
Load test dataset Y;
Pre − processing test dataset Y by normalization;
model.eval();
for Each batch Y(j) in Y(i) do

for Each image y in Y(j) do
origdem = y[0];
truedem = y[1];
model.cuda(), origdem.cuda(), truedem.cuda();
preddem = M (origdem);
Ẑ.add (preddem);

end

end

Match = []; // the results of the crater match template
Pos = []; // the information about the crater’s position and size
Det = []; // the crater detection results
Match-template(); // calculate template matching
Count(); // statistical crater detection performance
for Each DEM zk in Ẑ do

if Nclass = 2 and zk > β then
zk ← 1.0;

else
zk ← 0.0;

end

if Match-template(zk) > Pm then
Match.add (longitude, latitude, radius);

end

Choose the correctly identified craters by Equations (7) and (8);
Output result Ps, Dt ← Count (Match, ỹk), ỹk ∈ Ỹ;
Pos.add(Ps);
Det.add (Dt);

end

Pos = mean(Pos);
Det = mean(Det);

end

Output : Pos, Det

2.6. Experiments

In this section, we describe the experiments conducted to verify the performance of
the proposed algorithm. The experiments involved the experimental setup, experimental
datasets, evaluation metrics, and comparison algorithms. The details are given below.

2.6.1. Experimental Setup

The experiment was performed on a single GPU (NVIDIA GeForce RTX 3060, 64GB
RAM, 8 core CPU) with CUDA 11.0 and PyTorch 1.7.1. The CE-Adam [48] optimizer was
used to improve the capability of the network model, and the learning rate was set to 1 ×
10−4. The number of iterations in the network was set to epoch 100, and the batch size was
set to 32. We conducted crater detection experiments on the lunar DEM datasets, where
the input DEM image was 256 × 256 pixels in size. The crater edge semantic segmentation
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network AFNet and crater edge extract results were evaluated using relevant evaluation
criteria, as detailed in Section 2.6.3.

2.6.2. Datasets

In our experiment, we used lunar DEM data from the Lunar Reconnaissance Orbiter
(LRO) and the Kaguya merged digital elevation model. The resolution of the DEM was
about 59 m/pixel [49], and it spanned 180◦ W to 180◦ E and 60◦ S to 60◦ N . The global
DEM map was downsampled to 118 m/pixel with a size of 92,160 × 30,720 pixels. This
was used to randomly generate crater images that were 256 × 256 pixels in size.

Two lunar crater catalogs were used for the ground truth. The first catalog was termed
Head [10], where the size of the crater was larger than 20 km in diameter. The other
catalog was taken from Povilaitis [9], and the crater diameter size was 5–20 km. We used
the combined catalog, termed Head-LROC, to train our model in this paper. The total
numbers of Head and Povilaitis craters were 5186, and 19,337, respectively. The different
distributions and diameter sizes of craters based on the Head-LROC catalog are shown in
Figure 7. We can see that around 51.5% of craters had a diameter of less than 10 km, which
accounts for more than half of all data. Moreover, around 78.8% of craters had a radius of
less than 20 km, representing about three-quarters of all crater data. Only 1.3% of craters
had a radius of greater than 100 km.

Figure 7. The distribution proportions of the different radius craters in the Head-LROC catalog [9,10].

In the experiment, the original crater images and ground-truth images were generated
by the global DEM map and two lunar crater catalogs. The numbers of generated training
sets, validation sets, and test sets were 30,000 DEM images, 3000, and 3000, respectively.
The training set was processed by the random invert method. We randomly inverted θ to
the DEM image using random number probability p, p ∈ [0,1], where θ is defined as

θ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0◦, 0 <= p < 0.25
90◦, 0.25 < p <= 0.5
180◦, 0.50 < p <= 0.75
270◦, 0.75 < p <= 1.

(9)

2.6.3. Evaluation Criteria

In two-stage crater detection algorithms, the performance of the prediction network
may affect the final crater edge extraction result. When other parameters were fixed, the
clearer the crater edge was segmented, the better the crater edge extraction result was. Thus,
we first evaluated the performance of the proposed crater edge segmentation network,
AFNet. The four metrics from common semantic segmentation criteria [23,24] were used
to evaluate the proposed network model. We computed four metrics, the pixel accuracy
(PA), mean pixel accuracy (MPA), mean intersection over union (MIoU), and frequency
weighted intersection over union (FWIoU), to evaluate the performance of AFNet. Via an
ablation study, we can prove the validity of our proposed model and the improved crater
edge segmentation loss function.
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After obtaining the crater image segmentation results, the crater positions and sizes
can be obtained through the crater extraction algorithm. To evaluate the crater detection
performance of the proposed ECLD algorithm, we used an evaluation method that is
commonly used in machine learning to evaluate the precision (P), recall (R), and Fλ-score
(F1 or F2) for each identified crater basis. The detection precision is the ratio of matching
numbers Nmatch to detection numbers Ndetect of craters. The recall was computed by the
ratio of matching numbers Nmatch to the number of human-annotated Ncsv, and the Fλ-
score was used to balance the precision and recall. For the Fλ-score, λ denotes the tune
parameter. When λ > 1, the recall is more important; otherwise, when λ < 1, the precision
is more important for the model’s evaluation. The detailed calculation process is described
in [35,36].

Many truly existing craters were not marked in the ground truth; they were regarded
as false negatives. In addition, in this paper, we used the combined lunar crater catalog
Head-LROC [9,10]. The label of the training dataset was incomplete in the crater catalog,
and some newly discovered craters were identified through network prediction. We
calculated the discovery rate, that is, the false-positive rate for crater recognition. We used
two methods to evaluate newly discovered craters. R1

new, R2
new was computed as

R1
new =

FP
FP + TP

(10)

R2
new =

FP
FP + TP + FN

(11)

where R1
new denotes the ratio between the newly discovered craters and all recognized

craters. TP denotes true positives and FP denotes false positives. The second evaluated
method used was R2

new, which shows the proportion of newly discovered craters to all
impact craters, and FN indicates false negatives.

In the process of lunar crater recognition, the performance of the model was evaluated
from the accuracy computation by the positions and sizes of the recognized craters. We
calculated the latitude error (Elo), longitude error (Ela), and radius error (Er) to evaluate
the network model using

Elo =
abs(lop − lot)

2 × (rp + rt)
(12)

Ela =
abs(lap − lat)

2 × (rp + rt)
(13)

where lop denotes the predicted longitude value, and lot is the corresponding true longitude
value of the crater. In Equation (13), lap is the latitude value of the predicted crater, and the
latitude value of the corresponding true crater is denoted as lat.

The radius error (Er) was calculated as follows:

Er =
abs(rp − rt)

2 × (rp + rt)
(14)

where rp denotes the radius of the predicted crater, and the corresponding true radius of
the crater is indicated as rt.

2.6.4. Compared Algorithms

The proposed algorithm ELCD was compared with five different crater detection algo-
rithms using image segmentation technology that contained DeepMoon [35], ERU-Net [36],
D-LinkNet [23], and SwiftNet [24]. The general procedure used for each algorithm was
as follows:
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• DeepMoon [35]: The basic idea of this algorithm is that deep learning based on the
U-net network architecture is used to train the lunar crater DEM data to discover
lunar craters.

• ERU-Net [36]: To improve the detection accuracy of lunar craters, ERU-Net introduced
the residual network module to the U-Net network architecture to enhance the crater
feature extraction ability.

• D-LinkNet [23]: D-LinkNet with high efficiency is often used for comparisons in crater
detection. D-LinkNet is a semantic segmentation neural network that combines the
encoder–decoder structure, dilated convolution, and a pre-trained encoder to carry
out road extraction tasks.

• SwiftNet [24]: To verify the inference speed of the proposed model, we added SwiftNet
to compare the network models. SwiftNet is a real-time semantic segmentation method
based on residual network frameworks, which can achieve real-time detection for
road-driving images.

3. Results

3.1. Ablation Study

The ablation study on the AFNet explored the influences of different network struc-
tures and loss functions on the crater recognition accuracy. The proposed modules and
three loss functions (LFs), CE, FL, and the proposed loss function CESL, were compared in
the ablation study. The comparison network was initialized by using VGG-16 pre-training
weights and normal initialization, where the � denotes the use of the module, and VGG-16
denotes the basic network structure to give a better comparison. The results of the ablation
study were obtained by evaluating PA, MPA, MIoU, and FWIoU in the crater validation
data. The results are shown in Table 1, and the values in bold are the best values in each
compared column.

In Table 1, we can see that the VGG-16-ECA increased by 0.1 and 0.2 MIoU in the
CE and FL loss functions, and the MIoU increased by 0.1 and 0.2 MIoU compared with
VGG-16 in VGG-16-MFF. When adding the attention machine module VGG-16-ECA and
the efficient multiscale feature fusion module MFF, the MIoU obtained values of 73.0%,
74.4%, and 75.3% for the CE, FL, and CESL loss functions in AFNet. The AFNet network
under the CESL achieved the best performance of 96.8%, 82.8%, 75.2%, and 94.3% for
PA, MPA, MIoU, and FWIoU, respectively. The CESL considers crater data imbalance in
classification and distributions and can balance the importance of positive and negative
examples by adaptively setting the loss function weights. The proposed CESL loss function
obtained a better performance in the compared network structures relative to CE and FL.

We also show several feature maps of a crater image sample at decoder4 with the
VGG-16, VGG-16-ECA, and AFNet network structures in Figure 8. We found that the
output features had a clear distinction in AFNet and VGG-16-ECA compared with VGG-16.
Some chance information was strengthened, while other chance information was weakened.
AFNet and VGG-16-ECA included the attention mechanism ECA, which strengthens some
important features to quickly distinguish the edges of craters from their backgrounds.

Table 1. Ablation experiment of the proposed modules on the DEM data.

Network Structures LFs ECA MFF PA (%) MPA (%) MIoU (%) FWIoU (%)

VGG-16 CE 96.3% 80.0% 72.1% 93.5%
VGG-16-ECA CE � 96.4% 80.6% 72.9% 93.7%
VGG-16-ECA FL � 96.6% 81.6% 73.9% 94.0%
VGG-16-MFF CE � 96.5% 81.1% 73.5% 93.9%
VGG-16-MFF FL � 96.6% 81.8% 74.1% 94.0%
VGG-16-ECA-MFF (AFNet) CE � � 96.5% 80.7% 73.0% 93.8%
VGG-16-ECA-MFF (AFNet) FL � � 96.7% 82.0% 74.4% 94.1%
VGG-16-ECA-MFF (AFNet) CESL � � 96.8% 82.8% 75.2% 94.3%
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(a) VGG-16 (b) VGG-16-ECA (c) AFNet

Figure 8. Comparison of partial output results of different network structures in decoder4. (a) Partial
output feature maps with the basic model VGG-16, (b) partial output feature maps with VGG-16-ECA,
(c) partial output feature maps with AFNet.

3.2. The Evaluation Results for AFNet

In the iterative process of network training, the values of PA, MPA, MIoU, and FWIoU
for AFNet in the validation set are shown in Figure 9. The accuracy of all evaluation criteria
increased with the epoch. When the network was in about epoch 35 of network training,
the network began to converge. The proposed model achieved a pixel accuracy of 96.8%,
as shown in Figure 9a; the mean pixel accuracy was 82.8%, and the MIoU was 75.2%, as
shown in Figure 9b. The FWIoU was 94.3%, as shown in Figure 9c. The training loss of the
AFNet is shown in Figure 9d. We can see that the initial loss function was very small under
the VGG-16 pre-training weight initialization, and the network had a faster convergence
speed to allow it to obtain the best performance.

(a) PA (b) MPA and MIoU

(c) FWIoU (d) Training Loss

Figure 9. Semantic segmentation results on the validation set and training set of DEM data, (a–c) show
the results of the validation set and c denotes the results of the training set. (a) is PA, (b) represents
the MAP and MIoU, (c) denotes the FWIoU, and (d) is the training loss of the training set.
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The network prediction results with AFNet are shown in Figure 10. The top figure
denotes the ground truth of the DEM images, and the bottom figure shows the edge
segmentation results. In lunar catalogs, some crater labeling is incomplete with small and
shallow craters missing, and some obvious craters are not labeled, which may affect the
crater detection accuracy. However, AFNet was used to recognize the crater edges through
the classification of each pixel. We can see that the proposed AFNet network was able to
segment crater edges with different characteristics.

G
ro

un
d-

tr
ut

h
Pr

ed
ic

ti
on

Figure 10. Crater edge segmentation prediction results based on the AFNet for the DEM data. The
figure shows the ground truth of the DEM images, while the bottom figure denotes the crater edge
segmentation prediction results.

3.3. The Evaluation Results for the ELCD

We evaluated the performance of the ELCD based on the edge segmentation network
and crater extraction algorithm by detecting the crater radius, latitude, and longitude.
Moreover, we computed the precision, recall, F1, F2, and the errors in the latitude, longitude,
and radius of the crater for the match template method. In order to compare with other
crater methods, we calculated the detection results of craters with a radius of 5–40 km.
The error threshold of the longitude and latitude Dx,y was set to 1.8, the radius error
threshold Dr was set to 0.1, and the binary threshold β was set to 0.1. We tuned the match
threshold Pm of the match template. For further details about the parameter setting process,
refer to [35]. We evaluated the various metrics when the parameter of the match template
threshold Pm ranged from 0.3 to 0.8 with an interval of 0.05. The average crater edge
extraction resulted in different match threshold values Pm, as shown in Table 2. The best
value in each compared row is presented in bold, and the gray column indicates the best
tuning parameters.

In Table 2, we can see that the values of precision, F1, and F2 increased as Pm increased,
while the values of recall and other metrics decreased as Pm increased. A high precision
rate of 92.1% was obtained when Pm was 0.75 and the error values of Elo, Ela, and Er were
also minimal. When γ was set to 0.3, the value of recall was maximal and more new craters
were obtained under the maximum error values of Elo, Ela, and Er. New craters accounted
for 41.9% and 70.2%, as shown by R1

new and R2
new. F1 can balance the value of precision and

recall. The best F1 was 79.4% when Pm was set to 0.5, where the precision was 80.6%, the
recall was 81.9%, and the error values of Elo, Ela, and Er were relatively small, at 12.0%,
9.8%, and 6.6%, respectively. F2 pays more attention to the recall evaluation. When Pm was
0.45, F2 obtained the best value of 80.9%. In this paper, in accordance with [35,36], we used
F1 and F2 to evaluate the ELCD algorithm.

The precision and recall curves of the ELCD algorithm are shown in Figure 11, where
the upper green triangle represents the maximal point, and the yellow triangle denotes
the minimal value point. Figure 11a is the score of precision and recall with the different
match thresholds Pm. The focus of these two lines is that Pm is about equal to 0.5, which is a
balance point between precision and recall. The relation curve of the precision and recall
curves is shown in Figure 11b.
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Table 2. Crater edge extraction results of test sets in terms of various match thresholds Pm.

Metrics 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

Precision 27.1% 54.6% 70.5% 77.3% 80.6% 83.7% 86.0% 90.3% 91.4% 92.1% 91.4%
Recall 87.6% 85.4% 84.7% 83.4% 81.9% 78.4% 73.4% 67.2% 58.4% 45.6% 28.7%

F1 40.0% 64.7% 74.9% 78.3% 79.4% 79.0% 77.2% 74.9% 69.2% 58.5% 41.6%
F2 58.4% 74.9% 80.0% 80.9% 80.6% 78.3% 74.6% 69.9% 62.0% 49.8% 32.6%

R1
new 41.9% 29.9% 21.4% 17.1% 14.9% 12.7% 11.1% 8.1% 7.2% 6.6% 6.9%

R2
new 70.2% 41.6% 26.4% 19.9% 16.7% 13.5% 11.0% 7.2% 5.5% 4.0% 2.9%

Elo 17.5% 13.9% 12.7% 11.3% 12.0% 10.7% 9.3% 9.4% 8.8% 9.6% 8.2%

Ela 17.0% 13.7% 11.3% 10.6% 9.8% 9.2% 8.3% 7.7% 7.4% 7.0% 6.8%
Er 13.0% 9.2% 8.0% 7.3% 6.6% 5.7% 4.8% 4.6% 4.2% 4.1% 3.7%

(a) P/R score with the Pm

(b) P − R curve

Figure 11. Precision/recall curve for the crater detection results.

3.4. Comparison of Multiple Crater Detection Methods

In this section, we present an evaluation of the comparison results with ELCD under
different crater detection methods using the test set. Pm = 0.5 is balance point between
precision and recall. As shown in Figure 11a, we used the result where Pm was 0.5 as
a comparison of ELCD. We also measured the computation complexity with different
network architectures. In this paper, the billions of floating-point operations (FLOPs),
network parameters (Params), and the number of processed frames per second (FPS)
were used to evaluate the computational complexity of the trained networks. In the FPS
computation, in accordance with [24], we set the test batch size as 1.

The average crater extraction results under various crater detection algorithms are
shown in Table 3. In Table 3, we can see that the DeepMoon increased the recall and
the proportion of newly discovered craters, and ERU-Net obtained a low detection error
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for the crater radius, respectively. SwiftNet and D-linkNet had relatively poor detection
accuracy levels, but they had the lowest FLOPs and network parameters. The crater
detection algorithm required not only a high detection accuracy due to autonomous landing
requirements for deep space probes in the deep space environment, but the crater detection
algorithm should have a fast detection speed. The SwiftNet and D-linkNet network
structures were designed for the real-time target detection of road-driving images. They
have fewer parameters, low FLOPs, and high FPS during the running of the network to
meet the needs of real-time detection. However, as the SwiftNet and D-linkNet network
structures are simple network structures, they are inefficient for complex crater detection
problems, and they perform poorly in lunar crater detection compared with other networks
such as DeepMoon, ERU-Net, and the proposed algorithm. DeepMoon and ERU-Net
achieved good crater detection results compared with the SwiftNet and D-linkNet network
structures, but they require more computational resources, and the network computation
speed of FPS is also lower.

Table 3. Comparison of the detection results of test sets under various crater detection algorithms.

Algorithms P R F1 F2 R1
new R2

new Elo Ela Er FLOPs (G) Params (M) FPS (HZ)

DeepMoon [35] 56.0% 92.0% 66.2% 72.9% 40.0% 42.0% 14.0% 11.0% 8.0% 74.3 10.28 8.7

ERU-Net [36] 75.4% 81.2% 78.1% 78.5% 18.3% 21.5% 9.9% 10.0% 7.8% 183.3 23.7 4.3

D-LinkNet [23] 77.2% 68.3% 61.2% 55.1% 17.3% 17.1% 10.1% 10.0% 7.3% 6.0 21.0 46.4

SwiftNet [24] 77.1% 52.6% 61.4% 56.1% 17.0% 13.3% 22.9% 19.9% 13.2% 3.2 11.8 60.2

ELCD (our) 80.6% 81.9% 79.4% 80.6% 14.9% 16.7% 12.0% 9.8% 6.6% 43.7 21.8 73.2

In Table 3, the proposed algorithm is shown to achieve better crater detection precision
(P) and F1, F2 scores than the DeepMoon, SwiftNet, D-linkNet, and ERU-Net network
structures with minimal Ela and Er errors. Moreover, ELCD has a faster inference speed
than the other algorithms. The proposed model combines the encoder, feature fusion, and
decoder processes to achieve good network parallelism to speed up the network inference
speed. The proposed ELCD has lower FLOPs than the DeepMoon and ERU-Net methods,
and the total FLOPs in ELCD were shown to be about 1.7 times and 4.1 times lower than
the values of DeepMoon and ERU-Net, respectively. For the FPS measure, although the
parameters of the ELCD were not lower than those of DeepMoon and ERU-Net, the total
FPS of the ELCD was about 8 times and 17 times higher than the values of DeepMoon
and ERU-Net, respectively. Thus, the proposed ELCD algorithm achieved the best crater
detection results with relatively few parameters and a low network complexity. It can
achieve a balance between crater detection precision and network computation efficiency.

A comparison of the results obtained with different crater detection methods is shown
in Figure 12. Each row represents the detection result of all compared crater methods for the
same types of crater data. Each column represents the performance of the same detection
method in different types of craters with varying degrees of classification and distribution
imbalance. IR is the classification imbalance ratio, and DR denotes the distribution imbal-
ance ratio, which was computed by the number of craters in each image label. The details
are presented in Section 2.4. The greater the DR is, the denser the crater images are, and
relatively speaking, the smaller the IR is. The original DEM image shown in Figure 12a,b
is the ground truth, and Figure 12a–g denotes the compared algorithms. The blue circle
denotes the correctly detected craters, the green circle is the newly detected craters, and
the red circle is unrecognized craters. We can see that D-LinkNet and SwiftNet performed
poorly for crater detection, especially for dense crater data. There are many incorrectly
detected craters marked as red circles in Figure 12f,g. DeepMoon and ERU-Net could detect
most of the labeled craters in contrast to D-LinkNet and SwiftNet, but they performed
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poorly for large craters. For example, in IR = 9.3, DR = 49 and IR = 7.5, DR = 49, DeepMoon
could not detect the large crater that is represented by the red circle in Figure 12d,e. In the
third column, we can see that the proposed model increased the accuracy of crater detection
compared with the other models for craters of different densities and sizes, as shown in
Figure 12c. Moreover, the proposed model was able to detect some new unlabeled craters.
However, small craters with a high degree of overlap in the DEM data were difficult to
identify with high precision using DEM data for all compared algorithms. The proposed
model regarded such craters as noise and could not detect them well.
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(a) Origin Image (b) Ground-truth (c) ELCD (d) DeepMoon (e) ERU-Net (f) D-LinkNet (g) SwiftNet

Figure 12. Comparison of the results of test sets using different crater detection methods for DEM
data. (a) The original lunar DEM images in the test set. (b) The ground-truth DEM image. (c) The
detection results obtained with DeepMoon based on U-net [35]. (d) The recognition results obtained
with the ERU-Net network [36]. (e) The detection results obtained with D-LinkNet with the ResNet-18
network [23]. (f) The detection results obtained with SwiftNet (g), designed by the paper [24]. In
the figure, the blue circles represent correctly recognized crates, the green circles denote new craters
discovered by compared methods, and the red circle indicates unrecognized craters.

4. Discussion

With the application of deep learning techniques, great progress has been made in
automated impact crater detection. The proposed method builds an efficient crater edge pre-
diction network with a lightweight attention mechanism module and a multiscale feature
fusion module to recognize crater edges from digital elevation models. The experimental
results show that the presented method achieves high precision and recall rates and a
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fast detection speed when undergoing lunar crater detection, mainly due to the following
reasons: (1) we used the digital elevation model as the crater data, which contain abundant
3D morphology and topography morphological characteristics and are insensitive to light;
(2) the proposed crater edge segmentation network is an efficient model to improve the
accuracy of crater detection. The proposed network uses a lightweight attention mechanism
module to enhance the feature extraction capability of the network encoder and designs a
multiscale feature fusion module that fuses multi-level different resolution feature maps
to reduce information loss in the network encoder; and (3) considering the imbalance of
classification and different density distributions of craters, we proposed an efficient crater
edge segmentation loss function to optimize the network performance.

In the experimental results, Table 1 shows that the multiscale feature fusion module
can increase the crater detection accuracy, and it shows that the proposed crater loss
function can achieve the best crater edge segmentation results. Figure 8 shows that the
attention mechanism module can strengthen some chance information about craters and
weaken other chance information, which can strengthen the importance of crater features
to allow the edges of craters to be quickly distinguished from their backgrounds. Figure 9
shows that the CESL can improve the ability of the network to obtain optimal solutions and
can speed up the convergence of the improved model. The final crater detection results
show that the proposed model, which includes the attention mechanism module and the
multiscale feature fusion module, can achieve more fine-grained segmentation for crater
edges with different characteristics, as shown in Figure 10. In Table 3 and Figure 12, which
shows a comparison of the different crater detection methods, the proposed model is shown
to achieve the best detection performance with minimal errors in Ela and Er. Compared
with other real-time target detection methods, this method has a faster reasoning speed.
Compared with the survey of the global lunar orbiter laser altimeter (LOLA) dataset of the
Moon, the algorithm can detect the marked craters on the lunar surface more accurately
and can detect some undiscovered craters. There are some false and ambiguous markers
in the global LOLA dataset, and the proposed algorithm can correct false positives in the
original data. Moreover, the newly discovered craters can increase the size of the original
data set.

The discovery of impact craters is important for studying the evolution of the Moon.
There are many small craters on the Moon’s surface, and they influence the estimation of
the Moon’s age. However, the study still has some limitations with regard to small crater
detection. Most crater digital elevation models have a lower resolution than the optical
image and other higher-resolution images. Some craters that are too small appear as points
in DEM images, and they are likely to be ignored or considered to be noise and thus cannot
be detected successfully using a digital elevation model. The optical image has a high
resolution, but it is sensitive to illumination. Thus, determining how to avoid the impact
of light on impact craters in optical images or fusing the optical image and the digital
elevation model to improve the small crater detection accuracy deserve further attention in
the future.

5. Conclusions

In this paper, an efficient lunar crater detection algorithm, AFNet, based on the
segmentation convolutional neural network was proposed to improve the crater detection
accuracy and speed. Based on the VGG-16 network architecture, a lightweight attention
mechanism module was introduced to enhance the extraction of important crater features
in the network encoder. The proposed model uses a new feature fusion method that
fuses multi-level different feature maps obtained from the network encoder to reduce
the information loss of the output map in the network decoder. Then, considering the
classification and distribution imbalance of the crater data, the crater edge segmentation
loss function was used to improve the optimization performance of the proposed model.
Last, the crater positions were extracted by the crater edge extract algorithm based on
the match template method. The proposed model was applied to two crater catalogs and
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compared with four state-of-the-art crater detection algorithms. The results demonstrate
that the ELCD achieved an inference speed of about 73 HZ and a precision of 80.6% for
lunar crater detection in a DEM image with 256 × 256 pixels on GeForce RTX 3060, and
it obtained the best accuracy of 79.4% for F1 and 80.6% for F2 compared with the other
crater detection models. Moreover, the ELCD can be used to discover new craters and
expand the size of the original data set. It is hoped that this algorithm will further improve
the accuracy of lunar age estimation and the positioning accuracy of spacecraft landing.
For future work, the network structure should be further optimized so that the model can
improve its real-time detection speed and achieve a high crater detection accuracy in the
detection of impact craters of different sizes.
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The following abbreviations are used in this manuscript:

ELCD Efficient lunar crater detection
DEM Digital elevation model
CNNs Convolution neural networks
SAR Synthetic aperture radar
AFNet Attention mechanisms and multiscale feature fusion networks
CESL Crater edge segmentation loss
CEA Crater extraction algorithm
MFF Multiscale feature fusion
VGG-16 Visual geometry group-16
ECA Efficient channel attention
IR Data imbalance ratio
DR Distribution imbalance ratio
CE Cross-entropy
FL Focal loss
LRO Lunar reconnaissance orbiter
PA Pixel accuracy
MPA Mean pixel accuracy
MIoU Mean intersection over union
FWIoU Frequency weighted intersection over union
FLOPs Floating-point operations
FPS Frames per second
P Precision
R Recall
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Abstract: Deep learning is the subject of increasing research for fruit tree detection. Previously
developed deep-learning-based models are either too large to perform real-time tasks or too small
to extract good enough features. Moreover, there has been scarce research on the detection of
pomelo trees. This paper proposes a pomelo tree-detection method that introduces the attention
mechanism and a Ghost module into the lightweight model network, as well as a feature-fusion
module to improve the feature-extraction ability and reduce computation. The proposed method was
experimentally validated and showed better detection performance and fewer parameters than some
state-of-the-art target-detection algorithms. The results indicate that our method is more suitable for
pomelo tree detection.

Keywords: convolutional neural network; object detection; attention mechanism; remote-sensing
image; pomelo tree detection

1. Introduction

Citrus is the world’s largest fruit group, and pomelo is the largest citrus fruit [1].
High-quality pectin can be extracted from the peel of the pomelo, and the pulp can be
processed into juice and wine. Pomelo tree-planting information is vital to growers, as it
can provide a basis to scientifically manage planting and improve income per unit area and
unit time. Detecting the location and quantity of pomelo trees helps growers to develop
precision and intelligence in orchard management, such as in fertilization and irrigation [2],
pruning [3], and pesticide application [4], to reduce production costs, reduce environmental
pollution, and improve fruit yield and quality [5]. However, in actual production, data
are obtained largely manually, which requires much labor, and samples limited numbers
of trees. This will result in inaccurate data analysis and unreliable experimental results.
Therefore, a quick, non-destructive, and accurate pomelo tree-detection method is needed
to replace manual inspection.

Remote sensing technology has developed rapidly, and studies have demonstrated
its applicability to agriculture. For example, a plant water stress model was established
by combining satellite remote-sensing data with ground agrometeorological data [6], an
orange tree-detection model was established by a remote sensing platform combined with
unmanned aerial vehicles (UAVs) and sensors [4], and phytophthora root rot (PRR) disease
on avocado tree roots was detected by remote sensing and hyperspectral imaging [7]. Aerial
and satellite remote sensing are limited by weather conditions and monitoring costs [8].
Compared with satellites, UAVs are less dependent on weather conditions [9], and they
can be deployed in harsh environments with fast data collection [10].
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Tree-detection methods for remote-sensing images are mainly based on three kinds of
methods: traditional image processing, traditional machine learning, and deep learning.
Traditional image processing-based tree-detection methods have no parameter-learning
process, such as the local maximum method [11], watershed segmentation algorithm [12],
and multi-scale segmentation algorithm [13]. Srestasathiern et al. [14] proposed a method
for oil palm identification based on algorithms such as feature selection, semi-variance
function calculation, and local maximum filtering. Dos Santos et al. [15] proposed a palm
tree-detection method based on shadow extraction and template matching, which correctly
detected 75.45% of the trees in a study area of about 95 square kilometers. However,
traditional image-processing methods have lower recognition accuracy. Furthermore, they
require manual setting of many parameters.

Traditional machine learning-based methods typically comprise steps such as feature ex-
traction, image segmentation, classifier training, and prediction [16–18]. López-López et al. [19]
proposed a method for detecting unhealthy trees based on image segmentation and support
vector machine classifiers. Nevalainen et al. [20] proposed a method for tree detection and
species classification, which includes tree detection using local maximum filtering, feature
extraction, and tree species classification using random forest and artificial neural network
methods. Wang et al. [21] proposed utilizing a gradient histogram operator and a support
vector machine classifier to identify oil palm trees in UAV imagery. In general, traditional
machine-learning-based methods outperform traditional image-processing-based methods.
However, their feature extraction capability is insufficient, which limits them regarding
achieving higher detection accuracy.

A deep-learning-based algorithm can extract complex structural information from
huge amounts of high-dimensional data, using a neural network with multiple hidden
layers to automatically learn features from the original image [22]. Convolutional Neural
Networks (CNNs) are among the best-known deep learning-based methods owing to
their good image interpretability. CNNs are widely used to solve agricultural production
problems, including plant pest detection and classification [23,24], plant leaf identification
and classification [25,26], weed identification and classification [27,28], fruit and vegetable
harvesting and identification [29,30], and land cover classification [31,32].

Deep-learning-based algorithms have improved tree-detection performance. Li et al. [33]
proposed a CNN-based framework for detection and counting of oil palm trees in high-
resolution remote-sensing images, and this framework showed greater accuracy than three
other models. Pibre et al. [34] proposed a tree-identification method using multi-scale
sliding windows and neural networks. Wu et al. [35] researched the dead branches of apple
trees in winter, using remote-sensing data collected by UAVs, and used Faster R-CNN
to determine the number and location of trees. Zheng et al. [36] proposed a multi-type
method to accurately detect oil palm trees and monitor their growth. The method is based
on Faster R-CNN [37], and uses a refine pyramid feature module for feature extraction,
which can integrate deep and shallow features to help distinguish similar classes and detect
smaller oil palms. Osco et al. [38] proposed a method to estimate the number and location
of citrus trees in an orchard using an estimated density map, and this method achieved
higher F1-scores than Faster R-CNN and RetinaNet. Zheng et al. [39] proposed a coconut
tree crown-detection method, which contains three major procedures: feature extraction,
a multi-level Region Proposal Network (RPN), and a large-scale coconut tree-detection
workflow. The method achieves a higher average F1-score than pure Faster R-CNN. Some
methods based on domain adaption methods were proposed for tree detections [40,41].
They divide the data into a target domain that has few or no labels and a source domain
that has many labels. These techniques achieve detection by applying the information
acquired in the source domain to the target domain.

Most of the above methods use a two-stage target-detection network: (1) generation of
candidate region proposals through a RPN; and (2) classification and bounding-box regres-
sion tasks for selected candidates. Two-stage detection networks more time-consuming
and have lower computational efficiency than single-stage detection networks [42]. As a
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single-stage target detector, SSD [43] and YOLO [44–46] treat target detection as a regres-
sion problem. YOLOx-nano [47], the lightweight version of the model, has fewer model
parameters and runs faster, so it is suitable for real-time tasks, but it is not good enough
due to the complex and changeable environment of remote-sensing systems in agriculture.
Moreover, there is scant research on the detection of pomelo trees.

To improve recognition accuracy in complex environments, some researchers incor-
porated attention mechanisms into neural network models [48–50], and some researchers
used feature-fusion modules that combine features at different scales to enable the network
to extract richer features [51–53]. However, they did not consider that shallow and deep
feature information in deep networks have complimentary characteristics.

In summary, the existing methods for tree detection have the following problems:

• The two-stage algorithm has good performance in tree detection, but the algorithm is
complex, leading to computational inefficiency and slow detection.

• The one-stage algorithm runs faster than the two-stage one, but the model size is still
too large for real-time application. The lightweight version of the one-stage algorithm
is fast enough, but the feature-extraction ability is limited.

• Some studies used an attention mechanism and a feature-fusion module to improve
feature-extraction ability. However, they did not consider the advantage of the compli-
mentary characteristics between different layers.

To address the above problems, we propose a pomelo tree-detection method for UAV
remote-sensing images based on YOLOx-nano; it utilizes the complementary characteristics
of features at different levels to hierarchically aggregate rich information, thereby achieving
more accurate detection and counting of pomelo trees. A hybrid attention mechanism
module learns more representative features from the underlying features extracted from
the backbone feature extraction network. A feature-fusion module utilizes the complemen-
tary characteristics of the extracted low-level detail information and high-level semantic
information to perform cross-layer fusion of feature maps. A Ghost module replaces the
convolution module for better computational efficiency.

In this study, we make the following contributions:

• A hybrid attention mechanism module weights the pixels of the feature map with
channel attention and spatial attention to improve feature extraction and highlight
pomelo tree regions in backgrounds;

• A feature-fusion module fuses the feature maps of different layers without greatly
increasing computation, so it effectively aggregates feature maps;

• A Ghost module replaces the convolution module, reducing the number of parameters
and the computational complexity of the deep network, so as to further improve the
model-detection effect.

2. Materials and Methods

2.1. Materials
2.1.1. Image Data Collection

The remote-sensing dataset used in this study was obtained from an orchard of
pomelo trees in ShiShan and Yanyang Town, Meizhou City, Guangdong Province, China
(23◦23′~24◦56′N and 115◦18′~116◦56′E). Known as the “hometown of the pomelo”, Meizhou
is in the eastern part of Guangdong Province. The warm and humid climate, abundant
rainfall, and deep and well-drained soil provide good conditions for pomelo cultivation.
The test site covers an area of about 50 hectares, and the spacing of pomelo trees is 4 × 4 m.
UAV remote-sensing images were collected from a quadrotor UAV (Phantom 4, DJi, Guang-
dong, China) equipped with a visual spectral (RGB) camera with a spatial resolution of
0.05 m. A total of 1222 UAV remote-sensing images (5642 × 3648 pixels) were collected,
from an altitude of 120 m, with an overlap rate of 60%, in two areas heavily planted with
pomelo trees, including images of other trees, houses, and roads, as shown in Figure 1.
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Figure 1. Aerial image of pomelo orchard. Image B is the original image from the vertical overhead
shot of the UAV. Images A1 and A2 contain dense and sparse pomelos, respectively; images C1–C3
contain pomelo trees in the adult, middle-aged, and young-growth stages, respectively; image D
contains other trees in the orchard.

The first dataset was collected at 10:00 on 26 December 2021 in Shishan town (24◦26′N
and 116◦05′N), Meizhou City, Guangdong Province, China. The shooting location was on
a flat terrain, as shown in Figure 2a–c. A large number of pomelo trees were planted in
this region. We used UAVs for vertical overhead photography and collected 1022 UAV
remote-sensing photos in this area.

The second dataset was captured at 16:00 on 16 January 2022 in Yanyang Town
(24◦22′N and 116◦22′N), Meizhou City, Guangdong Province, China. The shooting area
is located in hilly mountainous terrain. This dataset is more challenging than the first
one. Due to the diverse topography undulations, pomelo trees were planted at various
heights and were exposed to varying amounts of sunshine, as shown in Figure 2d–f. In
addition, there is a large amount of other vegetation planted in mountainous areas with a
complex environment of overgrown trees. For vertical overhead photography, we obtained
233 remote-sensing images using UAVs.

2.1.2. Image Annotation and Data Generation

We selected 20 and 8 images (5642 × 3648 pixels) from the Shishan and Yanyang Town
UAV image database, which were cropped without overlap to obtain 1674 cropped images,
respectively. Each image contained 0–20 pomelo trees, and was of the size 640 × 640 pixels,
as shown in Figure 2. We used the open-source image-editing tool LabelImg to manually
label the images, with one box to label a pomelo tree. For each dataset, we randomly
selected 60% for training, 20% for validation, and 20% for testing. Half of the images in the
training dataset were brightened, darkened, flipped, and scaled to increase the richness of
the training sample data.
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Figure 2. Samples of dataset 1 (a–c) and dataset 2 (d–f). The pomelo trees in dataset 1 are planted on
a plain, under uniform lighting. The pomelo trees in dataset 2 were planted on hillsides with uneven
distribution, under drastic lighting variation.

2.2. Proposed Method

We introduce an attention mechanism behind the backbone feature extraction network,
which allows the model to focus on the pomelo canopy, improving the differentiation of
the pomelo trees from the backdrop. A cross-layer feature-fusion model (CLFF) helps
the network to more effectively fuse features at different layers so as to enrich feature
information extracted by the model and improve model-detection capability. The CNN
module can create a large number of similar feature maps, and it has been shown that these
redundant feature maps enable the CNN’s excellent feature-extraction capabilities [54].
The proposed method can reduce model parameters and improve feature extraction. The
proposed network structure is shown in Figure 3.

2.2.1. Hybrid Attention Mechanism Module

Despite the increasing resolution of remote-sensing images, there is still ambiguity in
the boundaries between objects, which increases false detection. In addition, the sizes of
pomelo trees vary by growth stages, causing poor performance. To address this problem, we
use an attention mechanism [55] to enhance the importance of target pixels in both channels
and space, which can strengthen the information of pomelo trees and weaken background
information by weighting the features extracted by the backbone feature network. The
attention score indicates the degree of correlation between pixels and targets [56], and can
be used to focus on pomelo trees and reduce the impact of canopy sizes.

The hybrid attention mechanism (Figure 4) has channel and spatial attention mecha-
nisms, focusing on both channel and pixel point weighting during model training.

In the channel attention mechanism, maximum and average pooling are applied to the
h × w × c feature map to obtain two 1 × w × c feature strips, which are fed into the shared
full-connected module, which contains two full-connected layers. The number of neurons
in the first full connection is small, and the number in the second full connection is equal
to the number of input channels. The resulting two features are summed, and the weight
coefficients of each 1 × w × c channel are obtained by the sigmoid function. The weight
coefficients are multiplied with the input feature map.
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Figure 3. Proposed network structure. Backbone: Focus, CBS (convolution, batch normalization,
and sigmoid weighted liner unit (SiLU) activation), Ghost, and cross-stage partial (CSP) module
downsample input image and convolve data. Spatial pyramid pooling (SPP) module is embedded in
last Ghost and CSP module, including three maxpooling layers and concat mode. End of backbone:
convolutional block attention module (CBAM) adds weight for target information. Neck section:
bidirectional feature pyramid network (BiFPN) and CLFF module transfer feature information. Three
convolution sets predict class label and object location.

In the spatial attention mechanism, maximum and average pooling are applied for
the feature map on the channels, and the outputs are stacked in the channel dimension to
obtain an h × w × 2 feature map. The stacked feature map is fed to a convolution module,
and the weight of each feature point is obtained by the sigmoid function. The input feature
map is multiplied by the weight of each feature point.

The channel and spatial attention mechanisms are formulated as

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))) (1)

Ms(F) = σ( f 7×7([AvgPool(F); MaxPool(F)])), (2)

where σ denotes the sigmoid function, F represents the feature map, MLP represents the
fully connected neural network, and f 7×7 represents convolution with a 7 × 7 filter.

In this study, the spatial attention module uses a 7 × 7 convolution kernel, which
empirically outperforms a 3 × 3 convolution kernel. Within a certain interval, the larger the
convolution kernel, the better the performance of the network. We maintain the original
backbone feature network structure. To retain the excellent feature extraction capability of
the original model, a hybrid attention mechanism is added after the backbone network.
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Figure 4. Hybrid attention mechanism. Maximum and average pooling are applied for the feature
map to obtain channel attention as well as spatial attention.

2.2.2. Cross-Layer Feature Fusion Pyramid

The low-level features from the shallow layers of the network contain much fine-
grained feature information and background noise, while features extracted from the deeper
layers have more semantic information [57]. Therefore, integrating low- and high-level
features can produce high-quality feature maps that complement each other. The original
model feature fusion section uses a feature pyramid network (FPN) with a path-aggregation
network (PANet) structure. The FPN structure conveys the deep feature information by
upsampling to fuse and obtain the predicted feature map. A bottom-up feature pyramid
containing two PANet structures is added after the FPN structure. The PANet can convey
strongly localized features in a bottom-up manner. However, the FPN+PAN structure uses
some transformations to feature maps so that their sizes are equal, which leads to the loss
of some useful information. Furthermore, the FPN+PAN structure does not fully use the
complementary features across the shallow and deep layers of the network, so it does not
achieve better performance.

EfficientDet [58] uses BiFPN to combine different levels of features to detect objects,
using features with stronger semantic information to detect large objects, and features with
stronger spatial information to detect small objects. It shows good performance.

Inspired by EfficientDet, we propose the CLFF module (Figure 5) to extend the feature
fusion network structure of BiFPN, which exploits the complementary features of the
shallow and deep layers of the network. Unlike the aggregation strategy of series or
additive operations, we consider the complementary features between different layers of
the network to overcome the lack of some detailed and semantic information of deep and
shallow features, respectively, about the pomelo tree. We multiply the masks of the feature
maps of the middle layer with those of the shallow and deep layers to take full advantage
of the complementary features between layers, which can enable one to more effectively
focus on the pomelo tree region, while reducing the interference of background noise. We
use the feature maps in the bottom-up path to generate the masks. The steps are as follows.

1. For the middle feature map s, we generate the semantic mask w using a convolution
with a 3 × 3 kernel;

2. We multiply the semantic mask w and shallow-feature map h, and the semantic mask
w and deep-feature map g;

3. We sum the above two results, and feed the sum to a 3 × 3 convolution layer to obtain
the output of the feature-fusion module.

144



Remote Sens. 2022, 14, 3902

h

Conv

s

g

w

h

Conv

s

Conv

Conv

F2 F3

F2

F2

CLFF

Two-layer

Feature fusion

Three-layer

Feature fusion

P3_in

P4_in

P5_in

P3/8

P4/16

P5/32

Neck

Multiplication AddF2 F3Two-layer Feature fusion Three-layer Feature fusion

Figure 5. Neck structure and CLFF module. On the neck section, we delete low-utilization nodes and
connect nodes with different layers. On CLFF, we generate the mask using the feature map of the
bottom-up feature pyramid, and multiply the mask with the shallow and deep-feature maps. The
two or three feature maps are fused by addition.

2.2.3. Ghost Convolution Module

The feature maps obtained by traditional convolution have high similarity and redun-
dancy, resulting in a large computational cost. We replace this with the Ghost module to
reduce the computational cost and make the model more lightweight and efficient. The
Ghost module uses linear operations instead of some convolutions, as shown in Figure 6.

Conv

1
�

2
�

n
� Concat

Identity

Figure 6. Ghost module. Convolution module generates intrinsic feature maps with small channels.
Linear operation expands features and increases number of channels.

The Ghost module has two steps. Traditional convolution generates a small number
of intrinsic feature maps, and a linear operation expands features and increases the number
of channels. Linear operations can produce similar feature maps with fewer parameters
and less computing cost. The total number of required parameters and the computational
complexity of the Ghost module are less than those of traditional convolution.
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2.3. Pomelo Tree-Detection Network

Figure 3 shows the proposed network structure for pomelo tree detection. Follow-
ing the divide-and-conquer principle, module y1 focuses on large-scale object detection,
and modules y2 and y3 focus on medium- and small-scale objects, respectively. A hy-
brid attention mechanism, a cross-layer feature-fusion pyramid, and the Ghost module
improve performance.

The proposed network has a backbone, neck, and prediction sections, including a
Focus module, CBS structure, CSP residual structure, and SPP module.

• The Focus module uses a slicing operation to split a high-resolution feature map
into multiple low-resolution feature maps. This module samples and splices the
input feature maps in each column and obtains output feature maps by convolution
operations, which can reduce information loss due to downsampling;

• The CBS structure consists of convolutional layers, normalization processing, and
SiLU activation functions, which have the characteristics of no upper or lower bound,
smoothness, and non-monotonicity, which can improve accuracy;

• The CSP structure consists of a standard convolutional structure and a bottleneck mod-
ule, which reduces and then expands the number of channels, with the final number
of input and output channels remaining the same. The input feature layer of the CSP
has two branches, one with multi-bottleneck stacking and standard convolution, and
the other with a basic convolution module, as shown in Figure 7. The feature maps of
the two branches are aggregated by a concat operation. To reduce the model size, we
only stack the bottleneck modules once in the CSP structure;

• The SPP module can realize the fusion of local and global features, which enriches
the information of the feature map. It performs well in the case of large differences in
target size.

CBS

CBS

Concat

CBS CBS Add

One Bottleneck unit
(n-1)

Bottleneck units

CBS

Figure 7. CSP−n structure. The input feature layer of the CSP has two branches, one with multi-
bottleneck stacking and standard convolution, and the other with a basic convolution module. CSP−1
means one bottleneck unit, CSP−n means n bottleneck units.

We describe the flow of our proposed algorithm. The input of the backbone feature
network is a 640 × 640 × 3 image, which is turned into a 320 × 320 × 12 feature map by
the Focus module after one convolution operation with 64 convolution kernels. Through
one layer of CBS and CSP modules, the shallow features are aggregated, and the feature
dimension is transformed to 160 × 160 × 128, where the CBS module changes the size and
number of channels of the feature map, and the CSP module divides the feature map into
two parts and merges them through the cross-stage hierarchy. The features are further
extracted by three CBS and CSP combination modules to obtain two effective feature
layers, y1 and y2, whose respective feature maps are 80 × 80 × 256 and 40 × 40 × 512,
respectively. An SPP module is inserted between the subsequent CBS and CSP structures,
and the 20 × 20 × 512 feature map is fused with local and global features to improve its
expressiveness. The third effective feature layer, y3, is obtained, which has a 20 × 20 × 1024
feature map.

The deep feature information enhances the network’s ability to capture the target
by blending the attention mechanism and fusing its weights. The cross-layer feature
fusion network achieves the fusion and multiplexing of multi-level features, thus obtaining
effective feature layers of the size 80 × 80 × 256, 40 × 40 × 512, and 20 × 20 × 1024. After
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prediction, three results are obtained for each feature layer by decoupled head: the category
(cls), coordinates (Reg), and foreground background judgment of the target frame (Obj),
as shown in Figure 8. Reg has four channels, representing the offset of the center of the
prediction frame compared to the feature points, and the offset of the width and height
of the prediction frame compared to the logarithmic index of the reference. Obj has one
channel, representing the probability of each feature point predicting the objects contained
in the frame. Cls has num_classes channels, representing the probability that each feature
point corresponds to a class of objects.

We use complete-IoU (CIoU) loss instead of intersection over union (IoU) in the pre-
diction phase. IoU is commonly used as a matching degree evaluation metric of prediction
bounding boxes and ground-truth boxes in a dataset, calculated by the ratio of their area
intersection and union. We consider the effects of the overlap region, centroid distance,
and aspect ratio on the loss function, which makes the regression of target-detection frames
more stable. The CIoU loss is defined as

CIoU = IoU − ρ2(b, bgt)

c2 − αν (3)

α =
ν

1 − IoU + ν
(4)

ν =
4

π2 (arctan
wgt

hgt − arctan
w
h
)2 (5)

LOSSCIoU = 1 − IoU +
ρ2(b, bgt)

c2 − αν, (6)

where c is the diagonal distance of the smallest closed area that can contain both the
predicted and real bounding boxes; ρ2(b, bgt) is the Euclidean distance between the center
point of the predicted and real boxes, and the corresponding loss is 1 − CIoU.

Cls

H×W×256

H×W×256

H×W×256

Reg H×W×4

Obj H×W×1

Feature

3×3 conv

1×1 conv

H×W×C

Decoupled Head

Figure 8. Decoupled head structure. For each level of neck output feature, we first adopt a 1 × 1
convolution layer to reduce the feature channel to 256 and then add two parallel branches with two
3 × 3 convolution layers each for classification and regression tasks, respectively. Obj branch is added
on the regression branch.
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3. Results

Table 1 shows the experimental environment. The proposed method used stochastic
gradient descent (SGD) for training with 500 iterations, where the batch size was 16, the mo-
mentum coefficient was 0.937, the weight decay rate was 0.0005, and the initial learning rate
was 0.01 and dynamically decreased to 0.0001. The enhancement factors of hue (H), satura-
tion (S), and luminance (V) were set to 0.015, 0.7, and 0.4, respectively. The final output was
the identified pomelo canopy location boxes and the probability of belonging to the pomelo
tree category. The training, validation, and testing sets are described in Section 2.1. The
source code for the proposed method is available at https://github.com/hr8yhtzb/PTDM.

Table 1. Lab environment.

Configuration Parameter

CPU Intel Core i9-10900kes
GPU 2 NVIDIA GeForce RTX 3090

Accelerated environment CUDA 11.3 CUDNN8.2.1
Development PyCharm2021.1.1

Operating system Ubantu 18.04
Model frame PyTorch 1.10

3.1. Standard of Performance Evaluation

We used the common index AP to evaluate the performance of different methods.
Because the detection target of this study only belonged to one class, the value of mAP was
equal to the single-target AP value. Hence, mAP was not used as an evaluation metric. AP
was calculated as

AP =
∫ 1

0
P(R)dR, (7)

where P and R are the respective precision and recall of the detection model,

P =
TP

TP + FP
(8)

R =
TP

TP + FN
, (9)

where TP, FP, TN, and FN denote true positive, false positive, true negative, and false
negative, respectively.

The counting performance was evaluated using mean error (MAE), counting accuracy
(ACC), R2, and root mean square error (RMSE). MAE reflects the accuracy of counting,
and RMSE reflects the robustness of the counting network. They were defined as

MAE =
1
n

n

∑
1
|ti − ci| (10)

ACC = (1 − 1
n

n

∑
1

|ti − ci|
ti

) (11)

R2 = 1 − ∑n
1 (ti − ci)

2

∑n
1 (ti − t̃i)2

(12)

RMSE =

√
∑n

1 (ti − ci)2

n
, (13)

where ti, t̃i, and ci are the actual count, average true count, and predicted count, respectively,
of image i (total number of anchors detected), and n is the number of UAV images in the
test set. MAE and ACC quantify prediction accuracy. R2 and RMSE were used to evaluate
the counting performance of the proposed method.
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3.2. Comparison to State-of-the-Art Object-Detection Algorithms

We compare our proposed method with state-of-the-art object-detection algorithms,
including Faster R-CNN [37], SSD [43], YOLOv3 [45], YOLOv4-tiny [46], Libra [42], and
CCTD [39]. Faster R-CNN is a famous two-stage detection algorithm, and many tree-
detection models are based on Faster R-CNN. SSD, YOLOv3, and YOLOv4-tiny are famous
single-stage detection algorithms. They do not have the bounding box proposal and
resampling steps, so they have a faster computational speed. YOLOv4-tiny is a lightweight
version of YOLOv4 with fewer parameters and faster detection speed. Libra and CCTD are
state-of-the-art two-stage detection algorithms. Libra optimized two-stage detection using
IoU-balanced sampling. CCTD used a multi-level region proposal network to optimize
the selection of region proposals. The two datasets described in Section 2.1 were selected
for experiments.

3.2.1. Comparison of Detection Performance

We first evaluated the precision, recall, AP, F1-score and complexity for different state-
of-the-art algorithms, as shown in Tables 2–4, where the best value of different methods is
shown in bold, from which we can observe the following.

• Faster R-CNN had the lowest precision, with just 43.17% and 16.08%, respectively, in
datasets 1 and 2, perhaps because of the complex background. Faster R-CNN does not
build an image feature pyramid, and cannot effectively use shallow and small-scale
features, resulting in a high number of false detections and low precision. In addition,
this method appears to overfit, which resulted in much lower accuracy than other
methods, indicating that this method is unsuitable for pomelo tree detection.

• SSD had an extremely low recall, with 58.23% and 30.06% in datasets 1 and 2, re-
spectively, because SSD has no feature pyramid, the same as in Faster R-CNN. The
recall rate of SSD was 1% to 4% lower than that of Faster R-CNN, which uses two-step
detection. It first generates the region of interest, and then detects within it. Therefore,
two-step detection could reduce the number of missed objects, and had a higher recall
rate. However, the recall rates of SSD and Faster R-CNN were both lower than those
of other methods owing to the lack of a feature pyramid.

• YOLOv3 had the highest precision of all methods, reaching over 93% in the first
dataset and 91% in the second region. However, its recall was less than 80% and 50%
in the two datasets, respectively. YOLOv3 is the most complex because it includes a
large number of convolution modules, which incur more computational cost.

• YOLOv4-tiny had similar detection results to YOLOv3, as they are both single-stage
detectors. Although YOLOx-nano is also a single-stage detector, it had about 6% to
25% higher recall than YOLOv4-tiny and YOLOv3 in both regions because it has two
PANet structures that can constitute a bottom-up feature pyramid, which can enhance
feature extraction. In addition, YOLOx-nano is anchor-free, which is better than an
anchor-based detector for single-tree detection in remote-sensing images [59]. Because
an anchor-based detector matches the object based on the anchor box’s size, it misses
detection if the object’s size exceeds that of the anchor box. The anchor free detector
efficiently eliminates the problem that the anchor box does not match the object size
and lowers the possibility of missed detection.

• Libra and CCTD are both two-stage detectors and therefore have a high recall rate on
both datasets, with about 87% in the first dataset and 80% in the second dataset. This
result indicated that Libra and CCTD method had fewer missed detections. However,
because Libra and CCTD are anchor-based method, their accuracy is limited, with
only about 63% to 75% in the second dataset.

• Our method obtained the highest AP among all algorithms, which demonstrates its
effectiveness. The precision was 92.41% and 87.18% in datasets 1 and 2, respectively,
the recall was 87.07% and 75.35%, and the AP value was 93.74% and 87.81%. Among
all compared methods, the AP value of ours was the highest. The outstanding perfor-
mance of our method can be attributed to the attention mechanism, the cross-layer
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feature-fusion pyramid, and the Ghost module. The attention mechanism improves
the capacity to extract feature information across space and channels, and provides
enough feature suppression background information. The cross-layer feature-fusion
pyramid combines semantic information from feature maps at different levels of lay-
ers, allowing it to learn rich information. Use of the Ghost module instead of 3 × 3
convolution reduces the variance of the feature geometry, thus deepening the feature
information association between deep and shallow feature maps.

• The model size of our proposed method was 7.8 MB only, which is 98% and 96%
smaller than that of Libra and YOLOv3, respectively, and is just slightly more than that
of YOLOx-nano. In addition, our method was the fastest of all methods. It is worth
noting that the size of our proposed method is larger than YOLOx-nano, but it runs
faster than YOLOx-nano. This is because the ghost module we used can reduce the
computational complexity. In summary, our improvements make the model lighter
and more computationally efficient.

Table 2. Comparison of state-of-the-art object-detection algorithms in dataset 1.

Algorithm Precision (%) Recall (%) AP (%) F1-Score

Faster R-CNN 43.17 63.99 53.98 0.52
SSD 82.56 58.23 68.92 0.68

YOLOv3 93.64 79.24 91.74 0.86
YOLOv4-tiny 89.93 81.26 89.53 0.85
YOLOx-nano 90.99 86.43 93.08 0.89

Libra 87.12 87.85 89.25 0.87
CCTD 87.29 87.64 91.61 0.87
ours 92.41 87.07 93.74 0.90

Table 3. Comparison of state-of-the-art object-detection algorithms in dataset 2.

Algorithm Precision (%) Recall (%) AP (%) F1-Score

Faster R-CNN 16.08 30.16 8.99 0.21
SSD 87.91 30.06 60.26 0.45

YOLOv3 91.81 46.72 73.31 0.62
YOLOv4-tiny 84.73 62.37 79.09 0.72
YOLOx-nano 84.41 71.09 83.66 0.77

Libra 63.98 72.22 69.25 0.68
CCTD 76.67 83.84 84.72 0.80
ours 87.18 75.35 87.81 0.81

Table 4. Comparison of computational complexity.

Algorithms
Model Size The Average The Shortest

(MB) Detection Time Detection Time

Faster R-CNN 107.86 0.262 s 0.248 s
SSD 90.07 0.159 s 0.125 s

YOLOv3 234.69 0.196 s 0.174 s
YOLOv4-tiny 22.41 0.133 s 0.119 s
YOLOx-nano 2.7 0.133 s 0.121 s

Libra 466 0.872 s 0.828 s
CCTD 315 0.615 s 0.588 s
ours 7.8 0.099 s 0.091 s

Figure 9 shows the visual detection effects of different methods. Faster R-CNN and
SSD had a large number of missed detections, whereas YOLOv3, YOLOv4-tiny, Libra, and
CCTD had a small number. This result showed that the recalls of the Faster R-CNN and
SSD detectors were much lower than those of the YOLO series because they lack an image
pyramid and are unable to properly integrate the information from the feature layer. Libra
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and CCTD are both anchor-based detection methods, and they are insensitive to tiny targets.
Overall, our method outperformed the other methods, without the yellow box and the blue
box for the testing image. Moreover, as a lightweight model, our method is better suited
for pomelo tree recognition.

Figure 9. Detection effects of different methods (yellow box: missed detection; blue box: error
detection). It can be seen that Faster R-CNN and SSD without feature pyramids had a large number
of missed detections. YOLO series with feature pyramids had a small number of missed detections.
Libra and CCTD could not detect tiny targets. The proposed method had no missed detection.

Figure 10 shows the ability of the proposed method to distinguish similar targets. In
Figure 10a,b, an area planted with a large number of pomelo trees is confused with a small
number of orange trees. The proposed method could accurately treat orange trees with
slightly different leaf colors as negative samples. In Figure 10c, the proposed method could
accurately treat other trees with mostly the same leaf color but with a few white leaves
as negative samples. Overall, our proposed method had good ability to distinguish trees
similar to pomelo trees.

(a) (b) (c)

Figure 10. The ability of the proposed method to distinguish different citrus trees (yellow box: other
citrus fruit tree). In (a,b) the proposed method distinguishes orange trees well. In (c), the method
can accurately distinguish other trees with slightly different leaf colors. It can be seen that proposed
method had a good ability to distinguish similar targets.

3.2.2. Counting Performance

We evaluated the detection of the number of pomelo trees for different state-of-the-
art methods, choosing 15 images of pomelo orchards captured by a UAV as the dataset.
Each image contained 504 to 1490 pomelo trees, in terrain types of flat plains and uneven
mountains, with both dense and sparse distributions of pomelo trees. The comparison
results are shown in Table 5. The MAE and RMSE of the proposed method were 36.4
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and 42.7, respectively, significantly better compared with Faster R-CNN, SSD, YOLOv3,
YOLOv4-tiny, CTDD, and Libra. In particular, the MAE and RMSE of the proposed method
were significantly better than those of YOLOv3, with improvements of 39.6% and 42.2%,
respectively. Therefore, the proposed method can better extract features of different scales,
and can deal with multi-scale changing scenes as well as negative samples.

Table 5. Tree counting performance for different methods.

Algorithm MAE RMSE ACC (%) R2

Faster R-CNN 170.9 221.2 82.18 0.24
SSD 162.7 184.7 82.61 0.47

YOLOv3 60.3 73.9 92.91 0.92
YOLOv4-tiny 59.9 73.5 93.12 0.92

Libra 55.5 67.1 92.97 0.93
CCTD 56.1 77.9 93.07 0.91
ours 36.4 42.7 95.93 0.97

Figure 11 compares the MAE and RMSE counting results for different methods. The
MAE and RMSE of Faster R-CNN were the highest, with 170.9 and 221.2, respectively. This
result confirmed that Faster R-CNN performs poorly in two locations for detection. SSD’s
MAE and RMSE were much higher than those of YOLOv3 and YOLOv4-tiny and only
slightly lower than those of Faster R-CNN. This is because SSD lacks the feature pyramid
structure, which prevents the method from extracting sufficient features to identify pomelo
tree. The MAE and RMSE of YOLOv3, YOLOv4-tiny, Libra, and CCTD were similar, with
MAE fluctuating between 55 and 60 and RMSE between 65 and 80. The MAE and RMSE
of our proposed method were lower than those of other methods, with 36.4 and 42.7, which
indicates its advantages in terms of computational accuracy and robustness.

Figure 11. Comparison of MAE and RMSE counting results for different methods. The proposed
method has the lowest MAE and RMSE.

Figure 12 illustrates the predicted counts of the proposed method and true counts
of the 15 images, including the predicted counts obtained by the result of detection, and
the ground truth counts. For almost all images, the proposed method predicted counts
that were extremely near to ground-truth box counts for all images. The errors between
the predicted counts and the true counts were from 7 to 71. In the UAV images with large
errors, the orchards are complex and contain many additional plants, such as bushes. The
number of false detections increased because they were mistakenly identified as pomelo
trees. Even yet, the accuracy of prediction exceeded 95%, which indicates the proposed
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method produces a reasonable estimate of the number of pomelo trees. Note that most
images in the test data set contain over 900 pomelo trees, and the counting results here are
the correctly detected fruit trees.

Figure 12. Predicted counts of proposed method and true counts of 15 images.

3.3. Ablation Experiments

Through ablation experiments, we could analyze the impact of different components
on the proposed method. We chose AP.5 and AP.5:.95 as assessment indicators after testing
the model’s performance with several modules. AP.5 was the AP value when IoU was
taken as 0.5. AP.5:.95 is the AP value when IoU increased from 50% to 95% in steps of
5%. AP.5 could reflect the performance of model detection, and AP.5:.95 could reflect
the robustness of model-detection performance. The experimental results in Table 6 show
that our method (last row) significantly improved the detection effect compared with the
original method.

Table 6. Comparison of components of proposed method.

YOLOx-
Nano

CBAM CLFF Ghost AP.5 (%) AP.5:.95 (%)

√
93.08 61.0√ √
93.38 61.1√ √
93.21 60.9√ √
93.36 61.1√ √ √
93.53 61.3√ √ √ √
93.74 61.5

3.3.1. Attention Mechanism

When we added a hybrid attention mechanism module at the end of the backbone
feature extraction network, AP increased from 93.08% to 93.38%. Owing to the relatively
simple backbone structure of the original lightweight network, it performed poorly when
the background and target were not sufficiently distinguished. The hybrid attention
mechanism module weights the pixels of the feature map with channel attention and spatial
attention, which can improve the ability of feature extraction and effectively highlight
pomelo tree regions over backgrounds.

3.3.2. Use of Cross-Layer Fusion Feature Pyramid

When we added the cross-layer fusion feature module, AP improved from 93.08% to
93.21%. This indicates that the CLFF module improves detection performance because it
utilizes complementary characteristics between the extracted shallow detail information
and deep semantic information.
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3.3.3. Use of Ghost Module

When we used the Ghost module instead of traditional convolution for feature extraction,
AP increased from 93.08% to 93.36% because the Ghost module can obtain a large number of
redundant feature maps with a simple linear operation. In addition, the Ghost module could
reduce the effect of feature geometry variation, reduce the parameters and computational
complexity of the deep network, and extract more effective feature information. It is worth
noting that when the Ghost, CBAM, and CLFF modules were combined, the AP improved
from 93.08% to 93.74%, which indicates that the proposed method is more capable of feature
extraction and has better detection performance than the original method.

3.3.4. Visual Effect

Figure 13 compares the original YOLOx-nano and the proposed method. From
Figure 13a,d, we can find that the pomelo trees partially obscured by wires are not recog-
nized by the original method, while the proposed method successfully identifies them,
which indicates our method’s better robustness against and recognition of obscured objects.

According to Figure 13b,e, the young pomelo trees had small canopies that the orig-
inal method could not recognize. In addition, the original method ignored two closely
adjacent pomelo trees, treating them as negative samples with no obvious boundary. In
contrast, the proposed method could accurately identify small objects and pomelo trees
with inconspicuous edges. The original method expands the perceptual field under the
layer-by-layer convolution, which ignores some small pomelo trees. The proposed method
adds an attention mechanism and a cross-layer feature-fusion mechanism, making it more
capable of identifying small targets and targets with unclear edges.

According to Figure 13c,d, the original method incorrectly identified a banana tree as
a pomelo tree, while the proposed method avoided this error. This is because the original
method has fewer parameters in the backbone feature extraction network, and the extracted
features are insufficient. The proposed method adds an attention mechanism, improving
feature fusion and making the scale of feature differentiation between positive and negative
samples more obvious.

Figure 13. Comparison of the detection effect between the original and proposed methods (yellow
box: missed detection; blue box: error detection): (a) the original method missed a pomelo tree
obscured by power lines; (b) the original method missed pomelo trees with small canopies and
inconspicuous canopy boundaries; (c) the original method incorrectly treated banana trees as pomelo
trees; (d–f) the proposed method avoids all the above errors to accurately identify all pomelo trees.
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4. Discussion

We proposed a pomelo tree-detection method for UAV remote-sensing images. We in-
troduced a hybrid attention mechanism module to improve the ability of feature extraction
and effectively highlight pomelo tree regions over backgrounds. We designed a feature-
fusion module to fuse feature maps of the same scale but different levels, without greatly
increasing computation. We replaced the convolution module with a Ghost module to im-
prove model detection. The proposed method reduces model parameters while extracting
more effective feature information. Compared with some state-of-the-art target-detection
algorithms, our method experimentally showed better detection performance and fewer
parameters, so it is better suited for pomelo tree detection in UAV images.

In our future work, we will research how to use domain adaption to detect pomelo
trees according to a different time and space, and extend our proposed method to different
types of trees in orchards.
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Abbreviations

The following abbreviations are used in this manuscript:

ACC Accuracy
BiFPN Bidirectional Feature Pyramid Network
CBMA Convolutional Block Attention Module
CBS Convolution, Batch normalization and SiLU activation
CIoU Complete-IoU
CLFF Cross-Layer Feature Fusion
CNNs Convolutional Neural Networks
CSP Cross-Stage Partial
IOU Intersection Over Union
FPN Feature Pyramid Network
MAE Mean Error
PANet Path Aggregation Network
RMSE Root Mean Square Error
RPN Region Proposal Network
R2 Correlation Coefficient
SGD Stochastic Gradient Descent
SiLU Sigmoid Weighted Liner Unit
SPP Spatial Pyramid Pooling
UAVs Unmanned Aerial Vehicles
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Abstract: The timely and accurate estimation of grassland aboveground biomass (AGB) is impor-
tant. Machine learning (ML) has been widely used in the past few decades to deal with complex
relationships. In this study, based on an 11-year period (2005–2015) of AGB data (1620 valid AGB
measurements) on the Three-River Headwaters Region (TRHR), combined with remote sensing data,
weather data, terrain data, and soil data, we compared the predictive performance of a linear statisti-
cal method, machine learning (ML) methods, and evaluated their temporal and spatial scalability.
The results show that machine learning can predict grassland biomass well, and the existence of an
independent validation set can help us better understand the prediction performance of the model.
Our findings show the following: (1) The random forest (RF) based on variables obtained through
stepwise regression analysis (SRA) was the best model (R2

vad = 0.60, RMSEvad = 1245.85 kg DW (dry
matter weight)/ha, AIC = 5583.51, and BIC = 5631.10). It also had the best predictive capability of
years with unknown areas (R2

indep = 0.50, RMSEindep = 1332.59 kg DW/ha). (2) Variable screening
improved the accuracy of all of the models. (3) All models’ predictive accuracy varied between 0.45
and 0.60, and the RMSE values were lower than 1457.26 kg DW/ha, indicating that the results were
reliably accurate.

Keywords: MODIS; Google Earth Engine; biomass inversion; spatio-temporal scalability; model building

1. Introduction

Grassland is one of the most widespread types of vegetation in the world, and it
accounts for about 20% of the global land area. It plays an important role in ecological
balance and human livelihood [1]. The aboveground biomass (AGB) of grassland is one
of the most direct manifestations of grassland quality and grassland ecosystems [2,3].
Therefore, accurate estimation of the grassland AGB is particularly important for grassland
grazing management and regional grassland sustainable development.

The aboveground biomass (AGB) can be predicted by direct methods (by harvesting
the biomass) and by indirect methods (including the use of remote sensing tools). The direct
harvest method has high estimation accuracy, but it is time-consuming, labor-intensive,
costly, and inefficient, and will cause a certain degree of damage to grassland ecology [4].
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Therefore, it is only suitable for short-term, small-scale detection. In contrast, Satellite
remote sensing has low cost and high efficiency, providing an effective means for regional
and global production detection [5]. Enhanced vegetation index (EVI) [6], soil adjusted
vegetation index (SAVI) [7,8], modified soil adjustment vegetation index (MSAVI) [9], and
ratio vegetation index (RVI) [10] have been used for monitoring and estimation. Further-
more, other environmental factors that affect biomass (such as climate variables and soil
properties) contain non-biological information [11–13].

The use of remote sensing images and environmental factors to construct non-parametric
models is a common method for estimating grassland biomass. The construction of a
non-parametric model requires a “learning process” based on training data that can au-
tomatically optimize the weight of each calculation until error has been minimized [14].
Non-parametric models can be divided into linear and non-linear models. Classical linear
models include partial least squares (PLS) and principal component regression (PCR).
Common non-linear models include machine learning (ML) models, such as convolutional
neural networks (CNNs), support vector machines (SVMs), and random forests (RFs).

Grassland growth can be influenced by multiple environmental factors, and previous
studies have suggested that estimating AGB use with only a single type of factor could
introduce errors and uncertainties [15]. Although ML-based simulations of grasslands
using different algorithms yield different accuracies [3], in general, machine learning still
outperforms traditional algorithms in terms of simulating grasslands due to its strong
interpretability and high efficiency [16]. ML methods, such as random forest (RF) regres-
sion, can integrate multiple factors and learn highly complex nonlinear mappings for
estimating AGB. Xie et al. used Landsat data to establish artificial neural network (ANN)
and multiple linear regression (MLR) models to estimate the grassland AGB in Inner Mon-
golia (n = 461) [16]. The results show that compared to MLR (RMSEr = 49.51% for the
training, and RMSEr = 53.20% for the testing), ANN (RMSEr = 39.88% for the training, and
RMSEr = 42.36% for the testing) can provide more accurate results. Tang et al. established a RF
algorithm suitable for the Headwater of the Yellow River (R2

val = 0.56, RMSEval = 51.3 g/m2) [15].
Many studies have been conducted on grasslands, however, the small number of avail-
able samples and the lack of support from long-term observational data persist as chal-
lenges [17].

In recent decades, many vegetation indices have been used to estimate AGB, such
as the NDVI [18–21]. However, the variation in the AGB is not influenced by a single
factor, but by a variety of factors, such as the soil, climate, and topography. Some simple
vegetation indices can help in understanding the effect of explanatory variables on biomass
availability but may not be able to describe the biological processes that occur in nature.
Therefore, this study hopes to combine soil, climate, topography, remote sensing, and other
factors with machine learning to better predict grassland biomass.

The main objectives of this research are to (1) compare the ability of linear regression
models and machine learning algorithms to evaluate grassland biomass using years of
continuous observations and (2) evaluate spatio-temporal scalability between the tradi-
tional methods and machine learning-based methods. This paper is organized as follows.
Section 2 describes the data sources and methods. Section 3 compares the model accuracy
and spatio-temporal scalability, and inverts the aboveground biomass of grassland in the
Three-River Headwaters Region (TRHR) based on the optimal results. In Section 4, the
distribution pattern of grassland biomass, the spatio-temporal scalability of the model, the
input variables that affect grassland biomass, and the factors that affect the accuracy of the
model are discussed. Conclusions are summarized in Section 5.

2. Data Sources and Methods

2.1. Data Sources
2.1.1. Study Area

The study area (31◦39′~36◦12′N, 89◦45′~102◦23′E) is located in the southern part of
Qinghai Province in China. It is the ecological barrier between the roofs of the world (the
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Qinghai Tibet Plateau) and is the headwater source of the three largest rivers in China: the
Yellow River, the Yangtze River, and the Lancang River. The TRHR is known as the China
Water Tower and provides a barrier for environmental protection and sustainable develop-
ment for the middle and lower reaches of rivers in China and Southeast Asian countries.
The study area has a total area of 36,561,502 ha, accounting for about 43% of the total area
of Qinghai Province. The average altitude is 4000 m, the annual mean temperature (AMT)
is 3 ◦C, the annual mean precipitation (AMP) is 377 mm, and its range of growing degree
days (GDDs) is 0–5001 ◦C. The grassland in the TRHR is dominated by alpine meadows
and alpine grasslands, accounting for 54% and 16% of the area, respectively (Figure 1b).
The soil distribution in the area has prominent vertical zoning rules, mainly alpine meadow
soil and swamp meadow soil, and the frozen soil layer is well developed [22]. Details of
research sites are supplemented in the Table S1.

 
Figure 1. Digital elevation model (DEM) (a) and spatial distribution patterns of grassland type (b) in
the pastoral area of Southern Qinghai Province, China.

2.1.2. AGB Dataset

We collected field survey AGB data during the peak growing season (July to Septem-
ber) from 2005 to 2015, for a total of 1620 valid data items (Table S2). Guide, Guinan, Jianzha,
and Tongren were newly added in 2015, and each county has only 2 to 5 sample points.
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The largest number of samples was of those drawn from Banma county, with 120 sample
points collected, followed by Tongde county, with 115 sample points collected.

The general spatial distribution of AGB measurements during 2005–2015 provides
an overall picture of the AGB values of the study area (Figure 2). As shown in the figure,
the value of AGB was in the range from 200 to 10,000 kg DW (dry matter weight)/ha (the
average value was 3090 kg DW/ha). The figure shows an overall downward trend from
southeast to northwest, with some exceptions.

Figure 2. Grassland AGB measured from 2005 to 2015 (n = 1620) (all AGB values measured at each
observation sample station are averaged for that observation station).

We now outline the methodological steps undertaken to collect the grassland AGB of
the study (Figure S1).

a) The latitude and longitude of the TRHR were determined by a handheld GPS device.
b) We established a grassland sample plot (500 m × 500 m) based on typical grassland

vegetation communities that had a relatively flat terrain and uniform growth and that
were spatially representative. We used five 1 m × 1 m grassland observation plots in
the sample plot using the five point method.

c) The aboveground part of the vegetation in each observation plot was mowed up to
the ground. All litter and other non-plant materials were removed from the grass
samples, bagged, and brought back to the laboratory for further processing.

d) We weighed samples from each plot in the laboratory. They were then oven-dried at
65 ◦C for 48 h, and their dry weights were recorded.

All AGB values (dry weight) in a MODIS pixel (500 × 500 m) were averaged to
represent the average AGB of the MODIS pixels, and the center latitude and longitude of
the pixel were used for modeling.
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2.1.3. Meteorological Data

Climatic data as an environmental factor are the basis of research fields such as agri-
culture and forestry. We collected the daily maximum temperature, minimum temperature,
and precipitation data from 15 meteorological stations in the TRHR from 2005 to 2015
from the China Meteorological Data Network (http://data.cma.cn, accessed on 3 February
2021). AMT and AMP were interpolated by ANUSPLIN, an interpolation package specially
designed for meteorological data [23].

2.1.4. Soil Data and Topographic Data

The soil data were from the global gridded soil information (https://soilgrids.org/,
accessed on 3 February 2021) and included the organic carbon stock of soil (OC) on the
surface (0–5 cm), organic carbon density (OR) on the surface (0–5 cm), bulk density (BL) of
the soil surface (0–5 cm), (CL) of the soil surface (0–5 cm), coarse fragments (CR) (0–5 cm),
silt size (SL) of the soil surface (0–5 cm), sand (SN) on the soil surface (0–5 cm), cation
exchange capacity (at pH = 7) (CE) of the soil surface (0–5 cm), and pH water (pH) in the
soil surface (0–5 cm). We then resampled the data to 500 m.

The digital elevation model (DEM) data were obtained from Shuttle Radar Topography
Mission (SRTM) images (version 004) (http://srtm.csi.cgiar.org, accessed on 3 February
2021). To match the available data, the digital elevation data were resampled to 500 m,
and the projection type was defined as a WGS_1984 map projection. In addition, ArcGIS
software was used to generate the aspect and slope with a resolution of 90 m; the data were
then resampled to 500 m. Finally, we extracted the corresponding data and analyzed them.

2.1.5. MODIS Data and Its Processing

All MODIS data in this paper were obtained from the Google Earth Engine (GEE)
platform (https://code.earthengine.google.com/, accessed on 7 February 2021) (version
006) (Tables 1 and S3). The processing flowchart is shown in Figure S2.

Table 1. MODIS products.

MODIS Time Resolution (d) Spatial Resolution (m) Bands

MOD09A1 8 500 B1–B7
MOD13A1 16 500 NDVI, EVI
MOD11A2 8 1000 D-LST, N-LST

MOD15A2H 8 500 LAI, Fpar
Note: B1–B7: reflectance of MODIS bands 1–7; NDVI: normalized difference vegetative index; EVI: enhanced
vegetation index; the unit of the day land surface temperature (D-LST) and night land surface temperature (N-LST)
is K; LAI: leaf area index; Fpar: fraction of photosynthetically active radiation.

2.2. Method and Modeling
2.2.1. Variable Selection

Three variable selection methods, stepwise regression analysis (SRA), ridge regression
(RR), and the least absolute shrinkage and selection operator (LASSO), were used in this
study. As a filter of variable indicators, SRA can quickly select the most important variable
indicators related to the research object from a large number of indicator libraries [24]. RR
is a variable screening method and has the ability to handle multicollinearity data [25].
LASSO can automatically select the most important independent variables and narrow
down the less important predictor variables to zero [26].

2.2.2. Summary of Modeling Methods

The PLS, SVM, RF, Gradient Boosting Decision Trees (GBDT), and Multilayer BP
Neural Network (BP) modeling methods were used. The PLS is a mathematical regression
model that determines the correlation between variables [27]. The two most important
parameters in the RF algorithm are the number of regression trees and the number of
predictors at each node. When the number of regression trees is set larger, the accuracy
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of the model will also be improved, but the model operation time will be prolonged.
The default value of the number of predictors at each node is 1/3 of the total number
of independent variables [28]. The SVM is a type of machine learning theory based on
statistical learning theory [29]. In this paper, the radial basis function was used as the kernel
function, and the genetic algorithm was used to optimize two key parameters (gamma
and cost). These three algorithms use functions from the R packages “PLSR”, “random
forest”, and “e1071.” GBDT is an integrated model based on a decision tree that contains
flexible and efficient machine learning algorithms [30]. We continuously optimized the
three hyperparameters of the learning rate, the number of iterations, and the subsample.
The GBDT method was implemented based on the gradient boosting regressor in the
sklearn package. BP is a multi-layer forward neural network, and its theoretical basis is
the error direction propagation algorithm [31]. The most important parameters in the BP
model are the number of neurons and hidden layers, which need to be repeatedly tested
and continuously tuned. The BP model is built based on the torch deep learning framework.
The rationale for machine learning algorithms was added to the Supplementary Materials
(Text S1).

2.2.3. Assessing Model Accuracy

The square of the correlation coefficient between the measured value on the ground
and the predicted value of the model (R2) and root mean square error (RMSE) values were
used as the standards of accuracy evaluation. Higher R2 and lower RMSE indicate better
model performance. Equations (1) and (2) express R2 and RMSE respectively:

R2 = 1 − ∑n
i = 1
(
Yi − Ŷi

)2
∑n

i = 1
(
Yi − Yi

)2 (1)

RMSE =

√
∑n

i = 1
(
Yi − Ŷi

)2
n

(2)

where Yi represents the measured value of the aboveground biomass of grassland, Ŷi is the
predicted value of Yi, and Yi is its average value.

The model selection process took into account its fitting performance and simplicity.
In this study, AIC and BIC were used as the evaluation criteria. Among the models with
the same fitting ability, the model with the smaller BIC was preferred.

Equations (3) and (4) express AIC and BIC respectively:

AIC = k ln(n) + n ln

(
∑n

i = 1
(
Yi − Ŷi

)2
n

)
(3)

BIC = 2k + n ln

(
∑n

i = 1
(
Yi − Ŷi

)2
n

)
(4)

where Yi represents the measured value of the aboveground biomass of grassland, Ŷi is the
predicted value of Yi, k represents the number of variables in the model, and n represents
the number of samples. The larger the R2, the higher the credibility of the model prediction,
the smaller the RMSE, AIC, and BIC, the better the model fitting effect.

3. Results

3.1. Correlation between Grassland AGB and Variables

This study used the correlation analysis method to test the correlation between AGB
and MODIS data, topographical factors, soil factors, and meteorological factors (Table S4).
As shown in the table, there was a significant correlation between the AGB and most MODIS
vegetation indices. Among them, grassland AGB had the highest positive correlation
coefficient with the NDVI, MSAVI, optimized soil-adjusted vegetation index (OSAVI),
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and SAVI (R = 0.51). The correlation coefficient between AGB and the reflectance of the
MODIS bands (B1–B7) was between −0.44 and 0.39. The correlation with B7 was the largest
(R = −0.44). There was a strong correlation between the aboveground biomass of grassland
and the five band indices (C–G). Among them, AGB had the largest correlation with E.

The AGB was significantly correlated with most variables, and only had a weak
relationship with topographical factors and SL among soil factors (R < 0.1). AGB and slope
had the highest correlation coefficient (R = 0.29), followed by the DEM, and the weakest
relationship was with the aspect. The BLD, SN, and pH were negatively correlated with
the AGB, but the AGB had a positive correlation with the other soil factors, among which,
the relationship with CL was the strongest (R = 0.26). Among the meteorological factors,
AGB had a significant relationship with AMT, GDD, and AMP, but only showed a negative
correlation with GDD.

3.2. Variable Screening and Model Evaluation

We divided the variables into the All set (45 variables), SRA subset (12 variables), RR
subset (11 variables), and LASSO subset (17 variables) (Table 2). We used these variable
sets as input variables and respectively constructed the PLS, RF, SVM, GBDT, BP models,
for a total of 20 models. The accuracy of the predicted aboveground biomass of each model
in the TRHR was assessed (Table 3). The results show the following:

(1) Overall, the R2 of the training set (R2
train) of the 20 models was between 0.35 and 0.94,

with an average of 0.67, and the RMSE of the training set (RMSEtrain) was between
460.09 and 1499.63 kg DW/ha, with an average of 1045.87 kg DW/ha. The R2 of the
validation set (R2

vad) was between 0.45 and 0.6, with an average of 0.53, and the RMSE
of the validation set (RMSEvad) was between 1239.59 and 1457.26 kg DW/ha, with an
average of 1341.46 kg DW/ha. The R2 of the independent verification set (R2

indep) was
between 0.26 and 0.50, with an average of 0.38, and the RMSE of the independent veri-
fication set (RMSEindep) was between 1332.59 and 1663.55 kg DW/ha, and the average
was 1475.05 kg DW/ha. The AIC of the independent verification set was between
5583.51 and 5757.92, and the BIC of the independent verification set was between
5631.1 and 5936.4. The SRA-RF model had the largest R2

vad and R2
indep, the smallest

RMSEvad, RMSEindep, AIC, and BIC, and the best predictions (RF-R2
vad = 0.60, RF-

RMSEvad = 1245.85 kgDW/ha, RF-R2
indep = 0.50, RF-RMSEindep = 1332.59 kg DW/ha,

RF-AIC = 5583.51, RF-BIC = 5631.1). The RF model based on SRA achieved more
accurate prediction results with a small number of variables, so the RF-SRA (RF-
R2

vad = 0.60 (Figure 3a); RF-R2
indep = 0.50 (Figure 3b)) was the best model.

(2) During the selection of variables, the DEM among terrain-related factors, the pH
among soil-related factors, the B6 among remote sensing-related factors, and the GDD
among meteorological factors were selected. These four variables had significant
effects on the grassland biomass.

(3) Although the overall fitting performance of the estimation model based on the RF
method (the average of RF-R2

train was 0.91) was much higher than that based on
the PLS method (the average of PLS-R2

train was 0.36)), its predictive performance
(RF-R2

vad was between 0.58 and 0.6, and the average was 0.59) was not (RF-R2
vad was

between 0.45 and 0.50, and the average was 0.48).
(4) Judging from the prediction results of the model, among the results based on different

variables, the results of the RF algorithm were superior to the other algorithms; the
model had a higher R2 and a lower RMSE (RF-All-R2

vad = 0.59, RF-SRA-R2
vad = 0.60,

RF-RR-R2
vad = 0.58, and RF-LASSO-R2

vad = 0.58).
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(5) Overall, the R2
vad (between 0.45 and 0.6 and the average value of 0.53) and RMSEvad

(the average value was 1341.46 kg DW/ha) of the 20 models’ test sets were superior to
R2

indep (between 0.26 and 0.5, the average value was 0.38) and RMSEindep (the average
value was 1475.05 kg DW/ha). Of the 20 models, 12 AGB models had values of R2

vad
greater than or equal to the average R2

vad (R2 = 0.53) of all models. This shows that
at least 60% of the 20 models had a high accuracy and that these models can reflect
53–60% of the changes in the grassland AGB. Of the 20 models, 11 AGB models had
an R2

indep greater than or equal to the average R2
indep (0.38) of all models, which

shows that, when these models were expanded in time and space, their predictive
ability declined. Of the 20 models, at least 56% reflected 38–50% of the changes in
AGB in the next two years and over more space in the TRHR.

(6) We found that the model was optimal for the following combinations: (1) RF, SVM,
BP, and SRA; (2) PLS, GBDT, and RR; and the model’s spatio-temporal scalability
was optimal for the following combinations: (3) PLS, RF, and SRA, (4) SVM, BP, and
RR, (5) GBDT and LASSO. The All set had the worst performance of the models
for grassland aboveground bio-mass, and variable selection helped improve model
accuracy.

Table 2. Results of variables screening by different screening methods.

Methods Variable Set Filter Number

ALL

DEM Slope Aspect BLD CEC CL SN SL pH OR OC CR
B1-B7 C D E F G BI DVI EVI Fpar LAI MSAVI NDSI

NDVGI NDVI NDWI OSAVI RVI SATVI SAVI SCI TVI
D-LST N-LST AMT GDD AMP

45

SRA DEM CL pH OR OC B1 B5 B6 OSAVI D-LST N-LST GDD 12
RR DEM SN SL pH OC B3 B5 B6 BI D-LST GDD 11

LASSO DEM Slope CL SN pH B2 B6 C E EVI LAI MSAVI NDVGI
OSAVI AMT GDD AMP 17

Note: DEM: digital elevation model; BLD: bulk density; CEC: cation exchange capacity (at pH = 7); CL: clay
content; SN: sand; SL: silt size; OR: organic carbon density; OC: soil organic carbon stock; CR: coarse fragments;
B1–B7: the reflectance of the MODIS bands 1–7; C–G: five band indices (Band 2–7 (C), Band 5/Band 2 (D), (Band 5
− Band 7)/(Band 5 + Band 7) (E), Band 7/Band 2 (F), and Band 7/Band 5 (G)); BI: brightness index; DVI: difference
vegetation index; EVI: enhanced vegetation index; Fpar: fraction of photosynthetically active radiation; LAI: leaf
area index; MSAVI: modified soil-adjusted vegetation index; NDSI: normalized difference soil index; NDVGI:
normalized difference vegetation green index; NDVI: normalized difference vegetative index; NDWI: normalized
difference water index; OSAVI: optimized soil-adjusted vegetation index; RVI: ratio vegetation index; SATVI:
soil-adjusted total vegetation index; SAVI: soil-adjusted vegetation index; SCI: soil color index; TVI: transformed
vegetation index; D-LST: day land surface temperature; N-LST: night land surface temperature; AMT: annual
mean temperature; GDD: growing degree days; AMP: annual mean precipitation.

Figure 3. (a) Relationship between the measured biomass by RF-SRAvad and that predicted by it.
(b) Relationship between the biomass measured using the RF-SRAindep and that predicted by it.
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Table 3. Assessment of accuracy of the multi-factor grassland AGB estimation model.

Training Dataset Testing Dataset
Independent Testing

Dataset
AIC BIC

Variable Set Model R2 RMSE R2 RMSE R2 RMSE

ALL

PLS 0.38 1459.00 0.45 1431.62 0.34 1487.92 5757.92 5936.40
RF 0.92 620.99 0.59 1253.24 0.43 1396.90 5654.12 5832.59

SVM 0.73 1037.59 0.55 1342.84 0.41 1492.87 5707.99 5886.46
GBDT 0.85 766.67 0.59 1239.59 0.38 1460.16 5645.58 5824.06

BP 0.94 460.09 0.50 1427.26 0.34 1614.86 5755.54 5934.01

SRA

PLS 0.36 1484.46 0.49 1385.01 0.36 1474.83 5666.10 5713.70
RF 0.91 664.34 0.60 1245.85 0.50 1332.59 5583.51 5631.10

SVM 0.51 1336.17 0.54 1365.37 0.39 1490.64 5654.96 5702.56
GBDT 0.77 931.60 0.56 1288.12 0.38 1447.90 5609.53 5657.13

BP 0.69 1054.13 0.53 1359.04 0.30 1612.39 5651.34 5698.93

RR

PLS 0.35 1493.14 0.50 1382.86 0.35 1477.88 5662.89 5706.52
RF 0.90 682.57 0.58 1271.56 0.46 1363.59 5597.44 5641.07

SVM 0.48 1362.57 0.50 1399.81 0.41 1479.49 5672.39 5716.02
GBDT 0.77 929.48 0.57 1275.69 0.41 1418.99 5599.97 5643.60

BP 0.58 1204.95 0.49 1407.71 0.34 1515.10 5676.78 5720.41

LASSO

PLS 0.35 1499.63 0.48 1406.04 0.36 1480.31 5687.86 5755.28
RF 0.91 657.03 0.58 1263.89 0.45 1378.47 5604.72 5672.15

SVM 0.58 1258.28 0.55 1354.10 0.36 1503.76 5658.50 5725.92
GBDT 0.70 1050.85 0.57 1272.33 0.41 1408.85 5609.91 5677.33

BP 0.74 963.93 0.46 1457.26 0.26 1663.55 5715.77 5783.19

Note: SRA: stepwise regression analysis; RR: ridge regression; LASSO: least absolute shrinkage and selection
operator; PLS: partial least squares; RF: random forest; SVM: support vector machine; GBDT: gradient boosting
decision tree; BP: multi-layer back-propagation neural network.

The relationship between the number of sampling points and the accuracy of the
model is shown in Figure 4. In general, the RF algorithm delivered the best performance,
with a value of R2 that was higher than the other algorithms. The simulation accuracy of
the model changed drastically with the number of samples. We take the RF-SRA model as
an example. The R2

vad of the RF-SRA model was between 0.52 and 0.74, with a difference
of 0.22. The slope of the trend line about the RF-SRA model was −0.0231. The R2

indep of
the RF-SRA model was between 0.4 and 0.5, with a difference of 0.1.

In Figure 4 the ordinate represents R2, and the abscissa represents the sample size (30%
(390 data items) meaning that 30% of all samples in 2005–2013 were randomly selected for
three to seven points and were then modeled and verified); 40% means that 517 data items
were used, 50% means 650 items, 60% means 794 items, 70% means 921 items, 80% means
1042 items, 90% means 1178 items, and 100% means 1311 items.
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Figure 4. The relationship between changes in the number of samples of each model and R2.

3.3. Assessing Spatial and Temporal Sample Distributions

When the five models were expanded in space and time, their accuracy decreased
(the average R2 of the 20 models decreased by 0.15 (Table 3). We bring the results (R2

indep,
RMSEindep) of the independent testing dataset in Table 3 into Figure 4 for further exploration.
In Figure 4, the red dots represent the AGB of the newly added locations from 2014 to
2015, the blue dots represent those of no newly added locations from 2014 to 2015, that is,
“re”. Comparing the R2

indep, RMSEindep (the model with the independent validation set
as the test set) and R2

indep (re), RMSEindep (re) (the model with data that only scales in the
temporal direction as the test set), the results show that the accuracy of adding new points
(R2

indep) was lower than that of not adding new points (R2
indep (re)), which indicates that

adding new points reduced accuracy. That is, when the model was extended in space, its
accuracy decreased (models calibrated at small scales, when transferred to large scales,
incur errors).
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Figure 4. Cont.
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Figure 4. Assessing the accuracy of the independent AGB validation set simulated when expanding
the spatio-temporal distribution by using different methods.

3.4. Spatial Distribution and Trend of Grassland Biomass Based on the RF-SRA Model

The RF-SRA model (the best model in this study) was used to simulate the annual
maximum grassland aboveground biomass (the maximum aboveground biomass from
July to September) in the study area for 11 years (2005 to 2015). Figure 5 illustrates the
average results of the annual maximum grassland AGB in these 11 years (the average
maximum AGB in the TRHR from 2005 to 2015 was 3267.41 ± 651.34 kg DW/ha). The
results show that the higher grassland AGB was mainly concentrated in the eastern part
of the study area and some of its western parts. For instance, Zaduo, Zhiduo, Qumalai,
Maduo, and Northern Xinghai had lower distributions of grassland AGB. However, areas
such as Xinghai, Guinan, and Guide also had lower altitudes and less AGB.

Figure 5. Distribution map of average grassland AGB in the TRHR from 2005 to 2015.
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4. Discussion

4.1. AGB Mapping

In general, based on the inversion of the optimal model (RF-SRA), the annual spatial
distribution of the largest grassland AGB showed an increasing trend from west to east
and from north to south (Figure 5). This may be because the eastern region is a major
pastoral area, with a higher temperature, a higher altitude, and a colder climate in the
west of the TRHR (Figure 1). However, areas such as Xinghai, Guinan, and Guide have
lower altitudes and less AGB, possibly due to a higher population density and more
frequent human activities [32]. The generalized spatial distribution of AGB measurements
during 2005–2015 provides an overall picture of the AGB values of the study area: an
overall downward trend from southeast to northwest on the whole (Figure 2). This is
consistent with the spatial variation of annual precipitation in the aboveground biomass
of grassland [32]. At the same time, the annual average temperature gradually increased
from west to east and was related to the trend of change in the longitude [33]. Precipitation
and the annual mean temperature were positively correlated with grassland coverage in
the Three-River Headwaters (Table S4). The spatial variation in grassland cover in this
region may be influenced by both precipitation and annual temperature. The estimated
spatial distribution map of AGB based on the RF models showed a reasonable spatial
distribution, similar to that reflected in on-site measurements. A digital map can provide
more details and cover a larger space than a limited field measurement (even though more
than 1000 samples were collected).

4.2. Factors Affecting the Accuracy of the Remote Sensing Grassland AGB Estimation Model

Although the RF-SRA model attained accurate predictions, we think that its accuracy
can be further improved. We analyze factors that affected the accuracy of the model:

(1) There were inevitable temporal differences between the biophysical parameters mea-
sured in the field and the satellite data during the peak growth period of the grass-
lands [34]. The field sampling time cannot be exactly the same as the time correspond-
ing to the maximum vegetation index obtained from satellite data. In addition, the
time period of this study was from 2005 to 2015. The first Sentinel-1 satellite was
launched in 2014, so the Sentinel data of our study time are not available. TRHR is
located in the hinterland of the Qinghai-Tibet Plateau. The high altitude and variable
climate mean that it is often covered by clouds, which in turn leads to unusable Land-
sat data, that is, a lack of long-term continuous Landsat observation data. To obtain
more variables and consider such practical difficulties as data availability within the
study period, we selected MODIS data with a resolution of 500 × 500 m. However, in
practice, the field sampling points are relatively small in number, and each pixel in the
MODIS data covers an area of 500 × 500 m. Therefore, some differences were obtained
in the spatial representation. In future work, more accurate and higher-resolution
remote sensing data can be used, such as those obtained using unmanned aerial
vehicles, to improve accuracy.

(2) Areas with complex terrain and slopes impacted reflectivity, which in turn affected
the accuracy of the model. In addition, generally sparse grasslands (bare soil points)
also affected some vegetation indices (such as the NDVI), which ultimately affected
the model [35]. The grassland biomass measurements in this study were mainly
distributed in the central and eastern regions of the TRHR. Grasslands in the western
part of the TRHR are very sparse; many areas are deserts (Figure 1b). In addition, the
western region has a higher altitude, a colder climate, and more complex terrain, which
also introduced difficulties in sampling. We thus collected few and very concentrated
samples in the western part of TRHR (only AGB data in the northeast of Geermu).
This further affected the accuracy of the model.

(3) Uncertainty in field measurements also affected the model. For example, in-field
measurements, the data collected are often affected by surface heterogeneity, human
factors, and even traffic conditions. The data in this study cover a large span of time,
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and there is a large amount of it. A time span that is too long and an amount of data
that is too high can also lead to more errors in data measurement during the sorting
process, which will inevitably affect the construction of the model.

4.3. Influence of the Number of Field Samples on the Model and the Model’s Spatio-Temporal
Scalability

The precision of AGB inversion models is highly dependent on the number of field
samples. However, most studies have used fewer than 1000 field samples [17]. We mea-
sured continuous values of the grassland biomass in the TRHR for 11 years (1620 field
samples) to explore the relationship between the field samples and the model. When con-
structing the AGB model, large differences were obtained in the structure and parameters
of the model with the number of the field samples, and the accuracy of the simulation
changed as well. Therefore, to better represent grasslands, more data points should be
collected when sampling.

Previous studies have demonstrated that validation is key in this context. Without
proper validation or a mechanistic understanding of the model, it is difficult to assess the
quality of the results. Few studies have sought to estimate the validation error in AGB using
ML [17]. AGB has traditionally been measured by destructive methods, which are limited
to small areas due to their nature, time, expense, and the labor involved [36]. Therefore,
evaluating the usefulness of the algorithm is important [37]. We used four criteria to
evaluate the model. Figure 4 shows the results detailed in Table 3. Combining the graph
and table comparison, it was found that model accuracy decreased when it was applied to
the years without training data. When the model expands to an area with field sampling
points that have not been incorporated into the model training, the model’s accuracy will
further decrease (Figure 4).

4.4. Input Variables to the Model

Environmental factors are important factors in determining the types, characteristics,
and distribution of grasslands. Cui et al. (2015) found that the biomass of alpine grassland
decreases with the increase of altitude. In this study, AGB showed a negative correlation
with DEM (Table S4), which was the same as their findings [38]. However, the relationship
between AGB and DEM in this paper is weak, which may be because the study did not set
a certain altitude gradient when collecting points in the field. Moreover, when the samples
were set, the research was mostly carried out on relatively flat grassland, which may also
be the reason for the weak relationship between AGB and Aspect and Slope.

Soil is mainly composed of mineral particles, which can be divided into CL, SL, and
SN according to their thickness. AGB was positively correlated with CL and negatively
correlated with SN. Su et al. found that soils with higher CL usually have higher soil organic
carbon, nutrient content and higher cation exchange capacity, and higher nutrient retention
capacity and water holding effect to promote the growth of grassland vegetation [39]. The
soil with higher SN has poor water holding effect, which is not conducive to the growth of
vegetation. This is consistent with our results. AGB is negatively correlated with pH. The
possible reason is that the pH of the study area is between 5.4 and 7.7. In the acidic soil, the
species of microorganisms are limited and the decomposition of organic matter is slowed
down, and the microbial activity is high in the neutral or alkaline environment [40], which
is conducive to vegetation growth.

Among climatic factors, both AMP and AMT were positively correlated with AGB
(Tables S4 and S5 and Figure S3, which may be because the increase of AMP and AMT
promoted the growth of grassland vegetation. In the random forest importance ranking,
GDD ranks second (Figure S4, and there is a negative correlation between GDD and AGB,
which may be because the increase in GDD leads to faster plant development, but the actual
growth season is shortened, resulting in a decrease in grassland AGB.

Satellite remote sensing is currently the most common and widely used regional-scale
surface detection method. Satellite data can directly and timely capture biological growth

173



Remote Sens. 2022, 14, 3843

status through various spectral bands, and the products of various satellites have the
same or complementary biological information, which is beneficial to grassland biomass
prediction [5]. Different vegetation indices can reflect different biological characteristics
of crops. For example, SAVI can indirectly reflect the canopy temperature of crops and
reduce the influence of soil background on canopy reflectance [41]. In this study, OSAVI
was the most important for the model (Figure S4. The OSAVI vegetation index is a modified
SAVI, which differs from SAVI in that OSAVI takes into account the standard value of the
canopy background adjustment factor (0.16). Therefore, when the canopy cover is low, this
adjustment allows greater soil variation for OSAVI compared to SAVI. Therefore, higher
predictability can be obtained.

5. Conclusions

Our study integrated 1620 measurement data on aboveground grassland biomass
(AGB) with corresponding, continuously monitored remote sensing data from the GEE
platform, meteorological data, topographic data, and soil characteristic data collected
over 11 years in the TRHR of China. We then used the linear statistical method (PLS),
ML methods (RF, SVM, and GBDT), and DL methods (BP) to establish grassland AGB
estimation models. We then compared the models in terms of the accuracy of biomass
predictions and simplicity. We also explored the spatio-temporal scalability of the linear
regression model and the machine learning models. Overall, the ML models performed
well. The RF models, based on the DEM, CL, pH, OR, OC, B1, B5, B6, OSAVI, D-LST, N-LST,
and GDD, delivered the best performance. The estimated spatial distribution map of AGB
based on the RF models was reasonably similar to the distribution of on-site measurements.
It also provided more detail and covered a larger space than the limited field measurements
do (even though more than 1000 samples were collected). This shows that when models
are expanded in space and time, their accuracy decreases (as an example, the accuracy of
the SRA-RF model decreased from 0.6 to 0.5). In future research, a process-based model
that is derived from grassland AGB to train models could potentially be used to extend the
spatio-temporal scalability of machine learning models. In addition, we also believe that
ecosystem carbon sequestration is an interesting topic. In future work, we intend to explore
whether the optimal model has the potential to be used in the development of emission
factors for grassland areas from the perspective of addressing global climate change and
combining the results of this study.
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Abstract: The hyperspectral image compression scheme is a trade-off between the limited hardware
resources of the on-board platform and the ever-growing resolution of the optical instruments.
Predictive coding attracts researchers due to its low computational complexity and moderate memory
requirements. We propose a near-lossless prediction-based compression scheme that removes spatial
and spectral redundant information, thereby significantly reducing the size of hyperspectral images.
This scheme predicts the target pixel’s value via a linear combination of previous pixels. The weight
matrix of the predictor is iteratively updated using a recursive least squares filter with a loop quantizer.
The optimal number of bands for prediction was analyzed experimentally. The results indicate that
the proposed scheme outperforms state-of-the-art compression methods in terms of the compression
ratio and quality retrieval.

Keywords: near-lossless compression; recursive least squares; hyperspectral image; predictive coding

1. Introduction

Hyperspectral images from space-borne spectrometers play a crucial role in multifar-
ious aspects, including geological exploration, environmental monitoring, and material
identification [1]. Researchers continue to enhance the spectral and spatial resolutions of
the instruments, and the size of a hyperspectral image is currently more than hundreds
of megabytes (MBs) [2–4]. Nevertheless, such a wealth of information places excessive
demands on the transmission and storage processes. Data compression has proven to be an
effective way to alleviate this issue [5,6].

The compression techniques for hyperspectral images are divided into three cate-
gories: lossless, lossy, and near-lossless compression [7]. Lossless compression allows for
reconstruction of the original image, ideally at the price of a limited compression ratio.
Lossy compression approximates the original image while generally minimizing distortion
in the l2-norm. It tolerates a small amount of information distortion between the original
image I and the reconstruction image Î, which allows for a high compression ratio. Near-
lossless compression aims to achieve a higher compression ratio than lossless techniques by
allowing pixel-level distortion. It strictly bounds the l∞-norm by setting the peak absolute
error (PAE) [8]. The user-specified parameter guarantees the max. absolute distortion so
that PAE ≤ Λ defines a limited error range for reconstruction of individual pixels. As a
result, employing a proper parameter Λ makes the compression process almost lossless.
It is a well-known fact that the quality of images is affected by the inherent noise of the
device [9,10]. When the maximum error introduced by the compression process is smaller
than the background noise, the quality of the reconstructed image is almost similar to that
obtained with lossless compression.

Details on near-lossless compression techniques are discussed in a later section.
Most near-lossless compression techniques can be roughly classified into three categories:
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prediction-based subsequent quantization coding, lossless coding based on pre-quantization,
and two-stage near-lossless encoding [11].

Predictive-based coding, one of the most popular schemes, enables low-complexity,
high-throughput solutions [12–14]. These schemes first compute the prediction value of
the target pixel from the previous encoding. The difference between the predicted and
the original pixel value is known as the prediction error. Subsequently, a near-lossless
compression scheme is obtained by encoding the quantized prediction error. The two
most typical prediction schemes are JPEG-LS [15] and CALIC [16], which are widely used
to process two-dimensional images. Meanwhile, the CALIC algorithm, with its better
compression performance, is extended to 3D-CALIC [17] and M-CALIC [18] based on
the correlation of hyperspectral images. However, the CALIC-based extension scheme
cannot effectively remove the redundancy of hyperspectral images and is not friendly to
hardware implementation. The Consultative Committee for Space Data Systems (CCSDS)
proposes the standard CCSDS-123, which is based on the signed least mean square (SLMS)
filter [19,20]. This compression scheme has low complexity and excellent compression re-
sults. NL-CCSDS-123 [10] and CCSDS-123-AC [21] are two near-lossless extended versions
that both rely on the predictor of CCSDS-123. The NL-CCSDS-123 scheme encodes the
quantized residual pixels after using a range coder, whereas CCSDS-123-AC employs a
lightweight context-based arithmetic encoder. However, since their predictor uses a simple
function to update the weight coefficients, the prediction accuracy can be further improved.

The second type of near-lossless compression category is based on pre-quantizing
the original pixels with a quantizer and then applying a lossless compression technique.
It is widely known that such a model is suboptimal, and the compression results are not
outstanding [22]. However, it is suitable for a scene with high-speed compression demands
since it does not need to include a feedback loop. S.-C Tai et al. proposed the Pre-CCSDS-
IDC [23] compression scheme in order to improve the compression rate without modifying
the existing CCSDS-IDC hardware system [24]. It can import the pre-quantized images
into CCSDS-IDC directly. In [25] a pre-quantization compression scheme is implemented
based on ground-based CNN reconstruction. The spaceborne part can be considered
a combination of the pre-quantizer and CCSDS-123 predictor. Eventually, the CNN is
employed as a feature extractor on the ground to do a secondary reconstruction of the
decoded image, which leads to a higher signal-to-noise ratio.

The third near-lossless compression category builds on a combination of lossy and
lossless compression. First, the reconstructed images are obtained by lossy compression.
Then, the differences between these and the original image are quantized and encoded. X.
Wu proposes an approximate lossless image compression scheme that combines wavelets
and CALIC [26]. It uses CALIC to compress the residual image between the wavelet
approximation and the original image. C.-W Chen employed CCSDS-IDC for the lossy
phase, followed by bit-plane encoding (BPE) coding. However, the scheme does not obtain
the optimal lossy bit rate. J.Beerten combines JPEG2000, as a lossy layer, with a near-lossless
layer consisting of BPE and arithmetic coding [27]. This scheme uses computationally
expensive iterative methods to determine the optimal lossy bitrate and obtain a competitive
coding performance.

Due to the characteristics of the prediction-based compression scheme, it gradually
replaces the transform-based algorithm in the on-board compression platform [28]. In this
paper, we focus on the prediction-based quantization technique, which aims to enhance
the performance of the near-lossless compression scheme by fully exploiting the spatial–
spectral redundancy of hyperspectral images. The proposed method combines recursive
least squares (RLS) with an in-loop quantizer and, subsequently, encodes the quantization
residuals using an entropy encoder. Ultimately, a competitive compression ratio is produced
while guaranteeing the quality of the reconstructed image.

The rest of the paper is organized as follows: Section 2 provides a detailed description
of the near-lossless feedback loop’s compression framework with the RLS prediction.
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Section 3 presents the experimental dataset and comparative results of this method with an
analysis and discussion. Finally, Section 4 concludes this paper.

2. Compression Scheme

In this work, a loop predictor is used for near-accurate prediction of target pixels by
removing the correlation of hyperspectral images. The input image data is passed through
the loop predictor point by point. The differences between the predicted and original values
are quantized. Subsequently, the entropy encoder encodes the quantized residual image
and outputs the compressed codestream. The same algorithm with the same parameters
must be used at the decoding stage during the reconstruction process after inverse entropy
coding. Figure 1 presents a pictorial representation of the compression scheme, which
explains the essential steps. The five significant steps of the proposed scheme, including
spatial predictor, spectral predictor, controlled quantization, sample representative, and
entropy coding, are discussed in the following subsections.

Figure 1. Compressor schematic.

2.1. Loop Predictor

Hyperspectral images can be regarded as a three-dimensional data. Let sz(x, y) denote
the value of the original pixel in the zth band at the xth row with the yth column. We
also use sz(n) to represent the nth pixel in band z, where the notation n means the pixel
is derived from n = NX ∗ y + x in the spatial domain. NX, NY, and NZ provide the
image’s width, height, and number of bands.

The spatial prediction estimate is computed using a causal, linear predictor for each
pixel. To remove spatial correlation from the hyperspectral image, the preliminary estimate
Ŝz(n)of the target pixel Sz(n) is generated by averaging the pixels in the context window
of the same band. The context window of the target pixel can be explained using Figure 2.
The parameter r denotes the local context window’s radius, and the target pixel points are
represented in orange. The blue and green parts show the neighborhood windows with
radii of one and three, respectively.

Then, the spatial prediction error dz(n) for the nth pixel point in the zth band is defined
as Equation (1).

dz(n) = sz(n)− Ŝz(n). (1)

Note that in order to ensure the feasibility of the decompressor, the preliminary
prediction error dz(n) of the first spectrum is directly encoded with the entropy encoder
that follows. The others are encoded after removing the inter-spectral redundancy.

179



Appl. Sci. 2022, 12, 7172

Figure 2. The context window of current pixel.

In the spectrum prediction process, the RLS filter input vector is formed by dz,k(n) =
[dz−k(n), · · · , dz−1(n)]

T , where k is the number of history bands used to predict the
current pixel, i.e., the prediction length. The corresponding weight vector is wz,k(n) =
[wz−k(n), · · · , wz−1(n)]

T . Then, the RLS predictor is initialized as Equation (2).

kz(0) = 0, wz(0) = 0, pz(0) = 0. (2)

The spectrum prediction residual ez(n) is calculated as Equation (3).

ez(n) = dz(n)− dz,k(n)wT
z,k(n − 1). (3)

The parameter’s peak absolute error Λ determines the maximum allowable absolute
difference between the original and reconstructed pixel values. Each predicted residual
corresponds to a quantized residual qz(n) defined by Equation (4).

qz(n) = sgn(ez(n))×
⌊

Λ + |ez(n)|
2Λ + 1

⌋
, (4)

where the sgn(x) is a function that extracts the sign value of x. For spectral images that need
to be stored with absolute accuracy, a lossless compression mode can be used by setting
Λ = 0. That is, qz(n) = ez(n), thus ensuring that the decoding process can accurately
reconstruct the original sample. However, when using a non-zero peak absolute error, qz(n)
represents an approximation of the above prediction error, rather than the actual value.

Since the image introduces distortion affected by the quantizer, the compressed code
stream cannot be directly employed to reconstruct the sample. In order to guarantee
synchronization with the decompression stage, the reconstruction value s̃z(n) should be
calculated for each pixel, as shown in Equation (5). Then, s̃z(n) is used in the prediction
process for the next pixel point to be measured.

s̃z(n) = ŝz(n) + dz,k(n)wz,k(n − 1) + ẽz(n). (5)

where the center of the predicted residual reconstruction value ẽz is calculated by Equation (6).

ẽz(n) = qz(n)(2Λ + 1), (6)

The gain of RLS is

kT
z (n) =

pz(n − 1)dT
z(n)

1 + dz(n)p(n − 1)zdT
z(n)

, (7)

pz(n) = pz(n − 1)− kT
z (n)dz(n)pz(n − 1), (8)
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where p(n) is an auxiliary vector required to reduce the computational burden.
Then, the weight vector wz,k(n) is updated by the recursive Equation 9.

wz,k(n) = wz,k(n − 1) + kz(n)ẽz(n). (9)

Finally, the predictor is executed for each pixel in raster scan order until the last pixel
is reached.

2.2. Entropy Encoding

Entropy coding techniques are used to encode the residual error after quantization
in predictive compression. The adaptive arithmetic encoder is adopted in the encoding
stage, whose compression ratio is near the theoretical entropy. The quantization residual is
represented by 16 bits, meaning that the arithmetic code’s codebook needs 65,536 symbols.
Based on the probability distribution of the prediction residual, most symbols are not used.
Therefore, an adaptive codebook is adopted. The initial codebook contains two symbols: 0
and ESC. When a new symbol needs to be encoded, the encoder will use the probability
of ESC to encode it, and the 16-bit symbol will be appended to the code stream. The code
book absorbs the new symbol after the symbol has been output to the stream.

3. Experimental Results

The proposed scheme, named near-lossless recursive least squares (NLRLS), has two
parameters, namely, the radius of the context window r and the prediction length k. Since
these two parameters critically impact the compression results, the selection of optimal
values is explained in the first subsection. Furthermore, the compression performance of
the proposal is compared with several state-of-the-art schemes, including compression
results in the distortion metrics of the reconstructed image. This section highlights the
corresponding results and analysis.

The platform for testing is a personal computer powered by a single Intel Core i7-
7700K central processing unit (CPU) at 4.2GHz with 16GB random access memory (RAM).
We adopted the standard hyperspectral image test data recommended by the International
Consultative Committee for Space Data Systems, which includes Atmospheric Infrared
Sounder (AIRS) and Airborne Visible/Infrared Imaging Spectrometer Calibrated and
Uncalibrated (AC and AU) [29]. Each of them has a bit depth of 16 bit-per-pixel (BPP).
Table 1 details the dataset used in the tests, including sensor abbreviations, scene names,
and dimensions.

Table 1. The sensor names and their main features.

Sensor Scene
Number
of Scence

Rows Columns Bands Formation

AC Yellowstone 5 677 512 224 Signed 16 bit
AU Yellowstone 3 680 512 224 Unsigned 16 bit

AIRS Gran 8 90 135 1501 Unsigned 16 bit

3.1. Parameter Settings

The accuracy of the RLS predictor has a strong correlation with the prediction length k
of the input vector dz,k(n). Additionally, to preserve the causality of the pixels in the context
window, the local mean predictor is used to estimate Ŝz(n). Therefore, the radius r of the
context window is another important parameter that directly affects the compression results.
In order to evaluate the effects of the k and r parameters on near-lossless compression
performances, average bit rates of the proposed scheme at different peak absolute errors
are shared in Figure 3 for the AC datasets.

It can be seen from Figure 3a–d that the proposed compression schemes exhibit similar
radio-compressed bit-rate characteristics for different peak absolute errors. The lowest bit
rates are observed in the case of low r–high k parameter pairs. If the radius is treated as

181



Appl. Sci. 2022, 12, 7172

a constant, we can see that the deceleration of the compressed bit rate gradually slows
down as the prediction length increases. Moreover, the RLS predictor update requires
the computation of P(n) as well as dz,k(n). The algorithm has an O(k2) computational
complexity, meaning that the computing resource consumption increases quadratically
with k. Considering the dual effects of the actual compression results and the computational
complexity, the initial radio r and prediction length k parameters are selected as 2 and 12,
respectively.

Figure 3. Average compressed bit-rate for different peak absolute errors: (a) encoded at Λ = 0,
(b) encoded at Λ = 10, (c) encoded at Λ = 20, (d) encoded at Λ = 30.

3.2. Compression Performance Analysis
3.2.1. Compression Results

A total of 16 scene data from three types of hyperspectral image datasets (AC, AU,
AIRS) were used as test data sources. The results of CCSDS-123-AC, NLCCSDS-123, and
M-CALIC are listed here to compare with the proposed near-lossless compression scheme.
Table 2 shows the average compression results for multiple compression schemes at five
different peak absolute errors.

Table 2 reports compression results in terms of the bit rate. The second column reports
the first-order entropy on average (in bit-per-pixel) for each scene type. It represents the
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entropy of individual pixels, regardless of any correlation among the pixels. In addition,
each subsequent column shows the average compression results for a compression scheme
at different peak absolute errors Λ. The best compression results for each test are indicated
in bold. The bracketed text indicates the coding gain of our method relative to other
techniques, and a positive difference means our scheme is better.

Table 2. Comparison of different near-lossless schemes for several different peak absolute errors.

Sensor
Abbreviation

Entropy Λ Values CCSDS-123-AC NL-CCSDS-123 M-CALIC NLRLS

AC 9.77

Λ = 0 3.66 (0.14) 3.73 (0.21) 4.03 (0.51) 3.52
Λ = 1 2.45 (0.38) 2.54 (0.47) 2.87 (0.80) 2.07

Λ = 10 0.58 (0.10) 0.94 (0.46) 0.88 (0.40) 0.48
Λ = 20 0.35 (0.07) 0.72 (0.44) 0.53 (0.25) 0.28
Λ = 30 0.26 (0.06) 0.63 (0.43) 0.40 (0.20) 0.20

AU 12.13

Λ = 0 5.87 (0.14) 5.95 (0.22) 6.13 (0.40) 5.73
Λ = 1 4.80 (0.66) 4.89 (0.75) 5.05 (0.91) 4.14

Λ = 10 1.96 (0.38) 2.24 (0.66) 2.22 (0.64) 1.58
Λ = 20 1.14 (0.22) 1.46 (0.54) 1.40 (0.48) 0.92
Λ = 30 0.83 (0.17) 1.18 (0.52) 1.05 (0.39) 0.66

AIRS 11.39

Λ = 0 4.25 (0.41) 4.31 (0.47) 4.38 (0.54) 3.84
Λ = 1 3.08 (0.77) 3.13 (0.82) 3.21 (0.90) 2.31

Λ = 10 0.61 (0.28) 0.98 (0.65) 0.70 (0.37) 0.33
Λ = 20 0.29 (0.15) 0.66 (0.52) 0.36 (0.22) 0.14
Λ = 30 0.20 (0.10) 0.57 (0.47) 0.26 (0.16) 0.10

It can be seen that the compression bit rate of each technique decreases rapidly as a
function of Λ. The reported results indicate that our scheme outperforms the other known
schemes for all sensors. For lossless coding (Λ = 0), our scheme beats the other schemes
by a slight margin. For near-lossless encoding (Λ > 0), our scheme provides outstanding
compression results; i.e., it clearly yields the lowest ratio of all the compared methods.
Compared to CCSDS-123-AC, which has the best-known compression results, on average,
the proposal provides benefits ranging from 0.11 to 0.6 bpp, depending on the allowed
absolute error of the peak.

The previous subsection stated that the computational complexity of NLRLS is O(k2).
The computational complexity of the SLMS filter used by CCSDS-123-AC is O(k), where k
is the number of bands. Although NLRLS has higher complexity than CCSDS-123-AC, it
produces better convergence and more accurate predictions. Therefore, the compression
results of the NLRLS scheme are better.

Graphically, the relative gain of our scheme over CCSDS-123-AC is represented in
Figure 4 for different datasets. Each color represents the comparison results using different
datasets, and each cluster indicates a different peak absolute error. Therefore, the higher
percentage means that our scheme is superior. The results indicate that the proposed
scheme provides an average optimization from 5.29% to 31.19% in bit-per-pixel change
for different peak absolute errors. The AIRS images, especially, outperform by almost 50%
with Λ ≥ 10.

We note that complex image preprocessing can achieve better compression results,
such as band reorder, clustering, and super-pixel methods [30,31]. However, this is beyond
the scope of this paper and will not be discussed here.
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Figure 4. The relative gain of our scheme on CCSDS-123-AC at different peak absolute errors for AC,
AU, and AIRS datasets.

3.2.2. Reconstruction Quality Analysis

In the near-lossless compression scheme, the peak absolute error Λ introduced by
the compression process directly affects the quality of the reconstructed image. Figure 5
shows the original image of the AIRS Grand16 image and the reconstructed image at
Λ = {0, 1, 10, 20, 30}. It can be noted that the visual performance of each image is ex-
tremely similar.

Figure 5. Visual comparison for the “AIRS Grand16 1256th band” image: (a) original, (b–e) recon-
structed image at Λ = {1, 10, 20, 30}, respectively.

To objectively evaluate the quality of the reconstructed images, we compare the
proposed scheme with the best-known near-lossless compression scheme CCSDS-123-AC,
including two metrics, namely the peak signal-to-noise ratio and spectral angle mapper.

If D is the dynamic range (in bits) of the original image, the maximum pixel value is
2D − 1. The reconstructed image quality is evaluated in terms of the peak signal-to-noise
ratio (PSNR), which is measured in dB and defined as:

PSNR
(

S, S̃
)
= 10 log10

(
2D − 1

)2
MSE

(
S, S̃
) (dB) , (10)
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where MSE
(

S, S̃
)

is the mean square error between the original image S and the recon-

structed image S̃.

MSE
(

S, S̃
)
=

∑NX
1 ∑NY

1 ∑NZ
1

(
Sz(x, y)− S̃z(x, y)

)2

NX × NY × NZ
, (11)

Spectral Angle Mapper (SAM) treats the spectrum of each image element as a high-
dimensional vector and measures the similarity between two spectra by calculating the
angle of the vector. The SAM of each pixel spectrum in the original and reconstructed
image is denoted as

α(x, y) = cos−1

⎛⎝ ∑NZ
Z Sz(x, y)×S̃z(x, y)√

∑NZ
Z S2

z(x, y)
√

∑NZ
Z S̃2

z(x, y)

⎞⎠, (12)

The average spectral angle is used to calculate the spectral variability of the reconstructed
image, and, the smaller the angle, the less distortion.

We experimentally obtained a series of reconstructed image data by varying the
maximum allowable peak absolute error. Figures 6 and 7 show the PSNR and the average
SAM variation with the bit rate, respectively.

Figure 6. The PSNR performance of the proposed method compared to CCSDS-123-AC.

Figure 7. The SAM performance of the proposed method compared to CCSDS-123-AC.
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The experimentally obtained data points have been highlighted by marked dots, and
linear interpolation is used between the markers. It can be seen that under the same
compressed bit rate, the proposed scheme has a higher peak signal-to-noise ratio and a
smaller average spectral angle. Further, for image quality, as measured by the PSNR and
SAM, our approach is competitive compared to the best-known CCSDS-123-AC scheme.

4. Conclusions

In this paper, the prediction-based near-lossless compression technique is used to
reduce the size of the hyperspectral image. The target pixel is predicted from the combi-
nation of previous pixels in the spatial and spectral bands. The coefficients are predicted
using the weight matrix of the RLS filter with an in-loop quantizer. The experiments were
performed on three types of CCSDS hyperspectral images’ datasets, including three, five,
and eight scenes, respectively. The optimal number of bands for the loop predictor was an-
alyzed experimentally. The results indicate that the proposed scheme provides an average
optimization from 5.29% to 31.19% in bit-per-pixel for different peak absolute errors and
achieves a competitive reconstructed image quality compared to the state-of-the-art meth-
ods.

In the future, we plan to develop an automated model for parallel processing of near-
lossless compression schemes and feasible hardware implementation solutions for space-
based platforms. This research work will further pave the way for future developments in
the field of deep space exploration.
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Abstract: A novel multi-parameter inversion method is proposed for the Advanced Integral Equation
Model (AIEM) by using bi-directional deep neural network. There is a very complex nonlinear rela-
tionship between the surface parameters (dielectric constant and roughness) and radar backscattering
coefficient. The traditional inverse neural network, which is constructed by using the backscattering
coefficients as the input and the surface parameters as the output, leads to bad convergence and
wrong results. This is because many sets of surface parameters can get the same backscattering
coefficient. Therefore, the proposed bi-directional deep neural network starts with building an AIEM-
based forward deep neural network (AIEM-FDNN), whose inputs are the surface parameters and
outputs are the backscattering coefficients. In this way, the weights and biases of the forward deep
neural network can be optimized and predicted, which can be used for the backward deep neural
network (AIEM-BDNN). Then, the multi-parameters are updated by minimizing the loss between the
output backscattering coefficients with the measured ones. By inserting a sigmoid function between
the input and the first hidden layer, the input multi-parameters can be efficiently approximated and
continuously updated. As a result, both the forward and backward deep neural networks can be
built with these weights and biases. By sharing the weights and biases of the forward network, the
training of the inverse network is avoided. The bi-directional deep neural network can not only
predict the backscattering coefficient but can also inverse the surface parameters. Numerical results
are given to demonstrate that the RMSE of the backscattering coefficients calculated by the proposed
bi-directional neural network can be reduced to 0.1%. The accuracy of the inversion parameters,
including the real and imaginary parts of the dielectric constant, the root mean square height and the
correlation length, can be improved to 97.56%, 91.14%, 99.04% and 98.45%, respectively. At the same
time, the bi-directional neural network also has good accuracy for the inversion of the POLARSCAT
measured data.

Keywords: bi-directional neural network; AIEM; surface parameters; backscattering coefficients

1. Introduction

The inversion of the surface parameters is the key problem in remote sensing science
research [1–4]. Surface parameters can effectively reflect environmental conditions and
understand the dynamic information for Earth monitoring. Therefore, there is a great
significance in obtaining the surface parameters. Surface parameters inversion is to solve
or calculate the target parameters that describe the actual situation of landforms according
to the observation information and the forward physical model. How to combine the nu-
merical and experimental results has always been a hot research topic. It has an important
guiding significance for overland disturbances and environmental monitors. The inversion
of the actual surface information is usually based on a random rough surface scattering
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model. Over the past few decades, many researchers focused on surface scattering charac-
teristics by using experimental and theoretical methods. The Kirchhoff Approximation (KA)
was mostly applied to large-scale rough surfaces [5,6]. On the other hand, for small-scale
rough surfaces, the Small Perturbation Model (SPM) was developed [7,8]. Subsequently,
the Small Slope Approximation (SSA), which was proposed by Voronovich, combines the
perturbation theory with the tangent approximation [9,10]. It should be noted that the KA
is only suitable for a large curvature, while the SPM is only suitable for small roughness.
Therefore, the Integral Equation Model (IEM) [11] was proposed by Fung to bridge the KA
and SPM. The dependence of the surface height on the phase of the Green’s function was
ignored for the traditional IEM, which led to a big error. Then, a series of modified schemes
were proposed to increase the accuracy, such as the Advanced Integral Equation Model
(AIEM) and its derivatives [12,13]. Therefore, the AIEM can be used as an efficient tool to
model the landform for its robustness and scalability.

The research methods in this area are generally divided into the empirical formula
method, intelligent optimization algorithm and neural network method. In the past decades,
the semi-empirical models were used as one of the most popular methods to predict the
parameters [14–16]. This method is to summarize the laws of a large number of measured
data and express them with simple functions. Inspired by evolutionary phenomena in
nature, many intelligent optimization algorithms have emerged, such as the GA (Genetic
Algorithm) and PSO (Particle Swarm Optimization). Such methods have been widely used
for hydrogeological parameters and rough surface parameters inversion [17,18]. The core
idea of the intelligent optimization algorithm is to use the algorithm to traverse the model
space constructed by all the parameters to obtain the optimal solution of the objective
function. However, it is difficult to obtain the global optimal solution using these methods,
and only a small number of parameters can be inverted. At present, neural networks are
being widely used in engineering fields such as machinery, materials and architecture,
and their applications can be traced back to the late 1980s. Neural networks can perform
complex data processing and are usually used to complete classification tasks and function
approximation tasks. Therefore, a neural network is a promising tool for solving the inverse
problems arising from its generalization ability. In [3], a back propagation Neural Network
(BP) based on IEM was developed to inverse the surface parameters. In [19,20], neural
networks with different structures were used for the prediction of metasurface geometric
parameters or color parameters. Meanwhile, a Convolutional Neural Network (CNN) has
been used in SAR target recognition and terrain classification [21–23]. In [24], a CNN and
Generative Adversarial Network (GAN) were combined to extract simulation parameters
from SAR images.

In this paper, a novel bi-directional DNN (deep neural network) is proposed to predict
the multi-parameters of the AIEM. The proposed bi-directional DNN consists of two DNNs.
Both DNNs share the same network structure and the same set of network weights. The
bi-directional DNN can successfully complete the two tasks of predicting backscattering
coefficients and inverting surface parameters. At first, a forward DNN needs to be estab-
lished. This forward DNN takes the surface parameters as the input and the backscattering
coefficients as the output. After training, this network can fit the AIEM model well. Then,
a backward DNN is constructed by reusing the network structure of the forward DNN
and the weights after training. Before backward network training, the input surface pa-
rameters need to be initialized as constants. Finally, the initialized surface parameters can
be updated by calculating the loss of the output backscattering coefficients and the actual
backscattering coefficients. The traditional inverse neural network, which is constructed by
using the backscattering coefficients as the input and the surface parameters as the output,
leads to a bad convergence and wrong result. However, the proposed bi-directional deep
neural network is proposed to overcome these problems. Compared with the BP neural
network, the proposed bi-directional network has a higher inversion accuracy. To verify
the inversion accuracy of the bi-directional network, POLARSCAT [25–27] measured data
on bare soil surfaces under three different roughness and humidity conditions was used.
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The numerical results showed that the bi-directional network has high accuracy for the
prediction of backscattering coefficients and the inversion of surface parameters.

2. Materials and Methods

2.1. Experimental Data

In this study, the training data of the bi-directional network was obtained based on
the mapping relationship between the surface parameters and radar observations. In
fact, training data satisfying such conditions cannot be obtained from the point datasets
measured in the field. The AIEM model can simulate the backscattering characteristics
under various surface conditions. Given the range of variations in the surface permittivity,
the root mean square height (RMS) height and correlation length of interest bi-directional
neural network training data can be generated by the AIEM model [12,28].

The general formula of the AIEM model is shown in Figure 1.

σqp(s) = σk
qp + σkc

qp + σc
qp (1)

x

y
z

Figure 1. Schematic diagram of scattering from rough surfaces.

It can be seen that the scattering coefficient is composed of Kirchhoff terms σk
qp, cross

terms σkc
qp and compensation terms σc

qp. The explicit form of AIEM can be given as

σqp(s) = k2

2 e−σ2(k2
sz+k2

z)

· ∞
∑

n = 1

σ2n

n!

∣∣∣In
qp

∣∣∣2S(n)(ksx − kx, ksy − ky)
(2)

where k is the incident wave number, σ2 represents the variance of the surface height and
S(n)(ksx − kx, ksy − ky

)
denotes the surface roughness spectrum of the surface in terms of

the nth power of the surface correlation function by two-dimensional Fourier transform.
As shown in Figure 1, the incident and scattered wave vectors can be defined as

kx = k sin θi cos ϕi ; ky = k sin θi sin ϕi; kz = −k cos θi (3)

ksx = k sin θs cos ϕs ; ksy = k sin θs sin ϕs; ksz = k cos θs (4)

where θi and ϕi are the incident angle, and θs and ϕs are the scattering angle. The backscat-
tering direction is at θi = θs, ϕs = ϕi + 180◦.

POLARSCAT is a polarizing scatterometer that operates on different bare surfaces,
each with wet and dry conditions. The polarimetric measurements are conducted at the
L-, C- and X-band frequencies at incident angles ranging from 10◦ to 70◦. In this paper,
the experimental data in the L- (the center frequency is 1.5 GHz) and X-bands (the center
frequency is 4.75 GHz) are selected. As shown in Table 1, three soils of different roughness
were measured in dry and wet conditions. Where σ is the RMS height, l is the correlation
length and k = 2π/λ, (λ = c/ f , c = 3 × 108). The RMS height ranged from 0.40 cm to
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1.12 cm, and the correlation length ranged from 8.4 cm to 9.9 cm. In [25–27], for the three
surfaces (S1–S3), the measured autocorrelation function was found to be closer in shape to
an exponential function.

Table 1. POLARSCAT measured parameters.

Surface Number Freq. (GHz) kσ kl σ (cm) l (cm) εr ε”
r

S1-dry 1.5 GHz 0.13 2.6

0.40 8.4

7.99 2.02
4.75 GHz 0.4 8.4 8.77 1.04

S1-wet
1.5 GHz 0.13 2.6 15.57 3.71

4.75 GHz 0.4 8.4 15.42 2.15

S2-dry 1.5 GHz 0.1 3.1

0.32 9.9

5.85 1.46
4.75 GHz 0.32 9.8 6.66 0.68

S2-wet
1.5 GHz 0.1 3.1 14.43 3.47

4.75 GHz 0.32 9.8 14.47 1.99

S3-dry 1.5 GHz 0.35 2.6

1.12 8.4

7.70 1.95
4.75 GHz 1.11 8.4 8.50 1.00

S3-wet
1.5 GHz 0.35 2.6 15.34 3.66

4.75 GHz 1.11 8.4 15.23 2.12

2.2. Method

In this section, it will be introduced separately from the overall framework of the
bi-directional network, the structure of the forward network and the structure of the reverse
network. At the same time, the workflow of the bi-directional network will be introduced
in detail.

2.2.1. Framework of the Bi-Directional Deep Neural Network

There are usually two smart methods for solving inverse problems, namely the opti-
mization algorithm and neural network inverse modeling method. The core idea of the
optimization algorithm is to traverse the model space constructed by all parameters to
obtain the optimal solution of the objective function. However, this kind of method needs
to manually set the range of each parameter, and it is easy to fall into the local optimal
solution when dealing with complex problems. In [29], a genetic algorithm was used
to invert the surface parameters. It is often necessary to perform multiple searches to
select the optimal solution, and the accuracy is not high. Another method is to use the
backscattering coefficients as the input and the surface parameters as the output and use
the neural network to directly construct the inverse model. However, since there is no exact
analytical formula from the backscattering coefficients to the surface parameters, at the
same time, the non-uniqueness of the dataset itself will make the overall training of the
dataset difficult for the inverse model, thus affecting the inversion accuracy.

In this paper, a novel DNN-based surface parameters inversion method is proposed.
As shown in Figure 2, this framework consists of two DNNs, namely an AIEM-Based
Forward Deep Neural Network (AIEM-FDNN) and AIEM-Based Backward Deep Neural
Network (AIEM-BDNN). The same network structure and weights are shared by them. The
AIEM-FDNN takes the surface parameters as the input and the backscattering coefficients as
the output. After training, it can be used to quickly calculate the backscattering coefficients
outside the dataset. The AIEM-BDNN can be formed by reusing the network structure
and well-trained weights of AIEM-FDNN. The input nodes need to be set as the variables.
First, the input surface parameters are randomly initialized as constants. Then, the loss
between the output backscattering coefficients and the actual backscattering coefficients
will be calculated by the AIEM-BDNN. Finally, based on the back propagation of the error,
the initialized surface parameters are continuously updated by the optimizer until the error
converges into a sufficiently small value. Meanwhile, the updated surface parameters are
the inversion results of the AIEM-BDNN based on this set of backscattering coefficients.
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Figure 2. The framework for the proposed AIEM-based bi-directional deep neural network.

The flowchart of the overall working process of the bi-directional deep neural network
is provided in Figure 3. The workflow of the AIEM-FDNN and AIEM-BDNN will be
presented in detail in the following two parts.

Perform forward 
propagation of AIEM-

FDNN

Perform back 
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Update the weights and 
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Figure 3. Flowchart of the working process of the bi-directional DNN.
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2.2.2. AIEM-Based Forward Deep Neural Network

As shown in Figure 1, the AIEM-FDNN is a fully connected network that contains
an input layer, multiple hidden layers and an output layer. Its input is the surface param-
eters, including the real part εr and imaginary part ε

′′
r of the dielectric constant, the root

mean square height kσ and the correlation length kl, and the output is the backscattering
coefficients σHH , σVV .

The AIEM-FDNN is designed to calculate the backscattering coefficients. The trained
AIEM-FDNN has similar computational accuracy to the AIEM model, and it is less complex
to calculate. Since the AIEM-BDNN used for surface parameters inversion uses the network
structure of AIEM-FDNN and the weights after training, the accuracy of the AIEM-FDNN
directly affects the performance of the entire bi-directional DNN. The training process
of the AIEM-FDNN consists of two stages: forward propagation and back propagation.
The forward propagation is to calculate the loss of the output backscattering coefficients
and the actual backscattering coefficients according to the current network weights. The
back propagation is to update the weights using gradient descent techniques based on the
current loss.

The forward propagation calculation process of AIEM-FDNN can be given as

Z0
AF = [εr, ε

′′
r , kσ, kl]A (5)

Zi
AF = gi

(
Wi

AF · Zi-1
AF + bi

AF

)
(i = 1, · · ·, N) (6)

ZN
AF = gN

(
WN

AF · ZN-1
AF + bN

AF

)
(7)

[σHH,σVV] = ZN
AF (8)

where Z0
AF and ZN

AF represent the input surface parameters and the output backscatter-
ing coefficients for HH and VV polarizations for different incident angles, respectively.
Zi

AF(i = 1, · · ·, N) represents the calculation result of the ith layer after the activation
function. Wi

AF represents the weights matrix from the (i-1)th layer to the ith layer. bi
AF

represents the biases of the ith layer, and gi(·) represents the nonlinear activation function
of the ith layer. As shown in Figure 3, the calculated loss between the output backscattering
coefficients and the actual backscattering coefficients will be calculated. The loss function
of AIEM-FDNN is defined as the mean square error, which can be expressed as

LossAF =
1
n

n

∑
j = 1

[(
σL

HH,j − σHH,j

)2
+
(

σL
VV,j − σVV,j

)2
]

(9)

where σL
HH,j, σL

VV,j represents the actual backscattering coefficients of the HH and VV
polarization for the jth incident angle. The back propagation of AIEM-FDNN is based on
the chain derivation rule. ∂LossAF

∂Wi
AF

and ∂LossAF
∂bi

AF

are calculated to update Wi
AF and bi

AF until

LossAF converges to a minimum. The calculation process can be given as

EN
AF = −

(
ylabel − gN

(
WN

AF · ZN-1
AF

+bN
AF

))
◦ g′N

(
WN

AF · ZN-1
AF

+bN
AF

)
(10)

Ei
AF =

((
Wi+1

AF

)T · Ei+1
AF

)
◦ g′ i

(
Wi

AF · Zi-1
AF

+bi
AF

)
(11)

∂LossAF

∂Wi
AF

= Ei
AF ·
(

Zi−1
AF

)T
(12)

∂LossAF

∂bi
AF

= Ei
AF (13)
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where EN
AF represents the error vector in the output layer of AIEM-FDNN, g′ i(·) is the

derivative of the activation function. Ei
AF is the error vector in the ith layer, and ◦ is the

Hadamard product. Finally, the formulas for updating the weights and biases can be
given as

Wi
AF = Wi

AF − ηAF
∂LossAF

∂Wi
AF

(14)

bi
AF = bi

AF − ηAF
∂LossAF

∂bi
AF

(15)

where ηAF represents the learning rate of the AIEM-FDNN.

2.2.3. AIEM-Based Backward Deep Neural Network

The AIEM-BDNN is constructed by directly reusing the network structure of the AIEM-
FDNN and loading the training weights and biases to invert the surface parameters. Simply
put, it is only necessary to set the input node of the trained AIEM-FDNN as variables.
The training process of the AIEM-BDNN also includes forward propagation and back
propagation, but it is different from the training object of AIEM-FDNN. The training objects
of AIEM-FDNN are the weights and biases of the network, while the training objects of
the AIEM-BDNN are the input surface parameters of the network. The AIEM-BDNN is
trained by giving a set of backscattering coefficients to be inverted. By initializing the input
surface parameters as constants, the forward propagation of the AIEM-BDNN is performed
to calculate the backscattering coefficients. Back propagation is performed according to the
loss between the output backscattering coefficients and the true backscattering coefficients.
Finally, the initialized surface parameters are continuously updated until the loss converges
to a small enough value. The last surface parameters updated are the inversion values.

The forward propagation calculation process of the AIEM-FDNN can be given as

Z0
AB = [εr, ε

′′
r , kσ, kl]B (16)

Zi
AB = gi

(
Wi

AF · Zi-1
AB + bi

AF

)
(i = 1, · · ·, N) (17)

ZN
AB = gN

(
WN

AF · ZN−1
AB + bN

AF

)
(18)

[σHH,σVV] = ZN
AB (19)

where [εr, ε
′′
r , kσ, kl]B are randomly initialized surface parameters. Wi

AF represents the
weights matrix from the (i-1)th layer to the ith layer of AIEM-FDNN. bi

AF represents the
biases of the ith layer of the AIEM-FDNN. Since the AIEM-FDNN has been trained, Wi

AF

and bi
AF have been fixed. They will not be updated in both the forward and backward

propagation of the AIEM-BDNN. gi(·) represents the nonlinear activation function of
the ith layer of the AIEM-FDNN. Zi

AB(i = 1, · · ·, N) represents the calculation results of
the ith layer of the AIEM-BDNN after the activation function. The loss function of the
AIEM-BDNN is also defined as the mean squared error, which can be expressed as

LossAB =
1
n

n

∑
j = 1

[(
σL

HH,j − σHH,j

)2
+
(

σL
VV,j − σVV,j

)2
]

(20)

The back propagation of the AIEM-BDNN is also based on the chain derivation rule.
∂LossAB

∂Z0
AB

is calculated to update Z0
AB until LossAB converges to a minimum. The calculation

process can be given as

EN
AB = −

(
ylabel − gN

(
WN

AF · ZN−1
AB

+bN
AF

))
◦ g′N

(
WN

AF · ZN−1
AB

+bN
AF

)
(21)
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Ei
AB =

((
Wi+1

AF

)T · Ei+1
AB

)
◦ g′ i

(
Wi

AF · Zi−1
AB

+bi
AF

)
(22)

∂LossAB

∂Z0
AB

= (W1
AF)

T · E1
AB (23)

where EN
AB represents the error vector in the output layer of the AIEM-BDNN, and g′ i(·) is

the derivative of activation function of AIEM-FDNN. Ei
AB is the error vector in the ith layer,

and ◦ is the Hadamard product. Finally, the formulas for updating Z0
AB can be given as

Z0
AB = Z0

AB − ηAB
∂LossAB

∂Z0
AB

(24)

in which ηAB represents the learning rate of the AIEM-BDNN.
From the formula derivation of AIEM-FDNN and AIEM-BDNN, it can be seen that the

training purpose of the AIEM-FDNN is to update the weights and biases of the network.
Instead, AIEM-BDNN uses the weights and biases that AIEM-FDNN has already trained
and fixed. Therefore, its training purpose is only to update the input parameters. It
can be seen that the AIEM-FDNN and AIEM-BDNN are closely related. The quality of
the AIEM-FDNN training will directly affect the inversion accuracy of the AIEM-BDNN.
Therefore, using the bi-directional network to invert the surface parameters, we first need
to ensure that the accuracy of the backscattering coefficients calculated by the AIEM-FDNN
is high enough. The pseudocode of the bi-directional deep neural network was added as
Appendix A to the article.

3. Results

3.1. Performance of the AIEM-Based Forward Deep Neural Network

The selection of the datasets is crucial for the training of neural networks. Since
the AIEM model can simulate the backscattering characteristics under various surface
parameters, the training set required for the AIEM-FDNN can be generated as long as the
variation range of the surface parameters is given. As shown in Table 2, the range of each
surface parameter for generating the dataset is given. The range of the radar incident angle
is set from 20◦ to 50◦. Four surface parameters, namely the real and imaginary parts of the
dielectric constant, the normalized root mean square height and the normalized correlation
length, are used as the input of the AIEM-FDNN, while the backscattering coefficients
for HH and VV polarization are the output. The sampling interval of the real part and
imaginary part of the dielectric constant is 1.2 and 1, respectively. The sampling interval
of the normalized root mean square height is 0.1. The normalized relative length is 0.7.
A number of (21,009) sets of surface parameter combinations were generated by a cyclic
combination within the range of surface parameters, and the corresponding backscattering
coefficients were calculated by using the AIEM model. Many (3000) groups were selected
as the validation set, and 1300 groups were selected as the test set.

Table 2. Surface parameters and radar parameters.

Parameter Value

Real part of the dielectric constant(εr ) 2–26
Imaginary part of the dielectric constant (ε′′r ) 0.1–10.1

Normalized root mean square height height (kσ ) 0.1–1
Normalized relative lenght (kl ) 1–10.8

Range of incident angle (θi ) 20◦–50◦
Polarization mode HH, VV

kσ/kl 0.01–0.5
ε′′r /εr 0–0.5

Surface roughness spectrum (S) Exponential
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Next, the AIEM-FDNN is built for forward prediction. After continuous testing and
adjustment of the hyperparameters, the hyperparameter settings shown in Table 3 are
finally determined. There are four hidden layers added in the AIEM-FDNN, and each layer
has 300 neurons. The activation function of each hidden layer adopts the ReLU function.
Then, using the mean squared error (MSE) as the loss function, the error between the
output value and the true value for each epoch is calculated. At the same time, the popular
optimizer Adam is used to realize the back propagation. Finally, the continuous updating
of the weights and the biases can be realized. A decaying learning rate is used, so that
the training loss can converge more smoothly. Setting the batch size to 20, the network
converges when the epoch is equal to 1300.

Table 3. Training the hyperparameters of the AIEM-FDNN.

Parameter Value

Weight initialization method Uniform distribution initialization
Activation function ReLU

Loss function MSE
Optimizer Adam

Learning rate 0.001
Learning decay rate 0.9

Hidden layers 4
Hidden neurons 300

Epoch 1300
Batch size 20

The test set was used to test the ability of the AIEM-FDNN to predict backscattering
coefficients. As shown in Table 4, the RMSE between the output backscattering coefficients
for HH and VV polarizations for different incident angles and the actual backscattering
coefficients for HH and VV polarizations for different incident angles can be reduced to be
less than 0.1%. It can be seen that the training of the AIEM-FDNN is successful, and the
accuracy is high. The trained AIEM-FDNN has almost the same computational accuracy as
the AIEM model. The 21,009 sets of data generated by the AIEM model need 75.6 s, with
7.34 s for the proposed AIEN-FDNN. Therefore, the AIEM-FDNN has a faster computation
speed when faced with a large amount of data generation tasks.

Table 4. The RMSE between the output backscattering coefficients and the actual backscattering
coefficients for the proposed AIEM-FDNN with ϕ = 0◦ − 180◦.

Polarization Incident Angle (θ) RMSE

VV 20◦ 0.1055%
VV 30◦ 0.0585%
VV 40◦ 0.0557%
VV 50◦ 0.0708%
HH 20◦ 0.0905%
HH 30◦ 0.0589%
HH 40◦ 0.0661%
HH 50◦ 0.0655%

At the same time, the degree of agreement between the backscattering coefficients
calculated by AIEM-FDNN and the measured data has a great influence on the accuracy of
the bi-directional network inversion of actual surface parameters. POLARSCAT measured
data are used to test the AIEM-FDNN. The comparison of backscattering coefficients of the
AIEM (AIEM-VV and AIEM-HH), POLARSCAT measured data (data_VV and data_HH)
and AIEM-FDNN (AIEM-FDNN_VV and AIEM-FDNN_HH) for exponential correlated
surface are shown in Figure 4. It can be seen that the three have good consistency. This lays
a good foundation for the AIEM-BDNN to invert POLARSCAT measured parameters.
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Figure 4. Comparison of backscattering coefficients of the AIEM, POLARSCAT measured data and
AIEM−FDNN for exponential correlated surface with (a) εr = 7.99, ε′′r = 2.02, kσ = 0.13 and kl = 2.6 at
1.5 GHz; (b) εr = 15.57, ε′′r = 3.71, kσ = 0.13 and kl = 2.6 at 1.5 GHz; (c) εr = 7.7, ε′′r = 1.95, kσ = 0.35,
kl = 2.6 at 1.5 GHz and (d) εr = 14.43, ε′′r = 3..47, kσ = 0.1 and kl = 3.1 at 1.5 GHz.

3.2. Performance of the AIEM-Based Backward Deep Neural Network

AIEM-BDNN is designed to complete the surface parameters inversion task. It can
be established by reusing the network structure of the AIEM-FDNN and the well-trained
weights and biases. It is worth noting that the weights and biases of the AIEM-FDNN
have been fixed and will not change after being reused by the AIEM-BDNN. Simply put,
only the input surface parameters of the AIEM-BDNN are updated during training. The
hyperparameters used by the AIEM-FDNN are not suitable for the AIEM-BDNN. After
continuous tuning, the RAdam optimizer was chosen instead of the Adam optimizer.
Xavier Initialization is chosen as the initialization method of the input surface parameters.

Two outstanding problems were found in the experiments, one of which is that the
surface parameters are not updated in the desired direction. As a result, although the
training loss can converge normally, the surface parameters obtained by the final inversion
often deviate from the conventional parameter space. The update of the surface parameters
is not automatically limited to the respective data ranges shown in Table 2, and even
negative values may appear. The reason for this is that the AIEM-BDNN can accept
arbitrary update parameters due to the training mechanism of the DNN, and even the
wrong parameter combination can calculate the same result as the real value. In order
to limit the update range of the input surface parameters, before AIEM-FDNN training,
the input surface parameters are normalized by the method of Min–Max_scale, and the
parameters can be limited to 0–1. Next, a sigmoid layer is inserted between the input
layer and the first hidden layer of AIEM-BDNN. As a commonly used nonlinear function,
the sigmoid function can limit any input value between 0 and 1. In this way, you do not
need the need to care whether the updated surface parameters are out of a reasonable
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range, because no matter how unreasonable the value of the updated surface parameter
is, the sigmoid function will adjust it to the normal range. It should be noted here that,
although the update object of the network is still the input surface parameters, the real
input parameters of the AIEM-BDNN have become the values adjusted by the sigmoid
function. At the same time, the value adjusted by the sigmoid function will also be used as
the surface parameters inversed by AIEM-BDNN.

Another problem in the experiment is that there is a “premature” phenomenon when
the input surface parameters are updating. This phenomenon is reflected in the fact that the
training error cannot converge in the early stage of training. The reason is that, in the early
stage of network training, the gradient decreases sharply, resulting in the slow update of
neurons and ineffective learning. To alleviate such problem, the RAdam optimizer is used
instead of the Adam optimizer, and the Xavier initialization method is used. The RAdam
optimizer introduces a warm-up mechanism based on the commonly used Adam optimizer.
Simply put, it is to use a small learning rate in the early stage of network training, so that
the early training can be carried out smoothly and avoid excessive variance. The Xavier
Initialization method will control the variance of the initial value within an appropriate
range, usually making the variance of the initial value 1. It is also possible to choose to use
the solution in [30,31]. By scanning all the variable hyperparameters in the AIEM-BDNN
and recording the loss value, the one with the smallest loss is selected as the optimal
inversion result. After continuous testing and adjustment of the hyperparameters, the
hyperparameter settings shown in Table 5 are finally determined.

Table 5. Training hyper-parameters of AIEM-BDNN.

Parameter Value

Input value initialization method Xavier Initialization
Activation function ReLU

Loss function MSE
Optimizer RAdam

Learning rate 0.001
Learning decay rate 0.9

Hidden layers 4
Hidden neurons 300

Epoch 10,000

Many (1300) sets of test sets are used to examine the inversion accuracy of the AIEM-
BDNN. As shown in Figure 5, the comparison of the true surface parameters and the
AIEM-BDNN predicted surface parameters is given. The numerical results show that the
predicted surface parameters and the true surface parameters are concentrated near the
contour, which shows that the accuracy of the predicted parameters is high. The correlation
coefficient between the two is calculated, respectively, 97.56% (εr), 91.14% (ε′′r ), 99.04% (kσ)
and 98.45% (kl), as shown in Table 6.

Table 6. Inversion accuracy of the bi-directional neural networks.

Parameter RMSE Similarity(1-RMSE)

εr 0.0244 97.56%
ε′′r 0.0886 91.14%
kσ 0.0096 99.04%
kl 0.0155 98.45%
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Figure 5. Comparison of true parameters and the AIEM−BDNN predicted parameters for: (a) the
real part of the dielectric constant, (b) the imaginary part of the dielectric constant, (c) the normalized
root mean square height and (d) the normalized correlation length.

As shown in Table 7, twelve sets of inversion results between POLARSCAT measured
data and inverted by the AIEM-BDNN are compared. Three exponential distribution
surfaces of POLARSCAT measured data are selected. As we can see, the comparison of the
inversion results with the measured surface parameters can achieve satisfactory accuracy.

Table 7. Comparison of the surface parameters between POLARSCAT measured data and inverted
by the AIEM-BDNN.

Surface
Number

POLARSCAT (Measured) AIEM-BDNN (Inverted)

εr ε′′r kσ kl εr ε′′r kσ kl

S1-dry 7.99 2.02 0.13 2.6 9.07 1.23 0.13 2.81
8.77 1.04 0.40 8.4 9.33 1.19 0.40 8.49

S1-wet
15.57 3.71 0.13 2.6 15.19 4.09 0.13 2.79
15.42 2.15 0.40 8.4 16.00 0.36 0.40 8.44

S2-dry 5.85 1.46 0.10 3.1 3.02 2.96 0.16 1.29
6.66 0.68 0.32 9.8 3.23 0.95 0.36 1.00

S2-wet
14.43 3.47 0.10 3.1 10.58 5.43 0.10 3.09
14.47 1.99 0.32 9.8 14.91 1.63 0.32 9.88

S3-dry 7.7 1.95 0.35 2.6 7.41 2.53 0.31 1.89
8.5 1.00 1.11 8.4 9.34 0.42 0.99 6.66

S3-wet
15.34 3.66 0.35 2.6 20.79 4.49 0.32 1.04
15.23 2.12 1.11 8.4 15.00 4.58 0.99 8.86

εr ε′′r kσ kl
RMSE 2.36 1.21 0.055 2.69

nRMSE 0.1328 0.2386 0.0617 0.3029
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As shown in Figures 6–11 the inverted surface parameters are brought into the AIEM-
FDNN. The obtained backscattering coefficients are compared with the measured values. It
can be seen that the two have a good consistency.
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Figure 6. Comparison of the backscattering coefficients of the AIEM, POLARSCAT measured data
and AIEM−FDNN for exponential correlated surfaces with (a) measured: εr = 7.99, ε′′r = 2.02, kσ = 0.13
and kl = 2.6 at 1.5 GHz; inverted: εr = 9.07, ε′′r = 1.23, kσ = 0.13 and kl = 2.81; (b) measured: εr = 8.77,
ε′′r = 1.04, kσ = 0.4 and kl = 8.4 at 4.75 GHz; inverted: εr = 9.33, ε′′r = 1.19, kσ = 0.40 and kl = 8.49.
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Figure 7. Comparison of the backscattering coefficients of the AIEM, POLARSCAT measured data and
AIEM−FDNN for the exponential correlated surface with (a) measured: εr = 15.57, ε′′r = 3.71, kσ = 0.13,
and kl = 2.6 at 1.5 GHz; inverted:εr = 15.19, ε′′r = 4.09, kσ = 0.13 and kl = 2.79; (b) measured: εr = 15.42,
ε′′r = 2.15, kσ = 0.40 and kl = 8.4 at 4.75 GHz; inverted: εr = 16.00, ε′′r = 0.36, kσ = 0.40 and kl = 8.44.
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Figure 8. Comparison of backscattering coefficients of the AIEM, POLARSCAT measured data and
AIEM−FDNN for the exponential correlated surface with (a) measured: εr = 5.85, ε′′r = 1.46, kσ = 0.10
and kl = 3.1 at 1.5 GHz; inverted: εr = 3.02, ε′′r = 2.96, kσ = 0.16 and kl = 1.29; (b) measured: εr = 6.66,
ε′′r = 0.68, kσ = 0.32 and kl = 9.8 at 4.75 GHz; inverted: εr = 3.23, ε′′r = 0.95, kσ = 0.36 and kl = 1.00.
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Figure 9. Comparison of the backscattering coefficients of the AIEM, POLARSCAT measured data
and AIEM−FDNN for the exponential correlated surface with (a) measured: εr = 14.43, ε′′r = 3.47,
kσ = 0.10 and kl = 3.1 at 1.5 GHz; inverted: εr = 10.58, ε′′r = 5.43, kσ = 0.10 and kl = 3.09; (b) measured:
εr = 14.47, ε′′r = 1.99, kσ = 0.32 and kl = 9.8 at 4.75 GHz; inverted: εr = 14.91, ε′′r = 1.63, kσ = 0.32 and
kl = 9.88.
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Figure 10. Comparison of the backscattering coefficients of the AIEM, POLARSCAT measured data
and AIEM−FDNN for the exponential correlated surface with (a) measured: εr = 7.77, ε′′r = 1.95,
kσ = 0.35 and kl = 2.6 at 1.5 GHz; inverted: εr = 7.41, ε′′r = 2.53, kσ = 0.31 and kl = 1.89; (b) measured:
εr = 8.5, ε′′r = 1.00, kσ = 1.11 and kl = 8.4 at 4.75 GHz; inverted: εr = 9.34 ε′′r = 0.42, kσ = 0.99 and
kl = 6.66.
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Figure 11. Comparison of the backscattering coefficients of the AIEM, POLARSCAT measured data
and AIEM−FDNN for the exponential correlated surface with (a) measured: εr = 15.34, ε′′r = 3.66,
kσ = 0.35 and kl = 2.6 at 1.5 GHz; inverted: εr = 20.79, ε′′r = 4.49, kσ = 0.32 and kl = 1.04; (b) measured:
εr = 15.23, ε′′r = 2.12, kσ = 1.11 and kl = 8.4 at 4.75 GHz; inverted: εr = 15.00, ε′′r = 4.58, kσ = 0.99 and
kl = 8.86.
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4. Discussion

In this paper, the bi-directional network performs well in the task of surface parameter
inversion. The bi-directional network has a high inversion accuracy for the AIEM model
dataset. Similarly, for the inversion of the POLARSCAT measured data by the bi-directional
network, the inversion value has a good correlation with the real value.

The bi-directional network is proposed to solve the problem of non-uniqueness, which
leads to the poor effect of direct training of the inverse network. The nonunique data in the
dataset itself will cause the training error of the directly constructed inverse network (with
the backscattering coefficients as the input and the surface parameters as the output) to be
unable to decrease and converge well. To solve this problem, bi-directional networks are
proposed. The forward network AIEM-FDNN (with the surface parameters as the input
and the backscattering coefficients as the output) is first trained, and the inverse network is
constructed by reusing the weights trained by the AIEM-FDNN. In this way, the problem
of directly constructing the inverse network can be avoided, and the bi-directional network
achieves better inversion accuracy.

A BP (back propagation) neural network with backscattering coefficients as the input
and surface parameters as the output is directly constructed. The 21,009 datasets generated
by the AIEM model are used for training, and the training loss curve is shown in Figure 12a.
Note that the training stops when the validation loss does not drop for 40 consecutive
epochs. It can be seen that the training and validation losses for the BP neural network
are 1.6257 and 1.5519, respectively, and the loss value barely dropped. This shows that the
directly built inverse network performs poorly for the task of inverting surface parameters
from input backscattering coefficients. The biggest reason that the inverse network cannot
be trained well is the most common non-uniqueness problem in the inverse task of the
neural network. Since the combination of different surface parameters can obtain the same
or similar backscattering coefficients, this leads to a one-to-many situation during inverse
network training. Once there are too many nonunique data in the dataset, the training
loss of the network cannot be reduced well. On the contrary, the training of the forward
network with the surface parameters as the input and the backscattering coefficient as the
output does not have the influence of nonunique data on it. Therefore, it is hoped to start
from the forward network and design a new method of surface parameter inversion. A
bi-directional network was designed to overcome the above problems.

 
(a) (b) 

Figure 12. (a) Learning curve of the BP neural network. (b) Learning curve of the AIEM−FDNN.

As shown in Figure 12b, the loss curve of training and validation converges to a small
value and keeps fluctuating after the AIEM-FDNN trained for 1300 epochs. Finally, the
training loss value and validation loss value of the network are 6.45× 10−4 and 1.17× 10−4,
respectively. This loss value of the proposed bi-directional DNN is smaller than the tradi-
tional inverse network by several magnitudes. The weights trained by the AIEM-FDNN
can be directly reused by the AIEM-BDNN, which can show a better loss convergence. As
shown in Table 8, the bi-directional network achieves a better inversion accuracy.
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Table 8. Inversion accuracy of BP neural networks and Bi-directional DNN.

Bi-Directional DNN BP

Parameter RMSE
Similarity
(1-RMSE)

RMSE
Similarity
(1-RMSE)

εr 0.0244 97.56% 0.0528 94.72%
ε′′r 0.0886 91.14% 0.4948 50.52%
kσ 0.0096 99.04% 0.0457 95.43%
kl 0.0155 98.45% 0.0374 96.26%

5. Conclusions

In this paper, a novel bi-directional neural network was proposed to invert the surface
parameters. The establishment of the bi-directional network is divided into two steps. The
AIEM-FDNN established first takes the surface parameters as the input and the backscat-
tering coefficients as the output. The trained AIEM-FDNN can predict the backscattering
coefficients outside the training dataset, and the predictions are also very accurate for
the measured data. The AIEM-BDNN is built by reusing weights and biases trained by
the AIEM-FDNN. At the same time, it is necessary to give the input surface parameter
initialization constants, and a sigmoid layer between the input layer and the first hidden
layer is inserted. After the error between the output backscattering coefficients and the true
backscattering coefficients is continuously reduced, the input surface parameters can be
continuously updated. The numerical results show that the bi-directional network not only
has a good inversion effect for the data in the dataset but also has a high inversion accuracy
for the measured data outside the dataset.

The bi-directional network is divided into a forward network (AIEM-FDNN) and an
inverse network (AIEM-BDNN). The AIEM-BDNN is constructed by reusing the weights
and biases of the AIEM-FDNN and does not require secondary training. Therefore, the
training accuracy of the AIEM-FDNN will directly determine the inversion accuracy of the
AIEM-BDNN. If the training effect of the forward network on some datasets is not good,
then the bi-directional network will not be able to achieve a good inversion result.

One limitation we had to deal with in this paper is that the datasets used were only
for backscattering coefficients under HH and VV polarizations. As a future work direction,
we plan to incorporate the backscattering coefficients under HV and VH polarizations.
The more abundant features of the four polarizations were used to further improve the
accuracy of the surface parameters inversion. In addition, we considered adding part of
the measured data to the dataset generated by the AIEM for training. We hope to reduce
some of the differences between the simulated and measured data.
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Appendix A

Algorithm A1: Bi-directional Deep Neural Network

Input: The input surface parameters Z0
AF and Z0

AB, the true backscattering coefficients [σL
HH , σL

VV ],
the maximum epoch I, the weights matrix Wi

AF and Wi
AB, the bias vector bi

AF and bi
AB, the

nonlinear activation function gi(·), the loss function MSE, the learning rate ηAF, ηAB
1: initialize Wi

AF and bi
AF

2: for j = 1; j ≤ I do

3: Zi
AF = gi

(
Wi

AF · Zi-1
AF + bi

AF

)
(i = 1, · · ·, N)

4: ZN
AF = gN

(
WN

AF · ZN−1
AF + bN

AF

)
5: LossAF = MSE

(
ZN

AF, [σL
HH , σL

VV ]
)

6: Wi
AF = Wi

AF − ηAF
∂LossAF
∂Wi

AF

, bi
AF = bi

AF − ηAF
∂LossAF

∂bi
AF

7: if LossAF convergence then

8: break loop
9: end if

10: j = j + 1
11: end for

12: return Wi
AF and bi

AF

13: Initialize Z0
AB

14: for k = 1; k ≤ I do

15: Zi
AB = gi

(
Wi

AF · Zi−1
AB + bi

AF

)
(i = 1, · · ·, N)

16: 16 : ZN
AB = gN

(
WN

AF · ZN-1
AB + bN

AF

)
17: LossAB = MSE

(
ZN

AB, [σL
HH , σL

VV ]
)

18: Z0
AB = Z0

AB − ηAB
∂LossAB

∂Z0
AB

19: if LossAB convergence then

20: break loop
21: end if

22: k = k + 1
23: end for

24: return Z0
AB

Output: Inversion results Z0
AB
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Abstract: Object geo-localization from images is crucial to many applications such as land surveying,
self-driving, and asset management. Current visual object geo-localization algorithms suffer from
hardware limitations and impractical assumptions limiting their usability in real-world applications.
Most of the current methods assume object sparsity, the presence of objects in at least two frames,
and most importantly they only support a single class of objects. In this paper, we present a novel
two-stage technique that detects and geo-localizes dense, multi-class objects such as traffic signs
from street videos. Our algorithm is able to handle low frame rate inputs in which objects might
be missing in one or more frames. We propose a detector that is not only able to detect objects in
images, but also predicts a positional offset for each object relative to the camera GPS location. We
also propose a novel tracker algorithm that is able to track a large number of multi-class objects. Many
current geo-localization datasets require specialized hardware, suffer from idealized assumptions
not representative of reality, and are often not publicly available. In this paper, we propose a public
dataset called ARTSv2, which is an extension of ARTS dataset that covers a diverse set of roads in
widely varying environments to ensure it is representative of real-world scenarios. Our dataset will
both support future research and provide a crucial benchmark for the field.

Keywords: deep learning; object geo-localization; object detection; object tracking; traffic sign dataset

1. Introduction

Due to the rise of the internet and social media platforms, there exists an overwhelm-
ing quantity of publicly available images containing key geospatial information in the
background. Furthermore, most modern hardware automatically records the location at
which an image was taken. Most notably, transportation departments collect millions of
street images every year. The purpose of these images is to manage road assets for road
safety purposes; therefore, recognizing and geo-localizing road assets from these images is
of extreme importance to many applications.

Object geo-localization is the process of taking objects identified in one or more
images and determining their geospatial location represented as global positioning system
(GPS) coordinates. It has a variety of applications including land surveying, self-driving
vehicles [1], asset management [1–3], and any other domain that might benefit from the
capability to automatically detect and geolocate objects of interest [4,5].

Determining objects’ GPS locations from street images can be a cheap solution for
road asset geo-localization, but this task is also very challenging due to GPS error, multiple
appearances of the same objects in images or frames, the variety of object types (for
example road signs can contain more than 200 sub-classes), etc. A particularly challenging
component of this problem is the lack of a pre-defined relationship between the number of
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images and how many times each object appears in the dataset. Objects may appear in one,
two, or any number of images, meaning an algorithm must both detect re-occurrences of
the same object across multiple images, and then collapse them into a single prediction.

Geo-localization algorithms can be categorized based on how they handle repeated de-
tections. Triangulation-based methods use a classic triangulation approach to determine an
object’s GPS using the depth to an object in an image and the image’s coordinates, and typi-
cally a clustering algorithm to condense repeated object occurrences [6,7]. Re-identification
approaches use an object detector that detects objects by receiving multiple frames as
input, which implicitly merges repeated detections across the multiple input frames [2,3].
Tracker-based approaches separately detect objects in each frame, and re-occurrences of
objects across multiple frames are identified using an object tracking algorithm [1].

Ref. [6] proposed a triangulation-based method using a two-stage framework which
performed object segmentation and then object geo-localization. They later improved their
approach in [7] by combining footage from a drone point cloud to enhance accuracy. These
methods have an inherent performance ceiling as they rely on noisy segmented objects.
In addition, they assume object sparsity, in which all objects within a certain distance
threshold are assumed to be a single object.

Re-identification methods were proposed by [2]. Their model receives two images as
input, and jointly detects and geo-localizes objects between those two frames. Following
this idea, they proposed a graph-based approach in [3] to handle greater than two frames. A
limitation is these methods require the objects to appear in at least two frames. In addition,
they assume all objects are close to the camera for easy detection.

Recently, ref. [1] proposed a tracking-based method to geo-localize traffic signs using
a deep neural network that was mostly end-to-end trainable. Their architecture detects
objects, predicts their pose in five dimensional space, and then associates those objects
between frames. In their approach, they only selected objects appearing in at least five
frames. Their system required a total of six cameras, imposing a crucial hardware limitation.

In addition to the aforementioned drawbacks of each technique, most notably, all
share a major limitation in which they are only capable of geo-localizing one class of objects.
In addition, many of these approaches rely on expensive or uncommon hardware not
accessible in many use cases. For example, ref. [7] relies on drone footage, and ref. [1] uses
an array of six cameras, which requires the use of specialized hardware.

An additional current pitfall in the field is the use of datasets constructed exclusively
in a single environment, such as city streets [1,2]. Datasets also commonly only annotate
occurrences of objects close to the camera, since these are the easiest for an algorithm to
detect [1–3]. Datasets also contain objects that are visually distinct and spaced far apart
from one another [1–3], making them easier to distinguish. A comprehensive survey of the
field of object geo-localization is provided in [8].

In this paper, we seek to rectify the limitations of the current algorithms by proposing
a new tracking-based deep learning approach to geo-localize dense objects from low frame
rate video using a novel tracker algorithm. The proposed approach handles multi-class
objects that might exist in one or multiple frames and uses only cheap hardware. Our
proposed system relies exclusively on a single camera, each image’s GPS location, and the
image heading, which makes our system practical for mass adoption.

We also propose a new dataset for benchmarking geo-localization algorithms. Our
proposed dataset is an extension of [9]. We capture a variety of driving environments,
and achieve a broad class distribution containing 199 different sign types. Crucially, it
contains clusters of signs with similar and in some cases identical appearance, posing a
very challenging and much more realistic benchmark compared to previous datasets.

Our proposed dataset and methodology is not limited to traffic signs. Our system is
generalizable and could easily applied to other applications including geo-localization of
telegraph poles, painted street markings, traffic lights, side walks, trees, buildings, and
any other land features of interest. Our dataset provides a crucial benchmark that any
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class-based geo-localization algorithm from these domains could use as an additional
benchmark to aid in research and development.

Our research contributions can be summarized as:

1. An enhanced version of the ARTS [9] dataset, ARTSv2, to serve as a benchmark for
the field of object geo-localization.

2. A novel object geo-localization technique that handles a large number of classes and
objects existing in an arbitrary number of frames using only accessible hardware.

3. An object tracking system to collapse a set of detections in a noisy, low-frame rate
environment into final geo-localized object predictions.

2. Related Work

A somewhat similar area of research are simultaneous localization and mapping
(SLAM) algorithms which are designed to model the surrounding environment typically
for the purposes for vehicle navigation [10]. By contrast, the purpose of geo-localization
algorithms is to determine object positions on a global scale by predicting their GPS
coordinates and building a geographical information systems (GIS) map. Furthermore,
since SLAM is intended primarily for navigation, these algorithms are designed to run in
real time. Object geo-localization algorithms can be applied to pre-existing datasets, since
they are not necessarily intended for real time applications.

Object geo-localization from images has been the focus of important recent research.
Before deep learning, the most common approach for object geo-localization was to use
epipolar constraints [11] to reconstruct 3D points from corresponding image locations.
This method has been used to predict traffic light locations [12], and to triangulate and
estimate the locations of traffic signs that were detected from their silhouette [13]. A related
approach [14] proposed a pipeline that triangulated telecom assets using a histogram of
oriented gradients (HOG) as feature descriptors, along with a linear SVM [15] from Google
Street View (GSV) images. These methods suffer from poor performance as they used
handcrafted features.

Deep neural networks (DNNs) have become the new state-of-the-art technique in
geo-localization due to their capabilities to capture complex relationships directly from
data through building an effective hierarchical feature representation. While it is already
common practice to detect objects in images using deep learning approaches, object geo-
localization has the additional requirement that objects appearing in multiple images must
be merged into a single prediction. There are three core approaches to accomplishing this
merging. First, in triangulation-based approaches, triangulation is used to determine object
geo-locations and then a clustering algorithm is typically employed to merge repeated
detections [6,7]. The second class of approaches are re-identification-based. In these
approaches, a model jointly detects objects using multiple frames as input. When making
predictions, these models produce a single prediction for an object from the multiple input
frames, thus implicitly merging objects in those frames into a single prediction [2,3]. Third,
tracker-based approaches explicitly associate objects between frames, forming tracklets of
detections from the same object [1]. These tracklets can then be condensed using a weighted
average or a similar approach to create a final sign prediction.

The first triangulation-based approach was proposed by [6], who built a framework
that uses a convolutional neural network (CNN) to perform monocular depth estimation
from images. They used a Markov random field (MRF) to triangulate the coordinates of the
detected objects, and merged the repeated occurrences of objects across multiple images
using a clustering algorithm. The authors later expanded their method by incorporating
point cloud data captured from drones to enhance geo-localization accuracy [7]. This
enhancement came at the cost of introducing a hardware constraint due to requiring drone
footage. Triangulation methods are limited in their performance as they rely on noisy
segmented objects. Ref. [16] proposed to reduce the noise associated with this method
using a structure from motion technique. All these approaches contain the fundamental
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assumption of object sparsity, in which all objects within a certain distance threshold are
assumed to be a single object.

The first re-identification-based method was proposed by [2], who combined object
detection and re-identification into a joint learning task using a soft geometric constraint on
detected objects from GSV images. The largest limitation of this approach is it required each
object to appear in exactly two images, which was not a reasonable real world assumption.
To address this limitation the same authors [3] proposed GeoGraph, a graph neural network
(GNN)-based method for geo-localization, which is capable of jointly detecting objects in
more than two frames. Both these models require a fixed number of input images to be
determined before training. Real-world data do not contain objects that disappear after a
fixed number of frames, meaning these approaches are not sufficient for real scenarios.

The only tracker-based approach was proposed by [1]. They constructed a deep
neural network consisting of an object pose regression network and an object matching
network. The object pose regression network detects objects and predicts their 5D pose.
The object matching network matches the detected objects to combine objects with repeated
appearances in multiple images. The limitation of this approach is that the camera’s
intrinsic matrix along with six different image perspectives were used as input to the
algorithm, meaning specialized hardware must be used to gather the inputs for the model.

In addition to the drawbacks mentioned for these techniques, most notably, all share
a major limitation in which they are only capable of geo-localizing one class of objects.
In this paper, we are going to propose a new multi-class tracking-based technique for
object geo-localization from images. Our proposed technique can handle objects that might
exist in one or multiple frames. Our algorithm uses a single camera, the image’s GPS
location, and the image’s heading, which makes our system viable for mass adoption using
a cheap hardware.

Many general purpose tracking-by-detection frameworks have been developed over
the past decade for a wide range of applications [17–22]. The most common approach is
to use visual cues and motion tracking to trace objects in a sequence of images [23–26].
An alternative approach is to train a model to explicitly measure the similarity of each
pair of objects. Ref. [27] constructed a deep siamese convolutional network to learn such a
similarity function, which was trained during an offline learning phase and then evaluated
during tracking. Another approach is to model multiple object tracking using a Markov
decision process (MDP), as proposed by [28]. A final noteworthy approach uses dual
matching attention networks to incorporate both spatial and temporal information [23].
The networks generate attention maps on input images, which are used to perform tracking.

Most object geo-localization datasets are limited to low frame rates. Traditional object
trackers are designed for high frame rate data in which objects only move small distances
between frames. They cannot be effectively applied to datasets where there are large jumps
between frames. Furthermore, traditional trackers are not designed to take advantage
of objects’ GPS coordinates as additional information with which to perform association
between frames. We therefore cannot apply traditional object tracking approaches to our
dataset, and instead opt to design a novel tracker to address the unique properties of our
geo-localization dataset.

3. Datasets

3.1. Existing Datasets

Despite recent interest, only a limited of datasets have been proposed to support
research in object geo-localization. There are three major datasets (Pasadena, TLG, and
ARTS) which are summarized in Table 1.

Ref. [2] proposed a multi-view dataset in which the goal is to re-identify multiple occur-
rences of street side trees from different views. It includes 6020 individual trees, 6141 GSV
images formatted as panoramas, and 25,061 bounding boxes. Each tree was annotated
from its four closest panoramas, and is labeled with a unique ID so re-identification can be
performed; however, their dataset is not publicly available, and is limited due to not con-
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taining distinct classes of objects. It is limited in its size due to only containing 6141 images.
This dataset also assumes object sparsity, meaning that all objects within a nearby radius
are assumed to be the same object. Furthermore, their dataset does not contain clusters of
objects, which is the most challenging scenario for object geo-localization algorithms.

Table 1. A comparison between the Pasadena multi-view object re-identification [2], the traffic light
geo-localization (TLG) [1], ARTS v1.0 easy and challenging [9], and ARTSv2.0 datasets.

Pasadena
Multi-View ReID [2]

Traffic Light
Geo-Localization (TLG) [1]

ARTS v1.0 [9]
ARTSv2.0

Easy Challenging

Number of classes 1 1 78 171 199

Number of images 6141 96,960 9647 19,908 25,544

Number of annotations 25,061 Unknown 16,540 35,970 47,589

Side of the road �
Assembly �
Unique Object IDs � � �
5D Poses �
GPS � � � � �
Color Channels RGB RGB RGB RGB RGB

Image Resolution 2048 × 1024 1600 × 1900 1920 × 1080 1920 × 1080 1920 × 1080

Publicly Available � � � �

Researchers from Uber [1] compiled another dataset for traffic light detection derived
from nuScenes, a popular open-source dataset for autonomous driving [29]. The dataset
has 400 scenes, each lasting 20 s with 12 frames per second. All images have metadata
indicating the 5D pose of the camera and each annotated traffic light. Each traffic light can
be distinguished by a uniquely assigned ID. Their dataset is also limited in that it lacks
object classes. It is built from images in a single city-like environment, which lacks the
variation associated with data from the real world. Objects are only selected for the dataset
if they appear in at least five keyframes. These assumptions artificially reduce the difficulty
of the dataset relative to the real world. This dataset is also reliant on the availability of the
camera’s intrinsic matrix, which requires the use of specialized hardware to capture.

The third noteworthy dataset was ARTS proposed by [9]. The original ARTS dataset is
composed of nearly 20,000 images containing 171 different classes of signs. The dataset is
structured as sequences of images referred to as road segments. Each segment contains
a sequence of images taken from a camera mounted to the top of a car driving down a
road, with roughly one second intervals between each image to satisfy storage constraints.
Each image contains an annotation for each readable sign, and each annotation specifies a
bounding box around the sign, the sign’s class, and the GPS coordinates of that sign. The
camera’s coordinates and heading are also available for each image. The ARTS dataset
contains an easy and challenging subset, along with a third format referred to as video logs.
All three configurations of the dataset provide manually labeled annotations in a format
similar to PASCAL VOC [30]. The easy version of the dataset contains a total of ∼10 K
images and ∼17 K annotations, covering 78 different sign classes. All annotated signs in
the easy version were captured at up to a 100 m radius of the camera with a minimum
of 50 samples per class. The challenging version of the dataset contains a total of ∼35 K
annotations scattered in ∼20 K images, covering 171 sign classes, with a minimum of
20 samples per class captured from a distance up to 100 ms. The video logs contain the raw
sequences of images and their annotations in the same directory, without being organized
into train, validation, and test sets.
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The ARTS dataset would benefit from more training samples to address its sparse
class distribution by providing more effective samples per class. In addition, a limitation of
the ARTS dataset is that it lacks unique identifiers to indicate repeated occurrences of the
same sign in multiple images, which inhibits the capability of researchers to benchmark
models on this dataset. In the following section, we are going to propose our extension
to the ARTS dataset, which will be the largest dataset for traffic sign geo-localization and
benchmarking.

3.2. ARTSv2 Dataset

Substantial enhancements have been made to the ARTS dataset [9] to construct
ARTSv2. We have increased the number of images to 25,544, the number of unique sign
classes to 199, and the number of annotations to 47,589. These enhancements help provide
more training samples for less common sign classes, which is one of the fundamental prob-
lems with this dataset. Moreover, each sign annotation has been updated with additional
attributes. First, each annotation specifies the ‘sign side’, which indicates the side of the
road the sign is on, represented as a string indicating left, right, or other. The “other” string
is provided for signs that should not be labeled as either left or right, such as signs attached
overhangs above the road. Second, each annotation has a binary attribute marking whether
the sign is part of an assembly. A sign assembly refers to a group of signs supported by
the same post. An example assembly is shown in Figure 1. Each sign that is part of an
assembly will have this boolean attribute annotated as True, whereas stand-alone signs
that are not part of an assembly will have this attribute set to false. Finally, each physical
sign in a road segment has been given unique integer identifier. Since most signs appear in
multiple images, a sign annotation will have the same ID each time the that physical sign
appears. These unique identifiers are crucial since in order to evaluate the performance
of geo-localization algorithms, repeated occurrences of the same object must be identified.
Sample images are shown in Figure 2.

All the systems proposed and implemented in this paper use the ARTSv2 dataset.

Figure 1. An example of a sign assembly containing multiple signs of similar appearance. All of the
signs on the assembly have a green and white appearance, so it is difficult for a model to distinguish
between them. There are two signs containing the word “East” which appear essentially identical.
There are also two signs with the text “Vermont 15”. The arrow in the bottom left is a mirrored
version of the arrow in the middle right. Since these signs contain so many similar characteristics,
and in some cases are nearly identical, it is extremely challenging to create a geo-localization model
that separately geo-localizes these signs.
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Figure 2. Sample images from the ARTSv2 dataset. The images contain a variety of sign types, often
clustered very close together, which makes for challenging geo-localization. Environment and road
types also vary widely.

3.3. Dataset Construction

To construct this dataset, images were first gathered from a vehicle with a top-mounted
camera, which records footage while traveling in the State of Vermont in the United States.
The vehicle travels across the state to capture footage in a wide range of environments,
including highways, cities, and rural streets. Since the storage constraints associated with
storing so much video would be prohibitive, frames along with their respective GPS and
headings are extracted from the video at approximately 1 s intervals. To construct the
annotated dataset from these images, human annotators used a version of labelImg [31],
which we have modified with the capability to annotate each sign’s GPS coordinates, road
side, assembly attribute, and unique integer identifier. This tool will be made publicly
available to support the construction of other geo-localization datasets. An image of the
user interface is shown in Figure 3.
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Figure 3. A sample image of the graphical user interface provided by our modified version on
labelImg. The image being annotated is displayed in the upper left, and bounding boxes that have
been annotated are overlaid on the image. The user can use the map displayed in the upper right
to select the GPS coordinates for each sign. In the bottom pane, the user can enter all appropriate
information associated with the sign, including its class, GPS coordinates, assembly attribute, sign
side, and integer identifier.

3.4. Unique Characteristics

Compared to other traffic recognition and geo-localization datasets, ARTS is the largest
in terms of both the number of images, classes, and annotations. The dataset contains high
quality 1920 × 1080 resolution images, available in multiple formats including video logs
and individual annotations in a format similar to the PASCAL VOC format. ARTSv2 is also
the only dataset containing labels specifying side of road and assembly attributes. Table 1
shows a full comparison between ARTS and similar geo-localization datasets in terms of
number of classes, number of images, and number of annotations for each dataset.

Current datasets for object geo-localization algorithms are simple and constructed
under ideal circumstances [1,2]. The ARTSv2 dataset contains multiple unique challenges,
which makes it more representative of circumstances encountered in the real world. First,
ARTSv2 features 199 different sign classes appearing with a highly imbalanced distribution,
thereby classes such as stop signs appear far more frequently than more obscure classes of
signs. This is an important characteristic of our dataset, since imbalanced class distributions
are a substantial challenge currently faced by machine learning models. The heavy-tailed
distribution increases the difficulty of training models to predict sign classes appearing less
frequently because they have fewer training samples. In addition to posing a significant
challenge, this class imbalance is much more representative of what we expect to see in
the real world compared to other datasets. This class imbalance is visually illustrated
in Figure 4, which shows the cumulative probability distribution of class frequencies in
the dataset.
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Figure 4. A cumulative class distribution plot showing the distribution of frequencies at which
different classes appear in ARTSv2. The x-axis indicates a class frequency, and the y-axis value
indicates the probability that a class occurs at most the number of times indicated on the x-axis. The
sharp rise on the left side of the graph shows there are many classes that appear with low frequency,
posing a unique challenge for geo-localization algorithms, which must adapt to classes with few
training samples.

US traffic sign classification also faces the unique challenge of inconsistency between
states. While the US Department of Transportation standards are followed to varying
degrees, there are a wide variety of specific traffic sign configurations across state road
networks. Roads contain many signs that do not conform to known standards. Classifying
these non-standard signs therefore poses another unique challenge, as models must learn
to cope with signs that may be truly unique, meaning that they only appear once in the
entire dataset. Signs that do not fit into a clear category were annotated with an “unknown”
class label.

Another unique challenge associated with this dataset is the existence of many objects
with similar appearances to road signs, which tends to create false positives from object
detectors. Business signs and billboards, hand-made signs placed for events such as yard
sales, and car license plates tend to create false positives because they contain visual
characteristics similar to road signs. Models trained on this dataset therefore face the
challenge of learning to distinguish between road signs, sign-like objects, and other signs
that are not technically classified as road signs.

The ARTSv2 dataset was captured in a wide variety of driving environments. There
are road segments corresponding to highways, small rural roads, complex intersections,
and busy city roads. The vehicle travels at a variety of speeds, takes many turns, and moves
up and down hills, which causes signs to change their positions unpredictably between
frames. The vehicle may move between other cars or trees such that a sign is visible in
one frame and obscured in the next, only to re-appear again a few frames later. Unlike
other datasets, we do not remove these non-ideal scenarios since we expect them to be
encountered when applying this technology to the real world.

Finally, sign assemblies are a particularly challenging component of our dataset for
several reasons. First, assemblies contain clusters of nearby signs that need to be individu-
ally detected and geo-localized. Clusters of nearby objects is the most common challenge
for object geo-localization algorithms, which is why other datasets have opted to remove
them. This challenge is compounded by the fact that signs of similar appearance are partic-
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ularly likely to occur on the same assembly, since assemblies tend to group together signs
intended for a specific function, such as an indicating nearby highways. These assemblies
of signs have similar GPS coordinates and often extremely similar appearances, meaning
there are few features a model can use to distinguish between these objects. Clusters of
similar objects is the most difficult characteristic of the ARTSv2 dataset, which is a challenge
that has been neglected by previous research.

4. Materials and Methods

4.1. System Overview

At a high level, our system is composed of two core stages as displayed in Figure 5.
In the first stage, road images are provided to a modified RetinaNet we have con-

structed called GPS-RetinaNet. GPS-RetinaNet receives these images as input, and outputs
a bounding box around each sign, its sign class, and its geospatial location. Since most
signs will appear in multiple images, the purpose of the second stage of our system is to
condense these repeated detections into a single prediction. First, we train a similarity
network, which receives pairs of sign detections predicted by GPS-RetinaNet as input. The
similarity network learns to predict a scalar value that measures how similar its input detec-
tions are. Next, we used a modified variant of the Hungarian algorithm to pair detections
of high similarity. Intuitively, detections with high similarity are more likely to be from
the same sign. A list of signs paired together by the Hungarian algorithm is referred to
as a tracklet. Each tracklet is then condensed into final sign prediction using a weighted
average, producing the final GIS map as shown in Figure 6. The following sections will
break the components of this pipeline down in more detail.

Figure 5. An overview of the Sign Hunter pipeline. First, raw images extracted from videos of a road
vehicle (top-left) are fed into GPS-RetinaNet (top-middle) which detects, classifies, and predicts signs’
GPS offsets. Pairs of detections output by GPS-RetinaNet are provided as input to the similarity
network (top-right), which quantifies the similarity between the signs. The Hungarian algorithm [32]
(bottom-left) uses the similarity scores to merge repeated occurrences of objects, which forms tracklets
(bottom-middle) containing all the occurrences of each object in the dataset. These tracklets are
condensed into final sign predictions to create a GIS map (bottom-right) of sign locations.
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Figure 6. The end result of our pipeline is that signs are classified based on their sign type and placed
on a map corresponding to their geo-location. Each dot indicates the location of a single sign after all
the repeated detections have been merged. Properties of the sign such as its class can be inspected by
clicking on it on the map tool.

4.2. GPS RetinaNet

The first stage of our model performs three functions. It detects each sign visible in a
road side image, classifies what type of sign it is, and regresses its geospatial coordinates.
We have constructed a system with these capabilities by modifying the popular object
detector RetinaNet [21]. RetinaNet is an object detector already capable of performing
detection and classification. It uses a backbone network as the core of the architecture,
and employs a feature pyramid network to extract features from this backbone. The
outputs from the feature pyramid are provided as input to two sub-networks, one of which
regresses bounding boxes around objects and the other of which predicts the detected
object’s class. RetinaNet is not, however, capable of regressing geo-coordinates. We
modified its architecture by building GPS-RetinaNet, which contains an additional fully
connected GPS sub-network. The GPS sub-network extracts features from RetinaNet’s
feature pyramid [21] and learns to regress a detected object’s offset in a coordinate system
local to the image. We call this additional sub-network the GPS subnet, which expands
RetinaNet’s base architecture as is displayed in Figure 7. Each sub-network is composed
of four fully connected convolutional layers with ReLU activations. The classification
sub-network terminates with (K × A) linear outputs, where A is the number of different
anchors used in the network and K represents the number of classes. The box-regression
sub-network ends with (4 × A) linear outputs to determine the relative position of the
object [21]. The GPS sub-network concludes with (2 × A) linear outputs for each spatial
level in the network. We use the popular ResNet [33] as the backbone for this architecture.
Sample outputs are shown in Figure 8.

Since directly predicting GPS coordinates of signs is challenging without knowing
which direction an image is facing, we instead train the GPS sub-network to predict offsets
relative to the image, which we then convert to the sign’s actual GPS coordinates. In more
detail, the GPS-subnet learns to regress two local offset values, indicating the horizontal
and vertical distance to the sign in meters, which represents the position of the detected
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object from the perspective of the camera image. These offsets are then fed into a coordinate
transform to generate the object’s predicted GPS location as follows:

Xr = Xo × cos θ + Yo × sin θ (1)

Yr = Xo × sin θ − Yo × cos θ (2)

Olat = Yr/6378137 (3)

Olon = Xr/(6378137 × cos(π × Clat/180)) (4)

Plat = Clat + Olat × 180/π (5)

Plon = Clon + Olon × 180/π (6)

The variables Xo and Yo represent the respective horizontal and vertical offsets pre-
dicted by the network from the perspective of the image in meters. We use θ to represent
the camera’s facing direction (measured with a compass), and Clat and Clon indicate the
camera’s latitude and longitude. Both Xr and Yr are calculated as the meter offsets along the
longitudinal and latitudinal axis after being rotated from the camera’s coordinate system.
Hence, Olat and Olon are offsets converted from meters to latitude and longitude, and Plat
and Plon provide the final latitude and longitude prediction of the detected object after
adding the predicted offset of the camera coordinates.

To provide supervision when training the network, we must be able to calculate the
desired offsets from the annotated GPS coordinates. In other words, in addition to the
capability of converting the offsets predicted by the network to GPS coordinates, we also
require the ability to invert this transformation and convert the annotated GPS coordinates
to offsets. This can be simply accomplished by re-arranging the above formulas as show
below, in which all of the variables remain the same, except that Plat and Plon are replaced
with Alat and Alon, which represent the annotated latitude and longitude of the sign,
respectively.

Olat = (Alat − Clat)× π/180 (7)

Olon = (Alon − Clon)× π/180 (8)

Xr = Olon × (6378137 × cos(π × Clat/180)) (9)

Yr = Olat × 6378137 (10)

Xo = Xr × cos θ + Yr × sin θ (11)

Yo = Xr × sin θ − Yr × cos θ (12)

Figure 7. GPS-RetinaNet. Similar to RetinaNet [21], this architecture uses a FPN [17] backbone on top
of a ResNet [33] model (a) to create a convolutional feature pyramid (b). Then, we attach three sub-
networks (c); one for classification, one for box regression, and one for GPS/depth regression.

One of the most challenging characteristics of the ARTSv2 dataset is its heavy class
imbalance. To address this, we propose a modification to Focal Loss [21] that replaces
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γ in the original definition with an adaptive modulator. We define the new focusing
parameter as:

Γ = e(1−pt), (13)

FLe(pt) = −(1 − pt)
Γ log(pt). (14)

For convenience, we refer to our new definition of Focal Loss as (FLe) throughout the
paper. FLe introduces two new properties to the original definition. First, it dynamically
fine-tunes the exponent based on the given class performance to reduce the relative loss for
well-classified classes while maintaining the primary benefit of the original FL. Figure A1
directly compares FL with FLe, highlighting that FLe (shown in green) crosses over FLγ=2
(shown in orange) around (pt = 0.3). As pt goes up from 0.3 → 1, FLe starts to shift up
slowly ranging in between FL and Cross Entropy CE (shown in blue). See Appendix A for
more technical details. We use Fle loss to train the classification sub-network, and we use
the standard L1 loss to train the bounding box and GPS regression sub-networks.

Figure 8. Sample images and detections from the ARTSv2 datset. Images contain a variety of sign
types, often clustered very close together, which makes for challenging geo-localization. Each box
around each sign represents a separate detection from GPS-RetinaNet. The color of the box represents
which tracklet the detection has been assigned to by the multi-object tracker. Since a tracklet is a list
of signs predicted to be the same, re-occurrences of the same sign in multiple images should have the
same color box around it.

4.3. Multi-Object Tracker

When GPS-RetinaNet is applied to an image, it produces detections for each sign
specifying a bounding box, sign class, and (after a coordinate transform) GPS coordinates.
Because images in the ARTSv2 dataset are taken approximately one second apart, the
same sign will typically appear in multiple frames. Since our final goal is to produce one
geo-localized sign prediction for each sign, we need to collapse the multiple detections
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produced for many signs into a single prediction for each distinct, physical sign. Our
proposed solution is a tracker that iteratively steps through the images in each road segment
from the ARTSv2 video logs. As the tracker steps through the images, it merges repeated
detections from the same signs appearing in multiple frames. This tracker is composed of
two core components, the similarity network and the Hungarian algorithm. The role of
the similarity network is to compute a learned heuristic indicating how likely it is a pair
of detections provided by GPS-RetinaNet refer to the same sign. The second component,
which is a modified variant of the Hungarian algorithm, uses these similarity scores as input
to merge repeated detections. Our multi-object tracker is designed to operate in a low-frame
rate environment in which objects can move considerable distances along unpredictable
trajectories between frames due to the vehicle’s motion. The tracker incorporates both
the use of visual cues, predicted GPS position, predicted class, and relative bounding box
position to address the core challenge posed by clusters of similar signs.

4.3.1. Similarity Network

To train the similarity network, we format the sign annotations from the ARTSv2
dataset to the same format as the detections output by GPS-RetinaNet, so that they can be
used as the inputs when training the network. We can use the unique integer identifiers
from ARTSv2 to determine if a pair of annotations fed to the similarity network are from the
same sign, which will determine the appropriate output for the network during training.

As shown in Figure 9, the similarity network receives three types of inputs associated
with each annotation. First, the similarity network receives a vector of values containing
the image GPS, image heading, the sign class (represented as a 50 dimensional embedding
vector), sign GPS, and bounding box. The second input to the similarity network is the
pixels showing an image of the sign. The pixel information within the sign’s bounding
box is extracted and resized to a 32 × 32 × 3 resolution using bi-linear interpolation. The
third input to the network is a rank 3 tensor containing a “snapshot” encoding the spatial
position of each sign relative to all other signs in the image. This is accomplished by
assigning each sign in the frame to a square in a 10 × 10 grid, corresponding to its location
in the image. The correct square to place the sign at is calculated using Formula (15), in
which Gx and Gy represent the grid X and Y cells the sign is placed, Bx and By indicate the
center coordinates of the sign’s bounding box, H and W are the height and width of the
image, and S is the size (in our case 10) of the grid. Along the depth axis at each square in
grid containing a sign, we concatenate a vector containing that sign’s GPS coordinates and
its 50 dimensional class embedding. Grid locations that do not contain a sign are padded
with a vector of zeros. The net result is a 3D tensor containing a “snapshot” of information
encoding the relative position of signs in the image. This component of our architecture is
crucial to address the challenge of signs with similar or identical appearance discussed in
Figure 1. If two identical by appearance signs are in an image, this input can allow those
signs to be distinguished based on their position in the grid relative to one another. Since
the similarity network predicts the similarity of a pair of signs, it receives two instances of
each of these three inputs, one of which is from each sign.

Gx = �Bx/W� × S (15)

Gy = �By/H� × S (16)

The network is trained to predict a value between 0 and 1, which represents the
probability that a pair of detections belong to the same sign. These values can be interpreted
as a similarity metric, where output values closer to 0 indicate the sign detections have
greater similarity, and are thus less different from one another. Conversely, when receiving
inputs from different signs the network should predict outputs closer to 1, indicating that
the detections have less in common with one another.

The architecture of this network contains two siamese sub-networks and a third sub-
network designed to handle the remaining inputs. The 32× 32× 3 scaled images containing
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the pixels from the detections are fed through the first siamese sub-network consisting
of two sets of convolutional layers containing 32 3 × 3 convolutional filters followed by
batch normalization. The resulting features are sent through two fully connected layers
resulting in a vector of 32 features. The 3D tensors containing a snapshot of all the signs
are processed by a second siamese sub-network consisting of two convolutional layers
each containing 32 3 × 3 convolutional filters, which are followed by two fully connected
layers resulting in a vector of 8 features. The fully connected outputs of these two siamese
sub-networks are concatenated with the vector containing the camera heading and GPS,
predicted sign GPS, sign class, bounding box, and sign class embedding. The resulting
vector is sent through multiple fully connected layers to generate the final prediction. The
exact architecture is shown in Figure 9.

The final task of training the similarity network is to develop a satisfactory noise
distribution when training. During test time, the similarity network receives output
detections from GPS-RetinaNet as input, but as discussed above we must train the similarity
network on annotations from our dataset since they contain the labels indicating if two
signs are the same. We therefore want to construct a noise distribution for these training
annotations that mimics the noise introduced by our object detector. To find a noise
distribution, we implemented an algorithm that tests if an annotation has an obvious
detector output match when the image that annotations is from is provided as input to
GPS-RetinaNet. First, we checked if the annotation’s bounding box has one (and only one)
detection in the same image for which their intersection over union (IOU) is greater than
0.9. If this is the case, we measure the latitude and longitude discrepancy between the
annotation and detection, create a boolean variable indicating if the classes match, and
subtract the differences between the X and Y coordinates of their bounding boxes. These
three values quantify how much “noise” was introduced by the detector by measuring how
different the annotation is from the corresponding detection predicted by GPS-RetinaNet.
By repeating this process for each annotation, we construct a noise distribution representing
how often and by how much the detected GPS, detected class, and detected bounding
boxes differ from the annotated GPS, annotated class, and annotated bounding box. We can
then stochastically sample from this noise distribution to serve as our data augmentation
when training the similarity network.

Figure 9. The architecture of the similarity network. The network uses two siamese sub-networks
and then concatenates all the resulting features. The remaining features are sent through two more
fully connected layers before predicting the similarity score.

We trained this network on an Nvidia GTX 1080 ti with 11 GB of VRAM and imple-
mented the network using the Keras application programming interface with tensorflow
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as the back-end. We regularized the inputs from each image such that each color value
of each pixel was scaled from 0 to 1. Our network incorporated batch normalization after
each layer, in addition to a dropout ratio of 0.25 after each fully connected layer. We fed
inputs into the network in batch sizes of 128, and used the Adam optimizer [34] with a
learning rate of 0.0001 to optimize the weights of the network. We trained the network for
20 epochs. Finally, since we found categorical cross entropy led to poor performance, we
used the mean squared error as the loss function optimize.

4.3.2. Modified Hungarian Algorithm

Once we have learned a function to quantify the similarity between detections, we
used the similarity values provided by the network to merge repeated detections from the
same signs. We accomplished this with a modified version of the Hungarian algorithm [32].
The Hungarian algorithm provides a polynomial time solution to compute the minimum
cost in a bipartite graph where each edge has a matching cost. In each pair of consecutive
frames from our dataset, we constructed a bipartite graph where each node represents a
detection from that image, and each edge connecting two nodes has a weight that indicates
the assignment cost for marking those two nodes as belonging to the same sign. The
assignment cost of each pair of signs is determined by providing them as input to the
similarity network and taking the resulting similarity score as previously described. By
using the Hungarian algorithm to compute the assignments of nodes that achieves the
minimum sum of costs, similar sign detections as measured by the similarity network are
most likely to be paired, and detections with greater pairing cost are less likely to be paired
with one another.

One limitation of the Hungarian algorithm is that it always pairs as many nodes from
the bipartite graph as possible. For example, if one set in the graph has 5 nodes and the
other set contains 4 nodes, the 4 pairings that minimize the sum of costs will be selected
by the Hungarian algorithm. This behavior is undesirable for our application, since it is
possible for multiple signs to disappear from view between frames and for many new signs
appear to appear in the second frame, so pairing as many nodes as possible would result
in nodes representing detections from different objects being incorrectly paired. We solve
this problem with a simple modification to the algorithm. If the similarity score computed
between a pair of detections is greater than a cutoff threshold of 0.7, then the detected
objects are forcibly split, meaning the detections will be placed in separate tracklets. The
final output of the tracker is a set of tracklets in which each tracklet represents a list of
detections predicted to belong to the same sign.

4.3.3. Geo-Localized Sign Prediction

The only remaining step in our pipeline is to condense the tracklets into sign predic-
tions. The simplest method is to predict a sign at the GPS coordinates and with the class
from the last frame in the tracklet, which we refer to as the frame of interest (FOI) method.
A similarly simple approach is to take a weighted average of the predicted GPS coordinates
from each detection in the tracklet. Frames in which the camera is closer to the sign have
their predicted GPS weighted more heavily. We predict the class as being the mode of the
detections in the tracklet. A third approach involves performing triangulation to condense
the tracklets into sign predictions, and predicting the sign class as the mode class from the
tracklet. Finally, we can use the Markov random field model proposed in [6] to reduce the
tracklets we have produced into sign predictions.

5. Results

5.1. Object Detector Performance

While the ultimate objective of our system is to perform object geo-localization, as
an intermediary step we first benchmark the performance of our object detection system.
We initialized our object detector with weights from a pre-trained model on the COCO
dataset [35]. We kept the default optimization parameters provided by RetinaNet [21]
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with the exception of increasing the initial learning rate to 1 × 10−4. We used smooth
L1 loss on both the bounding box regression-subnet and the GPS-subnet. The L1 loss for
the GPS subnet is computed relative to the correct offset by transforming the annotated
GPS coordinates to the local image coordinate system using the transformation outlined in
Section 4. We used our custom focal loss function to train the classification subnet. Our
models were trained and tested on a workstation with an NVIDIA 1080ti GPU, as well as a
computing cluster with NVIDIA Tesla V100 GPUs. We reported the mean average precision
mAP evaluated with an intersection over union IoU = 0.5 on the ARTSv2 dataset. To further
illustrate the effect of the proposed FLe loss function, we show how the average precision
score differs between the worst, 50th percentile, and best performing class. Results are
shown in Table 2.

Table 2. Average precision scores on the testing portion of the ARTSv2 dataset. The MAP score
indicates the mean of all average precision scores evaluated at an IoU threshold equal to 0.5. We
further show average precision scores for the class with the minimum average precision score, the
50th percentile AP score, and the maximum AP score.

Loss Function mAP50 APmin AP50% APmax

RetinaNet-50 (FL) 69.9 15.9 70.0 100
RetinaNet-50 (FLe) 70.1 17.2 70.1 100

5.2. Object Detector GPS Prediction

Each detection produced by the detector has a corresponding offset prediction from the
GPS-subnet, which can be transformed to a GPS location using the previously established
coordinate transformation. To quantify the performance of this component of our system,
we computed the mean absolute error between the location predicted by GPS-RetinaNet
and the ground-truth location of the corresponding sign. To construct an error metric easily
interpretable by humans, we converted the absolute error between GPS locations to meters
using the Haversine formula, which provides accurate approximations at close distances.
The Haversine formula is denoted as follows where δ is the relative distance, ψ is latitude,
λ is longitude, and R is the mean of earth’s radius equal to 6371 km:

a = sin2
(

Δψ

2

)
+ cos ψ1 · cos ψ2 · sin2

(
Δλ

2

)
,

δ = 2R · atan2
(√

a,
√

1 − a
)

.

The distribution of mean GPS regression errors for each class is displayed in Figure 10.

5.3. Similarity Network

Next, we quantified the performance of the similarity network, which learns to predict
a value closer to 0 if the two input detections belong to the same physical sign and a value
closer to 1 if the detections are from different signs. Intuitively, the range of values from 0 to
1 can be interpreted as an abstract measure of “distance” between the two detections. Values
closer to 0 indicate the signs are less distant and thus have more in common, whereas values
closer to 1 indicate the signs are more distant and thus less similar. Since this network
is not performing classification, we can instead quantify its performance by measuring
the absolute error at different percentiles. In Table 3, each percentage indicates how often
the network predicts a value with an absolute error less than or equal to the listed error
value. We use 80% of the annotations for training the network, 10% for validation, and the
remaining 10% is reserved for testing.
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Figure 10. Average GPS testing error for each class. The x-axis shows the average geo-localization
margin of error of a given class, and the y-axis indicates how many classes fell within that approximate
margin of error. Our GPS-subnet scored a median MOE of (±5) meters. We can see that the
GPS-subnet can accurately estimate distance within a reasonably low margin of error, especially
considering how far many signs are from the camera in the ARTSv2 dataset.

Table 3. A table showing the distribution of prediction errors. Each percentile indicates the percent
of absolute errors from the similarity network that are at worst equal to the listed error value.

Percentile Absolute Error

50 0.0165
75 0.1195
90 0.3846
95 0.6106
97 0.7436
98 0.8064
99 0.8844

5.4. Tracker

The objective of the tracker is to collapse down the detections produced by RetinaNet
into geo-localized sign predictions. Object geo-localization using deep learning is a new
and growing field. There are yet to be any universally accepted performance metrics,
especially since performance in this domain is particularly sensitive to the difficulty of the
dataset. The goal of our performance evaluation is to quantify how well the physical sign
predictions match up with the annotated physical signs distinguished in the ARTS dataset
by their integer ID. Specifically, we define a true positive as when the tracker predicts
a sign that correctly matches to a real sign within 15 m. We define a false negative as a
circumstance where there exists a real sign, but the tracker fails to generate a corresponding
prediction. Lastly, we define a false positive to be when the tracker predicts the existence of
a sign, but no real-world counterpart exists. An ideal tracker should achieve as many true
positives as possible, while minimizing the count of false negatives and false positives.

In Table 4, we show the number of true positives, false negatives, and false positives
during different years containing different road segments. The data for geo-localization are
divided into years in which they were gathered, and each year contains road segments that
the tracker steps through to perform geo-localization. Each individual year is captured in a
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variety of geographical regions spread throughout the state of Vermont. Individual years
do, however, differ in terms of the driving environments they contain. The 2012 data mostly
contain footage from towns, which are challenging due to the density of signs and extra
objects present. The 2013 data are composed mostly of highways, and are therefore the
least challenging due to having fewer signs, more space between signs, and fewer non-road
signs such as signs for businesses. The 2014 data contain many rural segments, which are
less challenging, but also contain some towns with difficult sign assemblies.

Figure 11 quantifies the GPS error between each predicted sign and its corresponding
ground truth. The x-axis shows the GPS error measured in meters, and y-axis indicates the
probability of a sign being geo-localized within the corresponding mean error.

Table 4. A performance benchmark of the full system end-to-end. Raw images are fed into GPS-
RetinaNet, which detects signs, predicts their class, and regresses their GPS offsets. Pairs of detections
from consecutive frames predicted by GPS-RetinaNet are fed into the similarity network to predict a
similarity score. These similarity scores are provided to the Hungarian algorithm to merge repeated
detections of the same sign. These final sign predictions are compared to the annotations in the dataset
to determine if they are true positives, false negatives, or false positives. The data are organized into
three separate years in which it was gathered. Since each year represents a different set of driving
environments, the results are shown separately. The 2012 data contain many towns, 2013 contain
mostly highways, and 2014 contain a combination of towns are rural segments. The “All” section
shows the combined results for all three years.

End-To-End Performance

Year Collected 2012 2013 2014 All

Noteworthy Features Towns Highways
Rural Segments

and Small Towns
All Geographical

Environments

True Positives 264 3170 3179 6163
False Negatives 176 604 842 1622
False Positives 67 826 1581 2474

Figure 11. A probability distribution of GPS errors between the predicted geo-localized sign coor-
dinates and the actual coordinates from the annotations. The x-axis indicates the amount of GPS
error in meters between a predicted and an actual sign, and the y-axis indicates the probability of a
random sign having the error indicated on the x-axis.
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5.5. Comparison to Other Methods

Comparison to existing geo-localization techniques is challenging due to the limita-
tions of current approaches, lack of standardized evaluation metrics and varying structure
to datasets.

We believe our dataset is the most representative of data encountered by geo-localization
systems in the real world; however, this also limits the comparisons we are capable of
performing. For example, it is impossible for us to compare our results to [1], since their
method uses 5D pose data, which are unavailable in our dataset. Many other tracking
methods do not transfer well to our problem either due to not being designed to deal with
the very low frame rate or the broad and sparse class distribution contained by the dataset.
Other systems also do not take object class into account, and thus are unable to generate
complete predictions on our dataset.

While there are not directly analogous state-of-the-art approaches to compare to, we
can compare the geo-localization performance of different techniques on our tracklets. Each
algorithm receives as input each sequence of detections created by the tracker, and we
will compare how effectively the GPS coordinates of each sign can be determined from
each of these tracklets. The simplest method is to predict a sign at the GPS coordinates
and the sign’s class using the last detection in the tracklet, which we refer to as the frame
of interest method. The intuition behind this approach is the detection should contain
the most accurate class and GPS predictions during the last frame in which the camera
is closest to the sign. A similarly simple approach is to take a weighted average of the
GPS coordinates from the tracklet, in which images where the camera is closer to the sign
are weighted more heavily. The class is predicted to be the mode of the detections in the
tracklet. Our third approach is to perform triangularization to condense the tracklets into
sign predictions. Finally, we use the Markov random field model proposed in [6] to reduce
the tracklets into sign predictions. The results are displayed in Table 5.

Table 5. Performance comparison using different methods to reduce tracklets into sign detections.
For each method, we count the total true positives, false negatives, and false postives compared to the
ground truth for the full dataset. The mean GPS error indicates the mean absolute distance between
a true positive sign prediction and its corresponding ground truth in meters. The STD GPS error
indicates the standard deviation of the distribution of true positive GPS errors.

Geo-Localization Performance Comparisons

Tracking Method
True

Positives
False

Negatives
False

Positives
Mean GPS

Error
STD GPS

Error

Triangularization 6079 3000 1918 6.67 4.33
MRF 6677 4379 2156 6.57 4.98
Frame of Interest 6677 2759 1558 5.85 4.40
Weighted Average 6670 2751 1565 5.81 4.38

6. Discussion

6.1. Object Detector Performance

We can see in Table 2 that our proposed FLe loss function slightly improves the average
mean average precision score of the object detector. The particular difference between these
loss functions, however, is that FLe demonstrated improved tail performance with greater
AP scores for more challenging classes. This result supports the effectiveness of FLe in
emphasizing low performing classes and ensuring that training gives more weight towards
improving their AP. Moreover, FLe does not appear to have significantly decreased the
mAP or the AP of classes that performed well with FL. This suggests that FLe is a sound
compromise between promoting poorly performing classes and retaining the performance
of easier classes.
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6.2. Object Detector GPS Performance

In Figure 10, we show the distribution of the mean prediction errors for each sign class.
We observe that most classes have mean predicted distances within 5 m of their labeled
ground truth coordinates; however, we note that it is possible the ground truth coordinates
themselves could have additional error due to hardware limitations associated with GPS.
We observe that the distribution has a right skew due to a few outlier classes with much
larger errors. This is largely a consequence of these signs appearing with low frequency in
the dataset. Inspection of these difficult classes revealed they corresponded to signs that
have a particularly broad distribution in their size, which is unsurprisingly challenging on
a data set composed of images from a single camera.

6.3. Similarity Network

As we can see from Table 3, the similarity network achieved a 90th percentile error
of approximately 0.38. This means that 90% of predictions it made had an absolute error
less than or equal to this value. A total of 95% of the prediction errors were less than 0.61.
We can use these values as feedback to decide how we should set our cutoff value for the
modified Hungarian algorithm we used. Since we only want to use our cutoff to forcibly
split detections when the network is confident they are the not the same sign, this result
justifies our decision to use 0.7 as the cutoff threshold.

Visual inspection of failed predictions from the similarity network showed it struggles
most with signs that are far away from the camera or similar in appearance to each other.
Both these failure cases make intuitive sense because further away and more similar signs
will both have fewer visible distinguishing features. Another common failure case for the
similarity network is when signs disappear between frames due to being occluded by an
object, or are are only partially visible due to being on the edge of the camera’s field of view.

6.4. Tracker

Table 4 shows the final performance results of the full end-to-end system broken down
by the different years the images from the dataset are organized into. The performance is
strongest for 2013. The images from 2013 are captured from the highway, meaning signs
tend to be spread further apart. This means the tracker makes fewer errors in combining
detections into tracklets, which results in fewer false positives. By contrast, the 2014 data
were captured in a combination of rural environments and towns, and therefore have
many sign assemblies containing clusters of similar in appearance signs. This additional
challenge resulted in greater false positives due to the previously discussed challenge with
differentiating between similar signs within clusters.

Manual inspection of false negatives showed that they typically belonged to small
signs that are far away or rotated such that they are not directly facing the camera. Due
to their lower visibility, it is unsurprising these characteristics increase the likelihood of
a sign being undetected. Inspection of false positives shows many of them are caused
by detections of other signs that are not actual road signs. For example, a sign from a
restaurant may be detected and predicted as a sign, but since this is not technically a traffic
sign it is considered a false positive during evaluation. False positives are also caused by
other objects with sign-like appearances such as license plates. Finally, inspection of some
false positives revealed they were correct detections of actual traffic signs, however they
were not annotated as part of the dataset due to being far off in the background of the
image or only partially visible in the frame.

6.5. Comparison to Other Methods

We compared the different methods for condensing tracklets into the final sign predic-
tion as is shown in Table 5. The weighted average approach is the most effective method
of converting the tracklets into sign predictions. It achieved the lowest GPS error, low
standard deviation, and good scores for true positives, false negatives, and false positives.
Using the “Frame of Interest” from each tracklet to create the final sign prediction achieved
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similar performance. Triangulation has a low standard deviation in its error and is therefore
more consistent; however, both triangulation and the MRF approach have greater mean
GPS error.

7. Conclusions

In this paper, we presented an enhanced version of the ARTS dataset [9], ARTSv2,
which will serve as a comprehensive geo-localization dataset to support future research in
the field. Each sign annotation in ARTSv2 consists of a sign class, a side of road indicator, a
sign assembly indicator, and a unique sign integer identifier.

We also proposed a novel two-stage object geo-localization system that handles a
objects from a large number of heavily skewed classes which exist in an arbitrary number of
frames using only accessible hardware. In the first stage, we constructed an object detector
called GPS-RetinaNet, which predicts bounding box coordinates, sign classes, and GPS
offsets for each detected sign in an input image. GPS-RetinaNet uses FLe, a novel variant
of focal loss, during training to effectively handle the class imbalance present in ARTSv2.

The second stage of our proposed modes is a novel object tracking system to collapse
a set of detections in a noisy, low-frame rate environment into final geo-localized object
predictions. The traffic sign tracking and geo-localization was handled using a learned
metric network and a variant of the Hungarian algorithm.

Future research should explore optimizations and tuning to facilitate high frame rate
object geo-localization.

The noise introduced to GPS coordinates due to both equipment error and annotation
inconsistencies limits the capability of GPS to serve as a ground truth. To limit GPS error,
future work could use satellite images to achieve enhanced geo-localization performance.
Future work could also experiment with how to better distinguish between signs with
similar visual features and locations during tracking, as these objects have the fewest
distinguishing features.
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Appendix A

Focal Loss was first introduced in [21] to address the challenge of overwhelming
the loss value of rare classes with many easy classes during training for datasets with
unequally distributed samples. One of the most crucial properties of the FL is the basic
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idea of down-weighting the loss of easy (well-classified) classes in favor of focusing the
training on the hard classes in the dataset. Focal Loss is defined as:

FL(pt) = −(1 − pt)
γ log(pt). (A1)

The focusing parameter γ acts as a modulator to fine-tune the effect of down-weighting
the loss of easy classes. Ref. [21] noted that γ = 2 works well, since it maintains acceptable
performance on easy classes while noticeably improving performance on hard classes. In
our experiments, however, we found that fixing the focusing parameter value for all classes
results in an unintended effect in which the loss value of a wide range of classes starts to
become down-weighted prematurely, not allowing them to achieve better average precision
in a reasonable amount of time. In other words, FL increasingly down-weights the loss
value of all classes once their probability pt surpasses 0.3, which one can argue that it is too
low to consider as a threshold for ‘well-classified’ classes.

We propose a modification to Focal Loss that replaces γ in the original definition by
an adaptive modulator. We define the new focusing parameter as:

Γ = e(1−pt), (A2)

FLe(pt) = −(1 − pt)
Γ log(pt). (A3)

Figure A1. Our modified Focal Loss function (FLe) compared with FL (γ = 2), and cross entropy (CE).
FLe introduces an adaptive exponent to the original FL [21]. This effectively changes the underlying
distribution of classes in regards to their APs and promotes some of the poorly classified classes to a
better score while preserving the performance of well-classified classes.

For convenience, we will refer to our new definition of Focal Loss as (FLe). FLe
introduces two new properties to the original definition. It dynamically fine-tunes the
exponent based on the given class performance to reduce the relative loss for well-classified
classes maintaining the primary benefit of the original FL. Figure A1 directly compares
FL with FLe, highlighting that FLe (shown in green) crosses over FLγ=2 (shown in orange)
around (pt = 0.3). As pt goes up from 0.3 → 1, FLe starts to shift up slowly ranging in
between FL and Cross Entropy CE (shown in blue).

In practice, this allows us to ultimately define ‘well-classified’ classes as (pt > 0.7)
instead of (pt > 0.3) in the original definition. In other words, FLe reduces the loss down-
weighting effect on classes when their pt values are in the range (0.3 ≥ pt ≥ 0.7) while still
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focusing on hard classes. This results in slightly improved performance that manifests at
the beginning of the training and continues throughout the process until both FL and FLe
converges at a similar mAP; however, FLe will have a slightly lower standard deviation
as more classes will cluster around mAP whereas FL will have a greater spread of APs
per class.

Appendix B

We argued in Section 2 that traditional trackers were ineffective in the object geo-
localization domain due to not being designed for low frame rate datasets and not taking
GPS information into consideration during tracking. In Table A1, we tested several popular
object trackers and verified that they provide extremely poor results. As stated, they are
unable to track objects due to how far apart frames are, leading them to nearly always
predict two objects as being “different.” Since objects are rarely predicted to be the same by
traditional trackers, repeated occurrences of objects are not merged, leading to extremely
high false positive rates.

Table A1. Performance using different trackers to condense repeated detections from GPS-RetinaNet.
Other methods essentially fail completely to merge repeated detections, since they nearly always
predict detections from separate frames are different signs. This occurs because they are not designed
to handle large “jumps” in object’s positions and angles between frames.

Tracker Performance Comparisons

Tracker True Positives False Negatives False Positives

Boosting [36] 8062 173 24,425
MIL [37] 8068 167 24,130
KCF [38] 8061 175 25,812
TLD [39] 8055 180 21,903
MedianFlow [40] 8054 181 20,834
GoTurn [41] 8049 186 22,203
MOSSE [42] 8042 193 21,422
CSRT [43] 8061 174 23,052

Proposed Tracker 6677 2759 1558

References

1. Chaabane, M.; Gueguen, L.; Trabelsi, A.; Beveridge, R.; O’Hara, S. End-to-End Learning Improves Static Object Geo-Localization
From Video. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Virtual, 5–9
January 2021; pp. 2063–2072.

2. Nassar, A.S.; Lefèvre, S.; Wegner, J.D. Simultaneous multi-view instance detection with learned geometric soft-constraints.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019;
pp. 6559–6568.

3. Nassar, A.S.; D’Aronco, S.; Lefèvre, S.; Wegner, J.D. GeoGraph: Graph-Based Multi-view Object Detection with Geometric Cues
End-to-End. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 488–504.

4. McManus, C.; Churchill, W.; Maddern, W.; Stewart, A.D.; Newman, P. Shady dealings: Robust, long-term visual localisation using
illumination invariance. In Proceedings of the Institute of Electrical and Electronics Engineers (IEEE) International Conference on
Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 901–906. [CrossRef]

5. Suenderhauf, N.; Shirazi, S.; Jacobson, A.; Dayoub, F.; Pepperell, E.; Upcroft, B.; Milford, M. Place recognition with ConvNet
landmarks: Viewpoint-robust, condition-robust, training-free. In Proceedings of the Robotics: Science and Systems XI, Rome,
Italy, 13–17 July 2015; pp. 1–10.

6. Krylov, V.A.; Kenny, E.; Dahyot, R. Automatic Discovery and Geotagging of Objects from Street View Imagery. Remote Sens. 2018,
10, 661. [CrossRef]

7. Krylov, V.A.; Dahyot, R. Object geolocation using mrf based multi-sensor fusion. In Proceedings of the 2018 25th IEEE
International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 2745–2749.

8. Wilson, D.; Zhang, X.; Sultani, W.; Wshah, S. Visual and Object Geo-localization: A Comprehensive Survey. arXiv 2021,
arXiv:2112:15202.

9. Almutairy, F.; Alshaabi, T.; Nelson, J.; Wshah, S. ARTS: Automotive Repository of Traffic Signs for the United States. IEEE Trans.
Intell. Transp. Syst. 2019, 22, 457–465. [CrossRef]

229



Remote Sens. 2022, 14, 2575

10. Bailey, T.; Durrant-Whyte, H. Simultaneous localization and mapping (SLAM): Part II. IEEE Robot. Autom. Mag. 2006, 13, 108–117.
[CrossRef]

11. Szeliski, R. Computer Vision: Algorithms and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010;
pp. 307–312.

12. Fairfield, N.; Urmson, C. Traffic light mapping and detection. In Proceedings of the 2011 IEEE International Conference on
Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 5421–5426.

13. Soheilian, B.; Paparoditis, N.; Vallet, B. Detection and 3D reconstruction of traffic signs from multiple view color images. ISPRS J.
Photogramm. Remote Sens. 2013, 77, 1–20. [CrossRef]

14. Hebbalaguppe, R.; Garg, G.; Hassan, E.; Ghosh, H.; Verma, A. Telecom Inventory management via object recognition and
localisation on Google Street View Images. In Proceedings of the 2017 IEEE Winter Conference on Applications of Computer
Vision (WACV), Santa Rosa, CA, USA, 24–31 March 2017; pp. 725–733.

15. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 21–23 September 2005; Volume 1,
pp. 886–893.

16. Liu, C.J.; Ulicny, M.; Manzke, M.; Dahyot, R. Context Aware Object Geotagging. arXiv 2021, arXiv:2108.06302.
17. Lin, T.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In

Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July
2017; pp. 936–944. [CrossRef]

18. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

19. Girshick, R. Fast R-CNN Object detection with Caffe. In Proceedings of the 2015 IEEE International Conference on Computer
Vision (ICCV), Santiago, Chilie, 7–13 December 2015; pp. 1440–1448. [CrossRef]

20. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. In
Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 91–99.

21. Lin, T.; Goyal, P.; Girshick, R.B.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. arXiv 2018, arXiv:1708.02002.
22. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer

Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988.
23. Zhu, J.; Yang, H.; Liu, N.; Kim, M.; Zhang, W.; Yang, M.H. Online multi-object tracking with dual matching attention networks.

In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 366–382.
24. Voigtlaender, P.; Krause, M.; Osep, A.; Luiten, J.; Sekar, B.B.G.; Geiger, A.; Leibe, B. Mots: Multi-object tracking and segmentation.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June
2019; pp. 7942–7951.

25. Son, J.; Baek, M.; Cho, M.; Han, B. Multi-object tracking with quadruplet convolutional neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5620–5629.

26. Xu, J.; Cao, Y.; Zhang, Z.; Hu, H. Spatial-temporal relation networks for multi-object tracking. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 3988–3998.

27. Bertinetto, L.; Valmadre, J.; Henriques, J.F.; Vedaldi, A.; Torr, P.H.S. Fully-Convolutional Siamese Networks for Object Tracking.
In Proceedings of the Computer Vision—ECCV 2016 Workshops, Amsterdam, The Netherlands, 11–14 October 2016; Hua, G.,
Jégou, H., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 850–865.

28. Xiang, Y.; Alahi, A.; Savarese, S. Learning to Track: Online Multi-object Tracking by Decision Making. In Proceedings of the 2015
IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 4705–4713. [CrossRef]

29. Caesar, H.; Bankiti, V.; Lang, A.H.; Vora, S.; Liong, V.E.; Xu, Q.; Krishnan, A.; Pan, Y.; Baldan, G.; Beijbom, O. nuScenes: A
multimodal dataset for autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 11621–11631.

30. Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J.
Comput. Vis. 2010, 88, 303–338. [CrossRef]

31. Tzutalin. Tzutalin. LabelImg. Git Code. 2015. Available online: https://github.com/tzutalin/labelImg (accessed on
5 April 2022).

32. Kuhn, H.W. The Hungarian Method For The Assignment Problem. Nav. Res. Logist. Q. 1955, 2, 83–97. doi: 10.1002/
nav.3800020109. [CrossRef]

33. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

34. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2015, arXiv:1412.6980.
35. Lin, T.; Maire, M.; Belongie, S.J.; Bourdev, L.D.; Girshick, R.B.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft

COCO: Common Objects in Context. arXiv 2014, arXiv:1405.0312.
36. Grabner, H.; Grabner, M.; Bischof, H. Real-Time Tracking via On-line Boosting. In Proceedings of the British Machine Vision

Conference 2006, Edinburgh, UK, 4–7 September 2006; Volume 1, pp. 47–56. [CrossRef]

230



Remote Sens. 2022, 14, 2575

37. Babenko, B.; Yang, M.H.; Belongie, S. Visual tracking with online Multiple Instance Learning. In Proceedings of the 2009 IEEE
Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 983–990. [CrossRef]

38. Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. High-Speed Tracking with Kernelized Correlation Filters. IEEE Trans. Pattern
Anal. Mach. Intell. 2015, 37, 583–596. [CrossRef]

39. Kalal, Z.; Mikolajczyk, K.; Matas, J. Tracking-Learning-Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 1409–1422.
[CrossRef]

40. Kalal, Z.; Mikolajczyk, K.; Matas, J. Forward-Backward Error: Automatic Detection of Tracking Failures. In Proceedings of the
2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2756–2759. [CrossRef]

41. Held, D.; Thrun, S.; Savarese, S. Learning to Track at 100 FPS with Deep Regression Networks. arXiv 2016, arXiv:1604.01802.
42. Bolme, D.; Beveridge, J.; Draper, B.; Lui, Y. Visual object tracking using adaptive correlation filters. In Proceedings of the 2010

IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010;
pp. 2544–2550. [CrossRef]
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Abstract: Remote sensing products, such as land cover data products, are essential for a wide range of
scientific studies and applications, and their quality evaluation and relative comparison have become
a major issue that needs to be studied. Traditional methods, such as error matrices, are not effective
in describing spatial distribution because they are based on a pixel-by-pixel comparison. In this
paper, the relative quality comparison of two remote sensing products is turned into the difference
measurement between the spatial distribution of pixels by proposing a max-sliced Wasserstein
distance-based similarity index. According to optimal transport theory, the mathematical expression
of the proposed similarity index is firstly clarified, and then its rationality is illustrated, and finally,
experiments on three open land cover products (GLCFCS30, FROMGLC, CNLUCC) are conducted.
Results show that based on this proposed similarity index-based relative quality comparison method,
the spatial difference, including geometric shapes and spatial locations between two different remote
sensing products in raster form, can be quantified. The method is particularly useful in cases where
there exists misregistration between datasets, while pixel-based methods will lose their robustness.

Keywords: similarity comparison; Wasserstein distance; raster; land cover

1. Introduction

With the quick and great development of remote sensing technologies, together with
the spread of open science, there are many available similar remote sensing products, and
global land cover products are very typical examples, which are typically presented as digi-
tal thematic maps in raster. Thus, to facilitate common users’ easy-to-choose appropriate
products, the need to compare their accuracy is growing. An ideal accuracy assessment
is based on comparing a dataset with its true value; however, usually, it is impossible
to obtain ‘ground truth’ in practice, thus accuracy assessments are usually conducted by
comparing the dataset with some ‘reference data’. We know that remote sensing products
from different sources are different in many aspects, including data source, classification
scheme, methodology and resolution, etc. [1]. This is not surprising, given the fact that
quantitative analyses of complex land cover types remain an arduous task [2].

2. Related Works

Table 1 lists some commonly used relative comparison methods of remote sensing
products. Considering their definition, processing units and evaluating indicators, relative
comparison methods can be classified into three categories: error matrix-based, local spatial
feature-based and others. In these methods, spatial features are expressed at three scales:
(i) a local scale for statistical analysis of pixels, (ii) a global scale for analysis of the whole
image, and (iii) specific scopes, such as sliding windows.

Remote Sens. 2022, 14, 2546. https://doi.org/10.3390/rs14112546 https://www.mdpi.com/journal/remotesensing
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Table 1. Relative comparison methods.

Comparison Methods Processing Unit Qualitative/Quantitative Evaluating Indicator
Attention

Scale

Error Matrix-based
methods

Pixel-by-pixel
based Statistical

method [3–5]
pixel

qualitative
OA, UA, PA, kappa

coefficient, information
entropy, etc.

Local
scale

quantitative

Mean, standard
deviation,

entropy, correlation
coefficient, Tau
coefficient, etc.

Quantity and
location-based

method [6]
qualitative

Location-based kappa
coefficient,

quantity-based kappa
coefficient, etc.

local spatial
feature-based

methods

Spatial
distribution-based

method [7–9]

category qualitative

Goodman–Kruskal
Cramér’s V statistics

Theil’s U statistics
Global
scale

Neighborhood-
based comparison

method [10]

Spatial structure and
overlap index

Other methods

Fuzzy comparison
[11,12] pixel and category

qualitative

Fuzzy Kappa coefficient
fuzzy similarity index.

Specific
scope

Curvature-fit
based method

[13,14]
category Polygon matching index

Specific
scopeSliding-window

based method [15] sliding window quantitative Euclidean distance,
correlation coefficient

Existing relative comparison methods are mostly based on the confusion or error
matrix method [16,17]. However, error matrix-based methods ignore the underlying
geometry of the space. For example, the blue pixels in Figure 1 represent water bodies. It is
clear that the error matrix, user’s accuracy, and producer’s accuracy in datasets 2 and 3 are
the same (because the number of water pixels is the same). However, it is obvious that the
spatial positions of the two different areas in datasets 2 and 3 are different compared to
dataset 1, and the difference between dataset 2 and dataset 1 is more like a real water body
than an error. Therefore, the spatial distribution of “errors” and the information contained
in the “errors” are also very important in a relative quality evaluation system. Moreover,
the validation techniques based on pixel statistics rely heavily on probability sampling
design for collecting validation data [3]. In the error matrix-based methods, reference data
are taken as real data, and some studies have shown that if errors in the reference data
are related to the predicted data, the comparison accuracy will be overestimated, and if
the error is conditional independent, the accuracy will be underestimated [18]. The kappa
coefficient based on the error matrix is also considered to be unsuitable [19].

Figure 1. Three datasets of water body distribution (areas with differences are circled in red).
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Researchers have proposed some improved methods based on the error matrix. For
example, Enøe et al. [20] used a maximum likelihood method to deal with unknown binary
reference data. However, this method can only verify the reference data and cannot revise
the result. The authors of [21] proposed to simulate the geometric deviation in different
directions with a certain step size based on the reference image, and then calculate the
geometric accuracy of coarse-resolution remote sensing data by calculating the correlation
between the migrated reference image and the image to be evaluated, while there are still
uncertainties in determining the size of step. To sum up, these methods based on error
matrix lack the description of the spatial structure of remote sensing products.

In order to comprehensively consider and quantify the possible spatial features in
different remote sensing products in the form of raster datasets, we attempted to design
a “similarity index” by taking raster datasets as the probability distributions in a two-
dimensional space, and then measured the difference between two distributions, thus
the problem of accuracy comparison between different raster datasets is turned into a
multi-category optimal transmission question. Therefore, in fact, it is now a question of
spatial similarity measurement.

Optimal transport theory gives a good framework for comparing two measures in
a Lagrangian framework, and Wasserstein distance is an important concept arising from
optimal transport, which are the metrics of probability distributions. At present, some appli-
cations of optimal transport theory in the field of remote sensing have been proposed [22] to
fuse remote sensing products with social media information by using the natural interpreta-
tion of distribution distance in Wasserstein metric space [23] using high-resolution satellite
time-series images to evaluate the accuracy of remote sensing mapping products in the
absence of field verification data by using EMD transmission and Sinkhorn transmission.

The optimal transport theory establishes a geometric tool for effectively comparing
probability distributions. The relative similarity concept in the paper is based on max-sliced
Wasserstein distance [24]. The main contributions of this paper are the following:

(i) Category information contained in multi-source raster datasets is treated as a prob-
ability distribution of spatial information in a 2D space, and then the problem of
consistency measurement between remote sensing products is converted into a mea-
surement question of probability distribution.

(ii) A max-sliced Wasserstein distance-based similarity index is designed and calculated,
which could solve the product comparison problem in the case of misregistration.

3. Methodology

Wasserstein distance provides a way to measure the distance between two non-empty
datasets, and a raster dataset can be taken as a set of multiple types of pixel coordinates, so
this measurement applies.

Wasserstein-P distance between two pixel-based distributions q1 and q2 could be
expressed as follows:

WP(q1, q2) =

(
in f

γ(x,y)∈Γ(q1,q2)

E(x,y)∼γ(x,y)[d
(

x, y)P
]) 1

P

(1)

where x,y are the distribution of pixel coordinates in the two raster datasets, respectively, Γ(q1, q2)
is the set of all possible joint distributions on (x,y) with marginals q1 and q2, d(x,y) is the
distance metric between x and y, generally, the Euclidean distance is taken. In a two-
dimensional case, P = 2.

Figure 2a illustrates the one-dimensional case, that is, using the minimum cost to
convert one distribution into another distribution. Figure 2b is a two-dimensional case,
using a transmission matrix P to describe the transmission plan.
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(a) 

 
(b) 

Figure 2. Optimal transport problems: (a) one-dimensional case; (b) two-dimensional case.

In fact, it is difficult to calculate the Wasserstein distance in two or more dimensions
directly through the optimal transport theory. Kantorovich–Rubinstein duality can be used
to calculate its one-dimensional case:

W(q1, q2) = sup
‖ f ‖L�1

Ex∼q1 [ f (x)]− Ex∼q2 [ f (x)] (2)

where the supremum is over all the 1-Lipschitz functions f X → R. The function f is
commonly represented via a deep net and various ways have been suggested to enforce
the Lipschitz constraint [25].

Then, a sliced version of the Wasserstein-2 distance, proposed by [26], shows its
advantage, which only requires estimating distances of one-dimensional distributions and
is more efficient. The “sliced Wasserstein-p distance” between distributions q1, q2 is defined
as:

W̃p(q1, q2) =

⎡⎣ ∫
ω∈Ω

WP
P (q

ω
1 , qω

2 )dω

⎤⎦ 1
P

(3)

where qω
1 , qω

2 denote the projection (i.e., marginal) of q1, q2 onto the direction ω, and Ω is
the set of all possible directions on the unit sphere.

The W̃p(q1, q2) distance has important practical implications: provided that the pro-
jected distributions qω

1 , qω
2 can be computed, then for any ω ∈ Ω, the distance W̃p(q1, q2),

as well as its optimal transport map and the corresponding Kantorovich potential can be
analytically computed by using projected measures that are one-dimensional.

For two given datasets D = {(x)} of samples x ∼ q1, F = {(y)} of samples y ∼ q2:

W2
2 (D

ω, Fω) =
1
|D|

|D|
∑
i=1

‖Dω
ϕD(i) − Fω

ϕF(i)‖2
2 (4)

where ϕD and ϕF are permutations that sort the projected sample sets Dω and Fω, respectively.

Dω
ϕD(1) ≤ Dω

ϕD(2) ≤ · · · ≤ Dω
ϕD(|D|) (5)
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Fω
ϕF(1) ≤ Fω

ϕF(2) ≤ · · · ≤ Fω
ϕF(|F|) (6)

When the number of elements in the two datasets |D|,|F| are different, find the greatest
common divisor θ of |D| and |F|, then make |D|∗ = |F|

θ , |F|∗ = |D|
θ , and replace D(i) with

|D|∗ elements, together with replacing F(i) with |F|∗ elements. Because |D|∗|D| = |F|∗|F|,
it is sure that the element numbers in the two new sets are the same.

If we could find the most meaningful projection direction, the 2D max-sliced-Wasserstein
distance will be calculated, and it is defined as follows:

max − W̃2(q1, q2) =
[
maxω∈ΩW2

2 (q
ω
1 , qω

2 )
] 1

2 (7)

This metric satisfies the properties of non-negativity, the identity of indiscernible,
symmetry, and subadditivity [27]. Hence, it is a true metric.

Taking two land cover datasets, A and B, with K categories and the size of Row × Col
as an example, after each max − W̃2 is calculated by categories, the similarity between A
and B can be defined:

Similarity(A, B) =
K
∑

i=1
[1 − 1

2
√

Row2+Col2
× min( 2

√
Row2 + Col2, max−W̃2(i)

1− N(i)
Row×Col

)]× N(i)
Row×Col (8)

where max − W̃2(i) is the max-sliced Wasserstein distance of category i, and N(i) is the
average number of pixels of category i in datasets A and B, that is, N(i) = 1

2 [NA(i) + NB(i)].
It could also be deduced that the similarity between two datasets is order independent,

so we have:
Similarity(A, B) = Similarity(B, A) (9)

This method has the following advantages: (1) It can quantify the difference in both
spatial position and shape, then measure it under a unified standard; (2) it can give a
continuous transformation process while preserving geometric features; (3) it has symmetry
and can still give reasonable measurement results in the case of regional misregistration.

4. Experiment

To demonstrate the rationality of the above-proposed similarity index, we designed
several validation experiments both on test datasets and real datasets. For test datasets,
we set four cases, and use a gradient descent method to give the continuous transforma-
tion process. For real datasets, we calculate the similarity index among three open land
cover products.

4.1. Experiments on Test Datasets

(i) Max-sliced Wasserstein distance between two points

Suppose there are two points on the two-dimensional plane, the coordinates of the
two points are (9.0, 9.0) and (13.0, 12.0), respectively.

The results of the max-sliced Wasserstein distance with the number of projections and
the percentage difference with the Euclidean distance are shown in Table 2.

Table 2. Distance with the number of projections.

Number of projections 5 10 15 20

Max-Wasserstein distance 4.9700 4.9961 4.9970 4.9994
Difference 0.6% 0.078% 0.06% 0.012%

The Euclidean distance between the two points is 5.0. Because the sliced distance
is calculated by using projection, there is a deviation from the Euclidean distance. We
consider that when the number of projections is not less than 20, the deviation is within the
allowable range.
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(ii) Max-sliced Wasserstein distance between areas

The geometric shape and spatial position difference between point sets (usually rep-
resented as polygons in a raster dataset) cannot be simply measured by the Euclidean
distance between points. Here, we design four cases to illustrate the rationality of the
proposed index:

Case 1: Shapes of the polygons in two datasets to be compared are the same, and the
spatial position has a translation transformation;

Case 2: The centroid of polygons is the same, but the shapes are different;
Case 3: The polygon shapes and spatial positions are both different;
Case 4: The distribution is not continuous and there are multiple areas.
Then, we used the gradient descent method to construct the continuous transformation

process.
The initial states of the four examples are shown in Table 3 and Figure 3.

Table 3. Initial state of four cases.

Case.

Distribution Centroid Radius/Side Length

A B A B A B

1 Circle Circle (160,160) (220,160) 60 60

2 Circle Square (160,160) (160,160) 60 60

3 Circle Square (160,160) (220,160) 60 60

4 3
Circles Circle (70,70),(70,250),(250,70) (160,160) 50 60

Figure 3. Initial state of four cases.

The projection number is set to 20, and then the max-sliced Wasserstein distances of
each case are shown in Table 4.

Table 4. Max-sliced Wasserstein distance of four cases.

Case 1 2 3 4

Distance 59.9964 5.6467 61.2305 77.3263

Distance changes during the gradient descent process are shown in Figure 4. As the
number of iterations increases, the distance tends to decrease, which means that distribution
is shifted to the target distribution.
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Figure 4. Distance with steps.

The process of continuous transformation of four cases in the gradient descent process
is shown in Figure 5.

Figure 5. Transformation process of source distribution to target.

In Case 1, the shapes of the two polygons are the same, and the max-sliced Wasserstein
distance measures their difference in spatial position. When it goes to the 99th step, the
initial distribution is transferred to the target distribution (the green circle moves to the
same position as the orange circle).

In Case 2, the positions of the two centroids are the same, so the factor that affects the
max-sliced Wasserstein distance measurement is only their geometric shapes.

In Case 3, both their geometric shapes and spatial positions affect the final measure-
ment, so compared with that in Case 1 and Case 2, the distance is the largest.

In Case 4, the distribution of the points is discontinuous, and there are multiple parts
(blue points). This simulates a more complicated situation in raster datasets. This metric
gives a reasonable result and a continuous transformation process of multiple regions.
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4.2. Experiments on Real Remote Sensing Products

We choose open-source global land-use raster datasets to verify the proposed index,
and the three selected datasets are GLC_FCS30 [28], FROM_GLC [29], CNLUCC [30] in
2015.

The selected area is a rectangle with the coordinates range of (116.18575, 40.00125)
and (116.37300, 40.18375) in the coordinate system of WGS84. The three datasets are the
land-use data of this area at the same time (2015), created by different researchers, with the
same resolution of 30 m.

4.2.1. Dataset Preprocessing

The classification systems of the three datasets are shown in Figure 6:

Figure 6. Detail of GLC_FCS30, FROM_GLC and CNLUCC datasets.

Comparisons cannot be made under the original non-uniform classification system, so
we reclassified the pixels and classified them into four types: (1) Cropland; (2) Forest/Grass;
(3) Water body; (4) Impervious surfaces. Figure 7 illustrates the classification system and
reclassification results.
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Figure 7. Classification System and results of reclassification.

Table 5 shows the pixel numbers of four classification types in each dataset.

Table 5. The number of pixels of four types.

Cropland Forest/Grass Water Impervious Surfaces Total

GLC_FCS30 123,957 39,076 12,966 370,771 546,770
FROM_GLC 73,795 92,438 11,936 368,601 546,770

CNLUCC 95,176 26,149 8522 416,923 546,770

4.2.2. Similarity Calculation

Taking water bodies as an example, distributions of water bodies on the three datasets
are shown in Figure 8.

(a) (b) (c) 

Figure 8. Water body distribution. (a) GLC_FCS30; (b) FROM_GLC; (c) CNLUCC.

Compare the three datasets in pairs separately to calculate the max-sliced Wasserstein
distance of the water distribution (Figure 9 and Table 6):
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Figure 9. Overlay of raster data map frames (a-b. GLC_FCS30-FROM_GLC; a-c. GLC_FCS30-
CNLUCC; b-c. FROM_GLC-CNLUCC).

Table 6. Results of water body.

Distance Row × Col Similarity

a-b 86.9853 749 × 730 91.49%
a-c 180.1471 749 × 730 82.43%
b-c 153.8637 749 × 730 85.01%

The results show that the comparison between GLC_FCS30 and FROM_GLC products
(a-b) has the smallest max-sliced Wasserstein distance and thus, the highest similarity,
which is consistent with the visual judgment.

The multi-category comparison results among the three chosen products are listed in
Table 7:

Table 7. Results of three datasets.

a-b a-c b-c

Cropland Distance 26.9367 93.0022 71.9183
Similarity 96.85% 88.88% 91.87%

Forest/Grass Distance 232.7238 260.1100 423.1698
Similarity 74.71% 72.11% 54.62%

Water Distance 86.9853 180.1471 153.8637
Similarity 91.49% 82.43% 85.01%

Impervious Distance 13.4117 9.71133 15.3557
surfaces Similarity 96.04% 96.68% 94.79%

Total Similarity 93.51% 96.89% 89.80%

4.2.3. Comparison in Unregistered Case

We designed an experiment to illustrate a significant advantage of the proposed
similarity index: it pays more attention to the shape and structure of spatial distribution
than traditional methods, therefore, it can better represent the spatial features of data. We
simulated a misregistered case of a water body in CNLUCC data. Cases 1–3 offset 1 to
20 pixels on the x-axis, y-axis, x- and y-axis, respectively (Figure 10), and then we calculated
according to the similarity index, kappa coefficient and intersection over union (IoU). The
results are shown in Table 8.
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(a) Case 1 (b) Case 2 (c) Case 3 

Figure 10. Unregistered cases (Case 1: x-axis; Case 2: y-axis; Case 3: both).

Table 8. Similarity, Kappa and IoU results of three unregistered cases.

Offset Pixel
Case 1 Case 2 Case 3

Similarity Kappa IoU Similarity Kappa IoU Similarity Kappa IoU

1 0.9990 0.9460 0.8991 0.999 0.8961 0.8143 0.9986 0.8717 0.7756

2 0.9981 0.8963 0.8147 0.9981 0.7971 0.6669 0.9973 0.7572 0.6140

3 0.9971 0.8526 0.7465 0.9971 0.7075 0.5527 0.9959 0.6587 0.4969

4 0.9962 0.8129 0.6889 0.9961 0.6312 0.4672 0.9945 0.5796 0.4144

5 0.9952 0.7777 0.6407 0.9951 0.5715 0.4065 0.9931 0.5217 0.3596

6 0.9942 0.7470 0.6011 0.9942 0.5257 0.3632 0.9918 0.4779 0.3208

7 0.9933 0.7195 0.5671 0.9932 0.4897 0.3310 0.9904 0.4438 0.2922

8 0.9923 0.6940 0.5369 0.9922 0.4599 0.3056 0.989 0.416 0.2698

9 0.9913 0.6711 0.5107 0.9913 0.4349 0.2849 0.9877 0.391 0.2502

10 0.9904 0.6499 0.4873 0.9903 0.4127 0.2671 0.9863 0.3671 0.2320

It could be seen that traditional methods are very sensitive to registration accuracy
(shown in Figure 11).

  
(a) Case 1 (b) Case 2 (c) Case 3 

Figure 11. Line charts of three indicators changes with pixel offset.

Both the kappa coefficient and IoU are not robust in three cases, because these methods
do not consider spatial features of pixels; therefore, their results are quite different in cases
of different pixel offsets. The similarity index proposed in this paper focuses on the structure
and characteristics of space, thus, the max-sliced Wasserstein distance is close to the true
pixel offset and the change of similarity result is small.
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5. Discussion

In the above experiments, test datasets are used to illustrate the rationality of Wasser-
stein distance for quantitatively calculating the distribution of pixels in two-dimensional
space. This index can comprehensively consider spatial location information and geometric
shape information, which has practical significance.

After unifying the spatial resolution and classification standards of three chosen land
cover products, single-category similarity and overall similarity are both calculated. In
the calculation of water body similarity, the distribution of large-area water objects in
products GLC_FCS30 and FROM_GLC is relatively consistent, and the difference in the
surrounding scattered and small water bodies is the main reason for the generation of the
distance measurement. The overall similarity results indicate that the GLC_FCS30 and
CNLUCC data have a higher similarity. This is because, in FROM_GLC, the confusion
between Cropland and Forest/Grass types appears more frequently, resulting in a large gap
in the number of pixels between these two types. Therefore, after calculating the overall
similarity with the number of pixels and similarity in the similarity evaluation index, the
overall similarity is quite different from the other two products. The most similar type is
Impervious surfaces, and the pixels of this type account for a large proportion of the total
number of pixels, therefore, it is the main factor that affects the final similarity.

Compared with the error matrix and IoU, the similarity index represents more charac-
teristics of spatial structure. We hope to propose this index to make up for the shortcomings
of existing methods. It can better characterize the spatial relationship between datasets and
solve the comparison problem under a certain degree of misregistration.

6. Conclusions

With the increasing demand for quantitative evaluation of different remote sensing
products, the traditional pixel-based accuracy evaluation system needs to be improved.
The proposed similarity index is a promising way to facilitate this need. It is not limited
to pixel-by-pixel comparison in the case of complete alignment. In a word, the main
idea of this study is to transform the relative accuracy comparison problem of multi-
source raster datasets into an optimal transmission problem in two-dimensional space.
For the mathematical expression of similarity index, based on max-sliced Wasserstein
distance, when the number of projections reaches the threshold, it can be regarded as the
true value. Using the gradient descent method to give the continuous transformation
process also shows that the index can reasonably quantify the spatial distribution. Based
on this similarity index, the spatial difference between multi-source raster datasets can
be quantified. Theoretically, this index is more suitable for land-use change monitoring
and continuous raster datasets comparison. More theoretical development and practical
application of this index are still under work, and we will continue to improve it.
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Abstract: When a target is moving at high-speed, its high-resolution range profile (HRRP) will
be stretched by the high-order phase error caused by the high velocity. In this case, the inverse
synthetic aperture radar (ISAR) image would be seriously blurred. To obtain a well-focused ISAR
image, the phase error induced by target velocity should be compensated. This article exploits the
variation continuity of a high-speed moving target’s velocity and proposes a noise-robust high-speed
motion compensation algorithm for ISAR imaging. The target’s velocity within a coherent processing
interval (CPI) is modeled as a high-order polynomial based on which a parametric high-speed motion
compensation signal model is developed. The entropy of the ISAR image after high-speed motion
compensation is treated as an evaluation metric, and a parametric minimum entropy optimization
model is established to estimate the velocity and compensate it simultaneously. A gradient-based
solver of this optimization is then adopted to iteratively find the optimal solution. Finally, the high-
order phase error caused by the target’s high-speed motion can be iteratively compensated, and a
well-focused ISAR image can be obtained. Extensive simulation experiments have verified the noise
robustness and effectiveness of the proposed algorithm.

Keywords: inverse synthetic aperture radar; space targets; high-speed motion compensation; entropy
minimization; quasi-Newton iterative; noise robust

1. Introduction

Inverse synthetic aperture radar (ISAR) imaging plays an important role in space
target surveillance due to its long-range, all-day, all-weather, and two-dimensional high-
resolution imaging capability [1,2]. In general, the slant high-range resolution depends on
transmitting wide-band linear frequency modulation (LFM) waveforms with a large pulse
width. In contrast, the high azimuth resolution depends on the relative motion between the
radar and the observed targets over the coherent processing interval (CPI) [3,4]. When the
target is stationary or its velocity is low, the “stop–go” model is used to analyze the target
echo signals [5,6]. After de-chirp processing on the receiver [7,8], the range profile of the
signal can be directly extracted from the pulse compression by the Fast Fourier transform
(FFT). However, for a target moving at high speed (such as missiles and satellites), their
high-resolution range profile (HRRP) would be stretched by the high-order phase error
induced by target velocity [9–11]. Velocity estimation and compensation are of particular
significance for the ISAR imaging of high-speed moving targets, which deteriorates the
quality of HRRP and ISAR image [12,13]. Therefore, to not affect the subsequent ISAR
imaging processing, it is necessary to estimate the target speed and compensate for the
phase error caused by the high-speed motion.
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The key to the high-speed motion compensation of ISAR imaging lies in accurately esti-
mating the target’s high velocity. The current methods are divided into two main categories.
One category is the algorithms based on signal decomposition to estimate the high-order
phase error parameters directly for individual echo and then directly acquire the velocity
for high-speed motion compensation. The fractional Fourier transform (FrFT) [14,15] and
its modification [16] have been utilized to reconstruct HRRP for high-speed moving targets.
Furthermore, many parameter estimation methods, such as the integrated cubic phase
function (ICPF) [17,18], particle swarm optimization [19], Wigner Ville Distribution (WVD)
and Hough Transform (HT) [20], etc., were utilized to estimate the target velocity from
the quadratic phase error. These methods model the radar echo after pulse compression
as the sum of multiple signals containing quadratic phase error, then compensate the
high-speed motion by estimating the signal chirp term that contains the target velocity.
This category of method relies on an accurate estimation of the signal’s chirp term, which
is susceptible to noise. Another class of methods uses the focusing quality of the HRRP
as a criterion for the indirect estimation of velocity, and the most typical criterion is the
waveform entropy [11,21,22]. Entropy is an effective metric for evaluating the focusing
quality of HRRP and is used in many ISAR imaging applications such as translational
motion compensation [23–25] and image auto-focusing processing [26–29]. This class of
methods creates a higher-order compensation term for each compressed echo and estab-
lishes a parametric model for individual echo high-speed motion compensation. Then,
the phase error is searched and compensated by minimizing the waveform entropy. The
problem with these algorithms is that they treat each pulse independently, ignoring the
continuity and the integrity of a high-speed moving target’s motions during continuous
observation. Due to the separate processing of the echoes, each echo’s high-speed motion
estimation error gradually accumulates within a CPI, resulting in an inefficient high-speed
compensation of the image as a whole. In addition, the signal-to-noise ratio (SNR) of the
echo is often relatively low for targets due to the signal decay from the long range and
absorption of the transmitting medium. The SNR problem is among the most significant
challenges that ISAR imaging systems frequently face. In the presence of low SNR, the
high-speed motion compensation always encounters some difficulties [17,30,31]. As a
result, the imaging results would degrade seriously.

Aiming to perform the ISAR imaging of a high-speed moving target, this paper pro-
poses a noise-robust high-speed motion compensation method for ISAR imaging based
on parametric minimum entropy optimization. Firstly, for the radar echoes of high-speed
moving targets in the De-chirp mode [7], we analyze the influence of the high-speed motion
of the target on the compressed echoes and establish the signal model for the high-speed
moving target. In general, for a continuously observed target, its movement state, includ-
ing its trajectory and velocity, changes in a continuous manner [25,32–34]. Considering
the variation continuity of the target’s velocity within one CPI, the target’s velocity is
modeled as a high-order polynomial function, and 2D image entropy is minimized to
optimize the velocity polynomial coefficients. A novel coordinate descent algorithm is
proposed to solve the minimum entropy optimization based on the established minimum
entropy optimization model. The coordinate descent algorithm is implemented by the
Broyden–Fletcher–Goldfarb–Shanno (BFGS)-based quasi-Newton algorithm [35–37] yields
fast convergence. The effectiveness of the high-speed compensation algorithm is verified
by simulation data and Yak-42-measured data. Compared with existing algorithms, the
proposed method is innovative in the following aspects:

(1) The most significant advantage of the proposed method is that it considers the
correlation of velocity variations of sequential echoes during one CPI. The continuity
and completeness of the target velocity variation are exploited to establish the high order
polynomial of the sequential echo’s velocity for the high-speed motion compensation.
Compared with the high-speed motion compensation method based on independent echo,
the proposed method is more robust and has higher compensation accuracy.
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(2) Most of the existing high-speed compensation methods use exhaustive search or
signal parameter estimation, which is computationally expensive and sensitive to noise. In
contrast, the proposed method uses the 2D ISAR image’s entropy as an evaluation index.
This uses the BFGS algorithm, which is an effective quasi-Newton algorithm that does not
need to calculate the second-order derivative of the objective function. The operational
speed of the BFGS algorithm is faster than that of the Newton method. That is to say, the
proposed algorithm is more effective and practical.

(3) The existing high-speed motion compensation methods do not take full advantage
of the high accumulation gain of sequential echoes. The proposed method can achieve
high SNR gain from 2D coherent integration [33,34], which benefits the high-speed motion
compensation under low SNR.

This paper is organized as follows. Section 2 presents the De-chirped signal model
for high-speed moving targets. In Section 3, a parametric model of the high-speed mo-
tion compensation within one CPI is established. The minimum entropy optimization is
developed, and the gradient-based solver of this optimization problem is introduced. In
Section 4, some imaging results based on the simulated and measured data are given, and
the performance of the proposed high-speed compensation method is analyzed. Some
conclusions are given in Section 5.

2. De-Chirp Signal Model for High-Speed Moving Targets

A general geometry of the radar and target is given in Figure 1, in which a coordinate
is built on the center gravity O of the target with the Y axis along the direction of LOS.
In Figure 1, the plane consisting of the XY axis including the line of radar sight (LOS)
is the imaging plane. The final ISAR image is the projection of the 3D target structure
on the imaging plane. In radar imaging, the high range resolution is usually achieved
by transmitting large band-width linear-frequency-modulated (LFM) signals with pulse
compression. Assuming the radar transmits a chirp waveform that

s(tr, tm) = rect
(

tr

Tp

)
· exp

[
j2π

(
fct +

1
2

γt2
r

)]
, (1)

where rect
(
tr
/

Tp
)
=

{
1, |tr| ≤ Tp

/
2

0, |tr| > Tp
/

2
, and Tp, fc, and γ denote the pulse-width, carrier

frequency, and frequency modulation rate, respectively. t = tr + tm is the full time, where
tr is the fast time and tm is the slow time. As shown in Figure 1, the point p is an arbitrary
scatterer on the target whose distance from the radar at tm is Rd(tm); then the radar echo of
this scatter can be written as

sp(tr, tm) = σprect
(

tr − td
Tp

)
· exp

[
j2π

(
fc(t − td) +

1
2

γ(tr − td)
2
)]

, (2)

where td = 2Rd(tm)
c is the echo time delay of point p, c is the velocity of light, σp is the

reflection coefficient. Note the instantaneous distance from the radar to scatter p, i.e., Rd(tm)
is only related to slow time tm because a “stop–go” assumption is adopted, i.e., the radar
target is supposed to move between radar pulses and stop within each pulse, as shown in
Figure 2a. Noting the pulse width of the wide-band signal is generally narrow, e.g., 100 us,
the “stop–go” assumption is reasonable and has been widely used in ISAR imaging. For
the target moving with high velocity, however, the target movement within a pulse cannot
be ignored and the assumption of “stop-go” is invalid. For example, assuming that the
radar transmits an LFM signal with a bandwidth of 1 GHz and a pulse width of 100 us, for
a slow-moving target with a speed of 100 m/s (such as an airplane), the distance variation
within a pulse is 0.01 m. Furthermore, for a high-speed moving target with a speed of
3000 m/s (such as the satellite), the distance variation within a pulse is 0.3 m. Compared
to the range resolution Δr = c/2B = 0.15 m, the distance variation within the pulse for
the slow-moving target can be ignored, while it can not be neglected for the high-speed
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moving target. For high-speed moving targets, since it is necessary to consider the target
distance variation within one pulse-width, the distance between point p and the radar is
the variable concerned with both fast time tr and slow time tm, which can be expressed as

Rd(tr, tm) = Rd1(tm) + Rd2(tr), (3)

where Rd1(tm) is the distance variation with slow time, and Rd2(tr) is the distance variation
with the fast time. Considering the fact that a pulse time is short and the change of velocity
within a pulse time can be neglected, i.e., the target can be approximated to be moving at a
uniform speed within a pulse, then Rd2(tr) can be approximated as

Rd2(tr) ≈ v(tm) · tr, (4)

where v(tm) is the instantaneous velocity of the target at slow time tm. The de-chirp
compression processing is expressed as the echo signal multiples with the reference signal’s
conjugate [7]. The reference signal is

sre f (tr, tm) = rect
( tr − tre f

Tp

)
exp
[

j2π

(
fc

(
t − tre f

)
+

1
2

γ
(

tr − tre f

)2
)]

, (5)

Figure 1. Observation geometry for high-speed motion targets.

(a) (b)

Figure 2. Difference between low-speed moving target and high-speed moving target: (a) the
low-speed moving target; and (b) the high-speed moving target.
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where tre f =
2Rre f (tm)

c , Rre f (tm) is the reference distance from point p to the radar at slow
time tm. After the de-chirp processing, we can obtain the output signal

so(tr, tm) =sp(tr, tm) · s∗re f (tr, tm)

=σprect
(
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·rect
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exp
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(
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− 1

2
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Simplifying Equation (6) yields

so(tr, tm) = σprect
(
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)
·rect
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Tp
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· exp
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a0 = fc

2[Rd(tr ,tm)−Rre f (tm)]
c − γ
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where a2 is the chirp term caused by the high-speed motion of the target. In ISAR imaging,
the target’s motion can be divided into translational and rotational motion [6], respectively,
as shown in Figure 3. Assuming that the coordinate of the point p in the imaging plane
XOY is

(
xp, yp

)
, the instantaneous distance from scattering point p to radar is given by

Rd(tr, tm) = Ro(tr, tm) + xp sin(ωtm) + yp cos(ωtm) + v(tm) · tr

≈ Ro(tr, tm) + xpωtm + yp + v(tm) · tr,
(9)

Figure 3. Target’s rotational motion in ISAR imaging.
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where Ro(tr, tm) denotes the translational motion of the target, as shown in Figure 3. In
ISAR imaging, since the time of a CPI is very short, such as a few milliseconds, the rotation
of the target relative to the radar within a CPI is a few degrees (approximately 3◦), and the
target can approximate uniform rotation in a short time. At this time, the terms sin(ωtm)

and cos(ωtm) in Equation (9) satisfy
{

sin(ωtm) ≈ ωtm
cos(ωtm) ≈ 1

, where ω is the rotational velocity

of the target in the imaging plane. Bringing Equation (9) into Equation (7) yields
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(10)

where λ = c
fc

is the wavelength, and the phase in Equation (10) is divided into eight terms.
The first term is the rotational Doppler term of point p and the second term is the range
compression term of point p. These two terms are the time domain data corresponding to
the final image of the target. The third term is constant and can be ignored. The fourth term
is the range walk term due to rotational motion, which usually does not exceed one range
cell in ISAR imaging, whose effect can be neglected [38,39]. The fifth term is the phase
error from the translational movement of the target as a whole, which can be removed by
the autofocus algorithm [6,40,41]. The 6th term is the residual video phase (RVP) error,
which can be removed by RVP compensation. The seventh term is the envelope linear walk
term brought by the target translational and high-speed motion, which can be eliminated
by envelope alignment [23,42]. The eighth term is the range chirp term brought by the
high-speed movement of the target, which needs to be compensated in this paper. After
the envelope alignment [23] and phase error compensation [40], Equation (10) becomes

so(tr, tm) ≈ s̃(tr, tm) · exp
[
−j4πγ
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v(tm)

c
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)
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r

]
, (11)

where s̃(tr, tm) is the time domain data of the ideal image after high-speed compensation,
denoted as

s̃(tr, tm) = σprect
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According to Equation (11), the high-speed compensation signal model for ISAR
imaging can be expressed as

s̃(tr, tm) ≈ so(tr, tm) · exp
[

j4πγ
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]
. (13)
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Applying the fast Fourier transform (FFT) with respect to tr and tm and considering
the inevitable noise, Equation (13) can be expressed in a discrete form as
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∑
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exp
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)
n2
]
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(14)

where g(k, h) is the ISAR image after high-speed motion compensation. k = 1, 2, · · · , N,
k is the range indices, N is the number of range bins, and h = 1, 2, · · · , M, where h
is the azimuth position and M is the number of azimuth cells. so(n, m) is the discrete
form of so(tr, tm), n and m are the discrete form of tr and tm, ξ(k, h) denotes the complex
noise. Equation (14) is the signal model of the final ISAR images after high-speed motion
compensation. In the following sections, the parametric minimum entropy optimized
high-speed motion compensation algorithm is given based on this signal model.

3. Optimal Compensation for High-Speed Motion

3.1. Optimization Based on Parametric Minimum Entropy

From Equation (14), it can be seen that the velocity of the target varies with the slow
time tm. The high-speed compensation for independent echoes does not consider the
continuity of velocity variation [15,20,21]. Due to the complex motion of the target and the
variance of the system and the environment, the high-velocity between the target and the
radar usually has high-order terms [24,25,33,34]. Without loss of generality, we model the
target’s high-velocity as an L-order polynomial, meaning that

v(m) =
L−1

∑
l=0

bl(mΔtm)
l , (15)

where l denotes the order of velocity variation with slow time tm, l = 0, 1, · · · , L − 1, and bl
represents the coefficient of each order. Δtm denotes the pulse repetition time (PRT). One
notes that l begins from 0 to L− 1, b0 indicates the initial value of the velocity. For simplicity
and clarity, we define the polynomial coefficient vector as b = [b0, b1, b2, · · · , bL−1]1×L,
and give the complex image after error correction by the high-speed compensation term
as follows:

g(k, h) =
M−1

∑
m

exp
(
−j2π

hm
M

) N−1

∑
n=0

exp
(
−j2π

kn
N

)

· so(n, m) exp

⎡⎢⎢⎢⎣j4πγ

⎛⎜⎜⎜⎝
L−1
∑

l=0
bl(mΔtm)

l

c
−

(
L−1
∑

l=0
bl(mΔtm)

l
)2

c2

⎞⎟⎟⎟⎠n2

⎤⎥⎥⎥⎦+ ξ(k, h).

(16)

If the values of b = [b0, b1, b2, · · · , bL−1]1×L are obtained precisely, the high-speed
motion of the target will be compensated, and a well-focused ISAR image can be ob-
tained. Therefore, the high-speed motion compensation problem turns into an opti-
mal parameter estimation problem. Actually, estimating the optimal parameters set in

v(m) =
L−1
∑

l=0
bl(mΔtm)

l can be transferred into solving an unconstrained optimization prob-

lem in which b = [b0, b1, b2, · · · , bL−1]1×L are the variables of objective function.
Image entropy [25–27] and contrast [37,41] are frequently used in ISAR imaging to

quantify the image focus. In this paper, image entropy is employed to evaluate the focus
quality of images. Entropy has been used as a typical indicator in ISAR imaging in many
different ways [28,29]. The entropy of the 2-D image represents its sharpness, and generally,
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the “sharpest” image corresponds to the entirely focused image. The complex image after
high-speed motion correction by b̃ =

[
b̃0, b̃1, b̃2, · · · , b̃L−1

]
1×L can be rewritten as

g
(
k, h; b̃

)
=

M−1

∑
m

exp
(
−j2π

hm
M

) N−1

∑
n=0

exp
(
−j2π

kn
N

)

· so(n, m) exp

⎡⎢⎢⎢⎣j4πγ

⎛⎜⎜⎜⎝
L−1
∑

l=0
b̃l(mΔtm)

l

c
−

(
L−1
∑

l=0
b̃l(mΔtm)

l
)2

c2

⎞⎟⎟⎟⎠n2

⎤⎥⎥⎥⎦+ ξ(k, h).

(17)

Therefore, the entropy of an image is defined as a function of b̃ =
[
b̃0, b̃1, b̃2, · · · , b̃L−1

]
1×L,

which is given by

Eg
(
b̃
)
= ln Sg − 1

Sg

N−1

∑
k=0

M−1

∑
h=0

∣∣g(k, h; b̃
)∣∣2 ln

∣∣g(k, h; b̃
)∣∣2, (18)

where Sg is the image intensity that can be expressed as

Sg =
N−1

∑
k=0

M−1

∑
h=0

∣∣g(k, h; b̃
)∣∣2. (19)

The estimate of b̃ =
[
b̃0, b̃1, b̃2, · · · , b̃L−1

]
1×L is obtained by minimizing the image

entropy, expressed as follows:〈
b̂0, · · · , b̂L−1

〉
= arg min

b̃0,··· ,b̃L−1

Eg
(
b̃
)
. (20)

To date, the optimization based on entropy minimization for high-speed motion
compensation is established, and it is an optimization function with series parameters b̃ =[
b̃0, b̃1, b̃2, · · · , b̃L−1

]
1×L. Many standard algorithms are available to solve this optimization,

such as particle swarm optimization (PSO) and genetic algorithms (GA)[19]. However,
these nonparameteric methods always need great computation time. BFGS is an effective
quasi-Newton algorithm that efficiently solves unconstrained optimization problems. In
the following subsection, we present a fast iterative optimization search method based on
the BFGS quasi-Newton iteration method [37].

3.2. Parameter Optimization Based on Fast Iteration

To apply the BFGS-based fast iterative search method, one first has to obtain the gradi-
ent of each parameter. For an arbitrary parameter b̃l0 , l0 ∈ [0, 1, · · · , L − 1], its gradient is

∂Eg
(
b̃
)

∂b̃l0
= − 1

Sg

N−1

∑
k=0

M−1

∑
h=0

{[
1 + ln

∣∣g(k, h; b̃
)∣∣2] · ∂

∣∣g(k, h; b̃
)∣∣2

∂b̃l0

}
, (21)

where
∣∣g(k, h; b̃

)∣∣2 = g
(
k, h; b̃

) · g∗
(
k, h; b̃

)
; then, we have

∂
∣∣g(k, h; b̃

)∣∣2
∂b̃l0

= 2Re

[
g∗
(
k, h; b̃

) · ∂g
(
k, h; b̃

)
∂b̃l0

]
, (22)
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where

∂g
(
k, h; b̃

)
∂b̃l0

=
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exp
(
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hm
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(23)

With the partial derivative expressions in Equation (23), the gradient of image entropy
with respect to b̃ =

[
b̃0, b̃1, b̃2, · · · , b̃L−1

]
1×L is

∇Eg
(
b̃
)
=

[
∂Eg
(
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)

∂b̃0
,

∂Eg
(
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, · · · ,
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∂b̃L−1

]T

. (24)

In the BFGS algorithm, an approximate matrix (defined as B, whose initial form
is B0 = IL×L), is used to replace the Hessian matrix of the objective function. In this
paper, since we are searching for each polynomial parameter individually, B0 = 1. In
addition, considering the considerable number of velocity polynomial parameters, it is
difficult to ensure the algorithm’s convergence speed and convergence robustness if the
joint iterative search is performed for all parameters simultaneously. Therefore, to improve
the convergence speed while providing the algorithm’s robustness, a BFGS-based quasi-
Newton coordinate descent algorithm was used in this paper. Herein, this paper minimized
the entropy Eg

(
b̃
)

with respect to a single parameter while holding the other parameter
constant to avoid the local optimum. For example, for the parameter b̃l0 , with the first
l0 parameters b̃0 ∼ b̃l0−1 which are already iteratively updated, the minimum entropy
optimization function of b̃l0 can be expressed as

〈
b̂l0

〉
= arg min

b̃l0

Eg
(
b̃
)∣∣∣∣∣

b̃0,···l0−1,l0+1,··· ,L−1=0

. (25)

In the coordinate descent iterative algorithm, each parameter b̃l0 is solved inde-
pendently iteratively and optimally. Considering that in Equation (25), b̃l = 0, l =
0, · · · , l0 − 1, l0 + 1, · · · , L − 1. Taking this into Equation (23), the gradient of the inde-
pendent parameter b̃l0 can be expressed as
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For each parameter b̃l0 , its iterative solution process is based on the BFGS algorithm.
Let b̃0

l0
be the initial parameter and b̃k

l0
be the parameter of the kth iteration. The searching

direction in BFGS is updated as follows:

dk = −Bk · ∇Eg

(
b̃k

l0

)
. (27)

The k + 1th parameter b̃k+1
l0

is updated as follows:

b̃k+1
l0

= b̃k
l0 + λkdk, (28)

where λk is the search step corresponding to b̃k
l0

at the kth iteration. It can be estimated by
Equation (29) via some 1-D inexact searching methods, such as golden section search or the
Armijo–Goldstein stepsize rule [37].

λk = arg min
λk

[
Eg

(
b̃k

l0 + λkdk
)]

. (29)

The Hessian matrix Bk in BFGS is updated as follows:

Bk+1 = Bk +
yk ·
(

yk
)T

yk · (sk
)T −

Bksk
(

sk
)T

Bk(
sk
)T

Bksk
, (30)

where sk = λkdk , yk = ∇Eg

(
b̃k+1

l0

)
−∇Eg

(
b̃k

l0

)
.

All parameters are updated throughout the parameter optimization process in two
loop iterations, the inner and outer loops, respectively. Within the inner loop, for the
parameter b̃l , l = 0, 1, · · · , L − 1, the parameters are independently updated based on BFGS
from b̃0 ∼ b̃L−1 in turn, and each parameter is independently updated as an inner loop.
When all parameters are updated once, it is an outer loop, and after completing an outer
loop, it goes to a new outer loop. Until the image entropy satisfies a certain value, the
iteration stops.

To clearly describe the proposed algorithm, a flowchart of the proposed algorithm is
given in Figure 4.

As can be seen from the flow chart, first, the polynomial order is selected. Since the
time of a CPI is very short, say less than 1 second, the target’s velocity variation is small,
and a velocity polynomial of order 1–2 can accurately describe the high-speed motion of
the target. In this paper, L is set to 5 to make the proposed algorithm more robust, i.e., it can
satisfy the case of weak target maneuver as well as the case of strong target maneuver. For
L = 5, the algorithm only sacrifices a small amount of computation time, but this will make
the high-speed compensation more accurate and robust. The iterative process is divided
into an inner loop and an outer loop. The inner loop is a BFGS-based gradient search for
each polynomial parameter independently. After a complete search estimation of all order
coefficients, the range alignment and phase adjustment were re-implemented. This process
is an outer loop, where δ1 and δ2 are the inner loop and outer loop iteration termination
conditions, respectively. In general, δ1= 10−3, δ2= 10−4 are usually a good choice in reality.
It is important to emphasize that after all the coefficients are updated, the range profile of
each pulse will be changed because the high-speed motion of the target was compensated
to a certain extent. Hence, it is necessary to realign all the echo envelopes [23] and refocus
the image [26,27] for the next iteration.
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Figure 4. The flow chart of the proposed algorithm.

4. Experiment Analysis

To verify the effectiveness of the proposed algorithm, in this subsection, different
experiments were designed to demonstrate the performance of the proposed algorithm.
The experiments are divided into the three types and all the images are generated by
the conventional range-Doppler (RD) [1] imaging algorithm. The difference is that dif-
ferent high-speed motion compensation algorithms are used. For all experiments, the
proposed method is compared with the algorithm in [21], which uses the idea of minimum
entropy of individual echoes for high-speed compensation. It is referred to as ME. The
proposed algorithm is also compared with the algorithm proposed in [17], which uses
ICPF to estimate the chirp coefficients of independent echoes and thus for high-speed
compensation. It is referred to as ICPF in this paper. It is important to emphasize that
before the high-speed motion compensation, the translation compensation [23] and the
phase error compensation [40] are applied to compensate for the fifth, sixth, and seventh
terms in Equation (10).

(1) Firstly, point simulation experiments are designed to verify the performance of the
proposed algorithm under different high-speed motion conditions.

(2) Considering the difficulty of obtaining the real measurement data of the space
target, this paper uses the electromagnetic simulation data of the space target for the
experiment, and the PO algorithm [43] obtains simulation data. In addition, to illustrate
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the robustness of the proposed algorithm in the case of low SNR, the performance of the
proposed algorithm under different SNR conditions is given in the experiments.

(3) In this part of the experiment, different high-speed motion was added to the
Yak-42 real measured data to evaluate the effectiveness of the proposed method, and the
high-speed motion was added using Equation (11).

4.1. Experiments Based on Point Array Simulation

The first experiment is based on scattering point simulation. A simulated ballistic
missile consisting of 13 scatterers is constructed as shown in Figure 5b, which is supposed
to fly straight above the radar with different projected velocities. The motion model is
given in Figure 5a. The radar transmits a linear frequency modulation (LFM) signal with
the parameters given in Table 1. The signal-to-noise ratio (SNR) of the radar echo is 20 dB.
The radar echo simulation was carried out under different high-speed motion conditions,
as shown in Table 2. In this paper, the SNR of a signal is defined as

SNR = 10log10

(
Es

En

)
, (31)

where Es denotes the energy of the radar echo, and En denotes the energy of white Gaus-
sian noise.

The high-speed compensated ISAR imaging results under different motion conditions
are shown in Figure 6, all the imaging results were obtained using the RD imaging al-
gorithm [1]. The left column of Figure 6 is the ISAR images without high-speed motion
compensation. It can be seen that, as the target speed increases, the high-speed motion also
has an increasing impact on the ISAR imaging results, and the images become increasingly
blurred. The second column of Figure 6 shows the ISAR images acquired by the ME. It can
be seen that the focusing image quality is significantly improved by using the high-speed
compensation algorithm. The third column of Figure 6 shows the ISAR images acquired by
the ICPF. It can be seen that the image focusing quality obtained by ICPF is basically the
same as that of the ME algorithm. Compared with uncompensated images, the scattered
points in the images are well focused. The fourth column of Figure 6 shows the focused
ISAR images acquired by the proposed algorithm, and it can be seen that the proposed
algorithm achieves images with better focusing quality. For comparison, the entropy of
the images after high-speed compensation by different algorithms are given, as shown
in Table 3. As can be seen from the table, compared with the ME and ICPF, the image
entropy obtained by the proposed algorithm is smaller and closer to the ideal image. The
variation of the image entropy with the iteration number of the proposed algorithm is given
in the right column of Figure 6, and it can be seen that the proposed algorithm reaches
convergence after approximately ten iterations. Considering that the first and second-order
of the target velocity dominate the influence within a CPI, the image entropy against the
velocity and acceleration are given in Figure 7a–d. It can be seen that the adoption of the
global image entropy as the evaluation criterion has a global minimum, and the algorithm
can robustly converge to the global optimum.
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Figure 5. (a) Target movement trajectory; (b) the scattering point model; and (c) the ideal image of
zero velocity.
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Figure 6. High-speed compensated imaging results under different motion conditions. The leftmost
column is the imaging results without high-speed motion compensation; the second column is the
high-speed compensation imaging results by ME; the third column is the high-speed compensation
imaging results by ICPF; the fourth column is the high-speed compensation imaging results of the
proposed algorithm; the rightmost column is the image entropy against the iteration number of the
proposed algorithm.
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Table 1. Radar parameters of the simulation.

Center Frequency Pulse Repetition Frequency Pulse Width Band Width Sample Frequency

16 GHz 1000 Hz 400 us 2 GHz 10 MHz

Table 2. Motion parameters for the simulation.

v
b b0 b1 b2

v(tm; b0) 0 0 0
v(tm; b1) 1000 1000 10
v(tm; b2) 3000 1000 100
v(tm; b3) 5000 2000 1000
v(tm; b4) 7000 6000 10

v(tm; b1) v(tm; b2) v(tm; b3) v(tm; b4)
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Figure 7. (a–d) Image entropy variation with velocity and acceleration; (e–h) range profiles of
individual scattering points in ISAR images; and (i–l) velocity estimation and its true value of
different high-speed compensation algorithms at different motion conditions.
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Table 3. The entropy of images acquired by different algorithms.

Image Entropy

Ideal Image 4.3252

v(tm; b1) v(tm; b2) v(tm; b3) v(tm; b4)

Raw Image 6.2026 5.5213 5.9747 6.593

ME 4.4224 4.4917 4.3975 4.3981

ICPF 4.3911 4.3853 4.3897 4.3821

Proposed Method 4.3347 4.3328 4.3256 4.3422

To better reflect the advantages of the proposed algorithm, the range profiles of the
independent scattering points of the image are given in Figure 7e–h. From Figure 7e, it can
be seen that as the target velocity continues to increase, the range chirp term brought by
the high-velocity becomes more and more prominent, and the profile spreading after range
compression becomes more and more serious. The range profile after high-speed motion
compensation is shown in Figure 7f–h, and it can be seen that after high-speed motion
compensation, the main lobe broadening of the independent points disappears, forming a
well-focused range compression lobe. However, compared with the proposed algorithm,
the main lobe of the range profile after the compensation of ME and ICPF still has the
spreading phenomenon. In contrast, after the compensation of the proposed algorithm, the
main lobe has no broadening.

Figure 7i–l gives the estimated velocity of the three algorithms and the true velocity.
One can see that since the ME and ICPF algorithms process each echo independently from
the velocity estimation, the estimated velocity is not correlated. The velocity estimates of
each pulse are independent of each other. There are many speed estimates that deviate
significantly from the true value, which will eventually lead to inadequate image com-
pensation. In contrast, the proposed algorithm considers the continuity of the target’s
velocity variation within a CPI, and the estimated velocity is consistent with the actual
value which also reflects the effectiveness of the proposed algorithm. The root mean square
error (RMES) of velocity estimated by different algorithms is shown in Table 4, and RMES
is defined as

RMSE =

√√√√ 1
N

N

∑
n=1

(ṽestimate(n)− vreal(n))
2 (32)

where ṽestimate is the estimated velocity and vreal is the true velocity. It can be seen from the
RMSE that the estimation error of the proposed algorithm is much lower than the errors of
the comparison methods, which proves the effectiveness of the proposed algorithm.

Table 4. Estimated speed RMSE of different algorithms with point simulation experiments.

RMSE

v(tm; b1) v(tm; b2) v(tm; b3) v(tm; b4)

ME 217.41 254.57 27.27 65.99
ICPF 19.55 18.46 19.24 19.76

Proposed Method 17.35 4.40 12.83 6.46

4.2. Experiments Based on TG-I’s Electromagnetic Simulation

Since satellite data are rarely publicly available, the experimental data in this subsec-
tion are obtained based on electromagnetic simulations with the electromagnetic model
TG-1, whose 3D model is shown in Figure 8a. All simulations adopt a triangular facet
model to divide the target surface into thousands of equivalent scatterers. The radar echo
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data of a solid object are calculated by adopting the fast physical optics (FPO) algorithm [1],
and the conventional RD algorithm generates the ISAR images for EM simulation. To
illustrate the validity of the EM simulation, a comparison between the real ISAR image
of TG-I (Figure 8a) and the EM simulation ISAR image (Figure 8b) is given in Figure 8.
The German FGAN Lab published the measurement image of TG-I in March 2018 (at
Fraunhofer FHR, available at https://www.fhr.fraunhofer.de/tiangong-bilder; accessed
on 21 March 2018). The comparison result shows that the performance of the generated
imagery is close to that of the measured ISAR image, which supports the investigation in
this article. The radar parameters and target’s motion parameters used for the simulation
are the same as the experiments in the previous section.

(a) (b) (c)

Figure 8. (a) The CAD model of TG-I satellite; (b) real ISAR image; and (c) EM simulation ISAR image.

First, the imaging results of the different algorithms for high-speed compensation
under different motion conditions are given, as shown in Figure 9. The left column of
Figure 9 shows the imaging results without high-speed motion compensation, where
one can see that as the target speed increases, the blurring of the ISAR images becomes
increasingly severe, and the entropy value of the images becomes larger. When looking at
the two high-speed compensation algorithms, since the electromagnetic simulation is closer
to the actual measurement data than the previous simple scattering point simulation, the
high-speed compensation of ME and ICPF is not satisfactory. The focusing quality of the
images is minimally improved. In contrast, the algorithm proposed in this paper can still
accurately compensate, and the image after high-speed compensation can be accurately
focused, reflecting the robustness of the proposed algorithm. For comparison, the entropy
of the images after high-speed compensation by different algorithms are given, as shown
in Table 5. As can be seen from the table, compared with the ME and ICPF, the image
entropy obtained by the proposed algorithm is smaller and closer to the ideal image. From
Figure 10, it can be seen that the estimated velocity using ME and ICPF have a significant
error, and the bias between the estimated velocity and the true value can reach several
kilometers per second, which is the main reason for the failure of the algorithm. In contrast,
the estimated velocity of the proposed algorithm basically matches the true value, and
the error is basically negligible, which reflects the effectiveness of the proposed algorithm.
Similarly, the RMSE for the speed estimation of different algorithms is given, as shown in
Table 6. From the table, it can be seen that the speed estimation of the proposed algorithm
is more accurate and has less error.
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Figure 9. Experimental results of TG-I electromagnetic simulation under different motion conditions.
The leftmost column shows the imaging results without high-speed motion compensation; the second
column shows the high-speed compensation imaging results by ME; the third column shows the high-
speed compensation imaging results by ICPF; the fourth column shows the high-speed compensation
imaging results of the proposed algorithm; the rightmost column is the image entropy against the
iteration number of the proposed algorithm.
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Figure 10. Comparison of the estimated velocity and real velocity using TG-I EM simulation data
under different motion conditions.
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Table 5. The entropy of images acquired by different algorithms using TG-I EM simulation data.

Image Entropy

Ideal Image 6.3441

v(tm; b1) v(tm; b2) v(tm; b3) v(tm; b4)

Raw Images 6.8023 7.3338 7.5326 7.8763

ME 7.181 7.177 7.134 7.8239

ICPF 6.9641 6.9599 6.9469 6.9511

Proposed Method 6.4277 6.3488 6.3703 6.3587

Table 6. Estimated speed RMSE of different algorithms using TG-I EM simulation data.

RMSE

v(tm; b1) v(tm; b2) v(tm; b3) v(tm; b4)

ME 492.3 414.1 454.8 549.5
ICPF 503.6 503.5 503.5 457.0

Proposed Method 125.2 202.8 83.4 123.7

4.3. Performance Under Different SNRs

To verify the performance of the proposed method under low SNR, the complex white
Gaussian noise is added to electromagnetic simulation data with velocity parameters of
v(tm; b4) to generate different SNRs (from 0 dB to −13 dB). Figure 11 shows the experiment
results under different SNRs. The images without high-speed compensation are shown
in the first column in Figure 11, corresponding to the SNR equivalent of 0 dB, −5 dB, −10
dB, and −13 dB, respectively. The images obtained from the ME and ICPF are given in the
second and third columns of Figure 11. The images obtained from the proposed method are
given in the fourth column. Furthermore, entropy against the iteration number is shown
in the last column of Figure 11. As one can note, even under the low SNR conditions,
the proposed gradient-based optimization usually achieves convergence within less than
15 iterations. It is notable in Figure 11 that the images obtained without high-speed motion
compensation are poor in quality due to the strong noise. It cannot generate focused images
when the SNR is less than −5 dB. In addition, it can be seen that the images generated by
the high-speed compensation algorithm based on ME and ICPF have some improvement
in focus quality. However, in the case of low SNR, such as below −5 dB, both algorithms
have failed, and it is basically impossible to focus the imaging.

In contrast, the proposed algorithm can realize the accurate compensation for high-
speed target motion at −13 dB and achieve well-focused images. Table 7 gives the entropy
of the high-speed compensated images for different algorithms at different SNRs. The table
shows that the proposed algorithm performs the best, and the proposed algorithm obtains
the smallest image entropy compared to the other algorithms.
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Figure 11. Experimental results of TG-I electromagnetic simulation under different SNRs.

Table 7. Entropy of high-speed compensated images with different SNRs based on TG-I’s EM
simulation data.

Image Entropy vs. SNR

SNR 0 dB −5 dB −10 dB −13 dB

Raw Images 11.7568 13.3095 14.0247 14.102
ME 11.4112 13.1684 13.9722 14.0921

ICPF 11.2388 12.9563 13.802 14.0086
Proposed Method 10.9154 12.7832 13.7311 13.9501

In the experiments, we found that when the SNR decreases below −13 dB, the pro-
posed method will fail to compensate for the high-speed motion accurately, and the com-
pensated images will be seriously blurred. To illustrate these, the RMSE curves between the
estimated velocity and the true velocity for different SNRs are given, as shown in Figure 12.
As one can note, the proposed method provides very small MSE only when SNR is above
−13 dB, while the speed estimation errors of the other two compared methods significantly
increase at SNR lower than −5 dB. When the SNR decreases below −13 dB, the RMSE of the
estimated velocity becomes much more significant, which leads to blurred images. As has
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been mentioned before, the relationship between the focusing quality and image entropy
is inconsistent when extreme noise is involved in the data. Furthermore, the entropy of
the image almost relies on the strong noise only, independent of the high-speed motion
compensation. In this situation, one can use more pulses to obtain high-SNR gain, and
then, the well-focused images may be generated by the proposed method. In general, the
proposed algorithm has good noise robustness.
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Figure 12. RMSE under different SNRs based on EM simulation data.

4.4. Experiment Using Measured Yak-42 Data

To verify the performance of the proposed algorithm on the measured data, this section
uses the Yak-42 measured data for the performance analysis of the algorithm. High-speed
motion and different noise are added into the data, and the different high-speed motion
compensation algorithms are performed. The dataset of the Yak-42 airplane is recorded by
a C-band (5.52 GHz) ISAR experimental system. The system transmits a 400 MHz linear
modulated chirp signal with 25.6 us pulse duration, providing a range resolution of 0.375 m.
The de-chirp sampling rate is also 10 MHz. The SNR is up to 22 dB of the raw data. The
picture of the Yak-42 aircraft is shown in Figure 13a. The standard ISAR image is shown in
Figure 13b. Since the speed of the actual aircraft is relatively low (approximately 100 m/s),
the speed of the aircraft itself is negligible compared to the high-speed motion of several
kilometers per second. In addition, different high speed motions in Table 2 are added to
the original radar echoes according to Equation (10). As in the two previous experiments,
the transnational motion compensation and phase error compensation are performed first,
followed by the high-speed motion compensation with different algorithms.

As one can clearly see from Figure 14, compared with ME and ICPF, significantly
clearer images can be achieved by using the proposed method, no matter which high-speed
motions are added into the measured Yak-42 data. On the contrary, the images obtained by
ME and ICPF are poor in focusing quality, although it is greatly improved compared to the
images without high-speed compensation. To better show the advantage of the proposed
method, Table 8 gives the image entropy after different high-speed motion compensation
algorithms, as it can be seen that the proposed algorithm has the smallest image entropy
after compensation, which is basically close to the entropy of the ideal image. Figure 15
gives the estimated velocity of different algorithms with respect to the real velocity, and
Table 9 gives the RMSE of the estimated velocity, and it can be seen that the proposed
algorithm still has the best performance on the real measured data.
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Figure 13. (a) Yak-42 airplane and (b) its standard ISAR image.
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Figure 14. Experimental results of Yak-42 measured data under different motion conditions. The
leftmost column is the imaging results without high-speed motion compensation; the second column
is the high-speed compensation imaging results by ME; the third column is the high-speed compen-
sation imaging results by ICPF; the fourth column is the high-speed compensation imaging results of
the proposed algorithm; the rightmost column is the image entropy against the iteration number of
the proposed algorithm.
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Figure 15. Comparison of estimated velocity and real velocity using Yak-42 measured data at different
motion conditions.

Table 8. The entropy of images acquired by different algorithms using Yak-42 measured data.

Image Entropy

Ideal Image 5.9478

v(tm; b1) v(tm; b2) v(tm; b3) v(tm; b4)

Raw Images 7.0153 8.1064 8.7729 9.0073
ME 6.3938 6.4513 6.9367 6.881

ICPF 6.6593 6.6628 6.6609 6.6615
Proposed Method 5.9983 5.9617 6.1039 6.0206

Table 9. Estimated speed RMSE of different algorithms using Yak-42 measured data

RMSE

v(tm; b1) v(tm; b2) v(tm; b3) v(tm; b4)

ME 146.99 93.78 194.24 252.78
ICPF 319.42 319.61 319.99 321.25

Proposed Method 35.28 49.79 66.59 49.87

The results of the high-speed motion compensation using Yak-42 measured data with
different SNRs are given in Figure 16, and the different columns are the imaging results
obtained by using different compensation algorithms. It can be seen that, similarly to the
EM simulation data results, the proposed algorithm obtains well-focused images at low
SNR (not lower than −13 dB), while both the ME and ICPF algorithms fail at low SNRs.
Similarly, the entropies of the compensated images for different SNRs are given in Table 10.
The RMSE of velocity estimation for different SNRs is also given, as shown in Figure 17. It
can be seen that the proposed method performs the best.

To reflect the speed advantage of the proposed algorithm, a comparison of the compu-
tation time of the proposed algorithm with several other algorithms is given in Table 11.
The cpu time is obtained with MATLAB coding using a personal computer with an Intel
Core i5 3.30-GHz processer and 8-GB memory. From the table, it can be seen that the
proposed method requires only a few seconds for the computation time, while the other
two compared algorithms require several hundred seconds. This is due to the fact that the
proposed method compensates all the echoes within a CPI consistently, taking into account
the integrity of the target motion. However, the other two algorithms process each pulse
individually and require a longer computing time.
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Figure 16. Experimental results of Yak-42 measured data under different SNRs.
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Figure 17. RMSE under different SNRs based on Yak-42 measured data.
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Table 10. Entropy of high-speed compensated images with different SNRs based on Yak-42 mea-
sured data.

Image Entropy Vs SNR

SNR 0 dB −5 dB −10 dB −13 dB

Raw Images 9.0235 10.3065 11.0532 11.2426
ME 7.8333 9.3286 10.5286 11.2758

ICPF 8.0752 9.4778 10.5239 11.348
Proposed Method 7.69 8.9948 10.3366 10.4271

Table 11. Computation time comparison of individual methods.

Algorithms ME ICPF Proposed Method

Computation time (s) 70.91 224.77 5.52

5. Conclusions

The target’s high-speed motion leads to the range profile spreading after echo pulse
compression, which seriously affects the ISAR imaging and leads to severe image blurring.
In addition, the low SNR of the high-speed moving target echoes has been a critical problem
that plagues accurate and robust high-speed motion compensation. This paper proposes
a noise-robust high-speed motion compensation algorithm for the high-speed moving
target ISAR imaging under low SNR conditions. This paper innovatively considers the
continuity of the target velocity variation. By transforming the velocity within a CPI into a
high-order polynomial model, the proposed method establishes a parameterized minimum
entropy optimization model and realizes the high-speed motion compensation for the
targets by quickly and accurately searching the polynomial coefficients via the BFGS-based
quasi-Newton iterative method. The proposed algorithm has promising noise robustness
and can accurately compensate for the high-speed motion of the target under low SNR
conditions. Different experiments verify the effectiveness of the proposed algorithm.
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Abstract: At present, the LiDAR ground filtering technology is very mature. There are fewer applica-
tions in 3D-object detection due to the limitations of filtering accuracy and efficiency. If the ground
can be removed quickly and accurately, the 3D-object detection algorithm can detect objects more
accurately and quickly. In order to meet the application requirements of 3D-object detection, inspired
by Universal-RANSAC, we analyze the detailed steps of RANSAC and propose a precise and efficient
RANSAC-based ground filtering method. The principle of GroupSAC is analyzed, and the sampled
points are grouped by attributes to make it easier to sample the correct point. Based on this principle,
we devise a method for limiting sampled points that is applicable to point clouds. We describe
preemptive RANSAC in detail. Its breadth-first strategy is adopted to obtain the optimal plane with-
out complex iterations. We use the International Society for Photogrammetry and Remote Sensing
(ISPRS) datasets and the KITTI dataset for testing. Experiments show that our method has higher
filtering accuracy and efficiency compared with the currently widely used methods. We explore the
application of ground filtering methods in 3D-object detection, and the experimental results show
that our method can improve the object detection accuracy without affecting the efficiency.

Keywords: light detection and ranging (LiDAR) filtering; random sample consensus (RANSAC);
Universal-RANSAC; 3D-object detection

1. Introduction

Light detection and ranging (LiDAR) can obtain real three-dimensional spatial co-
ordinate information within the measurement range [1]. This has the characteristics of
high efficiency and high accuracy. LiDAR is widely used in urban planning, agricultural
development, environmental monitoring, and transportation [2]. Ground filtering is a key
technology to separate and extract ground information from the point-cloud data obtained
by LiDAR [3,4]. Point cloud filtering is a significant step in the process of point-cloud
processing [5]. Therefore, in the past two decades, scholars have proposed many effective
automatic filtering algorithms, which greatly reduce the labor costs and improve the appli-
cation efficiency of point-cloud data [2]. There are many widely used methods that are well
suited for different situations. However, these methods can still be better optimized.

With the development of deep-learning technology [6], 3D-object-detection methods
based on convolutional neural networks have achieved high accuracy and efficiency and
have been gradually applied in the fields of autonomous driving and robotics. For 3D-
object detection, many scholars have proposed network structures, and these networks
have superior performance [7–9]. Commonly used methods for 3D-object detection include
converting point clouds into voxels [10] and pseudo images [11]. This also includes PointR-
CNN [12], which processes point clouds directly. Research progress has also been made in
joint 3D-instance segmentation and object detection [13].

However, the general practice of the current 3D-object detection algorithm is to directly
process the collected point cloud, and few scholars have considered removing the ground
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first. The main reason is that the accuracy and efficiency of the current ground filtering
algorithms have difficulty in meeting the application requirements of 3D-object detection.
For example, the ground filtering accuracy is insufficient, which will result in part of the
ground being retained and some objects being removed. This will seriously affect the
object detection accuracy. At the same time, computational efficiency is an important
indicator of 3D-object detection. If the ground filtering efficiency is insufficient, it is also
impossible to be applied. Therefore, a fast and high-precision ground filtering method is
currently needed.

Since the elevation changes of most scenes are relatively small, many researchers
treat the ground surface as a flat surface [14]. Fan et al. builds a plane function by using
RANSAC. The ground points whose distance to the optimal plane is within the threshold
are recognized [15]. When the ground is uneven, this method has obvious defects. In order
to improve the fitting accuracy in large scenes, Golovinskiy filters out the ground points
locally [16].

As the whole ground cannot be a flat plane. Part of the ground is mostly a flat plane.
However, they only filter the ground points through the plane fitting method and do not
consider the problems that may be caused by the local plane fitting. Similarly, this paper
uses a local method to filter out the ground points. The proposed method first divides
the point cloud into several blocks, which is essential to obtain a local point cloud. This
paper analyzes the problems that may be caused by local ground fitting, and proposes
effective solutions.

For the efficiency and accuracy of RANSAC, Universal-RANSAC [17] conducted a
detailed analysis and proposed a comprehensive solution. Similarly, we analyze the steps
of RANSAC in detail and optimize the two key steps of sampling and determining the
optimal plane, respectively.

• Sampling: RANSAC uses a completely random approach. The premise of this ap-
proach is that we have absolutely no idea what the data is like. However, in practical
applications, prior knowledge of the data is known. GroupSAC [18] considers points
within a class to be more similar, and points in a dataset are grouped according to
some similarity. Sampling starts with the largest cluster as there should be a higher
proportion of inliers here. In the process of LiDAR ground filtering, the heights of
the two adjacent parts of the ground are essentially the same, and thus we can first
estimate the height of the ground and set constraints. Our scheme can also deal with
the problems caused by local ground fitting.

• Determining the optimal plane: After RANSAC calculates the model, the number of
points that satisfy the parameters in all sets is calculated. Preemptive RANSAC [19]
first generates multiple models, and then a selected subset is used to rank the generated
models according to the objective function score. The first few are selected, and several
rounds of similar sorting are performed to select the best model. We also adopt this
idea. Multiple models are generated, and the best one is selected. This avoids multiple
iterations and improves the efficiency.

The contributions of this article are as follows.

1. We propose an improved RANSAC. We analyze the principle of GroupSAC, design
the sampling method and effectively solve the problems that may be caused by local
point cloud filtering. We analyze Preemptive RANSAC and devise a method for
determining the optimal plane. Based on these two key steps of RANSAC, a LiDAR
ground filtering method is proposed.

2. We experimentally verify that the accuracy and efficiency of the proposed method are
higher than the current commonly used methods. The filtering results obtained by
the proposed method can better preserve the details in the point cloud.

3. We explore the application of point cloud filtering methods to 3D-object detection.
The proposed method can improve the accuracy of 3D-object detection to a certain
extent without affecting the efficiency.
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2. Related Work

2.1. LiDAR Filtering

In recent years, researchers have proposed a variety of ground filtering algorithms,
which can be classified according to different criteria. For example, filtering algorithms
can be divided into urban pavement and wild vegetation according to the ground type.
According to the processing method, these can be divided into single-step filtering and
iterative filtering. After sorting out the ground filtering algorithms, the current mainstream
algorithms are divided into three categories according to the point-cloud division and
processing methods. These are the ground filtering algorithm based on morphology, the
ground filtering algorithm based on space division and the ground filtering algorithm
based on iterative least square interpolation.

Morphological filtering was the earliest filtering algorithm applied to LiDAR. The
specific steps of this method are to divide the point-cloud data into grids, and the grid ele-
vation information is used to erode the non-ground points to extract the ground points [20].
The progressive morphological filter gradually increases the window size, and according
to the window size, the elevation difference threshold information is used to retain ground
points and remove points from non-ground objects [21].

Pirotti used a multi-dimensional grid to apply a progressive morphological filter to
remove non-ground points [22]. The algorithm does not require multiple iterations and can
optimize the speed; however, it relies heavily on reflectance information. Trepekli evaluated
the performance of morphological filter, and the results show that the performance of
morphological filter on uniform surface is satisfactory [23].

This method generally requires interpolation and gridding before data processing,
which will cause damage to the original terrain features. Furthermore, this kind of method
only uses the lowest point of the window as the ground point. Assuming that the roof area
is large and the ground is not included in the window, there will be errors in the filtering
results, and this method is not applicable. In addition, the size of the structural window
and the setting of the elevation threshold are the main factors that affect this filtering. This
also leads to the impracticality of these methods.

Ground filtering based on space division is a mixture of grid-based filtering and three-
dimensional voxel-based filtering. The grid-based filtering is to grid the horizontal plane of
the point cloud space. Thrun et al. proposed a filtering algorithm based on the minimum–
maximum height difference [24]. The ground filtering based on a two-dimensional grid uses
local ground information instead of global continuity information for filtering. This method
is susceptible to noise or external calibration of the sensor, and thus the performance is
not stable.

Three-dimensional voxels are based on a plane grid and divide the three-dimensional
space into several sets according to the elevation information of the point cloud [25].
This type of algorithm generally distinguishes ground voxels from non-ground voxels by
judging the average height or variance value of the points within the voxels [26].

The filtering method based on iterative linear least squares interpolation was first
proposed by Kraus et al. [27]. This method can obtain the terrain surface well; however,
the obvious drawback of this method is that the filtering parameters need to be constantly
adjusted to adapt to different types of terrain. Koebler proposed a layered robust linear
interpolation method based on least squares [28]. This method is suitable for steep areas and
forest areas. Qin proposed a region growth filtering based on moving-window weighted
iterative least squares fitting [29]. This method can effectively remove buildings and
vegetation; however, it still requires further improvement for the removal of bridges and
objects at the edge.

Gao used least squares interpolation in the framework of road extraction to restore the
elevation information of the blocked sections of the overpass [30]. This type of algorithm
needs to satisfy two conditions. First, the lowest point of elevation value within a certain
area must be a ground point. Second, the distribution of ground points conforms to the
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quadratic surface distribution, and other points are higher than the surface. In short, the
application of ground filtering methods based on least squares is limited.

2.2. RANSAC

The goal of classic RANSAC [31] is to continuously attempt different target space
parameters to maximize the objective function. This is a random, data-driven process.
The estimated model is generated by iteratively randomly selecting a subspace of the
dataset. The estimated model is then leveraged and tested with the remaining points in the
dataset to obtain a score. Finally, the estimated model with the highest score is returned
as the model for the entire dataset. Classical RANSAC has three main limitations, namely
efficiency, accuracy, and degradation. There are many improvements to these limitations of
the classical approach.

Under the condition of prior knowledge, the minimum subset sampling method can
effectively reduce the sampling times. The main idea of NAPSAC [32] is to regard the
n-dimensional space of the dataset as a hypersphere, and as the radius decreases, the
outliers decrease faster than the inliers. PROSAC [33] uses the result of matching the initial
set of points as the basis for sorting, and thus that the samples that are most likely to obtain
the best parameters will appear earlier, which improves the speed. Similar to NAPSAC,
the classical algorithm begins to calculate the parameters after the sampling is completed,
while some algorithms verify whether the sampling results are suitable for the parameter
calculation after the sampling is completed.

The model calculation is to calculate the parameters according to the minimum set
selected in the previous step to obtain the model. Prior knowledge is used for model
validation, such as matching point sets with circles. When verifying, it is not necessary to
verify all the points in the dataset but only to verify within a radius of the model.

The verification parameter is to calculate the number of points satisfying the parameter
in all sets after obtaining the parameters generated by the minimum set. T(d, d) test selects
d points that are much smaller than the data set as the test. Only when these d points
are all in-class points, are the remaining points are tested; otherwise, the current model is
discarded. The Bail-Out test [34] selects several points in the set for testing. If the proportion
of inliers is significantly lower than the proportion of inliers in the current best model,
the model is discarded. The SPRT test [35,36] randomly selects a point and calculates the
probability of conforming to the current model and the probability of not conforming.
When the probability ratio exceeds a certain threshold, the current model is discarded.

The final converged RANSAC result may be affected by noise and is not the globally
optimal result. This effect requires the addition of a post-processing of model refinement.
When the current optimal result appears in the iterative process, Lo-RANSAC [37] re-
samples from the inliers of the returned result to calculate the model by setting a fixed
number of iterations and then selecting the optimal local result as the improved result. The
idea of the error propagation method [38] is consistent with Lo-RANSAC, since the initial
RANSAC results are generated from a noisy dataset, and thus this error propagates to the
final model.

Universal-RANSAC [17] analyzes and compares various methods to optimize the key
steps of RANSAC. The algorithm flow chart of Universal-RANSAC is shown in Figure 1.
Its minimum sampling method adopts PROSAC, its model verification adopts SPRT test,
and its detail optimization adopts Lo-RANSAC. In this paper, the key steps of RANSAC
are optimized according to the characteristics of point clouds, and an efficient and robust
LiDAR filtering method is proposed.
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Figure 1. Flowchart of Universal-RANSAC.

2.3. 3D Object Detection

3D-object detection in urban environments is a challenge, requiring the real-time
detection of moving objects, such as vehicles and pedestrians. In order to realize real-time
detection in large-scale point clouds, researchers have proposed a variety of methods for
different requirements.

Lang et al. proposed the encoder PointPillars to learn the point-cloud representation
in pillars [11]. By operating the pillar, there is no need to manually adjust the combination
of points in the vertical direction. Since all key operations can be represented as 2D convo-
lutions, end-to-end 3D point cloud learning can be achieved using only 2D convolutions.
The point cloud information can be effectively utilized by this method, and the calculation
speed is fast.

Shi et al. proposed PointRCNN to generate ground-truth segmentation masks from
point clouds in the scene based on bounding boxes [12]. A small number of high-quality
bounding box preselection results are generated while segmenting the foreground points.
Preselected results are optimized in standard coordinates to obtain the final inspection results.

Considering the generality of the model, Yang et al. proposed STD [39]. Spherical
anchors are exploited to generate accurate predictions that retain sufficient contextual
information. The normalized coordinates generated by PointPool make the model robust
under geometric changes. The box prediction network eliminates the difference between lo-
calization accuracy and classification score, which can effectively improve the performance.

Liu et al. proposed LPD-Net (large-scale place description network) [40]. The network
uses an adaptive local feature extraction method to obtain the local features of the point
cloud. Second, the fusion of feature space and Cartesian space can further reveal the
spatial distribution of local features and learn the structural information of the entire point
cloud inductively.

Zhang et al. proposed PCAN to obtain local point features and generate an attention
map [41]. The network uses ball queries of different radii to aggregate the textual feature
information of points. This method can learn important point cloud features.

To overcome the limitation of the small size of point clouds in general networks,
Paigwar et al. proposed Attentional PointNet [42] using the Attentional mechanism to
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focus on objects of interest in large-scale and disorganized environments. However, the
preprocessing step of this method makes it computationally expensive.

Voxel CNN is adopted for voxel feature learning and precise location generation to
save subsequent computation and encode representative scene features [43]. Features are
then extracted, and the aggregated features can be jointly used for subsequent confidence
predictions. This method combines the advantages of voxel and Pointnet to learn more
accurate point cloud features.

3. LiDAR Ground Filtering

In this section, we introduce the proposed method. The sampling part is introduced
first. We first analyze the principle of GroupSAC and the possible problems caused by point
cloud segmentation, and based on this, we propose a method to constrain the sampled
points. Then, the calculation method of the plane equation and the method of counting the
number of points in the plane are introduced. Finally, based on the analysis of Preemptive
RANSAC, a method to determine the optimal plane is proposed.

The flow chart is shown in Figure 2. First, the point cloud is observed and divided
into several parts evenly according to the length and width. We determine the constraints
and select n sets of points. n plane equation models are built, and the point cloud is
downsampled. Then, we count the number of points within the range of each plane model,
and select the top m models with the largest number of point clouds. The point cloud
before downsampling is used to count the number of points within the plane model again.
At this time, the selected plane model with the largest number of points is the optimal
model. This process is repeated to obtain the ground model of the entire point cloud.

Figure 2. Flowchart of the proposed method.
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3.1. Sampling
3.1.1. Principle Analysis of GroupSAC

In the original RANSAC and its many improved methods, the probability that point
x is the target point in the random point sampling process obeys a Bernoulli distribution.
That is, the possibility that a point is an inlier is considered to be independent of the other
points. In the original RANSAC, the parameter estimation problem for an existing model
from N data {xj}, j = 1 · · · N is corrupted by interference. We suppose that the least
number of data required for calculating the parameters of the model is m. For any minimal
data set S with m data:

IS ∼ B(m, ε) (1)

where IS is the number of all target points in S. B(m, ε) is the binomial distribution. “∼”
is the sign that IS obeys the binomial distribution. ε is the parameter of the Bernoulli
trial—that is, the target point possibility of S. Therefore, for the probability Psum(IS = m)
that all data in S are target points, the formula is:

Psum(IS = m) =
m

∏
j=1|xj∈S

P(Ij) = εm (2)

where Ij is a variable indicating that xj is the target point. Despite the fact that many
previous works consider that ε is not necessarily identical for various points. Furthermore,
this inhomogeneous attribute is used to accelerate the sampling process. The target point
probabilities of various points in these methods are still assumed to be independent of
each other.

For many problems, there is a grouping between data. These grouped attributes tend
to have high or low proportions of target points. Figure 3 is used as an example. We
label the point cloud with different colors based on height. We can consider a group of
similar colors as a point group. The green group is more likely to contain inliers than the
blue group.

Figure 3. Schematic diagram of a point cloud grouping. According to the height, the point cloud is
divided into two groups, the blue group and the green group. It is clear that the green group contains
more inliers.

We hypothesize that the probability of inliers in these sets can be modeled by a two-
class compound. They are the high inlier class and the low inlier class, respectively. The
characteristic of the model is that the more data in the high inlier class, the lower the inlier
ratio. The inlier ratio is about 0 in the low inlier class. The delta function is also called a
generalized function. The larger the range of the function’s definition domain, the smaller
the range of the value domain. The value outside the domain is 0. The characteristics of the
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delta function are highly compatible with the model. Thus, we use the delta function for
modeling. The inlier ratio εi in any existing group Gi is:

εi ∼ πhδ(ε0) + πzδ(0) (3)

where πh and πz are the mixture weights for the high inlier class and the zero inlier class.
The inlier ratios of these two classes are ε0 and 0, respectively. Therefore, the probability of
having IGi inliers in Gi can be deduced as:

P(IGi ) =
∫

εi

P(IGi |εi)P(εi) = πhP(IGi |εi = ε0) + πzP(IGi |εi = 0) (4)

That is to say, the distribution of inliers IGi for any existing group is:

IGi ∼ πhB(|Gi|, ε0) + πzB(|Gi|, 0) = πhB(|Gi|, ε0) (5)

where |Gi| is the number of points in Gi. Therefore, inliers are generated by only a part πh
of the groups, called the inlier groups [18]. In summary, we designed a method suitable for
point clouds. Point clouds are grouped by height in order to find more suitable points.

3.1.2. Point Cloud Segmentation and Problem Description

We observe the horizontal and vertical slopes of the ground in the point-cloud data
and make the ground of each part of the point cloud as plane as possible. The number of
parts of the point cloud is as small as possible. Two problems may arise after the point
cloud is divided into parts, and these are described as follows:

1. It is necessary to perform plane fitting processing for each part. Additional operations
increase the calculation time.

2. When the building is tall, the number of points on the side of the building is more
than the number of points on the ground as shown in Figure 4. The fitted plane is
the side of the building, not the ground. When the plane fitting method is used for
ground filtering, it will lead to incorrect results. When the area on the top of the house
is large, this will also lead to wrong results.

Therefore, it is necessary to set constraints on the selection of random points.

(a) (b)

Figure 4. Special cases. The green points are ground points, and the blue points are non-ground
points. (a) The number of points on the side of the building is greater than the points on the ground.
(b) The number of points on the top of the building is greater than the points on the ground.

3.1.3. Constraints of Sampled Points

In response to the above problems, this article proposes the following two constraints.

1. Two points are randomly selected from the three random points, the line of the
two points is projected on the xoz and yoz planes, and the slope should be limited
to (−n, n). We use the coordinate values to calculate the slope of the projection of
the line between the two points on the plane. For example, the coordinates of two
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points are (x1, y1, z1) and (x2, y2, z2). The slope of the line connecting the two points
projected on the xoz plane is (z2 − z1)/(x2 − x1). The slope of the projection on the
yoz plane is (z2 − z1)/(y2 − y1). n refers to the slope threshold. According to the
inclination of the ground in the point cloud, we set n manually. Assuming that the
plane slope is not greater than 30 degrees, then n = tan30◦ ≈ 0.577.

2. We use the tools provided by the Point Cloud Library (PCL) [44] to observe the z
coordinates (Hz, Lz) of the lowest and highest points on the ground of the point cloud
that needs to be processed first. When randomly selecting the three initial coordinate
points of the first point cloud part, the range of z-coordinates is limited to (Hz, Lz).
Then, we calculate the optimal plane in the current point cloud under constraints. The
range of z coordinates of the optimal plane is (hz, lz). When selecting the coordinates
of three random points of the next point cloud, the z coordinate of these points are
limited to (hz + t, lz − t), where t = hz − lz. In short, the range of z coordinates of
random points is determined according to the range of z coordinates of the optimal
plane in the previous point cloud.

The increase of constraints will increase the calculation time; however, when selecting
the points under constraints, the optimal plane can be obtained after a few iterations.
Therefore, this method can reduce the number of iterations and improve the efficiency. This
can solve the first problem mentioned above. By limiting the elevation and slope of the
plane, it is easy to solve the second problem mentioned above.

3.2. Fitting Plane

According to the coordinates of three random points, the initial plane parameters are
determined by the plane parameter calculation rules. The plane equation:

Ax + By − z + C = 0 (6)

where A, B, C are parameters. The coordinates of the three points are P1(x1, y1, z1), P2(x2, y2, z2)
and P3(x3, y3, z3), respectively. We bring the coordinates of the three points into the equa-
tion to calculate the parameters:

A =
(z1 − z3)(y2 − y3)− (z2 − z3)(y1 − y3)

(x1 − x3)(y2 − y3)− (x2 − x3)(y1 − y3)
(7)

B =
(z2 − z3)− A(x2 − x3)

y2 − y3
(8)

C = z1 − Ax1 − By1 (9)

The plane equation can be obtained by substituting A, B, C into the Formula (1).

3.3. Counting the Number of Points on the Plane Range

For any point P(xp, yp, zp), the plane equation is z = Ax + By + C. We substitute
(xp, yp) into the plane equation to obtain z = Axp + Byp + C. The distance from point P to
the plane is d =| z − zp |.

If the distance d from the point P to the fitting plane is less than the rejection threshold
hd, then the point P belongs to the plane. The rejection threshold hd is manually set based
on accuracy requirements of different scenarios.

3.4. Determining the Best Plane

The traditional process of determining the optimal plane is to first determine a plane
by selecting random points. Then, the number of points in the plane is judged by the
distance from the point to the plane, repeating this process until the plane with the largest
number of points is obtained. There is no doubt that this process is inefficient.

The Preemptive RANSAC algorithm will evaluate a fixed number of hypothesis
sets in parallel, multi-stage. The scoring mechanism selects candidate hypotheses from
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a predefined number of candidate hypotheses with a small, fixed time to meet real-time
requirements. This process replaces the scoring function of the classic RANSAC algorithm
with a Preemptive scoring mechanism, thereby, avoiding over-scoring the useless candidate
hypotheses distorted by noise. The scoring function ρ(o, h) is used in the Preemptive
RANSAC algorithm to represent the scalar value of the log-likelihood of the observed
value. At this point, the log-likelihood function Li(h) of the candidate hypothesis with
index h is as follows:

Li(h) =
i

∑
o=1

ρ(o, h) (10)

where o is the observation, and there are N in total. h is the candidate hypothesis, h = 1, . . . , M.
The Preemptive RANSAC algorithm defines the number of candidate hypotheses

reserved by the function f (i) for each stage as shown in the formula:

f (i) =
⌊

M2−| i
B |
⌋

(11)

where f (i) is modified after every B observations, �� denotes downward truncation.
All observations are first randomly permuted, yielding a set of candidate hypotheses

with indices h = 1, · · · , f (1). We compute the score L1(h) = ρ(1, h) for each candidate
hypothesis, adjusting i = 2. Then, all candidate hypotheses are sorted according to the
corresponding Li−1(h) values, and for h = 1, · · · , f (i), the first f (i) candidate poses are
selected to enter the next iteration. The iteration is stopped when i > N or f (i) = 1. Oth-
erwise, for the hypothesis h = 1, . . . , f (i), its score Li(h) = ρ(i, h) + Li−1(h) is calculated,
and the step of ranking the candidate hypotheses is continued.

Based on the analysis of Preemptive RANSAC, we designed a method to quickly
determine the optimal plane. We set the constraints of initial point selection through the
above method, and then selected n sets of points to calculate n plane equation models. The
point cloud is downsampled to calculate the number of points within the bounds of each
plane equation. We choose the m plane equations with the largest number of points. The
above calculation is repeated in the selected plane equation using the origin point cloud.
The plane equation with the largest number of points is the optimal plane equation. Among
them, the parameters m and n have a great influence on the accuracy and speed of point
cloud filtering. Therefore, comprehensive consideration should be given to the selection
of parameters.

4. Experiments and Discussion

We use the tools provided by CloudCompare to label ground points and non-ground
points in different colors. Then, we use the proposed method to label the ground points,
and conduct a qualitative and quantitative comparative analysis. The point clouds used are
from the KITTI data set [45] and the International Society for Photogrammetry and Remote
Sensing (ISPRS) datasets [46].

• KITTI: The KITTI data set was jointly established by the Karlsruhe Institute of Tech-
nology (KIT) and Toyota Technological Institute at Chicago (TTI-C). It is currently the
largest computer vision algorithm evaluation dataset in the world for autonomous
driving scenarios. KITTI contains real data collected in urban, rural and highway
scenes. A Velodyne HDL-64E 3D laser scanner was used to acquire point clouds. The
laser scanner spins at 10 frames per second, capturing approximately 100 k points per
cycle. The KITTI data is mainly ground scenes with many details, which can test the
ability of the algorithm to process details.

• ISPRS: ISPRS provides two airborne data sets, including Toronto and Vaihingen. The
data set is the data used for the test of digital aerial cameras performed by the German
Association of Photogrammetry and Remote Sensing (DGPF). Toronto covers an area
of approximately 1.45 km2 in the downtown area. This area contains low-rise and high-
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rise buildings. The average point density is 6 points/m2. Vaihingen includes historic
buildings with rather complex shapes and also trees. The average point density is
4 points/m2. The terrain of Toronto is relatively flat, and the terrain of Vaihingen is
uneven. The common feature is that the scene is complex. These two data can test the
ability of the algorithm to handle complex scenes.

The parameter settings are as follows. The slopes of the point clouds used in this
experiment are not very steep. Therefore, the point cloud is divided into 4 × 4 parts, and
each part of the ground is close to the plane. The tools provided by PCL are used to
observe the height of the ground of each part of the point cloud, and then we can set the
height parameter of the fitted plane. The number of points in the point cloud used in the
experiment is more than 100 k points, and the parameters m and n to determine the optimal
plane are set to 100 and 10, respectively, at this time, the accuracy and efficiency can meet
the requirements. If the number of points in the point cloud is small, the size of m and n
can be appropriately increased to improve the accuracy.

4.1. Ground Filtering

We select two point clouds in the KITTI data set. Both point clouds are road scenes
with 110 k points. We manually label the point cloud. As shown in Figure 5a, the green
points are ground points, and the blue points are non-ground points. The red frame marked
area in Figure 5a is enlarged as shown in Figure 5c.

(a) (b)

(c) (d)

Figure 5. The result of the proposed method. The red box area in (d) is classified incorrectly. (a) The
point cloud manually labeled. (b) The point cloud processed by the proposed method. (c) The red
box area in (a). (d) The red box area in (b).

The height of the ground of the first point cloud part is about −3 to 0.2 m. We set the
fitting plane height parameter (Hz, Lz) to (−3, 0.2) and set the rejection threshold hd to 1.5.
After the parameter setting is completed, the point cloud is processed by the proposed
method. The filtering result of the proposed method is shown in Figure 5b. The red frame
marked area in Figure 5b is enlarged as shown in Figure 5d. Comparing Figure 5a,b, the
method in this article can effectively distinguish ground points from other objects.
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The results obtained by the proposed method are essentially consistent with the results
of manual labeling. Comparing Figure 5c,d, the method in this article handles the details of
the point cloud well, and can accurately distinguish ground points from non-ground points.
A fact that can be demonstrated in Figure 6 as in Figure 5 is that the proposed method can
better preserve details in the filtering results.

Toronto is an urban scene composed of 750 k points. The ground is relatively flat as
shown in Figure 7a. We set the fitting plane height parameter (Hz, Lz) to (40, 50) and set
the rejection threshold hd to 5. The result is shown in Figure 7b. Comparing Figure 7a,b,
it can be seen that the method in this article can better distinguish large buildings from
the ground. At the same time, it can take into account the details of the ground, and some
small objects can be distinguished from the ground.

Vaihingen is a village scene with a total of 720 k points. The ground in this village
is uneven as shown in Figure 8a. We set the fitting plane height parameter (Hz, Lz) to
(251, 270) and set the rejection threshold hd to 15. The processing result of the proposed
method is shown in Figure 8b. It can be seen from the figure that the method in this article
can adapt to complex scene of the point cloud with uneven ground.

(a) (b)

(c) (d)

Figure 6. The result of the proposed method. The red box area in (d) is classified incorrectly. (a) The
point cloud manually labeled. (b) The point cloud processed by the proposed method. (c) The red
box area in (a). (d) The red box area in (b).
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(a)

(b)

Figure 7. The result of the proposed method. (a) The point cloud manually labeled. (b) The point
cloud processed by the proposed method. The red box area in (b) is classified incorrectly.

(a)

(b)

Figure 8. The result of the proposed method. (a) The point cloud manually labeled. (b) The point
cloud processed by the proposed method. The red box area in (b) is classified incorrectly.
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4.2. Accuracy Comparison

The proposed method is compared with eight methods. Among these methods
are recent and classic. Method I is the original RANSAC. Method II is progressive TIN
densification [47]. Method III is cloth simulation filter [48]. Method IV is the multiscale
curvature classification [49]. Method V is active contours [50]. Method VI is regularization
method [51]. Method VII is modified slope based filter [52]. Method VIII is hierarchical
modified block-minimum [53]. The comparison of the first four methods is shown in
Table 1, and we show the different performance of each method applied to different data.
The comparison of the last four methods is shown in Table 2. We show the total error
of filtering.

We use two data provided by ISPRS and two data in the KITTI dataset as experimental
data. Error Type I, Error Type II, and the total error are used as evaluation indicators. The
type I error represents the proportion of ground points erroneously assigned as nonground
points, and the type II error represents the proportion of nonground points erroneously
assigned as ground points. The total error is the proportion of all the point-cloud data that
is misjudged and is used to evaluate the overall quality of the filtering results [54].

As shown in Table 1, compared with other methods, the error of the method in this
article is relatively small. The mean value of the total errors of the proposed method is
about 7.86%. The mean values of the total error of the remaining four methods are 18.4%,
9.57%, 8.5%, and 9.54%, respectively. Compared with Method I, the average error of the
proposed method is reduced by about 10.54%. The comparison of the filtering results of
these two methods is shown in Figure 9. Compared with the current commonly used
methods, the average error of the proposed method is reduced by at least 0.64%. The
proposed method has a better comprehensive performance on the KITTI dataset and the
datasets provided by ISPRS.

Compared with other methods, the proposed method can adapt to complex scenes
and deal with the details in the point cloud. The advantage of this method is that it has high
filtering accuracy on relatively flat ground. The comparison with the last four methods
is shown in Table 2. The average errors of other methods are significantly higher than
those of the proposed method. This further confirms the high filtering accuracy of the
proposed method.

Table 1. Comparison of the errors of the proposed method and other methods.

Method Data Type I Error (%) Type II Error (%) Total Error (%)

Proposed Method

Toronto 8.11 2.52 5.41
Vaihingen 2.38 17.74 9.28

KITTI1 0.94 10.15 6.25
KITTI2 5.67 15.97 10.50

Method I

Toronto 10.59 25.62 18.45
Vaihingen 24.65 19.75 22.53

KITTI1 18.64 12.65 15.86
KITTI2 16.47 17.57 16.75

Method II

Toronto 8.45 6.87 7.86
Vaihingen 13.58 11.96 12.77

KITTI1 3.42 12.21 7.96
KITTI2 7.65 11.14 9.71

Method III

Toronto 14.56 4.78 9.27
Vaihingen 10.64 6.98 8.40

KITTI1 1.48 8.48 4.71
KITTI2 14.68 8.57 11.67

Method IV

Toronto 12.54 6.86 8.74
Vaihingen 5.76 17.86 11.46

KITTI1 3.86 11.53 7.34
KITTI2 13.75 8.64 10.65
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(a) (b) (c)

Figure 9. The results of the comparison between the method proposed in this article and the RANSAC
plane fitting method. Green points are the ground points, blue points are the non-ground points. The
red boxes in (b,c) are classified incorrectly. (a) The point cloud manually labeled. (b) The point cloud
processed by the RANSAC. (c) The point cloud processed by the method proposed in this article.

Table 2. Comparison of the total errors of the proposed method and other methods.

Data
Method V

(%)
Method VI

(%)
Method VII

(%)
Method
VIII (%)

Proposed
(%)

Toronto 12.43 8.54 15.64 6.08 5.41
Vaihingen 9.06 11.53 14.53 11.46 9.28

KITTI1 7.75 9.68 16.34 5.75 6.25
KITTI2 14.64 15.57 11.91 16.45 10.50

average 10.97 11.33 14.61 9.94 7.86

4.3. 3D Object Detection Experiment and Efficiency Analysis

We explore the application of LiDAR ground filtering for 3D-object detection. We use
the KITTI dataset. The vehicle is the detection object. We test three open-source 3D-object
detection methods. Pretrained weights are used to detect objects in point clouds. The
detection results of the unfiltered point cloud and the filtered point cloud are compared.
The results are shown in Table 3. It can be clearly seen that when the filtered point cloud
is used for 3D-object detection in simple or moderate situations, the detection accuracy is
significantly improved.

In the process of object detection, ground points are often interference information.
After removing the ground points, each object is in an isolated state, and the object detection
algorithm only needs to match the detected object from multiple isolated objects. This
can reduce the difficulty of object detection, thereby, improving the performance of object
detection. However, when it is used for difficult 3D-object detection, the detection accuracy
is slightly reduced. The main reason is that the filtering takes away a small part of the point
cloud at the object. The original identification is more difficult, and it is more difficult to
detect if some information is missing.

The LiDAR ground filtering experiment was conducted on a computer with Intel Core
i7 3.19-GHz CPU and 16-GB RAM. The calculation time of the proposed method is about
20 ms to process a point cloud of 100 k points. Current 3D-object detection algorithms
generally run on platforms with high computing power. Furthermore, better computing
platforms have strong parallel computing capabilities, and thus the time used for ground
filtering can be further reduced.

We randomly select 20 point clouds in the KITTI dataset, manually annotate the
ground and non-ground points, and record the number of ground and non-ground points.
We found that the ground points account for about 40–60% of the entire point cloud. The
computation time of the 3D-object detection method is related to the number of points in
the point cloud. The lower the number of points in the point cloud, the lower the runtime.
Therefore, the filtered point cloud can improve the speed of 3D-object detection. The times
for the three object detection methods are shown in Table 4. It can be clearly seen that the
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detection time is significantly reduced. The results show that the proposed method does
not have a large impact on the time of the 3D-object detection method.

Table 3. Comparison of accuracy before and after ground filtering.

Raw Point Cloud (%) No Ground Point Cloud (%)

CIA-SSD

Easy 89.59 90.57
Mod 80.28 82.04
Hard 72.87 74.46

CLOCs

Easy 89.16 90.34
Mod 82.28 83.64
Hard 77.23 75.85

SIENet

Easy 88.22 90.47
Mod 81.71 85.15
Hard 77.22 73.74

Table 4. Comparison of efficiency before and after ground filtering.

Raw Point Cloud (ms) No Ground Point Cloud (ms)

CIA-SSD 30 22
CLOCs 100 70
SIENet 80 55

5. Conclusions

In this paper, we proposed an improved RANSAC LiDAR ground filtering method.
We evaluated the proposed method using point clouds with different characteristics and
compared the filtering accuracy with a variety of commonly used methods. The results
show that the filtering accuracy of this method was improved by about 10% compared
with the original method and by about 1% compared with the current advanced method.
Furthermore, this method has higher filtering efficiency.

The proposed method is intended to be applied to 3D-object detection. Ground
filtering can improve object detection accuracy under simple and moderate conditions on
the KITTI dataset. Furthermore, this can reduce the time of object detection. When the
proposed method is applied to 3D-object detection methods, the influence of the filtering
time on object detection can be ignored. This paper demonstrates that ground filtering can
be used as an auxiliary method to improve the accuracy of 3D-object detection. Therefore,
the LiDAR ground filtering method deserves further in-depth study.
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Abstract: Earth observation satellite (EOS) systems often encounter emergency observation tasks
oriented to sudden disasters (e.g., earthquake, tsunami, and mud-rock flow). However, EOS systems
may not be able to provide feasible coverage time windows for emergencies, which requires that an
appropriately selected satellite transfers its orbit for better observation. In this context, we investigate
the orbit maneuver optimization problem. First, by analyzing the orbit coverage and dynamics,
we construct three models for describing the orbit maneuver optimization problem. These models,
respectively, consider the response time, ground resolution, and fuel consumption as optimization
objectives to satisfy diverse user requirements. Second, we employ an adaptive differential evolution
(DE) integrating ant colony optimization (ACO) to solve the optimization models, which is named
ACODE. In ACODE, key components (i.e., genetic operations and control parameters) of DE are
formed into a directed acyclic graph and an ACO is appropriately embedded into an algorithm
framework to find reasonable combinations of the components from the graph. Third, we conduct
extensive experimental studies to show the superiority of ACODE. Compared with three existing
algorithms (i.e., EPSDE, CSO, and SLPSO), ACODE can achieve the best performances in terms of
response time, ground resolution, and fuel consumption, respectively.

Keywords: orbit maneuver; orbit coverage analysis; earth observation satellite (EOS); differential
evolution algorithm; ant colony optimization

1. Introduction

Earth observation satellite (EOS) systems can acquire images of the Earth’s surface via
their remote sensing instruments. Due to the advantages such as large-scale observation
coverage and high observation frequency, EOSs have been widely implemented to monitor
and observe disasters such as earthquakes, floods, landslides, and debris flow [1–3]. Al-
though the number of EOSs is continuously increasing, there are still several limitations
to satisfy all kinds of user requirements. For example, when an earthquake occurs, EOSs
are required to take ground images urgently to provide timely support for rescue opera-
tions. However, EOSs in their regular orbits may not be able to observe the earthquake
area timely or clearly. Thus, an appropriately selected satellite needs to be transferred to
a new orbit to provide better coverage properties, which is termed the orbit maneuver
optimization problem.

Generally, the orbit maneuver optimization problem can be treated as a kind of or-
bit design problem [4–6]. Numerous studies have been carried out to investigate the
orbit design problem. For example, Graham et al. [7] studied a minimum-time Earth-
orbit transfers optimization problem using low-thrust propulsion with eclipsing. They
developed an initial guess generation method to construct a useful guess and analyzed
the approximate place where the spacecraft enters and exits the Earth’s shadow. A sim-
ilar problem was addressed by Wang et al. [8], who adopted a convex optimization
method. Zhang et al. [9] investigated a minimum-fuel optimization problem using low-
thrust in the circular restricted three-body scenario. By considering actuation uncertainties,

Remote Sens. 2022, 14, 1966. https://doi.org/10.3390/rs14091966 https://www.mdpi.com/journal/remotesensing
289



Remote Sens. 2022, 14, 1966

Mohammadi et al. [10] proposed a robust optimization approach for the impulsive orbit
transfers optimization problem. In their study, the genetic algorithm, Monte-Carlo sam-
pling, and surrogate model are combined to balance the optimization accuracy and time.
Cheng et al. [11] developed a real-time optimal control approach based on multiscale deep
neural networks for the orbit transfer problem of the solar sail spacecraft. In a recent study,
Morante et al. [12] proposed a multi-objective optimization approach for an orbit-raising
optimization problem, in which chemical, electrical, and hybrid trajectories are considered.

However, most of the orbit design problems aim to find an optimal orbit for improving
orbit performance (e.g., coverage time and fuel consumption) [4,5,13]. Those studies
assume that the satellite flies along a fixed orbit without orbit maneuvers and consider
orbit elements as decision variables. For the cases in which orbit maneuvers are considered,
there are few existing studies that mainly focus on reconfiguration problems of satellite
constellations [14–16]. For example, McGrath et al. [17] presented a satellite constellation
reconfiguration problem, in which a restricted low-thrust Lambert rendezvous scenario
was included. Soleymani et al. [18] investigated an optimal mission planning problem
of the reconfiguration process of satellite constellations. They applied a combination of
particle swarm optimization and genetic algorithm to find the optimal departure and
arrival positions of each satellite. He et al. [19] developed a physical programming
method together with a genetic algorithm, to solve a multi-objective satellite constellation
reconfiguration problem for disaster monitoring purposes. Wang et al. [20] proposed a
hybrid-resampling particle swarm optimization method for an agile satellite constellation
design problem, in which different types of sensors, the attitude maneuver of sensors,
and different coverage performance indices are considered. To satisfy the requirements
of emergency observation, a recent study proposed by Hu et al. [21] carried out a multi-
objective optimization framework for the satellite constellation optimization problem.

It can be concluded that although many relevant studies have been published, the
orbit maneuver optimization problem that optimizes maneuvers of a satellite is still a minor
branch of orbit design problems and is rarely investigated. Hence, in this study, we make
effort to address the orbit maneuver optimization problem from a scheduling perspective.
Specifically, since a satellite can transfer its orbit by conducting an impulsive maneuver at a
specific time instance and the maneuver result would affect the orbit performance, it would
be crucial to determine the reasonable magnitude and direction of the impulse, as well as
the maneuver moment. Different from most of the previous studies that aim to determine
the promising position (i.e., orbit elements) of a satellite, our study optimizes the orbit
maneuver in terms of velocity increments for an impulsive maneuver and the maneuver
moment. Meanwhile, our study considers multiple satellites and the most suitable satellite
would be selected to execute the task according to scheduling results.

On the other hand, to improve the service quality, diverse user requirements are being
considered in the orbit maneuver optimization in recent years. For instance, since the fuel
capacity is limited and the remaining fuel affects the lifetime of a satellite, some users may
require a low fuel consumption solution. In case of some emergency tasks that need to
be accomplished at all costs, the users may want the satellite to respond to observation
requests as quickly as possible. Further, in some rescue operations, the orbit altitude is the
optimization objective since an appropriate orbit altitude that can provide higher ground
resolution is crucial. Therefore, we build three models that, respectively, optimize three
objectives, including response time, ground resolution, and fuel consumption to satisfy
diverse user requirements. Meanwhile, since we focus on EOS, specific constraints such as
the resolution constraint are included in models.

Since the studied problem considers orbit maneuvers at every second as decision
variables, the search space would be very large. Meanwhile, specific constraints of EOS
would increase the difficulties of solving the problem. All of the above reasons propose
challenges for solving the problem. In this regard, evolutionary algorithms would be
a promising solution method owing to their powerful and effective search capabilities.
Previously, evolutionary algorithms have been widely employed to address the orbit design
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problem. The algorithms used mainly include particle swarm optimization [20,22,23],
genetic algorithms [16,21,24], and hybrid algorithms [5,25]. For example, Shirazi [25]
applied a hybridization of the genetic algorithm and simulated annealing to a multi-
objective orbit maneuver optimization problem. Based on the particle swarm optimization
(PSO) algorithm, Pontani et al. [22] solved four kinds of impulsive orbital transfer problems,
focusing on the optimization of impulsive transfers between two coplanar and non-coplanar,
circular and elliptic orbits, respectively. Yao et al. [26] investigated the application of an
improved DE algorithm on an orbit design problem by adding self-adaption and stochastic
mechanisms. To optimize coverage-related metrics, as well as the number and semi-major
axes of satellites in multiple constellations, Hitomi et al. [27] proposed a variable-length
chromosome-based evolutionary algorithm.

Particularly, our studied problem can be treated as a continuous optimization problem.
As a simple and efficient evolutionary algorithm, especially for continuous optimization,
differential evolution (DE) which has rarely been implemented by previous related stud-
ies would be a promising candidate for addressing our problem. However, due to the
well-known no-free-lunch theorem [28], the same optimization algorithm with the same
configurations may have different performances on different problems. We have three
models with different constraints and different optimization objectives, which propose
challenges for optimizers. Moreover, DE highly depends on the configuration of genetic
strategies and control parameters [29]. It would be time-consuming to find effective combi-
nations of configurations to obtain high-quality solutions on different optimization models
by using the same algorithm. Previously, many techniques have been developed to relieve
this issue, such as ensemble and adaption techniques [28,30,31]. In this study, we implement
the adaption technique to DE. Specifically, we form the genetic strategies and parameters
of DE into a directed acyclic graph, in which each path indicates a combination of the
genetic strategies and parameters. As the pheromone trails and property always enable the
ant colony to find a reasonable path from the graph, an ant colony optimization (ACO) is
adopted to search for effective combinations during the evolution. The hybridization of
ACO and DE exhibits the effective search capability of DE that has been proved in previous
studies [4,26,32]. Furthermore, it can dynamically optimize the algorithm configurations to
improve the adaptive capability of DE, such that higher-quality solutions can be obtained
for all three optimization models.

In summary, this paper has the following contributions.
(i) We investigate the orbit maneuver optimization problem considering diverse user

requirements. In the problem, a satellite is selected from a set of satellites and transferred
to a new orbit based on appropriate maneuvers (i.e., the velocity increment and maneuver
moment) to respond to an emergency observation request. By analyzing orbit coverage
and dynamics, we build three optimization models that optimize response time, ground
resolution, and fuel consumption, respectively, to satisfy different user requirements.

(ii) To solve the proposed optimization models, we implement an adaptive differ-
ential evolution based on graph search. In the algorithm, key algorithm components
(i.e., crossover strategies, mutation strategies, and control parameters) are formed into a
directed acyclic graph and an ACO is adopted to find reasonable combinations of config-
urations during the evolution. The implemented algorithm is a hybrid of ACO and DE,
therefore it is named ACODE.

(iii) We conduct simulation experiments to verify the efficiency of ACODE. The
ACODE is compared with three representative algorithms including EPSDE [33], CSO [34],
and SLPSO [35] in simulation scenarios where multiple EOSs are requested to observe a
ground target. The simulation results show the superiority of ACODE.

This paper is organized as follows. Section 2 details the orbit coverage and dynamics
analysis, as well as three optimization models. Sections 3 and 4 introduce the solution
method and simulation experiments, respectively. Finally, the conclusions are remarked by
Section 5.
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2. Problem Description

In this section, we elaborate on the orbit maneuver optimization problem based on
orbit coverage and dynamics calculations, followed by three optimization models with
different optimization objectives (i.e., response time, fuel consumption, and ground resolu-
tion). As a part of the satellite system design, orbit maneuver optimization is associated
with many complicated environmental factors. Therefore, some reasonable assumptions
are adopted to simplify the problem.

(i) There are some perturbations (e.g., atmospheric drag, solar radiation pressure, and
third body effects) that have negative impacts on the operation of the satellite. We only
consider J2 perturbation of Earth oblateness in the model, which is a common assumption
in existing studies on orbit design problems [6,32,36].

(ii) Assume that the sensor equipped on each satellite is visible to the ground target
when the satellite flies in the sunshine and the sunshine time is from 6:00 to 18:00 local
time. Further, the other factors that may affect the imaging such as clouds and weather
conditions, as well as the altitude of ground targets are assumed to be negligible.

(iii) Each satellite is assumed to be independent. Therefore, the orbit maneuver of a
satellite does not affect the flying of another satellite.

(iv) The time required by the satellite to process task information and start the rocket
engine is assumed to be negligible.

(v) The ground target is assumed to be a point target. Hence, the ground target can be
imaged by the satellite once the satellite passes over it.

Main notations used in this section are displayed in Table 1.

Table 1. Notations.

Notations Description

λ, λh, λmax, and λmin Actual, horizon-, maximum, and minimum Earth’s angular radius
η, ηc, ηh, ηmax, and ηmin Actual, center, horizon-, maximum, and minimum boresight angle of the sensor

RE Earth’s radius
rsat Distance between the Earth’s center and the satellite
γ Intermediate angle

[lats, lons] Latitude and longitude of a subsatellite point
a Semimajor axis
e Eccentricity
i Inclination

Ω and Ω̇ Longitude of ascending node and its time variation
ω and ω̇ Argument of perigee and its time variation

θ, M, and E True, mean, and eccentric anomaly
P Period for an orbit
μ Earth’s gravitational parameter
t0 Time since perigee at the initial epoch
h Angular momentum of the satellite

rO and rI Position vectors of the satellite in PQW and ECI frames
vO Velocity vector of the satellite in PQW frame

Dimag Satellite altitude over the ground target
Hnew Orbital altitude of the satellite after maneuvering

Δv and Δvmax Velocity increment and the allowed maximum velocity increment for maneuvering
tm Maneuver moment
tt Time when the satellite receives the observation task
Tr Response time

[ts, te] Sunshine time window of a ground target
T Maximum response time required by users
R Minimum ground resolution required by users

292



Remote Sens. 2022, 14, 1966

2.1. Orbit Coverage Analysis

The visibility between a satellite and a ground target depends on many factors, such
as the location of the ground target (i.e., longitude and latitude), the orbit elements, and the
field of view (FOV) of the satellite. To conduct the orbit coverage analysis, we assume that
the Earth is a round body, the orbit is approximately circular, and the FOV on the ground is
rectangular as in [32,37]. The ground target is visible to the satellite when it lies in the FOV,
which can be determined by calculating the longitudes and latitudes of four vertices. A
typical satellite coverage on the Earth is shown in Figure 1.

Figure 1. Satellite coverage on the Earth.

As Figure 1 shows, the Earth’s angular radius λh defines the half-ground range that
may visible to the satellite, which can be expressed by

cos λh =
RE
rsat

, (1)

where RE is the Earth’s radius, and rsat is the distance between the Earth’s center and the
satellite. The slant range to the horizon, ρh, can be written as

ρh =

√
rsat2 − RE

2. (2)

However, in practical applications, due to some limitations such as the imaging angle
of the sensor and sunshine conditions, the actual half ground range would be smaller than
λh. Hence, a general expression for the slant range to any point, ρ, can be expressed by [38]

ρ = RE cos γ + rsat cos η, (3)

sin γ =
rsat sin η

RE
, (4)

where γ is the intermediate angle and η is the boresight angle of the satellite (i.e., half of
the sensor angle). Afterward, the half-ground range from the subsatellite point can be
calculated by

sin λ =
ρ sin η

RE
. (5)

For the satellite equipped with a scanning sensor, the geometry of the FOV is no
longer symmetrical about the subsatellite point, requiring more processing to obtain the
ground range angle. Given the center boresight angle ηc of the satellite, the maximum and
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minimum ground-range angles from the subsatellite point can be obtained. Specifically, the
maximum and minimum boresight angles can be written as [38]

ηmax = ηc + η, (6)

ηmin = ηc − η. (7)

Then, the maximum and minimum Earth’s angular radiuses (i.e., λmax and λmin)
can be obtained according to Equations (5)–(7). Since the sensor of the satellite can be
rotated on multiple axes, in this study we assume that the sensor half-angle equals ηmax
and the Earth’s angular radius equals λmax for convenience. Define the latitude and
longitude of the subsatellite point as [lats, lons], the latitudes and longitudes of the four ver-
tices of the FOV can be calculated by [lats + λmax, lons + λmax], [lats + λmax, lons − λmax],
[lats − λmax, lons + λmax], and [lats − λmax, lons − λmax], respectively.

According to the latitude and longitude information of the FOV, the latitude and
longitude information of the ground target, the positions of the satellite at each moment, as
well as the right ascension of Greenwich at the initial moment, we can obtain the key orbit
performance indices of a satellite [39], such as the response time [32,40]. The response time
is defined as the time required from when a request is received to observe a ground target
until the satellite can observe it. The method that assesses whether the target lies in the
FOV at moment t, as well as the response time timag can be found in [32]. Moreover, the
calculation method of the latitude and longitude of the subsatellite point at each moment is
introduced in the next section.

2.2. Orbit Dynamics Model

The position of a satellite in its orbit can be obtained by using six orbit elements,
including semimajor axis a, eccentricity e, inclination i, longitude of ascending node Ω,
argument of perigee ω, and true anomaly θ, as Figure 2 shows. By using the orbit elements,
we can calculate the position of the satellite, as well as the latitude and longitude of each
subsatellite point at each moment. In this section, we briefly introduce the calculation
methods, and more detailed derivation steps can be found in [41].

Figure 2. Geocentric equatorial frame and the orbital elements.
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Given a satellite flying around the Earth, it is well-known that the period P for an orbit
of the satellite is calculated by

P =
2π√

μ
a3/2, (8)

where μ is the Earth’s gravitational parameter. Then, the time t0 since perigee at the initial
epoch can be calculated as

t0 =
M
2π

P, (9)

where M is the initial mean anomaly. According to Kepler’s equation, M can be calcu-
lated by

M = E − e sin E, (10)

where E is the eccentric anomaly, which yields the relation with true anomaly θ as

tan
E
2
=

√
1 − e
1 + e

tan
θ

2
. (11)

Given a time change Δt, the longitude of ascending node Ω, argument of perigee ω at
the moment t = t0 + Δt can be expressed by

Ω = Ω + Ω̇Δt, (12)

ω = ω + ω̇Δt, (13)

where Ω̇ and ω̇ are time variations of Ω and ω, which are determined by J2 perturbation of
Earth oblateness. The expressions of Ω̇ and ω̇ are written as

Ω̇ =

[
3
2

√
μJ2R2

E

(1 − e2)
2a7/2

]
cos i, (14)

ω̇ = Ω̇
5/2 sin2 i − 2

cos i
, (15)

where J2 = 1.083 × 10−3. The orbit elements are updated by repeating Equations (9)–(13) at
each moment t. Meanwhile, the newly found true anomaly θ at the moment t can be used
to calculate the state vector of the satellite in the perifocal coordinate coordinate system
(PQW). The satellite position vector rO and velocity vector vO in the PQW frame can be
expressed by

rO =
h2

μ

1
1 + e cos θ

⎧⎨⎩
cos θ
sin θ

0

⎫⎬⎭, (16)

vO =
μ

h

⎧⎨⎩
− sin θ

e + cos θ
0

⎫⎬⎭, (17)

where h is the angular momentum of the satellite, yielding a relation with the semimajor
axis a as below

a =
h2

μ

1
1 − e2 . (18)

Particularly, the position vectors rO can be transformed to the Earth-centered inertial
(ECI) frame through the transformation matrix RI/O (C ≡ cos and S ≡ sin) written as

RI/O =⎡⎣CωCΩ − CiSωSΩ −SωCΩ − CiSΩCω SiSΩ
CωSΩ + CiSωCΩ −SωSΩ + CiCΩCω −SiCΩ

SωSi CωSi Ci

⎤⎦,
(19)
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by
rI = RI/OrO, (20)

where rI is the satellite position in the ECI frame. Meanwhile, rI can be expressed in the
Rotating Earth-fixed frame by [4]

rI′ =

⎡⎣ cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎤⎦rI , (21)

which can be written in vector notation

rI′ = XÎ + YĴ + ZK̂. (22)

Define a notation r =
√

X2 + Y2 + Z2, the latitude and longitude of the subsatellite
point can be calculated by

lats = sin−1 (Z/r), (23)

lons =

⎧⎨⎩cos−1
(

X
r cos lats

)
, Y

r > 0

360◦ − cos−1
(

X
r cos lats

)
, otherwise

. (24)

Based on the above equations, the position of the satellite, as well as the latitude and
longitude of each subsatellite point at each moment can be obtained.

Furthermore, in this study, the orbit maneuver focuses on how to move a satellite
in the same plane, which can be treated as a co-orbital rendezvous problem [42]. In the
co-orbital rendezvous problem, two satellites are assumed to be located in the same orbit
and one satellite maneuvers its orbit by two-impulse Hohmann transfer to catch up with the
other one. Therefore, a velocity increment Δv at the moment tm is considered to calculate
the orbit elements before and after maneuvering based on orbit equations.

2.3. Formulation of the Optimization Problem

As mentioned above, the optimization problem aims to find appropriate velocity
increment Δv and maneuver moment tm to obtain a reasonable scheduling scheme for
transferring the satellite. Hence, Δv and tm can be considered as decision variables of the
optimization problem, and they are constrained by

− Δvmax ≤ Δvs. ≤ Δvmax, (25)

0 < tm < tt + T. (26)

Since Δv is associated with the capacity of fuel, which is the key parameter of the
satellite remained lifetime, constraint (25) ensures that the velocity increment is limited to a
reasonable range. Here Δvmax represents the maximum allowed velocity increment and
the negative value indicates the velocity in the reverse direction. Constraint (26) defines
the range of a feasible maneuver moment (when the satellite starts its rocket engine).
Furthermore, there are other constraints introduced in the following.

Dimag/106 ≤ R, (27)

250 × 103 ≤ Hnew ≤ 1300 × 103, (28)

ts ≤ tt + Tr ≤ te, (29)

Tr ≤ T. (30)

To obtain sufficient information from a single observation result, constraint (27) guar-
antees that the ground resolution is smaller than the required resolution, in which the
ground resolution is associated with the satellite altitude over the ground target divided by
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the horizontal number of pixels. When the satellite is transferring its orbit, the change of
orbit altitude should be limited to a reasonable range to ensure the stable operation of the
satellite. As the satellite altitude is typically between 250 and 1300 km [43], constraint (28)
is carried out to limit the satellite altitude after maneuvering. Constraint (29) is used to
ensure that the observation moment lies in the sunshine time window. Furthermore, as
timeliness is crucial for emergency observation tasks, we use constraint (30) to limit the
maximum response time of the satellite.

In practical applications, users require different solutions depending upon the purpose.
To satisfy diverse user requirements, we build three models considering response time,
ground resolution, and fuel consumption as objectives, respectively, which are written as

f3 = min Tr,

s.t. Constraints (25)–(29).
(31)

f2 = min
(

Dimag/106
)

,

s.t. Constraints (25), (26), (28)–(30).
(32)

f1 = min Δv,

s.t. Constraints (26)–(30).
(33)

The calculation processes of objectives are as follows. During the optimization process,
appropriate decision variables (i.e., velocity vector increment Δv and maneuver moment tm)
will be searched by the algorithm under the constraints mentioned in Equations (31)–(33).
Since the satellite conducts an impulsive maneuver whose direction and magnitude are
determined by Δv at moment tm to transfer its orbit, the new state velocity vector at mo-
ment tm can be determined by decision variables. Then, the state velocity vector of the
satellite can be transformed into the position vector represented by orbit elements by using
Equations (19) and (20). As the satellite flies around the Earth, the position vector of the
satellite changes with time. The changes in position vector can be tracked by Kepler’s
equation coupled with orbit equations mentioned in Equations (8)–(18). Meanwhile, ac-
cording to the position vector, the subsatellite point at the same moment can be obtained
by Equations (21)–(24). The FOV of the satellite is determined by the subsatellite point at
the same moment according to Equations (1)–(7) introduced in the orbit coverage analysis.
When a FOV covers the target point, it indicates that the satellite can observe this target
point. Thus, the first objective f1 is calculated by the difference between the maneuver time
tm and the time instance when the satellite can observe the target. In the second objective
f2, the satellite altitude is the distance between the satellite and the subsatellite point when
the satellite can observe the target. As to the third objective f3, it is determined by the
decision variable Δv directly.

3. Adaptive Differential Evolution Algorithm Based on Graph Search

Differential evolution (DE) is an efficient population-based stochastic optimization
approach for solving optimization problems over continuous space, and many variants
of DE have been implemented in engineering fields [30,44,45]. In this study, we conduct
problem-specific modifications on the framework of an adaptive DE, named ACODE, first
proposed in [31] that concerned data clustering problems, to solve the orbit maneuver
optimization problem. The ACODE can be treated as a hybridization of DE and ACO,
which will be detailed in this section after a brief introduction to the classical DE.

3.1. Classical DE Algorithm

Typically, the DE includes four basic steps [46]: Initialization, mutation, crossover,
and selection.

(i) Initialization. This step randomly creates an initial population consisting of N
individuals. When the iteration number G = 0, the i-th individual is initialized in the
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search space constrained by the minimum bound Xmin = {x1
min, x2

min, . . . , xD
min} and the

maximum bound Xmax = {x1
max, x2

max, . . . , xD
max}, according to the following method

xj
i,0 = xj

min + rand(0, 1)× (xj
max − xj

min),

j ∈ {1, 2, . . . , D},
(34)

where rand(0, 1) is a uniformly distributed number within [0, 1] and D is the number
of dimensions.

(ii) Mutation. The mutation operation perturbs a target vector Xi,G from the current
generation to obtain a donor vector Vi,G, which can be written as

Vi,G = Xri
1,G + F · (Xri

2,G − Xri
3,G), (35)

where F is the scaling factor, which is a positive control parameter for scaling the difference
vectors. The indices ri

1, ri
2, and ri

3 are mutually exclusive integers randomly chosen from
the range [1, N] and they are different from the base vector index i.

(iii) Crossover. The crossover operation can improve the diversity of the population by
exchanging the components of the donor vector Vi,G with the target vector Xi,G to form the

trial vector Ui,G =
{

u1
i,G, u2

i,G, . . . , uD
i,G

}
. There are two kinds of commonly used crossover

strategies, including exponential (i.e., two-point modulo) and binomial (i.e., uniform). The
exponential crossover makes the trial vector contains a sequence of consecutive components
taken from the parent vector. The structure of the trial vector can be expressed by

uj
i,G =

{
vj

i,G, if j ∈ {k, 〈k + 1〉n, . . . , 〈k + L − 1〉n},

xj
i,G, for all other j ∈ [1, D].

(36)

where 〈j〉n is a modulo function with modules D, k and L are two integers randomly chosen
from [1, D]. On the other hand, the binomial strategy can be outlined as

uj
i,G =

{
vj

i,G, if (randj[0, 1] ≤ CR or j = jrand),

xj
i,G, otherwise.

(37)

where CR is the crossover rate and jrand is a randomly chosen index lying in the inter-
val [1, D].

(iv) Selection. The selection operation determines whether the target or the trial vector
survives to the next generation according to the objective function, which is described as

Xi,G+1 =

{
Ui,G, if f (Ui,G) ≤ f (Xi,G),
Xi,G, otherwise.

(38)

Once an initial population is created, the mutation, crossover, and selection strategies
are repeated until a stopping criterion is satisfied to obtain promising solutions. It should
be noted that different mutation strategies demarcate a DE scheme from other schemes.
Except for the mutation strategy introduced above, there are some other well-known
mutation strategies, such as “DE/best/1”, “DE/best/2”, “DE/rand/2”, “DE/rand-to-
best/1”, “DE/current-to-pbest/1”, “DE/current-to-rand/1”, etc. [46].

3.2. ACODE Algorithm

The performance of DE highly depends on four key components, i.e., mutation strat-
egy, crossover strategy, scaling factor F, and crossover rate CR [31]. We transform these
components into a directed acyclic graph and implement an ant colony optimization-based
adaptive DE algorithm to conduct the optimization process.
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3.2.1. Directed Acyclic Graph Formed by Configurations

An example of the directed acyclic graph formed by configurations is shown in
Figure 3. The graph includes five levels, of which a virtual point lies in the first level to
gather all ants and the remaining four levels represent four key components (i.e., mutation
strategy, crossover strategy, scaling factor F, and crossover rate CR), respectively. Every
node in each level indicates a candidate configuration, and the nodes of two adjacent levels
are fully connected. A path that starts from the first level and terminates at the fifth level can
be treated as a combination of four candidate configurations, as the blue path in Figure 3
shows. Mathematically, the directed acrylic graph can be described by Φ = {V, E}, where
V is the set of nodes and E ⊆ V × V indicates directed arcs. The pheromone trail on the
arcs connecting v ∈ V to adjacent nodes in the next level is recorded by pheromone vector
Bv. Hence, the length of Bv depends on the number of nodes in the next level. According to
empirical considerations [31,33,46], the candidate configurations we used in this paper are
summarized in Table 2.

Figure 3. An example of the directed acyclic graph formed by key components of DE.

Table 2. Candidate configurations.

Components Candidate Values or Strategies

Mutation strategy “DE/rand/1”, “DE/current-to-pbest/1”,
and “DE/current-to-rand/1”

Crossover strategy binomial and exponential
Scaling factor F 0.4, 0.5, 0.6, 0.8, 0.9, and 1.1

Crossover rate CR 0.1, 0.4, 0.6, 0.9, and 0.99

3.2.2. Framework of ACODE

The framework of ACODE is displayed in Algorithm 1. The algorithm starts with
the initialization of a population P with size N, configuration matrix M, iteration counter
g, and pheromone matrix Bg (line 1). Particularly, the number of individuals in P equals
the number of ants. Then, the algorithm runs until the stopping criterion is satisfied
(lines 2–11). Every ant at each iteration is utilized to find a reasonable combination of
configurations from the graph, and the combination is recorded in M (line 4). Mi indicates
the configuration combination of the i-th individual and it is implemented to evolve
individual xi,g (line 5). The offspring ui,g is compared with xi,g to determine which solution
is preserved into the next generation (lines 6–9). Finally, the pheromone matrix Bg+1 that
would be used in the next generation is updated according to the fitness information in
line 10.

3.2.3. Solution Representation and Initialization

As above-mentioned, we consider the velocity increment Δv and maneuver moment
tm as decision variables. During the optimization process, the decision variables are
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used to calculate the positions of the satellite expressed by orbit elements, while the
objectives are determined by position vectors, as introduced in Section 2. The velocity
increment Δv is the magnitude of the change in the velocity vector, which can be represented
by three velocities (i.e., Δvx, Δvy, and Δvz) on three axes of the Cartesian coordinate
system. Here the X axis is directed to the eccentricity vector, Z axis is in the direction
of the satellite’s angular momentum which lies perpendicular to the orbital plane, and
the Y axis completes the right-hand set of co-ordinate axis. Therefore, a chromosome
should be composed of velocity increments in three dimensions and the moment when
the maneuver occurs. Figure 4 shows the representation of a chromosome, where xi is the
expression vector while tm, Δvx, Δvy, and Δvz are decision variables. Since the satellite
conducts a coplanar maneuver, the velocity increment Δvz always equals 0. Nevertheless,
we still include Δvz in the chromosome for computation convenience. In addition, we
generate the initial population randomly and the boundaries of decision variables are
determined by constraints (25) and (26). Since the search space of each variable is large
and the performance of DE algorithm is seriously influenced by the diversity of the initial
population, the initial population should be uniformly distributed in the search space. We
use the Latin hypercube sampling (LHS) to generate the initial population. The LHS is a
statistical method that can generate a quasi-random sampling distribution, which has been
widely applied in other studies to obtain a high-quality initial population [47].

Algorithm 1: Framework of ACODE.
Input: Population size N, evaporation rate ρ, and directed acyclic graph Φ
Output: Final population P

1 Initialization: initial population P ← {x1, x2, . . . , xN}, configuration matrix
M ← ∅, g ← 0, pheromone matrix Bg ← ∅,

2 while stopping criterion is not satisfied do
3 for i ∈ N do
4 Mi ← ParameterAdaption(Φ, Bg)
5 ui,g ← GeneticOperation(Mi, xi,g)

6 if f (ui,g) < f (xi,g) then

7 xi,g+1 ← ui,g
8 end
9 else

10 xi,g+1 ← xi,g
11 end

12 end

13 Bg+1 ← UpdatePheromone(Bg, ρ, P)
14 g ← g + 1
15 end

Decision variablesExpression vector

Figure 4. An illustration of the chromosome representation.
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3.2.4. Parameters Adaption Based on ACO

Based on the directed acyclic graph, we conduct the parameter adaption by utilizing
an ACO method. Specifically, each ant searches for a reasonable combination (i.e., path) for
configuring an individual according to the pheromone trail on each arc in the graph. Given
a node v from which an ant departs, there would be h candidate arcs that can be chosen.
The probability pj for picking arc j is written as

pj =
Bg

v,j

∑h
j=1 Bg

v,j

, (39)

where Bg
v,j is the pheromone trail on arc j with the starting node v at the g-th iteration.

The process of parameter adaption is shown in Algorithm 2. In the algorithm, an ant
departs from the virtual node v1 and travels through four nodes in the remaining four
levels. At the l-th level, all probabilities for choosing arcs connecting starting node vl
with all nodes in the next level are calculated based on Equation (39) and recorded in Pl
(line 3). Then, roulette wheel selection (i.e., RouletteWheel()) is adopted to choose an arc
j that determines the node vl+1 (i.e., end node of arc j) at the (l + 1)-th level (lines 4–5).
The roulette wheel selection is a well-known stochastic selection method, in which the
probability for the selection of an arc is proportional to the pheromone trails on it. The
above steps are repeated until a path consisting of four arcs is obtained. This algorithm is
embedded into Algorithm 1 by executing once for each individual.

Algorithm 2: ParameterAdoption().
Input: Directed acyclic graph Φ and pheromone matrix Bg

Output: configuration combination Mi
1 Initialization: Mi ← ∅, virtual node v1
2 for l ∈ [1, 4] do
3 Pl ←Calculate probabilities of h arcs with Equation (39)
4 j ← RouletteWheel(Pl)
5 Obtain node vl+1 according to arc j
6 Mi ← Mi ∪ vl+1
7 end

3.2.5. Pheromone Update

In Algorithm 1, the pheromone trails of the whole graph at the generation g is recorded
by a pheromone matrix Bg. The pheromone trail on each arc is updated at the end of each
iteration by the following method

Δτ
g
v,j =

∑xt∈Pg
j
| f (xt,g+1)− f (xt,g)|

∑N
i=1 | f (xt,g+1)− f (xt,g)|

, (40)

Bg+1
v,j = (1 − ρ) · Bg

v,j + Δτ
g
v,j, (41)

where Δτ
g
v,j is the pheromone increment on arc j with starting node v at the g-th iteration,

Pg
j is the set of individuals who use the configurations corresponding to arc j at the g-

the iteration, and ρ is the evaporation rate. Equation (40) indicates that the pheromone
increment on an arc is determined by accumulated fitness improvements of individuals
who passed this arc divided by that of all individuals. The pheromone trail Bg+1

v,j on arc j

with starting node v at the (g + 1)-th iteration is updated by pheromone increment Δτ
g
v,j

and pheromone trail Bg
v,j at the g-the iteration, as well as evaporation rate ρ in Equation (41).

Further, to avoid premature convergence, the Max–Min ant system [48] is implemented in
this study to limit the pheromone level on each arc within a range [0.1, 0.9].
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4. Computational Experiments

To demonstrate the efficiency of ACODE on the proposed problem, simulation experi-
ments are conducted in this section. All algorithms are coded in Matlab and run on a 64-bit
Windows OS with Intel Core(TM) i5-8265U, 1.6 GHz, and 8 GB RAM.

4.1. Scenario Settings

We assume a set of scenarios in which three satellites are requested to observe four
ground targets within 12 h (from 1 December 2020 14:00:00 to 2 December 2020 02:00:00,
Beijing time). At the initial moment (i.e., 1 December 2020 14:00:00), each ground target
is invisible to each satellite. Once an observation task is received, an appropriate satellite
would be selected from these satellites to undertake orbital maneuvers to accomplish the
task according to users’ requirements. The initial orbital elements are displayed in Table 3,
where the first column is the satellite ID and the other columns indicate semimajor axis a,
inclination i, right ascension of the ascending node Ω, eccentricity e, argument of perigee
ω, and mean anomaly M. The four ground targets are randomly located in low-latitude,
mid-latitude, high-latitude, and higher-latitude areas, and their geographical information is
summarized in Table 4. The maximum scanning angle of the satellite, maximum response
time, minimum ground resolution, and maximum velocity increment predefined by users
are set to 45◦, 12 h, 2 m, and 300 m/s, respectively. Moreover, the maximum number of
fitness evaluations (FEs) of the algorithm is set to 50,000 and the evaporation rate ρ is set to
0.8 according to pre-experiments.

Table 3. Initial orbital elements of satellites.

ID a (m) e i (rad) Ω (rad) ω (rad) M (rad)

1 6,878,140 3.59426 × 10−16 97.0346 250.884 0 0
2 6,878,140 4.55556 × 10−18 97.0346 10.8840 0 2.61014 × 10−16

3 6,878,140 1.79873 × 10−16 97.0346 130.884 0 5.08063 × 10−15

Table 4. Geographical information of ground targets.

Target ID Latitude Longitude

1 0◦ 62◦W
2 41◦N 70◦E
3 50◦S 146◦W
4 45◦N 116◦E

4.2. Simulation Results

The ACODE is implemented to solve the three optimization models with different
optimization objectives based on the generated scenarios. The experiment results are
summarized in Table 5, in which the columns indicate scenarios, satellites selected to
accomplish observation tasks, maneuver moment tm, velocity increments (Δvx and Δvy),
and objective values ( f1, f2, and f3) of the three optimization models. Particularly, the
scenario index is composed of the ground target ID and optimization objective. For instance,
T1O1 means in this scenario the satellites are requested to observe ground target 1 and the
optimization objective is f1 involved by the first optimization model. Here f1, f2, and f3
are response time, ground resolution, and fuel consumption, respectively. Note that the
minimum fuel consumption is represented by minimum velocity increment, as discussed
in Section 2. Although only one objective is considered in each scenario, we provide the
values of the other two objectives corresponding to the optimal solution of the scenario.
The value of the optimized objective considered in each scenario is in boldface.

The results in Table 5 indicate that all scenarios can be well-addressed by ACODE.
Furthermore, it can be observed that huge differences in objective values can be obtained if
we execute the same observation task based on different optimization models. For example,
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T1O1, T1O2, and T1O3 are three scenarios in which the satellites are requested to observe
ground target 1 with three different optimization objectives, respectively. The solution of
T1O1 selects satellite 3 to execute the task and earns the minimum response time while
yielding the poorest ground resolution compared with solutions of T1O2 and T1O3. More
specifically, the solution of T1O1 decreases the response time by up to 84.44% and increases
the ground resolution by up to 200.12% compared with the solutions of T1O2 and T1O3.
Meanwhile, its fuel consumption is a little less than the solution of T1O2 that optimizes the
ground resolution and much more than the solution of T1O3 that aims to find the minimum
fuel consumption.

Table 5. Simulation results.

Scenario Selected Satellite ID tm Δvx (m/s) Δvy (m/s) f1 (s) f2 (m) f3 (m/s)

T1O1 3 2020-12-1 14:49 −81.744079 288.2563 5682 1 1.34 299.62
T1O2 1 2020-12-1 14:10 286.203453 89.93099 36507 0.43 300.00
T1O3 1 2020-12-1 14:45 −65.113285 −9.637086 36507 1.08 65.82

T2O1 1 2020-12-1 14:59 123.578258 272.2139 6301 1.35 298.95
T2O2 3 2020-12-1 14:46 −155.259419 −256.6993 20440 0.44 300.00
T2O3 3 2020-12-1 14:00 3.676842 0.506845 19243 0.74 3.71

T3O1 2 2020-12-1 14:44 −224.161983 198.8964 4833 1.41 299.68
T3O2 2 2020-12-1 15:10 −252.270809 162.3559 40115 0.44 300.00
T3O3 1 2020-12-1 14:11 15.541757 −15.38881 9401 0.85 21.87

T4O1 3 2020-12-1 15:14 293.379811 −56.7 7705 1.01 298.81
T4O2 1 2020-12-1 14:45 −137.707437 −266.5268 38606 0.43 300.00
T4O3 1 2020-12-1 15:20 24.506321 31.81572 7859 0.95 40.16

1 The values in boldface are optimized objectives in each scenario.

4.3. Algorithm Comparisons

To further demonstrate the superiority of ACODE, we compare it with three well-
known evolutionary algorithms in existing studies, i.e., EPSDE [33], CSO [34], and SLPSO [35].
Particularly, EPSDE is an ensemble-based DE algorithm, in which a pool of mutation
strategies along with a pool of corresponding control parameters compete to produce
offspring individuals. CSO is a competitive swarm optimizer inspired by particle swarm
optimization. In CSO, a pairwise competition mechanism is used to update the position of
the particle that loses the competition by learning from the winner. Similarly, SLPSO adopts
social learning mechanisms for particle swarm optimization. Meanwhile, a dimension-
dependent parameter control method is embedded into the SLPSO to ease the burden of
parameter settings.

The comparison results are summarized in Table 6, in which the last four columns
are best, worst, mean, and standard deviation values of three optimization objectives over
10 runs obtained by all algorithms. Note that the fuel consumption is represented by the
value of velocity increment. For each scenario, the best results are in boldface. Wilcoxon
rank-sum tests with a significance level of 0.05 are used for the significance tests. It can
be found that ACODE significantly outperforms EPSDE, CSO, and SLPSO in almost all
scenarios, in terms of response time, ground resolution, and fuel consumption. Especially,
the superiority of ACODE is more significant when it optimizes orbital maneuvers for
observing ground target 1 in terms of response time (scenario T1O1) and ground target 2 in
terms of fuel consumption (scenario T2O3).
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Table 6. Algorithm comparison results.

Scenario Algorithm Best Worst Mean Std.

T1O1

ACODE 5682 1 5682 5682 0
EPSDE 5689 5721 5701.8 9.71

CSO 5689 19,935 7124.8 4270.07
SLPSO 5693 19,909 7194.9 4239.05

T1O2

ACODE 0.43 0.43 0.43 0
EPSDE 0.43 0.47 0.45 0.01

CSO 0.48 0.64 0.56 0.06
SLPSO 0.49 0.63 0.55 0.04

T1O3

ACODE 65.82 65.82 65.82 0
EPSDE 68.18 76.5 71.68 3.15

CSO 67.34 80.74 74.85 3.6
SLPSO 76.98 120.14 97.47 12.66

T2O1

ACODE 6301 6301 6301 0
EPSDE 6308 6341 6324.5 10.76

CSO 6311 6339 6322.5 9.11
SLPSO 6355 19,146 10,222 5834.61

T2O2

ACODE 0.44 0.44 0.44 0
EPSDE 0.45 0.47 0.46 0.01

CSO 0.47 0.55 0.51 0.03
SLPSO 0.44 0.58 0.5 0.04

T2O3

ACODE 3.71 3.81 3.72 0.03
EPSDE 6.31 10.06 8.28 1.3

CSO 4.78 11.89 6.95 2.24
SLPSO 9.4 72.13 29.45 18.07

T3O1

ACODE 4833 4833 4833 0
EPSDE 4848 4882 4858.4 9.77

CSO 4888 5129 4944.3 66.58
SLPSO 4843 9332 6236.6 2006.62

T3O2

ACODE 0.44 0.44 0.44 0
EPSDE 0.45 0.51 0.47 0.02

CSO 0.49 0.54 0.51 0.01
SLPSO 0.46 0.58 0.5 0.04

T3O3

ACODE 21.87 21.87 21.87 0
EPSDE 22.83 32.5 29.11 3.43

CSO 23.93 29.52 27.11 1.68
SLPSO 34.74 64.22 45.18 8.49

T4O1

ACODE 7705 7705 7705 0
EPSDE 7723 7746 7732.7 7.4

CSO 7726 7754 7738 8.06
SLPSO 7769 7846 7804.1 24.92

T4O2

ACODE 0.43 0.44 0.43 0
EPSDE 0.45 0.48 0.46 0.01

CSO 0.47 0.6 0.51 0.04
SLPSO 0.48 0.55 0.52 0.02

T4O3

ACODE 40.16 40.16 40.16 0
EPSDE 42.91 46.58 45.07 1.16

CSO 41.05 48.92 43.91 2.58
SLPSO 45.07 74.64 60.88 9.85

1 The values in boldface are the best results in each scenario.
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It should be noted that EPSDE is similar to ACODE, as EPSDE ensembles a set of
mutation strategies and corresponding control parameters in DE. Hence, EPSDE shows
similar performance compared with ACODE for observing ground target 1 in terms of
ground resolution (scenario T1O2). Nevertheless, ACODE is superior to EPSDE in other
scenarios. The reasons can be twofold. First, EPSDE only ensembles mutation strate-
gies and corresponding control parameters, while crossover strategies and corresponding
control parameters that also can affect algorithm performance are not involved. On the
contrary, ACODE considers both mutation strategies, crossover strategies, and their control
parameters. Second, each component of EPSDE conducts the adaption independently
while ACODE configures all components in a holistic manner, which is also the difference
between ACODE and ensemble-based algorithms.

4.4. Experiments with Insufficient Satellite Resources

In the above sections, we calculate the solution of every satellite and select the most
appropriate satellite out of three satellites to observe the ground target. The simulation re-
sults are obtained by the algorithm with sufficient satellite resources. However, since some
satellites may be occupied by other tasks that cannot be interrupted when emergencies
occur (i.e., some satellites may be infeasible for executing the observation task), it is inter-
esting to investigate the impact of insufficient satellite resources on the orbital maneuver
scheme and algorithm performance. Hence, this section analyzes the experiment results
with different numbers of satellites based on the scenarios generated by removing satellites
from the scenarios introduced in Section 4.1. Specifically, the one-satellite scenarios in this
section preserve satellite 1, the two-satellite scenarios preserve satellite 1 and satellite 2,
and the three-satellite scenarios are the same as before.

The simulation results are presented in Figure 5. Each figure indicates the simulation
results for observing the same ground target, and the same color means the simulation
results in the scenarios that consider the same optimization model. Moreover, to understand
the trade-off among three objectives, we normalize all results into [0, 1], and a smaller value
indicates a better solution in a direction. Since we generate the scenarios by removing
satellites from the scenarios that already have solutions in Section 4.2, some scenarios would
have the same solution as before. For example, the solution schemes of three scenarios
that observe target 1 while optimizing the ground resolution with different numbers of
satellites select satellite 1 to execute the task. Hence, the results of scenarios T1O2-one-
satellite, T1O2-two-satellite, and T1O2-three-satellite are the same, as Figure 5a shows. On
the other hand, other solutions indicate that the number of satellites significantly affects
the algorithm results. For example, scenarios T1O1-one-satellite, T1O1-two-satellite, and
T1O1-three-satellite select three different satellites to execute the task, respectively. To
observe ground target 1 with the aim of optimizing response time, satellite 2 is selected in
the two-satellite scenario and the response time is increased by 249.93% compared with the
solution of the three-satellite scenario, as Figure 5a shows.

Furthermore, it can be found that with the increase in the number of satellites, the
value of the optimization objective that corresponds to each optimization model can be
significantly improved. However, the trade-off results among the three objectives show
that the improvement on one objective may not always promote the improvement of other
objectives. For example, the ground resolution for observing ground target 2 is significantly
improved as the number of satellites increases from 1 to 3, while the fuel consumption is
still very high and the response time is even increased, as Figure 5b shows.
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Figure 5. Simulation results by varying the number of satellite. (a) Ground target 1, (b) ground
target 2, (c) ground target 3, (d) ground target 4.

5. Conclusions

In this paper, we investigate the orbital maneuver optimization problem of Earth
observation satellites oriented to emergency tasks. Based on the analysis of orbit coverage
and dynamics, we propose three kinds of optimization models that aim to, respectively,
optimize response time, ground resolution, and fuel consumption, to satisfy diverse user
requirements. Meanwhile, we implement an adaptive differential evolution algorithm
based on graph search to solve the proposed optimization problems, which is named
ACODE. The main feature of ACODE is to form the key components of DE into a directed
acyclic graph and adopt an ACO method to search for combinations of these components
from the graph, thereby adaptively configuring reasonable components for DE. The key
components considered in this paper include mutation strategies, crossover strategies, as
well as their corresponding control parameters, both of which can affect the performance
of DE.

Finally, computational experiments are conducted to verify the proposed three opti-
mization models and ACODE. The simulation results show that all simulation scenarios
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that consider different optimization objectives can be well-addressed by ACODE. Com-
parison experiments are also carried out to demonstrate the superiority of ACODE on
the proposed problem. The comparison results indicate that ACODE is superior to three
well-known algorithms (i.e., EPSDE, CSO, and SLPSO). Further, we find that insufficient
satellite resources would affect the efficiency of the orbital maneuver scheme and algorithm.

In future studies, we would like to investigate the multi-objective optimization algo-
rithm that can optimize the three optimization objectives simultaneously for better decision
making operations.
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Abstract: Using longitudinal control lines and sparse measured cross sections with large spaces, a new
method for quickly reconstructing digital terrains in natural riverways is presented. The longitudinal
control lines in a natural riverway, mainly including the river boundaries, the thalweg, the dividing
lines of floodplains and main channel, and the water edges, can be obtained by interpreting satellite
images, remote sensing images or site surveys. Then, the longitudinal control lines are introduced
into quadrilateral grid generation as auxiliary lines that can control longitudinal riverway trends and
reflect transverse terrain changes. Then, by the equal cross-sectional area principle at the same water
level, all measured cross sections are reasonably fitted. On the above basis, by virtue of the fitted cross-
sectional data and the weighted distance method, the terrain interpolations along the longitudinal
grid lines are conducted to obtain the elevation data of all grid nodes. Finally, according to the
readable text formats of MIKE21 and SMS, the gridded digital terrain and connection information are
output by computer programming to achieve good construction of the data exchange channels and
fully exploit the special advantages of various software programs for digital terrain visualization and
further utilization.

Keywords: natural riverways; digital terrain reconstruction; longitudinal control lines; sparse mea-
sured cross sections

1. Introduction

In river numerical simulations, whether the elevation values at grid nodes can truth-
fully reflect the riverway terrain is very important, as it directly determines the reliability
of numerical simulation results [1–3]. In the process of riverway terrain reconstruction,
to guarantee the truth and reasonability of the reconstruction results, many types of river
numerical software are required to provide a large amount of terrain data covering the sim-
ulation areas and uniformly distributed. Due to the long terrain measurement period and
large investment, under most situations, the method of laying uniform measured points
for the whole riverway is not used in practical surveys. Generally, only the cross-sectional
terrain data with large spaces are measured [4]. If entirely relying on the interpolation
functions of conventional software to construct a riverway mode, the terrain accuracy will
be low, and the accuracy and credibility of the numerical simulation results will be difficult
to ensure. Therefore, it is necessary to explore a terrain reconstruction method for the
sparsely measured cross-sectional data.

In the early studies, many scholars were keen to develop new methods. For example,
Lin et al. [5] proposed a method of automatically reconstructing three-dimensional objects
by a series of cross sections. Hardy [6] proposed the radial basis function interpolation
algorithm, which has been widely used in many fields such as terrain modeling and digital
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approximation, but as the number of sampled points increases, the solution speed of
the radial basis function interpolation model greatly decreases. Targeting the deficiency
of the radial basis function interpolation algorithm, some scholars presented the residual
iteration method [7], quick multipolarization method [8] and partition of unity method [9],
providing quick and accurate solutions for the radial basis function interpolation model
from different aspects. Yokota et al. [10] conducted parallel processing of the radial basis
function interpolation algorithm to improve the terrain reconstruction ability. Yang et al. [11]
proposed a new method to achieve cross-sectional interpolation and evaluation deduction
by curved surface interpolation technology. A weighted interpolation algorithm was
presented by Wagner et al. [12] for reconstructing the cross-sectional profiles. Caviedes-
Voullieme et al. [13] presented a new algorithm for generating missing information between
the cross sections and the riverbed. Lebrenz and Bardossy [14] proposed a quantile kriging
interpolation method, which needs to estimate variable distribution with time at the
observed sites, as well as the marginal distribution in each predetermined time step. Due to
the unremitting efforts of the above scholars, there are many terrain reconstruction methods.
The proposal of a new method is obviously a breakthrough, but its calculational accuracy
is also worthy of paying enough attention. Therefore, some scholars strictly compare
the calculational accuracies of the existing terrain reconstruction methods. For instance,
Weber [15] believed that the interpolation effects of the radial basis function algorithm and
the inverse distance weighted method are basically the same. Kraus [16] thought that the
interpolation effect of multilayer curved surface superposition is better than that of the
binary higher-degree polynomial and spline functions. Zimmerman et al. [17] pointed out
that, without consideration of the terrain type and sampling method, the interpolation
effect of the kriging interpolation algorithm is better than that of the inverse distance
weighted method. Gichamo et al. [18] found correcting the vertical bias of elevation points
by a high-accuracy terrain model can considerably improve the cross-sectional obtainment.
Andes et al. [19] thought that the rectilinear inverse distance weighting methodology
is fairly feasible for cross-sectional interpolation. Determining the optimal algorithm is
undoubtedly an effective means to improve the calculational accuracy, but a single method
cannot meet all the needs of terrain reconstruction, because the calculational accuracy
depends not only on the algorithm itself, but also on the geomorphic type and sampling
density. Therefore, some scholars started to deeply discuss the effects of geomorphic type
and sampling density on calculational accuracy. For example, based on regular discrete
point data, by analyzing the influence of the geomorphic type, sampling density and
interpolation algorithm on the regular grid digital terrain interpolation, Aguilar et al. [20]
concluded that the effect of the geomorphic type on the digital terrain interpolation is
largest, that of the sampling density is the second, and that of the interpolation algorithm
is smallest. In addition, a few scholars focused on the application of terrain reconstruction
result. For instance, Chen et al. [21] pointed out that the appropriate use of the interpolated
cross sections can increase the precision of hydraulic river models. Florinsky et al. [22]
analyzed the spatial distribution of soil properties by the regression analysis of topographic
data. Applying elevation data and satellite remote sensing data, Sun et al. [23] established
a riverway digital elevation model using a curved orthogonal grid and calculated the silt
dash quantity of the riverway.

When the terrain data are relatively conventional, the measured point distribution is
uniform and the sampling density is large, the calculational accuracies of many ready-made
terrain reconstruction methods can meet the actual production requirements. However,
for the terrain data in natural rivers, the situation is fairly different. The terrain changes
of a natural riverway are neither isotropic nor completely anisotropic, but have very
distinct transverse and longitudinal spatial tropisms. The spatial tropisms can be indirectly
reflected by the longitudinal control lines such as the river boundaries, the thalweg, the
dividing lines of floodplains and main channel, the water edges, etc. In other words, the
longitudinal control lines have a function of controlling the longitudinal riverway trends
and reflecting the transverse terrain changes. Nevertheless, this special function of the

311



Remote Sens. 2022, 14, 1841

longitudinal control lines has not been paid enough attention by the engineering surveyors
for a long time. In all previous studies, the spatial tropisms between an interpolated
point and the adjacent elevation points have not been fully considered when constructing
the interpolation weights. Especially in a natural riverway where the transverse and
longitudinal terrain changes present obviously different spatial tropisms, if the spatial
tropisms between an interpolated point and the adjacent elevation points are not considered,
the terrain interpolation accuracy will inevitably be affected when constructing the river
digital model. Furthermore, for a natural riverway, there are only sparse measured cross-
sectional data in most situations, which often does not meet the calculational requirements
of many ready-made terrain reconstruction methods, let alone guarantee the reliabilities of
the calculated results. For the above stated reasons, a new method for quickly reconstructing
riverway digital terrains using longitudinal control lines and sparse measured cross sections
with large spaces is presented.

2. Digital Terrain Reconstruction Method

Digital terrain reconstruction for a natural riverway refers to utilizing a small number of
sparse measured cross-sectional data to generate the dense scatter terrain data of the target
riverway by an interpolation method. The method presented in this paper also belongs to this
case, and its specific process can be roughly divided into four stages (in Figure 1).

Stage 1—data preparation: the plane coordinate data of the longitudinal control lines
and the measured cross-sectional terrain data must be prepared first.

Stage 2—riverway grid generation: the longitudinal control lines are introduced into
the process of quadrilateral grid generation so that the generated grid can be well adapted to
the riverway boundary changes, controlling the longitudinal riverway trends and reflecting
the transverse terrain changes.

Stage 3—measured cross-sectional fitting: the measured cross-sectional terrain data
are used to interpolate the intersections of the measured cross sections and the longitudinal
grid lines by the equal cross-sectional area principle at a same water level and weighted
distance method to reasonably fit the measured cross sections.

Stage 4—scatter digital terrain generation: using the generalized cross-sectional data
and the weighted distance method, the elevation interpolations of all grid nodes are
conducted along longitudinal grid lines to generate the whole riverway digital terrain. The
detailed digital terrain reconstruction process can be seen in following contents.

2.1. Data Preparation

Before the digital terrain reconstruction for a natural riverway, the plane coordinate
data of the longitudinal control lines and the measured cross-sectional terrain data must be
prepared first.

The longitudinal control line data are actually a series of sequential plane control points,
which can determine the plane shapes of the longitudinal control lines and can be obtained
by interpreting satellite images, remote sensing images or site surveys [24–29]. As shown in
Figure 2, for any a longitudinal control line, the first control point and the final control point
are the intersections of the inlet measured cross section, the outlet measured cross section and
the longitudinal control line. If the effects of river control works, production dikes and other
engineering boundaries need to be considered, the positional coordinates of the engineering
boundaries should be provided. In addition, It should be pointed out that this method does
not require the acquisition of too many longitudinal control lines, but generally speaking, the
more the number of the used longitudinal control lines is, the more accurate the calculated
result is.

312



Remote Sens. 2022, 14, 1841

Figure 1. Digital terrain reconstruction process.

The measured cross-sectional terrain data mainly include the cross-sectional left and
right endpoint coordinates (the left and right sides are defined according to the flow direc-
tion), the measured point elevations and the horizontal distances between the measured
points and the corresponding left endpoint (in Figure 3).
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Figure 2. Distributions of longitudinal control lines and measured cross sections (The exemplified
riverway is located between the Three Gorges Dam and Gezhouba Dam in China and approximately
30 km in length. The distances between the adjacent sections are approximately 600~1100 m).

Figure 3. Schematic sketch of the measured cross-sectional data.

In this paper, a natural riverway, which is located between the Three Gorges Dam
and Gezhouba Dam in China and approximately 30 km in length (in Figure 2), is used
to briefly describe the digital terrain reconstruction process. In the early stage, 33 sparse
measured cross sections and 3 longitudinal control lines (the left riverway boundary, the
right riverway boundary and the thalweg) of the exemplified riverway were obtained
through peer collection, visual judgment of satellite images and field survey, therein the
distances between the adjacent measured cross sections are approximately 600~1100 m.

2.2. Riverway Grid Generation

In this paper, quadrilateral cells are used to conduct the grid generation for the
target river reach. Riverway grid generation is an important process in the digital terrain
reconstruction, and its specific process can be roughly divided into five steps.

Step 1—cumulative distance calculation for the riverway boundary control points.
Step 2—node generation for the left riverway boundary.
Step 3—node generation for the right riverway boundary.
Step 4—preliminary grid generation.
Step 5—transverse refinement for the preliminary grids.
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2.2.1. Cumulative Distance Calculation for the Riverway Boundary Control Points

For generating riverway grids, the cumulative distances of the riverway boundary
control points relative to the corresponding first control points should be firstly calculated.
Assuming that the control point number of the left riverway boundary is NL, if the cumula-
tive distance of the first control point relative to itself is recorded as 0 and the serial number
is 1, then the plane coordinates and cumulative distances of the control points on the left
riverway boundary can be combined into (xL(i), yL(i), LL(i)) where i = 1, 2, 3, . . . , NL,
therein LL(1) = 0. Similarly, assuming that the control point number of the right river-
way boundary is NR, then the plane coordinates and cumulative distances of the control
points on the right riverway boundary can be combined into (xR(i), yR(i), LR(i)) where
i = 1, 2, 3, . . . , NR, therein LR(1) = 0. Actually, for any a longitudinal control line, the
cumulative distance of the final control point relative to the first control point is equal to
the total length of the longitudinal control line, and the difference between two adjacent
cumulative distances is the distance between the two corresponding control points.

2.2.2. Node Generation for the Left Riverway Boundary

After the cumulative distances of the boundary control points relative to the corre-
sponding first control points are calculated and stored in the sequential data format, node
generation could be conducted for the left riverway boundary. Here, the fixed number
segmentation method or the fixed distance segmentation method may be selected.

Assuming the fixed number segmentation method is selected and nL is taken as
the segmentation number, then the generation step size sL along the left river boundary
is equal to LL(NL)/nL, and finally nL + 1 nodes could be generated. According to the
cumulative distances, the left riverway boundary is divided into NL − 1 cumulative distance
intervals, namely [LL(1), LL(2)], [LL(2), LL(3)], . . . , [LL(NL − 1), LL(NL)]. Then, taking the
first control point as the starting point, the stepping distances j·sL (j = 0, 1, 2, . . . , nL) along
the left riverway boundary could be successively calculated. If a stepping distance j·sL falls
in the cumulative distance interval [LL(k), LL(k + 1)], namely LL(k) ≤ j·sL ≤ LL(k + 1),
then the node coordinate (xL,node(j + 1), yL,node(j + 1)) can be calculated according to
Formulas (1) and (2).

xξ,node(j + 1) =
(j·sξ − Lξ(k))·(xξ(k + 1)− xξ(k))√

(xξ(k + 1)− xξ(k))
2 + (yξ(k + 1)− yξ(k))

2
+ xξ(k) (1)

yξ,node(j + 1) =
(j·sξ − Lξ(k))·(yξ(k + 1)− yξ(k))√

(xξ(k + 1)− xξ(k))
2 + (yξ(k + 1)− yξ(k))

2
+ yξ(k) (2)

where the subscript ξ is equal to L or R; when ξ = L, the above formulas are used to
calculate the node coordinates of the left river boundary; when ξ = R, the above formulas
are used to calculate the node coordinates of the right river boundary.

Assuming the fixed distance segmentation method is selected and L0,L is taken as
the segmentation distance, then the generation step size sL along the left river boundary
is equal to L0,L, but the generated node amount is relevant to the segmentation distance
L0,L. When the remainder of LL(NL)/L0,L is equal to 0, the fixed distance segmentation
method is equivalent to the fixed number segmentation method whose segmentation
number nL equals LL(NL)/L0,L, and finally LL(NL)/L0,L + 1 nodes could be generated,
and the node coordinates (xL,node(j + 1), yL,node(j + 1)) (j = 0, 1, 2, . . . , LL(NL)/L0,L) can
be successively calculated according to Formulas (1) and (2). When the remainder of
LL(NL)/L0,L is not equal to 0, the segmentation number nL equals [LL(NL)/L0,L] + 1
where [LL(NL)/L0,L] represents that only the integral part of LL(NL + 1)/L0,L is used, and
finally [LL(NL)/L0,L] + 2 nodes could be generated. Therein, the first [LL(NL)/L0,L] + 1
node coordinates (xL,node(j + 1), yL,node(j + 1)) ( j = 0, 1, 2, . . . , [LL(NL)/L0,L]) can be
successively calculated according to Formulas (1) and (2), and the final control point of the
left riverway boundary is actually the final node.
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2.2.3. Node Generation for the Right Riverway Boundary

The next step, node generation is conducted for the right riverway boundary. Here,
the fixed number segmentation method or the fixed distance segmentation method may
be selected. As the generated grid cells in the target river reach are quadrilateral, the
segmentation number of the right riverway boundary must be equal to that of the left
riverway boundary, namely nR = nL.

Assuming the fixed number segmentation method is selected and the segmentation
number is nR, then the generation step size sR along the right river boundary is equal to
LR(NR)/nR, and finally nR + 1 nodes could be generated. Here, the calculational method
of the node coordinates likes the left river boundary when the fixed number segmentation
method is selected. Only at this time, the subscript ξ in Formulas (1) and (2) is equal to R.

Assuming the fixed distance segmentation method is selected, then the segmentation
distance L0,R must be within [LR(NR)/nR, LR(NR)/(nR − 1)] to guarantee nR = nL, and
the generation step size sR is equal to L0,R, and finally nR + 1 nodes are generated. If
L0,R = LR(NR)/nR, the calculational method of the node coordinates likes the left river
boundary when the fixed distance segmentation method is selected and the remainder
of LL(NL)/L0,L is equal to 0. If LR(NR)/nR < L0,R < LR(NR)/(nR − 1), the calculational
method of the node coordinates likes the left river boundary when the fixed distance
segmentation method is selected and the remainder of LL(NL)/L0,L is not equal to 0.

2.2.4. Preliminary Grid Generation

After the node generation of the riverway boundaries, the corresponding nodes on the
left and right riverway boundaries are first connected along the transverse directions. Then,
the intersection coordinates of the connected line segments and the thalweg are calculated
to complete the node generation of the thalweg. Finally, the generated nodes are connected
successively along the longitudinal direction. At this point, the preliminary quadrilateral grid
generation in the target reach is completed. However, due to the small number of longitudinal
control lines, the transverse spaces of the longitudinal grid lines are large (in Figure 4).

Figure 4. Preliminary generation result of quadrilateral grids (In the exemplified preliminary grid
generation, the fixed number segmentation method is applied to the riverway boundaries).

2.2.5. Transverse Refinement for the Preliminary Grids

To decrease the transverse spaces between adjacent longitudinal grid lines, the trans-
verse line segments between adjacent longitudinal grid lines must be subdivided. To ensure
a uniform transverse density of the generated grids, the transverse line segments between
any two adjacent longitudinal grid lines must be divided by the fixed number segmentation
method. The segmentation numbers between different adjacent longitudinal grid lines can
be different, but those between the same adjacent longitudinal grid lines must be the same,
and the specific values should be determined according to the transverse spaces between
the adjacent longitudinal grid lines. The larger the transverse spaces are, the larger the
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segmentation numbers should be. Then, the newly added nodes are successively connected
along the longitudinal direction. After the adding line operations are conducted in the
regions between any two adjacent longitudinal grid lines, the transverse refinement of the
preliminary generation result is completed (in Figure 5).

Figure 5. Transverse refinement effect of the preliminary grids and elevation interpolation schematic
by the weighted distance method (In the process of the illustrative transverse refinement, the trans-
verse segmentation numbers between the adjacent longitudinal control lines from the left side to
right side are all 10).

2.3. Measured Cross-Sectional Fitting

After the grid generation in the target river reach is completed, the intersection coordi-
nates of each measured cross section and the longitudinal grid lines could be calculated
and translated into the horizontal distances relative to the measured cross-sectional left
endpoint. Then, the measured cross-sectional data are used to interpolate the intersections
of the measured cross sections and the longitudinal grid lines by the weighted distance
method to reasonably fit the measured cross sections (Figure 6 only shows the 22nd cross
section). The weighted distance method is an interpolation method based on the similarity
principle, and it constructs the interpolation weights by the distances between the interpo-
lated point and the sampled points. The shorter the distance between the interpolated point
and a sampled point is, the greater the weight granted by the sampled point. In this step,
the specific interpolation process is as follows: As shown in Figure 5, for a cross-sectional
fitted point A and two measured points B and C, which are located in the same cross section
as that of point A and are closest to point A, if the elevations of points B and C are zB and
zC, and the distances between A and points B and C are, respectively, dAB and dAC, then
the elevation zA of point A can be calculated according to Formula (3).

zA = dAC·zB/(dAB + dAC) + dAB·zC/(dAB + dAC) (3)
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Figure 6. Measured cross-sectional fitting.

The rationality of measured cross-sectional fittings directly determines the accuracy
of the reconstructed riverway digital terrain. The most ideal situation is that the fitted
shapes of the measured cross sections are entirely consistent with the actual cross-sectional
terrains. In other words, at th same water level, a fitted cross section and the corresponding
measured cross section have same cross-sectional parameters (mainly including cross-
sectional area, wetted perimeter, hydraulic radius, water surface width and average water
depth), which is referred to as the equal cross-sectional area principle. The good or bad
actual fitting effects are directly relevant to the selective rationality of the longitudinal
control lines and the transverse spaces of the generated grids. When the selection of the
longitudinal control lines in a target riverway is reasonable and the transverse spaces
of the generated grids are small, the fitted cross sections are usually close to the actual
cross-sectional terrain. If judging the rationality of the fitted cross sections is necessary,
the cross-sectional parameters of the measured cross sections and the fitted cross sections
under a series of water level conditions can be calculated for comparison.

2.4. Scatter Digital Terrain Generation

After the measured cross sections are reasonably fitted, the elevation interpolations
of the grid nodes can be conducted along the longitudinal grid lines by the adjacent fitted
cross sections and the weighted distance method, and the whole riverway digital terrain
can be generated (in Figure 7). In this step, the specific interpolation process is as follows:
As shown in Figure 5, assuming that the interpolated grid node is D, the two cross-sectional
fitted points with known elevations and the closest longitudinal distances relative to point
D are E and F, and point D is located in the middle of points E and F, and the elevations
of points E and F are, respectively, zE and zF, and the longitudinal distances between D
and points E and F are, respectively, dDE and dDF, then the elevation zD of point D can be
calculated according to Formula (4).

zD = dDF·zE/(dDE + dDF) + dDE·zF/(dDE + dDF) (4)

Figure 7. Riverway scattered digital terrain.
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3. Comparisons between the Measured and Calculated Results

To verify the reasonableness of the calculated results, authors conducted a supplemen-
tary measurement for the actual terrains of the three verified cross sections
(in Figure 7). Through a comparison of the calculated results with the measured results
of the three verified cross sections, it can be found that the calculated results are be close
to the measured results in cross-sectional shape, and the relative errors (relative error =
|calculated X − measured X|/measured X) of the calculated cross-sectional areas and the
calculated wetted perimeters may reach more than 40% at a low water level, but smaller
than 5% at a moderate water level (in Figure 8). In river simulation, if the relative error
between the constructed riverway model and the actual terrain is not more than 5%, we
usually believe that the constructed river model meets the calculational accuracy require-
ments [23,30]. This means that at a moderate water level, the method presented in this
paper is accurate enough to meet the terrain accuracy requirements in actual production.
For the exemplified riverway, why the relative errors of the calculated results are large at a
low water level is due to the small number of the used longitudinal control lines and the
large grid spaces. In this paper, three longitudinal control lines and large spaces are used
for the riverway grid generation only to clarify the specific principle of the digital terrain
reconstruction method in a concise way. In practical applications, if conditions permit,
we should try our best to increase the numbers of the longitudinal control lines and the
measured cross sections and choose small grid spaces as far as possible, which can further
improve the calculational accuracy.

Figure 8. Comparisons between the measured and calculated results related to cross-sectional
shape, wetted perimeter and cross-sectional area ((a) corresponding to the verified cross section 1;
(b) corresponding to the verified cross section 2; (c) corresponding to the verified cross section 3).
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4. Digital Terrain Applications

According to the readable text formats of MIKE21 and SMS, the gridded digital terrain
and connection information are output by computer programming (such as Fortran, MATLAB,
Python, etc.) to achieve good construction of the data exchange channels and fully exploit the
special advantages of various software programs for digital terrain utilization.

4.1. Meshing Digital Terrain for MIKE21

MIKE is a flow simulation module developed by the Danish DHI Company that
combines the widely used MIKE11 and MIKE21. MIKE21 is applicable to the argumentation
and analysis of macroscopic watershed control engineering, the research on watershed
flood dispatching, microscopic flow simulation and other fields. The common grid types
include quadrilateral grids. The extension of the MIKE21 quadrilateral grid file is “mesh”,
and its internal data include the node header line, the node lines, the cell header line, and
the cell lines. The node header line is further divided into the entry type with integer form,
the entry unit with integer form, the node amount and the character string of the projection
type. The entry type is elevation, and its integer form is “100079”. The entry unit is the
elevation unit, and the integer form “1000” indicates that the elevation values are stored in
the z-coordinates and that their units are all meters. The third integer in the node header
line is the node amount. The final string “NON-UTM” is the projection type. Each node
line represents a node, and the total number of node lines is the same as the node amount
in the node header line. The information of each node line includes the node number, x, y,
z and boundary code. A boundary code of “0” represents the internal node, “1” represents
the water-land boundary, “2” represents the inlet boundary, and “3” represents the outlet
boundary. The three numbers in the cell header line indicate the cell amount, the maximum
node amount in a single cell, and the cell type code (“25” represents a quadrilateral cell).
Each cell line represents a cell, and the total number of cell lines is the same as the cell
amount defined in the cell header line. The information in each cell line includes the cell
number and the node numbers that constitute the cell.

To use the generated riverway terrain in the hydrodynamic module of MIKE21, it
must be saved in the readable grid format of MIKE21 by computer programming. In the
specific grid transformation process, the coding rules of the nodes and cells comply with
the rules shown in Figure 9 (the bold values in the figure are the cell numbers, and the
values at the four corners of the bold values are the node numbers). The node codes and
the cell codes are conducted from the riverway inlet to the outlet along the longitudinal
grid line, and the transverse output sequence starts from the left bank of the riverway and
ends at the right bank. Assume that the number of generated longitudinal grid lines is m,
the number of generated transverse grid lines is n, the numbering sequence of longitudinal
grid lines is from left to right, and the numbering sequence of transverse grid lines is from
the inlet to the outlet (in Figure 9). When each longitudinal grid line is regarded as a row,
each transverse grid line is regarded as a column, the row number is indicated by i, the
column number is indicated by j, and the cell is indicated by the combination (i, j) of the
smallest row number and the smallest column number of its four vertices, then a one-to-one
correspondence exists among the cell number, the node numbers constituting the cell, and
the transverse and longitudinal grid line numbers. As shown in Figure 10, when the row
and column number combination of a certain cell is (i, j) where i = 1, 2, . . . , m − 1 and j = 1,
2, . . . , n − 1, the cell number is calculated as (i − 1)·(n − 1) + j. If the nodes constituting
the cell are recorded as 1©, 2©, 3©, and 4© along the counterclockwise direction, then the
node numbers can be calculated according to formula sets (5). If the cell number is N, the
row and column number combination (i, j) of the cell can also be calculated, where i is the
minimum integer not less than N/(n − 1), and j equals N − (i − 1)·(n − 1). After i and j are
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calculated, the corresponding node numbers can be obtained by substituting i and j into
formula sets (5). ⎧⎪⎪⎨⎪⎪⎩

: j + (i − 1)·n
: j + i·n

: j + 1 + i·n
: j + 1 + (i − 1)·n

(5)

Figure 9. Coding rules of nodes and cells in the MIKE21 quadrilateral grid file (The rows marked “1,
2, . . . , m” represent longitudinal grid lines; the columns marked “1, 2, . . . , n” represent longitudinal
grid lines; the bold values in the figure are the cell numbers; and the values at the four corners of the
bold values are the node numbers.).

Figure 10. Numbering calculation of nodes constituting a MIKE21 quadrilateral grid cell (“i” and
“i + 1” represent the serial numbers of the adjacent longitudinal grid lines; “j” and “j + 1” represent
the serial numbers of the adjacent transverse grid lines; the cell serial number is marked by the
combination (i, j); and “ 1©~ 4©” are the node numbers constituting the cell).

When the readable grid file of MIKE21 is generated using the above rules by means of
computer programming, it can be imported into the hydrodynamic module of MIKE21 to
conduct the numerical simulation. After the grid file is imported into the stated module,
the colored terrain map is as shown in Figure 11.

4.2. Meshing Digital Terrain for SMS

The surface water modeling system (referred to as SMS) is a business software program
jointly developed by the United States Army Corps of Engineers Hydraulics Laboratory and
Brigham Young University. Its quadrilateral grid file extension is “2 dm”, and its internal
data mainly include a cell line, node line and node strings indicating the open boundaries
(inlet and outlet boundaries). The cell lines begin with “E8Q” and are followed by the
cell number, the node numbers constituting the cell (a quadrilateral cell in SMS consists
of eight nodes—four vertices and the midpoints of four edges) and the material number.
Each node line begins with “ND” and is followed by the node number, x and y coordinates,
and elevation. The node strings indicating the open boundaries begin with “NS” and are
followed by the node numbers of constituting the node strings. The numbering sequence
generally starts from the right bank of the riverway and ends with a negative number.
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Figure 11. Terrain colored map based on MIKE21.

To use the generated riverway terrain in the two-dimensional flow and sediment
transport module of SMS, it must be saved in the readable grid format of SMS by computer
programming. However, since a quadrilateral cell in the SMS readable grid format includes
eight nodes (four vertices and the midpoints of four edges), only the vertex coordinates of
the quadrilateral grid cells are obtained by the abovementioned method. Therefore, before
grid conversion, the midpoint coordinates of the corresponding edges should be calculated
based on the vertex coordinates of the quadrilateral grid cells. During the specific grid
conversion, the coding rules of the nodes and cells can comply with the rules shown in
Figure 12 (the bold values in the figure are the cell numbers, and the values around the bold
values are the node numbers): First, the vertexes of each quadrilateral grid cell are encoded;
second, the midpoints of the transverse edges are encoded; and finally, the midpoints of the
longitudinal edges are encoded. The vertex codes and the midpoint codes of the transverse
edges are conducted from the riverway inlet to the outlet along the longitudinal grid lines,
and the transverse output sequence starts from the left bank and ends at the right bank.
The midpoint codes of the longitudinal edges are conducted from the riverway left bank
to the right bank along the transverse grid lines, and the longitudinal output sequence
starts from the riverway inlet and ends at the outlet. The cell codes between two adjacent
longitudinal grid lines start from the riverway inlet and end at the riverway outlet, and the
transverse output sequence is from left to right along the transverse grid lines. Assume that
the number of generated longitudinal grid lines is m, the number of generated transverse
grid lines is n, the numbering sequence of longitudinal grid lines is from left to right, and
the numbering sequence of the transverse grid lines is from the riverway inlet to the outlet
(in Figure 12). If each longitudinal grid line is regarded as a row, each transverse grid line
is regarded as a column, the row number is marked with i, the column number is marked
with j, and the cell is marked by the combination (i, j) of the smallest row number and
the smallest column number of its four vertices, then a one-to-one correspondence exists
among the cell number, the node numbers constituting the cell, and the transverse and
longitudinal grid line numbers. As shown in Figure 13, when the row and column number
combination of a certain cell is (i, j) where i = 1, 2, . . . , m − 1 and j = 1, 2, . . . , n − 1, then
the cell number is calculated as (i − 1)·(n − 1) + j. If the nodes constituting the cell are
recorded as 1©, 2©, 3©, 4©, 5©, 6©, 7© and 8© along the counterclockwise direction, then the
numbers can be calculated according to formula sets (6). If a cell number is known as N,
the row and column number combination (i, j) of the cell can also be calculated, where i is
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the smallest integer not less than N/(n − 1) and j equals N − (i − 1)·(n − 1). After i and j
are calculated, the corresponding node numbers can be obtained by substituting i and j
into formula sets (6). ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

: j + (i − 1)·n
: m·n + j + (i − 1)·n

: j + i·n
: m·n + (m − 1)·n + i − 1 + (j − 1)·m

: j + 1 + i·n
: m·n + j + 1 + (i − 1)·n

: j + 1 + (i − 1)·n
: m·n + (m − 1)·n + i + (j − 1)·m

(6)

Figure 12. Coding rules of nodes and cells of the SMS quadrilateral grid file (The rows marked
“1, 2, . . . , m” represent longitudinal grid lines; the columns marked “1, 2, . . . , n” represent longitu-
dinal grid lines; the bold values in the figure are the cell numbers; and the values around the bold
values are the node numbers).

Using the above rules, after the readable grid file is generated by computer program-
ming, it can be imported into the two-dimensional flow and sediment transport module of
SMS to conduct the numerical simulation. After the grid file is imported into the stated
module, the three-dimensional riverway grid can be obtained as shown in Figure 14.

Figure 13. Numbering calculation of nodes constituting an SMS quadrilateral grid cell (“i” and
“i + 1” represent the serial numbers of the adjacent longitudinal grid lines; “j” and “j + 1” represent the
serial numbers of the adjacent transverse grid lines; the cell serial number is marked by the combination
(i, j); and “ 1©~ 8©” are the node numbers constituting the cell).
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Figure 14. Three-dimensional riverway grids based on SMS.

5. Conclusions

A new method for digital terrain reconstruction using longitudinal control lines and
sparse measured cross sections with large spaces is presented. Through interpreting satellite
images, remote sensing images or site surveys, the longitudinal control lines such as the
river boundaries, the thalweg, the dividing lines of floodplains and main channel, the
water edges, etc., can be obtained. Then, the longitudinal control lines are introduced into
quadrilateral grid generation as auxiliary lines that can control longitudinal riverway trends
and reflect transverse terrain changes. Then, using the equal cross-sectional area principle
at a same water level and the weighted distance method, the elevation interpolations
for the intersections of the measured cross sections and the longitudinal grid lines are
carried out to reasonably fit the measured cross sections. On the above basis, the weighted
distance method is used to interpolate all the grid nodes along longitudinal grid lines
based on the fitted cross-sectional terrain data. Furthermore, the terrain elevations and
connection information at the interpolated grid nodes can be output and integrated by
computer programming according to the readable text formats of MIKE21, SMS or other
software to achieve good construction of the data exchange channels and fully exploit
the special advantages of various software programs for digital terrain visualization and
further utilization. Overall, the physical conception of the digital terrain reconstruction
method is clear, its implementation is simple and effective, and it is widely applicable to
the digital terrain reconstructions in natural riverways using longitudinal control lines and
sparse measured cross sections with large spaces.
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Abstract: The classification accuracy of ground objects is improved due to the combined use of the
same scene data collected by different sensors. We propose to fuse the spatial planar distribution
and spectral information of the hyperspectral images (HSIs) with the spatial 3D information of the
objects captured by light detection and ranging (LiDAR). In this paper, we use the optimized spatial
gradient transfer method for data fusion, which can effectively solve the strong heterogeneity of
heterogeneous data fusion. The entropy rate superpixel segmentation algorithm over-segments
HSI and LiDAR to extract local spatial and elevation information, and a Gaussian density-based
regularization strategy normalizes the local spatial and elevation information. Then, the spatial
gradient transfer model and l1-total variation minimization are introduced to realize the fusion of
local multi-attribute features of different sources, and fully exploit the complementary information of
different features for the description of ground objects. Finally, the fused local spatial features are
reconstructed into a guided image, and the guided filtering acts on each dimension of the original
HSI, so that the output maintains the complete spectral information and detailed changes of the
spatial fusion features. It is worth mentioning that we have carried out two versions of expansion on
the basis of the proposed method to improve the joint utilization of multi-source data. Experimental
results on two real datasets indicated that the fused features of the proposed method have a better
effect on ground object classification than the mainstream stacking or cascade fusion methods.

Keywords: data fusion; gradient transfer; superpixel; hyperspectral image; LiDAR data

1. Introduction

The development of remote sensing sensor technology makes it possible to obtain
different types (e.g., hyperspectral image (HSI) and LiDAR) of remote sensing data in the
same observation scene, which can capture a full range of identification information of
ground coverings in the scene. A hyperspectral image (HSI) can provide rich spectral
information for several materials; its high spectral resolution is conducive to distinguishing
subtle spectral differences, and thus, making it widely used to identify and classify ground
coverings [1–3]. However, the types of ground coverings are often complex, which leads to
the phenomenon of the “same spectrum corresponds to multiple ground coverings” [4,5].
And HSI is a spatial flat spectral image degenerated from the real 3D spatial scene; thus,
the height information of the observation area is lost. By contrast, LiDAR can obtain the
digital surface model (DSM) information of the study area and is not easily restricted by
weather or light [6,7]. Therefore, compared with a single data source, effectively combining
HSI and LiDAR data and making full use of the complementary advantages of the two will
greatly improve the accuracy of ground covering recognition [8,9].

In recent years, many supervised paradigm spectral classifiers have been developed
to perform HSI classification tasks, such as the widely used support vector machine
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(SVM) [10,11], multinomial logistic regression classifier [12,13] and artificial immune net-
work (AIN) [14]. Although these classifiers can effectively use the spectral information of
HSI, they ignore the spatial context information of the pixels. To address this issue, many
scholars have proposed a variety of classification methods based on spatial-spectral feature
extraction [15–17]. In fact, these spectral-spatial classification methods are dedicated to
extracting highly discriminative spatial-spectral features to improve classification accuracy
further. For example, Wang et al. [18] design an extremely lightweight, non-deep parallel
network (HyperLiteNet) that independently extracts and optimizes diverse and divergent
spatial and spectral features. In [19], the adaptive sparse representation algorithm obtains
the sparse coefficients of the multi-feature matrix for HSI classification, and these features
reflect different kinds of spectral and spatial information. Furthermore, a Global Consistent
Graph Convolutional Network(GCGCN) is proposed in [20], which uses graph topology
consistent connectivity to explore adaptive global high-order neighbors to capture under-
lying rich spatial contextual information. The multiway attention mechanism has been
successfully applied to HSI analysis due to the inspiration of the attention mechanism of the
human visual system [21]. In addition to the above spatial-spectral classification methods,
other useful techniques have been encouraged for hyperspectral classification, such as
Markov random fields [22,23], collaborative representation [24,25] and edge-preserving
filtering [26,27].

As the requirements for the classification of remote sensing scenes continue to increase,
it is difficult for the single HSI data to meet the current interpretation task of ground
coverings [28–30]. Although HSI data can provide rich diagnostic information (spectral
features) for the identification of ground covering, it is limited by its low spatial resolution
characteristics, resulting in a performance bottleneck in the classification model. LiDAR
is a kind of digital image formed by digital surface model (DSM), which contains richer
spatial detail information. In fact, many studies have demonstrated that the interpretation
results of the gorund coverings are more accurate and stable by effectively combining the
complementary strengths of HSI and LiDAR information [31,32]. For instance, Jia et al. was
proposed a multiple feature-based superpixel-level decision fusion (MFSuDF) method for
HSIs and LiDAR data classification. The motivation behind the MFSuDF is to considers
the magnitude and phase information to obtain discriminative Gabor characteristics of
the stacked matrix of HSI and LiDAR. Chen et al. [32] used dual convolutional neural
networks (CNNs) to extract features from HSI and LiDAR data and a fully connected (FC)
network to fuse the extracted features. These fusion models can extract robust features, but
the fusion of HSI and LiDAR data still has many problems that should be explored in depth.
Recently, the more popular fusion models adopt the method of features cascade or stacking,
which ignores the difference in physical meaning and quantification range of different
types of features and cannot encourage complementary information in the description of
objects. Furthermore, the stacking mode may lead to information redundancy and Hughes
phenomenon, especially in the case of small samples, overfitting may occur.

In the remote sensing community, the superpixel segmentation algorithm as a tech-
nique for clustering pixels based on dominant features (such as image color and brightness)
has been widely used to extract the local spatial structure information of the pixels [33].
Some new technologies [34,35] that combine the spatial characteristics of superpixels have
been proven successful in multi-source remote sensing data fusion tasks and improving
the accuracy of ground object interpretation. Furthermore, Jiang et al. [36] introduced a
superpixel principal component algorithm (SuperPCA) for HSI classification, which incor-
porated spatial context information into a superpixel to eliminate the difference of spatial
projection between homogeneous regions. In [37], Zhang et al. constructed local-global
features by improving the SuperPCA and reconstructed each pixel by exploiting the nearest
neighbor pixels in the same superpixel to eliminate noise.

Strong isomerism of features limits the performance of feature fusion classification for
heterologous data. The widely used stacking or cascading data fusion methods ignore the
problems of different physical meanings, different data forms, and high feature dimensions
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describing the same scene with heterogeneous data. Therefore, the fusion method of
stacking heterogeneous data cannot effectively achieve complementary information fusion.
The basic motivation behind this paper is to use mathematical optimization to fuse the
elevation information of single-band LiDAR with the spatial information of hyperspectral
images for local feature fusion, which overcomes the high-order nonlinear phenomenon
of multi-sensor data space and improves the information fusion performance of multi-
dimensional heterogeneous feature discrimination of ground objects.

Specifically, the entropy rate superpixel segmentation algorithm over-segments HSI
and LiDAR to extract local spatial and elevation information, and a Gaussian density-
based regularization strategy normalizes the local spatial and elevation information. Then,
the spatial gradient transfer model and l1-total variation minimization are introduced to
realize the fusion of local multi-attribute features of different sources, and fully exploit
the complementary information of different features for the description of ground objects.
Finally, the fused local spatial features are reconstructed into a guided image, and the
guided filtering acts on each dimension of the original HSI, so that the output maintains
the complete spectral information and detailed changes of the spatial fusion features.

In addition, Figure 1a gives the part of the first principal component of the Houston
data set. Figure 1b depicts LiDAR data, which contain distinct boundary and objects
elevation information. Figure 1c simulates a fusion image obtaining by a stack-based fusion
method. Figure 1d is the fusion result of the proposed OSGT algorithm. It can be seen
from Figure 1 that the proposed OSGT method can capture more detailed spatial structure
information than the stack-based fusion method. Specifically, the main contributions of the
proposed OSGT method are summarized as follows.

1. We define homogeneous region fusion between PC and LiDAR data as a mathematical
optimization problem and introduce the gradient transfer model to fuse spectral and
DSM information from various superpixel blocks for the first time. It is found that the
model can alleviate the heterogeneity of different sources of remote sensing data by
optimizing the objective function.

2. The l1-total variation minimization is designed to fuse information between the PC
and DSM within each superpixel block to accurately describe the observed details.
It is found that the problem of HSI weak boundary affected by the weather can be
effectively overcome.

3. The proposed OSGT algorithm can fully extract the complementary features in the ho-
mogeneous regions corresponding to HSI and LiDAR to further promote classification
of ground coverings competitive methods.

Figure 1. Schematic illustration of image fusion. (a) The first PC of the Houston dataset. (b) LiDAR
data. (c) The fusion result of stacking method. (d) OSGT-based fusion image.

The rest of this paper is organized as follows. The entropy rate superpixel (ERS) and
guided filter (GuF) are reviewed in Section 2, and the proposed OSGF method for HSI and
LiDAR data classification is introduced in Section 3. In Section 4, the experimental setup
and results are described. Finally, the conclusions of our research are presented in Section 5.
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2. Related Work

This section briefly describes some related algorithms, i.e., entropy rate superpixel
(ERS), Guided Filtering (GuF). These algorithms play a relevant role in the design of the
proposed method.

2.1. Entropy Rate Superpixel (ERS)

Entropy rate superpixel (ERS) [38] is an efficient graph-based over-segmentation
method that generates a graph topology of Ns connected subgraphs corresponding to
homogeneous superpixels by maximizing the objective function containing an entropy rate
term and a balancing term. The ERS method maps the image to a weighted undirected
graph G = (V, E), where the node set V and the edge weight E are the pixels of the image
and the pairwise similarity given by the similarity matrix, respectively.

Consequently, the segmentation is formulated as a graph division problem, where
V is divided into a series of disjoint sets S = [S1, S2, . . . , SNA ], in which the intersection
of any two subsets is empty, and the union of all subsets is equal to V. When selecting a
subset A of E from G = (V, E) is finished, an undirected graph composed of Ns subgraphs
G

′
= (V, A) is generated. The segmentation problem is formulated as maximizing the

following objective function:

max
A

H(A) + λB(A) s.t. A ⊆ E (1)

where H(A) is the entropy rate of the random walk encouraging uniform and compacting
clusters, B(A) represents the balance term controlling clusters with similar sizes, and λ
refers to the weight of the constrained entropy rate term and the balance term.

2.2. Guided Filtering

Guided filtering (GuF) [39] is an edge-preserving smoothing filter based on a local
linear model. It has been successfully applied to various computer vision tasks, such as
image edge smoothing [40], detail enhancement [41], and image fusion denoising [42]. The
GuF typically uses a guided image to filter the input image. The output image contains the
global features of the input image and the detailed changes of the guided image. The input
image and the guided image are denoted as g and I, respectively. The output image is then
defined as

t = Φg f (g, I, r, ξ) (2)

where r is the filter window size, and ξ is the normalization parameter. g is a two-
dimensional function whose output is linearly related to the guide input:

ti = ak Ii + bk, ∀i ∈ wk (3)

where wk is a square window with radius r and the linear factors ak and bk are fixed values.
The gradient of the output image is taken, ∇t = a∇I. Therefore, if the guiding image has
gradient property, the output image will also encourage the gradient. This is the reason
why the GuF can smooth the background and maintain the high quality of the edge. The
optimal linear factor ak and bk are obtained by minimizing the following cost function:

E(ak, bk) = ∑
i∈wk

[
(ak Ik + bk − gi)

2 + ξa2
k

]
(4)

where ε is the adjustment parameter of ak. The linear regression analysis method [43] is
selected, and the optimal solution expression is written as:

ak =

1
|w| ∑

i∈wk

Ii gi−μk gk

σ2+ξ
(5)

bk = gk − akμk (6)

329



Remote Sens. 2022, 14, 1814

where |w| is the number of pixels in wk, σ2
k and μk are the variance and mean of I in wk,

respectively. Similarly, gk is the mean value of g in the window. Considering that pixel i
may be contained in many windows, the linear coefficients calculated in different windows
are divergent and, thus, the average value of ak and bk in the window centered on pixel i is
obtained. The output image is then formulated as follows:

ti =
1
|w| ∑

k,i∈w
(ak Ii + bk) = ai Ii + bi (7)

3. Proposed Approach

In this section, we introduce in detail the architectural steps of the proposed OSGT
method for the classification of HSI and LiDAR data. The overall summary of the OSGT
method is shown in Figure 2, A pseudo-code of our newly developed OSGT is given in
Algorithm 1, and the specific steps are shown below.

Figure 2. Outline of the proposed OSGT method for hyperspectral and LiDAR data classification.

Algorithm 1: OSGT.
Inputs: the HSI H; LiDAR data L; the number of superpixel Ns; the control
parameter λ; the training set T; and test set t;

Outputs: Classification result;
1. Superpixel Oversegmentation

Obtain Hs and Ls based on PCA for H and L, by Equation (1)
For i = 1:Ns

Regularization strategy transforms Si and Ii into Xi and Yi
End

2. optimize spatial gradient transfer algorithm

For i = 1:Ns
Determine y∗i , by Equations (8)–(12)
Obtain the fused superpixel blocks f ∗i = y∗i + vi
Reconstruct the fused superpixel blocks

End for

Generate the fused image F
3. Classification

Use F as the guided image to filter H, by Equation (13)
Apply SVM to classify

3.1. Oversegmentation

The hyperspectral cube H ∈ R
M×N×B is composed of hundreds of continuous spec-

tral bands. M, N, and B are the numbers of image rows, columns, and spectral chan-
nels, respectively. We have an observed 3D hyperspectral dataset in the 2D matrix form,
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Hx∈D×B(D = M × N), in which each column represents a pixel vector. Similarly, let
L ∈ R

M×N denote the LiDAR data.
The superpixel segmentation algorithm divides the target image into many disjointed

regions. The samples in each region have the same or similar texture, color, and brightness.
Assuming that the number of superpixels is Ns, the oversegmented images of the first
principal component of H and L are Hs = {S1, S2, . . . , SNs} and Ls = {I1, I2, . . . , INs},
where Si and Ii represent the superpixel blocks of H and L, respectively.

In order to alleviate the problem of the weak boundary of the super pixel, and the
negative influence of the weak boundary on the edge gradient of the super pixel. As
shown in Figure 3, a local space mean regularization strategy based on Gaussian density
is designed. Specifically, the Gaussian kernel function calculates the samples density
of Si and Ii to describe the information between adjacent samples, and then averages
the Gaussian density to fill the irregular Si and Ii into regular matrix (i.e., Xi and Yi,
i ∈ {1, 2, . . . , Ns}), which not only maintains the spatial information of the superpixels but
also avoids excessive edge gradient.

Figure 3. A local spatial mean regularization strategy based on Gaussian density.

3.2. The Proposed OSGT Method

(1) Superpixel-guided gradient transfer fusion: The goal that the superpixel block
Xi of HSI and the superpixel block Yi of LiDAR fuse is to generate a fusion image that
contains both spectral information and elevation features. Xi, Yi and the fusion result can
be regarded as grayscale images with a scale of m × n, and their column vector forms are
represented by ui, vi, fi∈ R

mn×1, respectively.
HSI contains dense spectral information and scene detail information, and its high

spectral resolution is conducive to distinguish the difference of different materials, which
restricts the fusion result fi should have similar pixel intensity to ui. For the empirical error
measured by lp norm should be as small as possible.

Λ1( fi) =
1
p
‖ fi − ui‖p (8)

The spatial dimension data of HSI is actually a 2-D image, but fusion image showing
the 3-D spatial information of the observation area is necessary based on the importance of
visual perception. The gray value of each point in the LiDAR image reflects the elevation
information of the point and hence, we design fusion image fi to maintain similar pixel
gradients instead of intensity to vi. For this, the error that is measured by lq norm must be
as small as possible and is as follows:

Λ2( fi) =
1
q
‖∇( fi)−∇(vi)‖q (9)

We define the fusion problem of superpixel blocks Xi and Yi as minimizing the follow-
ing objective function:

Λ( fi) =
1
p‖ fi − ui‖p + λ 1

q‖∇( fi)−∇(vi)‖q (10)
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Here, the first term of the objective function is the data fidelity term, which indicates
that fi should have the same pixel intensity as ui. The second term is the regularization term,
which guarantees the same gradient information of fi and vi. λ is the control parameter that
constrains the data fidelity term and regularization term. The objective function transfers
the gradient information or elevation information of Yi to the corresponding position in Xi.

(2) Total variation minimization: When the relationship between the fusion image
and the constraint target is Gaussian, the l2 norm is appropriate. However, We expect that
the fusion result will be encouraged to retain more features of Xi, as HSI exhibits texture
features and spatial features, etc. besides spectral information. Therefore, most entries of fi
and ui should be the identical. Only several entries are relatively large due to the gradient
transfer of vi, so here (p = 1) is the appropriate choice in this paper. In contrast, enhancing
the sparsity of LiDAR image gradients can rely on minimizing LiDAR image l0, i.e., (q = 0).
However, the l0 norm is NP-hard; thus, we replace l0 with l1, implying that q = 1.

Let yi = fi − vi, the optimization problem (10) can be rewritten as:

y∗i = arg min
yi

{
mn
∑

j=1

∣∣yij −
(
uij − vij

)∣∣+ λJ(yi)

}
(11)

J(yi) =
mn
∑

j=1

∣∣∇ijyi
∣∣ = ∑mn

j=1

√(
∇h

ijyi

)2
+
(
∇v

ijyi

)2
(12)

where |a| =
√

a2
1 + a2

2 for every a = (a1, a2) ∈ R
2. ∇h

ij and ∇v
ij represent the horizontal and

vertical gradients of pixel j, respectively. The objective function in Equation (11) is solved
directly using the proposed algorithm in [44]. y∗ is obtained by optimizing Equation (11)
using the technique of l1-TV minimization; thus, the target fusion outcome f ∗i is decided
by f ∗i = y∗i + vi.

(3) Compute the global optimal solution: Ns hyperspectral image superpixel blocks Xi
and LiDAR data superpixel blocks Yi have been obtained in Section 3.1 . The total variable
minimization method optimizes the objective function to fuse superpixel pairs. We denote
by
{

f ∗1 , f ∗2 , . . . , f ∗i , . . . , f ∗Ns

}
the column-vector form of the fusion result set of Ns superpixel

pairs, and the regular matrix form of the fusion result is expressed as {r1, r2, . . . , ri, . . . , rNs}.
We perform superpixel refactor technology. Specifically, the position information of each
pixel of Si and Ii is used to select the pixel of the corresponding position in ri, and then
an irregular superpixel block with the same size as the superpixel Si and Ii is obtained.
Finally, the Ns inverted superpixel blocks are combined into a global fusion image F, where
F ∈ R

M×N .

3.3. Classification for HSI and LiDAR Data

One of the important factors affecting the filtering result is the guiding image, and the
gradient of the output image obtained by guiding filtering is completely determined by the
gradient of the guiding image.

In Section 3.2, the proposed method fuses HSI and LiDAR into a single-band image
F. To some extent, it can be considered that the proposed method transfers the elevation
information of the LiDAR data to the corresponding position of the HSI. Therefore, the
fused image looks like the first principal component of HSI, but supplements the spatial
detail information and cloud occlusion information to make the boundary contour of the
object of interest more complete.

We choose the fusion image F as the guiding image, and the original hyperspectral
image H as the guiding filter input. Specifically, given the guiding filter window radius r,
and the filter ambiguity ξ, we can obtain the following filtering equation:

FH = GFr,ξ(H, F) (13)
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The filtered output can preserve the overall features of the input image and the
detailed changes of the guided image through the adjustment of related parameters. It is
worth mentioning that the samples in Figure 4 are closer to each other than the samples
in Figure 4a, which indicates that the samples in Figure 4b have a higher quality. The
structure transfer characteristics of the guided filtering can eliminate edge blocking effects
and enhance the ability of feature expression. The filtered features are passed through the
SVM classifier to obtain the final classification result.

Figure 4. Spectral characteristics (a) before and (b) after Guided filtering. We take class Railway in
Houston dataset for example.

3.4. Extension Method

In this section, the two extended methods we propose are implemented from the
perspectives of band fusion to reduce data dimensionality and multi-branch to enrich
detailed information, respectively.

(1) We propose an optimized spatial gradient fusion algorithm based on band group-
ing cooperation aiming to reduce dimensionality while maintaining the physical properties
of the data. Since the adjacent bands of hyperspectral image are redundant and highly
correlated, the fusion operation can reduce dimensionality and reduce image noise. Specifi-
cally, BG-OSGT does not change the main algorithm structure of OSGT. It divides and fuses
the filter result graph obtained by the OSGT algorithm instead of directly using SVM for
classification. In Section 3.3, the filtering feature map is determined, and in this section we
divide it into K adjacent band subsets in the spectral dimension. The kth (k ∈ (1, . . . , K))
group is defined as follows:

Pk =

{
(xk, . . . , xk+�B/K�), if k + �B/K� ≤ B
(xk, . . . , xB), otherwise

(14)

where x =(x1, . . . , xB) ∈ R
B×D denotes the filtering feature map containing B feature

vectors and D pixels, and then �B/K� represents an integer not greater than B/K. Then, the
adjacent bands in the kth group are fused by the mean value strategy, that is, the calculation
formula of the fusion feature Rk of the kth group is:

Rk =
∑

Nk
i=1 Pi

k
Nk

(15)

where Pi
k is the ith band in the kth band grouping and Nk is the total number of bands in

the kth band grouping.
By taking advantage of the each grouping feature, the decision fusion strategy can

effectively increase the classification accuracy. Specifically, we fused the label information of
each test pixel predicted by different groups. The final classification map is determined by

Fc = arg max
c=1,...,G

∑K
i=1 χ(li = c) (16)
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where Fc is the class label from one of the G possible classes for the test pixel, χ represents
the indicator function. Algorithm 2 describes the overall process of the method.

Algorithm 2: BG-OSGT.
Inputs: H; L; Ns; λ; T; and t;

Outputs: Classification result;
1. Superpixel Oversegmentation

Obtain Hs and Ls based on PCA for H and L, by Equation (1)
For i = 1:Ns

Regularization strategy transforms Si and Ii into Xi and Yi
End

2. optimize spatial gradient transfer algorithm

For i = 1:Ns
Determine y∗i , by Equations (8)–(12)
Obtain the fused superpixel blocks f ∗i = y∗i + vi
Reconstruct the fused superpixel blocks

End for

Generate the fused image F
3. Classification

Use F as the guided image to filter H, by Equation (13)
Apply band grouping strategy to the filtered result
Multi-branch classification and decision fusion by using SVM

(2) The first principal component of hyperspectral image contain most of the main
information, the OSGT algorithm fuses the first principal component of hyperspectral
image with LiDAR data. However, if only the first principal component is encouraged,
some details may be lost. As shown in Figure 5, there is still information available in
the second and third principal components. Therefore, the multi-branch optimize spatial
gradient transfer (MOSGT) decision fusion framework is proposed, which aims to enrich
image details and corner pixels. Specifically, MOSGT uses the OSGT algorithm to fuse
the first three principal components of hyperspectral image with LiDAR data to generate
three fused images. Then, the fused feature maps are used as guide images to filter the
original hyperspectral image to obtain filtered feature maps, which can make full use of
the complementary information between different guide images. In this section, we still
use the majority voting decision strategy due to its insensitivity to inaccurate estimates of
posterior probabilities.

The 1st dimension The 2nd dimension The 3rd dimension The 9th dimension The 10th dimension

Figure 5. The first 10 principal component images of the MUUFL Gulfport dataset are based on
PCA algorithm.
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Algorithm 3: MOSGT.
Inputs: H; L; Ns; λ; T; and t;

Outputs: Classification result;
1. Extract the first three principal components Mpc

i of H, where i = 1, 2, 3
2. Oversegmented Mpc

i and L by using ERS method, and then generate
oversegmented maps Spc

i and Ls

3. Apply Gaussian regularization strategy to Spc
i and Ls

4. Fusion of Spc
i and Ls according to (8)–(12)

5. Obtain the fused superpixel blocks f ∗i = y∗i + vi
6. Reconstruct the fused superpixel blocks
7. Generate the fused image set Fi
8. Use Fi as the guided images to filter H, by Equation (13)
9. Classify filtering feature images and decision fusion strategy.

4. Experimental Results

4.1. Datasets

(1) Houston Dataset: The University of Houston image is over the University of
Houston campus and surrounding area [9]. It is composed of HSI and LiDAR data, both of
which have a spatial dimension of 349 × 1905 and spatial resolution is 2.5 m per pixel. The
HSI used in the experiments contains 144 bands, and the wavelength ranges from 380 to
1050 nm. Figure 6 illustrates the false-color composite of the University of Houston image,
a grayscale image of the LiDAR data, and the corresponding reference data—there are
15 different classes. The exact numbers of samples for each class are reported in Table 1.

Stressed  grass Synthetic  grass Tree Soil

Residential Commercial Road Highway

Parking lot 1 Parking lot 2 Tennis court Running track

Figure 6. Visualization of the Houston data. (a) Pseudo-color image for the hyperspectral data. (b) Grayscale
image for the LiDAR data. (c) Ground truth.

(2) MUUFL Gulfport Dataset: The MUUFL Gulfpor image is over the University
of Southern Mississippi Gulfport Campus [45,46]. The HSI has a spatial dimension of
325 × 337 and 72 spectral bands. After discarding 8 bands contaminated by noise, the
image contains 64 bands. Furthermore, considering the invalid area of the scene, the
original hyperspectral is cropped to 325 × 220 × 64 as the new data set. The false-color
composite of MUUFL Gulfport, a grayscale image of the LiDAR data, and the corresponding
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reference data are shown in Figure 7. The nine land-cover classes are described in detail in
Table 1.

Mixed Ground

Water

Sidewalks

Trees

Dirt and Sand

Building Shadows

Mostly Grass

Roads

Buildings

Yellow Curbs

Cloth Panels

Figure 7. Visualization of the MUUFL Gulfport. (a) Pseudo-color image for the hyperspectral data. (b) Grayscale
image for the LiDAR data. (c) Ground truth.

Table 1. Different numbers of training and testing samples for fifteen classes in the Houston and
eleven classes in the MUUFL Gulfport.

Houston MUUFL Gulfport

Class Land-Cover Type Training Test Class Land-Cover Type Training Test

C1 Healthy grass 10 1241 C1 Trees 10 23,236
C2 Stressed grass 10 1244 C2 Mostly Grass 10 4260
C3 Synthetic grass 10 687 C3 Mixed Ground 10 6872
C4 Tree 10 1234 C4 Dirt and Sand 10 1816
C5 Soil 10 1232 C5 Roads 10 6677
C6 Water 10 315 C6 Water 10 456
C7 Residential 10 1258 C7 Building Shadows 10 2223
C8 Commercial 10 1234 C8 Buildings 10 6230
C9 Road 10 1242 C9 Sidewalks 10 1375

C10 Highway 10 1217 C10 Yellow Curbs 10 173
C11 Railway 10 1225 C11 Cloth Panels 10 259
C12 Parking lot 1 10 1223
C13 Parking lot 2 10 459
C14 Tennis court 10 418
C15 Running track 10 650
Total 150 14,879 110 53,577

4.2. Quality Indexes

In order to objectively evaluate the performance of the proposed methods (i.e., the
OSGT, BG-OSGT, and MOSGT method), the experiments adopt three objective indicators,
i.e., overall accuracy (OA), average accuracy (AA), and Kappa coefficient. OA refers
to the probability that the classification result is consistent with the ground truth. AA
considers the imbalance of the number of samples in different classes. Kappa represents the
consistency between the classification results and the true classes of ground objects—the
greater its value, the more accurate the classification result. To eliminate the influence of
randomness, the results of all quantitative indicators are averages of ten results.

4.3. Analysis of Parameters Influence

(1) Effect of number of superpixels: In this section, the effect of the number of super-
pixels on the performance of the proposed OSGT method is evaluated on the Houston and
MUUFL Gulfport dataset. As shown in Figure 8, it can be seen that the performance of the
proposed OSGT method decreases significantly when the number of superpixels is less
than 500 or 600. However, when the number of superpixels is higher than 500 or 600, the
classification accuracy slowly decreases. The primary reason is that the large homogeneous
region (small number of superpixels) causes the oversegmented map to contain many
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boundary superpixels that need to be further segmented. And a smaller homogeneous
region (large number of superpixels) leads to poor discrimination of features in the regions.
Furthermore, a small number of superpixels can reduce the computational cost. Therefore,
the number of superpixels is fixed to 500 for the Houston data set and 650 for the MUUFL
Gulfport dataset in this work.

Figure 8. Effect of the number of superpixels on the overall classification accuracy (%) of OSGT
method for Houston (a–c) and MUUFL Gulfport (d–f) datasets. Different numbers of training samples
determine the results of each column. Specifically, the first to third columns are the classification
accuracy when the number of training samples is 5, 10, and 15 per class, respectively.

(2) Effect of window radius and ambiguity of the GuF: The influence of two parameters,
i.e., the window radius r and ambiguity ξ of the guided filtering, are analyzed on the above
datasets. Figure 9 illustrates the OA versus r and ξ on different datasets; OA decreases
significantly as the window radius r increases. When r and ξ are very small, useful detailed
information and corner pixels can be determined. For the Houston dataset, the proposed
OSGT method achieves the highest OA when r is set to 2 and ξ is equal to 0.2. For
the MUUFL Gulfport dataset, when r = 1 and ξ = 2.5 × 10−3, the OSGT method obtains
satisfactory classification accuracy.

Figure 9. Effect of r and ξ to the performance of classification for different datasets. (a) Houston
dataset. (b) MUUFL Gulfport dataset.

(3) Effect of free parameter: The free parameter λ that controls the data fidelity and
regularization terms of the objective function impacts the performance of the proposed
OSGT method. Figure 10 illustrates the visualized fusion results and the quantitative index
OA under different free parameters for the Houston dataset. As λ increases, the fusion
image contains the more abundant elevation information of LiDAR data. However, when
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the λ is too high, a small amount of detailed information disappears in the fused image
because they only belong to HSI. Our goal is to retain more information existing in HSI,
so that the fusion image still resembles HSI. When λ is set to approximately 5, the fusion
result retains the small-scale details of the edge of HSI and adds the elevation feature of the
ground object. Similarly, Figure 11 reflects that the parameter λ can balance the detailed
appearance information and elevation features of the MUUFL Gulfport dataset. When λ is
equal to approximately 6, the fusion result is satisfactory.

Figure 10. Visualized fusion results and quantitative indicator under different free parame-
ters for Houston dataset. (a) The first PC image, (b) LiDAR data, (c–h) Fusion result when
λ = 0.1, 0.5, 1, 5, 10, 50, respectively. (i) Overall Accuracy.

Figure 11. Visualized fusion results and quantitative indicator under different free parameters for MUUFL
Gulfport dataset. (a) The first PC image, (b) LiDAR data, (c–h) Fusion result when λ = 0.1, 0.5, 1, 5, 10, 50,
respectively. (i) Overall Accuracy.

4.4. Analysis of Auxiliary between HSI and LiDAR Data

In this section, the auxiliary effect of LiDAR data on HSI is analyzed on the Huston and
MUUFL Gulfport datasets. In this experiment, the numbers of training and test samples are
selected to the same as those presented in Table 1. SVM-HSI indicates that SVM classifies the
original HSI. G-PCA and G-LiDAR indicate, respectively, that the first PC and the LiDAR
data are used as a guide image to filter the original HSI. G-PL represents that LiDAR data
is stacked as a band of HSI to form a new dataset, and then the new dataset is then filtered
using the first PCs as a guide image. For ensuring the experiment’s validity, a spatial
mean strategy based on Gaussian density is used for the guide images of the comparison
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methods. The super-segmented map of the guide image is subjected to Gaussian density
mean filtering in the homogenous region. The experiment is respectively performed on
the Houston and MUUFL Gulfport datasets to verify the classification performance of the
proposed OSGT method.

As shown in Figure 12, the SVM-HSI leads to an unsatisfactory classification accuracy
(OA = 76.32%), indicating that the original HSI contains fuzzy boundary information and
noise. Therefore, the classification performance of HSI without any preprocessing must
often be improved. Furthermore, the classification accuracy of G-PCA and L-PCA are
similar. This phenomenon indicates that the small-scale detail information of the PCA and
the elevation attributes of the ground features encouraged by LiDAR can be transferred to
the output of the filter as the structure of the guide image. Although their classification
performance is similar, the features used to guide filtering differ. G-PL does not significantly
improve classification performance because although HSI and LiDAR data are combined
into cascaded data, the stacking of two different information expression forms ignores the
feature heterogeneity. The proposed OSGT method in this paper fuses multi-source data
from the perspective of mathematical optimization, causing the fusion result to contain
both appearance detail information and elevates the features of the ground objects so that
the guide image structure information is closer to the ground truth value.

Figure 12. Analyze the auxiliary effect of LiDAR data on HSI for (a) Houston dataset and (b) MUUFL
Gulfport.

4.5. Effect of Filtering Method

In this section, we analyze the impact of different filtering methods on the performance
of the proposed OSGT method, by comparing five widely used filtering methods: Gabor
filtering (GaF) [47], mean filtering (MF) [48], recursive filtering (RF) [49], bilateral filtering
(BF) [50] and guided filtering (GuF).

Figure 13 reports the classification accuracy of the above filtering methods. The
cascaded data combined with HSI and LiDAR data are used as the filtering input to test the
performance of these filtering methods in terms of extraction of structural information for
multi-source data. The relevant parameters adopt the default parameter settings; the GuF
parameters are the same as the parameters of the proposed OSGT method. Additionally, as
shown in Figures 14 and 15, it can be seen that the GuF method pays more attention to edge
detail information and effectively retains the overall spatial features of the input image.
Although the accuracy of the MF is slightly higher than GuF on the MUUFL Gulfport data
set, its filtering performance of the MF on the Houston data set is significantly worse.
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Figure 13. Classification accuracy (i.e., OA, AA, and Kappa) of the proposed OSGT method using different
filtering methods. (a) OA, (b) AA and (c) Kappa for Houston, (d) OA, (e) AA and (f) Kappa for MUUFL
Gulfport dataset.

Figure 14. Visualization results of the proposed OSGT method with different filtering methods (i.e.,
(a) Gabor filtering (GaF), (b) mean filtering (MF), (c) recursive filtering (RF), (d) bilateral filtering (BF)
and (e) guided filtering (GuF).) and (f) pseudo-color image on the Houston dataset.
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Figure 15. Visualization results of the proposed OSGT method with different filtering methods
(i.e., (a) Gabor filtering (GaF), (b) mean filtering (MF), (c) recursive filtering (RF), (d) bilateral filtering
(BF) and (e) guided filtering (GuF).) and (f) pseudo-color image on the MUUFL Gulfport dataset.

4.6. Effect of Local Features and Global Features

In this section, the influence of global and local features on image fusion is analyzed
in Table 2. The operation of LiDAR images without superpixel processing directly as a
guide map is denoted as NSL and the operation of the PCs images without superpixel
processing directly as a guide map is denoted as NSP. PCL-GTF and PC3L-GTF indicate that
the first PC and the first three PCs, respectively, are fused with the LiDAR data by global
gradient transfer. It can be observed from Table 2 that the proposed OSGT method achieves
the highest classification accuracy in terms of OA, AA, and Kappa. It is advantageous to
fuse the PCs image and LiDAR data in a homogeneous region because the local explicit
correlation of superpixels and the homogeneous regions of HSI can be used as the spatial
structure information of spatial-spectral classification, enriching the fusion results.

Table 2. Classification accuracy (in %) of Houston and MUUFL Guflport with no superpixels, global
feature fusion and local feature fusion methods.

Houston Data Set

metrics NSL NSP PCL-GTF PC3L-GTF OSGT
OA(%) 78.12 76.39 79.83 79.55 81.02
AA(%) 78.5 76.66 80.66 80.25 81.09
Kappa 0.76 0.75 0.78 0.78 0.79

MUUFL Gulfport Data Set

metrics NSL NSP PCL-GTF PC3L-GTF OSGT
OA(%) 68.68 68.85 70.82 71.12 72.59
AA(%) 52.71 56.58 56.06 56.54 68.69
Kappa 0.61 0.61 0.63 0.64 0.68

4.7. Comparisons with Other Approaches

A series of experimental verifications are conducted on the Houston and MUUFL Gulf-
port dataset to verify the effectiveness of the proposed OSGT method. The proposed OSGT
method is compared with seven other methods. The specific details of the comparison
methods are as follows:

1. SVM:The SVM classifier is applied to stacked HSI and LiDAR data, i.e., H.
2. SuperPCA: The SVM classifier is applied to H.
3. CNN: convolutional neural network [51] for HSI and LiDAR data.
4. ERS: SVM classifier is applied to H, and ERS guides the first three PCs to use the

spatial mean strategy based on Gaussian density.
5. NG-OSGT: SVM directly classifies the fusion image obtained by the proposed

OSGT method.
6. BG-OSGT: Fusion image band grouping cooperation.
7. MOSGT: Multi-branch decision fusion of the first three PCs and LiDAR data.

Specifically, the SVM parameters are set through five layers of cross-validation, and the
parameters of SuperPCA and CNN in the comparison method are the default parameters
in the corresponding paper.
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The first experiment is conducted on the Houston dataset. Table 1 illustrates the
number of training samples and testing samples. The classification performance obtained
by different methods is shown in Table 3, and the top results for each class are highlighted
in bold typeface. The visual classification maps associated with the corresponding OA of
different methods are depicted in Figure 16. As shown in Table 3, SVM just considers the
spectral information, so the value of OA is only 78.80%. The problem of cascaded data
that does not consider data heterogeneity is most evident in SuperPCA. The heterogeneity
of data increases the prominence of the implicit irrelevance pixels within the superpixel,
limiting classification performance. Moreover, ERS alleviates the problem of implicit
irrelevance using the spatial mean strategy based on Gaussian density. However, the
heterogeneity of multi-source data is still the most important influencing factor. The deep
learning method represented by CNN has poor algorithm performance under small-sample
conditions. NG-OSGT does not illustrate excellent classification accuracy because the fusion
result has only one band, and the rich spectral information of HSI is lost. Our purpose is to
supplement HSI information with the elevation attribute of LiDAR data as an auxiliary item,
rather than abandon the spatial-spectral features of HSI. Consequently, OSGT, BG-OSGT,
and MOSGT improve the accuracy of the classifier for ground objects identification.

Figure 16. Houston dataset: classification maps obtained by: (a) SVM, (b) SuperPCA, (c) CNN,
(d) ERS, (e) NG-OSGT, (f) OSGT, (g) BG-OSGT and (h) MOSGT when the number of training samples
is ten per class.
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Table 3. Classification performance using SVM, SuperPCA, CNN, ERS, NG-OSGT, OSGT, BG-OSGT
and MOSGT for Houston dataset with ten labeled samples per class as training set.

Class SVM SuperPCA CNN ERS NG-OSGT OSGT BG-OSGT MOSGT

C1 93.12 54.12 79.36 77.96 72.94 93.68 90.73 90.03
C2 82.31 47.19 93.44 50.51 68.25 87.08 87.90 90.29
C3 68.65 98.11 99.89 94.76 80.13 89.94 83.75 87.71
C4 82.47 31.90 48.34 45.73 75.60 92.14 97.56 94.61
C5 92.01 77.09 81.05 78.17 69.06 90.85 90.22 86.38
C6 94.48 83.52 62.25 50.00 58.95 82.80 90.95 72.61
C7 67.27 36.41 77.46 78.38 69.14 78.83 78.21 76.59
C8 78.97 33.48 52.93 70.87 58.67 82.15 88.82 79.47
C9 83.03 37.11 61.18 76.73 70.93 76.44 73.08 79.56
C10 63.68 62.50 39.02 63.89 54.62 70.54 83.60 81.62
C11 59.16 76.86 54.80 60.65 62.04 70.23 76.75 80.40
C12 57.72 50.93 83.78 70.16 60.70 76.78 88.36 84.13
C13 40.78 58.00 0.98 59.16 47.62 55.25 70.44 71.44
C14 69.95 100.00 90.31 90.28 85.97 79.97 97.23 82.57
C15 98.63 81.23 88.38 98.19 76.65 98.04 98.64 98.05

OA 75.39 53.52 64.68 68.71 66.37 81.18 85.39 83.38
AA 77.38 49.09 64.81 71.34 67.42 81.59 86.40 83.36

Kappa 0.73 0.63 0.62 0.66 0.64 0.80 0.84 0.82

The second experiment is conducted on the MUUFL Gulfport dataset. Similarly, to
further analyze the classification performance of the proposed OSGT method, 10 training
samples of each class are randomly selected. The quantitative metrics and classification
maps of the compared methods are depicted in Table 4 and Figure 17. When only several
training samples are taken for per class, the proposed MOSGT outperforms other compari-
son methods in terms of visual quality and objective measurement. This demonstrated that
the effectiveness of the proposed method in the classification task of HSI and LiDAR data.

Table 4. Classification performance using SVM, SuperPCA, CNN, ERS, NG-OSGT, OSGT, BG-OSGT
and MOSGT for MUUFL Gulfpor dataset with ten labeled samples per class as training set.

Class SVM SuperPCA CNN ERS NG-OSGT OSGT BG-OSGT MOSGT

C1 96.94 40.34 62.37 96.72 93.38 96.95 94.35 94.54
C2 55.16 32.55 90.21 50.36 50.03 47.30 52.87 51.27
C3 65.42 27.83 33.79 52.93 66.27 68.71 70.02 74.71
C4 55.02 39.94 60.24 56.03 38.13 54.84 55.39 57.93
C5 87.24 28.55 60.15 69.90 68.47 77.63 73.12 78.49
C6 53.70 86.14 4.41 32.13 28.41 40.33 53.72 38.31
C7 39.01 77.22 78.69 52.82 41.46 51.29 47.48 56.20
C8 83.14 40.83 59.55 96.04 60.70 83.36 88.64 90.41
C9 30.91 36.67 23.48 34.28 12.83 25.64 41.19 44.60

C10 13.04 32.20 4.34 1.36 1.30 6.85 9.96 8.73
C11 54.31 85.56 58.19 99.58 32.46 56.21 86.54 83.57

OA 70.59 38.71 59.22 70.99 59.48 72.67 74.57 75.63
AA 57.62 27.45 48.67 58.37 44.86 64.67 61.21 61.71

Kappa 0.64 0.48 0.50 0.64 0.5 0.56 0.67 0.69
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Figure 17. MUUFL Guflport: classification maps obtained by:(a) SVM, (b) SuperPCA, (c) CNN,
(d) ERS, (e) NG-OSGT, (f) OSGT, (g) BG-OSGT and (h) MOSGT when the number of training samples
is ten per class.

4.8. Computational Complexity

Table 5 reports the computational time (in seconds) of each component of the proposed
OSGT method. The experiments are performed using MATLAB on a computer with a
2.2 GHz CPU and 8 GB of memory. The training size is 10 per class for Houston and MUUFl
Gulfport data sets. As presented in Table 5, the main computational cost of the proposed
OSGT method is caused by guided filtering operation. The primary reason is that each
band of HSI is the operation object of guided filtering. To solve time-consumption problem,
we will study how to use graphics processing units (GPUs) to accelerate our algorithm in
future developments.

Table 5. Calculation time (in seconds) for different components and guiding images.

Data Set
Different Components Different Guide Images

ERS OSGT GF G-PCA G-LiDAR

Houston 8.69 0.19 33.47 32.94 32.76
MUUFL Gulfport 0.60 0.09 0.94 0.95 0.93

5. Conclusions

In this paper, a OSGT method is proposed for HSI and LiDAR data classification.
Specifically, we define homogeneous region fusion between PCs and LiDAR data as a math-
ematical optimization problem and introduce the gradient transfer model to fuse spectral
and DSM information from various superpixel blocks for the first time. Besides, A l1 total
variation minimization is designed to fuse information between the PC and DSM within
each superpixel block to accurately describe the observed details. Experimental results on
two real datasets indicated that the proposed methods outperforms the considered baseline
methods when there are only ten samples per class for training. In the future, injecting the
DSM information of LiDAR data into the classification task of HSI by effectively designing
a deep convolutional network is a research direction that we focus on.
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Abstract: During the last few decades, worsening air quality has been diagnosed in many cities
around the world. The accurately prediction of air pollutants, particularly, particulate matter
2.5 (PM2.5) is extremely important for environmental management. A Convolutional Neural Net-
work (CNN) P-CNN model is presented in this paper, which uses seven different pollutant satellite
images, such as Aerosol index (AER AI), Methane (CH4), Carbon monoxide (CO), Formaldehyde
(HCHO), Nitrogen dioxide (NO2), Ozone (O3) and Sulfur dioxide (SO2), as auxiliary variables to
estimate daily average PM2.5 concentrations. This study estimates daily average of PM2.5 concen-
trations in various cities of Pakistan (Islamabad, Lahore, Peshawar and Karachi) by using satellite
images. The dataset contains a total of 2562 images from May-2019 to April-2020. We compare and
analyze AlexNet, VGG16, ResNet50 and P-CNN model on every dataset. The accuracy of machine
learning models was checked with Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and
Mean Absolute Percentage Error (MAPE). The results show that P-CNN is more accurate than other
approaches in estimating PM2.5 concentrations from satellite images. This study presents robust
model using satellite images, useful for estimating PM2.5 concentrations.

Keywords: deep learning; satellite images; PM2.5; estimation

1. Introduction

Particulate matter of a diameter of 2.5 μm (PM2.5) is hazardous for human health,
leading to further damage and the destruction of lung function [1–6]. These fine parti-
cles are extremely dangerous if they get into the lungs, which might complement the
seriousness of COVID-19 infection, and increases the chances of attacks and damage to
the respiratory system [7]. Overall, these hazardous pollutants impact human health and
produce life-threatening complications in a short period if found in the atmosphere in large
concentrations [8]. The research has proven that these particulate matters can potentially
affect humans at the genetic level [9].

Various methods have been presented to better explain city-wide air quality, for exam-
ple, the recent Neighbor legislation and spatial averaging [10,11], to make the most of the
limited data gathered by monitoring stations using spatial interpolation. The data sparsity
problem is solved by adding monitoring data in most of these systems, which are based
on the assumption that air pollution particles diffuse in a spatially continuous manner.
However, there are two significant drawbacks of these methods. First, different estimation
approaches obtain completely different results. Second, the differences in results are partic-
ularly unsatisfactory for raw data with sparse spatial distribution. The air quality detecting
network has been optimized by various researchers [12]. For instance, Mei et al. [13] sug-
gest a method to monitor air quality utilizing mobile data. Crowdsourcing computing,
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including the use of auxiliary sensors, is rapidly becoming the focus of academic research.
Murty et al. [14] suggest a new air pollution monitoring system called CitySense for moni-
toring air pollutants. In order to obtain data samples using compressed sensing technology,
Yu et al. [15] proposed a monitoring strategy that relies on vehicular sensor networks (VSN),
which represent a paradigm shift in transportation technology. VSN has the potential to
significantly enhance the transportation environment due to the vehicles’ infinite power
source and the resultant low energy constraints. Li et al. [16] used portable sensors and
smartphones to track particulate matter and gas pollutants. However, portable sensors still
have limited capability to accomplish the accuracy of monitoring stations accurately. In
addition, it takes almost 1 h to obtain the data for PM2.5 measuring equipment; as well, it
is also crucial to avoid common issues due to shaking and movement.

Recently, satellite remote sensing has been used in a variety of studies to evaluate air
quality [17–24]. For the more accurate methods, an artificial neural network can be utilized
as a classifier based on data from road networks and weather data [25]. The deep learning
algorithms have achieved significant advancements in image feature learning and have
solved numerous challenges in typical computer vision [26]. Image feature-based learning
is mainly concerned with the relationships between image characteristics and the index
of PM. Liuetal. [27] investigated how air quality relates to image quality. Wang et al. [28]
examined air quality by incorporating the association between observed image degradation
and PM2.5. Other authors used decision tree in estimating air quality [29]. For exam-
ple, Zhang et al. [30] used images to calculate air pollution levels with a CNN algorithm.
A CNN is a multilayer network structure, whose fundamental structure is comprised of
the input layer, convolution layer, pooling layer, fully connected layer and output layer.
A convolutional neural network (CNN) is a type of artificial neural network (ANN) that is
most typically used to evaluate visual images. It is one of the most widely used types of
ANN. This deep learning method can be used to recognize images and videos in a variety
of contexts, including recommendation systems, image classification, segmentation, and
medical image analysis. The designed CNN was employed to identify photos according
to their PM2.5 index via classification. The CNN consists of multiple layers: nine convo-
lutional layers, two pooling layers and two dropout layers, and to overcome the gradient
disappearance problem, an enhanced rectified linear unit activation function can be used.
Furthermore, the VGG-16CNN model was proposed to evaluate PM2.5 levels [31] on the
basis of image-based PM2.5 concentration levels.

According to atmospheric chemistry and physics, the PM2.5 formations are linked
to pollutants, such as PM10, CO2, NO2 and meteorological variables, also called auxiliary
variables, which can be used as input variables for model prediction [32]. Song et al. [33]
proposed a statistical model for the estimation of PM2.5 concentration. Their model
showed that the concentration of PM2.5 is closely associated with concentrations of NO2,
SO2, CO and O3 gaseous pollutants. Therefore, these contaminants can be used as input
variables for PM2.5 predictions. Image detection-based air quality research is carried out
by combining image processing methods and machine learning approaches, but both have
certain weaknesses. For example, the color characteristics of the sky may alter the features
utilized in PM2.5 and PM10 concentration detection methods based on visual features from
the phone camera image. The sensitivity is excessively high and it is greatly affected by the
weather. The detection of PM2.5 and PM10 concentrations based on physical properties
may produce pretty good results, but it is only suited for dry air images, which are impacted
by meteorological factors. Taking photos from a camera phone have few disadvantages;
such as, we can capture photos with high resolution camera in day time; however, in the
evening and night time, the quality might be compromised, which does not lead to better
results being estimated. Second, it is very inconvenient and difficult to access remotely
areas with camera devices; in contrast, satellite images are better to estimate air quality.

This study uses satellite images and employs a novel deep learning-based method for
PM2.5 predictions. This technique, such as prediction from satellite images, is not limited
by locations and can be suitable to detect air quality at any location. This study uses seven
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satellite images (AER AI, CH4, CO, HCHO, NO2, O3 and SO2) collected by high resolution
sensors (TROPOMI) from the sentinel-5p satellite. The method that we used in this study
differs from existing methods. It estimates the daily average of PM2.5 concentration using
satellite images collected by the TROPOMI sensor of sentinel-5p satellite every day. It can
address the weaknesses of present air quality detection technologies and offer fine-grained,
low-cost air quality monitoring. The proposed technique can estimate the AQI directly,
which is broader and better reflects the air quality. The air quality index (AQI) is a daily
indicator that measures the quality of the air at a certain location. It is a way to measure
how air pollution affects a person’s health during a short period of time (less than 24 h).
In short, this study investigates the relationship between PM2.5 concentrations and the
concentrations of various pollutants based on satellite images. P-CNN recognizes and
extracts patterns and features from input images, and it estimates the daily average of
PM2.5 concentrations from these images. This study used four datasets covering Islamabad,
Karachi, Lahore and Peshawar city, each dataset contains seven pollutants’ images for each
day. This paper proposes a deep convolutional neural network model to estimate PM2.5
concentrations from seven given input images. In addition, we also conducted comparative
analysis of our proposed model with other three deep learning models on four datasets for
more robust results.

This paper is structured in the following way. The second section introduces the study
area, datasets and methodology. The third section presents result and discussion of the
study, followed by the conclusion and implications in the last section.

2. Materials and Methods

2.1. Study Area and Dataset

The study area we have chosen in this paper is Pakistan. We have taken four metropoli-
tan cities for our experiments such as Karachi, Lahore, Islamabad and Peshawar. Figure 1
shows the study areas and monitoring stations for PM2.5 in Pakistan.

Figure 1. Study area and the distribution of monitoring stations.

There is no openly available library to estimate PM2.5 concentrations from satellite
images; therefore, based on sentinel-5p satellite, a multi-input air quality image database
was built for each city (Islamabad, Lahore, Peshawar and Karachi). The library contains
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2562 images with different PM2.5 levels, which are a collection of scene satellite images at
different PM2.5 levels. We used the following steps to create the dataset:

• We collected scene images for each city from the official website [34] from May-2019
to April-2020. Each day contains seven different pollutant images (AER AI, CH4, CO,
HCHO, NO2, O3 and SO2). Table 1 describes the information about the air quality
image collection point. One Image cannot cover the concentration of various gases;
therefore, each sample is described by taking at least seven satellite images in our
research work. The standard single-input CNN architecture is not suitable for our
research. Thus, a novel P-CNN model was built to accept seven images as input.

Table 1. Satellite image collection information.

Numbering Collection Point Photo Pixels (Px) Capturing Time Period Collection Interval

A Islamabad 3310 × 1573 8:00–9:00 UTC One per day
B Peshawar 3310 × 1573 8:00–9:00 UTC One per day
C Karachi 3310 × 1573 8:00–9:00 UTC One per day
D Lahore 3310 × 1573 8:00–9:00 UTC One per day

Figure 2 shows the actual satellite images of seven air pollutants with different PM2.5
air quality levels in the image library. Figure 2, such as from A to D shows different
days, while I, II, III, IV, V, VI, and VII are seven different pollutant images by sentinel-5p
satellite for same day. I represents concentration of AER AI pollutant in single day, while
II illustrates CH4 pollutant concentration for same day. III number image is about CO
concentration. IV image is about HCHO pollutant concentration. V, VI and VII images are
examples of NO, O3, and SO2, respectively.

Figure 2. Example of 4 days of seven different satellite input images in dataset.

Real-time monitoring stations across main cities of Pakistan, such as Islamabad, Lahore,
Karachi and Peshawar, measure air quality levels then upload them on the website for
the open access. Figure 1 shows the location of the monitoring stations. PM2.5 hourly
real-time data were obtained from the official website [35]. Since PM2.5 concentration data
are measured hourly by the monitoring stations for each city, we converted the 24-hour
data into a daily average to train our model. For the model training, 70% of the images
were randomly selected for training and 30% for testing purposes. Furthermore, to prevent

351



Remote Sens. 2022, 14, 1735

the model from overfitting and improve model accuracy and robustness, we strengthened
the dataset training process with the minimal number of samples in the training dataset in
the following ways.

(1) Randomly Image Rotation between [0, 360] degrees.
(2) Scale the image at random between [0.8, 1] coefficients.
(3) Size of each auxiliary input pollutant image is adjusted to 300 × 300, and then

normalized to [0, 1].

2.2. Convolutional Neural Network (CNN)

CNN, firstly proposed by LeCun et al. [36] for recognition of handwritten digits, has
been widely successful in the areas of image detection, segmentation, and identification
tasks [37–42]. CNN has shown its remarkable capacity to classify large-scale images. It
consists of three-layers: convolutional layers, pooling layers and fully connected layers.
The essential layers in CNN are the convolutional and pooling layers. The convolution
layers are used to extract features with numerous filters by convolving image regions. As
the layers expand, the CNN gradually understands the image. The pooling layers lower
the dimensions of output maps from the convolutional layers and avoid overfitting. The
number of neurons, parameters and connections in the CNN model is substantially less
through these two levels. Thus, CNNs are much more effective than Backpropagation (BP)
neural networks with correspondingly sized layers.

2.3. Architecture of P-CNN

Based on the standard CNN architecture, we have proposed a model named P-CNN.
The model is employed to estimate PM2.5 concentrations and acquire a preferable result on
the dataset. Figure 3 shows the entire model of CNN architecture.

Figure 3. PM2.5 Concentration Estimation Model.

The convolutional layers C1–C7 filter seven 300 × 300 × 3 input images with 32 kernels
of size 4 × 4 × 3 with the stride of 1 pixel. The stride of pooling layers S1–S7 is 2 pixels.
C8–C14 filter with 16 kernels of size 4 × 4 × 3 with the stride of 1 pixel. The stride of
pooling layers S8–S14 is 2 pixels, and the dropout is applied to the output of S8–S14, which
has been flattened (E1–E4). D1 is the concatenation of the previous flattened E1–E4. The
fully connected layer FC1 has ten neurons, FC2 has ten neurons, and FC3 has one. The
activation of the output layer is a linear function.

A high-level neural networks API called “Keras” is used to implement the model [16].
All of the experiments were carried out on an Ubuntu Kylin 14.04 server equipped with a
3.40 GHz i7-3770 CPU (16 GB RAM) and a GTX 1070 graphics card (8 GB memory). The
original image has a resolution of 3310 × 1575 pixels, which needs be lowered in order to
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fit into the GPU memory. All of the original images are scaled to 300 × 300 pixels, and
then the value of per-pixel is divided by 255. In addition, images should be normalized
and standardized before being fed into model in order to achieve rapid convergence. A
randomization process is used to ensure that the model is not influenced by the sequence
in which photographs are input. Both the sequence of samples and the seven images
corresponding to each sample should be randomized. The convolutional neural network
training procedure is divided into two steps. The first is called forward propagation, and
the second is called backward propagation.

2.4. Forward Propagation

Data are transmitted from the input layer to the output layer by a sequence of oper-
ations that include convolution, pooling and fully connected. Each convolutional layer
employs trainable kernels in order to filter the results of the preceding layer followed by
activation function to build the output feature map.

In a general way, the procedure is as follows:

xe
j = f

⎛⎝ ∑
i∈Mj

xe−1
i ∗ ke

ij + be
j

⎞⎠ (1)

where Mj denotes the collection of input maps we choose. b is the bias that is applied to
all output map. k indicates the kernels, the weight of the row “i” and column “j” in each
kernel is represented by the ke

ij. Using a kernel map, the outputs of surrounding neurons
are summarized by the pooling layer, which is the operation of the pooling layer.
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(
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j down
(
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i

)
+ be

j

)
(2)

where β denotes multiplicative bias and b indicates additive bias, “down” is a subsampling
function that uses the max-pooling algorithm [43]. The reason why we chose max-pooling
over mean pooling is that the latter makes it impossible to identify critical information
such as the edges of objects, whereas the former selects the most active neuron of each
region in feature maps, which is more efficient [44]. As a result, it is easier to extract useful
features when using max-pooling. In a multilayer perceptron, the fully connected layer
is equivalent to the hidden layer. The activation function “linear” for output layer was
employed for regression [45], which is given below by

f (x) = ax (3)

Any constant value can be for variable “a”. A derivative of f(x) in this case is not
zero, but is equal to the constant employed. Notably, the gradient does not equal zero, but
rather a constant number that is independent of the input value x, which indicates that the
weights and biases will be updated throughout the backpropagation phase, despite the fact
that the updating factor will remain the same.

2.5. Backward Propagation

Backward propagation adjusts parameters by using stochastic gradient descent (SGD)
in order to reduce the disparity between the anticipated outcome and the actual outcome.
For the purpose of avoiding overfitting, L1 and L2 regularization is used.

C = C0 +
λ

n ∑
w
|w| (4)

where C0 represents loss in the formula (4). The formula for L2 is given by below

C = C0 +
λ

2n ∑
w

w2 (5)
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This paper uses a weight of 0.0001 for L1 and L2 regularization. Dropout is also used
to prevent overfitting [46], and its value is set to 0.1. The SGD algorithm calculates the
gradients and modifies the coefficients or weights. It can be stated in the following way:

δx = wx+1 +
(
σ′ (wx+1 · cx + bx+1) ◦ up (δx + 1)

)
(6)

Δwx = −n · ∑
ij
(δx ◦ down(Sx−1)) (7)

where δx denotes the sensitivities of each unit to fluctuations of the bias b, and ◦ represents
the element-wise multiplication. An upsampling procedure is represented by the up(), and
subsampling operation is represented by the down(). The updated weight is denoted by w,
and n represents the learning rate.

2.6. Evaluation Metrics

The following evaluation measures, Mean Absolute Error (MAE), Root Mean Square
Error (RMSE) and Mean Absolute Percentage Error (MAPE), were employed in this work
to complete the quantitative assessment of the constructed P-CNN model’s capabilities.

MAE is a model assessment statistic that is commonly employed in regression models.
It is a metric for estimating the average discrepancy between estimates and actual results.
It is used to estimate the machine learning model’s accuracy.

MAE =
1
N

N

∑
n−0

| on − pn | (8)

The Root Mean Square Error (RMSE) is a commonly used metric for determining how
well a model predicts quantitative data. Here, RMSE calculates the error between actual
(station value) and predicted value (model’s predicted value).

RMSE =

√
∑n−1

i=0 (yi − fi)
2

n
(9)

MAPE means absolute percentage error and is a statistical indicator used for prediction.
The “accuracy” of this measurement is expressed as a percentage. It is possible to determine
for each period the average absolute percent error, which is deducted from the actual
numbers, and then the outcome is divided by actual values. However, the larger the
concentration, the bigger the absolute inaccuracy in the forecast. As a result, we anticipate
that the MAPE will be able to offer the most accurate forecasts among models.

MAPE =
1
n

n−1

∑
i=0

∣∣∣∣ yi − fi

yi

∣∣∣∣× 100 (10)

3. Results

AlexNet, VGG16, ResNet50 and P-CNN were all evaluated for their prediction abilities
using three different indicators. They are Mean Absolute Error (MAE), Root Mean Square
Error (RMSE) and Mean Absolute Percentage Error (MAPE). Table 2 displays MAE results
for Lahore, Karachi, Peshawar and Islamabad after applying different machine learning
models. When we applied AlexNet on the datasets, a 34.464 average value was achieved,
which was reduced 5.113 using ResNet50. VGG16 also decreased the 7.723 MAE value
after ResNet50. After applying the P-CNN model on the datasets, 6.475 MAE reduced,
and its average value for each city was calculated as 15.152, which is a really good result.
Table 3 shows the RMSE values for different cities with different models. AlexNet achieved
a 49.445 RMSE average value for all cities, and 12.082 was reduced after applying ResNet50.
VGG16 also helped to reduce the 9.079 RMSE value, and 8.726 RMSE decreased after ap-
plying P-CNN, and its average value was 19.557. Table 4 reveals results for MAPE. For the
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average value for all cities after using the AlexNet model, we achieved 43.932. After employ-
ing ResNet50, the 7.373 MAPE value decreased. VGG16 also decreased the 11.990 MAPE
value. Lastly, P-CNN reduced 9.403 MAPE after VGG16, and its average value for all cities
was 15.167. All of these metrics show that P-CNN is superior to other models.

Table 2. MAE results for all cities using AlexNet, VGG16, ResNet50 and P-CNN.

City AlexNet ResNet50 VGG16 P-CNN

Karachi 32.343 28.187 19.554 17.123
Lahore 29.843 30.214 21.240 14.205

Peshawar 37.449 27.345 22.145 18.280
Islamabad 38.221 31.657 23.572 11.003
Average 34.464 29.350 21.627 15.152

Table 3. RMSE results for all cities using AlexNet, VGG16, ResNet50 and P-CNN.

City AlexNet ResNet50 VGG16 P-CNN

Karachi 56.322 37.299 29.368 22.084
Lahore 47.917 39.239 24.431 20.835

Peshawar 50.329 32.302 31.502 18.743
Islamabad 43.215 40.611 27.834 16.566
Average 49.445 37.362 28.283 19.557

Table 4. MAPE results for all cities using AlexNet, VGG16, ResNet50 and P-CNN.

City AlexNet ResNet50 VGG16 P-CNN

Karachi 45.954 40.223 22.838 14.419
Lahore 42.390 37.901 25.949 12.394

Peshawar 47.987 35.025 21.494 17.200
Islamabad 39.399 33.092 28.001 16.657
Average 43.932 36.560 24.570 15.167

Figure 4 depicts a comparison of the actual values and projected values in a time
series graph obtained by applying AlexNet (a), VGG16 (b), ResNet50 (c) and our proposed
model P-CNN (d) to a testing dataset for Karachi city. In this figure, the P-CNN obtained
values that were more closely aligned with the observed values than AlexNet, VGG16 and
ResNet50. According to performance indicators, our P-CNN performs much better than
other models in terms of predicting of PM2.5 concentrations. When AlexNet was used to
the Karachi testing dataset, it produced the following results: MAE (32.343), RMSE (56.322)
and MAPE (45.954). The ResNet50 model obtained the following metrics: MAE (28.187),
RMSE (37.299) and MAPE (40.223). VGG16 achieved MAE (19.554), RMSE (29.368) and
MAPE (22.838). In the same testing dataset for Karachi, we implemented our proposed
model P-CNN and obtained the best results, such as MAE (17.123), RMSE (22.084) and
MAPE (14.149). Figure 5 shows the difference between the actual and predicted values
after applying the same models to Lahore city. The graphs clearly demonstrate that P-
CNN (d) outperformed the other models. AlexNet (a) determined the MAE, RMSE and
MAPE for Lahore city (29.843, 47.917 and 42.390). ResNet50 (c) achieved (30.214, 39.239
and 37.901). VGG16 attained (b) (21.240, 24.431 and 24.431). However, while assessing
the performance of models for predicting PM2.5 concentration, P-CNN (d) achieved the
lowest MAE, RMSE and MAPE (14.205, 20.835 and 12.394). The actual and estimated
outcomes for Peshawar city are depicted in Figure 6. The graph clearly demonstrates that
the P-CNN (d) estimated values more accurate than AlexNet (a), ResNet50 (c) and VGG16
(b). In addition, performance metrics revealed too that P-CNN (d) outperformed all other
models. AlexNet computed MAE, RMSE and MAPE (37.449, 50.329 and 47.987), ResNet50
(27.345, 32.302 and 35.025), VGG16 (22.145, 31.502 and 21.494) and P-CNN (18.280, 18.743
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and 17.200). Figure 7 provides a time series graph of the observed and predicted values for
Islamabad city. It shows that P-CNN (d) is more accurate in predicting PM2.5 concentrations
when compared with the other deep learning models (a), (b) and (c). Testing dataset for
Islamabad contains three months of daily average of PM2.5 concentration. After applying
performance indicators on Islamabad city, MAE, RMSE and MAPE achieved 38.221, 43.215
and 39.399 by AlexNet; 31.657, 40.611 and 33.092 by ResNet50; 23.572, 27.834 and 28.001
by VGG16; and 11.003, 16.566 and 16.657 by P-CNN. All of these figures and performance
metrics clearly demonstrate that P-CNN outperforms other deep learning models, such as
AlexNet, ResNet50 and VGG16, in terms of predicting PM2.5 concentrations accurately in
Karachi, Lahore, Peshawar and Islamabad.

 

 

Figure 4. Time series of observed values and predicted values of models for Karachi. (a) AlexNet,
(b) VGG16, (c) ResNet50, (d) P-CNN.

Consequently, to conduct further testing efficiency of our developed model, P-CNN,
we trained a model on one city dataset, and tested on all remaining cities. After training
the model on Islamabad, as seen in Figure 8, it can be used to predict PM2.5 concentrations
in a number of different cities, such as Karachi, Lahore and Peshawar. Figure 8 clearly
demonstrates that the P-CNN predicted values for Karachi, Lahore and Peshawar are
extremely close to the real values. The proposed model for predicting PM2.5 concentrations
was also trained on a dataset from Karachi and evaluated on datasets from other cities
such as Lahore, Peshawar and Islamabad (as shown in Figure 9). The results indicated that
the model, which was trained on the Karachi dataset, can be applied to Lahore, Peshawar
and Islamabad. It was also found that training a model with Lahore data, can accurately
predict PM2.5 concentrations for other cities such as Islamabad, Karachi and Peshawar
(see Figure 10). According to Figure 11, using Peshawar as a training dataset, our model is
able to predict the concentrations of PM2.5 in other cities such as Islamabad, Lahore and
Karachi. These results proved that our proposed P-CNN model also can be applied to other
cities after being trained on a single city. Overall, these results demonstrate that P-CNN
model is useful in predicting PM2.5 concentrations with satellite images.
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Figure 5. Time series of observed values and predicted values of models for Lahore. (a) AlexNet,
(b) VGG16, (c) ResNet50, (d) P-CNN.

 

 

Figure 6. Time series of observed values and predicted values of models for Peshawar. (a) AlexNet,
(b) VGG16, (c) ResNet50, (d) P-CNN.

357



Remote Sens. 2022, 14, 1735

 

 

Figure 7. Time series of observed values and predicted values of models for Islamabad. (a) AlexNet,
(b) VGG16, (c) ResNet50, (d) P-CNN.

Figure 8. Time series of station values and predicted values by P-CNN model (a) Karachi, (b) Lahore,
(c) Peshawar.
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Figure 9. Time series of station values and predicted values by P-CNN model. (a) Islamabad,
(b) Lahore, (c) Peshawar.

Figure 10. Time series of station values and predicted values by P-CNN model. (a) Islamabad,
(b) Karachi, (c) Peshawar.
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Figure 11. Time series of station values and predicted values by P-CNN model. (a) Islamabad,
(b) Karachi, (c) Lahore.

4. Discussion

This study adopts seven inputs to estimate PM2.5 concentrations in four cities, namely,
Pakistan, Islamabad, Lahore, Karachi and Peshawar. The findings revealed that seven input
pollutants (AER AI, CH4, CO, HCHO, NO2, O3 and SO2) are closely linked with PM2.5.
The existing studies have used different approaches for PM2.5 estimation. Li et al. [47]
uses transmission and depth matrices to estimate haze levels. As a proxy for PM2.5,
two datasets were utilized for the evaluation. The authors used 8761 photographs in the
PM2.5 datasets, and the stated Absolute Spearman correlation is 40.83%. PM2.5’s dataset
contains three classes: HeavyHaze, LightHaze and NonHaze and the stated correlation
is 89.05%. Zhang et al. [48] proposed deep learning method to classify the camera images
according to AQI-levels; there were six classes: good, moderate, Unhealthy for Sensitive
Groups, Unhealthy, Very Unhealthy and Hazardous. The applied method was tested
on the dataset and achieved 74.0% accuracy. Both these studies have developed deep
learning models for classification purpose; however, we proposed a novel P-CNN approach,
which uses seven auxiliary input satellite images and estimates actual real number, PM2.5
concentrations. Estimating PM2.5 concentrations differs from classifying, segmenting
or recognizing objects based on attributes such as color or texture. We tested P-CNN
model on four different datasets using statistics metrics. We achieved satisfactory values
of MAE (15.152), RMSE (19.557) and MAPE (15.167) using P-CNN model. Furthermore,
in estimating PM2.5 concentrations, the results showed that the P-CNN method provides
better results. For instance, the advantage of using this model helps to cover remote areas
for estimating air quality.

There are various reasons that compared to Islamabad and Peshawar, the air quality in
Lahore and Karachi is far worse. Peshawar and Islamabad are smaller and less populated
than Lahore and Karachi city. Islamabad and Peshawar city have less public transit than
Lahore and Karachi. The number of industries and construction sites are also less in Islam-
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abad and Peshawar. Lahore and Karachi have a greater ratio of growing urbanization than
Peshawar and Islamabad. On the other hand, Lahore is one of second-largest metropolitan
city of Pakistan, with a population of 11 million residents, and has topped the daily rankings
of the world’s most polluted cities for the second time this year. Tree cover in Lahore has
declined significantly over the previous 15 years as a result of an ambitious effort to develop
highways, bridges and tunnels. Increasing population, industry, deplorable conditions of
municipal utilities, and traffic congestion are the primary sources of air pollution in Karachi
city. Furthermore, environmental issues have increased as a result of rapid urbanization
such as sewage system inadequacies, overcrowding, inadequate transportation and un-
controlled growth, particularly in Karachi. Air pollution is also exacerbated by industrial
pollutants, waste burning, house fires, and other particulates. However, it appears that
neither the government nor environmental organizations are taking this matter seriously or
responding quickly enough. Similarly, an increase in population accelerates agriculture and
industrial production, resulting an increase in waste [49]. Government can help relevant
industries by providing green credit funds for the eco-friendly environment, which helps
the business community to accelerate green technology and research and development.
Pakistan, being a developing economy, suffers huge losses due to environmental prob-
lems. During the period between 1999 and 2018, the country spent around USD 3.8 billion
to fight against environmental issues in Karachi, Lahore and Peshawar [50]. The water-
and land-based ecosystems are being demolished, and unplanned urban structure have
damages environment badly. This implies that poor socioeconomic systems cause envi-
ronmental degradation. Lahore city is the second metropolitan city in Pakistan, covering
2233 manufacturing firms [51]. Lahore is regarded as one of the most developed cities in
socioeconomic perspectives. However, some factors, such as industrial waste, poor sanita-
tion systems and lack of urban planning, are barriers to environmental quality. Compared
to Karachi and Lahore city, Islamabad is a well-planned city, with the transportation and
construction sectors having been developed. On the other hand, Peshawar city is also
one of the important hubs in Pakistan. Urban sprawl, deforestation and the burning of
contaminated fuel have proved to be the drivers of greenhouse gas emissions [52,53].

Overall, the poor socioeconomic status of these cities has prevented efforts to maintain
the ecosystem. Poor infrastructure, dense population and dependency on traditional cook
stoves can increase the CO2, PM2.5 and other greenhouse gas emissions. The findings
of Mehmood et al. [53] revealed that most of the households in rural areas of Pakistan
burn wood, straw, animal dung and crops for cooking purpose, indicating that the most of
the households are dependent on contaminated fuels. Moreover, cooking practices with
contaminated fuel have the direct association with PM2.5 concentrations [54]; thus, the
government should promote clean energy, provide modern cook stoves and reduce fossil
fuel consumption to mitigate PM2.5 and other greenhouse gas emissions in Pakistan.

All four cities (Lahore, Peshawar, Islamabad and Karachi) from 1 January to
31 December 2017, had PM2.5 concentrations above than the standard recommendation
(10 mg/m3). According to AQI rankings of the world’s most polluted cities, Lahore was
ranked at number six, while Karachi was ranked at number sixteen, with AQI levels of
170 and 155, respectively [55]. Most recently, Lahore ranked as world’s most polluted
city [56]. Hence, we need immediately the finest and most effective tools and methods
to analyze, understand and estimate air quality properly. Our proposed deep learning
model for estimating PM2.5 concentrations is efficient and cost saving. We do not need
to deploy physical measurement tools in each city to calculate air quality. Using portable
devices (laptops, mobiles, etc.), PM2.5 concentrations for any city can be estimated using
our deep learning model. Pudasaini et al. [57] had proposed a model to estimate PM2.5
concentration from photographs. However, in order to estimate PM2.5 concentrations, we
would need to travel to the site area and snap a picture of it using a mobile phone. However,
in our method, we need only chose a city to predict PM2.5 concentrations on portable
device anywhere. Thus, this study suggests a reliable and effective way of estimating
PM2.5 concentrations.
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5. Conclusions

This paper proposes a deep learning P-CNN model for PM2.5 concentrations. This
model mainly uses deep convolutional neural networks to extract feature representation
information related to PM2.5 in satellite images to estimate PM2.5 concentration levels. We
also performed comparative analysis of our constructed model with other deep learning
models such as AlexNet, VGG16 and ResNet50 on four different datasets (Karachi, Lahore,
Peshawar and Islamabad). The study performed different measures to analyze the model’s
accuracy. In this regard, MAE, RMSE and MAPE were used as accuracy metrics. The exper-
imental results demonstrated that the P-CNN model is more suitable for predicting PM2.5
concentrations than other models. The results confirmed that the PM2.5 concentrations
our model predicts from satellite images are closely related with actual results. Any future
research should focus on finding ways to make the model more accurate, as well as to focus
on seasonal-wise PM2.5 estimations. Although, the model provides better results, some
limitations cannot be avoided. Based on available datasets, we used the samples between
May-2019 to April-2020. This study focuses on four cities of Pakistan; future study should
find large datasets and use more cities, which will give better results.
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Abstract: We propose a method for Global Ionospheric Maps of Total Electron Content forecasting
using the Nearest Neighbour method. The assumption is that in a database of global ionosphere
maps spanning more than two solar cycles, one can select a set of past observations that have similar
geomagnetic conditions to those of the current map. The assumption is that the current ionospheric
condition can be expressed by a linear combination of conditions seen in the past. The average
of these maps leads to common geomagnetic components being preserved and those not shared
by several maps being reduced. The method is based on searching the historical database for the
dates of the maps closest to the current map and using as a prediction the maps in the database
that correspond to time shifts on the prediction horizons. In contrast to other methods of machine
learning, the implementation only requires a distance computation and does not need a previous step
of model training and adjustment for each prediction horizon. It also provides confidence intervals
for the forecast. The method has been analyzed for two full years (2015 and 2018), for selected days
of 2015 and 2018, i.e., two storm days and two non-storm days and the performance of the system
has been compared with CODE (24- and 48-h forecast horizons).

Keywords: Global Ionospheric Maps; Total Electron Content forecasting; machine learning; Nearest
Neighbour method

1. Introduction

The variations in electron density and, correspondingly in its line-of-sight integral,
the vertical total ionospheric electron content (TEC), affect satellite telecommunication
services and Global Navigation Satellite Systems (GNSS) due to the effect these fluctuations
have on radio wave propagation. The TEC variations induce changes that affect the
transmission quality either as reduced transmission rate or positioning errors. This justifies
the importance of monitoring and predicting global TEC maps, as the knowledge of the
spatial distribution of TEC would allow corrections to be made. The TEC measurement
consists of the total number of electrons integrated along a 1 m2 cross-section tube, using
as a unit the TECU defined as = 1016 electrons/m2. The prediction of Global Ionospheric
Maps (GIM) at different horizons is important because the ionospheric delay is main
limiting factor in high-accuracy positioning. These predictions may allow achieving sub-
meter accuracy for mass-market single-frequency receivers [1]. In this paper we propose a
method for Global Ionospheric Maps of Total Electron Content forecasting using the nearest
neighbour method which we denote as NNGIM.
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1.1. Issues Related to Previous Work in TEC Map Prediction

The difficulty in predicting TEC maps of the ionosphere stems from the fact that the
quality of the prediction depends on geomagnetic activity, season, geographical location,
ionospheric structures, such as equatorial ionization anomaly (EIA), and storm-enhanced
density (SED). Besides, the sparsity in the geographical distribution of stations leads to
problems related to interpolation in regions not covered by these stations. Added to the
problem of variability and dependence on external factors, the prediction of GIM maps by
machine learning techniques is affected by the need for machine learning techniques to
infer prediction rules from examples. This means that the database to train the system has
to be rich enough to represent most of the combinations of effects acting on the ionosphere.
One intrinsic limitation of machine learning-based systems is the availability of a database
that sufficiently covers the multiple forms of phenomena that can occur. In the works cited
below, most of the prediction proposals are made using databases covering at most one solar
cycle. In this work, we will be using UPC-IonSAT’s database (for more information about
the IonSAT group, i.e., ionospheric determination and navigation based on satellite and
terrestrial systems group see [2]), which covers more than two solar cycles. It is important
to highlight the importance of having more than one solar cycle to infer the structure and
parameters of the forecasting system. Within the long-term solar cycle periodicity, there is
large variability. As an example analyzed in this paper, we can mention two dates when
storms occur. For instance, the Saint Patrick storm of 17 March 2015 (maximum of solar
cycle C23) and the storm of 25–26 August 2018 (minimum of solar cycle C23). These are
dates in different phases of the solar cycle, in which we have high solar and geomagnetic
activity superimposed on different basal levels of ionization. The Tables 1 and 2, summarise
the hourly Kp values on these days. In these two days, the activity in terms of Kp values
and magnitude of the flares is similar. Therefore, within the periodicity associated with the
solar cycles and the season of the year, there is a high variability that makes it difficult to
infer prediction rules. This high variability, in addition to the baseline levels of activity due
to the periodicity components, justifies the need for a long enough database.

Table 1. Hourly Kp for the 17 March 2015.

Hour 00–03 h 03–06 h 06–09 h 09–12 h 12–15 h 15-18 h 18–21 h 21–00 h

Kp (17 March) 2 5 6 6 8 8 7 8

Table 2. Hourly Kp for the 25–26 August 2018.

Hour 00–03 h 03–06 h 06–09 h 09–12 h 12–15 h 15–18 h 18–21 h 21–00 h

Kp (25 August) 1 1 2 2 3 2 4 4
Kp (26 August) 5 7 7 5 5 6 5 3

The need for a database that sufficiently covers the variability of GIMs presents
significant technical problems from the point of view of prediction algorithms. In the case
of two solar cycles, with maps at a rate of one every 15 min, the resulting database consists
of more than one million maps. The use of databases of this size makes the hardware
requirements demanding, and the computational time requirements to perform topology
and parameter tuning of the machine learning system are substantial.

To address the above mentioned problem, i.e., of training a machine learning system
for forecasting the GIMs, making, there are two approaches.

Local approach: In this case, a specific subset of the database is constructed from the
current observation. An example is [3], in which maps immediately before the current
map are used, and the forecasting method is based on these maps and the associated
tangent spaces, which are linearly combined to generate the predicted maps. This approach
assumes that the change in the maps has inertia that determines the future evolution. In [4],
they apply a similar idea to calculate the autoregression coefficients that predict the values
of the spherical harmonics that allow the GIMs to be reconstructed. Another approach is
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the one followed in this article, in which prediction is made based on past examples that
have a small distance to the current observation. This approach assumes that conditions
similar to the one observed in the current map have occurred in the near past and that
the temporal evolution of the current map can be inferred from the evolutions seen in the
previous history. A noteworthy aspect of the local approximation is that increasing the
number of prediction horizons does not lead to a significant increase in computation time,
as most of the computation time comes from determining the coefficients in a window that
spans a limited amount of time.

Global approach: In this case, the prediction model uses all the historical GIMs. One
consequence of this is that to make a reliable prediction, the model has to be estimated from
a sufficiently rich set of examples. This leads to problems of implementation. For support
vector machines, this approach is infeasible, since it is necessary to create the gram matrix,
which is the square of the number of examples, and it must be kept in memory. In the case
of deep learning [5], the training has to be carried out in graphical processing units (GPU),
which have limited memory.

Another significant limitation in the approach using deep learning and similar meth-
ods is that either a completely new model or a more complicated topology has to be trained
when increasing the number of prediction horizons. In contrast, the method we propose,
the nearest neighbour GIM algorithm (NNGIM), is based on finding the nearest set of
maps, increasing or changing the values of the horizons has minimal repercussions on the
execution time.

A natural model for forecasting the GIM maps that has been used in the literature
(see Section 1.2) is the long short term memory (LSTM) [5] architecture. A very significant
limitation of the LSTM architectures is that they consist of units that have saturating
nonlinearities, such as hyperbolic tangent and sigmoid. Since the GIM statistics are long tail
(see the last section of [3]), the units work much of the time in saturation and cannot model
large amplitudes. For a complete explanation see Section 4.4. One consequence is that
precisely the regions of interest where there are large TEC gradients cannot be modelled
correctly by these units, as the gradient is zero due to the saturation of the nonlinearities.
The complexity of using Deep Learning based methods was one of the motivations for
seeking a more simple approach to the problem.

1.2. Approaches and Limitations to the GIM Forecast

We will now discuss some antecedents to set the NNGIM in context. The features
and limitations of other GIM prediction methods will allow us to justify NNGIM design
decisions. This section will also serve to highlight the limitations of the global approach
to forecasting.

Global approach: A first approach to the problem of predicting TEC maps consists
of predicting TEC values for specific stations, thus obtaining a local description of the
TEC distribution. This is the case of [6], where they predict the TEC over China using a
variant of the LSTM type networks (ED-LSTM). This type of method differs from ours in
the sense that the prediction is done at the station level and there is no interpolation process.
One point to note is the use of data from one solar cycle (January 2006 to April 2018).
The authors use training data from 2006 to 2016, validation between January 2017 and April
2018. To avoid the problem of the solar cycle-dependent baseline TEC level, and to adapt
the data to the structure of the LSTM grids, the authors normalise the data. This assumes
that the variations around the baseline TEC value are similar between different times of the
solar cycle. One problem related to their approach is that the neural network units they
apply have saturation-type non-linearities, which has as a consequence that for extreme
values, the units work on saturation (i.e., the gradients are null, and the extreme value is
set to the limit of the saturation function). Note that the statistics of the TEC distribution
is Leptokurtic, i.e., long tail, which means that extreme values are much more common
than expected in the case of a Gaussian or Exponential distribution. On the other hand,
an advantage of the type of neural network they employ is that it allows the use of external
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data naturally in the architecture (solar flux and geomagnetic activity data). In addition to
the LSTM architecture (ED-LSTM), the authors explore other architectures and provide a
performance hierarchy. The forecast horizons are 2-h, 3-h, and 4-h, using as input a window
of past samples between one day and three days. An important lesson from this work is
that the inertia hypothesis, in the sense that the temporal evolution of the TEC follows
a trajectory specified by the near past, leads to a prediction barrier at a horizon of a few
hours. This limit on the prediction horizon under these conditions was also found in [3].

Another paper working on the prediction of TEC values using a network of local
stations in Turkey is [7]. Unlike the present paper, which deals with stations distributed
all over the globe, the authors use five stations, all located in the mid-latitude region.
The training implementation uses inputs corresponding to the current TEC value, together
with measurements affecting the evolution of ionization, such as Kp, solar flux (F10.7
cm), magnetic field (Bx, By and Bz) and proton density, and EUV radiation in two bands.
The neural network they use is based on LSTM structures, which suffer from the above-
mentioned drawback, i.e., the input signal has a Leptokurtic statistic. In other words,
outliers are common (for instance Figures 5 to 7 of the article [6]), while the prediction
mechanism is based on LSTM units that saturate at high levels of any of the inputs. This
means that in situations of high ionization variations, this approach does not allow the
prediction model to learn from these variations. Another aspect that concerns us in the
current implementation is the robustness of the prediction system with respect to the
measurements. The fact of using heterogeneous measurements as input to the network
makes the prediction susceptible to events of loss of some type of measurement.

A similar paper is [8] that performs the map prediction on a single meridian, 120 de-
grees, in a range of latitudes between 80 degrees north and 80 degrees south, (in contrast
to our case, where we perform a global prediction). They use as input to the system a
history of past measurements of daily TEC sampled at 2-h intervals, together with the
mean value of the solar flux. An interesting feature of this work is that the use of external
information (kp and Dst) had a different influence depending on the phase of the solar
cycle. Another limitation, which is common to other applications using neural networks, is
the partitioning between train, test and validation. In this case, for the validation partition,
the years 2015 and 2018 were used, which correspond to the time after the peak of activity
and when the activity decreases. Since the statistics of the TEC variation and the external
information used are different according to the phase of the solar cycle, this partition
introduces a bias in the architecture and parameters selected for the predictor. Moreover,
the use of sigmoid/hyperbolic nonlinearities in LSTM/MLP prediction methods leads to
the limitations discussed in Section 4.4.

An article reporting a related architecture is [9]. Unlike the previous case, the objective
was to predict global TEC maps, with a resolution of 5 by 2.5 degrees in longitude and
latitude. The temporal resolution was 2 h. To solve the diurnal cyclicity problem, they
use a solar centred reference frame. The authors propose the prediction of global maps
with prediction horizons increasing in two-hour steps up to 48 h. The input data were the
maps for the three immediately preceding days. The type of architecture they propose is
based on a sequence to sequence, in which CNN-type networks are combined with memory
networks, either LSTM or gated recurrent units (GRU), both with saturating nonlinearities.
The authors report that prediction at intervals longer than 24 h did not achieve good results;
in fact, in the 24-h prediction, they obtain a result that improves the cyclic prediction by
only 6%. The study was conducted using the data from 1 January 2014 to 31 December
2016. Note also, that the use of LSTM or GRU also suffers from the limitation that the
observations are leptokurtic, which means that the nolinearities work in saturation for
extreme values.

In [10] the authors propose a system based on the use of two LSTM layers followed by
a fully connected dense layer for the prediction of the global TEC maps. Unlike the previous
cases, the prediction is performed directly on the spherical harmonic (SH) used to build
the GIMs. In this approach, in addition to using the information in the recent past (24 h)
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regarding the SH, they also use external information that helps to make the prediction,
such as the solar extreme ultraviolet (EUV) flux, the hour of the day, and disturbance
storm time (Dst) index. The prediction horizon is set to 1 h and 2 h. It is interesting to
note that the prediction has an error with respect to frozen maps (defined as persistence,
i.e., M̂ap f rozen(t + τ) = Map(t)) of 60% at one hour and 63% at two hours. Note that
(although the experiment is not totally comparable) this gain is similar to the obtained by
the frozen cyclic approach vs. the persistence hypothesis, in Section 2.5 of the current paper.
As a test base, the intervals before and after the interval used for the training base were
used. That is, for the training base the interval: 1 January 2015 to 26 May 2016 and for the
test base the intervals 19 October to 31 December 2014 and 27 May to 31 December 2016,
thus ensuring a similarity between the training and test conditions.

The methodology of the above-mentioned works is correct from the point of view
of deep learning type network design, however, despite the correctness, it reflects the
limitations of this type of technique. These limitations are typical of the general approach
to the TEC prediction problem using deep learning and do not indicate a misuse of the
technique by the authors. The limitations of Deep Learning are the need to process the input
data such as normalisation or de-trending of the TEC, the difficulty of performing a test
under train-like conditions, the fact that some networks require saturating nonlinearities
that are not fit for long-tail input distributions, and the limitations for predictions at
horizons greater than 24 h.

A different approach to the GIMs prediction problem is the one proposed by [11],
employing GANs (Generalized Adversarial Networks), which consists of a generative
method, with a training criterion based on generating maps that compete with a system
that generates impostors. It is a method that, by observing the current GIM map, generates
the future one. Unlike most prediction systems, it does not depend on a previous history of
GIM measurements, so it is robust to loss/reinitialization of the GIM data source. Like our
method, it implicitly assumes that the external conditions that determine the evolution of
the maps are included in the current measurement. However, an important limitation of
this method is that the quality depends on the data used for training and validation. In the
case of this publication this limitation is crucial, because the partition that was performed
to train the method ((1) a training data set (2001–2011), (2) a validation data set (2012),
and (3) a test data set (2013–2017)) makes that the criteria to determine the characteristics
of the experiment given by the year of validation, induce a bias that makes the behavior
of the predictions on unseen data depend on the accidental conditions of this partition
and the peculiarities of the chosen cycle. This method does not have the limitations of the
above mentioned methods in the sense that it does not use nonlinearities with saturation,
and does not depend on additional measures to the GIM, which makes it robust to data loss.

Local approach: This approach uses information from recent past to estimate the
parameters of the prediction model.

In [4], the authors describe a system based on autoregressive models, with coefficients
computed from a history covering the previous 30 days. The prediction is made on the
SH coefficients, which allow the GIM to be reconstructed. By estimating the model locally,
they can adapt the system to short-term climatology. This allows them to test the model at
different times of the solar cycle, without the need for special partitioning of the database,
as is done in the case of deep learning. The performance of the model is tested against
CODE, IGS products, and TEC measurements via JASON. The prediction result is different
depending on the activity at the time, with worse results at times of high activity. One result
is that the RMSE error of prediction during a low activity period was 1.5 TECUs at 24 h.
In [12] the authors use autoregressive moving average (ARMA) for vertical TEC (VTEC)
prediction for stations in Northern Europe. In this article, they use information related to
the analysis in wavelets to establish the prediction at 1, 2, and 3-h horizons, calculating
the ARMA coefficients from the last 7 days. The TEC profiles follow a daily pattern, so an
ARMA-type method is suitable for modeling the cyclicities.
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In [1], the authors propose a method for the prediction of GIMs with horizons of up to
2 days. It is based on a method that predicts the coefficients of the discrete cosine transform
(DCT) by an autoregressive method. The autoregressive coefficients are calculated locally
using information from the last week’s maps. From the predicted DCT coefficients, the map
at the horizon of interest is computed. By calculating the coefficients using a recent past
and using the maps of the previous 24 h for the prediction, the system can adapt to the
current weather conditions. The results were validated with JASON measurements.

In [3] a prediction system is proposed based on an autoregressive model of the maps of
the last 24 h, updated using only recent observations. The forecast also uses the components
of the tangent spaces associated with each of the previous maps. The forecast horizons
range from half an hour to 24 h. The tangent space information allows an increase in the
information on the possible trajectory and deformation of the map over time, and in some
way to reflect how the ionospheric climatology changes the shape of the high ionization
regions. One feature related to the comparison with other methods is the percentage
improvement of the prediction method compared to a frozen reference in a sun-fixed
reference frame. The reference will be the prediction error of keeping the map frozen
(see Section 2.5 for more information). As shown in Table 3, the prediction performance
has a concave profile. The performance is computed using the recent past, and with
autoregressive model coefficients calculated with recent values as well. The best prediction
compared to frozen is at a 3-h horizon, increasing thereafter. At 24 h, the improvement is
only 5%, which is in line with methods based on deep learning. This leads us to think that
there is a certain horizon barrier in terms of prediction using the recent past as input.

Table 3. Forecast vs. frozen (% RMSE) for the tangent space.

Horizon: 1/2 h 1 h 2 h 3 h 6 h 24 h

Forcast vs. Frozen: 84.99% 77.65% 71.35% 69.34% 87.23% 95.76%

The analysis of the previous approaches leads us to the conclusion that the information
immediately prior to the current map does not allow reliable predictions of GIM maps
at horizons longer than a few hours. They also indicate the limitations and difficulties of
training prediction models, and the complexity of the models and partitions of the database.

This leads us to look for a different approach, in which the prediction is made by
searching for situations similar to the current one in a sufficiently large database. A by-
product of this approach is that it allows the creation of confidence margins of the forecast
in a natural way (see Section 4.1).

2. Materials and Methods

2.1. UPC-IonSAT Real-Time Global Ionospheric Maps and Data Preprocessing

The GIMs are generated from data gathered from several hundred worldwide GNSS
stations. This data stream is obtained through the protocol used by the RT IGS working
group and the data processing is performed using the UPC-IonSAT ionosphere model.

The streaming protocol referred to as “Networked Transport of Radio Technical Com-
mission for Maritime Services (RTCM) via Internet Protocol” (NTRIP), was developed by
the German Federal Agency for Cartography and Geodesy (BKG), enables the streaming of
the observation data from the worldwide permanent GNSS receivers [13].

The UPC-IonSAT’s RT TOMographic IONosphere Model (RT-TOMION) is a 4D
(3D+time) model of the global state of the ionosphere, focused on RT estimation of TEC,
mainly based on GPS dual-frequency measurements with the hybrid geodetic and tomo-
graphic ionospheric model, and robust to various types of deterioration. This model is
the extension of the Tomographic Ionospheric Model (TOMION) developed by UPC in
the 1990s and has been employed for UPC RT/near-RT ionosphere service of IGS since
2011 [14–18].
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Additionally, the VTEC interpolation techniques of the UPC RT- TOMION model are
performed either by spherical harmonics or Kriging [16] so to fill the gaps where data is
lacking. In addition, the most recent maps are interpolated by means of the ADDGIM
algorithm presented in [19]. For more details of the processing and interpolation of the
GIMs, see [19].

2.2. The NNGIM Forecasting Algorithm

In this section, we will describe the Nearest Neighbour GIM (NNGIM) algorithm.
This algorithm consists of searching for the N maps closest (in Euclidean metric) to the
current one in the database of past maps (more than one solar cycle). Then, from these
maps, the GIMs with an offset equal to the prediction horizon are retrieved and averaged.

The assumption underlying the NNGIM algorithm is that in a database that encom-
passes more than one solar cycle, a small number of maps with the property of being the
closest in Euclidean distance to the current one can be found, and that have ionosphere
conditions in common with the current one, might characterize the maps at a time shift
equal to the forecast horizon. Although each ionosphere condition is unique, it is assumed
that in the past there have been conditions with a similar composition of external features
and that the average of all of them will reflect the specific features of the current one. The set
of similar maps therefore take into account the cyclical aspects that influence the overall
distribution of TEC along with the various external influences. That is, if we select a set of
future map values closer to the current one when averaging, common values in subsets of
the future maps will be retained, while non-common conditions will be attenuated. Note
that the idea behind the assumption is that there will be subsets of maps representing
similar ionospheric conditions, and the overall composition of these parts will allow us
to approximate previously unseen situations. We assume that these previously unseen
situations are composed of subgroups that characterize part of the previous conditions
common to the current situation.

The UPC-IonSat GIMs database, which spans over two solar cycles and consists of
more than 106 maps, was used to implement the method (see [19] for details).

In the algorithm diagram, Algorithm 1, we present the summary of the NNGIM
algorithm. A detailed explanation of the algorithm is given below, also defining the
variables involved.

The input of the algorithm consists of a database spanning more than two solar cycles
(DbAllMaps). Note that for consistency in the computation of the distance between maps
at different moments, the database and the current map are transformed to sun-fixed
geomagnetic coordinates. After the forecast, the inverse transform is performed.

Since the maps have a seasonal component with a mean TEC value that depends
on the season of the year (see Figure 1), the search for the nearest map will be carried
out in the vicinity of the current month. Therefore, given the date of the current map
DateTest, the month is extracted (MTst), and maps the current month and a window of
±WNeighMonths months are selected from the database. In the experiments, a neighbourhood
of WNeighMonths = 1 was taken. Other parameters are the forecast horizon in hours (Horizon)
and the number of nearest neighbours (NumNN). The next step is to construct a second
database (DbIma), which will consist of the maps with the current map month and the
neighbouring months for all years. The Euclidean distance between the current map
Map(DateTest) and the maps in the DbIma database is then calculated (lines 3 to 7 of the
Algorithm 1). The vector of distances is then sorted from smallest to largest (line 8 of the
Algorithm 1) and assigned to the vector of indices IndexMinDist.

We define NumNN as the number of maps to be used for prediction estimation.
The Algorithm 1, lines 9 to 15 describe the process for generating the prediction. For the
nearest NumNN maps, we find the corresponding index IndexMap and the associated
date Date[IndexMap]. Next, we add the offset Horizon to generate the date DateNNMap
associated with each of the maps. The maps associated with each date DateFutMap ←
DateNNMap + Horizon are combined to generate the future map ForecastMap.
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Finally, from the maps of the horizon shift, the standard deviation at the pixel level is
calculated, as shown in line 17.

Algorithm 1: The NNGIM algorithm.
Data: Inputs to the algorithm:

DateTest ← Date of the test GIM;
DbAllMaps ← All GIMs of two solar cycles in sun-fixed geomagnetic coordinates;
WNeigh ← Window of Neighbouring Months;
NumNN ← Number of elements for computing the mean of the Nearest
Neighbours;
Date ← Dictionary of Dates, indexed by Map number;
Horizon ← Forecast Horizon in hours;
Result: ForecastMap,ForecastStd

Map

1 Generate the Forecast Database;
2 MTst ← GetMonth(DateTest) ; /* Month of the current map */
3 DbIma ← ∅ ; /* DbIma Map DataBase of Current and Neighbouring Months

*/
4 for M=MTst − WNeigh to MTst + WNeigh do

5 DbIma ← (Add to set)DbAllMaps(M) ; /* Add maps for month M */
6 end

7 MatDist ← Distance(DbIma, Map(DateTest)) ; /* Distance from Map(DateTest)
to MatDist */

8 IndexMinDist = Argsort(MatDist) ; /* Argsort returns the Indices of the
sorted MatDist */

9 ForMap ← ∅ ; /* Compute mean value of the nearest maps at timestamp +
horizon */

10 for NumMap=1 to NumNN do

11 IndexMap ← IndexMinDist[NumMap];
12 DateNNMap ← Date[IndexMap];
13 DateFutMap ← DateNNMap + Horizon;
14 ForMap ← ForMap + DbAllMaps[DateFutMap];
15 end

16 ForecastMap ← ForMap/NumNN ;
17 ForecastStd

Map ← ComputeSTD(DbAllMaps, Date, IndexMinDist, Horizon);

Various strategies for combining the maps were tested, such as a simple average,
a distance-weighted average, or weight that diminishes with the time difference. We also
tried a trim mean, defined as the average of the values of each specific pixel in the maps,
using only the values between the 25th percentile and the 75th percentile. The median of
the pixels of the nearest NumNN maps was also tested. The combination that gave the best
results was a simple average of the maps.
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Figure 1. Mean monthly TEC for the years 2015 (in blue) and 2018 (in orange).

One parameter to be adjusted is the number NumNN used to calculate the forecast.
This value depends on the forecast horizon and the month of the year. For all experiments
we chose a value NumNN = 500. The choice was made based on the performance during
June 2019 and was explored for values between 1 and 1000. The rationale for the choice
of date was to have a date in a cycle (C24) different from the cycle in which the results
are presented (C23), and also at a season of low activity. The experiments showed that for
this month and horizons between 3 h and 48 h the optimum value was between 150 and
700. In the real-time implementation, a look-up table will be used in which the month and
horizon will be related to the NumNN value.

An interesting result is that using only the nearest neighbour, i.e., NumNN = 1 provided
results with a quality equal to using the cyclic version of the map, (defined as M̂apcyclic(t +
τ) = Map(t− 24h+ τ)). The performance did not improve until using a number of NumNN
greater than 50. This leads us to think that the use of a large number of maps allows us
to create a representation of the possible contributions of the factors that affect ionisation.
The explanation is that the combination of external factors is larger than the number of
examples in the database. The underlying assumption is that the current combination of
factors affecting ionisation can be expressed as a linear combination of similar situations in
the past.

A product of this algorithm is that it can provide confidence intervals for the GIMs,
i.e., the local standard deviation of the ionisation values. The estimation of confidence
intervals can be done directly, as a collection of several hundred maps is available. One of
the features of the maps from which the prediction is constructed is the variability around
a central value, as shown in Figure 2. Therefore from the set of maps used to generate the
prediction, one can estimate a standard deviation ForecastStd

Map at a pixel level, defining this
standard deviation as the deviation of the maps from the mean value of the prediction
ForecastMap. One point that we show in Section 4.1 is that the prediction covers most of the
area of the reference map Re fMap, so we can consider that this variance provides us with
an adequate measure of uncertainty for the prediction.
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Figure 2. Current map at 2018-07-13 20:45:00 UTC (subplot at upper left corner), and the seven
Nearest Neighbours. All maps in sun-fixed geomagnetic coordinates. The maps range in latitude
from 90 degrees north to 90 degrees south, and in longitude from 180 degrees west to 180 degrees
east. Color bars are in TEC units.

Parameter setting. The algorithm has two parameters to be adjusted, which are the
window in months to select maps, denoted as WNeigh and the number of elements to
calculate the mean value of the nearest neighbors, denoted as NumNN . The criterion to
adjust the parameters was to fit on a subset of the training base (the test was not used at any
time for adjustment). In the case of WNeigh, which corresponds to the neighboring months,
it was observed that due to the variation of the algorithm itself, examples were always
selected either from the current month or from the neighboring months. In order to limit the
calculation needs, the calculation of distances was limited to the intervals determined by
this variable. As for the NumNN variable, the result is different from the normal application
of the Nearest Neighbour (NN) algorithm, in the sense that in order to compensate for the
specific variability of each example used for the prediction, the number of neighbors to
be used is much higher than in normal applications of the NN. In our case, the prediction
error decreased monotonically until reaching a NumNNN value of about 500, producing a
plateau of error with small oscillations of the error until reaching about 1500, and at this
point the error starts to increase. Note that the fraction of elements used is small with
respect to the total number of examples which exceeds one million.

To see the effects of adjusting these parameters, see illustration of how the algorithm
works (Section 2.3) and example of forecasts at several horizons (Section 2.4).

Improvements: The improvements we envisage in the next step are to change the
average distance, using a metric on the manifold in which the map is located. This is the dis-
tance defined in [20] in which coefficients of the angle between coordinates gi,j =< ei, ej >
are used to weight the Euclidean distance. The advantage of using this distance is that
it allows considering in the similarity measure between maps, distortions such as shifts,
rotations, etc. The reason why it has not been used in this implementation is that it requires
a computational load proportional to the square of the number of map elements. With the
current hardware capabilities at 2021, the computation of MatDist took about ten minutes,
so it was not implemented in the final prototype.

Another improvement is to use a heuristic that decreases the computational needs
to determine the nearest neighbors. That is, an algorithm with a suitable heuristic for the
dimensionality of the maps and with a lower search cost, as is the case of [21]. The fact
that the GIMs have the ionisation levels distributed in clear and distinct regions makes this
algorithm efficient. This might allow implementing a distance with higher computational
cost as the nearest neighbour search cost can be decreased.
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The computational cost on an iMac i7 using one core of applying the algorithm was as
follows. The Euclidean distance MatDist from a map Map(DateTest) to the database DbIma
consisting of the current month and the two neighbouring months (with 170,000 maps)
was of the order of 135 ms, and the cost of sorting the distances Argsort(MatDist) of 9 ms,
the calculation of the average map ForecastMap, was less than 1 ms.

The format of the maps consisted of TEC values measured with a resolution of 2.5 de-
grees in latitude and 5 degrees in longitude, resulting in maps represented as a 72 × 71
array of floats. Each map occupied 40 k bytes on disk (the float represented in ascii format
had only one decimal place), while in memory it occupied 164 k bytes with a float-32 bit
representation. For more information see Section 2.1

The most time-consuming part of the algorithm is the loading into memory of the
pre-computed database DbIma, which occupies 2 gigabytes. The time cost on an SSD is in
the order of 2 s. However, in a real-time application, the database can be kept permanently
in memory.

The real-time prediction of the implementation of this algorithm can be found at the
following URL: [22], with the following naming convention:

The three regions where the forecast was done: Global Forecast (un*g), North-Pole
Forecast (un*n), South-Pole Forecast (un*s) And the different horizons that were imple-
mented in real time:

1 un0g/un0n/un0s: 1 h Forecast
2 un1g/un1n/un1s: 6 h Forecast
3 un2g/un2n/un2s: 12 h Forecast
4 un3g/un3n/un3s: 18 h Forecast
5 un4g/un4n/un4s: 24 h Forecast
6 un8g/un8n/un8s: 48 h Forecast

The polar predictions consist of segments of the global map clipped at 45 degrees
of latitude.

2.3. Illustration of How the Algorithm Works

To understand how the algorithm works, we will consider two points of view.

1. How the dates of the nearest maps are distributed along the solar cycles: C23, C24
and C25.

2. Examples of actual maps to understand how is the variability of the nearest neigh-
bours.

We will perform the analysis on day 2019-05-21 16:15:00 UTC a C25 cycle day dur-
ing summer.

1. In Figure 3 we show that the nearest neighbours are distributed over years in the
same phase of the cycle. Using only examples from the two cycles C23 and C24.
The algorithm does not select any maps from the previous month, and most of the
closest maps are from the next month. As we will see later, there is a significant
dependence of the behaviour of the algorithm on the month in which the prediction is
made. As for the time of day, most of the examples are at the same time of day plus or
minus one hour.

2. Next, we consider the variability of the closest maps. The variability of these maps
reflects the ionospheric conditions that are common and those that differ. In Figure 2
we show the map for 2018-07-13 20:45:00 UTC and the first seven nearest neighbours
in the Euclidean distance sense. In the experiment we used 500 nearest neighbours
to estimate the forecast. Examples of prediction are shown in Figures 4–6. To help
make it easier to compare, we present the maps in sun-fixed geomagnetic coordinates,
which are the setting in which the software computes the distance between maps.
The selected maps are from the same time of the year and at similar moments of the
solar cycle. On the other hand, the morphology is variable, which indicates that each
of the maps reflects ionospheric conditions that have parts in common with the current

375



Remote Sens. 2022, 14, 1361

map as well as specific components. The hypothesis underlying the NNGIM model
is that the components common to the current map are preserved by the average,
and those that are not common are smoothed out. This variability around common
values allows to estimate confidence intervals can capture the most likely ranges in the
true reference value. The maps at a future shift equal to the prediction horizon exhibit
very similar visual features. For reasons of space and similarity between figures, we
do not show them.

Figure 3. Nearest maps are distributed along solar cycles C24 and C25. Histograms of the years (left),
months (center) and time of day (right) of the nearest maps to the map at 2019-05-21 16:15:00 UTC.

Figure 4. Selected sequence of predictions for the map at 2018-07-14 20:45:00 UT. The upper row
shows the reference to 3 h, 6 h, 8 h, and 12 h horizons, the second row shows the prediction result.
Note that the color bars are not at the same scale. The maps range in latitude from 90 degrees north
to 90 degrees south, and in longitude from 180 degrees west to 180 degrees east. Color bars are in
TEC units.
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Figure 5. Selected sequence of predictions for the map at 2018-07-14 20:45:00 UT. The upper row
shows the reference to 16 h, 20 h, 24, 48 h, the second row shows the prediction result. Note that the
color bars are not at the same scale. The maps range in latitude from 90 degrees north to 90 degrees
south, and in longitude from 180 degrees west to 180 degrees east. Color bars are in TEC units.

(a) Mapre f (t + τ) (b) M̂apnngim(t + τ) (c) M̂apcyclic(t + τ) (d) M̂ap f rozen(t + τ)

Figure 6. Comparison of the reference map (a) at 2019-07-07 03:00:00 UTC, with the NNGIM pre-
diction, (b), with the cyclic prediction, (c) and with the frozen prediction (i.e., using current map)
(d) with the frozen map. Note that the maps are in the original coordinates, not in the sun-fixed
geomagnetic coordinates.

2.4. Example of Forecasts at Several Horizons

In Figures 4 and 5 we show a selected sequence of predictions for the map at 2018-07-14
20:45:00 UT, at horizons ranging from 3 h to 48 h. In the first row we show the reference
to 3 h, 6 h, 8 h, and 12 h horizons, and in the second row we show the prediction result.
The third and fourth rows show the results for horizons of 16 h, 20 h, 24, 48 h. In order to
assess the results it has to be taken into account that the colour bars are not at the same scale.
This means that local maxima can distort the level of the overall colour gradation. In any
case, an indication of the effectiveness of the algorithm lies in comparing the medium/high
ionisation regions (not maxima) between reference and prediction. In these cases, the shape
of the regions is found to be similar.

Note that the figures use as color code the ’viridis’ scale instead of the more usual
’jet’ scale. The reason is that the ’viridis’ color scheme implements a linear scale with
brightness going from dark black to bright yellow linearly, while the ’jet’ scale has the
brighter colors at the middle of the scale (blue/yellow), and the lowest/highest values are
coded with the darker colors. This non monotonicity of the relationship color/brightness
creates ambiguities.
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2.5. Selection of the Benchmark

In this section, we will define the benchmark to assess the performance of the algo-
rithm. A standard reference to evaluate the predictions are the CODE predictions made by
NOAA [23] (see Section 4.2). Another commonly used reference as benchmark predictor
is either a prediction using the current frozen map or as a prediction the cyclic map, that
is, the immediately preceding map of the same time as the time to be predicted. We will
formally define the two predictors as follows:

• Frozen: M̂ap f rozen(t + τ) = Map(t)
• Cyclic: M̂apcyclic(t + τ) = Map(t − 24 h + τ)

In Section 4.2 we present the comparison with the NOAA forecast product.
As a benchmark in the following sections, we will use the cyclical prediction M̂apcyclic(t +

τ).
We argue this decision through Table 4, in which we show the prediction errors in

RMSE (TECU) for prediction horizons ranging from 3 h to 48 h. In this case, one can
see that the prediction cyclic M̂apcyclic(t + τ) RMSE error and the standard deviation are
constant regardless of the prediction horizon, and equal to the 24-h error of the frozen
predictor M̂ap f rozen(t + τ). This is to be expected since at all times the cyclic predictor
behaves as a 24-h predictor. On the other hand, an important limitation of the use of the
frozen prediction M̂ap f rozen(t + τ) as a benchmark is that the comparison is made under
non-comparable ionospheric conditions. This results in a sinusoidal behaviour of the RMSE,
which increases from 3 h to 12 h and then decreases to a minimum at 24 h. This behaviour
is then repeated, reaching a new minimum at 48 h. Therefore, since the frozen version
M̂ap f rozen(t + τ) is a very pessimistic benchmark, and has a component that depends on
the time of day, we will use as a benchmark only the M̂apcyclic(t + τ).

Table 4. Forecasting RMSE (TECU) for M̂ap f rozen(t + τ) vs. M̂apcyclic(t + τ) (June 2019).

Horizon: τ (hours) 3 h 6 h 8 h 12 h 16 h 20 h 24 h 28 h 32 h 36 h 48 h

M̂ap f rozen(t + τ) (TECU) 1.87 2.35 2.51 2.59 2.51 2.18 1.42 2.19 2.57 2.61 1.54
M̂apcyclic(t + τ) (TECU) 1.43 1.43 1.41 1.45 1.41 1.42 1.42 1.42 1.42 1.44 1.42

To get an idea of the differences between benchmarks and NNGIM prediction, in
Figure 6 we present the comparison of the reference map (6-h a head ground truth), with the
predictions using the NNGIM algorithms, the cyclic and the frozen reference. The cyclic
reference provides local features of the TEC distribution similar to the reference map, while
the frozen maps have a quite a different geographical distribution of TEC. On the other
hand, the NNGIM prediction, despite using maps from other years, captures the structure
of the TEC distribution of the reference map.

3. Results

For the analysis of the algorithm, we have selected two years of the C24 cycle and two
days of each year. The criterion for selecting the years was to have a sample of one year of
high activity in the cycle and one year of low activity. Likewise for the days, in order to
contrast the behaviour of the algorithm in the case of storm days vs. quiet days, we chose
two storm days of each year and two adjacent days without a storm.

3.1. Analysis of Selected Years: 2015 and 2018

Figure 1 shows the time series of the average monthly TEC value for the two selected
years. The first difference observed in the two years is the underlying monthly average
TEC level and the fact that in the most active year (2015), the monthly profile of the TEC
level has a marked cyclical component with a minimum in the summer. On the other hand,
in the least active year (2018), the cyclical component has a lower amplitude. The mean
annual TEC value for 2015 is 20 TECU, while in 2018 it is 8.8 TECU.
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First, we show the performance of the NNGIM algorithm in TECU values and then
for comparison purposes in percentages concerning the prediction using the frozen cyclic.

In Table 5 we show the average TECU prediction RMSE for 4 prediction horizons.
In 2015 the prediction error increases as we increase the horizon from 17% to 20% of the
average TEC value. On the other hand, the error in 2018 remains almost constant regardless
of the horizon and stands at 18% of the average TEC value in that year. However, as we
will see below, the prediction error has an annual cyclical component, being lower in
the summer.

Table 5. RMSE error of the NNGIM algorithm for several horizons.

Horizon 6 h 12 h 24 h 48 h Mean TECU

2015 (TECU) 3.50 3.70 3.72 4.00 20.0 TECU
2018 (TECU) 1.59 1.66 1.59 1.66 8.8 TECU

In Figure 7 we present the percentage change of the RMSE value for the cyclical
prediction vs. NNGIM for various horizons. That is, we plot the ratio

M̂apnngim(t + τ)

M̂apcyclic(t + τ)
× 100%

The first conclusion derived from the figures is that the use of NNGIM provides a
decrease that follows an annual pattern and in the summer months for 6 and 12-h horizons
provides a decrease in error in the order of 20% to 25%. This contrasts with the experience
with tangent spaces predictions (see [3]) and deep learning based methods (see Section 1.2),
where a significant degradation in quality is reported at prediction horizons of the order
of 6 h. The prediction at 24 and 48 h reported as a percentage of frozen in [9] using deep
learning is similar to the one shown in the lower row of Figure 7.

(a) Horizon 6 h (b) Horizon 12 h

(c) Horizon 24 h (d) Horizon 48 h

Figure 7. Percentage of RMSE reduction with regard to cyclic freezing for the horizons of 6 h, 12 h,
24 h, 48 h.

The 12-h forecast results are worse than the 24-h ones except for the months of May and
June. This is because this is the moment in the interval (t, t + 24 h) when the ionosphere
configuration is maximally different from the current state.
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On the other hand, 48 h seems to be a natural limit for the method, as the error
reduction for frozen cyclic is on an annual average of 95%.

3.2. Performance on Selected Days of 2015 and 2018

To evaluate the performance of the NNGIM method, we selected two days at the
maximum of cycle 24 and two days at the minimum of the same cycle. The criterion for
selecting the days was that one of them coincided with a geomagnetic storm and the other
one coincided with a nearby day without significant activity. The selected days were:

1. 17 March 2015 (St.Patrick Day storm) and 5 March 2015 (non storm day).
2. 25–26 August 2018 (storm day) and 13–14 August 2018 (non storm day).

In both cases, the time distribution of geomagnetic activity index (i.e., Kp ) are shown
in Tables 1, 2, 6 and 7. The data was obtained from [24].

Table 6. Hourly Kp for the 5 March 2015.

Hour 00–03 h 03–06 h 06–09 h 09–12 h 12–15 h 15–18 h 18–21 h 21–00 h

Kp 1 0 0 1 2 2 2 1

Table 7. Hourly Kp and 13,14 August 2018

Hour 00–03 h 03–06 h 06–09 h 09–12 h 12–15 h 15–18 h 18–21 h 21–00 h

Kp (13 August) 1 1 1 1 1 1 0 1
Kp (14 August) 2 1 1 1 1 0 0 2

3.2.1. Performance on 5 and 17 March 2015

In Figure 8 we present the comparison of the NNGIM predictor versus the cyclic
frozen for various horizons in the form of a time series, at a rate of one map every 15 min.

In the top row, the performances of NNGIM vs. frozen cyclic are compared for the
5th of March 2015, which is a day with no significant events (see the Tables 1 and 6).
The difference in performance is irregular for the 6-h forecast, while for the 24-h forecast
the average reduction over the day is a little more than a 10% error. The worse behaviour
towards the end of the day could be due to the increase of the Kp indicator and the presence
of three solar flares in close temporal proximity. Since the NNGIM method assumes that
similar situations have been seen in the past and are used for prediction, the changes in
this particular configuration might not have been seen in the past.
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(a) 5 March 2015. Horizon: 6 h (b) 5 March 2015. Horizon: 24 h

(c) 5 March 2015. Horizon: 48 h (d) 17 March 2015. Horizon: 6 h

(e) 17 March 2015. Horizon: 24 h (f) 17 March 2015. Horizon: 48 h

Figure 8. Comparison of the NNGIM forecast vs. frozen cyclic RMSE. Upper row: 5 March 2015
(12 days before the storm). Lower row: 17 March 2015 (the St.Patrick storm day).

In the bottom row, we show the performance throughout the 17 March 2015 ( Saint
Patrick’s Day storm). The RMSE level compared to the 5 March is between two and three
times higher. However, in this case, the NNGIM predictor shows on average a better
performance than the cyclic frozen with variations depending on the forecast horizon.
For the first hours of the day, the NNGIM predictor performs similarly to cyclic frozen,
for the 6 and 24-h horizons, improving throughout the day. An interesting behaviour is
that at 48 h the RMSE of the NNGIM forecast remains at low levels throughout the day,
while the frozen cyclic in the early hours provides twice the error.

3.2.2. Performance on 13–14 and 25–26 August 2018

Figure 9, shows the RMSE time series for the two selected days at a time of the low
activity solar cycle. On that day, the RMSE level is similar to that of the 5th of March 2015
analysed above, which was a day of low geomagnetic activity, while being in a high activity
phase of the solar cycle.
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(a) 13 August 2018. Horizon: 6 h (b) 13 August 2018. Horizon: 24 h

(c) 13 August 2018. Horizon: 48 h (d) 25–26 August 2018. Horizon: 6 h

(e) 25–26 August 2018. Horizon: 24 h (f) 25–26 August 2018. Horizon: 48 h

Figure 9. Comparison of the NNGIM forecast vs. frozen cyclic RMSE. Upper row: 13–14 August 2018
(12 days before the storm). Lower row: 25–26 August 2018 (storm day).

On 13–14 August 2018, the NNGIM prediction is better or equal to that of the cyclic
frozen, except for a brief interval on the 14th of March at a 6-h horizon. The average
improvement over the day is in the order of 25% for 6 h, 13% for 24 h, and 18% for
48 h. However, there are significant fluctuations throughout the day and the slopes/error
patterns vary from horizon to horizon.

On 25–26 August 2018 (storm day) for the 6- and 24-h horizons NNGIM systematically
performs better than the frozen cyclical. The performances at the 6- and 24-h horizons
are practically the same for the 25th day, while they differ significantly for the 26th day,
with NNGIM being 25–50% better over long time intervals.

3.3. RMSE, Bias and Standard Deviation by Latitude

In this section, we will study the relationship of RMSE with standard deviation and
bias. In Figure 10, we show the performance for a horizon T = 6 h. In the Figure we present
by latitude (a) the RMSE of the NNGIM and frozen cyclic predictions and (b) the standard
deviation and bias components of the NNGIM. The study period consists of the dates
studied above, i.e., August 2015 and May 2018. The values were calculated on 3007 maps
corresponding to 31 days, with maps every 15 min.

The first observation is that the NNGIM prediction has a lower RMSE at all latitudes
on the two studied dates. The RMSE maxima are located in the case of NNGIM at the
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same latitude, while in the case of frozen cyclic the latitude in one case differs. On the
other hand, the maxima in the standard deviation do not coincide with the RMSE maxima,
noting that the difference is explained in the case of March 2015 by a very high bias at about
10 degrees north latitude. The bias of -3 TECU observed in this case is rare, in the maps
observed by the author, the bias, in general, was less than 1 TECU, as illustrated in the case
of August 2018.

(a) RMSE March 2015 (b) Std/Bias March 2015 (c) RMSE August 2018 (d) Std/Bias August 2018

Figure 10. Performance for a horizon T = 6 h. RMSE, bias and standard deviation by latitude.
(a) Comparison of the RMSE between the NNGIM and the frozen cyclic March 2015, (b) standard
deviation and bias for the NNGIM March 2015, (a) Comparison of the RMSE between the NNGIM
and the frozen cyclic August 2018, (b) standard deviation and bias for the NNGIM August 2018. Note
that the bias and standard deviation are not the same scale.

4. Discussion

4.1. Reliability and Confidence Margins of the NNGIM Algorithm

In this section, we will study the reliability of the standard deviation estimated from the
nearest neighbours provided by the algorithm. The purpose is to show that the standard
deviation computed on the nearest future maps correctly represents the variability of
the predicted map. We will show the reliability from two points of view, the first one
consists of plotting several maps and showing the regions not covered by the confidence
margin (defined as one standard deviation around the mean TEC value at each geographic
coordinate of the GIM map, i.e., we associate a margin of about 68% confidence with each
interval of 2.5 degrees latitude by 5 degrees longitude) given by the standard deviation
provided by NNGIM. The second point of view will consist of showing the decrease in
the error obtained when the prediction is considered to be included within the confidence
margin given by the standard deviation.

In Figure 11, we show maps for different dates for the month of June 2019, in which we
mark in green the region covered by the interval ForecastMap ± ForecastStd

Map, and in red the
areas of the prediction that fall outside this interval. The images show that the areas of the
Forecastre f maps not covered by a standard deviation margin are located in the periphery
or at the areas of sharp transition.
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(a) Map at 2019-06-29 23:00:00 (b) Map at 2019-06-22 17:45:00 (c) Map at 2019-06-12 10:15:00

Figure 11. Forecast maps in which the basemap coincides with the global coordinates (latitude
±90 degrees, longitude ±180), and the height shows measured TEC values. The colors distinguish,
(green), the regions of the GIM map where the prediction is within the ± sigma range, and in red the
regions where the prediction is outside. Green areas: show the areas where the reference Forecastre f is
included in ForecastMap ± ForecastStd

Map. Red areas: areas where Forecastre f is outside the margin.

In Figure 12 we show the error decrease regarding the NNGIM prediction if we
consider only data outside the interval within the confidence margin. That is, we consider
the error to be zero if the predicted map is contained in the margin, i.e., Forecastre f ⊂
ForecastMap ± ForecastStd

Map. It is seen that systematically for the two years and prediction
horizons, the error decreases between 15 and 20%. In other words, assuming the correct
value is within the confidence interval significantly reduces the error. An interesting
feature is that this error reduction does not depend on either the season of the year or the
prediction horizon.

(a) Horizon 6 h (b) Horizon 12 h

(c) Horizon 24 h (d) Horizon 48 h

Figure 12. Performance for Forecastre f ⊂ ForecastMap ± ForecastStd
Map. Percentage of RMSE reduction

with regard to cyclic freezing for the horizons of 6 h, 12 h, 24 h, 48 h.

4.2. Validation of the Method with JASON3 and CODE Data

Next we show the results of the validation of the NNGIM VTEC in terms of the
differences with respect to JASON3 VTEC measurements (see Figure 13) and the comparison
with other GNSS VTEC products in terms of Bias, Variance and RMS (see Figure 14).

This part of the study was conducted in the interval of the first 100 days of the year
2021. Note that for the sake of completeness of the analysis of the method, we have
performed the experiments at different times of the solar cycle. Given the space limitation,
we think that in this way we can provide the maximum information of the algorithm from
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the point of view of each issue to be evaluated. The CODE data was downloaded from the
NOAA website [23].

The comparison was made between the products based on NNGIM prediction at 24 h
(UN4G) and 48 h (UN8G), vs. IGSG and Center for Orbit Determination in Europe (CODE)
VTEC prediction model products, at 24 h (C1PG) and 48 h (C2PG).

In Figure 13, we show the histogram of the VTEC residual defined as δV = VTECJASON3
−VTECForecastGIM on a logarithmic scale to enhance the details in the low-density parts of
the histogram, i.e., regions where the number of samples per bin is much lower than at the
mode of the distribution. For comparison purposes on the figure, there is a summary of
the relevant statistics of each product, i.e., bias, standard deviation, and RMS. Note that
the Std. Dev and RMS of the NNGIM prediction at 24 h (UN4G) and 48 h (UN8G) are
systematically lower than the CODE and IGSG. Note that the tails of the distributions are
similar. Furthermore, the distribution related to the NNGIM product having a lower width
compared with the CODE products. This indicates that the probability of a high-value
positive error in the NNGIM products is much lower than the other products.

Figure 13. Histogram, in log scale for the number of counts, of VTEC difference of JASON3 measure-
ment minus GIMs value for the first 100 days of 2021, the color code indicates the comparison for
different forecasting products. The histogram of the reference values of JASON3 is represented in
gray. The corresponding overall bias, standard deviation (Std.Dev.), and RMS are indicated in the
upper right legend.

Next, we will compare, concerning the JASON3 measurements, the products by
latitude, as a function of the differences in standard deviation, bias, and RMS.

In Figure 14, on the left, we show the standard deviation of the VTEC residual vs.
JASON3 at 5-degrees longitudinal intervals. Note that the standard deviation is weighted by
the number of JASON3 observations in cells in the same 5-degree latitude range. The 24-h
prediction product based on NNGIM, UN4G consistently has a lower standard deviation
than the equivalent CODE, C1PG except for the sample at 15 degrees latitude north where
they are the same. The largest differences are observed at the equator and in areas of
north/south latitude greater than 35 degrees. In the case of the 48-h forecast products
(UN8G vs. C2PG), the trend is very similar, with NNGIM having a lower standard deviation
at all latitudes except at 15 degrees north latitude.
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In Figure 14, in the center, we show the bias of the products. In this case, the bias of
the NNGIM products is lower, except in the region below −35 degrees south latitude and
above 45 degrees north latitude. The explanation for this bias corresponds to the fact that
there is a different ionosphere sampling model, as explained in [19].

Finally, in Figure 14, on the right, we show the RMS value by latitude, in this case,
the RMS of the prediction is better for the NNGIM products between −30 degrees south
latitude and 50 degrees north latitude. Note that from 50 degrees north latitude the differ-
ence concerning CODE is less than half a TECU, and on the other hand in the equatorial
region the UN4G and UN8G products provide an improvement of 2 TECUs. The difference
in the south polar region could be because there are fewer stations, and therefore the GIMs
are less accurate.

(a) Standard deviation (b) Bias (c) RMS

Figure 14. Jason assessment for latitudinal zones, the color representing different products. Note that
the measures are weighted by the number of JASON3 observations in cells with the same 5-degree
intervals of latitude. Blue: UN4F, Orange: UN8G, Green: C1PG, Red: C2PG, Purple: IGSC.

Note that the availability of the NNGIM forecasting depends on the delay of generating
the GIM maps, which is the case of the UPC-IonSAT is of about half an hour, while the
availability of the CODE maps can be with a delay of up to 5 or 7 h, which makes the
effective forecasting horizon shorter.

4.3. Considerations about the Quality Assessment by Means of JASON3 VTEC Measurements

The importance of the VTEC measures obtained by JASON3 lies in the fact that it
provides us with an objective reference of the real value for the comparison purposes.
The measures provided by JASON3 allow us to determine whether the estimate made
by the prediction product provides a correct value or introduces biases. As the orbit
altitude of JASON3 is about ∼1300 km, the altimeter can count almost all the VTEC of
the ionospheric state above the ocean region. It is important to emphasize that over
the ocean areas, the GIM used for the prediction might have large interpolating errors
appearing due to their far distance from GNSS ground stations. Therefore, the use of
JASON3 VTEC measurement allows for a critical evaluation of the forecast products in
adverse circumstances. In this work, the raw observations of the JASON3 VTEC were
preprocessed to reduce the measurement noise. The process carried out included the use of
a temporal sliding window, removal of outliers, and so on, as explained in [25,26].

Evaluation using dSTEC may be an alternative for evaluating VTEC values of GIM
prediction products. However, in this particular case the use of dSTEC may not be appro-
priate because of the following. Typically, the JASON3 VTEC assessment is a validation
method for GIMs only over the ocean region, so it may be appropriate to consider the
complementary assessment for GIMs over the land region, namely the dSTEC assessment,
which compares the difference between the observed STEC along the phase-continuous
satellite-station arc and the calculated STEC from GIM, see details in [25]. However, the us-
age of altimeter VTEC measurements to assess GIMs has been proven to be a good external
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assessment procedure, consistent with other methods based on GNSS data (behaving simi-
larly to the dSTEC test [25]) but independent from GNSS and globally distributed. These
are the main reasons behind focusing on altimeter data, being the JASON3 the one available
during the whole period of analysis, see the former studies that used JASON2, JASON1,
and TOPEX altimeters.

4.4. Explanation of the Limitation of Saturating Nonlinearities

The learning algorithms used in LSTM type neural networks employ the gradient
associated with internal nonlinearities of hyperbolic tangent or sigmoid type. Both non-
linearities, as illustrated (hyperbolic tangent case) in Figure 15 (right), saturate for large
absolute values, and the derivative is zero. The consequence of this is that the gradient used
for estimating the weights of the neural networks in the high value regions is practically
zero, and therefore no learning takes place. In long tail distributions (e.g., Kp, Solar Flux,
Magnetic Field Index proton density, EUV radiation, etc.), with a morphology as shown
in Figure 15 left, and histograms with outliers. It is the case that the learning algorithms
have precisely the null gradient in cases of greatest interest from the point of view of
prediction. Therefore, the estimation of the neural network weights becomes zero in the
cases of extreme activity.

Figure 15. (Left) Example of a time series with a Long Tail distribution, (Center) Histogram of the
time series, (Right) Comparison of the Tanh nonlinearity with its’ derivative.

5. Conclusions

In this work, we have introduced a method to predict GIMs at various horizons based
on the Nearest Neighbour technique. This technique allows predictors to be implemented
without the need to train a model, and the computation time is small. The assumption on
which the model is based is that a database covering more than one solar cycle is available,
and that the geomagnetic conditions affecting the current map have somehow happened in
the past, and that similar geomagnetic effects are distributed among several maps, whose
linear combination allows a better approximation of the prediction. An advantage of the
method is also that from the similar maps found in the historical database, a confidence mar-
gin can be created. The prediction using this confidence margin allows a significant decrease
in the prediction error. We have performed a real-time implementation. The computational
cost of adding a prediction horizon is very low, so in the implementation, predictions are
made with almost no additional cost for arbitrary horizons. The prediction results improve
compared to the frozen cyclic up to a 48-h horizon, which seems to be a natural barrier for
this method. Finally, the method has been assessed in different moments of the solar cycle,
taking into account days with storm and without significant geomagnetic perturbations.
Additionally, the method has been assessed by comparing with the forecast at 24 and 48 h
of the Center for Orbit Determination in Europe (CODE) prediction model products.
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Abstract: A significant number of recent scientific papers have raised awareness of changes in the
biological world of bees, problems with their extinction, and, as a consequence, their impact on
humans and the environment. This work relies on precision beekeeping in apiculture and raises the
scale of measurement and prediction results using the system we developed, which was designed
to cover beehive ecosystem. It is equipped with an IoT modular base station that collects a wide
range of parameters from sensors on the hive and a bee counter at the hive entrance. Data are
sent to the cloud for storage, analysis, and alarm generation. A time-series forecasting model
capable of estimating the volume of bee exits and entrances per hour, which simulates dependence
between environmental conditions and bee activity, was devised. The applied mathematical models
based on recurrent neural networks exhibited high accuracy. A web application for monitoring and
prediction displays parameters, measured values, and predictive and analytical alarms in real time.
The predictive component utilizes artificial intelligence by applying advanced analytical methods to
find correlation between sensor data and the behavioral patterns of bees, and to raise alarms should
it detect deviations. The analytical component raises an alarm when it detects measured values that
lie outside of the predetermined safety limits. Comparisons of the experimental data with the model
showed that our model represents the observed processes well.

Keywords: IoT monitoring; predictive modeling; honeybees activity; precision beekeeping

1. Introduction

Although humanity is constantly advancing technologically, this development in-
fluences the environment, inevitably changing it both intentionally and unintentionally.
Nature runs its course, and our influence disturbs the normal natural processes, changing
the balance of natural perfection. Modern approaches in agriculture, the application of
pesticides, herbicides, other chemical agents, and artificial pollinators, the flowering of
nature in periods, and untimely conditions have changed the ecosystem of nature itself and
bee societies, which is the topic of our research. In addition to the aforementioned, diseases
of bee colonies, Varroa destructor infections, the effects of pesticides and herbicides, lack of
food in hives, the loss of the queen and significant losses caused by unusual changes in the
environment, meteorological conditions, and the winter season also contribute to beekeep-
ing problems. The challenge was to design and manufacture an improved monitoring and
data analysis system that would process data with advanced data analysis techniques on
the basis of experience gained from previous studies.

We cannot influence events in the environment of bees occurring in nature, but we
can monitor, measure. and collect data. With the methodological application of software
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algorithms, we can create prediction systems and learn their patterns. Artificial events and
problems can be monitored, measured, and recorded, and we can influence them in order
to control the outcome and prevent damage caused by human influence.

Such problems have been studied for years, and methodological approaches have
changed. The development of precision microelectronics and the application of advanced
methodological approaches have enabled a new way of approaching data measurement
and analysis. The use of such systems enables mapping the causes of problems, and
creating approaches to prevent and solve them. In this way, we come closer to solving the
problems of modern apiculture.

In order to solve these problems, and relying on previous research, we created a
complex system that thoroughly monitors and measures an expanded set of parameters
that were proven through the mentioned research as relevant factors of influence. The
created system opens possibilities for multiple and different approaches to processing and
analyzing obtained results. An activity of bees (exits and entrances) represents a sequence
of data points that occur in successive order over a period of time, which gives us the ability
to apply algorithms for time-series forecasting. Time-series forecasting is the process of
analyzing time-series data using statistics and modeling to predict and inform strategic
decision making. The recent frequent use of recurrent neural networks is noticeable because
they show high performance in achieving this task. Taking into consideration the data
with which we work, approaches from the state of the art to more advanced and complex
approaches were tested. The best results for bee activity forecasting are achieved by using
recurrent neural networks (LSTM cell).

Precisely collected and processed data from such a system give insight to the beekeeper
regarding the situation inside and around the hive. Obtained results by analyzing and
applying the prediction model trigger alarms and inform beekeepers about a change in
circumstances in the hive, suggesting the application of adequate solutions to prevent
potential (predictive) problems. Thus, they can act in a timely and preventive manner on
hives or bees in order to avoid a negative outcome.

Software solutions in the form of an application based on artificial intelligence must
be accompanied by hardware components, which is the key to the presented management
system and this work. Through the research, we realized that hive management is the next
level in precision beekeeping, and the implementation of IoT MAP systems for supervising
and controlling hives is inevitable for the architecture of the solution.

A comprehensive, all-inclusive discussion of the considered topic, as presented in this
paper, consists of a set of parts, each one with an individual contribution. However, the
system is presented as a whole with the following summary of contributions:

• a system for bee movement monitoring was constructed and installed on the basis of
which we could correlate independent and dependent indicators;

• a large set of sensors for monitoring conditions from within and outside the hive was
installed, which collects a wide array of real-time parameters;

• a microcontroller-based IoT device was designed and constructed, which aggregates
sensor readings and uploads data to the cloud;

• an AI-based computational module was created and deployed to the cloud backend,
which enables real-time analytical and predictive assessment of data uploaded from
the IoT device;

• a web frontend app was designed and created, which enables insight into real-time
data from sensors at the hive and results from the AI module, namely, analytical and
predictive warnings and alarms.

All listed components work as an integrated system that gives beekeepers and biolo-
gists insight into the wellbeing of bees, and allows for the monitoring of their behavioral
patterns. Data are observed and analyzed depending on meteorological conditions, time
of day, season, etc. Future work includes the possibility for taking actions such as hive
entrance shutdown, ventilation, suggestions for hive relocation, and engagement of the
automatic feeder.
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All components of the proposed system are described in detail here. Section 2 lists
relevant references on the topic of beekeeping that discuss various parameters impacting
the behavior and wellbeing of bees. Section 3 describes the hardware of the constructed
IoT microcontroller station and connected sensors. Section 4 contains the description of
the web application for the real-time data monitoring and display of warnings. Section 5
describes the relevant data that were collected from the hive for the construction of the
AI model. Section 6 contains the description of the applied predictive models. Section 7
contains the experimental results, and Section 8 is the conclusion.

2. Related Work

In recent years, beekeepers have encountered problems with mass bee deaths [1,2] and
bee migrations due to climate change, and the impact of weather conditions on flowering
disorders in nature in periods when bees should collect pollen. The use of various pesticides
and herbicides in plant protection, and spraying at a time when bees are active in periods
of disturbed climatic conditions due to high temperatures and humidity cause bees to be
active in the later hours when spraying is performed [3]. This study indicates an advanced
solution that could be applied for the intelligent monitoring of events around the bee habitat.
It encompasses constant monitoring inside and outside a hive, real-time application, and
artificial intelligence that includes a large number of dependent and independent factors
influencing bee’s life in the analysis. Previous works [4–8] provide an excellent introduction
to the issue and indicate a wide range of approaches, proposals, and analyses of various
data, and the necessity and importance of including the influence of many factors on the
movement and life of bees. The aim of most works was to fully understand the movement,
work, and life of bees living in apiculture (the hive), and which beekeeper takes care of
the bees, so that they can raise, nurture, and monitor them with constant insight into the
condition of bees in the hive. In that way, the beekeeper could quickly react to changes
through alarms that would be triggered from intelligent monitoring if situations occur
with sudden changes, deviations, or potential problems predicted by the solution from
this paper.

Precision beekeeping [9–14] is a term that has appeared in recent years referring to
the development of online tools for the continuous monitoring and control of bee behavior
using an individual approach to society, avoiding exposing bees to additional stress and
unproductive activities. As monitoring each bee colony requires expensive resources and is
complex, precision beekeeping offers a solution in the form of monitoring individual bee
colonies and their immediate environment.

The mentioned works include important factors indicating their individual value,
such as temperature and humidity, and their influence on swarming or feeding [15,16],
ref. [17–19] vibration and sound [20–26], the presence of gases [27,28], rain and wind [29],
the amount and intensity of daylight, and UV and IR radiation indices; this paper covers
all these factors together. There are also time series of recording and data collection, which
were performed in hourly or daily time series in the mentioned works. The choice of
hardware solutions that affect the accuracy of data in previous analyses and approaches [15,
27,30,31] differs from the approach in this paper, where we relied on advanced methods and
data analysis. It is very important that analysis includes all dependent and independent
influencing factors due to the complexity of the obtained results and different methods of
inference.

The significance of constant monitoring [32–38] in terms of monitoring and measuring
various parameters of influence within and immediately around the hive is shown in a
large number of papers [39–48]. Most papers relied on the application of IoT technologies
in designing these systems [19,49–58].

Regarding the application of artificial intelligence, the authors in [7] used a decision
tree algorithm to classify the state of the hive. In order to maximize the identification of
crucial colony activities, including healthy and unhealthy conditions, ten hive status classes
were selected for this multi-class classification task. Our AI approach differs from the
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mentioned one, because we try to solve the regression problem and to draw a conclusion
about the status of the hive based on the activity of the bees, i.e., whether the conditions
in the hive are healthy or unhealthy. Similar approach was presented in [59,60] where the
deep neural networks were used to classify bee swarm activity from audio signals.

The monitored parameters are on a broad spectrum to indicate even the slightest
significance of any time element, or any deviation or disturbance in relation to the natural
environment in which bees normally function.

Parameters inside and outside the hive were monitored in very precise sequences of
temperature, humidity, air quality (presence of various gases, smoke, carbon monoxide,
etc.), noise, presence of different frequencies of sounds, shocks, vibrations, UV factors,
IR factors, intensity and variations of daylight, wind intensity, all in correlation with the
frequency (entrance and exits) of bees. Furthermore, one of the goals of the research was to
use this system to indicate the range of influences of different factors and parameters, their
intensity, and the mutual correlation of factors.

3. System Overview

The system consists of several hardware and software components (Figure 1). The
main IoT unit, located at the hive, collects data from multiple sensors in and around the
hive, and from a bee counting circuit located at the hive entrance. The main unit is based
on Arduino Mega 256 and ESP32 microcontroller boards. Data from the sensors and the
bee counting circuit are timestamped and transmitted to the cloud database via a cellular
modem. In order to prevent data loss, they are also saved on a local memory card.

Figure 1. System overview.

A web application connects to the cloud database to enable the display of real-time
and historical data. A decision-making system (DMS) also runs on the server, performing
real-time data analysis and parameter prediction. This component can detect deviations
from nominal parameters and accordingly generate alarms.

There are numerous solutions and tools for monitoring the movement of bees inside
and outside the hive based on semiconductors, optical sensors, and photoresistors, for ex-
ample [61,62], Arnia [63], Beecheck [64], the bee counter [65], and the honeybee counter [66].
Some solutions have exhibited problems due to a chosen approach to counting. The bee
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counting circuit presented in this work is based on a set of two photoreflecting resistors per
gate, where both resistors must be triggered to detect one pass. Depending on the order of
activation, the direction of movement in or out of the hive is determined. In order to avoid
congestion, the circuit contains 24 gates, enabling bees to simultaneously enter and exit
through all of them.

The precise measurements of bee movements are the basis for reaching conclusions
about the condition of hives, and they are related to every action. However, to obtain more
precise movement results, bee movement data must be tied to dependent and independent
variables inside and outside the hive.

An active beehive with the IoT main unit and sensors used for data collection in this
research is shown in Figure 2.

 

Figure 2. Experimental hive setup with sensor electronics.

Main Unit Architecture

As seen in Figure 3, the scheme of the data collection system consisted of a microprocessor
-controlled IoT base station.

The base station was connected to sensors for measuring parameters and data. The
sensor sets in charge of the conditions in the hive were specially arranged in several
levels following the structure of the frames and floor in the hive. Sensors for measuring
parameters outside the hive were placed in the outer part of the system, but they are
protected from direct meteorological influences that could lead to measurement errors.
The bee counting sensor array is located at the entrance to the hive, where there are gates
with photoresistors for the passage of bees to detect their movement. The entire system is
controlled by the main unit microprocessor, which communicates with microcontrollers
and initiates the collection of data that are forwarded via GPRS to the cloud system and
web database. The data are also written into local storage.
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Figure 3. Schematic of data collection system.

The system consists of sensors and microelectronic components, preferably designed
to avoid interruptions in operation, since it involves a large number of sensors and auxiliary
modules operating at different voltage levels. The system was designed with low power
consumption in mind, enabling a self-sustainable operation via solar power and a battery.

Figure 4 shows the schematic of the hardware and the main unit of IoT base station,
where the central component is an Arduino Mega microcontroller, expanded with an
extension module to accommodate all necessary electrical connections. Most sensors were
attached over the industry-standard SPI and I2C buses available on the Arduino Mega.

The system was installed in such a way to avoid disturbing the bee ecosystem and
prevent the impact of direct exposure to the weather in order to avoid measurement errors.
For example, individual sensors that are exposed to direct sunlight are protected by clear
glass without UV stabilizers to avoid measurement errors. Sensors for the detection of
gases, frequencies, and noise were placed in such a way that they could record without
interference and without being affected by weather conditions or direct sunlight.

The bee counting sensor array consists of devices for detecting the frequency of the
movement of bees at the entrance to the hive in several corridors in order to smoothly
monitor the movement of entering and leaving the hive. These are photoreflective resistors
in which reflection is interrupted during movement; thus, the direction of movement is
detected. The ESP32 microcontroller board controls the operation of these sensors.

Sensors inside the hive were positioned in such a way that they could function without
the danger of being obstructed by bee wax, as bees wax any unknown elements inside the
hive to protect the colony.

Collected data from the hive represent the microclimate of the living environment of
bees and are valuable because they allow for the differences in measurements with values
obtained outside the hive to be observed.

In the background of the main unit of the IoT system that collects data from the bee
counting array and the measurement system with sensors there is a trained algorithm in
charge of eliminating errors in measurements if they occur.
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Figure 4. System schematic (created in Fritzing [67]).

4. WebAPP for MAP

A web application was developed that shows current sensor readings from the hive
(Figure 5). Measured values are stored in a web database in real time.

 

Figure 5. Application interface.

The web interface contains indicators for predictive and analytical alarms. The pre-
dictive alarm is activated by the prediction algorithm on the basis of bee movement (more
details in the following section).

The movement of bees is most often caused by feeding, meteorological factors, daily
activities in relation to the same factors, and human activity. In this way, we formulated
directly and indirectly dependent factors, and their interdependence.

Cells that display values in the application are dynamic and change colors in relation
to the displayed values. The analytical alarm is triggered when the measurement value
approaches the critical value, for example, in the case of high temperature and high
humidity. When the temperature value inside the hive exceeds 35 ◦C [68] or the relative
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humidity is nearly 90%, the alarm is triggered. A push notification is sent informing about
changes in the hive.

Before the predictive modeling (AI) module is described, an overview of the collected
dataset from previous steps is provided. All collected variables, and which sensor is
responsible for collecting which data are described. Additionally, required data cleaning
and variable transformations are described.

5. Dataset Description

Data were collected during fall months, but in the paper, 20 successive days in October
2021 were used for analysis. Measurements were performed in 5 min intervals. Taking
into consideration a small number of exits from the hive and small changes in weather
conditions in a period of 5 min, especially in the observed period, time intervals were
consolidated into 24 h. Final input features were obtained as the average value of all
related values that belonged to the observed hour. Output values were obtained as the
sum of all exits and entrances to the hive in that hour. Table 1 shows the structure of the
dataset with all used variables and their descriptions. The entire dataset and code source
is publicly available at https://gitlab.com/mali_banekg/beeactivityforecast (accessed on
15 January 2022).

Table 1. Sensors, control sensors, and description of measurements.

Column Name Description Column Name Description

Date Date of measuring BME280_humi Outside humidity control

Hour Time of measuring BME280_pressure Air pressure

AM2302_1_Temp Outside air temperature BME280_alt Altitude

AM2302_1_Humi Outside humidity SI1145_visible Daylight intensity

AM2302_2_Temp HIVE Temperature in a hive SI1145_IR Infrared intensity

AM2302_2_Humi HIVE Humidity in a hive SI1145_UV UV index control

SW420_Vibrate HIVE Vibrations in a hive ANEM_voltage Wind force

MHRD_rain Rain sensor ANEM_windSpeed Wind speed

MQ135_PPM Air quality sensor MIC1_freq Frequency spectrum

MICS6814_PPM Air quality sensor MIC1_volume Sound level and loudness

MICS5524_PPM HIVE Air quality sensor in a hive MIC2_freq HIVE Frequency spectrum in a HIVE

BH1750_lux Day light and lux intensity MIC2_volume HIVE Sound level and loudness in a HIVE

VEML6750_uvindex UV index BEECNT_message OUT Bee counter OUT HIVE

BME280_temp Ouside temperature control BEECNT_message IN Bee counter IN HIVE

Date Date of measuring BME280_humi Outside humidity control

Hour Time of measuring BME280_pressure Air pressure

AM2302_1_Temp Outside air temperature BME280_alt Altitude

AM2302_1_Humi Outside humidity SI1145_visible Daylight intensity

AM2302_2_Temp HIVE Temperature in a hive SI1145_IR Infrared intensity

The BEECNT_message OUT variable represents the number of bees that came out of the
hive, while BEECNT_message IN represents the number of bees that entered the hive. These
two variables were used as output in our models. In this way, we connected dependent
and independent indicators of bee movement.

Counting the bees’ entrances to and exits from the hive, and measuring the environ-
mental conditions inside and outside of the hive are important for alarm initialization, and
complement the results of other parameters that indicate the frequencies of movement of
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bees obtained from the sensory measurements of the immediate environment. Without
measuring all the above factors, especially weather conditions, the number of bees in and
out would not be of greater significance and would only be a statistical detail. All these
variables collected from the environment to which the bees belong could be used for a
model development that can very precisely predict bee movements.

Some of the used variables and output variable Bee_IN (y) are shown in Figure 6. On
the basis of the time-series shape, it is obvious that some of these variables were important
for our model, such as lux or outside humidity (when the humidity value is high, the bees
do not leave the hive).

Figure 6. Shape of seven time series corresponding to output and inputs.

During the feature engineering phase, we took the advantage of the fact that there
are periods during the day (24 h) when bees are not active, and a new binary variable is
created that represents part of the day, daylight (5 a.m. to 6 p.m.) or night (other hours). If
any activity was detected during the night period, we replaced them with the 0 value. This
could usually happen around the border hours, when few exits or entries are detected.

Output columns BEE_IN and BEE_OUT were transformed by using the square root
transformation (this is the so called power transformation) because in time-series analysis,
this transformation is often considered to stabilize the variance of a series. Logarithmic
transformation was skipped because some of the values were equal to 0. Figure 7 shows the
original time series of the bee exits (red) and the time series after square root transformation
is applied (blue). It is obvious that the number of outings on certain days was drastically
reduced. This can be explained by the fact that weather conditions were probably worse
that day, for example, it was raining or it was windy.
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Figure 7. Number of bees counted per hour for 20 days.

6. Methodology

Time series data is a collection of observations obtained through repeated measure-
ments over time, as is the case here. Unlike regression predictive modeling, time series also
adds the complexity of a sequence dependence among the input variables. The recurrent
neural networks are a powerful type of neural network designed to handle sequence de-
pendence. The principal advantage of RNN over ANN is that RNN can model a collection
of records (i.e. time collection) so that each pattern can be assumed to be dependent on
previous ones. On the other hand, comparisons against ETS (error, trend, seasonal) and
ARIMA demonstrate that (semi-) automatic RNN models are not silver bullets, but they
are nevertheless competitive alternatives in many situations [69].

In this paper, we tested above-mentioned approaches, which are the most common
and the most promising methods in time-series forecasting, in order to predict bee exits
from and entries to the hive. This information may be important during periods when
fruits and vegetables are sprayed, so that we can close bee hives when high activity is
expected. First, we started from traditional approach ARIMA [70]. ARIMA is an acronym
that stands for autoregressive integrated moving average, which is a generalization of the
simpler autoregressive moving average that adds the notion of integration. After that,
we tested two more advanced approaches, Facebook Prophet [71] and recurrent neural
networks (LSTM) [72]. In the following subsections, a short description of these techniques
is given. For more details, we refer readers to the original papers.

6.1. ARIMA

An ARIMA model is a class of statistical models for analyzing and forecasting time-
series data. The model is fitted to time-series data to either better understand the data or
predict future points in the series, known as forecasting. The model acronym was obtained
after the key aspects of the model itself:

• AR: Autoregression. A model that uses the dependent relationship between an obser-
vation and some number of lagged observations.

• I: Integrated. The use of the differencing of raw observations (i.e., subtracting an
observation from an observation at the previous time step) in order to make the time
series stationary.

• MA: Moving average. A model that uses the dependency between an observation and
a residual error from a moving average model applied to lagged observations.
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A standard notation used for ARIMA is ARIMA (p,d,q), where parameters p, d, and q
can only be integer numbers denoting the lag order (number of lag observations included
in the model), the degree of differencing (number of times that the raw observations are dif-
ferenced), and the order of moving average (size of moving average window), respectively.

ARIMA works only with stationary time series. A stationary time series is one whose
properties do not depend on the time at which the series is observed. One way to more
objectively determine whether differencing is required is to use a unit root test. These
are statistical hypothesis tests of stationarity that were designed for determining whether
differencing is required. For this purpose, the Dickey–Fuller test was used (Table 2). The
results of the test for output variables BEE_OUT and BEE_IN are presented below.

Table 2. Results of Dickey–Fuller test.

BEE_OUT BEE_IN

Results of Dickey–Fuller Test: Results of Dickey–Fuller Test:

Test Statistic −8.410 Test Statistic −9.169
p-value 2.112 × 10−13 p-value 2.406 × 10−15

#Lags Used 14 #Lags Used 3
Number of Observations Used 465 Number of Observations Used 476
Critical Value (1%) −3.444 Critical Value (1%) −3.444
Critical Value (5%) −2.867 Critical Value (5%) −2.867
Critical Value (10%) −2.570 Critical Value (10%) −2.570

We could overwhelmingly reject the null hypothesis of a unit root at all common
significance levels. In other words, the observed time series were stationary.

6.2. Facebook Prophet

While ARIMA is autoregressive forecasting that fits a linear regression line with the lag
values and error terms, Facebook Prophet is a procedure for forecasting time-series data on
the basis of an additive model where nonlinear trends are fit with yearly, weekly, and daily
seasonality, plus holiday effects. It works best with time series that have strong seasonal
effects and several seasons of historical data. Prophet is robust to missing data and shifts in
the trend, and typically handles outliers well. This is based on generalized additive models
(GAMs), which provide a general framework for extending a standard linear model by
allowing for nonlinear functions of each of the variables while maintaining additivity. Just
like linear models, GAMs can be applied with both quantitative and qualitative responses.

In this model, three main components were used: trend, seasonality, and holidays.
They were combined in the following equation.

y(t) = g(t) + s(t) + h(t) + t, (1)

where g(t) is the trend function that models nonperiodic changes in the value of the
time series, s(t) represents periodic changes (e.g., weekly and yearly seasonality), and
h(t) represents the effects of holidays that occur on potentially irregular schedules over
one or more days. Error term t represents any idiosyncratic changes not accommodated
by the model. The detected components for the entire BEE_OUT time series, trend, daily
behaviour, and the influence of the added regressors are shown in Figure 8. Similar graphics
were obtained for the entire BEE_IN time series (Figure 9).

Facebook Prophet is very popular in time-series forecasting because it is robust to
outliers, missing data, and dramatic changes in time series, whereas ARIMA is prone to
white noise and nonstationary signals. The existence of outliers and missing data in such
use cases is certain, bearing in mind that equipment may sometimes break down.

Here, we explore the problem of flexibly predicting Y on the basis of several predic-
tors, X1, . . . , Xp. Possible input variables were carefully selected from Table 1. More
information of the selected features is provided in the results section.
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Figure 8. Results of training phase of Facebook Prophet algorithm for BEE_OUT variable.

6.3. LSTM Model

A recurrent neural network (RNN) is a class of artificial neural networks where
connections between nodes form a directed graph along a temporal sequence. This allows
for it to exhibit temporal dynamic behavior. They are distinguished by their memory, as
they take information from prior inputs to influence the current input and output. While
traditional deep neural networks assume that inputs and outputs are independent of
each other, the output of recurrent neural networks depends on prior elements within
the sequence. While future events would also be helpful in determining the output of a
given sequence, unidirectional recurrent neural networks cannot account for these events
in their predictions.

These deep-learning algorithms are commonly used for ordinal or temporal prob-
lems such as language translation [73], natural language processing (NLP) [74], speech
recognition [75], and image captioning [76].

There are three types of vanilla recurrent neural network: simple (RNN), gated recur-
rent unit (GRU), and long short-term memory unit (LSTM). The difference among them is
shown in Figure 10, but we omit the details because they are outside the scope of this paper.
Long short-term memory (LSTM) networks were invented by Hochreiter and Schmidhuber
in 1997 [72], and they set accuracy records in multiple application domains. Here, LSTM
cells were used for the time-series modeling.
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Figure 9. Results of training phase of Facebook Prophet algorithm for BEE_IN variable.

 

Figure 10. Network structure of RNN, LSTM, and GRU.

7. Experimental Setup and Evaluation

In order to test the robustness of the models, a time-series cross-validator was used in
the experiments. The TimeSeriesSplit class from scikit-learn library provides a very simple
interface to split time-series data samples that are observed at fixed time intervals into
training and test sets. In each split, test indices are higher than before; thus, shuffling in the
cross-validator is inappropriate. In other words, this cross-validation object is a variation of
Kfold, where in the k-th split, it returns the first k folds as the training set, and the (k+1)-th
fold as the test set.

a. ARIMA: In our experiments, different values for the p, d, and q parameters were
tested, and the ARIMA model with the smallest RMSE error was selected for further
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testing. For p, parameter values of 0, 1, 2, 4, 6, 8, and 10 were tested, while d and q
values were tested for values ranging from 0 to 3. A combination of parameters (p, d,
q) that showed the best performance of the ARIMA model for BEE_OUT and BEE_IN
outputs was (p, d, q) = (10, 0, 2); for BEE_IN, the combination of (0, 0, 2) was selected.

b. Facebook Prophet: Different combinations of input variables from Table 1 were tested,
but the best results were obtained by using the following variables: AM2302_1_Temp,
AM2302_1_Humi, AM2302_2_Temp HIVE, AM2302_2_Humi HIVE, MHRD_rain,
MQ135_PPM, BH1750_lux, VEML6750_uvindex, and Day_night.

Parameters with the greatest influence on movements used to produce the prediction
model were temperature and relative humidity inside and outside of the hive, the presence of
rain, air quality, the range and intensity of daylight, UV radiation, and night and day shifts.

The forecast for the entire BEE_OUT time series is shown in Figure 11. This figure is
given only to show that Facebook Prophet can successfully learn from the observed time
series. In the results, the complete time-series forecast and presented metrics are based on
previously invisible data (test dataset).

 

Figure 11. Forecast for the entire (20 days) BEE_OUT and BEE_IN time series.
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a. Recurrent neural networks: The first step is to prepare the BEE dataset for the LSTM.
This involves framing the dataset as a supervised-learning problem and normalizing
the input variables. The same variables used by the Facebook Prophet algorithm
were also used here. The supervised-learning problem is framed as predicting the bee
exit or entrance at the current hour (t) given the bee exit or entrance measurement,
and weather conditions at the prior time step. After this transformation step, the
ten input variables (input series) and one output variable (bee exit or entrance at the
current hour) are

var1(t − 1), var1(t − 1), . . . , var10(t − 1), var1(t) (2)

We defined the LSTM with 50 neurons in the first hidden layer, and 1 neuron in the output
layer for predicting bee activity. The input shape was one time step with 10 features. Mean
absolute error (MAE) was used as the loss function and the efficient Adam version of stochastic
gradient descent. The model was fit for 50 training epochs with a batch size of 20. Lastly, we
monitored both training and test loss during the training phase. At the end of the run, both
training and test loss were plotted. Resulting loss curves during the training and validation
phases for the BEE_OUT and BEE_IN outputs are shown in Figures 12 and 13, respectively.

Separate time-series forecasts on the test set for each fold are shown in Figure 14.
The machine learning (ML) applied to the time-series data, in this case, recurrent neural
networks, is an efficient and effective way to analyze the data, apply a forecasting algorithm,
and derive an accurate forecast.

 
Figure 12. Bee OUT training phase.

404



Electronics 2022, 11, 783

 

Figure 13. Bee IN training phase.

Figure 14. (blue) Original segment of BEE_OUT time series; (red) prediction for each fold (fivefold
time-series split).
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All aggregated results are shown in Table 3. The best results were achieved by us-
ing recurrent neural networks, where the average RMSE on the test sets was 426.49 for
BEE_OUT time series; for the BEE_IN time series, RMSE had a value of 378.464.

Table 3. Results using recurrent neural network.

MODEL CV Test RMSE OUT CV Test RMSE IN

ARIMA 894.92 511.77

Facebook Prophet 589.97 475.25

LSTM 426.49 378.464

Table 4 shows the summarized optimal parameters for all investigated methods.

Table 4. Comparison of summarized optimal parameters for all investigated methods.

Algorithm Parameters BEE OUT/IN

ARIMA

For BEE OUT
(p, d, q): (10, 0, 2)
For BEE IN
(p, d, q): (0, 0, 2)

Facebook Prophet
Yearly seasonality: false
Weekly seasonality: false
Daily seasonality: true

Recurrent Neural Networks

RNN cell type: LSTM
LSTM number: 50
Loss function: mean absolute error
Batch size: 20
Optimizer: Adam
Learning rate: 1 × 10−3

Epochs: 50

8. Conclusions

Comparisons of the experimental data against the model showed that our model
represents the observed processes well. This is indicated by the results shown in the
figures. According to the obtained results, the best model could achieve reliable bee activity
prediction, with an error of only 8.9 missed bees per hour for bee exits from, and 7.8 missed
bees per hour for bee entrances in a hive. We expect to see higher errors per hour when
measurements are produced in the spring and summer months, and that additional feature
engineering can help in model improving.

Apiculture presents complex problems pertinent to the life and wellbeing of bees.
This paper presented a complete system for the monitoring and predictive analysis of
honeybee activity, which addresses complex problems arising in beekeeping. Our aim was
to improve existing solutions and create a fully developed system that would address some
existing shortcomings.

The presented system is based on the application of IoT data collection and monitoring,
machine-learning algorithms for beehive activity prediction, and remote control via IoT
that enables undertaking certain corrective actions inside hives.

The increased number of sensors in the presented system is an important improvement
over existing solutions. Each individual parameter influences bees in a different way
and amount; however, when observed together and simultaneously, they provide more
complete insight in the analysis of the results.

The application of advanced MAP enables the detection of sudden deviations and
disruptions to the normal life of bees, and the prediction of potential disturbing changes.
We showed that, by applying advanced algorithms, high-precision predictions on a daily
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basis are possible. In this way, by employing a real-time monitoring application and push
notifications of potential changes, the beekeeper has real-time insight into the conditions of
the hives, and can react adequately to prevent unwanted outcomes.

There are some limitations to our approach. For example, the testing phase was con-
ducted on two beehives, and the main data were collected from one hive that had not been
moved during the experiment. The experiment was conducted during a period in which
there was no food from flowers, and when bee activity was less than that during spring.

In future work, the system will be upgraded with appropriate weight sensors, oxy-
gen/carbon dioxide sensors, thermal sensors, automatic bee-feeding, ventilation, and
gate-closing systems, and connectivity with other applications and solutions.

In future papers, we will provide extensive research that includes analysis of the
influence of microwaves and the presence of electronic components. It is also necessary to
include time as a special factor in reaching conclusions because, from a longer time instance,
we come to experiential conclusions, since every change, measurement, or analysis requires
some time to pass for the results to be qualitative.
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